WorldWideScience

Sample records for human reproductive genotoxicity

  1. The potential for new methods to assess human reproductive genotoxicity

    International Nuclear Information System (INIS)

    Mendelsohn, M.L.

    1987-09-01

    The immediate prospects are not good for practical methods for measuring the human heritable mutation rate. The methods discussed here range from speculative to impractical, and at best are sensitive enough only for large numbers of subjects. Given the rapid development of DNA methods and the current status of two-dimensional gel electrophoresis, there is some hope that the intermediate prospects may be better. In contrast, the prospects for useful cellular-based male germinal methods seem more promising and immediate. Effective specific locus methods for sperm are already conceivable and may be practical in a few years. Obviously such methods will not predict heritable effects definitively, but they will provide direct information on reproductive genotoxicity and should contribute significantly to many current medical and environmental situations where genetic damage is suspected. 22 refs

  2. Genotoxicity of Superparamagnetic Iron Oxide Nanoparticles in Granulosa Cells

    Directory of Open Access Journals (Sweden)

    Marina Pöttler

    2015-11-01

    Full Text Available Nanoparticles that are aimed at targeting cancer cells, but sparing healthy tissue provide an attractive platform of implementation for hyperthermia or as carriers of chemotherapeutics. According to the literature, diverse effects of nanoparticles relating to mammalian reproductive tissue are described. To address the impact of nanoparticles on cyto- and genotoxicity concerning the reproductive system, we examined the effect of superparamagnetic iron oxide nanoparticles (SPIONs on granulosa cells, which are very important for ovarian function and female fertility. Human granulosa cells (HLG-5 were treated with SPIONs, either coated with lauric acid (SEONLA only, or additionally with a protein corona of bovine serum albumin (BSA; SEONLA-BSA, or with dextran (SEONDEX. Both micronuclei testing and the detection of γH2A.X revealed no genotoxic effects of SEONLA-BSA, SEONDEX or SEONLA. Thus, it was demonstrated that different coatings of SPIONs improve biocompatibility, especially in terms of genotoxicity towards cells of the reproductive system.

  3. A predictive toxicogenomics signature to classify genotoxic versus non-genotoxic chemicals in human TK6 cells

    Directory of Open Access Journals (Sweden)

    Andrew Williams

    2015-12-01

    Full Text Available Genotoxicity testing is a critical component of chemical assessment. The use of integrated approaches in genetic toxicology, including the incorporation of gene expression data to determine the DNA damage response pathways involved in response, is becoming more common. In companion papers previously published in Environmental and Molecular Mutagenesis, Li et al. (2015 [6] developed a dose optimization protocol that was based on evaluating expression changes in several well-characterized stress-response genes using quantitative real-time PCR in human lymphoblastoid TK6 cells in culture. This optimization approach was applied to the analysis of TK6 cells exposed to one of 14 genotoxic or 14 non-genotoxic agents, with sampling 4 h post-exposure. Microarray-based transcriptomic analyses were then used to develop a classifier for genotoxicity using the nearest shrunken centroids method. A panel of 65 genes was identified that could accurately classify toxicants as genotoxic or non-genotoxic. In Buick et al. (2015 [1], the utility of the biomarker for chemicals that require metabolic activation was evaluated. In this study, TK6 cells were exposed to increasing doses of four chemicals (two genotoxic that require metabolic activation and two non-genotoxic chemicals in the presence of rat liver S9 to demonstrate that S9 does not impair the ability to classify genotoxicity using this genomic biomarker in TK6cells.

  4. The use of ex vivo human skin tissue for genotoxicity testing

    Energy Technology Data Exchange (ETDEWEB)

    Reus, Astrid A.; Usta, Mustafa [TNO Triskelion BV, Utrechtseweg 48, 3704 HE, Zeist (Netherlands); Krul, Cyrille A.M., E-mail: cyrille.krul@tno.nl [TNO, Utrechtseweg 48, 3704 HE Zeist (Netherlands)

    2012-06-01

    As a result of the chemical legislation concerning the registration, evaluation, authorization and restriction of chemicals (REACH), and the Seventh Amendment to the Cosmetics Directive, which prohibits animal testing in Europe for cosmetics, alternative methods for safety evaluation of chemicals are urgently needed. Current in vitro genotoxicity assays are not sufficiently predictive for the in vivo situation, resulting in an unacceptably high number of misleading positives. For many chemicals and ingredients of personal care products the skin is the first site of contact, but there are no in vitro genotoxicity assays available in the skin for additional evaluation of positive or equivocal responses observed in regulatory in vitro genotoxicity assays. In the present study ex vivo human skin tissue obtained from surgery was used for genotoxicity evaluation of chemicals by using the comet assay. Fresh ex vivo human skin tissue was cultured in an air–liquid interface and topically exposed to 20 chemicals, including true positive, misleading positive and true negative genotoxins. Based on the results obtained in the present study, the sensitivity, specificity and accuracy of the ex vivo skin comet assay to predict in vivo genotoxicity were 89%, 90% and 89%, respectively. Donor and experimental variability were mainly reflected in the magnitude of the response and not the difference between the presence and absence of a genotoxic response. The present study indicates that human skin obtained from surgery is a promising and robust model for safety evaluation of chemicals that are in direct contact with the skin. -- Highlights: ► We use human skin obtained from surgery for genotoxicity evaluation of chemicals. ► We use the comet assay as parameter for genotoxicity in ex vivo human skin. ► Sensitivity, specificity and accuracy to predict in vivo genotoxins are determined. ► Sensitivity, specificity and accuracy are 89%, 90% and 90%, respectively. ► The method

  5. The use of ex vivo human skin tissue for genotoxicity testing

    International Nuclear Information System (INIS)

    Reus, Astrid A.; Usta, Mustafa; Krul, Cyrille A.M.

    2012-01-01

    As a result of the chemical legislation concerning the registration, evaluation, authorization and restriction of chemicals (REACH), and the Seventh Amendment to the Cosmetics Directive, which prohibits animal testing in Europe for cosmetics, alternative methods for safety evaluation of chemicals are urgently needed. Current in vitro genotoxicity assays are not sufficiently predictive for the in vivo situation, resulting in an unacceptably high number of misleading positives. For many chemicals and ingredients of personal care products the skin is the first site of contact, but there are no in vitro genotoxicity assays available in the skin for additional evaluation of positive or equivocal responses observed in regulatory in vitro genotoxicity assays. In the present study ex vivo human skin tissue obtained from surgery was used for genotoxicity evaluation of chemicals by using the comet assay. Fresh ex vivo human skin tissue was cultured in an air–liquid interface and topically exposed to 20 chemicals, including true positive, misleading positive and true negative genotoxins. Based on the results obtained in the present study, the sensitivity, specificity and accuracy of the ex vivo skin comet assay to predict in vivo genotoxicity were 89%, 90% and 89%, respectively. Donor and experimental variability were mainly reflected in the magnitude of the response and not the difference between the presence and absence of a genotoxic response. The present study indicates that human skin obtained from surgery is a promising and robust model for safety evaluation of chemicals that are in direct contact with the skin. -- Highlights: ► We use human skin obtained from surgery for genotoxicity evaluation of chemicals. ► We use the comet assay as parameter for genotoxicity in ex vivo human skin. ► Sensitivity, specificity and accuracy to predict in vivo genotoxins are determined. ► Sensitivity, specificity and accuracy are 89%, 90% and 90%, respectively. ► The method

  6. Genotoxic evaluation of terbinafine in human lymphocytes in vitro.

    Science.gov (United States)

    Tolomeotti, Danielle; de Castro-Prado, Marialba Avezum Alves; de Sant'Anna, Juliane Rocha; Martins, Ana Beatriz Tozzo; Della-Rosa, Valter Augusto

    2015-01-01

    Terbinafine is an antimycotic drug usually used against several superficial fungal infections and with a potential application in the treatment of human cancers. Since to date there are few data on the genotoxic effects of terbinafine in mammalian cells, current study evaluated the potential genotoxic of such antifungal agent in cultured human peripheral blood lymphocytes. Terbinafine was used at the peak plasma concentration (1.0 μg/ml) and in four additional concentrations higher than the human plasmatic peak (5.0 μg/ml, 25.0 μg/ml, 50.0 μg/ml and 100.0 μg/ml). Chromosomal aberrations (CA), sister chromatid exchanges (SCE), micronuclei (MN), nucleoplasmic bridges (NP) and nuclear buds (NB) were scored as genetic endpoints. In all analysis no significant differences (α = 0.05, Kruskal-Wallis test) were observed. Complementary criterion adopted to obtain the final response in cytogenetic agreed with statistical results. Therefore, results of this study showed that terbinafine neither induced CA, SCE, MN, NP and NB nor affected significantly mitotic, replication and cytokinesis-block proliferation indices in any of the tested concentrations. It may be assumed that terbinafine was not genotoxic or cytotoxic to cultured human peripheral blood lymphocytes in our experimental conditions.

  7. The cytotoxicity and genotoxicity of soluble and particulate cobalt in human lung fibroblast cells

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Leah J.; Holmes, Amie L. [Wise Laboratory of Environmental and Genetic Toxicology, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04101-9300 (United States); Maine Center for Environmental Toxicology and Health, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04101-9300 (United States); Department of Applied Medical Science, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04101-9300 (United States); Kandpal, Sanjeev Kumar; Mason, Michael D. [Department of Chemical and Biological Engineering, University of Maine, Orono, ME (United States); Zheng, Tongzhang [Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT (United States); Wise, John Pierce, E-mail: John.Wise@usm.maine.edu [Wise Laboratory of Environmental and Genetic Toxicology, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04101-9300 (United States); Maine Center for Environmental Toxicology and Health, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04101-9300 (United States); Department of Applied Medical Science, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04101-9300 (United States)

    2014-08-01

    Cobalt exposure is increasing as cobalt demand rises worldwide due to its use in enhancing rechargeable battery efficiency, super-alloys, and magnetic products. Cobalt is considered a possible human carcinogen with the lung being a primary target. However, few studies have considered cobalt-induced toxicity in human lung cells. Therefore, in this study, we sought to determine the cytotoxicity and genotoxicity of particulate and soluble cobalt in human lung cells. Cobalt oxide and cobalt chloride were used as representative particulate and soluble cobalt compounds, respectively. Exposure to both particulate and soluble cobalt induced a concentration-dependent increase in cytotoxicity, genotoxicity, and intracellular cobalt ion levels. Based on intracellular cobalt ion levels, we found that soluble cobalt was more cytotoxic than particulate cobalt while particulate and soluble cobalt induced similar levels of genotoxicity. However, soluble cobalt induced cell cycle arrest indicated by the lack of metaphases at much lower intracellular cobalt concentrations compared to cobalt oxide. Accordingly, we investigated the role of particle internalization in cobalt oxide-induced toxicity and found that particle-cell contact was necessary to induce cytotoxicity and genotoxicity after cobalt exposure. These data indicate that cobalt compounds are cytotoxic and genotoxic to human lung fibroblasts, and solubility plays a key role in cobalt-induced lung toxicity. - Highlights: • Particulate and soluble cobalt are cytotoxic and genotoxic to human lung cells. • Soluble cobalt induces more cytotoxicity compared to particulate cobalt. • Soluble and particulate cobalt induce similar levels of genotoxicity. • Particle-cell contact is required for particulate cobalt-induced toxicity.

  8. Cytotoxicity and genotoxicity of clothianidin in human lymphocytes with or without metabolic activation system.

    Science.gov (United States)

    Atlı Şekeroğlu, Zülal; Şekeroğlu, Vedat; Uçgun, Ebru; Kontaş Yedier, Seval; Aydın, Birsen

    2018-02-26

    Clothianidin (CHN) is a broad-spectrum neonicotinoid insecticide. Limited studies have been carried out on the cytotoxic and genotoxic effects of both CHN using different genotoxicity tests in human cells with or without human metabolic activation system (S9 mix). Therefore, the aim of this study is to investigate the cytotoxic and genotoxic effects of CHN and its metabolites on human lymphocyte cultures with or without S9 mix using chromosomal aberration (CA) and micronucleus (MN) tests. The cultures were treated with 25, 50, and 100 µg/ml of CHN in the presence (3 h treatment) and absence (48 h treatment) of S9 mix. Dimethyl sulfoxide (DMSO) was used as a solvent control. CHN showed cytotoxic and genotoxic effects due to significant decreases in mitotic index (MI) and nuclear division index (NDI), and significant increases in the CAs, aberrant cells, and MN formation in the absence of S9 mix when compared with solvent control. However, CHN did not significantly induce cytotoxicity and genotoxicity in the presence of S9 mix. Our results indicated that CHN has cytotoxic, cytostatic, and genotoxic potential on human peripheral blood lymphocyte cultures, but not its metabolites under the experimental conditions.

  9. Genotoxic damage in cultured human peripheral blood lymphocytes ...

    African Journals Online (AJOL)

    Falaq Naz

    2012-06-29

    Jun 29, 2012 ... Genotoxic damage in cultured human peripheral blood lymphocytes of oral ... catechol estrogens and quinines, via redox reactions causes oxidative damage to .... volume was prepared for each donor. About, 0.8 ml of cell sus .... duce the adverse effects of OCs, such as the reduction in the estrogen content.

  10. Human biological monitoring of occupational genotoxic exposures

    DEFF Research Database (Denmark)

    Knudsen, Lisbeth E.; Sorsa, M

    1993-01-01

    Human biological monitoring is a valuable tool for exposure assessment in groups of persons occupationally exposed to genotoxic agents. If the monitoring activity covers genetic material the term genetic monitoring is used. The methods used for genetic monitoring are either substance specific, e......) occupational exposure limit value of styrene in ambient air. The consideration of ethical issues in human genetic monitoring is an important but often overlooked aspect. This includes the scientific and preventional relevance of performing a test on individuals, pre- and post study information of donors...

  11. In Vitro Genotoxic Effects of Four Helichrysum Species in Human Lymphocytes Cultures

    OpenAIRE

    Erolu, Erhan H; Hamzaolu, Ergin; Aksoy, Ahmet; Budak, Ümit; Özkul, Yusuf

    2010-01-01

    Helichrysum sanguineum, Helichrysum pamphylicum, Helichrysum orientale, Helichrysum noeanum (Asteraceae) are medicinal plants. For centuries, they have been used as tea in Turkey because of their medicinal properties. So far no scientifc evidence has been found in a literature survey regarding the genotoxic effects of these plants. This work evaluated the genotoxic effects on human lymphocyte cultures induced by methanol extracts of these plants, assayed in different concentrations (0.01, 0.0...

  12. In vitro cytotoxic, genotoxic and antioxidant/oxidant effects of guaiazulene on human lymphocytes

    Directory of Open Access Journals (Sweden)

    Başak Toğar

    2015-02-01

    Full Text Available The aim of this study was to evaluate for the cytotoxicity, genotoxicity and antioxidant/oxidant activity of GYZ on human peripheral blood lymphocytes (PBLs. Guaiazulene (GYZ was added into culture tubes at various concentrations (0-400 µg/mL-1. Cytotoxicity against the human lymphocytes cultures was examined by lactate dehydrogenase (LDH release assay. The proliferative response was estimated by 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyl tetrazolium bromide (MTT assay. Antioxidant/oxidant activity was evaluated by measuring the total oxidant status (TOS and total antioxidant capacity (TAC levels. Micronucleus (MN and chromosomal aberration (CA tests were used in genotoxicity studies. The results showed that GYZ caused cytotoxicity in the PBLs at high concentrations, but TOS level were not affected, while the level of TAC was significantly increased. GYZ also did not induce chromosomal aberrations when compared to that of the control group. Results this study clearly revealed that GYZ was not genotoxic and also increased the capacity of the antioxidant in the culture of human PBL cells. This report is first report on the impact of GYZ on human PBL cells.

  13. Somatic cell genotoxicity at the glycophorin A locus in humans

    International Nuclear Information System (INIS)

    Jensen, R.H.; Grant, S.G.; Langlois, R.G.; Bigbee, W.L.

    1990-01-01

    We have developed an assay for detecting variant erythrocytes that occur as a result of in vivo allele loss at the glycophorin A (GPA) locus on chromosome 4 in humans. This gene codes for an erythroid- specific cell surface glycoprotein, and with our assay we are able to detect rare variant erythrocytes that have lost expression of one of the two GPA alleles. Two distinctly different variant cell types are detected with this assay. One variant cell type (called N OE) is hemizygous. Our assay also detects homozygous variant erythrocytes that have lost expression of the GPA(M) allele and express the GPA(N) allele at twice the heterozygous level. The results of this assay are an enumeration of the frequency of N OE and NN variant cell types for each individual analyzed. These variant cell frequencies provide a measure of the amount of somatic cell genotoxicity that has occurred at the GPA locus. Such genotoxicity could be the result of (1) reactions of toxic chemicals to which the individual has been exposed, or (2) high energy radiation effects on erythroid precursor cells, or (3) errors in DNA replication or repair in these cells of the bone marrow. Thus, the GPA-based variant cell frequency can serve as a biodosimeter that indicates the amount of genotoxic exposure each individual has received. Because two very different kinds of variant cells are enumerated, different kinds of genotoxicity should be distinguishable. Results of the GPA somatic genotoxicity assay may also provide valuable information for cancer-risk estimation on each individual. 16 refs

  14. Oxcarbazepine-induced cytotoxicity and genotoxicity in human lymphocyte cultures with or without metabolic activation.

    Science.gov (United States)

    Atlı Şekeroğlu, Zülal; Kefelioğlu, Haluk; Kontaş Yedier, Seval; Şekeroğlu, Vedat; Delmecioğlu, Berrin

    2017-03-01

    There has been considerable debate about the relationship between epilepsy and cancer. Oxcarbazepine (OXC) is used for treating certain types of seizures in patients with epilepsy. There have been no detailed investigations about genotoxicity of OXC and its metabolites. Therefore, the aim of this study is to investigate the cytotoxic and genotoxic effects of OXC and its metabolites on cultured human lymphocytes. The cytotoxicity and genotoxicity of OXC on human peripheral blood lymphocytes were examined in vitro by sister chromatid exchange (SCE), chromosomal aberration (CA) and micronucleus (MN) tests. Cultures were treated with 125, 250 and 500 μg/ml of OXC in the presence (3 h treatment) and absence (24 h and 48 h treatment) of a metabolic activator (S9 mix). Dimethyl sulfoxide (DMSO) was used as a solvent control. OXC showed cytotoxic activities due to significant decreases in mitotic index (MI), proliferation index (PI) and nuclear division index (NDI) in the absence of S9 mix when compared with solvent control. Metabolites of OXC also significantly reduced MI and PI in cultures with S9 mix. OXC significantly increased the CAs, aberrant cells, SCE and MN values in the presence and absence of S9 mix. Our results indicated that both OXC and its metabolites have cytotoxic, cytostatic and genotoxic potential on human peripheral blood lymphocyte cultures under the experimental conditions. Further studies are necessary to elucidate the relationship between cytotoxic, cytostatic and genotoxic effects, and to make a possible risk assessment in patients receiving therapy with this drug.

  15. Potential genotoxic and cytotoxicity of emamectin benzoate in human normal liver cells.

    Science.gov (United States)

    Zhang, Zhijie; Zhao, Xinyu; Qin, Xiaosong

    2017-10-10

    Pesticide residue inducing cancer-related health problems draw people more attention recently. Emamectin benzoate (EMB) has been widely used in agriculture around the world based on its specificity targets. Although potential risk and the molecular mechanism of EMB toxicity to human liver has not been well-characterized. Unlike well-reported toxicity upon central nervous system, potential genotoxic and cytotoxicity of EMB in human liver cell was ignored and very limited. In this study, we identify genotoxicity and cytotoxicity of EMB to human normal liver cells (QSG7701 cell line) in vitro . We demonstrate that EMB inhibited the viability of QSG7701 cells and induced the DNA damage. Established assays of cytotoxicity were performed to characterize the mechanism of EMB toxicity on QSG7701 cells. Typical chromatin condensation and DNA fragmentation indicated the apoptosis of QSG7701 cells induced by EMB. And the intracellular biochemical results demonstrated that EMB-enhanced apoptosis of QSG7701 cells concurrent with generated ROS, a loss of mitochondrial membrane potential, the cytochrome-c release, up regulate the Bax/Bcl-2 and the activation of caspase-9/-3. Our results of EMB induces the death of QSG7701 cells maybe via mitochondrial-mediated intrinsic apoptotic pathways would contribute to promote the awareness of EMB as an extensive used pesticide to human being effects and reveal the underlying mechanisms of potential genotoxic.

  16. COMPARATIVE GENOTOXIC RESPONSES TO ARSENITE IN GUINEA PIG, MOUSE, RAT AND HUMAN LYMPHOCYTES

    Science.gov (United States)

    Comparative genotoxic responses to arsenite in guinea pig, mouse, rat and human lymphocytes.Inorganic arsenic is a known human carcinogen causing skin, lung, and bladder cancer following chronic exposures. Yet, long-term laboratory animal carcinogenicity studies have ...

  17. Comparative Cytotoxicity and Genotoxicity of Particulate and Soluble Hexavalent Chromium in Human and Sperm Whale (Physeter macrocephalus) Skin Cells

    Science.gov (United States)

    Li Chen, Tânia; LaCerte, Carolyne; Wise, Sandra S.; Holmes, Amie; Martino, Julieta; Wise, John Pierce; Thompson, W. Douglas; Wise, John Pierce

    2014-01-01

    Chromium (Cr) is a global marine pollutant, present in marine mammal tissues. Hexavalent chromium [Cr(VI)] is a known human carcinogen. In this study we compare the cytotoxic and clastogenic effects of Cr(VI) in human (Homo sapiens) and sperm whale (Physeter macrocephalus) skin fibroblasts. Our data show that increasing concentrations of both particulate and soluble Cr(VI) induce increasing amounts of cytotoxicity and clastogenicity in human and sperm whale skin cells. Furthermore, the data show that sperm whale cells are resistant to these effects exhibiting less cytotoxicity and genotoxicity than the human cells. Differences in Cr uptake accounted for some but not all of the differences in particulate and soluble Cr(VI) genotoxicity, although it did explain the differences in particulate Cr(VI) cytotoxicity. Altogether the data indicate that Cr(VI) is a genotoxic threat to whales, but also suggest that whales have evolved cellular mechanisms to protect them against the genotoxicity of environmental agents such as Cr(VI). PMID:21466859

  18. In vitro genotoxic effects of four Helichrysum species in human lymphocytes cultures.

    Science.gov (United States)

    Erolu, Erhan H; Hamzaolu, Ergin; Aksoy, Ahmet; Budak, Ümit; Özkul, Yusuf

    2010-01-01

    Helichrysum sanguineum, Helichrysum pamphylicum, Helichrysum orientale, Helichrysum noeanum (Asteraceae) are medicinal plants. For centuries, they have been used as tea in Turkey because of their medicinal properties. So far no scientific evidence has been found in a literature survey regarding the genotoxic effects of these plants. This work evaluated the genotoxic effects on human lymphocyte cultures induced by methanol extracts of these plants, assayed in different concentrations (0.01, 0.05, 0.1, 0.5 and 1 mg/mL). According to the results, Helichrysum noeanum, Helichrysum pamphylicum and Helichrysum sanguineum induced the formation of micronuclei and decreased the mitotic and replication indexes. Helichrysum orientale did not affect these parameters, whereas Helichrysum noeanum, Helichrysum pamphylicum and Helichrysum sanguineum were clearly genotoxic. They should therefore not be used freely in alternative medicine, although their antiproliferative activity may suggest antimitotic and anticarcinogenic properties. Helichrysum orientale could be used in alternative medicine.

  19. Genotoxic effects of environmental pollutants genotoxic monitoring and detection of antigenotoxic effects

    International Nuclear Information System (INIS)

    Simic, D.; Knezevic-Vukcevic, J.; Vukovi -Gacic, B.; Mitic, D.; Beric, T.; Nikolic, B.; Stanojevic, J.; Stankovic, S.

    2002-01-01

    The control of genotoxic agents mass release, which can adversely affect the ecosystem stability and human health is of the greatest importance. Therefore, it is necessary to seriously elaborate the strategy of genotoxic monitoring and relevant legislation. Additional approach is the study and dietary use of antigenotoxic plant substances for prevention of mutation-related diseases. (author)

  20. Genotoxic effects of environmental pollutants genotoxic monitoring and detection of antigenotoxic effects

    Energy Technology Data Exchange (ETDEWEB)

    Simic, D; Knezevic-Vukcevic, J; Vukovi -Gacic, B; Mitic, D; Beric, T; Nikolic, B; Stanojevic, J; Stankovic, S [Faculty of Biology, University of Belgrade, Belgrade (Yugoslavia)

    2002-05-01

    The control of genotoxic agents mass release, which can adversely affect the ecosystem stability and human health is of the greatest importance. Therefore, it is necessary to seriously elaborate the strategy of genotoxic monitoring and relevant legislation. Additional approach is the study and dietary use of antigenotoxic plant substances for prevention of mutation-related diseases. (author)

  1. Biodetection of potential genotoxic pollutants entering the human food chain through ashes used in livestock diets.

    Science.gov (United States)

    Sanchez-Vicente, Laura; Herraez, Elisa; Briz, Oscar; Nogales, Rogelio; Molina-Alcaide, Eduarda; Marin, Jose J G

    2016-08-15

    Ash derived from energy generation is used as a source of minerals in livestock feeds. The microbial biosensor recApr-Luc2 was built to detect genotoxic hazard in recycled ash. Escherichia coli SOS gene (recA, lexA, dinI and umuC) expression in response to cisplatin-induced DNA damage led to the selection of the recA promoter. The biosensor required functional RecA expression to respond to genotoxic heavy metals (Cr>Cd≈Pb), and polluted ash induced a strong recApr-Luc2 response. In human liver and intestinal cells, heavy metals induced acute toxicity (Cr>Cd>Pb) at concentrations sufficient to activate recApr-Luc2. Cytostatic effects, including genotoxicity, were cell- and metal-dependent, apart from Cr. In agreement with the recApr-Luc2 bioassay, Cr had the strongest effect in all cells. In conclusion, recApr-Luc2 could be useful for evaluating the genotoxic risk of pollutants present in ash that might be concentrated in animal products and, thus, entering the human food chain. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Genotoxic thresholds, DNA repair, and susceptibility in human populations

    International Nuclear Information System (INIS)

    Jenkins, Gareth J.S.; Zair, Zoulikha; Johnson, George E.; Doak, Shareen H.

    2010-01-01

    It has been long assumed that DNA damage is induced in a linear manner with respect to the dose of a direct acting genotoxin. Thus, it is implied that direct acting genotoxic agents induce DNA damage at even the lowest of concentrations and that no 'safe' dose range exists. The linear (non-threshold) paradigm has led to the one-hit model being developed. This 'one hit' scenario can be interpreted such that a single DNA damaging event in a cell has the capability to induce a single point mutation in that cell which could (if positioned in a key growth controlling gene) lead to increased proliferation, leading ultimately to the formation of a tumour. There are many groups (including our own) who, for a decade or more, have argued, that low dose exposures to direct acting genotoxins may be tolerated by cells through homeostatic mechanisms such as DNA repair. This argument stems from the existence of evolutionary adaptive mechanisms that allow organisms to adapt to low levels of exogenous sources of genotoxins. We have been particularly interested in the genotoxic effects of known mutagens at low dose exposures in human cells and have identified for the first time, in vitro genotoxic thresholds for several mutagenic alkylating agents (Doak et al., 2007). Our working hypothesis is that DNA repair is primarily responsible for these thresholded effects at low doses by removing low levels of DNA damage but becoming saturated at higher doses. We are currently assessing the roles of base excision repair (BER) and methylguanine-DNA methyltransferase (MGMT) for roles in the identified thresholds (Doak et al., 2008). This research area is currently important as it assesses whether 'safe' exposure levels to mutagenic chemicals can exist and allows risk assessment using appropriate safety factors to define such exposure levels. Given human variation, the mechanistic basis for genotoxic thresholds (e.g. DNA repair) has to be well defined in order that susceptible individuals are

  3. In Vitro Genotoxic Effects of Four Helichrysum Species in Human Lymphocytes Cultures

    Directory of Open Access Journals (Sweden)

    Erhan H Erolu

    2010-01-01

    Full Text Available Helichrysum sanguineum, Helichrysum pamphylicum, Helichrysum orientale, Helichrysum noeanum (Asteraceae are medicinal plants. For centuries, they have been used as tea in Turkey because of their medicinal properties. So far no scientifc evidence has been found in a literature survey regarding the genotoxic effects of these plants. This work evaluated the genotoxic effects on human lymphocyte cultures induced by methanol extracts of these plants, assayed in different concentrations (0.01, 0.05, 0.1, 0.5 and 1 mg/mL. According to the results, Helichrysum noeanum, Helichrysum pamphylicum and Helichrysum sanguineum induced the formation of micronuclei and decreased the mitotic and replication indexes. Helichrysum orientale did not affect these parameters, whereas Helichrysum noeanum, Helichrysum pamphylicum and Helichrysum sanguineum were clearly genotoxic. They should therefore not be used freely in alternative medicine, although their antiproliferative activity may suggest antimitotic and anticarcinogenic properties. Helichrysum orientale could be used in alternative medicine.

  4. Hexavalent chromium is cytotoxic and genotoxic to American alligator cells.

    Science.gov (United States)

    Wise, Sandra S; Wise, Catherine; Xie, Hong; Guillette, Louis J; Zhu, Cairong; Wise, John Pierce; Wise, John Pierce

    2016-02-01

    Metals are a common pollutant in the aquatic ecosystem. With global climate change, these levels are anticipated to rise as lower pH levels allow sediment bound metals to be released. The American alligator (Alligator mississippiensis) is an apex predator in the aquatic ecosystem and is considered a keystone species; as such it serves as a suitable monitor for localized pollution. One metal of increasing concern is hexavalent chromium (Cr(VI)). It is present in the aquatic environment and is a known human carcinogen and reproductive toxicant. We measured the cytotoxicity and genotoxicity of Cr(VI) in American alligator cells derived from scute tissue. We found that particulate and soluble Cr(VI) are both cytotoxic and genotoxic to alligator cells in a concentration-dependent manner. These data suggest that alligators may be used as a model for assessing the effects of environmental Cr(VI) contamination as well as for other metals of concern. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Identification of early target genes of aflatoxin B1 in human hepatocytes, inter-individual variability and comparison with other genotoxic compounds

    International Nuclear Information System (INIS)

    Josse, Rozenn; Dumont, Julie; Fautrel, Alain; Robin, Marie-Anne; Guillouzo, André

    2012-01-01

    Gene expression profiling has recently emerged as a promising approach to identify early target genes and discriminate genotoxic carcinogens from non-genotoxic carcinogens and non-carcinogens. However, early gene changes induced by genotoxic compounds in human liver remain largely unknown. Primary human hepatocytes and differentiated HepaRG cells were exposed to aflatoxin B1 (AFB1) that induces DNA damage following enzyme-mediated bioactivation. Gene expression profile changes induced by a 24 h exposure of these hepatocyte models to 0.05 and 0.25 μM AFB1 were analyzed by using oligonucleotide pangenomic microarrays. The main altered signaling pathway was the p53 pathway and related functions such as cell cycle, apoptosis and DNA repair. Direct involvement of the p53 protein in response to AFB1 was verified by using siRNA directed against p53. Among the 83 well-annotated genes commonly modulated in two pools of three human hepatocyte populations and HepaRG cells, several genes were identified as altered by AFB1 for the first time. In addition, a subset of 10 AFB1-altered genes, selected upon basis of their function or tumor suppressor role, was tested in four human hepatocyte populations and in response to other chemicals. Although they exhibited large variable inter-donor fold-changes, several of these genes, particularly FHIT, BCAS3 and SMYD3, were found to be altered by various direct and other indirect genotoxic compounds and unaffected by non-genotoxic compounds. Overall, this comprehensive analysis of early gene expression changes induced by AFB1 in human hepatocytes identified a gene subset that included several genes representing potential biomarkers of genotoxic compounds. -- Highlights: ► Gene expression profile changes induced by aflatoxin B1 in human hepatocytes. ► AFB1 modulates various genes including tumor suppressor genes and proto-oncogenes. ► Important inter-individual variations in the response to AFB1. ► Some genes also altered by other

  6. Genotoxic and chemopreventive assessment of Cynara scolymus L. aqueous extract in a human-derived liver cell line.

    Science.gov (United States)

    da Silva, Regiane Pereira; Jacociunas, Laura Vicedo; de Carli, Raíne Fogliati; de Abreu, Bianca Regina Ribas; Lehmann, Mauricio; da Silva, Juliana; Ferraz, Alexandre de Barros Falcão; Dihl, Rafael Rodrigues

    2017-10-01

    Cynara scolymus L., popularly known as artichoke, is consumed as food and used as tea infusions for pharmacological purposes to treat liver dysfunctions and other conditions. Scientific data on the safety and protective effect of artichoke in human-derived liver cells is missing. This study investigated the genotoxic and modulatory effect of a liophilized extract suspended in water of C. scolymus L. leaves. Four extract concentrations (0.62, 1.25, 2.5 and 5.0 mg/mL) were evaluated using the comet assay on human hepatocyte cultures, HepG2 cells. Genotoxicity was assessed after two treatment periods, 1 and 24 h. Antigenotoxicity was evaluated against oxidative lesions induced by hydrogen peroxide in pre-, simultaneous and post-treatment protocols. Artichoke leaves aqueous extract induced genotoxic effects in HepG2 cells after 1- and 24-h treatments. In turn, extract concentrations of 0.62, 1.25 and 2.5 mg/mL, exhibited a protective effect in pretreatment, compared to hydrogen peroxide alone. However, in simultaneous and post-treatment protocols, only the lowest concentration reduced the frequency of DNA damage induced by hydrogen peroxide. In addition, in the simultaneous treatment protocol, the highest artichoke extract concentration increased hydrogen peroxide genotoxicity. It can be concluded that artichoke is genotoxic, in vitro, to HepG2 cells, but can also modulate hydrogen peroxide DNA damage.

  7. Comparative cytotoxicity and genotoxicity of soluble and particulate hexavalent chromium in human and hawksbill sea turtle (Eretmochelys imbricate) skin cells

    OpenAIRE

    Young, Jamie L.; Wise, Sandra S.; Xie, Hong; Zhu, Cairong; Fukuda, Tomokazu; Wise, John Pierce

    2015-01-01

    Chromium is both a global marine pollutant and a known human health hazard. In this study, we compare the cytotoxicity and genotoxicity of both soluble and particulate chromate in human and hawksbill sea turtle (Eretmochelys imbricata) skin fibroblasts. Our data show that both soluble and particulate Cr(VI) induce concentration-dependent increases in cytotoxicity, genotoxicity, and intracellular Cr ion concentrations in both human and hawksbill sea turtle fibroblasts. Based on administered co...

  8. Assessment of in vitro genotoxic and cytotoxic effects of flurbiprofen on human cultured lymphocytes.

    Science.gov (United States)

    Timocin, Taygun; Ila, Hasan Basri; Dordu, Tuba; Husunet, Mehmet Tahir; Tazehkand, Mostafa Norizadeh; Valipour, Ebrahim; Topaktas, Mehmet

    2016-01-01

    Flurbiprofen is non-steroidal anti-inflammatory drug which is commonly used for its analgesic, antipyretic, and anti-inflammatory effects. The purpose of the study was to explore the genotoxic and cytotoxic effects of flurbiprofen in human cultured lymphocytes by sister chromatid exchange, chromosome aberration, and cytokinesis-blocked micronucleus tests. 10, 20, 30, and 40 μg/mL concentrations of flurbiprofen (solvent is DMSO) were used to treatment of human cultured lymphocytes at two different treatment periods (24 and 48 h). Flurbiprofen had no significant genotoxic effect in any of these tests. But exposing to flurbiprofen for 24 and 48 h led to significant decrease on proliferation index, mitotic index, and nuclear division index (NDI). Also, all decreases were concentration-dependent (except NDI at 24 h treatment period). Consequently, the findings of this research showed that flurbiprofen had cytotoxic effects in human blood lymphocytes.

  9. Cytotoxic and genotoxic effects of silver nanoparticles in testicular cells

    International Nuclear Information System (INIS)

    Asare, Nana; Instanes, Christine; Sandberg, Wiggo J.; Refsnes, Magne; Schwarze, Per; Kruszewski, Marcin; Brunborg, Gunnar

    2012-01-01

    Serious concerns have been expressed about potential risks of engineered nanoparticles. Regulatory health risk assessment of such particles has become mandatory for the safe use of nanomaterials in consumer products and medicines; including the potential effects on reproduction and fertility, are relevant for this risk evaluation. In this study, we examined effects of silver particles of nano- (20 nm) and submicron- (200 nm) size, and titanium dioxide nanoparticles (TiO 2 -NPs; 21 nm), with emphasis on reproductive cellular- and genotoxicity. Ntera2 (NT2, human testicular embryonic carcinoma cell line), and primary testicular cells from C57BL6 mice of wild type (WT) and 8-oxoguanine DNA glycosylase knock-out (KO, mOgg1 −/− ) genotype were exposed to the particles. The latter mimics the repair status of human testicular cells vs oxidative damage and is thus a suitable model for human male reproductive toxicity studies. The results suggest that silver nano- and submicron-particles (AgNPs) are more cytotoxic and cytostatic compared to TiO 2 -NPs, causing apoptosis, necrosis and decreased proliferation in a concentration- and time-dependent manner. The 200 nm AgNPs in particular appeared to cause a concentration-dependent increase in DNA-strand breaks in NT2 cells, whereas the latter response did not seem to occur with respect to oxidative purine base damage analysed with any of the particles tested.

  10. Biomarkers of environmental genotoxicity: comparison of genetic damage induced in Trad-SH cells and human lymphocytes

    International Nuclear Information System (INIS)

    Cebulska-Wasilewska, A.

