WorldWideScience

Sample records for human respiratory viral

  1. Phosphorylation of human respiratory syncytial virus P protein at serine 54 regulates viral uncoating

    International Nuclear Information System (INIS)

    Asenjo, Ana; Gonzalez-Armas, Juan C.; Villanueva, Nieves

    2008-01-01

    The human respiratory syncytial virus (HRSV) structural P protein, phosphorylated at serine (S) and threonine (T) residues, is a co-factor of viral RNA polymerase. The phosphorylation of S54 is controlled by the coordinated action of two cellular enzymes: a lithium-sensitive kinase, probably glycogen synthetase kinase (GSK-3) β and protein phosphatase 2A (PP2A). Inhibition of lithium-sensitive kinase, soon after infection, blocks the viral growth cycle by inhibiting synthesis and/or accumulation of viral RNAs, proteins and extracellular particles. P protein phosphorylation at S54 is required to liberate viral ribonucleoproteins (RNPs) from M protein, during the uncoating process. Kinase inhibition, late in infection, produces a decrease in genomic RNA and infectious viral particles. LiCl, intranasally applied to mice infected with HRSV A2 strain, reduces the number of mice with virus in their lungs and the virus titre. Administration of LiCl to humans via aerosol should prevent HRSV infection, without secondary effects

  2. Next Generation Respiratory Viral Vaccine System: Advanced and Emerging Bioengineered Human Lung Epithelia Model (HLEM) Organoid Technology

    Science.gov (United States)

    Goodwin, Thomas J.; Schneider, Sandra L.; MacIntosh, Victor; Gibbons, Thomas F.

    2010-01-01

    Acute respiratory infections, including pneumonia and influenza, are the S t" leading cause of United States and worldwide deaths. Newly emerging pathogens signaled the need for an advanced generation of vaccine technology.. Human bronchial-tracheal epithelial tissue was bioengineered to detect, identify, host and study the pathogenesis of acute respiratory viral disease. The 3-dimensional (3D) human lung epithelio-mesechymal tissue-like assemblies (HLEM TLAs) share characteristics with human respiratory epithelium: tight junctions, desmosomes, microvilli, functional markers villin, keratins and production of tissue mucin. Respiratory Syntial Virus (RSV) studies demonstrate viral growth kinetics and membrane bound glycoproteins up to day 20 post infection in the human lung-orgainoid infected cell system. Peak replication of RSV occurred on day 10 at 7 log10 particles forming units per ml/day. HLEM is an advanced virus vaccine model and biosentinel system for emergent viral infectious diseases to support DoD global surveillance and military readiness.

  3. The viral transcription group determines the HLA class I cellular immune response against human respiratory syncytial virus.

    Science.gov (United States)

    Johnstone, Carolina; Lorente, Elena; Barriga, Alejandro; Barnea, Eilon; Infantes, Susana; Lemonnier, François A; David, Chella S; Admon, Arie; López, Daniel

    2015-04-01

    The cytotoxic T-lymphocyte-mediated killing of virus-infected cells requires previous recognition of short viral antigenic peptides bound to human leukocyte antigen class I molecules that are exposed on the surface of infected cells. The cytotoxic T-lymphocyte response is critical for the clearance of human respiratory syncytial virus infection. In this study, naturally processed viral human leukocyte antigen class I ligands were identified with mass spectrometry analysis of complex human leukocyte antigen-bound peptide pools isolated from large amounts of human respiratory syncytial virus-infected cells. Acute antiviral T-cell response characterization showed that viral transcription determines both the immunoprevalence and immunodominance of the human leukocyte antigen class I response to human respiratory syncytial virus. These findings have clear implications for antiviral vaccine design. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. The Viral Transcription Group Determines the HLA Class I Cellular Immune Response Against Human Respiratory Syncytial Virus*

    Science.gov (United States)

    Johnstone, Carolina; Lorente, Elena; Barriga, Alejandro; Barnea, Eilon; Infantes, Susana; Lemonnier, François A.; David, Chella S.; Admon, Arie; López, Daniel

    2015-01-01

    The cytotoxic T-lymphocyte-mediated killing of virus-infected cells requires previous recognition of short viral antigenic peptides bound to human leukocyte antigen class I molecules that are exposed on the surface of infected cells. The cytotoxic T-lymphocyte response is critical for the clearance of human respiratory syncytial virus infection. In this study, naturally processed viral human leukocyte antigen class I ligands were identified with mass spectrometry analysis of complex human leukocyte antigen-bound peptide pools isolated from large amounts of human respiratory syncytial virus-infected cells. Acute antiviral T-cell response characterization showed that viral transcription determines both the immunoprevalence and immunodominance of the human leukocyte antigen class I response to human respiratory syncytial virus. These findings have clear implications for antiviral vaccine design. PMID:25635267

  5. Differences in viral load among human respiratory syncytial virus genotypes in hospitalized children with severe acute respiratory infections in the Philippines.

    Science.gov (United States)

    Kadji, Francois Marie Ngako; Okamoto, Michiko; Furuse, Yuki; Tamaki, Raita; Suzuki, Akira; Lirio, Irene; Dapat, Clyde; Malasao, Rungnapa; Saito, Mariko; Pedrera-Rico, Gay Anne Granada; Tallo, Veronica; Lupisan, Socorro; Saito, Mayuko; Oshitani, Hitoshi

    2016-06-27

    Human respiratory syncytial virus (HRSV) is a leading viral etiologic agent of pediatric lower respiratory infections, including bronchiolitis and pneumonia. Two antigenic subgroups, HRSV-A and B, each contain several genotypes. While viral load may vary among HRSV genotypes and affect the clinical course of disease, data are scarce regarding the actual differences among genotypes. Therefore, this study estimated and compared viral load among NA1 and ON1 genotypes of HRSV-A and BA9 of HRSV-B. ON1 is a newly emerged genotype with a 72-nucleotide duplication in the G gene as observed previously with BA genotypes in HRSV-B. Children <5 years of age with an initial diagnosis of severe or very severe pneumonia at a hospital in the Philippines from September 2012 to December 2013 were enrolled. HRSV genotypes were determined and the viral load measured from nasopharyngeal swabs (NPS). The viral load of HRSV genotype NA1 were significantly higher than those of ON1 and BA9. Regression analysis showed that both genotype NA1 and younger age were significantly associated with high HRSV viral load. The viral load of NA1 was higher than that of ON1 and BA9 in NPS samples. HRSV genotypes may be associated with HRSV viral load. The reasons and clinical impacts of these differences in viral load among HRSV genotypes require further evaluation.

  6. [Relationship between viral load of human bocavirus and clinical characteristics in children with acute lower respiratory tract infection].

    Science.gov (United States)

    Ding, Xiao-Fang; Zhang, Bing; Zhong, Li-Li; Xie, Le-Yun; Xiao, Ni-Guang

    2017-03-01

    To investigate the prevalence of human bocavirus (HBoV) in children with acute lower respiratory tract infection and to explore the relationship between the viral load of HBoV and the clinical characteristics of acute lower respiratory tract infection in children. A total of 1 554 nasopharyngeal aspirates from children who were hospitalized due to acute lower respiratory tract infection between March 2011 and March 2014 were collected. Quantitative real-time PCR was used to detect 12 RNA and 2 DNA viruses, adenovirus (ADV) and HBoV, and to measure the viral load of HBoV in HBoV-positive children. A comprehensive analysis was performed with reference to clinical symptoms and indicators. In the 1 554 specimens, 1 212 (77.99%) were positive for viruses, and 275 (17.70%) were HBoV-positive. In HBoV-positive cases, 94.9% were aged infection, and 230 (83.64%) had mixed infection. There was no significant difference in viral load between children with single infection and mixed infection (P>0.05). The patients with fever had a significantly higher viral load than those without fever (Pacute lower respiratory tract infection (P>0.05). HBoV is one of the important pathogens of acute lower respiratory tract infection in children. Children with a higher viral load of HBoV are more likely to experience symptoms such as fever and wheezing. However, the severity of disease and mixed infection are not significantly related to viral load.

  7. Water extract of Pueraria lobata Ohwi has anti-viral activity against human respiratory syncytial virus in human respiratory tract cell lines

    Directory of Open Access Journals (Sweden)

    Tzeng-Jih Lin

    2013-12-01

    Full Text Available Human respiratory syncytial virus (HRSV infects all age groups and causes bronchiolitis, pneumonia, and acute respiratory distress syndrome with a significant mortality rate. To date, only ribavirin has been used to manage HRSV infection. However, ribavirin is expensive with an only modest effect. Furthermore, ribavirin has several side effects, which means it has limited clinical benefit. Pueraria lobata Ohwi (P. lobata is a common ingredient of Ge-Gen-Tang (Kakkon-to and Sheng-Ma-Ge-Gen-Tang (Shoma-kakkon-to, which are prescriptions of Chinese traditional medicine proven to have antiviral activity against HRSV. Therefore, it was hypothesized that P. lobata might be effective against HRSV. To find a cost-effective therapeutic modality, both human upper (HEp-2 and lower (A549 respiratory tract cell lines were used to test the hypothesis that P. lobata could inhibit HRSV-induced plaque formation. Results showed that the water extract of P. lobata was effective (p < 0.0001 against HRSV-induced plaque formation. P. lobata was more effective when given prior to viral inoculation (p < 0.0001 by inhibiting viral attachment (p < 0.0001 and penetration (p < 0.0001. However, supplementation with P. lobata could not stimulate interferon secretion after HRSV infection. In conclusion, P. lobata has antiviral activity against HRSV-induced plaque formation in airway mucosa mainly by inhibiting viral attachment and internalization. Further identification of effective constituents could contribute to the prevention of HRSV infection.

  8. Clinical characteristics and viral load of respiratory syncytial virus and human metapneumovirus in children hospitaled for acute lower respiratory tract infection.

    Science.gov (United States)

    Yan, Xiao-Li; Li, Yu-Ning; Tang, Yi-Jie; Xie, Zhi-Ping; Gao, Han-Chun; Yang, Xue-Mei; Li, Yu-Mei; Liu, Li-Jun; Duan, Zhao-Jun

    2017-04-01

    Respiratory syncytial virus (RSV) and human metapneumovirus (HMPV) are two common viral pathogens in acute lower respiratory tract infections (ALRTI). However, the association of viral load with clinical characteristics is not well-defined in ALRTI. To explore the correlation between viral load and clinical characteristics of RSV and HMPV in children hospitalized for ALRTI in Lanzhou, China. Three hundred and eighty-seven children hospitalized for ALRTI were enrolled. Nasopharyngeal aspirates (NPAs) were sampled from each children. Real-time PCR was used to screen RSV, HMPV, and twelve additional respiratory viruses. Bronchiolitis was the leading diagnoses both in RSV and HMPV positive patients. A significantly greater frequency of wheezing (52% vs. 33.52%, P = 0.000) was noted in RSV positive and negative patients. The RSV viral load was significant higher in children aged infections (P = 0.000). No difference was found in the clinical features of HMPV positive and negative patients. The HMPV viral load had no correlation with any clinical characteristics. The incidences of severe disease were similar between single infection and coinfection for the two viruses (RSV, P = 0.221; HMPV, P = 0.764) and there has no statistical significance between severity and viral load (P = 0.166 and P = 0.721). Bronchiolitis is the most common disease caused by RSV and HMPV. High viral load or co-infection may be associated with some symptoms but neither has a significant impact on disease severity for the two viruses. J. Med. Virol. 89:589-597, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. Human Sentinel Surveillance of Influenza and Other Respiratory Viral Pathogens in Border Areas of Western Cambodia.

    Directory of Open Access Journals (Sweden)

    Ans Timmermans

    Full Text Available Little is known about circulation of influenza and other respiratory viruses in remote populations along the Thai-Cambodia border in western Cambodia. We screened 586 outpatients (median age 5, range 1-77 presenting with influenza-like-illness (ILI at 4 sentinel sites in western Cambodia between May 2010 and December 2012. Real-time reverse transcriptase (rRT PCR for influenza was performed on combined nasal and throat specimens followed by viral culture, antigenic analysis, antiviral susceptibility testing and full genome sequencing for phylogenetic analysis. ILI-specimens negative for influenza were cultured, followed by rRT-PCR for enterovirus and rhinovirus (EV/RV and EV71. Influenza was found in 168 cases (29% and occurred almost exclusively in the rainy season from June to November. Isolated influenza strains had close antigenic and phylogenetic relationships, matching vaccine and circulating strains found elsewhere in Cambodia. Influenza vaccination coverage was low (<20%. Western Cambodian H1N1(2009 isolate genomes were more closely related to 10 earlier Cambodia isolates (94.4% genome conservation than to 13 Thai isolates (75.9% genome conservation, despite sharing the majority of the amino acid changes with the Thai references. Most genes showed signatures of purifying selection. Viral culture detected only adenovirus (5.7% and parainfluenza virus (3.8%, while non-polio enteroviruses (10.3% were detected among 164 culture-negative samples including coxsackievirus A4, A6, A8, A9, A12, B3, B4 and echovirus E6 and E9 using nested RT-PCR methods. A single specimen of EV71 was found. Despite proximity to Thailand, influenza epidemiology of these western Cambodian isolates followed patterns observed elsewhere in Cambodia, continuing to support current vaccine and treatment recommendations from the Cambodian National Influenza Center. Amino acid mutations at non-epitope sites, particularly hemagglutinin genes, require further investigation in

  10. Human Sentinel Surveillance of Influenza and Other Respiratory Viral Pathogens in Border Areas of Western Cambodia.

    Science.gov (United States)

    Timmermans, Ans; Melendrez, Melanie C; Se, Youry; Chuang, Ilin; Samon, Nou; Uthaimongkol, Nichapat; Klungthong, Chonticha; Manasatienkij, Wudtichai; Thaisomboonsuk, Butsaya; Tyner, Stuart D; Rith, Sareth; Horm, Viseth Srey; Jarman, Richard G; Bethell, Delia; Chanarat, Nitima; Pavlin, Julie; Wongstitwilairoong, Tippa; Saingam, Piyaporn; El, But Sam; Fukuda, Mark M; Touch, Sok; Sovann, Ly; Fernandez, Stefan; Buchy, Philippe; Chanthap, Lon; Saunders, David

    2016-01-01

    Little is known about circulation of influenza and other respiratory viruses in remote populations along the Thai-Cambodia border in western Cambodia. We screened 586 outpatients (median age 5, range 1-77) presenting with influenza-like-illness (ILI) at 4 sentinel sites in western Cambodia between May 2010 and December 2012. Real-time reverse transcriptase (rRT) PCR for influenza was performed on combined nasal and throat specimens followed by viral culture, antigenic analysis, antiviral susceptibility testing and full genome sequencing for phylogenetic analysis. ILI-specimens negative for influenza were cultured, followed by rRT-PCR for enterovirus and rhinovirus (EV/RV) and EV71. Influenza was found in 168 cases (29%) and occurred almost exclusively in the rainy season from June to November. Isolated influenza strains had close antigenic and phylogenetic relationships, matching vaccine and circulating strains found elsewhere in Cambodia. Influenza vaccination coverage was low (Cambodia isolates (94.4% genome conservation) than to 13 Thai isolates (75.9% genome conservation), despite sharing the majority of the amino acid changes with the Thai references. Most genes showed signatures of purifying selection. Viral culture detected only adenovirus (5.7%) and parainfluenza virus (3.8%), while non-polio enteroviruses (10.3%) were detected among 164 culture-negative samples including coxsackievirus A4, A6, A8, A9, A12, B3, B4 and echovirus E6 and E9 using nested RT-PCR methods. A single specimen of EV71 was found. Despite proximity to Thailand, influenza epidemiology of these western Cambodian isolates followed patterns observed elsewhere in Cambodia, continuing to support current vaccine and treatment recommendations from the Cambodian National Influenza Center. Amino acid mutations at non-epitope sites, particularly hemagglutinin genes, require further investigation in light of an increasingly important role of permissive mutations in influenza virus evolution

  11. Three-Dimensionally Engineered Normal Human Broncho-epithelial Tissue-Like Assemblies: Target Tissues for Human Respiratory Viral Infections

    Science.gov (United States)

    Goodwin, T. J.; McCarthy, M.; Lin, Y-H

    2006-01-01

    In vitro three-dimensional (3D) human broncho-epithelial (HBE) tissue-like assemblies (3D HBE TLAs) from this point forward referred to as TLAs were engineered in Rotating Wall Vessel (RWV) technology to mimic the characteristics of in vivo tissues thus providing a tool to study human respiratory viruses and host cell interactions. The TLAs were bioengineered onto collagen-coated cyclodextran microcarriers using primary human mesenchymal bronchial-tracheal cells (HBTC) as the foundation matrix and an adult human bronchial epithelial immortalized cell line (BEAS-2B) as the overlying component. The resulting TLAs share significant characteristics with in vivo human respiratory epithelium including polarization, tight junctions, desmosomes, and microvilli. The presence of tissue-like differentiation markers including villin, keratins, and specific lung epithelium markers, as well as the production of tissue mucin, further confirm these TLAs differentiated into tissues functionally similar to in vivo tissues. Increasing virus titers for human respiratory syncytial virus (wtRSVA2) and parainfluenza virus type 3 (wtPIV3 JS) and the detection of membrane bound glycoproteins over time confirm productive infections with both viruses. Therefore, TLAs mimic aspects of the human respiratory epithelium and provide a unique capability to study the interactions of respiratory viruses and their primary target tissue independent of the host's immune system.

  12. Structural and Nonstructural Viral Proteins Are Targets of T-Helper Immune Response against Human Respiratory Syncytial Virus.

    Science.gov (United States)

    Lorente, Elena; Barriga, Alejandro; Barnea, Eilon; Mir, Carmen; Gebe, John A; Admon, Arie; López, Daniel

    2016-06-01

    Proper antiviral humoral and cellular immune responses require previous recognition of viral antigenic peptides that are bound to HLA class II molecules, which are exposed on the surface of antigen-presenting cells. The helper immune response is critical for the control and the clearance of human respiratory syncytial virus (HRSV) infection, a virus with severe health risk in infected pediatric, immunocompromised, and elderly populations. In this study, using a mass spectrometry analysis of complex HLA class II-bound peptide pools that were isolated from large amounts of HRSV-infected cells, 19 naturally processed HLA-DR ligands, most of them included in a complex nested set of peptides, were identified. Both the immunoprevalence and the immunodominance of the HLA class II response to HRSV were focused on one nonstructural (NS1) and two structural (matrix and mainly fusion) proteins of the infective virus. These findings have clear implications for analysis of the helper immune response as well as for antiviral vaccine design. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Interference Between Respiratory Syncytial Virus and Human Rhinovirus Infection in Infancy

    NARCIS (Netherlands)

    Achten, Niek B.; Wu, Pingsheng; Bont, Louis; Blanken, Maarten O; Gebretsadik, Tebeb; Chappell, James D; Wang, Li; Yu, Chang; Larkin, Emma K; Carroll, Kecia N; Anderson, Larry J; Moore, Martin L; Sloan, Chantel D; Hartert, Tina V

    2017-01-01

    Background.: Respiratory syncytial virus (RSV) and human rhinovirus (HRV) are the most common viruses associated with acute respiratory tract infections in infancy. Viral interference is important in understanding respiratory viral circulation and the impact of vaccines. Methods.: To study viral

  14. Viral respiratory diseases: vaccines and antivirals.

    Science.gov (United States)

    Lennette, E H

    1981-01-01

    Acute respiratory diseases, most of which are generally attributed to viruses, account for about 6% of all deaths and for about 60% of the deaths associated with all respiratory disease. The huge cost attributable to viral respiratory infections as a result of absenteeism and the disruption of business and the burden of medical care makes control of these diseases an important objective. The viruses that infect the respiratory tract fall taxonomically into five viral families. Although immunoprophylaxis would appear to be the logical approach, the development of suitable vaccines has been confronted with numerous obstacles, including antigenic drift and shift in the influenzaviruses, the large number of antigenically distinct immunotypes among rhinoviruses, the occurrence after immunization of rare cases of a severe form of the disease following subsequent natural infection with respiratory syncytial virus, and the risk of oncogenicity of adenoviruses for man. Considerable expenditure on the development of new antiviral drugs has so far resulted in only three compounds that are at present officially approved and licensed for use in the USA. Efforts to improve the tools available for control should continue and imaginative and inventive approaches are called for. However, creativity and ingenuity must operate within the constraints imposed by economic, political, ethical, and legal considerations.

  15. Human Respiratory Syncytial Virus and Human Metapneumovirus

    OpenAIRE

    Luciana Helena Antoniassi da Silva; Fernando Rosado Spilki; Adriana Gut Lopes Riccetto; Emilio Elias Baracat; Clarice Weis Arns

    2009-01-01

    The human respiratory syncytial virus (hRSV) and the human metapneumovírus (hMPV) are main etiological agents of acute respiratory infections (ARI). The ARI is an important cause of childhood morbidity and mortality worldwide.  hRSV and hMPV are members of the Paramyxoviridae. They are enveloped, non-segmented viruses, with negative-sense single stranded genomes. Respiratory syncytial virus (hRSV) is the best characterized agent viral of this group, associated with respiratory diseases in...

  16. Acute respiratory viral infections in pediatric cancer patients undergoing chemotherapy

    Directory of Open Access Journals (Sweden)

    Eliana C.A. Benites

    2014-07-01

    Full Text Available OBJECTIVE: to estimate the prevalence of infection by respiratory viruses in pediatric patients with cancer and acute respiratory infection (ARI and/or fever. METHODS: cross-sectional study, from January 2011 to December 2012. The secretions of nasopharyngeal aspirates were analyzed in children younger than 21 years with acute respiratory infections. Patients were treated at the Grupo em Defesa da Criança Com Câncer (Grendacc and University Hospital (HU, Jundiaí, SP. The rapid test was used for detection of influenza virus (Kit Biotrin, Inc. Ireland, and real-time multiplex polymerase chain reaction (FTD, Respiratory pathogens, multiplex Fast Trade Kit, Malta for detection of influenza virus (H1N1, B, rhinovirus, parainfluenza virus, adenovirus, respiratory syncytial virus, human parechovirus, bocavirus, metapneumovirus, and human coronavirus. The prevalence of viral infection was estimated and association tests were used (χ2 or Fisher's exact test. RESULTS: 104 samples of nasopharyngeal aspirate and blood were analyzed. The median age was 12 ± 5.2 years, 51% males, 68% whites, 32% had repeated ARIs, 32% prior antibiotic use, 19.8% cough, and 8% contact with ARIs. A total of 94.3% were in good general status. Acute lymphocytic leukemia (42.3% was the most prevalent neoplasia. Respiratory viruses were detected in 50 samples: rhinoviruses (23.1%, respiratory syncytial virus AB (8.7%, and coronavirus (6.8%. Co-detection occurred in 19% of cases with 2 viruses and in 3% of those with 3 viruses, and was more frequent between rhinovirus and coronavirus 43. Fever in neutropenic patients was observed in 13%, of which four (30.7 were positive for viruses. There were no deaths. CONCLUSIONS: the prevalence of respiratory viruses was relevant in the infectious episode, with no increase in morbidity and mortality. Viral co-detection was frequent in patients with cancer and ARIs.

  17. Metagenomic analysis of viral diversity in respiratory samples from patients with respiratory tract infections in Kuwait.

    Science.gov (United States)

    Madi, Nada; Al-Nakib, Widad; Mustafa, Abu Salim; Habibi, Nazima

    2018-03-01

    A metagenomic approach based on target independent next-generation sequencing has become a known method for the detection of both known and novel viruses in clinical samples. This study aimed to use the metagenomic sequencing approach to characterize the viral diversity in respiratory samples from patients with respiratory tract infections. We have investigated 86 respiratory samples received from various hospitals in Kuwait between 2015 and 2016 for the diagnosis of respiratory tract infections. A metagenomic approach using the next-generation sequencer to characterize viruses was used. According to the metagenomic analysis, an average of 145, 019 reads were identified, and 2% of these reads were of viral origin. Also, metagenomic analysis of the viral sequences revealed many known respiratory viruses, which were detected in 30.2% of the clinical samples. Also, sequences of non-respiratory viruses were detected in 14% of the clinical samples, while sequences of non-human viruses were detected in 55.8% of the clinical samples. The average genome coverage of the viruses was 12% with the highest genome coverage of 99.2% for respiratory syncytial virus, and the lowest was 1% for torque teno midi virus 2. Our results showed 47.7% agreement between multiplex Real-Time PCR and metagenomics sequencing in the detection of respiratory viruses in the clinical samples. Though there are some difficulties in using this method to clinical samples such as specimen quality, these observations are indicative of the promising utility of the metagenomic sequencing approach for the identification of respiratory viruses in patients with respiratory tract infections. © 2017 Wiley Periodicals, Inc.

  18. Human Respiratory Syncytial Virus and Human Metapneumovirus

    Directory of Open Access Journals (Sweden)

    Luciana Helena Antoniassi da Silva

    2009-08-01

    Full Text Available The human respiratory syncytial virus (hRSV and the human metapneumovírus (hMPV are main etiological agents of acute respiratory infections (ARI. The ARI is an important cause of childhood morbidity and mortality worldwide.  hRSV and hMPV are members of the Paramyxoviridae. They are enveloped, non-segmented viruses, with negative-sense single stranded genomes. Respiratory syncytial virus (hRSV is the best characterized agent viral of this group, associated with respiratory diseases in lower respiratory tract. Recently, a new human pathogen belonging to the subfamily Pneumovirinae was identified, the human metapneumovirus (hMPV, which is structurally similar to the hRSV, in genomic organization, viral structure, antigenicity and clinical symptoms.  The subfamily Pneumovirinae contains two genera: genus Pneumovirus contains hRSV, the bovine (bRSV, as well as the ovine and caprine respiratory syncytial virus and pneumonia virus of mice, the second genus Metapneumovirus, consists of avian metapneumovirus (aMPV and human metapneumovirus (hMPV. In this work, we present a brief narrative review of the literature on important aspects of the biology, epidemiology and clinical manifestations of infections by two respiratory viruses.

  19. Phosphorylation of the human respiratory syncytial virus P protein mediates M2-2 regulation of viral RNA synthesis, a process that involves two P proteins.

    Science.gov (United States)

    Asenjo, Ana; Villanueva, Nieves

    2016-01-04

    The M2-2 protein regulates the balance between human respiratory syncytial virus (HRSV) transcription and replication. Here it is shown that M2-2 mediated transcriptional inhibition is managed through P protein phosphorylation. Transcription inhibition by M2-2 of the HRSV based minigenome pRSVluc, required P protein phosphorylation at serines (S) in positions 116, 117, 119 and increased inhibition is observed if S232 or S237 is also phosphorylated. Phosphorylation of these residues is required for viral particle egression from infected cells. Viral RNA synthesis complementation assays between P protein variants, suggest that two types of P proteins participate in the process as components of RNA dependent RNA polymerase (RdRp). Type I is only functional when, as a homotetramer, it is bound to N and L proteins through residues 203-241. Type II is functionally independent of these interactions and binds to N protein at a region outside residues 232-241. P protein type I phosphorylation at S116, S117 and S119, did not affect the activity of RdRp but this phosphorylation in type II avoids its interaction with N protein and impairs RdRp functionality for transcription and replication. Structural changes in the RdRp, mediated by phosphorylation turnover at the indicated residues, in the two types of P proteins, may result in a fine adjustment, late in the infectious cycle, of transcription, replication and progression in the morphogenetic process that ends in egression of the viral particles from infected cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Phytotherapy of Acute Respiratory Viral Diseases

    Directory of Open Access Journals (Sweden)

    I.B. Ershova

    2016-11-01

    Full Text Available Nowadays phytotherapy is increasingly being implemented into medical practice, especially for the prevention and treatment of many diseases. Acute respiratory viral infections are most common in childhood and in adults. Acute rhinitis, pharyngitis, tonsillitis, sinusitis, nasopharyngitis and acute laryngitis refer to diseases of the upper respiratory tract. The main reason for respiratory diseases in recurrent respiratory infection child is disorders of mucociliary and immune protection. The therapeutic value of medicinal plants is determined by their biologically active substances. The method of application of phytotherpy is an integral part of traditional medicine. Herbal medicine can be used at home and does not require special equipment. The main indications for the herbal medicine use in pediatrics are the initial stage of the disease as a primary method of treatment due to mild and low toxicity; as a supporting treatment for enhancing the protective forces of the child’s body during the disease deterioration. During the recovery period herbal medicine again occupies a leading position, especially in case of chronic diseases because it can be used for a long time and is well combined with synthetic drugs. The terms of appointment of herbs for children: prescription of medicinal plants for children must be individual according to indications, taking into account the child’s age; it is recommended to take into account the form and nature of the course of the main disease and comorbidities as well; at the initial stage of the treatment it is better to use some medicinal plants or species consisting of 2–3 plants and in the future a more complex composition; therapy with medicinal plants requires a long period to be used use, especially in chronic diseases; in the treatment of chronic diseases a good effect preventive courses of herbal medicine was revealed, which are appointed during seasonal exacerbations; in case of intolerance

  1. [The different experession of human papilloma viral types 6 and 11 in Uyghur and Chinese juvenile recurrent respiratory papillomatosis in a large pediatric population in Xinjiang].

    Science.gov (United States)

    Zainura, Amrulla; Yalkun, Yasin; Wu, Mei

    2013-11-01

    To investigate the Human papilloma viral types 6 and 11 in a large pediatric population in XinJiang and the different expression in chinese and uyghur pediatric population. Using polymerase chain reaction (PCR), we analyzed paraffin embedded tissue in 42 cases of juvenile Recurrent Respiratory Papillomatosis (JRRP)and determined the HPV types 6 and 11, and to correlate these results with retrospectively analysis about those cases who were consecutively treated in our ENT department, meanwhile we carry out a critical review of the literature of JRRP. A total HPV infection positive rate was 97.61% (41/42), and HPV11 positive rate was 63.41% (41/26), HPV6 positive rate was 36.58% (41/15). In uyghur patient HPV11 positive rate was 65.38% (17/26), HPV6 positive rate was53. 33% (8/15). in Chince patient HPV11 positive rate was 34.61% (9/26), HPV6 positive rate was 46.67% (7/15). Juvenile laryngeal papilloma is associated with HPV11, HPV6 infection and we considered that HPV11 infection may be the important guideline of the evaluation of disease prognosis. but no statistical signtificance was determined in the patients of various ethnic groups in Xin jiang (P > 0.05).

  2. Acute respiratory viral infections in pediatric cancer patients undergoing chemotherapy

    Directory of Open Access Journals (Sweden)

    Eliana C.A. Benites

    2014-07-01

    Conclusions: the prevalence of respiratory viruses was relevant in the infectious episode, with no increase in morbidity and mortality. Viral co‐detection was frequent in patients with cancer and ARIs.

  3. Gene Expression Profiles Link Respiratory Viral Infection, Platelet Response to Aspirin, and Acute Myocardial Infarction

    Science.gov (United States)

    Cyr, Derek D.; Lucas, Joseph E.; Zaas, Aimee K.; Woods, Christopher W.; Newby, L. Kristin; Kraus, William E.; Ginsburg, Geoffrey S.

    2015-01-01

    Background Influenza infection is associated with myocardial infarction (MI), suggesting that respiratory viral infection may induce biologic pathways that contribute to MI. We tested the hypotheses that 1) a validated blood gene expression signature of respiratory viral infection (viral GES) was associated with MI and 2) respiratory viral exposure changes levels of a validated platelet gene expression signature (platelet GES) of platelet function in response to aspirin that is associated with MI. Methods A previously defined viral GES was projected into blood RNA data from 594 patients undergoing elective cardiac catheterization and used to classify patients as having evidence of viral infection or not and tested for association with acute MI using logistic regression. A previously defined platelet GES was projected into blood RNA data from 81 healthy subjects before and after exposure to four respiratory viruses: Respiratory Syncytial Virus (RSV) (n=20), Human Rhinovirus (HRV) (n=20), Influenza A virus subtype H1N1 (H1N1) (n=24), Influenza A Virus subtype H3N2 (H3N2) (n=17). We tested for the change in platelet GES with viral exposure using linear mixed-effects regression and by symptom status. Results In the catheterization cohort, 32 patients had evidence of viral infection based upon the viral GES, of which 25% (8/32) had MI versus 12.2% (69/567) among those without evidence of viral infection (OR 2.3; CI [1.03-5.5], p=0.04). In the infection cohorts, only H1N1 exposure increased platelet GES over time (time course p-value = 1e-04). Conclusions A viral GES of non-specific, respiratory viral infection was associated with acute MI; 18% of the top 49 genes in the viral GES are involved with hemostasis and/or platelet aggregation. Separately, H1N1 exposure, but not exposure to other respiratory viruses, increased a platelet GES previously shown to be associated with MI. Together, these results highlight specific genes and pathways that link viral infection

  4. Respiratory viral infections in infants with clinically suspected pertussis

    Directory of Open Access Journals (Sweden)

    Angela E. Ferronato

    2013-11-01

    Conclusion: the results suggest that viral infection can be present in hospitalized infants with clinical suspicion of pertussis, and etiological tests may enable a reduction in the use of macrolides in some cases. However, the etiological diagnosis of respiratory virus infection, by itself, does not exclude the possibility of infection with BP.

  5. Respiratory viral infections in infants with clinically suspected pertussis.

    Science.gov (United States)

    Ferronato, Angela E; Gilio, Alfredo E; Vieira, Sandra E

    2013-01-01

    to evaluate the frequency of respiratory viral infections in hospitalized infants with clinical suspicion of pertussis, and to analyze their characteristics at hospital admission and clinical outcomes. a historical cohort study was performed in a reference service for pertussis, in which the research of respiratory viruses was also a routine for infants hospitalized with respiratory problems. All infants reported as suspected cases of pertussis were included. Tests for Bordetella pertussis (BP) (polymerase chain reaction/culture) and for respiratory viruses (RVs) (immunofluorescence) were performed. Patients who received macrolides before hospitalization were excluded. Clinical data were obtained from medical records. Among the 67 patients studied, BP tests were positive in 44%, and 26% were positive for RV. There was no etiological identification in 35%, and RV combined with BP was identified in 5%. All patients had similar demographic characteristics. Cough followed by inspiratory stridor or cyanosis was a strong predictor of pertussis, as well as prominent leukocytosis and lymphocytosis. Rhinorrhea and dyspnea were more frequent in viral infections. Macrolides were discontinued in 40% of patients who tested positive for RV and negative for BP. the results suggest that viral infection can be present in hospitalized infants with clinical suspicion of pertussis, and etiological tests may enable a reduction in the use of macrolides in some cases. However, the etiological diagnosis of respiratory virus infection, by itself, does not exclude the possibility of infection with BP. Copyright © 2013 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  6. A 3-year prospective study of the epidemiology of acute respiratory viral infections in hospitalized children in Shenzhen, China.

    Science.gov (United States)

    He, Ying; Lin, Guang-Yu; Wang, Qiong; Cai, Xiao-Ying; Zhang, Yin-Hui; Lin, Chuang-Xing; Lu, Chang-Dong; Lu, Xue-Dong

    2014-07-01

    The epidemiology of local viral etiologies is essential for the management of viral respiratory tract infections. Limited data are available in China to describe the epidemiology of viral respiratory infections, especially in small-medium cities and rural areas. To determine the viral etiology and seasonality of acute respiratory infections in hospitalized children, a 3-year study was conducted in Shenzhen, China. Nasopharyngeal aspirates from eligible children were collected. Influenza and other respiratory viruses were tested by molecular assays simultaneously. Data were analyzed to describe the frequency and seasonality. Of the 2025 children enrolled in the study, 971 (48.0%) were positive for at least one viral pathogen, in which 890 (91.7%) were respiratory syncytial virus (RSV; 30.5%) and human rhinovirus (HRV; 21.5%). Co-infections were found in 302 cases (31.1%), and dual viral infection was dominant. RSV, HRV and IAV were the most frequent viral agents involved in co-infection. On the whole, the obvious seasonal peaks mainly from March to May were observed with peak strength varying from 1 year to another. This study provides a basic profile of the epidemiology of acute respiratory viral infection in hospitalized children in Shenzhen. The spectrum of viruses in the study site is similar to that in other places, but the seasonality is closely related to geographic position, different from that in big cities in northern China and neighboring Hong Kong. © 2014 The Authors. Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.

  7. Viral diseases and human evolution

    Directory of Open Access Journals (Sweden)

    Leal Élcio de Souza

    2000-01-01

    Full Text Available The interaction of man with viral agents was possibly a key factor shaping human evolution, culture and civilization from its outset. Evidence of the effect of disease, since the early stages of human speciation, through pre-historical times to the present suggest that the types of viruses associated with man changed in time. As human populations progressed technologically, they grew in numbers and density. As a consequence different viruses found suitable conditions to thrive and establish long-lasting associations with man. Although not all viral agents cause disease and some may in fact be considered beneficial, the present situation of overpopulation, poverty and ecological inbalance may have devastating effets on human progress. Recently emerged diseases causing massive pandemics (eg., HIV-1 and HCV, dengue, etc. are becoming formidable challenges, which may have a direct impact on the fate of our species.

  8. Interferon therapy of acute respiratory viral infections in children

    Directory of Open Access Journals (Sweden)

    A.E. Abaturov

    2017-04-01

    Full Text Available The purpose of our study was to evaluate the efficacy and tolerability of nasal spray Laferobionum® (100,000 IU/ml in children with acute respiratory viral infections. Materials and methods. The study included 84 children aged 12 to 18 years. Children of the main group (42 persons received Laferobionum® spray in addition to the standard treatment for acute respiratory viral infections. The drug was administered to children of 12–14 years for 2 spray doses in each nasal passage 4–5 times a day at regular intervals (with the exception of sleep time, children aged 14–18 years received 3 spray-doses per each nasal passage 5–6 times a day at regular intervals (excluding sleep time. The course of treatment for all subjects was 5 days. Children of the control group received standard treatment for acute respiratory viral infections without Laferobionum®. Objective research included: auscultation of the heart and lungs, examination of the skin and mucous membranes, measurement of heart rate, blood pressure and body temperature. All patients underwent a general blood test, a general urinalysis, identification of the pathogen using the method of direct immunofluorescence (in smears taken from the nasal passages in the laboratory “Medical Diagnostic Center of Dnipropetrovsk Medical Academy”. Results. In the non-epidemic period, the respiratory syncytial virus and adenoviruses were the leading viral pathogens of acute respiratory viral infections. The main clinical manifestations of acute respiratory viral infection in the observed patients were signs of general inflammatory and catarrhal syndromes. All patients had not severe course of the disease. The data of the physical examination performed before the beginning of treatment indicated the absence of clinically significant deviations from the cardiovascular system in the children of the main and control groups. Arterial blood pressure and heart rate in the subjects of both groups were

  9. Burden and Seasonality of Viral Acute Respiratory Tract Infections among Outpatients in Southern Sri Lanka.

    Science.gov (United States)

    Shapiro, David; Bodinayake, Champica K; Nagahawatte, Ajith; Devasiri, Vasantha; Kurukulasooriya, Ruvini; Hsiang, Jeremy; Nicholson, Bradley; De Silva, Aruna Dharshan; Østbye, Truls; Reller, Megan E; Woods, Christopher W; Tillekeratne, L Gayani

    2017-07-01

    In tropical and subtropical settings, the epidemiology of viral acute respiratory tract infections varies widely between countries. We determined the etiology, seasonality, and clinical presentation of viral acute respiratory tract infections among outpatients in southern Sri Lanka. From March 2013 to January 2015, we enrolled outpatients presenting with influenza-like illness (ILI). Nasal/nasopharyngeal samples were tested in duplicate using antigen-based rapid influenza testing and multiplex polymerase chain reaction (PCR) for respiratory viruses. Monthly proportion positive was calculated for each virus. Bivariable and multivariable logistic regression were used to identify associations between sociodemographic/clinical information and viral detection. Of 571 subjects, most (470, 82.3%) were ≥ 5 years of age and 53.1% were male. A respiratory virus was detected by PCR in 63.6% ( N = 363). Common viral etiologies included influenza (223, 39%), human enterovirus/rhinovirus (HEV/HRV, 14.5%), respiratory syncytial virus (RSV, 4.2%), and human metapneumovirus (hMPV, 3.9%). Both ILI and influenza showed clear seasonal variation, with peaks from March to June each year. RSV and hMPV activity peaked from May to July, whereas HEV/HRV was seen year-round. Patients with respiratory viruses detected were more likely to report pain with breathing (odds ratio [OR] = 2.60, P = 0.003), anorexia (OR = 2.29, P respiratory viruses detected. ILI showed clear seasonal variation in southern Sri Lanka, with most activity during March to June; peak activity was largely due to influenza. Targeted infection prevention activities such as influenza vaccination in January-February may have a large public health impact in this region.

  10. Nasopharyngeal polymicrobial colonization during health, viral upper respiratory infection and upper respiratory bacterial infection.

    Science.gov (United States)

    Xu, Qingfu; Wischmeyer, Jareth; Gonzalez, Eduardo; Pichichero, Michael E

    2017-07-01

    We sought to understand how polymicrobial colonization varies during health, viral upper respiratory infection (URI) and acute upper respiratory bacterial infection to understand differences in infection-prone vs. non-prone patients. Nasopharyngeal (NP) samples were collected from 74 acute otitis media (AOM) infection-prone and 754 non-prone children during 2094 healthy visits, 673 viral URI visits and 631 AOM visits. Three otopathogens Streptococcus pneumoniae (Spn), Nontypeable Haemophilus influenzae (NTHi), and Moraxella catarrhalis (Mcat) were identified by culture. NP colonization rates of multiple otopathogens during health were significantly lower than during viral URI, and during URI they were lower than at onset of upper respiratory bacterial infection in both AOM infection-prone and non-prone children. AOM infection-prone children had higher polymicrobial colonization rates than non-prone children during health, viral URI and AOM. Polymicrobial colonization rates of AOM infection-prone children during health were equivalent to that of non-prone children during viral URI, and during viral URI were equivalent to that of non-prone during AOM infection. Spn colonization was positively associated with NTHi and Mcat colonization during health, but negatively during AOM infection. The infection-prone patients more frequently have multiple potential bacterial pathogens in the NP than the non-prone patients. Polymicrobial interaction in the NP differs during health and at onset of infection. Copyright © 2017 The British Infection Association. Published by Elsevier Ltd. All rights reserved.

  11. Respiratory viral infections in infancy and school age respiratory outcomes and healthcare costs.

    Science.gov (United States)

    MacBean, Victoria; Drysdale, Simon B; Yarzi, Muska N; Peacock, Janet L; Rafferty, Gerrard F; Greenough, Anne

    2018-03-01

    To determine the impact of viral lower respiratory tract infections (LRTIs) in infancy including rhinovirus (RV) and infancy respiratory syncytial virus (RSV), on school age pulmonary function and healthcare utilization in prematurely born children. School age respiratory outcomes would be worse and healthcare utilization greater in children who had viral LRTIs in infancy. Prospective study. A cohort of prematurely born children who had symptomatic LRTIs during infancy documented, was recalled. Pulmonary function was assessed at 5 to 7 years of age and health related costs of care from aged one to follow-up determined. Fifty-one children, median gestational age 33 +6 weeks, were assessed at a median (IQR) age 7.03 (6.37-7.26) years. Twenty-one children had no LRTI, 14 RV LRTI, 10 RSV LRTI, and 6 another viral LRTI (other LRTI). Compared to the no LRTI group, the RV group had a lower FEV 1 (P = 0.033) and the other LRTI group a lower FVC (P = 0.006). Non-respiratory medication costs were higher in the RV (P = 0.018) and RSV (P = 0.013) groups. Overall respiratory healthcare costs in the RV (£153/year) and RSV (£27/year) groups did not differ significantly from the no LRTI group (£56/year); the other LRTI group (£431/year) had higher respiratory healthcare costs (P = 0.042). In moderately prematurely born children, RV and RSV LRTIs in infancy were not associated with higher respiratory healthcare costs after infancy. Children who experienced LRTIs caused by other respiratory viruses (including RV) had higher respiratory healthcare costs and greater pulmonary function impairment. © 2018 Wiley Periodicals, Inc.

  12. Reverse Genetics for Fusogenic Bat-Borne Orthoreovirus Associated with Acute Respiratory Tract Infections in Humans: Role of Outer Capsid Protein σC in Viral Replication and Pathogenesis.

    Directory of Open Access Journals (Sweden)

    Takahiro Kawagishi

    2016-02-01

    Full Text Available Nelson Bay orthoreoviruses (NBVs are members of the fusogenic orthoreoviruses and possess 10-segmented double-stranded RNA genomes. NBV was first isolated from a fruit bat in Australia more than 40 years ago, but it was not associated with any disease. However, several NBV strains have been recently identified as causative agents for respiratory tract infections in humans. Isolation of these pathogenic bat reoviruses from patients suggests that NBVs have evolved to propagate in humans in the form of zoonosis. To date, no strategy has been developed to rescue infectious viruses from cloned cDNA for any member of the fusogenic orthoreoviruses. In this study, we report the development of a plasmid-based reverse genetics system free of helper viruses and independent of any selection for NBV isolated from humans with acute respiratory infection. cDNAs corresponding to each of the 10 full-length RNA gene segments of NBV were cotransfected into culture cells expressing T7 RNA polymerase, and viable NBV was isolated using a plaque assay. The growth kinetics and cell-to-cell fusion activity of recombinant strains, rescued using the reverse genetics system, were indistinguishable from those of native strains. We used the reverse genetics system to generate viruses deficient in the cell attachment protein σC to define the biological function of this protein in the viral life cycle. Our results with σC-deficient viruses demonstrated that σC is dispensable for cell attachment in several cell lines, including murine fibroblast L929 cells but not in human lung epithelial A549 cells, and plays a critical role in viral pathogenesis. We also used the system to rescue a virus that expresses a yellow fluorescent protein. The reverse genetics system developed in this study can be applied to study the propagation and pathogenesis of pathogenic NBVs and in the generation of recombinant NBVs for future vaccines and therapeutics.

  13. Evaluation of the PrimerDesign™ genesig real-time reverse transcription-polymerase chain reaction assay and the INFINITI® Respiratory Viral Panel Plus assay for the detection of human metapneumovirus in Kuwait.

    Science.gov (United States)

    Al-Turab, Mariam; Chehadeh, Wassim; Al-Mulla, Fahd; Al-Nakib, Widad

    2012-04-01

    Human metapneumovirus (hMPV) is a respiratory pathogen that was discovered in 2001 and is considered a major cause of both upper and lower respiratory tract infections. A sensitive, fast, and high-throughput diagnostic test is needed for the detection of hMPV that may assist in the clinical management as well as in the reduction of inappropriate therapy. Therefore, a comparison assessment was performed in this study between the PrimerDesign™ genesig real-time reverse transcription-polymerase chain reaction (RT-PCR) Assay and the INFINITI(®) Respiratory Viral Panel Plus Assay (RVP-Plus) for the detection of hMPV infection in patients with respiratory tract infections. A total of 200 respiratory samples were collected from 185 hospitalized patients, during the winter season in Kuwait. Of 185 patients, 10 (5.4%) were positive for hMPV RNA by the in-house RT-PCR assay, while 7 (4%) were positive for hMPV RNA by the real-time RT-PCR assay and 9 (5%) were positive for hMPV RNA by the INFINITI(®) RVP-Plus assay. The high incidence rate (60%) of hMPV infection was in January 2011. The sensitivity of the real-time RT-PCR and INFINITI(®) RVP-Plus assays was 70% and 90%, respectively, with specificity of 100% for both assays. hMPV types A and B could be identified in this study; however, discordant genotyping results were found between the direct sequencing method and the INFINITI(®) RVP-Plus assay in 33% of hMPV-positive patients. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Promising approaches for the treatment and prevention of viral respiratory illnesses.

    Science.gov (United States)

    Papadopoulos, Nikolaos G; Megremis, Spyridon; Kitsioulis, Nikolaos A; Vangelatou, Olympia; West, Peter; Xepapadaki, Paraskevi

    2017-10-01

    Viral respiratory tract infections are the most common human ailments, leading to enormous health and economic burden. Hundreds of viral species and subtypes have been associated with these conditions, with influenza viruses, respiratory syncytial virus, and rhinoviruses being the most frequent and with the highest burden. When considering prevention or treatment of viral respiratory tract infections, potential targets include the causative pathogens themselves but also the immune response, disease transmission, or even just the symptoms. Strategies targeting all these aspects are developing concurrently, and several novel and promising approaches are emerging. In this perspective we overview the entire range of options and highlight some of the most promising approaches, including new antiviral agents, symptomatic or immunomodulatory drugs, the re-emergence of natural remedies, and vaccines and public health policies toward prevention. Wide-scale prevention through immunization appears to be within reach for respiratory syncytial virus and promising for influenza virus, whereas additional effort is needed in regard to rhinovirus, as well as other respiratory tract viruses. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  15. Respiratory viral RNA on toys in pediatric office waiting rooms.

    Science.gov (United States)

    Pappas, Diane E; Hendley, J Owen; Schwartz, Richard H

    2010-02-01

    Toys in pediatric office waiting rooms may be fomites for transmission of viruses. Eighteen samples were taken from office objects on 3 occasions. Samples were tested for presence of picornavirus (either rhinovirus or enterovirus) on all 3 sample days; in addition, January samples were tested for respiratory syncytial virus and March samples were tested for influenza A and B. In addition, 15 samples were obtained from the sick waiting room before and after cleaning. Polymerase chain reaction was used to detect picornavirus, respiratory syncytial virus, and influenza A or B virus. Finally, 20 samples were obtained from the fingers of a researcher after handling different toys in the sick waiting room, and samples were then obtained from all the same toys; all samples were tested for picornavirus by polymerase chain reaction. Viral RNA was detected on 11 of 52 (21%) of toys sampled. Ten of the positives were picornavirus; 1 was influenza B virus. Three (30%) of 10 toys from the new toy bag, 6 of 30 (20%) in the sick child waiting room, and 2 of 12 (17%) in the well child waiting room were positive. Six (40%) of 15 toys in the sick waiting room were positive for picornaviral RNA before cleaning; after cleaning, 4 (27%) of 15 were positive in spite of the fact that RNA was removed from 4 of 6 of the original positives. Three (15%) of 20 toys in the sick waiting room were positive for picornaviral RNA, but RNA was not transferred to the fingers of the investigator who handled these toys. About 20% of the objects in a pediatric office may be contaminated with respiratory viral RNA, most commonly picornavirus RNA. Cleaning with a disinfectant cloth was only modestly effective in removing the viral RNA from the surfaces of toys, but transfer of picornaviral RNA from toys to fingers was inefficient.

  16. Viral Organization of Human Proteins

    Science.gov (United States)

    Wuchty, Stefan; Siwo, Geoffrey; Ferdig, Michael T.

    2010-01-01

    Although maps of intracellular interactions are increasingly well characterized, little is known about large-scale maps of host-pathogen protein interactions. The investigation of host-pathogen interactions can reveal features of pathogenesis and provide a foundation for the development of drugs and disease prevention strategies. A compilation of experimentally verified interactions between HIV-1 and human proteins and a set of HIV-dependency factors (HDF) allowed insights into the topology and intricate interplay between viral and host proteins on a large scale. We found that targeted and HDF proteins appear predominantly in rich-clubs, groups of human proteins that are strongly intertwined among each other. These assemblies of proteins may serve as an infection gateway, allowing the virus to take control of the human host by reaching protein pathways and diversified cellular functions in a pronounced and focused way. Particular transcription factors and protein kinases facilitate indirect interactions between HDFs and viral proteins. Discerning the entanglement of directly targeted and indirectly interacting proteins may uncover molecular and functional sites that can provide novel perspectives on the progression of HIV infection and highlight new avenues to fight this virus. PMID:20827298

  17. Viral etiology and clinical profiles of children with severe acute respiratory infections in China.

    Directory of Open Access Journals (Sweden)

    Chen Zhang

    Full Text Available No comprehensive analysis is available on the viral etiology and clinical characterization among children with severe acute respiratory infection (SARI in China during 2009 H1N1 pandemic and post-pandemic period.Cohort of 370 hospitalized children (1 to 72 months with SARI from May 2008 to March 2010 was enrolled in this study. Nasopharyngeal aspirate (NPA specimens were tested by a commercial assay for 18 respiratory viral targets. The viral distribution and its association with clinical character were statistically analyzed.Viral pathogen was detected in 350 (94.29% of children with SARI. Overall, the most popular viruses were: enterovirus/rhinovirus (EV/RV (54.05%, respiratory syncytial virus (RSV (51.08%, human bocavirus (BoCA (33.78%, human parainfluenzaviruse type 3 (PIV3 (15.41%, and adenovirus (ADV (12.97%. Pandemic H1N1 was the dominant influenza virus (IFV but was only detected in 20 (5.41% of children. Moreover, detection rate of RSV and human metapneumovirus (hMPV among suburb participants were significantly higher than that of urban area (P<0.05. Incidence of VSARI among suburb participants was also significant higher, especially among those of 24 to 59 months group (P<0.05.Piconaviruses (EV/RV and paramyxoviruses are the most popular viral pathogens among children with SARI in this study. RSV and hMPV significantly increase the risk of SARI, especially in children younger than 24 months. Higher incidence of VSARI and more susceptibilities to RSV and hMPV infections were found in suburban patients.

  18. Human respiratory syncytial virus: prevalence, viral co-infections and risk factors for lower respiratory tract infections in children under 5 years of age at a general hospital in the Democratic Republic of Congo.

    Science.gov (United States)

    Kabego, Landry; Balol'Ebwami, Serge; Kasengi, Joe Bwija; Miyanga, Serge; Bahati, Yvette Lufungulo; Kambale, Richard; de Beer, Corena

    2018-04-01

    This study aimed to determine the prevalence of human respiratory syncytial virus (HRSV) acute respiratory infection (ARI) in children under the age of 5 years at the Provincial General Hospital of Bukavu (PGHB), and to analyse factors associated with the risk of ARI being diagnosed as lower respiratory tract infection (LRTI). A total of 146 children under 5 years visiting the PGHB for ARI between August and December 2016 were recruited, and socio-demographic information, clinical data and nasopharyngeal swabs were collected. The samples were analysed by a multiplex reverse transcriptase polymerase chain reaction targeting 15 different viruses. Of 146 samples collected, 84 (57.5 %) displayed a positive result of at least one of the 15 viruses. The overall prevalence of HRSV was 21.2 %. HRSV A (30, 20.5 %) was the virus the most detected, followed by HRV (24, 16.4 %), PIV3 (20, 16.6) and ADV (7, 4.79 %). The other viruses were detected in three or fewer cases. There were only 11 (7.5 %) cases of co-infection. HRSV infection, malnutrition, younger age, rural settings, low income and mother illiteracy were associated with the risk of ARI being diagnosed as LRTI in bivariate analyses but, after adjusting for the confounding factors, only HRSV infection and younger age were independently associated with LRTI. The prevalence of HRSV is high among children visiting the PGHB for ARI. HRSV infection and lower age are independently associated with the risk of ARI being diagnosed as LRTI.

  19. Acute Viral Respiratory Infection Rapidly Induces a CD8+ T Cell Exhaustion-like Phenotype.

    Science.gov (United States)

    Erickson, John J; Lu, Pengcheng; Wen, Sherry; Hastings, Andrew K; Gilchuk, Pavlo; Joyce, Sebastian; Shyr, Yu; Williams, John V

    2015-11-01

    Acute viral infections typically generate functional effector CD8(+) T cells (TCD8) that aid in pathogen clearance. However, during acute viral lower respiratory infection, lung TCD8 are functionally impaired and do not optimally control viral replication. T cells also become unresponsive to Ag during chronic infections and cancer via signaling by inhibitory receptors such as programmed cell death-1 (PD-1). PD-1 also contributes to TCD8 impairment during viral lower respiratory infection, but how it regulates TCD8 impairment and the connection between this state and T cell exhaustion during chronic infections are unknown. In this study, we show that PD-1 operates in a cell-intrinsic manner to impair lung TCD8. In light of this, we compared global gene expression profiles of impaired epitope-specific lung TCD8 to functional spleen TCD8 in the same human metapneumovirus-infected mice. These two populations differentially regulate hundreds of genes, including the upregulation of numerous inhibitory receptors by lung TCD8. We then compared the gene expression of TCD8 during human metapneumovirus infection to those in acute or chronic lymphocytic choriomeningitis virus infection. We find that the immunophenotype of lung TCD8 more closely resembles T cell exhaustion late into chronic infection than do functional effector T cells arising early in acute infection. Finally, we demonstrate that trafficking to the infected lung alone is insufficient for TCD8 impairment or inhibitory receptor upregulation, but that viral Ag-induced TCR signaling is also required. Our results indicate that viral Ag in infected lungs rapidly induces an exhaustion-like state in lung TCD8 characterized by progressive functional impairment and upregulation of numerous inhibitory receptors. Copyright © 2015 by The American Association of Immunologists, Inc.

  20. Recurrent respiratory papillomatosis: a longitudinal study comparing severity associated with human papilloma viral types 6 and 11 and other risk factors in a large pediatric population.

    Science.gov (United States)

    Wiatrak, Brian J; Wiatrak, Deborah W; Broker, Thomas R; Lewis, Linda

    2004-11-01

    A database was developed for prospective, longitudinal study of recurrent respiratory papillomatosis (RRP) in a large population of pediatric patients. Data recorded for each patient included epidemiological factors, human papilloma virus (HPV) type, clinical course, staged severity of disease at each surgical intervention, and frequency of surgical intervention. The study hypothesizes that patients with HPV type 11 (HPV-11) and patients younger than 3 years of age at diagnosis are at risk for more aggressive and extensive disease. The 10-year prospective epidemiological study used disease staging for each patient with an original scoring system. Severity scores were updated at each surgical procedure. Parents of children with RRP referred to the authors' hospital completed a detailed epidemiological questionnaire at the initial visit or at the first return visit after the study began. At the first endoscopic debridement after study enrollment, tissue was obtained and submitted for HPV typing using polymerase chain reaction techniques and in situ hybridization. Staging of disease severity was performed in real time at each endoscopic procedure using an RRP scoring system developed by one of the authors (B.J.W.). The frequency of endoscopic operative debridement was recorded for each patient. Information in the database was analyzed to identify statistically significant relationships between extent of disease and/or HPV type, patient age at diagnosis, and selected epidemiological factors. The study may represent the first longitudinal prospective analysis of a large pediatric RRP population. Fifty-eight of the 73 patients in the study underwent HPV typing. Patients infected with HPV-11 were significantly more likely to have higher severity scores, require more frequent surgical intervention, and require adjuvant therapy to control disease progression. In addition, patients with HPV-11 RRP were significantly more likely to develop tracheal disease, to require

  1. Eicosanoids and Respiratory Viral Infection: Coordinators of Inflammation and Potential Therapeutic Targets

    Directory of Open Access Journals (Sweden)

    Mary K. McCarthy

    2012-01-01

    Full Text Available Viruses are frequent causes of respiratory infection, and viral respiratory infections are significant causes of hospitalization, morbidity, and sometimes mortality in a variety of patient populations. Lung inflammation induced by infection with common respiratory pathogens such as influenza and respiratory syncytial virus is accompanied by increased lung production of prostaglandins and leukotrienes, lipid mediators with a wide range of effects on host immune function. Deficiency or pharmacologic inhibition of prostaglandin and leukotriene production often results in a dampened inflammatory response to acute infection with a respiratory virus. These mediators may, therefore, serve as appealing therapeutic targets for disease caused by respiratory viral infection.

  2. Human respiratory syncytial virus load normalized by cell quantification as predictor of acute respiratory tract infection.

    Science.gov (United States)

    Gómez-Novo, Miriam; Boga, José A; Álvarez-Argüelles, Marta E; Rojo-Alba, Susana; Fernández, Ana; Menéndez, María J; de Oña, María; Melón, Santiago

    2018-05-01

    Human respiratory syncytial virus (HRSV) is a common cause of respiratory infections. The main objective is to analyze the prediction ability of viral load of HRSV normalized by cell number in respiratory symptoms. A prospective, descriptive, and analytical study was performed. From 7307 respiratory samples processed between December 2014 to April 2016, 1019 HRSV-positive samples, were included in this study. Low respiratory tract infection was present in 729 patients (71.54%). Normalized HRSV load was calculated by quantification of HRSV genome and human β-globin gene and expressed as log10 copies/1000 cells. HRSV mean loads were 4.09 ± 2.08 and 4.82 ± 2.09 log10 copies/1000 cells in the 549 pharyngeal and 470 nasopharyngeal samples, respectively (P respiratory tract infection and 4.22 ± 2.28 log10 copies/1000 cells with upper respiratory tract infection or febrile syndrome (P < 0.05). A possible cut off value to predict LRTI evolution was tentatively established. Normalization of viral load by cell number in the samples is essential to ensure an optimal virological molecular diagnosis avoiding that the quality of samples affects the results. A high viral load can be a useful marker to predict disease progression. © 2018 Wiley Periodicals, Inc.

  3. Impact of the Respiratory Microbiome on Host Responses to Respiratory Viral Infection

    Directory of Open Access Journals (Sweden)

    Maxime Pichon

    2017-11-01

    Full Text Available Viruses are responsible for most of both upper and lower acute respiratory infections (ARIs. The microbiome—the ecological community of microorganisms sharing the body space, which has gained considerable interest over the last decade—is modified in health and disease states. Even if most of these disturbances have been previously described in relation to chronic disorders of the gastrointestinal microbiome, after a short reminder of microbiome characteristics and methods of characterization, this review will describe the impact of the microbiome (mainly respiratory on host responses to viral ARIs. The microbiome has a direct environmental impact on the host cells but also an indirect impact on the immune system, by enhancing innate or adaptive immune responses. In microbial infections, especially in viral infections, these dramatic modifications could lead to a dramatic impact responsible for severe clinical outcomes. Studies focusing on the microbiome associated with transcriptomic analyses of the host response and deep characterization of the pathogen would lead to a better understanding of viral pathogenesis and open avenues for biomarker development and innovative therapeutics.

  4. CLINICAL EFFICACY OF IBUPROFEN IN THERAPY FOR VIRAL UPPER RESPIRATORY TRACT INFECTIONS IN INFANTS

    Directory of Open Access Journals (Sweden)

    I.O. Skugarevskaya

    2006-01-01

    Full Text Available A study of use of ibuprofen in cases of viral upper respiratory tract infections (Vuri in children of early childhood has proved its' safety and efficacy. This medical agent has not only terminate fever but also diminished some other symptoms of Vuri.Key words: ibuprofen, viral upper respiratory tract infections, children.

  5. [Viral respiratory co-infections in pediatric patients admitted for acute respiratory infection and their impact on clinical severity].

    Science.gov (United States)

    Martínez, Pamela; Cordero, Jaime; Valverde, Cristián; Unanue, Nancy; Dalmazzo, Roberto; Piemonte, Paula; Vergara, Ivonne; Torres, Juan P

    2012-04-01

    Respiratory viruses are the leading cause of acute respiratory tract infection (ARI) in children. It has been reported that viral respiratory co-infection could be associated with severe clinical course. To describe the frequency of viral co-infection in children admitted for AlRI and evaluate whether this co-infection was associated with more severe clinical course. Prospective, descriptive study in pediatric patients who were hospitalized for ARI, with molecular detection of at least 1 respiratory virus in nasopharyngeal sample studied by PCR-Microarray for 17 respiratory viruses. 110 out of 147 patients with detection of > 1 respiratory virus were included. Viral co-infection was detected in 41/110 (37%). 22/110 children (20%) were classified as moderate to severe clinical course and 88/110 (80%) were classified as mild clinical course. In the group of moderate to severe clinical course, viral respiratory co-infection was detected in 6/22 (27.3%), compared to 35/88 (39.8 %) in the mild clinical course group. No statistically significant difference was found regarding the presence of co-infection between groups (p = 0.33). We detected high rates of viral co-infection in children with ARI. It was not possible to demonstrate that viral co-infections were related with severe clinical course in hospitalized children.

  6. Respiratory viral infections in infants with clinically suspected pertussis

    Directory of Open Access Journals (Sweden)

    Angela E. Ferronato

    2013-11-01

    Full Text Available Objective: to evaluate the frequency of respiratory viral infections in hospitalized infants with clinical suspicion of pertussis, and to analyze their characteristics at hospital admission and clinical outcomes. Methods: a historical cohort study was performed in a reference service for pertussis, in which the research of respiratory viruses was also a routine for infants hospitalized with respiratory problems. All infants reported as suspected cases of pertussis were included. Tests for Bordetella pertussis (BP (polymerase chain reaction/culture and for respiratory viruses (RVs (immunofluorescence were performed. Patients who received macrolides before hospitalization were excluded. Clinical data were obtained from medical records. Results: Among the 67 patients studied, BP tests were positive in 44%, and 26% were positive for RV. There was no etiological identification in 35%, and RV combined with BP was identified in 5%. All patients had similar demographic characteristics. Cough followed by inspiratory stridor or cyanosis was a strong predictor of pertussis, as well as prominent leukocytosis and lymphocytosis. Rhinorrhea and dyspnea were more frequent in viral infections. Macrolides were discontinued in 40% of patients who tested positive for RV and negative for BP. Conclusion: the results suggest that viral infection can be present in hospitalized infants with clinical suspicion of pertussis, and etiological tests may enable a reduction in the use of macrolides in some cases. However, the etiological diagnosis of respiratory virus infection, by itself, does not exclude the possibility of infection with BP. Resumo: Objetivo: avaliar a frequência das infecções por vírus respiratórios em lactentes hospitalizados com suspeita clínica de coqueluche e analisar suas características admissionais e evolutivas. Métodos: foi realizado um estudo de coorte histórica, em um serviço sentinela para coqueluche, no qual a pesquisa de v

  7. Equivalence of self- and staff-collected nasal swabs for the detection of viral respiratory pathogens.

    Directory of Open Access Journals (Sweden)

    Manas K Akmatov

    Full Text Available BACKGROUND: The need for the timely collection of diagnostic biosamples during symptomatic episodes represents a major obstacle to large-scale studies on acute respiratory infection (ARI epidemiology. This may be circumvented by having the participants collect their own nasal swabs. We compared self- and staff-collected swabs in terms of swabbing quality and detection of viral respiratory pathogens. METHODOLOGY/PRINCIPAL FINDINGS: We conducted a prospective study among employees of our institution during the ARI season 2010/2011 (December-March. Weekly emails were sent to the participants (n = 84, reminding them to come to the study center in case of new symptoms. The participants self-collected an anterior nasal swab from one nostril, and trained study personnel collected one from the other nostril. The participants self-collected another two swabs (one from each nostril on a subsequent day. Human β-actin DNA concentration was determined in the swabs as a quality control. Viral respiratory pathogens were detected by multiplex RT-PCR (Seeplex RV15 kit, Seegene, Eschborn, Germany. Of 84 participants, 56 (67% reported at least one ARI episode, 18 participants two, and one participant three. Self-swabbing was highly accepted by the participants. The amount of β-actin DNA per swab was higher in the self- than in the staff-collected swabs (p = 0.008. β-actin concentration was lower in the self-swabs collected on day 1 than in those collected on a subsequent day (p<0.0001. A respiratory viral pathogen was detected in 31% (23/75 of staff- and in 35% (26/75 of self-collected swabs (p = 0.36. With both approaches, the most frequently identified pathogens were human rhinoviruses A/B/C (12/75 swabs, 16% and human coronavirus OC43 (4/75 swabs, 5%. There was almost perfect agreement between self- and staff-collected swabs in terms of pathogen detection (agreement = 93%, kappa = 0.85, p<0.0001. CONCLUSIONS/SIGNIFICANCE: Nasal self

  8. Clinical definition of respiratory viral infections in young children and potential bronchiolitis misclassification.

    Science.gov (United States)

    Megalaa, Rosemary; Perez, Geovanny F; Kilaikode-Cheruveettara, Sasikumar; Kotwal, Nidhi; Rodriguez-Martinez, Carlos E; Nino, Gustavo

    2018-01-01

    Viral respiratory infections are often grouped as a single respiratory syndrome named 'viral bronchiolitis', independently of the viral etiology or individual risk factors. Clinical trials and guidelines have used a more stringent definition of viral bronchiolitis, including only the first episode of wheezing in children less than 12 months of age without concomitant respiratory comorbidities. There is increasing evidence suggesting that this definition is not being followed by pediatric care providers, but it is unclear to what extent viral respiratory infections are currently misclassified as viral bronchiolitis using standard definitions. We conducted a retrospective analysis of hospitalized young children (≤3 years) due to viral respiratory infections. Bronchiolitis was defined as the first wheezing episode less than 12 months of age. Demographic variables and comorbidities were obtained by electronic medical record review. The study comprised a total of 513 hospitalizations (n=453). Viral bronchiolitis was diagnosed in 144 admissions (28.1%). Notably, we identified that the majority of children diagnosed with bronchiolitis (63%) were misclassified as they had prior episodes of wheezing. Many children with bronchiolitis misclassification had significant comorbidities, including prematurity (51%), neuromuscular conditions (9.8%), and congenital heart disease (9.8%). Misclassification of bronchiolitis is a common problem that may lead to inappropriate management of viral respiratory infections in young children. A comprehensive approach that takes into consideration viral etiology and individual risk factors may lead to a more accurate clinical assessment of this condition and would potentially prevent bronchiolitis misclassification. © American Federation for Medical Research (unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  9. Oxygen tension level and human viral infections

    Energy Technology Data Exchange (ETDEWEB)

    Morinet, Frédéric, E-mail: frederic.morinet@sls.aphp.fr [Centre des Innovations Thérapeutiques en Oncologie et Hématologie (CITOH), CHU Saint-Louis, Paris (France); Université Denis Diderot, Sorbonne Paris Cité Paris, Paris (France); Casetti, Luana [Institut Cochin INSERM U1016, Paris (France); François, Jean-Hugues; Capron, Claude [Institut Cochin INSERM U1016, Paris (France); Laboratoire d' Hématologie, Hôpital Ambroise Paré, Boulogne (France); Université de Versailles Saint-Quentin en Yvelynes, Versailles (France); Pillet, Sylvie [Laboratoire de Bactériologie-Virologie-Hygiène, CHU de Saint-Etienne, Saint-Etienne (France); Université de Lyon et Université de Saint-Etienne, Jean Monnet, GIMAP EA3064, F-42023 Saint-Etienne, Lyon (France)

    2013-09-15

    The role of oxygen tension level is a well-known phenomenon that has been studied in oncology and radiotherapy since about 60 years. Oxygen tension may inhibit or stimulate propagation of viruses in vitro as well as in vivo. In turn modulating oxygen metabolism may constitute a novel approach to treat viral infections as an adjuvant therapy. The major transcription factor which regulates oxygen tension level is hypoxia-inducible factor-1 alpha (HIF-1α). Down-regulating the expression of HIF-1α is a possible method in the treatment of chronic viral infection such as human immunodeficiency virus infection, chronic hepatitis B and C viral infections and Kaposi sarcoma in addition to classic chemotherapy. The aim of this review is to supply an updating concerning the influence of oxygen tension level in human viral infections and to evoke possible new therapeutic strategies regarding this environmental condition. - Highlights: • Oxygen tension level regulates viral replication in vitro and possibly in vivo. • Hypoxia-inducible factor 1 (HIF-1α) is the principal factor involved in Oxygen tension level. • HIF-1α upregulates gene expression for example of HIV, JC and Kaposi sarcoma viruses. • In addition to classical chemotherapy inhibition of HIF-1α may constitute a new track to treat human viral infections.

  10. Viral etiologies of hospitalized acute lower respiratory infection patients in China, 2009-2013.

    Directory of Open Access Journals (Sweden)

    Luzhao Feng

    Full Text Available BACKGROUND: Acute lower respiratory infections (ALRIs are an important cause of acute illnesses and mortality worldwide and in China. However, a large-scale study on the prevalence of viral infections across multiple provinces and seasons has not been previously reported from China. Here, we aimed to identify the viral etiologies associated with ALRIs from 22 Chinese provinces. METHODS AND FINDINGS: Active surveillance for hospitalized ALRI patients in 108 sentinel hospitals in 24 provinces of China was conducted from January 2009-September 2013. We enrolled hospitalized all-age patients with ALRI, and collected respiratory specimens, blood or serum collected for diagnostic testing for respiratory syncytial virus (RSV, human influenza virus, adenoviruses (ADV, human parainfluenza virus (PIV, human metapneumovirus (hMPV, human coronavirus (hCoV and human bocavirus (hBoV. We included 28,369 ALRI patients from 81 (of the 108 sentinel hospitals in 22 (of the 24 provinces, and 10,387 (36.6% were positive for at least one etiology. The most frequently detected virus was RSV (9.9%, followed by influenza (6.6%, PIV (4.8%, ADV (3.4%, hBoV (1.9, hMPV (1.5% and hCoV (1.4%. Co-detections were found in 7.2% of patients. RSV was the most common etiology (17.0% in young children aged <2 years. Influenza viruses were the main cause of the ALRIs in adults and elderly. PIV, hBoV, hMPV and ADV infections were more frequent in children, while hCoV infection was distributed evenly in all-age. There were clear seasonal peaks for RSV, influenza, PIV, hBoV and hMPV infections. CONCLUSIONS: Our findings could serve as robust evidence for public health authorities in drawing up further plans to prevent and control ALRIs associated with viral pathogens. RSV is common in young children and prevention measures could have large public health impact. Influenza was most common in adults and influenza vaccination should be implemented on a wider scale in China.

  11. Viral etiology of respiratory infections in children under 5 years old living in tropical rural areas of Senegal: The EVIRA project.

    Science.gov (United States)

    Niang, Mbayame Ndiaye; Diop, Ousmane M; Sarr, Fatoumata Diene; Goudiaby, Deborah; Malou-Sompy, Hubert; Ndiaye, Kader; Vabret, Astrid; Baril, Laurence

    2010-05-01

    Acute respiratory infection is one of the leading causes of child morbidity, especially in developing countries. Viruses are recognized as the predominant causative agents of acute respiratory infections. In Senegal, few data concerning the causes of respiratory infections are available, and those known relate mainly to classical influenza infections. Clinical and virological surveillance of acute respiratory infections was carried out in a rural community in children less than 5 years old. A standardized questionnaire was used and a nasopharyngeal swab sample was collected from each patient. These samples were tested for the detection of 20 respiratory viruses by multiplex RT-PCR or by viral culture. A total of 82 acute respiratory episodes were included, and 48 (58.5%) were found to be positive, with a total of 55 viral detections; several samples were positive for two (n = 5) or 3 (n = 1) viruses. Ten different viruses were identified: influenza viruses A, B, and C (n = 25), human respiratory syncytial virus type A (n = 13), rhinoviruses (n = 8), human coronaviruses type 229E and NL63 (n = 6), parainfluenza viruses 3 and 4 (n = 2), and bocavirus (n = 1). These results provide evidence on the importance and the diversity of viruses as causative agents of acute respiratory infections in children living in a rural community in Senegal. The establishment of sentinel surveillance sites could help estimate the burden of acute respiratory infection in the pediatric population and should help prepare the health care systems to identify and respond to new viral respiratory emergencies.

  12. Single-Domain Antibodies As Therapeutics against Human Viral Diseases

    Directory of Open Access Journals (Sweden)

    Yanling Wu

    2017-12-01

    Full Text Available In full-size formats, monoclonal antibodies have been highly successful as therapeutics against cancer and immune diseases. However, their large size leads to inaccessibility of some epitopes and relatively high production costs. As an alternative, single-domain antibodies (sdAbs offer special advantages compared to full-size antibodies, including smaller size, larger number of accessible epitopes, relatively low production costs and improved robustness. Currently, sdAbs are being developed against a number of viruses, including human immunodeficiency virus-1 (HIV-1, influenza viruses, hepatitis C virus (HCV, respiratory syncytial virus (RSV, and enteric viruses. Although sdAbs are very potent inhibitors of viral infections, no sdAbs have been approved for clinical use against virial infection or any other diseases. In this review, we discuss the current state of research on sdAbs against viruses and their potential as therapeutics against human viral diseases.

  13. [Prevalence and risk factors of respiratory viral infection in acute exacerbation of chronic obstructive pulmonary disease].

    Science.gov (United States)

    Du, X B; Ma, X; Gao, Y; Wen, L F; Li, J; Wang, Z Z; Liu, S

    2017-04-12

    Objective: To study the prevalence of respiratory viral infection in chronic obstructive pulmonary disease(COPD) exacerbations and to find the factors associated with susceptibility to viral infections. Methods: Eighty patients with exacerbations of COPD and 50 stable COPD patients were recruited. Nasopharyngeal swabs were tested for a range of 18 different respiratory viruses using PCR. Results: Among the COPD exacerbations, viral infection was detected in 18 episodes (22.5%) . The most common virus was rhinovirus (33.3%), followed by coronavirus(27.8%), parainfluenza(22.2%), metapneumovirus(11.1%) and influenza virus B(5.6%). The prevalence of viral infection was 8% in the stable COPD patients. In multivariate regression analysis fever was found to be significantly associated with viral infections in COPD exacerbations (Odds ratio 4.99, 95% CI 1.51-16.48, P =0.008). Conclusion: Viral respiratory pathogens were more often detected in respiratory specimens from hospitalized patients with AECOPD than those with stable COPD. Rhinovirus was the most common infecting agent identified. The symptom of fever was associated with viral detection.