    1999-01-01

    The report presents some of the results of genotoxicity of the environmental agents studied in somatic cells of Tradescantia and show similarity between responses of the Tradescantia stamen hair cells (Trad-SH) and human blood cells to the physical and chemical mutagens. In the studies in vitro chromosome aberrations (CA) and sister chromatid exchanges (SCE) were applied to evaluate genotoxicity of pesticides. For comparison of genotoxic effectiveness of agrochemicals with other chemicals, there are also presented results of the genotoxicity of well-known mutagens (EMS, X-rays). The results confirm that in the environment a chemical pollution might cause higher genetic risk than radiation. Trad-SH assay was applied for in situ monitoring of the ambient air mutagenicity caused by benzene and petroleum associated compounds. The studies showed that gene mutation frequencies were slightly dependent on the distance from the petroleum work center. Results of measures of the cell cycle factor have shown also that the chemical pollutants in the air played also an important role in physiological cellular processes. The similarity of the Trad-SH and human blood cells responses to the physical and chemical mutagens showed that the gene mutations in Tradescantia present a simple and sensitive model, which can be very useful in biological monitoring

  11. Reproduction (II): Human Control of Reproductive Processes

    Science.gov (United States)

    Jost, Alfred

    1970-01-01

    Describes methods of intervening in reproduction of animals and humans (artificial insemination, contraception, ovular and blastodisc transplants, pre selection of sex, cloning) and discusses the social implications of their use with humans. (AL)

  12. Genotoxic Effects of Low- and High-LET Radiation on Human Epithelial Cells Grown in 2-D Versus 3-D Culture

    Science.gov (United States)

    Patel, Z. S.; Cucinotta, F. A.; Huff, J. L.

    2011-01-01

    Risk estimation for radiation-induced cancer relies heavily on human epidemiology data obtained from terrestrial irradiation incidents from sources such as medical and occupational exposures as well as from the atomic bomb survivors. No such data exists for exposures to the types and doses of high-LET radiation that will be encountered during space travel; therefore, risk assessment for space radiation requires the use of data derived from cell culture and animal models. The use of experimental models that most accurately replicate the response of human tissues is critical for precision in risk projections. This work compares the genotoxic effects of radiation on normal human epithelial cells grown in standard 2-D monolayer culture compared to 3-D organotypic co-culture conditions. These 3-D organotypic models mimic the morphological features, differentiation markers, and growth characteristics of fully-differentiated normal human tissue and are reproducible using defined components. Cultures were irradiated with 2 Gy low-LET gamma rays or varying doses of high-LET particle radiation and genotoxic damage was measured using a modified cytokinesis block micronucleus assay. Our results revealed a 2-fold increase in residual damage in 2 Gy gamma irradiated cells grown under organotypic culture conditions compared to monolayer culture. Irradiation with high-LET particle radiation gave similar results, while background levels of damage were comparable under both scenarios. These observations may be related to the phenomenon of "multicellular resistance" where cancer cells grown as 3-D spheroids or in vivo exhibit an increased resistance to killing by chemotherapeutic agents compared to the same cells grown in 2-D culture. A variety of factors are likely involved in mediating this process, including increased cell-cell communication, microenvironment influences, and changes in cell cycle kinetics that may promote survival of damaged cells in 3-D culture that would

  13. Genotoxic Effects of Titanium Dioxide and Cerium Dioxide Nanoparticles in Human Respiratory Epithelial Cells

    Science.gov (United States)

    The nanomaterial industry has recently seen rapid growth, therefore, the risk assessment of human exposure to nanomaterials in consumer products is of paramount importance. The genotoxicity of nanomaterials is a fundamental aspect of hazard identification and regulatory guidance....

  14. Evaluation of toxicity and genotoxicity of 2-chlorophenol on bacteria, fish and human cells.

    Science.gov (United States)

    Vlastos, Dimitris; Antonopoulou, Maria; Konstantinou, Ioannis

    2016-05-01

    Due to the extensive use of chlorophenols (CPs) in anthropogenic activities, 2-Chlorophenol (2-CP), among other CPs, can enter aquatic ecosystems and can be harmful to a variety of organisms, including bacteria, fish and humans, that are exposed directly and/or indirectly to such contaminated environments. Based on the existing knowledge and in order to move a step forward, the purpose of this study is to investigate the toxic and mainly the genotoxic effects of 2-CP using a combination of bioassays. The tests include the marine bacterium Vibrio fischeri and micronuclei induction in the erythrocytes of Carassius auratus as well as in cultured human lymphocytes. The results obtained reveal that 2-CP is able to induce dose-dependent toxic and genotoxic effects on the selected tested concentrations under the specific experimental conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. The Genotoxicity of Titanium Dioxide and Cerium Dioxide Nanoparticles in Human Respiratory Epithelial Cells

    Science.gov (United States)

    Due to the exponential growth of the nanomaterial industry, risk assessment of human exposure to nanomaterials in consumer products is of paramount importance. The genotoxicity of nanomaterials is an important aspect of hazard identification and regulatory guidance. However, this...

  16. Genotoxicity of diuron and glyphosate in oyster spermatozoa and embryos.

    Science.gov (United States)

    Akcha, F; Spagnol, C; Rouxel, J

    2012-01-15

    We investigated the effects of genotoxicant exposure in gametes and embryos to find a possible link between genotoxicity and reproduction/developmental impairment, and explore the impact of chemical genotoxicity on population dynamics. Our study focused on the genotoxic effects of two herbicides on oyster gametes and embryos: glyphosate (both as an active substance and in the Roundup formulation) and diuron. France is Europe's leading consumer of agrochemical substances and as such, contamination of France's coastal waters by pesticides is a major concern. Glyphosate and diuron are among the most frequently detected herbicides in oyster production areas; as oyster is a specie with external reproduction, its gametes and embryos are in direct contact with the surrounding waters and are hence particularly exposed to these potentially dangerous substances. In the course of this study, differences in genotoxic and embryotoxic responses were observed in the various experiments, possibly due to differences in pollutant sensitivity between the tested genitor lots. Glyphosate and Roundup had no effect on oyster development at the concentrations tested, whereas diuron significantly affected embryo-larval development from the lowest tested concentration of 0.05 μg L⁻¹, i.e. an environmentally realistic concentration. Diuron may therefore have a significant impact on oyster recruitment rates in the natural environment. Our spermiotoxicity study revealed none of the tested herbicides to be cytotoxic for oyster spermatozoa. However, the alkaline comet assay showed diuron to have a significant genotoxic effect on oyster spermatozoa at concentrations of 0.05 μg L⁻¹ upwards. Conversely, no effects due to diuron exposure were observed on sperm mitochondrial function or acrosomal membrane integrity. Although our initial results showed no negative effect on sperm function, the possible impact on fertilization rate and the consequences of the transmission of damaged DNA for

  17. Genotoxicity of water from the Songhua River, China, in 1994-1995 and 2002-2003: Potential risks for human health

    International Nuclear Information System (INIS)

    Liu Jiaren; Dong Hongwei; Tang Xuanle; Sun Xiangrong; Han Xiaohui; Chen Bingqing; Sun Changhao; Yang Baofeng

    2009-01-01

    A previous study showed that the cancer mortalities are higher for residents who lived nearby the Songhua River heavily polluted by organic contamination. It is important to determine its risk of carcinogenic potential. Short-term genotoxic bio-assays using Salmonella, Sister Chromatid Exchange (SCE), and Micronuclei (MN) assays were employed to examine the genotoxic activity of ether extracts of water samples taken from the Songhua River. The results of the Salmonella bioassay indicated that there were indirect frame-shift mutagens in the water samples. A dose-response relationship for the SCE and MN assays was obtained. These results showed that organic extracts of water samples have genotoxic activity and the risk of carcinogenic potential to human health. The mutagenesis of water samples had changed compared to the results in 1994-1995. An increasing trend of risk of carcinogenic potential in the Songhua River after ten years should be noted and needs to be studied further. - Organic extracts of water samples taken from the Songhua River have genotoxic activity and the risk of carcinogenic potential to human health

  18. Evaluation of genotoxicity after application of Listerine(R) on human lymphocytes by micronucleus and single cell gel electrophoresis assays.

    Science.gov (United States)

    Türkez, Hasan; Togar, Basak; Arabaci, Taner

    2012-04-01

    Listerine (LN) is one of the most commonly used mouth rinses worldwide although very limited information is available concerning its genotoxicity. In another view, the biological safety profile of oral care products is frequently assumed on the basis of simplistic test models. Therefore, the present study was undertaken to investigate the in vitro genotoxic potential of LN using micronucleus and single cell gel electrophoresis tests as genetic endpoints. Different concentrations of LN (0-100% of ml/culture, v/v) were applied to whole human blood cultures (n = 5). The result of the present study showed that there were no statistically significant differences (p > 0.05) between the control group and the groups treated with LN alone in both analysed endpoints. In conclusion, our result first demonstrated the absence of genotoxicity of LN on human lymphocytes.

  19. Involvement of mismatch repair proteins in adaptive responses induced by N-methyl-N'-nitro-N-nitrosoguanidine against {gamma}-induced genotoxicity in human cells

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Ayumi; Sakamoto, Yasuteru; Masumura, Kenichi; Honma, Masamitsu [Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501 (Japan); Nohmi, Takehiko, E-mail: nohmi@nihs.go.jp [Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501 (Japan)

    2011-08-01

    Highlights: {yields} Health effects of radiation should be evaluated in combination with chemicals. {yields} Here, we show that MNNG suppresses radiation-induced genotoxicity in human cells. {yields} Mismatch repair proteins play critical roles in the apparent adaptive responses. {yields} Chemical exposure may modulate radiation-induced genotoxicity in humans. - Abstract: As humans are exposed to a variety of chemical agents as well as radiation, health effects of radiation should be evaluated in combination with chemicals. To explore combined genotoxic effects of radiation and chemicals, we examined modulating effects of N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), a direct-acting methylating agent, against genotoxicity of {gamma}-radiation. Human lymphoblastoid TK6 cells and its mismatch-deficient derivative, i.e., MT1 cells, were treated with MNNG for 24 h before they were exposed to {gamma}-irradiation at a dose of 1.0 Gy, and the resulting genotoxicity was examined. In TK6 cells, the pretreatments with MNNG at low doses suppressed frequencies of the thymidine kinase (TK) gene mutation and micronucleus (MN) formation induced by {gamma}-irradiation and thus the dose responses of TK and MN assays were U-shaped along with the pretreatment doses of MNNG. In contrast, the genotoxic effects of MNNG and {gamma}-irradiation were additive in MT1 cells and the frequencies of TK mutations and MN induction increased along with the doses of MNNG. Apoptosis induced by {gamma}-radiation was suppressed by the pretreatments in TK6 cells, but not in MT1 cells. The expression of p53 was induced and cell cycle was delayed at G2/M phase in TK6, but not in MT1 cells, by the treatments with MNNG. These results suggest that pretreatments of MNNG at low doses suppress genotoxicity of {gamma}-radiation in human cells and also that mismatch repair proteins are involved in the apparent adaptive responses.

  20. Altered expression of long non-coding RNAs during genotoxic stress-induced cell death in human glioma cells.

    Science.gov (United States)

    Liu, Qian; Sun, Shanquan; Yu, Wei; Jiang, Jin; Zhuo, Fei; Qiu, Guoping; Xu, Shiye; Jiang, Xuli

    2015-04-01

    Long non-coding RNAs (lncRNAs), a recently discovered class of non-coding genes, are transcribed throughout the genome. Emerging evidence suggests that lncRNAs may be involved in modulating various aspects of tumor biology, including regulating gene activity in response to external stimuli or DNA damage. No data are available regarding the expression of lncRNAs during genotoxic stress-induced apoptosis and/or necrosis in human glioma cells. In this study, we detected a change in the expression of specific candidate lncRNAs (neat1, GAS5, TUG1, BC200, Malat1, MEG3, MIR155HG, PAR5, and ST7OT1) during DNA damage-induced apoptosis in human glioma cell lines (U251 and U87) using doxorubicin (DOX) and resveratrol (RES). We also detected the expression pattern of these lncRNAs in human glioma cell lines under necrosis induced using an increased dose of DOX. Our results reveal that the lncRNA expression patterns are distinct between genotoxic stress-induced apoptosis and necrosis in human glioma cells. The sets of lncRNA expressed during genotoxic stress-induced apoptosis were DNA-damaging agent-specific. Generally, MEG3 and ST7OT1 are up-regulated in both cell lines under apoptosis induced using both agents. The induction of GAS5 is only clearly detected during DOX-induced apoptosis, whereas the up-regulation of neat1 and MIR155HG is only found during RES-induced apoptosis in both cell lines. However, TUG1, BC200 and MIR155HG are down regulated when necrosis is induced using a high dose of DOX in both cell lines. In conclusion, our findings suggest that the distinct regulation of lncRNAs may possibly involve in the process of cellular defense against genotoxic agents.

  1. Genotoxicity of triiodothyronine: Effects on Salmonella typhimurium TA100 and human lymphocytes in vitro

    Directory of Open Access Journals (Sweden)

    Bošnjak-Neumüller Jasna

    2017-01-01

    Full Text Available There is increasing evidence that substances which are normally present in human or animal bodies may, under the certain circumstances, exhibit deleterious effects on genetic material, therefore acting as endogenous mutagenic agents. Since hormones represent one of the best studied endogenous mutagens, some research focused on the possible role of thyroid hormone in mutagenesis and carcinogenesis. Indeed, thyroid hormones accelerate aerobic metabolism and production of reactive oxygen species (ROS and, therefore, may exhibit mutagenic effects in various test systems on mammalian cells. However, possible mutagenic effects on prokaryotic DNA has not been investigated so far. Hence, the aim of this research was to compare the sensitivity of TA 100 Salmonella typhimurium with and without metabolic activation with S9 fraction, and human lymphocytes to possible genotoxic effects of triiodothyronine (T3. Therefore, we used the reverse mutation assay on S. typhimurium (Ames test and in vitro Comet assay in isolated peripheral blood human lymphocytes. In both tests-systems a broad spectrum of T3 concentrations was applied. The obtained results showed absence of genotoxic effects of T3 in bacterial reverse mutation assay and very profound genotoxic effects in human lymphocytes at concentrations higher than 15 μM. We only observed cytotoxic effects in bacterial system at very high T3 concentrations (300 and 500 μM. In conclusion, T3 was unable to increase the level of reverse mutations in Ames test both with and without S9 mix. Therefore, it seems that ROS production in mitochondria may be the primary cause of DNA damage caused by T3 in mammalian cells. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. III46002

  2. Genotoxicity of 11 heavy metals detected as food contaminants in two human cell lines.

    Science.gov (United States)

    Kopp, B; Zalko, D; Audebert, M

    2018-04-01

    Heavy metals, such as arsenic (As), antimony (Sb), barium (Ba), cadmium (Cd), cobalt (Co), germanium (Ge), lead (Pb), nickel (Ni), tellurium (Te), and vanadium (V) are widely distributed in the environment and in the food chain. Human exposure to heavy metals through water and food has been reported by different international agencies. Although some of these heavy metals are essential elements for human growth and development, they may also be toxic at low concentrations due to indirect mechanisms. In this study, the genotoxic and cytotoxic properties of 15 different oxidation statuses of 11 different heavy metals were investigated using high-throughput screening (γH2AX assay) in two human cell lines (HepG2 and LS-174T) representative of target organs (liver and colon) for food contaminants. Base on their lowest observed adverse effect concentration, the genotoxic potency of each heavy metal in each cell line was ranked in decreasing order, NaAsO 2  > CdCl 2  > PbCl 2 (only in LS-174T cells) > As 2 O 5  > SbCl 3  > K 2 TeO 3  > As 2 O 3 . No significant genotoxicity was observed with the other heavy metals tested. Cell viability data indicate that several heavy metals (As, Cd, Co, Ni, Sb, and Te) induce cytotoxicity at high concentrations, whereas an increase in the number of cells was observed for lead concentrations >100 µM in both cell lines tested, suggesting that lead stimulates cell growth. All these results highlight the possible human health hazards associated with the presence of heavy metals present in food. Environ. Mol. Mutagen. 59:202-210, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  3. Xylo-Oligosaccharides and Inulin Affect Genotoxicity and Bacterial Populations Differently in a Human Colonic Simulator Challenged with Soy Protein

    Science.gov (United States)

    Christophersen, Claus T.; Petersen, Anne; Licht, Tine R.; Conlon, Michael A.

    2013-01-01

    High dietary intakes of some protein sources, including soy protein, can increase colonic DNA damage in animals, whereas some carbohydrates attenuate this. We investigated whether inulin and xylo-oligosaccharides (XOS) could be protective against DNA strand breaks by adding them to a human colonic simulator consisting of a proximal vessel (PV) (pH 5.5) and a distal vessel (DV) (pH 6.8) inoculated with human faeces and media containing soy protein. Genotoxicity of the liquid phase and microbial population changes in the vessels were measured. Soy protein (3%) was fermented with 1% low amylose cornstarch for 10 day followed by soy protein with 1% XOS or 1% inulin for 10 day. Inulin did not alter genotoxicity but XOS significantly reduced PV genotoxicity and increased DV genotoxicity. Inulin and XOS significantly increased butyrate concentration in the DV but not PV. Numbers of the key butyrate-producing bacterium Faecalibacterium prausnitzii were significantly increased in the PV and DV by inulin but significantly decreased by XOS in both vessels. Other bacteria examined were also significantly impacted by the carbohydrate treatments or by the vessel (i.e., pH). There was a significant overall inverse correlation between levels of damage induced by the ferments and levels of sulphate-reducing bacteria, Bacteroides fragilis, and acetate. In conclusion, dietary XOS can potentially modulate the genotoxicity of the colonic environment and specific bacterial groups and short chain fatty acids may mediate this. PMID:24064573

  4. Prophylactic role of some plants and phytochemicals against radio-genotoxicity in human lymphocytes

    Directory of Open Access Journals (Sweden)

    Mohsen Cheki

    2016-01-01

    Full Text Available Genotoxicity in lymphocytes of cancer patients undergoing radiotherapy can lead to lymphocytopenia. Lymphocytopenia induced by radiotherapy is one of the most unfavorable prognostic biological markers in cancer patients, since it has been accepted to be associated with poor prognosis in terms of both survival time and response to cancer therapy. Therefore, reduction in lymphocytopenia may increase treatment efficiency. Research endeavors with synthetic radioprotectors in the past have met with little success primarily due to toxicity-related problems. These disadvantages have led to interest on the use of some plants and phytochemicals as radioprotector. The aim of this paper is to review protective role of some plants and phytochemicals against genotoxicity-induced by ionizing radiation in human blood lymphocytes. Therefore, current review may help the future researches to decrease lymphocytopenia in radiotherapeutic clinical trials.

  5. The ethics of human reproductive cloning.

    Science.gov (United States)

    Strong, Carson

    2005-03-01

    This article addresses the question of whether human reproductive cloning could be ethically justifiable in at least some cases involving infertile couples who would choose cloning as a way to have a genetically related child. At present, the risk of congenital anomalies constitutes a compelling argument against human reproductive cloning. The article explores whether reproductive cloning could be ethically justifiable if, at some future time, cloning becomes possible without an elevated risk of anomalies. It is argued that freedom to use cloning is a form of procreative freedom and, as such, deserves respect. All of the objections that have been raised against human reproductive cloning fall under three main categories: those that appeal to the interests of the child, those based on consequences for society, and those arising from teleological views. Objections that appeal to the child's interests are, in turn, of two main kinds: consequentialist and deontological. All of these types of objections are examined, and it is found that each involves serious problems that prevent it from being a reasonable objection in the context of the infertility cases considered. It is concluded that human reproductive cloning would be ethically justifiable in at least some cases involving infertile couples, provided that it could be performed without an elevated risk of anomalies.

  6. Carboxylated nanodiamonds are neither cytotoxic nor genotoxic on liver, kidney, intestine and lung human cell lines.

    Science.gov (United States)

    Paget, V; Sergent, J A; Grall, R; Altmeyer-Morel, S; Girard, H A; Petit, T; Gesset, C; Mermoux, M; Bergonzo, P; Arnault, J C; Chevillard, S

    2014-08-01

    Although nanodiamonds (NDs) appear as one of the most promising nanocarbon materials available so far for biomedical applications, their risk for human health remains unknown. Our work was aimed at defining the cytotoxicity and genotoxicity of two sets of commercial carboxylated NDs with diameters below 20 and 100 nm, on six human cell lines chosen as representative of potential target organs: HepG2 and Hep3B (liver), Caki-1 and Hek-293 (kidney), HT29 (intestine) and A549 (lung). Cytotoxicity of NDs was assessed by measuring cell impedance (xCELLigence® system) and cell survival/death by flow cytometry while genotoxicity was assessed by γ-H2Ax foci detection, which is considered the most sensitive technique for studying DNA double-strand breaks. To validate and check the sensitivity of the techniques, aminated polystyrene nanobeads were used as positive control in all assays. Cell incorporation of NDs was also studied by flow cytometry and luminescent N-V center photoluminescence (confirmed by Raman microscopy), to ensure that nanoparticles entered the cells. Overall, we show that NDs effectively entered the cells but NDs do not induce any significant cytotoxic or genotoxic effects on the six cell lines up to an exposure dose of 250 µg/mL. Taken together these results strongly support the huge potential of NDs for human nanomedicine but also their potential as negative control in nanotoxicology studies.

  7. Detection of genotoxic and non-genotoxic carcinogens in Xpc−/−p53+/− mice

    International Nuclear Information System (INIS)

    Melis, Joost P.M.; Speksnijder, Ewoud N.; Kuiper, Raoul V.; Salvatori, Daniela C.F.; Schaap, Mirjam M.; Maas, Saskia; Robinson, Joke; Verhoef, Aart; Benthem, Jan van; Luijten, Mirjam; Steeg, Harry van

    2013-01-01

    An accurate assessment of the carcinogenic potential of chemicals and pharmaceutical drugs is essential to protect humans and the environment. Therefore, substances are extensively tested before they are marketed to the public. Currently, the rodent two-year bioassay is still routinely used to assess the carcinogenic potential of substances. However, over time it has become clear that this assay yields false positive results and also has several economic and ethical drawbacks including the use of large numbers of animals, the long duration, and the high cost. The need for a suitable alternative assay is therefore high. Previously, we have proposed the Xpa*p53 mouse model as a very suitable alternative to the two-year bioassay. We now show that the Xpc*p53 mouse model preserves all the beneficial traits of the Xpa*p53 model for sub-chronic carcinogen identification and can identify both genotoxic and non-genotoxic carcinogens. Moreover, Xpc*p53 mice appear to be more responsive than Xpa*p53 mice towards several genotoxic and non-genotoxic carcinogens. Furthermore, Xpc*p53 mice are far less sensitive than Xpa*p53 mice for the toxic activity of DNA damaging agents and as such clearly respond in a similar way as wild type mice do. These advantageous traits of the Xpc*p53 model make it a better alternative for in vivo carcinogen testing than Xpa*p53. This pilot study suggests that Xpc*p53 mice are suited for routine sub-chronic testing of both genotoxic and non-genotoxic carcinogens and as such represent a suitable alternative to possibly replace the murine life time cancer bioassay. Highlights: ► The Xpc*p53 mouse model is able to identify genotoxic and non-genotoxic carcinogens. ► Time, animals and cost can be significantly reduced compared to the 2-year bioassay. ► Xpc*p53 mice are more advantageous for carcinogen identification than Xpa*p53 mice. ► Xpc*p53 mice exhibit a wild type response upon exposure to genotoxicants.

  8. NTP-CERHR monograph on the potential human reproductive and developmental effects of hydroxyurea.

    Science.gov (United States)

    2008-10-01

    The National Toxicology Program (NTP) Center for the Evaluation of Risks to Human Reproduction (CERHR) conducted an evaluation of the potential for hydroxyurea to cause adverse effects on reproduction and development in humans. Hydroxyurea is a drug used to treat cancer, sickle cell disease, and thalassemia. It is the only treatment for sickle cell disease in children, aside from blood transfusion and, in severe cases, hematopoietic stem cell transplantation. Hydroxyurea is FDA-approved for use in adults with sickle cell anemia to reduce the frequency of painful crises and the need for blood transfusions. Hydroxyurea may be given to children and adults with sickle cell disease for an extended period of time or for repeated cycles of therapy. Treatment with hydroxyurea is associated with known side effects such as cytotoxicity and myelosuppression, and hydroxyurea is genotoxic (can damage DNA). CERHR selected hydroxyurea for evaluation because of: its increasing use for treatment of sickle cell disease in children and adults, knowledge that it inhibits DNA synthesis and is cytotoxic, and published evidence of reproductive and developmental toxicity in rodents. The results of this evaluation are published in the NTP-CERHR Monograph on Hydroxyurea, which includes the NTP Brief and Expert Panel Report on the Reproductive and Developmental Toxicity of Hydroxyurea. Additional information related to the evaluation process, including public comments received on the draft NTP Brief and the final expert panel report, are available on the CERHR website (http:// cerhr.niehs.nih.gov/). See hydroxyurea under "CERHR Chemicals" on the homepage or go directly to http://cerhr.niehs.nih.gov/chemicals/hydroxyurea/hydroxyurea-eval.html). The NTP reached the following conclusions on the possible effects of exposure to hydroxyurea on human reproduction or development. The possible levels of concern, from lowest to highest, are negligible concern, minimal concern, some concern, concern

  9. Genotoxicity and ELF-magnetic fields: a review through the micronucleus assay

    International Nuclear Information System (INIS)

    Alcaraz, M.; Andreu-Galvez, M.; Sanchez-Villalobos, J. M.; Achel, D. G.; Olmos, E.; Martinez-Hernandez, C. M.

    2012-01-01

    Thirty for (34) published studies, conducted from 1994 to the present to evaluate the genotoxic effect of magnetic fields using ELF-EMF and diagnostic resonance on humans by the micronucleus assay have been reviewed. some characteristics of the assay methods, their significance to genotoxicity and basic interpretations of the results of these assays are discussed. of the studies analysed 70.5% implicated genotoxic effects induced by these magnetic fields: 52.9% were due to exposure to magnetic fields only and 17,6% by exposure to magnetic fields in combination with some treatment types, resulting in additive or synergistic effect. Evidence exist to support the notion that exposure of humans to magnetic fields stimulates genotoxic effects, although the actual mechanisms of action or even the true human health consequences resulting from these exposure still remain unclear. (Author) 80 refs.

  10. Does the recommended lymphocyte cytokinesis-block micronucleus assay for human biomonitoring actually detect DNA damage induced by occupational and environmental exposure to genotoxic chemicals?

    Science.gov (United States)

    Speit, Günter

    2013-07-01

    This commentary challenges the paradigm that the cytokinesis-block micronucleus assay (CBMN assay) with cultured human lymphocytes, as it is performed currently, is a sensitive and useful tool for detecting genotoxic effects in populations exposed occupationally or environmentally to genotoxic chemicals. Based on the principle of the assay and the available data, increased micronucleus (MN) frequencies in binucleated cells (BNC) are mainly due to MN produced in vitro during the cultivation period (i.e. MN produced in vivo do not substantially contribute to the MN frequency measured in BNC). The sensitivity of the assay for the detection of induced MN in BNC after an in vivo exposure to a genotoxic chemical is limited because cytochalasin B (Cyt-B) is added relatively late during the culture period and, therefore, the BNC that are scored do not always represent cells that have completed one cell cycle only. Furthermore, this delay means that damaged cells can be eliminated by apoptosis and/or that DNA damage induced in vivo can be repaired prior to the production of a MN in the presence of Cyt-B. A comparison with the in vitro CBMN assay used for genotoxicity testing leads to the conclusion that it is highly unlikely that DNA damage induced in vivo is the cause for increased MN frequencies in BNC after occupational or environmental exposure to genotoxic chemicals. This commentary casts doubt on the usefulness of the CBMN assay as an indicator of genotoxicity in human biomonitoring and questions the relevance of many published data for hazard identification and risk assessment. Thus, it seems worthwhile to reconsider the use of the CBMN assay as presently conducted for the detection of genotoxic exposure in human biomonitoring.

  11. Genotoxicity assessment of membrane concentrates of landfill leachate treated with Fenton reagent and UV-Fenton reagent using human hepatoma cell line

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Guifang [Department of Chemistry, Jinan University, Guangzhou 510632 (China); Lu, Gang [Key Laboratory of Water/Soil Toxic Pollutants Control and Bioremediation of Guangdong Higher Education Institutes, Department of Environmental Engineering, Jinan University, Guangzhou 510632 (China); Yin, Pinghe, E-mail: tyinph@jnu.edu.cn [Research Center of Analysis and Test, Jinan University, Guangzhou 510632 (China); Zhao, Ling, E-mail: zhaoling@jnu.edu.cn [Key Laboratory of Water/Soil Toxic Pollutants Control and Bioremediation of Guangdong Higher Education Institutes, Department of Environmental Engineering, Jinan University, Guangzhou 510632 (China); Jimmy Yu, Qiming [Griffith School of Engineering, Griffith University, Nathan Campus, Brisbane, Queensland 4111 (Australia)

    2016-04-15

    Highlights: • Membrane concentrates have a threat to human health and environment. • Untreated membrane concentrates induces cytotoxic and genotoxic to HepG2 cells. • Both methods were effective method for degradation of BPA and NP in concentrates. • Both methods were efficient in reducing genotoxic effects of concentrates. • UV-Fenton reagent had higher removal efficiency and provides toxicological safety. - Abstract: Membrane concentrates of landfill leachates contain organic and inorganic contaminants that could be highly toxic and carcinogenic. In this paper, the genotoxicity of membrane concentrates before and after Fenton and UV-Fenton reagent was assessed. The cytotoxicity and genotoxicity was determined by using the methods of methyltetrazolium (MTT), cytokinesis-block micronucleus (CBMN) and comet assay in human hepatoma cells. MTT assay showed a cytotoxicity of 75% after 24 h of exposure to the highest tested concentration of untreated concentrates, and no cytotoxocity for UV-Fenton and Fenton treated concentrates. Both CBMN and comet assays showed increased levels of genotoxicity in cells exposed to untreated concentrates, compared to those occurred in cells exposed to UV-Fenton and Fenton reagent treated concentrates. There was no significant difference between negative control and UV-Fenton treated concentrates for micronucleus and comet assay parameters. UV-Fenton and Fenton treatment, especially the former, were effective methods for degradation of bisphenol A and nonylphenol in concentrates. These findings showed UV-Fenton and Fenton reaction were effective methods for treatment of such complex concentrates, UV-Fenton reagent provided toxicological safety of the treated effluent, and the genotoxicity assays were found to be feasible tools for assessment of toxicity risks of complex concentrates.

  12. Genotoxicity assessment of membrane concentrates of landfill leachate treated with Fenton reagent and UV-Fenton reagent using human hepatoma cell line

    International Nuclear Information System (INIS)

    Wang, Guifang; Lu, Gang; Yin, Pinghe; Zhao, Ling; Jimmy Yu, Qiming

    2016-01-01

    Highlights: • Membrane concentrates have a threat to human health and environment. • Untreated membrane concentrates induces cytotoxic and genotoxic to HepG2 cells. • Both methods were effective method for degradation of BPA and NP in concentrates. • Both methods were efficient in reducing genotoxic effects of concentrates. • UV-Fenton reagent had higher removal efficiency and provides toxicological safety. - Abstract: Membrane concentrates of landfill leachates contain organic and inorganic contaminants that could be highly toxic and carcinogenic. In this paper, the genotoxicity of membrane concentrates before and after Fenton and UV-Fenton reagent was assessed. The cytotoxicity and genotoxicity was determined by using the methods of methyltetrazolium (MTT), cytokinesis-block micronucleus (CBMN) and comet assay in human hepatoma cells. MTT assay showed a cytotoxicity of 75% after 24 h of exposure to the highest tested concentration of untreated concentrates, and no cytotoxocity for UV-Fenton and Fenton treated concentrates. Both CBMN and comet assays showed increased levels of genotoxicity in cells exposed to untreated concentrates, compared to those occurred in cells exposed to UV-Fenton and Fenton reagent treated concentrates. There was no significant difference between negative control and UV-Fenton treated concentrates for micronucleus and comet assay parameters. UV-Fenton and Fenton treatment, especially the former, were effective methods for degradation of bisphenol A and nonylphenol in concentrates. These findings showed UV-Fenton and Fenton reaction were effective methods for treatment of such complex concentrates, UV-Fenton reagent provided toxicological safety of the treated effluent, and the genotoxicity assays were found to be feasible tools for assessment of toxicity risks of complex concentrates.

  13. Impact of isomalathion on malathion cytotoxicity and genotoxicity in human HepaRG cells.

    OpenAIRE

    Josse , Rozenn; Sharanek , Ahmad; Savary , Camille C; Guillouzo , André

    2014-01-01

    International audience; Isomalathion is a major impurity of technical grade malathion, one of the most abundantly applied insecticides; however little is known about its hepatotoxicity. In the present study, cytotoxicity and genotoxicity of malathion and isomalathion either individually or in combination, were assessed using the metabolically competent human liver HepaRG cell line. Isomalathion reduced cell viability starting at a 100 μM concentration after a 24h exposure. It also significant...

  14. Human reproductive cloning and reasons for deprivation.

    Science.gov (United States)

    Jensen, D A

    2008-08-01

    Human reproductive cloning provides the possibility of genetically related children for persons for whom present technologies are ineffective. I argue that the desire for genetically related children is not, by itself, a sufficient reason to engage in human reproductive cloning. I show this by arguing that the value underlying the desire for genetically related children implies a tension between the parent and the future child. This tension stems from an instance of a deprivation and violates a general principle of reasons for deprivation. Alternative considerations, such as a right to procreative autonomy, do not appear helpful in making the case for human reproductive cloning merely on the basis of the desire for genetically related children.

  15. 2-Dodecylcyclobutanone, a radiolytic product of palmitic acid, is genotoxic in primary human colon cells and in cells from preneoplastic lesions

    International Nuclear Information System (INIS)

    Knoll, Nadine; Weise, Anja; Claussen, Uwe; Sendt, Wolfgang; Marian, Brigitte; Glei, Michael; Pool-Zobel, Beatrice L.

    2006-01-01

    The irradiation of fat results in the formation of 2-alkylcyclobutanones, a new class of food contaminants. Results of previous in vitro studies with primary human colon cells and in vivo experiments with rats fed with 2-alkylcyclobutanones indicated that these radiolytic derivatives may be genotoxic and enhance the progression of colon tumors. The underlying mechanisms of these effects, however, are not clearly understood. Therefore we performed additional investigations to elucidate the genotoxic potential of 2-dodecylcyclobutanone (2dDCB) that is generated from palmitic acid. In particular, we explored the relative sensitivities of human colon cells, representing different stages of tumor development and healthy colon tissues, respectively. HT29clone19A cells, LT97 adenoma cells and primary human epithelial cells were exposed to 2dDCB (150-2097 μM). We determined cytotoxic effects using trypan blue exclusion. Genotoxicity, reflected as strand breaks, was assessed using the alkaline version of the comet assay and chromosomal abnormalities were investigated by 24-color fluorescence-in-situ-hybridization. 2dDCB was cytotoxic in a time- and dose-dependent manner in LT97 adenoma cells and in freshly isolated primary cells but not in the human colon tumor cell line. Associated with this was a marked induction of DNA damage by 2dDCB in LT97 adenoma cells and in freshly isolated colonocytes, whereas in the HT29clone19A cells no strand breaks were detectable. A long-term incubation of LT97 adenoma cells with lower concentrations of 2dDCB revealed cytogenetic effects. In summary, 2dDCB was clearly genotoxic in healthy human colon epithelial cells and in cells representing preneoplastic colon adenoma. These findings provide additional evidence that this compound may be regarded as a possible risk factor for processes in colon carcinogenesis related to initiation and progression

  16. A novel genotoxic aspect of thiabendazole as a photomutagen in bacteria and cultured human cells.

    Science.gov (United States)

    Watanabe-Akanuma, Mie; Ohta, Toshihiro; Sasaki, Yu F

    2005-09-15

    Thiabendazole (TBZ) is a post-harvest fungicide commonly used on imported citrus fruits. We recently found that TBZ showed photomutagenicity with UVA-irradiation in the Ames test using plate incorporation method. In the present study, potential of DNA-damaging activity, mutagenicity, and clastogenicity were investigated by short pulse treatment for 10 min with TBZ (50-400 microg/ml) and UVA-irradiation (320-400 nm, 250 microW/cm2) in bacterial and human cells. UVA-irradiated TBZ caused DNA damage in Escherichia coli and human lymphoblastoid WTK1 cells assayed, respectively, by the umu-test and the single cell gel electrophoresis (comet) assay. In a modified Ames test using Salmonella typhimurium and E. coli, strong induction of -1 frameshift mutations as well as base-substitution mutations were detected. TBZ at 50-100 microg/ml with UVA-irradiation significantly induced micronuclei in WTK1 cells in the in vitro cytochalasin-B micronucleus assay. Pulse treatment for 10 min with TBZ alone did not show any genotoxicity. Although TBZ is a spindle poison that induces aneuploidy, we hypothesize that the photogenotoxicity of TBZ in the present study was produced by a different mechanism, probably by DNA adduct formation. We concluded that UVA-activated TBZ is genotoxic in bacterial and human cells in vitro.

  17. Mutagenicity and genotoxicity of coal fly ash water leachate.

    Science.gov (United States)

    Chakraborty, Rajarshi; Mukherjee, Anita

    2009-03-01

    Fly ash is a by-product of coal-fired electricity generation plants. The prevalent practice of disposal is as slurry of ash and water to storage or ash ponds located near power stations. This has lain to waste thousands of hectares of land all over the world. Since leaching is often the cause of off-site contamination and pathway of introduction into the human environment, a study on the genotoxic effects of fly ash leachate is essential. Leachate prepared from the fly ash sample was analyzed for metal content, and tested for mutagenicity and genotoxicity. Analyses of metals show predominance of the metals-sodium, silicon, potassium, calcium, magnesium, iron, manganese, zinc, and sulphate. The Ames Salmonella mutagenicity assay, a short-term bacterial reverse mutation assay, was conducted on two-tester strains of Salmonella typhimurium strains TA97a and TA102. For genotoxicity, the alkaline version of comet assay on fly ash leachate was carried in vitro on human blood cells and in vivo on Nicotiana plants. The leachate was directly mutagenic and induced significant (Ppercentage (%), tail length (mum), and olive tail moment (arbitrary units). Our results indicate that leachate from fly ash dumpsites has the genotoxic potential and may lead to adverse effects on vegetation and on the health of exposed human populations.

  18. Xylo-oligosaccharides and inulin affect genotoxicity and bacterial populations differently in a human colonic simulator challenged with soy protein

    DEFF Research Database (Denmark)

    Christophersen, C. T.; Petersen, Anne; Licht, Tine Rask

    2013-01-01

    High dietary intakes of some protein sources, including soy protein, can increase colonic DNA damage in animals, whereas some carbohydrates attenuate this. We investigated whether inulin and xylo-oligosaccharides (XOS) could be protective against DNA strand breaks by adding them to a human colonic...... cornstarch for 10 day followed by soy protein with 1% XOS or 1% inulin for 10 day. Inulin did not alter genotoxicity but XOS significantly reduced PV genotoxicity and increased DV genotoxicity. Inulin and XOS significantly increased butyrate concentration in the DV but not PV. Numbers of the key butyrate......-producing bacterium Faecalibacterium prausnitzii were significantly increased in the PV and DV by inulin but significantly decreased by XOS in both vessels. Other bacteria examined were also significantly impacted by the carbohydrate treatments or by the vessel (i.e., pH). There was a significant overall inverse...

  19. Human reproductive cloning: a conflict of liberties.

    Science.gov (United States)

    Havstad, Joyce C

    2010-02-01

    Proponents of human reproductive cloning do not dispute that cloning may lead to violations of clones' right to self-determination, or that these violations could cause psychological harms. But they proceed with their endorsement of human reproductive cloning by dismissing these psychological harms, mainly in two ways. The first tactic is to point out that to commit the genetic fallacy is indeed a mistake; the second is to invoke Parfit's non-identity problem. The argument of this paper is that neither approach succeeds in removing our moral responsibility to consider and to prevent psychological harms to cloned individuals. In fact, the same commitment to personal liberty that generates the right to reproduce by means of cloning also creates the need to limit that right appropriately. Discussion of human reproductive cloning ought to involve a careful and balanced consideration of both the relevant aspects of personal liberty - the parents' right to reproductive freedom and the cloned child's right to self-determination.

  20. Time-Dependent Toxic and Genotoxic Effects of Zinc Oxide Nanoparticles after Long-Term and Repetitive Exposure to Human Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Pascal Ickrath

    2017-12-01

    Full Text Available Zinc oxide nanoparticles (ZnO-NP are widely spread in consumer products. Data about the toxicological characteristics of ZnO-NP is still under controversial discussion. The human skin is the most important organ concerning ZnO-NP exposure. Intact skin was demonstrated to be a sufficient barrier against NPs; however, defect skin may allow NP contact to proliferating cells. Within these cells, stem cells are the most important toxicological target for NPs. The aim of this study was to evaluate the genotoxic and cytotoxic effects of ZnO-NP at low-dose concentrations after long-term and repetitive exposure to human mesenchymal stem cells (hMSC. Cytotoxic effects of ZnO-NP were measured by the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyl tetrazolium bromide (MTT assay. Furthermore, genotoxicity was evaluated by the comet assay. For long-term observation over 6 weeks, transmission electron microscopy (TEM was applied. The results of the study indicated cytotoxic effects of ZnO-NP beginning at high concentrations of 50 μg/mL and genotoxic effects in hMSC exposed to 1 and 10 μg/mL ZnO-NP. Repetitive exposure enhanced cyto- but not genotoxicity. Intracellular NP accumulation was observed up to 6 weeks. The results suggest cytotoxic and genotoxic potential of ZnO-NP. Even low doses of ZnO-NP may induce toxic effects as a result of repetitive exposure and long-term cellular accumulation. This data should be considered before using ZnO-NP on damaged skin.

  1. New nanostructural biomaterials based on active silicate systems and hydroxyapatite: characterization and genotoxicity in human peripheral blood lymphocytes.

    Science.gov (United States)

    Opačić-Galić, V; Petrović, V; Zivković, S; Jokanović, V; Nikolić, B; Knežević-Vukčević, J; Mitić-Ćulafić, D

    2013-06-01

    To characterize and investigate the genotoxic effect of a new endodontic cement based on dicalcium- and tricalcium-silicate (CS) with hydroxyapatite (HA) on human lymphocytes. Hydrothermal treatment was applied for synthesis of CS and HA. The final mixture HA-CS, with potential to be used in endodontic practice, is composed of CS (34%) and HA (66%). Human lymphocytes were incubated with HA, HA-CS and CS for 1 h, at 37 °C and 5% CO2. Cell viability was determined using the trypan blue exclusion assay. To evaluate the level of DNA damage comet assay (single cell gel electrophoresis) was performed. For the statistical analysis anova and Duncan's Post Hoc Test were used. The SEM analysis indicated that CS consisted mostly of agglomerates of several micrometers in size, built up from smaller particles, with dimensions between 117 and 477 nm. This is promising because dimensions of agglomerates are not comparable with channels inside the cell membranes, whereas their nano-elements provide evident activity, important for faster setting of these mixtures compared to MTA. Values of DNA damage obtained in the comet assay indicated low genotoxic risk of the new endodontic materials. The significantly improved setting characteristics and low genotoxic risk of the new material support further research. © 2012 International Endodontic Journal.

  2. METABOLISM, GENOTOXICITY, AND CARCINOGENICITY OF COMFREY

    Science.gov (United States)

    Mei, Nan; Guo, Lei; Fu, Peter P.; Fuscoe, James C.; Luan, Yang; Chen, Tao

    2018-01-01

    Comfrey has been consumed by humans as a vegetable and a tea and used as an herbal medicine for more than 2000 years. Comfrey, however, produces hepatotoxicity in livestock and humans and carcinogenicity in experimental animals. Comfrey contains as many as 14 pyrrolizidine alkaloids (PA), including 7-acetylintermedine, 7-acetyllycopsamine, echimidine, intermedine, lasiocarpine, lycopsamine, myoscorpine, symlandine, symphytine, and symviridine. The mechanisms underlying comfrey-induced genotoxicity and carcinogenicity are still not fully understood. The available evidence suggests that the active metabolites of PA in comfrey interact with DNA in liver endothelial cells and hepatocytes, resulting in DNA damage, mutation induction, and cancer development. Genotoxicities attributed to comfrey and riddelliine (a representative genotoxic PA and a proven rodent mutagen and carcinogen) are discussed in this review. Both of these compounds induced similar profiles of 6,7-dihydro-7-hydroxy-1-hydroxymethyl-5H-pyrrolizine (DHP)-derived DNA adducts and similar mutation spectra. Further, the two agents share common mechanisms of drug metabolism and carcinogenesis. Overall, comfrey is mutagenic in liver, and PA contained in comfrey appear to be responsible for comfrey-induced toxicity and tumor induction. PMID:21170807

  3. Metabolism, genotoxicity, and carcinogenicity of comfrey.

    Science.gov (United States)

    Mei, Nan; Guo, Lei; Fu, Peter P; Fuscoe, James C; Luan, Yang; Chen, Tao

    2010-10-01

    Comfrey has been consumed by humans as a vegetable and a tea and used as an herbal medicine for more than 2000 years. Comfrey, however, produces hepatotoxicity in livestock and humans and carcinogenicity in experimental animals. Comfrey contains as many as 14 pyrrolizidine alkaloids (PA), including 7-acetylintermedine, 7-acetyllycopsamine, echimidine, intermedine, lasiocarpine, lycopsamine, myoscorpine, symlandine, symphytine, and symviridine. The mechanisms underlying comfrey-induced genotoxicity and carcinogenicity are still not fully understood. The available evidence suggests that the active metabolites of PA in comfrey interact with DNA in liver endothelial cells and hepatocytes, resulting in DNA damage, mutation induction, and cancer development. Genotoxicities attributed to comfrey and riddelliine (a representative genotoxic PA and a proven rodent mutagen and carcinogen) are discussed in this review. Both of these compounds induced similar profiles of 6,7-dihydro-7-hydroxy-1-hydroxymethyl-5H-pyrrolizine (DHP)-derived DNA adducts and similar mutation spectra. Further, the two agents share common mechanisms of drug metabolism and carcinogenesis. Overall, comfrey is mutagenic in liver, and PA contained in comfrey appear to be responsible for comfrey-induced toxicity and tumor induction.

  4. Race, genetics, and human reproductive strategies.

    Science.gov (United States)

    Rushton, J P

    1996-02-01

    The international literature on racial differences is reviewed, novel data are reported, and a distinct pattern is found. People of east Asian ancestry and people of African ancestry average at opposite ends of a continuum, with people of European ancestry averaging intermediately, albeit with much variability within each major race. The racial matrix emerges from measures taken of reproductive behavior, sex hormones, twinning rate, speed of physical maturation, personality, family stability, brain size, intelligence, law abidingness, and social organization. An evolutionary theory of human reproduction is proposed, familiar to biologists as the r-K scale of reproductive strategies. At one end of this scale are r-strategies, which emphasize high reproductive rates; at the other end are K-strategies, which emphasize high levels of parental investment. This scale is generally used to compare the life histories of widely disparate species, but here it is used to describe the immensely smaller variations among human races. It is hypothesized that, again on average, Mongoloid people are more K-selected than Caucasoids, who are more K-selected than Negroids. The r-K scale of reproductive strategies is also mapped on to human evolution. Genetic distances indicate that Africans emerged from the ancestral hominid line about 200,000 years ago, with an African/non-African split about 110,000 years ago, and a Caucasoid/Mongoloid split about 41,000 years ago. Such an ordering fits with and explains how and why the variables cluster.

  5. Genotoxic effects of N-nitrosodimethylamine in somatic and generative cells of mice

    Directory of Open Access Journals (Sweden)

    Anna V. Lovinskaya

    2017-10-01

    Full Text Available N-Nitrosodimethylamine (NDMA was shown to have genotoxic properties in acute and subacute studies on laboratory mice. The organ-specificity of the genotoxic effect of NDMA was revealed using the Comet assay. The most sensitive organs to the action of NDMA were kidneys and liver. DNA damage in liver cells of NDMA-treated animals at doses of 4.0 and 8.0 mg/kg, increased compared to control in 6.9 and 12.5 (р < 0.001, and in kidney cells – in 8.1 and 14.2 times (р < 0.001, respectively. NDMA also showed genotoxic activity in the reproductive cells of experimental animals, causing structural disorders of synaptonemal complexes in spermatocyte. In NDMA-treated animals at a dose of 2.0 mg/kg in acute and subacute studies, the level of spermatocytes with damaged synaptonemal complexes increased statistically significantly compared to control in 6.0 and 7.0 (р < 0.05 times, respectively.

  6. Evaluation of radiation-induced genotoxicity on human melanoma cells (SK-MEL-37) by flow cytometry

    International Nuclear Information System (INIS)

    Bonfim, Leticia; Carvalho, Luma Ramirez de; Vieira, Daniel Perez

    2017-01-01

    Micronucleus assay is a test used to evaluate genotoxic damage in cells, which can be caused by various factors, like ionizing radiation. Interactions between radiation energies and DNA can cause breakage, leading to use chromosomal mutations or loss of genetic material, important events that could be induced in solid tumors to mitigate its expansion within human body. Melanoma has been described as a tumor with increased radio resistance. This work evaluated micronuclei percentages (%MN) in human melanoma cells (SK-MEL-37), irradiated by gamma radiation, with doses between 0 and 16Gy. Cell suspensions were irradiated in PBS by a "6"0Co source in doses between 0 and 16Gy, and incubated by 48h. Then cell membranes were lysed in the presence of SYTOX Green and EMA dyes, preserving nuclear membranes. Using this method, EMA-stained nuclei could be discriminated as those derived from dead cells, and SYTOX nuclei and micronuclei could be quantified. Micronuclei percentages were found to be proportional to dose, (R2 = 0.997). Only the highest dose (16Gy) could induce statistically significant increase of MN (p<0.0001), although cultures irradiated by 4, 8 and 16Gy showed significant increase of dead cell fractions. Calculation of the nuclei-to-beads ratio showed that 8 and 16Gy could reduce melanoma cell proliferation. Results showed that although cell death and loss of proliferative capacity could be observed on cultures irradiated at lower doses, genotoxic damage could be induced only on a higher dose. Resistance to radiation-induced genotoxicity could explain a relatively high radio resistance of melanoma tumors. (author)

  7. Evaluation of radiation-induced genotoxicity on human melanoma cells (SK-MEL-37) by flow cytometry

    Energy Technology Data Exchange (ETDEWEB)

    Bonfim, Leticia; Carvalho, Luma Ramirez de; Vieira, Daniel Perez, E-mail: leticia.bonfim@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2017-11-01

    Micronucleus assay is a test used to evaluate genotoxic damage in cells, which can be caused by various factors, like ionizing radiation. Interactions between radiation energies and DNA can cause breakage, leading to use chromosomal mutations or loss of genetic material, important events that could be induced in solid tumors to mitigate its expansion within human body. Melanoma has been described as a tumor with increased radio resistance. This work evaluated micronuclei percentages (%MN) in human melanoma cells (SK-MEL-37), irradiated by gamma radiation, with doses between 0 and 16Gy. Cell suspensions were irradiated in PBS by a {sup 60}Co source in doses between 0 and 16Gy, and incubated by 48h. Then cell membranes were lysed in the presence of SYTOX Green and EMA dyes, preserving nuclear membranes. Using this method, EMA-stained nuclei could be discriminated as those derived from dead cells, and SYTOX nuclei and micronuclei could be quantified. Micronuclei percentages were found to be proportional to dose, (R2 = 0.997). Only the highest dose (16Gy) could induce statistically significant increase of MN (p<0.0001), although cultures irradiated by 4, 8 and 16Gy showed significant increase of dead cell fractions. Calculation of the nuclei-to-beads ratio showed that 8 and 16Gy could reduce melanoma cell proliferation. Results showed that although cell death and loss of proliferative capacity could be observed on cultures irradiated at lower doses, genotoxic damage could be induced only on a higher dose. Resistance to radiation-induced genotoxicity could explain a relatively high radio resistance of melanoma tumors. (author)

  8. Nanoceria have no genotoxic effect on human lens epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Pierscionek, Barbara K; Yasseen, Akeel A [School of Biomedical Sciences, University of Ulster, Coleraine, BT52 1SA (United Kingdom); Li, Yuebin; Schachar, Ronald A; Chen, Wei [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States); Colhoun, Liza M, E-mail: b.pierscionek@ulster.ac.uk, E-mail: weichen@uta.edu [Centre for Vision and Vascular Sciences, School of Medicine, Dentistry and Biomedical Sciences, Queen' s University Belfast, Grosvenor Road, Belfast, BT12 6BA (United Kingdom)

    2010-01-22

    There are no treatments for reversing or halting cataract, a disease of the structural proteins in the eye lens, that has associations with other age-related degenerative conditions such as Alzheimer's disease. The incidence of cataract and associated conditions is increasing as the average age of the population rises. Protein folding diseases are difficult to assess in vivo as proteins and their age-related changes are assessed after extraction. Nanotechnology can be used to investigate protein changes in the intact lens as well as for a potential means of drug delivery. Nanoparticles, such as cerium oxide (CeO{sub 2}) which have antioxidant properties, may even be used as a means of treating cataract directly. Prior to use in treatments, nanoparticle genotoxicity must be tested to assess the extent of any DNA or chromosomal damage. Sister chromatid exchanges were measured and DNA damage investigated using the alkaline COMET assay on cultured human lens epithelial cells, exposed to 5 and 10 {mu}g ml{sup -1} of CeO{sub 2} nanoparticles (nanoceria). Nanoceria at these dosages did not cause any DNA damage or significant increases in the number of sister chromatid exchanges. The absence of genotoxic effects on lens cells suggests that nanoceria, in the doses and exposures tested in this study, are not deleterious to the eye lens and have the potential for use in studying structural alterations, in developing non-surgical cataract treatments and in investigating other protein folding diseases.

  9. Reliability of plant root comet assay in comparison with human leukocyte comet assay for assessment environmental genotoxic agents.

    Science.gov (United States)

    Reis, Gabriela Barreto Dos; Andrade-Vieira, Larissa Fonseca; Moraes, Isabella de Campos; César, Pedro Henrique Souza; Marcussi, Silvana; Davide, Lisete Chamma

    2017-08-01

    Comet assay is an efficient test to detect genotoxic compounds based on observation of DNA damage. The aim of this work was to compare the results obtained from the comet assay in two different type of cells extracted from the root tips from Lactuca sativa L. and human blood. For this, Spent Pot Liner (SPL), and its components (aluminum and fluoride) were applied as toxic agents. SPL is a solid waste generated in industry from the aluminum mining and processing with known toxicity. Three concentrations of all tested solutions were applied and the damages observed were compared to negative and positive controls. It was observed an increase in the frequency of DNA damage for human leukocytes and plant cells, in all treatments. On human leukocytes, SPL induced the highest percentage of damage, with an average of 87.68%. For root tips cells of L. sativa the highest percentage of damage was detected for aluminum (93.89%). Considering the arbitrary units (AU), the average of nuclei with high levels of DNA fragmentation was significant for both cells type evaluated. The tested cells demonstrated equal effectiveness for detection of the genotoxicity induced by the SPL and its chemical components, aluminum and fluoride. Further, using a unique method, the comet assay, we proved that cells from root tips of Lactuca sativa represent a reliable model to detect DNA damage induced by genotoxic pollutants is in agreement of those observed in human leukocytes as model. So far, plant cells may be suggested as important system to assess the toxicological risk of environmental agents. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Epigenetic alterations induced by genotoxic occupational and environmental human chemical carcinogens: A systematic literature review

    Science.gov (United States)

    Chappell, Grace; Pogribny, Igor P.; Guyton, Kathryn Z.; Rusyn, Ivan

    2016-01-01

    Accumulating evidence suggests that epigenetic alterations play an important role in chemically-induced carcinogenesis. Although the epigenome and genome may be equally important in carcinogenicity, the genotoxicity of chemical agents and exposure-related transcriptomic responses have been more thoroughly studied and characterized. To better understand the evidence for epigenetic alterations of human carcinogens, and the potential association with genotoxic endpoints, we conducted a systematic review of published studies of genotoxic carcinogens that reported epigenetic endpoints. Specifically, we searched for publications reporting epigenetic effects for the 28 agents and occupations included in Monograph Volume 100F of the International Agency for the Research on Cancer (IARC) that were classified as “carcinogenic to humans” (Group 1) with strong evidence of genotoxic mechanisms of carcinogenesis. We identified a total of 158 studies that evaluated epigenetic alterations for 12 of these 28 carcinogenic agents and occupations (1,3-butadiene, 4-aminobiphenyl, aflatoxins, benzene, benzidine, benzo[a]pyrene, coke production, formaldehyde, occupational exposure as a painter, sulfur mustard, and vinyl chloride). Aberrant DNA methylation was most commonly studied, followed by altered expression of non-coding RNAs and histone changes (totaling 85, 59 and 25 studies, respectively). For 3 carcinogens (aflatoxins, benzene and benzo[a]pyrene), 10 or more studies reported epigenetic effects. However, epigenetic studies were sparse for the remaining 9 carcinogens; for 4 agents, only 1 or 2 published reports were identified. While further research is needed to better identify carcinogenesis-associated epigenetic perturbations for many potential carcinogens, published reports on specific epigenetic endpoints can be systematically identified and increasingly incorporated in cancer hazard assessments. PMID:27234561

  11. Genotoxic effects of vinclozolin on the aquatic insect Chironomus riparius (Diptera, Chironomidae).

    Science.gov (United States)

    Aquilino, Mónica; Sánchez-Argüello, Paloma; Martínez-Guitarte, José-Luis

    2018-01-01

    Vinclozolin (Vz) is a pollutant found in aquatic environments whose antiandrogenic effects in reproduction are well known in mammals. Although its reproductive effects have been less studied in invertebrates, other effects, including genotoxicity, have been described. Therefore, in this work, we studied the genotoxic effects of Vz in the freshwater benthic invertebrate Chironomus riparius. DNA damage was evaluated with the comet assay (tail area, olive moment, tail moment and % DNA in tail), and the transcriptional levels of different genes involved in DNA repair (ATM, NLK and XRCC1) and apoptosis (DECAY) were measured by RT-PCR. Fourth instar larvae of C. riparius, were exposed to Vz for 24 h at 20 and 200 μg/L. The Vz exposures affected the DNA integrity in this organism, since a dose-response relationship occurred, with DNA strand breaks significantly increased with increased dose for tail area, olive moment and tail moment parameters. Additionally, the lower concentration of Vz produced a significant induction of the transcripts of three genes under study (ATM, NLK and XRCC1) showing the activation of the cellular repair mechanism. In contrast, the expression of these genes with the highest concentration were downregulated, indicating failure of the cellular repair mechanism, which would explain the higher DNA damage. These data report for the first time the alterations of Vz on gene transcription of an insect and confirm the potential genotoxicity of this compound on freshwater invertebrates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Evaluation of Genotoxic and Cytotoxic Effects in Human Peripheral Blood Lymphocytes Exposed In Vitro to Neonicotinoid Insecticides News

    Directory of Open Access Journals (Sweden)

    María Elena Calderón-Segura

    2012-01-01

    Full Text Available Calypso (thiacloprid, Poncho (clothianidin, Gaucho (imidacloprid, and Jade (imidacloprid are commercial neonicotinoid insecticides, a new class of agrochemicals in México. However, genotoxic and cytotoxic studies have not been performed. In the present study, human peripheral blood lymphocytes (PBL were exposed in vitro to different concentrations of the four insecticides. The genotoxic and cytotoxic effects were evaluated using the alkaline comet and trypan blue dye exclusion assays. DNA damage was evaluated using two genotoxicity parameters: tail length and comet frequency. Exposure to 9.5×10-6 to 5.7×10-5 M Jade; 2.8×10-4 to 1.7×10-3 M Gaucho; 0.6×10-1 to 1.4×10-1 M Calypso; 1.2×10-1 to 9.5×10-1 M Poncho for 2 h induced a significant increase DNA damage with a concentration-dependent relationship. Jade was the most genotoxic of the four insecticides studied. Cytotoxicity was observed in cells exposed to 18×10-3 M Jade, 2.0×10-3 M Gaucho, 2.0×10-1 M Calypso, 1.07 M Poncho, and cell death occurred at 30×10-3 M Jade, 3.3×10-3 M Gaucho, 2.8×10-1 M Calypso, and 1.42 M Poncho. This study provides the first report of genotoxic and cytotoxic effects in PBL following in vitro exposure to commercial neonicotinoid insecticides.

  13. Creating a monomeric endonuclease TALE-I-SceI with high specificity and low genotoxicity in human cells.

    Science.gov (United States)

    Lin, Jianfei; Chen, He; Luo, Ling; Lai, Yongrong; Xie, Wei; Kee, Kehkooi

    2015-01-01

    To correct a DNA mutation in the human genome for gene therapy, homology-directed repair (HDR) needs to be specific and have the lowest off-target effects to protect the human genome from deleterious mutations. Zinc finger nucleases, transcription activator-like effector nuclease (TALEN) and CRISPR-CAS9 systems have been engineered and used extensively to recognize and modify specific DNA sequences. Although TALEN and CRISPR/CAS9 could induce high levels of HDR in human cells, their genotoxicity was significantly higher. Here, we report the creation of a monomeric endonuclease that can recognize at least 33 bp by fusing the DNA-recognizing domain of TALEN (TALE) to a re-engineered homing endonuclease I-SceI. After sequentially re-engineering I-SceI to recognize 18 bp of the human β-globin sequence, the re-engineered I-SceI induced HDR in human cells. When the re-engineered I-SceI was fused to TALE (TALE-ISVB2), the chimeric endonuclease induced the same HDR rate at the human β-globin gene locus as that induced by TALEN, but significantly reduced genotoxicity. We further demonstrated that TALE-ISVB2 specifically targeted at the β-globin sequence in human hematopoietic stem cells. Therefore, this monomeric endonuclease has the potential to be used in therapeutic gene targeting in human cells. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. [The policy of human biological reproduction in Brazil].

    Science.gov (United States)

    Oliveira, M A

    1992-08-01

    The author presents some of the historical determinations of the policies of human reproduction in Brazil, placing them among other social policies. She argues that reproductive profile of the social classes depends upon not only the biological reproduction, but also upon the work power.

  15. Cytotoxicity and genotoxicity evaluation of organochalcogens in human leucocytes: a comparative study between ebselen, diphenyl diselenide, and diphenyl ditelluride.

    Science.gov (United States)

    Caeran Bueno, Diones; Meinerz, Daiane Francine; Allebrandt, Josiane; Waczuk, Emily Pansera; dos Santos, Danúbia Bonfanti; Mariano, Douglas Oscar Ceolin; Rocha, João Batista Teixeira

    2013-01-01

    Organochalcogens, particularly ebselen, have been used in experimental and clinical trials with borderline efficacy. (PhSe)2 and (PhTe)2 are the simplest of the diaryl dichalcogenides and share with ebselen pharmacological properties. In view of the concerns with the use of mammals in studies and the great number of new organochalcogens with potential pharmacological properties that have been synthesized, it becomes important to develop screening protocols to select compounds that are worth to be tested in vivo. This study investigated the possible use of isolated human white cells as a preliminary model to test organochalcogen toxicity. Human leucocytes were exposed to 5-50  μM of ebselen, (PhSe)2, or (PhTe)2. All compounds were cytotoxic (Trypan's Blue exclusion) at the highest concentration tested, and Ebselen was the most toxic. Ebselen and (PhSe)2 were genotoxic (Comet Assay) only at 50  μM, and (PhTe)2 at 5-50  μM. Here, the acute cytotoxicity did not correspond with in vivo toxicity of the compounds. But the genotoxicity was in the same order of the in vivo toxicity to mice. These results indicate that in vitro genotoxicity in white blood cells should be considered as an early step in the investigation of potential toxicity of organochalcogens.

  16. Effect of electromagnetic waves on human reproduction.

    Science.gov (United States)

    Wdowiak, Artur; Mazurek, Paweł A; Wdowiak, Anita; Bojar, Iwona

    2017-03-31

    Electromagnetic radiation (EMR) emitting from the natural environment, as well as from the use of industrial and everyday appliances, constantly influence the human body. The effect of this type of energy on living tissues may exert various effects on their functioning, although the mechanisms conditioning this phenomenon have not been fully explained. It may be expected that the interactions between electromagnetic radiation and the living organism would depend on the amount and parameters of the transmitted energy and type of tissue exposed. Electromagnetic waves exert an influence on human reproduction by affecting the male and female reproductive systems, the developing embryo, and subsequently, the foetus. Knowledge concerning this problem is still being expanded; however, all the conditionings of human reproduction still remain unknown. The study presents the current state of knowledge concerning the problem, based on the latest scientific reports.

  17. Lysophosphatidic Acid (LPA Signaling in Human and Ruminant Reproductive Tract

    Directory of Open Access Journals (Sweden)

    Izabela Wocławek-Potocka

    2014-01-01

    Full Text Available Lysophosphatidic acid (LPA through activating its G protein-coupled receptors (LPAR 1–6 exerts diverse cellular effects that in turn influence several physiological processes including reproductive function of the female. Studies in various species of animals and also in humans have identified important roles for the receptor-mediated LPA signaling in multiple aspects of human and animal reproductive tract function. These aspects range from ovarian and uterine function, estrous cycle regulation, early embryo development, embryo implantation, decidualization to pregnancy maintenance and parturition. LPA signaling can also have pathological consequences, influencing aspects of endometriosis and reproductive tissue associated tumors. The review describes recent progress in LPA signaling research relevant to human and ruminant reproduction, pointing at the cow as a relevant model to study LPA influence on the human reproductive performance.

  18. Radioprotective Effect of Achillea millefolium L Against Genotoxicity Induced by Ionizing Radiation in Human Normal Lymphocytes

    Directory of Open Access Journals (Sweden)

    Somayeh Shahani

    2015-04-01

    Full Text Available The radioprotective effect of Achillea millefolium L (ACM extract was investigated against genotoxicity induced by ionizing radiation (IR in human lymphocytes. Peripheral blood samples were collected from human volunteers and incubated with the methanolic extract of ACM at different concentrations (10, 50, 100, and 200 μg/mL for 2 hours. At each dose point, the whole blood was exposed in vitro to 2.5 Gy of X-ray and then the lymphocytes were cultured with mitogenic stimulation to determine the micronuclei in cytokinesis-blocked binucleated cell. Antioxidant capacity of the extract was determined using free radical-scavenging method. The treatment of lymphocytes with the extract showed a significant decrease in the incidence of micronuclei binucleated cells, as compared with similarly irradiated lymphocytes without any extract treatment. The maximum protection and decrease in frequency of micronuclei were observed at 200 μg/mL of ACM extract which completely protected genotoxicity induced by IR in human lymphocytes. Achillea millefolium extract exhibited concentration-dependent radical-scavenging activity on 1,1-diphenyl-2-picryl hydrazyl free radicals. These data suggest that the methanolic extract of ACM may play an important role in the protection of normal tissues against genetic damage induced by IR.

  19. C(60 fullerene prevents genotoxic effects of doxorubicin in human lymphocytes in vitro

    Directory of Open Access Journals (Sweden)

    K. S. Afanasieva

    2015-02-01

    Full Text Available The self-ordering of C60 fullerene, doxorubicin and their mixture precipitated from aqueous solutions was investigated using atomic-force microscopy. The results suggest the complexation between the two compounds. The genotoxicity of doxorubicin in complex with C60 fullerene (С60+Dox was evaluated in vitro with comet assay using human lymphocytes. The obtained results show that the C60 fullerene prevents the toxic effect of Dox in normal cells and, thus, С60+Dox complex might be proposed for biomedical application.

  20. Evaluation of the tickcide, genotoxic, and mutagenic effects of the Ruta graveolens L. (Rutaceae

    Directory of Open Access Journals (Sweden)

    Alessandra Vargas de Carvalho

    2015-10-01

    Full Text Available Current analysis investigated the tickcide effects of the aqueous extract and chloroform fractions of Ruta graveolens L. (rue on engorged females of Rhipicephalus microplus, as well as their genotoxic and mutagenic effects on human leukocytes. The best tickcide activity (non-dependent dose and genotoxic / mutagenic effects (dependent-dose were observed on exposure to chloroform fractions. Results suggest that extract fractions of R. graveolens L are efficient against R. microplus, although the fraction and the tested concentrations show genotoxic and mutagenic potential for human leukocytes.

  1. Reproduction in the space environment: Part II. Concerns for human reproduction

    Science.gov (United States)

    Jennings, R. T.; Santy, P. A.

    1990-01-01

    Long-duration space flight and eventual colonization of our solar system will require successful control of reproductive function and a thorough understanding of factors unique to space flight and their impact on gynecologic and obstetric parameters. Part II of this paper examines the specific environmental factors associated with space flight and the implications for human reproduction. Space environmental hazards discussed include radiation, alteration in atmospheric pressure and breathing gas partial pressures, prolonged toxicological exposure, and microgravity. The effects of countermeasures necessary to reduce cardiovascular deconditioning, calcium loss, muscle wasting, and neurovestibular problems are also considered. In addition, the impact of microgravity on male fertility and gamete quality is explored. Due to current constraints, human pregnancy is now contraindicated for space flight. However, a program to explore effective countermeasures to current constraints and develop the required health care delivery capability for extended-duration space flight is suggested. A program of Earth- and space-based research to provide further answers to reproductive questions is suggested.

  2. Cytotoxicity and genotoxicity of bacterial magnetosomes against human retinal pigment epithelium cells

    Science.gov (United States)

    Qi, Lei; Lv, Xiujuan; Zhang, Tongwei; Jia, Peina; Yan, Ruiying; Li, Shuli; Zou, Ruitao; Xue, Yuhua; Dai, Liming

    2016-06-01

    A variety of nanomaterials have been developed for ocular diseases. The ability of these nanomaterials to pass through the blood-ocular barrier and their biocompatibility are essential characteristics that must be considered. Bacterial magnetosomes (BMs) are a type of biogenic magnetic nanomaterials synthesized by magnetotactic bacteria. Due to their unique biomolecular membrane shell and narrow size distribution of approximately 30 nm, BMs can pass through the blood-brain barrier. The similarity of the blood-ocular barrier to the blood-brain barrier suggests that BMs have great potential as treatments for ocular diseases. In this work, BMs were isolated from magnetotactic bacteria and evaluated in various cytotoxicity and genotoxicity studies in human retinal pigment epithelium (ARPE-19) cells. The BMs entered ARPE-19 cells by endocytosis after a 6-h incubation and displayed much lower cytotoxicity than chemically synthesized magnetic nanoparticles (MNPs). MNPs exhibited significantly higher genotoxicity than BMs and promoted the expression of Bax (the programmed cell death acceleration protein) and the induction of greater cell necrosis. In BM-treated cells, apoptosis tended to be suppressed via increased expression of the Bcl-2 protein. In conclusion, BMs display excellent biocompatibility and potential for use in the treatment of ocular diseases.

  3. Folate and human reproduction.

    Science.gov (United States)

    Tamura, Tsunenobu; Picciano, Mary Frances

    2006-05-01

    The influence of folate nutritional status on various pregnancy outcomes has long been recognized. Studies conducted in the 1950s and 1960s led to the recognition of prenatal folic acid supplementation as a means to prevent pregnancy-induced megaloblastic anemia. In the 1990s, the utility of periconceptional folic acid supplementation and folic acid food fortification emerged when they were proven to prevent the occurrence of neural tube defects. These distinctively different uses of folic acid may well be ranked among the most significant public health measures for the prevention of pregnancy-related disorders. Folate is now viewed not only as a nutrient needed to prevent megaloblastic anemia in pregnancy but also as a vitamin essential for reproductive health. This review focuses on the relation between various outcomes of human reproduction (ie, pregnancy, lactation, and male reproduction) and folate nutrition and metabolism, homocysteine metabolism, and polymorphisms of genes that encode folate-related enzymes or proteins, and we identify issues for future research.

  4. Comparative cytotoxicity and genotoxicity of soluble and particulate hexavalent chromium in human and hawksbill sea turtle (Eretmochelys imbricate) skin cells

    Science.gov (United States)

    Young, Jamie L.; Wise, Sandra S.; Xie, Hong; Zhu, Cairong; Fukuda, Tomokazu; Wise, John Pierce

    2015-01-01

    Chromium is both a global marine pollutant and a known human health hazard. In this study, we compare the cytotoxicity and genotoxicity of both soluble and particulate chromate in human and hawksbill sea turtle (Eretmochelys imbricata) skin fibroblasts. Our data show that both soluble and particulate Cr(VI) induce concentration-dependent increases in cytotoxicity, genotoxicity, and intracellular Cr ion concentrations in both human and hawksbill sea turtle fibroblasts. Based on administered concentration, particulate and soluble Cr(VI) were more cytotoxic and clastogenic to human cells than sea turtle cells. When the analysis was based on the intracellular concentration of Cr, the data showed the response of both species was similar. The one exception was the cytotoxicity of intracellular Cr ions from soluble Cr(VI), which caused more cytotoxicity in sea turtle cells (LC50=271 uM) that human cells (LC50=471 uM), but its clastogenicity was similar between the two species. Thus, adjusting for differences in uptake indicated the explanation for the difference in potency was mostly due to uptake rather than differently affected mechanisms. Overall these data indicate sea turtles may be a useful sentinel for human health responses to marine pollution. PMID:26440299

  5. QSAR screening of 70,983 REACH substances for genotoxic carcinogenicity, mutagenicity and developmental toxicity in the ChemScreen project

    DEFF Research Database (Denmark)

    Wedebye, Eva Bay; Dybdahl, Marianne; Nikolov, Nikolai Georgiev

    2015-01-01

    The ChemScreen project aimed to develop a screening system for reproductive toxicity based on alternative methods. QSARs can, if adequate, contribute to the evaluation of chemical substances under REACH and may in some cases be applied instead of experimental testing to fill data gaps...... for information requirements. As no testing for reproductive effects should be performed in REACH on known genotoxic carcinogens or germ cell mutagens with appropriate risk management measures implemented, a QSAR pre-screen for 70,983 REACH substances was performed. Sixteen models and three decision algorithms...... were used to reach overall predictions of substances with potential effects with the following result: 6.5% genotoxic carcinogens, 16.3% mutagens, 11.5% developmental toxicants. These results are similar to findings in earlier QSAR and experimental studies of chemical inventories, and illustrate how...

  6. Love Influences Reproductive Success in Humans

    Science.gov (United States)

    Sorokowski, Piotr; Sorokowska, Agnieszka; Butovskaya, Marina; Karwowski, Maciej; Groyecka, Agata; Wojciszke, Bogdan; Pawłowski, Bogusław

    2017-01-01

    As love seems to be universal, researchers have attempted to find its biological basis. However, no studies till date have shown its direct association with reproductive success, which is broadly known to be a good measure of fitness. Here, we show links between love, as defined by the Sternberg Triangular Theory of Love, and reproductive success among the Hadza—traditional hunter-gatherer population. We found that commitment and reproductive success were positively and consistently related in both sexes, with number of children showing negative and positive associations with intimacy and passion, respectively, only among women. Our study may shed new light on the meaning of love in humans' evolutionary past, especially in traditional hunter-gatherer societies in which individuals, not their parents, were responsible for partner choice. We suggest that passion and commitment may be the key factors that increase fitness, and therefore, that selection promoted love in human evolution. However, further studies in this area are recommended. PMID:29209243

  7. Cytotoxicity and Genotoxicity Evaluation of Organochalcogens in Human Leucocytes: A Comparative Study between Ebselen, Diphenyl Diselenide, and Diphenyl Ditelluride

    Directory of Open Access Journals (Sweden)

    Diones Caeran Bueno

    2013-01-01

    Full Text Available Organochalcogens, particularly ebselen, have been used in experimental and clinical trials with borderline efficacy. (PhSe2 and (PhTe2 are the simplest of the diaryl dichalcogenides and share with ebselen pharmacological properties. In view of the concerns with the use of mammals in studies and the great number of new organochalcogens with potential pharmacological properties that have been synthesized, it becomes important to develop screening protocols to select compounds that are worth to be tested in vivo. This study investigated the possible use of isolated human white cells as a preliminary model to test organochalcogen toxicity. Human leucocytes were exposed to 5–50 μM of ebselen, (PhSe2, or (PhTe2. All compounds were cytotoxic (Trypan’s Blue exclusion at the highest concentration tested, and Ebselen was the most toxic. Ebselen and (PhSe2 were genotoxic (Comet Assay only at 50 μM, and (PhTe2 at 5–50 μM. Here, the acute cytotoxicity did not correspond with in vivo toxicity of the compounds. But the genotoxicity was in the same order of the in vivo toxicity to mice. These results indicate that in vitro genotoxicity in white blood cells should be considered as an early step in the investigation of potential toxicity of organochalcogens.