  14. Human and avian influenza viruses target different cells in the lower respiratory tract of humans and other mammals

    NARCIS (Netherlands)

    D.A.J. van Riel (Debby); V.J. Munster (Vincent); E. de Wit (Emmie); G.F. Rimmelzwaan (Guus); R.A.M. Fouchier (Ron); A.D.M.E. Osterhaus (Albert); T. Kuiken (Thijs)

    2007-01-01

    textabstractViral attachment to the host cell is critical for tissue and species specificity of virus infections. Recently, pattern of viral attachment (PVA) in human respiratory tract was determined for highly pathogenic avian influenza virus of subtype H5N1. However, PVA of human influenza viruses

  15. WHO Severe Acute Respiratory Infections (SARI) Definition often Underdiagnoses Serious Respiratory Viral Infections in Hospitalized Jordanian Children

    Science.gov (United States)

    Khuri-Bulos, Najwa; Piya, Bhinnata; Shehabi, Asem; Faouri, Samir; Williams, John V; Vermund, Sten; Halasa, Natasha B

    2017-01-01

    Abstract Background The World Health Organization (WHO) case definition of severe acute respiratory infections (SARI) is anyone with an acute respiratory infection with symptoms within 10 days of presentation, cough, fever, and hospitalization. This is used to standardize global influenza surveillance with the caveat not all cases will be captured. We sought to determine the proportion of hospitalized Jordanian children admitted with acute respiratory illnesses meeting the SARI definition. Methods We conducted 3-year viral surveillance study in children <2 years admitted with acute respiratory symptoms and/or fever into a large government hospital in Amman. Demographic and clinical data were collected. We tested nasal/throat swabs for 11 viruses using q-RT-PCR. We compared children who met SARI definition to non-SARI. Results We enrolled 3168 children. Table 1 compares those children who met SARI definition vs. those who did not. Figure 1 compares % of children who were virus-positive and met SARI definition. Table 1. N (%) SARI (n = 1198) Non-SARI (n = 1970) p-values Male 729 (60.9) 1183 (60.1) 0.655 Median Age 6.7 months 2.3 months 0.000 Underlying medical condition 160 (13.4) 215 (10.9) 0.039 Pneumonia 192 (16.0) 202 (10.3) 0.000 Sepsis 150 (12.5) 750 (38.1) 0.000 Bronchiolitis 169 (14.1) 378 (19.2) 0.000 Bronchopneumonia 656 (54.8) 364 (18.5) 0.000 ≤10-day duration 1198 (100) 1848 (93.8) 0.000 Cough 1198 (100) 1172 (59.5) 0.000 Fever 1198 (100) 649 (32.9) 0.000 Fever and Cough 1198 (100) 48 (2.4) 0.000 Virus positive 1076 (89.8) 1505 (76.4) 0.000 Rhinovirus 438 (36.6) 800 (40.6) 0.024 Adenovirus 201 (16.8) 274 (13.9) 0.028 Parainfluenza 1–3 75 (6.3) 100 (5.1) 0.157 Respiratory Syncytial Virus 635 (53.0) 762 (38.7) 0.000 Influenza A-C 61 (5.1) 58 (2.9) 0.002 Human Metapneumovirus 153 (12.8) 120 (6.1) 0.000 Conclusion Children who met the definition of SARI were more likely to be older, have an underlying medical condition, have the diagnoses of pneumonia and

  16. Environmental modulation of mucosal immunity : Opportunities in respiratory viral infections

    NARCIS (Netherlands)

    Schijf, M.A.

    2013-01-01

    The exact cause of severe disease in children during primary RSV infections is not completely clear. There is a link with viral load, but differences virus strains do not seem to be the major reason why in some children the disease manifests as a mild cold while others suffer from a severe lower

  17. FEVER IN CHILDREN WITH RESPIRATORY VIRAL INFECTIONS: EFFECTIVE AND SAFE METHODS OF TREATMENT

    Directory of Open Access Journals (Sweden)

    T. E. Taranushenko

    2013-01-01

    Full Text Available One of the most important — the problem of treatment of fever in children with respiratory viral infections — is discussed in this article. It is fever as one of the first symptoms of disease which often frightens parents and leads to inappropriate and excess usage of antipyretic agents, which in its turn can cause unfavorable consequences. The authors represent their own data on frequency of antipyretic drugs usage in children with respiratory viral infections, as well as the answers of pediatricians to the questionnaires on methods of choice in temperature normalization. According to the modern Russian as well as European and American clinical guidelines on treatment of fever in children the management of selection of patients demanding antipyretic treatment is detailed, indications and contraindications to such therapy are described, the most effective methods of temperature normalization in children with acute respiratory infection are discussed. The authors suggested the data on recommended dosages of paracetamol, which were revised in 2011 by the UK Medicines Control Agency, to be very useful. The current information on advantages of ibuprofen in comparison to paracetamol in treatment of fever in children with respiratory viral infections is shown. The main target of this article is understanding and acceptance by pediatricians of the modern recommendation on differential and reasonable approach to administration of antipyretic drugs in children with respiratory viral infections.

  18. Impact of the viral respiratory season on postoperative outcomes in children undergoing cardiac surgery.

    Science.gov (United States)

    Spaeder, Michael C; Carson, Kathryn A; Vricella, Luca A; Alejo, Diane E; Holmes, Kathryn W

    2011-08-01

    To compare postoperative outcomes in children undergoing cardiac surgery during the viral respiratory season and nonviral season at our institution. This was a retrospective cohort study and secondary matched case-control analysis. The setting was an urban academic tertiary-care children's hospital. The study was comprised of all patients <18 years of age who underwent cardiac surgery at Johns Hopkins Hospital from October 2002 through September 2007. Patients were stratified by season of surgery, complexity of cardiac disease, and presence or absence of viral respiratory infection. Measurements included patient characteristics and postoperative outcomes. The primary outcome was postoperative length of stay (LOS). A total of 744 patients were included in the analysis. There was no difference in baseline characteristics or outcomes, specifically, no difference in postoperative LOS, intensive care unit (ICU) LOS, and mortality, among patients by seasons of surgery. Patients with viral respiratory illness were more likely to have longer postoperative LOS (p < 0.01) and ICU LOS (p < 0.01) compared with matched controls. We identified no difference in postoperative outcomes based on season in patients undergoing cardiac surgery. Children with viral respiratory infection have significantly worse outcomes than matched controls, strengthening the call for universal administration of influenza vaccination and palivizumab to appropriate groups. Preoperative testing for respiratory viruses should be considered during the winter months for children undergoing elective cardiac surgery.

  19. Severity of viral coinfection in hospitalized infants with respiratory syncytial virus infection.

    Science.gov (United States)

    De Paulis, Milena; Gilio, Alfredo Elias; Ferraro, Alexandre Archanjo; Ferronato, Angela Esposito; do Sacramento, Patrícia Rossi; Botosso, Viviane Fongaro; Oliveira, Danielle Bruna Leal de; Marinheiro, Juliana Cristina; Hársi, Charlotte Marianna; Durigon, Edison Luiz; Vieira, Sandra Elisabete

    2011-01-01

    To compare the severity of single respiratory syncytial virus (RSV) infections with that of coinfections. A historical cohort was studied, including hospitalized infants with acute RSV infection. Nasopharyngeal aspirate samples were collected from all patients to detect eight respiratory viruses using molecular biology techniques. The following outcomes were analyzed: duration of hospitalization and of oxygen therapy, intensive care unit admission and need of mechanical ventilation. Results were adjusted for confounding factors (prematurity, age and breastfeeding). A hundred and seventy six infants with bronchiolitis and/or pneumonia were included in the study. Their median age was 4.5 months. A hundred and twenty one had single RSV infection and 55 had coinfections (24 RSV + adenovirus, 16 RSV + human metapneumovirus and 15 other less frequent viral associations). The four severity outcomes under study were similar in the group with single RSV infection and in the coinfection groups, independently of what virus was associated with RSV. Virus coinfections do not seem to affect the prognosis of hospitalized infants with acute RSV infection.

  20. Characterization of a viral phosphoprotein binding site on the surface of the respiratory syncytial nucleoprotein.

    Science.gov (United States)

    Galloux, Marie; Tarus, Bogdan; Blazevic, Ilfad; Fix, Jenna; Duquerroy, Stéphane; Eléouët, Jean-François

    2012-08-01

    The human respiratory syncytial virus (HRSV) genome is composed of a negative-sense single-stranded RNA that is tightly associated with the nucleoprotein (N). This ribonucleoprotein (RNP) complex is the template for replication and transcription by the viral RNA-dependent RNA polymerase. RNP recognition by the viral polymerase involves a specific interaction between the C-terminal domain of the phosphoprotein (P) (P(CTD)) and N. However, the P binding region on N remains to be identified. In this study, glutathione S-transferase (GST) pulldown assays were used to identify the N-terminal core domain of HRSV N (N(NTD)) as a P binding domain. A biochemical characterization of the P(CTD) and molecular modeling of the N(NTD) allowed us to define four potential candidate pockets on N (pocket I [PI] to PIV) as hydrophobic sites surrounded by positively charged regions, which could constitute sites complementary to the P(CTD) interaction domain. The role of selected amino acids in the recognition of the N-RNA complex by P was first screened for by site-directed mutagenesis using a polymerase activity assay, based on an HRSV minigenome containing a luciferase reporter gene. When changed to Ala, most of the residues of PI were found to be critical for viral RNA synthesis, with the R132A mutant having the strongest effect. These mutations also reduced or abolished in vitro and in vivo P-N interactions, as determined by GST pulldown and immunoprecipitation experiments. The pocket formed by these residues is critical for P binding to the N-RNA complex, is specific for pneumovirus N proteins, and is clearly distinct from the P binding sites identified so far for other nonsegmented negative-strand viruses.

  1. Viral etiology of bronchiolitis among pediatric inpatients in northern Taiwan with emphasis on newly identified respiratory viruses.

    Science.gov (United States)

    Chen, Yu-Wen; Huang, Yhu-Chering; Ho, Tai-Hua; Huang, Chung-Guei; Tsao, Kuo-Chien; Lin, Tzou-Yien

    2014-04-01

    Viral etiology of bronchiolitis in children in Taiwan has been fragmentary. We conducted a prospective study to figure out the viral epidemiology of bronchiolitis in Taiwan. From January 2009 to March 2011, a total of 113 children with bronchiolitis, aged culture, antigen test, and polymerase chain reaction. A total of 120 viruses were detected from 113 children. Positive viral etiology was identified in 86 (76%) children. Mixed viral pathogens were found in 28 cases (25%). Respiratory syncytial virus (RSV) was the most common pathogen and was identified in 43.4% of the cases. Human bocavirus (hBoV) was the second most common identified virus (in 19.5%), followed by human metapneumovirus (hMPV), rhinovirus, influenza viruses, and coronavirus OC43. In terms of clinical characteristics, no significant difference was found among the children with bronchiolitis either caused by different single or mixed viral infection. RSV was the most common etiologic agent for children with bronchiolitis in Taiwan. Newly identified viruses, including hMPV and hBoV, were also among the common causative agents. Clinical characteristics were not significantly different among the children with bronchiolitis caused by different viruses. Copyright © 2012. Published by Elsevier B.V.

  2. Biology of human respiratory syncytial virus: a review | Aliyu | Bayero ...

    African Journals Online (AJOL)

    Acute lower respiratory tract infection is one of the major causes of mortality and morbidity in young children worldwide. Respiratory syncytial virus (RSV) is the single most important viral cause of lower respiratory tract infection during infancy and early childhood worldwide. Respiratory syncytial virus belongs to the ...

  3. Frequency of viral etiology in symptomatic adult upper respiratory tract infections

    Directory of Open Access Journals (Sweden)

    Raquel Cirlene da Silva

    2015-01-01

    Conclusion: Results presented in this report suggest that respiratory viral infections are largely under diagnosed in immunocompetent adults. Although the majority of young adult infections are not life-threatening they may impose a significant burden, especially in developing countries since these individuals represent a large fraction of the working force.

  4. Viral respiratory tract infections among patients with acute undifferentiated fever in Vietnam

    NARCIS (Netherlands)

    Phuong, Hoang Lan; Nga, Tran T. T.; van Doornum, Gerard J.; Groen, Jan; Binh, Tran Q.; Giao, Phan T.; Hung, Le Q.; Nams, Nguyen V.; Kager, P. A.; de Vries, Peter J.

    2010-01-01

    To investigate the proportion of viral respiratory tract infections among acute undifferentiated fevers (AUFs) at primary health facilities in southern Vietnam during 2001-2005, patients with AUF not caused by malaria were enrolled at twelve primary health facilities and a clinic for malaria control

  5. Human parechoviruses as an important viral cause of sepsislike illness and meningitis in young children

    NARCIS (Netherlands)

    Wolthers, Katja C.; Benschop, Kimberley S. M.; Schinkel, Janke; Molenkamp, Richard; Bergevoet, Rosemarijn M.; Spijkerman, Ingrid J. B.; Kraakman, H. Carlijn; Pajkrt, Dasja

    2008-01-01

    BACKGROUND: Enteroviruses (EVs) belong to the family Picornaviridae and are a well-known cause of neonatal sepsis and viral meningitis. Human parechoviruses (HPeVs) type 1 and 2, previously named echovirus 22 and 23, have been associated with mild gastrointestinal or respiratory symptoms in young

  6. Epidemiology of respiratory viral infections in two long-term refugee camps in Kenya, 2007-2010

    Directory of Open Access Journals (Sweden)

    Ahmed Jamal A

    2012-01-01

    Full Text Available Abstract Background Refugees are at risk for poor outcomes from acute respiratory infections (ARI because of overcrowding, suboptimal living conditions, and malnutrition. We implemented surveillance for respiratory viruses in Dadaab and Kakuma refugee camps in Kenya to characterize their role in the epidemiology of ARI among refugees. Methods From 1 September 2007 through 31 August 2010, we obtained nasopharyngeal (NP and oropharyngeal (OP specimens from patients with influenza-like illness (ILI or severe acute respiratory infections (SARI and tested them by RT-PCR for adenovirus (AdV, respiratory syncytial virus (RSV, human metapneumovirus (hMPV, parainfluenza viruses (PIV, and influenza A and B viruses. Definitions for ILI and SARI were adapted from those of the World Health Organization. Proportions of cases associated with viral aetiology were calculated by camp and by clinical case definition. In addition, for children Results We tested specimens from 1815 ILI and 4449 SARI patients (median age = 1 year. Proportion positive for virus were AdV, 21.7%; RSV, 12.5%; hMPV, 5.7%; PIV, 9.4%; influenza A, 9.7%; and influenza B, 2.6%; 49.8% were positive for at least one virus. The annual rate of SARI hospitalisation for 2007-2010 was 57 per 1000 children per year. Virus-positive hospitalisation rates were 14 for AdV; 9 for RSV; 6 for PIV; 4 for hMPV; 5 for influenza A; and 1 for influenza B. The rate of SARI hospitalisation was highest in children Conclusions Respiratory viral infections, particularly RSV and AdV, were associated with high rates of illness and make up a substantial portion of respiratory infection in these two refugee settings.

  7. INFLUENZA AND ACUTE VIRAL RESPIRATORY INFECTIONS IN THE PRACTICE OF THE EMERGENCY CREWS OF MOSCOW

    Directory of Open Access Journals (Sweden)

    N. F. Plavunov

    2016-01-01

    Full Text Available Influenza and acute viral respiratory infections have a great social significance during epidemic rise of morbidity and demand differential diagnosis of pneumonia with bacterial etiology and consultation with an infectious disease doctor in case of seeing patients in non-core hospitals. This article highlights the problem of influenza and acute respiratory viral infections’ early diagnosis. Clinical manifestations of influenza and other respiratory extremely similar. The differential diagnosis must take into account the presence of mixed infection in the same patient. According to the results of consultative infectious ambulance teams in 2014-2016, quality of diagnostics of this infectious pathology was examined. Observed deaths in persons later seeking medical treatment, not receiving timely antiviral therapy and related to high-risk groups: patients with obesity, chronic alcohol intoxication, diabetes, pregnant women. Influenza and acute viral respiratory infections, more complicated by pneumonia, people in the older age group, indicating the need for timely medical evacuation of patients older than 60 years. In some cases, in the diagnosis of influenza was helped by the results of laboratory studies (especially the trend to leukopenia and a positive rapid test. It should be noted that a negative rapid test for influenza was not a reason for exclusion of the diagnosis “influenza”.

  8. Biodegradable nanoparticle-entrapped vaccine induces cross-protective immune response against a virulent heterologous respiratory viral infection in pigs.

    Directory of Open Access Journals (Sweden)

    Varun Dwivedi

    Full Text Available Biodegradable nanoparticle-based vaccine development research is unexplored in large animals and humans. In this study, we illustrated the efficacy of nanoparticle-entrapped UV-killed virus vaccine against an economically important respiratory viral disease of pigs called porcine reproductive and respiratory syndrome virus (PRRSV. We entrapped PLGA [poly (lactide-co-glycolides] nanoparticles with killed PRRSV antigens (Nano-KAg and detected its phagocytosis by pig alveolar macrophages. Single doses of Nano-KAg vaccine administered intranasally to pigs upregulated innate and PRRSV specific adaptive responses. In a virulent heterologous PRRSV challenge study, Nano-KAg vaccine significantly reduced the lung pathology and viremia, and the viral load in the lungs. Immunologically, enhanced innate and adaptive immune cell population and associated cytokines with decreased secretion of immunosuppressive mediators were observed at both mucosal sites and blood. In summary, we demonstrated the benefits of intranasal delivery of nanoparticle-based viral vaccine in eliciting cross-protective immune response in pigs, a potential large animal model.

  9. Targeting membrane-bound viral RNA synthesis reveals potent inhibition of diverse coronaviruses including the middle East respiratory syndrome virus.

    Directory of Open Access Journals (Sweden)

    Anna Lundin

    2014-05-01

    Full Text Available Coronaviruses raise serious concerns as emerging zoonotic viruses without specific antiviral drugs available. Here we screened a collection of 16671 diverse compounds for anti-human coronavirus 229E activity and identified an inhibitor, designated K22, that specifically targets membrane-bound coronaviral RNA synthesis. K22 exerts most potent antiviral activity after virus entry during an early step of the viral life cycle. Specifically, the formation of double membrane vesicles (DMVs, a hallmark of coronavirus replication, was greatly impaired upon K22 treatment accompanied by near-complete inhibition of viral RNA synthesis. K22-resistant viruses contained substitutions in non-structural protein 6 (nsp6, a membrane-spanning integral component of the viral replication complex implicated in DMV formation, corroborating that K22 targets membrane bound viral RNA synthesis. Besides K22 resistance, the nsp6 mutants induced a reduced number of DMVs, displayed decreased specific infectivity, while RNA synthesis was not affected. Importantly, K22 inhibits a broad range of coronaviruses, including Middle East respiratory syndrome coronavirus (MERS-CoV, and efficient inhibition was achieved in primary human epithelia cultures representing the entry port of human coronavirus infection. Collectively, this study proposes an evolutionary conserved step in the life cycle of positive-stranded RNA viruses, the recruitment of cellular membranes for viral replication, as vulnerable and, most importantly, druggable target for antiviral intervention. We expect this mode of action to serve as a paradigm for the development of potent antiviral drugs to combat many animal and human virus infections.

  10. The Tennessee Children's Respiratory Initiative: Objectives, design and recruitment results of a prospective cohort study investigating infant viral respiratory illness and the development of asthma and allergic diseases.

    Science.gov (United States)

    Hartert, Tina V; Carroll, Kecia; Gebretsadik, Tebeb; Woodward, Kimberly; Minton, Patricia

    2010-05-01

    The 'attack rate' of asthma following viral lower respiratory tract infections (LRTI) is about 3-4 fold higher than that of the general population; however, the majority of children who develop viral LRTI during infancy do not develop asthma, and asthma incidence has been observed to continuously decrease with age. Thus, we do not understand how viral LRTI either predispose or serve as a marker of children to develop asthma. The Tennessee Children's Respiratory Initiative has been established as a longitudinal prospective investigation of infants and their biological mothers. The primary goals are to investigate both the acute and the long-term health consequences of varying severity and aetiology of clinically significant viral respiratory tract infections on early childhood outcomes. Over four respiratory viral seasons, 2004–2008, term, predominantly non-low weight previously healthy infants and their biological mothers were enrolled during an infant's acute viral respiratory illness.Longitudinal follow up to age 6 years is ongoing [corrected]. This report describes the study objectives, design and recruitment results of the over 650 families enrolled in this longitudinal investigation. The Tennessee Children's Respiratory Initiative is additionally unique because it is designed in parallel with a large retrospective birth cohort of over 95,000 mother-infant dyads with similar objectives to investigate the role of respiratory viral infection severity and aetiology in the development of asthma. Future reports from this cohort will help to clarify the complex relationship between infant respiratory viral infection severity, aetiology, atopic predisposition and the subsequent development of early childhood asthma and atopic diseases.

  11. Genetic associations with viral respiratory illnesses and asthma control in children

    DEFF Research Database (Denmark)

    Loisel, D A; Du, G; Ahluwalia, T S

    2016-01-01

    of asthma control phenotypes was performed in 2128 children in the Copenhagen Prospective Study on Asthma in Childhood (COPSAC). Significant associations in RhinoGen were further validated using virus-induced wheezing illness and asthma phenotypes in an independent sample of 122 children enrolled...... in the Childhood Origins of Asthma (COAST) birth cohort study. RESULTS: A significant excess of P values smaller than 0.05 was observed in the analysis of the 10 RhinoGen phenotypes. Polymorphisms in 12 genes were significantly associated with variation in the four phenotypes showing a significant enrichment...... differences in childhood viral respiratory illnesses and virus-induced exacerbations of asthma. Defining mechanisms of these associations may provide insight into the pathogenesis of viral respiratory infections and virus-induced exacerbations of asthma....

  12. Middle East Respiratory Syndrome Coronavirus Nonstructural Protein 16 Is Necessary for Interferon Resistance and Viral Pathogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Menachery, Vineet D.; Gralinski, Lisa E.; Mitchell, Hugh D.; Dinnon, Kenneth H.; Leist, Sarah R.; Yount, Boyd L.; Graham, Rachel L.; McAnarney, Eileen T.; Stratton, Kelly G.; Cockrell, Adam S.; Debbink, Kari; Sims, Amy C.; Waters, Katrina M.; Baric, Ralph S.; Fernandez-Sesma, Ana

    2017-11-15

    ABSTRACT

    Coronaviruses (CoVs) encode a mixture of highly conserved and novel genes, as well as genetic elements necessary for infection and pathogenesis, raising the possibility of common targets for attenuation and therapeutic design. In this study, we focused on highly conserved nonstructural protein 16 (NSP16), a viral 2'O-methyltransferase (2'O-MTase) that encodes critical functions in immune modulation and infection. Using reverse genetics, we disrupted a key motif in the conserved KDKE motif of Middle East respiratory syndrome CoV (MERS-CoV) NSP16 (D130A) and evaluated the effect on viral infection and pathogenesis. While the absence of 2'O-MTase activity had only a marginal impact on propagation and replication in Vero cells, dNSP16 mutant MERS-CoV demonstrated significant attenuation relative to the control both in primary human airway cell cultures andin vivo. Further examination indicated that dNSP16 mutant MERS-CoV had a type I interferon (IFN)-based attenuation and was partially restored in the absence of molecules of IFN-induced proteins with tetratricopeptide repeats. Importantly, the robust attenuation permitted the use of dNSP16 mutant MERS-CoV as a live attenuated vaccine platform protecting from a challenge with a mouse-adapted MERS-CoV strain. These studies demonstrate the importance of the conserved 2'O-MTase activity for CoV pathogenesis and highlight NSP16 as a conserved universal target for rapid live attenuated vaccine design in an expanding CoV outbreak setting.

    IMPORTANCECoronavirus (CoV) emergence in both humans and livestock represents a significant threat to global public health, as evidenced by the sudden emergence of severe acute respiratory syndrome CoV (SARS-CoV), MERS-CoV, porcine epidemic diarrhea virus, and swine delta CoV in the 21st century. These studies describe an approach that

  13. Viral Etiologies of Acute Respiratory Infections among Hospitalized Vietnamese Children in Ho Chi Minh City, 2004-2008

    NARCIS (Netherlands)

    Anh, Ha Do Lien; van Doorn, H. Rogier; Nghiem, My Ngoc; Bryant, Juliet E.; Hoang, Thanh Hang Thi; Do, Quang Ha; Le van, Tan; Tran, Tan Thanh; Wills, Bridget; van Nguyen, Vinh Chau; Vo, Minh Hien; Vo, Cong Khanh; Nguyen, Minh Dung; Farrar, Jeremy; Tran, Tinh Hien; de Jong, Menno D.

    2011-01-01

    Background: The dominant viral etiologies responsible for acute respiratory infections (ARIs) are poorly understood, particularly among hospitalized children in resource-limited tropical countries where morbidity and mortality caused by ARIs are highest. Improved etiological insight is needed to

  14. Acute Respiratory Viral Infection in Children: Modern Approaches to Diagnosis and Treatment

    Directory of Open Access Journals (Sweden)

    Alexander A. Baranov

    2017-01-01

    Full Text Available The article is devoted to acute respiratory viral infections (ARVI in children. ARVI take one of the leading places in a childhood morbidity structure. The article provides an overview of the clinical guidelines developed and approved by the professional association «Union of Pediatricians of Russia» for acute respiratory infections in children. These guidelines summarize the experience of the leading world and domestic specialists, contain scientific and practical data that correspond to the most relevant trends in the management of children with this pathology. The authors present modern information on the etiology, pathogenesis, classification, clinical findings and differential diagnosis of various nosological forms of acute respiratory tract infections in the pediatric population. The general (strategic principles of drug-free and drug treatment are discussed in detail.

  15. Profilin is required for viral morphogenesis, syncytium formation, and cell-specific stress fiber induction by respiratory syncytial virus

    Directory of Open Access Journals (Sweden)

    Barik Sailen

    2003-05-01

    Full Text Available Abstract Background Actin is required for the gene expression and morphogenesis of respiratory syncytial virus (RSV, a clinically important Pneumovirus of the Paramyxoviridae family. In HEp-2 cells, RSV infection also induces actin stress fibers, which may be important in the immunopathology of the RSV disease. Profilin, a major regulator of actin polymerization, stimulates viral transcription in vitro. Thus, we tested the role of profilin in RSV growth and RSV-actin interactions in cultured cells (ex vivo. Results We tested three cell lines: HEp-2 (human, A549 (human, and L2 (rat. In all three, RSV grew well and produced fused cells (syncytium, and two RSV proteins, namely, the phosphoprotein P and the nucleocapsid protein N, associated with profilin. In contrast, induction of actin stress fibers by RSV occurred in HEp-2 and L2 cells, but not in A549. Knockdown of profilin by RNA interference had a small effect on viral macromolecule synthesis but strongly inhibited maturation of progeny virions, cell fusion, and induction of stress fibers. Conclusions Profilin plays a cardinal role in RSV-mediated cell fusion and viral maturation. In contrast, interaction of profilin with the viral transcriptional proteins P and N may only nominally activate viral RNA-dependent RNA polymerase. Stress fiber formation is a cell-specific response to infection, requiring profilin and perhaps other signaling molecules that are absent in certain cell lines. Stress fibers per se play no role in RSV replication in cell culture. Clearly, the cellular architecture controls multiple steps of host-RSV interaction, some of which are regulated by profilin.

  16. Sensitive detection of viral transcripts in human tumor transcriptomes.

    Directory of Open Access Journals (Sweden)

    Sven-Eric Schelhorn

    Full Text Available In excess of 12% of human cancer incidents have a viral cofactor. Epidemiological studies of idiopathic human cancers indicate that additional tumor viruses remain to be discovered. Recent advances in sequencing technology have enabled systematic screenings of human tumor transcriptomes for viral transcripts. However, technical problems such as low abundances of viral transcripts in large volumes of sequencing data, viral sequence divergence, and homology between viral and human factors significantly confound identification of tumor viruses. We have developed a novel computational approach for detecting viral transcripts in human cancers that takes the aforementioned confounding factors into account and is applicable to a wide variety of viruses and tumors. We apply the approach to conducting the first systematic search for viruses in neuroblastoma, the most common cancer in infancy. The diverse clinical progression of this disease as well as related epidemiological and virological findings are highly suggestive of a pathogenic cofactor. However, a viral etiology of neuroblastoma is currently contested. We mapped 14 transcriptomes of neuroblastoma as well as positive and negative controls to the human and all known viral genomes in order to detect both known and unknown viruses. Analysis of controls, comparisons with related methods, and statistical estimates demonstrate the high sensitivity of our approach. Detailed investigation of putative viral transcripts within neuroblastoma samples did not provide evidence for the existence of any known human viruses. Likewise, de-novo assembly and analysis of chimeric transcripts did not result in expression signatures associated with novel human pathogens. While confounding factors such as sample dilution or viral clearance in progressed tumors may mask viral cofactors in the data, in principle, this is rendered less likely by the high sensitivity of our approach and the number of biological replicates

  17. Diagnosing viral and bacterial respiratory infections in acute COPD exacerbations by an electronic nose : a pilot study

    NARCIS (Netherlands)

    van Geffen, Wouter H; Bruins, Marcel; Kerstjens, Huib A M

    2016-01-01

    Respiratory infections, viral or bacterial, are a common cause of acute exacerbations of chronic obstructive pulmonary disease (AECOPD). A rapid, point-of-care, and easy-to-use tool distinguishing viral and bacterial from other causes would be valuable in routine clinical care. An electronic nose

  18. Respiratory infections in elderly people: Viral role in a resident population of elderly care centers in Lisbon, winter 2013–2014

    Directory of Open Access Journals (Sweden)

    Maria-Jesus Chasqueira

    2018-04-01

    Full Text Available Objective: The aim of this study was to analyze the etiology and clinical consequences of viral respiratory infections in 18 elderly care centers (ECC in Lisbon, which housed a total of 1022 residents. Methods: Nasopharyngeal swabs were collected whenever an elderly had symptoms of acute respiratory infections (ARI. PCR and RT-PCR were performed for influenza A/B, human parainfluenza virus 1–4, adenovirus, human metapneumovirus (HMPV, respiratory syncytial virus (RSV, rhinovirus, enterovirus, human coronavirus and human Bocavirus (HBoV. Array cards for atypical bacteria were also used in severe cases. Results: In total, 188 episodes of ARI were reported, being rhinovirus the most frequently detected (n = 53, followed by influenza A(H3 (n = 19 and HBoV (n = 14. Severe infections were reported in 19 patients, 11 of which were fatal, Legionela pneumophila, rhinovirus, HMPV and RSV associated with these fatalities. Nine influenza strains were analyzed, all antigenically dissimilar from vaccine strain 2013/14. “Age”, “HMPV” and “Respiratory disease” showed an association with severe infection. Conclusions: In this study an etiologic agent could be found in 60% of the acute respiratory episodes. These data provides information about the circulating viruses in ECC and highlights the importance of searching both viruses and atypical bacteria in severe ARI. Keywords: Elderly, Respiratory infections, Respiratory viruses, Legionella pneumophila, Elderly care centers, Real time PCR

  19. Treating respiratory viral diseases with chemically modified, second generation intranasal siRNAs.

    Science.gov (United States)

    Barik, Sailen

    2009-01-01

    Chemically synthesized short interfering RNA (siRNA) of pre-determined sequence has ushered a new era in the application of RNA interference (RNAi) against viral genes. We have paid particular attention to respiratory viruses that wreak heavy morbidity and mortality worldwide. The clinically significant ones include respiratory syncytial virus (RSV), parainfluenza virus (PIV) and influenza virus. As the infection by these viruses is clinically restricted to the respiratory tissues, mainly the lungs, the logical route for the application of the siRNA was also the same, i.e., via the nasal route. Following the initial success of intranasal siRNA against RSV, second-generation siRNAs were made against the viral polymerase large subunit (L) that were chemically modified and screened for improved stability, activity and pharmacokinetics. 2'-O-methyl (2'-O-Me) and 2'-deoxy-2'-fluoro (2'-F) substitutions in the ribose ring were incorporated in different positions of the sense and antisense strands and the resultant siRNAs were tested with various transfection reagents intranasally against RSV. Based on these results, we propose the following consensus for designing intranasal antiviral siRNAs: (i) modified 19-27 nt long double-stranded siRNAs are functional in the lung, (ii) excessive 2'-OMe and 2'-F modifications in either or both strands of these siRNAs reduce efficacy, and (iii) limited modifications in the sense strand are beneficial, although their precise efficacy may be position-dependent.

  20. Does Viral Co-Infection Influence the Severity of Acute Respiratory Infection in Children?

    Science.gov (United States)

    Cebey-López, Miriam; Herberg, Jethro; Pardo-Seco, Jacobo; Gómez-Carballa, Alberto; Martinón-Torres, Nazareth; Salas, Antonio; Martinón-Sánchez, José María; Justicia, Antonio; Rivero-Calle, Irene; Sumner, Edward; Fink, Colin; Martinón-Torres, Federico

    2016-01-01

    Multiple viruses are often detected in children with respiratory infection but the significance of co-infection in pathogenesis, severity and outcome is unclear. To correlate the presence of viral co-infection with clinical phenotype in children admitted with acute respiratory infections (ARI). We collected detailed clinical information on severity for children admitted with ARI as part of a Spanish prospective multicenter study (GENDRES network) between 2011-2013. A nested polymerase chain reaction (PCR) approach was used to detect respiratory viruses in respiratory secretions. Findings were compared to an independent cohort collected in the UK. 204 children were recruited in the main cohort and 97 in the replication cohort. The number of detected viruses did not correlate with any markers of severity. However, bacterial superinfection was associated with increased severity (OR: 4.356; P-value = 0.005), PICU admission (OR: 3.342; P-value = 0.006), higher clinical score (1.988; P-value = 0.002) respiratory support requirement (OR: 7.484; P-value respiratory distress (OR: 2.917; P-value = 0.035), PICU admission (OR: 0.301; P-value = 0.011), lower clinical score (-1.499; P-value = 0.021) respiratory support requirement (OR: 0.324; P-value = 0.016) and oxygen necessity (OR: 0.328; P-value = 0.001). All these findings were replicated in the UK cohort. The presence of more than one virus in hospitalized children with ARI is very frequent but it does not seem to have a major clinical impact in terms of severity. However bacterial superinfection increases the severity of the disease course. On the contrary, pneumococcal vaccination plays a protective role.

  1. Priority of using herbal medicines in the treatment of viral respiratory infections in children

    Directory of Open Access Journals (Sweden)

    Т.O. Kryuchko

    2018-02-01

    Full Text Available Background. Today, more than 80 % of the world population use herbal medicines. They have different therapeutic effects influencing the whole body. The good efficiency and tolerability of drugs containing Pelargonium sidoides is confirmed by clear scientific criteria and clinical trial data. The purpose of our research was to study the clinical efficiency and safety of the herbal medicine Papalor (Pelargonium sidoides in the treatment of children with acute respiratory viral infections. Materials and methods. The clinical study included 67 boys and 53 girls aged 1 to 12 years. All children were divided into three age groups: 1–2, 3–5 and 6–12 years. Patients of the main group (n = 60 received Papalor, patients of the control group (n = 60 took only symptomatic treatment. The greatest number of children aged 3 to 5 years. Nosological manifestations of acute respiratory viral infections were nasopharyngitis, acute bronchitis and sinusitis. According to the study design, there were three control visits. Results. Analysis of the general criteria of acute respiratory viral infections revealed that the average duration of fever in patients of the main group was 2.7 days, in the control group — 3.4 days, symptoms of intoxication — 2.2 days and 2.9 days, respectively. Catarrhal presentations (runny nose, cough, sore throat lasted for 4.2 days in patients of the main group, in controls — 4.6 days. More than 60 % of patients in both groups had acute bronchitis. At the beginning of treatment, the average level of Bronchitis Severity Score in both groups was almost the same. Already in 3–5 days, there was a significant difference in favor of the main group (p < 0.001, and by the end of treatment (day 7, it was even more expressed. From the start of therapy to its completion, Bronchitis Severity Score improved by 7.4 ± 1.8 in Pelargonium sidoides group compared with 5.2 ± 1.7 in the control group. Conclusions. A clinical study of Papalor

  2. New ICRP human respiratory tract model

    International Nuclear Information System (INIS)

    Bailey, M.R.

    1993-01-01

    The new ICRP dosimetric model for the human respiratory tract is based on the premise that the large differences in radiation sensitivity of respiratory tract tissues, and the wide range of doses they receive argue for calculating specific tissue doses rather than average lung doses. The model is also directly applicable to the worldwide population of both workers and the public. The requirement to describe intake, and deposition, clearance and dosimetry in each respiratory tract region, for a wide range of subjects at various levels of exercise necessarily means that the model is more complex than that of ICRP Publication 30. The widespread use of powerful personal computers, and the availability of user-friendly software to implement the model, however, will make it widely and readily accessible when the report is published. (Author)

  3. Seroprevalence of some bovine viral respiratory diseases among non vaccinated cattle in Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Mohamed Abd El Fatah Mahmoud

    2013-02-01

    Full Text Available Aim: Four viral pathogens, bovine viral diarrhea virus (BVDV, and bovine herpes virus type 1 (BHV-1, bovine parainfluenza type 3 virus (PI-3V, bovine respiratory syncytial virus (BRSV are mainly associated with bovine respiratory diseases that cause major economic losses in the dairy cattle industry. This study aimed to document exposure of cattle in Saudi Arabia to infectious BVDV, BHV-1, PI-3V and BRSV viruses in non vaccinated cattle in order to obtain epidemiological and immunological information. Materials and Methods: In the present study, 460 random serum samples obtained from non vaccinated cattle in five districts (Riyadh, Eastern Province, Jizan, Najran, Asir of Saudi Arabia between January to March 2011. These samples were tested for presence of antibodies against BVDV, BHV-1, BRSV and PIV-3 by commercial indirect ELISA kits. Results: Our findings displayed that Seropositivity rates were 26 % for BVD, 17.4 % for BHV-1, 69.1 % for PI-3V and 75.6 % for BRSV in the sampled population. In addition, coinfections with more than one virus were considerably common among non-vaccinated dairy cattle. Conclusion: These results indicate that exposure to these agents is common within the study areas. Preventive and control measures against these infectious agents should therefore be adopted. [Vet World 2013; 6(1.000: 1-4

  4. Viral Co-Infections in Pediatric Patients Hospitalized with Lower Tract Acute Respiratory Infections.

    Science.gov (United States)

    Cebey-López, Miriam; Herberg, Jethro; Pardo-Seco, Jacobo; Gómez-Carballa, Alberto; Martinón-Torres, Nazareth; Salas, Antonio; Martinón-Sánchez, José María; Gormley, Stuart; Sumner, Edward; Fink, Colin; Martinón-Torres, Federico

    2015-01-01

    Molecular techniques can often reveal a broader range of pathogens in respiratory infections. We aim to investigate the prevalence and age pattern of viral co-infection in children hospitalized with lower tract acute respiratory infection (LT-ARI), using molecular techniques. A nested polymerase chain reaction approach was used to detect Influenza (A, B), metapneumovirus, respiratory syncytial virus (RSV), parainfluenza (1-4), rhinovirus, adenovirus (A-F), bocavirus and coronaviruses (NL63, 229E, OC43) in respiratory samples of children with acute respiratory infection prospectively admitted to any of the GENDRES network hospitals between 2011-2013. The results were corroborated in an independent cohort collected in the UK. A total of 204 and 97 nasopharyngeal samples were collected in the GENDRES and UK cohorts, respectively. In both cohorts, RSV was the most frequent pathogen (52.9% and 36.1% of the cohorts, respectively). Co-infection with multiple viruses was found in 92 samples (45.1%) and 29 samples (29.9%), respectively; this was most frequent in the 12-24 months age group. The most frequently observed co-infection patterns were RSV-Rhinovirus (23 patients, 11.3%, GENDRES cohort) and RSV-bocavirus / bocavirus-influenza (5 patients, 5.2%, UK cohort). The presence of more than one virus in pediatric patients admitted to hospital with LT-ARI is very frequent and seems to peak at 12-24 months of age. The clinical significance of these findings is unclear but should warrant further analysis.

  5. Human coronavirus and severe acute respiratory infection in Southern Brazil.

    Science.gov (United States)

    Trombetta, Hygor; Faggion, Heloisa Z; Leotte, Jaqueline; Nogueira, Meri B; Vidal, Luine R R; Raboni, Sonia M

    2016-05-01

    Human coronaviruses (HCoVs) are an important cause of respiratory tract infection and are responsible for causing the common cold in the general population. Thus, adequate surveillance of HCoV is essential. This study aimed to analyze the impact of HCoV infections and their relation to severe acute respiratory infection (SARI) in a hospitalized population in Southern Brazil. A cross-sectional study was conducted at a tertiary care hospital, and assessed inpatients under investigation for SARI by the hospital epidemiology department, and all patients who had nasopharyngeal aspirates collected from January 2012 to December 2013 to detect respiratory viruses (RVs). Viral infection was detected by multiplex reverse transcriptase polymerase chain reaction (RT-PCR), with primers specific to the subtypes HCoV-229E/NL63 and OC43/HKU1. The overall positivity rate was 58.8% (444/755), and HCoVs were detected in 7.6% (n = 34) of positive samples. Children below two years of age were most frequently affected (62%). Comorbidities were more likely to be associated with HCoVs than with other RVs. Immunosuppression was an independent risk factor for HCoV infection (OR = 3.5, 95% CI 1.6-7.6). Dyspnea was less frequently associated with HCoV infection (p infected with HCoV (9%) died from respiratory infection. HCoVs are important respiratory pathogens, especially in hospitalized children under 2 years of age and in immunosuppressed patients. They may account for a small proportion of SARI diagnoses, increased need for mechanical ventilation, intensive care unit admission, and death.

  6. Nation-wide surveillance of human acute respiratory virus infections between 2013 and 2015 in Korea.

    Science.gov (United States)

    Kim, Jeong-Min; Jung, Hee-Dong; Cheong, Hyang-Min; Lee, Anna; Lee, Nam-Joo; Chu, Hyuk; Lee, Joo-Yeon; Kim, Sung Soon; Choi, Jang-Hoon

    2018-07-01

    The prevalence of eight respiratory viruses detected in patients with acute respiratory infections (ARIs) in Korea was investigated through analysis of data recorded by the Korea Influenza and Respiratory Viruses Surveillance System (KINRESS) from 2013 to 2015. Nasal aspirate and throat swabs specimens were collected from 36 915 patients with ARIs, and viral nucleic acids were detected by real-time (reverse-transcription) polymerase chain reaction for eight respiratory viruses, including human respiratory syncytial viruses (HRSVs), influenza viruses (IFVs), human parainfluenza viruses (HPIVs), human coronaviruses (HCoVs), human rhinovirus (HRV), human adenovirus (HAdV), human bocavirus (HBoV), and human metapneumovirus (HMPV). The overall positive rate of patient specimens was 49.4% (18 236/36 915), 5% of which carried two or more viruses simultaneously. HRV (15.6%) was the most predominantly detected virus, followed by IFVs (14.6%), HAdV (7.5%), HPIVs (5.8%), HCoVs (4.2%), HRSVs (3.6%), HBoV (1.9%), and HMPV (1.6%). Most of the ARIs were significantly correlated with clinical symptoms of fever, cough, and runny nose. Although HRV and HAdV were frequently detected throughout the year in patients, other respiratory viruses showed apparent seasonality. HRSVs and IFVs were the major causative agents of acute respiratory diseases in infants and young children. Overall, this study demonstrates a meaningful relationship between viral infection and typical manifestations of known clinical features as well as seasonality, age distribution, and co-infection among respiratory viruses. Therefore, these data could provide useful information for public health management and to enhance patient care for primary clinicians. © 2018 Wiley Periodicals, Inc.

  7. The Importance of Hematological Parameters in Acute Respiratory Viral Infections in Children

    Directory of Open Access Journals (Sweden)

    L. A. Alekseeva

    2013-01-01

    Full Text Available Hematological studies are basic and mandatory in diagnostics and laboratory monitoring of infectious diseases, which led to their inclusion in the modern standards of laboratory examinations of children. Assessment of hematological parameters used for the provisional differential diagnosis of viral or bacterial nature of the disease. For research currently being used increasingly Hematology analyzers, which allows to facilitate and standardize the results. In this paper a comparison and differences hematological parameters practically healthy children and children with respiratory infections. Identified some changes in indicators of haemogram depending on the etiology and character of the clinical course of the disease. On the basis of the leukocyte formula defined leukocyte indices of intoxication and illustrates their importance in assessing the severity of the infection process.

  8. Diagnosing viral and bacterial respiratory infections in acute COPD exacerbations by an electronic nose: a pilot study.

    Science.gov (United States)

    van Geffen, Wouter H; Bruins, Marcel; Kerstjens, Huib A M

    2016-06-16

    Respiratory infections, viral or bacterial, are a common cause of acute exacerbations of chronic obstructive pulmonary disease (AECOPD). A rapid, point-of-care, and easy-to-use tool distinguishing viral and bacterial from other causes would be valuable in routine clinical care. An electronic nose (e-nose) could fit this profile but has never been tested in this setting before. In a single-center registered trial (NTR 4601) patients admitted with AECOPD were tested with the Aeonose(®) electronic nose, and a diagnosis of viral or bacterial infection was obtained by bacterial culture on sputa and viral PCR on nose swabs. A neural network with leave-10%-out cross-validation was used to assess the e-nose data. Forty three patients were included. In the bacterial infection model, 22 positive cases were tested versus the negatives; and similarly 18 positive cases were tested in the viral infection model. The Aeonose was able to distinguish between COPD-subjects suffering from a viral infection and COPD patients without infection, showing an area under the curve (AUC) of 0.74. Similarly, for bacterial infections, an AUC of 0.72 was obtained. The Aeonose e-nose yields promising results in 'smelling' the presence or absence of a viral or bacterial respiratory infection during an acute exacerbation of COPD. Validation of these results using a new and large cohort is required before introduction into clinical practice.

  9. Symptomatic and asymptomatic respiratory viral infections in the first year of life: association with acute otitis media development.

    Science.gov (United States)

    Chonmaitree, Tasnee; Alvarez-Fernandez, Pedro; Jennings, Kristofer; Trujillo, Rocio; Marom, Tal; Loeffelholz, Michael J; Miller, Aaron L; McCormick, David P; Patel, Janak A; Pyles, Richard B

    2015-01-01

    Sensitive diagnostic assays have increased the detection of viruses in asymptomatic individuals. The clinical significance of asymptomatic respiratory viral infection in infants is unknown. High-throughput, quantitative polymerase chain reaction assays were used to detect 13 common respiratory viruses from nasopharyngeal specimens collected during 2028 visits from 362 infants followed from near birth up to 12 months of age. Specimens were collected at monthly interval (months 1-6 and month 9) and during upper respiratory tract infection (URTI) episodes. Subjects were followed closely for acute otitis media (AOM) development. Viruses were detected in 76% of 394 URTI specimens and 27% of asymptomatic monthly specimens. Rhinovirus was detected most often; multiple viruses were detected in 29% of the specimens. Generalized mixed-model analyses associated symptoms with increasing age and female sex; detection of respiratory syncytial virus (RSV), influenza, rhinovirus, metapneumovirus, and adenovirus was highly associated with symptoms. Increasing age was also associated with multiple virus detection. Overall, 403 asymptomatic viral infections in 237 infants were identified. Viral load was significantly higher in URTI specimens than asymptomatic specimens but did not differentiate cases of URTI with and without AOM complication. The rate of AOM complicating URTI was 27%; no AOM occurred following asymptomatic viral infections. AOM development was associated with increasing age and infection with RSV, rhinovirus, enterovirus, adenovirus, and bocavirus. Compared to symptomatic infection, asymptomatic viral infection in infants is associated with young age, male sex, low viral load, specific viruses, and single virus detection. Asymptomatic viral infection did not result in AOM. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. Evaluation of disease and viral biomarkers as triggers for therapeutic intervention in respiratory mousepox - an animal model of smallpox.

    Science.gov (United States)

    Parker, Scott; Chen, Nanhai G; Foster, Scott; Hartzler, Hollyce; Hembrador, Ed; Hruby, Dennis; Jordan, Robert; Lanier, Randall; Painter, George; Painter, Wesley; Sagartz, John E; Schriewer, Jill; Mark Buller, R

    2012-04-01

    The human population is currently faced with the potential use of natural or recombinant variola and monkeypox viruses as biological weapons. Furthermore, the emergence of human monkeypox in Africa and its expanding environs poses a significant natural threat. Such occurrences would require therapeutic and prophylactic intervention with antivirals to minimize morbidity and mortality of exposed populations. Two orally-bioavailable antivirals are currently in clinical trials; namely CMX001, an ether-lipid analog of cidofovir with activity at the DNA replication stage and ST-246, a novel viral egress inhibitor. Both of these drugs have previously been evaluated in the ectromelia/mousepox system; however, the trigger for intervention was not linked to a disease biomarker or a specific marker of virus replication. In this study we used lethal, intranasal, ectromelia virus infections of C57BL/6 and hairless SKH1 mice to model human disease and evaluate exanthematous rash (rash) as an indicator to initiate antiviral treatment. We show that significant protection can be provided to C57BL/6 mice by CMX001 or ST-246 when therapy is initiated on day 6 post infection or earlier. We also show that significant protection can be provided to SKH1 mice treated with CMX001 at day 3 post infection or earlier, but this is four or more days before detection of rash (ST-246 not tested). Although in this model rash could not be used as a treatment trigger, viral DNA was detected in blood by day 4 post infection and in the oropharyngeal secretions (saliva) by day 2-3 post infection - thus providing robust and specific markers of virus replication for therapy initiation. These findings are discussed in the context of current respiratory challenge animal models in use for the evaluation of poxvirus antivirals. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Zinc source and concentration altered physiological responses of beef heifers during a combined viral-bacterial respiratory challenge

    Science.gov (United States)

    Three treatments were evaluated in feedlot heifers to determine the effects of zinc supplementation on the immune response to a combined viral-bacterial respiratory disease challenge. Thirty-two beef heifers (255+/-15 kg) were subjected to a 30d period of Zn depletion, then randomly assigned to one ...

  12. Acute viral respiratory infections among children in MERS-endemic Riyadh, Saudi Arabia, 2012-2013.

    Science.gov (United States)

    Fagbo, Shamsudeen F; Garbati, Musa A; Hasan, Rami; AlShahrani, Dayel; Al-Shehri, Mohamed; AlFawaz, Tariq; Hakawi, Ahmed; Wani, Tariq Ahmad; Skakni, Leila

    2017-02-01

    The emergence of the Middle East Respiratory Syndrome (MERS) in Saudi Arabia has intensified focus on Acute Respiratory Infections [ARIs]. This study sought to identify respiratory viruses (RVs) associated with ARIs in children presenting at a tertiary hospital. Children (aged ≤13) presenting with ARI between January 2012 and December 2013 tested for 15 RVs using the Seeplex R RV15 kit were retrospectively included. Epidemiological data was retrieved from patient records. Of the 2235 children tested, 61.5% were ≤1 year with a male: female ratio of 3:2. Viruses were detected in 1364 (61.02%) children, 233 (10.4%) having dual infections: these viruses include respiratory syncytial virus (RSV) (24%), human rhinovirus (hRV) (19.7%), adenovirus (5.7%), influenza virus (5.3%), and parainfluenzavirus-3 (4.6%). Children, aged 9-11 months, were most infected (60.9%). Lower respiratory tract infections (55.4%) were significantly more than upper respiratory tract infection (45.3%) (P < 0.001). Seasonal variation of RV was directly and inversely proportional to relative humidity and temperature, respectively, for non MERS coronaviruses (NL63, 229E, and OC43). The study confirms community-acquired RV associated with ARI in children and suggests modulating roles for abiotic factors in RV epidemiology. However, community-based studies are needed to elucidate how these factors locally influence RV epidemiology. J. Med. Virol. 89:195-201, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  13. Risk factors and features of recurrent bacterial complications of upper respiratory tract viral infections in children

    Directory of Open Access Journals (Sweden)

    Karpenko A.V.

    2017-10-01

    Full Text Available The aim of the study was to determine risk factors for recurrent bacterial complications of the upper respiratory tract viral infection (URTI in children, as well as the clinical and immunological features of the course of such complications. We enrolled 214 children aged 3-18 years with URTIs complicated with acute otitis media or acute bacterial rhinosinusitis. Frequency of bacterial complications of URI in 128 children was low (group I and in 86 children it met the criteria of recurrent course (group II. In addition to the standard examination, lysozyme levels in the oropharyngeal secretion were determined three times during the disease. It was found that children of group II were characterized by an early debut of respiratory morbidity (at the age of 6.00 (4.00, 12.00 months against 13.00 (4.50, 16.00 months in children of group I (p<0,0001, as well as a longer duration of catarrhal and intoxication syndromes in similar forms of the disease. The most significant risk factors for the formation of the recurring complication pattern were maternal smoking (OR=2.73, 95% CI [1.34, 5.48], along with gastroenterological pathology and frequent URTI in the mother and a shortened period of breastfeeding. In children with recurrent bacterial complications of URTI, there was an impaired local resistance of the upper respiratory tract mucous membranes (as a decrease in the concentrations of lysozyme in all periods of the disease, which persisted after recovery.

  14. Viral etiology, seasonality and severity of hospitalized patients with severe acute respiratory infections in the Eastern Mediterranean Region, 2007-2014.

    Science.gov (United States)

    Horton, Katherine C; Dueger, Erica L; Kandeel, Amr; Abdallat, Mohamed; El-Kholy, Amani; Al-Awaidy, Salah; Kohlani, Abdul Hakim; Amer, Hanaa; El-Khal, Abel Latif; Said, Mayar; House, Brent; Pimentel, Guillermo; Talaat, Maha

    2017-01-01

    Little is known about the role of viral respiratory pathogens in the etiology, seasonality or severity of severe acute respiratory infections (SARI) in the Eastern Mediterranean Region. Sentinel surveillance for SARI was conducted from December 2007 through February 2014 at 20 hospitals in Egypt, Jordan, Oman, Qatar and Yemen. Nasopharyngeal and oropharyngeal swabs were collected from hospitalized patients meeting SARI case definitions and were analyzed for infection with influenza, respiratory syncytial virus (RSV), adenovirus (AdV), human metapneumovirus (hMPV) and human parainfluenza virus types 1-3 (hPIV1-3). We analyzed surveillance data to calculate positivity rates for viral respiratory pathogens, describe the seasonality of those pathogens and determine which pathogens were responsible for more severe outcomes requiring ventilation and/or intensive care and/or resulting in death. At least one viral respiratory pathogen was detected in 8,753/28,508 (30.7%) samples tested for at least one pathogen and 3,497/9,315 (37.5%) of samples tested for all pathogens-influenza in 3,345/28,438 (11.8%), RSV in 3,942/24,503 (16.1%), AdV in 923/9,402 (9.8%), hMPV in 617/9,384 (6.6%), hPIV1 in 159/9,402 (1.7%), hPIV2 in 85/9,402 (0.9%) and hPIV3 in 365/9,402 (3.9%). Multiple pathogens were identified in 501/9,316 (5.4%) participants tested for all pathogens. Monthly variation, indicating seasonal differences in levels of infection, was observed for all pathogens. Participants with hMPV infections and participants less than five years of age were significantly less likely than participants not infected with hMPV and those older than five years of age, respectively, to experience a severe outcome, while participants with a pre-existing chronic disease were at increased risk of a severe outcome, compared to those with no reported pre-existing chronic disease. Viral respiratory pathogens are common among SARI patients in the Eastern Mediterranean Region. Ongoing surveillance is

  15. Apoptosis, Toll-like, RIG-I-like and NOD-like Receptors Are Pathways Jointly Induced by Diverse Respiratory Bacterial and Viral Pathogens

    Science.gov (United States)

    Martínez, Isidoro; Oliveros, Juan C.; Cuesta, Isabel; de la Barrera, Jorge; Ausina, Vicente; Casals, Cristina; de Lorenzo, Alba; García, Ernesto; García-Fojeda, Belén; Garmendia, Junkal; González-Nicolau, Mar; Lacoma, Alicia; Menéndez, Margarita; Moranta, David; Nieto, Amelia; Ortín, Juan; Pérez-González, Alicia; Prat, Cristina; Ramos-Sevillano, Elisa; Regueiro, Verónica; Rodriguez-Frandsen, Ariel; Solís, Dolores; Yuste, José; Bengoechea, José A.; Melero, José A.

    2017-01-01

    Lower respiratory tract infections are among the top five leading causes of human death. Fighting these infections is therefore a world health priority. Searching for induced alterations in host gene expression shared by several relevant respiratory pathogens represents an alternative to identify new targets for wide-range host-oriented therapeutics. With this aim, alveolar macrophages were independently infected with three unrelated bacterial (Streptococcus pneumoniae, Klebsiella pneumoniae, and Staphylococcus aureus) and two dissimilar viral (respiratory syncytial virus and influenza A virus) respiratory pathogens, all of them highly relevant for human health. Cells were also activated with bacterial lipopolysaccharide (LPS) as a prototypical pathogen-associated molecular pattern. Patterns of differentially expressed cellular genes shared by the indicated pathogens were searched by microarray analysis. Most of the commonly up-regulated host genes were related to the innate immune response and/or apoptosis, with Toll-like, RIG-I-like and NOD-like receptors among the top 10 signaling pathways with over-expressed genes. These results identify new potential broad-spectrum targets to fight the important human infections caused by the bacteria and viruses studied here. PMID:28298903

  16. Vaccines against viral hemorrhagic fevers: non-human primate models.

    Science.gov (United States)

    Carrion, Ricardo; Patterson, Jean L

    2011-06-01

    Viral hemorrhagic fevers are a group of disease syndromes caused by infection with certain RNA viruses. The disease is marked by a febrile response, malaise, coagulopathy and vascular permeability culminating in death. Case fatality rates can reach 90% depending on the etiologic agent. Currently, there is no approved antiviral treatment. Because of the high case fatality, risk of importation and the potential to use these agents as biological weapons, development of countermeasures to these agents is a high priority. The sporadic nature of disease outbreaks and the ethical issues associated with conducting a human trial for such diseases make human studies impractical; therefore, development of countermeasures must occur in relevant animal models. Non-human primates are superior models to study infectious disease because their immune system is similar to humans and they are good predictors of efficacy in vaccine development and other intervention strategies. This review article summarizes viral hemorrhagic fever non-human primate models.

  17. Human viral pathogens are pervasive in wastewater treatment center aerosols.

    Science.gov (United States)

    Brisebois, Evelyne; Veillette, Marc; Dion-Dupont, Vanessa; Lavoie, Jacques; Corbeil, Jacques; Culley, Alexander; Duchaine, Caroline

    2018-05-01

    Wastewater treatment center (WTC) workers may be vulnerable to diseases caused by viruses, such as the common cold, influenza and gastro-intestinal infections. Although there is a substantial body of literature characterizing the microbial community found in wastewater, only a few studies have characterized the viral component of WTC aerosols, despite the fact that most diseases affecting WTC workers are of viral origin and that some of these viruses are transmitted through the air. In this study, we evaluated in four WTCs the presence of 11 viral pathogens of particular concern in this milieu and used a metagenomic approach to characterize the total viral community in the air of one of those WTCs. The presence of viruses in aerosols in different locations of individual WTCs was evaluated and the results obtained with four commonly used air samplers were compared. We detected four of the eleven viruses tested, including human adenovirus (hAdV), rotavirus, hepatitis A virus (HAV) and Herpes Simplex virus type 1 (HSV1). The results of the metagenomic assay uncovered very few viral RNA sequences in WTC aerosols, however sequences from human DNA viruses were in much greater relative abundance. Copyright © 2017. Published by Elsevier B.V.

  18. Influenza and Respiratory Syncytial viral infections in Malaysia: Demographic and Clinical perspective.

    Science.gov (United States)

    Rahman, M M; Wong, K K; Hanafiah, A; Isahak, I

    2014-01-01

    Respiratory infections represent a major public health problem worldwide. The study aimed to determine the prevalence of respiratory syncytial and influenza virus infections and analyzed in respect to demography and clinical perspective. Methods : The specimens were processed by cell culture and immunofluorescent assay (IFA) and real-time reverse transcriptase-PCR (rRT-PCR) for detection of respiratory viruses. Results : Out of 505 specimens 189 (37.8%) were positive, in which RSV was positive in 124(24.8%) cases and influenza A was positive in 65(13%) cases. Positive cases for influenza virus A and RSV were analyzed based on demography: age, gender, ethnicity and clinical symptoms. There were no significant differences among gender, ethnicity and clinical symptoms in both RSV and influenza A virus infections. It was observed that children below 3 years of ages were more prone to RSV infections. On the contrary, influenza virus A infected all age groups of humans. RSV infects mostly child below 3 years of age and influenza virus infects all age group. No specificity of RSV and influenza infection in relation to demography.

  19. Universal Mask Usage for Reduction of Respiratory Viral Infections After Stem Cell Transplant: A Prospective Trial.

    Science.gov (United States)

    Sung, Anthony D; Sung, Julia A M; Thomas, Samantha; Hyslop, Terry; Gasparetto, Cristina; Long, Gwynn; Rizzieri, David; Sullivan, Keith M; Corbet, Kelly; Broadwater, Gloria; Chao, Nelson J; Horwitz, Mitchell E

    2016-10-15

    Respiratory viral infections (RVIs) are frequent complications of hematopoietic stem cell transplant (HSCT). Surgical masks are a simple and inexpensive intervention that may reduce nosocomial spread. In this prospective single-center study, we instituted a universal surgical mask policy requiring all individuals with direct contact with HSCT patients to wear a surgical mask, regardless of symptoms or season. The primary endpoint was the incidence of RVIs in the mask period (2010-2014) compared with the premask period (2003-2009). RVIs decreased from 10.3% (95/920 patients) in the premask period to 4.4% (40/911) in the mask period (P mask group compared with the premask group (0.19-0.85, P = .02). In contrast, no decrease was observed during this same period in an adjacent hematologic malignancy unit, which followed the same infection control practices except for the mask policy. The majority of this decrease was in parainfluenza virus 3 (PIV3) (8.3% to 2.2%, P mask is associated with a reduction in RVIs, particularly PIV3, during the most vulnerable period following HSCT. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  20. Efficacy of Chistonos for Children in the Treatment and Prevention of Acute Respiratory Viral Infections in Preschool Children

    Directory of Open Access Journals (Sweden)

    I.V. Dahaieva

    2016-02-01

    Full Text Available The complex of treatment of acute respiratory viral infection (ARVI, acute rhinitis in 43 preschool children was supplemented by endonasal irrigations of Chistonos for children, which is a dosing gel spray containing sea salt, β-carotene, aloe and calendula extracts. A marked local symptomatic relief was registered, as well as an acceleration of the regression of inflammatory changes in the nasal cavity and a significant decrease in the number of complications after acute respiratory disease. Prophylactic use of the product in the preseason allowed to decrease the ARVI (including influenza morbidity rate and to reduce the incidence of the severe form of the disease.

  1. Human Lectins and Their Roles in Viral Infections

    Directory of Open Access Journals (Sweden)

    Christopher P. Mason

    2015-01-01

    Full Text Available Innate recognition of virus proteins is an important component of the immune response to viral pathogens. A component of this immune recognition is the family of lectins; pattern recognition receptors (PRRs that recognise viral pathogen-associated molecular patterns (PAMPs including viral glycoproteins. In this review we discuss the contribution of soluble and membrane-associated PRRs to immunity against virus pathogens, and the potential role of these molecules in facilitating virus replication. These processes are illustrated with examples of viruses including human immunodeficiency virus (HIV, hepatitis C virus (HCV and Ebola virus (EBOV. We focus on the structure, function and genetics of the well-characterised C-type lectin mannose-binding lectin, the ficolins, and the membrane-bound CD209 proteins expressed on dendritic cells. The potential for lectin-based antiviral therapies is also discussed.

  2. A Review on Human Respiratory Modeling.

    Science.gov (United States)

    Ghafarian, Pardis; Jamaati, Hamidreza; Hashemian, Seyed Mohammadreza

    2016-01-01

    Input impedance of the respiratory system is measured by forced oscillation technique (FOT). Multiple prior studies have attempted to match the electromechanical models of the respiratory system to impedance data. Since the mechanical behavior of airways and the respiratory system as a whole are similar to an electrical circuit in a combination of series and parallel formats some theories were introduced according to this issue. It should be noted that, the number of elements used in these models might be less than those required due to the complexity of the pulmonary-chest wall anatomy. Various respiratory models have been proposed based on this idea in order to demonstrate and assess the different parts of respiratory system related to children and adults data. With regard to our knowledge, some of famous respiratory models in related to obstructive, restrictive diseases and also Acute Respiratory Distress Syndrome (ARDS) are reviewed in this article.

  3. Phyto-inhalation for treatment of complications of acute respiratory viral diseases

    Directory of Open Access Journals (Sweden)

    I.B. Ershova

    2017-03-01

    Full Text Available Inhalations (inhalation of medicinal substances are one of the effective ways to treat upper respiratory tract diseases and colds. Inhalation therapy is used to treat rhinitis, sinusitis, tonsillitis, pharyngitis, laryngitis, bronchitis and pneumonia, which can be complications of acute respiratory viral infections. The main rules of inhalation are as follows to conduct the procedure better after 1.5 hours after eating; clothes should not impede breathing; the procedure can be carried out only while sitting or standing; solution for the inhaler for treatment of bronchitis should be fresh; it is necessary to strictly keep the prescribed dosage; the time of the procedure should also be respected — usually it is from 1 to 4 minutes, sometimes for adults up to 10 minutes, for children the inhalation period is shorter — 1–2 minutes. Contraindications to inhalation are body temperature above 37.5 degrees; propensity to nasal blee­ding in a patient; propensity to increased arterial pressure, with cardiovascular failure; purulent inflammation of the tonsils; respiratory failure. The procedure should be stopped immediately in case of appearance of adverse symptoms such as shortness of breath, dizziness, difficulty in breathing. Therefore, inhalations must be prescribed by a doctor after examination of a patient. During inhalations in rhinitis, you should try to inhale the vapor through the nose. For effective treatment of rhinitis, inhalations from conife­rous plants are very suitable: fir, pine, juniper, larch, from steamed dried chamomile flowers, mint, and blackberry leaves. Honey inhalations can be used for the treatment of acute and chronic diseases of the upper respiratory tract (tonsillitis, pharyngitis, laryngitis and tracheitis. Medical herbal inhalation for children should be carried out from the age of two years. This must be done under the constant supervision of an adult. Leaves of coniferous trees: pine, fir, if or juniper, cedar

  4. Viral kinetics of Enterovirus 71 in human abdomyosarcoma cells

    Science.gov (United States)

    Lu, Jing; He, Ya-Qing; Yi, Li-Na; Zan, Hong; Kung, Hsiang-Fu; He, Ming-Liang

    2011-01-01

    AIM: To characterise the viral kinetics of enterovirus 71 (EV71). METHODS: In this study, human rhabdomyosarcoma (RD) cells were infected with EV71 at different multiplicity of infection (MOI). After infection, the cytopathic effect (CPE) was monitored and recorded using a phase contrast microscope associated with a CCD camera at different time points post viral infection (0, 6, 12, 24 h post infection). Cell growth and viability were measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay in both EV71 infected and mock infected cells at each time point. EV71 replication kinetics in RD cells was determined by measuring the total intracellular viral RNA with real-time reverse-transcription polymerase chain reaction (qRT-PCR). Also, the intracellular and extracellular virion RNA was isolated and quantified at different time points to analyze the viral package and secretion. The expression of viral protein was determined by analyze the levels of viral structure protein VP1 with Western blotting. RESULTS: EV71 infection induced a significant CPE as early as 6 h post infection (p.i.) in both RD cells infected with high ratio of virus (MOI 10) and low ratio of virus (MOI 1). In EV71 infected cells, the cell growth was inhibited and the number of viable cells was rapidly decreased in the later phase of infection. EV71 virions were uncoated immediately after entry. The intracellular viral RNA began to increase at as early as 3 h p.i. and the exponential increase was found between 3 h to 6 h p.i. in both infected groups. For viral structure protein synthesis, results from western-blot showed that intracellular viral protein VP1 could not be detected until 6 h p.i. in the cells infected at either MOI 1 or MOI 10; and reached the peak at 9 h p.i. in the cells infected with EV71 at both MOI 1 and MOI 10. Simultaneously, the viral package and secretion were also actively processed as the virus underwent rapid replication. The viral package kinetics

  5. Some points of the X-ray pattern of acute viral primary pneumonia caused by acute respiratory disease viruses

    International Nuclear Information System (INIS)

    Stoyanov, V.

    1991-01-01

    An analysis is made of the results of the X-ray studies as well as of the virological and serological tests in 225 out-patients consulted in the first days of their complaints. A predominance of the viral (70.2%) over the viral-bacterial primary pneumonia is established. The acute viral primary pneumonia are caused mostly by single influenza viruses and more rarely - by single respiratory viruses; in the cases of combined influenza viruses influenza-influenza viruses prevail over the influenza-respiratory ones. The morphological changes in pneumonia due to isolated single influenza viruses involve mostly the interstitium and are projected on X-ray as patchy and stripped densities. The inflamatory changes in pneumonia caused by combined influenza viruses affect both ihe interstitium and the broncho-alveolar substrate of the lungs; they are manifested in two roentgenologic forms: creeping (migrating) and fusing (confluent). In viral-bacterial pneumonia the changes affect mostly the lobe. The right lung and the lower parts of the both lungs are affected in most cases. 5 figs., 21 refs

  6. Human metapneumovirus and respiratory syncytial virus in hospitalized danish children with acute respiratory tract infection

    DEFF Research Database (Denmark)

    von Linstow, Marie-Louise; Henrik Larsen, Hans; Koch, Anders

    2004-01-01

    The newly discovered human metapneumovirus (hMPV) has been shown to be associated with respiratory illness. We determined the frequencies and clinical features of hMPV and respiratory syncytial virus (RSV) infections in 374 Danish children with 383 episodes of acute respiratory tract infection...... children 1-6 months of age. Asthmatic bronchitis was diagnosed in 66.7% of hMPV and 10.6% of RSV-infected children (p respiratory support. hMPV is present in young...

  7. Targeting the IL-33/IL-13 Axis for Respiratory Viral Infections.

    Science.gov (United States)

    Donovan, Chantal; Bourke, Jane E; Vlahos, Ross

    2016-04-01

    Lung diseases, such as asthma and chronic obstructive pulmonary disease (COPD), are highly prevalent worldwide. One of the major factors that limits the efficacy of current medication in these patients are viral infections, leading to exacerbations of symptoms and decreased quality of life. Current pharmacological strategies targeting virus-induced lung disease are problematic due to antiviral resistance and the requirement for strain-specific vaccination. Thus, new therapeutic strategies are urgently required. In this Opinion article, we provide state-of-the-art evidence from humans and preclinical animal models implicating the interleukin (IL)-33/IL-13 axis in virus-induced lung disease. Thus, targeting the IL-33/IL-13 axis may be a feasible way to overcome the limitations of current therapy used to treat virus-induced exacerbations of lung disease. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Principles of etiopathogenetic therapy for acute respiratory viral infections in frequently ill children

    Directory of Open Access Journals (Sweden)

    L. A. Kharitonova

    2015-01-01

    Full Text Available Objective: to investigate the impact of incorporation of cycloferon into a therapy regimen on the efficiency of treatment for acute respiratory viral infections (ARVI in frequently ill children. Subjects and methods. The results of treatment were analyzed in 117 children divided into three groups according to the therapy regimen. Thus, symptomatic and local antiviral therapies (interferon nasal ointment and viferon suppositories were prescribed to all the children; furthermore, Group 1 (control used antibiotic therapy; Group 2 (Comparison Group 1 took antibiotics and cycloferon (tablets, and Group 3 (Comparison Group 2 had Cycloferon. Results: At the beginning of treatment, there was a reduction in interferon-a and interferon-y values with preserved serum interferon levels, suggesting the diminished compensatory responses ensuring antiviral protection. Analysis of the immune status revealed that virtually half of the children exhibited activation of compensatory mechanisms (stimulation of CD4+ and CD8+ production and an increase in NST test activity, one third displayed a disturbance (decreases in CD4+, CDlfrf, IgA, and NST test activity. After treatment, interferonogenesis was recovered in the majority (86,7% of the patients taking Cycloferon, in 74,1% of those who had a treatment regimen containing cycloferon and antibiotics, and only in 47,1 % of those who received antibiotics. Comparison of the immunological indicators during therapy with antibiotics alone or in combination with cycloferon demonstrated a more noticeable and balanced response to the latter: the normalized CD4+ and CD8+ values in the patients on antibiotic therapy was 8,9 and 5,8%, respectively, and 11,1 % in those who received antibiotics and cycloferon. Conclusion. Incorporation of cycloferon into ARVI treatment regimens for frequently ill patients has the positive effect on immunological indicators, which shows itself as recovery of initially diminished interferonogenesis

  9. Excretion patterns of human metapneumovirus and respiratory syncytial virus among young children

    DEFF Research Database (Denmark)

    von Linstow, Marie-Louise; Eugen-Olsen, Jesper; Koch, A

    2006-01-01

    of the infected children showed to have an upper respiratory tract infection when following up. CONCLUSION: Viral RNA was present in nasal secretions, saliva, sweat, and faeces, but whether or not the virions were infectious and constitute a potential mode of transmission remains to be shown in future studies.......BACKGROUND: As respiratory syncytial virus (RSV) and human metapneumovirus (hMPV) cause serious respiratory tract infections, the routes of transmission of these viruses are important to elucidate. We examined the modes of virus shedding and shedding duration of RSV and hMPV in young children....... METHODS: From each child in a group of 44 children (37 RSV-positive, 6 hMPV-positive, and 1 co-infected child), aged between 0.5-38 months, hospitalised at Hvidovre Hospital, Copenhagen, Denmark, one nasopharyngeal aspirate (NPA), saliva, urine, and faeces sample were collected at inclusion and weekly...

  10. Viral infection of human lung macrophages increases PDL1 expression via IFNβ.

    Directory of Open Access Journals (Sweden)

    Karl J Staples

    Full Text Available Lung macrophages are an important defence against respiratory viral infection and recent work has demonstrated that influenza-induced macrophage PDL1 expression in the murine lung leads to rapid modulation of CD8+ T cell responses via the PD1 receptor. This PD1/PDL1 pathway may downregulate acute inflammatory responses to prevent tissue damage. The aim of this study was to investigate the mechanisms of PDL1 regulation by human macrophages in response to viral infection. Ex-vivo viral infection models using influenza and RSV were established in human lung explants, isolated lung macrophages and monocyte-derived macrophages (MDM and analysed by flow cytometry and RT-PCR. Incubation of lung explants, lung macrophages and MDM with X31 resulted in mean cellular infection rates of 18%, 18% and 29% respectively. Viral infection significantly increased cell surface expression of PDL1 on explant macrophages, lung macrophages and MDM but not explant epithelial cells. Infected MDM induced IFNγ release from autologous CD8+ T cells, an effect enhanced by PDL1 blockade. We observed increases in PDL1 mRNA and IFNβ mRNA and protein release by MDM in response to influenza infection. Knockdown of IFNβ by siRNA, resulted in a 37.5% reduction in IFNβ gene expression in response to infection, and a significant decrease in PDL1 mRNA. Furthermore, when MDM were incubated with IFNβ, this cytokine caused increased expression of PDL1 mRNA. These data indicate that human macrophage PDL1 expression modulates CD8+ cell IFNγ release in response to virus and that this expression is regulated by autologous IFNβ production.

  11. The Role of Human Milk Immunomodulators in Protecting Against Viral Bronchiolitis and Development of Chronic Wheezing Illness.

    Science.gov (United States)

    Dixon, Dani-Louise

    2015-07-07

    Infants who are breastfed are at an immunological advantage when compared with formula fed infants, evidenced by decreased incidence of infections and diminished propensity for long term conditions, including chronic wheeze and/or asthma. Exclusive breastfeeding reduces the duration of hospital admission, risk of respiratory failure and requirement for supplemental oxygen in infants hospitalised with bronchiolitis suggesting a potentially protective mechanism. This review examines the evidence and potential pathways for protection by immunomodulatory factors in human milk against the most common viral cause of bronchiolitis, respiratory syncytial virus (RSV), and subsequent recurrent wheeze in infants. Further investigations into the interplay between respiratory virus infections such as RSV and how they affect, and are affected by, human milk immunomodulators is necessary if we are to gain a true understanding of how breastfeeding protects many infants but not all against infections, and how this relates to long-term protection against conditions such as chronic wheezing illness or asthma.