  8. Genotoxicity of antiobesity drug orlistat and effect of caffeine intervention: an in vitro study.

    Science.gov (United States)

    Chakrabarti, Manoswini; Ghosh, Ilika; Jana, Aditi; Ghosh, Manosij; Mukherjee, Anita

    2017-07-01

    Obesity is a major global health problem associated with various adverse effects. Pharmacological interventions are often necessary for the management of obesity. Orlistat is an FDA-approved antiobesity drug which is a potent inhibitor of intestinal lipases. In the current study, orlistat was evaluated for its genotoxic potential in human lymphocyte cells in vitro and was compared with that of another antiobesity drug sibutramine, presently withdrawn from market due its undesirable health effects. Caffeine intake may be an additional burden in people using anorectic drugs, therefore, further work is needed to be carried out to evaluate the possible effects of caffeine on orlistat-induced DNA damage. Human lymphocytes were exposed to orlistat (250, 500 and 1000 μg/ml), sibutramine (250, 500 and 1000 μg/ml) and caffeine (25, 50, 75, 100, 125 and 150 μg/ml) to assess their genotoxicity by comet assay in vitro. In addition, lymphocytes were co-incubated with caffeine (50, 75 and 100 μg/ml) and a single concentration of orlistat (250 μg/ml). Orlistat and sibutramine were genotoxic at all concentrations tested, sibutramine being more genotoxic. Caffeine was found to be genotoxic at concentrations 125 μg/ml and above. Co-treatment of orlistat with non-genotoxic concentrations (50, 75 and 100 μg/ml) of caffeine lead to a decrease in DNA damage. Orlistat can induce DNA damage in human lymphocytes in vitro and caffeine was found to reduce orlistat-induced genotoxicity.

  9. Tungsten carbide-cobalt as a nanoparticulate reference positive control in in vitro genotoxicity assays.

    Science.gov (United States)

    Moche, Hélène; Chevalier, Dany; Barois, Nicolas; Lorge, Elisabeth; Claude, Nancy; Nesslany, Fabrice

    2014-01-01

    With the increasing human exposure to nanoparticles (NP), the evaluation of their genotoxic potential is of significant importance. However, relevance for NP of the routinely used in vitro genotoxicity assays is often questioned, and a nanoparticulate reference positive control would therefore constitute an important step to a better testing of NP, ensuring that test systems are really appropriate. In this study, we investigated the possibility of using tungsten carbide-cobalt (WC-Co) NP as reference positive control in in vitro genotoxicity assays, including 2 regulatory assays, the mouse lymphoma assay and the micronucleus assay, and in the Comet assay, recommended for the toxicological evaluation of nanomedicines by the French Agency of Human Health Products (Afssaps). Through these assays, we were able to study different genetic endpoints in 2 cell types commonly used in regulatory genotoxicity assays: the L5178Y mouse lymphoma cell line and primary cultures of human lymphocytes. Our results showed that the use of WC-Co NP as positive control in in vitro genotoxicity assays was conceivable, but that different parameters have to be considered, such as cell type and treatment schedule. L5178Y mouse lymphoma cells did not provide satisfactory results in the 3 performed tests. However, human lymphocytes were more sensitive to genotoxic effects induced by WC-Co NP, particularly after a 24-h treatment in the in vitro micronucleus assay and after a 4-h treatment in the in vitro Comet assay. Under such conditions, WC-Co could be used as a nanoparticulate reference positive control in these assays.

  10. Cytotoxicity and genotoxicity of biogenic silver nanoparticles

    International Nuclear Information System (INIS)

    Lima, R; Feitosa, L O; Ballottin, D; Tasic, L; Durán, N; Marcato, P D

    2013-01-01

    Biogenic silver nanoparticles with 40.3 ± 3.5 nm size and negative surface charge (− 40 mV) were prepared with Fusarium oxysporum. The cytotoxicity of 3T3 cell and human lymphocyte were studied by a TaliTM image-based cytometer and the genotoxicity through Allium cepa and comet assay. The results of BioAg-w (washed) and BioAg-nw (unwashed) biogenic silver nanoparticles showed cytotoxicity exceeding 50 μg/mL with no significant differences of response in 5 and 10 μg/mL regarding viability. Results of genotoxicity at concentrations 5.0 and 10.0 ug/mL show some response, but at concentrations 0.5 and 1.0 μg/mL the washed and unwashed silver nanoparticles did not present any effect. This in an important result since in tests with different bacteria species and strains, including resistant, MIC (minimal inhibitory concentration) had good answers at concentrations less than 1.9 μg/mL. This work concludes that biogenic silver nanoparticles may be a promising option for antimicrobial use in the range where no cyto or genotoxic effect were observed. Furthermore, human cells were found to have a greater resistance to the toxic effects of silver nanoparticles in comparison with other cells.

  11. Comparative Physicochemical and Genotoxicity Assessments of ...

    African Journals Online (AJOL)

    ADOWIE PERE

    ABSTRACT: The textile industry has become indispensable in view of its basic and social importance to human life, but its environmental impact has continued to be a subject of concern. ... the economy of many countries. ... Textile and clothing production process ..... Genotoxicity screening of industrial effluents using.

  12. Comparative cytotoxicity and genotoxicity of soluble and particulate hexavalent chromium in human and hawksbill sea turtle (Eretmochelys imbricata) skin cells.

    Science.gov (United States)

    Young, Jamie L; Wise, Sandra S; Xie, Hong; Zhu, Cairong; Fukuda, Tomokazu; Wise, John Pierce

    2015-12-01

    Chromium is both a global marine pollutant and a known human health hazard. In this study, we compare the cytotoxicity and genotoxicity of both soluble and particulate chromate in human and hawksbill sea turtle (Eretmochelys imbricata) skin fibroblasts. Our data show that both soluble and particulate Cr(VI) induce concentration-dependent increases in cytotoxicity, genotoxicity, and intracellular Cr ion concentrations in both human and hawksbill sea turtle fibroblasts. Based on administered concentration, particulate and soluble Cr(VI) were more cytotoxic and clastogenic to human cells than sea turtle cells. When the analysis was based on the intracellular concentration of Cr, the data showed that the response of both species was similar. The one exception was the cytotoxicity of intracellular Cr ions from soluble Cr(VI), which caused more cytotoxicity in sea turtle cells (LC50=271μM) than that of human cells (LC50=471μM), but its clastogenicity was similar between the two species. Thus, adjusting for differences in uptake indicated that the explanation for the difference in potency was mostly due to uptake rather than differently affected mechanisms. Overall these data indicate that sea turtles may be a useful sentinel for human health responses to marine pollution. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Protective Effect of Onion Extract on Bleomycin-Induced Cytotoxicity and Genotoxicity in Human Lymphocytes

    Directory of Open Access Journals (Sweden)

    Yoon Hee Cho

    2016-02-01

    Full Text Available Following one of the world’s largest nuclear accidents, occured at Fukushima, Japan in 2011, a significant scientific effort has focused on minimizing the potential adverse health effects due to radiation exposure. The use of natural dietary antioxidants to reduce the risk of radiation-induced oxidative DNA damage is a simple strategy for minimizing radiation-related cancer rates and improving overall health. The onion is among the richest sources of dietary flavonoids and is an important food for increasing their overall intake. Therefore, we examined the effect of an onion extract on cyto- and geno-toxicity in human lymphocytes treated with bleomycin (BLM, a radiomimetic agent. In addition, we measured the frequency of micronuclei (MN and DNA damage following treatment with BLM using a cytokinesis-blocked micronucleus assay and a single cell gel electrophoresis assay. We observed a significant increase in cell viability in lymphocytes treated with onion extract then exposed to BLM compared to cells treated with BLM alone. The frequency of BLM induced MN and DNA damage increased in a dose-dependent manner; however, when lymphocytes were pretreated with onion extract (10 and 20 μL/mL, the frequency of BLM-induced MN was decreased at all doses of BLM and DNA damage was decreased at 3 μg/mL of BLM. These results suggest that onion extract may have protective effects against BLM-induced cyto- and genotoxicity in human lymphocytes.

  14. Role of endocrine-genotoxic switchings in cancer and other human diseases: basic triad.

    Science.gov (United States)

    Berstein, Lev M

    2008-01-01

    Cancer is one of the leading causes of human death and belongs to the group of main chronic noncommunicable diseases (NCD). Certain specific features ofNCD have raised the concept of 'normal' and 'successful' aging. The apparent paradox of simultaneous increase with aging of the diseases connected with estrogen deficiency as well as with estrogenic excess can be explained by the existence of the phenomenon of the switching of estrogen effects. An isolated or combined with the weakening of hormonal effect increase in genotoxic action of estrogens can modify the course ofage-associated pathology. In particular, such changes in estrogen effect may alter the biology of tumors to make them less favorable/more aggressive. Two other endocrine-genotoxic switchings (EGS) involving phenomena ofJanus (dual) function of glucose and adipogenotoxicosis may produce similar influences on tumor and other NCD biology. These three phenomena form a'basic triad' and can act independently of each other or in concert. EGS and their inductors may serve as targets for prevention and, probably, treatment of main noncommunicable diseases. The measures to correct components of the 'triad' can be divided into several groups aimed to optimally orchestrate the balance between endocrine and DNA-damagingeffects of estrogens, glucose and adipose tissue-related factors.

  15. Genotoxic and cytotoxic effects of different types of dental cement on normal cultured human lymphocytes.

    Science.gov (United States)

    Bakopoulou, A; Mourelatos, D; Tsiftsoglou, A S; Giassin, N P; Mioglou, E; Garefis, P

    2009-01-31

    In this study we have investigated the genotoxic and cytotoxic effects of eluates derived from different types of commercially available dental cements, including glass ionomer cements (GICs) (Ketac Cem/3M ESPE and GC Fuji I/GC Corp), resin-modified glass ionomer cements (RM-GICs) (RelyX Luting/3M ESPE and Vitrebond/3M ESPE) and dual-cure resin cements (RCs) (Variolink II/ Ivoclar-Vivadent and Panavia F 2.0/Kuraray) on normal cultured human lymphocytes. Lymphocyte primary cultures obtained from blood samples of three healthy donors were exposed to serial dilutions of eluates derived from specimens of each material tested. Metaphases were induced with phytohaemagglutinin, collected after 72h treatment by use of colchicine and stained according to the fluorescence plus giemsa (FPG) procedure. Preparations were scored for sister chromatid exchange (SCE) and chromosomal aberrations (CAs), while the proliferation rate index (PRI) was also calculated. Our results show that eluates derived from the RM-GICs and RCs caused severe genotoxic effects by significantly increasing the frequencies of SCEs and CAs in cultures of peripheral blood lymphocytes and by decreasing the relevant PRI values in a dose-dependent manner, whereas the two GICs caused only minor cytogenetic effects. Eluates of the two RM-GICs (Vitrebond and RelyX) were also very cytotoxic, as the first serial dilutions of both materials caused a complete mitotic arrest in lymphocyte cultures. Overall, the degree of genotoxicity and cytotoxicity caused by dental cements decreased as follows: Viterbond>Rely X>Panavia F 2.0>Variolink II>Ketac Cem=GC Fuji I. These results indicate that different types of dental cement differ extensively in their genotoxic and cytotoxic potential and their ability to affect chromosomal integrity, cell-cycle progression, DNA replication and repair. Although these results cannot be directly extrapolated to the clinical situation, the potential occurrence of adverse effects caused by the

  16. Differences in genotoxic activity of alpha-Ni3S2 on human lymphocytes from nickel-hypersensitized and nickel-unsensitized donors.

    Science.gov (United States)

    Arrouijal, F Z; Marzin, D; Hildebrand, H F; Pestel, J; Haguenoer, J M

    1992-05-01

    The genotoxic activity of alpha-Ni3S2 was assessed on human lymphocytes from nickel-hypersensitized (SSL) and nickel-unsensitized (USL) subjects. Three genotoxicity tests were performed: the sister chromatid exchange (SCE) test, the metaphase analysis test and the micronucleus test. (i) The SCE test (3-100 micrograms/ml) showed a weak but statistically significant increase in the number of SCE in both lymphocyte types with respect to controls, USL presenting a slightly higher SCE incidence but only at one concentration. (ii) The metaphase analysis test demonstrated a high dose-dependent clastogenic activity of alpha-Ni3S2 in both lymphocyte types. The frequency of chromosomal anomalies was significantly higher in USL than in SSL for all concentrations applied. (iii) The micronucleus test confirmed the dose-dependent clastogenic activity of alpha-Ni3S2 and the differences already observed between USL and SSL, i.e. the number of cells with micronuclei was statistically higher in USL. Finally, the incorporation study with alpha-63Ni3S2 showed a higher uptake of its solubilized fraction by USL. This allows an explanation of the different genotoxic action of nickel on the two cell types. In this study we demonstrated that hypersensitivity has an influence on the incorporation of alpha-Ni3S2 and subsequently on the different induction of chromosomal aberrations in human lymphocytes.

  17. Genotoxicity assessment of membrane concentrates of landfill leachate treated with Fenton reagent and UV-Fenton reagent using human hepatoma cell line.

    Science.gov (United States)

    Wang, Guifang; Lu, Gang; Yin, Pinghe; Zhao, Ling; Yu, Qiming Jimmy

    2016-04-15

    Membrane concentrates of landfill leachates contain organic and inorganic contaminants that could be highly toxic and carcinogenic. In this paper, the genotoxicity of membrane concentrates before and after Fenton and UV-Fenton reagent was assessed. The cytotoxicity and genotoxicity was determined by using the methods of methyltetrazolium (MTT), cytokinesis-block micronucleus (CBMN) and comet assay in human hepatoma cells. MTT assay showed a cytotoxicity of 75% after 24h of exposure to the highest tested concentration of untreated concentrates, and no cytotoxocity for UV-Fenton and Fenton treated concentrates. Both CBMN and comet assays showed increased levels of genotoxicity in cells exposed to untreated concentrates, compared to those occurred in cells exposed to UV-Fenton and Fenton reagent treated concentrates. There was no significant difference between negative control and UV-Fenton treated concentrates for micronucleus and comet assay parameters. UV-Fenton and Fenton treatment, especially the former, were effective methods for degradation of bisphenol A and nonylphenol in concentrates. These findings showed UV-Fenton and Fenton reaction were effective methods for treatment of such complex concentrates, UV-Fenton reagent provided toxicological safety of the treated effluent, and the genotoxicity assays were found to be feasible tools for assessment of toxicity risks of complex concentrates. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Canada's Assisted Human Reproductive Act: is it scientific censorship, or a reasoned approach to the regulation of rapidly emerging reproductive technologies?

    Science.gov (United States)

    Rasmussen, Colin

    2004-01-01

    After more than a decade of study, discussion and debate, the Canadian House of Commons and Senate have approved the Assisted Human Reproduction Act. Building on the earlier Bill C-47, which died on the order paper in 1997, the Act bans human cloning for reproductive or therapeutic purposes, payment for surrogacy arrangements, and trading in human reproductive materials or their use without informed consent. In addition, the Act significantly restricts research using human reproductive materials. This article compares the Act to legislative regimes in other nations with advanced human reproductive science. It concludes that while the Act has many laudable goals, it is flawed in that it tries to cover too much legislative ground. As a result it unreasonable impairs the ability of Canadian scientists to compete in areas such as stem cell research, and area that is expected to yield significant new approaches to treating human disease.

  19. Genotoxic, radioprotective and radiosensitizing effect of curcumin and trans-resveratrol in vitro cultures of human lymphocytes

    International Nuclear Information System (INIS)

    Fisher, V.A.; Tirsa Muñoz, B.; Sebastià, N.; Gómez-Cabrero, L.; La Parra, V.; Hervás, D.; Rodrigo, R.; Villaescusa, J.I.; Soriano, J.M.; Montoro, A.

    2015-01-01

    Curcumin and trans-resveratrol are natural polyphenol compounds. Curcumin is obtained from the rhizomes of the Curcumin plant (Curcuma longa), while trans-resveratrol is found in grapes, blackberries and other types of berry. These compounds have antioxidant, anti-inflammatory, immunostimulant and anticarcinogenic properties among others. In addition, they are also known for their radiomodulating properties since they are capable of providing radioprotection or radiosensitization for normal or tumours cells depending on different factors. This dual action may be the result of their properties, such as free radicals scavenging, as well as their influence on cell cycle checkpoints or control mechanisms. These are activated in response to the genetic damage induced by radiation. Despite the many beneficial properties attributed to these polyphenol compounds, some studies suggest that they are able to be genotoxic agents for some cellular lines. The results obtained indicate that both compounds possess a radioprotective effect on the lymphocytes of peripheral blood in the quiescent phase of the cellular cycle (G0). Nevertheless, they are capable of induce radiosensitivity on these type of cells in the growth phase (G2), and in addition, a different genotoxic effect can be seen according to the concentration of each compound. This study suggests, therefore, that curcumin and trans-resveratrol are able to exert a triple effect, genotoxic, radioprotective and radiosensitizing on in vitro cultures of human lymphocytes depending on the study parameters. [es

  20. In vivo genotoxicity of nitramines, transformation products of amine-based carbon capture technology

    Directory of Open Access Journals (Sweden)

    Claire Coutris

    2015-05-01

    Full Text Available In times where we need to reduce our CO2 emissions to the atmosphere, it is important to get a clearer picture of the environmental impacts associated with potential mitigation technologies. Chemical absorption with amines is emerging as the most advanced mitigation technology for post-combustion capture of CO2 from fossil fuel power stations. Although the amine solvent used in this technology is recycled during the capture process, degradation products are formed and released into the environment. Among these degradation products, the aliphatic nitramine compounds dimethylnitramine and ethanolnitramine have been identified, whose environmental impact was unknown. In addition to conducting survival, growth and reproduction tests in a range of marine species, we looked into the in vivo genotoxic potential of these two compounds to experimentally exposed fish (Coutris et al. 2015. DNA damage was analyzed in blood samples collected from the caudal vein of juvenile turbot Scophthalmus maximus after 28 day exposure to nitramines, using the 12 mini-gels version of the comet assay, with and without digestion with formamidopyrimidine DNA glycosylase. Although whole organism bioassays indicated that nitramine toxicity through necrosis was low, the genotoxicity assessment revealed contrasting results, with ethanolnitramine found to be more genotoxic than dimethylnitramine by three orders of magnitude. At the lowest ethanolnitramine concentration (1 mg/L, 84 % DNA damage was observed, whereas 100 mg/L dimethylnitramine was required to cause 37 % DNA damage. The mechanisms of genotoxicity were also shown to differ between the two compounds, with oxidation of the DNA bases responsible for over 90 % of the genotoxicity of dimethylnitramine, whereas DNA strand breaks and alkali-labile sites were responsible for over 90 % of the genotoxicity of ethanolnitramine. Fish exposed to > 3 mg/L ethanolnitramine had virtually no DNA left in their red blood cells. The

  1. Seasonal variation in human reproduction: environmental factors.

    Science.gov (United States)

    Bronson, F H

    1995-06-01

    Almost all human populations exhibit seasonal variation in births, owing mostly to seasonal variation in the frequency of conception. This review focuses on the degree to which environmental factors like nutrition, temperature and photoperiod contribute to these seasonal patterns by acting directly on the reproductive axis. The reproductive strategy of humans is basically that of the apes: Humans have the capacity to reproduce continuously, albeit slowly, unless inhibited by environmental influences. Two, and perhaps three, environmental factors probably act routinely as seasonal inhibitors in some human populations. First, it seems likely that ovulation is regulated seasonally in populations experiencing seasonal variation in food availability. More specifically, it seems likely that inadequate food intake or the increased energy expenditure required to obtain food, or both, can delay menarche, suppress the frequency of ovulation in the nonlactating adult, and prolong lactational amenorrhea in these populations on a seasonal basis. This action is most easily seen in tropical subsistence societies where food availability often varies greatly owing to seasonal variation in rainfall; hence births in these populations often correlate with rainfall. Second, it seems likely that seasonally high temperatures suppress spermatogenesis enough to influence the incidence of fertilization in hotter latitudes, but possibly only in males wearing clothing that diminishes scrotal cooling. Since most of our knowledge about this phenomenon comes from temperate latitudes, the sensitivity of spermatogenesis in both human and nonhuman primates to heat in the tropics needs further study. It is quite possible that high temperatures suppress ovulation and early embryo survival seasonally in some of these same populations. Since we know less than desired about the effect of heat stress on ovulation and early pregnancy in nonhuman mammals, and nothing at all about it in humans or any of the

  2. The special programme of research in human reproduction: forty years of activities to achieve reproductive health for all.

    Science.gov (United States)

    Benagiano, Giuseppe; d'Arcangues, Catherine; Harris Requejo, Jennifer; Schafer, Alessandra; Say, Lale; Merialdi, Mario

    2012-01-01

    The Special Programme of Research in Human Reproduction (HRP), co-sponsored by the UNDP, UNFPA, WHO, and the World Bank, is celebrating 40 years of activities with an expansion of its mandate and new co-sponsors. When it began, in 1972, the main focus was on evaluating the acceptability, effectiveness, and safety of existing fertility-regulating methods, as well as developing new, improved modalities for family planning. In 1994, HRP not only made major contributions to the Plan of Action of the International Conference on Population and Development (ICPD); it also broadened its scope of work to include other aspects of health dealing with sexuality and reproduction, adding a specific perspective on gender issues and human rights. In 2002, HRP's mandate was once again broadened to include sexually transmitted infections and HIV/AIDS and in 2003 it was further expanded to research activities on preventing violence against women and its many dire health consequences. Today, the work of the Programme includes research on: the sexual and reproductive health of adolescents, women, and men; maternal and perinatal health; reproductive tract and sexually transmitted infections (including HIV/AIDS); family planning; infertility; unsafe abortion; sexual health; screening for cancer of the cervix in developing countries, and gender and reproductive rights. Additional activities by the Programme have included: fostering international cooperation in the field of human reproduction; the elaboration of WHO's first Global Reproductive Health Strategy; work leading to the inclusion of ICPD's goal 'reproductive health for all by 2015' into the Millennium Development Goal framework; the promotion of critical interagency statements on the public health, legal, and human rights implications of female genital mutilation and gender-biased sex selection. Finally, HRP has been involved in the creation of guidelines and tools, such as the 'Medical eligibility criteria for contraceptive use

  3. Biophysical evaluation of radiofrequency electromagnetic field effects on male reproductive pattern.

    Science.gov (United States)

    Kesari, Kavindra Kumar; Kumar, Sanjay; Nirala, Jayprakash; Siddiqui, Mohd Haris; Behari, Jitendra

    2013-03-01

    There are possible hazardous health effects of exposure to radiofrequency electromagnetic radiations emitted from mobile phone on the human reproductive pattern. It is more effective while keeping mobile phones in pocket or near testicular organs. Present review examines the possible concern on radio frequency radiation interaction and biological effects such as enzyme induction, and toxicological effects, including genotoxicity and carcinogenicity, testicular cancer, and reproductive outcomes. Testicular infertility or testicular cancer due to mobile phone or microwave radiations suggests an increased level of reactive oxygen species (ROS). Though generation of ROS in testis has been responsible for possible toxic effects on physiology of reproduction, the reviews of last few decades have well established that these radiations are very harmful and cause mutagenic changes in reproductive pattern and leads to infertility. The debate will be focused on bio-interaction mechanism between mobile phone and testicular cancer due to ROS formation. This causes the biological damage and leads to several changes like decreased sperm count, enzymatic and hormonal changes, DNA damage, and apoptosis formation. In the present review, physics of mobile phone including future research on various aspects has been discussed.

  4. Titanium dioxide nanoparticles cause genotoxicity in human lung epithelial cells

    Science.gov (United States)

    The use of engineered nanoparticles in consumer products is steadily increasing. However, the health effects of exposure to these nanoparticles are not thoroughly understood. This study investigated the genotoxicity of six titanium dioxide and two cerium oxide nanoparticles of va...

  5. Cytogenetic analyses of Azadirachtin reveal absence of genotoxicity but marked antiproliferative effects in human lymphocytes and CHO cells in vitro.

    Science.gov (United States)

    Mosesso, Pasquale; Bohm, Lothar; Pepe, Gaetano; Fiore, Mario; Carpinelli, Alice; Gäde, Gerd; Nagini, Siddavaram; Ottavianelli, Alessandro; Degrassi, Francesca

    2012-09-18

    In this work we have examined the genotoxic potential of the bioinsecticide Azadirachtin A (AZA) and its influence on cell proliferation on human lymphocytes and Chinese Hamster ovary (CHO) cells. AZA genotoxicity was assessed by the analysis of chromosomal aberrations and sister chromatid exchanges (SCEs) in the absence and presence of rat liver S9 metabolism. Primary DNA damage was also investigated by means of the comet assay. The results obtained clearly indicate that AZA is not genotoxic in mammalian cells. On the other hand, AZA proved to interfere with cell cycle progression as shown by modulation of frequencies of first (M1) and second division (M2) metaphases detected by 5-Bromo-2'-deoxyuridine labeling. Accumulation of M1 metaphases were more pronounced in human lymphocytes. In the transformed CHO cell line, however, significant increases of multinucleated interphases and polyploid cells were observed at long treatment time. At higher dose-levels, the incidence of polyploidy was close to 100%. Identification of spindle structure and number of centrosomes by fluorescent immunostaining with α- and γ-tubulin antibodies revealed aberrant mitoses exhibiting multipolar spindles with several centrosomal signals. These findings suggest that AZA can act either through a stabilizing activity of microtubules or by inhibition of Aurora A, since both mechanisms are able to generate genetically unstable polyploid cells with multipolar spindles and multinucleated interphases. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  6. Interpretation of the margin of exposure for genotoxic carcinogens - elicitation of expert knowledge about the form of the dose response curve at human relevant exposures.

    Science.gov (United States)

    Boobis, Alan; Flari, Villie; Gosling, John Paul; Hart, Andy; Craig, Peter; Rushton, Lesley; Idahosa-Taylor, Ehi

    2013-07-01

    The general approach to risk assessment of genotoxic carcinogens has been to advise reduction of exposure to "as low as reasonably achievable/practicable" (ALARA/P). However, whilst this remains the preferred risk management option, it does not provide guidance on the urgency or extent of risk management actions necessary. To address this, the "Margin of Exposure" (MOE) approach has been proposed. The MOE is the ratio between the point of departure for carcinogenesis and estimated human exposure. However, interpretation of the MOE requires implicit or explicit consideration of the shape of the dose-response curve at human relevant exposures. In a structured elicitation exercise, we captured expert opinion on available scientific evidence for low dose-response relationships for genotoxic carcinogens. This allowed assessment of: available evidence for the nature of dose-response relationships at human relevant exposures; the generality of judgments about such dose-response relationships; uncertainties affecting judgments on the nature of such dose-response relationships; and whether this last should differ for different classes of genotoxic carcinogens. Elicitation results reflected the variability in experts' views on the form of the dose-response curve for low dose exposure and major sources of uncertainty affecting the assumption of a linear relationship. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Genome-wide analysis identifies 12 loci influencing human reproductive behavior

    DEFF Research Database (Denmark)

    Barban, Nicola; Jansen, Rick; de Vlaming, Ronald

    2016-01-01

    The genetic architecture of human reproductive behavior-age at first birth (AFB) and number of children ever born (NEB)-has a strong relationship with fitness, human development, infertility and risk of neuropsychiatric disorders. However, very few genetic loci have been identified, and the under......The genetic architecture of human reproductive behavior-age at first birth (AFB) and number of children ever born (NEB)-has a strong relationship with fitness, human development, infertility and risk of neuropsychiatric disorders. However, very few genetic loci have been identified...

  8. Assessment of Genotoxicity of Ionizing radiation using Tradescantia-Comet assay

    Energy Technology Data Exchange (ETDEWEB)

    Han, Min; Ryu, Tae Ho; Hyun, Kyung Man; Kim, Jin Kyu [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of); Wilhelmova, Nad [Institute of Experimental Botany, Prague (Czech Republic)

    2010-05-15

    Over the last two decades, several new methodologies for the detection of DNA damage have been developed. The comet assay is currently used in different areas of biological sciences to detect DNA damage. The comet assay, also called the single cell gel electrophoresis (SCGE) was first introduced by Ostling and Johanson as a microelectrophoretic technique for the direct visualization of DNA damage in individual cells. The comet assay, due to its simplicity, sensitivity and need of a few cells, is ideal as a short-term genotoxicity test. The comet assay can theoretically be applied to every type of eukaryotic cell, including plant cells. Plants are very useful as monitors of genetic effects caused by pollution in the atmosphere, water and soil. Although the genotoxic effects detected by Tradescantia tests cannot be associated with mutagenesis or even carcinogenesis in humans, these bioassays are very useful tools for screening the mutagenic potential in the environment. Experiments were conducted to study the genotoxic effects of ionizing radiations on the genome integrity, particularly of Tradescantia. The increasingly frequent use of Tradescantia as a sensitive environmental bioindicator of genotoxic effects. This study was designed to assess the genotoxicity of ionizing radiation using Tradescnatia-comet assay

  9. Pregnancy outcomes after assisted human reproduction.

    Science.gov (United States)

    Okun, Nanette; Sierra, Sony

    2014-01-01

    To review the effect of assisted human reproduction (AHR) on perinatal outcomes, to identify areas requiring further research with regard to birth outcomes and AHR, and to provide guidelines to optimize obstetrical management and counselling of prospective Canadian parents. This document compares perinatal outcomes of different types of AHR pregnancies with each other and with those of spontaneously conceived pregnancies. Clinicians will be better informed about the adverse outcomes that have been documented in association with AHR, including obstetrical complications, adverse perinatal outcomes, multiple gestations, structural congenital abnormalities, chromosomal abnormalities, and imprinting disorders. Published literature was retrieved through searches of MEDLINE and the Cochrane Library from January 2005 to December 2012 using appropriate controlled vocabulary and key words (assisted reproduction, assisted reproductive technology, ovulation induction, intracytoplasmic sperm injection, embryo transfer, and in vitro fertilization). Results were not restricted to systematic reviews, randomized control trials/controlled clinical trials, and observational studies; studies of all designs published in English from January 2005 to December 2012 were reviewed, and additional publications were identified from the bibliographies of these articles. Searches were updated on a regular basis and incorporated in the guideline to August 2013. Grey (unpublished) literature was identified through searching the websites of health technology assessment and health technology assessment-related agencies, clinical practice guideline collections, clinical trial registries, and national and international medical specialty societies. The quality of evidence in this document was rated using the criteria described in the Report of the Canadian Task Force on Preventive Health Care (Table 1). Summary Statements 1. There is increasing evidence that infertility or subfertility is an

  10. Multiple births associated with assisted human reproduction in Canada.

    Science.gov (United States)

    Cook, Jocelynn L; Geran, Leslie; Rotermann, Michelle

    2011-06-01

    Assisted human reproduction has been associated with increased rates of multiple births. Data suggest that twins and higher order multiple pregnancies are at risk for pre- and postnatal health complications that contribute to stress on both the family and the Canadian health care system. No published Canadian data estimate the contribution of assisted human reproduction to multiple birth rates. This study was designed to determine the contributions of age and assisted human reproduction to multiple birth rates in Canada. We performed analyses of existing Canadian databases, using a mathematical model from the Centers for Disease Control and Prevention. More specifically, data from the Canadian Vital Statistics: Births and Stillbirths database were combined with data from the Canadian Assisted Reproductive Technologies Register collected by the Canadian Fertility and Andrology Society. Datasets were standardized to age distributions of mothers in 1978. RESULTS suggest that in vitro fertilization, ovulation induction, and age each contribute more to the rates of triplets than to twins. As expected, the contribution of natural factors was higher to twins than to triplets. These are the first Canadian data analyzed to separate and measure the contributions of age and assisted reproductive technologies to multiple birth rates. Our findings are important for guiding physician and patient education and informing the development of treatment protocols that will result in lower-risk pregnancies and improved long-term health for women and their offspring.

  11. Selection bias in studies of human reproduction-longevity trade-offs.

    Science.gov (United States)

    Helle, Samuli

    2017-12-13

    A shorter lifespan as a potential cost of high reproductive effort in humans has intrigued researchers for more than a century. However, the results have been inconclusive so far and despite strong theoretical expectations we do not currently have compelling evidence for the longevity costs of reproduction. Using Monte Carlo simulation, it is shown here that a common practice in human reproduction-longevity studies using historical data (the most relevant data sources for this question), the omission of women who died prior to menopausal age from the analysis, results in severe underestimation of the potential underlying trade-off between reproduction and lifespan. In other words, assuming that such a trade-off is expressed also during reproductive years, the strength of the trade-off between reproduction and lifespan is progressively weakened when women dying during reproductive ages are sequentially and non-randomly excluded from the analysis. In cases of small sample sizes (e.g. few hundreds of observations), this selection bias by reducing statistical power may even partly explain the null results commonly found in this field. Future studies in this field should thus apply statistical approaches that account for or avoid selection bias in order to recover reliable effect size estimates between reproduction and longevity. © 2017 The Author(s).

  12. Three-Dimensional, Transgenic Cell Models to Quantify Space Genotoxic Effects

    Science.gov (United States)

    Gonda, S. R.; Sognier, M. A.; Wu, H.; Pingerelli, P. L.; Glickman, B. W.; Dawson, David L. (Technical Monitor)

    1999-01-01

    The space environment contains radiation and chemical agents known to be mutagenic and carcinogenic to humans. Additionally, microgravity is a complicating factor that may modify or synergize induced genotoxic effects. Most in vitro models fail to use human cells (making risk extrapolation to humans more difficult), overlook the dynamic effect of tissue intercellular interactions on genotoxic damage, and lack the sensitivity required to measure low-dose effects. Currently a need exists for a model test system that simulates cellular interactions present in tissue, and can be used to quantify genotoxic damage induced by low levels of radiation and chemicals, and extrapolate assessed risk to humans. A state-of-the-art, three-dimensional, multicellular tissue equivalent cell culture model will be presented. It consists of mammalian cells genetically engineered to contain multiple copies of defined target genes for genotoxic assessment,. NASA-designed bioreactors were used to coculture mammalian cells into spheroids, The cells used were human mammary epithelial cells (H184135) and Stratagene's (Austin, Texas) Big Blue(TM) Rat 2 lambda fibroblasts. The fibroblasts were genetically engineered to contain -a high-density target gene for mutagenesis (60 copies of lacl/LacZ per cell). Tissue equivalent spheroids were routinely produced by inoculation of 2 to 7 X 10(exp 5) fibroblasts with Cytodex 3 beads (150 micrometers in diameter). at a 20:1 cell:bead ratio, into 50-ml HARV bioreactors (Synthecon, Inc.). Fibroblasts were cultured for 5 days, an equivalent number of epithelial cells added, and the fibroblast/epithelial cell coculture continued for 21 days. Three-dimensional spheroids with diameters ranging from 400 to 600 micrometers were obtained. Histological and immunohistochemical Characterization revealed i) both cell types present in the spheroids, with fibroblasts located primarily in the center, surrounded by epithelial cells; ii) synthesis of extracellular matrix

  13. Analysis of an epigenetic argument against human reproductive cloning.

    Science.gov (United States)

    Nordgren, Anders

    2006-08-01

    Human reproductive cloning is a much disputed ethical issue. This technology is often condemned as being contrary to human dignity. However, there are also risk arguments. An ethical argument that is often put forward by scientists but seldom developed in more detail focuses on health risks in animal cloning. There is a high risk that animal clones exhibit abnormalities and these are increasingly believed to be due to errors in epigenetic reprogramming. The argument is that human reproductive cloning should not be carried out because human clones are also likely to exhibit abnormalities due to inappropriate epigenetic reprogramming. Different versions of this epigenetic argument are analysed, a categorical version and a non-categorical. The non-categorical version is suggested to be more well-considered. With regard to policy making on human reproductive cloning, the categorical version can be used to prescribe a permanent ban, while the non-categorical version can be used to prescribe a temporary ban. The implications of the precautionary principle--as interpreted in the European Union--are investigated. The conclusion is that it seems possible to support a temporary ban by reference to this principle.

  14. Human reproductive system disturbances and pesticide exposure in Brazil

    Directory of Open Access Journals (Sweden)

    Koifman Sergio

    2002-01-01

    Full Text Available The observation of reproductive disturbances in humans and in the wildlife has been reported in the last decade in different countries. Exposure to different chemicals possibly acting in the endocrine system or endocrine disruptors, including pesticides, has been a hypothesis raised to explain the observed changes. This paper aimed to present results of an epidemiological ecologic study carried out to explore population data on pesticides exposure in selected Brazilian states in the eighties and human reproductive outcomes in the nineties. Pearson correlation coefficients were ascertained between available data pesticides sales in eleven states in Brazil in 1985 and selected further reproductive outcomes or their surrogates. Moderate to high correlations were observed to infertility, testis, breast, prostate and ovarian cancer mortality. Despite the restrains of ecologic studies to establish cause-effect relationships, the observed results are in agreement with evidence supporting a possible association between pesticides exposure and the analyzed reproductive outcomes.

  15. Comparison of the in vivo and in vitro genotoxicity of glyphosate isopropylamine salt in three different organisms

    Directory of Open Access Journals (Sweden)

    Carlos Alvarez-Moya

    2014-01-01

    Full Text Available There is considerable controversy with regard to the genotoxicity of glyphosate, with some reports stating that this compound is non-toxic for fish, birds and mammals. In this work, we used the comet assay to examine the genotoxicity of glyphosate isopropylamine (0.7, 7, 70 and 700 µM in human lymphocytes, erythrocytes of Oreochromis niloticus and staminal nuclei of Tradescantia (4430 in vitro and in vivo. Cells, nuclei and fish that had and had not been exposed to 5 mM N-nitrosodiethylamine (NDEA were used as positive and negative controls, respectively. Significant (p 7 µM, whereas in vitro, glyphosphate was genotoxic in human lymphocytes and Tradescantia hairs at > 0.7 µM. These results indicate that glyphosate is genotoxic in the cells and organisms studied at concentrations of 0.7-7 µM.

  16. The ecology and evolutionary endocrinology of reproduction in the human female.

    Science.gov (United States)

    Vitzthum, Virginia J

    2009-01-01

    Human reproductive ecology (HRE) is the study of the mechanisms that link variation in reproductive traits with variation in local habitats. Empirical and theoretical contributions from biological anthropology, physiology, and demography have established the foundation necessary for developing a comprehensive understanding, grounded in life history theory (LHT), of temporal, individual, and populational variation in women's reproductive functioning. LHT posits that natural selection leads to the evolution of mechanisms that tend to allocate resources to the competing demands of growth, reproduction, and survival such that fitness is locally maximized. (That is, among alternative allocation patterns exhibited in a population, those having the highest inclusive fitness will become more common over generational time.) Hence, strategic modulation of reproductive effort is potentially adaptive because investment in a new conception may risk one's own survival, future reproductive opportunities, and/or current offspring survival. The hypothalamic-pituitary-ovarian (HPO) axis is the principal neuroendocrine pathway by which the human female modulates reproductive functioning according to the changing conditions in her habitat. Adjustments of reproductive investment in a potential conception are manifested in temporal and individual variation in ovarian cycle length, ovulation, hormone levels, and the probability of conception. Understanding the extent and causes of adaptive and non-adaptive variation in ovarian functioning is fundamental to ascertaining the proximate and remote determinants of human reproductive patterns. In this review I consider what is known and what still needs to be learned of the ecology of women's reproductive biology, beginning with a discussion of the principal explanatory frameworks in HRE and the biometry of ovarian functioning. Turning next to empirical studies, it is evident that marked variation between cycles, women, and populations is the

  17. The ethics of human reproductive cloning: when world views collide.

    Science.gov (United States)

    Cohen, Cynthia B

    2004-01-01

    Two camps in bioethics with seemingly opposing world views have staked out conflicting positions regarding the ethics of human reproductive cloning. These camps do not appear to share common concepts or ways of reasoning through which to exchange views and come to a meeting of minds about uses of this technology. Yet analysis of their respective approaches to several issues surrounding reproductive cloning, such as where the ethical limits of individual reproductive choice lie, whether the use of this technology would violate human dignity, whether it would create risks to the resulting fetuses and children that would make its use intolerable, and whether it would challenge certain core social values, reveals that they are not wholly opposed to one another. Indeed, it displays that they hold certain beliefs, values, and concerns in common. Moreover, it indicates that the different world views that they each presuppose, while flawed in certain respects, do not collide in every respect, but can be reconciled in significant ways that provide fertile ground for agreement about several issues related to human reproductive cloning.

  18. Soil genotoxicity assessment: a new stategy based on biomolecular tools and plant bioindicators.

    Science.gov (United States)

    Citterio, Sandra; Aina, Roberta; Labra, Massimo; Ghiani, Alessandra; Fumagalli, Pietro; Sgorbati, Sergio; Santagostino, Angela

    2002-06-15

    The setting up of efficient early warning systems is a challenge to research for preventing environmental alteration and human disease. In this paper, we report the development and the field application of a new biomonitoring methodology for assessing soil genotoxicity. In the first part, the use of amplified fragment length polymorphism and flow cytometry techniques to detect DNA damage induced by soils artificially contaminated with heavy metals as potentially genotoxic compounds is explained. Results show that the combination of the two techniques leads to efficient detection of the sublethal genotoxic effect induced in the plant bioindicator by contaminated soil. By contrast, the classic mortality, root, and shoot growth vegetative endpoints prove inappropriate for assessing soil genotoxicity because, although they cause genotoxic damage, some heavy metals do not affect sentinel plant development negatively. The statistical elaboration of the data obtained led to the development of a statistical predictive model which differentiates four different levels of soil genotoxic pollution and can be used everywhere. The second part deals with the application of the biomonitoring protocol in the genotoxic assessment of two areas surrounding a steelworks in northern Italy and the effectiveness of this methodology. In this particular case, in these areas, the predictive model reveals a pollution level strictly correlated to the heavy metal concentrations revealed by traditional chemical analysis.

  19. Evaluation of perfluorooctanoate for potential genotoxicity

    Directory of Open Access Journals (Sweden)

    John L. Butenhoff

    2014-01-01

    Full Text Available Perfluorooctanoate (PFOA is a fully fluorinated eight-carbon fatty acid analog with exceptional stability toward degradation that has been used as an industrial surfactant and has been detected in environmental and biological matrices. Exposures to PFOA in the workplace and in the environment have continuously stimulated investigations into its potential human health hazards. In this article, the results of fifteen unpublished genotoxicity assays conducted with perfluorooctanoate (as either the linear or linear/branched ammonium salt (APFO or the linear/branched sodium salt are reported and include: seven mutation assays (three in vitro reverse mutation assays with histidine auxotrophic strains of Salmonella typhimurium, two in vitro reverse mutation assays with the tryptophan auxotrophic Escherichia coli WP2uvr strain, one in vitro mitotic recombination (gene conversion assay with Saccharomyces cerevisiae D4, and an in vitro Chinese hamster ovary (CHO HGPRT forward mutation assay; seven studies to assess potential for chromosomal damage (three in vitro CHO chromosomal aberration studies, an in vitro human whole blood lymphocyte chromosomal aberration study, and three in vivo mouse micronucleus assays; and an in vitro C3H 10T1/2 cell transformation assay. Although PFOA has not been demonstrated to be metabolized, all in vitro assays were conducted both in the presence and in the absence of a mammalian hepatic microsomal activation system. These assays were originally described in twelve contract laboratory reports which have been available via the United States Environmental Protection Agency public docket (Administrative Record 226 for over a decade; however, the details of these assays have not been published previously in the open scientific literature. With the exception of limited positive findings at high and cytotoxic concentrations in some assay trials which reflected the likely consequence of cytotoxic disruption of normal cellular

  20. Radioprotective activity of curcumin-encapsulated liposomes against genotoxicity caused by Gamma Cobalt-60 irradiation in human blood cells.

    Science.gov (United States)

    Nguyen, Minh-Hiep; Pham, Ngoc-Duy; Dong, Bingxue; Nguyen, Thi-Huynh-Nga; Bui, Chi-Bao; Hadinoto, Kunn

    2017-11-01

    While the radioprotective activity of curcumin against genotoxicity has been well established, its poor oral bioavailability has limited its successful clinical applications. Nanoscale formulations, including liposomes, have been demonstrated to improve curcumin bioavailability. The objective of the present work was (1) to prepare and characterize curcumin-encapsulated liposomes (i.e. size, colloidal stability, encapsulation efficiency, and payload), and (2) subsequently to evaluate their radioprotective activity against genotoxicity in human blood cells caused by Gamma Cobalt-60 irradiation. The curcumin-encapsulated liposomes were prepared by lipid-film hydration method using commercial phosphatidylcholine (i.e. Phospholipon ® 90G). The blood cells were obtained from healthy male donors (n = 3) under an approved ethics protocol. The cell uptake and the radioprotective activity of the curcumin-encapsulated liposomes were characterized by fluorescence microscopy and micronucleus assay, respectively. Nanoscale curcumin-encapsulated liposomes exhibiting good physical characteristics and successful uptake by the human blood cells were successfully prepared. The radioprotective activity of the curcumin-encapsulated liposomes was found to be dependent on the curcumin concentration, where an optimal concentration existed (i.e. 30 μg/mL) independent of the irradiation dose, above which the radioprotective activity had become stagnant (i.e. no more reduction in the micronuclei frequency). The present results established for the first time the radioprotective activity of curcumin-encapsulated liposomes in human blood cells, which coupled by its well-established bioavailability, boded well for its potential application as a nanoscale delivery system of other radioprotective phytochemicals.

  1. The need for interaction between assisted reproduction technology and genetics: recommendations of the European Societies of Human Genetics and Human Reproduction and Embryology.

    Science.gov (United States)

    2006-08-01

    Infertility and reproductive genetic risk are both increasing in our societies because of lifestyle changes and possibly environmental factors. Owing to the magnitude of the problem, they have implications not only at the individual and family levels but also at the community level. This leads to an increasing demand for access to assisted reproduction technology (ART) and genetic services, especially when the cause of infertility may be genetic in origin. The increasing application of genetics in reproductive medicine and vice versa requires closer collaboration between the two disciplines. ART and genetics are rapidly evolving fields where new technologies are currently introduced without sufficient knowledge of their potential long-term effects. As for any medical procedures, there are possible unexpected effects which need to be envisaged to make sure that the balance between benefits and risks is clearly on the benefit side. The development of ART and genetics as scientific activities is creating an opportunity to understand the early stages of human development, which is leading to new and challenging findings/knowledge. However, there are opinions against investigating the early stages of development in humans who deserve respect and attention. For all these reasons, these two societies, European Society of Human Genetics (ESHG) and European Society of Human Reproduction and Embryology (ESHRE), have joined efforts to explore the issues at stake and to set up recommendations to maximize the benefit for the couples in need and for the community.

  2. Induction of micronuclei by 2-hydroxypyridine in water and elimination of solution genotoxicity by UVC (254 nm) photolysis

    International Nuclear Information System (INIS)

    Skoutelis, Charalambos G.; Vlastos, Dimitris; Kortsinidou, Marianna C.; Theodoridis, Ioannis T.; Papadaki, Maria I.

    2011-01-01

    Highlights: ► 2-Hydroxypyridine (2-HPY) is the major metabolite of 2-halogenated pyridines photolysis. ► We examine the genotoxicity of 2-HPY in cultured human lymphocytes applying the micronucleus assay. ► 2-HPY was found to be genotoxic. ► Aqueous solutions of 2-HPY were irradiated by UV at 254 nm. ► Solution genotoxicity can be completely removed after prolonged phototreatment. - Abstract: 2-Hydroxypyridine (2-HPY) is a major first-stage product formed upon the photolytic destruction of 2-halogenated pyridines. Genotoxicity of 2-HPY in water was studied as a function of concentration. Aqueous solutions of 2-HPY were irradiated by ultraviolet (UV) at 254 nm. 2-HPY concentration, solution total organic carbon (TOC) concentration and solution genotoxicity were measured as a function of treatment time and their profile as a function of time is presented in this work. 2-HPY was found to be genotoxic at all concentrations in the range of 5–400 μg ml −1 . 2-HPY mineralises completely upon prolonged UV irradiation. All untreated and irradiated solution samples, taken at different photo-treatment times, were tested in cultured human lymphocytes applying the cytokinesis block micronucleus (CBMN) assay. The genotoxicity of the solution was reduced near to the control level after prolonged UV irradiation.

  3. Integrated analysis of the ecotoxicological and genotoxic effects of the antimicrobial peptide melittin on Daphnia magna and Pseudokirchneriella subcapitata

    International Nuclear Information System (INIS)

    Galdiero, Emilia; Maselli, Valeria; Falanga, Annarita; Gesuele, Renato; Galdiero, Stefania; Fulgione, Domenico; Guida, Marco

    2015-01-01

    Melittin is a major constituent of the bee venom of Apis mellifera with a broad spectrum of activities. Melittin therapeutical potential is subject to its toxicity and the assessment of ecotoxicity and genotoxicity is of particular interest for therapeutic use. Here we analyzed the biological effects of melittin on two aquatic species, which are representative of two different levels of the aquatic trophic chain: the invertebrate Daphnia magna and the unicellular microalgae Pseudokirchneriella subcapitata. The attention was focused on the determination of: i) ecotoxicity; ii) genotoxicity; iii) antigenotoxicity. Our main finding is that melittin is detrimental to D. magna reproduction and its sub-lethal concentrations create an accumulation dependent on exposition times and a negative effect on DNA. We also observed that melittin significantly delayed time to first eggs. Moreover, results showed that melittin exerted its toxic and genotoxic effects in both species, being a bit more aggressive towards P. subcapitata. - Highlights: • We examine ecotoxicity to study how AMPs affect the environment. • We examine genotoxicity in order to analyze the damages to the DNA. • We examine the antigenotoxicity in order to verify DNA repair ability of the cells. • Possible therapeutical applications of AMPs depend on assessment of ecotoxicity. - Melittin exerts its dose dependent toxic and genotoxic effects on both indicators; no toxicity is found at concentrations that may typically reach the environment

  4. Cytotoxicity and genotoxicity of a monazite component: lanthanum effects on the viability and induction of breaks in the DNA of human lymphocytes

    International Nuclear Information System (INIS)

    Paiva, Amanda Valle de Almeida

    2007-01-01

    The Monazite is a mineral extracted from open mines. It is constituted by lanthanum element aggregated with cerium, yttrium and thorium [(Ce, La, Y, Th)PO 4 ]. Lanthanum (La) is a rare-earth metal with applications in agriculture, industry and medicine. Since lanthanides and their compounds show a broad spectrum of applications there is an increased risk of incorporation in human. Inhalation of aerosols containing La is the main route of incorporation in workers exposed to several chemical forms of La. Herein, we examined the effect of lanthanum nitrate - La(NO 3 ) 3 in human lymphocytes. JURKAT cells and human peripheral lymphocytes (HPL) were used to evaluate the effect of La(NO 3 ) 3 on viability (apoptosis or necrosis) and DNA strand breaks induction or/and alkali-labile sites (ALS). We demonstrate that La has a cytotoxic and genotoxic effect on both cell lines. The results indicate that necrosis is the pathway by which La(NO 3 ) 3 induces cytotoxicity. The vitamin E is able to diminish DNA strand breaks induced by La(NO 3 ) 3 suggesting that reactive oxygen species (ROS) may be involved in the genotoxic process. (author)

  5. Cobalt-induced genotoxicity in male zebrafish (Danio rerio), with implications for reproduction and expression of DNA repair genes

    Energy Technology Data Exchange (ETDEWEB)

    Reinardy, Helena C.; Syrett, James R. [School of Biomedical and Biological Sciences, University of Plymouth (United Kingdom); Jeffree, Ross A. [Faculty of Science, University of Technology, Sydney, PO Box 123, Broadway, NSW 2007 (Australia); Henry, Theodore B., E-mail: ted.henry@plymouth.ac.uk [School of Biomedical and Biological Sciences, University of Plymouth (United Kingdom); Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN 37996 (United States); Department of Forestry, Wildlife and Fisheries, University of Tennessee, Knoxville, TN 37996. USA (United States); Jha, Awadhesh N. [School of Biomedical and Biological Sciences, The University of Plymouth (United Kingdom)

    2013-01-15

    Although cobalt (Co) is an environmental contaminant of surface waters in both radioactive (e.g. {sup 60}Co) and non-radioactive forms, there is relatively little information about Co toxicity in fishes. The objective of this study was to investigate acute and chronic toxicity of Co in zebrafish, with emphasis on male genotoxicity and implications for reproductive success. The lethal concentration for 50% mortality (LC{sub 50}) in larval zebrafish exposed (96 h) to 0-50 mg l{sup -1} Co was 35.3 {+-} 1.1 (95% C.I.) mg l{sup -1} Co. Adult zebrafish were exposed (13 d) to sub-lethal (0-25 mg l{sup -1}) Co and allowed to spawn every 4 d and embryos were collected. After 12-d exposure, fertilisation rate was reduced (6% total eggs fertilised, 25 mg l{sup -1}) and embryo survival to hatching decreased (60% fertilised eggs survived, 25 mg l{sup -1}). A concentration-dependent increase in DNA strand breaks was detected in sperm from males exposed (13 d) to Co, and DNA damage in sperm returned to control levels after males recovered for 6 d in clean water. Induction of DNA repair genes (rad51, xrcc5, and xrcc6) in testes was complex and not directly related to Co concentration, although there was significant induction in fish exposed to 15 and 25 mg l{sup -1} Co relative to controls. Induction of 4.0 {+-} 0.9, 2.5 {+-} 0.7, and 3.1 {+-} 0.7-fold change (mean {+-} S.E.M. for rad51, xrcc5, and xrcc6, respectively) was observed in testes at the highest Co concentration (25 mg l{sup -1}). Expression of these genes was not altered in offspring (larvae) spawned after 12-d exposure. Chronic exposure to Co resulted in DNA damage in sperm, induction of DNA repair genes in testes, and indications of reduced reproductive success.

  6. In vitro and in vivo genotoxicity of 1,3-butadiene and metabolites.

    OpenAIRE

    Arce, G T; Vincent, D R; Cunningham, M J; Choy, W N; Sarrif, A M

    1990-01-01

    1,3-Butadiene and two major genotoxic metabolites 3,4-epoxybutene (EB) and 1,2:3,4-diepoxybutane (DEB) were used as model compounds to determine if genetic toxicity findings in animal and human cells can aid in extrapolating animal toxicity data to man. Sister chromatid exchange (SCE) and micronucleus induction results indicated 1,3-butadiene was genotoxic in the bone marrow of the mouse but not the rat. This paralleled the chronic bioassays which showed mice to be more susceptible than rats ...

  7. Does Caesalpinia bonducella ameliorate genotoxicity? An in vitro ...

    African Journals Online (AJOL)

    The aim of the study is to investigate the antimutagenic and antigenotoxic potential of alcoholic extracts of C. bonducella against methyl methane sulfonate (MMS) induced genotoxicity. In this experiment we have used in vitro method i.e., human lymphocyte culture and in vivo method in bone marrow cells of albino mice, ...

  8. Molecular and cytogenetic assessment of Dipterygium glaucum genotoxicity

    Directory of Open Access Journals (Sweden)

    NADA H. ALTWATY

    2016-01-01

    Full Text Available ABSTRACT The aim of the present study is to assess the genotoxicity of Dipterygium glaucum grows widely in Saudi Arabia desert to produce safety herbal products. This work is considered the first and pioneer report so far due to the lack and poor evaluated reports of the plant species for their mutagensity, genotoxicity and cytogenetics effects. Cytogenetic effects of D. glaucum on mitotic in roots of Vicia faba showed reduction in mitotic activity using three extracts; water, ethanol and ethyl acetate. Chromosomal abnormalities were recorded that included stickiness of chromosomes, chromatin bridge, fragments, lagging chromosome and micronuclei. Protein bands and RAPD analyses of V. faba treated with three D. glaucum extracts revealed some newly induced proteins and DNA fragments and other disappeared. Chemical constitution of the plant species should be identified with their biological activities against human and animal cells like HeLa cancer cell line. We are recommending using additional genotoxicity tests and other toxicity tests on animal culture with different concentrations and also utilizing several drought and heat tolerant genes of the plant species in gene cloning to develop and improve other economical crop plants instead of using the species as oral herbal remedy

  9. Acute toxicity and genotoxic activity of avocado seed extract (Persea americana Mill., c.v. Hass).

    Science.gov (United States)

    Padilla-Camberos, Eduardo; Martínez-Velázquez, Moisés; Flores-Fernández, José Miguel; Villanueva-Rodríguez, Socorro

    2013-01-01

    The use of vegetal extracts requires toxicological and genotoxic evaluations to establish and verify safety before being added to human cosmetic, pharmaceutical medicine, or alimentary products. Persea americana seeds have been used in traditional medicine as treatment for several diseases. In this work, the ethanolic seed extract of Persea americana was evaluated with respect to its genotoxic potential through micronucleus assay in rodents. The frequency of micronuclei in groups of animals treated with avocado seed extract showed no differences compared to the negative control (vehicle); therefore, it is considered that the avocado seed extract showed no genotoxic activity in the micronucleus test.

  10. Ethical issues in human reproduction: Islamic perspectives.

    Science.gov (United States)

    Serour, G I

    2013-11-01

    Sexual and reproductive rights of women are essential components of human rights. They should never be transferred, renounced or denied for any reason based on race, religion, origin, political opinion or economic conditions. Women have the right to the highest attainable standard of health care for all aspects of their reproductive and sexual health (RSH). The principle of autonomy emphasizes the important role of women in the decision-making. Choices of women in reproduction, after providing evidence based information, should be respected. Risks, benefits and alternatives should be clearly explained before they make their free informed consent. Justice requires that all be treated with equal standard and have equal access to their health needs without discrimination or coercion. When resources are limited there is tension between the principle of justice and utility. Islamic perspectives of bioethics are influenced by primary Sharia namely the Holy Quran, authenticated traditions and saying of the Profit Mohamed (PBUH), Igmaa and Kias (analogy). All the contemporary ethical principles are emphasized in Islamic Shariaa, thus these principles should be observed when providing reproductive and sexual health services for Muslim families or communities. The Family is the basic unit in Islam. Safe motherhood, family planning, and quality reproductive and sexual health information and services and assisted reproductive technology are all encouraged within the frame of marriage. While the Shiaa sect permits egg donation, and surrogacy the Sunni sect forbids a third party contribution to reproduction. Harmful practices in RSH as FGM, child marriage and adolescent pregnancy are prohibited in Islam. Conscientious objection to treatment should not refrain the physician from appropriate referral.

  11. [Study on the chemical components of edible oil fume in kitchen and its genotoxity on Drosophila].

    Science.gov (United States)

    Li, S; Wang, Y; Zhang, J; Zhao, X

    1999-01-30

    To study the chemical components of the condensate of edible oil fume in kitchen and its genotoxicity on Drosophila. Analysis for the chemical components was carried out by gas chromatography and mass spectra (GC/MS) and its genotoxicity was studied by sex linked recessive lethal (SLRL) test in Drosophila. A total of 74 organic compounds were found in samples of condensed oil from the fume in kitchen. It included hydroxylic acids, hydrocarbons, alcohols, esters, aldehydes, ketones, aromatic compounds, and steroids, etc. The total mutagenicity rates in SLRL test induced by the samples at concentrations of 110,320 and 960 mg/L were 0.1732%, 0.4306% and 0.1707% respectively. The sterility rates of the first broods were 2.564%, 2.056% and 2.845% at above 3 concentrations respectively(P < 0.05, as compared with the control). The mutagenicity rate of the second brood at 320 mg/L was 0.530% and that of the third brood at 110 mg/L 0.540%(P < 0.001). Some of the compounds in the condensate of edible oil fume were proved to have high recessive lethal effect and genotoxic effect on the reproductive system of Drosophila.

  12. Human Leukocyte Antigen-G Within the Male Reproductive System: Implications for Reproduction.

    Science.gov (United States)

    Hviid, Thomas Vauvert F

    2015-01-01

    In sexual reproduction in humans, a man has a clear interest in ensuring that the immune system of his female partner accepts the semi-allogenic fetus. Increasing attention has been given to soluble immunomodulatory molecules in the seminal fluid as one mechanism of ensuring this, possibly by "priming" the woman's immune system before conception and at conception. Recent studies have demonstrated the presence of the immunoregulatory and tolerance-inducible human leukocyte antigen (HLA)-G in the male reproductive organs. The expression of HLA-G in the blastocyst and by extravillous trophoblast cells in the placenta during pregnancy has been well described. Highly variable amounts of soluble HLA-G (sHLA-G) in seminal plasma from different men have been reported, and the concentration of sHLA-G is associated with HLA-G genotype. A first pilot study indicates that the level of sHLA-G in seminal plasma may even be associated with the chance of pregnancy in couples, where the male partner has reduced semen quality. More studies are needed to verify these preliminary findings.

  13. In vitro maturation of human oocytes for assisted reproduction.

    Science.gov (United States)

    Jurema, Marcus W; Nogueira, Daniela

    2006-11-01

    To describe and evaluate the current practice of in vitro maturation of oocytes for assisted reproduction. Review of the available and relevant literature regarding in vitro maturation of oocytes. In vitro maturation of human oocytes retrieved from antral ovarian follicles is an emerging procedure quickly being incorporated into the realm of assisted reproductive technologies. This new technology has several potential advantages over traditional controlled ovarian hyperstimulation for IVF, such as reduction of costs by minimizing gonadotropin and GnRH analogue use, elimination of ovarian hyperstimulation syndrome, and simplicity of protocol. In vitro maturation of oocytes for assisted reproduction in human beings still is undergoing refinement but currently is providing efficacy and safety outcome comparable to that of traditional IVF in recent selected studies. Implementing in vitro maturation into an established IVF practice is feasible and requires only a few simple adjustments. Crucial to the advancement and optimization of the technology is a better understanding of how to maximize immature oocyte developmental competence and endometrial receptivity.

  14. Emotional reactions to human reproductive cloning.

    Science.gov (United States)

    May, Joshua

    2016-01-01

    Extant surveys of people's attitudes towards human reproductive cloning focus on moral judgements alone, not emotional reactions or sentiments. This is especially important given that some (especially Leon Kass) have argued against such cloning on the ground that it engenders widespread negative emotions, like disgust, that provide a moral guide. To provide some data on emotional reactions to human cloning, with a focus on repugnance, given its prominence in the literature. This brief mixed-method study measures the self-reported attitudes and emotions (positive or negative) towards cloning from a sample of participants in the USA. Most participants condemned cloning as immoral and said it should be illegal. The most commonly reported positive sentiment was by far interest/curiosity. Negative emotions were much more varied, but anxiety was the most common. Only about a third of participants selected disgust or repugnance as something they felt, and an even smaller portion had this emotion come to mind prior to seeing a list of options. Participants felt primarily interested and anxious about human reproductive cloning. They did not primarily feel disgust or repugnance. This provides initial empirical evidence that such a reaction is not appropriately widespread. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  15. Manifestations of Immune Privilege in the Human Reproductive Tract

    Directory of Open Access Journals (Sweden)

    Gary F Clark

    2013-02-01

    Full Text Available Like other mucosal surfaces (e.g., the gastrointestinal tract, the respiratory tract, the human female reproductive tract acts as an initial barrier to foreign antigens. In this role, the epithelial surface and subepithelial immune cells must balance protection against pathogenic insults against harmful inflammatory reactions and acceptance of particular foreign antigens. Two common examples of these acceptable foreign antigens are the fetal allograft and human semen/sperm. Both are purposely deposited into the female genital tract and appropriate immunologic response to these non-self antigens is essential to the survival of the species. In light of the weight of this task, it is not surprising that multiple, redundant and overlapping mechanisms are involved. For instance, cells at the immunologic interface between self (female reproductive tract epithelium and non-self (placental trophoblast cells or human sperm express glycosylation patterns that mimic those on many metastatic cancer cells and successful pathogens. The cytokine/chemokine milieu at this interface is altered through endocrine and immunologic mechanisms to favor tolerance of non-self. The foreign cells themselves also play an integral role in their own immunologic acceptance, since sperm and placental trophoblast cells are unusual and unique in their antigen presenting molecule expression patterns. Here, we will discuss these and other mechanisms that allow the human female reproductive tract to perform this delicate and indispensible balancing act.

  16. Genotoxicity of nanomaterials: DNA damage and micronuclei induced by carbon nanotubes and graphite nanofibres in human bronchial epithelial cells in vitro.

    Science.gov (United States)

    Lindberg, Hanna K; Falck, Ghita C-M; Suhonen, Satu; Vippola, Minnamari; Vanhala, Esa; Catalán, Julia; Savolainen, Kai; Norppa, Hannu

    2009-05-08

    Despite the increasing industrial use of different nanomaterials, data on their genotoxicity are scant. In the present study, we examined the potential genotoxic effects of carbon nanotubes (CNTs; >50% single-walled, approximately 40% other CNTs; 1.1 nm x 0.5-100 microm; Sigma-Aldrich) and graphite nanofibres (GNFs; 95%; outer diameter 80-200 nm, inner diameter 30-50 nm, length 5-20 microm; Sigma-Aldrich) in vitro. Genotoxicity was assessed by the single cell gel electrophoresis (comet) assay and the micronucleus assay (cytokinesis-block method) in human bronchial epithelial BEAS 2B cells cultured for 24h, 48h, or 72h with various doses (1-100 microg/cm(2), corresponding to 3.8-380 microg/ml) of the carbon nanomaterials. In the comet assay, CNTs induced a dose-dependent increase in DNA damage at all treatment times, with a statistically significant effect starting at the lowest dose tested. GNFs increased DNA damage at all doses in the 24-h treatment, at two doses (40 and 100 microg/cm(2)) in the 48-h treatment (dose-dependent effect) and at four doses (lowest 10 microg/cm(2)) in the 72-h treatment. In the micronucleus assay, no increase in micronucleated cells was observed with either of the nanomaterials after the 24-h treatment or with CNTs after the 72-h treatment. The 48-h treatment caused a significant increase in micronucleated cells at three doses (lowest 10 microg/cm(2)) of CNTs and at two doses (5 and 10 microg/cm(2)) of GNFs. The 72-h treatment with GNFs increased micronucleated cells at four doses (lowest 10 microg/cm(2)). No dose-dependent effects were seen in the micronucleus assay. The presence of carbon nanomaterial on the microscopic slides disturbed the micronucleus analysis and made it impossible at levels higher than 20 microg/cm(2) of GNFs in the 24-h and 48-h treatments. In conclusion, our results suggest that both CNTs and GNFs are genotoxic in human bronchial epithelial BEAS 2B cells in vitro. This activity may be due to the fibrous nature

  17. Genotoxicity studies on DNA-interactive telomerase inhibitors with application as anti-cancer agents.

    Science.gov (United States)

    Harrington, Dean J; Cemeli, Eduardo; Carder, Joanna; Fearnley, Jamie; Estdale, Sian; Perry, Philip J; Jenkins, Terence C; Anderson, Diana

    2003-01-01

    Telomerase-targeted strategies have aroused recent interest in anti-cancer chemotherapy, because DNA-binding drugs can interact with high-order tetraplex rather than double-stranded (duplex) DNA targets in tumour cells. However, the protracted cell-drug exposure times necessary for clinical application require that telomerase inhibitory efficacy must be accompanied by both low inherent cytotoxicity and the absence of mutagenicity/genotoxicity. For the first time, the genotoxicity of a number of structurally diverse DNA-interactive telomerase inhibitors is examined in the Ames test using six Salmonella typhimurium bacterial strains (TA1535, TA1537, TA1538, TA98, TA100, and TA102). DNA damage induced by each agent was also assessed using the Comet assay with human lymphocytes. The two assay procedures revealed markedly different genotoxicity profiles that are likely to reflect differences in metabolism and/or DNA repair between bacterial and mammalian cells. The mutational spectrum for a biologically active fluorenone derivative, shown to be mutagenic in the TA100 strain, was characterised using a novel and rapid assay method based upon PCR amplification of a fragment of the hisG46 allele, followed by RFLP analysis. Preliminary analysis indicates that the majority (84%) of mutations induced by this compound are C --> A transversions at position 2 of the missense proline codon of the hisG46 allele. However, despite its genotoxic bacterial profile, this fluorenone agent gave a negative response in the Comet assay, and demonstrates how unwanted systemic effects (e.g., cytotoxicity and genotoxicity) can be prevented or ameliorated through suitable molecular fine-tuning of a candidate drug in targeted human tumour cells. Copyright 2003 Wiley-Liss, Inc.

  18. Acute Toxicity and Genotoxic Activity of Avocado Seed Extract (Persea americana Mill., c.v. Hass

    Directory of Open Access Journals (Sweden)

    Eduardo Padilla-Camberos

    2013-01-01

    Full Text Available The use of vegetal extracts requires toxicological and genotoxic evaluations to establish and verify safety before being added to human cosmetic, pharmaceutical medicine, or alimentary products. Persea americana seeds have been used in traditional medicine as treatment for several diseases. In this work, the ethanolic seed extract of Persea americana was evaluated with respect to its genotoxic potential through micronucleus assay in rodents. The frequency of micronuclei in groups of animals treated with avocado seed extract showed no differences compared to the negative control (vehicle; therefore, it is considered that the avocado seed extract showed no genotoxic activity in the micronucleus test.

  19. A curvilinear effect of height on reproductive success in human males

    NARCIS (Netherlands)

    Stulp, G.; Pollet, T.V.; Verhulst, S.; Buunk, A.P.

    2012-01-01

    Human male height is associated with mate choice and intra-sexual competition, and therefore potentially with reproductive success. A literature review (n = 18) on the relationship between male height and reproductive success revealed a variety of relationships ranging from negative to curvilinear

  20. A curvilinear effect of height on reproductive success in human males

    NARCIS (Netherlands)

    Stulp, Gert; Pollet, Thomas V.; Verhulst, Simon; Buunk, Abraham P.

    Human male height is associated with mate choice and intra-sexual competition, and therefore potentially with reproductive success. A literature review (n = 18) on the relationship between male height and reproductive success revealed a variety of relationships ranging from negative to curvilinear

  1. Genotoxicity of gemfibrozil in the gilthead seabream (Sparus aurata).

    Science.gov (United States)

    Barreto, A; Luis, L G; Soares, A M V M; Paíga, P; Santos, L H M L M; Delerue-Matos, C; Hylland, K; Loureiro, S; Oliveira, M

    2017-09-01

    Widespread use of pharmaceuticals and suboptimal wastewater treatment have led to increased levels of these substances in aquatic ecosystems. Lipid-lowering drugs such as gemfibrozil, which are among the most abundant human pharmaceuticals in the environment, may have deleterious effects on aquatic organisms. We examined the genotoxicity of gemfibrozil in a fish species, the gilthead seabream (Sparus aurata), which is commercially important in southern Europe. Following 96-h waterborne exposure, molecular (erythrocyte DNA strand breaks) and cytogenetic (micronuclei and other nuclear abnormalities in cells) endpoints were measured. Gemfibrozil was positive in both endpoints, at environmentally relevant concentrations, a result that raises concerns about the potential genotoxic effects of the drug in recipient waters. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Toward a Genotoxic Protection Factor

    International Nuclear Information System (INIS)

    Cesarini, J.P.; Demanneville, S.

    2000-01-01

    P53, a molecule normally expressed before mitosis, is considered as the 'guardian of the genome'. In the skin its level is normally very low (<3% of cells), detected by immunohistochemical methods. At least 50% of the keratinocytes express p53 protein, 24 h following a significant UV irradiation (2 SED). It is expected using sunscreens to reduce the expression of p53 in parallel with their ability to reduce the actinic erythema, the endpoint adopted to evaluate the Sun Protection Factor (SPF) of sunscreens. P53 detection on biopsies performed on the buttocks of human volunteers was used to evaluate the genotoxic protecting factor (GPF) of several sunscreens with either high UVB filtration or high UVA filtration, characterised by various SPF (COLIPA) from 10 to 40. The p53 count in parallel with sunburn cell count were the parameters studied. In general, the GPF of the sunscreens was found below the proprietary SPF. If a genotoxic effect is shown in an increased p53 expression, this effect is still observed at a dose lower than the dose inducing the faintest actinic erythema. (author)

  3. Toward a Genotoxic Protection Factor

    Energy Technology Data Exchange (ETDEWEB)

    Cesarini, J.P.; Demanneville, S

    2000-07-01

    P53, a molecule normally expressed before mitosis, is considered as the 'guardian of the genome'. In the skin its level is normally very low (<3% of cells), detected by immunohistochemical methods. At least 50% of the keratinocytes express p53 protein, 24 h following a significant UV irradiation (2 SED). It is expected using sunscreens to reduce the expression of p53 in parallel with their ability to reduce the actinic erythema, the endpoint adopted to evaluate the Sun Protection Factor (SPF) of sunscreens. P53 detection on biopsies performed on the buttocks of human volunteers was used to evaluate the genotoxic protecting factor (GPF) of several sunscreens with either high UVB filtration or high UVA filtration, characterised by various SPF (COLIPA) from 10 to 40. The p53 count in parallel with sunburn cell count were the parameters studied. In general, the GPF of the sunscreens was found below the proprietary SPF. If a genotoxic effect is shown in an increased p53 expression, this effect is still observed at a dose lower than the dose inducing the faintest actinic erythema. (author)

  4. Reproductive Rights or Reproductive Justice? Lessons from Argentina.

    Science.gov (United States)

    Morgan, Lynn

    2015-06-11

    Argentine sexual and reproductive rights activists insist on using the language and framework of "human rights," even when many reproductive rights activists in the US and elsewhere now prefer the framework of "reproductive justice." Reflecting on conversations with Argentine feminist anthropologists, social scientists, and reproductive rights activists, this paper analyzes why the Argentine movement to legalize abortion relies on the contested concept of human rights. Its conclusion that "women's rights are human rights" is a powerful claim in post-dictatorship politics where abortion is not yet legal and the full scope of women's rights has yet to be included in the government's human rights agenda. Argentine feminist human rights activists have long been attentive to the ways that social class, gender, migration, and racism intersect with reproduction. Because their government respects and responds to a human rights framework, however, they have not felt it necessary--as U.S. feminists have--to invent a new notion of reproductive justice in order to be heard. Given the increasing popularity of reproductive justice in health and human rights, the Argentine case shows that rights-based claims can still be politically useful when a State values the concept of human rights. Copyright 2015 Morgan. This is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.

  5. [Criminal code and assisted human reproduction].

    Science.gov (United States)

    Cortés Bechiarelli, Emilio

    2009-01-01

    The Spanish Criminal Code punishes in the article 161 the crime of assisted reproduction of the woman without her assent as a form of crime relative to the genetic manipulation. The crime protects a specific area of the freedom of decision of the woman, which is the one that she has dealing with the right to the procreation at the moment of being fertilized. The sentence would include the damages to the health provoked by the birth or the abortion. The crime is a common one--everyone can commit it--and it is not required a result of pregnancy, but it is consumed by the mere intervention on the body of the woman, and its interpretation is contained on the Law 14/2006, of may 26, on technologies of human assisted reproduction. The aim of the work is to propose to consider valid the assent given by the sixteen-year-old women (and older) in coherence with the Project of Law about sexual and reproductive health and voluntary interruption of the pregnancy that is studied at this moment, in Spain, in order to harmonize the legal systems.