  12. Human herpesviruses respiratory infections in patients with acute respiratory distress (ARDS).

    Science.gov (United States)

    Bonizzoli, Manuela; Arvia, Rosaria; di Valvasone, Simona; Liotta, Francesco; Zakrzewska, Krystyna; Azzi, Alberta; Peris, Adriano

    2016-08-01

    Acute respiratory distress syndrome (ARDS) is today a leading cause of hospitalization in intensive care unit (ICU). ARDS and pneumonia are closely related to critically ill patients; however, the etiologic agent is not always identified. The presence of human herpes simplex virus 1, human cytomegalovirus and Epstein-Barr virus in respiratory samples of critically ill patients is increasingly reported even without canonical immunosuppression. The main aim of this study was to better understand the significance of herpesviruses finding in lower respiratory tract of ARDS patients hospitalized in ICU. The presence of this group of herpesviruses, in addition to the research of influenza viruses and other common respiratory viruses, was investigated in respiratory samples from 54 patients hospitalized in ICU, without a known microbiological causative agent. Moreover, the immunophenotype of each patient was analyzed. Herpesviruses DNA presence in the lower respiratory tract seemed not attributable to an impaired immunophenotype, whereas a significant correlation was observed between herpesviruses positivity and influenza virus infection. A higher ICU mortality was significantly related to the presence of herpesvirus infection in the lower respiratory tract as well as to impaired immunophenotype, as patients with poor outcome showed severe lymphopenia, affecting in particular T (CD3+) cells, since the first days of ICU hospitalization. In conclusion, these results indicate that herpesviruses lower respiratory tract infection, which occurs more frequently following influenza virus infection, can be a negative prognostic marker. An independent risk factor for ICU patients with ARDS is an impaired immunophenotype.

  13. Human Neutralizing Monoclonal Antibody Inhibition of Middle East Respiratory Syndrome Coronavirus Replication in the Common Marmoset.

    Science.gov (United States)

    Chen, Zhe; Bao, Linlin; Chen, Cong; Zou, Tingting; Xue, Ying; Li, Fengdi; Lv, Qi; Gu, Songzhi; Gao, Xiaopan; Cui, Sheng; Wang, Jianmin; Qin, Chuan; Jin, Qi

    2017-06-15

    Middle East respiratory syndrome coronavirus (MERS-CoV) infection in humans is highly lethal, with a fatality rate of 35%. New prophylactic and therapeutic strategies to combat human infections are urgently needed. We isolated a fully human neutralizing antibody, MCA1, from a human survivor. The antibody recognizes the receptor-binding domain of MERS-CoV S glycoprotein and interferes with the interaction between viral S and the human cellular receptor human dipeptidyl peptidase 4 (DPP4). To our knowledge, this study is the first to report a human neutralizing monoclonal antibody that completely inhibits MERS-CoV replication in common marmosets. Monotherapy with MCA1 represents a potential alternative treatment for human infections with MERS-CoV worthy of evaluation in clinical settings. © Crown copyright 2017.

  14. Animal models of human respiratory syncytial virus disease

    NARCIS (Netherlands)

    Bem, Reinout A.; Domachowske, Joseph B.; Rosenberg, Helene F.

    2011-01-01

    Infection with the human pneumovirus pathogen, respiratory syncytial virus (hRSV), causes a wide spectrum of respiratory disease, notably among infants and the elderly. Laboratory animal studies permit detailed experimental modeling of hRSV disease and are therefore indispensable in the search for

  15. A Selective Bottleneck Shapes the Evolutionary Mutant Spectra of Enterovirus A71 during Viral Dissemination in Humans.

    Science.gov (United States)

    Huang, Sheng-Wen; Huang, Yi-Hui; Tsai, Huey-Pin; Kuo, Pin-Hwa; Wang, Shih-Min; Liu, Ching-Chuan; Wang, Jen-Ren

    2017-12-01

    RNA viruses accumulate mutations to rapidly adapt to environmental changes. Enterovirus A71 (EV-A71) causes various clinical manifestations with occasional severe neurological complications. However, the mechanism by which EV-A71 evolves within the human body is unclear. Utilizing deep sequencing and haplotype analyses of viruses from various tissues of an autopsy patient, we sought to define the evolutionary pathway by which enterovirus A71 evolves fitness for invading the central nervous system in humans. Broad mutant spectra with divergent mutations were observed at the initial infection sites in the respiratory and digestive systems. After viral invasion, we identified a haplotype switch and dominant haplotype, with glycine at VP1 residue 31 (VP1-31G) in viral particles disseminated into the integumentary and central nervous systems. In vitro viral growth and fitness analyses indicated that VP1-31G conferred growth and a fitness advantage in human neuronal cells, whereas VP1-31D conferred enhanced replication in human colorectal cells. A higher proportion of VP1-31G was also found among fatal cases, suggesting that it may facilitate central nervous system infection in humans. Our data provide the first glimpse of EV-A71 quasispecies from oral tissues to the central nervous system within humans, showing broad implications for the surveillance and pathogenesis of this reemerging viral pathogen. IMPORTANCE EV-A71 continues to be a worldwide burden to public health. Although EV-A71 is the major etiological agent of hand, foot, and mouth disease, it can also cause neurological pulmonary edema, encephalitis, and even death, especially in children. Understanding selection processes enabling dissemination and accurately estimating EV-A71 diversity during invasion in humans are critical for applications in viral pathogenesis and vaccine studies. Here, we define a selection bottleneck appearing in respiratory and digestive tissues. Glycine substitution at VP1 residue 31

  16. Dynamics of human respiratory system mycoflora

    Directory of Open Access Journals (Sweden)

    Anna Biedunkiewicz

    2014-08-01

    Full Text Available The study aimed at determing the prevalence of individual species of fungi in the respiratory systems of women and men, analysis of the dynamics of the fungi in individual sections of the respiratory system as concerns their quantity and identification of phenology of the isolated fungi coupled with an attempt at identifying their possible preferences for appearing during specific seasons of thc year. During 10 years of studies (1989- 1998. 29 species of fungi belonging: Candida, Geolrichum, Saccharomyces, Saccharomycopsis, Schizosaccharomyces, Torulopsis, Trichosporon and Aspergillus were isolated from the ontocenoses of the respiratory systems of patients at the Independent Public Center for Pulmonology and Oncology in Olsztyn. Candida albicans was a clearly dominating fungus. Individual species appeared individually, in twos or threes in a single patient, they were isolated more frequently in the spring and autumn, less frequently during the winter and summer. The largest number of fungi species were isolated from sputum (29 species, bronchoscopic material (23 species and pharyngeal swabs (15 species. Sacchoromycopsis capsularis and Trichosporon beigelii should be treated as new for the respiratory system. Biodiversity of fungi, their numbers and continous fluctuations in frequency indicate that the respiratory system ontocenose offers the optimum conditions for growth and development of the majority of the majority of yeasts - like fungi.

  17. Human bocavirus infection as a cause of severe acute respiratory tract infection in children.

    Science.gov (United States)

    Moesker, F M; van Kampen, J J A; van der Eijk, A A; van Rossum, A M C; de Hoog, M; Schutten, M; Smits, S L; Bodewes, R; Osterhaus, A D M E; Fraaij, P L A

    2015-10-01

    In 2005 human bocavirus (HBoV) was discovered in respiratory tract samples of children. The role of HBoV as the single causative agent for respiratory tract infections remains unclear. Detection of HBoV in children with respiratory disease is frequently in combination with other viruses or bacteria. We set up an algorithm to study whether HBoV alone can cause severe acute respiratory tract infection (SARI) in children. The algorithm was developed to exclude cases with no other likely cause than HBoV for the need for admission to the paediatric intensive care unit (PICU) with SARI. We searched for other viruses by next-generation sequencing (NGS) in these cases and studied their HBoV viral loads. To benchmark our algorithm, the same was applied to respiratory syncytial virus (RSV)-positive patients. From our total group of 990 patients who tested positive for a respiratory virus by means of RT-PCR, HBoV and RSV were detected in 178 and 366 children admitted to our hospital. Forty-nine HBoV-positive patients and 72 RSV-positive patients were admitted to the PICU. We found seven single HBoV-infected cases with SARI admitted to PICU (7/49, 14%). They had no other detectable virus by NGS. They had much higher HBoV loads than other patients positive for HBoV. We identified 14 RSV-infected SARI patients with a single RSV infection (14/72, 19%). We conclude that our study provides strong support that HBoV can cause SARI in children in the absence of viral and bacterial co-infections. Copyright © 2015 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  18. Epidemiologic analysis of respiratory viral infections among Singapore military servicemen in 2016.

    Science.gov (United States)

    Lau, Yuk-Fai; Koh, Wee-Hong Victor; Kan, Clement; Dua, Poh-Choo Alethea; Lim, Ai-Sim Elizabeth; Liaw, Chin-Wen Jasper; Gao, Qiu-Han; Chng, Jeremiah; Lee, Vernon J; Tan, Boon-Huan; Loh, Jin-Phang

    2018-03-12

    Respiratory illnesses have been identified as a significant factor leading to lost training time and morbidity among Singapore military recruits. A surveillance programme has been put in place to determine etiological agents responsible for febrile, as well as afebrile respiratory illnesses in a military camp. The goal of the study is to better understand the epidemiology of these diseases and identify potential countermeasures to protect military recruits against them. From Jan 2016 - Jan 2017, a total of 2647 respiratory cases were enrolled into the surveillance programme. The cases were further stratified into Febrile Respiratory Illness (FRI, with body temperature > 37.5 °C) or Acute Respiratory Illness (ARI, with body temperature respiratory diseases in military focused largely on FRI cases. With the expanded surveillance to ARI cases, this study allows unbiased evaluation of the impact of respiratory disease pathogens among recruits in a military environment. The results show that several pathogens have a much bigger role in causing respiratory diseases in this cohort.

  19. Respiratory syncytial viral infections in young children : risk assessment and prevention

    NARCIS (Netherlands)

    E. Rietveld (Edwin)

    2003-01-01

    textabstractRespiratory syncytial virus is the main cause of lower respiratory tract infections in infants and young children. Although almost all children are infected before the age of two years, less than 2% develop severe disease necessitating hospitalisation. Risk factors for severe RSV

  20. Viral etiologies of influenza-like illness and severe acute respiratory infections in Thailand.

    Science.gov (United States)

    Chittaganpitch, Malinee; Waicharoen, Sunthareeya; Yingyong, Thitipong; Praphasiri, Prabda; Sangkitporn, Somchai; Olsen, Sonja J; Lindblade, Kim A

    2018-07-01

    Information on the burden, characteristics and seasonality of non-influenza respiratory viruses is limited in tropical countries. Describe the epidemiology of selected non-influenza respiratory viruses in Thailand between June 2010 and May 2014 using a sentinel surveillance platform established for influenza. Patients with influenza-like illness (ILI; history of fever or documented temperature ≥38°C, cough, not requiring hospitalization) or severe acute respiratory infection (SARI; history of fever or documented temperature ≥38°C, cough, onset respiratory syncytial virus (RSV), metapneumovirus (MPV), parainfluenza viruses (PIV) 1-3, and adenoviruses by polymerase chain reaction (PCR) or real-time reverse transcriptase-PCR. We screened 15 369 persons with acute respiratory infections and enrolled 8106 cases of ILI (5069 cases respiratory viruses tested, while for SARI cases respiratory viruses, particularly seasonality, although adjustments to case definitions may be required. © 2018 The Authors. Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.

  1. Phosphorylation of Human Metapneumovirus M2-1 Protein Upregulates Viral Replication and Pathogenesis.

    Science.gov (United States)

    Cai, Hui; Zhang, Yu; Lu, Mijia; Liang, Xueya; Jennings, Ryan; Niewiesk, Stefan; Li, Jianrong

    2016-08-15

    Human metapneumovirus (hMPV) is a major causative agent of upper- and lower-respiratory-tract infections in infants, the elderly, and immunocompromised individuals worldwide. Like all pneumoviruses, hMPV encodes the zinc binding protein M2-1, which plays important regulatory roles in RNA synthesis. The M2-1 protein is phosphorylated, but the specific role(s) of the phosphorylation in viral replication and pathogenesis remains unknown. In this study, we found that hMPV M2-1 is phosphorylated at amino acid residues S57 and S60. Subsequent mutagenesis found that phosphorylation is not essential for zinc binding activity and oligomerization, whereas inhibition of zinc binding activity abolished the phosphorylation and oligomerization of the M2-1 protein. Using a reverse genetics system, recombinant hMPVs (rhMPVs) lacking either one or both phosphorylation sites in the M2-1 protein were recovered. These recombinant viruses had a significant decrease in both genomic RNA replication and mRNA transcription. In addition, these recombinant viruses were highly attenuated in cell culture and cotton rats. Importantly, rhMPVs lacking phosphorylation in the M2-1 protein triggered high levels of neutralizing antibody and provided complete protection against challenge with wild-type hMPV. Collectively, these data demonstrated that phosphorylation of the M2-1 protein upregulates hMPV RNA synthesis, replication, and pathogenesis in vivo The pneumoviruses include many important human and animal pathogens, such as human respiratory syncytial virus (hRSV), hMPV, bovine RSV, and avian metapneumovirus (aMPV). Among these viruses, hRSV and hMPV are the leading causes of acute respiratory tract infection in infants and children. Currently, there is no antiviral or vaccine to combat these diseases. All known pneumoviruses encode a zinc binding protein, M2-1, which is a transcriptional antitermination factor. In this work, we found that phosphorylation of M2-1 is essential for virus

  2. Viral Inhibition of Bacterial Phagocytosis by Human Macrophages: Redundant Role of CD36.

    Directory of Open Access Journals (Sweden)

    Grace E Cooper

    Full Text Available Macrophages are essential to maintaining lung homoeostasis and recent work has demonstrated that influenza-infected lung macrophages downregulate their expression of the scavenger receptor CD36. This receptor has also been shown to be involved in phagocytosis of Streptococcus pneumoniae, a primary agent associated with pneumonia secondary to viral infection. The aim of this study was to investigate the role of CD36 in the effects of viral infection on macrophage phagocytic function. Human monocyte-derived macrophages (MDM were exposed to H3N2 X31 influenza virus, M37 respiratory syncytial virus (RSV or UV-irradiated virus. No infection of MDM was seen upon exposure to UV-irradiated virus but incubation with live X31 or M37 resulted in significant levels of viral detection by flow cytometry or RT-PCR respectively. Infection resulted in significantly diminished uptake of S. pneumoniae by MDM and significantly decreased expression of CD36 at both the cell surface and mRNA level. Concurrently, there was a significant increase in IFNβ gene expression in response to infection and we observed a significant decrease in bacterial phagocytosis (p = 0.031 and CD36 gene expression (p = 0.031 by MDM cultured for 24 h in 50IU/ml IFNβ. Knockdown of CD36 by siRNA resulted in decreased phagocytosis, but this was mimicked by transfection reagent alone. When MDM were incubated with CD36 blocking antibodies no effect on phagocytic ability was observed. These data indicate that autologous IFNβ production by virally-infected cells can inhibit bacterial phagocytosis, but that decreased CD36 expression by these cells does not play a major role in this functional deficiency.

  3. BIOLOGY OF HUMAN RESPIRATORY SYNCYTIAL VIRUS: A ...

    African Journals Online (AJOL)

    DR. AMINU

    membrane of the eyes, mouth, or nose and possibly through the ... transmembrane anchor near the C terminus. It is cleaved into two ... immunity induced by previous strains (Hall, 2001). Fluctuations in the .... isolation, and other serological techniques. Antigen .... Respiratory syncytial virus in B.N. fields, D.M. Knipe and.

  4. Human metapneumovirus and respiratory syncytial virus in hospitalized danish children with acute respiratory tract infection

    DEFF Research Database (Denmark)

    von Linstow, Marie-Louise; Larsen, Hans Henrik; Eugen-Olsen, Jesper

    2004-01-01

    The newly discovered human metapneumovirus (hMPV) has been shown to be associated with respiratory illness. We determined the frequencies and clinical features of hMPV and respiratory syncytial virus (RSV) infections in 374 Danish children with 383 episodes of acute respiratory tract infection...... children 1-6 months of age. Asthmatic bronchitis was diagnosed in 66.7% of hMPV and 10.6% of RSV-infected children (p infected children required respiratory support. hMPV is present in young.......6%) ARTI episodes by real-time reverse transcription-polymerase chain reaction using primers targeting the hMPV N gene and the RSV L gene. Two children were co-infected with hMPV and RSV. They were excluded from statistical analysis. Hospitalization for ARTI caused by hMPV was restricted to very young...

  5. Propagation of respiratory viruses in human airway epithelia reveals persistent virus-specific signatures.

    Science.gov (United States)

    Essaidi-Laziosi, Manel; Brito, Francisco; Benaoudia, Sacha; Royston, Léna; Cagno, Valeria; Fernandes-Rocha, Mélanie; Piuz, Isabelle; Zdobnov, Evgeny; Huang, Song; Constant, Samuel; Boldi, Marc-Olivier; Kaiser, Laurent; Tapparel, Caroline

    2018-06-01

    The leading cause of acute illnesses, respiratory viruses, typically cause self-limited diseases, although severe complications can occur in fragile patients. Rhinoviruses (RVs), respiratory enteroviruses (EVs), influenza virus, respiratory syncytial viruses (RSVs), and coronaviruses are highly prevalent respiratory pathogens, but because of the lack of reliable animal models, their differential pathogenesis remains poorly characterized. We sought to compare infections by respiratory viruses isolated from clinical specimens using reconstituted human airway epithelia. Tissues were infected with RV-A55, RV-A49, RV-B48, RV-C8, and RV-C15; respiratory EV-D68; influenza virus H3N2; RSV-B; and human coronavirus (HCoV)-OC43. Replication kinetics, cell tropism, effect on tissue integrity, and cytokine secretion were compared. Viral adaptation and tissue response were assessed through RNA sequencing. RVs, RSV-B, and HCoV-OC43 infected ciliated cells and caused no major cell death, whereas H3N2 and EV-D68 induced ciliated cell loss and tissue integrity disruption. H3N2 was also detected in rare goblet and basal cells. All viruses, except RV-B48 and HCoV-OC43, altered cilia beating and mucociliary clearance. H3N2 was the strongest cytokine inducer, and HCoV-OC43 was the weakest. Persistent infection was observed in all cases. RNA sequencing highlighted perturbation of tissue metabolism and induction of a transient but important immune response at 4 days after infection. No majority mutations emerged in the viral population. Our results highlight the differential in vitro pathogenesis of respiratory viruses during the acute infection phase and their ability to persist under immune tolerance. These data help to appreciate the range of disease severity observed in vivo and the occurrence of chronic respiratory tract infections in immunocompromised hosts. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  6. Human metapnuemovirus infections in hospitalized children and comparison with other respiratory viruses. 2005-2014 prospective study.

    Directory of Open Access Journals (Sweden)

    María Luz García-García

    Full Text Available Human metapneumovirus (HMPV has an important etiological role in acute lower respiratory infections in children under five years. Our objectives were to estimate the relative contribution of HMPV to hospitalization in children with acute respiratory infection, to define the clinical and epidemiological features of HMPV single and multiple infections, and to compare HMPV infections with respiratory syncytial virus (HRSV, rhinovirus (HRV, adenovirus and human bocavirus infections in the same population.A prospective study performed on all children less than 14 years of age with a respiratory tract disease admitted to a secondary hospital between September 2005- June 2014. Clinical characteristics of patients were analyzed. Nasopharyngeal aspirate was taken at admission for viral study with polymerase chain reaction for 16 respiratory viruses. A total of 3,906 children were included. At least one respiratory virus was detected in 75.2% of them. The most common identified virus was HRSV, followed by HRV. HMPV was detected in 214 cases (5.5%; 133 (62% were single infections and the remaining were detected in coinfection with other viruses. 90.7% cases were detected between February and May. Children's mean age was 13.83 ± 18 months. Fever was frequent (69%, and bronchiolitis (27%, and recurrent wheezing (63% were the main clinical diagnosis. Hypoxia was present in 65% of the patients and 47% of them had an infiltrate in X-ray. Only 6 (2.8% children were admitted to the intensive care unit. Only the duration of the hospitalization was different, being longer in the coinfections group (p <0.05. There were many differences in seasonality and clinical characteristics between HMPV and other respiratory viruses being more similar to HRSV.HMPV infections accounted for 5.5% of total viral infections in hospitalized children. The clinical characteristics were similar to HRSV infections, but seasonality and clinical data were different from other viral

  7. The human cathelicidin LL-37 has antiviral activity against respiratory syncytial virus.

    Directory of Open Access Journals (Sweden)

    Silke M Currie

    Full Text Available Respiratory syncytial virus is a leading cause of lower respiratory tract illness among infants, the elderly and immunocompromised individuals. Currently, there is no effective vaccine or disease modifying treatment available and novel interventions are urgently required. Cathelicidins are cationic host defence peptides expressed in the inflamed lung, with key roles in innate host defence against infection. We demonstrate that the human cathelicidin LL-37 has effective antiviral activity against RSV in vitro, retained by a truncated central peptide fragment. LL-37 prevented virus-induced cell death in epithelial cultures, significantly inhibited the production of new infectious particles and diminished the spread of infection, with antiviral effects directed both against the viral particles and the epithelial cells. LL-37 may represent an important targetable component of innate host defence against RSV infection. Prophylactic modulation of LL-37 expression and/or use of synthetic analogues post-infection may represent future novel strategies against RSV infection.

  8. EXPOSURE TO URBAN AIR PARTICULATES ALTERS THE MACROPHAGE- MEDIATED INFLAMMATORY RESPONSE TO RESPIRATORY VIRAL INFECTION

    Science.gov (United States)

    Epidemiology studies associate increased pulmonary morbidity with episodes of high particulate air pollution (size range 0.1-10 microm diameter, PM10). Pneumonia, often viral in origin, is increased following episodes of high PM10 pollution. Therefore, this study was undertaken t...

  9. Strengthening the diagnostic capacity to detect Bio Safety Level 3 organisms in unusual respiratory viral outbreaks.

    Science.gov (United States)

    van Asten, Liselotte; van der Lubben, Mariken; van den Wijngaard, Cees; van Pelt, Wilfrid; Verheij, Robert; Jacobi, Andre; Overduin, Pieter; Meijer, Adam; Luijt, Dirk; Claas, Eric; Hermans, Mirjam; Melchers, Willem; Rossen, John; Schuurman, Rob; Wolffs, Petra; Boucher, Charles; Bouchier, Charles; Schirm, Jurjen; Kroes, Louis; Leenders, Sander; Galama, Joep; Peeters, Marcel; van Loon, Anton; Stobberingh, Ellen; Schutten, Martin; Koopmans, Marion

    2009-07-01

    Experience with a highly pathogenic avian influenza outbreak in the Netherlands (2003) illustrated that the diagnostic demand for respiratory viruses at different biosafety levels (including BSL3), can increase unexpectedly and dramatically. We describe the measures taken since, aimed at strengthening national laboratory surge capacity and improving preparedness for dealing with diagnostic demand during outbreaks of (emerging) respiratory virus infections, including pandemic influenza virus. Academic and peripheral medical-microbiological laboratories collaborated to determine minimal laboratory requirements for the identification of viruses in the early stages of a pandemic or a large outbreak of avian influenza virus. Next, an enhanced collaborative national network of outbreak assistance laboratories (OAL) was set up. An inventory was made of the maximum diagnostic throughput that this network can deliver in a period of intensified demand. For an estimate of the potential magnitude of this surge demand, historical counts were calculated from hospital- and physician-based registries of patients presenting with respiratory symptoms. Number of respiratory physician-visits ranged from 140,000 to 615,000 per month and hospitalizations ranged from 3000 to 11,500 per month. The established OAL-network provides rapid diagnostic response with agreed quality requirements and a maximum throughput capacity of 1275 samples/day (38,000 per month), assuming other routine diagnostic work needs to be maintained. Thus surge demand for diagnostics for hospitalized cases (if not distinguishable from other respiratory illness) could be handled by the OAL network. Assessing etiology of community acquired acute respiratory infection however, may rapidly exceed the capacity of the network. Therefore algorithms are needed for triaging for laboratory diagnostics; currently this is not addressed in pandemic preparedness plans.

  10. Potential Cellular Signatures of Viral Infections in Human Hematopoietic Cells

    Directory of Open Access Journals (Sweden)

    J. Mikovits

    2001-01-01

    Full Text Available Expression profiling of cellular genes was performed using a 10,000 cDNA human gene array in order to identify expression changes following chronic infection of human hematopoietic cells with Kapsosi’s Sarcoma -associated Virus (KSHV also known as Human Herpesvirus 8 (HHV8 and Human T cell leukemia virus-1 (HTLV-1. We performed cell-free {\\it in vitro} infection of primary bone marrow derived CD34+ cells using semi-purified HHV8 and a mature IL-2 dependent T cell line, KIT 225, using highly concentrated viral stocks prepared from an infectious molecular clone of HTLV-1. Thirty days post infection, mRNA was isolated from infected cultures and uninfected controls and submitted for microarray analysis. More than 400 genes were differentially expressed more than two-fold following HHV8 infection of primary bone marrow derived CD34+ cells. Of these 400, interferon regulatory factor 4 (IRF4, cyclin B2, TBP-associated factor, eukaryotic elongation factor and pim 2 were up-regulated more than 3.5 fold. In contrast, less than 100 genes were differentially expressed more than two-fold following chronic infection of a mature T cell line with HTLV-1. Of these, only cdc7 was up-regulated more than 3.5 fold. These data may provide insight into cellular signatures of infection useful for diagnosis of infection as well as potential targets for therapeutic intervention.

  11. [Respiratory viral infections in a cohort of children during the first year of life and their role in the development of wheezing].

    Science.gov (United States)

    Calvo, Cristina; Aguado, Isabel; García-García, María Luz; Ruiz-Chercoles, Esther; Díaz-Martinez, Eloisa; Albañil, Rosa María; Campelo, Olga; Olivas, Antonio; Muñóz-Gonzalez, Luisa; Pozo, Francisco; Fernandez-Arroyo, Rosa; Fernandez-Rincón, Adelaida; Calderon, Ana; Casas, Inmaculada

    2017-08-01

    It is known that infants with viral respiratory infections severe enough to require hospital admission have a high risk of developing recurrent wheezing. Few data have been published on unselected populations. The main aim of this study was to analyse symptomatic and asymptomatic respiratory viral infections during the first year of life in a cohort of infants, recruited at birth, and the development of recurrent wheezing. A total of 302 newborns were recruited. A nasopharyngeal aspirate was taken when the patients had a respiratory infection, as well as in the visits for vaccination at 2, 4, 6, and 12 months. RT-nested PCR assays were performed to detect 16 viruses. A total of 1,293 samples were analysed (1,005 healthy controls and 288 respiratory infections). Samples taken during routine check-ups were positive in 30.8% of cases, while those with respiratory infection were positive in 77.8%, P<.001 (OR: 3, 95% CI: 2.4-3.8). A total of 239 (79%) infants had at least 1 positive respiratory viral infection detected. The most frequent virus (71%) was rhinovirus (RV). Recurrent wheezing was found in 27 (11%) children during their first year of life (1.2 episodes, SD 2.9). Recurrent wheezing was present in 58.3% of patients admitted to hospital during their first viral infection, vs. 8.6% of infants when the first infection was mild or who had asymptomatic viral detection, P<.001 (OR: 2.18; 95% CI: 1.05-4.5). In our series, severe respiratory infections leading to hospitalisation in the first months of life are risk factors for developing wheezing, but not in the case of mild RV infections. Copyright © 2016 Asociación Española de Pediatría. Publicado por Elsevier España, S.L.U. All rights reserved.

  12. Can the Pelargonium sidoides root extract EPs® 7630 prevent asthma attacks during viral infections of the upper respiratory tract in children?

    Science.gov (United States)

    Tahan, Fulya; Yaman, Melih

    2013-01-15

    Asthma is a chronic disease characterized by airway inflammation. Viral infection initiates an immune inflammatory response that may produce asthma attacks. There is no effective preventing therapy for asthma attack during upper respiratory tract viral infections. To investigate the efficacy of 5 days of Pelargonium sidoides therapy for preventing asthma attack during upper respiratory tract viral infections. Sixty one asthmatic children with upper respiratory tract viral infection were enrolled in the study. The patients were randomized to receive Pelargonium sidoides daily for 5 days (n=30) or not (n=31). Before and after treatment, they all were examined and symptom scores were determined. Following five days treatment, children were evaluated whether or not they had an asthma attack. Treatment with Pelargonium sidoides was not associated with a statistically significant differences in fever and muscle aches (p>0.05, Chi-square test). There were significant differences in cough frequency and nasal congestion between the groups (pasthma attack between the groups (pasthma attack. Our study shows that Pelargonium sidoides may prevent asthma attacks during upper respiratory tract viral infections. Copyright © 2012 Elsevier GmbH. All rights reserved.

  13. Computational Fluid and Particle Dynamics in the Human Respiratory System

    CERN Document Server

    Tu, Jiyuan; Ahmadi, Goodarz

    2013-01-01

    Traditional research methodologies in the human respiratory system have always been challenging due to their invasive nature. Recent advances in medical imaging and computational fluid dynamics (CFD) have accelerated this research. This book compiles and details recent advances in the modelling of the respiratory system for researchers, engineers, scientists, and health practitioners. It breaks down the complexities of this field and provides both students and scientists with an introduction and starting point to the physiology of the respiratory system, fluid dynamics and advanced CFD modeling tools. In addition to a brief introduction to the physics of the respiratory system and an overview of computational methods, the book contains best-practice guidelines for establishing high-quality computational models and simulations. Inspiration for new simulations can be gained through innovative case studies as well as hands-on practice using pre-made computational code. Last but not least, students and researcher...

  14. Acupuncture therapy for fever induced by viral upper respiratory tract infection (URTI) in military medical service: a case series.

    Science.gov (United States)

    Kwon, SeungWon; Shin, KyoungHo; Jung, WooSang; Moon, SangKwan; Cho, KiHo

    2014-12-01

    We report the cases of eight military patients with fever (≥38°C) induced by viral upper respiratory tract infection (URTI) who requested treatment with acupuncture in the military medical service room. All patients were treated immediately after diagnosis with classical acupuncture (GV14, GB20, TE8 points) and a new type of acupuncture, equilibrium acupuncture (Feibing and Ganmao points). After one treatment session (20 min), reduction of body temperature was confirmed in all patients. Accompanying symptoms such as headache, myalgia and nasal obstruction also showed a tendency to decrease. Within 3 days of treatment, six of the eight patients had recovered from the URTI. No adverse effects of acupuncture treatment were reported. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  15. Human Papilloma Viral DNA Replicates as a Stable Episome in Cultured Epidermal Keratinocytes

    Science.gov (United States)

    Laporta, Robert F.; Taichman, Lorne B.

    1982-06-01

    Human papilloma virus (HPV) is poorly understood because systems for its growth in tissue culture have not been developed. We report here that cultured human epidermal keratinocytes could be infected with HPV from plantar warts and that the viral DNA persisted and replicated as a stable episome. There were 50-200 copies of viral DNA per cell and there was no evidence to indicate integration of viral DNA into the cellular genome. There was also no evidence to suggest that viral DNA underwent productive replication. We conclude that cultured human epidermal keratinocytes may be a model for the study of certain aspects of HPV biology.

  16. The pressure gradient in the human respiratory tract

    Directory of Open Access Journals (Sweden)

    Chovancová Michaela

    2014-03-01

    Full Text Available Respiratory airways cause resistance to air flow during inhalation and exhalation. The pressure gradient is necessary to transport the air from the mount (or nose to pulmonary alveoli. The knowledge of pressure gradient (i.e. respiratory airways resistance is also needed to solve the question of aerosol deposition in the human respiratory tract. The obtained data will be used as boundary conditions for CFD simulations of aerosol transport. Understanding of aerosol transport in the human lungs can help us to determine the health hazard of harmful particles. On the other hand it can be used to set the conditions for transport of medication to the desirable place. This article deals with the description of the mathematical equations defining the pressure gradient and resistance in the bronchial three and describes the geometry used in the calculation.

  17. Global Considerations in Human Immunodeficiency Virus-Associated Respiratory Disease.

    Science.gov (United States)

    Rylance, Jamie; Meghji, Jamilah; Miller, Robert F; Ferrand, Rashida A

    2016-04-01

    Respiratory tract infection, particularly tuberculosis, is a major cause of mortality among human immunodeficiency virus (HIV)-infected individuals. Antiretroviral therapy (ART) has resulted in a dramatic increase in survival, although coverage of HIV treatment remains low in many parts of the world. There is a concurrent growing burden of chronic noninfectious respiratory disease as a result of increased survival. Many risk factors associated with the development of respiratory disease, such as cigarette smoking and intravenous drug use, are overrepresented among people living with HIV. In addition, there is emerging evidence that HIV infection may directly cause or accelerate the course of chronic lung disease. This review summarizes the clinical spectrum and epidemiology of respiratory tract infections and noninfectious pulmonary pathologies, and factors that explain the global variation in HIV-associated respiratory disease. The potential for enhancing diagnoses of noninfective chronic conditions through the use of clinical algorithms is discussed. We also consider issues in assessment and management of HIV-related respiratory disease in view of the increasing global scale up of ART. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  18. Respiratory

    Science.gov (United States)

    The words "respiratory" and "respiration" refer to the lungs and breathing. ... Boron WF. Organization of the respiratory system. In: Boron WF, Boulpaep EL, eds. Medical Physiology . 3rd ed. Philadelphia, PA: Elsevier; 2017:chap 26.

  19. Tetratrichomonads from the oral cavity and respiratory tract of humans

    Czech Academy of Sciences Publication Activity Database

    Kutišová, K.; Kulda, J.; Čepička, I.; Flegr, J.; Koudela, Břetislav; Teras, J.; Tachezy, J.

    2005-01-01

    Roč. 131, č. 1 (2005), s. 1-11 ISSN 0031-1820 Grant - others:Grantová agentura Karlovy univerzity v Praze(CZ) 264/1999 Institutional research plan: CEZ:AV0Z60220518 Keywords : Tetratrichomonas spp. * human respiratory tract * oral cavity Subject RIV: EE - Microbiology, Virology Impact factor: 1.703, year: 2005

  20. 3-D Model of the Human Respiratory System

    Science.gov (United States)

    The U.S. EPA’s Office of Research and Development (ORD) has developed a 3-D computational fluid dynamics (CFD) model of the human respiratory system that allows for the simulation of particulate based contaminant deposition and clearance, while being adaptable for age, ethnicity,...

  1. Computational 3-D Model of the Human Respiratory System

    Science.gov (United States)

    We are developing a comprehensive, morphologically-realistic computational model of the human respiratory system that can be used to study the inhalation, deposition, and clearance of contaminants, while being adaptable for age, race, gender, and health/disease status. The model ...

  2. Characterization of novel human respiratory viruses

    NARCIS (Netherlands)

    Dijkman, R.

    2011-01-01

    Wereldwijd komen vier humane coronavirussen (HCoVs) voor, waaronder NL63 en 229E. NL63 werd in 2004 ontdekt in het AMC en veroorzaakt de kinderziekte pseudokroep; 229E is een verkoudheidsvirus. Waarschijnlijk veroorzaken beide virussen vergelijkbare symptomen bij volwassenen. Er is weinig bekend

  3. Functional Impairment of Mononuclear Phagocyte System by the Human Respiratory Syncytial Virus

    Directory of Open Access Journals (Sweden)

    Karen Bohmwald

    2017-11-01

    Full Text Available The mononuclear phagocyte system (MPS comprises of monocytes, macrophages (MΦ, and dendritic cells (DCs. MPS is part of the first line of immune defense against a wide range of pathogens, including viruses, such as the human respiratory syncytial virus (hRSV. The hRSV is an enveloped virus that belongs to the Pneumoviridae family, Orthopneumovirus genus. This virus is the main etiological agent causing severe acute lower respiratory tract infection, especially in infants, children and the elderly. Human RSV can cause bronchiolitis and pneumonia and it has also been implicated in the development of recurrent wheezing and asthma. Monocytes, MΦ, and DCs significantly contribute to acute inflammation during hRSV-induced bronchiolitis and asthma exacerbation. Furthermore, these cells seem to be an important component for the association between hRSV and reactive airway disease. After hRSV infection, the first cells encountered by the virus are respiratory epithelial cells, alveolar macrophages (AMs, DCs, and monocytes in the airways. Because AMs constitute the predominant cell population at the alveolar space in healthy subjects, these cells work as major innate sentinels for the recognition of pathogens. Although adaptive immunity is crucial for viral clearance, AMs are required for the early immune response against hRSV, promoting viral clearance and controlling immunopathology. Furthermore, exposure to hRSV may affect the phagocytic and microbicidal capacity of monocytes and MΦs against other infectious agents. Finally, different studies have addressed the roles of different DC subsets during infection by hRSV. In this review article, we discuss the role of the lung MPS during hRSV infection and their involvement in the development of bronchiolitis.

  4. Human torso phantom for imaging of heart with realistic modes of cardiac and respiratory motion

    Science.gov (United States)

    Boutchko, Rostyslav; Balakrishnan, Karthikayan; Gullberg, Grant T; O& #x27; Neil, James P

    2013-09-17

    A human torso phantom and its construction, wherein the phantom mimics respiratory and cardiac cycles in a human allowing acquisition of medical imaging data under conditions simulating patient cardiac and respiratory motion.

  5. 21 CFR 866.3980 - Respiratory viral panel multiplex nucleic acid assay.

    Science.gov (United States)

    2010-04-01

    ... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents... when used in conjunction with other clinical and laboratory findings. The device is intended for...

  6. Protection by recombinant viral proteins against a respiratory challenge with virulent avian metapneumovirus.

    Science.gov (United States)

    Chary, Parag; Njenga, M Kariuki; Sharma, Jagdev M

    2005-12-15

    Protection by recombinant avian metapneumovirus (aMPV) N or M proteins against a respiratory challenge with virulent aMPV was examined. N, M or N+M proteins were administered intramuscularly (IM) with incomplete Freund's adjuvant (IFA) or by the oculonasal (ON) route with cholera toxin-B (CTB). Each turkey received 40 or 80 microg of each recombinant protein. Birds were considered protected against challenge if the challenge virus was not detectable in the choanal swabs by RT-PCR. At a dose of 40 microg/bird, N protein given with IFA by the IM route protected eight out of nine birds. M protein at the same dose protected three out of seven birds, while a combination of N+M proteins (40 microg each) protected three out of four birds. At a dose of 80 microg of each of N and M proteins per bird given with IFA by the IM route, 100% protection was achieved. ON immunization with a mixture of N and M proteins induced partial protection when the proteins were given with CTB; no detectable protection was noted without CTB. N and M proteins induced anti-aMPV antibodies, although protection against virulent virus challenge did not appear to be associated with the level or presence of antibodies.

  7. Toward Primary Prevention of Asthma. Reviewing the Evidence for Early-Life Respiratory Viral Infections as Modifiable Risk Factors to Prevent Childhood Asthma

    Science.gov (United States)

    Feldman, Amy S.; He, Yuan; Moore, Martin L.; Hershenson, Marc B.

    2015-01-01

    A first step in primary disease prevention is identifying common, modifiable risk factors that contribute to a significant proportion of disease development. Infant respiratory viral infection and childhood asthma are the most common acute and chronic diseases of childhood, respectively. Common clinical features and links between these diseases have long been recognized, with early-life respiratory syncytial virus (RSV) and rhinovirus (RV) lower respiratory tract infections (LRTIs) being strongly associated with increased asthma risk. However, there has long been debate over the role of these respiratory viruses in asthma inception. In this article, we systematically review the evidence linking early-life RSV and RV LRTIs with asthma inception and whether they could therefore be targets for primary prevention efforts. PMID:25369458

  8. Viral and cellular subnuclear structures in human cytomegalovirus-infected cells.

    Science.gov (United States)

    Strang, Blair L

    2015-02-01

    In human cytomegalovirus (HCMV)-infected cells, a dramatic remodelling of the nuclear architecture is linked to the creation, utilization and manipulation of subnuclear structures. This review outlines the involvement of several viral and cellular subnuclear structures in areas of HCMV replication and virus-host interaction that include viral transcription, viral DNA synthesis and the production of DNA-filled viral capsids. The structures discussed include those that promote or impede HCMV replication (such as viral replication compartments and promyelocytic leukaemia nuclear bodies, respectively) and those whose role in the infected cell is unclear (for example, nucleoli and nuclear speckles). Viral and cellular proteins associated with subnuclear structures are also discussed. The data reviewed here highlight advances in our understanding of HCMV biology and emphasize the complexity of HCMV replication and virus-host interactions in the nucleus. © 2015 The Authors.

  9. Curcumin modulates the inflammatory response and inhibits subsequent fibrosis in a mouse model of viral-induced acute respiratory distress syndrome.

    Science.gov (United States)

    Avasarala, Sreedevi; Zhang, Fangfang; Liu, Guangliang; Wang, Ruixue; London, Steven D; London, Lucille

    2013-01-01

    Acute Respiratory Distress Syndrome (ARDS) is a clinical syndrome characterized by diffuse alveolar damage usually secondary to an intense host inflammatory response of the lung to a pulmonary or extrapulmonary infectious or non-infectious insult often leading to the development of intra-alveolar and interstitial fibrosis. Curcumin, the principal curcumoid of the popular Indian spice turmeric, has been demonstrated as an anti-oxidant and anti-inflammatory agent in a broad spectrum of diseases. Using our well-established model of reovirus 1/L-induced acute viral pneumonia, which displays many of the characteristics of the human ALI/ARDS, we evaluated the anti-inflammatory and anti-fibrotic effects of curcumin. Female CBA/J mice were treated with curcumin (50 mg/kg) 5 days prior to intranasal inoculation with 10(7)pfu reovirus 1/L and daily, thereafter. Mice were evaluated for key features associated with ALI/ARDS. Administration of curcumin significantly modulated inflammation and fibrosis, as revealed by histological and biochemical analysis. The expression of IL-6, IL-10, IFNγ, and MCP-1, key chemokines/cytokines implicated in the development of ALI/ARDS, from both the inflammatory infiltrate and whole lung tissue were modulated by curcumin potentially through a reduction in the phosphorylated form of NFκB p65. While the expression of TGFß1 was not modulated by curcumin, TGFß Receptor II, which is required for TGFß signaling, was significantly reduced. In addition, curcumin also significantly inhibited the expression of α-smooth muscle actin and Tenascin-C, key markers of myofibroblast activation. This data strongly supports a role for curcumin in modulating the pathogenesis of viral-induced ALI/ARDS in a pre-clinical model potentially manifested through the alteration of inflammation and myofibroblast differentiation.

  10. A multiplexed reverse transcriptase PCR assay for identification of viral respiratory pathogens at point-of-care

    Energy Technology Data Exchange (ETDEWEB)

    Letant, S E; .Ortiz, J I; Tammero, L; Birch, J M; Derlet, R W; Cohen, S; Manning, D; McBride, M T

    2007-04-11

    We have developed a nucleic acid-based assay that is rapid, sensitive, specific, and can be used for the simultaneous detection of 5 common human respiratory pathogens including influenza A, influenza B, parainfluenza type 1 and 3, respiratory syncytial virus, and adenovirus group B, C, and E. Typically, diagnosis on an un-extracted clinical sample can be provided in less than 3 hours, including sample collection, preparation, and processing, as well as data analysis. Such a multiplexed panel would enable rapid broad-spectrum pathogen testing on nasal swabs, and therefore allow implementation of infection control measures, and timely administration of antiviral therapies. This article presents a summary of the assay performance in terms of sensitivity and specificity. Limits of detection are provided for each targeted respiratory pathogen, and result comparisons are performed on clinical samples, our goal being to compare the sensitivity and specificity of the multiplexed assay to the combination of immunofluorescence and shell vial culture currently implemented at the UCDMC hospital. Overall, the use of the multiplexed RT-PCR assay reduced the rate of false negatives by 4% and reduced the rate of false positives by up to 10%. The assay correctly identified 99.3% of the clinical negatives, 97% of adenovirus, 95% of RSV, 92% of influenza B, and 77% of influenza A without any extraction performed on the clinical samples. The data also showed that extraction will be needed for parainfluenza virus, which was only identified correctly 24% of the time on un-extracted samples.

  11. Adults hospitalised with acute respiratory illness rarely have detectable bacteria in the absence of COPD or pneumonia; viral infection predominates in a large prospective UK sample.

    Science.gov (United States)

    Clark, Tristan W; Medina, Marie-jo; Batham, Sally; Curran, Martin D; Parmar, Surendra; Nicholson, Karl G

    2014-11-01

    Many adult patients hospitalised with acute respiratory illness have viruses detected but the overall importance of viral infection compared to bacterial infection is unclear. Patients were recruited from two acute hospital sites in Leicester (UK) over 3 successive winters. Samples were taken for viral and bacterial testing. Of the 780 patients hospitalised with acute respiratory illness 345 (44%) had a respiratory virus detected. Picornaviruses were the most commonly isolated viruses (detected in 23% of all patients). Virus detection rates exceeded 50% in patients with exacerbation of asthma (58%), acute bronchitis and Influenza-like-illness (64%), and ranged from 30 to 50% in patients with an exacerbation of COPD (38%), community acquired pneumonia (36%) and congestive cardiac failure (31%). Bacterial detection was relatively frequent in patients with exacerbation of COPD and pneumonia (25% and 33% respectively) but was uncommon in all other groups. Antibiotic use was high across all clinical groups (76% overall) and only 21% of all antibiotic use occurred in patients with detectable bacteria. Respiratory viruses are the predominant detectable aetiological agents in most hospitalised adults with acute respiratory illness. Antibiotic usage in hospital remains excessive including in clinical conditions associated with low rates of bacterial detection. Efforts at reducing excess antibiotic use should focus on these groups as a priority. Registered International Standard Controlled Trial Number: 21521552. Copyright © 2014 The British Infection Association. Published by Elsevier Ltd. All rights reserved.

  12. Viral respiratory infections and the maturation of nasal immune responses in infants: the VIGALL study

    NARCIS (Netherlands)

    I.J. van Benten (Inesz)

    2004-01-01

    textabstractThe human body has an extensive defence mechanism (immune system) for coping with pathogens. It is regulated by signalling molecules called cytokines. Cytokines are produced by various cells of the immune system such as leucocytes (e.g. T-cells and macrophages) but also by nasal and

  13. Intranasal Administration of Maleic Anhydride-Modified Human Serum Albumin for Pre-Exposure Prophylaxis of Respiratory Syncytial Virus Infection

    Directory of Open Access Journals (Sweden)

    Zhiwu Sun

    2015-02-01

    Full Text Available Respiratory syncytial virus (RSV is the leading cause of pediatric viral respiratory tract infections. Neither vaccine nor effective antiviral therapy is available to prevent and treat RSV infection. Palivizumab, a humanized monoclonal antibody, is the only product approved to prevent serious RSV infection, but its high cost is prohibitive in low-income countries. Here, we aimed to identify an effective, safe, and affordable antiviral agent for pre-exposure prophylaxis (PrEP of RSV infection in children at high risk. We found that maleic anhydride (ML-modified human serum albumin (HSA, designated ML-HSA, exhibited potent antiviral activity against RSV and that the percentages of the modified lysines and arginies in ML- are correlated with such anti-RSV activity. ML-HSA inhibited RSV entry and replication by interacting with viral G protein and blocking RSV attachment to the target cells, while ML-HAS neither bound to F protein, nor inhibited F protein-mediated membrane fusion. Intranasal administration of ML-HSA before RSV infection resulted in significant decrease of the viral titers in the lungs of mice. ML-HSA shows promise for further development into an effective, safe, affordable, and easy-to-use intranasal regimen for pre-exposure prophylaxis of RSV infection in children at high risk in both low- and high-income countries.

  14. Human bocavirus in children with acute respiratory infections in Vietnam.

    Science.gov (United States)

    Tran, Dinh Nguyen; Nguyen, Tran Quynh Nhu; Nguyen, Tuan Anh; Hayakawa, Satoshi; Mizuguchi, Masashi; Ushijima, Hiroshi

    2014-06-01

    Acute respiratory infections are the major cause of morbidity and mortality globally. Human bocavirus (HBoV), a novel virus, is recognized to increasingly associate with previously unknown etiology respiratory infections in young children. In this study, the epidemiological, clinical, and molecular characteristics of HBoV infections were described in hospitalized Vietnamese pediatric patients. From April 2010 to May 2011, 1,082 nasopharyngeal swab samples were obtained from patients with acute respiratory infections at the Children's Hospital 2, Ho Chi Minh City, Vietnam. Samples were screened for HBoV by PCR and further molecularly characterized by sequencing. HBoV was found in 78 (7.2%) children. Co-infection with other viruses was observed in 66.7% of patients infected with HBoV. Children 12-24 months old were the most affected age group. Infections with HBoV were found year-round, though most cases occurred in the dry season (December-April). HBoV was possible to cause severe diseases as determined by higher rates of hypoxia, pneumonia, and longer hospitalization duration in patients with HBoV infection than in those without (P-value infection with HBoV did not affect the disease severity. The phylogenetic analysis of partial VP1 gene showed minor variations and all HBoV sequences belonged to species 1 (HBoV1). In conclusion, HBoV1 was circulating in Vietnam and detected frequently in young children during dry season. Acute respiratory infections caused by HBoV1 were severe enough for hospitalization, which implied that HBoV1 may have an important role in acute respiratory infections among children. © 2013 Wiley Periodicals, Inc.

  15. A diverse group of previously unrecognized human rhinoviruses are common causes of respiratory illnesses in infants.

    Directory of Open Access Journals (Sweden)

    Wai-Ming Lee

    2007-10-01

    Full Text Available Human rhinoviruses (HRVs are the most prevalent human pathogens, and consist of 101 serotypes that are classified into groups A and B according to sequence variations. HRV infections cause a wide spectrum of clinical outcomes ranging from asymptomatic infection to severe lower respiratory symptoms. Defining the role of specific strains in various HRV illnesses has been difficult because traditional serology, which requires viral culture and neutralization tests using 101 serotype-specific antisera, is insensitive and laborious.To directly type HRVs in nasal secretions of infants with frequent respiratory illnesses, we developed a sensitive molecular typing assay based on phylogenetic comparisons of a 260-bp variable sequence in the 5' noncoding region with homologous sequences of the 101 known serotypes. Nasal samples from 26 infants were first tested with a multiplex PCR assay for respiratory viruses, and HRV was the most common virus found (108 of 181 samples. Typing was completed for 101 samples and 103 HRVs were identified. Surprisingly, 54 (52.4% HRVs did not match any of the known serotypes and had 12-35% nucleotide divergence from the nearest reference HRVs. Of these novel viruses, 9 strains (17 HRVs segregated from HRVA, HRVB and human enterovirus into a distinct genetic group ("C". None of these new strains could be cultured in traditional cell lines.By molecular analysis, over 50% of HRV detected in sick infants were previously unrecognized strains, including 9 strains that may represent a new HRV group. These findings indicate that the number of HRV strains is considerably larger than the 101 serotypes identified with traditional diagnostic techniques, and provide evidence of a new HRV group.

  16. Patterns of Human Respiratory Viruses and Lack of MERS-Coronavirus in Patients with Acute Upper Respiratory Tract Infections in Southwestern Province of Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Ahmed A. Abdulhaq

    2017-01-01

    Full Text Available We undertook enhanced surveillance of those presenting with respiratory symptoms at five healthcare centers by testing all symptomatic outpatients between November 2013 and January 2014 (winter time. Nasal swabs were collected from 182 patients and screened for MERS-CoV as well as other respiratory viruses using RT-PCR and multiplex microarray. A total of 75 (41.2% of these patients had positive viral infection. MERS-CoV was not detected in any of the samples. Human rhinovirus (hRV was the most detected pathogen (40.9% followed by non-MERS-CoV human coronaviruses (19.3%, influenza (Flu viruses (15.9%, and human respiratory syncytial virus (hRSV (13.6%. Viruses differed markedly depending on age in which hRV, Flu A, and hCoV-OC43 were more prevalent in adults and RSV, hCoV-HKU1, and hCoV-NL63 were mostly restricted to children under the age of 15. Moreover, coinfection was not uncommon in this study, in which 17.3% of the infected patients had dual infections due to several combinations of viruses. Dual infections decreased with age and completely disappeared in people older than 45 years. Our study confirms that MERS-CoV is not common in the southwestern region of Saudi Arabia and shows high diversity and prevalence of other common respiratory viruses. This study also highlights the importance and contribution of enhanced surveillance systems for better infection control.

  17. Respiratory compensation to a primary metabolic alkalosis in humans.

    Science.gov (United States)

    Feldman, Mark; Alvarez, Naiara M; Trevino, Michael; Weinstein, Gary L

    2012-11-01

    There is limited and disparate information about the extent of the respiratory compensation (hypoventilation) that occurs in response to a primary metabolic alkalosis in humans. Our aim was to examine the influence of the plasma bicarbonate concentration, the plasma base excess, and the arterial pH on the arterial carbon dioxide tension in 52 adult patients with primary metabolic alkalosis, mostly due to diuretic use or vomiting. Linear regression analysis was used to correlate degrees of alkalosis with arterial carbon dioxide tensions. In this alkalotic cohort, whose arterial plasma bicarbonate averaged 31.6 mEq/l, plasma base excess averaged 7.8 mEq/l, and pH averaged 7.48, both plasma bicarbonate and base excess correlated closely with arterial carbon dioxide tensions (r = 0.97 and 0.96, respectively; p respiratory compensation (hypoventilation) to primary metabolic alkalosis than has been reported in prior smaller studies.

  18. Ozone exposure increases respiratory epithelial permeability in humans

    International Nuclear Information System (INIS)

    Kehrl, H.R.; Vincent, L.M.; Kowalsky, R.J.; Horstman, D.H.; O'Neil, J.J.; McCartney, W.H.; Bromberg, P.A.

    1987-01-01

    Ozone is a respiratory irritant that has been shown to cause an increase in the permeability of the respiratory epithelium in animals. We used inhaled aerosolized /sup 99m/Tc-labeled diethylene triamine pentacetic acid (/sup 99m/Tc-DTPA) to investigate whether human respiratory epithelial permeability is similarly affected by exposure to ozone. In a randomized, crossover double-blinded study, 8 healthy, nonsmoking young men were exposed for 2 h to purified air and 0.4 ppm ozone while performing intermittent high intensity treadmill exercise (minute ventilation = 66.8 L/min). SRaw and FVC were measured before and at the end of exposures. Seventy-five minutes after the exposures, the pulmonary clearance of /sup 99m/Tc-DTPA was measured by sequential posterior lung imaging with a computer-assisted gamma camera. Ozone exposure caused respiratory symptoms in all 8 subjects and was associated with a 14 +/- 2.8% (mean +/- SEM) decrement in FVC (p less than 0.001) and a 71 +/- 22% increase in SRaw (p = 0.04). Compared with the air exposure day, 7 of the 8 subjects showed increased /sup 99m/Tc-DTPA clearance after the ozone exposure, with the mean value increasing from 0.59 +/- 0.08 to 1.75 +/- 0.43%/min (p = 0.03). These data show that ozone exposure sufficient to produce decrements in the pulmonary function of human subjects also causes an increase in /sup 99m/Tc-DTPA clearance

  19. The human adenovirus type 5 E1B 55 kDa protein obstructs inhibition of viral replication by type I interferon in normal human cells.

    Directory of Open Access Journals (Sweden)

    Jasdave S Chahal

    Full Text Available Vectors derived from human adenovirus type 5, which typically lack the E1A and E1B genes, induce robust innate immune responses that limit their therapeutic efficacy. We reported previously that the E1B 55 kDa protein inhibits expression of a set of cellular genes that is highly enriched for those associated with anti-viral defense and immune responses, and includes many interferon-sensitive genes. The sensitivity of replication of E1B 55 kDa null-mutants to exogenous interferon (IFN was therefore examined in normal human fibroblasts and respiratory epithelial cells. Yields of the mutants were reduced at least 500-fold, compared to only 5-fold, for wild-type (WT virus replication. To investigate the mechanistic basis of such inhibition, the accumulation of viral early proteins and genomes was compared by immunoblotting and qPCR, respectively, in WT- and mutant-infected cells in the absence or presence of exogenous IFN. Both the concentration of viral genomes detected during the late phase and the numbers of viral replication centers formed were strongly reduced in IFN-treated cells in the absence of the E1B protein, despite production of similar quantities of viral replication proteins. These defects could not be attributed to degradation of entering viral genomes, induction of apoptosis, or failure to reorganize components of PML nuclear bodies. Nor was assembly of the E1B- and E4 Orf6 protein- E3 ubiquitin ligase required to prevent inhibition of viral replication by IFN. However, by using RT-PCR, the E1B 55 kDa protein was demonstrated to be a potent repressor of expression of IFN-inducible genes in IFN-treated cells. We propose that a primary function of the previously described transcriptional repression activity of the E1B 55 kDa protein is to block expression of IFN- inducible genes, and hence to facilitate formation of viral replication centers and genome replication.

  20. Streptococcus pneumoniae enhances human respiratory syncytial virus infection in vitro and in vivo

    NARCIS (Netherlands)

    D.T. Nguyen (Tien); R.P.L. Louwen (Rogier); Elberse, K. (Karin); G. van Amerongen (Geert); S. Yüksel (Selma); A. Luijendijk (Ad); A.D.M.E. Osterhaus (Albert); W.P. Duprex (William Paul); R.L. de Swart (Rik)

    2015-01-01

    textabstractHuman respiratory syncytial virus (HRSV) and Streptococcus pneumoniae are important causative agents of respiratory tract infections. Both pathogens are associated with seasonal disease outbreaks in the pediatric population, and can often be detected simultaneously in infants

  1. El Bocavirus humano: un nuevo virus respiratorio Human bocavirus: a new respiratory virus

    Directory of Open Access Journals (Sweden)

    Carlos Aguirre Muñoz

    2006-01-01

    Full Text Available Las infecciones respiratorias agudas son una causa muy importante de morbilidad y mortalidad, especialmente en los niños y en los países en desarrollo. Con los métodos de laboratorio actuales, aproximadamente una tercera parte de estas infecciones se queda sin diagnóstico etiológico. Se acepta que los virus juegan un papel cardinal y que más de 200 virus, pertenecientes a seis familias virales están implicados en la génesis de este problema. La familia Parvoviridae se conoce desde mediados del siglo XX. El Parvovirus humano B19, identificado en 1980 y causante de enfermedades febriles y exantemáticas, fue considerado por muchos años como el único miembro de esta familia capaz de afectar a la especie humana. Sin embargo, un grupo de investigadores suecos comandado por Tobías Allander informó en agosto de 2005 el hallazgo de un nuevo Parvovirus, denominado provisionalmente Bocavirus humano, relacionado con infección respiratoria aguda en niños. En este artículo se resumen las características de este nuevo agente, se resalta la importancia de su hallazgo y de la técnica de investigación empleada. Respiratory tract infections are a leading cause of morbidity and mortality, mainly in children and also in developing countries. The aethiology of approximately 30% of these infections remains obscure, using current laboratory methods. It has been accepted that viruses play an important role and more than 200 viruses, belonging to 6 viral families are implied in the pathogenesis of this problem. Parvoviridae family has been known since the middle of the XX century. Human Parvovirus B19 was identified in 1980; it causes rashes and febrile diseases and it was considered for many years as the only member of this family able to affect humans. However, Dr. Tobias Allander and colleagues, at Karolinska Institut, have discovered a previously unknown parvovirus, called Human Bocavirus, that has been found to affect children, causing lower

  2. Multi-Organ Damage in Human Dipeptidyl Peptidase 4 Transgenic Mice Infected with Middle East Respiratory Syndrome-Coronavirus.

    Directory of Open Access Journals (Sweden)

    Guangyu Zhao

    Full Text Available The Middle East Respiratory Syndrome Coronavirus (MERS-CoV causes severe acute respiratory failure and considerable extrapumonary organ dysfuction with substantial high mortality. For the limited number of autopsy reports, small animal models are urgently needed to study the mechanisms of MERS-CoV infection and pathogenesis of the disease and to evaluate the efficacy of therapeutics against MERS-CoV infection. In this study, we developed a transgenic mouse model globally expressing codon-optimized human dipeptidyl peptidase 4 (hDPP4, the receptor for MERS-CoV. After intranasal inoculation with MERS-CoV, the mice rapidly developed severe pneumonia and multi-organ damage, with viral replication being detected in the lungs on day 5 and in the lungs, kidneys and brains on day 9 post-infection. In addition, the mice exhibited systemic inflammation with mild to severe pneumonia accompanied by the injury of liver, kidney and spleen with neutrophil and macrophage infiltration. Importantly, the mice exhibited symptoms of paralysis with high viral burden and viral positive neurons on day 9. Taken together, this study characterizes the tropism of MERS-CoV upon infection. Importantly, this hDPP4-expressing transgenic mouse model will be applicable for studying the pathogenesis of MERS-CoV infection and investigating the efficacy of vaccines and antiviral agents designed to combat MERS-CoV infection.

  3. Viral gene products and replication of the human immunodeficiency type 1 virus.

    Science.gov (United States)

    Morrow, C D; Park, J; Wakefield, J K

    1994-05-01

    The acquired immunodeficiency syndrome (AIDS) epidemic represents a modern-day plague that has not only resulted in a tragic loss of people from a wide spectrum of society but has reshaped our viewpoints regarding health care, the treatment of infectious diseases, and social issues regarding sexual behavior. There is little doubt now that the cause of the disease AIDS is a virus known as the human immunodeficiency virus (HIV). The HIV virus is a member of a large family of viruses termed retroviruses, which have as a hallmark the capacity to convert their RNA genome into a DNA form that then undergoes a process of integration into the host cell chromosome, followed by the expression of the viral genome and translation of viral proteins in the infected cell. This review describes the organization of the HIV-1 viral genome, the expression of viral proteins, as well as the functions of the accessory viral proteins in HIV replication. The replication of the viral genome is divided into two phases, the early phase and the late phase. The early phase consists of the interaction of the virus with the cell surface receptor (CD4 molecule in most cases), the uncoating and conversion of the viral RNA genome into a DNA form, and the integration into the host cell chromosome. The late phase consists of the expression of the viral proteins from the integrated viral genome, the translation of viral proteins, and the assembly and release of the virus. Points in the HIV-1 life cycle that are targets for therapeutic intervention are also discussed.

  4. A Novel Parametric Model For The Human Respiratory System

    Directory of Open Access Journals (Sweden)

    Clara Mihaela IONESCU

    2003-12-01

    Full Text Available The purpose of this work is to present some recent results in an ongoing research project between Ghent University and Chess Medical Technology Company Belgium. The overall aim of the project is to provide a fast method for identification of the human respiratory system in order to allow for an instantaneously diagnosis of the patient by the medical staff. A novel parametric model of the human respiratory system as well as the obtained experimental results is presented in this paper. A prototype apparatus developed by the company, based on the forced oscillation technique is used to record experimental data from 4 patients in this paper. Signal processing is based on spectral analysis and is followed by the parametric identification of a non-linear mechanistic model. The parametric model is equivalent to the structure of a simple electrical RLC-circuit, containing a non-linear capacitor. These parameters have a useful and easy-to-interpret physical meaning for the medical staff members.

  5. Porcine Reproductive and Respiratory Syndrome Virus Nucleocapsid Protein Interacts with Nsp9 and Cellular DHX9 To Regulate Viral RNA Synthesis.

    Science.gov (United States)

    Liu, Long; Tian, Jiao; Nan, Hao; Tian, Mengmeng; Li, Yuan; Xu, Xiaodong; Huang, Baicheng; Zhou, Enmin; Hiscox, Julian A; Chen, Hongying

    2016-06-01

    Porcine reproductive and respiratory syndrome virus (PRRSV) nucleocapsid (N) protein is the main component of the viral capsid to encapsulate viral RNA, and it is also a multifunctional protein involved in the regulation of host cell processes. Nonstructural protein 9 (Nsp9) is the RNA-dependent RNA polymerase that plays a critical role in viral RNA transcription and replication. In this study, we demonstrate that PRRSV N protein is bound to Nsp9 by protein-protein interaction and that the contacting surface on Nsp9 is located in the two predicted α-helixes formed by 48 residues at the C-terminal end of the protein. Mutagenesis analyses identified E646, E608, and E611 on Nsp9 and Q85 on the N protein as the pivotal residues participating in the N-Nsp9 interaction. By overexpressing the N protein binding fragment of Nsp9 in infected Marc-145 cells, the synthesis of viral RNAs, as well as the production of infectious progeny viruses, was dramatically inhibited, suggesting that Nsp9-N protein association is involved in the process of viral RNA production. In addition, we show that PRRSV N interacts with cellular RNA helicase DHX9 and redistributes the protein into the cytoplasm. Knockdown of DHX9 increased the ratio of short subgenomic mRNAs (sgmRNAs); in contrast, DHX9 overexpression benefited the synthesis of longer sgmRNAs and the viral genomic RNA (gRNA). These results imply that DHX9 is recruited by the N protein in PRRSV infection to regulate viral RNA synthesis. We postulate that N and DHX9 may act as antiattenuation factors for the continuous elongation of nascent transcript during negative-strand RNA synthesis. It is unclear whether the N protein of PRRSV is involved in regulation of the viral RNA production process. In this report, we demonstrate that the N protein of the arterivirus PRRSV participates in viral RNA replication and transcription through interacting with Nsp9 and its RdRp and recruiting cellular RNA helicase to promote the production of

  6. Velocity profiles in idealized model of human respiratory tract

    Science.gov (United States)

    Elcner, J.; Jedelsky, J.; Lizal, F.; Jicha, M.

    2013-04-01

    This article deals with numerical simulation focused on velocity profiles in idealized model of human upper airways during steady inspiration. Three r gimes of breathing were investigated: Resting condition, Deep breathing and Light activity which correspond to most common regimes used for experiments and simulations. Calculation was validated with experimental data given by Phase Doppler Anemometry performed on the model with same geometry. This comparison was made in multiple points which form one cross-section in trachea near first bifurcation of bronchial tree. Development of velocity profile in trachea during steady inspiration was discussed with respect for common phenomenon formed in trachea and for future research of transport of aerosol particles in human respiratory tract.

  7. Velocity profiles in idealized model of human respiratory tract

    Directory of Open Access Journals (Sweden)

    Jicha M.

    2013-04-01

    Full Text Available This article deals with numerical simulation focused on velocity profiles in idealized model of human upper airways during steady inspiration. Three r gimes of breathing were investigated: Resting condition, Deep breathing and Light activity which correspond to most common regimes used for experiments and simulations. Calculation was validated with experimental data given by Phase Doppler Anemometry performed on the model with same geometry. This comparison was made in multiple points which form one cross-section in trachea near first bifurcation of bronchial tree. Development of velocity profile in trachea during steady inspiration was discussed with respect for common phenomenon formed in trachea and for future research of transport of aerosol particles in human respiratory tract.

  8. School absenteeism among school-aged children with medically attended acute viral respiratory illness during three influenza seasons, 2012-2013 through 2014-2015.

    Science.gov (United States)

    McLean, Huong Q; Peterson, Siri H; King, Jennifer P; Meece, Jennifer K; Belongia, Edward A

    2017-05-01

    Acute respiratory illnesses (ARIs) are common in school-aged children, but few studies have assessed school absenteeism due to specific respiratory viruses. To evaluate school absenteeism among children with medically attended ARI due to common viruses. We analyzed follow-up surveys from children seeking care for acute respiratory illness who were enrolled in the influenza vaccine effectiveness study at Marshfield Clinic during the 2012-2013 through 2014-2015 influenza seasons. Archived influenza-negative respiratory swabs were retested using multiplex RT-PCR to detect 16 respiratory virus targets. Negative binomial and logistic regression models were used to examine the association between school absence and type of respiratory viruses; endpoints included mean days absent from school and prolonged (>2 days) absence. We examined the association between influenza vaccination and school absence among children with RT-PCR-confirmed influenza. Among 1027 children, 2295 days of school were missed due to medically attended ARIs; influenza accounted for 39% of illness episodes and 47% of days missed. Mean days absent were highest for influenza (0.96-1.19) and lowest for coronavirus (0.62). Children with B/Yamagata infection were more likely to report prolonged absence than children with A/H1N1 or A/H3N2 infection [OR (95% CI): 2.1 (1.0, 4.5) and 1.7 (1.0, 2.9), respectively]. Among children with influenza, vaccination status was not associated with prolonged absence. School absenteeism due to medically attended ARIs varies by viral infection. Influenza B infections accounted for the greatest burden of absenteeism. © 2016 The Authors. Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.

  9. Genome and infection characteristics of human parechovirus type 1: the interplay between viral infection and type I interferon antiviral system.

    Directory of Open Access Journals (Sweden)

    Jenn-Tzong Chang

    Full Text Available Human parechoviruses (HPeVs, members of the family Picornaviridae, are associated with severe human clinical conditions such as gastrointestinal disease, encephalitis, meningitis, respiratory disease and neonatal sepsis. A new contemporary strain of HPeV1, KVP6 (accession no. KC769584, was isolated from a clinical specimen. Full-genome alignment revealed that HPeV1 KVP6 shares high genome homology with the German strain of HPeV1, 7555312 (accession no. FM178558 and could be classified in the clade 1B group. An intertypic recombination was shown within the P2-P3 genome regions of HPeV1. Cell-type tropism test showed that T84 cells (colon carcinoma cells, A549 cells (lung carcinoma cells and DBTRG-5MG cells (glioblastoma cells were susceptible to HPeV1 infection, which might be relevant clinically. A facilitated cytopathic effect and increased viral titers were reached after serial viral passages in Vero cells, with viral genome mutation found in later passages. HPeV1 is sensitive to elevated temperature because 39C incubation impaired virion production. HPeV1 induced innate immunity with phosphorylation of interferon (IFN regulatory transcription factor 3 and production of type I IFN in A549 but not T84 cells. Furthermore, type I IFN inhibited HPeV1 production in A549 cells but not T84 cells; T84 cells may be less responsive to type I IFN stimulation. Moreover, HPeV1-infected cells showed downregulated type I IFN activation, which indicated a type I IFN evasion mechanism. The characterization of the complete genome and infection features of HPeV1 provide comprehensive information about this newly isolated HPeV1 for further diagnosis, prevention or treatment strategies.

  10. Ultra-Sensitive HIV-1 Latency Viral Outgrowth Assays Using Humanized Mice.

    Science.gov (United States)

    Schmitt, Kimberly; Akkina, Ramesh

    2018-01-01

    In the current quest for a complete cure for HIV/AIDS, highly sensitive HIV-1 latency detection methods are critical to verify full viral eradication. Until now, the in vitro quantitative viral outgrowth assays (qVOA) have been the gold standard for assessing latent HIV-1 viral burden. However, these assays have been inadequate in detecting the presence of ultralow levels of latent virus in a number of patients who were initially thought to have been cured, but eventually showed viral rebound. In this context, new approaches utilizing in vivo mouse-based VOAs are promising. In the murine VOA (mVOA), large numbers of CD4 + T cells or PBMC from aviremic subjects are xenografted into immunodeficient NSG mice, whereas in the humanized mouse-based VOA (hmVOA) patient CD4 + T cell samples are injected into BLT or hu-hematopoetic stem cells (hu-HSC) humanized mice. While latent virus could be recovered in both of these systems, the hmVOA provides higher sensitivity than the mVOA using a fewer number of input cells. In contrast to the mVOA, the hmVOA provides a broader spectrum of highly susceptible HIV-1 target cells and enables newly engrafted cells to home into preformed human lymphoid organs where they can infect cells in situ after viral activation. Hu-mice also allow for both xenograft- and allograft-driven cell expansions with less severe GvH providing a longer time frame for potential viral outgrowth from cells with a delayed latent viral activation. Based on these advantages, the hmVOA has great potential in playing an important role in HIV-1 latency and cure research.

  11. Viral symbiosis and the holobiontic nature of the human genome.

    Science.gov (United States)

    Ryan, Francis Patrick

    2016-01-01

    The human genome is a holobiontic union of the mammalian nuclear genome, the mitochondrial genome and large numbers of endogenized retroviral genomes. This article defines and explores this symbiogenetic pattern of evolution, looking at the implications for human genetics, epigenetics, embryogenesis, physiology and the pathogenesis of inborn errors of metabolism and many other diseases. © 2016 APMIS. Published by John Wiley & Sons Ltd.

  12. Coupled Transcriptome and Proteome Analysis of Human Lymphotropic Tumor Viruses: Insights on the Detection and Discovery of Viral Genes

    Energy Technology Data Exchange (ETDEWEB)

    Dresang, Lindsay R.; Teuton, Jeremy R.; Feng, Huichen; Jacobs, Jon M.; Camp, David G.; Purvine, Samuel O.; Gritsenko, Marina A.; Li, Zhihua; Smith, Richard D.; Sugden, Bill; Moore, Patrick S.; Chang, Yuan

    2011-12-20

    Kaposi's sarcoma-associated herpesvirus (KSHV) and Epstein-Barr virus (EBV) are related human tumor viruses that cause primary effusion lymphomas (PEL) and Burkitt's lymphomas (BL), respectively. Viral genes expressed in naturally-infected cancer cells contribute to disease pathogenesis; knowing which viral genes are expressed is critical in understanding how these viruses cause cancer. To evaluate the expression of viral genes, we used high-resolution separation and mass spectrometry coupled with custom tiling arrays to align the viral proteomes and transcriptomes of three PEL and two BL cell lines under latent and lytic culture conditions. Results The majority of viral genes were efficiently detected at the transcript and/or protein level on manipulating the viral life cycle. Overall the correlation of expressed viral proteins and transcripts was highly complementary in both validating and providing orthogonal data with latent/lytic viral gene expression. Our approach also identified novel viral genes in both KSHV and EBV, and extends viral genome annotation. Several previously uncharacterized genes were validated at both transcript and protein levels. Conclusions This systems biology approach coupling proteome and transcriptome measurements provides a comprehensive view of viral gene expression that could not have been attained using each methodology independently. Detection of viral proteins in combination with viral transcripts is a potentially powerful method for establishing virus-disease relationships.

  13. Prevalence of human rhinovirus in children admitted to hospital with acute lower respiratory tract infections in Changsha, China.

    Science.gov (United States)

    Zeng, Sai-Zhen; Xiao, Ni-Guang; Xie, Zhi-Ping; Xie, Guang-Cheng; Zhong, Li-Li; Wang, Juan; Huang, Han; Zhang, Bing; Duan, Zhao-Jun

    2014-11-01

    Human rhinovirus (HRV) is a causative agent of acute respiratory tract infections. This study analyzed the prevalence and clinical characteristics of three HRV groups (HRV-A, -B, and -C) among 1,165 children aged 14 years or younger who were hospitalized with acute lower respiratory tract infection in China. PCR or reverse transcription-PCR was performed to detect 14 respiratory viruses in nasopharyngeal aspirates collected from September 2007 to August 2008 in Changsha, China. HRV was detected in 202 (17.3%) of the 1,165 children; 25.3% of the HRV-positive children were 13-36 months of age (χ(2)  = 22.803, P = 0.000). HRV was detected year round and peaked between September and December. Fifty-three percent of the HRV-positive samples were also positive for other respiratory viruses; respiratory syncytial virus (RSV) was the most common secondary virus. Phylogenetic analysis using the VP4/VP2 region grouped the HRV-positive strains as follows: 101 HRV-A (50.0%), 21 HRV-B (10.4%), and 80 HRV-C (39.6%). HRV-A infections occurred predominantly in spring and autumn, and the peak prevalence of HRV-C was in early winter and late autumn. HRV-B infections were less common in spring (χ(2)  = 31.914, P = 0.000). No significant difference in clinical severity or presentation was found between patients with HRV single infection and HRV co-detections. Furthermore, the clinical characterizations did not differ among the three HRV species. These results suggest that HRV-C is an important viral agent along with HRV-A and HRV-B and that among hospitalized children with acute lower respiratory tract infection in China, the three HRV genotypes have similar clinical characteristics. © 2014 Wiley Periodicals, Inc.

  14. Effect of High-Dose vs Standard-Dose Wintertime Vitamin D Supplementation on Viral Upper Respiratory Tract Infections in Young Healthy Children.

    Science.gov (United States)

    Aglipay, Mary; Birken, Catherine S; Parkin, Patricia C; Loeb, Mark B; Thorpe, Kevin; Chen, Yang; Laupacis, Andreas; Mamdani, Muhammad; Macarthur, Colin; Hoch, Jeffrey S; Mazzulli, Tony; Maguire, Jonathon L

    2017-07-18

    Epidemiological studies support a link between low 25-hydroxyvitamin D levels and a higher risk of viral upper respiratory tract infections. However, whether winter supplementation of vitamin D reduces the risk among children is unknown. To determine whether high-dose vs standard-dose vitamin D supplementation reduces the incidence of wintertime upper respiratory tract infections in young children. A randomized clinical trial was conducted during the winter months between September 13, 2011, and June 30, 2015, among children aged 1 through 5 years enrolled in TARGet Kids!, a multisite primary care practice-based research network in Toronto, Ontario, Canada. Three hundred forty-nine participants were randomized to receive 2000 IU/d of vitamin D oral supplementation (high-dose group) vs 354 participants who were randomized to receive 400 IU/d (standard-dose group) for a minimum of 4 months between September and May. The primary outcome was the number of laboratory-confirmed viral upper respiratory tract infections based on parent-collected nasal swabs over the winter months. Secondary outcomes included the number of influenza infections, noninfluenza infections, parent-reported upper respiratory tract illnesses, time to first upper respiratory tract infection, and serum 25-hydroxyvitamin D levels at study termination. Among 703 participants who were randomized (mean age, 2.7 years, 57.7% boys), 699 (99.4%) completed the trial. The mean number of laboratory-confirmed upper respiratory tract infections per child was 1.05 (95% CI, 0.91-1.19) for the high-dose group and 1.03 (95% CI, 0.90-1.16) for the standard-dose group, for a between-group difference of 0.02 (95% CI, -0.17 to 0.21) per child. There was no statistically significant difference in number of laboratory-confirmed infections between groups (incidence rate ratio [RR], 0.97; 95% CI, 0.80-1.16). There was also no significant difference in the median time to the first laboratory-confirmed infection: 3.95 months

  15. Rational design of human metapneumovirus live attenuated vaccine candidates by inhibiting viral mRNA cap methyltransferase.

    Science.gov (United States)

    Zhang, Yu; Wei, Yongwei; Zhang, Xiaodong; Cai, Hui; Niewiesk, Stefan; Li, Jianrong

    2014-10-01

    The paramyxoviruses human respiratory syncytial virus (hRSV), human metapneumovirus (hMPV), and human parainfluenza virus type 3 (hPIV3) are responsible for the majority of pediatric respiratory diseases and inflict significant economic loss, health care costs, and emotional burdens. Despite major efforts, there are no vaccines available for these viruses. The conserved region VI (CR VI) of the large (L) polymerase proteins of paramyxoviruses catalyzes methyltransferase (MTase) activities that typically methylate viral mRNAs at positions guanine N-7 (G-N-7) and ribose 2'-O. In this study, we generated a panel of recombinant hMPVs carrying mutations in the S-adenosylmethionine (SAM) binding site in CR VI of L protein. These recombinant viruses were specifically defective in ribose 2'-O methylation but not G-N-7 methylation and were genetically stable and highly attenuated in cell culture and viral replication in the upper and lower respiratory tracts of cotton rats. Importantly, vaccination of cotton rats with these recombinant hMPVs (rhMPVs) with defective MTases triggered a high level of neutralizing antibody, and the rats were completely protected from challenge with wild-type rhMPV. Collectively, our results indicate that (i) amino acid residues in the SAM binding site in the hMPV L protein are essential for 2'-O methylation and (ii) inhibition of mRNA cap MTase can serve as a novel target to rationally design live attenuated vaccines for hMPV and perhaps other paramyxoviruses, such as hRSV and hPIV3. Human paramyxoviruses, including hRSV, hMPV, and hPIV3, cause the majority of acute upper and lower respiratory tract infections in humans, particularly in infants, children, the elderly, and immunocompromised individuals. Currently, there is no licensed vaccine available. A formalin-inactivated vaccine is not suitable for these viruses because it causes enhanced lung damage upon reinfection with the same virus. A live attenuated vaccine is the most promising

  16. Interaction between human BAP31 and respiratory syncytial virus small hydrophobic (SH) protein

    International Nuclear Information System (INIS)

    Li, Yan; Jain, Neeraj; Limpanawat, Suweeraya; To, Janet; Quistgaard, Esben M.; Nordlund, Par; Thanabalu, Thirumaran; Torres, Jaume

    2015-01-01

    The small hydrophobic (SH) protein is a short channel-forming polypeptide encoded by the human respiratory syncytial virus (hRSV). Deletion of SH protein leads to the viral attenuation in mice and primates, and delayed apoptosis in infected cells. We have used a membrane-based yeast two-hybrid system (MbY2H) and a library from human lung cDNA to detect proteins that bind SH protein. This led to the identification of a membrane protein, B-cell associated protein 31 (BAP31). Transfected SH protein co-localizes with transfected BAP31 in cells, and pulls down endogenous BAP31. Titration of purified C-terminal endodomain of BAP31 against isotopically labeled SH protein in detergent micelles suggests direct interaction between the two proteins. Given the key role of BAP31 in protein trafficking and its critical involvement in pro- and anti-apoptotic pathways, this novel interaction may constitute a potential drug target. - Highlights: • A yeast two-hybrid system (MbY2H) detected BAP31 as a binder of RSV SH protein. • Transfected SH and BAP31 co-localize in lung epithelial cells. • Endogenous BAP31 is pulled down by RSV SH protein. • BAP31 endodomain interacts with the N-terminal α-helix of SH protein in micelles. • This interaction is proposed to be a potential drug target

  17. Interaction between human BAP31 and respiratory syncytial virus small hydrophobic (SH) protein

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yan; Jain, Neeraj; Limpanawat, Suweeraya; To, Janet [School of Biological Sciences, Nanyang Technological University, 637551 (Singapore); Quistgaard, Esben M. [Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm (Sweden); Nordlund, Par [School of Biological Sciences, Nanyang Technological University, 637551 (Singapore); Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm (Sweden); Thanabalu, Thirumaran [School of Biological Sciences, Nanyang Technological University, 637551 (Singapore); Torres, Jaume, E-mail: jtorres@ntu.edu.sg [School of Biological Sciences, Nanyang Technological University, 637551 (Singapore)

    2015-08-15

    The small hydrophobic (SH) protein is a short channel-forming polypeptide encoded by the human respiratory syncytial virus (hRSV). Deletion of SH protein leads to the viral attenuation in mice and primates, and delayed apoptosis in infected cells. We have used a membrane-based yeast two-hybrid system (MbY2H) and a library from human lung cDNA to detect proteins that bind SH protein. This led to the identification of a membrane protein, B-cell associated protein 31 (BAP31). Transfected SH protein co-localizes with transfected BAP31 in cells, and pulls down endogenous BAP31. Titration of purified C-terminal endodomain of BAP31 against isotopically labeled SH protein in detergent micelles suggests direct interaction between the two proteins. Given the key role of BAP31 in protein trafficking and its critical involvement in pro- and anti-apoptotic pathways, this novel interaction may constitute a potential drug target. - Highlights: • A yeast two-hybrid system (MbY2H) detected BAP31 as a binder of RSV SH protein. • Transfected SH and BAP31 co-localize in lung epithelial cells. • Endogenous BAP31 is pulled down by RSV SH protein. • BAP31 endodomain interacts with the N-terminal α-helix of SH protein in micelles. • This interaction is proposed to be a potential drug target.

  18. Crystal structure of NL63 respiratory coronavirus receptor-binding domain complexed with its human receptor

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Kailang; Li, Weikai; Peng, Guiqing; Li, Fang; (Harvard-Med); (UMM-MED)

    2010-03-04

    NL63 coronavirus (NL63-CoV), a prevalent human respiratory virus, is the only group I coronavirus known to use angiotensin-converting enzyme 2 (ACE2) as its receptor. Incidentally, ACE2 is also used by group II SARS coronavirus (SARS-CoV). We investigated how different groups of coronaviruses recognize the same receptor, whereas homologous group I coronaviruses recognize different receptors. We determined the crystal structure of NL63-CoV spike protein receptor-binding domain (RBD) complexed with human ACE2. NL63-CoV RBD has a novel {beta}-sandwich core structure consisting of 2 layers of {beta}-sheets, presenting 3 discontinuous receptor-binding motifs (RBMs) to bind ACE2. NL63-CoV and SARS-CoV have no structural homology in RBD cores or RBMs; yet the 2 viruses recognize common ACE2 regions, largely because of a 'virus-binding hotspot' on ACE2. Among group I coronaviruses, RBD cores are conserved but RBMs are variable, explaining how these viruses recognize different receptors. These results provide a structural basis for understanding viral evolution and virus-receptor interactions.

  19. VIRUS OF HUMAN PAPILLOMA. EPIDEMIOLOGY, LABORATORY DIAGNOSTICS AND PREVENTION OF PAPILLOMA VIRAL INFECTION

    Directory of Open Access Journals (Sweden)

    O. V. Narvskaya

    2011-01-01

    Full Text Available Abstract. The information reflected modern knowledge about virus of human papilloma (VHP and pathogenesis of papilloma viral infection is presented in the lecture. The actual problems of epidemiology, laboratory diagnostics and prevention of VHP associated damage of cervical epithelium have been described.

  20. Understanding "Human" Waves: Exploiting the Physics in a Viral Video

    Science.gov (United States)

    Ferrer-Roca, Chantal

    2018-01-01

    Waves are a relevant part of physics that students find difficult to grasp, even in those cases in which wave propagation kinematics can be visualized. This may hinder a proper understanding of sound, light or quantum physics phenomena that are explained using a wave model. So-called "human" waves, choreographed by people, have proved to…

  1. Interaction of Mycobacterium tuberculosis with human respiratory mucosa.

    Science.gov (United States)

    Middleton, A M; Chadwick, M V; Nicholson, A G; Dewar, A; Groger, R K; Brown, E J; Ratliff, T L; Wilson, R

    2002-01-01

    Endobronchial infection is associated with pulmonary tuberculosis in the majority of cases. We have investigated the adherence of Mycobacterium tuberculosis to the human respiratory mucosa. Organ cultures constructed with human tissue were infected with M. tuberculosis in the presence or absence of mycobacterial fibronectin attachment cell surface proteins and examined by scanning electron microscopy. M. tuberculosis adhered mainly to extracellular matrix (ECM) in areas of mucosal damage, but not to ciliated mucosa, intact extruded cells, basement membrane or collagen fibres. Bacteria also adhered to fibrous but not globular mucus and occasionally to healthy unciliated mucosa, open tight junctions and to extruded cells that had degenerated, exposing their contents. There was a significant reduction (pprotein (FAP) and M. bovis antigen 85B protein, in a concentration dependent manner. The combined effect of FAP and antigen 85B protein was significantly greater than either protein alone. Bacterial adherence to fibrous mucus was not influenced by fibronectin. We conclude that M. tuberculosis adheres to ECM in areas of mucosal damage at least in part via FAP and antigen 85B protein.

  2. Minocycline affects human neutrophil respiratory burst and transendothelial migration.

    Science.gov (United States)

    Parenti, Astrid; Indorato, Boris; Paccosi, Sara

    2017-02-01

    This study aimed at investigating the in vitro activity of minocycline and doxycycline on human polymorphonuclear (h-PMN) cell function. h-PMNs were isolated from whole venous blood of healthy subjects; PMN oxidative burst was measured by monitoring ROS-induced oxidation of luminol and transendothelial migration was studied by measuring PMN migration through a monolayer of human umbilical vein endothelial cells. Differences between multiple groups were determined by ANOVA followed by Tukey's multiple comparison test; Student's t test for unpaired data for two groups. Minocycline (1-300 µM) concentration dependently and significantly inhibited oxidative burst of h-PMNs stimulated with 100 nM fMLP. Ten micromolar concentrations, which are superimposable to C max following a standard oral dose of minocycline, promoted a 29.8 ± 4 % inhibition of respiratory burst (P minocycline impaired PMN transendothelial migration, with maximal effect at 100 µM (42.5 ± 7 %, inhibition, n = 5, P minocycline exerted on innate immune h-PMN cell function.

  3. Dried blood spots, valid screening for viral hepatitis and human immunodeficiency virus in real-life

    DEFF Research Database (Denmark)

    Mössner, Belinda K; Staugaard, Benjamin; Jensen, Janne

    2016-01-01

    AIM: To detect chronic hepatitis B (CHB), chronic hepatitis C (CHC) and human immunodeficiency virus (HIV) infections in dried blood spot (DBS) and compare these samples to venous blood sampling in real-life. METHODS: We included prospective patients with known viral infections from drug treatment......, but correctly classified 95% of the anti-HCV-positive patients with chronic and past infections. Anti-HBc and anti-HBS showed low sensitivity in DBS (68% and 42%). CONCLUSION: DBS sampling, combined with an automated analysis system, is a feasible screening method to diagnose chronic viral hepatitis and HIV...

  4. 1st International Symposium on Stress-Associated RNA Granules in Human Disease and Viral Infection

    Directory of Open Access Journals (Sweden)

    Bruce W. Banfield

    2014-09-01

    Full Text Available In recent years, important linkages have been made between RNA granules and human disease processes. On June 8-10 of this year, we hosted a new symposium, dubbed the 1st International Symposium on Stress-Associated RNA Granules in Human Disease and Viral Infection. This symposium brought together experts from diverse research disciplines ranging from cancer and neuroscience to infectious disease. This report summarizes speaker presentations and highlights current challenges in the field.

  5. Human Papillomavirus prevalence, viral load and cervical intraepithelial neoplasia in HIV-infected women

    Directory of Open Access Journals (Sweden)

    José E. Levi

    Full Text Available HIV-infected women from São Paulo city were enrolled in a cross-sectional study on Human Papillomavirus (HPV and cervical intraepithelial neoplasia (CIN prevalence and their association with laboratory markers of AIDS, namely HIV viral load and CD4+ cell counts. A cervical specimen was collected and submitted to Hybrid Capture, a test for HPV viral load determination. HPV-DNA was detected in 173 of 265 women (64.5%. Twenty (7.5% women were infected by one or more low-risk viruses, 89 (33% by one or more high-risk viruses, and 64 (24% harbored at least one HPV type from each risk group. Abnormal smears were observed in 19% of the patients, though there were no invasive carcinomas. Severely immunosuppressed patients (CD4/µL <100 were at the greatest risk of having a cytological abnormality and a high high-risk HPV viral load.

  6. Human Papillomavirus prevalence, viral load and cervical intraepithelial neoplasia in HIV-infected women

    Directory of Open Access Journals (Sweden)

    Levi José E.

    2002-01-01

    Full Text Available HIV-infected women from São Paulo city were enrolled in a cross-sectional study on Human Papillomavirus (HPV and cervical intraepithelial neoplasia (CIN prevalence and their association with laboratory markers of AIDS, namely HIV viral load and CD4+ cell counts. A cervical specimen was collected and submitted to Hybrid Capture, a test for HPV viral load determination. HPV-DNA was detected in 173 of 265 women (64.5%. Twenty (7.5% women were infected by one or more low-risk viruses, 89 (33% by one or more high-risk viruses, and 64 (24% harbored at least one HPV type from each risk group. Abnormal smears were observed in 19% of the patients, though there were no invasive carcinomas. Severely immunosuppressed patients (CD4/µL <100 were at the greatest risk of having a cytological abnormality and a high high-risk HPV viral load.

  7. Zinc binding activity of human metapneumovirus M2-1 protein is indispensable for viral replication and pathogenesis in vivo.

    Science.gov (United States)

    Cai, Hui; Zhang, Yu; Ma, Yuanmei; Sun, Jing; Liang, Xueya; Li, Jianrong

    2015-06-01

    Human metapneumovirus (hMPV) is a member of the Pneumovirinae subfamily in the Paramyxoviridae family that causes respiratory tract infections in humans. Unlike members of the Paramyxovirinae subfamily, the polymerase complex of pneumoviruses requires an additional cofactor, the M2-1 protein, which functions as a transcriptional antitermination factor. The M2-1 protein was found to incorporate zinc ions, although the specific role(s) of the zinc binding activity in viral replication and pathogenesis remains unknown. In this study, we found that the third cysteine (C21) and the last histidine (H25) in the zinc binding motif (CCCH) of hMPV M2-1 were essential for zinc binding activity, whereas the first two cysteines (C7 and C15) play only minor or redundant roles in zinc binding. In addition, the zinc binding motif is essential for the oligomerization of M2-1. Subsequently, recombinant hMPVs (rhMPVs) carrying mutations in the zinc binding motif were recovered. Interestingly, rhMPV-C21S and -H25L mutants, which lacked zinc binding activity, had delayed replication in cell culture and were highly attenuated in cotton rats. In contrast, rhMPV-C7S and -C15S strains, which retained 60% of the zinc binding activity, replicated as efficiently as rhMPV in cotton rats. Importantly, rhMPVs that lacked zinc binding activity triggered high levels of neutralizing antibody and provided complete protection against challenge with rhMPV. Taken together, these results demonstrate that zinc binding activity is indispensable for viral replication and pathogenesis in vivo. These results also suggest that inhibition of zinc binding activity may serve as a novel approach to rationally attenuate hMPV and perhaps other pneumoviruses for vaccine purposes. The pneumoviruses include many important human and animal pathogens, such as human respiratory syncytial virus (hRSV), hMPV, bovine RSV, and avian metapneumovirus (aMPV). Among these viruses, hRSV and hMPV are the leading causes of acute

  8. β2-Adrenergic receptor promoter haplotype influences the severity of acute viral respiratory tract infection during infancy: a prospective cohort study.

    Science.gov (United States)

    Wu, Pingsheng; Larkin, Emma K; Reiss, Sara S; Carroll, Kecia N; Summar, Marshall L; Minton, Patricia A; Woodward, Kimberly B; Liu, Zhouwen; Islam, Jessica Y; Hartert, Tina V; Moore, Paul E

    2015-09-14

    Despite the significant interest in β2-Adrenergic receptor (ADRB2) polymorphisms related to asthma, whether ADRB2 genetic variants are similarly associated with acute respiratory tract infections have not been studied. We hypothesized that genetic variants in ADRB2 associated with a response to asthma therapy during an asthma exacerbation were also associated with severity of acute respiratory tract infections. To test this hypothesis, we genotyped 5 common polymorphisms in the promoter region and coding block of the ADRB2 gene (loci -2387, -2274, -1343, +46, and +79) from 374 Caucasian and African American term infants who were enrolled at the time of acute respiratory illness over four respiratory viral seasons. Severity of respiratory tract infections was measured using a bronchiolitis severity score (BSS; range = 0-12, clinically significant difference = 0.5) with a higher score indicating more severe disease. We assigned the promoter, coding and combined promoter and coding haplotypes to the unphased genotype data. The associations between each of these five single-nucleotide polymorphisms (SNPs) as well as the haplotypes and infant BSS were analyzed using nonparametric univariate analysis and multivariable proportional odds model separately in Caucasians and African Americans. There was no significant association between infant BSS and each of the SNPs in both Caucasians and African Americans. However, promoter haplotype CCA was associated with a decreased BSS in African Americans in a dose dependent manner. The median (interquartile range) BSS of infants with no copies of the CCA haplotype, one copy, and two copies of the CCA haplotype were 5.5 (2.0, 8.0), 4.0 (1.0, 7.5), and 3.0 (1.0, 4.0), respectively. This dose dependent relationship persisted after adjusting for infant age, gender, daycare exposure, secondhand smoke exposure, prior history of breastfeeding, siblings at home, and enrollment season (adjusted odds ratio: 0.59, 95% confidence

  9. Mitochondrial respiratory efficiency is positively correlated with human sperm motility.

    Science.gov (United States)

    Ferramosca, Alessandra; Provenzano, Sara Pinto; Coppola, Lamberto; Zara, Vincenzo

    2012-04-01

    To correlate sperm mitochondrial respiratory efficiency with variations in sperm motility and with sperm morphologic anomalies. Sperm mitochondrial respiratory activity was evaluated with a polarographic assay of oxygen consumption carried out in hypotonically-treated sperm cells. A possible relationship among sperm mitochondrial respiratory efficiency, sperm motility, and morphologic anomalies was investigated. Mitochondrial respiratory efficiency was positively correlated with sperm motility and negatively correlated with the percentage of immotile spermatozoa. Moreover, midpiece defects impaired mitochondrial functionality. Our data indicate that an increase in sperm motility requires a parallel increase in mitochondrial respiratory capacity, thereby supporting the fundamental role played by mitochondrial oxidative phosphorylation in sperm motility of normozoospermic subjects. These results are of physiopathological relevance because they suggest that disturbances of sperm mitochondrial function and of energy production could be responsible for asthenozoospermia. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Ameliorating Effect of Dietary Xylitol on Human Respiratory Syncytial Virus (hRSV) Infection.

    Science.gov (United States)

    Xu, Mei Ling; Wi, Ga Ram; Kim, Hyoung Jin; Kim, Hong-Jin

    2016-01-01

    Human respiratory syncytial virus (hRSV) is the most common cause of bronchiolitis and pneumonia in infants. The lack of proper prophylactics and therapeutics for controlling hRSV infection has been of great concern worldwide. Xylitol is a well-known sugar substitute and its effect against bacteria in the oral cavity is well known. However, little is known of its effect on viral infections. In this study, the effect of dietary xylitol on hRSV infection was investigated in a mouse model for the first time. Mice received xylitol for 14 d prior to virus challenge and for a further 3 d post challenge. Significantly larger reductions in lung virus titers were observed in the mice receiving xylitol than in the controls receiving phosphate-buffered saline (PBS). In addition, fewer CD3(+) and CD3(+)CD8(+) lymphocytes, whose numbers reflect inflammatory status, were recruited in the mice receiving xylitol. These results indicate that dietary xylitol can ameliorate hRSV infections and reduce inflammation-associated immune responses to hRSV infection.

  11. Solution of human respiratory tract model for chronic inhalation intake

    International Nuclear Information System (INIS)

    Nadar, Minal Y.; Singh, I.S.; Rao, D.D.; Pradeepkumar, K.S.

    2014-01-01

    For the radiation workers of fuel reprocessing and fuel fabrication plants, inhalation is one of the major routes of intake of internal contamination. In case of routine monitoring which would result in lung activity above detection limit, it is assumed that intake has occurred at the midpoint of monitoring interval so that underestimation introduced by the unknown time of intake is less than a factor of three. In the plants, chronic intakes of 239 Pu are possible if low levels of 239 Pu activities remain undetected. In ICRP-78, the retention values are given as a function of time for continuous chronic inhalation of 239 Pu at 1.71 Bq/day that would result in Committed Effective Dose (CED) of 20 mSv. Retention values (R) are not given for inhalation intake at any other rate. Therefore, Human Respiratory Tract Model (HRTM) is solved for continuous chronic inhalation at 1 Bq/day rate for type M compounds of 239 Pu to estimate R as a function of time. These values will be useful in estimating intake from lung activity measurements in case of chronic intakes

  12. Occurrence of human respiratory syncytial virus in summer in Japan.

    Science.gov (United States)

    Shobugawa, Y; Takeuchi, T; Hibino, A; Hassan, M R; Yagami, R; Kondo, H; Odagiri, T; Saito, R

    2017-01-01

    In temperate zones, human respiratory syncytial virus (HRSV) outbreaks typically occur in cold weather, i.e. in late autumn and winter. However, recent outbreaks in Japan have tended to start during summer and autumn. This study examined associations of meteorological conditions with the numbers of HRSV cases reported in summer in Japan. Using data from the HRSV national surveillance system and national meteorological data for summer during the period 2007-2014, we utilized negative binomial logistic regression analysis to identify associations between meteorological conditions and reported cases of HRSV. HRSV cases increased when summer temperatures rose and when relative humidity increased. Consideration of the interaction term temperature × relative humidity enabled us to show synergistic effects of high temperature with HRSV occurrence. In particular, HRSV cases synergistically increased when relative humidity increased while the temperature was ⩾28·2 °C. Seasonal-trend decomposition analysis using the HRSV national surveillance data divided by 11 climate divisions showed that summer HRSV cases occurred in South Japan (Okinawa Island), Kyushu, and Nankai climate divisions, which are located in southwest Japan. Higher temperature and higher relative humidity were necessary conditions for HRSV occurrence in summer in Japan. Paediatricians in temperate zones should be mindful of possible HRSV cases in summer, when suitable conditions are present.

  13. Human Parvovirus B19 Utilizes Cellular DNA Replication Machinery for Viral DNA Replication.

    Science.gov (United States)

    Zou, Wei; Wang, Zekun; Xiong, Min; Chen, Aaron Yun; Xu, Peng; Ganaie, Safder S; Badawi, Yomna; Kleiboeker, Steve; Nishimune, Hiroshi; Ye, Shui Qing; Qiu, Jianming

    2018-03-01

    Human parvovirus B19 (B19V) infection of human erythroid progenitor cells (EPCs) induces a DNA damage response and cell cycle arrest at late S phase, which facilitates viral DNA replication. However, it is not clear exactly which cellular factors are employed by this single-stranded DNA virus. Here, we used microarrays to systematically analyze the dynamic transcriptome of EPCs infected with B19V. We found that DNA metabolism, DNA replication, DNA repair, DNA damage response, cell cycle, and cell cycle arrest pathways were significantly regulated after B19V infection. Confocal microscopy analyses revealed that most cellular DNA replication proteins were recruited to the centers of viral DNA replication, but not the DNA repair DNA polymerases. Our results suggest that DNA replication polymerase δ and polymerase α are responsible for B19V DNA replication by knocking down its expression in EPCs. We further showed that although RPA32 is essential for B19V DNA replication and the phosphorylated forms of RPA32 colocalized with the replicating viral genomes, RPA32 phosphorylation was not necessary for B19V DNA replication. Thus, this report provides evidence that B19V uses the cellular DNA replication machinery for viral DNA replication. IMPORTANCE Human parvovirus B19 (B19V) infection can cause transient aplastic crisis, persistent viremia, and pure red cell aplasia. In fetuses, B19V infection can result in nonimmune hydrops fetalis and fetal death. These clinical manifestations of B19V infection are a direct outcome of the death of human erythroid progenitors that host B19V replication. B19V infection induces a DNA damage response that is important for cell cycle arrest at late S phase. Here, we analyzed dynamic changes in cellular gene expression and found that DNA metabolic processes are tightly regulated during B19V infection. Although genes involved in cellular DNA replication were downregulated overall, the cellular DNA replication machinery was tightly

  14. Co-circulation of genetically distinct human metapneumovirus and human bocavirus strains in young children with respiratory tract infections in Italy.

    Science.gov (United States)

    Zappa, Alessandra; Canuti, Marta; Frati, Elena; Pariani, Elena; Perin, Silvana; Ruzza, Maria Lorena; Farina, Claudio; Podestà, Alberto; Zanetti, Alessandro; Amendola, Antonella; Tanzi, Elisabetta

    2011-01-01

    The discovery of human Metapneumovirus (hMPV) and human Bocavirus (hBoV) identified the etiological causes of several cases of acute respiratory tract infections in children. This report describes the molecular epidemiology of hMPV and hBoV infections observed following viral surveillance of children hospitalized for acute respiratory tract infections in Milan, Italy. Pharyngeal swabs were collected from 240 children ≤3 years of age (130 males, 110 females; median age, 5.0 months; IQR, 2.0-12.5 months) and tested for respiratory viruses, including hMPV and hBoV, by molecular methods. hMPV-RNA and hBoV-DNA positive samples were characterized molecularly and a phylogenetical analysis was performed. PCR analysis identified 131/240 (54.6%) samples positive for at least one virus. The frequency of hMPV and hBoV infections was similar (8.3% and 12.1%, respectively). Both infections were associated with lower respiratory tract infections: hMPV was present as a single infectious agent in 7.2% of children with bronchiolitis, hBoV was associated with 18.5% of pediatric pneumonias and identified frequently as a single etiological agent. Genetically distinct hMPV and hBoV strains were identified in children examined with respiratory tract infections. Phylogenetic analysis showed an increased prevalence of hMPV genotype A (A2b sublineage) compared to genotype B (80% vs. 20%, respectively) and of the hBoV genotype St2 compared to genotype St1 (71.4% vs. 28.6%, respectively). Interestingly, a shift in hMPV infections resulting from A2 strains has been observed in recent years. In addition, the occurrence of recombination events between two hBoV strains with a breakpoint located in the VP1/VP2 region was identified. © 2010 Wiley-Liss, Inc.

  15. Sensitive detection and typing of porcine reproductive and respiratory syndrome virus by RT-PCR amplification of whole viral genes

    DEFF Research Database (Denmark)

    Oleksiewicz, M.B.; Bøtner, Anette; Madsen, K.G.

    1998-01-01

    Following the recent use of a live vaccine against porcine reproductive and respiratory syndrome virus (PRRSV) in Denmark, both American (vaccine) and European-type PRRSV now coexist in Danish herds. This situation highlighted a requirement for supplementary tests for precise virus-typing. As a r...

  16. Increased pathogenicity of European porcine reproductive and respiratory syndrome virus is associated with enhanced adaptive responses and viral clearance

    NARCIS (Netherlands)

    Morgan, S.B.; Graham, S.P.; Salguero, F.J.; Sánchez Cordón, P.J.; Mokhtar, H.; Rebel, J.M.J.; Weesendorp, E.; Bodman-Smith, K.B.; Steinbach, F.; Frossard, J.P.

    2013-01-01

    Porcine reproductive and respiratory syndrome (PRRS) is one of the most economically important diseases of swine worldwide. Since its first emergence in 1987 the PRRS virus (PRRSV) has become particularly divergent with highly pathogenic strains appearing in both Europe and Asia. However, the

  17. Clinical features of human metapneumovirus genotypes in children with acute lower respiratory tract infection in Changsha, China.

    Science.gov (United States)

    Zeng, Sai-Zhen; Xiao, Ni-Guang; Zhong, Li-Li; Yu, Tian; Zhang, Bing; Duan, Zhao-Jun

    2015-11-01

    To explore the epidemiological and clinical features of different human metapneumovirus (hMPV) genotypes in hospitalized children. Reverse transcription polymerase chain reaction (RT-PCR) or PCR was employed to screen for both hMPV and other common respiratory viruses in 2613 nasopharyngeal aspirate specimens collected from children with lower respiratory tract infections from September 2007 to February 2011 (a period of 3.5 years). The demographics and clinical presentations of patients infected with different genotypes of hMPV were compared. A total of 135 samples were positive for hMPV (positive detection rate: 5.2%). Co-infection with other viruses was observed in 45.9% (62/135) of cases, and human bocavirus was the most common additional respiratory virus. The most common symptoms included cough, fever, and wheezing. The M gene was sequenced for 135 isolates; of these, genotype A was identified in 72.6% (98/135) of patients, and genotype B was identified in 27.4% (37/135) of patients. The predominant genotype of hMPV changed over the 3.5-year study period from genotype A2b to A2b or B1 and then to predominantly B1. Most of clinical features were similar between patients infected with different hMPV genotypes. These results suggested that hMPV is an important viral pathogen in pediatric patients with acute lower respiratory tract infection in Changsha. The hMPV subtypes A2b and B1 were found to co-circulate. The different hMPV genotypes exhibit similar clinical characteristics. © 2015 Wiley Periodicals, Inc.

  18. Chromosomally Integrated Human Herpesvirus 6: Models of Viral Genome Release from the Telomere and Impacts on Human Health.

    Science.gov (United States)

    Wood, Michael L; Royle, Nicola J

    2017-07-12

    Human herpesvirus 6A and 6B, alongside some other herpesviruses, have the striking capacity to integrate into telomeres, the terminal repeated regions of chromosomes. The chromosomally integrated forms, ciHHV-6A and ciHHV-6B, are proposed to be a state of latency and it has been shown that they can both be inherited if integration occurs in the germ line. The first step in full viral reactivation must be the release of the integrated viral genome from the telomere and here we propose various models of this release involving transcription of the viral genome, replication fork collapse, and t-circle mediated release. In this review, we also discuss the relationship between ciHHV-6 and the telomere carrying the insertion, particularly how the presence and subsequent partial or complete release of the ciHHV-6 genome may affect telomere dynamics and the risk of disease.

  19. Shared Bacterial and Viral Respiratory Agents in Bighorn Sheep (Ovis canadensis, Domestic Sheep (Ovis aries, and Goats (Capra hircus in Montana

    Directory of Open Access Journals (Sweden)

    David S. Miller

    2011-01-01

    Full Text Available Transmission of infectious agents from livestock reservoirs has been hypothesized to cause respiratory disease outbreaks in bighorn sheep (Ovis canadensis, and land management policies intended to limit this transmission have proven controversial. This cross-sectional study compares the infectious agents present in multiple populations of bighorn sheep near to and distant from their interface with domestic sheep (O. aries and domestic goat (Capra hircus and provides critical baseline information needed for interpretations of cross-species transmission risks. Bighorn sheep and livestock shared exposure to Pasteurellaceae, viral, and endoparasite agents. In contrast, although the impact is uncertain, Mycoplasma sp. was isolated from livestock but not bighorn sheep. These results may be the result of historic cross-species transmission of agents that has resulted in a mosaic of endemic and exotic agents. Future work using longitudinal and multiple population comparisons is needed to rigorously establish the risk of outbreaks from cross-species transmission of infectious agents.

  20. Identification of viral genes associated with the interferon-inducing phenotype of a synthetic porcine reproductive and respiratory syndrome virus strain.

    Science.gov (United States)

    Sun, Haiyan; Pattnaik, Asit K; Osorio, Fernando A; Vu, Hiep L X

    2016-12-01

    We recently generated a fully synthetic porcine reproductive and respiratory syndrome virus strain (designated as PRRSV-CON), which confers unprecedented levels of heterologous protection. We report herein that the synthetic PRRSV-CON possesses a unique phenotype in that it induces type-I interferons (IFNs) instead of suppressing these cytokines as most of the naturally occurring PRRSV isolates do. Through gain- and loss- of-function studies, the IFN-inducing phenotype of PRRSV-CON was mapped to the 3.3kb genomic fragment encoding three viral nonstructural proteins: nsp1α, nsp1β and the N-terminal part of nsp2. Further studies indicated that a cooperation among these 3 proteins was required for effective induction of IFNs. Collectively, this study constitutes the first step toward understanding the mechanisms by which the synthetic PRRSV-CON confers heterologous protection. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Shared bacterial and viral respiratory agents in bighorn sheep (Ovis canadensis), domestic sheep (Ovis aries), and goats (Capra hircus) in Montana

    Science.gov (United States)

    Miller, David S.; Weiser, Glen C.; Aune, Keith; Roeder, Brent; Atkinson, Mark; Anderson, Neil; Roffe, Thomas J.; Keating, Kim A.; Chapman, Phillip L.; Kimberling, Cleon; Rhyan, Jack C.; Clarke, P. Ryan

    2011-01-01

    Transmission of infectious agents from livestock reservoirs has been hypothesized to cause respiratory disease outbreaks in bighorn sheep (Ovis canadensis), and land management policies intended to limit this transmission have proven controversial. This cross-sectional study compares the infectious agents present in multiple populations of bighorn sheep near to and distant from their interface with domestic sheep (O. aries) and domestic goat (Capra hircus) and provides critical baseline information needed for interpretations of cross-species transmission risks. Bighorn sheep and livestock shared exposure to Pasteurellaceae, viral, and endoparasite agents. In contrast, although the impact is uncertain, Mycoplasma sp. was isolated from livestock but not bighorn sheep. These results may be the result of historic cross-species transmission of agents that has resulted in a mosaic of endemic and exotic agents. Future work using longitudinal and multiple population comparisons is needed to rigorously establish the risk of outbreaks from cross-species transmission of infectious agents.

  2. Systems-Biology Approaches to Discover Anti-Viral Effectors of the Human Innate Immune Response

    Directory of Open Access Journals (Sweden)

    Andreas F.R. Sommer

    2011-07-01

    Full Text Available Virus infections elicit an immediate innate response involving antiviral factors. The activities of some of these factors are, in turn, blocked by viral countermeasures. The ensuing battle between the host and the viruses is crucial for determining whether the virus establishes a foothold and/or induces adaptive immune responses. A comprehensive systems-level understanding of the repertoire of anti-viral effectors in the context of these immediate virus-host responses would provide significant advantages in devising novel strategies to interfere with the initial establishment of infections. Recent efforts to identify cellular factors in a comprehensive and unbiased manner, using genome-wide siRNA screens and other systems biology “omics” methodologies, have revealed several potential anti-viral effectors for viruses like Human immunodeficiency virus type 1 (HIV-1, Hepatitis C virus (HCV, West Nile virus (WNV, and influenza virus. This review describes the discovery of novel viral restriction factors and discusses how the integration of different methods in systems biology can be used to more comprehensively identify the intimate interactions of viruses and the cellular innate resistance.

  3. Epidemic 2014 enterovirus D68 cross-reacts with human rhinovirus on a respiratory molecular diagnostic platform.

    Science.gov (United States)

    McAllister, Shane C; Schleiss, Mark R; Arbefeville, Sophie; Steiner, Marie E; Hanson, Ryan S; Pollock, Catherine; Ferrieri, Patricia

    2015-01-01

    Enterovirus D68 (EV-D68) is an emerging virus known to cause sporadic disease and occasional epidemics of severe lower respiratory tract infection. However, the true prevalence of infection with EV-D68 is unknown, due in part to the lack of a rapid and specific nucleic acid amplification test as well as the infrequency with which respiratory samples are analyzed by enterovirus surveillance programs. During the 2014 EV-D68 epidemic in the United States, we noted an increased frequency of "low-positive" results for human rhinovirus (HRV) detected in respiratory tract samples using the GenMark Diagnostics eSensor respiratory viral panel, a multiplex PCR assay able to detect 14 known respiratory viruses but not enteroviruses. We simultaneously noted markedly increased admissions to our Pediatric Intensive Care Unit for severe lower respiratory tract infections in patients both with and without a history of reactive airway disease. Accordingly, we hypothesized that these "low-positive" RVP results were due to EV-D68 rather than rhinovirus infection. Sequencing of the picornavirus 5' untranslated region (5'-UTR) of 49 samples positive for HRV by the GenMark RVP revealed that 33 (67.3%) were in fact EV-D68. Notably, the mean intensity of the HRV RVP result was significantly lower in the sequence-identified EV-D68 samples (20.3 nA) compared to HRV (129.7 nA). Using a cut-off of 40 nA for the differentiation of EV-D68 from HRV resulted in 94% sensitivity and 88% specificity. The robust diagnostic characteristics of our data suggest that the cross-reactivity of EV-D68 and HRV on the GenMark Diagnostics eSensor RVP platform may be an important factor to consider in making accurate molecular diagnosis of EV-D68 at institutions utilizing this system or other molecular respiratory platforms that may also cross-react.

  4. Seasonal and pandemic human influenza viruses attach better to human upper respiratory tract epithelium than avian influenza viruses.

    Science.gov (United States)

    van Riel, Debby; den Bakker, Michael A; Leijten, Lonneke M E; Chutinimitkul, Salin; Munster, Vincent J; de Wit, Emmie; Rimmelzwaan, Guus F; Fouchier, Ron A M; Osterhaus, Albert D M E; Kuiken, Thijs

    2010-04-01

    Influenza viruses vary markedly in their efficiency of human-to-human transmission. This variation has been speculated to be determined in part by the tropism of influenza virus for the human upper respiratory tract. To study this tropism, we determined the pattern of virus attachment by virus histochemistry of three human and three avian influenza viruses in human nasal septum, conchae, nasopharynx, paranasal sinuses, and larynx. We found that the human influenza viruses-two seasonal influenza viruses and pandemic H1N1 virus-attached abundantly to ciliated epithelial cells and goblet cells throughout the upper respiratory tract. In contrast, the avian influenza viruses, including the highly pathogenic H5N1 virus, attached only rarely to epithelial cells or goblet cells. Both human and avian viruses attached occasionally to cells of the submucosal glands. The pattern of virus attachment was similar among the different sites of the human upper respiratory tract for each virus tested. We conclude that influenza viruses that are transmitted efficiently among humans attach abundantly to human upper respiratory tract, whereas inefficiently transmitted influenza viruses attach rarely. These results suggest that the ability of an influenza virus to attach to human upper respiratory tract is a critical factor for efficient transmission in the human population.

  5. Transmission of human respiratory syncytial virus in the immunocompromised ferret model

    NARCIS (Netherlands)

    de Waal, L. (Leon); S.L. Smits (Saskia); E.J.B. Veldhuis Kroeze (Edwin); G. van Amerongen (Geert); Pohl, M.O. (Marie O.); Osterhaus, A.D.M.E. (Albert D. M. E.); K.J. Stittelaar (Koert)

    2018-01-01

    textabstractHuman respiratory syncytial virus (HRSV) causes substantial morbidity and mortality in vulnerable patients, such as the very young, the elderly, and immunocompromised individuals of any age. Nosocomial transmission of HRSV remains a serious challenge in hospital settings, with

  6. Structure and functional analysis of the RNA- and viral phosphoprotein-binding domain of respiratory syncytial virus M2-1 protein.

    Directory of Open Access Journals (Sweden)

    Marie-Lise Blondot

    Full Text Available Respiratory syncytial virus (RSV protein M2-1 functions as an essential transcriptional cofactor of the viral RNA-dependent RNA polymerase (RdRp complex by increasing polymerase processivity. M2-1 is a modular RNA binding protein that also interacts with the viral phosphoprotein P, another component of the RdRp complex. These binding properties are related to the core region of M2-1 encompassing residues S58 to K177. Here we report the NMR structure of the RSV M2-1(58-177 core domain, which is structurally homologous to the C-terminal domain of Ebola virus VP30, a transcription co-factor sharing functional similarity with M2-1. The partial overlap of RNA and P interaction surfaces on M2-1(58-177, as determined by NMR, rationalizes the previously observed competitive behavior of RNA versus P. Using site-directed mutagenesis, we identified eight residues located on these surfaces that are critical for an efficient transcription activity of the RdRp complex. Single mutations of these residues disrupted specifically either P or RNA binding to M2-1 in vitro. M2-1 recruitment to cytoplasmic inclusion bodies, which are regarded as sites of viral RNA synthesis, was impaired by mutations affecting only binding to P, but not to RNA, suggesting that M2-1 is associated to the holonucleocapsid by interacting with P. These results reveal that RNA and P binding to M2-1 can be uncoupled and that both are critical for the transcriptional antitermination function of M2-1.

  7. Mobilisation of toxic elements in the human respiratory system

    International Nuclear Information System (INIS)

    Pinheiro, T.; Alves, L.C.; Palhano, M.J.; Bugalho de Almeida, A.

    2001-01-01

    The fate of respired particles in the respiratory system is inferred through the chemical characterisation of individual particles at the tracheal and bronchial mucosas, and the accumulation of toxic elements in lung alveoli and lymph nodes. The particles and tissue elemental distributions were identified and characterised using micro-PIXE elemental mapping of thin frozen sections using the ITN Nuclear Microprobe facility. Significant particle deposits are found at the distal respiratory tract. Al, Si, Ti, V, Cr, Fe, Ni, Cu and Zn are elements detected at these accumulation areas. The elemental distributions in the different cellular environments of lymph nodes vary. The major compartments for Al, Si, Ti, Fe and Cr are the phagocytic cells and capsule of lymph nodes, while V and Ni are in the cortex and paracortex medullar areas which retain more than 70% of these two elements, suggesting high solubility of the latter in the cellular milieu. The elemental mobilisation from particles or deposits to surrounding tissues at the respiratory ducts evidences patterns of diffusion and removal that are different than those for elements in the respiratory tract. Mobilisation of elements such as V, Cr and Ni is more relevant at alveoli areas where gaseous exchange takes place. The apparent high solubility of V and Ni in the respiratory tract tissue points towards a deviation of the lymphatic system filtering efficiency for these elements when compared to others

  8. Clinico-pathogenetic substantiation and experience of the use of interferon alpha 2b in children with acute respiratory viral infections

    Directory of Open Access Journals (Sweden)

    Marushko Yu.V.

    2016-03-01

    Full Text Available Objective. To evaluate the efficacy and safety of interferon preparations in children under three years with acute respiratory viral infections. Patients and methods. A total of 97 observed children with a diagnosis ARVI has been consulted by doctor at 152 days after the onset of the disease. In the main group in the complex treatment additionally was prescribed nasal interferon alpha 2b «Nazoferon» in the age dosages. Children of the control group had received conventional treatment only. Results. Due to the application of Nazoferon was observed a decrease in the duration as of the main symptoms of the disease (catarrhal phenomena and temperature reaction, so the effects of intoxication. On the fifth day of treatment the difference between clinical parameters was more pronounced. It is found that Nazoferon well tolerated, does not cause discomfort on the part of the respiratory system. Conclusions. The good clinical efficacy and lack of adverse reactions allow recommending Nazoferon for use in pediatric patients. Application of Nazoferon is important to start from the early 152 days of the disease. Allow it to use as a prophylactic measure.

  9. Culturing of respiratory viruses in well-differentiated pseudostratified human airway epithelium as a tool to detect unknown viruses

    Science.gov (United States)

    Jazaeri Farsani, Seyed Mohammad; Deijs, Martin; Dijkman, Ronald; Molenkamp, Richard; Jeeninga, Rienk E; Ieven, Margareta; Goossens, Herman; van der Hoek, Lia

    2015-01-01

    Background Currently, virus discovery is mainly based on molecular techniques. Here, we propose a method that relies on virus culturing combined with state-of-the-art sequencing techniques. The most natural ex vivo culture system was used to enable replication of respiratory viruses. Method Three respiratory clinical samples were tested on well-differentiated pseudostratified tracheobronchial human airway epithelial (HAE) cultures grown at an air–liquid interface, which resemble the airway epithelium. Cells were stained with convalescent serum of the patients to identify infected cells and apical washes were analyzed by VIDISCA-454, a next-generation sequencing virus discovery technique. Results Infected cells were observed for all three samples. Sequencing subsequently indicated that the cells were infected by either human coronavirus OC43, influenzavirus B, or influenzavirus A. The sequence reads covered a large part of the genome (52%, 82%, and 57%, respectively). Conclusion We present here a new method for virus discovery that requires a virus culture on primary cells and an antibody detection. The virus in the harvest can be used to characterize the viral genome sequence and cell tropism, but also provides progeny virus to initiate experiments to fulfill the Koch's postulates. PMID:25482367

  10. Productive infection of human immunodeficiency virus type 1 in dendritic cells requires fusion-mediated viral entry

    International Nuclear Information System (INIS)

    Janas, Alicia M.; Dong, Chunsheng; Wang Jianhua; Wu Li

    2008-01-01

    Human immunodeficiency virus type 1 (HIV-1) enters dendritic cells (DCs) through endocytosis and viral receptor-mediated fusion. Although endocytosis-mediated HIV-1 entry can generate productive infection in certain cell types, including human monocyte-derived macrophages, productive HIV-1 infection in DCs appears to be dependent on fusion-mediated viral entry. It remains to be defined whether endocytosed HIV-1 in DCs can initiate productive infection. Using HIV-1 infection and cellular fractionation assays to measure productive viral infection and entry, here we show that HIV-1 enters monocyte-derived DCs predominately through endocytosis; however, endocytosed HIV-1 cannot initiate productive HIV-1 infection in DCs. In contrast, productive HIV-1 infection in DCs requires fusion-mediated viral entry. Together, these results provide functional evidence in understanding HIV-1 cis-infection of DCs, suggesting that different pathways of HIV-1 entry into DCs determine the outcome of viral infection

  11. The cost of community-managed viral respiratory illnesses in a cohort of healthy preschool-aged children

    Directory of Open Access Journals (Sweden)

    Allen Kelly M

    2008-01-01

    Full Text Available Abstract Background Acute respiratory illnesses (ARIs during childhood are often caused by respiratory viruses, result in significant morbidity, and have associated costs for families and society. Despite their ubiquity, there is a lack of interdisciplinary epidemiologic and economic research that has collected primary impact data, particularly associated with indirect costs, from families during ARIs in children. Methods We conducted a 12-month cohort study in 234 preschool children with impact diary recording and PCR testing of nose-throat swabs for viruses during an ARI. We used applied values to estimate a virus-specific mean cost of ARIs. Results Impact diaries were available for 72% (523/725 of community-managed illnesses between January 2003 and January 2004. The mean cost of ARIs was AU$309 (95% confidence interval $263 to $354. Influenza illnesses had a mean cost of $904, compared with RSV, $304, the next most expensive single-virus illness, although confidence intervals overlapped. Mean carer time away from usual activity per day was two hours for influenza ARIs and between 30 and 45 minutes for all other ARI categories. Conclusion From a societal perspective, community-managed ARIs are a significant cost burden on families and society. The point estimate of the mean cost of community-managed influenza illnesses in healthy preschool aged children is three times greater than those illnesses caused by RSV and other respiratory viruses. Indirect costs, particularly carer time away from usual activity, are the key cost drivers for ARIs in children. The use of parent-collected specimens may enhance ARI surveillance and reduce any potential Hawthorne effect caused by compliance with study procedures. These findings reinforce the need for further integrated epidemiologic and economic research of ARIs in children to allow for comprehensive cost-effectiveness assessments of preventive and therapeutic options.

  12. Proteomic analysis of mitochondria in respiratory epithelial cells infected with human respiratory syncytial virus and functional implications for virus and cell biology.

    Science.gov (United States)

    Munday, Diane C; Howell, Gareth; Barr, John N; Hiscox, Julian A

    2015-03-01

    The aim of this study was to quantitatively characterise the mitochondrial proteome of airway epithelial cells infected with human respiratory syncytial virus (HRSV), a major cause of paediatric illness. Quantitative proteomics, underpinned by stable isotope labelling with amino acids in cell culture, coupled to LC-MS/MS, was applied to mitochondrial fractions prepared from HRSV-infected and mock-infected cells 12 and 24 h post-infection. Datasets were analysed using ingenuity pathway analysis, and the results were validated and characterised using bioimaging, targeted inhibition and gene depletion. The data quantitatively indicated that antiviral signalling proteins converged on mitochondria during HRSV infection. The mitochondrial receptor protein Tom70 was found to act in an antiviral manner, while its chaperone, Hsp90, was confirmed to be a positive viral factor. Proteins associated with different organelles were also co-enriched in the mitochondrial fractions from HRSV-infected cells, suggesting that alterations in organelle dynamics and membrane associations occur during virus infection. Protein and pathway-specific alterations occur to the mitochondrial proteome in a spatial and temporal manner during HRSV infection, suggesting that this organelle may have altered functions. These could be targeted as part of potential therapeutic strategies to disrupt virus biology. © 2014 Royal Pharmaceutical Society.

  13. Expression of a humanized viral 2A-mediated lux operon efficiently generates autonomous bioluminescence in human cells.

    Directory of Open Access Journals (Sweden)

    Tingting Xu

    Full Text Available Expression of autonomous bioluminescence from human cells was previously reported to be impossible, suggesting that all bioluminescent-based mammalian reporter systems must therefore require application of a potentially influential chemical substrate. While this was disproven when the bacterial luciferase (lux cassette was demonstrated to function in a human cell, its expression required multiple genetic constructs, was functional in only a single cell type, and generated a significantly reduced signal compared to substrate-requiring systems. Here we investigate the use of a humanized, viral 2A-linked lux genetic architecture for the efficient introduction of an autobioluminescent phenotype across a variety of human cell lines.The lux cassette was codon optimized and assembled into a synthetic human expression operon using viral 2A elements as linker regions. Human kidney, breast cancer, and colorectal cancer cell lines were both transiently and stably transfected with the humanized operon and the resulting autobioluminescent phenotype was evaluated using common imaging instrumentation. Autobioluminescent cells were screened for cytotoxic effects resulting from lux expression and their utility as bioreporters was evaluated through the demonstration of repeated monitoring of single populations over a prolonged period using both a modified E-SCREEN assay for estrogen detection and a classical cytotoxic compound detection assay for the antibiotic Zeocin. Furthermore, the use of self-directed bioluminescent initiation in response to target detection was assessed to determine its amenability towards deployment as fully autonomous sensors. In all cases, bioluminescent measurements were supported with traditional genetic and transcriptomic evaluations.Our results demonstrate that the viral 2A-linked, humanized lux genetic architecture successfully produced autobioluminescent phenotypes in all cell lines tested without the induction of cytotoxicity

  14. Anti-respiratory syncytial virus (RSV) G monoclonal antibodies reduce lung inflammation and viral lung titers when delivered therapeutically in a BALB/c mouse model.

    Science.gov (United States)

    Caidi, Hayat; Miao, Congrong; Thornburg, Natalie J; Tripp, Ralph A; Anderson, Larry J; Haynes, Lia M

    2018-06-01

    RSV continues to be a high priority for vaccine and antiviral drug development. Unfortunately, no safe and effective RSV vaccine is available and treatment options are limited. Over the past decade, several studies have focused on the role of RSV G protein on viral entry, viral neutralization, and RSV-mediated pathology. Anti-G murine monoclonal antibody (mAb) 131-2G treatment has been previously shown to reduce weight loss, bronchoalveolar lavage (BAL) cell number, airway reactivity, and Th2-type cytokine production in RSV-infected mice more rapidly than a commercial humanized monoclonal antibody (mAb) against RSV F protein (Palivizumab). In this study, we have tested two human anti-RSV G mAbs, 2B11 and 3D3, by both prophylactic and therapeutic treatment for RSV in the BALB/c mouse model. Both anti-G mAbs reduced viral load, leukocyte infiltration and IFN-γ and IL-4 expression in cell-free BAL supernatants emphasizing the potential of anti-G mAbs as anti-inflammatory and antiviral strategies. Published by Elsevier B.V.

  15. Non-Viral Generation of Neural Precursor-like Cells from Adult Human Fibroblasts

    Directory of Open Access Journals (Sweden)

    Maucksch C

    2012-01-01

    Full Text Available Recent studies have reported direct reprogramming of human fibroblasts to mature neurons by the introduction of defined neural genes. This technology has potential use in the areas of neurological disease modeling and drug development. However, use of induced neurons for large-scale drug screening and cell-based replacement strategies is limited due to their inability to expand once reprogrammed. We propose it would be more desirable to induce expandable neural precursor cells directly from human fibroblasts. To date several pluripotent and neural transcription factors have been shown to be capable of converting mouse fibroblasts to neural stem/precursor-like cells when delivered by viral vectors. Here we extend these findings and demonstrate that transient ectopic insertion of the transcription factors SOX2 and PAX6 to adult human fibroblasts through use of non-viral plasmid transfection or protein transduction allows the generation of induced neural precursor (iNP colonies expressing a range of neural stem and pro-neural genes. Upon differentiation, iNP cells give rise to neurons exhibiting typical neuronal morphologies and expressing multiple neuronal markers including tyrosine hydroxylase and GAD65/67. Importantly, iNP-derived neurons demonstrate electrophysiological properties of functionally mature neurons with the capacity to generate action potentials. In addition, iNP cells are capable of differentiating into glial fibrillary acidic protein (GFAP-expressing astrocytes. This study represents a novel virus-free approach for direct reprogramming of human fibroblasts to a neural precursor fate.

  16. Human microglia and astrocytes express cGAS-STING viral sensing components.

    Science.gov (United States)

    Jeffries, Austin M; Marriott, Ian

    2017-09-29

    While microglia and astrocytes are known to produce key inflammatory and anti-viral mediators following infection with replicative DNA viruses, the mechanisms by which these cell types perceive such threats are poorly understood. Recently, cyclic GMP-AMP synthase (cGAS) has been identified as an important cytosolic sensor for DNA viruses and retroviruses in peripheral leukocytes. Here we confirm the ability of human microglial and astrocytic cell lines and primary human glia to respond to foreign intracellular double stranded DNA. Importantly, we provide the first demonstration that human microglia and astrocytes show robust levels of cGAS protein expression at rest and following activation. Furthermore, we show these cell types also constitutively express the critical downstream cGAS adaptor protein, stimulator of interferon genes (STING). The present finding that human glia express the principle components of the cGAS-STING pathway provides a foundation for future studies to investigate the relative importance of these molecules in clinically relevant viral CNS infections. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. TREX1 Knockdown Induces an Interferon Response to HIV that Delays Viral Infection in Humanized Mice

    Directory of Open Access Journals (Sweden)

    Lee Adam Wheeler

    2016-05-01

    Full Text Available Despite their antiviral effect, the in vivo effect of interferons on HIV transmission is difficult to predict, because interferons also activate and recruit HIV-susceptible cells to sites of infection. HIV does not normally induce type I interferons in infected cells, but does if TREX1 is knocked down. Here, we investigated the effect of topical TREX1 knockdown and local interferon production on HIV transmission in human cervicovaginal explants and humanized mice. In explants in which TREX1 was knocked down, HIV induced interferons, which blocked infection. In humanized mice, even though TREX1 knockdown increased infiltrating immune cells, it delayed viral replication for 3–4 weeks. Similarly intravaginal application of type I interferons the day before HIV infection induced interferon responsive genes, reduced inflammation, and decreased viral replication. However, intravenous interferon enhanced inflammation and infection. Thus, in models of human sexual transmission, a localized interferon response inhibits HIV transmission but systemic interferons do not.

  18. Elevated temperature triggers human respiratory syncytial virus F protein six-helix bundle formation

    International Nuclear Information System (INIS)

    Yunus, Abdul S.; Jackson, Trent P.; Crisafi, Katherine; Burimski, Irina; Kilgore, Nicole R.; Zoumplis, Dorian; Allaway, Graham P.; Wild, Carl T.; Salzwedel, Karl

    2010-01-01

    Human respiratory syncytial virus (RSV) is a major cause of severe lower respiratory tract infection in infants, immunocompromised patients, and the elderly. The RSV fusion (F) protein mediates fusion of the viral envelope with the target cell membrane during virus entry and is a primary target for antiviral drug and vaccine development. The F protein contains two heptad repeat regions, HR1 and HR2. Peptides corresponding to these regions form a six-helix bundle structure that is thought to play a critical role in membrane fusion. However, characterization of six-helix bundle formation in native RSV F protein has been hindered by the fact that a trigger for F protein conformational change has yet to be identified. Here we demonstrate that RSV F protein on the surface of infected cells undergoes a conformational change following exposure to elevated temperature, resulting in the formation of the six-helix bundle structure. We first generated and characterized six-helix bundle-specific antibodies raised against recombinant peptides modeling the RSV F protein six-helix bundle structure. We then used these antibodies as probes to monitor RSV F protein six-helix bundle formation in response to a diverse array of potential triggers of conformational changes. We found that exposure of 'membrane-anchored' RSV F protein to elevated temperature (45-55 deg. C) was sufficient to trigger six-helix bundle formation. Antibody binding to the six-helix bundle conformation was detected by both flow cytometry and cell-surface immunoprecipitation of the RSV F protein. None of the other treatments, including interaction with a number of potential receptors, resulted in significant binding by six-helix bundle-specific antibodies. We conclude that native, untriggered RSV F protein exists in a metastable state that can be converted in vitro to the more stable, fusogenic six-helix bundle conformation by an increase in thermal energy. These findings help to better define the mechanism of

  19. Seasonal and pandemic human influenza viruses attach better to human upper respiratory tract epithelium than avian influenza viruses

    NARCIS (Netherlands)

    D.A.J. van Riel (Debby); M.A. den Bakker (Michael); L.M.E. Leijten (Lonneke); S. Chutinimitkul (Salin); V.J. Munster (Vincent); E. de Wit (Emmie); G.F. Rimmelzwaan (Guus); R.A.M. Fouchier (Ron); A.D.M.E. Osterhaus (Albert); T. Kuiken (Thijs)

    2010-01-01

    textabstractInfluenza viruses vary markedly in their efficiency of human-to-human transmission. This variation has been speculated to be determined in part by the tropism of influenza virus for the human upper respiratory tract. To study this tropism, we determined the pattern of virus attachment by

  20. Middle East Respiratory Syndrome

    Centers for Disease Control (CDC) Podcasts

    2014-07-07

    This podcast discusses Middle East Respiratory Syndrome, or MERS, a viral respiratory illness caused by Middle East Respiratory Syndrome Coronavirus—MERS-CoV.  Created: 7/7/2014 by National Center for Immunization and Respiratory Diseases (NCIRD).   Date Released: 7/7/2014.

  1. The effects of carbon monoxide on respiratory chemoreflexes in humans

    International Nuclear Information System (INIS)

    Vesely, A.E.; Somogyi, R.B.; Sasano, Hiroshi; Sasano, Nobuko; Fisher, J.A.; Duffin, James

    2004-01-01

    As protection against low-oxygen and high-carbon-dioxide environments, the respiratory chemoreceptors reflexly increase breathing. Since CO is also frequently present in such environments, it is important to know whether CO affects the respiratory chemoreflexes responsiveness. Although the peripheral chemoreceptors fail to detect hypoxia produced by CO poisoning, whether CO affects the respiratory chemoreflex responsiveness to carbon dioxide is unknown. The responsiveness of 10 healthy male volunteers were assessed before and after inhalation of ∼1200 ppm CO in air using two iso-oxic rebreathing tests; hypoxic, to emphasize the peripheral chemoreflex, and hyperoxic, to emphasize the central chemoreflex. Although mean (SEM) COHb values of 10.2 (0.2)% were achieved, no statistically significant effects of CO were observed. The average differences between pre- and post-CO values for ventilation response threshold and sensitivity were -0.5 (0.9) mmHg and 0.8 (0.3) L/min/mmHg, respectively, for hyperoxia, and 0.7 (1.1) mmHg and 1.2 (0.8) L/min/mmHg, respectively, for hypoxia. The 95% confidence intervals for the effect of CO were small. We conclude that environments with low levels of CO do not have a clinically significant effect acutely on either the central or the peripheral chemoreflex responsiveness to carbon dioxide

  2. Dynamic and nucleolin-dependent localization of human cytomegalovirus UL84 to the periphery of viral replication compartments and nucleoli.

    Science.gov (United States)

    Bender, Brian J; Coen, Donald M; Strang, Blair L

    2014-10-01

    Protein-protein and protein-nucleic acid interactions within subcellular compartments are required for viral genome replication. To understand the localization of the human cytomegalovirus viral replication factor UL84 relative to other proteins involved in viral DNA synthesis and to replicating viral DNA in infected cells, we created a recombinant virus expressing a FLAG-tagged version of UL84 (UL84FLAG) and used this virus in immunofluorescence assays. UL84FLAG localization differed at early and late times of infection, transitioning from diffuse distribution throughout the nucleus to exclusion from the interior of replication compartments, with some concentration at the periphery of replication compartments with newly labeled DNA and the viral DNA polymerase subunit UL44. Early in infection, UL84FLAG colocalized with the viral single-stranded DNA binding protein UL57, but colocalization became less prominent as infection progressed. A portion of UL84FLAG also colocalized with the host nucleolar protein nucleolin at the peripheries of both replication compartments and nucleoli. Small interfering RNA (siRNA)-mediated knockdown of nucleolin resulted in a dramatic elimination of UL84FLAG from replication compartments and other parts of the nucleus and its accumulation in the cytoplasm. Reciprocal coimmunoprecipitation of viral proteins from infected cell lysates revealed association of UL84, UL44, and nucleolin. These results indicate that UL84 localization during infection is dynamic, which is likely relevant to its functions, and suggest that its nuclear and subnuclear localization is highly dependent on direct or indirect interactions with nucleolin. Importance: The protein-protein interactions among viral and cellular proteins required for replication of the human cytomegalovirus (HCMV) DNA genome are poorly understood. We sought to understand how an enigmatic HCMV protein critical for virus replication, UL84, localizes relative to other viral and cellular

  3. Structure Properties and Mechanisms of Action of Naturally Originated Phenolic Acids and Their Derivatives against Human Viral Infections.

    Science.gov (United States)

    Wu, Yi-Hang; Zhang, Bing-Yi; Qiu, Li-Peng; Guan, Rong-Fa; Ye, Zi-Hong; Yu, Xiao-Ping

    2017-01-01

    A great effort has been made to develop efficacious antiviral drugs, but many viral infections are still lack of efficient antiviral therapies so far. The related exploration of natural products to fight viruses has been raised in recent years. Natural compounds with structural diversity and complexity offer a great chance to find new antiviral agents. Particularly, phenolic acids have attracted considerable attention owing to their potent antiviral abilities and unique mechanisms. The aim of this review is to report new discoveries and updates pertaining to antiviral phenolic acids. The relevant references on natural phenolic acids were searched. The antiviral phenolic acids were classified according to their structural properties and antiviral types. Meanwhile, the antiviral characteristics and structure-activity relationships of phenolic acids and their derivatives were summarized. The review finds that natural phenolic acids and their derivatives possessed potent inhibitory effects on multiple virus in humans such as human immunodeficiency virus, hepatitis C virus, hepatitis B virus, herpes simplex virus, influenza virus and respiratory syncytial virus. In particular, caffeic acid/gallic acid and their derivatives exhibited outstanding antiviral properties by a variety of modes of action. Naturally derived phenolic acids especially caffeic acid/gallic acid and their derivatives may be regarded as novel promising antiviral leads or candidates. Additionally, scarcely any of these compounds has been used as antiviral treatment in clinical practice. Therefore, these phenolic acids with diverse skeletons and mechanisms provide us an excellent resource for finding novel antiviral drugs. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Absence of detectable influenza RNA transmitted via aerosol during various human respiratory activities--experiments from Singapore and Hong Kong.

    Directory of Open Access Journals (Sweden)

    Julian W Tang

    Full Text Available Two independent studies by two separate research teams (from Hong Kong and Singapore failed to detect any influenza RNA landing on, or inhaled by, a life-like, human manikin target, after exposure to naturally influenza-infected volunteers. For the Hong Kong experiments, 9 influenza-infected volunteers were recruited to breathe, talk/count and cough, from 0.1 m and 0.5 m distance, onto a mouth-breathing manikin. Aerosolised droplets exhaled from the volunteers and entering the manikin's mouth were collected with PTFE filters and an aerosol sampler, in separate experiments. Virus detection was performed using an in-house influenza RNA reverse-transcription polymerase chain reaction (RT-PCR assay. No influenza RNA was detected from any of the PTFE filters or air samples. For the Singapore experiments, 6 influenza-infected volunteers were asked to breathe (nasal/mouth breathing, talk (counting in English/second language, cough (from 1 m/0.1 m away and laugh, onto a thermal, breathing manikin. The manikin's face was swabbed at specific points (around both eyes, the nostrils and the mouth before and after exposure to each of these respiratory activities, and was cleaned between each activity with medical grade alcohol swabs. Shadowgraph imaging was used to record the generation of these respiratory aerosols from the infected volunteers and their impact onto the target manikin. No influenza RNA was detected from any of these swabs with either team's in-house diagnostic influenza assays. All the influenza-infected volunteers had diagnostic swabs taken at recruitment that confirmed influenza (A/H1, A/H3 or B infection with high viral loads, ranging from 10(5-10(8 copies/mL (Hong Kong volunteers/assay and 10(4-10(7 copies/mL influenza viral RNA (Singapore volunteers/assay. These findings suggest that influenza RNA may not be readily transmitted from naturally-infected human source to susceptible recipients via these natural respiratory activities, within

  5. Effect of human milk prostaglandins and lactoferrin on respiratory syncytial virus and rotavirus.

    Science.gov (United States)

    Grover, M; Giouzeppos, O; Schnagl, R D; May, J T

    1997-03-01

    The effect of lactoferrin and prostaglandins E and F2 alpha on the growth of rotavirus and respiratory syncytial virus in cell culture was investigated. Lactoferrin inhibited the growth of respiratory syncytial virus at a concentration tenfold lower than that normally present in human milk. The prostaglandins had no effect on either virus growth, even at a concentration of 100-fold more than that found in human milk. Lactoferrin may have some antiviral properties in human milk in addition to its known antibacterial functions.

  6. Comparison of initial high resolution computed tomography features in viral pneumonia between metapneumovirus infection and severe acute respiratory syndrome

    International Nuclear Information System (INIS)

    Wong, Cheuk Kei Kathy; Lai, Vincent; Wong, Yiu Chung

    2012-01-01

    Objective: To review and compare initial high resolution computed tomography (HRCT) findings in patients with metapneumovirus pneumonia and severe acute respiratory syndrome (SARS-Coronovirus). Materials and methods: 4 cases of metapneumovirus pneumonia (mean age of 52.3 years) in an institutional outbreak (Castle Peak Hospital) in 2008 and 38 cases of SARS-coronovirus (mean age of 39.6 years) admitted to Tuen Mun hospital during an epidemic outbreak in 2003 were included. HRCT findings of the lungs for all patients were retrospectively reviewed by two independent radiologists. Results: In the metapneumovirus group, common HRCT features were ground glass opacities (100%), consolidation (100%), parenchymal band (100%), bronchiectasis (75%). Crazy paving pattern was absent. They were predominantly subpleural and basal in location and bilateral involvement was observed in 50% of patients. In the SARS group, common HRCT features were ground glass opacities (92.1%), interlobular septal thickening (86.8%), crazy paving pattern (73.7%) and consolidation (68%). Bronchiectasis was not seen. Majority of patient demonstrated segmental or lobar in distribution and bilateral involvement was observed in 44.7% of patients. Pleural effusion and lymphadenopathy were of consistent rare features in both groups. Conclusion: Ground glass opacities, interlobular septal thickening and consolidations were consistent HRCT manifestations in both metapneumovirus infection and SARS. The presence of bronchiectasis (0% in SARS) may point towards metapneumovirus while crazy paving pattern is more suggestive of SARS.

  7. The assessment of efficacy of porcine reproductive respiratory syndrome virus inactivated vaccine based on the viral quantity and inactivation methods

    Directory of Open Access Journals (Sweden)

    Lee Byeongchun

    2011-06-01

    Full Text Available Abstract Background There have been many efforts to develop efficient vaccines for the control of porcine reproductive and respiratory syndrome virus (PRRSV. Although inactivated PRRSV vaccines are preferred for their safety, they are weak at inducing humoral immune responses and controlling field PRRSV infection, especially when heterologous viruses are involved. Results In all groups, the sample to positive (S/P ratio of IDEXX ELISA and the virus neutralization (VN titer remained negative until challenge. While viremia did not reduce in the vaccinated groups, the IDEXX-ELISA-specific immunoglobulin G increased more rapidly and to significantly greater levels 7 days after the challenge in all the vaccinated groups compared to the non-vaccinated groups (p 6 PFU/mL PRRSV vaccine-inoculated and binary ethylenimine (BEI-inactivated groups 22 days after challenge (p Conclusions The inactivated vaccine failed to show the humoral immunity, but it showed different immune response after the challenge compared to mock group. Although the 106 PFU/mL-vaccinated and BEI-inactivated groups showed significantly greater VN titers 22 days after challenge, all the groups were already negative for viremia.

  8. Respiratory system

    Science.gov (United States)

    Bartlett, R. G., Jr.

    1973-01-01

    The general anatomy and function of the human respiratory system is summarized. Breathing movements, control of breathing, lung volumes and capacities, mechanical relations, and factors relevant to respiratory support and equipment design are discussed.

  9. Structural Analysis of Major Species Barriers between Humans and Palm Civets for Severe Acute Respiratory Syndrome Coronavirus Infections

    Energy Technology Data Exchange (ETDEWEB)

    Li, Fang (UMM)

    2008-09-23

    It is believed that a novel coronavirus, severe acute respiratory syndrome coronavirus (SARS-CoV), was passed from palm civets to humans and caused the epidemic of SARS in 2002 to 2003. The major species barriers between humans and civets for SARS-CoV infections are the specific interactions between a defined receptor-binding domain (RBD) on a viral spike protein and its host receptor, angiotensin-converting enzyme 2 (ACE2). In this study a chimeric ACE2 bearing the critical N-terminal helix from civet and the remaining peptidase domain from human was constructed, and it was shown that this construct has the same receptor activity as civet ACE2. In addition, crystal structures of the chimeric ACE2 complexed with RBDs from various human and civet SARS-CoV strains were determined. These structures, combined with a previously determined structure of human ACE2 complexed with the RBD from a human SARS-CoV strain, have revealed a structural basis for understanding the major species barriers between humans and civets for SARS-CoV infections. They show that the major species barriers are determined by interactions between four ACE2 residues (residues 31, 35, 38, and 353) and two RBD residues (residues 479 and 487), that early civet SARS-CoV isolates were prevented from infecting human cells due to imbalanced salt bridges at the hydrophobic virus/receptor interface, and that SARS-CoV has evolved to gain sustained infectivity for human cells by eliminating unfavorable free charges at the interface through stepwise mutations at positions 479 and 487. These results enhance our understanding of host adaptations and cross-species infections of SARS-CoV and other emerging animal viruses.

  10. SRS-A leukotrienes decrease the activity of human respiratory cilia

    DEFF Research Database (Denmark)

    Bisgaard, H; Pedersen, M

    1987-01-01

    We have studied the effects of the slow reacting substance of anaphylaxis (SRS-A) constituents leukotrienes (LT) C4 and D4 on the ciliary activity of human respiratory cells. The ciliary beat frequency on human nasal cells harvested by cell scraping from the inferior turbinate was measured...

  11. Within-Host Variations of Human Papillomavirus Reveal APOBEC-Signature Mutagenesis in the Viral Genome.

    Science.gov (United States)

    Hirose, Yusuke; Onuki, Mamiko; Tenjimbayashi, Yuri; Mori, Seiichiro; Ishii, Yoshiyuki; Takeuchi, Takamasa; Tasaka, Nobutaka; Satoh, Toyomi; Morisada, Tohru; Iwata, Takashi; Miyamoto, Shingo; Matsumoto, Koji; Sekizawa, Akihiko; Kukimoto, Iwao

    2018-03-28

    Persistent infection with oncogenic human papillomaviruses (HPVs) causes cervical cancer, accompanied with the accumulation of somatic mutations into the host genome. There are concomitant genetic changes in the HPV genome during viral infection; however, their relevance to cervical carcinogenesis is poorly understood. Here we explored within-host genetic diversity of HPV by performing deep sequencing analyses of viral whole-genome sequences in clinical specimens. The whole genomes of HPV types 16, 52 and 58 were amplified by type-specific PCR from total cellular DNA of cervical exfoliated cells collected from patients with cervical intraepithelial neoplasia (CIN) and invasive cervical cancer (ICC), and were deep-sequenced. After constructing a reference vial genome sequence for each specimen, nucleotide positions showing changes with > 0.5% frequencies compared to the reference sequence were determined for individual samples. In total, 1,052 positions of nucleotide variations were detected in HPV genomes from 151 samples (CIN1, n = 56; CIN2/3, n = 68; ICC, n = 27), with varying numbers per sample. Overall, C-to-T and C-to-A substitutions were the dominant changes observed across all histological grades. While C-to-T transitions were predominantly detected in CIN1, their prevalence was decreased in CIN2/3 and fell below that of C-to-A transversions in ICC. Analysis of the tri-nucleotides context encompassing substituted bases revealed that Tp C pN, a preferred target sequence for cellular APOBEC cytosine deaminases, was a primary site for C-to-T substitutions in the HPV genome. These results strongly imply that the APOBEC proteins are drivers of HPV genome mutation, particularly in CIN1 lesions. IMPORTANCE HPVs exhibit surprisingly high levels of genetic diversity, including a large repertoire of minor genomic variants in each viral genotype. Here, by conducting deep sequencing analyses, we show for the first time a comprehensive snapshot of the "within

  12. Replication and clearance of respiratory syncytial virus - Apoptosis is an important pathway of virus clearance after experimental infection with bovine respiratory syncytial virus

    DEFF Research Database (Denmark)

    Viuff, B.; Tjørnehøj, Kirsten; Larsen, Lars Erik

    2002-01-01

    and clearance in a natural target animal. Replication of BRSV was demonstrated in the luminal part of the respiratory epithelial cells and replication in the upper respiratory tract preceded the replication in the lower respiratory tract. Virus excreted to the lumen of the respiratory tract was cleared...... and the infections with human respiratory syncytial. virus and BRSV have similar clinical, pathological, and epidemiological characteristics. In this study we used experimental BRSV infection in calves as a model of respiratory syncytial virus infection to demonstrate important aspects of viral replication......Human respiratory syncytial virus is an important cause of severe respiratory disease in young children, the elderly, and in immunocompromised adults. Similarly, bovine respiratory syncytial virus (BRSV) is causing severe, sometimes fatal, respiratory disease in calves. Both viruses are pneumovirus...

  13. A Tool for Investigating Asthma and COPD Exacerbations: A Newly Manufactured and Well Characterised GMP Wild-Type Human Rhinovirus for Use in the Human Viral Challenge Model.

    Directory of Open Access Journals (Sweden)

    Daniel J Fullen

    Full Text Available Human Rhinovirus infection is an important precursor to asthma and chronic obstructive pulmonary disease exacerbations and the Human Viral Challenge model may provide a powerful tool in studying these and other chronic respiratory diseases. In this study we have reported the production and human characterisation of a new Wild-Type HRV-16 challenge virus produced specifically for this purpose.A HRV-16 isolate from an 18 year old experimentally infected healthy female volunteer (University of Virginia Children's Hospital, USA was obtained with appropriate medical history and consent. We manufactured a new HRV-16 stock by minimal passage in a WI-38 cell line under Good Manufacturing Practice conditions. Having first subjected the stock to rigorous adventitious agent testing and determining the virus suitability for human use, we conducted an initial safety and pathogenicity clinical study in adult volunteers in our dedicated clinical quarantine facility in London.In this study we have demonstrated the new Wild-Type HRV-16 Challenge Virus to be both safe and pathogenic, causing an appropriate level of disease in experimentally inoculated healthy adult volunteers. Furthermore, by inoculating volunteers with a range of different inoculum titres, we have established the minimum inoculum titre required to achieve reproducible disease. We have demonstrated that although inoculation titres as low as 1 TCID50 can produce relatively high infection rates, the optimal titre for progression with future HRV challenge model development with this virus stock was 10 TCID50. Studies currently underway are evaluating the use of this virus as a challenge agent in asthmatics.ClinicalTrials.gov NCT02522832.

  14. Hyperthermic-induced hyperventilation and associated respiratory alkalosis in humans.

    Science.gov (United States)

    Abbiss, Chris R; Nosaka, Kazunori; Laursen, Paul B

    2007-05-01

    The purpose of this study was to determine if increased environmental heat leads to hyperthermic-induced hypocapnia and associated alkalosis during prolonged self-paced cycling. Nine male cyclists completed three 100 km stochastic time trials in hot (34 degrees C), neutral (22 degrees C) and cold (10 degrees C) environments. Intermittent measurements of rectal and skin temperature, expired gases, blood pH, PaCO(2), PaO(2), and bicarbonate were made throughout. Rectal temperature increased significantly throughout all trials (P respiratory alkalosis.