  6. Human reproduction: possibilities and ethical borders.

    Directory of Open Access Journals (Sweden)

    Pr RenĂŠ Frydman

    2010-01-01

    Full Text Available Reproductive medicine is a new important field in all the countries. The possibilities are tremendous, therefore we have to decide if limits are necessary or should we consider that everything that have been initiated (as clone, gene transfer... can be apply in humans. That will be the challenge of a global ethical approach in each country with their culture, morality, guidelines or laws.

  7. The Cosmetics Europe strategy for animal-free genotoxicity testing: project status up-date.

    Science.gov (United States)

    Pfuhler, S; Fautz, R; Ouedraogo, G; Latil, A; Kenny, J; Moore, C; Diembeck, W; Hewitt, N J; Reisinger, K; Barroso, J

    2014-02-01

    The Cosmetics Europe (formerly COLIPA) Genotoxicity Task Force has driven and funded three projects to help address the high rate of misleading positives in in vitro genotoxicity tests: The completed "False Positives" project optimized current mammalian cell assays and showed that the predictive capacity of the in vitro micronucleus assay was improved dramatically by selecting more relevant cells and more sensitive toxicity measures. The on-going "3D skin model" project has been developed and is now validating the use of human reconstructed skin (RS) models in combination with the micronucleus (MN) and Comet assays. These models better reflect the in use conditions of dermally applied products, such as cosmetics. Both assays have demonstrated good inter- and intra-laboratory reproducibility and are entering validation stages. The completed "Metabolism" project investigated enzyme capacities of human skin and RS models. The RS models were shown to have comparable metabolic capacity to native human skin, confirming their usefulness for testing of compounds with dermal exposure. The program has already helped to improve the initial test battery predictivity and the RS projects have provided sound support for their use as a follow-up test in the assessment of the genotoxic hazard of cosmetic ingredients in the absence of in vivo data. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Genotoxicity Expert Panel review: weight of evidence evaluation of the genotoxicity of glyphosate, glyphosate-based formulations, and aminomethylphosphonic acid.

    Science.gov (United States)

    Brusick, David; Aardema, Marilyn; Kier, Larry; Kirkland, David; Williams, Gary

    2016-09-01

    In 2015, the International Agency for Research on Cancer (IARC) published a monograph concluding there was strong evidence for genotoxicity of glyphosate and glyphosate formulations and moderate evidence for genotoxicity of the metabolite aminomethylphosphonic acid (AMPA). These conclusions contradicted earlier extensive reviews supporting the lack of genotoxicity of glyphosate and glyphosate formulations. The IARC Monograph concluded there was strong evidence of induction of oxidative stress by glyphosate, glyphosate formulations, and AMPA. The Expert Panel reviewed the genotoxicity and oxidative stress data considered in the IARC Monograph, together with other available data not considered by IARC. The Expert Panel defined and used a weight of evidence (WoE) approach that included ranking of studies and endpoints by the strength of their linkage to events associated with carcinogenic mechanisms. Importantly, the Expert Panel concluded that there was sufficient information available from a very large number of regulatory genotoxicity studies that should have been considered by IARC. The WoE approach, the inclusion of all relevant regulatory studies, and some differences in interpretation of individual studies led to significantly different conclusions by the Expert Panel compared with the IARC Monograph. The Expert Panel concluded that glyphosate, glyphosate formulations, and AMPA do not pose a genotoxic hazard and the data do not support the IARC Monograph genotoxicity evaluation. With respect to carcinogenicity classification and mechanism, the Expert Panel concluded that evidence relating to an oxidative stress mechanism of carcinogenicity was largely unconvincing and that the data profiles were not consistent with the characteristics of genotoxic carcinogens.

  9. Cytotoxic and genotoxic potential of food-borne nitriles in a liver in vitro model

    Science.gov (United States)

    Kupke, Franziska; Herz, Corinna; Hanschen, Franziska S.; Platz, Stefanie; Odongo, Grace A.; Helmig, Simone; Bartolomé Rodríguez, María M.; Schreiner, Monika; Rohn, Sascha; Lamy, Evelyn

    2016-01-01

    Isothiocyanates are the most intensively studied breakdown products of glucosinolates from Brassica plants and well recognized for their pleiotropic effects against cancer but also for their genotoxic potential. However, knowledge about the bioactivity of glucosinolate-borne nitriles in foods is very poor. As determined by GC-MS, broccoli glucosinolates mainly degrade to nitriles as breakdown products. The cytotoxicity of nitriles in human HepG2 cells and primary murine hepatocytes was marginal as compared to isothiocyanates. Toxicity of nitriles was not enhanced in CYP2E1-overexpressing HepG2 cells. In contrast, the genotoxic potential of nitriles was found to be comparable to isothiocyanates. DNA damage was persistent over a certain time period and CYP2E1-overexpression further increased the genotoxic potential of the nitriles. Based on actual in vitro data, no indications are given that food-borne nitriles could be relevant for cancer prevention, but could pose a certain genotoxic risk under conditions relevant for food consumption. PMID:27883018

  10. Human evolution, life history theory, and the end of biological reproduction.

    Science.gov (United States)

    Last, Cadell

    2014-01-01

    Throughout primate history there have been three major life history transitions towards increasingly delayed sexual maturation and biological reproduction, as well as towards extended life expectancy. Monkeys reproduce later and live longer than do prosimians, apes reproduce later and live longer than do monkeys, and humans reproduce later and live longer than do apes. These life history transitions are connected to increased encephalization. During the last life history transition from apes to humans, increased encephalization co-evolved with increased dependence on cultural knowledge for energy acquisition. This led to a dramatic pressure for more energy investment in growth over current biological reproduction. Since the industrial revolution socioeconomic development has led to even more energy being devoted to growth over current biological reproduction. I propose that this is the beginning of an ongoing fourth major primate life history transition towards completely delayed biological reproduction and an extension of the evolved human life expectancy. I argue that the only fundamental difference between this primate life history transition and previous life history transitions is that this transition is being driven solely by cultural evolution, which may suggest some deeper evolutionary transition away from biological evolution is already in the process of occurring.

  11. Marketing of Assisted Human Reproduction and the Indian State

    OpenAIRE

    Shree Mulay; Emily Gibson

    2006-01-01

    Shree Mulay and Emily Gibson examine the factors responsible for the phenomenal growth of the private fee-for-service health sector in India and the industry related to Assisted Human Reproduction, its negative effect on the public health sector as well as the feeble attempts by the Indian state to regulate this industry, and its implications for women's reproductive rights and health. Development (2006) 49, 84–93. doi:10.1057/palgrave.development.1100311

  12. Genotoxicity of swine effluents.

    Science.gov (United States)

    Techio, V H; Stolberg, J; Kunz, A; Zanin, E; Perdomo, C C

    2011-01-01

    This study aimed at the investigation of genotoxic effects of swine effluents from different stages of a treatment system for swine wastes through bioassay of stamen hairs and micronuclei in Tradescantia (clone BNL 4430). No significant differences (p≥0.05) regarding the genic mutations were found in the bioassay of stamen hairs, independently of the effluent analysed. For the genotoxicity test with micronuclei, the plants exposed to raw wastes, to sludge, and to effluent of the biodigester have presented higher rates of chromosomal damages (micronuclei), with significant differences in relation to the control group and other effluent of the waste treatment system (p≤0.05). The association between the chemical parameters and the genotoxicity data have shown that the variables COD and TKN have presented significant correlation (p≤0.05) with the number of mutagenic events in the tetrads.

  13. Endocrinology of human female sexuality, mating, and reproductive behavior.

    Science.gov (United States)

    Motta-Mena, Natalie V; Puts, David A

    2017-05-01

    Hormones orchestrate and coordinate human female sexual development, sexuality, and reproduction in relation to three types of phenotypic changes: life history transitions such as puberty and childbirth, responses to contextual factors such as caloric intake and stress, and cyclical patterns such as the ovulatory cycle. Here, we review the endocrinology underlying women's reproductive phenotypes, including sexual orientation and gender identity, mate preferences, competition for mates, sex drive, and maternal behavior. We highlight distinctive aspects of women's sexuality such as the possession of sexual ornaments, relatively cryptic fertile windows, extended sexual behavior across the ovulatory cycle, and a period of midlife reproductive senescence-and we focus on how hormonal mechanisms were shaped by selection to produce adaptive outcomes. We conclude with suggestions for future research to elucidate how hormonal mechanisms subserve women's reproductive phenotypes. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Early Menarche as an Alternative Reproductive Tactic in Human Females: An Evolutionary Approach to Reproductive Health Issues

    Directory of Open Access Journals (Sweden)

    Meghan T. Gillette

    2012-12-01

    Full Text Available The age at which a female reaches sexual maturity is critical in determining her future reproductive health and success. Thus, a worldwide decline in menarcheal age (timing of first menstrual period may have serious long-term consequences. Early menarcheal timing (first menstrual period before age 12 can have a negative effect on fecundity, as well as the quality and quantity of offspring, and may consequently influence population growth or decline. In this paper, we apply an evolutionary framework to modern human health, and assess both proximate and ultimate consequences of declining menarcheal age. Examination of human reproductive health within an evolutionary framework is innovative and essential, because it illuminates the ultimate consequences of a declining age of menarche and facilitates new ways of thinking about the long-term and intergenerational transmission of health and disease; thus, an evolutionary framework lends itself to innovative public health and policy programs. In this paper, we examine whether or not early menarche is an alternative reproductive tactic that modern human females employ in response to a stressful environment, and whether or not early menarche is ultimately beneficial.

  15. Genotoxicity evaluation of alpha-linolenic acid-diacylglycerol oil

    Directory of Open Access Journals (Sweden)

    Hiroshi Honda

    Full Text Available The alpha-linolenic acid (ALA-diacylglycerol (DAG oil is an edible oil enriched with DAG (>80% and ALA (>50%. Although DAG oil, which mainly consists of oleic and linoleic acids has no genotoxic concerns, the fatty acid composition could affect the chemical property of DAG. Therefore, the purpose of this study was to evaluate the genotoxicity of ALA-DAG oil using standard genotoxicity tests in accordance with the OECD guidelines. ALA-DAG oil showed negative results in the bacterial reverse mutation test (Ames test and in vitro micronucleus test in cultured Chinese hamster lung cells with and without metabolic activation, and in the in vivo bone marrow micronucleus test in mice. Our results did not show any genotoxicity, suggesting that the fatty acid composition had no deleterious effects. We conclude that ALA-DAG oil had no genotoxicity concerns under the testing conditions. Keywords: Alpha-linolenic acid-rich diacylglycerol, Diacylglycerol, Alpha-linolenic acid, Fatty acid composition, Genotoxicity

  16. Genotoxicity of metal nanoparticles.

    Science.gov (United States)

    Xie, Hong; Mason, Michael M; Wise, John Pierce

    2011-01-01

    Nanotechnology is currently used in industry, medicine, and military applications, as well as in more than 300 commercial products. Yet, the same properties that make these particles exciting for technology also make them daunting public health concerns because their toxicity is unknown and relatively unexplored. Increased attention is being placed on the study of metal particle genotoxicity; however, a lot of unknowns remain about their effects and the mechanisms. In this article, we highlight some metal and metal oxide nanoparticles of interest and discuss the current in vivo and in vitro studies of genotoxic effects. Many metal nanoparticles were found to cause chromosomal aberrations, DNA strand breaks, oxidative DNA damage, and mutations. Inconsistencies are found in the literature, however, thus drawing conclusions is difficult due to a variety of factors. Therefore, the areas requiring further attention are highlighted and recommendations to improve our understanding of the genotoxic potential are addressed.

  17. Genotoxicity of 1,3-dichloro-2-propanol in the SOS chromotest and in the Ames test. Elucidation of the genotoxic mechanism.

    Science.gov (United States)

    Hahn, H; Eder, E; Deininger, C

    1991-01-01

    1,3-Dichloro-2-propanol (1,3-DCP-OH, glycerol dichlorohydrin) is of great importance in many industrial processes and has been detected in foodstuffs, in particular in soup spices and instant soups. It has been shown to be carcinogenic, genotoxic and mutagenic. Its genotoxic mechanisms are, however, not yet entirely understood. We have investigated whether alcohol dehydrogenase (ADH) catalysed activation to the highly mutagenic and carcinogenic 1,3-dichloroacetone or formation of epichlorohydrin or other genotoxic compounds play a role for mutagenicity and genotoxicity. In our studies, no indications of ADH catalysed formation of 1,3-dichloropropane could be found, although we could demonstrate a clear activation by ADH in the case of 2-chloropropenol. Formation of allyl chloride could also be excluded. We found, however, clear evidence that epichlorohydrin formed chemically in the buffer and medium used in the test is responsible for genotoxicity. No indication was found that enzymatic formation of epichlorohydrin plays a role. Additional mutagenicity and genotoxicity studies with epichlorohydrin also confirmed the hypothesis that genotoxic effects of 1,3-DCP-OH depend on the chemical formation of epichlorohydrin.

  18. Human leukocyte antigen-G within the male reproductive system

    DEFF Research Database (Denmark)

    Hviid, Thomas Vauvert F

    2015-01-01

    by “priming” the woman’s immune system before conception and at conception. Recent studies have demonstrated the presence of the immunoregulatory and tolerance-inducible human leukocyte antigen (HLA)-G in the male reproductive organs. The expression of HLA-G in the blastocyst and by extravillous trophoblast......In sexual reproduction in humans, a man has a clear interest in ensuring that the immune system of his female partner accepts the semi-allogenic fetus. Increasing attention has been given to soluble immunomodulatory molecules in the seminal fluid as one mechanism of ensuring this, possibly...... plasma may even be associated with the chance of pregnancy in couples, where the male partner has reduced semen quality. More studies are needed to verify these preliminary findings....

  19. Mutagenicity of chemicals in genetically modified animals

    NARCIS (Netherlands)

    Willems MI; van Benthem J; LEO

    2001-01-01

    The strategy for assessing human health risks of chemicals consists of a large number of tests in different research disciplines. Tests include acute and chronic toxicity, genotoxicity, reproduction toxicity and carcinogenicity. Genotoxic properties of chemicals are assessed in short-term in vitro

  20. An assessment of the genotoxicity and human health risk of topical use of kojic acid [5-hydroxy-2-(hydroxymethyl)-4H-pyran-4-one].

    Science.gov (United States)

    Nohynek, Gerhard J; Kirkland, David; Marzin, Daniel; Toutain, Herve; Leclerc-Ribaud, Christele; Jinnai, Hiroyuki

    2004-01-01

    Kojic acid (KA), a natural substance produced by fungi or bacteria, such as Aspergillus, Penicillium or Acetobacter spp, is contained in traditional Japanese fermented foods and is used as a dermatological skin-lightening agent. High concentrations of KA (>or=1000 microg/plate) were mutagenic in S. typhimurium strains TA 98, TA 100, TA 1535, TA102 and E. coli WP2uvrA, but not in TA 1537. An Ames test following the "treat and plate" protocol was negative. A chromosome aberration test in V79 cells following a robust protocol showed only a marginal increase in chromosome aberrations at cytotoxic concentrations after prolonged (>or=18 h) exposure. No genotoxic activity was observed for hprt mutations either in mouse lymphoma or V79 cells, or in in vitro micronucleus tests in human keratinocytes or hepatocytes. All in vivo genotoxicity studies on KA doses were negative, including mouse bone marrow micronucleus tests after single or multiple doses, an in vivo/in vitro unscheduled DNA synthesis (UDS) test, or a study in the liver of the transgenic Muta(TM) Mouse. On the basis of pharmacokinetic studies in rats and in vitro absorption studies in human skin, the systemic exposure of KA in man following its topical application is estimated to be in the range of 0.03-0.06 mg/kg/day. Comparing these values with the NOAEL in oral subchronic animal studies (250 mg/kg/day), the calculated margin of safety would be 4200- to 8900-fold. Comparing human exposure with the doses that were negative for micronuclei, UDS and gene mutations in vivo, the margins of safety are 16000 to 26000-fold. In conclusion, the topical use of KA as a skin lightening agent results in minimal exposure that poses no or negligible risk of genotoxicity or toxicity to the consumer.

  1. Genome-wide analysis identifies 12 loci influencing human reproductive behavior

    NARCIS (Netherlands)

    Barban, Nicola; Jansen, Rick; de Vlaming, Ronald; Vaez, Ahmad; Mandemakers, Jornt J; Tropf, Felix C; Shen, Xia; Wilson, James F; Chasman, Daniel I; Nolte, Ilja M; Tragante, Vinicius; van der Laan, Sander W; Perry, John R B; Kong, Augustine; Ahluwalia, Tarunveer S; Albrecht, Eva; Yerges-Armstrong, Laura; Atzmon, Gil; Auro, Kirsi; Ayers, Kristin; Bakshi, Andrew; Ben-Avraham, Danny; Berger, Klaus; Bergman, Aviv; Bertram, Lars; Bielak, Lawrence F; Bjornsdottir, Gyda; Bonder, Marc Jan; Broer, Linda; Bui, Minh; Barbieri, Caterina; Cavadino, Alana; Chavarro, Jorge E; Turman, Constance; Concas, Maria Pina; Cordell, Heather J; Davies, Gail; Eibich, Peter; Eriksson, Nicholas; Esko, Tõnu; Eriksson, Joel; Falahi, Fahimeh; Felix, Janine F; Fontana, Mark Alan; Franke, Lude; Gandin, Ilaria; Gaskins, Audrey J; Gieger, Christian; Gunderson, Erica P; Guo, Xiuqing; Hayward, Caroline; He, Chunyan; Hofer, Edith; Huang, Hongyan; Joshi, Peter K; Kanoni, Stavroula; Karlsson, Robert; Kiechl, Stefan; Kifley, Annette; Kluttig, Alexander; Kraft, Peter; Lagou, Vasiliki; Lecoeur, Cecile; Lahti, Jari; Li-Gao, Ruifang; Lind, Penelope A; Liu, Tian; Makalic, Enes; Mamasoula, Crysovalanto; Matteson, Lindsay; Mbarek, Hamdi; McArdle, Patrick F; McMahon, George; Meddens, S Fleur W; Mihailov, Evelin; Miller, Mike; Missmer, Stacey A; Monnereau, Claire; van der Most, Peter J; Myhre, Ronny; Nalls, Mike A; Nutile, Teresa; Kalafati, Ioanna Panagiota; Porcu, Eleonora; Prokopenko, Inga; Rajan, Kumar B; Rich-Edwards, Janet; Rietveld, Cornelius A; Robino, Antonietta; Rose, Lynda M; Rueedi, Rico; Ryan, Kathleen A; Saba, Yasaman; Schmidt, Daniel; Smith, Jennifer A; Stolk, Lisette; Streeten, Elizabeth; Tönjes, Anke; Thorleifsson, Gudmar; Ulivi, Sheila; Wedenoja, Juho; Wellmann, Juergen; Willeit, Peter; Yao, Jie; Yengo, Loic; Zhao, Jing Hua; Zhao, Wei; Zhernakova, Daria V; Amin, Najaf; Andrews, Howard; Balkau, Beverley; Barzilai, Nir; Bergmann, Sven; Biino, Ginevra; Bisgaard, Hans; Bønnelykke, Klaus; Boomsma, Dorret I; Buring, Julie E; Campbell, Harry; Cappellani, Stefania; Ciullo, Marina; Cox, Simon R; Cucca, Francesco; Toniolo, Daniela; Davey-Smith, George; Deary, Ian J; Dedoussis, George; Deloukas, Panos; van Duijn, Cornelia M; de Geus, Eco J C; Eriksson, Johan G; Evans, Denis A; Faul, Jessica D; Sala, Cinzia Felicita; Froguel, Philippe; Gasparini, Paolo; Girotto, Giorgia; Grabe, Hans-Jörgen; Greiser, Karin Halina; Groenen, Patrick J F; de Haan, Hugoline G; Haerting, Johannes; Harris, Tamara B; Heath, Andrew C; Heikkilä, Kauko; Hofman, Albert; Homuth, Georg; Holliday, Elizabeth G; Hopper, John; Hyppönen, Elina; Jacobsson, Bo; Jaddoe, Vincent W V; Johannesson, Magnus; Jugessur, Astanand; Kähönen, Mika; Kajantie, Eero; Kardia, Sharon L R; Keavney, Bernard; Kolcic, Ivana; Koponen, Päivikki; Kovacs, Peter; Kronenberg, Florian; Kutalik, Zoltan; La Bianca, Martina; Lachance, Genevieve; Iacono, William G; Lai, Sandra; Lehtimäki, Terho; Liewald, David C; Lindgren, Cecilia M; Liu, Yongmei; Luben, Robert; Lucht, Michael; Luoto, Riitta; Magnus, Per; Magnusson, Patrik K E; Martin, Nicholas G; McGue, Matt; McQuillan, Ruth; Medland, Sarah E; Meisinger, Christa; Mellström, Dan; Metspalu, Andres; Traglia, Michela; Milani, Lili; Mitchell, Paul; Montgomery, Grant W; Mook-Kanamori, Dennis; de Mutsert, Renée; Nohr, Ellen A; Ohlsson, Claes; Olsen, Jørn; Ong, Ken K; Paternoster, Lavinia; Pattie, Alison; Penninx, Brenda W J H; Perola, Markus; Peyser, Patricia A; Pirastu, Mario; Polasek, Ozren; Power, Chris; Kaprio, Jaakko; Raffel, Leslie J; Räikkönen, Katri; Raitakari, Olli; Ridker, Paul M; Ring, Susan M; Roll, Kathryn; Rudan, Igor; Ruggiero, Daniela; Rujescu, Dan; Salomaa, Veikko; Schlessinger, David; Schmidt, Helena; Schmidt, Reinhold; Schupf, Nicole; Smit, Johannes; Sorice, Rossella; Spector, Tim D; Starr, John M; Stöckl, Doris; Strauch, Konstantin; Stumvoll, Michael; Swertz, Morris A; Thorsteinsdottir, Unnur; Thurik, A Roy; Timpson, Nicholas J; Tung, Joyce Y; Uitterlinden, André G; Vaccargiu, Simona; Viikari, Jorma; Vitart, Veronique; Völzke, Henry; Vollenweider, Peter; Vuckovic, Dragana; Waage, Johannes; Wagner, Gert G; Wang, Jie Jin; Wareham, Nicholas J; Weir, David R; Willemsen, Gonneke; Willeit, Johann; Wright, Alan F; Zondervan, Krina T; Stefansson, Kari; Krueger, Robert F; Lee, James J; Benjamin, Daniel J; Cesarini, David; Koellinger, Philipp D; den Hoed, Marcel; Snieder, Harold; Mills, Melinda C

    2016-01-01

    The genetic architecture of human reproductive behavior age at first birth (AFB) and number of children ever born (NEB) has a strong relationship with fitness, human development, infertility and risk of neuropsychiatric disorders. However, very few genetic loci have been identified, and the

  2. Genome-wide analysis identifies 12 loci influencing human reproductive behavior

    NARCIS (Netherlands)

    Barban, Nicola; Jansen, Rick; De Vlaming, Ronald; Vaez, Ahmad; Mandemakers, Jornt J.; Tropf, Felix C.; Shen, Xia; Wilson, James F.; Chasman, Daniel I.; Nolte, Ilja M.; Tragante, Vinicius; Van Der Laan, Sander W.; Perry, John R B; Kong, Augustine; Ahluwalia, Tarunveer S.; Albrecht, Eva; Yerges-Armstrong, Laura; Atzmon, Gil; Auro, Kirsi; Ayers, Kristin; Bakshi, Andrew; Ben-Avraham, Danny; Berger, Klaus; Bergman, Aviv; Bertram, Lars; Bielak, Lawrence F.; Bjornsdottir, Gyda; Bonder, Marc Jan; Broer, Linda; Bui, Minh; Barbieri, Caterina; Cavadino, Alana; Chavarro, Jorge E.; Turman, Constance; Concas, Maria Pina; Cordell, Heather J.; Davies, Gail; Eibich, Peter; Eriksson, Nicholas; Esko, Tõnu; Eriksson, Joel; Falahi, Fahimeh; Felix, Janine F.; Fontana, Mark Alan; Franke, Lude; Gandin, Ilaria; Gaskins, Audrey J.; Gieger, Christian; Gunderson, Erica P.; Guo, Xiuqing; Hayward, Caroline; He, Chunyan; Hofer, Edith; Huang, Hongyan; Joshi, Peter K.; Kanoni, Stavroula; Karlsson, Robert; Kiechl, Stefan; Kifley, Annette; Kluttig, Alexander; Kraft, Peter; Lagou, Vasiliki; Lecoeur, Cecile; Lahti, Jari; Li-Gao, Ruifang; Lind, Penelope A.; Liu, Tian; Makalic, Enes; Mamasoula, Crysovalanto; Matteson, Lindsay; Mbarek, Hamdi; McArdle, Patrick F.; McMahon, George; Meddens, S. Fleur W; Mihailov, Evelin; Miller, Mike; Missmer, Stacey A.; Monnereau, Claire; Van Der Most, Peter J.; Myhre, Ronny; Nalls, Mike A.; Nutile, Teresa; Kalafati, Ioanna Panagiota; Porcu, Eleonora; Prokopenko, Inga; Rajan, Kumar B.; Rich-Edwards, Janet; Rietveld, Cornelius A.; Robino, Antonietta; Rose, Lynda M.; Rueedi, Rico; Ryan, Kathleen A.; Saba, Yasaman; Schmidt, Daniel; Smith, Jennifer A.; Stolk, Lisette; Streeten, Elizabeth; Tönjes, Anke; Thorleifsson, Gudmar; Ulivi, Sheila; Wedenoja, Juho; Wellmann, Juergen; Willeit, Peter; Yao, Jie; Yengo, Loic; Zhao, Jing Hua; Zhao, Wei; Zhernakova, Daria V.; Amin, Najaf; Andrews, Howard; Balkau, Beverley; Barzilai, Nir; Bergmann, Sven; Biino, Ginevra; Bisgaard, Hans; Bønnelykke, Klaus; Boomsma, Dorret I.; Buring, Julie E.; Campbell, Harry; Cappellani, Stefania; Ciullo, Marina; Cox, Simon R.; Cucca, Francesco; Toniolo, Daniela; Davey-Smith, George; Deary, Ian J.; Dedoussis, George; Deloukas, Panos; Van Duijn, Cornelia M.; De Geus, Eco J C; Eriksson, Johan G.; Evans, Denis A.; Faul, Jessica D.; Sala, Cinzia Felicita; Froguel, Philippe; Gasparini, Paolo; Girotto, Giorgia; Grabe, Hans Jörgen; Greiser, Karin Halina; Groenen, Patrick J F; De Haan, Hugoline G.; Haerting, Johannes; Harris, Tamara B.; Heath, Andrew C.; Heikkilä, Kauko; Hofman, Albert; Homuth, Georg; Holliday, Elizabeth G.; Hopper, John; Hyppönen, Elina; Jacobsson, Bo; Jaddoe, Vincent W V; Johannesson, Magnus; Jugessur, Astanand; Kähönen, Mika; Kajantie, Eero; Kardia, Sharon L R; Keavney, Bernard; Kolcic, Ivana; Koponen, Päivikki; Kovacs, Peter; Kronenberg, Florian; Kutalik, Zoltan; La Bianca, Martina; Lachance, Genevieve; Iacono, William G.; Lai, Sandra; Lehtimäki, Terho; Liewald, David C.; Lindgren, Cecilia M.; Liu, Yongmei; Luben, Robert; Lucht, Michael; Luoto, Riitta; Magnus, Per; Magnusson, Patrikke; Martin, Nicholas G.; McGue, Matt; McQuillan, Ruth; Medland, Sarah E.; Meisinger, Christa; Mellström, Dan; Metspalu, Andres; Traglia, Michela; Milani, Lili; Mitchell, Paul; Montgomery, Grant W.; Mook-Kanamori, Dennis; De Mutsert, Renée; Nohr, Ellen A.; Ohlsson, Claes; Olsen, Jørn; Ong, Ken K.; Paternoster, Lavinia; Pattie, Alison; Penninx, Brenda W J H; Perola, Markus; Peyser, Patricia A.; Pirastu, Mario; Polasek, Ozren; Power, Chris; Kaprio, Jaakko; Raffel, Leslie J.; Räikkönen, Katri; Raitakari, Olli; Ridker, Paul M.; Ring, Susan M.; Roll, Kathryn; Rudan, Igor; Ruggiero, Daniela; Rujescu, Dan; Salomaa, Veikko; Schlessinger, David; Schmidt, Helena; Schmidt, Reinhold; Schupf, Nicole; Smit, Johannes; Sorice, Rossella; Spector, Tim D.; Starr, John M.; Stöckl, Doris; Strauch, Konstantin; Stumvoll, Michael; Swertz, Morris A.; Thorsteinsdottir, Unnur; Roy Thurik, A.; Timpson, Nicholas J.; Tung, Joyce Y.; Uitterlinden, André G.; Vaccargiu, Simona; Viikari, Jorma; Vitart, Veronique; Völzke, Henry; Vollenweider, Peter; Vuckovic, Dragana; Waage, Johannes; Wagner, Gert G.; Wang, Jie Jin; Wareham, Nicholas J.; Weir, David R.; Willemsen, Gonneke; Willeit, Johann; Wright, Alan F.; Zondervan, Krina T.; Stefansson, Kari; Krueger, Robert F.; Lee, James J.; Benjamin, Daniel J.; Cesarini, David; Koellinger, Philipp D.; Den Hoed, Marcel; Snieder, Harold; Mills, Melinda C.

    2016-01-01

    The genetic architecture of human reproductive behavior - age at first birth (AFB) and number of children ever born (NEB) - has a strong relationship with fitness, human development, infertility and risk of neuropsychiatric disorders. However, very few genetic loci have been identified, and the

  3. Evaluation of Genotoxicity and 28-day Oral Dose Toxicity on Freeze-dried Powder of Tenebrio molitor Larvae (Yellow Mealworm)

    OpenAIRE

    Han, So-Ri; Yun, Eun-Young; Kim, Ji-Young; Hwang, Jae Sam; Jeong, Eun Ju; Moon, Kyoung-Sik

    2014-01-01

    The larval form of Tenebrio molitor (T. molitor) has been eaten in many countries and provides benefits as a new food source of protein for humans. However, no information exists regarding its safety for humans. The objective of the present study was to evaluate the genotoxicity and repeated dose oral toxicity of the freeze-dried powder of T. molitor larvae. The genotoxic potential was evaluated by a standard battery testing: bacterial reverse mutation test, in vitro chromosome aberration tes...

  4. In vitro evaluation of genotoxic effects under magnetic resonant coupling wireless power transfer.

    Science.gov (United States)

    Mizuno, Kohei; Shinohara, Naoki; Miyakoshi, Junji

    2015-04-07

    Wireless power transfer (WPT) technology using the resonant coupling phenomenon has been widely studied, but there are very few studies concerning the possible relationship between WPT exposure and human health. In this study, we investigated whether exposure to magnetic resonant coupling WPT has genotoxic effects on WI38VA13 subcloned 2RA human fibroblast cells. WPT exposure was performed using a helical coil-based exposure system designed to transfer power with 85.4% efficiency at a 12.5-MHz resonant frequency. The magnetic field at the positions of the cell culture dishes is approximately twice the reference level for occupational exposure as stated in the International Commission on Non-Ionizing Radiation Protection (ICNIRP) guidelines. The specific absorption rate at the positions of the cell culture dishes matches the respective reference levels stated in the ICNIRP guidelines. For assessment of genotoxicity, we studied cell growth, cell cycle distribution, DNA strand breaks using the comet assay, micronucleus formation, and hypoxanthine-guanine phosphoribosyltransferase (HPRT) gene mutation, and did not detect any significant effects between the WPT-exposed cells and control cells. Our results suggest that WPT exposure under the conditions of the ICNIRP guidelines does not cause detectable cellular genotoxicity.

  5. Alternatives in Human Reproduction for Involuntary Childless Couples.

    Science.gov (United States)

    Zimmerman, Shirley L.

    1982-01-01

    Discusses human reproductive alternatives such as artificial insemination by husband and by donor, surrogate pregnancy, and in vitro fertilization in relation to involuntarily childless couples. Concludes by raising a number of questions for practice, policy, and research in the area of family life. (Author)

  6. A Comparison of the Human Buccal Cell Assay and the Pollen Abortion Assay in Assessing Genotoxicity in an Urban-Rural Gradient

    Directory of Open Access Journals (Sweden)

    Alan da Silveira Fleck

    2014-08-01

    Full Text Available Air pollution is exacerbated near heavy traffic roads in cities. Air pollution concentration and composition vary by region and depend on urban-rural gradients. The aim of this study was to evaluate the distribution of air pollution in areas of varying population densities and to compare plant biomonitoring with an established biomarker of human exposure to traffic-related air pollution in children. The areas of study were selected near a major street in 3 different regions. Areas A, B and C represent high, intermediate and low population densities, respectively. Micronucleus assay, an established biomarker of human exposure, was performed in children from these areas. For a plant biomonitoring assay, the pollen abortion assay was performed on Bauhinia variegata in these areas. NO2 and O3 concentrations were determined by passive sampling. We report here that the pollen abortion frequency in Bauhinia variegata is correlated with NO2 concentration (P = 0.004 and is strongly associated with vehicular flow and population density in the studied areas. Micronuclei frequency in buccal cells of children was higher in the regions with more degree of urbanization (P < 0.001 following the same pattern of O3 concentrations (P = 0.030. In conclusion, our results demonstrate that high concentrations of air pollutants in Porto Alegre are related to both human and plant genotoxicity. Areas with different concentration of pollutants demonstrated to have an urbanization gradient dependent pattern which also reflected on genotoxic damage among these areas.

  7. Genome-wide analysis identifies 12 loci influencing human reproductive behavior

    NARCIS (Netherlands)

    Barban, Nicola; Jansen, Rick; Vlaming, de Ronald; Vaez, Ahmad; Mandemakers, Jornt J.; Tropf, Felix C.; Shen, Xia; Wilson, James F.; Chasman, Daniel I.; Nolte, Ilja M.; Tragante, Vinicius; Laan, van der Sander W.; Perry, John R.B.; Kong, Augustine; Ahluwalia, Tarunveer S.; Albrecht, Eva; Yerges-Armstrong, Laura; Atzmon, Gil; Auro, Kirsi; Ayers, Kristin; Bakshi, Andrew; Ben-Avraham, Danny; Berger, Klaus; Bergman, Aviv; Bertram, Lars; Bielak, Lawrence F.; Bjornsdottir, Gyda; Bonder, Marc Jan; Broer, Linda; Bui, Minh; Barbieri, Caterina; Cavadino, Alana; Chavarro, Jorge E.; Turman, Constance; Concas, Maria Pina; Cordell, Heather J.; Davies, Gail; Eibich, Peter; Eriksson, Nicholas; Esko, Tõnu; Eriksson, Joel; Falahi, Fahimeh; Felix, Janine F.; Fontana, Mark Alan; Franke, Lude; Gandin, Ilaria; Gaskins, Audrey J.; Gieger, Christian; Gunderson, Erica P.; Guo, Xiuqing; Hayward, Caroline; He, Chunyan; Hofer, Edith; Huang, Hongyan; Joshi, Peter K.; Kanoni, Stavroula; Karlsson, Robert; Kiechl, Stefan; Kifley, Annette; Kluttig, Alexander; Kraft, Peter; Lagou, Vasiliki; Lecoeur, Cecile; Lahti, Jari; Li-Gao, Ruifang; Lind, Penelope A.; Liu, Tian; Makalic, Enes; Mamasoula, Crysovalanto; Matteson, Lindsay; Mbarek, Hamdi; McArdle, Patrick F.; McMahon, George; Meddens, S.F.W.; Mihailov, Evelin; Miller, Mike; Missmer, Stacey A.; Monnereau, Claire; Most, van der Peter J.; Myhre, Ronny; Nalls, Mike A.; Nutile, Teresa; Kalafati, Ioanna Panagiota; Porcu, Eleonora; Prokopenko, Inga; Rajan, Kumar B.; Rich-Edwards, Janet; Rietveld, Cornelius A.; Robino, Antonietta; Rose, Lynda M.; Rueedi, Rico; Ryan, Kathleen A.; Saba, Yasaman; Schmidt, Daniel; Smith, Jennifer A.; Stolk, Lisette; Streeten, Elizabeth; Tönjes, Anke; Thorleifsson, Gudmar; Ulivi, Sheila; Wedenoja, Juho; Wellmann, Juergen; Willeit, Peter; Yao, Jie; Yengo, Loic; Zhao, Jing Hua; Zhao, Wei; Zhernakova, Daria V.; Amin, Najaf; Andrews, Howard; Balkau, Beverley; Barzilai, Nir; Bergmann, Sven; Biino, Ginevra; Bisgaard, Hans; Bønnelykke, Klaus; Boomsma, Dorret I.; Buring, Julie E.; Campbell, Harry; Cappellani, Stefania; Ciullo, Marina; Cox, Simon R.; Cucca, Francesco; Toniolo, Daniela; Davey-Smith, George; Deary, Ian J.; Dedoussis, George; Deloukas, Panos; Duijn, van Cornelia M.; Geus, de Eco J.C.; Eriksson, Johan G.; Evans, Denis A.; Faul, Jessica D.; Sala, Cinzia Felicita; Froguel, Philippe; Gasparini, Paolo; Girotto, Giorgia; Grabe, Hans-Jörgen; Greiser, Karin Halina; Groenen, Patrick J.F.; Haan, de Hugoline G.; Haerting, Johannes; Harris, Tamara B.; Heath, Andrew C.; Heikkilä, Kauko; Hofman, Albert; Homuth, Georg; Holliday, Elizabeth G.; Hopper, John; Hyppönen, Elina; Jacobsson, Bo; Jaddoe, Vincent W.V.; Johannesson, Magnus; Jugessur, Astanand; Kähönen, Mika; Kajantie, Eero; Kardia, Sharon L.R.; Keavney, Bernard; Kolcic, Ivana; Koponen, Päivikki; Kovacs, Peter; Kronenberg, Florian; Kutalik, Zoltan; Bianca, la Martina; Lachance, Genevieve; Iacono, William G.; Lai, Sandra; Lehtimäki, Terho; Liewald, David C.; Lindgren, Cecilia M.; Liu, Yongmei; Luben, Robert; Lucht, Michael; Luoto, Riitta; Magnus, Per; Magnusson, Patrik K.E.; Martin, Nicholas G.; McGue, Matt; McQuillan, Ruth; Medland, Sarah E.; Meisinger, Christa; Mellström, Dan; Metspalu, Andres; Traglia, Michela; Milani, Lili; Mitchell, Paul; Montgomery, Grant W.; Mook-Kanamori, Dennis; Mutsert, de Renée; Nohr, Ellen A.; Ohlsson, Claes; Olsen, Jørn; Ong, Ken K.; Paternoster, Lavinia; Pattie, Alison; Penninx, Brenda W.J.H.; Perola, Markus; Peyser, Patricia A.; Pirastu, Mario; Polasek, Ozren; Power, Chris; Kaprio, Jaakko; Raffel, Leslie J.; Räikkönen, Katri; Raitakari, Olli; Ridker, Paul M.; Ring, Susan M.; Roll, Kathryn; Rudan, Igor; Ruggiero, Daniela; Rujescu, Dan; Salomaa, Veikko; Schlessinger, David; Schmidt, Helena; Schmidt, Reinhold; Schupf, Nicole; Smit, Johannes; Sorice, Rossella; Spector, Tim D.; Starr, John M.; Stöckl, Doris; Strauch, Konstantin; Stumvoll, Michael; Swertz, Morris A.; Thorsteinsdottir, Unnur; Thurik, A.R.; Timpson, Nicholas J.; Tung, Joyce Y.; Uitterlinden, André G.; Vaccargiu, Simona; Viikari, Jorma; Vitart, Veronique; Völzke, Henry; Vollenweider, Peter; Vuckovic, Dragana; Waage, Johannes; Wagner, Gert G.; Wang, Jie Jin; Wareham, Nicholas J.; Weir, David R.; Willemsen, Gonneke; Willeit, Johann; Wright, Alan F.; Zondervan, Krina T.; Stefansson, Kari; Krueger, Robert F.; Lee, James J.; Benjamin, Daniel J.; Cesarini, David; Koellinger, Philipp D.; Hoed, den Marcel; Snieder, Harold; Mills, Melinda C.

    2016-01-01

    The genetic architecture of human reproductive behavior—age at first birth (AFB) and number of children ever born (NEB)—has a strong relationship with fitness, human development, infertility and risk of neuropsychiatric disorders. However, very few genetic loci have been identified, and the

  8. Critical review of the current and future challenges associated with advanced in vitro systems towards the study of nanoparticle (secondary) genotoxicity.

    Science.gov (United States)

    Evans, Stephen J; Clift, Martin J D; Singh, Neenu; de Oliveira Mallia, Jefferson; Burgum, Michael; Wills, John W; Wilkinson, Thomas S; Jenkins, Gareth J S; Doak, Shareen H

    2017-01-01

    With the need to understand the potential biological impact of the plethora of nanoparticles (NPs) being manufactured for a wide range of potential human applications, due to their inevitable human exposure, research activities in the field of NP toxicology has grown exponentially over the last decade. Whilst such increased research efforts have elucidated an increasingly significant knowledge base pertaining to the potential human health hazard posed by NPs, understanding regarding the possibility for NPs to elicit genotoxicity is limited. In vivo models are unable to adequately discriminate between the specific modes of action associated with the onset of genotoxicity. Additionally, in line with the recent European directives, there is an inherent need to move away from invasive animal testing strategies. Thus, in vitro systems are an important tool for expanding our mechanistic insight into NP genotoxicity. Yet uncertainty remains concerning their validity and specificity for this purpose due to the unique challenges presented when correlating NP behaviour in vitro and in vivo This review therefore highlights the current state of the art in advanced in vitro systems and their specific advantages and disadvantages from a NP genotoxicity testing perspective. Key indicators will be given related to how these systems might be used or improved to enhance understanding of NP genotoxicity. © The Author 2016. Published by Oxford University Press on behalf of the UK Environmental Mutagen Society.

  9. Genotoxicity evaluation of dental restoration nanocomposite using comet assay and chromosome aberration test

    International Nuclear Information System (INIS)

    Musa, Marahaini; Ponnuraj, Kannan Thirumulu; Mohamad, Dasmawati; Rahman, Ismail Ab

    2013-01-01

    Nanocomposite is used as a dental filling to restore the affected tooth, especially in dental caries. The dental nanocomposite (KelFil) for tooth restoration used in this study was produced by the School of Dental Sciences, Universiti Sains Malaysia, Malaysia and is incorporated with monodispersed, spherical nanosilica fillers. The aim of the study was to determine the genotoxic effect of KelFil using in vitro genotoxicity tests. The cytotoxicity and genotoxicity of KelFil was evaluated using MTT assay, comet assay and chromosome aberration tests with or without the addition of a metabolic activation system (S9 mix), using the human lung fibroblast cell line (MRC-5). Concurrent negative and positive controls were included. In the comet assay, no comet formation was found in the KelFil groups. There was a significant difference in tail moment between KelFil groups and positive control (p < 0.05). Similarly, no significant aberrations in chromosomes were noticed in KelFil groups. The mitotic indices of treatment groups and negative control were significantly different from positive controls. Hence, it can be concluded that the locally produced dental restoration nanocomposite (KelFil) is non-genotoxic under the present test conditions. (paper)

  10. Conventional and whitening toothpastes: cytotoxicity, genotoxicity and effect on the enamel surface.

    Science.gov (United States)

    Camargo, Samira Esteves Afonso; Jóias, Renata Pilli; Santana-Melo, Gabriela Fátima; Ferreira, Lara Tolentino; El Achkar, Vivian Narana Ribeiro; Rode, Sigmar de Mello

    2014-12-01

    To evaluate the cytotoxicity and genotoxicity of whitening and common toothpastes, and the surface roughness of tooth enamel submitted to brushing with both toothpastes. Samples of whitening toothpastes [Colgate Whitening (CW) and Oral-B Whitening (OBW)] and regular (non-whitening) toothpastes (Colgate and Oral-B) were extracted in culture medium. Gingival human fibroblasts (FMM-1) were placed in contact with different dilutions of culture media that had been previously exposed to such materials, and the cytotoxicity was evaluated using the MTT assay. The genotoxicity was assessed by the micronucleus formation assay in Chinese hamster fibroblasts (V79). The cell survival rate and micronuclei number were assessed before and after exposure to the toothpaste extracts. For the surface roughness evaluation, 20 bovine tooth specimens, divided into four groups according to toothpastes, were submitted to 10,000 brushing cycles. The results were analyzed using the Mann-Whitney U and two-way ANOVA tests (P whitening toothpastes showed the highest numbers of micronuclei compared to the untreated control (UC) (P enamel surface (P whitening toothpastes and Oral-B were cytotoxic to the cells. The whitening toothpastes were more genotoxic to cells in vitro than the common toothpastes, and genotoxicity was more pronounced in the OBW toothpaste.

  11. Toxicity of diuron in human cancer cells.

    Science.gov (United States)

    Huovinen, Marjo; Loikkanen, Jarkko; Naarala, Jonne; Vähäkangas, Kirsi

    2015-10-01

    Diuron is a substituted phenylurea used as a herbicide to control broadleaf and grass weeds and as a biocidal antifouling agent. Diuron is carcinogenic in rat urinary bladder and toxic to the reproductive system of oysters, sea urchins and lizards. The few studies carried out in human cells do not include the genotoxicity of diuron. We have investigated the toxicity of diuron in human breast adenocarcinoma (MCF-7) and human placental choriocarcinoma (BeWo) cells. The production of reactive oxygen species (ROS) was statistically significantly increased in both cell lines but only at the highest 200 μM concentration. Diuron clearly reduced the viability of BeWo, but not MCF-7 cells. The relative cell number was decreased in both cell lines indicative of inhibition of cell proliferation. In the Comet assay, diuron increased DNA fragmentation in MCF-7 but not in BeWo cells. The expressions of p53 protein, a marker for cell stress, and p21 protein, a transcriptional target of p53, were increased, but only in MCF-7 cells. In conclusion, our results suggest that diuron is cytotoxic and potentially genotoxic in a tissue-specific manner and that ROS play a role in its toxicity. Thus, exposure to diuron may exert harmful effects on fetal development and damage human health. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Pheromones in sex and reproduction: Do they have a role in humans?

    Directory of Open Access Journals (Sweden)

    Taymour Mostafa

    2012-01-01

    Full Text Available Pheromones are found throughout the living world and are a primal form of communication. These chemical messengers are transported outside the body and have a direct developmental effect on hormone levels and/or behaviour. This review article aims to highlight the role of human pheromones in sex and reproduction. A review of published articles was carried out, using PubMed, medical subject heading (MSH databases and the Scopus engine. Key words used to assess exposure, outcome, and estimates for the concerned associations, were; olfaction; sex; pheromones; libido; behaviour; reproduction; humans; and smell. Although there are studies to support this phenomenon, they are weak because they were not controlled; others have proposed that human olfactory communication is able to perceive certain pheromones that may play a role in behavioural as well as reproductive biology. Unfolding the mysteries of smells and the way they are perceived requires more time and effort as humans are not systems that instinctively fall into a behaviour in response to an odour, they are thinking individuals that exercise judgment and subjected to different motivations.

  13. Bisphenol A and Reproductive Health: Update of Experimental and Human Evidence, 2007–2013

    Science.gov (United States)

    Peretz, Jackye; Vrooman, Lisa; Ricke, William A.; Hunt, Patricia A.; Ehrlich, Shelley; Hauser, Russ; Padmanabhan, Vasantha; Taylor, Hugh S.; Swan, Shanna H.; VandeVoort, Catherine A.

    2014-01-01

    Background: In 2007, an expert panel reviewed associations between bisphenol A (BPA) exposure and reproductive health outcomes. Since then, new studies have been conducted on the impact of BPA on reproduction. Objective: In this review, we summarize data obtained since 2007, focusing on a) findings from human and animal studies, b) the effects of BPA on a variety of reproductive end points, and c) mechanisms of BPA action. Methods: We reviewed the literature published from 2007 to 2013 using a PubMed search based on keywords related to BPA and male and female reproduction. Discussion: Because BPA has been reported to affect the onset of meiosis in both animal and in vitro models, interfere with germ cell nest breakdown in animal models, accelerate follicle transition in several animal species, alter steroidogenesis in multiple animal models and women, and reduce oocyte quality in animal models and women undergoing in vitro fertilization (IVF), we consider it an ovarian toxicant. In addition, strong evidence suggests that BPA is a uterine toxicant because it impaired uterine endometrial proliferation, decreased uterine receptivity, and increased implantation failure in animal models. BPA exposure may be associated with adverse birth outcomes, hyperandrogenism, sexual dysfunction, and impaired implantation in humans, but additional studies are required to confirm these associations. Studies also suggest that BPA may be a testicular toxicant in animal models, but the data in humans are equivocal. Finally, insufficient evidence exists regarding effects of BPA on the oviduct, the placenta, and pubertal development. Conclusion: Based on reports that BPA impacts female reproduction and has the potential to affect male reproductive systems in humans and animals, we conclude that BPA is a reproductive toxicant. Citation: Peretz J, Vrooman L, Ricke WA, Hunt PA, Ehrlich S, Hauser R, Padmanabhan V, Taylor HS, Swan SH, VandeVoort CA, Flaws JA. 2014. Bisphenol A and reproductive

  14. Safety assessment of non-animal chondroitin sulfate sodium: Subchronic study in rats, genotoxicity tests and human bioavailability.

    Science.gov (United States)

    Miraglia, Niccolò; Bianchi, Davide; Trentin, Antonella; Volpi, Nicola; Soni, Madhu G

    2016-07-01

    Chondroitin sulfate, an amino sugar polymer made of glucuronic acid and N-acetyl-galactosamine, is used in dietary supplements to promote joint health. Commonly used chondroitin sulfate is of animal origin and can pose potential safety problems including bovine spongiform encephalopathy (BSE). The objective of the present study was to investigate potential adverse effects, if any, of microbial derived chondroitin sulfate sodium (CSS) in subchronic toxicity, genotoxicity and bioavailability studies. In the toxicity study, Sprague Dawley rats (10/sex/group) were gavaged with CSS at dose levels of 0, 250, 500 and 1000 mg/kg body weight (bw)/day for 90-days. No mortality or significant changes in clinical signs, body weights, body weight gain or feed consumption were noted. Similarly, no toxicologically relevant treatment-related changes in hematological, clinical chemistry, urinalysis and organ weights were noted. Macroscopic and microscopic examinations did not reveal treatment-related abnormalities. In vitro mutagenic and clastogenic potentials as evaluated by Ames assay, chromosomal aberration test and micronucleus assay did not reveal genotoxicity of CSS. In pharmacokinetic study in human, CSS showed higher absorption as compared to chondroitin sulfate of animal origin. The results of subchronic toxicity study supports the no-observed-adverse-effect level (NOAEL) for CSS as 1000 mg/kg bw/day, the highest dose tested. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Characterization of a genotoxicity biomarker in three-spined stickleback (Gasterosteus aculeatus L.): Biotic variability and integration in a battery of biomarkers for environmental monitoring.

    Science.gov (United States)

    Santos, Raphael; Joyeux, Aude; Palluel, Olivier; Palos-Ladeiro, Mélissa; Besnard, Aurélien; Blanchard, Christophe; Porcher, Jean Marc; Bony, Sylvie; Devaux, Alain; Sanchez, Wilfried

    2016-04-01

    As a large array of hazardous substances exhibiting genotoxicity are discharged into surface water, this work aimed at assessing the relevance of adding a genotoxicity biomarker in a battery of biomarkers recently developed in the model fish three-spined stickleback (Gasterosteus aculeatus). First the confounding influence of gender, body length, and season (used as a proxy of age and of the fish reproductive status, respectively) on the level of primary DNA damage in erythrocytes was investigated in wild sticklebacks. Then, the genotoxity biomarker was included in a large battery of biomarkers assessing xenobiotic biotransformation, oxidative stress and neurotoxicity, and implemented in five sites. Gender, age and reproductive status did not influence DNA damage level in fish from the reference site. A significant relationship between the level of primary DNA damage and fish length (as a proxy of age also correlated to the season) was highlighted in the contaminated site. Among all biomarkers investigated in the field, the level of DNA damage was one of the four most discriminating biomarkers with EROD, catalase activity and the level of lipid peroxidation representing together 75.40% of the discriminating power in sampled fish. The level of DNA damage was correlated to the EROD activity and to the level of peroxidation, which mainly discriminated fish from sites under urban pressure. Finally, Integrated Biomarker Response indexes (IBRv2), which were calculated with the whole biomarker response dataset exhibited higher values in the Reveillon (9.62), the Scarpe and Rhonelle contaminated sites (5.11 and 4.90) compared with the two reference sites (2.38 and 2.55). The present work highlights that integration of a genotoxicity biomarker in a multiparametric approach is relevant to assess ecotoxicological risk in freshwater aquatic organisms. © 2014 Wiley Periodicals, Inc.

  16. Cytotoxicity and genotoxicity of low doses of mercury chloride and methylmercury chloride on human lymphocytes in vitro

    Directory of Open Access Journals (Sweden)

    L.C. Silva-Pereira

    2005-06-01

    Full Text Available Mercury is a xenobiotic metal that is a highly deleterious environmental pollutant. The biotransformation of mercury chloride (HgCl2 into methylmercury chloride (CH3HgCl in aquatic environments is well-known and humans are exposed by consumption of contaminated fish, shellfish and algae. The objective of the present study was to determine the changes induced in vitro by two mercury compounds (HgCl2 and CH3HgCl in cultured human lymphocytes. Short-term human leukocyte cultures from 10 healthy donors (5 females and 5 males were set-up by adding drops of whole blood in complete medium. Cultures were separately and simultaneously treated with low doses (0.1 to 1000 µg/l of HgCl2 and CH3HgCl and incubated at 37ºC for 48 h. Genotoxicity was assessed by chromosome aberrations and polyploid cells. Mitotic index was used as a measure of cytotoxicity. A significant increase (P < 0.05 in the relative frequency of chromosome aberrations was observed for all concentrations of CH3HgCl when compared to control, whether alone or in an evident sinergistic combination with HgCl2. The frequency of polyploid cells was also significantly increased (P < 0.05 when compared to control after exposure to all concentrations of CH3HgCl alone or in combination with HgCl2. CH3HgCl significantly decreased (P < 0.05 the mitotic index at 100 and 1000 µg/l alone, and at 1, 10, 100, and 1000 µg/l when combined with HgCl2, showing a synergistic cytotoxic effect. Our data showed that low concentrations of CH3HgCl might be cytotoxic/genotoxic. Such effects may indicate early cellular changes with possible biological consequences and should be considered in the preliminary evaluation of the risks of populations exposed in vivo to low doses of mercury.

  17. Mixture Genotoxicity of 2,4-Dichlorophenoxyacetic Acid, Acrylamide, and Maleic Hydrazide on Human Caco-2 Cells Assessed with Comet Assay

    DEFF Research Database (Denmark)

    Syberg, Kristian; Binderup, Mona-Lise; Cedergreen, Nina

    2015-01-01

    Assessment of genotoxic properties of chemicals is mainly conducted only for single chemicals, without taking mixture genotoxic effects into consideration. The current study assessed mixture effects of the three known genotoxic chemicals, 2,4-dichlorophenoxyacetic acid (2,4-D), acrylamide (AA......), and maleic hydrazide (MH), in an experiment with a fixed ratio design setup. The genotoxic effects were assessed with the single-cell gel electrophoresis assay (comet assay) for both single chemicals and the ternary mixture. The concentration ranges used were 0-1.4, 0-20, and 0-37.7 mM for 2,4-D, AA, and MH......, respectively. Mixture toxicity was tested with a fixed ratio design at a 10:23:77% ratio for 2.4-D:AA:MH. Results indicated that the three chemicals yielded a synergistic mixture effect. It is not clear which mechanisms are responsible for this interaction. A few possible interactions are discussed...

  18. In silico prediction of genotoxicity.

    Science.gov (United States)

    Wichard, Jörg D

    2017-08-01

    The in silico prediction of genotoxicity has made considerable progress during the last years. The main driver for the pharmaceutical industry is the ICH M7 guideline about the assessment of DNA reactive impurities. An important component of this guideline is the use of in silico models as an alternative approach to experimental testing. The in silico prediction of genotoxicity provides an established and accepted method that defines the first step in the assessment of DNA reactive impurities. This was made possible by the growing amount of reliable Ames screening data, the attempts to understand the activity pathways and the subsequent development of computer-based prediction systems. This paper gives an overview of how the in silico prediction of genotoxicity is performed under the ICH M7 guideline. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. In Vitro Evaluation of Genotoxic Effects under Magnetic Resonant Coupling Wireless Power Transfer

    Directory of Open Access Journals (Sweden)

    Kohei Mizuno

    2015-04-01

    Full Text Available Wireless power transfer (WPT technology using the resonant coupling phenomenon has been widely studied, but there are very few studies concerning the possible relationship between WPT exposure and human health. In this study, we investigated whether exposure to magnetic resonant coupling WPT has genotoxic effects on WI38VA13 subcloned 2RA human fibroblast cells. WPT exposure was performed using a helical coil-based exposure system designed to transfer power with 85.4% efficiency at a 12.5-MHz resonant frequency. The magnetic field at the positions of the cell culture dishes is approximately twice the reference level for occupational exposure as stated in the International Commission on Non-Ionizing Radiation Protection (ICNIRP guidelines. The specific absorption rate at the positions of the cell culture dishes matches the respective reference levels stated in the ICNIRP guidelines. For assessment of genotoxicity, we studied cell growth, cell cycle distribution, DNA strand breaks using the comet assay, micronucleus formation, and hypoxanthine-guanine phosphoribosyltransferase (HPRT gene mutation, and did not detect any significant effects between the WPT-exposed cells and control cells. Our results suggest that WPT exposure under the conditions of the ICNIRP guidelines does not cause detectable cellular genotoxicity.

  20. Genome-wide analysis identifies 12 loci influencing human reproductive behavior

    Science.gov (United States)

    Barban, Nicola; Jansen, Rick; de Vlaming, Ronald; Vaez, Ahmad; Mandemakers, Jornt J.; Tropf, Felix C.; Shen, Xia; Wilson, James F.; Chasman, Daniel I.; Nolte, Ilja M.; Tragante, Vinicius; van der Laan, Sander W.; Perry, John R. B.; Kong, Augustine; Ahluwalia, Tarunveer; Albrecht, Eva; Yerges-Armstrong, Laura; Atzmon, Gil; Auro, Kirsi; Ayers, Kristin; Bakshi, Andrew; Ben-Avraham, Danny; Berger, Klaus; Bergman, Aviv; Bertram, Lars; Bielak, Lawrence F.; Bjornsdottir, Gyda; Bonder, Marc Jan; Broer, Linda; Bui, Minh; Barbieri, Caterina; Cavadino, Alana; Chavarro, Jorge E; Turman, Constance; Concas, Maria Pina; Cordell, Heather J.; Davies, Gail; Eibich, Peter; Eriksson, Nicholas; Esko, Tõnu; Eriksson, Joel; Falahi, Fahimeh; Felix, Janine F.; Fontana, Mark Alan; Franke, Lude; Gandin, Ilaria; Gaskins, Audrey J.; Gieger, Christian; Gunderson, Erica P.; Guo, Xiuqing; Hayward, Caroline; He, Chunyan; Hofer, Edith; Huang, Hongyan; Joshi, Peter K.; Kanoni, Stavroula; Karlsson, Robert; Kiechl, Stefan; Kifley, Annette; Kluttig, Alexander; Kraft, Peter; Lagou, Vasiliki; Lecoeur, Cecile; Lahti, Jari; Li-Gao, Ruifang; Lind, Penelope A.; Liu, Tian; Makalic, Enes; Mamasoula, Crysovalanto; Matteson, Lindsay; Mbarek, Hamdi; McArdle, Patrick F.; McMahon, George; Meddens, S. Fleur W.; Mihailov, Evelin; Miller, Mike; Missmer, Stacey A.; Monnereau, Claire; van der Most, Peter J.; Myhre, Ronny; Nalls, Mike A.; Nutile, Teresa; Panagiota, Kalafati Ioanna; Porcu, Eleonora; Prokopenko, Inga; Rajan, Kumar B.; Rich-Edwards, Janet; Rietveld, Cornelius A.; Robino, Antonietta; Rose, Lynda M.; Rueedi, Rico; Ryan, Kathy; Saba, Yasaman; Schmidt, Daniel; Smith, Jennifer A.; Stolk, Lisette; Streeten, Elizabeth; Tonjes, Anke; Thorleifsson, Gudmar; Ulivi, Sheila; Wedenoja, Juho; Wellmann, Juergen; Willeit, Peter; Yao, Jie; Yengo, Loic; Zhao, Jing Hua; Zhao, Wei; Zhernakova, Daria V.; Amin, Najaf; Andrews, Howard; Balkau, Beverley; Barzilai, Nir; Bergmann, Sven; Biino, Ginevra; Bisgaard, Hans; Bønnelykke, Klaus; Boomsma, Dorret I.; Buring, Julie E.; Campbell, Harry; Cappellani, Stefania; Ciullo, Marina; Cox, Simon R.; Cucca, Francesco; Daniela, Toniolo; Davey-Smith, George; Deary, Ian J.; Dedoussis, George; Deloukas, Panos; van Duijn, Cornelia M.; de Geus, Eco JC.; Eriksson, Johan G.; Evans, Denis A.; Faul, Jessica D.; Felicita, Sala Cinzia; Froguel, Philippe; Gasparini, Paolo; Girotto, Giorgia; Grabe, Hans-Jörgen; Greiser, Karin Halina; Groenen, Patrick J.F.; de Haan, Hugoline G.; Haerting, Johannes; Harris, Tamara B.; Heath, Andrew C.; Heikkilä, Kauko; Hofman, Albert; Homuth, Georg; Holliday, Elizabeth G; Hopper, John; Hypponen, Elina; Jacobsson, Bo; Jaddoe, Vincent W. V.; Johannesson, Magnus; Jugessur, Astanand; Kähönen, Mika; Kajantie, Eero; Kardia, Sharon L.R.; Keavney, Bernard; Kolcic, Ivana; Koponen, Päivikki; Kovacs, Peter; Kronenberg, Florian; Kutalik, Zoltan; La Bianca, Martina; Lachance, Genevieve; Iacono, William; Lai, Sandra; Lehtimäki, Terho; Liewald, David C; Lindgren, Cecilia; Liu, Yongmei; Luben, Robert; Lucht, Michael; Luoto, Riitta; Magnus, Per; Magnusson, Patrik K.E.; Martin, Nicholas G.; McGue, Matt; McQuillan, Ruth; Medland, Sarah E.; Meisinger, Christa; Mellström, Dan; Metspalu, Andres; Michela, Traglia; Milani, Lili; Mitchell, Paul; Montgomery, Grant W.; Mook-Kanamori, Dennis; de Mutsert, Renée; Nohr, Ellen A; Ohlsson, Claes; Olsen, Jørn; Ong, Ken K.; Paternoster, Lavinia; Pattie, Alison; Penninx, Brenda WJH; Perola, Markus; Peyser, Patricia A.; Pirastu, Mario; Polasek, Ozren; Power, Chris; Kaprio, Jaakko; Raffel, Leslie J.; Räikkönen, Katri; Raitakari, Olli; Ridker, Paul M.; Ring, Susan M.; Roll, Kathryn; Rudan, Igor; Ruggiero, Daniela; Rujescu, Dan; Salomaa, Veikko; Schlessinger, David; Schmidt, Helena; Schmidt, Reinhold; Schupf, Nicole; Smit, Johannes; Sorice, Rossella; Spector, Tim D.; Starr, John M.; Stöckl, Doris; Strauch, Konstantin; Stumvoll, Michael; Swertz, Morris A.; Thorsteinsdottir, Unnur; Thurik, A. Roy; Timpson, Nicholas J.; Tönjes, Anke; Tung, Joyce Y.; Uitterlinden, André G.; Vaccargiu, Simona; Viikari, Jorma; Vitart, Veronique; Völzke, Henry; Vollenweider, Peter; Vuckovic, Dragana; Waage, Johannes; Wagner, Gert G.; Wang, Jie Jin; Wareham, Nicholas J.; Weir, David R.; Willemsen, Gonneke; Willeit, Johann; Wright, Alan F.; Zondervan, Krina T.; Stefansson, Kari; Krueger, Robert F.; Lee, James J.; Benjamin, Daniel J.; Cesarini, David; Koellinger, Philipp D.; den Hoed, Marcel; Snieder, Harold; Mills, Melinda C.

    2017-01-01

    The genetic architecture of human reproductive behavior – age at first birth (AFB) and number of children ever born (NEB) – has a strong relationship with fitness, human development, infertility and risk of neuropsychiatric disorders. However, very few genetic loci have been identified and the underlying mechanisms of AFB and NEB are poorly understood. We report the largest genome-wide association study to date of both sexes including 251,151 individuals for AFB and 343,072 for NEB. We identified 12 independent loci that are significantly associated with AFB and/or NEB in a SNP-based genome-wide association study, and four additional loci in a gene-based effort. These loci harbor genes that are likely to play a role – either directly or by affecting non-local gene expression – in human reproduction and infertility, thereby increasing our understanding of these complex traits. PMID:27798627

  1. Ultrastructural dynamics of human reproduction, from ovulation to fertilization and early embryo development.

    Science.gov (United States)

    Familiari, Giuseppe; Heyn, Rosemarie; Relucenti, Michela; Nottola, Stefania A; Sathananthan, A Henry

    2006-01-01

    This study describes the updated, fine structure of human gametes, the human fertilization process, and human embryos, mainly derived from assisted reproductive technology (ART). As clearly shown, the ultrastructure of human reproduction is a peculiar multistep process, which differs in part from that of other mammalian models, having some unique features. Particular attention has been devoted to the (1) sperm ultrastructure, likely "Tygerberg (Kruger) strict morphology criteria"; (2) mature oocyte, in which the MII spindle is barrel shaped, anastral, and lacking centrioles; (3) three-dimensional microarchitecture of the zona pellucida with its unique supramolecular filamentous organization; (4) sperm-egg interactions with the peculiarity of the sperm centrosome that activates the egg and organizes the sperm aster and mitotic spindles of the embryo; and (5) presence of viable cumulus cells whose metabolic activity is closely related to egg and embryo behavior in in vitro as well as in vivo conditions, in a sort of extraovarian "microfollicular unit." Even if the ultrastructural morphodynamic features of human fertilization are well understood, our knowledge about in vivo fertilization is still very limited and the complex sequence of in vivo biological steps involved in human reproduction is only partially reproduced in current ART procedures.

  2. The devil we know: the implications of bill C-38 for assisted human reproduction in Canada.

    Science.gov (United States)

    Cattapan, Alana; Cohen, Sara R

    2013-07-01

    In June 2012, the Canadian House of Commons passed the so-called omnibus budget bill, making several important changes to the governance of assisted reproduction in Canada. The bill (Bill C-38) was widely criticized for its unwieldy size and rapid passage through Parliament, preventing adequate parliamentary debate and public scrutiny. Given the substantive nature of the amendments to the Assisted Human Reproduction Act made by Bill C-38, and the lack of relevant discussion about these changes both before and following its passage, this commentary is intended to identify how Bill C-38 may alter the governance of reproductive technologies in Canada. In this commentary, we address some of the more significant changes made by Bill C-38 to the regulation of reproductive medicine in Canada. We identify the benefits and challenges of closing Assisted Human Reproduction Canada, noting that doing so eliminates a much-needed forum for stakeholder consultation in this field. Further, we explore the implications of moving the regulation of donor semen from the Food and Drugs Act to the Assisted Human Reproduction Act; these include increased liability for physicians, and opportunities to expand the existing regulations to account for the needs of lesbian, gay, bisexual, trans, and queer Canadians using donor gametes and recent advances in reproductive technologies. Overall, we argue that although the implementation of a policy framework in this field remains highly dependent on yet-to-be written regulations, the changes to the Assisted Human Reproduction Act enabled by Bill C-38 may significantly alter how Canadians interact with reproductive technologies.

  3. Frequency of chromosome damage in synanthropic house mice as in index of genotoxic effects of environmental contamination

    International Nuclear Information System (INIS)

    Gileva, E.A.; Bol'shakov, A.V.N.; Kosareva, N.L.; Gabitova, A.T.

    1993-01-01

    Environmental contamination of the human habitat by a large number of chemical compounds with genotoxic activity increases genetic risk for the populations of large cities, industrial zones, and many agricultural regions. Moreover, the level of genetic danger for the population at large not involved in work with genotoxicants remains practically unknown since the detection of direct genotoxic environment effect on the human population is complicated by a number of circumstances (complexities related to selecting an adequate control as a result of migration and ethnic heterogeneity of the human population, high cost mass studies, etc.). It is clear that to evaluate the genotoxic potential of the environment, we need to use indicator organisms that are as close to man as possible in genome organization, physiological features, and reactions to mutagenic factors. Such organisms are, first of all, mammals, and among them, house mice should be given special attention; they live side by side with man, and mutagens enter their tissues along the same pathways as in human tissues. Although the direct extrapolation of degree of genetic danger from mouse to human is difficult, with synanthropoic mice, we can estimate the total mutagenic effect of the environment in various regions and population centers and compare this with estimates obtained from regions with a known degree of genetic risk (for example, for the Chernobyl zone)

  4. Cloning Mice and Men: Prohibiting the Use of iPS Cells for Human Reproductive Cloning

    OpenAIRE

    Lo, Bernard; Parham, Lindsay; Alvarez-Buylla, Arturo; Cedars, Marcelle; Conklin, Bruce; Fisher, Susan; Gates, Elena; Giudice, Linda; Halme, Dina Gould; Hershon, William; Kriegstein, Arnold; Kwok, Pui-Yan; Wagner, Richard

    2010-01-01

    The use of iPSCs and tetraploid complementation for human reproductive cloning would raise profound ethical objections. Professional standards and laws that ban human reproductive cloning by somatic cell nuclear transfer should be revised to also forbid it by other methods, such as iPSCs via tetraploid complementation.

  5. A re-assessment of the safety of silver in household water treatment: rapid systematic review of mammalian in vivo genotoxicity studies.

    Science.gov (United States)

    Fewtrell, Lorna; Majuru, Batsirai; Hunter, Paul R

    2017-06-20

    Despite poor evidence of their effectiveness, colloidal silver and silver nanoparticles are increasingly being promoted for treating potentially contaminated drinking water in low income countries. Recently, however, concerns have been raised about the possible genotoxicity of particulate silver. The goal of this paper was to review the published mammalian in vivo genotoxicity studies using silver micro and nanoparticles. SCOPUS and Medline were searched using the following search string: ("DNA damage" OR genotox* OR Cytotox* OR Embryotox*) AND (silver OR AgNP). Included papers were any mammalian in vivo experimental studies investigating genotoxicity of silver particles. Studies were quality assessed using the ToxRTool. 16 relevant papers were identified. There were substantial variations in study design including the size of silver particles, animal species, target organs, silver dose, route of administration and the method used to detect genotoxicity. Thus, it was not possible to produce a definitive pooled result. Nevertheless, most studies showed evidence of genotoxicity unless using very low doses. We also identified one human study reporting evidence of "severe DNA damage" in silver jewellery workers occupationally exposed to silver particles. With the available evidence it is not possible to be definitive about risks to human health from oral exposure to silver particulates. However, the balance of evidence suggests that there should be concerns especially when considering the evidence from jewellery workers. There is an urgent need to determine whether people exposed to particulate silver as part of drinking water treatment have evidence of DNA damage.

  6. Applying human rights to improve access to reproductive health services.

    Science.gov (United States)

    Shaw, Dorothy; Cook, Rebecca J

    2012-10-01

    Universal access to reproductive health is a target of Millennium Development Goal (MDG) 5B, and along with MDG 5A to reduce maternal mortality by three-quarters, progress is currently too slow for most countries to achieve these targets by 2015. Critical to success are increased and sustainable numbers of skilled healthcare workers and financing of essential medicines by governments, who have made political commitments in United Nations forums to renew their efforts to reduce maternal mortality. National essential medicine lists are not reflective of medicines available free or at cost in facilities or in the community. The WHO Essential Medicines List indicates medicines required for maternal and newborn health including the full range of contraceptives and emergency contraception, but there is no consistent monitoring of implementation of national lists through procurement and supply even for basic essential drugs. Health advocates are using human rights mechanisms to ensure governments honor their legal commitments to ensure access to services essential for reproductive health. Maternal mortality is recognized as a human rights violation by the United Nations and constitutional and human rights are being used, and could be used more effectively, to improve maternity services and to ensure access to drugs essential for reproductive health. Copyright © 2012 International Federation of Gynecology and Obstetrics. Published by Elsevier Ireland Ltd. All rights reserved.

  7. Human cytochrome-P450 enzymes metabolize N-(2-methoxyphenyl)hydroxylamine, a metabolite of the carcinogens o-anisidine and o-nitroanisole, thereby dictating its genotoxicity.

    Science.gov (United States)

    Naiman, Karel; Martínková, Markéta; Schmeiser, Heinz H; Frei, Eva; Stiborová, Marie

    2011-12-24

    N-(2-Methoxyphenyl)hydroxylamine is a component in the human metabolism of two industrial and environmental pollutants and bladder carcinogens, viz. 2-methoxyaniline (o-anisidine) and 2-methoxynitrobenzene (o-nitroanisole), and it is responsible for their genotoxicity. Besides its capability to form three deoxyguanosine adducts in DNA, N-(2-methoxyphenyl)-hydroxylamine is also further metabolized by hepatic microsomal enzymes. To investigate its metabolism by human hepatic microsomes and to identify the major microsomal enzymes involved in this process are the aims of this study. N-(2-Methoxyphenyl)hydroxylamine is metabolized by human hepatic microsomes predominantly to o-anisidine, one of the parent carcinogens from which N-(2-methoxyphenyl)hydroxylamine is formed, while o-aminophenol and two N-(2-methoxyphenyl)hydroxylamine metabolites, whose exact structures have not been identified as yet, are minor products. Selective inhibitors of microsomal CYPs, NADPH:CYP reductase and NADH:cytochrome-b(5) reductase were used to characterize human liver microsomal enzymes reducing N-(2-methoxyphenyl)hydroxylamine to o-anisidine. Based on these studies, we attribute the main activity for this metabolic step in human liver to CYP3A4, 2E1 and 2C (more than 90%). The enzymes CYP2D6 and 2A6 also partake in this N-(2-methoxyphenyl)hydroxylamine metabolism in human liver, but only to ∼6%. Among the human recombinant CYP enzymes tested in this study, human CYP2E1, followed by CYP3A4, 1A2, 2B6 and 2D6, were the most efficient enzymes metabolizing N-(2-methoxyphenyl)hydroxylamine to o-anisidine. The results found in this study indicate that genotoxicity of N-(2-methoxyphenyl)hydroxylamine is dictated by its spontaneous decomposition to nitrenium/carbenium ions generating DNA adducts, and by its susceptibility to metabolism by CYP enzymes. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Quantitative genotoxicity assays for analysis of medicinal plants: A systematic review.