  15. Contribution of herpesvirus specific CD8 T cells to anti-viral T cell response in humans.

    Directory of Open Access Journals (Sweden)

    Elena Sandalova

    Full Text Available Herpesviruses infect most humans. Their infections can be associated with pathological conditions and significant changes in T cell repertoire but evidences of symbiotic effects of herpesvirus latency have never been demonstrated. We tested the hypothesis that HCMV and EBV-specific CD8 T cells contribute to the heterologous anti-viral immune response. Volume of activated/proliferating virus-specific and total CD8 T cells was evaluated in 50 patients with acute viral infections: 20 with HBV, 12 with Dengue, 12 with Influenza, 3 with Adenovirus infection and 3 with fevers of unknown etiology. Virus-specific (EBV, HCMV, Influenza pentamer+ and total CD8 T cells were analyzed for activation (CD38/HLA-DR, proliferation (Ki-67/Bcl-2(low and cytokine production. We observed that all acute viral infections trigger an expansion of activated/proliferating CD8 T cells, which differs in size depending on the infection but is invariably inflated by CD8 T cells specific for persistent herpesviruses (HCMV/EBV. CD8 T cells specific for other non-related non persistent viral infection (i.e. Influenza were not activated. IL-15, which is produced during acute viral infections, is the likely contributing mechanism driving the selective activation of herpesvirus specific CD8 T cells. In addition we were able to show that herpesvirus specific CD8 T cells displayed an increased ability to produce the anti-viral cytokine interferon-gamma during the acute phase of heterologous viral infection. Taken together, these data demonstrated that activated herpesvirus specific CD8 T cells inflate the activated/proliferating CD8 T cells population present during acute viral infections in human and can contribute to the heterologous anti-viral T cell response.

  16. Therapy for influenza and acute respiratory viral infection in young and middle-aged schoolchildren: Effect of Ingavirin® on intoxication, fever, and catarrhal syndromes

    Directory of Open Access Journals (Sweden)

    I. M. Farber

    2016-01-01

    Full Text Available The paper presents the clinical results of a double-blind, randomized, placebo-controlled multicenter phase III study evaluating the clinical efficacy and safety of Ingavirin® capsules 30 mg at a daily dose of 60 mg for the treatment of influenza and other acute respiratory viral infections (ARVI in 7–12-year-old children.The study included 310 children of both sexes. The study participants took Ingavirin® 60 mg/day or placebo for 5 days. The drug was shown to be effective in normalizing temperature and alleviating intoxication and catarrhal syndromes just at day 3 of therapy. Ingavirin® was demonstrated to considerably reduce the risk of bacterial complications of ARVI/influenza, which require antibiotic therapy, which is important for clinical use in children. This clinical trial has shown the high safety and tolerance of the drug. Ingavirin® contributes to accelerated virus elimination, shorter disease duration, and lower risk of complications.

  17. Adeno-associated viral vector transduction of human mesenchymal stem cells

    DEFF Research Database (Denmark)

    Stender, Stefan; Murphy, Mary; O'Brien, Tim

    2007-01-01

    Mesenchymal stem cells (MSCs) have received considerable attention in the emerging field of regenerative medicine. One aspect of MSC research focuses on genetically modifying the cells with the aim of enhancing their regenerative potential. Adeno-associated virus (AAV) holds promise as a vector...... in human MSCs and to assess whether AAV transduction affects MSC multipotentiality. The results indicated that human MSCs could indeed be transiently transduced in vitro by the AAV2 vector with efficiencies of up to 65%. The percentage of GFP-positive cells peaked at 4 days post-transduction and declined...... rapidly towards 0% after day 8. The level of transgene expression in the GFP-positive population increased 4-fold over a 10,000 fold viral dose increase. This dose-response contrasted with the 200-fold increase observed in similarly transduced 293-cells, indicating a relatively restricted transgene...

  18. 2'-5'-Oligoadenylate Synthetase-Like Protein Inhibits Respiratory Syncytial Virus Replication and Is Targeted by the Viral Nonstructural Protein 1.

    Science.gov (United States)

    Dhar, Jayeeta; Cuevas, Rolando A; Goswami, Ramansu; Zhu, Jianzhong; Sarkar, Saumendra N; Barik, Sailen

    2015-10-01

    2'-5'-Oligoadenylate synthetase-like protein (OASL) is an interferon-inducible antiviral protein. Here we describe differential inhibitory activities of human OASL and the two mouse OASL homologs against respiratory syncytial virus (RSV) replication. Interestingly, nonstructural protein 1 (NS1) of RSV promoted proteasome-dependent degradation of specific OASL isoforms. We conclude that OASL acts as a cellular antiviral protein and that RSV NS1 suppresses this function to evade cellular innate immunity and allow virus growth. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  19. Intermittent hypoxia, respiratory plasticity and sleep apnea in humans: present knowledge and future investigations.

    Science.gov (United States)

    Mateika, Jason H; Syed, Ziauddin

    2013-09-15

    This review examines the role that respiratory plasticity has in the maintenance of breathing stability during sleep in individuals with sleep apnea. The initial portion of the review considers the manner in which repetitive breathing events may be initiated in individuals with sleep apnea. Thereafter, the role that two forms of respiratory plasticity, progressive augmentation of the hypoxic ventilatory response and long-term facilitation of upper airway and respiratory muscle activity, might have in modifying breathing events in humans is examined. In this context, present knowledge regarding the initiation of respiratory plasticity in humans during wakefulness and sleep is addressed. Also, published findings which reveal that exposure to intermittent hypoxia promotes breathing instability, at least in part, because of progressive augmentation of the hypoxic ventilatory response and the absence of long-term facilitation, are considered. Next, future directions are presented and are focused on the manner in which forms of plasticity that stabilize breathing might be promoted while diminishing destabilizing forms, concurrently. These future directions will consider the potential role of circadian rhythms in the promotion of respiratory plasticity and the role of respiratory plasticity in enhancing established treatments for sleep apnea. Published by Elsevier B.V.

  20. Intermittent hypoxia, respiratory plasticity and sleep apnea in humans; present knowledge and future investigations

    Science.gov (United States)

    Mateika, Jason H.; Syed, Ziauddin

    2013-01-01

    This review examines the role that respiratory plasticity has in the maintenance of breathing stability during sleep in individuals with sleep apnea. The initial portion of the review considers the manner in which repetitive breathing events may be initiated in individuals with sleep apnea. Thereafter, the role that two forms of respiratory plasticity, progressive augmentation of the hypoxic ventilatory response and long-term facilitation of upper airway and respiratory muscle activity, might have in modifying breathing events in humans is examined. In this context, present knowledge regarding the initiation of respiratory plasticity in humans during wakefulness and sleep is addressed. Also, published findings which reveal that exposure to intermittent hypoxia promotes breathing instability, at least in part, because of progressive augmentation of the hypoxic ventilatory response and the absence of long-term facilitation, are considered. Next, future directions are presented and are focused on the manner in which forms of plasticity that stabilize breathing might be promoted while diminishing destabilizing forms, concurrently. These future directions will consider the potential role of circadian rhythms in the promotion of respiratory plasticity and the role of respiratory plasticity in enhancing established treatments for sleep apnea. PMID:23587570

  1. Equation Discovery for Model Identification in Respiratory Mechanics of the Mechanically Ventilated Human Lung

    Science.gov (United States)

    Ganzert, Steven; Guttmann, Josef; Steinmann, Daniel; Kramer, Stefan

    Lung protective ventilation strategies reduce the risk of ventilator associated lung injury. To develop such strategies, knowledge about mechanical properties of the mechanically ventilated human lung is essential. This study was designed to develop an equation discovery system to identify mathematical models of the respiratory system in time-series data obtained from mechanically ventilated patients. Two techniques were combined: (i) the usage of declarative bias to reduce search space complexity and inherently providing the processing of background knowledge. (ii) A newly developed heuristic for traversing the hypothesis space with a greedy, randomized strategy analogical to the GSAT algorithm. In 96.8% of all runs the applied equation discovery system was capable to detect the well-established equation of motion model of the respiratory system in the provided data. We see the potential of this semi-automatic approach to detect more complex mathematical descriptions of the respiratory system from respiratory data.

  2. Zika Virus Infection of the Human Glomerular Cells: Implications for Viral Reservoirs and Renal Pathogenesis.

    Science.gov (United States)

    Alcendor, Donald J

    2017-07-15

    Zika virus (ZIKV) infection in the human renal compartment has not been reported. Several clinical reports have describe high-level persistent viral shedding in the urine of infected patients, but the associated mechanisms have not been explored until now. The current study examined cellular components of the glomerulus of the human kidney for ZIKV infectivity. I infected primary human podocytes, renal glomerular endothelial cells (GECs), and mesangial cells with ZIKV. Viral infectivity was analyzed by means of microscopy, immunofluorescence, real-time reverse-transcription polymerase chain reaction (RT-PCR), and quantitative RT-PCR (qRT-PCR), and the proinflammatory cytokines interleukin 1β, interferon β, and RANTES (regulated on activation of normal T cells expressed and secreted) were assessed using qRT-PCR. I show that glomerular podocytes, renal GECs, and mesangial cells are permissive for ZIKV infection. ZIKV infectivity was confirmed in all 3 cell types by means of immunofluorescence staining, RT-PCR, and qRT-PCR, and qRT-PCR analysis revealed increased transcriptional induction of interleukin 1β, interferon β, and RANTES in ZIKV-infected podocytes at 72 hours, compared with renal GECs and mesangial cells. The findings of this study support the notion that the glomerulus may serve as an amplification reservoir for ZIKV in the renal compartment. The impact of ZIKV infection in the human renal compartment is unknown and will require further study. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  3. The effect of cranberry juice and cranberry proanthocyanidins on the infectivity of human enteric viral surrogates.

    Science.gov (United States)

    Su, Xiaowei; Howell, Amy B; D'Souza, Doris H

    2010-06-01

    The effect of cranberry juice (CJ) and cranberry proanthocyanidins (PAC) on the infectivity of human enteric virus surrogates, murine norovirus (MNV-1), feline calicivirus (FCV-F9), MS2(ssRNA) bacteriophage, and phiX-174(ssDNA) bacteriophage was studied. Viruses at high (approximately 7 log(10) PFU/ml) or low (approximately 5 log(10) PFU/ml) titers were mixed with equal volumes of CJ, 0.30, 0.60, and 1.20 mg/ml final PAC concentration, or water and incubated for 1 h at room temperature. Viral infectivity after treatments was evaluated using standardized plaque assays. At low viral titers, FCV-F9 was undetectable after exposure to CJ or the three tested PAC solutions. MNV-1 was reduced by 2.06 log(10) PFU/ml with CJ, and 2.63, 2.75, and 2.95 log(10) PFU/ml with 0.15, 0.30, and 0.60 mg/ml PAC, respectively. MS2 titers were reduced by 1.14 log(10) PFU/ml with CJ, and 0.55, 0.80, and 0.96 log(10) PFU/ml with 0.15, 0.30, and 0.60 mg/ml PAC, respectively. phi-X174 titers were reduced by 1.79 log(10) PFU/ml with CJ, and 1.95, 3.67, and 4.98 log(10) PFU/ml with PAC at 0.15, 0.30, and 0.60 mg/ml, respectively. Experiments using high titers showed similar trends but with decreased effects. CJ and PAC show promise as natural antivirals that could potentially be exploited for foodborne viral illness treatment and prevention. 2010 Elsevier Ltd. All rights reserved.

  4. The oncogenic potential of BK-polyomavirus is linked to viral integration into the human genome.

    Science.gov (United States)

    Kenan, Daniel J; Mieczkowski, Piotr A; Burger-Calderon, Raquel; Singh, Harsharan K; Nickeleit, Volker

    2015-11-01

    It has been suggested that BK-polyomavirus is linked to oncogenesis via high expression levels of large T-antigen in some urothelial neoplasms arising following kidney transplantation. However, a causal association between BK-polyomavirus, large T-antigen expression and oncogenesis has never been demonstrated in humans. Here we describe an investigation using high-throughput sequencing of tumour DNA obtained from an urothelial carcinoma arising in a renal allograft. We show that a novel BK-polyomavirus strain, named CH-1, is integrated into exon 26 of the myosin-binding protein C1 gene (MYBPC1) on chromosome 12 in tumour cells but not in normal renal cells. Integration of the BK-polyomavirus results in a number of discrete alterations in viral gene expression, including: (a) disruption of VP1 protein expression and robust expression of large T-antigen; (b) preclusion of viral replication; and (c) deletions in the non-coding control region (NCCR), with presumed alterations in promoter feedback loops. Viral integration disrupts one MYBPC1 gene copy and likely alters its expression. Circular episomal BK-polyomavirus gene sequences are not found, and the renal allograft shows no productive polyomavirus infection or polyomavirus nephropathy. These findings support the hypothesis that integration of polyomaviruses is essential to tumourigenesis. It is likely that dysregulation of large T-antigen, with persistent over-expression in non-lytic cells, promotes cell growth, genetic instability and neoplastic transformation. © 2015 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.

  5. A SELEX-screened aptamer of human hepatitis B virus RNA encapsidation signal suppresses viral replication.

    Directory of Open Access Journals (Sweden)

    Hui Feng

    Full Text Available BACKGROUND: The specific interaction between hepatitis B virus (HBV polymerase (P protein and the ε RNA stem-loop on pregenomic (pg RNA is crucial for viral replication. It triggers both pgRNA packaging and reverse transcription and thus represents an attractive antiviral target. RNA decoys mimicking ε in P protein binding but not supporting replication might represent novel HBV inhibitors. However, because generation of recombinant enzymatically active HBV polymerase is notoriously difficult, such decoys have as yet not been identified. METHODOLOGY/PRINCIPAL FINDINGS: Here we used a SELEX approach, based on a new in vitro reconstitution system exploiting a recombinant truncated HBV P protein (miniP, to identify potential ε decoys in two large ε RNA pools with randomized upper stem. Selection of strongly P protein binding RNAs correlated with an unexpected strong enrichment of A residues. Two aptamers, S6 and S9, displayed particularly high affinity and specificity for miniP in vitro, yet did not support viral replication when part of a complete HBV genome. Introducing S9 RNA into transiently HBV producing HepG2 cells strongly suppressed pgRNA packaging and DNA synthesis, indicating the S9 RNA can indeed act as an ε decoy that competitively inhibits P protein binding to the authentic ε signal on pgRNA. CONCLUSIONS/SIGNIFICANCE: This study demonstrates the first successful identification of human HBV ε aptamers by an in vitro SELEX approach. Effective suppression of HBV replication by the S9 aptamer provides proof-of-principle for the ability of ε decoy RNAs to interfere with viral P-ε complex formation and suggests that S9-like RNAs may further be developed into useful therapeutics against chronic hepatitis B.

  6. Mathematical modelling of a human external respiratory system

    Science.gov (United States)

    1977-01-01

    A closed system of algebraic and common differential equations solved by computer is investigated. It includes equations which describe the activity pattern of the respiratory center, the phrenic nerve, the thrust produced by the diaphragm as a function of the lung volume and discharge frequency of the phrenic nerve, as well as certain relations of the lung stretch receptors and chemoreceptors on various lung and blood characteristics, equations for lung biomechanics, pulmonary blood flow, alveolar gas exchange and capillary blood composition equations to determine various air and blood flow and gas exchange parameters, and various gas mixing and arterial and venous blood composition equations, to determine other blood, air and gas mixing characteristics. Data are presented by means of graphs and tables, and some advantages of this model over others are demonstrated by test results.

  7. Genetic variability in G2 and F2 region between biological clones of human respiratory syncytial virus with or without host immune selection pressure

    Directory of Open Access Journals (Sweden)

    Claudia Trigo Pedroso Moraes

    2015-02-01

    Full Text Available Human respiratory syncytial virus (HRSV is an important respiratory pathogens among children between zero-five years old. Host immunity and viral genetic variability are important factors that can make vaccine production difficult. In this work, differences between biological clones of HRSV were detected in clinical samples in the absence and presence of serum collected from children in the convalescent phase of the illness and from their biological mothers. Viral clones were selected by plaque assay in the absence and presence of serum and nucleotide sequences of the G2 and F2 genes of HRSV biological clones were compared. One non-synonymous mutation was found in the F gene (Ile5Asn in one clone of an HRSV-B sample and one non-synonymous mutation was found in the G gene (Ser291Pro in four clones of the same HRSV-B sample. Only one of these clones was obtained after treatment with the child's serum. In addition, some synonymous mutations were determined in two clones of the HRSV-A samples. In conclusion, it is possible that minor sequences could be selected by host antibodies contributing to the HRSV evolutionary process, hampering the development of an effective vaccine, since we verify the same codon alteration in absence and presence of human sera in individual clones of BR-85 sample.

  8. Genetic variability in G2 and F2 region between biological clones of human respiratory syncytial virus with or without host immune selection pressure.

    Science.gov (United States)

    Moraes, Claudia Trigo Pedroso; Oliveira, Danielle Bruna Leal; Campos, Angelica Cristine Almeida; Bosso, Patricia Alves; Lima, Hildener Nogueira; Stewien, Klaus Eberhard; Gilio, Alfredo Elias; Vieira, Sandra Elisabete; Botosso, Viviane Fongaro; Durigon, Edison Luiz

    2015-02-01

    Human respiratory syncytial virus (HRSV) is an important respiratory pathogens among children between zero-five years old. Host immunity and viral genetic variability are important factors that can make vaccine production difficult. In this work, differences between biological clones of HRSV were detected in clinical samples in the absence and presence of serum collected from children in the convalescent phase of the illness and from their biological mothers. Viral clones were selected by plaque assay in the absence and presence of serum and nucleotide sequences of the G2 and F2 genes of HRSV biological clones were compared. One non-synonymous mutation was found in the F gene (Ile5Asn) in one clone of an HRSV-B sample and one non-synonymous mutation was found in the G gene (Ser291Pro) in four clones of the same HRSV-B sample. Only one of these clones was obtained after treatment with the child's serum. In addition, some synonymous mutations were determined in two clones of the HRSV-A samples. In conclusion, it is possible that minor sequences could be selected by host antibodies contributing to the HRSV evolutionary process, hampering the development of an effective vaccine, since we verify the same codon alteration in absence and presence of human sera in individual clones of BR-85 sample.

  9. Activity of Ingavirin (6-[2-(1H-Imidazol-4-ylethylamino]-5-oxo-hexanoic Acid Against Human Respiratory Viruses in in Vivo Experiments

    Directory of Open Access Journals (Sweden)

    Oleg I. Kiselev

    2011-11-01

    Full Text Available Respiratory viral infections constitute the most frequent reason for medical consultations in the World. They can be associated with a wide range of clinical manifestations ranging from self-limited upper respiratory tract infections to more devastating conditions such as pneumonia. In particular, in serious cases influenza A leads to pneumonia, which is particularly fatal in patients with cardiopulmonary diseases, obesity, young children and the elderly. In the present study, we show a protective effect of the low-molecular weight compound Ingavirin (6-[2-(1H-imidazol-4-ylethylamino]-5-oxohexanoic acid against influenza A (H1N1 virus, human parainfluenza virus and human adenovirus infections in animals. Mortality, weight loss, infectious titer of the virus in tissues and tissue morphology were monitored in the experimental groups of animals. The protective action of Ingavirin was observed as a reduction of infectious titer of the virus in the lung tissue, prolongation of the life of the infected animals, normalization of weight dynamics throughout the course of the disease, lowering of mortality of treated animals compared to a placebo control and normalization of tissue structure. In case of influenza virus infection, the protective activity of Ingavirin was similar to that of the reference compound Tamiflu. Based on the results obtained, Ingavirin should be considered as an important part of anti-viral prophylaxis and therapy.

  10. Engineered measles virus Edmonston strain used as a novel oncolytic viral system against human hepatoblastoma

    International Nuclear Information System (INIS)

    Zhang, Shu-Cheng; Wang, Wei-Lin; Cai, Wei-Song; Jiang, Kai-Lei; Yuan, Zheng-Wei

    2012-01-01

    Hepatoblastoma (HB) is the most common primary, malignant pediatric liver tumor in children. The treatment results for affected children have markedly improved in recent decades. However, the prognosis for high-risk patients who have extrahepatic extensions, invasion of the large hepatic veins, distant metastases and very high alpha-fetoprotein (AFP) serum levels remains poor. There is an urgent need for the development of novel therapeutic approaches. An attenuated strain of measles virus, derived from the Edmonston vaccine lineage, was genetically engineered to produce carcinoembryonic antigen (CEA). We investigated the antitumor potential of this novel viral agent against human HB both in vitro and in vivo. Infection of the Hep2G and HUH6 HB cell lines, at multiplicities of infection (MOIs) ranging from 0.01 to 1, resulted in a significant cytopathic effect consisting of extensive syncytia formation and massive cell death at 72–96 h after infection. Both of the HB lines overexpressed the measles virus receptor CD46 and supported robust viral replication, which correlated with CEA production. The efficacy of this approach in vivo was examined in murine Hep2G xenograft models. Flow cytometry assays indicated an apoptotic mechanism of cell death. Intratumoral administration of MV-CEA resulted in statistically significant delay of tumor growth and prolongation of survival. The engineered measles virus Edmonston strain MV-CEA has potent therapeutic efficacy against HB cell lines and xenografts. Trackable measles virus derivatives merit further exploration in HB treatment

  11. Respiratory Viruses in Febrile Neutropenic Patients with Respiratory Symptoms

    Directory of Open Access Journals (Sweden)

    Mohsen Meidani

    2018-01-01

    Full Text Available Background: Respiratory infections are a frequent cause of fever in neutropenic patients, whereas respiratory viral infections are not frequently considered as a diagnosis, which causes high morbidity and mortality in these patients. Materials and Methods: This prospective study was performed on 36 patients with neutropenia who admitted to hospital were eligible for inclusion with fever (single temperature of >38.3°C or a sustained temperature of >38°C for more than 1 h, upper and lower respiratory symptoms. Sampling was performed from the throat of the patient by the sterile swab. All materials were analyzed by quantitative real-time multiplex polymerase chain reaction covering the following viruses; influenza, parainfluenza virus (PIV, rhinovirus (RV, human metapneumovirus, and respiratory syncytial virus (RSV. Results: RV was the most frequently detected virus and then RSV was the most. PIV was not present in any of the tested samples. Furthermore, no substantial differences in the distribution of specific viral species were observed based on age, sex, neutropenia duration, hematological disorder, and respiratory tract symptoms and signs (P > 0.05. Conclusion: Our prospective study supports the hypothesis that respiratory viruses play an important role in the development of neutropenic fever, and thus has the potential to individualize infection treatment and to reduce the extensive use of antibiotics in immunocompromised patients with neutropenia.

  12. Modeling Viral Infectious Diseases and Development of Antiviral Therapies Using Human Induced Pluripotent Stem Cell-Derived Systems.

    Science.gov (United States)

    Trevisan, Marta; Sinigaglia, Alessandro; Desole, Giovanna; Berto, Alessandro; Pacenti, Monia; Palù, Giorgio; Barzon, Luisa

    2015-07-13

    The recent biotechnology breakthrough of cell reprogramming and generation of induced pluripotent stem cells (iPSCs), which has revolutionized the approaches to study the mechanisms of human diseases and to test new drugs, can be exploited to generate patient-specific models for the investigation of host-pathogen interactions and to develop new antimicrobial and antiviral therapies. Applications of iPSC technology to the study of viral infections in humans have included in vitro modeling of viral infections of neural, liver, and cardiac cells; modeling of human genetic susceptibility to severe viral infectious diseases, such as encephalitis and severe influenza; genetic engineering and genome editing of patient-specific iPSC-derived cells to confer antiviral resistance.

  13. Modeling Viral Infectious Diseases and Development of Antiviral Therapies Using Human Induced Pluripotent Stem Cell-Derived Systems

    Directory of Open Access Journals (Sweden)

    Marta Trevisan

    2015-07-01

    Full Text Available The recent biotechnology breakthrough of cell reprogramming and generation of induced pluripotent stem cells (iPSCs, which has revolutionized the approaches to study the mechanisms of human diseases and to test new drugs, can be exploited to generate patient-specific models for the investigation of host–pathogen interactions and to develop new antimicrobial and antiviral therapies. Applications of iPSC technology to the study of viral infections in humans have included in vitro modeling of viral infections of neural, liver, and cardiac cells; modeling of human genetic susceptibility to severe viral infectious diseases, such as encephalitis and severe influenza; genetic engineering and genome editing of patient-specific iPSC-derived cells to confer antiviral resistance.

  14. Respiratory health in Latin America: number of specialists and human resources training.

    Science.gov (United States)

    Vázquez-García, Juan-Carlos; Salas-Hernández, Jorge; Pérez Padilla, Rogelio; Montes de Oca, María

    2014-01-01

    Latin America is made up of a number of developing countries. Demographic changes are occurring in the close to 600 million inhabitants, in whom a significant growth in population is combined with the progressive ageing of the population. This part of the world poses great challenges for general and respiratory health. Most of the countries have significant, or even greater, rates of chronic respiratory diseases or exposure to risk. Human resources in healthcare are not readily available, particularly in the area of respiratory disease specialists. Academic training centers are few and even non-existent in the majority of the countries. The detailed analysis of these conditions provides a basis for reflection on the main challenges and proposals for the management and training of better human resources in this specialist area. Copyright © 2013 SEPAR. Published by Elsevier Espana. All rights reserved.

  15. Direct Neural Conversion from Human Fibroblasts Using Self-Regulating and Nonintegrating Viral Vectors

    Directory of Open Access Journals (Sweden)

    Shong Lau

    2014-12-01

    Full Text Available Summary: Recent findings show that human fibroblasts can be directly programmed into functional neurons without passing via a proliferative stem cell intermediate. These findings open up the possibility of generating subtype-specific neurons of human origin for therapeutic use from fetal cell, from patients themselves, or from matched donors. In this study, we present an improved system for direct neural conversion of human fibroblasts. The neural reprogramming genes are regulated by the neuron-specific microRNA, miR-124, such that each cell turns off expression of the reprogramming genes once the cell has reached a stable neuronal fate. The regulated system can be combined with integrase-deficient vectors, providing a nonintegrative and self-regulated conversion system that rids problems associated with the integration of viral transgenes into the host genome. These modifications make the system suitable for clinical use and therefore represent a major step forward in the development of induced neurons for cell therapy. : Lau et al. now use miRNA targeting to build a self-regulating neural conversion system. Combined with nonintegrating vectors, this system can efficiently drive conversion of human fibroblasts into functional induced neurons (iNs suitable for clinical applications.

  16. CFD heat transfer simulation of the human upper respiratory tract for oronasal breathing condition

    Directory of Open Access Journals (Sweden)

    Kambiz Farahmand

    2012-01-01

    Full Text Available Injuries due to inhalation of hot gas are commonly encountered when dealing with fire and combustible material, which is harmful and threatens human life. In the literature, various studies have been conducted to investigate heat and mass transfer characteristics in the human respiratory tract (HRT. This study focuses on assessing the injury taking place in the upper human respiratory tract and identifying acute tissue damage, based on level of exposure. A three-dimensional heat transfer simulation is performed using Computational Fluid Dynamics (CFD software to study the temperature profile through the upper HRT consisting of the nasal cavity, oral cavity, trachea, and the first two generations of bronchi. The model developed is for the simultaneous oronasal breathing during the inspiration phase with a high volumetric flow rate of 90 liters/minute and the inspired air temperature of 100 degrees Celsius. The geometric model depicting the upper HRT is generated based on the data available and literature cited. The results of the simulation give the temperature distribution along the center and the surface tissue of the respiratory tract. This temperature distribution will help to assess the level of damage induced in the upper respiratory tract and appropriate treatment for the damage. A comparison of nasal breathing, oral breathing, and oronasal breathing is performed. Temperature distribution can be utilized in the design of the respirator systems where inlet temperature is regulated favoring the human body conditions.

  17. Research Summary 3-D Computational Fluid Dynamics (CFD) Model Of The Human Respiratory System

    Science.gov (United States)

    The U.S. EPA’s Office of Research and Development (ORD) has developed a 3-D computational fluid dynamics (CFD) model of the human respiratory system that allows for the simulation of particulate based contaminant deposition and clearance, while being adaptable for age, ethnicity,...

  18. TRANSPORT AND DEPOSITION OF NANO-SIZE PARTICLES IN THE UPPER HUMAN RESPIRATORY AIRWAYS

    Science.gov (United States)

    TRANSPORT AND DEPOSITION OF NANO-SIZE PARTICLES IN THE UPPER HUMAN RESPIRATORY AIRWAYS. Zhe Zhang*, Huawei Shi, Clement Kleinstreuer, Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695-7910; Chong S. Kim, National Health and En...

  19. New Targets for Zika Virus Determined by Human-Viral Interactomic: A Bioinformatics Approach

    Directory of Open Access Journals (Sweden)

    Eduardo Esteves

    2017-01-01

    Full Text Available Identifying ZIKV factors interfering with human host pathways represents a major challenge in understanding ZIKV tropism and pathogenesis. The integration of proteomic, gene expression and Protein-Protein Interactions (PPIs established between ZIKV and human host proteins predicted by the OralInt algorithm identified 1898 interactions with medium or high score (≥0.7. Targets implicated in vesicular traffic and docking were identified. New receptors involved in endocytosis pathways as ZIKV entry targets, using both clathrin-dependent (17 receptors and independent (10 receptors pathways, are described. New targets used by the ZIKV to undermine the host’s antiviral immune response are proposed based on predicted interactions established between the virus and host cell receptors and/or proteins with an effector or signaling role in the immune response such as IFN receptors and TLR. Complement and cytokines are proposed as extracellular potential interacting partners of the secreted form of NS1 ZIKV protein. Altogether, in this article, 18 new human targets for structural and nonstructural ZIKV proteins are proposed. These results are of great relevance for the understanding of viral pathogenesis and consequently the development of preventive (vaccines and therapeutic targets for ZIKV infection management.

  20. Modeling Zika plasma viral dynamics in non-human primates: insights into viral pathogenesis and antiviral strategies

    Energy Technology Data Exchange (ETDEWEB)

    Best, Katharine [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Guedj, Jeremie [Univ. of Paris (France). IAME; Madelain, Vincent [Univ. of Paris (France); de Lamballerie, Xavier [Aix-Marseille Univ. (France); L, So-Yonim [Harvard Univ., Cambridge, MA (United States). Center for Virology and Vaccine Research; Osuna, Christa E [Harvard Univ., Cambridge, MA (United States). Center for Virology and Vaccine Research; Whitney, James [Harvard Univ., Cambridge, MA (United States). Center for Virology and Vaccine Research; Perelson, Alan S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-10-24

    The recent outbreak of Zika virus (ZIKV) has been associated with fetal abnormalities and neurological complications, prompting global concern. Here we present the first mathematical analysis of the within-host dynamics of plasma ZiKV burden in a non-human primate model, allowing for characterization of the growth and clearance of ZIKV within an individual macaque.

  1. Human airway epithelial cell cultures for modeling respiratory syncytial virus infection.

    Science.gov (United States)

    Pickles, Raymond J

    2013-01-01

    Respiratory syncytial virus (RSV) is an important human respiratory pathogen with narrow species tropism. Limited availability of human pathologic specimens during early RSV-induced lung disease and ethical restrictions for RSV challenge studies in the lower airways of human volunteers has slowed our understanding of how RSV causes airway disease and greatly limited the development of therapeutic strategies for reducing RSV disease burden. Our current knowledge of RSV infection and pathology is largely based on in vitro studies using nonpolarized epithelial cell-lines grown on plastic or in vivo studies using animal models semipermissive for RSV infection. Although these models have revealed important aspects of RSV infection, replication, and associated inflammatory responses, these models do not broadly recapitulate the early interactions and potential consequences of RSV infection of the human columnar airway epithelium in vivo. In this chapter, the pro et contra of in vitro models of human columnar airway epithelium and their usefulness in respiratory virus pathogenesis and vaccine development studies will be discussed. The use of such culture models to predict characteristics of RSV infection and the correlation of these findings to the human in vivo situation will likely accelerate our understanding of RSV pathogenesis potentially identifying novel strategies for limiting the severity of RSV-associated airway disease.

  2. Human bocavirus isolated from children with acute respiratory tract infections in Korea, 2010-2011.

    Science.gov (United States)

    Ahn, Jong Gyun; Choi, Seong Yeol; Kim, Dong Soo; Kim, Ki Hwan

    2014-12-01

    Human bocavirus (HBoV) was first recognized in respiratory samples in 2005. The clinical importance of HBoV infection remains unclear. This report describes the clinical features and molecular phylogeny of HBoV isolates in children with acute respiratory infections. Nasopharyngeal aspirates were obtained from 1,528 children with acute respiratory infections between 2010 and 2011. Respiratory samples were screened for HBoV by multiplex PCR. A phylogenetic analysis of the HBoV VP1/VP2 gene was also undertaken. HBoV was detected in 187 (12.2%) of the 1,528 patients with a peak incidence of infection observed in patients aged 12-24 months. Coinfection with other respiratory viruses was observed in 107 (57.2%) of the HBoV-positive children. The peak of HBoV activity occurred during the month of June in both 2010 and 2011. A higher previous history of wheezing (P = 0.016), a higher frequency of chest retraction (P respiratory symptom score (P = 0.002), and a longer duration of hospital stay (P = 0.021) were observed in HBoV-positive children compared with the HBoV-negative group. Phylogenetic analysis showed all 187 HBoV-positive isolates were identified as HBoV 1, indicating minimal sequence variations among the isolates. A single lineage of HBoV 1 was found to have circulated in children with acute respiratory infections between 2010 and 2011 and was associated with several clinical characteristics including age, seasonality, and clinical severity with retraction, wheezing, and longer hospitalization. The clinical relevance of the minimal sequence variations of HBoV remains to be determined. © 2014 Wiley Periodicals, Inc.

  3. Human papillomavirus type 59 immortalized keratinocytes express late viral proteins and infectious virus after calcium stimulation

    International Nuclear Information System (INIS)

    Lehr, Elizabeth E.; Qadadri, Brahim; Brown, Calla R.; Brown, Darron R.

    2003-01-01

    Human papillomavirus type 59 (HPV 59) is an oncogenic type related to HPV 18. HPV 59 was recently propagated in the athymic mouse xenograft system. A continuous keratinocyte cell line infected with HPV 59 was created from a foreskin xenograft grown in an athymic mouse. Cells were cultured beyond passage 50. The cells were highly pleomorphic, containing numerous abnormally shaped nuclei and mitotic figures. HPV 59 sequences were detected in the cells by DNA in situ hybridization in a diffuse nuclear distribution. Southern blots were consistent with an episomal state of HPV 59 DNA at approximately 50 copies per cell. Analysis of the cells using a PCR/reverse blot strip assay, which amplifies a portion of the L1 open reading frame, was strongly positive. Differentiation of cells in monolayers was induced by growth in F medium containing 2 mM calcium chloride for 10 days. Cells were harvested as a single tissue-like sheet, and histologic analysis revealed a four-to-six cell-thick layer. Transcripts encoding involucrin, a cornified envelope protein, and the E1-circumflexE4 and E1-circumflexE4-circumflexL1 viral transcripts were detected after several days of growth in F medium containing 2 mM calcium chloride. The E1-circumflexE4 and L1 proteins were detected by immunohistochemical analysis, and virus particles were seen in electron micrographs in a subset of differentiated cells. An extract of differentiated cells was prepared by vigorous sonication and was used to infect foreskin fragments. These fragments were implanted into athymic mice. HPV 59 was detected in the foreskin xenografts removed 4 months later by DNA in situ hybridization and PCR/reverse blot assay. Thus, the complete viral growth cycle, including production on infectious virus, was demonstrated in the HPV 59 immortalized cells grown in a simple culture system

  4. Sodium Lauryl Sulfate Abrogates Human Immunodeficiency Virus Infectivity by Affecting Viral Attachment

    Science.gov (United States)

    Bestman-Smith, Julie; Piret, Jocelyne; Désormeaux, André; Tremblay, Michel J.; Omar, Rabeea F.; Bergeron, Michel G.

    2001-01-01

    The microbicidal activity of sodium lauryl sulfate (SLS) against human immunodeficiency virus type 1 (HIV-1) was studied in cultured cells. Pretreatment of HIV-1NL4-3 with SLS decreased, in a concentration-dependent manner, its infectivity when using 1G5 as target cells. In the absence of a viral pretreatment period or when 1G5 cells were pretreated with SLS, the surfactant-induced inactivation of viral infectivity was less pronounced, especially at concentrations between 375 and 550 μM. SLS had no effect on HIV-1 when the virus was adsorbed to 1G5 cells by a 2-h incubation period. SLS almost completely inhibited the fusion process by decreasing the attachment of HIV-1 to target cells. SLS also inhibited the infectivity of HIV-1-based luciferase reporter viruses pseudotyped with the amphotropic murine leukemia virus envelope (which enters cells in a CD4-, CCR5-, and CXCR4-independent manner), indicating that SLS may inactivate other envelope viruses. In contrast, no effect was seen with vesicular stomatitis virus envelope glycoprotein G (which enters cells through receptor-mediated endocytosis) pretreated with up to 700 μM SLS. SLS also decreased, in a dose-dependent manner, the HIV-1-dependent syncytium formation between 1G5 and J1.1 cells after a 24-h incubation. The reduction of luciferase activity was more pronounced when J1.1 cells (which express HIV-1 proteins on their surface) were pretreated with SLS rather than 1G5 cells. Taken together, our results suggest that SLS could represent a candidate of choice for use in vaginal microbicides to prevent the sexual transmission of HIV and possibly other pathogens causing sexually transmitted diseases. PMID:11451679

  5. Human T cell aging and the impact of persistent viral infections

    Directory of Open Access Journals (Sweden)

    Tamas eFulop

    2013-09-01

    Full Text Available Aging is associated with a dysregulation of the immune response, loosely termed immunosenescence. Each part of the immune system is influenced to some extent by the aging process. However, adaptive immunity seems more extensively affected and among all participating cells it is the T cells that are most altered. There is a large body of experimental work devoted to the investigation of age-associated differences in T cell phenotypes and functions in young and old individuals, but few longitudinal studies in humans actually delineating changes at the level of the individual. In most studies, the number and proportion of late-differentiated T cells, especially CD8+ T cells, is reported to be higher in the elderly than in the young. Limited longitudinal studies suggest that accumulation of these cells is a dynamic process and does indeed represent an age-associated change. Accumulations of such late-stage cells may contribute to the enhanced systemic pro-inflammatory milieu commonly seen in older people. We do not know exactly what causes these observed changes, but an understanding of the possible causes is now beginning to emerge. A favored hypothesis is that these events are at least partly due to the effects of the maintenance of essential immune surveillance against persistent viral infections, notably Cytomegalovirus (CMV, which may exhaust the immune system over time. It is still a matter of debate as to whether these changes are compensatory and beneficial or pathological and detrimental to the proper functioning of the immune system and whether they impact longevity. Here, we will review present knowledge of T cell changes with aging and their relation to chronic viral and possibly other persistent infections.

  6. Modulation of Host Immunity by Human Respiratory Syncytial Virus Virulence Factors: A Synergic Inhibition of Both Innate and Adaptive Immunity

    Directory of Open Access Journals (Sweden)

    Gisela Canedo-Marroquín

    2017-08-01

    Full Text Available The Human Respiratory Syncytial Virus (hRSV is a major cause of acute lower respiratory tract infections (ARTIs and high rates of hospitalizations in children and in the elderly worldwide. Symptoms of hRSV infection include bronchiolitis and pneumonia. The lung pathology observed during hRSV infection is due in part to an exacerbated host immune response, characterized by immune cell infiltration to the lungs. HRSV is an enveloped virus, a member of the Pneumoviridae family, with a non-segmented genome and negative polarity-single RNA that contains 10 genes encoding for 11 proteins. These include the Fusion protein (F, the Glycoprotein (G, and the Small Hydrophobic (SH protein, which are located on the virus surface. In addition, the Nucleoprotein (N, Phosphoprotein (P large polymerase protein (L part of the RNA-dependent RNA polymerase complex, the M2-1 protein as a transcription elongation factor, the M2-2 protein as a regulator of viral transcription and (M protein all of which locate inside the virion. Apart from the structural proteins, the hRSV genome encodes for the non-structural 1 and 2 proteins (NS1 and NS2. HRSV has developed different strategies to evade the host immunity by means of the function of some of these proteins that work as virulence factors to improve the infection in the lung tissue. Also, hRSV NS-1 and NS-2 proteins have been shown to inhibit the activation of the type I interferon response. Furthermore, the hRSV nucleoprotein has been shown to inhibit the immunological synapsis between the dendritic cells and T cells during infection, resulting in an inefficient T cell activation. Here, we discuss the hRSV virulence factors and the host immunological features raised during infection with this virus.

  7. Transient Oral Human Cytomegalovirus Infections Indicate Inefficient Viral Spread from Very Few Initially Infected Cells.

    Science.gov (United States)

    Mayer, Bryan T; Krantz, Elizabeth M; Swan, David; Ferrenberg, James; Simmons, Karen; Selke, Stacy; Huang, Meei-Li; Casper, Corey; Corey, Lawrence; Wald, Anna; Schiffer, Joshua T; Gantt, Soren

    2017-06-15

    Cytomegalovirus (CMV) is acquired by the oral route in children, and primary infection is associated with abundant mucosal replication, as well as the establishment of latency in myeloid cells that results in lifelong infection. The efficiency of primary CMV infection in humans following oral exposure, however, is unknown. We consistently detected self-limited, low-level oral CMV shedding events, which we termed transient CMV infections, in a prospective birth cohort of 30 highly exposed CMV-uninfected infants. We estimated the likelihood of transient oral CMV infections by comparing their observed frequency to that of established primary infections, characterized by persistent high-level shedding, viremia, and seroconversion. We developed mathematical models of viral dynamics upon initial oral CMV infection and validated them using clinical shedding data. Transient infections comprised 76 to 88% of oral CMV shedding events. For this high percentage of transient infections to occur, we identified two mathematical prerequisites: a very small number of initially infected oral cells (1 to 4) and low viral infectivity (<1.5 new cells infected/cell). These observations indicate that oral CMV infection in infants typically begins with a single virus that spreads inefficiently to neighboring cells. Thus, although the incidence of CMV infection is high during infancy, our data provide a mechanistic framework to explain why multiple CMV exposures are typically required before infection is successfully established. These findings imply that a sufficiently primed immune response could prevent CMV from establishing latent infection in humans and support the achievability of a prophylactic CMV vaccine. IMPORTANCE CMV infects the majority of the world's population and is a major cause of birth defects. Developing a vaccine to prevent CMV infection would be extremely valuable but would be facilitated by a better understanding of how natural human CMV infection is acquired. We

  8. Human milk reduces outpatient upper respiratory symptoms in premature infants during their first year of life.

    Science.gov (United States)

    Blaymore Bier, Jo-Ann; Oliver, Tanya; Ferguson, Anne; Vohr, Betty R

    2002-01-01

    To determine if ingestion of human milk after discharge reduces symptoms of infections in premature infants. Follow-up of 39 infants with birth weights milk and 15 of whom received only formula after discharge, was carried out. Mothers were given a calendar on which they recorded any signs of infections and feeding and day-care information. Data were collected at 1 month after discharge and at 3, 7, and 12 months corrected age. Results show no differences between groups in birth weight, gestation, gender, maternal age, parental tobacco use, number of siblings, and day-care attendance. Socioeconomic status score was higher in the human milk group. Infants who received human milk had fewer days of upper respiratory symptoms at 1 month after discharge (pmilk post discharge is associated with a reduction of upper respiratory symptoms in premature infants during their first year of life.

  9. The significance of Candida in the human respiratory tract: our evolving understanding.

    Science.gov (United States)

    Pendleton, Kathryn M; Huffnagle, Gary B; Dickson, Robert P

    2017-04-01

    Candida is an opportunistic pathogen and the most commonly isolated fungal genus in humans. Though Candida is often detected in respiratory specimens from humans with and without lung disease, its significance remains undetermined. While historically considered a commensal organism with low virulence potential, the status of Candida as an innocent bystander has recently been called into question by both clinical observations and animal experimentation. We here review what is currently known and yet to be determined about the clinical, microbiological and pathophysiological significance of the detection of Candida spp. in the human respiratory tract. Published by Oxford University Press on behalf of FEMS 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  10. The Virome and Its Major Component, Anellovirus, a Convoluted System Molding Human Immune Defenses and Possibly Affecting the Development of Asthma and Respiratory Diseases in Childhood

    Directory of Open Access Journals (Sweden)

    Giulia Freer

    2018-04-01

    Full Text Available The microbiome, a thriving and complex microbial community colonizing the human body, has a broad impact on human health. Colonization is a continuous process that starts very early in life and occurs thanks to shrewd strategies microbes have evolved to tackle a convoluted array of anatomical, physiological, and functional barriers of the human body. Cumulative evidence shows that viruses are part of the microbiome. This part, called virome, has a dynamic composition that reflects what we eat, how and where we live, what we do, our genetic background, and other unpredictable variables. Thus, the virome plays a chief role in shaping innate and adaptive host immune defenses. Imbalance of normal microbial flora is thought to trigger or exacerbate many acute and chronic disorders. A compelling example can be found in the respiratory apparatus, where early-life viral infections are major determinants for the development of allergic diseases, like asthma, and other non-transmissible diseases. In this review, we focus on the virome and, particularly, on Anelloviridae, a recently discovered virus family. Anelloviruses are major components of the virome, present in most, if not all, human beings, where they are acquired early in life and replicate persistently without causing apparent disease. We will discuss how modulation of innate and adaptive immune systems by Anelloviruses can influence the development of respiratory diseases in childhood and provide evidence for the use of Anelloviruses as useful and practical molecular markers to monitor inflammatory processes and immune system competence.

  11. Incidence and Risk Factors for Respiratory Syncytial Virus and Human Metapneumovirus Infections among Children in the Remote Highlands of Peru

    Science.gov (United States)

    Wu, Andrew; Budge, Philip J.; Williams, John; Griffin, Marie R.; Edwards, Kathryn M.; Johnson, Monika; Zhu, Yuwei; Hartinger, Stella; Verastegui, Hector; Gil, Ana I.; Lanata, Claudio F.; Grijalva, Carlos G.

    2015-01-01

    Introduction The disease burden and risk factors for respiratory syncytial virus (RSV) and human metapneumovirus (MPV) infections among children living in remote, rural areas remain unclear. Materials and Methods We conducted a prospective, household-based cohort study of children aged factors for RSV detection included younger age (RR 1.02, 95% CI: 1.00-1.03), the presence of a smoker in the house (RR 1.63, 95% CI: 1.12-2.38), residing at higher altitudes (RR 1.93, 95% CI: 1.25-3.00 for 2nd compared to 1st quartile residents; RR 1.98, 95% CI: 1.26-3.13 for 3rd compared to 1st quartile residents). Having an unemployed household head was significantly associated with MPV risk (RR 2.11, 95% CI: 1.12-4.01). Conclusion In rural high altitude communities in Peru, childhood ARI due to RSV or MPV were common and associated with higher morbidity than ARI due to other viruses or with no viral detections. The risk factors identified in this study may be considered for interventional studies to control infections by these viruses among young children from developing countries. PMID:26107630

  12. Codetection of Respiratory Syncytial Virus in Habituated Wild Western Lowland Gorillas and Humans During a Respiratory Disease Outbreak

    Czech Academy of Sciences Publication Activity Database

    Grützmacher, K. S.; Köndgen, S.; Keil, V.; Todd, A.; Feistner, A.; Herbinger, I.; Petrželková, Klára Judita; Fuh, T.; Leendertz, S. A.; Calvignac-Spencer, S.; Leendertz, F. H.

    2016-01-01

    Roč. 13, č. 3 (2016), s. 499-510 ISSN 1612-9202 Institutional support: RVO:60077344 Keywords : respiratory disease * respiratory syncytial virus * enterovirus * western lowland gorillas * great apes * noninvasive detection Subject RIV: EE - Microbiology, Virology Impact factor: 2.252, year: 2016

  13. Codetection of respiratory syncytial virus in habituated wild western lowland gorillas and humans during a respiratory disease outbreak

    Czech Academy of Sciences Publication Activity Database

    Grützmacher, K. S.; Köndgen, S.; Keil, V.; Todd, A.; Feistner, A.; Herbinger, I.; Petrželková, Klára Judita; Fuh, T.; Leendertz, S. A.; Calvignac-Spencer, S.; Leendertz, F. H.

    2016-01-01

    Roč. 13, č. 3 (2016), s. 499-510 ISSN 1612-9202 Institutional support: RVO:68081766 Keywords : respiratory disease * respiratory syncytial virus * enterovirus * western lowland gorillas * great apes * noninvasive detection Subject RIV: GJ - Animal Vermins ; Diseases, Veterinary Medicine Impact factor: 2.252, year: 2016

  14. Human cytomegalovirus uracil DNA glycosylase associates with ppUL44 and accelerates the accumulation of viral DNA

    Directory of Open Access Journals (Sweden)

    Dixon Melissa

    2005-07-01

    Full Text Available Abstract Background Human cytomegalovirus UL114 encodes a uracil-DNA glycosylase homolog that is highly conserved in all characterized herpesviruses that infect mammals. Previous studies demonstrated that the deletion of this nonessential gene delays significantly the onset of viral DNA synthesis and results in a prolonged replication cycle. The gene product, pUL114, also appears to be important in late phase DNA synthesis presumably by introducing single stranded breaks. Results A series of experiments was performed to formally assign the observed phenotype to pUL114 and to characterize the function of the protein in viral replication. A cell line expressing pUL114 complemented the observed phenotype of a UL114 deletion virus in trans, confirming that the observed defects were the result of a deficiency in this gene product. Stocks of recombinant viruses without elevated levels of uracil were produced in the complementing cells; however they retained the phenotype of poor growth in normal fibroblasts suggesting that poor replication was unrelated to uracil content of input genomes. Recombinant viruses expressing epitope tagged versions of this gene demonstrated that pUL114 was expressed at early times and that it localized to viral replication compartments. This protein also coprecipitated with the DNA polymerase processivity factor, ppUL44 suggesting that these proteins associate in infected cells. This apparent interaction did not appear to require other viral proteins since ppUL44 could recruit pUL114 to the nucleus in uninfected cells. An analysis of DNA replication kinetics revealed that the initial rate of DNA synthesis and the accumulation of progeny viral genomes were significantly reduced compared to the parent virus. Conclusion These data suggest that pUL114 associates with ppUL44 and that it functions as part of the viral DNA replication complex to increase the efficiency of both early and late phase viral DNA synthesis.

  15. Honeybee (Apis mellifera Venom Reinforces Viral Clearance during the Early Stage of Infection with Porcine Reproductive and Respiratory Syndrome Virus through the Up-Regulation of Th1-Specific Immune Responses

    Directory of Open Access Journals (Sweden)

    Jin-A Lee

    2015-05-01

    Full Text Available Porcine reproductive and respiratory syndrome (PRRS is a chronic and immunosuppressive viral disease that is responsible for substantial economic losses for the swine industry. Honeybee venom (HBV is known to possess several beneficial biological properties, particularly, immunomodulatory effects. Therefore, this study aimed at evaluating the effects of HBV on the immune response and viral clearance during the early stage of infection with porcine reproductive and respiratory syndrome virus (PRRSV in pigs. HBV was administered via three routes of nasal, neck, and rectal and then the pigs were inoculated with PRRSV intranasally. The CD4+/CD8+ cell ratio and levels of interferon (IFN-γ and interleukin (IL-12 were significantly increased in the HBV-administered healthy pigs via nasal and rectal administration. In experimentally PRRSV-challenged pigs with virus, the viral genome load in the serum, lung, bronchial lymph nodes and tonsil was significantly decreased, as was the severity of interstitial pneumonia, in the nasal and rectal administration group. Furthermore, the levels of Th1 cytokines (IFN-γ and IL-12 were significantly increased, along with up-regulation of pro-inflammatory cytokines (TNF-α and IL-1β with HBV administration. Thus, HBV administration—especially via the nasal or rectal route—could be a suitable strategy for immune enhancement and prevention of PRRSV infection in pigs.

  16. Acute HBV infection in humanized chimeric mice has multiphasic viral kinetics.

    Science.gov (United States)

    Ishida, Yuji; Chung, Tje Lin; Imamura, Michio; Hiraga, Nobuhiko; Sen, Suranjana; Yokomichi, Hiroshi; Tateno, Chise; Canini, Laetitia; Perelson, Alan S; Uprichard, Susan L; Dahari, Harel; Chayama, Kazuaki

    2018-03-23

    Chimeric uPA/SCID mice reconstituted with humanized livers are useful for studying HBV infection in the absence of an adaptive immune response. However, the detailed characterization of HBV infection kinetics necessary to enable in-depth mechanistic studies in this novel in vivo HBV infection model is lacking. To characterize HBV kinetics post-inoculation (p.i.) to steady state, 42 mice were inoculated with HBV. Serum HBV DNA was frequently measured from 1 minute to 63 days p.i. Total intrahepatic HBV DNA, HBV cccDNA, and HBV RNA was measured in a subset of mice at 2, 4, 6, 10, and 13 weeks p.i. HBV half-life (t 1/2 ) was estimated using a linear mixed-effects model. During the first 6 h p.i. serum HBV declined in repopulated uPA/SCID mice with a t 1/2 =62 min [95%CI=59-67min]. Thereafter, viral decline slowed followed by a 2 day lower plateau. Subsequent viral amplification was multiphasic with an initial mean doubling time of t 2 =8±3 h followed by an interim plateau before prolonged amplification (t 2 =2±0.5 days) to a final HBV steady state of 9.3±0.3 log copies/ml. Serum HBV and intrahepatic HBV DNA were positively correlated (R 2 =0.98). HBV infection in uPA/SCID chimeric mice is highly dynamic despite the absence of an adaptive immune response. The serum HBV t 1/2 in humanized uPA/SCID mice was estimated to be ∼1 h regardless of inoculum size. The HBV acute infection kinetics presented here is an important step in characterizing this experimental model system so that it can be effectively used to elucidate the dynamics of the HBV lifecycle and thus possibly reveal effective antiviral drug targets. This article is protected by copyright. All rights reserved. © 2018 by the American Association for the Study of Liver Diseases.

  17. pUL34 binding near the human cytomegalovirus origin of lytic replication enhances DNA replication and viral growth.

    Science.gov (United States)

    Slayton, Mark; Hossain, Tanvir; Biegalke, Bonita J

    2018-05-01

    The human cytomegalovirus (HCMV) UL34 gene encodes sequence-specific DNA-binding proteins (pUL34) which are required for viral replication. Interactions of pUL34 with DNA binding sites represses transcription of two viral immune evasion genes, US3 and US9. 12 additional predicted pUL34-binding sites are present in the HCMV genome (strain AD169) with three binding sites concentrated near the HCMV origin of lytic replication (oriLyt). We used ChIP-seq analysis of pUL34-DNA interactions to confirm that pUL34 binds to the oriLyt region during infection. Mutagenesis of the UL34-binding sites in an oriLyt-containing plasmid significantly reduced viral-mediated oriLyt-dependent DNA replication. Mutagenesis of these sites in the HCMV genome reduced the replication efficiencies of the resulting viruses. Protein-protein interaction analyses demonstrated that pUL34 interacts with the viral proteins IE2, UL44, and UL84, that are essential for viral DNA replication, suggesting that pUL34-DNA interactions in the oriLyt region are involved in the DNA replication cascade. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Coordinate viral induction of tumor necrosis factor α and interferon β in human B cells and monocytes

    International Nuclear Information System (INIS)

    Goldfeld, A.E.; Maniatis, T.

    1989-01-01

    Human tumor necrosis factor α (TNF-α) gene expression can be induced primarily in cells of the monocyte/macrophage lineage by a variety of inducers, including lipopolysaccharide, phorbol esters such as phorbol 12-myristate 13-acetate, and virus or synthetic double-stranded RNA [poly(I)·poly(C)]. In this paper the authors show that the TNF-α gene also responds to virus and phorbol 12-myristate 13-acetate in B lymphocytes and that virus is the most potent inducer of TNF-α mRNA in both monocyte and B-cell lines. In addition, they show that viral infection coinduces the expression of TNF-α and interferon β mRNA and that viral induction of both genes is blocked by the kinase inhibitor 2-aminopurine. Inhibition of protein synthesis with cycloheximide had no effect on mRNA expression of the genes in one of three cell lines tested (U937) but blocked the viral induction of both genes in another (Namalwa). Thus, the regulatory factors required for mRNA induction of both genes are present prior to the addition of virus in U937 but not in Namalwa cells. However, in a third cell line (JY), cycloheximide blocked viral induction of the interferon β gene but not the TNF-α gene. Taken together, these observations suggest that viral induction of TNF-α and interferon β gene expression may involve overlapping pathways with both common and distinct regulatory factors

  19. Computational Breakthrough of Natural Lead Hits from the Genus of Arisaema against Human Respiratory Syncytial Virus.

    Science.gov (United States)

    Kant, Kamal; Lal, Uma Ranjan; Ghosh, Manik

    2018-01-01

    To date, efforts for the prevention and treatment of human respiratory syncytial virus (RSV) infection have been still vain, and there is no safe and effective clinical accepted vaccine. Arisaema genus has claimed for various traditional bioactivities, but scientific assessments are quite limited. This encouraged us to carry out our present study on around 60 phytoconstituents of different Arisaema species as a natural inhibitor against the human RSV. Selected 60 phytochemical entities were evaluated on the docking behavior of human RSV receptor (PDB: 4UCC) using Maestro 9.3 (Schrödinger, LLC, Cambridge, USA). Furthermore, kinetic properties and toxicity nature of top graded ligands were analyzed through QikProp and ProTox tools. Notably, rutin (glide score: -8.49), schaftoside (glide score: -8.18) and apigenin-6,8-di-C-β-D-galactoside (glide score - 7.29) have resulted in hopeful natural lead hits with an ideal range of kinetic descriptors values. ProTox tool (oral rodent toxicity) has resulted in likely toxicity targets of apex-graded tested ligands. Finally, the whole efforts can be explored further as a model to confirm its anti-human RSV potential with wet laboratory experiments. Rutin, schaftoside, and apigenin-6,8-di-C-β-D-galactoside showed promising top hits docking profile against human respiratory syncytial virusMoreover, absorption, distribution, metabolism, excretion properties (QikProp) of top hits resulted within an ideal range of kinetic descriptorsProTox tool highlighted toxicity class ranges, LD 50 values, and possible toxicity targets of apex-graded tested ligands. Abbreviations used: RSV: Respiratory syncytial virus, PRRSV: Porcine respiratory and reproductive syndrome virus, ADME-T: Absorption, distribution, metabolism, excretion, and toxicity.

  20. Etiology and Incidence of viral and bacterial acute respiratory illness among older children and adults in rural western Kenya, 2007-2010.

    Directory of Open Access Journals (Sweden)

    Daniel R Feikin

    Full Text Available BACKGROUND: Few comprehensive data exist on disease incidence for specific etiologies of acute respiratory illness (ARI in older children and adults in Africa. METHODOLOGY/PRINCIPAL FINDINGS: From March 1, 2007, to February 28, 2010, among a surveillance population of 21,420 persons >5 years old in rural western Kenya, we collected blood for culture and malaria smears, nasopharyngeal and oropharyngeal swabs for quantitative real-time PCR for ten viruses and three atypical bacteria, and urine for pneumococcal antigen testing on outpatients and inpatients meeting a ARI case definition (cough or difficulty breathing or chest pain and temperature >38.0 °C or oxygen saturation 5 years old (adjusted annual incidence 12.0 per 100 person-years, influenza A virus was the most common virus (22% overall; 11% inpatients, 27% outpatients and Streptococcus pneumoniae was the most common bacteria (16% overall; 23% inpatients, 14% outpatients, yielding annual incidences of 2.6 and 1.7 episodes per 100 person-years, respectively. Influenza A virus, influenza B virus, respiratory syncytial virus (RSV and human metapneumovirus were more prevalent in swabs among cases (22%, 6%, 8% and 5%, respectively than controls. Adenovirus, parainfluenza viruses, rhinovirus/enterovirus, parechovirus, and Mycoplasma pneumoniae were not more prevalent among cases than controls. Pneumococcus and non-typhi Salmonella were more prevalent among HIV-infected adults, but prevalence of viruses was similar among HIV-infected and HIV-negative individuals. ARI incidence was highest during peak malaria season. CONCLUSIONS/SIGNIFICANCE: Vaccination against influenza and pneumococcus (by potential herd immunity from childhood vaccination or of HIV-infected adults might prevent much of the substantial ARI incidence among persons >5 years old in similar rural African settings.

  1. Respiratory sinus arrhythmia stabilizes mean arterial blood pressure at high-frequency interval in healthy humans.

    Science.gov (United States)

    Elstad, Maja; Walløe, Lars; Holme, Nathalie L A; Maes, Elke; Thoresen, Marianne

    2015-03-01

    Arterial blood pressure variations are an independent risk factor for end organ failure. Respiratory sinus arrhythmia (RSA) is a sign of a healthy cardiovascular system. However, whether RSA counteracts arterial blood pressure variations during the respiratory cycle remains controversial. We restricted normal RSA with non-invasive intermittent positive pressure ventilation (IPPV) to test the hypothesis that RSA normally functions to stabilize mean arterial blood pressure. Ten young volunteers were investigated during metronome-paced breathing and IPPV. Heart rate (ECG), mean arterial blood pressure and left stroke volume (finger arterial pressure curve) and right stroke volume (pulsed ultrasound Doppler) were recorded, while systemic and pulmonary blood flow were calculated beat-by-beat. Respiratory variations (high-frequency power, 0.15-0.40 Hz) in cardiovascular variables were estimated by spectral analysis. Phase angles and correlation were calculated by cross-spectral analysis. The magnitude of RSA was reduced from 4.9 bpm(2) (95% CI 3.0, 6.2) during metronome breathing to 2.8 bpm(2) (95% CI 1.1, 5.0) during IPPV (p = 0.03). Variations in mean arterial blood pressure were greater (2.3 mmHg(2) (95% CI 1.4, 3.9) during IPPV than during metronome breathing (1.0 mmHg(2) [95% CI 0.7, 1.3]) (p = 0.014). Respiratory variations in right and left stroke volumes were inversely related in the respiratory cycle during both metronome breathing and IPPV. RSA magnitude is lower and mean arterial blood pressure variability is greater during IPPV than during metronome breathing. We conclude that in healthy humans, RSA stabilizes mean arterial blood pressure at respiratory frequency.

  2. A Two-Dimensional Human Minilung System (Model for Respiratory Syncytial Virus Infections

    Directory of Open Access Journals (Sweden)

    Esmeralda Magro-Lopez

    2017-12-01

    Full Text Available Human respiratory syncytial virus (HRSV is a major cause of serious pediatric respiratory diseases that lacks effective vaccine or specific therapeutics. Although our understanding about HRSV biology has dramatically increased during the last decades, the need for adequate models of HRSV infection is compelling. We have generated a two-dimensional minilung from human embryonic stem cells (hESCs. The differentiation protocol yielded at least six types of lung and airway cells, although it is biased toward the generation of distal cells. We show evidence of HRSV replication in lung cells, and the induction of innate and proinflammatory responses, thus supporting its use as a model for the study of HRSV–host interactions.

  3. Differential expression of the MERS-coronavirus receptor in the upper respiratory tract of humans and dromedary camels

    NARCIS (Netherlands)

    Widagdo, W; Raj, V Stalin; Schipper, Debby; Kolijn, Kimberley; van Leenders, Geert J L H; Bosch, Berend J; Bensaid, Albert; Segalés, Joaquim; Baumgärtner, Wolfgang; Osterhaus, Albert D M E; Koopmans, Marion P; van den Brand, Judith M A; Haagmans, Bart L

    Middle East respiratory syndrome coronavirus (MERS-CoV) is not efficiently transmitted between humans, but it is highly prevalent in dromedary camels. Here we report that the MERS-CoV receptor - dipeptidyl peptidase 4 (DPP4) - is expressed in the upper respiratory tract epithelium of camels but not

  4. Cleavage of a Neuroinvasive Human Respiratory Virus Spike Glycoprotein by Proprotein Convertases Modulates Neurovirulence and Virus Spread within the Central Nervous System.

    Directory of Open Access Journals (Sweden)

    Alain Le Coupanec

    Full Text Available Human coronaviruses (HCoV are respiratory pathogens that may be associated with the development of neurological diseases, in view of their neuroinvasive and neurotropic properties. The viral spike (S glycoprotein is a major virulence factor for several coronavirus species, including the OC43 strain of HCoV (HCoV-OC43. In an attempt to study the role of this protein in virus spread within the central nervous system (CNS and neurovirulence, as well as to identify amino acid residues important for such functions, we compared the sequence of the S gene found in the laboratory reference strain HCoV-OC43 ATCC VR-759 to S sequences of viruses detected in clinical isolates from the human respiratory tract. We identified one predominant mutation at amino acid 758 (from RRSR↓ G758 to RRSR↓R758, which introduces a putative furin-like cleavage (↓ site. Using a molecular cDNA infectious clone to generate a corresponding recombinant virus, we show for the first time that such point mutation in the HCoV-OC43 S glycoprotein creates a functional cleavage site between the S1 and S2 portions of the S protein. While the corresponding recombinant virus retained its neuroinvasive properties, this mutation led to decreased neurovirulence while potentially modifying the mode of virus spread, likely leading to a limited dissemination within the CNS. Taken together, these results are consistent with the adaptation of HCoV-OC43 to the CNS environment, resulting from the selection of quasi-species harboring mutations that lead to amino acid changes in viral genes, like the S gene in HCoV-OC43, which may contribute to a more efficient establishment of a less pathogenic but persistent CNS infection. This adaptative mechanism could potentially be associated with human encephalitis or other neurological degenerative pathologies.

  5. Isolation of uv-sensitive variants of human FL cells by a viral suicide method

    International Nuclear Information System (INIS)

    Shiomi, T.; Sato, K.

    1979-01-01

    A new method (viral suicide method) for the isolation of uv-sensitive mutants is described. Colonies of mutagenized human FL cells were infected with uv-irradiated Herpes simplex viruses and surviving ones which seemed to be deficient in host cell reactivation (HCR) were examined for their uv sensitivity. Nineteen of 238 clones examined were sensitive to uv irradiation at the time of the isolation. After recloning, four of these clones have been studied and two (UVS-1 and UVS-2) of them are stable in their uv sensitivity for 4 months in culture. uv sensitivity of UVS-1, UVS-2, and the parental FL cells are as follows: the extrapolation numbers (n) are 2.2, 2.1, and 1.8 and mean lethal doses (DO) are 2.9, 3.7, and 7.8 J/m 2 for UVS-1, UVS-2, and the parental FL cells, respectively. They are no more sensitive than FL cells to x-irradiation. The ability of HCR in UVS-2 cells is apparently lower than that in FL cells, whereas UVS-1 cells are the same as FL cells in the ability

  6. Human Neural Precursor Cells Promote Neurologic Recovery in a Viral Model of Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Lu Chen

    2014-06-01

    Full Text Available Using a viral model of the demyelinating disease multiple sclerosis (MS, we show that intraspinal transplantation of human embryonic stem cell-derived neural precursor cells (hNPCs results in sustained clinical recovery, although hNPCs were not detectable beyond day 8 posttransplantation. Improved motor skills were associated with a reduction in neuroinflammation, decreased demyelination, and enhanced remyelination. Evidence indicates that the reduced neuroinflammation is correlated with an increased number of CD4+CD25+FOXP3+ regulatory T cells (Tregs within the spinal cords. Coculture of hNPCs with activated T cells resulted in reduced T cell proliferation and increased Treg numbers. The hNPCs acted, in part, through secretion of TGF-β1 and TGF-β2. These findings indicate that the transient presence of hNPCs transplanted in an animal model of MS has powerful immunomodulatory effects and mediates recovery. Further investigation of the restorative effects of hNPC transplantation may aid in the development of clinically relevant MS treatments.

  7. Entecavir Exhibits Inhibitory Activity against Human Immunodeficiency Virus under Conditions of Reduced Viral Challenge▿

    Science.gov (United States)

    Lin, Pin-Fang; Nowicka-Sans, Beata; Terry, Brian; Zhang, Sharon; Wang, Chunfu; Fan, Li; Dicker, Ira; Gali, Volodymyr; Higley, Helen; Parkin, Neil; Tenney, Daniel; Krystal, Mark; Colonno, Richard

    2008-01-01

    Entecavir (ETV) was developed for the treatment of chronic hepatitis B virus (HBV) infection and is globally approved for that indication. Initial preclinical studies indicated that ETV had no significant activity against human immunodeficiency virus type 1 (HIV-1) in cultured cell lines at physiologically relevant ETV concentrations, using traditional anti-HIV assays. In response to recent clinical observations of anti-HIV activity of ETV in HIV/HBV-coinfected patients not receiving highly active antiretroviral therapy (HAART), additional investigative studies were conducted to expand upon earlier results. An extended panel of HIV-1 laboratory and clinical strains and cell types was tested against ETV, along with a comparison of assay methodologies and resistance profiling. These latest studies confirmed that ETV has only weak activity against HIV, using established assay systems. However, a >100-fold enhancement of antiviral activity (equivalent to the antiviral activity of lamivudine) could be obtained when assay conditions were modified to reduce the initial viral challenge. Also, the selection of a M184I virus variant during the passage of HIV-1 at high concentrations of ETV confirmed that ETV can exert inhibitory pressure on the virus. These findings may have a significant impact on how future assays are performed with compounds to be used in patients infected with HIV. These results support the recommendation that ETV therapy should be administered in concert with HAART for HIV/HBV-coinfected patients. PMID:18316521

  8. Central respiratory chemosensitivity and cerebrovascular CO2 reactivity: a rebreathing demonstration illustrating integrative human physiology.

    Science.gov (United States)

    MacKay, Christina M; Skow, Rachel J; Tymko, Michael M; Boulet, Lindsey M; Davenport, Margie H; Steinback, Craig D; Ainslie, Philip N; Lemieux, Chantelle C M; Day, Trevor A

    2016-03-01

    One of the most effective ways of engaging students of physiology and medicine is through laboratory demonstrations and case studies that combine 1) the use of equipment, 2) problem solving, 3) visual representations, and 4) manipulation and interpretation of data. Depending on the measurements made and the type of test, laboratory demonstrations have the added benefit of being able to show multiple organ system integration. Many research techniques can also serve as effective demonstrations of integrative human physiology. The "Duffin" hyperoxic rebreathing test is often used in research settings as a test of central respiratory chemosensitivity and cerebrovascular reactivity to CO2. We aimed to demonstrate the utility of the hyperoxic rebreathing test for both respiratory and cerebrovascular responses to increases in CO2 and illustrate the integration of the respiratory and cerebrovascular systems. In the present article, methods such as spirometry, respiratory gas analysis, and transcranial Doppler ultrasound are described, and raw data traces can be adopted for discussion in a tutorial setting. If educators have these instruments available, instructions on how to carry out the test are provided so students can collect their own data. In either case, data analysis and quantification are discussed, including principles of linear regression, calculation of slope, the coefficient of determination (R(2)), and differences between plotting absolute versus normalized data. Using the hyperoxic rebreathing test as a demonstration of the complex interaction and integration between the respiratory and cerebrovascular systems provides senior undergraduate, graduate, and medical students with an advanced understanding of the integrative nature of human physiology. Copyright © 2016 The American Physiological Society.

  9. Numerical Simulation of Hemodynamic and Physiological Responses of Human Cardiovascular and Respiratory System under Drugs Administration

    Czech Academy of Sciences Publication Activity Database

    Převorovská, Světlana; Maršík, František

    2004-01-01

    Roč. 4, č. 4 (2004), s. 295-304 ISSN 1567-8822 R&D Projects: GA ČR(CZ) GA106/03/1073; GA ČR(CZ) GA106/03/0958 Institutional research plan: CEZ:AV0Z2076919 Keywords : human cardiovascular and respiratory system * baroreflex and chemoreflex control * physiologically based pharmacokinetic model Subject RIV: BK - Fluid Dynamics

  10. Particle deposition and clearance of atmospheric particles in the human respiratory tract during LACE 98

    Science.gov (United States)

    Bundke, U.; Hänel, G.

    2003-04-01

    During the LACE 98footnote{Lindenberg Aerosol Characterization Experiment, (Germany) 1998} experiment microphysical, chemical and optical properties of atmospheric particles were measured by several groups. (Bundke et al.). The particle deposition and clearance of the particles in the human respiratory tract was calculated using the ICRP (International Commission on Radiological Protection) deposition and clearance model (ICRP 1994). Particle growth as function of relative humidity outside the body was calculated from measurement data using the model introduced by Bundke et al.. Particle growth inside the body was added using a non-equilibrium particle growth model. As a result of the calculations, time series of the total dry particle mass and -size distribution were obtained for all compartments of the human respiratory tract defined by ICRP 1994. The combined ICRP deposition and clearance model was initialized for different probationers like man, woman, children of different ages and several circumstances like light work, sitting, sleeping etc. Keeping the conditions observed during LACE 98 constant a approximation of the aerosol burdens of the different compartments was calculated up to 4 years of exposure and compared to the results from Snipes et al. for the "Phoenix" and "Philadelphia" aerosol. References: footnotesize{ Bundke, U. et al.,it{Aerosol Optical Properties during the Lindenberg Aerosol Characterization Experiment (LACE 98)} ,10.1029/2000JD000188, JGR, 2002 ICRP,it{Human Respiratory Tract Model for Radiological Protection, Bd. ICRP Publication 66}, Annals of the ICRP, 24,1-3, Elsevier Science, Ocford, 1994 Snipes et al. ,it{The 1994 ICRP66 Human Respiratory Tract Model as a Tool for predicting Lung Burdens from Exposure to Environmental Aerosols}, Appl. Occup. Environ. Hyg., 12, 547-553,1997}

  11. Prevalence and evaluation strategies for viral contamination in food products: Risk to human health-a review.

    Science.gov (United States)

    Shukla, Shruti; Cho, Hyunjeong; Kwon, O Jun; Chung, Soo Hyun; Kim, Myunghee

    2018-02-11

    Nowadays, viruses of foodborne origin such as norovirus and hepatitis A are considered major causes of foodborne gastrointestinal illness with widespread distribution worldwide. A number of foodborne outbreaks associated with food products of animal and non-animal origins, which often involve multiple cases of variety of food streams, have been reported. Although several viruses, including rotavirus, adenovirus, astrovirus, parvovirus, and other enteroviruses, significantly contribute to incidence of gastrointestinal diseases, systematic information on the role of food in transmitting such viruses is limited. Most of the outbreak cases caused by infected food handlers were the source of 53% of total outbreaks. Therefore, prevention and hygiene measures to reduce the frequency of foodborne virus outbreaks should focus on food workers and production site of food products. Pivotal strategies, such as proper investigation, surveillance, and reports on foodborne viral illnesses, are needed in order to develop more accurate measures to detect the presence and pathogenesis of viral infection with detailed descriptions. Moreover, molecular epidemiology and surveillance of food samples may help analysis of public health hazards associated with exposure to foodborne viruses. In this present review, we discuss different aspects of foodborne viral contamination and its impact on human health. This review also aims to improve understanding of foodborne viral infections as major causes of human illness as well as provide descriptions of their control and prevention strategies and rapid detection by advanced molecular techniques. Further, a brief description of methods available for the detection of viruses in food and related matrices is provided.

  12. Viral phenotype, antiretroviral resistance and clinical evolution in human immunodeficiency virus-infected children.

    Science.gov (United States)

    Mellado, M J; Cilleruelo, M J; Ortiz, M; Villota, J; García, M; Perez-Jurado, M L; Barreiro, G; Martín-Fontelos, P; Bernal, A

    1997-11-01

    The syncytium-inducing (SI) viral phenotype and the emergence of viral strains resistant to zidovudine have been described in persons infected with HIV, and in some cases they have been associated with poor prognosis. HIV isolates obtained from 37 HIV-infected children were analyzed to determine whether the SI viral phenotype and the mutation on the 215 position of the reverse transcriptase (M215) could be used as markers of disease progression. We performed peripheral blood coculture mononuclear cells, and we analyzed the induction of syncytia using the MT-2 cell line. The emergence of mutations on the 215 position was determined by PCR. We found a statistically significant association (P < 0.05) between SI viral phenotype and (1) recurrent serious bacterial infections, (2) absolute CD4+ cell counts <2 SD, (3) progression to AIDS and (4) death. Sixty percent of the children treated with zidovudine developed 215 mutant viral strains without statistically significant association with clinical or immunologic findings. The SI viral phenotype was statistically associated with the presence of the 215 mutation (P < 0.05). SI viral phenotype is a marker associated with a poor clinical and immunologic progression of the disease and it may facilitate the emergence of mutant strains in children treated with zidovudine.

  13. Immunogenicity of a modified-live virus vaccine against bovine viral diarrhea virus types 1 and 2, infectious bovine rhinotracheitis virus, bovine parainfluenza-3 virus, and bovine respiratory syncytial virus when administered intranasally in young calves.

    Science.gov (United States)

    Xue, Wenzhi; Ellis, John; Mattick, Debra; Smith, Linda; Brady, Ryan; Trigo, Emilio

    2010-05-14

    The immunogenicity of an intranasally-administered modified-live virus (MLV) vaccine in 3-8 day old calves was evaluated against bovine viral diarrhea virus (BVDV) types 1 and 2, infectious bovine rhinotracheitis (IBR) virus, parainfluenza-3 (PI-3) virus and bovine respiratory syncytial virus (BRSV). Calves were intranasally vaccinated with a single dose of a multivalent MLV vaccine and were challenged with one of the respective viruses three to four weeks post-vaccination in five separate studies. There was significant sparing of diseases in calves intranasally vaccinated with the MLV vaccine, as indicated by significantly fewer clinical signs, lower rectal temperatures, reduced viral shedding, greater white blood cell and platelet counts, and less severe pulmonary lesions than control animals. This was the first MLV combination vaccine to demonstrate efficacy against BVDV types 1 and 2, IBR, PI-3 and BRSV in calves 3-8 days of age. Copyright 2010 Elsevier Ltd. All rights reserved.

  14. Comparative Biochemical and Functional Analysis of Viral and Human Secreted Tumor Necrosis Factor (TNF) Decoy Receptors*

    Science.gov (United States)

    Pontejo, Sergio M.; Alejo, Ali; Alcami, Antonio

    2015-01-01

    The blockade of tumor necrosis factor (TNF) by etanercept, a soluble version of the human TNF receptor 2 (hTNFR2), is a well established strategy to inhibit adverse TNF-mediated inflammatory responses in the clinic. A similar strategy is employed by poxviruses, encoding four viral TNF decoy receptor homologues (vTNFRs) named cytokine response modifier B (CrmB), CrmC, CrmD, and CrmE. These vTNFRs are differentially expressed by poxviral species, suggesting distinct immunomodulatory properties. Whereas the human variola virus and mouse ectromelia virus encode one vTNFR, the broad host range cowpox virus encodes all vTNFRs. We report the first comprehensive study of the functional and binding properties of these four vTNFRs, providing an explanation for their expression profile among different poxviruses. In addition, the vTNFRs activities were compared with the hTNFR2 used in the clinic. Interestingly, CrmB from variola virus, the causative agent of smallpox, is the most potent TNFR of those tested here including hTNFR2. Furthermore, we demonstrate a new immunomodulatory activity of vTNFRs, showing that CrmB and CrmD also inhibit the activity of lymphotoxin β. Similarly, we report for the first time that the hTNFR2 blocks the biological activity of lymphotoxin β. The characterization of vTNFRs optimized during virus-host evolution to modulate the host immune response provides relevant information about their potential role in pathogenesis and may be used to improve anti-inflammatory therapies based on soluble decoy TNFRs. PMID:25940088

  15. Comparative Biochemical and Functional Analysis of Viral and Human Secreted Tumor Necrosis Factor (TNF) Decoy Receptors.

    Science.gov (United States)

    Pontejo, Sergio M; Alejo, Ali; Alcami, Antonio

    2015-06-26

    The blockade of tumor necrosis factor (TNF) by etanercept, a soluble version of the human TNF receptor 2 (hTNFR2), is a well established strategy to inhibit adverse TNF-mediated inflammatory responses in the clinic. A similar strategy is employed by poxviruses, encoding four viral TNF decoy receptor homologues (vTNFRs) named cytokine response modifier B (CrmB), CrmC, CrmD, and CrmE. These vTNFRs are differentially expressed by poxviral species, suggesting distinct immunomodulatory properties. Whereas the human variola virus and mouse ectromelia virus encode one vTNFR, the broad host range cowpox virus encodes all vTNFRs. We report the first comprehensive study of the functional and binding properties of these four vTNFRs, providing an explanation for their expression profile among different poxviruses. In addition, the vTNFRs activities were compared with the hTNFR2 used in the clinic. Interestingly, CrmB from variola virus, the causative agent of smallpox, is the most potent TNFR of those tested here including hTNFR2. Furthermore, we demonstrate a new immunomodulatory activity of vTNFRs, showing that CrmB and CrmD also inhibit the activity of lymphotoxin β. Similarly, we report for the first time that the hTNFR2 blocks the biological activity of lymphotoxin β. The characterization of vTNFRs optimized during virus-host evolution to modulate the host immune response provides relevant information about their potential role in pathogenesis and may be used to improve anti-inflammatory therapies based on soluble decoy TNFRs. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Human Metapneumovirus Infection is Associated with Severe Respiratory Disease in Preschool Children with History of Prematurity.

    Science.gov (United States)

    Pancham, Krishna; Sami, Iman; Perez, Geovanny F; Huseni, Shehlanoor; Kurdi, Bassem; Rose, Mary C; Rodriguez-Martinez, Carlos E; Nino, Gustavo

    2016-02-01

    Human metapneumovirus (HMPV) is a recently discovered respiratory pathogen of the family Paramyxoviridae, the same family as that of respiratory syncytial virus (RSV). Premature children are at high risk of severe RSV infections, however, it is unclear whether HMPV infection is more severe in hospitalized children with a history of severe prematurity. We conducted a retrospective analysis of the clinical respiratory presentation of all polymerase chain reaction-confirmed HMPV infections in preschool-age children (≤5 years) with and without history of severe prematurity (prematurity. Preschool children with a history of prematurity had more severe HMPV disease as illustrated by longer hospitalizations, new or increased need for supplemental O2, and higher severity scores independently of age, ethnicity, and history of asthma. Our study suggests that HMPV infection causes significant disease burden among preschool children with a history of prematurity leading to severe respiratory infections and increasing health care resource utilization due to prolonged hospitalizations. Copyright © 2016. Published by Elsevier B.V.

  17. Incidence and etiology of hospitalized acute respiratory infections in the Egyptian Delta

    OpenAIRE

    Rowlinson, Emily; Dueger, Erica; Mansour, Adel; Azzazy, Nahed; Mansour, Hoda; Peters, Lisa; Rosenstock, Summer; Hamid, Sarah; Said, Mayar M.; Geneidy, Mohamed; Abd Allah, Monier; Kandeel, Amr

    2016-01-01

    Introduction Acute Respiratory Infections (ARI) are responsible for nearly two million childhood deaths worldwide. A limited number of studies have been published on the epidemiology of viral respiratory pathogens in Egypt. Methods A total of 6113 hospitalized patients >1?month of age with suspected ARI were enrolled between June 23, 2009 and December 31, 2013. Naso? and oropharyngeal specimens were collected and tested for influenza A and B, respiratory syncytial virus, human metapneumovirus...

  18. Physical status and viral load in women with positive human papillomavirus (HPV) infection in uterine cervix

    International Nuclear Information System (INIS)

    Kim, Byoung Gie; Lee, Eui Don; Zin, Yong Jae

    1998-01-01

    This study was performed to determine the frequency of viral integration and viral load in women with positive HPV type 16 infection, and showing normal findings, CIN, and cervical cancer. Total 75 (normal, 15; CIN I, 20; CIN III, 20; cervical cancer, 20) cervical swab specimens were used. HPV detection, typing, and viral load was determined by PCR method. Seventy of 75 (93.3%) of cervical swab specimens showed same results with hybrid capture assay and PCR method for detecting HPV DNA. HPV type 16 DNA was identified more frequently with progression from normal to cervical cancer (normal, 13 %; CIN I, 15%; CIN III, 40 %; cervical cancer, 55 %). The frequency of HPV type 16 DNA integration also increased with grade of the lesion (normal, 0 %; CIN I, 33 %; CIN III, 87 %; cervical cancer, 91 %) suggesting most of HPV type 16 present as integration forms in the cells. In addition, high-level of HPV 16 viral load also was found more frequently in CIN III and cervical cancer (normal, 0 %; CIN I, 0 %; CIN III, 87 %; cervical cancer, 100 %). These results suggest that viral integration and high-level of viral load may play an important role in cervical carcinogenesis. (author). 13 refs., 5 figs

  19. Human respiratory tract model for radiological protection: A revision of the ICRP Dosimetric Model for the Respiratory System

    International Nuclear Information System (INIS)

    Bair, W.J.

    1989-01-01

    In 1984, the International Commission on Radiological Protection (ICRP) appointed a task group of Committee 2 to review and revise, as necessary, the ICRP Dosimetric Model for the Respiratory System. The model was originally published in 1966, modified slightly in Publication No. 19, and again in Publication No. 30 (in 1979). The task group concluded that research during the past 20 y suggested certain deficiencies in the ICRP Dosimetric Model for the Respiratory System. Research has also provided sufficient information for a revision of the model. The task group's approach has been to review, in depth, morphology and physiology of the respiratory tract; deposition of inhaled particles in the respiratory tract; clearance of deposited materials; and the nature and specific sites of damage to the respiratory tract caused by inhaled radioactive substances. This review has led to a redefinition of the regions of the respiratory tract for dosimetric purposes. The redefinition has a morphologic and physiological basis and is consistent with observed deposition and clearance of particles and with resultant pathology. Regions, as revised, are the extrathoracic (E-T) region, comprising the nasal and oral regions, the pharynx, larynx, and upper part of the trachea; the fast-clearing thoracic region (T[f]), comprising the remainder of the trachea and bronchi; and the slow-clearing thoracic region (T[s]), comprising the bronchioles, alveoli, and thoracic lymph nodes. A task group report will include models for calculating radiation doses to these regions of the respiratory tract following inhalation of representative alpha-, beta-, and gamma-emitting particulate and gaseous radionuclides. The models may be implemented as a package of computer codes available to a wide range of users

  20. Human Adenovirus Core Protein V Is Targeted by the Host SUMOylation Machinery To Limit Essential Viral Functions.

    Science.gov (United States)

    Freudenberger, Nora; Meyer, Tina; Groitl, Peter; Dobner, Thomas; Schreiner, Sabrina

    2018-02-15

    Human adenoviruses (HAdV) are nonenveloped viruses containing a linear, double-stranded DNA genome surrounded by an icosahedral capsid. To allow proper viral replication, the genome is imported through the nuclear pore complex associated with viral core proteins. Until now, the role of these incoming virion proteins during the early phase of infection was poorly understood. The core protein V is speculated to bridge the core and the surrounding capsid. It binds the genome in a sequence-independent manner and localizes in the nucleus of infected cells, accumulating at nucleoli. Here, we show that protein V contains conserved SUMO conjugation motifs (SCMs). Mutation of these consensus motifs resulted in reduced SUMOylation of the protein; thus, protein V represents a novel target of the host SUMOylation machinery. To understand the role of protein V SUMO posttranslational modification during productive HAdV infection, we generated a replication-competent HAdV with SCM mutations within the protein V coding sequence. Phenotypic analyses revealed that these SCM mutations are beneficial for adenoviral replication. Blocking protein V SUMOylation at specific sites shifts the onset of viral DNA replication to earlier time points during infection and promotes viral gene expression. Simultaneously, the altered kinetics within the viral life cycle are accompanied by more efficient proteasomal degradation of host determinants and increased virus progeny production than that observed during wild-type infection. Taken together, our studies show that protein V SUMOylation reduces virus growth; hence, protein V SUMOylation represents an important novel aspect of the host antiviral strategy to limit virus replication and thereby points to potential intervention strategies. IMPORTANCE Many decades of research have revealed that HAdV structural proteins promote viral entry and mainly physical stability of the viral genome in the capsid. Our work over the last years showed that this

  1. Viral DNA Replication Orientation and hnRNPs Regulate Transcription of the Human Papillomavirus 18 Late Promoter.

    Science.gov (United States)

    Wang, Xiaohong; Liu, Haibin; Ge, Hui; Ajiro, Masahiko; Sharma, Nishi R; Meyers, Craig; Morozov, Pavel; Tuschl, Thomas; Klar, Amar; Court, Donald; Zheng, Zhi-Ming

    2017-05-30

    The life cycle of human papillomaviruses (HPVs) is tightly linked to keratinocyte differentiation. Although expression of viral early genes is initiated immediately upon virus infection of undifferentiated basal cells, viral DNA amplification and late gene expression occur only in the mid to upper strata of the keratinocytes undergoing terminal differentiation. In this report, we show that the relative activity of HPV18 TATA-less late promoter P 811 depends on its orientation relative to that of the origin (Ori) of viral DNA replication and is sensitive to the eukaryotic DNA polymerase inhibitor aphidicolin. Additionally, transfected 70-nucleotide (nt)-long single-strand DNA oligonucleotides that are homologous to the region near Ori induce late promoter activity. We also found that promoter activation in raft cultures leads to production of the late promoter-associated, sense-strand transcription initiation RNAs (tiRNAs) and splice-site small RNAs (spliRNAs). Finally, a cis -acting AAGTATGCA core element that functions as a repressor to the promoter was identified. This element interacts with hnRNP D0B and hnRNP A/B factors. Point mutations in the core prevented binding of hnRNPs and increased the promoter activity. Confirming this result, knocking down the expression of both hnRNPs in keratinocytes led to increased promoter activity. Taking the data together, our study revealed the mechanism of how the HPV18 late promoter is regulated by DNA replication and host factors. IMPORTANCE It has been known for decades that the activity of viral late promoters is associated with viral DNA replication among almost all DNA viruses. However, the mechanism of how DNA replication activates the viral late promoter and what components of the replication machinery are involved remain largely unknown. In this study, we characterized the P 811 promoter region of HPV18 and demonstrated that its activation depends on the orientation of DNA replication. Using single

  2. Human Cytomegalovirus Nuclear Capsids Associate with the Core Nuclear Egress Complex and the Viral Protein Kinase pUL97.

    Science.gov (United States)

    Milbradt, Jens; Sonntag, Eric; Wagner, Sabrina; Strojan, Hanife; Wangen, Christina; Lenac Rovis, Tihana; Lisnic, Berislav; Jonjic, Stipan; Sticht, Heinrich; Britt, William J; Schlötzer-Schrehardt, Ursula; Marschall, Manfred

    2018-01-13

    The nuclear phase of herpesvirus replication is regulated through the formation of regulatory multi-component protein complexes. Viral genomic replication is followed by nuclear capsid assembly, DNA encapsidation and nuclear egress. The latter has been studied intensely pointing to the formation of a viral core nuclear egress complex (NEC) that recruits a multimeric assembly of viral and cellular factors for the reorganization of the nuclear envelope. To date, the mechanism of the association of human cytomegalovirus (HCMV) capsids with the NEC, which in turn initiates the specific steps of nuclear capsid budding, remains undefined. Here, we provide electron microscopy-based data demonstrating the association of both nuclear capsids and NEC proteins at nuclear lamina budding sites. Specifically, immunogold labelling of the core NEC constituent pUL53 and NEC-associated viral kinase pUL97 suggested an intranuclear NEC-capsid interaction. Staining patterns with phospho-specific lamin A/C antibodies are compatible with earlier postulates of targeted capsid egress at lamina-depleted areas. Important data were provided by co-immunoprecipitation and in vitro kinase analyses using lysates from HCMV-infected cells, nuclear fractions, or infectious virions. Data strongly suggest that nuclear capsids interact with pUL53 and pUL97. Combined, the findings support a refined concept of HCMV nuclear trafficking and NEC-capsid interaction.

  3. Human Cytomegalovirus Nuclear Capsids Associate with the Core Nuclear Egress Complex and the Viral Protein Kinase pUL97

    Directory of Open Access Journals (Sweden)

    Jens Milbradt

    2018-01-01

    Full Text Available The nuclear phase of herpesvirus replication is regulated through the formation of regulatory multi-component protein complexes. Viral genomic replication is followed by nuclear capsid assembly, DNA encapsidation and nuclear egress. The latter has been studied intensely pointing to the formation of a viral core nuclear egress complex (NEC that recruits a multimeric assembly of viral and cellular factors for the reorganization of the nuclear envelope. To date, the mechanism of the association of human cytomegalovirus (HCMV capsids with the NEC, which in turn initiates the specific steps of nuclear capsid budding, remains undefined. Here, we provide electron microscopy-based data demonstrating the association of both nuclear capsids and NEC proteins at nuclear lamina budding sites. Specifically, immunogold labelling of the core NEC constituent pUL53 and NEC-associated viral kinase pUL97 suggested an intranuclear NEC-capsid interaction. Staining patterns with phospho-specific lamin A/C antibodies are compatible with earlier postulates of targeted capsid egress at lamina-depleted areas. Important data were provided by co-immunoprecipitation and in vitro kinase analyses using lysates from HCMV-infected cells, nuclear fractions, or infectious virions. Data strongly suggest that nuclear capsids interact with pUL53 and pUL97. Combined, the findings support a refined concept of HCMV nuclear trafficking and NEC-capsid interaction.

  4. Viral Causes of Lymphoma: The History of Epstein-Barr Virus and Human T-Lymphotropic Virus 1.

    Science.gov (United States)

    Esau, Daniel

    2017-01-01

    In 1964, Epstein, Barr, and Achong published a report outlining their discovery of viral particles in lymphoblasts isolated from a patient with Burkitt lymphoma. The Epstein-Barr virus (EBV) was the first human cancer virus to be described, and its discovery paved the way for further investigations into the oncogenic potential of viruses. In the decades following the discovery of EBV, multinational research efforts led to the discovery of further viral causes of various human cancers. Lymphomas are perhaps the cancer type that is most closely associated with oncogenic viruses: infection with EBV, human T-lymphotropic virus 1 (HTLV-1), human immunodeficiency virus (HIV), Kaposi sarcoma-associated herpesvirus/human herpesvirus 8, and hepatitis C virus have all been associated with lymphomagenesis. Lymphomas have also played an important role in the history of oncoviruses, as both the first human oncovirus (EBV) and the first human retrovirus (HTLV-1) were discovered through isolates taken from patients with unique lymphoma syndromes. The history of the discovery of these 2 key oncoviruses is presented here, and their impact on further medical research, using the specific example of HIV research, is briefly discussed.

  5. Viral Causes of Lymphoma: The History of Epstein-Barr Virus and Human T-Lymphotropic Virus 1

    Directory of Open Access Journals (Sweden)

    Daniel Esau

    2017-09-01

    Full Text Available In 1964, Epstein, Barr, and Achong published a report outlining their discovery of viral particles in lymphoblasts isolated from a patient with Burkitt lymphoma. The Epstein-Barr virus (EBV was the first human cancer virus to be described, and its discovery paved the way for further investigations into the oncogenic potential of viruses. In the decades following the discovery of EBV, multinational research efforts led to the discovery of further viral causes of various human cancers. Lymphomas are perhaps the cancer type that is most closely associated with oncogenic viruses: infection with EBV, human T-lymphotropic virus 1 (HTLV-1, human immunodeficiency virus (HIV, Kaposi sarcoma-associated herpesvirus/human herpesvirus 8, and hepatitis C virus have all been associated with lymphomagenesis. Lymphomas have also played an important role in the history of oncoviruses, as both the first human oncovirus (EBV and the first human retrovirus (HTLV-1 were discovered through isolates taken from patients with unique lymphoma syndromes. The history of the discovery of these 2 key oncoviruses is presented here, and their impact on further medical research, using the specific example of HIV research, is briefly discussed.

  6. Human milk 90K (Mac-2 BP): possible protective effects against acute respiratory infections.

    Science.gov (United States)

    Fornarini, B; Iacobelli, S; Tinari, N; Natoli, C; De Martino, M; Sabatino, G

    1999-01-01

    Eighty-six children fed human milk were followed prospectively from birth to 12 months of age to assess the effect of milk 90K, a secreted glycoprotein with immune-stimulatory properties, on development of acute respiratory infections (ARI). The level of human milk 90K was inversely related to episodes of ARI (r = - 0.34; P = 0.001). The average 90K level in human milk fed to children who did not develop ARI was significantly higher than in milk fed to children in whom infection occurred on multiple occasions (156.6 +/- 144.8 microg/ml versus 70.9 +/- 92.3 microg/ml; P = 0.001). These data suggest that the protective effects of human milk against ARI may be due in part to immune maturation effects by secreted 90K.

  7. The draft genome sequence of the ferret (Mustela putorius furo) facilitates study of human respiratory disease.

    Science.gov (United States)

    Peng, Xinxia; Alföldi, Jessica; Gori, Kevin; Eisfeld, Amie J; Tyler, Scott R; Tisoncik-Go, Jennifer; Brawand, David; Law, G Lynn; Skunca, Nives; Hatta, Masato; Gasper, David J; Kelly, Sara M; Chang, Jean; Thomas, Matthew J; Johnson, Jeremy; Berlin, Aaron M; Lara, Marcia; Russell, Pamela; Swofford, Ross; Turner-Maier, Jason; Young, Sarah; Hourlier, Thibaut; Aken, Bronwen; Searle, Steve; Sun, Xingshen; Yi, Yaling; Suresh, M; Tumpey, Terrence M; Siepel, Adam; Wisely, Samantha M; Dessimoz, Christophe; Kawaoka, Yoshihiro; Birren, Bruce W; Lindblad-Toh, Kerstin; Di Palma, Federica; Engelhardt, John F; Palermo, Robert E; Katze, Michael G

    2014-12-01

    The domestic ferret (Mustela putorius furo) is an important animal model for multiple human respiratory diseases. It is considered the 'gold standard' for modeling human influenza virus infection and transmission. Here we describe the 2.41 Gb draft genome assembly of the domestic ferret, constituting 2.28 Gb of sequence plus gaps. We annotated 19,910 protein-coding genes on this assembly using RNA-seq data from 21 ferret tissues. We characterized the ferret host response to two influenza virus infections by RNA-seq analysis of 42 ferret samples from influenza time-course data and showed distinct signatures in ferret trachea and lung tissues specific to 1918 or 2009 human pandemic influenza virus infections. Using microarray data from 16 ferret samples reflecting cystic fibrosis disease progression, we showed that transcriptional changes in the CFTR-knockout ferret lung reflect pathways of early disease that cannot be readily studied in human infants with cystic fibrosis disease.

  8. Viral Hepatitis

    Science.gov (United States)

    ... Home A-Z Health Topics Viral hepatitis Viral hepatitis > A-Z Health Topics Viral hepatitis (PDF, 90 ... liver. Source: National Cancer Institute Learn more about hepatitis Watch a video. Learn who is at risk ...

  9. Glycomic analysis of human respiratory tract tissues and correlation with influenza virus infection.

    Directory of Open Access Journals (Sweden)

    Trevenan Walther

    2013-03-01

    Full Text Available The first step in influenza infection of the human respiratory tract is binding of the virus to sialic (Sia acid terminated receptors. The binding of different strains of virus for the receptor is determined by the α linkage of the sialic acid to galactose and the adjacent glycan structure. In this study the N- and O-glycan composition of the human lung, bronchus and nasopharynx was characterized by mass spectrometry. Analysis showed that there was a wide spectrum of both Sia α2-3 and α2-6 glycans in the lung and bronchus. This glycan structural data was then utilized in combination with binding data from 4 of the published glycan arrays to assess whether these current glycan arrays were able to predict replication of human, avian and swine viruses in human ex vivo respiratory tract tissues. The most comprehensive array from the Consortium for Functional Glycomics contained the greatest diversity of sialylated glycans, but was not predictive of productive replication in the bronchus and lung. Our findings indicate that more comprehensive but focused arrays need to be developed to investigate influenza virus binding in an assessment of newly emerging influenza viruses.

  10. Human Cytomegalovirus pUL47 Modulates Tegumentation and Capsid Accumulation at the Viral Assembly Complex

    Science.gov (United States)

    Cappadona, Ilaria; Villinger, Clarissa; Schutzius, Gabi; Mertens, Thomas

    2015-01-01

    ABSTRACT Human cytomegalovirus (HCMV) tegument protein pUL47 is an interaction partner of pUL48 and highly conserved among herpesviruses. It is closely associated with the capsid and has an important function early in infection. Here, we report a specific role of pUL47 in the tegumentation of capsids in the cytoplasm. A newly generated mutant virus (TB-47stop), in which expression of pUL47 is blocked, exhibited a severe impairment in cell-to-cell spread and release of infectivity from infected cells. Ultrastructural analysis of TB-47stop-infected cells clearly showed cytoplasmic accumulations of nonenveloped capsids that were only partially tegumented, indicating that these capsids failed to complete tegumentation. Nevertheless, these accumulations were positive for HCMV inner tegument proteins pp150 and pUL48, suggesting that their attachment to capsids occurs independently of pUL47. Despite these morphological alterations, fully enveloped virus particles were found in the extracellular space and at the viral assembly complex (vAC) of TB-47stop-infected cells, indicating that pUL47 is not essential for the generation of virions. We confirmed findings that incorporation of pUL48 into virions is impaired in the absence of pUL47. Interestingly, pUL47 exhibited a strong nuclear localization in transfected cells, whereas it was found exclusively at the vAC in the context of virus infection. Colocalization of pUL47 and pUL48 at the vAC is consistent with their interaction. We also found a shift to a more nuclear localization of pUL47 when the expression of pUL48 was reduced. Summarizing our results, we hypothesize that pUL48 directs pUL47 to the vAC to promote tegumentation and secondary envelopment of capsids. IMPORTANCE Generation of infectious HCMV particles requires an organized and multistep process involving the action of several viral and cellular proteins as well as protein-protein interactions. A better understanding of these processes is important for

  11. Gefitinib and pyrrolidine dithiocarbamate decrease viral replication and cytokine production in dengue virus infected human monocyte cultures.

    Science.gov (United States)

    Duran, Anyelo; Valero, Nereida; Mosquera, Jesús; Fuenmayor, Edgard; Alvarez-Mon, Melchor

    2017-12-15

    The epidermal growth factor receptor (EGFR) and nucleotide-binding and oligomerization-domain containing 2 (NOD2) are important in cancer and in microbial recognition, respectively. These molecules trigger intracellular signaling pathways inducing the expression of inflammatory genes by NF-kB translocation. Gefitinib (GBTC) and pyrrolidine dithiocarbamate (PDTC) are capable of inhibiting EGFR/NOD2 and NF-kB, respectively. In earlier stages of dengue virus (DENV) infection, monocytes are capable of sustaining viral replication and increasing cytokine production, suggesting that monocyte/macrophages play an important role in early DENV replication. GBTC and PDTC have not been used to modify the pathogenesis of DENV in infected cells. This study was aimed to determine the effect of GBTC and PDTC on viral replication and cytokine production in DENV serotype 2 (DENV2)-infected human monocyte cultures. GBTC and PDTC were used to inhibit EGFR/NOD2 and NF-kB, respectively. Cytokine production was measured by ELISA and viral replication by plaque forming unit assay. Increased DENV2 replication and anti-viral cytokine production (IFN-α/β, TNF-α, IL-12 and IL-18) in infected cultures were found. These parameters were decreased after EGFR/NOD2 or NF-kB inhibitions. The inhibitory effects of GBTC and PDTC on viral replication and cytokine production can be beneficial in the treatment of patients infected by dengue and suggest a possible role of EGFR/NOD2 receptors and NF-kB in dengue pathogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Climate Change and Respiratory Infections.

    Science.gov (United States)

    Mirsaeidi, Mehdi; Motahari, Hooman; Taghizadeh Khamesi, Mojdeh; Sharifi, Arash; Campos, Michael; Schraufnagel, Dean E

    2016-08-01

    The rate of global warming has accelerated over the past 50 years. Increasing surface temperature is melting glaciers and raising the sea level. More flooding, droughts, hurricanes, and heat waves are being reported. Accelerated changes in climate are already affecting human health, in part by altering the epidemiology of climate-sensitive pathogens. In particular, climate change may alter the incidence and severity of respiratory infections by affecting vectors and host immune responses. Certain respiratory infections, such as avian influenza and coccidioidomycosis, are occurring in locations previously unaffected, apparently because of global warming. Young children and older adults appear to be particularly vulnerable to rapid fluctuations in ambient temperature. For example, an increase in the incidence in childhood pneumonia in Australia has been associated with sharp temperature drops from one day to the next. Extreme weather events, such as heat waves, floods, major storms, drought, and wildfires, are also believed to change the incidence of respiratory infections. An outbreak of aspergillosis among Japanese survivors of the 2011 tsunami is one such well-documented example. Changes in temperature, precipitation, relative humidity, and air pollution influence viral activity and transmission. For example, in early 2000, an outbreak of Hantavirus respiratory disease was linked to a local increase in the rodent population, which in turn was attributed to a two- to threefold increase in rainfall before the outbreak. Climate-sensitive respiratory pathogens present challenges to respiratory health that may be far greater in the foreseeable future.

  13. Novel microRNA-like viral small regulatory RNAs arising during human hepatitis A virus infection.

    Science.gov (United States)

    Shi, Jiandong; Sun, Jing; Wang, Bin; Wu, Meini; Zhang, Jing; Duan, Zhiqing; Wang, Haixuan; Hu, Ningzhu; Hu, Yunzhang

    2014-10-01

    MicroRNAs (miRNAs), including host miRNAs and viral miRNAs, play vital roles in regulating host-virus interactions. DNA viruses encode miRNAs that regulate the viral life cycle. However, it is generally believed that cytoplasmic RNA viruses do not encode miRNAs, owing to inaccessible cellular miRNA processing machinery. Here, we provide a comprehensive genome-wide analysis and identification of miRNAs that were derived from hepatitis A virus (HAV; Hu/China/H2/1982), which is a typical cytoplasmic RNA virus. Using deep-sequencing and in silico approaches, we identified 2 novel virally encoded miRNAs, named hav-miR-1-5p and hav-miR-2-5p. Both of the novel virally encoded miRNAs were clearly detected in infected cells. Analysis of Dicer enzyme silencing demonstrated that HAV-derived miRNA biogenesis is Dicer dependent. Furthermore, we confirmed that HAV mature miRNAs were generated from viral miRNA precursors (pre-miRNAs) in host cells. Notably, naturally derived HAV miRNAs were biologically and functionally active and induced post-transcriptional gene silencing (PTGS). Genomic location analysis revealed novel miRNAs located in the coding region of the viral genome. Overall, our results show that HAV naturally generates functional miRNA-like small regulatory RNAs during infection. This is the first report of miRNAs derived from the coding region of genomic RNA of a cytoplasmic RNA virus. These observations demonstrate that a cytoplasmic RNA virus can naturally generate functional miRNAs, as DNA viruses do. These findings also contribute to improved understanding of host-RNA virus interactions mediated by RNA virus-derived miRNAs. © FASEB.

  14. Rekombinante bovin-humane Parainfluenzaviren Typ 3 als Impfvektoren gegen nicht-virale Antigene

    OpenAIRE

    Schomacker, Henrick

    2008-01-01

    Bei bhPIV3 handelt es sich um ein bovines Parainfluenzavirus Typ 3 (bPIV3), dessen Ober-flächenproteingene gegen jene des humanen Parainfluenzavirus Typ 3 (hPIV3) ausgetauscht wurden. Dieses ursprünglich als experimenteller Impfstoff gegen hPIV3 entwickelte Virus wurde darüber hinaus als Impfvektor zur Expression anderer viraler Antigene verwendet. Im Rahmen der hier vorgestellten Arbeit wurden die ersten bhPIV3-basierten Vektoren für nicht-virale Antigene hergestellt und in einem ersten Vers...

  15. Effects of Long-Term Dust Exposure on Human Respiratory System Health in Minqin County, China.

    Science.gov (United States)

    Wang, Jinyu; Li, Sheng; Wang, Shigong; Shang, Kezheng

    2015-01-01

    The aim of this study was to assess the effects of long-term sand dust exposure on human respiratory health. Dust events break out frequently in Minqin County, northwest China, whereas Pingliang City, northwest China, is rarely influenced by dust events. Therefore, Minqin and Pingliang were selected as sand dust exposure region and control area, respectively. The incidence of respiratory system diseases and symptoms was determined through a structured respiratory health questionnaire (ATS-DLD-78-A) and personal interviews. The subjects comprised 728 farmers (Minqin, 424; Pingliang, 304) aged 40 years or older, who had nondocumented occupational history to industrial dust exposure. Prevalences (odds ratio [OR], 95% confidence interval [CI]) of chronic rhinitis, chronic bronchitis, and chronic cough increased 9.6% (3.141, 1.776-5.555), 7.5% (2.468, 1.421-4.286), and 10.2% (1.787, 1.246-2.563) in Minqin comparison with Pingliang, respectively, and the differences were significant (p <.01).

  16. Genetic diversity of human metapneumovirus in hospitalized children with acute respiratory infections in Croatia.

    Science.gov (United States)

    Jagušić, Maja; Slović, Anamarija; Ljubin-Sternak, Sunčanica; Mlinarić-Galinović, Gordana; Forčić, Dubravko

    2017-11-01

    Human metapneumovirus (HMPV) is recognized as a global and frequent cause of acute respiratory tract infections among people of all ages. The objectives of this study were molecular epidemiology and evolutionary analysis of HMPV strains which produced moderate and severe acute respiratory tract infections in children in Croatia during four consecutive seasons (2011-2014). A total of 117 HMPV-positive samples collected from hospitalized pediatric patients presenting with acute respiratory tract infections and tested by direct immunofluorescence assay were first analyzed by amplifying a part of the F gene. Sixteen samples were further analyzed based on complete F, G, and SH gene sequences. HMPV genome was identified in 92 of 117 samples (78%) and the circulation of multiple lineages of HMPV was confirmed. In 2011, 2012, and 2014, subgroups A2 and B2 co-circulated, while B1 gained prevalence in 2013 and 2014. The study established the presence of a novel subcluster A2c in Croatia. This subcluster has only recently been detected in East and Southeast Asia. This study provides new insights into epidemiology and genetic diversity of HMPV in this part of Europe. © 2017 Wiley Periodicals, Inc.

  17. Phylogenic analysis of human bocavirus detected in children with acute respiratory infection in Yaounde, Cameroon.

    Science.gov (United States)

    Kenmoe, Sebastien; Vernet, Marie-Astrid; Njankouo-Ripa, Mohamadou; Penlap, Véronique Beng; Vabret, Astrid; Njouom, Richard

    2017-07-17

    Human Bocavirus (HBoV) was first identified in 2005 and has been shown to be a common cause of respiratory infections and gastroenteritis in children. In a recent study, we found that 10.7% of children with acute respiratory infections (ARI) were infected by HBoV. Genetic characterization of this virus remains unknown in Central Africa, particularly in Cameroon Leeding us to evaluate the molecular characteristics of HBoV strains in Cameroonian children with ARI. Phylogenetic analysis of partial HBoV VP1/2 sequences showed a low level of nucleotide variation and the circulation of HBoV genotype 1 (HBoV-1) only. Three clades were obtained, two clustering with each of the reference strains ST1 and ST2, and a third group consisting of only Cameroon strains. By comparing with the Swedish reference sequences, ST1 and ST2, Cameroon sequences showed nucleotide and amino acid similarities of respectively 97.36-100% and 98.35-100%. These results could help improve strategies for monitoring and control of respiratory infections in Cameroon.

  18. Replacement of Murine Leukemia Virus Readthrough Mechanism by Human Immunodeficiency Virus Frameshift Allows Synthesis of Viral Proteins and Virus Replication

    Science.gov (United States)

    Brunelle, Marie-Noëlle; Brakier-Gingras, Léa; Lemay, Guy

    2003-01-01

    Retroviruses use unusual recoding strategies to synthesize the Gag-Pol polyprotein precursor of viral enzymes. In human immunodeficiency virus, ribosomes translating full-length viral RNA can shift back by 1 nucleotide at a specific site defined by the presence of both a slippery sequence and a downstream stimulatory element made of an extensive secondary structure. This so-called frameshift mechanism could become a target for the development of novel antiviral strategies. A different recoding strategy is used by other retroviruses, such as murine leukemia viruses, to synthesize the Gag-Pol precursor; in this case, a stop codon is suppressed in a readthrough process, again due to the presence of a specific structure adopted by the mRNA. Development of antiframeshift agents will greatly benefit from the availability of a simple animal and virus model. For this purpose, the murine leukemia virus readthrough region was rendered inactive by mutagenesis and the frameshift region of human immunodeficiency virus was inserted to generate a chimeric provirus. This substitution of readthrough by frameshift allows the synthesis of viral proteins, and the chimeric provirus sequence was found to generate infectious viruses. This system could be a most interesting alternative to study ribosomal frameshift in the context of a virus amenable to the use of a simple animal model. PMID:12584361

  19. A human-like H1N2 influenza virus detected during an outbreak of acute respiratory disease in swine in Brazil.

    Science.gov (United States)

    Schaefer, Rejane; Rech, Raquel Rubia; Gava, Danielle; Cantão, Mauricio Egídio; da Silva, Marcia Cristina; Silveira, Simone; Zanella, Janice Reis Ciacci

    2015-01-01

    Passive monitoring for detection of influenza A viruses (IAVs) in pigs has been carried out in Brazil since 2009, detecting mostly the A(H1N1)pdm09 influenza virus. Since then, outbreaks of acute respiratory disease suggestive of influenza A virus infection have been observed frequently in Brazilian pig herds. During a 2010-2011 influenza monitoring, a novel H1N2 influenza virus was detected in nursery pigs showing respiratory signs. The pathologic changes were cranioventral acute necrotizing bronchiolitis to subacute proliferative and purulent bronchointerstitial pneumonia. Lung tissue samples were positive for both influenza A virus and A(H1N1)pdm09 influenza virus based on RT-qPCR of the matrix gene. Two IAVs were isolated in SPF chicken eggs. HI analysis of both swine H1N2 influenza viruses showed reactivity to the H1δ cluster. DNA sequencing was performed for all eight viral gene segments of two virus isolates. According to the phylogenetic analysis, the HA and NA genes clustered with influenza viruses of the human lineage (H1-δ cluster, N2), whereas the six internal gene segments clustered with the A(H1N1)pdm09 group. This is the first report of a reassortant human-like H1N2 influenza virus derived from pandemic H1N1 virus causing an outbreak of respiratory disease in pigs in Brazil. The emergence of a reassortant IAV demands the close monitoring of pigs through the full-genome sequencing of virus isolates in order to enhance genetic information about IAVs circulating in pigs.

  20. Effects of Household Air Pollution in Malawi and Human Immunodeficiency Virus Status on Respiratory Symptoms and Inflammation, Injury, and Repair Markers.

    Science.gov (United States)

    Kim, Charles; Jary, Hannah; Mortimer, Kevin; Schweitzer, Kelly S; Curran-Everett, Doug; Gordon, Stephen; Petrache, Irina

    2018-04-01

    Household air pollution (HAP) and human immunodeficiency virus (HIV) are associated with increased risk for chronic obstructive pulmonary disease. Both HAP and HIV are widespread in Sub-Saharan Africa, including Malawi, where HIV has 10.6% prevalence in patients 15-49 years old. We hypothesized that HIV infection (HIV + ) and habitual exposure to HAP (HAP + ) synergize to cause systemic inflammation and vascular injury, which may herald early onset of chronic respiratory diseases. In this pilot study, 50 subjects from Malawi with known HIV status were administered surveys recording demographics, HAP exposure, and respiratory symptoms/diagnoses. Peripheral blood was collected, and Meso Scale Discovery V-Plex assay was used to measure the levels of 41 serum markers. Almost all subjects (96%) reported HAP + , 30 were HIV + , 20 were HIV - , with a mean age of 22 years in both groups. More females (73%) were HIV + , whereas 65% of those who were HIV - were males. The vast majority were never-smokers (70% of HIV - and 83% of HIV + subjects, respectively). Forty-six percent of all subjects (57% of HIV + HAP + and 33% of HIV - HAP + ) reported respiratory diagnoses and/or respiratory symptoms, with breathlessness and cough being most common. Although HIV + HAP + individuals had a trend to increased proinflammatory cytokines and vascular injury markers, and decreases in proangiogenic factors compared with HIV - HAP + , only the decrease in serum interleukin-16 (by 44%) was statistically significant (P = 0.03). Also, compared with other subjects, serum interleukin-2 levels were significantly decreased (by 31%; P = 0.02) in HIV + subjects with persistent respiratory symptoms. This study suggests a high prevalence of respiratory symptoms in HIV + individuals exposed to HAP. The significant decrease in interleukin-2 and interleukin-16, cytokines associated with HIV clearance, may contribute to viral persistence, and because their low levels were found to correlate with

  1. A Defective Interfering Influenza RNA Inhibits Infectious Influenza Virus Replication in Human Respiratory Tract Cells: A Potential New Human Antiviral

    Directory of Open Access Journals (Sweden)

    Claire M. Smith

    2016-08-01

    Full Text Available Defective interfering (DI viruses arise during the replication of influenza A virus and contain a non-infective version of the genome that is able to interfere with the production of infectious virus. In this study we hypothesise that a cloned DI influenza A virus RNA may prevent infection of human respiratory epithelial cells with infection by influenza A. The DI RNA (244/PR8 was derived by a natural deletion process from segment 1 of influenza A/PR/8/34 (H1N1; it comprises 395 nucleotides and is packaged in the DI virion in place of a full-length genome segment 1. Given intranasally, 244/PR8 DI virus protects mice and ferrets from clinical influenza caused by a number of different influenza A subtypes and interferes with production of infectious influenza A virus in cells in culture. However, evidence that DI influenza viruses are active in cells of the human respiratory tract is lacking. Here we show that 244/PR8 DI RNA is replicated by an influenza A challenge virus in human lung diploid fibroblasts, bronchial epithelial cells, and primary nasal basal cells, and that the yield of challenge virus is significantly reduced in a dose-dependent manner indicating that DI influenza virus has potential as a human antiviral.

  2. Phylogenetic evidence for intratypic recombinant events in a novel human adenovirus C that causes severe acute respiratory infection in children.

    Science.gov (United States)

    Wang, Yanqun; Li, Yamin; Lu, Roujian; Zhao, Yanjie; Xie, Zhengde; Shen, Jun; Tan, Wenjie

    2016-03-10

    Human adenoviruses (HAdVs) are prevalent in hospitalized children with severe acute respiratory infection (SARI). Here, we report a unique recombinant HAdV strain (CBJ113) isolated from a HAdV-positive child with SARI. The whole-genome sequence was determined using Sanger sequencing and high-throughput sequencing. A phylogenetic analysis of the complete genome indicated that the CBJ113 strain shares a common origin with HAdV-C2, HAdV-C6, HAdV-C1, HAdV-C5, and HAdV-C57 and formed a novel subclade on the same branch as other HAdV-C subtypes. BootScan and single nucleotide polymorphism analyses showed that the CBJ113 genome has an intra-subtype recombinant structure and comprises gene regions mainly originating from two circulating viral strains: HAdV-1 and HAdV-2. The parental penton base, pVI, and DBP genes of the recombinant strain clustered with the HAdV-1 prototype strain, and the E1B, hexon, fiber, and 100 K genes of the recombinant clustered within the HAdV-2 subtype, meanwhile the E4orf1 and DNA polymerase genes of the recombinant shared the greatest similarity with those of HAdV-5 and HAdV-6, respectively. All of these findings provide insight into our understanding of the dynamics of the complexity of the HAdV-C epidemic. More extensive studies should address the pathogenicity and clinical characteristics of the novel recombinant.

  3. Research Advances. Image Pinpoints All 5 Million Atoms in Viral Coat; Bilirubin, "Animals-Only" Pigment, Found in Plants; New Evidence Shows Humans Make Salicylic Acid

    Science.gov (United States)

    King, Angela G.

    2009-08-01

    Recent "firsts" in chemical research: image of a viral capsid pinpointing 5 million atoms; isolation and identification of an "animal" pigment, bilirubin, from a plant source; evidence that humans make salicylic acid.

  4. Neisseria gonorrhoeae co-infection exacerbates vaginal HIV shedding without affecting systemic viral loads in human CD34+ engrafted mice.

    Directory of Open Access Journals (Sweden)

    Stacey X Xu

    Full Text Available HIV synergy with sexually transmitted co-infections is well-documented in the clinic. Co-infection with Neisseria gonorrhoeae in particular, increases genital HIV shedding and mucosal transmission. However, no animal model of co-infection currently exists to directly explore this relationship or to bridge the gap in understanding between clinical and in vitro studies of this interaction. This study aims to test the feasibility of using a humanized mouse model to overcome this barrier. Combining recent in vivo modelling advancements in both HIV and gonococcal research, we developed a co-infection model by engrafting immunodeficient NSG mice with human CD34+ hematopoietic stem cells to generate humanized mice that permit both systemic HIV infection and genital N. gonorrhoeae infection. Systemic plasma and vaginal lavage titres of HIV were measured in order to assess the impact of gonococcal challenge on viral plasma titres and genital shedding. Engrafted mice showed human CD45+ leukocyte repopulation in blood and mucosal tissues. Systemic HIV challenge resulted in 104-105 copies/mL of viral RNA in blood by week 4 post-infection, as well as vaginal shedding of virus. Subsequent gonococcal challenge resulted in unchanged plasma HIV levels but higher viral shedding in the genital tract, which reflects published clinical observations. Thus, human CD34+ stem cell-transplanted NSG mice represent an experimentally tractable animal model in which to study HIV shedding during gonococcal co-infection, allowing dissection of molecular and immunological interactions between these pathogens, and providing a platform to assess future therapeutics aimed at reducing HIV transmission.

  5. Neisseria gonorrhoeae co-infection exacerbates vaginal HIV shedding without affecting systemic viral loads in human CD34+ engrafted mice.

    Science.gov (United States)

    Xu, Stacey X; Leontyev, Danila; Kaul, Rupert; Gray-Owen, Scott D

    2018-01-01

    HIV synergy with sexually transmitted co-infections is well-documented in the clinic. Co-infection with Neisseria gonorrhoeae in particular, increases genital HIV shedding and mucosal transmission. However, no animal model of co-infection currently exists to directly explore this relationship or to bridge the gap in understanding between clinical and in vitro studies of this interaction. This study aims to test the feasibility of using a humanized mouse model to overcome this barrier. Combining recent in vivo modelling advancements in both HIV and gonococcal research, we developed a co-infection model by engrafting immunodeficient NSG mice with human CD34+ hematopoietic stem cells to generate humanized mice that permit both systemic HIV infection and genital N. gonorrhoeae infection. Systemic plasma and vaginal lavage titres of HIV were measured in order to assess the impact of gonococcal challenge on viral plasma titres and genital shedding. Engrafted mice showed human CD45+ leukocyte repopulation in blood and mucosal tissues. Systemic HIV challenge resulted in 104-105 copies/mL of viral RNA in blood by week 4 post-infection, as well as vaginal shedding of virus. Subsequent gonococcal challenge resulted in unchanged plasma HIV levels but higher viral shedding in the genital tract, which reflects published clinical observations. Thus, human CD34+ stem cell-transplanted NSG mice represent an experimentally tractable animal model in which to study HIV shedding during gonococcal co-infection, allowing dissection of molecular and immunological interactions between these pathogens, and providing a platform to assess future therapeutics aimed at reducing HIV transmission.

  6. A single intranasal administration of virus-like particle vaccine induces an efficient protection for mice against human respiratory syncytial virus.

    Science.gov (United States)

    Jiao, Yue-Ying; Fu, Yuan-Hui; Yan, Yi-Fei; Hua, Ying; Ma, Yao; Zhang, Xiu-Juan; Song, Jing-Dong; Peng, Xiang-Lei; Huang, Jiaqiang; Hong, Tao; He, Jin-Sheng

    2017-08-01

    Human respiratory syncytial virus (RSV) is an important pediatric pathogen causing acute viral respiratory disease in infants and young children. However, no licensed vaccines are currently available. Virus-like particles (VLPs) may bring new hope to producing RSV VLP vaccine with high immunogenicity and safety. Here, we constructed the recombinants of matrix protein (M) and fusion glycoprotein (F) of RSV, respectively into a replication-deficient first-generation adenoviral vector (FGAd), which were used to co-infect Vero cells to assemble RSV VLPs successfully. The resulting VLPs showed similar immunoreactivity and function to RSV virion in vitro. Moreover, Th1 polarized response, and effective mucosal virus-neutralizing antibody and CD8 + T-cell responses were induced by a single intranasal (i.n.) administration of RSV VLPs rather than intramuscular (i.m.) inoculation, although the comparable RSV F-specific serum IgG and long-lasting RSV-specific neutralizing antibody were detected in the mice immunized by both routes. Upon RSV challenge, VLP-immunized mice showed increased viral clearance but decreased signs of enhanced lung pathology and fewer eosinophils compared to mice immunized with formalin-inactivated RSV (FI-RSV). In addition, a single i.n. RSV VLP vaccine has the capability to induce RSV-specific long-lasting neutralizing antibody responses observable up to 15 months. Our results demonstrate that the long-term and memory immune responses in mice against RSV were induced by a single i.n. administration of RSV VLP vaccine, suggesting a successful approach of RSV VLPs as an effective and safe mucosal vaccine against RSV infection, and an applicable and qualified platform of FGAd-infected Vero cells for VLP production. Copyright © 2017. Published by Elsevier B.V.

  7. Long Terminal Repeat Circular DNA as Markers of Active Viral Replication of Human T Lymphotropic Virus-1 in Vivo

    Directory of Open Access Journals (Sweden)

    James M Fox

    2016-03-01

    Full Text Available Clonal expansion of human T-lymphotropic virus type-1 (HTLV-1 infected cells in vivo is well documented. Unlike human immunodeficiency virus type 1 (HIV-1, HTLV-1 plasma RNA is sparse. The contribution of the “mitotic” spread of HTLV-1 compared with infectious spread of the virus to HTLV-1 viral burden in established infection is uncertain. Since extrachromosomal long terminal repeat (LTR DNA circles are indicators of viral replication in HIV-1 carriers with undetectable plasma HIV RNA, we hypothesised that HTLV-1 LTR circles could indicate reverse transcriptase (RT usage and infectious activity. 1LTR and 2LTR DNA circles were measured in HTLV-1 cell lines and peripheral blood mononuclear cells (PBMC of asymptomatic carriers (ACs and patients with HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP or adult T cell leukaemia/lymphoma (ATLL. 1LTR DNA circles were detected in 14/20 patients at a mean of 1.38/100 PBMC but did not differentiate disease status nor correlate with HTLV-1 DNA copies. 2LTR DNA circles were detected in 30/31 patients and at higher concentrations in patients with HTLV-1-associated diseases, independent of HTLV-1 DNA load. In an incident case the 2LTR DNA circle concentration increased 2.1 fold at the onset of HAM/TSP compared to baseline. Detectable and fluctuating levels of HTLV-1 DNA circles in patients indicate viral RT usage and virus replication. Our results indicate HTLV-1 viral replication capacity is maintained in chronic infection and may be associated with disease onset.

  8. Effect of compounds with antibacterial activities in human milk on respiratory syncytial virus and cytomegalovirus in vitro.

    Science.gov (United States)

    Portelli, J; Gordon, A; May, J T

    1998-11-01

    The effect of some antibacterial compounds present in human milk were tested for antiviral activity against respiratory syncytial virus, Semliki Forest virus and cytomegalovirus. These included the gangliosides GM1, GM2 and GM3, sialyl-lactose, lactoferrin and chondroitin sulphate A, B and C, which were all tested for their ability to inhibit the viruses in cell culture. Of the compounds tested, only the ganglioside GM2, chondroitin sulphate B and lactoferrin inhibited the absorption and growth of respiratory syncytial virus in cell culture, and none inhibited the growth of Semliki Forest virus, indicating that lipid antiviral activity was not associated with any of the gangliosides. While the concentrations of these two compounds required to inhibit respiratory syncytial virus were in excess of those present in human milk, sialyl-lactose concentrations similar to those present in human milk increased the growth of cytomegalovirus. Lactoferrin was confirmed as inhibiting both respiratory syncytial virus and cytomegalovirus growth in culture even when used at lower concentrations than those present in human milk. The antiviral activities of GM2, chondroitin sulphate B and lactoferrin were tested when added to an infant formula. Lactoferrin continued to have antiviral activity against cytomegalovirus, but a lower activity against respiratory syncytial virus; ganglioside GM2 and chondroitin sulphate B still maintained antiviral activity against respiratory syncytial virus.

  9. INDUCTION OF AUTOANTIBODIES TO HUMAN ENZYMES FOLLOWING VIRAL-INFECTION - A BIOLOGICALLY RELEVANT HYPOTHESIS

    NARCIS (Netherlands)

    WEIJERS, RNM; LAWSON, C; LEUNISSEN, J

    Macro enzymes, i. e. complexes of normal (iso-)enzymes with an immunoglobulin, may be due to immunological cross-reactions evoked by specific viral antigenic determinants that are homologous to regions in the target enzymes. A search of the National Biomedical Research Foundation protein databank

  10. Computational fluid dynamics modeling of Bacillus anthracis spore deposition in rabbit and human respiratory airways

    Energy Technology Data Exchange (ETDEWEB)

    Kabilan, S.; Suffield, S. R.; Recknagle, K. P.; Jacob, R. E.; Einstein, D. R.; Kuprat, A. P.; Carson, J. P.; Colby, S. M.; Saunders, J. H.; Hines, S. A.; Teeguarden, J. G.; Straub, T. M.; Moe, M.; Taft, S. C.; Corley, R. A.

    2016-09-01

    Three-dimensional computational fluid dynamics and Lagrangian particle deposition models were developed to compare the deposition of aerosolized Bacillus anthracis spores in the respiratory airways of a human with that of the rabbit, a species commonly used in the study of anthrax disease. The respiratory airway geometries for each species were derived respectively from computed tomography (CT) and µCT images. Both models encompassed airways that extended from the external nose to the lung with a total of 272 outlets in the human model and 2878 outlets in the rabbit model. All simulations of spore deposition were conducted under transient, inhalation–exhalation breathing conditions using average species-specific minute volumes. Two different exposure scenarios were modeled in the rabbit based upon experimental inhalation studies. For comparison, human simulations were conducted at the highest exposure concentration used during the rabbit experimental exposures. Results demonstrated that regional spore deposition patterns were sensitive to airway geometry and ventilation profiles. Due to the complex airway geometries in the rabbit nose, higher spore deposition efficiency was predicted in the nasal sinus compared to the human at the same air concentration of anthrax spores. In contrast, higher spore deposition was predicted in the lower conducting airways of the human compared to the rabbit lung due to differences in airway branching pattern. This information can be used to refine published and ongoing biokinetic models of inhalation anthrax spore exposures, which currently estimate deposited spore concentrations based solely upon exposure concentrations and inhaled doses that do not factor in species-specific anatomy and physiology for deposition.

  11. Computational Fluid Dynamics Modeling of Bacillus anthracis Spore Deposition in Rabbit and Human Respiratory Airways

    Energy Technology Data Exchange (ETDEWEB)

    Kabilan, Senthil; Suffield, Sarah R.; Recknagle, Kurtis P.; Jacob, Rick E.; Einstein, Daniel R.; Kuprat, Andrew P.; Carson, James P.; Colby, Sean M.; Saunders, James H.; Hines, Stephanie; Teeguarden, Justin G.; Straub, Tim M.; Moe, M.; Taft, Sarah; Corley, Richard A.

    2016-09-30

    Three-dimensional computational fluid dynamics and Lagrangian particle deposition models were developed to compare the deposition of aerosolized Bacillus anthracis spores in the respiratory airways of a human with that of the rabbit, a species commonly used in the study of anthrax disease. The respiratory airway geometries for each species were derived from computed tomography (CT) or µCT images. Both models encompassed airways that extended from the external nose to the lung with a total of 272 outlets in the human model and 2878 outlets in the rabbit model. All simulations of spore deposition were conducted under transient, inhalation-exhalation breathing conditions using average species-specific minute volumes. The highest exposure concentration was modeled in the rabbit based upon prior acute inhalation studies. For comparison, human simulation was also conducted at the same concentration. Results demonstrated that regional spore deposition patterns were sensitive to airway geometry and ventilation profiles. Due to the complex airway geometries in the rabbit nose, higher spore deposition efficiency was predicted in the upper conducting airways compared to the human at the same air concentration of anthrax spores. As a result, higher particle deposition was predicted in the conducting airways and deep lung of the human compared to the rabbit lung due to differences in airway branching pattern. This information can be used to refine published and ongoing biokinetic models of inhalation anthrax spore exposures, which currently estimate deposited spore concentrations based solely upon exposure concentrations and inhaled doses that do not factor in species-specific anatomy and physiology.

  12. Human Papillomavirus 16, 18, 31 and 45 viral load, integration and methylation status stratified by cervical disease stage

    International Nuclear Information System (INIS)

    Marongiu, Luigi; Godi, Anna; Parry, John V; Beddows, Simon

    2014-01-01

    Persistent infection with oncogenic Human Papillomavirus (HPV) is associated with the development of cervical cancer with each genotype differing in their relative contribution to the prevalence of cervical disease. HPV DNA testing offers improved sensitivity over cytology testing alone but is accompanied by a generally low specificity. Potential molecular markers of cervical disease include type-specific viral load (VL), integration of HPV DNA into the host genome and methylation of the HPV genome. The aim of this study was to evaluate the relationship between HPV type-specific viral load, integration and methylation status and cervical disease stage in samples harboring HPV16, HPV18, HPV31 or HPV45. Samples singly infected with HPV16 (n = 226), HPV18 (n = 32), HPV31 (n = 75) or HPV45 (n = 29) were selected from a cohort of 4,719 women attending cervical screening in England. Viral load and integration status were determined by real-time PCR while 3’L1-URR methylation status was determined by pyrosequencing or sequencing of multiple clones derived from each sample. Viral load could differentiate between normal and abnormal cytology with a sensitivity of 75% and a specificity of 80% (odds ratio [OR] 12.4, 95% CI 6.2–26.1; p < 0.001) with some variation between genotypes. Viral integration was poorly associated with cervical disease. Few samples had fully integrated genomes and these could be found throughout the course of disease. Overall, integration status could distinguish between normal and abnormal cytology with a sensitivity of 72% and a specificity of 50% (OR 2.6, 95% CI 1.0–6.8; p = 0.054). Methylation levels were able to differentiate normal and low grade cytology from high grade cytology with a sensitivity of 64% and a specificity of 82% (OR 8.2, 95% CI 3.8–18.0; p < 0.001). However, methylation varied widely between genotypes with HPV18 and HPV45 exhibiting a broader degree and higher magnitude of methylated CpG sites than HPV16 and HPV31. This

  13. Cytotoxicity of carbon nanohorns in different human cells of the respiratory system.

    Science.gov (United States)

    Schramm, Franziska; Lange, Martina; Hoppmann, Pia; Heutelbeck, Astrid

    2016-01-01

    One of the new synthetic carbon-based nanomaterials is carbon nanohorns (CNH). A potential risk for employees of production processes is an unintentional intake of these nanomaterials via inhalation. Once taken up, nanoparticles might interact with cells of different tissues as well as with intercellular substances. These interactions may have far-reaching consequences for human health. Currently, many gaps in available information on the CNH toxicological profile remain. The aim of this study was to determine the cytotoxicity of CNH particles on human epithelial cells of the respiratory system with special consideration given to different particle sizes. In all cell lines, cell viability was reduced after 24 h of exposure up to 60% and metabolic activity as evidenced by mitochondrial activity was lowered to 9% at a concentration of 1 g/L. The three respiratory cell lines differed in their sensitivity. The most robust cells were the bronchial epithelial cells. Further, particle size fractions induced different adverse effect strength, whereby no correlation between particle size fraction and toxicity was found. These findings demonstrate the need for further information regarding the behavior and effect strength of nanomaterial. To avoid the production of new harmful materials, a more comprehensive integration of results from toxicity studies in the development processes of engineered nanomaterials is recommended not only from an occupational viewpoint but also from an environmental perspective.

  14. Tumultuous relationship between the human immunodeficiency virus type 1 viral infectivity factor (Vif) and the human APOBEC-3G and APOBEC-3F restriction factors.

    Science.gov (United States)

    Henriet, Simon; Mercenne, Gaëlle; Bernacchi, Serena; Paillart, Jean-Christophe; Marquet, Roland

    2009-06-01

    The viral infectivity factor (Vif) is dispensable for human immunodeficiency virus type 1 (HIV-1) replication in so-called permissive cells but is required for replication in nonpermissive cell lines and for pathogenesis. Virions produced in the absence of Vif have an aberrant morphology and an unstable core and are unable to complete reverse transcription. Recent studies demonstrated that human APOBEC-3G (hA3G) and APOBEC-3F (hA3F), which are selectively expressed in nonpermissive cells, possess strong anti-HIV-1 activity and are sufficient to confer a nonpermissive phenotype. Vif induces the degradation of hA3G and hA3F, suggesting that its main function is to counteract these cellular factors. Most studies focused on the hypermutation induced by the cytidine deaminase activity of hA3G and hA3F and on their Vif-induced degradation by the proteasome. However, recent studies suggested that several mechanisms are involved both in the antiviral activity of hA3G and hA3F and in the way Vif counteracts these antiviral factors. Attempts to reconcile the studies involving Vif in virus assembly and stability with these recent findings suggest that hA3G and hA3F partially exert their antiviral activity independently of their catalytic activity by destabilizing the viral core and the reverse transcription complex, possibly by interfering with the assembly and/or maturation of the viral particles. Vif could then counteract hA3G and hA3F by excluding them from the viral assembly intermediates through competition for the viral genomic RNA, by regulating the proteolytic processing of Pr55(Gag), by enhancing the efficiency of the reverse transcription process, and by inhibiting the enzymatic activities of hA3G and hA3F.

  15. The landscape of viral proteomics and its potential to impact human health

    Energy Technology Data Exchange (ETDEWEB)

    Oxford, Kristie L.; Wendler, Jason P.; McDermott, Jason E.; White III, Richard A.; Powell, Joshua D.; Jacobs, Jon M.; Adkins, Joshua N.; Waters, Katrina M.

    2016-05-06

    Translating the intimate discourse between viruses and their host cells during infection is a challenging but critical task for development of antiviral interventions and diagnostics. Viruses commandeer cellular processes at every step of their life cycle, altering expression of genes and proteins. Advances in mass spectrometry-based proteomic technologies are enhancing studies of viral pathogenesis by identifying virus-induced changes in the protein repertoire of infected cells or extracellular fluids. Interpretation of proteomics results using knowledge of cellular pathways and networks leads to identification of proteins that influence a range of infection processes, thereby focusing efforts for clinical diagnoses and therapeutics development. Herein we discuss applications of global proteomic studies of viral infections with the goal of providing a basis for improved studies that will benefit community-wide data integration and interpretation.

  16. Interferon alpha inhibits viral replication of a live-attenuated porcine reproductive and respiratory syndrome virus vaccine preventing development of an adaptive immune response in swine

    Science.gov (United States)

    Type I interferons, such as interferon alpha (IFNa), contribute to innate antiviral immunity by promoting production of antiviral mediators and are also involved in promoting an adaptive immune response. Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most devastating and c...

  17. Characterization of KIR2DS1+ decidual Natural Killer cells in healthy and viral/bacterial – infected human pregnancy

    OpenAIRE

    Crespo, Ângela Pascoal da Costa

    2016-01-01

    Tese de doutoramento em Biociências, na área de especialização de Biologia Celular e Molecular, apresentada ao Departamento de Ciências da Vida da Faculdade de Ciências e Tecnologia da Universidade de Coimbra Human pregnancy is a challenge for the maternal immune system, which must maintain tolerance to a semi-foreign entity (the fetus) while keeping immunity against viral, bacterial and parasite infections. While the mechanisms involved in placental immune tolerance have been addressed f...

  18. Dengue virus genomic variation associated with mosquito adaptation defines the pattern of viral non-coding RNAs and fitness in human cells.

    Directory of Open Access Journals (Sweden)

    Claudia V Filomatori

    2017-03-01

    Full Text Available The Flavivirus genus includes a large number of medically relevant pathogens that cycle between humans and arthropods. This host alternation imposes a selective pressure on the viral population. Here, we found that dengue virus, the most important viral human pathogen transmitted by insects, evolved a mechanism to differentially regulate the production of viral non-coding RNAs in mosquitos and humans, with a significant impact on viral fitness in each host. Flavivirus infections accumulate non-coding RNAs derived from the viral 3'UTRs (known as sfRNAs, relevant in viral pathogenesis and immune evasion. We found that dengue virus host adaptation leads to the accumulation of different species of sfRNAs in vertebrate and invertebrate cells. This process does not depend on differences in the host machinery; but it was found to be dependent on the selection of specific mutations in the viral 3'UTR. Dissecting the viral population and studying phenotypes of cloned variants, the molecular determinants for the switch in the sfRNA pattern during host change were mapped to a single RNA structure. Point mutations selected in mosquito cells were sufficient to change the pattern of sfRNAs, induce higher type I interferon responses and reduce viral fitness in human cells, explaining the rapid clearance of certain viral variants after host change. In addition, using epidemic and pre-epidemic Zika viruses, similar patterns of sfRNAs were observed in mosquito and human infected cells, but they were different from those observed during dengue virus infections, indicating that distinct selective pressures act on the 3'UTR of these closely related viruses. In summary, we present a novel mechanism by which dengue virus evolved an RNA structure that is under strong selective pressure in the two hosts, as regulator of non-coding RNA accumulation and viral fitness. This work provides new ideas about the impact of host adaptation on the variability and evolution of

  19. Induction and Subversion of Human Protective Immunity: Contrasting Influenza and Respiratory Syncytial Virus

    Science.gov (United States)

    Ascough, Stephanie; Paterson, Suzanna; Chiu, Christopher

    2018-01-01

    Respiratory syncytial virus (RSV) and influenza are among the most important causes of severe respiratory disease worldwide. Despite the clinical need, barriers to developing reliably effective vaccines against these viruses have remained firmly in place for decades. Overcoming these hurdles requires better understanding of human immunity and the strategies by which these pathogens evade it. Although superficially similar, the virology and host response to RSV and influenza are strikingly distinct. Influenza induces robust strain-specific immunity following natural infection, although protection by current vaccines is short-lived. In contrast, even strain-specific protection is incomplete after RSV and there are currently no licensed RSV vaccines. Although animal models have been critical for developing a fundamental understanding of antiviral immunity, extrapolating to human disease has been problematic. It is only with recent translational advances (such as controlled human infection models and high-dimensional technologies) that the mechanisms responsible for differences in protection against RSV compared to influenza have begun to be elucidated in the human context. Influenza infection elicits high-affinity IgA in the respiratory tract and virus-specific IgG, which correlates with protection. Long-lived influenza-specific T cells have also been shown to ameliorate disease. This robust immunity promotes rapid emergence of antigenic variants leading to immune escape. RSV differs markedly, as reinfection with similar strains occurs despite natural infection inducing high levels of antibody against conserved antigens. The immunomodulatory mechanisms of RSV are thus highly effective in inhibiting long-term protection, with disturbance of type I interferon signaling, antigen presentation and chemokine-induced inflammation possibly all contributing. These lead to widespread effects on adaptive immunity with impaired B cell memory and reduced T cell generation and

  20. Induction and Subversion of Human Protective Immunity: Contrasting Influenza and Respiratory Syncytial Virus

    Directory of Open Access Journals (Sweden)

    Stephanie Ascough

    2018-03-01

    Full Text Available Respiratory syncytial virus (RSV and influenza are among the most important causes of severe respiratory disease worldwide. Despite the clinical need, barriers to developing reliably effective vaccines against these viruses have remained firmly in place for decades. Overcoming these hurdles requires better understanding of human immunity and the strategies by which these pathogens evade it. Although superficially similar, the virology and host response to RSV and influenza are strikingly distinct. Influenza induces robust strain-specific immunity following natural infection, although protection by current vaccines is short-lived. In contrast, even strain-specific protection is incomplete after RSV and there are currently no licensed RSV vaccines. Although animal models have been critical for developing a fundamental understanding of antiviral immunity, extrapolating to human disease has been problematic. It is only with recent translational advances (such as controlled human infection models and high-dimensional technologies that the mechanisms responsible for differences in protection against RSV compared to influenza have begun to be elucidated in the human context. Influenza infection elicits high-affinity IgA in the respiratory tract and virus-specific IgG, which correlates with protection. Long-lived influenza-specific T cells have also been shown to ameliorate disease. This robust immunity promotes rapid emergence of antigenic variants leading to immune escape. RSV differs markedly, as reinfection with similar strains occurs despite natural infection inducing high levels of antibody against conserved antigens. The immunomodulatory mechanisms of RSV are thus highly effective in inhibiting long-term protection, with disturbance of type I interferon signaling, antigen presentation and chemokine-induced inflammation possibly all contributing. These lead to widespread effects on adaptive immunity with impaired B cell memory and reduced T cell

  1. Pitfalls in interpretation of CT-values of RT-PCR in children with acute respiratory tract infections.

    Science.gov (United States)

    Wishaupt, Jérôme O; Ploeg, Tjeerd van der; Smeets, Leo C; Groot, Ronald de; Versteegh, Florens G A; Hartwig, Nico G

    2017-05-01

    The relation between viral load and disease severity in childhood acute respiratory tract infections (ARI) is not fully understood. To assess the clinical relevance of the relation between viral load, determined by cycle threshold (CT) value of real-time reverse transcription-polymerase chain reaction assays and disease severity in children with single- and multiple viral ARI. 582 children with ARI were prospectively followed and tested for 15 viruses. Correlations were calculated between CT values and clinical parameters. In single viral ARI, statistically significant correlations were found between viral loads of Respiratory Syncytial Virus (RSV) and hospitalization and between viral loads of Human Coronavirus (HCoV) and a disease severity score. In multiple-viral ARI, statistically significant correlations between viral load and clinical parameters were found. In RSV-Rhinovirus (RV) multiple infections, a low viral load of RV was correlated with a high length of hospital stay and a high duration of extra oxygen use. The mean CT value for RV, HCoV and Parainfluenza virus was significantly lower in single- versus multiple infections. Although correlations between CT values and clinical parameters in patients with single and multiple viral infection were found, the clinical importance of these findings is limited because individual differences in host-, viral and laboratory factors complicate the interpretation of statistically significant findings. In multiple infections, viral load cannot be used to differentiate between disease causing virus and innocent bystanders. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Molecular Characterization of Human Respiratory Syncytial Virus in the Philippines, 2012-2013.

    Directory of Open Access Journals (Sweden)

    Rungnapa Malasao

    Full Text Available Human respiratory syncytial virus (HRSV is a major cause of acute lower respiratory tract infections in infants and children worldwide. We performed molecular analysis of HRSV among infants and children with clinical diagnosis of severe pneumonia in four study sites in the Philippines, including Biliran, Leyte, Palawan, and Metro Manila from June 2012 to July 2013. Nasopharyngeal swabs were collected and screened for HRSV using real-time polymerase chain reaction (PCR. Positive samples were tested by conventional PCR and sequenced for the second hypervariable region (2nd HVR of the G gene. Among a total of 1,505 samples, 423 samples were positive for HRSV (28.1%, of which 305 (72.1% and 118 (27.9% were identified as HRSV-A and HRSV-B, respectively. Two genotypes of HRSV-A, NA1 and ON1, were identified during the study period. The novel ON1 genotype with a 72-nucleotide duplication in 2nd HVR of the G gene increased rapidly and finally became the predominant genotype in 2013 with an evolutionary rate higher than the NA1 genotype. Moreover, in the ON1 genotype, we found positive selection at amino acid position 274 (p<0.05 and massive O- and N-glycosylation in the 2nd HVR of the G gene. Among HRSV-B, BA9 was the predominant genotype circulating in the Philippines. However, two sporadic cases of GB2 genotype were found, which might share a common ancestor with other Asian strains. These findings suggest that HRSV is an important cause of severe acute respiratory infection among children in the Philippines and revealed the emergence and subsequent predominance of the ON1 genotype and the sporadic detection of the GB2 genotype. Both genotypes were detected for the first time in the Philippines.

  3. The role of Mycobacterium avium complex fibronectin attachment protein in adherence to the human respiratory mucosa.

    Science.gov (United States)

    Middleton, A M; Chadwick, M V; Nicholson, A G; Dewar, A; Groger, R K; Brown, E J; Wilson, R

    2000-10-01

    Mycobacterium avium complex (MAC) are opportunistic respiratory pathogens that infect non-immunocompromised patients with established lung disease, although they can also cause primary infections. The ability to bind fibronectin is conserved among many mycobacterial species. We have investigated the adherence of a sputum isolate of MAC to the mucosa of organ cultures constructed with human tissue and the contribution of M. avium fibronectin attachment protein (FAP) to the process. MAC adhered to fibrous, but not globular mucus, and to extracellular matrix (ECM) in areas of epithelial damage, but not to intact extruded cells and collagen fibres. Bacteria occasionally adhered to healthy unciliated epithelium and to cells that had degenerated exposing their contents, but never to ciliated cells. The results obtained with different respiratory tissues were similar. Two ATCC strains of MAC gave similar results. There was a significant reduction (P fibrous mucus was unchanged. Immunogold labelling demonstrated fibronectin in ECM as well as in other areas of epithelial damage, but only ECM bound FAP. A Mycobacterium smegmatis strain had the same pattern of adherence to the mucosa as MAC. When the FAP gene was deleted, the strain demonstrated reduced adherence to ECM, and adherence was restored when the strain was transfected with an M. avium FAP expression construct. We conclude that MAC adheres to ECM in areas of epithelial damage via FAP and to mucus with a fibrous appearance via another adhesin. Epithelial damage exposing ECM and poor mucus clearance will predispose to MAC airway infection.

  4. Testing Human Skin and Respiratory Sensitizers—What Is Good Enough?

    Directory of Open Access Journals (Sweden)

    Anki Malmborg

    2017-01-01

    Full Text Available Alternative methods for accurate in vitro assessment of skin and respiratory sensitizers are urgently needed. Sensitization is a complex biological process that cannot be evaluated accurately using single events or biomarkers, since the information content is too restricted in these measurements. On the contrary, if the tremendous information content harbored in DNA/mRNA could be mined, most complex biological processes could be elucidated. Genomic technologies available today, including transcriptional profiling and next generation sequencing, have the power to decipher sensitization, when used in the right context. Thus, a genomic test platform has been developed, denoted the Genomic Allergen Rapid Detection (GARD assay. Due to the high informational content of the GARD test, accurate predictions of both the skin and respiratory sensitizing capacity of chemicals, have been demonstrated. Based on a matured dendritic cell line, acting as a human-like reporter system, information about potency has also been acquired. Consequently, multiparametric diagnostic technologies are disruptive test principles that can change the way in which the next generation of alternative methods are designed.

  5. Comparative epidemiology of human metapneumovirus- and respiratory syncytial virus-associated hospitalizations in Guatemala

    Science.gov (United States)

    McCracken, John P; Arvelo, Wences; Ortíz, José; Reyes, Lissette; Gray, Jennifer; Estevez, Alejandra; Castañeda, Oscar; Langley, Gayle; Lindblade, Kim A

    2014-01-01

    Background Human metapneumovirus (HMPV) is an important cause of acute respiratory infections (ARI), but little is known about how it compares with respiratory syncytial virus (RSV) in Central America. Objectives In this study, we describe hospitalized cases of HMPV- and RSV-ARI in Guatemala. Methods We conducted surveillance at three hospitals (November 2007–December 2012) and tested nasopharyngeal and oropharyngeal swab specimens for HMPV and RSV using real-time reverse transcription-polymerase chain reaction. We calculated incidence rates, and compared the epidemiology and outcomes of HMPV-positive versus RSV-positive and RSV-HMPV-negative cases. Results We enrolled and tested specimens from 6288 ARI cases; 596 (9%) were HMPV-positive and 1485 (24%) were RSV-positive. We observed a seasonal pattern of RSV but not HMPV. The proportion HMPV-positive was low (3%) and RSV-positive high (41%) for age Guatemala, but HMPV hospitalizations are less frequent than RSV and, in young children, less severe than other etiologies. Preventive interventions should take into account the wide variation in incidence by age and unpredictable timing of incidence peaks. PMID:24761765

  6. Effects of respiratory alkalosis on human skeletal muscle metabolism at the onset of submaximal exercise.

    Science.gov (United States)

    LeBlanc, P J; Parolin, M L; Jones, N L; Heigenhauser, G J F

    2002-10-01

    The purpose of this study was to examine the effects of respiratory alkalosis on human skeletal muscle metabolism at rest and during submaximal exercise. Subjects exercised on two occasions for 15 min at 55 % of their maximal oxygen uptake while either hyperventilating (R-Alk) or breathing normally (Con). Muscle biopsies were taken at rest and after 1 and 15 min of exercise. At rest, no effects on muscle metabolism were observed in response to R-Alk. In the first minute of exercise, there was a delayed activation of pyruvate dehydrogenase (PDH) in R-Alk compared with Con, resulting in a reduced rate of pyruvate oxidation. Also, glycogenolysis was higher in R-Alk compared with Con, which was attributed to a higher availability of the monoprotonated form of inorganic phosphate (P(i)), resulting in an elevated rate of pyruvate production. The mismatch between pyruvate production and its oxidation resulted in net lactate accumulation. These effects were not seen after 15 min of exercise, with no further differences in muscle metabolism between conditions. The results from the present study suggest that respiratory alkalosis may play an important role in lactate accumulation during the transition from rest to exercise in acute hypoxic conditions, but that other factors mediate lactate accumulation during steady-state exercise.

  7. Purification and characterization of factors produced by Aspergillus fumigatus which affect human ciliated respiratory epithelium.

    Science.gov (United States)

    Amitani, R; Taylor, G; Elezis, E N; Llewellyn-Jones, C; Mitchell, J; Kuze, F; Cole, P J; Wilson, R

    1995-09-01

    The mechanisms by which Aspergillus fumigatus colonizes the respiratory mucosa are unknown. Culture filtrates of eight of nine clinical isolates of A. fumigatus slowed ciliary beat frequency and damaged human respiratory epithelium in vitro. These changes appeared to occur concurrently. Culture filtrates of two clinical isolates of Candida albicans had no effect on ciliated epithelium. We have purified and characterized cilioinhibitory factors of a clinical isolate of A. fumigatus. The cilioinhibitory activity was heat labile, reduced by dialysis, and partially extractable into chloroform. The activity was associated with both high- and low-molecular-weight factors, as determined by gel filtration on Sephadex G-50. A low-molecular-weight cilioinhibitory factor was further purified by reverse-phase high-performance liquid chromatography and shown by mass spectrometry to be gliotoxin, a known metabolite of A. fumigatus. Gliotoxin significantly slowed ciliary beat frequency in association with epithelial damage at concentrations above 0.2 microgram/ml; other Aspergillus toxins, i.e., fumagillin and helvolic acid, were also cilioinhibitory but at much higher concentrations. High-molecular-weight (> or = 35,000 and 25,000) cilioinhibitory materials had neither elastolytic nor proteolytic activity and remain to be identified. Thus, A. fumigatus produces a number of biologically active substances which slow ciliary beating and damage epithelium and which may influence colonization of the airways.

  8. [Different species of human rhinovirus infection in children with acute respiratory tract infections in Beijing].

    Science.gov (United States)

    Song, Ming-hui; Zhao, Lin-qing; Qian, Yuan; Zhu, Ru-nan; Deng, Jie; Wang, Fang; Sun, Yu; Tian, Run

    2013-12-01

    To understand the clinical characteristics of different groups human rhinovirus (HRV)-A, B and C infection in children with acute respiratory tract infections (ARI) in Beijing. Respiratory tract specimens (n = 1412) collected from children with ARI during Jan. 2011 to Dec. 2012 were tested for HRV by using semi-nested PCR. Gene fragments of VP4/VP2 capsid protein amplified from HRV positive specimens were sequenced for HRV genotype confirmation. Then epidemiological characteristics of these HRV-positive cases were analyzed. Among these 1412 specimens tested, 103 (7.3%) were HRV positive, including 54 (52.4%) positive for HRV-A, 14 (13.6%) for HRV-B, 35 (34.0%) for HRV-C determined by sequence analysis. The positive rates of HRV-A, B and C (2.5%, 16/638; 0.3%, 2/638 and 1.3%, 8/638) in children with acute upper respiratory tract infections (URI) were lower than those (5.8%, 36/623; 1.8%, 11/623 and 3.9%, 24/623) in children with acute lower respiratory tract infections (LRI) (P = 0.003, 0.011, 0.003). In children with LRI, the positive rates of HRV-A, C were similar to each other (P = 0.112), and both were higher than that of HRV-B (P = 0.000, P = 0.026). The severity of ARI among children positive for different groups HRV showed no significant difference evaluated by Kruskal-Wallis H test (Hc = 0.044, P > 0.05), as well as that between children co-infected with HRV and other viruses and those infected with HRV only evaluated by Wilcoxon rank sum test (Zc = 0.872, P > 0.05). HRV is one of important pathogens for children with ARI, especially LRI in Beijing. The positive rates of HRV-A and HRV-C are similar to each other, and both are higher than that of HRV-B. No significant difference was shown among children with different HRV genotypes by evaluation of the severity of ARI, and co-infections of HRV with other viruses do not significantly increase the severity of ARI.

  9. Proteomic screening of human targets of viral microRNAs reveals functions associated with immune evasion and angiogenesis.

    Directory of Open Access Journals (Sweden)

    Amelia M Gallaher

    Full Text Available Kaposi's sarcoma (KS is caused by infection with Kaposi's sarcoma-associated herpesvirus (KSHV. The virus expresses unique microRNAs (miRNAs, but the targets and functions of these miRNAs are not completely understood. In order to identify human targets of viral miRNAs, we measured protein expression changes caused by multiple KSHV miRNAs using pulsed stable labeling with amino acids in cell culture (pSILAC in primary endothelial cells. This led to the identification of multiple human genes that are repressed at the protein level, but not at the miRNA level. Further analysis also identified that KSHV miRNAs can modulate activity or expression of upstream regulatory factors, resulting in suppressed activation of a protein involved in leukocyte recruitment (ICAM1 following lysophosphatidic acid treatment, as well as up-regulation of a pro-angiogenic protein (HIF1α, and up-regulation of a protein involved in stimulating angiogenesis (HMOX1. This study aids in our understanding of miRNA mechanisms of repression and miRNA contributions to viral pathogenesis.

  10. Viral Meningitis

    Science.gov (United States)

    ... better from treatment such as an antiviral medicine. Antibiotics do not help viral infections, so they are not useful in the treatment of viral meningitis. However, antibiotics do fight bacteria, so they are very important ...

  11. Pharyngitis - viral

    Science.gov (United States)

    ... throat is due to a viral infection. The antibiotics will not help. Using them to treat viral infections helps bacteria become resistant to antibiotics. With some sore throats (such as those caused ...

  12. Glycolipid-Dependent, Protease Sensitive Internalization of Pseudomonas aeruginosa Into Cultured Human Respiratory Epithelial Cells

    Science.gov (United States)

    Emam, Aufaugh; Carter, William G; Lingwood, Clifford

    2010-01-01

    Internalization of PAK strain Pseudomonas aeruginosa into human respiratory epithelial cell lines and HeLa cervical cancer cells in vitro was readily demonstrable via a gentamycin protection assay. Depletion of target cell glycosphingolipids (GSLs) using a glucosyl ceramide synthase inhibitor, P4, completely prevented P. aeruginosa internalization. In contrast, P4 treatment had no effect on the internalization of Salmonella typhimurium into HeLa cells. Internalized P. aeruginosa were within membrane vacuoles, often containing microvesicles, between the bacterium and the limiting membrane. P. aeruginosa internalization was markedly enhanced by target cell pretreatment with the exogenous GSL, deacetyl gangliotetraosyl ceramide (Gg4). Gg4 binds the lipid raft marker, GM1 ganglioside. Target cell pretreatment with TLCK, but not other (serine) protease inhibitors, prevented both P. aeruginosa host cell binding and internalization. NFkB inhibition also prevented internalization. A GSL-containing lipid-raft model of P. aeruginosa host cell binding/internalization is proposed PMID:21270937

  13. The potential health and economic benefits of preventing recurrent respiratory papillomatosis through quadrivalent human papillomavirus vaccination.

    Science.gov (United States)

    Chesson, Harrell W; Forhan, Sara E; Gottlieb, Sami L; Markowitz, Lauri E

    2008-08-18

    We estimated the health and economic benefits of preventing recurrent respiratory papillomatosis (RRP) through quadrivalent human papillomavirus (HPV) vaccination. We applied a simple mathematical model to estimate the averted costs and quality-adjusted life years (QALYs) saved by preventing RRP in children whose mothers had been vaccinated at age 12 years. Under base case assumptions, the prevention of RRP would avert an estimated USD 31 (range: USD 2-178) in medical costs (2006 US dollars) and save 0.00016 QALYs (range: 0.00001-0.00152) per 12-year-old girl vaccinated. Including the benefits of RRP reduced the estimated cost per QALY gained by HPV vaccination by roughly 14-21% in the base case and by 100% in the sensitivity analyses. More precise estimates of the incidence of RRP are needed, however, to quantify this impact more reliably.

  14. Practical application of the new ICRP Human Respiratory Tract Model (invited paper)

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, M.R.; Guilmette, R.A.; Jarvis, N.S.; Roy, M

    1998-07-01

    The ICRP Publication 66 Human Respiratory Tract Model (HRTM) has been applied to calculate general-purpose dose coefficients using default values of parameters relating to the material and the subjects. The ICRP Task Group on Internal Dosimetry is developing a 'Technical Document' giving guidance on application of the HRTM in situations where using specific information can improve dose assessment. It will include an analysis of the sensitivity of doses and bioassay quantities, lung retention and excretion rates, to relevant parameter values. Guidance will be given on characterising and sampling radioactive aerosols and on determining absorption rates. Examples will be given illustrating application of the HRTM in a wide range of situations. This paper provides a selective summary of the document at its current stage of development, with emphasis on determining absorption rates. (author)

  15. Viral Disease Networks?

    Science.gov (United States)

    Gulbahce, Natali; Yan, Han; Vidal, Marc; Barabasi, Albert-Laszlo

    2010-03-01

    Viral infections induce multiple perturbations that spread along the links of the biological networks of the host cells. Understanding the impact of these cascading perturbations requires an exhaustive knowledge of the cellular machinery as well as a systems biology approach that reveals how individual components of the cellular system function together. Here we describe an integrative method that provides a new approach to studying virus-human interactions and its correlations with diseases. Our method involves the combined utilization of protein - protein interactions, protein -- DNA interactions, metabolomics and gene - disease associations to build a ``viraldiseasome''. By solely using high-throughput data, we map well-known viral associated diseases and predict new candidate viral diseases. We use microarray data of virus-infected tissues and patient medical history data to further test the implications of the viral diseasome. We apply this method to Epstein-Barr virus and Human Papillomavirus and shed light into molecular development of viral diseases and disease pathways.

  16. Viral infection of human progenitor and liver-derived cells encapsulated in three-dimensional PEG-based hydrogel

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Nam-Joon; Elazar, Menashe; Xiong, Anming; Glenn, Jeffrey S [Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, CCSR Building Room 3115A, 269 Campus Drive, Stanford, CA 94305 (United States); Lee, Wonjae [Mechanical Engineering, Stanford University, Stanford, CA 94305 (United States); Chiao, Eric; Baker, Julie [Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305 (United States); Frank, Curtis W, E-mail: jeffrey.glenn@stanford.ed, E-mail: curt.frank@stanford.ed [Department of Chemical Engineering, Stanford University, Stanford, CA 94305 (United States)

    2009-02-15

    We have studied the encapsulation of human progenitor cells into 3D PEG hydrogels. Replication-incompetent lentivirus promoter reporter vectors were found to efficiently detect the in vivo expression of human hepatic genes in hydrogel-encapsulated liver progenitor cells. Similarly, hydrogel-encapsulated cells could be efficiently infected with hepatitis C virus, and progeny infectious virus could be recovered from the media supernatants of the hydrogels. Provocatively, the diameters of these virus particles range from {approx}50 to 100 nm, while the calculated mesh size of the 8 k hydrogel is 44.6 +- 1.7 A. To reconcile how viral particles can penetrate the hydrogels to infect the encapsulated cells, we propose that microfractures/defects of the hydrogel result in a functional pore size of up to 20 fold greater than predicted by theoretical mesh calculations. These results suggest a new model of hydrogel structure, and have exciting implications for tissue engineering and hepatitis virus studies. (communication)

  17. Viral infection of human progenitor and liver-derived cells encapsulated in three-dimensional PEG-based hydrogel

    International Nuclear Information System (INIS)

    Cho, Nam-Joon; Elazar, Menashe; Xiong, Anming; Glenn, Jeffrey S; Lee, Wonjae; Chiao, Eric; Baker, Julie; Frank, Curtis W

    2009-01-01

    We have studied the encapsulation of human progenitor cells into 3D PEG hydrogels. Replication-incompetent lentivirus promoter reporter vectors were found to efficiently detect the in vivo expression of human hepatic genes in hydrogel-encapsulated liver progenitor cells. Similarly, hydrogel-encapsulated cells could be efficiently infected with hepatitis C virus, and progeny infectious virus could be recovered from the media supernatants of the hydrogels. Provocatively, the diameters of these virus particles range from ∼50 to 100 nm, while the calculated mesh size of the 8 k hydrogel is 44.6 ± 1.7 A. To reconcile how viral particles can penetrate the hydrogels to infect the encapsulated cells, we propose that microfractures/defects of the hydrogel result in a functional pore size of up to 20 fold greater than predicted by theoretical mesh calculations. These results suggest a new model of hydrogel structure, and have exciting implications for tissue engineering and hepatitis virus studies. (communication)

  18. Concerted in vitro trimming of viral HLA-B27-restricted ligands by human ERAP1 and ERAP2 aminopeptidases.

    Science.gov (United States)

    Lorente, Elena; Barriga, Alejandro; Johnstone, Carolina; Mir, Carmen; Jiménez, Mercedes; López, Daniel

    2013-01-01

    In the classical human leukocyte antigen (HLA) class I antigen processing and presentation pathway, the antigenic peptides are generated from viral proteins by multiple proteolytic cleavages of the proteasome (and in some cases other cytosolic proteases) and transported to the endoplasmic reticulum (ER) lumen where they are exposed to aminopeptidase activity. In human cells, two different ER-resident enzymes, ERAP1 and ERAP2, can trim the N-terminally extended residues of peptide precursors. In this study, the possible cooperative effect of generating five naturally processed HLA-B27 ligands by both proteases was analyzed. We identified differences in the products obtained with increased detection of natural HLA-B27 ligands by comparing double versus single enzyme digestions by mass spectrometry analysis. These in vitro data suggest that each enzyme can use the degradation products of the other as a substrate for new N-terminal trimming, indicating concerted aminoproteolytic activity of ERAP 1 and ERAP2.

  19. Comparison of three multiplex PCR assays for the detection of respiratory viral infections: evaluation of xTAG respiratory virus panel fast assay, RespiFinder 19 assay and RespiFinder SMART 22 assay

    Directory of Open Access Journals (Sweden)

    Dabisch-Ruthe Mareike

    2012-07-01

    Full Text Available Abstract Background A broad spectrum of pathogens is causative for respiratory tract infections, but symptoms are mostly similar. Therefore, the identification of the causative viruses and bacteria is only feasible using multiplex PCR or several monoplex PCR tests in parallel. Methods The analytical sensitivity of three multiplex PCR assays, RespiFinder-19, RespiFinder-SMART-22 and xTAG-Respiratory-Virus-Panel-Fast-Assay (RVP, were compared to monoplex real-time PCR with quantified standardized control material. All assays include the most common respiratory pathogens. Results To compare the analytical sensitivity of the multiplex assays, samples were inoculated with 13 different quantified viruses in the range of 101 to 105 copies/ml. Concordant results were received for rhinovirus, whereas the RVP detected influenzavirus, RSV and hMPV more frequently in low concentrations. The RespiFinder-19 and the RespiFinder-SMART-22 showed a higher analytical sensitivity for adenoviruses and coronaviruses, whereas the RVP was incapable to detect adenovirus and coronavirus in concentrations of 104 copies/ml. The RespiFinder-19 and RespiFinder-SMART-22A did not detect influenzaviruses (104 copies/ml and RSV (103 copies/ml. The detection of all 13 viruses in one sample was only achieved using monoplex PCR. To analyze possible competitive amplification reactions between the different viruses, samples were further inoculated with only 4 different viruses in one sample. Compared to the detection of 13 viruses in parallel, only a few differences were found. The incidence of respiratory viruses was compared in tracheal secretion (TS samples (n = 100 of mechanically ventilated patients in winter (n = 50 and summer (n = 50. In winter, respiratory viruses were detected in 32 TS samples (64% by RespiFinder-19, whereas the detection rate with RVP was only 22%. The most frequent viruses were adenovirus (32% and PIV-2 (20%. Multiple infections were detected

  20. Human cytomegalovirus and Epstein-Barr virus infection in inflammatory bowel disease: need for mucosal viral load measurement.

    Science.gov (United States)

    Ciccocioppo, Rachele; Racca, Francesca; Paolucci, Stefania; Campanini, Giulia; Pozzi, Lodovica; Betti, Elena; Riboni, Roberta; Vanoli, Alessandro; Baldanti, Fausto; Corazza, Gino Roberto

    2015-02-14

    To evaluate the best diagnostic technique and risk factors of the human Cytomegalovirus (HCMV) and Epstein-Barr virus (EBV) infection in inflammatory bowel disease (IBD). A cohort of 40 IBD patients (17 refractory) and 40 controls underwent peripheral blood and endoscopic colonic mucosal sample harvest. Viral infection was assessed by quantitative real-time polymerase chain reaction and immunohistochemistry, and correlations with clinical and endoscopic indexes of activity, and risk factors were investigated. All refractory patients carried detectable levels of HCMV and/or EBV mucosal load as compared to 13/23 (56.5%) non-refractory and 13/40 (32.5%) controls. The median DNA value was significantly higher in refractory (HCMV 286 and EBV 5.440 copies/10(5) cells) than in non-refractory (HCMV 0 and EBV 6 copies/10(5) cells; P diseased mucosa in comparison to non-diseased mucosa (P < 0.0121 for HCMV and < 0.0004 for EBV), while non-refractory patients and controls invariably displayed levels below this threshold, thus allowing us to differentiate viral colitis from mucosal infection. Moreover, the mucosal load positively correlated with the values found in the peripheral blood, whilst no correlation with the number of positive cells at immunohistochemistry was found. Steroid use was identified as a significant risk factor for both HCMV (P = 0.018) and EBV (P = 0.002) colitis. Finally, a course of specific antiviral therapy with ganciclovir was successful in all refractory patients with HCMV colitis, whilst refractory patients with EBV colitis did not show any improvement despite steroid tapering and discontinuation of the other medications. Viral colitis appeared to contribute to mucosal lesions in refractory IBD, and its correct diagnosis and management require quantitative real-time polymerase chain reaction assay of mucosal specimens.

  1. Interaction of extremophilic archaeal viruses with human and mouse complement system and viral biodistribution in mice

    DEFF Research Database (Denmark)

    Wu, Linping; Uldahl, Kristine Buch; Chen, Fangfang

    2017-01-01

    -dependent manner, but C3 deficiency has no overall effect on viral clearance by organs of the reticuloendothelial system on intravenous injection. However, splenic deposition was significantly higher in C3 knockout animals compared with the corresponding wild type mice. We discuss the potential application......Archaeal viruses offer exceptional biophysical properties for modification and exploration of their potential in bionanotechnology, bioengineering and nanotherapeutic developments. However, the interaction of archaeal viruses with elements of the innate immune system has not been explored, which...... surface, but factor H deposition is purely C3-dependent. This suggests that unlike some virulent pathogens Sulfolobus monocaudavirus 1 does not acquire factor H for protection. Complement activation with Sulfolobus monocaudavirus 1 also proceeds in murine sera through MBL-A/C as well as factor D...

  2. In vivo evasion of MxA by avian influenza viruses requires human signature in the viral nucleoprotein.

    Science.gov (United States)

    Deeg, Christoph M; Hassan, Ebrahim; Mutz, Pascal; Rheinemann, Lara; Götz, Veronika; Magar, Linda; Schilling, Mirjam; Kallfass, Carsten; Nürnberger, Cindy; Soubies, Sébastien; Kochs, Georg; Haller, Otto; Schwemmle, Martin; Staeheli, Peter

    2017-05-01

    Zoonotic transmission of influenza A viruses can give rise to devastating pandemics, but currently it is impossible to predict the pandemic potential of circulating avian influenza viruses. Here, we describe a new mouse model suitable for such risk assessment, based on the observation that the innate restriction factor MxA represents an effective species barrier that must be overcome by zoonotic viruses. Our mouse lacks functional endogenous Mx genes but instead carries the human MX1 locus as a transgene. Such transgenic mice were largely resistant to highly pathogenic avian H5 and H7 influenza A viruses, but were almost as susceptible to infection with influenza viruses of human origin as nontransgenic littermates. Influenza A viruses that successfully established stable lineages in humans have acquired adaptive mutations which allow partial MxA escape. Accordingly, an engineered avian H7N7 influenza virus carrying a nucleoprotein with signature mutations typically found in human virus isolates was more virulent in transgenic mice than parental virus, demonstrating that a few amino acid changes in the viral target protein can mediate escape from MxA restriction in vivo. Similar mutations probably need to be acquired by emerging influenza A viruses before they can spread in the human population. © 2017 Deeg et al.

  3. Viral RNA annealing activities of human immunodeficiency virus type 1 nucleocapsid protein require only peptide domains outside the zinc fingers.

    Science.gov (United States)

    De Rocquigny, H; Gabus, C; Vincent, A; Fournié-Zaluski, M C; Roques, B; Darlix, J L

    1992-07-15

    The nucleocapsid (NC) of human immunodeficiency virus type 1 consists of a large number of NC protein molecules, probably wrapping the dimeric RNA genome within the virion inner core. NC protein is a gag-encoded product that contains two zinc fingers flanked by basic residues. In human immunodeficiency virus type 1 virions, NCp15 is ultimately processed into NCp7 and p6 proteins. During virion assembly the retroviral NC protein is necessary for core formation and genomic RNA encapsidation, which are essential for virus infectivity. In vitro NCp15 activates viral RNA dimerization, a process most probably linked in vivo to genomic RNA packaging, and replication primer tRNA(Lys,3) annealing to the initiation site of reverse transcription. To characterize the domains of human immunodeficiency virus type 1 NC protein necessary for its various functions, the 72-amino acid NCp7 and several derived peptides were synthesized in a pure form. We show here that synthetic NCp7 with or without the two zinc fingers has the RNA annealing activities of NCp15. Further deletions of the N-terminal 12 and C-terminal 8 amino acids, leading to a 27-residue peptide lacking the finger domains, have little or no effect on NC protein activity in vitro. However deletion of short sequences containing basic residues flanking the first finger leads to a complete loss of NC protein activity. It is proposed that the basic residues and the zinc fingers cooperate to select and package the genomic RNA in vivo. Inhibition of the viral RNA binding and annealing activities associated with the basic residues flanking the first zinc finger of NC protein could therefore be used as a model for the design of antiviral agents.

  4. Osmolality and respiratory regulation in humans: respiratory compensation for hyperchloremic metabolic acidosis is absent after infusion of hypertonic saline in healthy volunteers.

    Science.gov (United States)

    Moen, Vibeke; Brudin, Lars; Rundgren, Mats; Irestedt, Lars

    2014-10-01

    Several animal studies show that changes in plasma osmolality may influence ventilation. Respiratory depression caused by increased plasma osmolality is interpreted as inhibition of water-dependent thermoregulation because conservation of body fluid predominates at the cost of increased core temperature. Respiratory alkalosis, on the other hand, is associated with a decrease in plasma osmolality and strong ion difference (SID) during human pregnancy. We investigated the hypothesis that osmolality would influence ventilation, so that increased osmolality will decrease ventilation and decreased osmolality will stimulate ventilation in both men and women. Our study participants were healthy volunteers of both sexes (ASA physical status I). Ten men (mean 28 years; range 20-40) and 9 women (mean 33 years; range 22-43) were included. All women participated in both the follicular and luteal phases of the menstrual cycle. Hyperosmolality was induced by IV infusion of hypertonic saline 3%, and hypoosmolality by drinking tap water. Arterial blood samples were collected for analysis of electrolytes, osmolality, and blood gases. Sensitivity to CO2 was determined by rebreathing tests performed before and after the fluid-loading procedures. Infusion of hypertonic saline caused hyperchloremic metabolic acidosis with decreased SID in all subjects. Analysis of pooled data showed absence of respiratory compensation. Baseline arterial PCO2 (PaCO2) mean (SD) 37.8 (2.9) mm Hg remained unaltered, with lowest PaCO2 37.8 (2.9) mm Hg after 100 minutes, P = 0.70, causing a decrease in pH from mean (SD) 7.42 (0.02) to 7.38 (0.02), P acidosis was also observed during water loading. Pooled results show that PaCO2 decreased from 38.2 (3.3) mm Hg at baseline to 35.7 (2.8) mm Hg after 80 minutes of drinking water, P = 0.002, and pH remained unaltered: pH 7.43 (0.02) at baseline to pH 7.42 (0.02), P = 0.14, mean difference (confidence interval) = pH -0.007 (-0.017 to 0.003). Our results indicate

  5. [Human enterovirus infection status and clinical characteristics of 274 patients with viral encephalitis in Henan Province, 2011-2012].

    Science.gov (United States)

    Ma, H X; Pan, J J; Li, Y; Kang, K; Huang, X Y; You, A G; Xu, B L

    2017-02-06

    Objective: To investigate human enterovirus (HEV) infection and clinical characteristics of viral encephalitis patients in Pingdingshan, Henan Province. Methods: Cerebrospinal fluid specimens and epidemiological information were collected from 274 viral encephalitis patients in the departments of pediatrics and neurology in hospitals in Pingdingshan, Henan Province, from April 2011 to August 2012. Patients with bacterial infections were excluded from the study. Demographic information was collected by questionnaires and clinical information was mainly obtained from hospital examinations. Viral RNA was extracted using magnetic bead extraction. Real-time RT-PCR was then performed for HEV, CV-A16, and EV-A71 testing. SPSS statistical software was statistical analyses. Significant differences were determined using the chi-squared test ( P15 years old age groups, HEV infections comprised 31.5% (53/168), 52.9% (18/34), 53.0% (35/66), and 16.7% (1/6) (χ(2)=13.10, P= 0.003), respectively. The EV-A71 infection rates were 17.9% (30/168), 23.5% (8/34), 6.1% (4/66), and 0 (χ(2)=8.04, P= 0.045), respectively. The other enterovirus (OEV) infection rates were 12.5% (21/168), 29.4% (10/34), 48.5% (32/66), and 16.7% (1/6) (χ(2)=35.19, P< 0.001), respectively. The rate of vomiting in OEV and EV-A71 infected patients was 73% (44/60) and 26% (11/42), respectively, while the frequency of skin rash in OEV and EV-A71 infected patients was 32% (19/60) and 79% (33/42), respectively. Approximately 95% (99/104) of patients infected with HEV had a fever, and the breathing rhythm change rate was 19% (20/104), which was lower than that of patients without HEV infection (36.8% (60/163)) (χ(2)=9.35, P= 0.002). Conclusion: In Pingdingshan, HEV was a major causative agent of viral encephalitis and the rate of OEV infection was high, especially in children aged 3-15 years old. Fever was a common clinical symptom of patients infected with HEV. Patients infected with OEV primarily exhibited

  6. Morphological changes of carotid bodies in acute respiratory distress syndrome: a morphometric study in humans

    Directory of Open Access Journals (Sweden)

    Vinhaes E.N.G.

    2002-01-01

    Full Text Available Carotid bodies are chemoreceptors sensitive to a fall of partial oxygen pressure in blood (hypoxia. The morphological alterations of these organs in patients with chronic obstructive pulmonary disease (COPD and in people living at high altitude are well known. However, it is not known whether the histological profile of human carotid bodies is changed in acute clinical conditions such as acute respiratory distress syndrome (ARDS. The objective of the present study was to perform a quantitative analysis of the histology of carotid bodies collected from patients who died of ARDS. A morphometric study of carotid bodies collected during routine autopsies was carried out on three groups: patients that died of non-respiratory diseases (controls, N = 8, patients that presented COPD and died of its complications or associated diseases (N = 7, and patients that died of ARDS (N = 7. Morphometric measurements of the volume fraction of clusters of chief cells were performed in five fields on each slide at 40X magnification. The numerical proportion of the four main histological cell types (light, dark, progenitor and sustentacular cells was determined analyzing 10 fields on each slide at 400X magnification. The proportion of dark cells was 0.22 in ARDS patients, 0.12 in controls (P<0.001, and 0.08 in the COPD group. The proportion of light cells was 0.33 (ARDS, 0.44 (controls (P<0.001, and 0.36 (COPD. These findings suggest that chronic and acute hypoxia have different effects on the histology of glomic tissue.

  7. Mycobacterium talmoniae sp. nov., a slowly growing mycobacterium isolated from human respiratory samples.

    Science.gov (United States)

    Davidson, Rebecca M; DeGroote, Mary Ann; Marola, Jamie L; Buss, Sarah; Jones, Victoria; McNeil, Michael R; Freifeld, Alison G; Elaine Epperson, L; Hasan, Nabeeh A; Jackson, Mary; Iwen, Peter C; Salfinger, Max; Strong, Michael

    2017-08-01

    A novel slowly growing, non-chromogenic species of the class Actinobacteria was isolated from a human respiratory sample in Nebraska, USA, in 2012. Analysis of the internal transcribed spacer sequence supported placement into the genus Mycobacterium with high sequence similarity to a previously undescribed strain isolated from a patient respiratory sample from Oregon, USA, held in a collection in Colorado, USA, in 2000. The two isolates were subjected to phenotypic testing and whole genome sequencing and found to be indistinguishable. The bacteria were acid-fast stain-positive, rod-shaped and exhibited growth after 7-10 days on solid media at temperatures ranging from 25 to 42°C. Colonies were non-pigmented, rough and slightly raised. Analyses of matrix-assisted laser desorption ionization time-of-flight profiles showed no matches against a reference library of 130 mycobacterial species. Full-length 16S rRNA gene sequences were identical for the two isolates, the average nucleotide identity (ANI) between their genomes was 99.7 % and phylogenetic comparisons classified the novel mycobacteria as the basal most species in the slowly growing Mycobacterium clade. Mycobacterium avium is the most closely related species based on rpoB gene sequence similarity (92 %), but the ANI between the genomes was 81.5 %, below the suggested cut-off for differentiating two species (95 %). Mycolic acid profiles were more similar to M. avium than to Mycobacterium simiae or Mycobacterium abscessus. The phenotypic and genomic data support the conclusion that the two related isolates represent a novel Mycobacterium species for which the name Mycobacterium talmoniae sp. nov. is proposed. The type strain is NE-TNMC-100812T (=ATCC BAA-2683T=DSM 46873T).

  8. Deposition of biomass combustion aerosol particles in the human respiratory tract.

    Science.gov (United States)

    Löndahl, Jakob; Pagels, Joakim; Boman, Christoffer; Swietlicki, Erik; Massling, Andreas; Rissler, Jenny; Blomberg, Anders; Bohgard, Mats; Sandström, Thomas

    2008-08-01

    Smoke from biomass combustion has been identified as a major environmental risk factor associated with adverse health effects globally. Deposition of the smoke particles in the lungs is a crucial factor for toxicological effects, but has not previously been studied experimentally. We investigated the size-dependent respiratory-tract deposition of aerosol particles from wood combustion in humans. Two combustion conditions were studied in a wood pellet burner: efficient ("complete") combustion and low-temperature (incomplete) combustion simulating "wood smoke." The size-dependent deposition fraction of 15-to 680-nm particles was measured for 10 healthy subjects with a novel setup. Both aerosols were extensively characterized with regard to chemical and physical particle properties. The deposition was additionally estimated with the ICRP model, modified for the determined aerosol properties, in order to validate the experiments and allow a generalization of the results. The measured total deposited fraction of particles from both efficient combustion and low-temperature combustion was 0.21-0.24 by number, surface, and mass. The deposition behavior can be explained by the size distributions of the particles and by their ability to grow by water uptake in the lungs, where the relative humidity is close to saturation. The experiments were in basic agreement with the model calculations. Our findings illustrate: (1) that particles from biomass combustion obtain a size in the respiratory tract at which the deposition probability is close to its minimum, (2) that particle water absorption has substantial impact on deposition, and (3) that deposition is markedly influenced by individual factors.

  9. Identification of Burkholderia mallei and Burkholderia pseudomallei adhesins for human respiratory epithelial cells

    Directory of Open Access Journals (Sweden)

    Hogan Robert J

    2010-09-01

    Full Text Available Abstract Background Burkholderia pseudomallei and Burkholderia mallei cause the diseases melioidosis and glanders, respectively. A well-studied aspect of pathogenesis by these closely-related bacteria is their ability to invade and multiply within eukaryotic cells. In contrast, the means by which B. pseudomallei and B. mallei adhere to cells are poorly defined. The purpose of this study was to identify adherence factors expressed by these organisms. Results Comparative sequence analyses identified a gene product in the published genome of B. mallei strain ATCC23344 (locus # BMAA0649 that resembles the well-characterized Yersinia enterocolitica autotransporter adhesin YadA. The gene encoding this B. mallei protein, designated boaA, was expressed in Escherichia coli and shown to significantly increase adherence to human epithelial cell lines, specifically HEp2 (laryngeal cells and A549 (type II pneumocytes, as well as to cultures of normal human bronchial epithelium (NHBE. Consistent with these findings, disruption of the boaA gene in B. mallei ATCC23344 reduced adherence to all three cell types by ~50%. The genomes of the B. pseudomallei strains K96243 and DD503 were also found to contain boaA and inactivation of the gene in DD503 considerably decreased binding to monolayers of HEp2 and A549 cells and to NHBE cultures. A second YadA-like gene product highly similar to BoaA (65% identity was identified in the published genomic sequence of B. pseudomallei strain K96243 (locus # BPSL1705. The gene specifying this protein, termed boaB, appears to be B. pseudomallei-specific. Quantitative attachment assays demonstrated that recombinant E. coli expressing BoaB displayed greater binding to A549 pneumocytes, HEp2 cells and NHBE cultures. Moreover, a boaB mutant of B. pseudomallei DD503 showed decreased adherence to these respiratory cells. Additionally, a B. pseudomallei strain lacking expression of both boaA and boaB was impaired in its ability to

  10. Transmission of Human Respiratory Syncytial Virus in the Immunocompromised Ferret Model

    Science.gov (United States)

    de Waal, Leon; Smits, Saskia L.; Veldhuis Kroeze, Edwin J. B.; van Amerongen, Geert; Pohl, Marie O.; Osterhaus, Albert D. M. E.; Stittelaar, Koert J.

    2018-01-01

    Human respiratory syncytial virus (HRSV) causes substantial morbidity and mortality in vulnerable patients, such as the very young, the elderly, and immunocompromised individuals of any age. Nosocomial transmission of HRSV remains a serious challenge in hospital settings, with intervention strategies largely limited to infection control measures, including isolation of cases, high standards of hand hygiene, cohort nursing, and use of personal protective equipment. No vaccines against HRSV are currently available, and treatment options are largely supportive care and expensive monoclonal antibody or antiviral therapy. The limitations of current animal models for HRSV infection impede the development of new preventive and therapeutic agents, and the assessment of their potential for limiting HRSV transmission, in particular in nosocomial settings. Here, we demonstrate the efficient transmission of HRSV from immunocompromised ferrets to both immunocompromised and immunocompetent contact ferrets, with pathological findings reproducing HRSV pathology in humans. The immunocompromised ferret-HRSV model represents a novel tool for the evaluation of intervention strategies against nosocomial transmission of HRSV. PMID:29301313

  11. Influence of a Gas Exchange Correction Procedure on Resting Metabolic Rate and Respiratory Quotient in Humans.

    Science.gov (United States)

    Galgani, Jose E; Castro-Sepulveda, Mauricio A

    2017-11-01

    The aim of this study was to determine the influence of a gas exchange correction protocol on resting metabolic rate (RMR) and respiratory quotient (RQ), assessed by a Vmax Encore 29n metabolic cart (SensorMedics Co., Yorba Linda, California) in overnight fasted and fed humans, and to assess the predictive power of body size for corrected and uncorrected RMR. Healthy participants (23 M/29 F; 34 ± 9 years old; 26.3 ± 3.7 kg/m 2 ) ingested two 3-hour-apart glucose loads (75 g). Indirect calorimetry was conducted before and hourly over a 6-hour period. Immediately after indirect calorimetry assessment, gas exchange was simulated through high-precision mass-flow regulators, which permitted the correction of RMR and RQ values. Uncorrected and corrected RMR and RQ were directly related at each time over the 6-hour period. However, uncorrected versus corrected RMR was 6.9% ± 0.5% higher (128 ± 7 kcal/d; P exchange in humans over a 6-hour period is feasible and provides information of improved accuracy. © 2017 The Obesity Society.

  12. Human hepatitis B viral e antigen and its precursor P20 inhibit T lymphocyte proliferation

    International Nuclear Information System (INIS)

    Purvina, Maija; Hoste, Astrid; Rossignol, Jean-Michel; Lagaudrière-Gesbert, Cécile

    2012-01-01

    Highlights: ► P20, precursor of the HBeAg, interacts with the cellular protein gC1qR. ► HBeAg and P20 bind to T cell surface and inhibit mitogen-induced T cell division. ► HBeAg and P20 inhibition of T cell proliferation is gC1qR and IL-1RAcP-independent. -- Abstract: The hepatitis B virus (HBV) Precore protein is processed through the secretory pathway directly as HBeAg or with the generation of an intermediate (P20). Precore gene has been shown to be implicated in viral persistence, but the functions of HBeAg and its precursors have not been fully elucidated. We show that the secreted proteins HBeAg and P20 interact with T cell surface and alter Kit-225 and primary T cells proliferation, a process which may facilitate the establishment of HBV persistence. Our data indicate that the N-terminal end of Precore is important for these inhibitory effects and exclude that they are dependent on the association of HBeAg and P20 with two characterized cell surface ligands, the Interleukin-1 Receptor Accessory Protein and gC1qR (present study).

  13. Human hepatitis B viral e antigen and its precursor P20 inhibit T lymphocyte proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Purvina, Maija; Hoste, Astrid; Rossignol, Jean-Michel [Universite de Versailles-Saint-Quentin-en-Yvelines, Laboratoire de Genetique et Biologie Cellulaire, EA 4589, 45 avenue des Etats-Unis, 78035 Versailles (France); Lagaudriere-Gesbert, Cecile, E-mail: cecile.lagaudriere-gesbert@u-psud.fr [Universite de Versailles-Saint-Quentin-en-Yvelines, Laboratoire de Genetique et Biologie Cellulaire, EA 4589, 45 avenue des Etats-Unis, 78035 Versailles (France)

    2012-01-27

    Highlights: Black-Right-Pointing-Pointer P20, precursor of the HBeAg, interacts with the cellular protein gC1qR. Black-Right-Pointing-Pointer HBeAg and P20 bind to T cell surface and inhibit mitogen-induced T cell division. Black-Right-Pointing-Pointer HBeAg and P20 inhibition of T cell proliferation is gC1qR and IL-1RAcP-independent. -- Abstract: The hepatitis B virus (HBV) Precore protein is processed through the secretory pathway directly as HBeAg or with the generation of an intermediate (P20). Precore gene has been shown to be implicated in viral persistence, but the functions of HBeAg and its precursors have not been fully elucidated. We show that the secreted proteins HBeAg and P20 interact with T cell surface and alter Kit-225 and primary T cells proliferation, a process which may facilitate the establishment of HBV persistence. Our data indicate that the N-terminal end of Precore is important for these inhibitory effects and exclude that they are dependent on the association of HBeAg and P20 with two characterized cell surface ligands, the Interleukin-1 Receptor Accessory Protein and gC1qR (present study).

  14. Comparison of viral RNA electrophoresis and indirect ELISA methods in the diagnosis of human rotavirus infection

    Energy Technology Data Exchange (ETDEWEB)

    Avendano, L F; Dubinovsky, S; James, Jr, H D

    1984-01-01

    A total of 177 stool samples from Chilean diarrhea patients under two years of age were tested for rotavirus by two methods - the indirect enzyme-linked immunosorbent assay (indirect ELISA) and viral RNA electrophoresis in agarose gels (v RNA EPH). Fifty of the specimens came from patients with acute diarrhea and 127 came from patients with protracted diarrhea. The indirect ELISA testing was performed at the National Institutes of Health in the United States: the electrophoretic testing was carried out in Santiago, Chile by the authors. The electrophoretic method detected rotavirus in 36% of the acute samples and 25% of the samples from protracted cases, while the indirect ELISA method detected rotavirus in higher percentages of samples - 46% and 38%, respectively. These results support the conclusion that v RNA EPH is a less sensitive method for detecting rotavirus than the indirect ELISA. Nevertheless, the former method's high specificity, ease of application, and low cost make it a worthwhile alternative to indirect ELISA. Thus, considering the important role played by rotavirus in infant diarrhea and the need for a diagnostic technique that can be incorporated into the routines of medical center laboratories in developing countries, there is good reason to conclude that v RNA EPH is a useful tool for studying rotavirus diarrhea. 18 refs, 3 tabs. Also published in the Bol. Oficina Sanit. Panam. (1984) v. 97(1), p. 1-7 (In Spanish).

  15. Comparison of viral RNA electrophoresis and indirect ELISA methods in the diagnosis of human rotavirus infection

    International Nuclear Information System (INIS)

    Avendano, L.F.; Dubinovsky, S.

    1984-01-01

    A total of 177 stool samples from Chilean diarrhea patients under two years of age were tested for rotavirus by two methods - the indirect enzyme-linked immunosorbent assay (indirect ELISA) and viral RNA electrophoresis in agarose gels (v RNA EPH). Fifty of the specimens came from patients with acute diarrhea and 127 came from patients with protracted diarrhea. The indirect ELISA testing was performed at the National Institutes of Health in the United States: the electrophoretic testing was carried out in Santiago, Chile by the authors. The electrophoretic method detected rotavirus in 36% of the acute samples and 25% of the samples from protracted cases, while the indirect ELISA method detected rotavirus in higher percentages of samples - 46% and 38%, respectively. These results support the conclusion that v RNA EPH is a less sensitive method for detecting rotavirus than the indirect ELISA. Nevertheless, the former method's high specificity, ease of application, and low cost make it a worthwhile alternative to indirect ELISA. Thus, considering the important role played by rotavirus in infant diarrhea and the need for a diagnostic technique that can be incorporated into the routines of medical center laboratories in developing countries, there is good reason to conclude that v RNA EPH is a useful tool for studying rotavirus diarrhea. (author)

  16. Application of morphological and physiological parameters representative of a sample Brazilian population in the human respiratory tract model

    International Nuclear Information System (INIS)

    Reis, A.A.; Cardoso, J.C.S.; Lourenco, M.C.

    2005-01-01

    Full text: The Human Respiratory Tract Model (HRTM) proposed in ICRP Publication 66 account for the morphology and physiology of the respiratory tract. The characteristics of air drawn into the lungs and exhaled are greatly influenced by the morphology of the respiratory tract, which causes numerous changes in pressure, flow rate, direction and humidity as air moves into and out of the lungs. These changing characteristics can influence the rates and the sites of deposition. Concerning the respiratory physiological parameters the breathing characteristics influence the volume, the inhalation rate of air and the portion that enters through the nose and the mouth. These characteristics are important to determine the fractional deposition. The HRTM model uses morphological and physiological parameters from the Caucasian man to establish deposition fractions in the respiratory tract regions. lt is known that the morphology and physiology are influenced by environmental, occupational and economic conditions. The ICRP recommends for a reliable evaluation of the regional deposition the use of parameters from a local population when information is available. The main purpose of this study is to verify the influence in using the morphology and physiology parameters representative of a sample of the Brazilian population on the deposition model of ICRP Publication 66. The morphological and physiological data were obtained from the literature. The software EXCEL for Windows (version 2000) was used in order to implement the deposition model and also to allow the changes in parameters of interest. Initially, the implemented model was checked using the parameters defined in ICRP and the results of the fraction deposition in the respiratory tract compartments were compared. Finally, morphological and physiological parameters from Brazilian adult male were applied and the fractional deposition calculated. The respiratory values at different levels of activity for ages varying from

  17. Prevalence and Incidence of Respiratory Syncytial Virus and Other Respiratory Viral Infections in Children Aged 6 Months to 10 Years With Influenza-like Illness Enrolled in a Randomized Trial

    Science.gov (United States)

    Nolan, Terry; Borja-Tabora, Charissa; Lopez, Pio; Weckx, Lily; Ulloa-Gutierrez, Rolando; Lazcano-Ponce, Eduardo; Kerdpanich, Angkool; Weber, Miguel Angel Rodriguez; Mascareñas de Los Santos, Abiel; Tinoco, Juan-Carlos; Safadi, Marco Aurelio P.; Seng, Lim Fong; Hernandez-de Mezerville, Marcela; Faingezicht, Idis; Cruz-Valdez, Aurelio; Feng, Yang; Li, Ping; Durviaux, Serge; Haars, Gerco; Roy-Ghanta, Sumita; Vaughn, David W.; Taylor, Sylvia

    2015-01-01

    Background. The high burden of respiratory syncytial virus (RSV)-associated morbidity and mortality makes vaccine development a priority. Methods. As part of an efficacy trial of pandemic influenza vaccines (NCT01051661), RSV epidemiology in healthy children aged 6 months to <10 years at first vaccination with influenza-like illness (ILI) was evaluated in Australia, Brazil, Colombia, Costa Rica, Mexico, the Philippines, Singapore, and Thailand between February 2010 and August 2011. Active surveillance for ILI was conducted for approximately 1 year, with nasal and throat swabs analyzed by polymerase chain reaction. The prevalence and incidence of RSV among ILI episodes were calculated. Results. A total of 6266 children were included, of whom 2421 experienced 3717 ILI episodes with a respiratory sample available. RSV was detected for 359 ILI episodes, a prevalence of 9.7% (95% confidence interval: 8.7–10.7). The highest prevalence was in children aged 12–23 or 24–35 months in all countries except the Philippines, where it was in children aged 6–11 months. The incidence of RSV-associated ILI was 7.0 (6.3–7.7) per 100 person-years (PY). Eighty-eight ILI episodes resulted in hospitalization, of which 8 were associated with RSV (prevalence 9.1% [4.0–17.1]; incidence 0.2 [0.1–0.3] per 100 PY). The incidence of RSV-associated ILI resulting in medical attendance was 6.0 (5.4–6.7) per 100 PY. RSV B subtypes were observed more frequently than A subtypes. Conclusions. Active surveillance demonstrated the considerable burden of RSV-associated illness that would not be identified through hospital-based surveillance, with a substantial part of the burden occurring in older infants and children. PMID:25673560

  18. Distance to human populations influences epidemiology of respiratory disease in desert tortoises

    Science.gov (United States)

    Berry, Kristin H.; Ashley A. Coble (formerly Emerson), no longer USGS; Yee, Julie L.; Mack, Jeremy S.; Perry, William M.; Anderson, Kemp M.; Brown, Mary B.

    2014-01-01

    We explored variables likely to affect health of Agassiz's desert tortoises (Gopherus agassizii) in a 1,183-km2 study area in the central Mojave Desert of California between 2005 and 2008. We evaluated 1,004 tortoises for prevalence and spatial distribution of 2 pathogens, Mycoplasma agassizii and M. testudineum, that cause upper respiratory tract disease. We defined tortoises as test-positive if they were positive by culture and/or DNA identification or positive or suspect for specific antibody for either of the two pathogens. We used covariates of habitat (vegetation, elevation, slope, and aspect), tortoise size and sex, distance from another test-positive tortoise, and anthropogenic variables (distances to roads, agricultural areas, playas, urban areas, and centroids of human-populated census blocks). We used both logistic regression models and regression trees to evaluate the 2 species of Mycoplasma separately. The prevalence of test-positive tortoises was low: 1.49% (15/1,004) for M. agassizii and 2.89% (29/1,004) for M. testudineum. The spatial distributions of test-positive tortoises for the 2 Mycoplasma species showed little overlap; only 2 tortoises were test-positive for both diseases. However, the spatial distributions did not differ statistically between the 2 species. We consistently found higher prevalence of test-positive tortoises with shorter distances to centroids of human-populated census blocks. The relationship between distance to human-populated census blocks and tortoises that are test-positive for M. agassizii and potentially M. testudineum may be related to release or escape of captive tortoises because the prevalence of M. agassizii in captive tortoises is high. Our findings have application to other species of chelonians where both domestic captive and wild populations exist. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  19. Using Bovine Viral Diarrhea Virus (BVDV) As Surrogate for Human Hepatitis C Virus

    Science.gov (United States)

    This test is designed to validate virucidal effectiveness claims for a product to be registered as a virucide. It determines the potential of the test agent to disinfect hard surfaces contaminated with human Hepatitis C virus (HCV).

  20. Epidemiological investigation of Middle East respiratory syndrome coronavirus in dromedary camel farms linked with human infection in Abu Dhabi Emirate, United Arab Emirates.

    Science.gov (United States)

    Muhairi, Salama Al; Hosani, Farida Al; Eltahir, Yassir M; Mulla, Mariam Al; Yusof, Mohammed F; Serhan, Wissam S; Hashem, Farouq M; Elsayed, Elsaeid A; Marzoug, Bahaaeldin A; Abdelazim, Assem S

    2016-12-01

    The objective of this research was to investigate the prevalence of Middle East respiratory syndrome coronavirus (MERS-CoV) infection primarily in dromedary camel farms and the relationship of those infections with infections in humans in the Emirate of Abu Dhabi. Nasal swabs from 1113 dromedary camels (39 farms) and 34 sheep (1 farm) and sputum samples from 2 MERS-CoV-infected camel farm owners and 1 MERS-CoV-infected sheep farm owner were collected. Samples from camels and humans underwent real-time reverse-transcription quantitative PCR screening to detect MERS-CoV. In addition, sequencing and phylogenetic analysis of partially characterized MERS-CoV genome fragments obtained from camels were performed. Among the 40 farms, 6 camel farms were positive for MERS-CoV; the virus was not detected in the single sheep farm. The maximum duration of viral shedding from infected camels was 2 weeks after the first positive test result as detected in nasal swabs and in rectal swabs obtained from infected calves. Three partial camel sequences characterized in this study (open reading frames 1a and 1ab, Spike1, Spike2, and ORF4b) together with the corresponding regions of previously reported MERS-CoV sequence obtained from one farm owner were clustering together within the larger MERS-CoV sequences cluster containing human and camel isolates reported for the Arabian Peninsula. Data provided further evidence of the zoonotic potential of MERS-CoV infection and strongly suggested that camels may have a role in the transmission of the virus to humans.

  1. Respiratory Syncytial Virus (RSV)

    Centers for Disease Control (CDC) Podcasts

    2013-02-04

    Respiratory Syncytial Virus, or RSV, causes cold-like symptoms but can be serious for infants and older adults. In this podcast, CDC’s Dr. Eileen Schneider discusses this common virus and offers tips to prevent its spread.  Created: 2/4/2013 by National Center for Immunization and Respiratory Diseases (NCIRD), Division of Viral Diseases (DVD).   Date Released: 2/13/2013.

  2. Respiratory Syncytial Virus Vaccines

    OpenAIRE

    Dudas, Robert A.; Karron, Ruth A.

    1998-01-01

    Respiratory syncytial virus (RSV) is the most important cause of viral lower respiratory tract illness (LRI) in infants and children worldwide and causes significant LRI in the elderly and in immunocompromised patients. The goal of RSV vaccination is to prevent serious RSV-associated LRI. There are several obstacles to the development of successful RSV vaccines, including the need to immunize very young infants, who may respond inadequately to vaccination; the existence of two antigenically d...

  3. Molecular Identification and Epidemiological Features of Human Adenoviruses Associated with Acute Respiratory Infections in Hospitalized Children in Southern China, 2012-2013.

    Science.gov (United States)

    Chen, Yi; Liu, Fanghua; Wang, Changbing; Zhao, Mingqi; Deng, Li; Zhong, Jiayu; Zhang, Yingying; Ye, Jun; Jing, Shuping; Cheng, Zetao; Guan, Yongxin; Ma, Yi; Sun, Yuanyuan; Zhu, Bing; Zhang, Qiwei

    2016-01-01

    Acute respiratory infections (ARI) are the major worldwide health problem associated with high morbidity and mortality rates. Human adenovirus (HAdV) is one of the most common pathogens associated with viral ARI, and thus calls for specific diagnosis and better understanding of the epidemiology and clinical characteristics. Total 4,130 children with ARI requiring hospitalization from 2012 to 2013 were retrospectively studied. Throat swab specimens were collected from each patient. Fluorescence Quantitative PCR was performed to detect adenovirus as well as other common ARI-related pathogens. The seven HAdV hypervariable regions (HVRs) of the hexon gene from fifty-seven HAdVs-positive samples collected in the seasonal peaks were sequenced. Phylogenetic analysis of HVRs was also conducted to confirm the molecular types and genetic variation. In addition, epidemiological features and co-infection with other human respiratory pathogens were investigated and analyzed. Of 4,130 hospitalized pediatric patients tested, the positive rates of respiratory syncytial virus (RSV), Mycoplasma pneumoniae (MP), and HAdV were 13.7%, 13.2%, and 12.0%, respectively. The HAdV positive patients accounted for 7.9%, 17.2%, 17.5% and 10.7% in age groups infected with other respiratory pathogens (84/495, 17.0%). The most common co-infection pathogens with HAdV were MP (57.1%) and Human Bocavirus (HBoV) (16.7%). The majority of HAdV infected patients were totally recovered (96.9%, 480/495); However, four (0.8%) patients, who were previously healthy and at the age of 2 years or younger died of pneumonia. Seasonal peaks of HAdV infection occurred in the summer season of 2012 and 2013; the predominant HAdV type was HAdV-3 (70%), followed by HAdV-7 (28%). These epidemiological features were different from those in Northern China. The HAdV-55 was identified and reported for the first time in Guangzhou metropolitan area. Phylogenetic analysis indicated that all the HVR sequences of the hexon gene

  4. Molecular Identification and Epidemiological Features of Human Adenoviruses Associated with Acute Respiratory Infections in Hospitalized Children in Southern China, 2012-2013.

    Directory of Open Access Journals (Sweden)

    Yi Chen

    Full Text Available Acute respiratory infections (ARI are the major worldwide health problem associated with high morbidity and mortality rates. Human adenovirus (HAdV is one of the most common pathogens associated with viral ARI, and thus calls for specific diagnosis and better understanding of the epidemiology and clinical characteristics.Total 4,130 children with ARI requiring hospitalization from 2012 to 2013 were retrospectively studied. Throat swab specimens were collected from each patient. Fluorescence Quantitative PCR was performed to detect adenovirus as well as other common ARI-related pathogens. The seven HAdV hypervariable regions (HVRs of the hexon gene from fifty-seven HAdVs-positive samples collected in the seasonal peaks were sequenced. Phylogenetic analysis of HVRs was also conducted to confirm the molecular types and genetic variation. In addition, epidemiological features and co-infection with other human respiratory pathogens were investigated and analyzed.Of 4,130 hospitalized pediatric patients tested, the positive rates of respiratory syncytial virus (RSV, Mycoplasma pneumoniae (MP, and HAdV were 13.7%, 13.2%, and 12.0%, respectively. The HAdV positive patients accounted for 7.9%, 17.2%, 17.5% and 10.7% in age groups <1, 1-3, 3-6 and 6-14 years, respectively. Eighty-four HAdV positive children were co-infected with other respiratory pathogens (84/495, 17.0%. The most common co-infection pathogens with HAdV were MP (57.1% and Human Bocavirus (HBoV (16.7%. The majority of HAdV infected patients were totally recovered (96.9%, 480/495; However, four (0.8% patients, who were previously healthy and at the age of 2 years or younger died of pneumonia. Seasonal peaks of HAdV infection occurred in the summer season of 2012 and 2013; the predominant HAdV type was HAdV-3 (70%, followed by HAdV-7 (28%. These epidemiological features were different from those in Northern China. The HAdV-55 was identified and reported for the first time in Guangzhou

  5. Blood flow index using near-infrared spectroscopy and indocyanine green as a minimally invasive tool to assess respiratory muscle blood flow in humans

    DEFF Research Database (Denmark)

    Guenette, Jordan A; Henderson, William R; Dominelli, Paolo B

    2011-01-01

    Near-infrared spectroscopy (NIRS) in combination with indocyanine green (ICG) dye has recently been used to measure respiratory muscle blood flow (RMBF) in humans. This method is based on the Fick principle and is determined by measuring ICG in the respiratory muscles using transcutaneous NIRS...... relationships with the work of breathing and EMG for both respiratory muscles. The coefficients of determination (R(2)) comparing BFI vs. the work of breathing for the intercostal and sternocleidomastoid muscles were 0.887 (P

  6. Ferrets as a Novel Animal Model for Studying Human Respiratory Syncytial Virus Infections in Immunocompetent and Immunocompromised Hosts

    Science.gov (United States)

    Stittelaar, Koert J.; de Waal, Leon; van Amerongen, Geert; Veldhuis Kroeze, Edwin J.B.; Fraaij, Pieter L.A.; van Baalen, Carel A.; van Kampen, Jeroen J.A.; van der Vries, Erhard; Osterhaus, Albert D.M.E.; de Swart, Rik L.

    2016-01-01

    Human respiratory syncytial virus (HRSV) is an important cause of severe respiratory tract disease in immunocompromised patients. Animal models are indispensable for evaluating novel intervention strategies in this complex patient population. To complement existing models in rodents and non-human primates, we have evaluated the potential benefits of an HRSV infection model in ferrets (Mustela putorius furo). Nine- to 12-month-old HRSV-seronegative immunocompetent or immunocompromised ferrets were infected with a low-passage wild-type strain of HRSV subgroup A (105 TCID50) administered by intra-tracheal or intra-nasal inoculation. Immune suppression was achieved by bi-daily oral administration of tacrolimus, mycophenolate mofetil, and prednisolone. Throat and nose swabs were collected daily and animals were euthanized four, seven, or 21 days post-infection (DPI). Virus loads were determined by quantitative virus culture and qPCR. We observed efficient HRSV replication in both the upper and lower respiratory tract. In immunocompromised ferrets, virus loads reached higher levels and showed delayed clearance as compared to those in immunocompetent animals. Histopathological evaluation of animals euthanized 4 DPI demonstrated that the virus replicated in the respiratory epithelial cells of the trachea, bronchi, and bronchioles. These animal models can contribute to an assessment of the efficacy and safety of novel HRSV intervention strategies. PMID:27314379

  7. Ferrets as a Novel Animal Model for Studying Human Respiratory Syncytial Virus Infections in Immunocompetent and Immunocompromised Hosts

    Directory of Open Access Journals (Sweden)

    Koert J. Stittelaar

    2016-06-01

    Full Text Available Human respiratory syncytial virus (HRSV is an important cause of severe respiratory tract disease in immunocompromised patients. Animal models are indispensable for evaluating novel intervention strategies in this complex patient population. To complement existing models in rodents and non-human primates, we have evaluated the potential benefits of an HRSV infection model in ferrets (Mustela putorius furo. Nine- to 12-month-old HRSV-seronegative immunocompetent or immunocompromised ferrets were infected with a low-passage wild-type strain of HRSV subgroup A (105 TCID50 administered by intra-tracheal or intra-nasal inoculation. Immune suppression was achieved by bi-daily oral administration of tacrolimus, mycophenolate mofetil, and prednisolone. Throat and nose swabs were collected daily and animals were euthanized four, seven, or 21 days post-infection (DPI. Virus loads were determined by quantitative virus culture and qPCR. We observed efficient HRSV replication in both the upper and lower respiratory tract. In immunocompromised ferrets, virus loads reached higher levels and showed delayed clearance as compared to those in immunocompetent animals. Histopathological evaluation of animals euthanized 4 DPI demonstrated that the virus replicated in the respiratory epithelial cells of the trachea, bronchi, and bronchioles. These animal models can contribute to an assessment of the efficacy and safety of novel HRSV intervention strategies.

  8. A mathematical model of transport and regional uptake of radioactive gases in the human respiratory system

    Science.gov (United States)

    Baek, Inseok

    The purpose of this research is to describe the development of a mathematical model of diffusion, convection, and lateral transport into the airway wall and alveolar absorption for inhaled radioactive gases in the human conductive and respiratory airways based on a Single Path Trumpet-bell model (SPM). Mathematical simulation models have been used successfully to study transport, absorption into the blood through alveoli, and lung tissue uptake of soluble and nonreactive radioactive gases. Results from such simulations also show clearly that inhaled radioactive gases are absorbed into the lung tissues as well as into the blood through the alveoli. In contrast to previous reports in the literature, the present study found that blood uptake through alveoli is much greater than that calculated previously. Regional depositions in the lung from inhaled radioactive gases are presented as the result of this simulation. The committed effective dose to lung tissue due to submersion in radioactive clouds has been newly defined using the results of this simulation.

  9. [Detection and Analysis of Human Parainfluenza Virus Infection in Hospitalized Adults with Acute Respiratory Tract Infections].

    Science.gov (United States)

    Li, Xing-Qiao; Liu, Xue-Wei; Zhou, Tao; Pei, Xiao-Fang

    2017-11-01

    To investigate the prevalence and gene characteristics of different groups of human parainfluenza virus (HPIV) infection in hospitalized adults with acute respiratory tract infections (ARI). RT-PCR was used to detect HPIV hemagglutinin (HA) DNA,which was extracted from sputum samples of 1 039 adult patients with ARI from March,2014 to June,2016. The HA gene amplified from randomly selected positive samples were sequenced to analyze the homology and variation. 10.6% (110/1 039) of these samples were positive for HPIV,including 8 cases of HPIV-1,22 cases of HPIV-2,46 cases of HPIV-3 and 34 cases of HPIV-4. Detectable rate varied among different groups of HPIV according to seasons of the year and ages of patients. No significant differences were found between the positive samples and the reference sequences. Compared with different reference strains of different regions,the genetic distance of nucleotide is the smallest between the strains tested in this study and the reference strains of other provinces and cities in China. In Chengdu region,HPIV virus is highly detected in ARI,all subtypes were detected with HPIV-3 being the main subtype.

  10. Reduced influenza viral neutralizing activity of natural human trimers of surfactant protein D

    DEFF Research Database (Denmark)

    Hartshorn, Kevan L; White, Mitchell R; Tecle, Tesfaldet

    2007-01-01

    BACKGROUND: Surfactant protein D (SP-D) plays important roles in innate host defense against influenza A virus (IAV) infection. Common human polymorphisms of SP-D have been found in many human populations and associated with increased risk of certain infections. We recently reported that the Thr...... on the CRD of SP-D were found to have differing effects on antiviral activity. Using an mAb that did not interfere with antiviral activity of SP-D, we confirm that natural SP-D trimers had reduced ability to bind to IAV. In addition, the trimers had reduced ability to neutralize IAV as compared to natural...... indicate that a common human polymorphic form of SP-D may modulate host defense against IAV and give impetus to clinical studies correlating this genotype with risk for IAV infection in susceptible groups. We also show that mAbs directed against different areas on the carbohydrate recognition domain of SP...

  11. Antiviral Goes Viral: Harnessing CRISPR/Cas9 to Combat Viruses in Humans.

    Science.gov (United States)

    Soppe, Jasper Adriaan; Lebbink, Robert Jan

    2017-10-01

    The clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) systems are RNA-guided sequence-specific prokaryotic antiviral immune systems. In prokaryotes, small RNA molecules guide Cas effector endonucleases to invading foreign genetic elements in a sequence-dependent manner, resulting in DNA cleavage by the endonuclease upon target binding. A rewired CRISPR/Cas9 system can be used for targeted and precise genome editing in eukaryotic cells. CRISPR/Cas has also been harnessed to target human pathogenic viruses as a potential new antiviral strategy. Here, we review recent CRISPR/Cas9-based approaches to combat specific human viruses in humans and discuss challenges that need to be overcome before CRISPR/Cas9 may be used in the clinic as an antiviral strategy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Roles of Polypyrimidine Tract Binding Proteins in Major Immediate-Early Gene Expression and Viral Replication of Human Cytomegalovirus▿

    Science.gov (United States)

    Cosme, Ruth S. Cruz; Yamamura, Yasuhiro; Tang, Qiyi

    2009-01-01

    Human cytomegalovirus (HCMV), a member of the β subgroup of the family Herpesviridae, causes serious health problems worldwide. HCMV gene expression in host cells is a well-defined sequential process: immediate-early (IE) gene expression, early-gene expression, DNA replication, and late-gene expression. The most abundant IE gene, major IE (MIE) gene pre-mRNA, needs to be spliced before being exported to the cytoplasm for translation. In this study, the regulation of MIE gene splicing was investigated; in so doing, we found that polypyrimidine tract binding proteins (PTBs) strongly repressed MIE gene production in cotransfection assays. In addition, we discovered that the repressive effects of PTB could be rescued by splicing factor U2AF. Taken together, the results suggest that PTBs inhibit MIE gene splicing by competing with U2AF65 for binding to the polypyrimidine tract in pre-mRNA. In intron deletion mutation assays and RNA detection experiments (reverse transcription [RT]-PCR and real-time RT-PCR), we further observed that PTBs target all the introns of the MIE gene, especially intron 2, and affect gene splicing, which was reflected in the variation in the ratio of pre-mRNA to mRNA. Using transfection assays, we demonstrated that PTB knockdown cells induce a higher degree of MIE gene splicing/expression. Consistently, HCMV can produce more viral proteins and viral particles in PTB knockdown cells after infection. We conclude that PTB inhibits HCMV replication by interfering with MIE gene splicing through competition with U2AF for binding to the polypyrimidine tract in MIE gene introns. PMID:19144709

  13. Roles of polypyrimidine tract binding proteins in major immediate-early gene expression and viral replication of human cytomegalovirus.

    Science.gov (United States)

    Cosme, Ruth S Cruz; Yamamura, Yasuhiro; Tang, Qiyi

    2009-04-01

    Human cytomegalovirus (HCMV), a member of the beta subgroup of the family Herpesviridae, causes serious health problems worldwide. HCMV gene expression in host cells is a well-defined sequential process: immediate-early (IE) gene expression, early-gene expression, DNA replication, and late-gene expression. The most abundant IE gene, major IE (MIE) gene pre-mRNA, needs to be spliced before being exported to the cytoplasm for translation. In this study, the regulation of MIE gene splicing was investigated; in so doing, we found that polypyrimidine tract binding proteins (PTBs) strongly repressed MIE gene production in cotransfection assays. In addition, we discovered that the repressive effects of PTB could be rescued by splicing factor U2AF. Taken together, the results suggest that PTBs inhibit MIE gene splicing by competing with U2AF65 for binding to the polypyrimidine tract in pre-mRNA. In intron deletion mutation assays and RNA detection experiments (reverse transcription [RT]-PCR and real-time RT-PCR), we further observed that PTBs target all the introns of the MIE gene, especially intron 2, and affect gene splicing, which was reflected in the variation in the ratio of pre-mRNA to mRNA. Using transfection assays, we demonstrated that PTB knockdown cells induce a higher degree of MIE gene splicing/expression. Consistently, HCMV can produce more viral proteins and viral particles in PTB knockdown cells after infection. We conclude that PTB inhibits HCMV replication by interfering with MIE gene splicing through competition with U2AF for binding to the polypyrimidine tract in MIE gene introns.

  14. EVALUATION OF MURINE NOROVIRUS, FELINE CALICIVIRUS, POLIOVIRUS, AND MS2 AS SURROGATES FOR HUMAN NOROVIRUS IN a Model of Viral Persistence in SURFACE Water AND GROUNDWATER

    Science.gov (United States)

    Human noroviruses (NoV) are a significant cause of non bacterial gastroenteritis worldwide with contaminated drinking water a potential transmission route. The absence of a cell culture infectivity model for NoV necessitates the use of molecular methods and/or viral surrogate mod...

  15. The viral G protein-coupled receptor ORF74 hijacks β-arrestins for endocytic trafficking in response to human chemokines

    NARCIS (Netherlands)

    De Munnik, Sabrina M.; Kooistra, Albert J.; Van Offenbeek, Jody; Nijmeijer, Saskia; de Graaf, C.; Smit, Martine J.; Leurs, Rob; Vischer, Henry F.

    2015-01-01

    Kaposi's sarcoma-associated herpesvirus-infected cells express the virally encoded G protein-coupled receptor ORF74. Although ORF74 is constitutively active, it binds human CXC chemokines that modulate this basal activity. ORF74-induced signaling has been demonstrated to underlie the development of

  16. Human nasal turbinates as a viable source of respiratory epithelial cells using co-culture system versus dispase-dissociation technique.

    Science.gov (United States)

    Noruddin, Nur Adelina Ahmad; Saim, Aminuddin B; Chua, Kien Hui; Idrus, Ruszymah

    2007-12-01

    To compare a co-culture system with a conventional dispase-dissociation method for obtaining functional human respiratory epithelial cells from the nasal turbinates for tissue engineering application. Human respiratory epithelial cells were serially passaged using a co-culture system and a conventional dispase-dissociation technique. The growth kinetics and gene expression levels of the cultured respiratory epithelial cells were compared. Four genes were investigated, namely cytokeratin-18, a marker for ciliated and secretory epithelial cells; cytokeratin-14, a marker for basal epithelial cells; MKI67, a proliferation marker; and MUC5B, a marker for mucin secretion. Immunocytochemical analysis was performed using monoclonal antibodies against the high molecular-weight cytokeratin 34 beta E12, cytokeratin 18, and MUC5A to investigate the protein expression from cultured respiratory epithelial cells. Respiratory epithelial cells cultured using both methods maintained polygonal morphology throughout the passages. At passage 1, co-cultured respiratory epithelial showed a 2.6-times higher growth rate compared to conventional dispase dissociation technique, and 7.8 times higher at passage 2. Better basal gene expression was observed by co-cultured respiratory epithelial cells compared to dispase dissociated cells. Immunocytochemical analyses were positive for the respiratory epithelial cells cultured using both techniques. Co-culture system produced superior quality of cultured human respiratory epithelial cells from the nasal turbinates as compared to dispase dissociation technique.

  17. Immunological Control of Viral Infections in Bats and the Emergence of Viruses Highly Pathogenic to Humans

    Directory of Open Access Journals (Sweden)

    Tony Schountz

    2017-09-01

    Full Text Available Bats are reservoir hosts of many important viruses that cause substantial disease in humans, including coronaviruses, filoviruses, lyssaviruses, and henipaviruses. Other than the lyssaviruses, they do not appear to cause disease in the reservoir bats, thus an explanation for the dichotomous outcomes of infections of humans and bat reservoirs remains to be determined. Bats appear to have a few unusual features that may account for these differences, including evidence of constitutive interferon (IFN activation and greater combinatorial diversity in immunoglobulin genes that do not undergo substantial affinity maturation. We propose these features may, in part, account for why bats can host these viruses without disease and how they may contribute to the highly pathogenic nature of bat-borne viruses after spillover into humans. Because of the constitutive IFN activity, bat-borne viruses may be shed at low levels from bat cells. With large naive antibody repertoires, bats may control the limited virus replication without the need for rapid affinity maturation, and this may explain why bats typically have low antibody titers to viruses. However, because bat viruses have evolved in high IFN environments, they have enhanced countermeasures against the IFN response. Thus, upon infection of human cells, where the IFN response is not constitutive, the viruses overwhelm the IFN response, leading to abundant virus replication and pathology.

  18. HOMOLOGY BETWEEN SEGMENTS OF HUMAN HEMOSTATIC PROTEINS AND PROTEINS OF VIRUSES WHICH CAUSE ACUTE RESPIRATORY INFECTIONS OR DISEASES WITH SIMILAR SYMPTOMS

    Directory of Open Access Journals (Sweden)

    I. N. Zhilinskaya

    2017-01-01

    Full Text Available Objectives: To identify homologous segments of human hemostatic and viral proteins and to assess the role of human hemostatic proteins in viral replication. Materials and Methods: The following viruses were chosen for comparison: influenza B (B/Astrakhan/2/2017, coronaviruses (Hcov229E and SARS-Co, type 1 adenovirus (adenoid 71, measles (ICHINOSE-BA and rubella (Therien. The primary structures of viral proteins and 41 human hemostatic proteins were obtained from open–access www.ncbi.nlm.nih. gov and www.nextprot.org databases, respectively. Sequence homology was determined by comparing 12-amino-acid segments. Those sequences identical in ≥ 8 positions were considered homologous. Results: The analysis shows that viral proteins contain segments which mimic a number of human hemostatic proteins. Most of these segments, except those of adenovirus proteins, are homologous with coagulation factors. The increase in viral virulence, as in case of SARS-Co, correlates with an increased number of segments homologous with hemostatic proteins. Conclusion: Hemostasis plays an important role in viral replication and pathogenesis. The conclusion is consistent with the literature data about the relationship of hemostasis and inflammatory response to viral infections.

  19. Concerted in vitro trimming of viral HLA-B27-restricted ligands by human ERAP1 and ERAP2 aminopeptidases.

    Directory of Open Access Journals (Sweden)

    Elena Lorente

    Full Text Available In the classical human leukocyte antigen (HLA class I antigen processing and presentation pathway, the antigenic peptides are generated from viral proteins by multiple proteolytic cleavages of the proteasome (and in some cases other cytosolic proteases and transported to the endoplasmic reticulum (ER lumen where they are exposed to aminopeptidase activity. In human cells, two different ER-resident enzymes, ERAP1 and ERAP2, can trim the N-terminally extended residues of peptide precursors. In this study, the possible cooperative effect of generating five naturally processed HLA-B27 ligands by both proteases was analyzed. We identified differences in the products obtained with increased detection of natural HLA-B27 ligands by comparing double versus single enzyme digestions by mass spectrometry analysis. These in vitro data suggest that each enzyme can use the degradation products of the other as a substrate for new N-terminal trimming, indicating concerted aminoproteolytic activity of ERAP 1 and ERAP2.

  20. The revised International Commission on Radiological Protection (ICRP) dosimetric model for the human respiratory tract

    International Nuclear Information System (INIS)

    Bair, W.J.

    1992-05-01

    A task group has revised the dosimetric model of the respiratory tract used to calculate annual limits on intake of radionuclides. The revised model can be used to project respiratory tract doses for workers and members of the public from airborne radionuclides and to assess past exposures. Doses calculated for specific extrathoracic and thoracic tissues can be adjusted to account for differences in radiosensitivity and summed to yield two values of dose for the respiratory tract that are applicable to the ICRP tissue weighted dosimetry system

  1. Synthetic protocells interact with viral nanomachinery and inactivate pathogenic human virus.

    Directory of Open Access Journals (Sweden)

    Matteo Porotto

    Full Text Available We present a new antiviral strategy and research tool that could be applied to a wide range of enveloped viruses that infect human beings via membrane fusion. We test this strategy on two emerging zoonotic henipaviruses that cause fatal encephalitis in humans, Nipah (NiV and Hendra (HeV viruses. In the new approach, artificial cell-like particles (protocells presenting membrane receptors in a biomimetic manner were developed and found to attract and inactivate henipavirus envelope glycoprotein pseudovirus particles, preventing infection. The protocells do not accumulate virus during the inactivation process. The use of protocells that interact with, but do not accumulate, viruses may provide significant advantages over current antiviral drugs, and this general approach may have wide potential for antiviral development.

  2. Ecological Interactions between Humans, Wildlife Viral Reservoirs, and Key Environmental Drivers of Hantaan Virus Transmission

    Directory of Open Access Journals (Sweden)

    Xin Tong

    2017-10-01

    Full Text Available The occurrence and transmission of hemorrhagic fever with renal syndrome (HFRS are closely related to environmental variability, so it is essential to clarify the complex relationships among the environment, hantavirus transmission, and the population dynamics of its wildlife hosts. Tian et al. analyzed a large, long-term dataset describing the circulation of hantavirus in rodents and its spillover into humans. Their article incorporates several mathematical models and argues that the interaction between environmental and human behavioral factors drives the observed seasonality and interannual variations in important zoonotic diseases. The ecological cascade effect of a drought in 2002 is highlighted, and the role of seasonality in agricultural activity is emphasized in that study.

  3. The Significant Incidents and Close Calls in Human Space Flight Chart: Lessons Learned Gone Viral

    Science.gov (United States)

    Wood, Bill; Pate, Dennis; Thelen, David

    2010-01-01

    This presentation will explore the surprising history and events that transformed a mundane spreadsheet of historical spaceflight incidents into a popular and widely distributed visual compendium of lessons learned. The Significant Incidents and Close Calls in Human Space Flight Chart (a.k.a. The Significant Incidents Chart) is a popular and visually captivating reference product that has arisen from the work of the Johnson Space Center (JSC) Safety and Mission Assurance (S&MA) Flight Safety Office (FSO). It began as an internal tool intended to increase our team s awareness of historical and modern space flight incidents. Today, the chart is widely recognized across the agency as a reference tool. It appears in several training and education programs. It is used in familiarization training in the JSC Building 9 Mockup Facility and is seen by hundreds of center visitors each week. The chart visually summarizes injuries, fatalities, and close calls sustained during the continuing development of human space flight. The poster-sized chart displays over 100 total events that have direct connections to human space flight endeavors. The chart is updated periodically. The update process itself has become a collaborative effort. Many people, spanning multiple NASA organizations, have provided suggestions for additional entries. The FSO maintains a growing list of subscribers who have requested to receive updates. The presenters will discuss the origins and motivations behind the significant incidents chart. A review of the inclusion criteria used to select events will be offered. We will address how the chart is used today by S&MA and offer a vision of how it might be used by other organizations now and in the future. Particular emphasis will be placed on features of the chart that have met with broad acceptance and have helped spread awareness of the most important lessons in human spaceflight.

  4. Epidemiological studies on viral infections and co-infections : Human immunodeficiency virus, hepatitis C virus and human papillomavirus

    NARCIS (Netherlands)

    van Santen, D.K.

    2018-01-01

    The research described in this thesis aimed to increase our understanding of the incidence, disease progression and treatment of human immunodeficiency virus (HIV), hepatitis C virus (HCV), and human papillomavirus (HPV) infections and co-infections in key populations. Chapter 1 contains an overview

  5. First identification of porcine parvovirus 6 in North America by viral metagenomic sequencing of serum from pigs infected with porcine reproductive and respiratory syndrome virus.

    Science.gov (United States)

    Schirtzinger, Erin E; Suddith, Andrew W; Hause, Benjamin M; Hesse, Richard A

    2015-10-16

    Currently, eight species in four genera of parvovirus have been described that infect swine. These include ungulate protoparvovirus 1 (classical porcine parvovirus, PPV), ungulate tetraparvovirus 2 (PPV3), ungulate tetraparvovirus 3 (which includes PPV2, porcine hokovirus, porcine partetravirus and porcine PARV4), ungulate copiparvovirus 2 (which includes PPV4 and PPV5), ungulate bocaparvovirus 2 (which includes porcine bocavirus 1, 2 and 6), ungulate bocaparvovirus 3 (porcine bocavirus 5), ungulate bocaparvovirus 4 (porcine bocavirus 7) and ungulate bocaparvovirus 5 (porcine bocavirus 3, 4-1 and 4-2). PPV6, the most recently described porcine parvovirus, was first identified in China in late 2014 in aborted pig fetuses. Prevalence of PPV6 in China was found to be similar in finishing age pigs from farms with and without evidence of swine reproductive failure. Porcine parvovirus 6 (PPV6) was detected by sequence-independent single primer amplification (SISPA) and confirmed by overlapping and real-time PCR in the serum of porcine reproductive and respiratory virus (PRRSv) positive samples. Seven nearly complete genomes of PPV6 were identified in PRRSv genotype 2 positive serum samples submitted to state veterinary diagnostic laboratories in 2014. Further testing using overlapping and real-time PCR determined PPV6 to be present in 13.2 % of the serums tested. Additionally, PPV6 was present in samples from all of the geographic locations sampled encompassing nine states in the United States and one state in Mexico. The presence of PPV6 in serum indicates that the PPV6 infection is disseminated and not localized to a specific tissue type. Alignments of the near full length genomes, NS1, and capsid genes identified one of the five PPV6 isolates from China (98.6-99.5 % identity with the North American strains) to be the North American strains nearest relative. These results are the first to report the presence of PPV6 in North America and demonstrate that the virus is

  6. Generation of a human induced pluripotent stem cell line (MUSIi001-A from caesarean section scar fibroblasts using Sendai viral vectors

    Directory of Open Access Journals (Sweden)

    Methichit Wattanapanitch

    2018-03-01

    Full Text Available We generated a human induced pluripotent stem cell (iPSC line from caesarean section scar fibroblasts of a 33-year-old healthy woman using transgene-free Sendai viral vectors under feeder-free condition. The established iPSC line, designated as MUSIi001-A, exhibited a normal karyotype, expressed pluripotent markers, differentiated into cells of three embryonic germ layers. Further analyses showed that the Sendai viral genome was absent at passage 25. The MUSIi001-A line can serve as a control for studying developmental biology and phenotypic comparison with disease-specific iPSCs.

  7. Ventilator and viral induced inflammation

    NARCIS (Netherlands)

    Hennus, M.P.

    2013-01-01

    This thesis expands current knowledge on ventilator induced lung injury and provides insights on the immunological effects of mechanical ventilation during viral respiratory infections. The experimental studies in the first part of this thesis improve our understanding of how mechanical ventilation

  8. Prevalence of Human Papillomavirus (HPV in upper respiratory tract mucosa in a group of pre-school children

    Directory of Open Access Journals (Sweden)

    Jaroslaw Szydłowski

    2014-11-01

    Full Text Available [b]introduction[/b]. Human Papillomavirus (HPV is a group of DNA viruses which is an etiological factor of many benign and malignant diseases of the upper respiratory tract mucosa, female genital tract and the skin. HPV infection is considered a sexually-transmitted infection, but can also be transmitted by non-sexual routes, including perinatal vertical transmission, physical contact, iatrogenic infection and autoinoculation. Recurrent Respiratory Papillomatosis (RRP in children is connected with HPV infection transmitted vertically from mother to child during the passage of the foetus through an infected birth canal. [b]objective. [/b]The aim of this study was to establish the level of Human Papillomaviruses carrier state in upper respiratory tract mucosa in healthy pre-school children, and to identify potential risk factors for HPV infection. [b]materials and method[/b]. After obtaining consent from their parents, 97 pre-school children were examined – 51 girls and 46 boys between the ages of 3 – 5 years; average age – 4 years and 5 months. 68 children were urban dwellers and 29 came from a rural environment. A questionnaire with detailed history was taken including parents’ and child`s personal data, as well as perinatal risk factors in pregnancy. Socio-demographic information was also obtained, including the standard of living, and chosen environmental factors. Routine ENT examination was performed. Exfoliated oral squamous cells were collected from swabs and analysed for the presence of DNA papillomaviruses by polymerase chain reaction. [b]results.[/b] The presence of HPV in the respiratory tract in children was detected in 19.6% cases. ‘High oncogenic potential’ HPVs, such as HPV-16 and HPV-18, were not observed in squamous cell mucosa of the respiratory tract in the children. No significant differences were observed between the HPV carrier state in urban and rural inhabitants.

  9. Pathogenesis of Congenital Rubella Virus Infection in Human Fetuses: Viral Infection in the Ciliary Body Could Play an Important Role in Cataractogenesis

    Directory of Open Access Journals (Sweden)

    Thong Van Nguyen

    2015-01-01

    Interpretation: Our study based on the pathological examination demonstrated that the rubella virus infection occurred via systemic organs of human fetuses. This fact was confirmed by immunohistochemistry and direct detection of viral RNA in multiple organs. To the best of our knowledge, this study is the first report demonstrating that the rubella virus infection occurred via systemic organs of the human body. Importantly, virus infection of the ciliary body could play an important role in cataractogenesis.

  10. THE ROLE OF INTERFERON PREPARATIONS IN THE TREATMENT OF ACUTE VIRAL RESPIRATORY INFECTIONS IN INFANTS, BABIES AND TODDLERS (RESULTS OF A MULTICENTER COMPARATIVE RANDOMIZED CLINICAL TRIAL)

    OpenAIRE

    L.V. Feklisova; A.V. Gorelov; V.P. Drinevskii; A.A. Ploskireva; E.V. Tselipanova; E.Yu. Shvets; E.V. Kanner; Yu.N. Lin'kova; E.V. Chernyaeva

    2011-01-01

    The paper analyzes the results of a comparative clinical trial of drugs recombinant human interferon alpha-2b in the dosage form of suppositories for their use in the treatment of ARVI in infants, babies and toddlers age. In accordance to the selection criteria 100 children who were hospitalized, aged from 6 months to 3 years with clinically diagnosed ARVI were included in the study. Two study groups were formed: basic, which patients within 5 days received suppositories containing taurine an...

  11. Maturation of the viral core enhances the fusion of HIV-1 particles with primary human T cells and monocyte-derived macrophages

    International Nuclear Information System (INIS)

    Jiang Jiyang; Aiken, Christopher

    2006-01-01

    HIV-1 infection requires fusion of viral and cellular membranes in a reaction catalyzed by the viral envelope proteins gp120 and gp41. We recently reported that efficient HIV-1 particle fusion with target cells is linked to maturation of the viral core by an activity of the gp41 cytoplasmic domain. Here, we show that maturation enhances the fusion of a variety of recombinant viruses bearing primary and laboratory-adapted Env proteins with primary human CD4 + T cells. Overall, HIV-1 fusion was more dependent on maturation for viruses bearing X4-tropic envelope proteins than for R5-tropic viruses. Fusion of HIV-1 with monocyte-derived macrophages was also dependent on particle maturation. We conclude that the ability to couple fusion to particle maturation is a common feature of HIV-1 Env proteins and may play an important role during HIV-1 replication in vivo

  12. Early consumption of human milk oligosaccharides is inversely related to subsequent risk of respiratory and enteric disease in infants.

    Science.gov (United States)

    Stepans, Mary Beth Flanders; Wilhelm, Susan L; Hertzog, Melody; Rodehorst, T Kim Callahan; Blaney, Susan; Clemens, Beth; Polak, Josef J; Newburg, David S

    2006-01-01

    A pilot study tested the relationship between human milk oligosaccharide consumption, oligosaccharide content of feces, and subsequent disease in breastfed infants. Forty-nine (49) mother-infant pairs provided milk and fecal samples 2 weeks postpartum; infant health was assessed through 2, 6, 12, and 24 weeks. LNF-II (lacto-N-fucopentaose II), a major human milk oligosaccharide, was measured to represent levels of total oligosaccharides consumed in milk and remaining in feces. LNF-II levels in milk at 2 weeks postpartum were associated with fewer infant respiratory problems by 6 weeks (p = 0.010), as were LNF-II levels in infant feces (p = 0.003). LNF-II levels in milk at 2 weeks were also associated with fewer respiratory problems by 12 weeks (p = 0.038), and fewer enteric problems by 6 weeks (p = 0.004) and 12 weeks (p = 0.045). Thus, consumption of human milk oligosaccharides through breastfeeding, represented by LNF-II, was associated with less reported respiratory and gastrointestinal illness in infants.

  13. Survey on the Ability of Wolbachia to Control Human Viral, Protozoan, and Filarial Disease Pathogens

    Directory of Open Access Journals (Sweden)

    Garedaghi Yagoob

    2014-04-01

    Full Text Available Objective: Most human filarial nematode parasites and arthropods are hosts for a bacterial endosymbiont, Wolbachia. In filariasis, Wolbachia are required for normal development, fertility, and survival. However, in arthropods, Wolbachia are largely parasitic and can influence development and reproduction, but are generally not required for host survival. Materials and Methods: Due to their obligate nature in filarial parasites, Wolbachia have been a target for drug discovery initiatives using several approaches including diversity and focused library screening and genomic sequence analysis. Results: In vitro and in vivo anti-Wolbachia antibiotic treatments have been shown to have adulticidal activity, a long sought goal of filarial parasite drug discovery. In mosquitoes, it has been shown that the presence of Wolbachia can inhibit the transmission of certain viruses, such as dengue, chikungunya, yellow fever, West Nile, as well as the infectivity of the malaria-causing protozoan, Plasmodium and filarial nematodes. Conclusion: Wolbachia can cause a form of conditional sterility that can be used to suppress populations of mosquitoes and additional medically important insects. Thus, Wolbachia, a pandemic endosymbiont, offers great potential for elimination of a wide-variety of devastating human diseases.

  14. Activated human nasal epithelial cells modulate specific antibody response against bacterial or viral antigens.

    Directory of Open Access Journals (Sweden)

    Chiou-Yueh Yeh

    Full Text Available Nasal mucosa is an immune responsive organ evidenced by eliciting both specific local secretory IgA and systemic IgG antibody responses with intra-nasal administration of antigens. Nevertheless, the role of nasal epithelial cells in modulating such responses is unclear. Human nasal epithelial cells (hNECs obtained from sinus mucosa of patients with chronic rhinosinusitis were cultured in vitro and firstly were stimulated by Lactococcus lactis bacterium-like particles (BLPs in order to examine their role on antibody production. Secondly, both antigens of immunodominant protein IDG60 from oral Streptococcus mutans and hemagglutinin (HA from influenza virus were tested to evaluate the specific antibody response. Stimulated hNECs by BLPs exhibited a significant increase in the production of interleukin-6 (IL-6, and thymic stromal lymphopoietin (TSLP. Conditioned medium of stimulated hNECs has effects on enhancing the proliferation of CD4+ T cells together with interferon-γ and IL-5 production, increasing the costimulatory molecules on dendritic cells and augmenting the production of IDG60 specific IgA, HA specific IgG, IgA by human peripheral blood lymphocytes. Such production of antigen specific IgG and IgA is significantly counteracted in the presence of IL-6 and TSLP neutralizing antibodies. In conclusion, properly stimulated hNECs may impart immuno-modulatory effects on the antigen-specific antibody response at least through the production of IL-6 and TSLP.

  15. MTO1 mutations are associated with hypertrophic cardiomyopathy and lactic acidosis and cause respiratory chain deficiency in humans and yeast.

    Science.gov (United States)

    Baruffini, Enrico; Dallabona, Cristina; Invernizzi, Federica; Yarham, John W; Melchionda, Laura; Blakely, Emma L; Lamantea, Eleonora; Donnini, Claudia; Santra, Saikat; Vijayaraghavan, Suresh; Roper, Helen P; Burlina, Alberto; Kopajtich, Robert; Walther, Anett; Strom, Tim M; Haack, Tobias B; Prokisch, Holger; Taylor, Robert W; Ferrero, Ileana; Zeviani, Massimo; Ghezzi, Daniele

    2013-11-01

    We report three families presenting with hypertrophic cardiomyopathy, lactic acidosis, and multiple defects of mitochondrial respiratory chain (MRC) activities. By direct sequencing of the candidate gene MTO1, encoding the mitochondrial-tRNA modifier 1, or whole exome sequencing analysis, we identified novel missense mutations. All MTO1 mutations were predicted to be deleterious on MTO1 function. Their pathogenic role was experimentally validated in a recombinant yeast model, by assessing oxidative growth, respiratory activity, mitochondrial protein synthesis, and complex IV activity. In one case, we also demonstrated that expression of wt MTO1 could rescue the respiratory defect in mutant fibroblasts. The severity of the yeast respiratory phenotypes partly correlated with the different clinical presentations observed in MTO1 mutant patients, although the clinical outcome was highly variable in patients with the same mutation and seemed also to depend on timely start of pharmacological treatment, centered on the control of lactic acidosis by dichloroacetate. Our results indicate that MTO1 mutations are commonly associated with a presentation of hypertrophic cardiomyopathy, lactic acidosis, and MRC deficiency, and that ad hoc recombinant yeast models represent a useful system to test the pathogenic potential of uncommon variants, and provide insight into their effects on the expression of a biochemical phenotype. © 2013 The Authors. *Human Mutation published by Wiley Periodicals, Inc.

  16. Respiratory acidosis

    Science.gov (United States)

    Ventilatory failure; Respiratory failure; Acidosis - respiratory ... Causes of respiratory acidosis include: Diseases of the airways (such as asthma and COPD ) Diseases of the lung tissue (such as ...

  17. Relationship between viral load and behavioral measures of adherence to antiretroviral therapy in children living with human immunodeficiency virus in Latin America

    Directory of Open Access Journals (Sweden)

    Horacio A. Duarte

    2015-05-01

    Full Text Available Few studies have examined antiretroviral therapy adherence in Latin American children. Standardized behavioral measures were applied to a large cohort of human immunodeficiency virus-infected children in Brazil, Mexico, and Peru to assess adherence to prescribed antiretroviral therapy doses during the three days prior to study visits, assess timing of last missed dose, and evaluate the ability of the adherence measures to predict viral suppression. Time trends in adherence were modeled using a generalized estimating equations approach to account for possible correlations in outcomes measured repeatedly in the same participants. Associations of adherence with human immunodeficiency virus viral load were examined using linear regression. Mean enrollment age of the 380 participants was 5 years; 57.6% had undetectable’ viral load ( 0.3. Last time missed any antiretroviral therapy dose was reported as “never” for 52.0% at enrollment, increasing to 60.7% and 65.9% at the 6- and 12-month visits, respectively (p < 0.001 for test of trend. The proportion with undetectable viral load was higher among those who never missed a dose at enrollment and the 12-month visit (p ≤ 0.005, but not at the 6-month visit (p = 0.2. While antiretroviral therapy adherence measures utilized in this study showed some association with viral load for these Latin American children, they may not be adequate for reliably identifying non-adherence and consequently children at risk for viral resistance. Other strategies are needed to improve the evaluation of adherence in this population.

  18. Prolonged Shedding of Human Coronavirus in Hematopoietic Cell Transplant Recipients: Risk Factors and Viral Genome Evolution.

    Science.gov (United States)

    Ogimi, Chikara; Greninger, Alexander L; Waghmare, Alpana A; Kuypers, Jane M; Shean, Ryan C; Xie, Hu; Leisenring, Wendy M; Stevens-Ayers, Terry L; Jerome, Keith R; Englund, Janet A; Boeckh, Michael

    2017-07-15

    Recent data suggest that human coronavirus (HCoV) pneumonia is associated with significant mortality in hematopoietic cell transplant (HCT) recipients. Investigation of risk factors for prolonged shedding and intrahost genome evolution may provide critical information for development of novel therapeutics. We retrospectively reviewed HCT recipients with HCoV detected in nasal samples by polymerase chain reaction (PCR). HCoV strains were identified using strain-specific PCR. Shedding duration was defined as time between first positive and first negative sample. Logistic regression analyses were performed to evaluate factors for prolonged shedding (≥21 days). Metagenomic next-generation sequencing (mNGS) was conducted when ≥4 samples with cycle threshold values of Genome changes were consistent with the expected molecular clock of HCoV. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  19. The Revolution in Viral Genomics as Exemplified by the Bioinformatic Analysis of Human Adenoviruses

    Directory of Open Access Journals (Sweden)

    Sarah Torres

    2010-06-01

    Full Text Available Over the past 30 years, genomic and bioinformatic analysis of human adenoviruses has been achieved using a variety of DNA sequencing methods; initially with the use of restriction enzymes and more currently with the use of the GS FLX pyrosequencing technology. Following the conception of DNA sequencing in the 1970s, analysis of adenoviruses has evolved from 100 base pair mRNA fragments to entire genomes. Comparative genomics of adenoviruses made its debut in 1984 when nucleotides and amino acids of coding sequences within the hexon genes of two human adenoviruses (HAdV, HAdV–C2 and HAdV–C5, were compared and analyzed. It was determined that there were three different zones (1-393, 394-1410, 1411-2910 within the hexon gene, of which HAdV–C2 and HAdV–C5 shared zones 1 and 3 with 95% and 89.5% nucleotide identity, respectively. In 1992, HAdV-C5 became the first adenovirus genome to be fully sequenced using the Sanger method. Over the next seven years, whole genome analysis and characterization was completed using bioinformatic tools such as blastn, tblastx, ClustalV and FASTA, in order to determine key proteins in species HAdV-A through HAdV-F. The bioinformatic revolution was initiated with the introduction of a novel species, HAdV-G, that was typed and named by the use of whole genome sequencing and phylogenetics as opposed to traditional serology. HAdV bioinformatics will continue to advance as the latest sequencing technology enables scientists to add to and expand the resource databases. As a result of these advancements, how novel HAdVs are typed has changed. Bioinformatic analysis has become the revolutionary tool that has significantly accelerated the in-depth study of HAdV microevolution through comparative genomics.

  20. THE ROLE OF INTERFERON PREPARATIONS IN THE TREATMENT OF ACUTE VIRAL RESPIRATORY INFECTIONS IN INFANTS, BABIES AND TODDLERS (RESULTS OF A MULTICENTER COMPARATIVE RANDOMIZED CLINICAL TRIAL

    Directory of Open Access Journals (Sweden)

    L.V. Feklisova

    2011-01-01

    Full Text Available The paper analyzes the results of a comparative clinical trial of drugs recombinant human interferon alpha-2b in the dosage form of suppositories for their use in the treatment of ARVI in infants, babies and toddlers age. In accordance to the selection criteria 100 children who were hospitalized, aged from 6 months to 3 years with clinically diagnosed ARVI were included in the study. Two study groups were formed: basic, which patients within 5 days received suppositories containing taurine and interferon alpha (125,000 IU,  and the comparison group, where patients received suppositories with interferon (150,000 IU. The patients of both groups were subjects of medical observation for 5 days with an estimate of the effectiveness of treatment on the 6th day of therapy. The eliminating activity of the exploring drugs was determined using standard laboratory techniques (PCR or DFA scrapings from the nasopharynx. The study established the high effectiveness and wide safety profile of both drugs. No cases of the adverse events that have established link with the study medications. Key words: influenza, ARVI, recombinant human interferon alpha-2b, taurine, suppositories, children. (Pediatric Pharmacology. — 2011; 8 (5: 76–82.

  1. Viral infections in transplant recipients.

    Science.gov (United States)

    Razonable, R R; Eid, A J

    2009-12-01

    Solid organ and hematopoietic stem cell transplant recipients are uniquely predisposed to develop clinical illness, often with increased severity, due to a variety of common and opportunistic viruses. Patients may acquire viral infections from the donor (donor-derived infections), from reactivation of endogenous latent virus, or from the community. Herpes viruses, most notably cytomegalovirus and Epstein Barr virus, are the most common among opportunistic viral pathogens that cause infection after solid organ and hematopoietic stem cell transplantation. The polyoma BK virus causes opportunistic clinical syndromes predominantly in kidney and allogeneic hematopoietic stem cell transplant recipients. The agents of viral hepatitis B and C present unique challenges particularly among liver transplant recipients. Respiratory viral illnesses due to influenza, respiratory syncytial virus, and parainfluenza virus may affect all types of transplant recipients, although severe clinical disease is observed more commonly among lung and allogeneic hematopoietic stem cell transplant recipients. Less common viral infections affecting transplant recipients include those caused by adenoviruses, parvovirus B19, and West Nile virus. Treatment for viruses with proven effective antiviral drug therapies should be complemented by reduction in the degree of immunosuppression. For others with no proven antiviral drugs for therapy, reduction in the degree of immunosuppression remains as the sole effective strategy for management. Prevention of viral infections is therefore of utmost importance, and this may be accomplished through vaccination, antiviral strategies, and aggressive infection control measures.

  2. Viral Marketing

    OpenAIRE

    Sorina Raula Gîrboveanu; Silvia Puiu

    2008-01-01

    With consumers showing increasing resistance to traditional forms of advertising such as TV or newspaper ads, marketers have turned to alternate strategies, including viral marketing. Viral marketing exploits existing social networks by encouraging customers to share product information with their friends.In our study we are able to directly observe the effectiveness of person to person word of mouth advertising for hundreds of thousands of products for the first time

  3. Successful topical respiratory tract immunization of primates against Ebola virus.

    Science.gov (United States)

    Bukreyev, Alexander; Rollin, Pierre E; Tate, Mallory K; Yang, Lijuan; Zaki, Sherif R; Shieh, Wun-Ju; Murphy, Brian R; Collins, Peter L; Sanchez, Anthony

    2007-06-01

    Ebola virus causes outbreaks of severe viral hemorrhagic fever with high mortality in humans. The virus is highly contagious and can be transmitted by contact and by the aerosol route. These features make Ebola virus a potential weapon for bioterrorism and biological warfare. Therefore, a vaccine that induces both systemic and local immune responses in the respiratory tract would be highly beneficial. We evaluated a common pediatric respiratory pathogen, human parainfluenza virus type 3 (HPIV3), as a vaccine vector against Ebola virus. HPIV3 recombinants expressing the Ebola virus (Zaire species) surface glycoprotein (GP) alone or in combination with the nucleocapsid protein NP or with the cytokine adjuvant granulocyte-macrophage colony-stimulating factor were administered by the respiratory route to rhesus monkeys--in which HPIV3 infection is mild and asymptomatic--and were evaluated for immunogenicity and protective efficacy against a highly lethal intraperitoneal challenge with Ebola virus. A single immunization with any construct expressing GP was moderately immunogenic against Ebola virus and protected 88% of the animals against severe hemorrhagic fever and death caused by Ebola virus. Two doses were highly immunogenic, and all of the animals survived challenge and were free of signs of disease and of detectable Ebola virus challenge virus. These data illustrate the feasibility of immunization via the respiratory tract against the hemorrhagic fever caused by Ebola virus. To our knowledge, this is the first study in which topical immunization through respiratory tract achieved prevention of a viral hemorrhagic fever infection in a primate model.

  4. Direct binding of retromer to human papillomavirus type 16 minor capsid protein L2 mediates endosome exit during viral infection.

    Directory of Open Access Journals (Sweden)

    Andreea Popa

    2015-02-01

    Full Text Available Trafficking of human papillomaviruses to the Golgi apparatus during virus entry requires retromer, an endosomal coat protein complex that mediates the vesicular transport of cellular transmembrane proteins from the endosome to the Golgi apparatus or the plasma membrane. Here we show that the HPV16 L2 minor capsid protein is a retromer cargo, even though L2 is not a transmembrane protein. We show that direct binding of retromer to a conserved sequence in the carboxy-terminus of L2 is required for exit of L2 from the early endosome and delivery to the trans-Golgi network during virus entry. This binding site is different from known retromer binding motifs and can be replaced by a sorting signal from a cellular retromer cargo. Thus, HPV16 is an unconventional particulate retromer cargo, and retromer binding initiates retrograde transport of viral components from the endosome to the trans-Golgi network during virus entry. We propose that the carboxy-terminal segment of L2 protein protrudes through the endosomal membrane and is accessed by retromer in the cytoplasm.

  5. Identification of viral microRNAs expressed in human sacral ganglia latently infected with herpes simplex virus 2.

    Science.gov (United States)

    Umbach, Jennifer L; Wang, Kening; Tang, Shuang; Krause, Philip R; Mont, Erik K; Cohen, Jeffrey I; Cullen, Bryan R

    2010-01-01

    Deep sequencing of small RNAs isolated from human sacral ganglia latently infected with herpes simplex virus 2 (HSV-2) was used to identify HSV-2 microRNAs (miRNAs) expressed during latent infection. This effort resulted in the identification of five distinct HSV-2 miRNA species, two of which, miR-H3/miR-I and miR-H4/miR-II, have been previously reported. Three novel HSV-2 miRNAs were also identified, and two of these, miR-H7 and miR-H9, are derived from the latency-associated transcript (LAT) and are located antisense to the viral transcript encoding transactivator ICP0. A third novel HSV-2 miRNA, miR-H10, is encoded within the unique long (U(L)) region of the genome, 3' to the U(L)15 open reading frame, and is presumably excised from a novel, latent HSV-2 transcript distinct from LAT.

  6. Identification of Viral MicroRNAs Expressed in Human Sacral Ganglia Latently Infected with Herpes Simplex Virus 2▿

    Science.gov (United States)

    Umbach, Jennifer L.; Wang, Kening; Tang, Shuang; Krause, Philip R.; Mont, Erik K.; Cohen, Jeffrey I.; Cullen, Bryan R.

    2010-01-01

    Deep sequencing of small RNAs isolated from human sacral ganglia latently infected with herpes simplex virus 2 (HSV-2) was used to identify HSV-2 microRNAs (miRNAs) expressed during latent infection. This effort resulted in the identification of five distinct HSV-2 miRNA species, two of which, miR-H3/miR-I and miR-H4/miR-II, have been previously reported. Three novel HSV-2 miRNAs were also identified, and two of these, miR-H7 and miR-H9, are derived from the latency-associated transcript (LAT) and are located antisense to the viral transcript encoding transactivator ICP0. A third novel HSV-2 miRNA, miR-H10, is encoded within the unique long (UL) region of the genome, 3′ to the UL15 open reading frame, and is presumably excised from a novel, latent HSV-2 transcript distinct from LAT. PMID:19889786

  7. Viral single-strand DNA induces p53-dependent apoptosis in human embryonic stem cells.

    Science.gov (United States)

    Hirsch, Matthew L; Fagan, B Matthew; Dumitru, Raluca; Bower, Jacquelyn J; Yadav, Swati; Porteus, Matthew H; Pevny, Larysa H; Samulski, R Jude

    2011-01-01

    Human embryonic stem cells (hESCs) are primed for rapid apoptosis following mild forms of genotoxic stress. A natural form of such cellular stress occurs in response to recombinant adeno-associated virus (rAAV) single-strand DNA genomes, which exploit the host DNA damage response for replication and genome persistence. Herein, we discovered a unique DNA damage response induced by rAAV transduction specific to pluripotent hESCs. Within hours following rAAV transduction, host DNA damage signaling was elicited as measured by increased gamma-H2AX, ser15-p53 phosphorylation, and subsequent p53-dependent transcriptional activation. Nucleotide incorporation assays demonstrated that rAAV transduced cells accumulated in early S-phase followed by the induction of apoptosis. This lethal signaling sequalae required p53 in a manner independent of transcriptional induction of Puma, Bax and Bcl-2 and was not evident in cells differentiated towards a neural lineage. Consistent with a lethal DNA damage response induced upon rAAV transduction of hESCs, empty AAV protein capsids demonstrated no toxicity. In contrast, DNA microinjections demonstrated that the minimal AAV origin of replication and, in particular, a 40 nucleotide G-rich tetrad repeat sequence, was sufficient for hESC apoptosis. Our data support a model in which rAAV transduction of hESCs induces a p53-dependent lethal response that is elicited by a telomeric sequence within the AAV origin of replication.

  8. Viral single-strand DNA induces p53-dependent apoptosis in human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Matthew L Hirsch

    Full Text Available Human embryonic stem cells (hESCs are primed for rapid apoptosis following mild forms of genotoxic stress. A natural form of such cellular stress occurs in response to recombinant adeno-associated virus (rAAV single-strand DNA genomes, which exploit the host DNA damage response for replication and genome persistence. Herein, we discovered a unique DNA damage response induced by rAAV transduction specific to pluripotent hESCs. Within hours following rAAV transduction, host DNA damage signaling was elicited as measured by increased gamma-H2AX, ser15-p53 phosphorylation, and subsequent p53-dependent transcriptional activation. Nucleotide incorporation assays demonstrated that rAAV transduced cells accumulated in early S-phase followed by the induction of apoptosis. This lethal signaling sequalae required p53 in a manner independent of transcriptional induction of Puma, Bax and Bcl-2 and was not evident in cells differentiated towards a neural lineage. Consistent with a lethal DNA damage response induced upon rAAV transduction of hESCs, empty AAV protein capsids demonstrated no toxicity. In contrast, DNA microinjections demonstrated that the minimal AAV origin of replication and, in particular, a 40 nucleotide G-rich tetrad repeat sequence, was sufficient for hESC apoptosis. Our data support a model in which rAAV transduction of hESCs induces a p53-dependent lethal response that is elicited by a telomeric sequence within the AAV origin of replication.

  9. Human Immunodeficiency Viral Infection and Status Epilepticus in United States (2002-2009).

    Science.gov (United States)

    Chaudhry, Saqib A; Afzal, Mohammad Rauf; Rodriguez, Gustavo J; Majidi, Shahram; Bundlie, Scott; Hassan, Ameer E; Suri, M Fareed K; Qureshi, Adnan I

    2015-07-01

    To determine the association between human immunodeficiency virus (HIV) infection and status epilepticus and compare the outcomes of patients with status epilepticus with or without underlying HIV infection. Patients with primary diagnosis of status epilepticus (cases) and status asthmaticus (controls) were identified from the 2002-2009 Nationwide Inpatient Sample (NIS) which is representative of all admissions in the United States. We performed logistic regression analysis adjusting for age, gender, co-morbid conditions, including hypertension, diabetes mellitus (DM), renal failure, alcohol use, and opportunistic infections. We compared the in hospital outcomes among patients admitted with status epilepticus in strata defined by underlying HIV infection. The rate of concurrent status epilepticus and HIV has increased over the last 7 years in hospitalized patients with status epilepticus in United States (0.14%-0.27% pstatus epilepticus (odds ratio [OR]: 2.2; 95% confidence interval [CI]: 1.8-2.6; pstatus epilepticus patients with underlying HIV infection (17.5% vs. 9.9%, pstatus epilepticus. The proportion of patients admitted with concurrent status epilepticus and HIV infections is increasing and such patients have higher rates of poor discharge outcomes.

  10. Human T-cell leukemia virus type 1 Tax requires direct access to DNA for recruitment of CREB binding protein to the viral promoter.

    Science.gov (United States)

    Lenzmeier, B A; Giebler, H A; Nyborg, J K

    1998-02-01

    Efficient human T-cell leukemia virus type 1 (HTLV-1) replication and viral gene expression are dependent upon the virally encoded oncoprotein Tax. To activate HTLV-1 transcription, Tax interacts with the cellular DNA binding protein cyclic AMP-responsive element binding protein (CREB) and recruits the coactivator CREB binding protein (CBP), forming a nucleoprotein complex on the three viral cyclic AMP-responsive elements (CREs) in the HTLV-1 promoter. Short stretches of dG-dC-rich (GC-rich) DNA, immediately flanking each of the viral CREs, are essential for Tax recruitment of CBP in vitro and Tax transactivation in vivo. Although the importance of the viral CRE-flanking sequences is well established, several studies have failed to identify an interaction between Tax and the DNA. The mechanistic role of the viral CRE-flanking sequences has therefore remained enigmatic. In this study, we used high resolution methidiumpropyl-EDTA iron(II) footprinting to show that Tax extended the CREB footprint into the GC-rich DNA flanking sequences of the viral CRE. The Tax-CREB footprint was enhanced but not extended by the KIX domain of CBP, suggesting that the coactivator increased the stability of the nucleoprotein complex. Conversely, the footprint pattern of CREB on a cellular CRE lacking GC-rich flanking sequences did not change in the presence of Tax or Tax plus KIX. The minor-groove DNA binding drug chromomycin A3 bound to the GC-rich flanking sequences and inhibited the association of Tax and the Tax-CBP complex without affecting CREB binding. Tax specifically cross-linked to the viral CRE in the 5'-flanking sequence, and this cross-link was blocked by chromomycin A3. Together, these data support a model where Tax interacts directly with both CREB and the minor-groove viral CRE-flanking sequences to form a high-affinity binding site for the recruitment of CBP to the HTLV-1 promoter.

  11. Unifying Viral Genetics and Human Transportation Data to Predict the Global Transmission Dynamics of Human Influenza H3N2

    NARCIS (Netherlands)

    P. Lemey (Philippe); A. Rambaut (Andrew); T. Bedford (Trevor); R. Faria (Rui); F. Bielejec (Filip); G. Baele (Guy); C.A. Russell (Colin); D.J. Smith (Derek James); O. Pybus (Oliver); K. Brockmann; M.A. Suchard (Marc)

    2014-01-01

    textabstractInformation on global human movement patterns is central to spatial epidemiological models used to predict the behavior of influenza and other infectious diseases. Yet it remains difficult to test which modes of dispersal drive pathogen spread at various geographic scales using standard

  12. Human Immunodeficiency Viral Infection and Status Epilepticus in United States (2002–2009)

    Science.gov (United States)

    Chaudhry, Saqib A.; Afzal, Mohammad Rauf; Rodriguez, Gustavo J.; Majidi, Shahram; Bundlie, Scott; Hassan, Ameer E.; Suri, M. Fareed K.; Qureshi, Adnan I.

    2015-01-01

    Objective To determine the association between human immunodeficiency virus (HIV) infection and status epilepticus and compare the outcomes of patients with status epilepticus with or without underlying HIV infection. Methods Patients with primary diagnosis of status epilepticus (cases) and status asthmaticus (controls) were identified from the 2002–2009 Nationwide Inpatient Sample (NIS) which is representative of all admissions in the United States. We performed logistic regression analysis adjusting for age, gender, co-morbid conditions, including hypertension, diabetes mellitus (DM), renal failure, alcohol use, and opportunistic infections. We compared the in hospital outcomes among patients admitted with status epilepticus in strata defined by underlying HIV infection. Results The rate of concurrent status epilepticus and HIV has increased over the last 7 years in hospitalized patients with status epilepticus in United States (0.14%–0.27% p<0.0001). The HIV infection was significantly associated with status epilepticus (odds ratio [OR]: 2.2; 95% confidence interval [CI]: 1.8–2.6; p<0.0001)) after adjusting for age, gender, opportunistic infections, and cardiovascular risk factors. The in-hospital mortality was significantly higher while discharge with none or minimal disability was significantly lower in status epilepticus patients with underlying HIV infection (17.5% vs. 9.9%, p<0.0001) and (50.4% vs. 63.3%, p<0.0001), respectively. Conclusions Our study suggests that there is a direct association between HIV infection and status epilepticus. The proportion of patients admitted with concurrent status epilepticus and HIV infections is increasing and such patients have higher rates of poor discharge outcomes. PMID:26301033

  13. Maturation Modulates Pharyngeal-Stimulus Provoked Pharyngeal and Respiratory Rhythms in Human Infants.

    Science.gov (United States)

    Hasenstab, Kathryn A; Sitaram, Swetha; Lang, Ivan M; Shaker, Reza; Jadcherla, Sudarshan R

    2018-02-01

    Pharyngeal-provocation induced aerodigestive symptoms in infants remain an enigma. Sources of pharyngeal provocation can be anterograde as with feeding, and retrograde as in gastroesophageal reflux. We determined maturational and dose-response effects of targeted pharyngeal-stimulus on frequency, stability, and magnitude of pharyngeal and respiratory waveforms during multiple pharyngeal swallowing responses in preterm-born infants when they were of full-term postmenstrual age (PMA). Eighteen infants (11 male) were studied longitudinally at 39.8 ± 4.8 weeks PMA (time-1) and 44.1 ± 5.8 weeks PMA (time-2). Infants underwent concurrent pharyngo-esophageal manometry, respiratory inductance plethysmography, and nasal airflow thermistor methods to test sensory-motor interactions between the pharynx, esophagus, and airway. Linear mixed models were used and data presented as mean ± SEM or %. Overall, responses to 250 stimuli were analyzed. Of the multiple pharyngeal swallowing responses (n = 160), with maturation (a) deglutition apnea duration decreases (p  0.05), and (c) respiratory changes were unaffected (p > 0.05). Initial and subsequent pharyngeal responses and respiratory rhythm interactions become more distinct with maturation. Interval oromotor experiences and volume-dependent increase in adaptive responses may be contributory. These mechanisms may be important in modulating and restoring respiratory rhythm normalcy.

  14. Frequency of human bocavirus (HBoV) infection among children with febrile respiratory symptoms in Argentina, Nicaragua and Peru

    Science.gov (United States)

    Salmón‐Mulanovich, Gabriela; Sovero, Merly; Laguna‐Torres, V. Alberto; Kochel, Tadeusz J.; Lescano, Andres G.; Chauca, Gloria; Sanchez, J. Felix; Rodriguez, Francisco; Parrales, Eduardo; Ocaña, Victor; Barrantes, Melvin; Blazes, David L.; Montgomery, Joel M.

    2010-01-01

    Please cite this paper as: Salmón‐Mulanovich et al. (2010) Frequency of human bocavirus (HBoV) infection among children with febrile respiratory symptoms in Argentina, Nicaragua and Peru. Influenza and Other Respiratory Viruses 5(1), 1–5. Background  Globally, respiratory infections are the primary cause of illness in developing countries, specifically among children; however, an etiological agent for many of these illnesses is rarely identified. Objectives  Our study aimed to estimate the frequency of human bocavirus (HBoV) infection among pediatric populations in Argentina, Nicaragua and Peru. Methods  We conducted a cross‐sectional study using stored samples of an influenza‐like illness surveillance program. Irrespective of previous diagnosis, nasopharyngeal or nasal swab specimens were randomly selected and tested using real‐time PCR from three sites during 2007 from patients younger than 6 years old. Results  A total of 568 specimens from Argentina (185), Nicaragua (192) and Peru (191) were tested. The prevalence of HBoV was 10·8% (95% CI: 6·3; 15·3) in Argentina, 33·3% in Nicaragua (95% CI: 26·6; 40·1) and 25·1% in Peru (95% CI: 18·9; 31·3). Conclusions  These findings demonstrate circulation of HBoV in Argentina, Nicaragua and Peru among children with influenza‐like symptoms enrolled in a sentinel surveillance program. PMID:21138534

  15. Digital anthropomorphic phantoms of non-rigid human respiratory and voluntary body motion for investigating motion correction in emission imaging

    International Nuclear Information System (INIS)

    Könik, Arda; Johnson, Karen L; Dasari, Paul; Pretorius, P H; Dey, Joyoni; King, Michael A; Connolly, Caitlin M; Segars, Paul W; Lindsay, Clifford

    2014-01-01

    The development of methods for correcting patient motion in emission tomography has been receiving increased attention. Often the performance of these methods is evaluated through simulations using digital anthropomorphic phantoms, such as the commonly used extended cardiac torso (XCAT) phantom, which models both respiratory and cardiac motion based on human studies. However, non-rigid body motion, which is frequently seen in clinical studies, is not present in the standard XCAT phantom. In addition, respiratory motion in the standard phantom is limited to a single generic trend. In this work, to obtain a more realistic representation of motion, we developed a series of individual-specific XCAT phantoms, modeling non-rigid respiratory and non-rigid body motions derived from the magnetic resonance imaging (MRI) acquisitions of volunteers. Acquisitions were performed in the sagittal orientation using the Navigator methodology. Baseline (no motion) acquisitions at end-expiration were obtained at the beginning of each imaging session for each volunteer. For the body motion studies, MRI was again acquired only at end-expiration for five body motion poses (shoulder stretch, shoulder twist, lateral bend, side roll, and axial slide). For the respiratory motion studies, an MRI was acquired during free/regular breathing. The magnetic resonance slices were then retrospectively sorted into 14 amplitude-binned respiratory states, end-expiration, end-inspiration, six intermediary states during inspiration, and six during expiration using the recorded Navigator signal. XCAT phantoms were then generated based on these MRI data by interactive alignment of the organ contours of the XCAT with the MRI slices using a graphical user interface. Thus far we have created five body motion and five respiratory motion XCAT phantoms from the MRI acquisitions of six healthy volunteers (three males and three females). Non-rigid motion exhibited by the volunteers was reflected in both respiratory

  16. Digital anthropomorphic phantoms of non-rigid human respiratory and voluntary body motion for investigating motion correction in emission imaging

    Science.gov (United States)

    Könik, Arda; Connolly, Caitlin M.; Johnson, Karen L.; Dasari, Paul; Segars, Paul W.; Pretorius, P. H.; Lindsay, Clifford; Dey, Joyoni; King, Michael A.

    2014-07-01

    The development of methods for correcting patient motion in emission tomography has been receiving increased attention. Often the performance of these methods is evaluated through simulations using digital anthropomorphic phantoms, such as the commonly used extended cardiac torso (XCAT) phantom, which models both respiratory and cardiac motion based on human studies. However, non-rigid body motion, which is frequently seen in clinical studies, is not present in the standard XCAT phantom. In addition, respiratory motion in the standard phantom is limited to a single generic trend. In this work, to obtain a more realistic representation of motion, we developed a series of individual-specific XCAT phantoms, modeling non-rigid respiratory and non-rigid body motions derived from the magnetic resonance imaging (MRI) acquisitions of volunteers. Acquisitions were performed in the sagittal orientation using the Navigator methodology. Baseline (no motion) acquisitions at end-expiration were obtained at the beginning of each imaging session for each volunteer. For the body motion studies, MRI was again acquired only at end-expiration for five body motion poses (shoulder stretch, shoulder twist, lateral bend, side roll, and axial slide). For the respiratory motion studies, an MRI was acquired during free/regular breathing. The magnetic resonance slices were then retrospectively sorted into 14 amplitude-binned respiratory states, end-expiration, end-inspiration, six intermediary states during inspiration, and six during expiration using the recorded Navigator signal. XCAT phantoms were then generated based on these MRI data by interactive alignment of the organ contours of the XCAT with the MRI slices using a graphical user interface. Thus far we have created five body motion and five respiratory motion XCAT phantoms from the MRI acquisitions of six healthy volunteers (three males and three females). Non-rigid motion exhibited by the volunteers was reflected in both respiratory

  17. Effect of respiratory syncytial virus (RSV) infection on the adherence of pathogenic bacteria to human epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Faden, H.; Hong, J.J.; Ogra, P.L.

    1986-03-01

    The effect of RSV infection on the adherence of Streptococcus pneumoniae (SP), Haemophilus influenzae (HI) and Staphylococcus aureus (SA) to human epithelial cells was determined. RSV-infected Hep-2 cell cultures at different stages of expression of surface viral antigens and bacteria labeled with /sup 3/H-thymidine were employed to examine the kinetics of bacterial adherence to virus-infected cells. RSV infection did not alter the magnitude of adherence of HI or SA to HEp-2 cells. However, adherence of SP to HEp-2 cells was significantly (P < 0.01) enhanced by prior RSV infection. The degree of adherence was directly related to the amount of viral antigen expressed on the cell surface. The adherence was temperature dependent, with maximal adherence observed at 37/sup 0/C. Heat-inactivation of SP did not alter adherence characteristics. These data suggest that RSV infection increases adherence of SP to the surface of epithelial cells in vitro. Since attachment of bacteria to mucosal surfaces is the first step in many infections, it is suggested that viral infections of epithelial cells render them more susceptible to bacterial adherence. Thus, RSV infection in vivo may predispose children to SP infections, such as in otitis media, by increasing colonization with SP.

  18. Acute encephalopathy with concurrent respiratory and metabolic disturbances in first known parenteral human administration of flunixin meglumine and acepromazine maleate.

    Science.gov (United States)

    Kamali, Michael F; Wilson, Anwar C; Acquisto, Nicole M; Spillane, Linda; Schneider, Sandra M

    2013-08-01

    Flunexin is a nonsteroidal anti-inflammatory drug approved for veterinary use in horses and cattle. Acepromazine is a phenothiazine derivative used in horses, dogs, and cats. Human exposure to these substances is rare. We report a case of a human injection of two equine medications, flunixin and acepromazine, which resulted in altered mental status, respiratory alkalosis, gastrointestinal bleeding, and elevation of liver transaminases in a 43-year-old woman who worked as a horse trainer. The patient intentionally self-injected these medications and subsequently presented to the Emergency Department with altered mental status and lethargy. The patient required hospitalization for metabolic abnormalities, including respiratory alkalosis, and suffered a gastrointestinal bleed requiring blood transfusion. The patient ultimately recovered with supportive measures. We believe this to be the first case of concomitant injection of flunixin and acepromazine in a human. This report explains a case of parenteral administration of two equine medications and the subsequent complications in a patient that presented to the Emergency Department. Human exposure to veterinary medications cannot be predicted by their effect in animals due to variations in absorption, distribution, and metabolism. Physicians should be aware that individuals who work with animals may have access to large quantities of veterinary medicine. This case also exemplifies the challenges that Emergency Physicians face on a daily basis, and generates additional consideration for overdoses and intoxications from medications that are not considered commonplace in humans. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Expression of urease by Haemophilus influenzae during human respiratory tract infection and role in survival in an acid environment

    Science.gov (United States)

    2011-01-01

    Background Nontypeable Haemophilus influenzae is a common cause of otitis media in children and lower respiratory tract infection in adults with chronic obstructive pulmonary disease (COPD). Prior studies have shown that H. influenzae expresses abundant urease during growth in the middle ear of the chinchilla and in pooled human sputum, suggesting that expression of urease is important for colonization and infection in the hostile environments of the middle ear and in the airways in adults. Virtually nothing else is known about the urease of H. influenzae, which was characterized in the present study. Results Analysis by reverse transcriptase PCR revealed that the ure gene cluster is expressed as a single transcript. Knockout mutants of a urease structural gene (ureC) and of the entire ure operon demonstrated no detectable urease activity indicating that this operon is the only one encoding an active urease. The ure operon is present in all strains tested, including clinical isolates from otitis media and COPD. Urease activity decreased as nitrogen availability increased. To test the hypothesis that urease is expressed during human infection, purified recombinant urease C was used in ELISA with pre acquisition and post infection serum from adults with COPD who experienced infections caused by H. influenzae. A total of 28% of patients developed new antibodies following infection indicating that H. influenzae expresses urease during airway infection. Bacterial viability assays performed at varying pH indicate that urease mediates survival of H. influenzae in an acid environment. Conclusions The H. influenzae genome contains a single urease operon that mediates urease expression and that is present in all clinical isolates tested. Nitrogen availability is a determinant of urease expression. H. influenzae expresses urease during human respiratory tract infection and urease is a target of the human antibody response. Expression of urease enhances viability in an acid

  20. A safe and efficient BCG vectored vaccine to prevent the disease caused by the human Respiratory Syncytial Virus.

    Science.gov (United States)

    Rey-Jurado, Emma; Soto, Jorge; Gálvez, Nicolás; Kalergis, Alexis M

    2017-09-02

    The human Respiratory Syncytial Virus (hRSV) causes lower respiratory tract infections including pneumonia and bronchiolitis. Such infections also cause a large number of hospitalizations and affects mainly newborns, young children and the elderly worldwide. Symptoms associated with hRSV infection are due to an exacerbated immune response characterized by low levels of IFN-γ, recruitment of neutrophils and eosinophils to the site of infection and lung damage. Although hRSV is a major health problem, no vaccines are currently available. Different immunization approaches have been developed to achieve a vaccine that activates the immune system, without triggering an unbalanced inflammation. These approaches include live attenuated vaccine, DNA or proteins technologies, and the use of vectors to express proteins of the virus. In this review, we discuss the host immune response to hRSV and the immunological mechanisms underlying an effective and safe BCG vectored vaccine against hRSV.

  1. Influenza A virus protein PB1-F2 exacerbates IFN-beta expression of human respiratory epithelial cells.

    Science.gov (United States)

    Le Goffic, Ronan; Bouguyon, Edwige; Chevalier, Christophe; Vidic, Jasmina; Da Costa, Bruno; Leymarie, Olivier; Bourdieu, Christiane; Decamps, Laure; Dhorne-Pollet, Sophie; Delmas, Bernard

    2010-10-15

    The PB1-F2 protein of the influenza A virus (IAV) contributes to viral pathogenesis by a mechanism that is not well understood. PB1-F2 was shown to modulate apoptosis and to be targeted by the CD8(+) T cell response. In this study, we examined the downstream effects of PB1-F2 protein during IAV infection by measuring expression of the cellular genes in response to infection with wild-type WSN/33 and PB1-F2 knockout viruses in human lung epithelial cells. Wild-type virus infection resulted in a significant induction of genes involved in innate immunity. Knocking out the PB1-F2 gene strongly decreased the magnitude of expression of cellular genes implicated in antiviral response and MHC class I Ag presentation, suggesting that PB1-F2 exacerbates innate immune response. Biological network analysis revealed the IFN pathway as a link between PB1-F2 and deregulated genes. Using quantitative RT-PCR and IFN-β gene reporter assay, we determined that PB1-F2 mediates an upregulation of IFN-β expression that is dependent on NF-κB but not on AP-1 and IFN regulatory factor-3 transcription factors. Recombinant viruses knocked out for the PB1-F2 and/or the nonstructural viral protein 1 (the viral antagonist of the IFN response) genes provide further evidence that PB1-F2 increases IFN-β expression and that nonstructural viral protein 1 strongly antagonizes the effect of PB1-F2 on the innate response. Finally, we compared the effect of PB1-F2 variants taken from several IAV strains on IFN-β expression and found that PB1-F2-mediated IFN-β induction is significantly influenced by its amino acid sequence, demonstrating its importance in the host cell response triggered by IAV infection.

  2. Human Adenovirus Infection Causes Cellular E3 Ubiquitin Ligase MKRN1 Degradation Involving the Viral Core Protein pVII.

    Science.gov (United States)

    Inturi, Raviteja; Mun, Kwangchol; Singethan, Katrin; Schreiner, Sabrina; Punga, Tanel

    2018-02-01

    Human adenoviruses (HAdVs) are common human pathogens encoding a highly abundant histone-like core protein, VII, which is involved in nuclear delivery and protection of viral DNA as well as in sequestering immune danger signals in infected cells. The molecular details of how protein VII acts as a multifunctional protein have remained to a large extent enigmatic. Here we report the identification of several cellular proteins interacting with the precursor pVII protein. We show that the cellular E3 ubiquitin ligase MKRN1 is a novel precursor pVII-interacting protein in HAdV-C5-infected cells. Surprisingly, the endogenous MKRN1 protein underwent proteasomal degradation during the late phase of HAdV-C5 infection in various human cell lines. MKRN1 protein degradation occurred independently of the HAdV E1B55K and E4orf6 proteins. We provide experimental evidence that the precursor pVII protein binding enhances MKRN1 self-ubiquitination, whereas the processed mature VII protein is deficient in this function. Based on these data, we propose that the pVII protein binding promotes MKRN1 self-ubiquitination, followed by proteasomal degradation of the MKRN1 protein, in HAdV-C5-infected cells. In addition, we show that measles virus and vesicular stomatitis virus infections reduce the MKRN1 protein accumulation in the recipient cells. Taken together, our results expand the functional repertoire of the HAdV-C5 precursor pVII protein in lytic virus infection and highlight MKRN1 as a potential common target during different virus infections. IMPORTANCE Human adenoviruses (HAdVs) are common pathogens causing a wide range of diseases. To achieve pathogenicity, HAdVs have to counteract a variety of host cell antiviral defense systems, which would otherwise hamper virus replication. In this study, we show that the HAdV-C5 histone-like core protein pVII binds to and promotes self-ubiquitination of a cellular E3 ubiquitin ligase named MKRN1. This mutual interaction between the pVII and

  3. The effects of human serum to the morphology, proliferation and gene expression level of the respiratory epithelium in vitro.

    Science.gov (United States)

    Yunus, Mohd Heikal Mohd; Siang, Kan Chan; Hashim, Nurul Izzati; Zhi, Ng Pei; Zamani, Nur Fathurah; Sabri, Primuharsa Putra; Busra, Mohd Fauzi; Chowdhury, Shiplu Roy; Idrus, Ruszymah Binti Haji

    2014-08-01

    The culture of human airway epithelial cells has played an important role in advancing our understanding of the metabolic and molecular mechanisms underlying normal function and disease pathology of airway epithelial cells. The present study focused on investigating the effects of human serum (HS) on the qualitative and quantitative properties of the human respiratory epithelium compared to the fetal bovine serum (FBS), as a supplement in culture. Respiratory epithelial (RE) cells derived from human nasal turbinate were co-cultured with fibroblasts, subsequently separated at 80-90% confluency by differential trypsinization. RE cells were then sub-cultured into 2 different plates containing 5% allogenic HS and FBS supplemented media respectively up to passage 1 (P1). Cell morphology, growth rate, cell viability and population doubling time were assessed under light microscope, and levels of gene expression were measured via real time reverse transcriptase-polymerase chain reaction (qRT-PCR). RE cells appeared as polygonal shape and expanded when cultured in HS whereas RE cells in FBS were observed to be easily matured thus limit the RE cells expansion. Proliferation rate of RE cells in HS supplemented media (7673.18 ± 1207.15) was 3 times higher compared to RE in FBS supplemented media (2357.68 ± 186.85). Furthermore, RE cells cultured in HS-supplemented media required fewer days (9.15 ± 1.10) to double in numbers compared to cells cultured in FBS-supplemented media (13.66 ± 0.81). Both the differences were significant (p0.05). In conclusion, HS is a comparatively better choice of media supplement in accelerating growth kinetics of RE cells in vitro thus producing a better quality of respiratory epithelium for future tracheal reconstruction. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Biomechanical investigation of different surgical strategies for the treatment of rib fractures using a three-dimensional human respiratory model.

    Science.gov (United States)

    Shih, Kao-Shang; Truong, Thanh An; Hsu, Ching-Chi; Hou, Sheng-Mou

    2017-11-02

    Rib fracture is a common injury and can result in pain during respiration. Conservative treatment of rib fracture is applied via mechanical ventilation. However, ventilator-associated complications frequently occur. Surgical fixation is another approach to treat rib fractures. Unfortunately, this surgical treatment is still not completely defined. Past studies have evaluated the biomechanics of the rib cage during respiration using a finite element method, but only intact conditions were modelled. Thus, the purpose of this study was to develop a realistic numerical model of the human rib cage and to analyse the biomechanical performance of intact, injured and treated rib cages. Three-dimensional finite element models of the human rib cage were developed. Respiratory movement of the human rib cage was simulated to evaluate the strengths and limitations of different scenarios. The results show that a realistic human respiratory movement can be simulated and the predicted results were closely related to previous study (correlation coefficient>0.92). Fixation of two fractured ribs significantly decreased the fixation index (191%) compared to the injured model. This fixation may provide adequate fixation stability as well as reveal lower bone stress and implant stress compared with the fixation of three or more fractured ribs.

  5. Cell-cycle-dependent localization of human cytomegalovirus UL83 phosphoprotein in the nucleolus and modulation of viral gene expression in human embryo fibroblasts in vitro.

    Science.gov (United States)

    Arcangeletti, Maria-Cristina; Rodighiero, Isabella; Mirandola, Prisco; De Conto, Flora; Covan, Silvia; Germini, Diego; Razin, Sergey; Dettori, Giuseppe; Chezzi, Carlo

    2011-01-01

    The nucleolus is a multifunctional nuclear compartment widely known to be involved in several cellular processes, including mRNA maturation and shuttling to cytoplasmic sites, control of the cell cycle, cell proliferation, and apoptosis; thus, it is logical that many viruses, including herpesvirus, target the nucleolus in order to exploit at least one of the above-mentioned functions. Recent studies from our group demonstrated the early accumulation of the incoming ppUL83 (pp65), the major tegument protein of human cytomegalovirus (HCMV), in the nucleolus. The obtained results also suggested that a functional relationship might exist between the nucleolar localization of pp65, rRNA synthesis, and the development of the lytic program of viral gene expression. Here we present new data which support the hypothesis of a potentially relevant role of HCMV pp65 and its nucleolar localization for the control of the cell cycle by HCMV (arrest of cell proliferation in G1-G1/S), and for the promotion of viral infection. We demonstrated that, although the incoming pp65 amount in the infected cells appears to be constant irrespective of the cell-cycle phase, its nucleolar accumulation is prominent in G1 and G1/S, but very poor in S or G2/M. This correlates with the observation that only cells in G1 and G1/S support an efficient development of the HCMV lytic cycle. We propose that HCMV pp65 might be involved in regulatory/signaling pathways related to nucleolar functions, such as the cell-cycle control. Co-immunoprecipitation experiments have permitted to identify nucleolin as one of the nucleolar partners of pp65.

  6. An ultrastructural study of the interaction of human eosinophils with respiratory syncytial virus

    NARCIS (Netherlands)

    Kimpen, JLL; Garofalo, R; Welliver, RC; Fujihara, K; Ogra, PL

    It was shown previously that eosinophils are activated in vivo and in vitro by respiratory syncytial virus (RSV) (Garofalo et al., J Pediatr 1992: 120: 28-32; Kimpen et al., Pediatr Res 1992: 32: 160-4). For study of the interaction of eosinophils and RSV on the ultrastructural level, normodense

  7. Validation of Performance of the Gen-Probe Human Immunodeficiency Virus Type 1 Viral Load Assay with Genital Swabs and Breast Milk Samples

    Science.gov (United States)

    DeVange Panteleeff, Dana; Emery, Sandra; Richardson, Barbra A.; Rousseau, Christine; Benki, Sarah; Bodrug, Sharon; Kreiss, Joan K.; Overbaugh, Julie

    2002-01-01

    Human immunodeficiency type 1 (HIV-1) continues to spread at an alarming rate. The virus may be transmitted through blood, genital secretions, and breast milk, and higher levels of systemic virus in the index case, as measured by plasma RNA viral load, have been shown to correlate with increased risk of transmitting HIV-1 both vertically and sexually. Less is known about the correlation between transmission and HIV-1 levels in breast milk or genital secretions, in part because reliable quantitative assays to detect HIV-1 in these fluids are not available. Here we show that the Gen-Probe HIV-1 viral load assay can be used to accurately quantify viral load in expressed breast milk and in cervical and vaginal samples collected on swabs. Virus could be quantified from breast milk and swab samples spiked with known amounts of virus, including HIV-1 subtypes A, C, and D. As few as 10 copies of HIV-1 RNA could be detected above background threshold levels in ≥77% of assays performed with spiked breast milk supernatants and mock swabs. In genital swab samples from HIV-1-infected women, similar levels of HIV-1 RNA were consistently detected in duplicate swabs taken from the same woman on the same clinic visit, suggesting that the RNA values from a single swab sample can be used to measure genital viral load. PMID:12409354

  8. The impact of early immune destruction on the kinetics of postacute viral replication in rhesus monkey infected with the simian-human immunodeficiency virus 89.6P

    International Nuclear Information System (INIS)

    Zhang Zhiqiang; Schleif, William A.; Casimiro, Danilo R.; Handt, Larry; Chen, Minchun; Davies, Mary-Ellen; Liang Xiaoping; Fu Tongming; Tang Aimin; Wilson, Keith A.; McElhaugh, Michael; Carella, Anthony; Tan, Charles; Connolly, Brett; Hill, Susan; Klein, Hilton; Emini, Emilio A.; Shiver, John W.

    2004-01-01

    Set-point viral load is positively correlated with the extent of initial viral replication in pathogenic simian-human immunodeficiency virus (SHIV) infection. To elucidate the mechanisms underlying the correlation, we conducted a systematic investigation in rhesus monkeys infected with the highly pathogenic SHIV 89.6P. This model is widely used in the preclinical evaluation of AIDS vaccine candidates and a thorough understanding of the model's biology is important to the proper interpretation of these evaluations. We found that the levels of peak viremia were positively correlated not only with the levels of set-point viremia but, importantly, with the extent of initial overall immune destruction as indicated by the degree of CD4 + T cell depletion and lymph node germinal center (GC) formation. The extent of initial overall immune destruction was inversely correlated with subsequent development and maintenance of virus-specific cellular and humoral immune responses. Thus, these data suggest that the extent of early immune damage determines the development and durability of virus-specific immunity, thereby playing a critical role in establishing the levels of set-point viral replication in SHIV infection. Vaccines that limit both the initial viral replication and the extent of early immune damage will therefore mediate long-term virus replication control and mitigation of long-term immune destruction in this model of immunodeficiency virus infection

  9. The full-length E1-circumflexE4 protein of human papillomavirus type 18 modulates differentiation-dependent viral DNA amplification and late gene expression

    International Nuclear Information System (INIS)

    Wilson, Regina; Ryan, Gordon B.; Knight, Gillian L.; Laimins, Laimonis A.; Roberts, Sally

    2007-01-01

    Activation of the productive phase of the human papillomavirus (HPV) life cycle in differentiated keratinocytes is coincident with high-level expression of E1-circumflexE4 protein. To determine the role of E1-circumflexE4 in the HPV replication cycle, we constructed HPV18 mutant genomes in which expression of the full-length E1-circumflexE4 protein was abrogated. Undifferentiated keratinocytes containing mutant genomes showed enhanced proliferation when compared to cells containing wildtype genomes, but there were no differences in maintenance of viral episomes. Following differentiation, cells with mutant genomes exhibited reduced levels of viral DNA amplification and late gene expression, compared to wildtype genome-containing cells. This indicates that HPV18 E1-circumflexE4 plays an important role in regulating HPV late functions, and it may also function in the early phase of the replication cycle. Our finding that full-length HPV18 E1-circumflexE4 protein plays a significant role in promoting viral genome amplification concurs with a similar report with HPV31, but is in contrast to an HPV11 study where viral DNA amplification was not dependent on full-length E1-circumflexE4 expression, and to HPV16 where only C-terminal truncations in E1-circumflexE4 abrogated vegetative genome replication. This suggests that type-specific differences exist between various E1-circumflexE4 proteins

  10. Influenza A (H10N7 Virus Causes Respiratory Tract Disease in Harbor Seals and Ferrets.

    Directory of Open Access Journals (Sweden)

    Judith M A van den Brand

    Full Text Available Avian influenza viruses sporadically cross the species barrier to mammals, including humans, in which they may cause epidemic disease. Recently such an epidemic occurred due to the emergence of avian influenza virus of the subtype H10N7 (Seal/H10N7 in harbor seals (Phoca vitulina. This epidemic caused high mortality in seals along the north-west coast of Europe and represented a potential risk for human health. To characterize the spectrum of lesions and to identify the target cells and viral distribution, findings in 16 harbor seals spontaneously infected with Seal/H10N7 are described. The seals had respiratory tract inflammation extending from the nasal cavity to bronchi associated with intralesional virus antigen in respiratory epithelial cells. Virus infection was restricted to the respiratory tract. The fatal outcome of the viral infection in seals was most likely caused by secondary bacterial infections. To investigate the pathogenic potential of H10N7 infection for humans, we inoculated the seal virus intratracheally into six ferrets and performed pathological and virological analyses at 3 and 7 days post inoculation. These experimentally inoculated ferrets displayed mild clinical signs, virus excretion from the pharynx and respiratory tract inflammation extending from bronchi to alveoli that was associated with virus antigen expression exclusively in the respiratory epithelium. Virus was isolated only from the respiratory tract. In conclusion, Seal/H10N7 infection in naturally infected harbor seals and experimentally infected ferrets shows that respiratory epithelial cells are the permissive cells for viral replication. Fatal outcome in seals was caused by secondary bacterial pneumonia similar to that in fatal human cases during influenza pandemics. Productive infection of ferrets indicates that seal/H10N7 may possess a zoonotic potential. This outbreak of LPAI from wild birds to seals demonstrates the risk of such occasions for mammals

  11. A Rare Case of Human Coronavirus 229E Associated with Acute Respiratory Distress Syndrome in a Healthy Adult

    Directory of Open Access Journals (Sweden)

    Foula Vassilara

    2018-01-01

    Full Text Available Human coronavirus 229E (HCoV-229E is one of the first coronavirus strains being described. It is linked to common cold symptoms in healthy adults. Younger children and the elderly are considered vulnerable to developing lower respiratory tract infections (LRTIs. In particular, immunocompromised patients have been reported with severe and life-threatening LRTIs attributed to HCoV-229E. We report for the first time a case of LRTI and acute respiratory distress syndrome developed in a healthy adult with no comorbidities and HCoV-229E strain identified as the only causative agent. A 45-year-old female with a clear medical history presented with fever, cough, and headache. Respiratory tract infection was diagnosed, and empirical antibiotics were started. Within two days, she developed bilateral pleural effusions, diffuse consolidations, and ground glass opacities involving all lung fields. She needed immediate oxygen supply, while ABGs deteriorated and chest imaging and PaO2/FiO2 indicated ARDS. Early administration of systemic corticosteroids led to gradual clinical improvement. Multiplex PCR from nasal secretions was positive only for HCoV-229E and negative for multiple other pathogens. It remains to be elucidated how an immunocompetent adult developed a life-threatening LRTI caused by a “benign considered” coronavirus strain, the HCoV-229E.

  12. Seasonal behavior of radon decay products in indoor air and resulting radiation dose to human respiratory tract

    Directory of Open Access Journals (Sweden)

    A.M.A. Mostafa

    2015-01-01

    Full Text Available Most of radiation hazard of indoor radon is largely due to the radon progenies, which are inhaled and deposited in the human respiratory tract. It is essential to evaluate aerodynamic characteristics of the radon progenies, which are either attached or unattached to aerosol particles, because the dose is strongly dependent on the location of deposition in respiratory tract and hence on the aerodynamic characteristics of the aerosol particles. This paper presents the seasonal behavior of radon decay products in indoor air under domestic conditions at Nagoya University, Japan. A low pressure cascade impactor as an instrument for classifying aerosol sizes and imaging plate as a radiation detector have been employed to characterize the activity size distribution of short-lived radon decay products. In parallel, radon and its progenies concentrations were measured. Taking into account the progeny characteristics, the inhalation dose in the different seasons was also estimated based on a lung dose model with the structure that is related to the ICRP66 respiratory tract model. The result evident that, the highest dose 0.22 mSvy−1 was observed during the winter where the highest value of equilibrium equivalent concentration of radon (EEC and lowest value of the activity median aerodynamic diameter (AMAD were found in this season; whereas, the dose in spring appeared to be lowest 0.02 mSvy−1.

  13. Respiratory Syncytial Virus Infection (RSV): Transmission and Prevention

    Science.gov (United States)

    ... of Search Controls Search Form Controls Cancel Submit Respiratory Syncytial Virus Infection (RSV) Note: Javascript is disabled ... 2018 Content source: National Center for Immunization and Respiratory Diseases (NCIRD) , Division of Viral Diseases Email Recommend ...

  14. Molecular typing and epidemiology profiles of human adenovirus infection among paediatric patients with severe acute respiratory infection in China.

    Science.gov (United States)

    Li, Yamin; Zhou, Weimin; Zhao, Yanjie; Wang, Yanqun; Xie, Zhengde; Lou, Yongliang; Tan, Wenjie

    2015-01-01

    Human adenoviruses (HAdVs) have been recognised as pathogens that cause a broad spectrum of diseases. The studies on HAdV infection among children with severe acute respiratory infection (SARI) are limited. To investigate the prevalence, epidemiology, and genotype of HAdV among children with SARI in China. Nasopharyngeal aspirates (NPAs) or induced sputum (IS) was collected from hospitalised children with SARIs in Beijing (representing Northern China; n = 259) and Zhejiang Province (representing Eastern China; n = 293) from 2007 to 2010. The prevalence of HAdV was screened by polymerase chain reaction (PCR), followed by sequence typing of PCR fragments that targeted the second half of the hexon gene. In addition, co-infection with other human respiratory viruses, related epidemiological profiles and clinical presentations were investigated. In total, 76 (13.8%) of 552 SARI patients were positive for HAdV, and the infection rates of HAdV in Northern and Eastern China were 20.1% (n = 52) and 8.2% (n = 24), respectively. HAdV co-infection with other respiratory viruses was frequent (infection rates: Northern China, 90.4%; Eastern China, 70.8%). The peak seasons for HAdV-B infection was winter and spring. Additionally, members of multiple species (Human mastadenovirus B, C, D and E) were circulating among paediatric patients with SARI, of which HAdV-B (34/52; 65.4%) and HAdV-C (20/24, 83.3%) were the most predominant in Northern and Eastern China, respectively. These findings provide a benchmark for future epidemiology and prevention strategies for HAdV.

  15. Neonatal bronchial hyperresponsiveness precedes acute severe viral bronchiolitis in infants

    DEFF Research Database (Denmark)

    Chawes, Bo L K; Poorisrisak, Porntiva; Johnston, Sebastian L

    2012-01-01

    Respiratory syncytial virus and other respiratory tract viruses lead to common colds in most infants, whereas a minority develop acute severe bronchiolitis often requiring hospitalization. We hypothesized that such an excessive response to respiratory tract viral infection is caused by host factors...

  16. The influence of the human genome on chronic viral hepatitis outcome A influência do genoma humano no curso das hepatites virais crônicas

    Directory of Open Access Journals (Sweden)

    Dahir Ramos de Andrade Júnior

    2004-06-01

    Full Text Available The mechanisms that determine viral clearance or viral persistence in chronic viral hepatitis have yet to be identified. Recent advances in molecular genetics have permitted the detection of variations in immune response, often associated with polymorphism in the human genome. Differences in host susceptibility to infectious disease and disease severity cannot be attributed solely to the virulence of microbial agents. Several recent advances concerning the influence of human genes in chronic viral hepatitis B and C are discussed in this article: a the associations between human leukocyte antigen polymorphism and viral hepatic disease susceptibility or resistance; b protective alleles influencing hepatitis B virus (HBV and hepatitis C virus (HCV evolution; c prejudicial alleles influencing HBV and HCV; d candidate genes associated with HBV and HCV evolution; d other genetic factors that may contribute to chronic hepatitis C evolution (genes influencing hepatic stellate cells, TGF-beta1 and TNF-alpha production, hepatic iron deposits and angiotensin II production, among others. Recent discoveries regarding genetic associations with chronic viral hepatitis may provide clues to understanding the development of end-stage complications such as cirrhosis or hepatocellular carcinoma. In the near future, analysis of the human genome will allow the elucidation of both the natural course of viral hepatitis and its response to therapy.Os mecanismos que determinam o clearance ou a persistência da infecção viral nas hepatites virais crônicas não estão ainda bem identificados. O progresso no conhecimento sobre as ferramentas genéticas moleculares tem permitido detectar variações na resposta imune, que freqüentemente são associadas com polimorfismos do genoma humano. As diferenças na susceptibilidade do hospedeiro para as doenças infecciosas e a intensidade das doenças não podem ser atribuídas apenas à virulência do agente microbiano. Neste

  17. Nasopharyngeal Protein Biomarkers of Acute Respiratory Virus Infection

    Directory of Open Access Journals (Sweden)

    Thomas W. Burke

    2017-03-01

    Full Text Available Infection of respiratory mucosa with viral pathogens triggers complex immunologic events in the affected host. We sought to characterize this response through proteomic analysis of nasopharyngeal lavage in human subjects experimentally challenged with influenza A/H3N2 or human rhinovirus, and to develop targeted assays measuring peptides involved in this host response allowing classification of acute respiratory virus infection. Unbiased proteomic discovery analysis identified 3285 peptides corresponding to 438 unique proteins, and revealed that infection with H3N2 induces significant alterations in protein expression. These include proteins involved in acute inflammatory response, innate immune response, and the complement cascade. These data provide insights into the nature of the biological response to viral infection of the upper respiratory tract, and the proteins that are dysregulated by viral infection form the basis of signature that accurately classifies the infected state. Verification of this signature using targeted mass spectrometry in independent cohorts of subjects challenged with influenza or rhinovirus demonstrates that it performs with high accuracy (0.8623 AUROC, 75% TPR, 97.46% TNR. With further development as a clinical diagnostic, this signature may have utility in rapid screening for emerging infections, avoidance of inappropriate antibacterial therapy, and more rapid implementation of appropriate therapeutic and public health strategies.

  18. Novel avian-origin human influenza A(H7N9) can be transmitted between ferrets via respiratory droplets.

    Science.gov (United States)

    Xu, Lili; Bao, Linlin; Deng, Wei; Dong, Libo; Zhu, Hua; Chen, Ting; Lv, Qi; Li, Fengdi; Yuan, Jing; Xiang, Zhiguang; Gao, Kai; Xu, Yanfeng; Huang, Lan; Li, Yanhong; Liu, Jiangning; Yao, Yanfeng; Yu, Pin; Li, Xiyan; Huang, Weijuan; Zhao, Xiang; Lan, Yu; Guo, Junfeng; Yong, Weidong; Wei, Qiang; Chen, Honglin; Zhang, Lianfeng; Qin, Chuan

    2014-02-15

    The outbreak of human infections caused by novel avian-origin influenza A(H7N9) in China since March 2013 underscores the need to better understand the pathogenicity and transmissibility of these viruses in mammals. In a ferret model, the pathogenicity of influenza A(H7N9) was found to be less than that of an influenza A(H5N1) strain but comparable to that of 2009 pandemic influenza A(H1N1), based on the clinical signs, mortality, virus dissemination, and results of histopathologic analyses. Influenza A(H7N9) could replicate in the upper and lower respiratory tract, the heart, the liver, and the olfactory bulb. It is worth noting that influenza A(H7N9) exhibited a low level of transmission between ferrets via respiratory droplets. There were 4 mutations in the virus isolated from the contact ferret: D678Y in the gene encoding PB2, R157K in the gene encoding hemagglutinin (H3 numbering), I109T in the gene encoding nucleoprotein, and T10I in the gene encoding neuraminidase. These data emphasized that avian-origin influenza A(H7N9) can be transmitted between mammals, highlighting its potential for human-to-human transmissibility.

  19. Does atopy affect the course of viral pneumonia?

    Science.gov (United States)

    Erdem, S B; Can, D; Girit, S; Çatal, F; Şen, V; Pekcan, S; Yüksel, H; Bingöl, A; Bostancı, I; Erge, D; Ersu, R

    The presence of atopy is considered as a risk factor for severe respiratory symptoms in children. The objective of this study was to examine the effect of atopy on the course of disease in children hospitalised with viral pneumonia. Children between the ages of 1 and 6 years hospitalised due to viral pneumonia between the years of 2013 and 2016 were included to this multicentre study. Patients were classified into two groups as mild-moderate and severe according to the course of pneumonia. Presence of atopy was evaluated with skin prick tests. Groups were compared to evaluate the risk factors associated with severe viral pneumonia. A total of 280 patients from nine centres were included in the study. Of these patients, 163 (58.2%) were male. Respiratory syncytial virus (29.7%), Influenza A (20.5%), rhinovirus (18.9%), adenovirus (10%), human metapneumovirus (8%), parainfluenza (5.2%), coronavirus (6%), and bocavirus (1.6%) were isolated from respiratory samples. Eighty-five (30.4%) children had severe pneumonia. Atopic sensitisation was found in 21.4% of the patients. Ever wheezing (RR: 1.6, 95% CI: 1.1-2.4), parental asthma (RR: 1.5, 95% CI: 1.1-2.2), other allergic diseases in the family (RR: 1.8, 95% CI: 1.2-2.9) and environmental tobacco smoke (RR: 1.6, 95% CI: 1.1-3.5) were more common in the severe pneumonia group. When patients with mild-moderate pneumonia were compared to patients with severe pneumonia, frequency of atopy was not different between the two groups. However, parental asthma, ever wheezing and environmental tobacco smoke exposure are risk factors for severe viral pneumonia in children. Copyright © 2017 SEICAP. Published by Elsevier España, S.L.U. All rights reserved.

  20. Molecular epidemiology of the SH (small hydrophobic) gene of human respiratory syncytial virus (HRSV), over 2 consecutive years.

    Science.gov (United States)

    Lima, Hildenêr Nogueira; Botosso, Viviane Fongaro; Oliveira, Danielle Bruna Leal; Campos, Angélica Cristine de Almeida; Leal, Andrea Lima; Silva, Tereza Souza; Bosso, Patrícia Alves Ramos; Moraes, Claudia Trigo Pedroso; Filho, Claudionor Gomes da Silva; Vieira, Sandra Elisabete; Gilio, Alfredo Elias; Stewien, Klaus Eberhard; Durigon, Edison Luiz

    2012-01-01

    Human respiratory syncytial virus (HRSV) strains were isolated from nasopharyngeal aspirates collected from 965 children between 2004 and 2005, yielding 424 positive samples. We sequenced the small hydrophobic protein (SH) gene of 117 strains and compared them with other viruses identified worldwide. Phylogenetic analysis showed a low genetic variability among the isolates but allowed us to classify the viruses into different genotypes for both groups, HRSVA and HRSVB. It is also shown that the novel BA-like genotype was well segregated from the others, indicating that the mutations are not limited to the G gene. Copyright © 2011 Elsevier B.V. All rights reserved.