    Science.gov (United States)

    Sponchiado, Graziela; Adam, Mônica Lucia; Silva, Caroline Dadalt; Soley, Bruna Silva; de Mello-Sampayo, Cristina; Cabrini, Daniela Almeida; Correr, Cassyano Januário; Otuki, Michel Fleith

    2016-02-03

    Medicinal plants are known to contain numerous biologically active compounds, and although they have proven pharmacological properties, they can cause harm, including DNA damage. Review the literature to evaluate the genotoxicity risk of medicinal plants, explore the genotoxicity assays most used and compare these to the current legal requirements. A quantitative systematic review of the literature, using the keywords "medicinal plants", "genotoxicity" and "mutagenicity", was undertakenQ to identify the types of assays most used to assess genotoxicity, and to evaluate the genotoxicity potential of medicinal plant extracts. The database searches retrieved 2289 records, 458 of which met the inclusion criteria. Evaluation of the selected articles showed a total of 24 different assays used for an assessment of medicinal plant extract genotoxicity. More than a quarter of those studies (28.4%) reported positive results for genotoxicity. This review demonstrates that a range of genotoxicity assay methods are used to evaluate the genotoxicity potential of medicinal plant extracts. The most used methods are those recommended by regulatory agencies. However, based on the current findings, in order to conduct a thorough study concerning the possible genotoxic effects of a medicinal plant, we indicate that it is important always to include bacterial and mammalian tests, with at least one in vivo assay. Also, these tests should be capable of detecting outcomes that include mutation induction, clastogenic and aneugenic effects, and structural chromosome abnormalities. In addition, the considerable rate of positive results detected in this analysis further supports the relevance of assessing the genotoxicity potential of medicinal plants. Copyright © 2016. Published by Elsevier Ireland Ltd.

  9. Human rights versus legal control over women's reproductive self-determination.

    Science.gov (United States)

    Uberoi, Diya; de Bruyn, Maria

    2013-06-14

    States have a duty under international human rights law to protect people's health. Nonetheless, while some health-related policies and laws protect basic human rights, others violate fundamental rights when they criminalize, prohibit, and restrict access to necessary health services. For example, laws and regulations related to protection of life from conception, contraception, actions of pregnant women, and abortion can harm women and place women and health care providers in jeopardy of legal penalization. Given the adverse consequences of punitive and restrictive laws related to pregnancy, advocates, civil society groups, human rights groups, and government institutions must work together to promote, protect, and fulfill women's fundamental reproductive rights. Copyright © 2013 Uberoi and de Bruyn. This is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.

  10. Use of early phenotypic in vivo markers to assess human relevance of an unusual rodent non-genotoxic carcinogen in vitro

    International Nuclear Information System (INIS)

    Boess, Franziska; Lenz, Barbara; Funk, Juergen; Niederhauser, Urs; Bassett, Simon; Zhang, Jitao David; Singer, Thomas; Roth, Adrian B.

    2017-01-01

    Highlights: • RG3487 induced foci of altered hepatocytes and subsequent liver tumors in rats. • Early phenotypic markers preceding foci appearance in rats were identified. • These early foci markers could be recapitulated in cellular rat liver models. • A species comparison using rat, mouse and dog liver cell models qualified the approach. • In vitro human data support non-human-relevance for RG3487 induced foci formation. - Abstract: Foci of altered hepatocytes (FAH) are considered putative, pre-neoplastic lesions that can occur spontaneously in aging rodents, but can also be induced by chemicals or drugs. Progression of FAH to hepatocellular neoplasms has been reported repeatedly but increases in foci in rodents do not necessarily lead to tumors in carcinogenicity studies and the relevance for humans often remains unclear. Here we present the case of RG3487, a molecule which induced FAH and, later on, tumors in rats. Because the molecule was negative in genotoxicity assays it was classified as a non-genotoxic carcinogen. In order to assess the potential for liver tumor formation in humans, we analyzed treatment-induced changes in vivo to establish a possible mode of action (MoA). In vivo and in vitro gene expression analysis revealed that nuclear receptor signaling was unlikely to be the relevant MoA and no other known mechanism could be established. We therefore took an approach comparing phenotypic markers, including mRNA changes, proliferation and glycogen accumulation, in vitro using cells of different species to assess the human relevance of this finding. Since the alterations observed in rats were not seen in the liver of mice or dogs in vivo, we could validate the relevance of the cell models chosen by use of hepatocytes from these species in vitro. This ultimately allowed for a cross-species comparison, which suggested that the formation of FAH and liver tumors was rat specific and unlikely to translate to human. Our work showed that phenotypic

  11. Developmental plasticity and its relevance to assisted human reproduction

    NARCIS (Netherlands)

    Roseboom, Tessa J.

    2018-01-01

    The advent of assisted reproduction has allowed the conception of millions of individuals who otherwise would not have existed. Although most ART children are born healthy, there is increasing awareness of the plasticity of the human embryo causing concerns about potential long-term consequences of

  12. Genotoxicity analysis of two halonitromethanes, a novel group of disinfection by-products (DBPs), in human cells treated in vitro

    International Nuclear Information System (INIS)

    Liviac, Danae; Creus, Amadeu; Marcos, Ricard

    2009-01-01

    Halonitromethanes (HNMs) constitute an emerging class of disinfection by-products (DBPs) produced when chlorine and/or ozone are used for water treatment. The HNMs are structurally similar to halomethanes, but have a nitro-group in place of hydrogen bonded to the central carbon atom. Since little information exists on the genotoxic potential of HNMs, a study has been carried out with two HNM compounds, namely trichloronitromethane (TCNM) and bromonitromethane (BNM) by using human cells. Primary damage induction has been measured with the Comet assay, which is used to determine both the repair kinetics of the induced damage and the proportion of induced oxidative damage. In addition, the fixed DNA damage has been evaluated by using the micronucleus (MN) assay. The results obtained indicate that both compounds are genotoxic, inducing high levels of DNA breaks in the Comet assay, and that this DNA damage repairs well over time. In addition, oxidized bases constitute a high proportion of DNA-induced damage (50-75%). Contrarily, no positive effects were observed in the frequency of micronucleus, which measures both clastogenic and aneugenic effects, neither using TK6 cells nor peripheral blood lymphocytes. This lack of fixed genetic damage would minimize the potential mutagenic risk associated with HNMs exposure

  13. Just another reproductive technology? The ethics of human reproductive cloning as an experimental medical procedure.

    Science.gov (United States)

    Elsner, D

    2006-10-01

    Human reproductive cloning (HRC) has not yet resulted in any live births. There has been widespread condemnation of the practice in both the scientific world and the public sphere, and many countries explicitly outlaw the practice. Concerns about the procedure range from uncertainties about its physical safety to questions about the psychological well-being of clones. Yet, key aspects such as the philosophical implications of harm to future entities and a comparison with established reproductive technologies such as in vitro fertilisation (IVF) are often overlooked in discussions about HRC. Furthermore, there are people who are willing to use the technology. Several scientists have been outspoken in their intent to pursue HRC. The importance of concerns about the physical safety of children created by HRC and comparisons with concerns about the safety of IVF are discussed. A model to be used to determine when it is acceptable to use HRC and other new assisted reproductive technologies, balancing reproductive freedom and safety concerns, is proposed. Justifications underpinning potential applications of HRC are discussed, and it is determined that these are highly analogous to rationalisations used to justify IVF treatment. It is concluded that people wishing to conceive using HRC should have a prima facie negative right to do so.

  14. Cyto- and genotoxic profile of groundwater used as drinking water supply before and after disinfection.

    Science.gov (United States)

    Pellacani, C; Cassoni, F; Bocchi, C; Martino, A; Pinto, G; Fontana, F; Furlini, M; Buschini, A

    2016-12-01

    The assessment of the toxicological properties of raw groundwater may be useful to predict the type and quality of tap water. Contaminants in groundwater are known to be able to affect the disinfection process, resulting in the formation of substances that are cytotoxic and/or genotoxic. Though the European directive (98/83/EC, which establishes maximum levels for contaminants in raw water (RW)) provides threshold levels for acute exposure to toxic compounds, the law does not take into account chronic exposure at low doses of pollutants present in complex mixture. The purpose of this study was to evaluate the cyto- and genotoxic load in the groundwater of two water treatment plants in Northern Italy. Water samples induced cytotoxic effects, mainly observed when human cells were treated with RW. Moreover, results indicated that the disinfection process reduced cell toxicity, independent of the biocidal used. The induction of genotoxic effects was found, in particular, when the micronucleus assay was carried out on raw groundwater. These results suggest that it is important to include bio-toxicological assays as additional parameters in water quality monitoring programs, as their use would allow the evaluation of the potential risk of groundwater for humans.

  15. The use of genotoxicity biomarkers in molecular epidemiology: applications in environmental, occupational and dietary studies

    Directory of Open Access Journals (Sweden)

    Carina Ladeira

    2017-08-01

    Full Text Available Molecular epidemiology is an approach increasingly used in the establishment of associations between exposure to hazardous substances and development of disease, including the possible modulation by genetic susceptibility factors. Environmental chemicals and contaminants from anthropogenic pollution of air, water and soil, but also originating specifically in occupational contexts, are potential sources of risk of development of disease. Also, diet presents an important role in this process, with some well characterized associations existing between nutrition and some types of cancer. Genotoxicity biomarkers allow the detection of early effects that result from the interaction between the individual and the environment; they are therefore important tools in cancer epidemiology and are extensively used in human biomonitoring studies. This work intends to give an overview of the potential for genotoxic effects assessment, specifically with the cytokinesis blocked micronucleus assay and comet assay in environmental and occupational scenarios, including diet. The plasticity of these techniques allows their inclusion in human biomonitoring studies, adding important information with the ultimate aim of disease prevention, in particular cancer, and so it is important that they be included as genotoxicity assays in molecular epidemiology.

  16. "Aspartame: A review of genotoxicity data".

    Science.gov (United States)

    Kirkland, David; Gatehouse, David

    2015-10-01

    Aspartame is a methyl ester of a dipeptide of aspartic acid and phenylalanine. It is 200× sweeter than sucrose and is approved for use in food products in more than 90 countries around the world. Aspartame has been evaluated for genotoxic effects in microbial, cell culture and animal models, and has been subjected to a number of carcinogenicity studies. The in vitro and in vivo genotoxicity data available on aspartame are considered sufficient for a thorough evaluation. There is no evidence of induction of gene mutations in a series of bacterial mutation tests. There is some evidence of induction of chromosomal damage in vitro, but this may be an indirect consequence of cytotoxicity. The weight of evidence from in vivo bone marrow micronucleus, chromosomal aberration and Comet assays is that aspartame is not genotoxic in somatic cells in vivo. The results of germ cell assays are difficult to evaluate considering limited data available and deviations from standard protocols. The available data therefore support the conclusions of the European Food Safety Authority (EFSA) that aspartame is non-genotoxic. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. GENOTOXICITY OF TOBACCO SMOKE AND TOBACCO SMOKE CONDENSATE: A REVIEW

    Science.gov (United States)

    Genotoxicity of Tobacco Smoke and Tobacco Smoke Condensate: A ReviewAbstractThis report reviews the literature on the genotoxicity of main-stream tobacco smoke and cigarette smoke condensate (CSC) published since 1985. CSC is genotoxic in nearly all systems in which it h...

  18. Genotoxic effect of alkaloids

    Directory of Open Access Journals (Sweden)

    J. A. P. Henriques

    1991-01-01

    Full Text Available Because of the increase use of alkaloids in general medical practice in recent years, it is of interest to determine genotoxic, mutagenic and recombinogenic response to different groups of alkaloids in prokaryotic and eucaryotic organisms. Reserpine, boldine and chelerythrine did not show genotoxicity response in the SOS-Chromotest whereas skimmianine showed genotixicity in the presence of a metabolic activation mixture. Voacristine isolated fromthe leaves of Ervatamia coronaria shows in vivo cytostatic and mutagenic effects in Saccharomyces cerevisiae hapioids cells. The Rauwolfia alkaloid (reserpine was not able to induce reverse mutation and recombinational mitotic events (crossing-over and gene conversion in yeast diploid strain XS2316.

  19. Cloning mice and men: prohibiting the use of iPS cells for human reproductive cloning.

    Science.gov (United States)

    Lo, Bernard; Parham, Lindsay; Alvarez-Buylla, Arturo; Cedars, Marcelle; Conklin, Bruce; Fisher, Susan; Gates, Elena; Giudice, Linda; Halme, Dina Gould; Hershon, William; Kriegstein, Arnold; Kwok, Pui-Yan; Wagner, Richard

    2010-01-08

    The use of iPSCs and tetraploid complementation for human reproductive cloning would raise profound ethical objections. Professional standards and laws that ban human reproductive cloning by somatic cell nuclear transfer should be revised to also forbid it by other methods, such as iPSCs via tetraploid complementation. Copyright 2010 Elsevier Inc. All rights reserved.

  20. Assessment of the in vitro and in vivo genotoxicity of extracts and indole monoterpene alkaloid from the roots of Galianthe thalictroides (Rubiaceae).

    Science.gov (United States)

    Fernandes, L M; Garcez, W S; Mantovani, M S; Figueiredo, P O; Fernandes, C A; Garcez, F R; Guterres, Z R

    2013-09-01

    Roots of Galianthe thalictroides K. Schum. (Rubiaceae) are used in folk medicine in the State of Mato Grosso do Sul, Brazil, for treating and preventing cancer. To gain information about the genotoxicity of extracts (aqueous and EtOH), the CHCl₃ phase resulting from partition of the EtOH extract and the indole monoterpene alkaloid 1 obtained from this plant. The genotoxicity of 1 and extracts was evaluated in vivo through the Drosophila melanogaster wing Somatic Mutation and Recombination Test - SMART, while in vitro cytotoxic (MTT) and Comet assays were performed only with alkaloid 1. The results obtained with the SMART test indicated that the aqueous extract had no genotoxic activity. The EtOH extract was not genotoxic to ST descendants but genotoxic to HB ones. The CHCl₃ phase was genotoxic and cytotoxic. Alkaloid 1 showed significant mutational events with SMART, in the cytotoxicity assay (MTT), it showed a high cytotoxicity for human hepatoma cells (HepG2), whereas for the Comet assay, not showing genotoxic activity. The ethanol extract was shown to be genotoxic to HB descendants in the SMART assay, while the results obtained in this test for the monoterpene indole alkaloid 1 isolated from this extract. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Ecotoxicity and genotoxicity of cyclophosphamide, ifosfamide, their metabolites/transformation products and their mixtures

    International Nuclear Information System (INIS)

    Česen, Marjeta; Eleršek, Tina; Novak, Matjaž; Žegura, Bojana; Kosjek, Tina; Filipič, Metka; Heath, Ester

    2016-01-01

    Cyclophosphamide (CP) and ifosfamide (IF) are commonly used cytostatic drugs that repress cell division by interaction with DNA. The present study investigates the ecotoxicity and genotoxicity of CP, IF, their human metabolites/transformation products (TPs) carboxy-cyclophosphamide (CPCOOH), keto-cyclophosphamide (ketoCP) and N-dechloroethyl-cyclophosphamide (NdCP) as individual compounds and as mixture. The two parent compounds (CP and IF), at concentrations up to 320 mg L −1 , were non-toxic towards the alga Pseudokirchneriella subcapitata and cyanobacterium Synecococcus leopoliensis. Further ecotoxicity studies of metabolites/TPs and a mixture of parent compounds and metabolites/TPs performed in cyanobacteria S. leopoliensis, showed that only CPCOOH (EC 50  = 17.1 mg L −1 ) was toxic. The measured toxicity (EC 50  = 11.5 mg L −1 ) of the mixture was lower from the toxicity predicted by concentration addition model (EC 50  = 21.1 mg L −1 ) indicating potentiating effects of the CPCOOH toxicity. The SOS/umuC assay with Salmonella typhimurium revealed genotoxic activity of CP, CPCOOH and the mixture in the presence of S9 metabolic activation. Only CPCOOH was genotoxic also in the absence of metabolic activation indicating that this compound is a direct acting genotoxin. This finding is of particular importance as in the environment such compounds can directly affect DNA of non-target organisms and also explains toxicity of CPCOOH against cyanobacteria S. leopoliensis. The degradation study with UV irradiation of samples containing CP and IF showed efficient degradation of both compounds and remained non-toxic towards S. leopoliensis, suggesting that no stable TPs with adverse effects were formed. To our knowledge, this is the first study describing the ecotoxicity and genotoxicity of the commonly used cytostatics CP and IF, their known metabolites/TPs and their mixture. The results indicate the importance of toxicological evaluation and

  2. Analysis of Aloe vera cytotoxicity and genotoxicity associated with endodontic medication and laser photobiomodulation.

    Science.gov (United States)

    Carvalho, Nayane Chagas; Guedes, Simone Alves Garcez; Albuquerque-Júnior, Ricardo Luiz Cavalcanti; de Albuquerque, Diana Santana; de Souza Araújo, Adriano Antunes; Paranhos, Luiz Renato; Camargo, Samira Esteves Afonso; Ribeiro, Maria Amália Gonzaga

    2018-01-01

    This study aims to evaluate, in vitro, the effect of Aloe vera associated with endodontic medication, with or without laser photobiomodulation (FTL) irradiation in FP6 human pulp fibroblasts. The materials were divided into eight groups: CTR - control; CL - FTL alone; AA - Aloe vera with distilled water; AL - Aloe vera with distilled water and FTL; HA - calcium hydroxide P.A. with distilled water; HL - calcium hydroxide P.A. with distilled water and FTL; HAA - calcium hydroxide P.A. with Aloe vera and distilled water; HAL - calcium hydroxide P.A. with Aloe vera, distilled water, and FTL. The cytotoxicity was evaluated by MTT assay at 24, 48, and 72h and the genotoxicity by micronucleus test assay. This study was performed in triplicate. Data obtained in both tests were statistically analyzed by ANOVA and Tukey's tests (p≤0.05). Group AA presented high genotoxicity and low cytotoxicity. After 24, 48, and 72h, the group HAA significantly reduced the cell viability. Interaction with FTL showed slightly increase cell viability after 24 and 48h in groups CL and HL (pAloe vera allowed higher cell viability in human pulp fibroblasts in the presence of calcium hydroxide or with FTL separately, but genotoxicity increased in these associations. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. New investigations into the genotoxicity of cobalt compounds and their impact on overall assessment of genotoxic risk.

    Science.gov (United States)

    Kirkland, David; Brock, Tom; Haddouk, Hasnaà; Hargeaves, Victoria; Lloyd, Melvyn; Mc Garry, Sarah; Proudlock, Raymond; Sarlang, Séverine; Sewald, Katherina; Sire, Guillaume; Sokolowski, Andrea; Ziemann, Christina

    2015-10-01

    The genotoxicity of cobalt metal and cobalt compounds has been widely studied. Several publications show induction of chromosomal aberrations, micronuclei or DNA damage in mammalian cells in vitro in the absence of S9. Mixed results were seen in gene mutation studies in bacteria and mammalian cells in vitro, and in chromosomal aberration or micronucleus assays in vivo. To resolve these inconsistencies, new studies were performed with soluble and poorly soluble cobalt compounds according to OECD-recommended protocols. Induction of chromosomal damage was confirmed in vitro, but data suggest this may be due to oxidative stress. No biologically significant mutagenic responses were obtained in bacteria, Tk(+/-) or Hprt mutation tests. Negative results were also obtained for chromosomal aberrations (in bone marrow and spermatogonia) and micronuclei at maximum tolerated doses in vivo. Poorly soluble cobalt compounds do not appear to be genotoxic. Soluble compounds do induce some DNA and chromosomal damage in vitro, probably due to reactive oxygen. The absence of chromosome damage in robust GLP studies in vivo suggests that effective protective processes are sufficient to prevent oxidative DNA damage in whole mammals. Overall, there is no evidence of genetic toxicity with relevance for humans of cobalt substances and cobalt metal. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  4. On making nursing undergraduate human reproductive physiology content meaningful and relevant: discussion of human pleasure in its biological context.

    Science.gov (United States)

    McClusky, Leon Mendel

    2012-01-01

    The traditional presentation of the Reproductive Physiology component in an Anatomy and Physiology course to nursing undergraduates focuses on the broad aspects of hormonal regulation of reproduction and gonadal anatomy, with the role of the higher centres of the brain omitted. An introductory discussion is proposed which could precede the lectures on the reproductive organs. The discussion gives an overview of the biological significance of human pleasure, the involvement of the neurotransmitter dopamine, and the role of pleasure in the survival of the individual and even species. Pleasure stimuli (positive and negative) and the biological significance of naturally-induced pleasurable experiences are briefly discussed in the context of reproduction and the preservation of genetic material with an aim to foster relevancy between subject material and human behaviour in any type of society. The tenderness of this aspect of the human existence is well-understood because of its invariable association with soul-revealing human expressions such as love, infatuation, sexual flirtations, all of which are underpinned by arousal, desire and/or pleasure. Assuming that increased knowledge correlates with increased confidence, the proposed approach may provide the nurse with an adequate knowledge base to overcome well-known barriers in communicating with their patients about matters of sexual health and intimacy. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Genotoxicity risk assessment of diversely substituted quinolines using the SOS chromotest.

    Science.gov (United States)

    Duran, Leidy Tatiana Díaz; Rincón, Nathalia Olivar; Galvis, Carlos Eduardo Puerto; Kouznetsov, Vladimir V; Lorenzo, Jorge Luis Fuentes

    2015-03-01

    Quinolines are aromatic nitrogen compounds with wide therapeutic potential to treat parasitic and microbial diseases. In this study, the genotoxicity of quinoline, 4-methylquinoline, 4-nitroquinoline-1-oxide (4-NQO), and diversely functionalized quinoline derivatives and the influence of the substituents (functional groups and/or atoms) on their genotoxicity were tested using the SOS chromotest. Quinoline derivatives that induce genotoxicity by the formation of an enamine epoxide structure did not induce the SOS response in Escherichia coli PQ37 cells, with the exception of 4-methylquinoline that was weakly genotoxic. The chemical nature of the substitution (C-5 to C-8: hydroxyl, nitro, methyl, isopropyl, chlorine, fluorine, and iodine atoms; C-2: phenyl and 3,4-methylenedioxyphenyl rings) of quinoline skeleton did not significantly modify compound genotoxicities; however, C-2 substitution with α-, β-, or γ-pyridinyl groups removed 4-methylquinoline genotoxicity. On the other hand, 4-NQO derivatives whose genotoxic mechanism involves reduction of the C-4 nitro group were strong inducers of the SOS response. Methyl and nitrophenyl substituents at C-2 of 4-NQO core affected the genotoxic potency of this molecule. The relevance of these results is discussed in relation to the potential use of the substituted quinolines. The work showed the sensitivity of SOS chromotest for studying structure-genotoxicity relationships and bioassay-guided quinoline synthesis. © 2013 Wiley Periodicals, Inc.

  6. On the relevance of genotoxicity for fish populations I: effects of a model genotoxicant on zebrafish (Danio rerio) in a complete life-cycle test.

    Science.gov (United States)

    Diekmann, Markus; Hultsch, Veit; Nagel, Roland

    2004-05-28

    Genotoxicity may be detected in surface waters by means of various genotoxicity assays. In order to enable an ecotoxicological assessment of the consequences of such genotoxic potential for fish populations, a complete life-cycle test with zebrafish (Danio rerio) and the model genotoxicant 4-nitroquinoline-1-oxide (NQO) was conducted. Zebrafish (f1) were continuously exposed to NQO (i.e. 0.1, 0.3, 1.1, 2.9, and 14.6 microg/l, respectively) from fertilised eggs until sexual maturity. In addition to reproduction studies in the f1-generation, f2-fish were exposed to NQO during the first 6 weeks of development. Up to 2.9 microg/l NQO, fish did not display differences in survival and growth (P < 0.05). A NQO concentration of 14.6 microg/l, however, was lethal. Female fish exposed to all NQO concentrations up to 2.9 microg/l displayed a significant reduction in egg production (P < 0.05). A mathematical simulation revealed that exposure to weak concentrations of NQO is leading to an elevated extinction risk. Copyright 2004 Elsevier B.V.

  7. The Future of human reproduction

    National Research Council Canada - National Science Library

    Overall, Christine

    1989-01-01

    ... Contradictions III SOCIAL POLICY QUESTIONS Pregnancy as Justification for Loss of Juridical Autonomy Sanda Rodgers 174 Prenatal Diagnosis: Reproductive Choice? Reproductive Control? Abby Lippman ...

  8. The future of human reproduction

    National Research Council Canada - National Science Library

    Overall, Christine

    1989-01-01

    ... Contradictions III SOCIAL POLICY QUESTIONS Pregnancy as Justification for Loss of Juridical Autonomy Sanda Rodgers 174 Prenatal Diagnosis: Reproductive Choice? Reproductive Control? Abby Lippman ...

  9. The use of dose-response data in a margin of exposure approach to carcinogenic risk assessment for genotoxic chemicals in food.

    Science.gov (United States)

    Benford, Diane J

    2016-05-01

    Genotoxic substances are generally not permitted for deliberate use in food production. However, an appreciable number of known or suspected genotoxic substances occur unavoidably in food, e.g. from natural occurrence, environmental contamination and generation during cooking and processing. Over the past decade a margin of exposure (MOE) approach has increasingly been used in assessing the exposure to substances in food that are genotoxic and carcinogenic. The MOE is defined as a reference point on the dose-response curve (e.g. a benchmark dose lower confidences limit derived from a rodent carcinogenicity study) divided by the estimated human intake. A small MOE indicates a higher concern than a very large MOE. Whilst the MOE cannot be directly equated to risk, it supports prioritisation of substances for further research or for possible regulatory action, and provides a basis for communicating to the public. So far, the MOE approach has been confined to substances for which carcinogenicity data are available. In the absence of carcinogenicity data, evidence of genotoxicity is used only in hazard identification. The challenge to the genetic toxicology community is to develop approaches for characterising risk to human health based on data from genotoxicity studies. In order to achieve wide acceptance, it would be important to further address the issues that have been discussed in the context of dose-response modelling of carcinogenicity data in order to assign levels of concern to particular MOE values, and also whether it is possible to make generic conclusions on how potency in genotoxicity assays relates to carcinogenic potency. © Crown copyright 2015.

  10. Genotoxicity study of an experimental beverage made with quinua, kiwicha and kañiwa

    Directory of Open Access Journals (Sweden)

    Francia D.P. Huaman

    2014-12-01

    Full Text Available Genotoxic evaluation is an important step for a product that is aimed for human consumption. A beverage composed of pseudocereals with highly nutritious elements like quinua (Chenopodium quinoa Willd., kiwicha (Amaranthus caudatus L. and kañiwa (Chenopodium pallidicaule Aellen was prepared to reduce lipid contents in a group of volunteers. The objective of the present study is to evaluate the genotoxic potential of an experimental beverage using two in vitro tests that have been validated by international agencies. For the Ames test, two strains of Salmonella typhimurium (TA98 and TA100 with and without microsomal fraction (S9 were used. Four doses of the beverage were tested and also a possible protective effect (same four doses of beverage added to plates with mutagens. Cultures of binucleated lymphocytes and five doses of the beverage were used for the micronucleus test. Both Ames and the micronucleus tests showed the beverage has not genotoxic effect in all tested doses. However, in evaluating the possible protective effect of the beverage, it would be evident that on the contrary, the mutagenic effect of mutagens used for each strain is enhanced. These results suggest that additional tests should be performed to check the genotoxic potential of this beverage before consumption.

  11. Aspect ratio has no effect on genotoxicity of multi-wall carbon nanotubes.

    Science.gov (United States)

    Kim, Jin Sik; Lee, Kyu; Lee, Young Hee; Cho, Hyun Sun; Kim, Ki Heon; Choi, Kyung Hee; Lee, Sang Hee; Song, Kyung Seuk; Kang, Chang Soo; Yu, Il Je

    2011-07-01

    Carbon nanotubes (CNTs) have specific physico-chemical and electrical properties that are useful for telecommunications, medicine, materials, manufacturing processes and the environmental and energy sectors. Yet, despite their many advantages, it is also important to determine whether CNTs may represent a hazard to the environment and human health. Like asbestos, the aspect ratio (length:diameter) and metal components of CNTs are known to have an effect on the toxicity of carbon nanotubes. Thus, to evaluate the toxic potential of CNTs in relation to their aspect ratio and metal contamination, in vivo and in vitro genotoxicity tests were conducted using high-aspect-ratio (diameter: 10-15 nm, length: ~10 μm) and low-aspect-ratio multi-wall carbon nanotubes (MWCNTs, diameter: 10-15 nm, length: ~150 nm) according to OECD test guidelines 471 (bacterial reverse mutation test), 473 (in vitro chromosome aberration test), and 474 (in vivo micronuclei test) with a good laboratory practice system. To determine the treatment concentration for all the tests, a solubility and dispersive test was performed, and a 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) solution found to be more suitable than distilled water. Neither the high- nor the low-aspect-ratio MWCNTs induced any genotoxicity in a bacterial reverse mutation test (~1,000 μg/plate), in vitro chromosome aberration test (without S9: ~6.25 μg/ml, with S9: ~50 μg/ml), or in vivo micronuclei test (~50 mg/kg). However, the high-aspect-ratio MWCNTs were found to be more toxic than the low-aspect-ratio MWCNTs. Thus, while high-aspect-ratio MWCNTs do not induce direct genotoxicity or metabolic activation-mediated genotoxicity, genotoxicity could still be induced indirectly through oxidative stress or inflammation.

  12. Approaches to the risk assessment of genotoxic carcinogens in food: a critical appraisal.

    Science.gov (United States)

    O'Brien, J; Renwick, A G; Constable, A; Dybing, E; Müller, D J G; Schlatter, J; Slob, W; Tueting, W; van Benthem, J; Williams, G M; Wolfreys, A

    2006-10-01

    The present paper examines the particular difficulties presented by low levels of food-borne DNA-reactive genotoxic carcinogens, some of which may be difficult to eliminate completely from the diet, and proposes a structured approach for the evaluation of such compounds. While the ALARA approach is widely applicable to all substances in food that are both carcinogenic and genotoxic, it does not take carcinogenic potency into account and, therefore, does not permit prioritisation based on potential risk or concern. In the absence of carcinogenicity dose-response data, an assessment based on comparison with an appropriate threshold of toxicological concern may be possible. When carcinogenicity data from animal bioassays are available, a useful analysis is achieved by the calculation of margins of exposure (MOEs), which can be used to compare animal potency data with human exposure scenarios. Two reference points on the dose-response relationship that can be used for MOE calculation were examined; the T25 value, which is derived from linear extrapolation, and the BMDL10, which is derived from mathematical modelling of the dose-response data. The above approaches were applied to selected food-borne genotoxic carcinogens. The proposed approach is applicable to all substances in food that are DNA-reactive genotoxic carcinogens and enables the formulation of appropriate semi-quantitative advice to risk managers.

  13. A diet high in fat and meat but low in dietary fibre increases the genotoxic potential of 'faecal water'

    DEFF Research Database (Denmark)

    Rieger, Martin A.; Parlesak, Alexandr; Pool-Zobel, Beatrice

    1999-01-01

    To determine the effects of different diets on the genotoxicity of human faecal water, a diet rich in fat, meat and sugar but poor in vegetables and free of wholemeal products (diet 1) was consumed by seven healthy volunteers over a period of 12 days. One week after the end of this period......, the volunteers started to consume a diet enriched with vegetables and wholemeal products but poor in fat and meat (diet 2) over a second period of 12 days. The genotoxic effect of faecal waters obtained after both diets was assessed with the single cell gel electrophoresis (Comet assay) using the human colon...... and purine bases revealed no differences after pretreatment with both types of faecal water. The results indicate that diets high in fat and meat but low in dietary fibre increase the genotoxicity of faecal water to colonic cells and may contribute to an enhanced risk of colorectal cancer....

  14. Human leukocyte antigen-G in the male reproductive system and in seminal plasma

    DEFF Research Database (Denmark)

    Horup Larsen, Margit; Bzorek, Michael; Pass, Malene B.

    2011-01-01

    -eclampsia. We have investigated whether HLA-G protein is present in human seminal plasma and in different tissue samples of the male reproductive system.Western blot technique and a soluble HLA-G (sHLA-G) assay were used to detect sHLA-G in human seminal plasma samples. Immunohistochemical staining...... was performed on paraffin-embedded tissue samples. We detected sHLA-G protein in seminal plasma, and HLA-G expression in normal testis and in epididymal tissue of the male reproductive system but not in the seminal vesicle. Furthermore, the results indicated a weak expression of HLA–G in hyperplastic prostatic...... tissue. In summary, several of the findings reported in this study suggest an immunoregulatory role of HLA-G in the male reproductive system and in seminal plasma....

  15. Human breast milk contamination with phthalates and alterations of endogenous reproductive hormones in infants three months of age

    DEFF Research Database (Denmark)

    Main, Katharina M; Mortensen, Gerda Krog; Kaleva, Marko M

    2006-01-01

    Phthalates adversely affect the male reproductive system in animals. We investigated whether phthalate monoester contamination of human breast milk had any influence on the postnatal surge of reproductive hormones in newborn boys as a sign of testicular dysgenesis.......Phthalates adversely affect the male reproductive system in animals. We investigated whether phthalate monoester contamination of human breast milk had any influence on the postnatal surge of reproductive hormones in newborn boys as a sign of testicular dysgenesis....

  16. Nitrate contamination of drinking water: evaluation of genotoxic risk in human populations.

    OpenAIRE

    Kleinjans, J C; Albering, H J; Marx, A; van Maanen, J M; van Agen, B; ten Hoor, F; Swaen, G M; Mertens, P L

    1991-01-01

    Nitrate contamination of drinking water implies a genotoxic risk to man due to the endogenous formation of carcinogenic N-nitroso compounds from nitrate-derived nitrite. Thus far, epidemiological studies have presented conflicting results on the relation of drinking water nitrate levels with gastric cancer incidence. This uncertainty becomes of relevance in view of the steadily increasing nitrate levels in regular drinking water supplies. In an attempt to apply genetic biomarker analysis to i...

  17. Lack of genotoxicity in vivo for food color additive Tartrazine.

    Science.gov (United States)

    Bastaki, Maria; Farrell, Thomas; Bhusari, Sachin; Pant, Kamala; Kulkarni, Rohan

    2017-07-01

    Tartrazine is approved as a food color additive internationally with INS number 102, in the United States as food color subject to batch certification "Food, Drug, and Cosmetic" (FD&C) Yellow No. 5, and in Europe as food color additive with E number 102. In their evaluation of the color (2013), the European Food Safety Authority (EFSA) expressed concerns of potential genotoxicity, based primarily on one genotoxicity study that was not conducted according to Guidelines. The present in vivo genotoxicity study was conducted according to OECD Guidelines in response to EFSA's request for additional data. The animal species and strain, and the tissues examined were selected specifically to address the previously reported findings. The results of this study show clear absence of genotoxic activity for Tartrazine, in the bone marrow micronucleus assay and the Comet assay in the liver, stomach, and colon. These data addressed EFSA's concerns for genotoxicity. The Joint WHO/FAO Committee on Food Additives (JECFA) (2016) also reviewed these data and concluded that there is no genotoxicity concern for Tartrazine. Negative findings in parallel genotoxicity studies on Allura Red AC and Ponceau 4R (published separately) are consistent with lack of genotoxicity for azo dyes used as food colors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Comparative potency approach based on H2AX assay for estimating the genotoxicity of polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Audebert, M; Zeman, F; Beaudoin, R; Péry, A; Cravedi, J-P

    2012-04-01

    Polycyclic Aromatic Hydrocarbons (PAHs) constitute a family of over one hundred compounds and can generally be found in complex mixtures. PAHs metabolites cause DNA damage which can lead to the development of carcinogenesis. Toxicity assessment of PAH complex mixtures is currently expressed in terms of toxic equivalents, based on Toxicity Equivalent Factors (TEFs). However, the definition of new TEFs for a large number of PAH could overcome some limitations of the current method and improve cancer risk assessment. The current investigation aimed at deriving the relative potency factors of PAHs, based on their genotoxic effect measured in vitro and analyzed with mathematical models. For this purpose, we used a new genotoxic assay (γH2AX) with two human cell lines (HepG2 and LS-174T) to analyze the genotoxic properties of 13 selected PAHs at low doses after 24h treatment. The dose-response for genotoxic effects was modeled with a Hill model; equivalency between PAHs at low dose was assessed by applying constraints to the model parameters. In the two cell lines tested, we observed a clear dose-response for genotoxic effects for 11 tested compounds. LS-174T was on average ten times more sensitive than HepG2 towards PAHs regarding genotoxicity. We developed new TEFs, which we named Genotoxic Equivalent Factor (GEF). Calculated GEF for the tested PAHs were generally higher than the TEF usually used. Our study proposed a new in vitro based method for the establishment of relevant TEFs for PAHs to improve cancer risk assessment. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Evolution in a Contemporary Human Population: Intersexual Constraints and Costs of Reproduction

    Energy Technology Data Exchange (ETDEWEB)

    Stearns, Stephen [Yale University

    2012-03-14

    In this talk I will use an analysis of the population described in the Framingham Heart Study to make three points: (1) Contemporary humans are still evolving, and we can in part predict how they are responding to selection. (2) Selection on males and females differs, and its interaction with intersexual genetic correlations constrains the responses of each sex to selection. In other words, males are constrained by processes occurring in females, and females are constrained by processes occurring in males. (3) There are costs of reproduction in humans that are paid in lifespan, but it is likely that these costs were deferred to a point at which our ancestors would already have died for other reasons. When we detect those costs today, we find evidence that the versions of some genes that make us susceptible to cancer also increase reproductive success early in life. This confirms in humans a central assumption of the evolutionary theory of aging – the existence of genes that mediate a tradeoff between reproduction and survival - that had previously only been confirmed in model organisms like fruit flies and worms.

  20. Evaluation of the genotoxicity of cellulose nanofibers.

    Science.gov (United States)

    de Lima, Renata; Oliveira Feitosa, Leandro; Rodrigues Maruyama, Cintia; Abreu Barga, Mariana; Yamawaki, Patrícia Cristina; Vieira, Isolda Jesus; Teixeira, Eliangela M; Corrêa, Ana Carolina; Caparelli Mattoso, Luiz Henrique; Fernandes Fraceto, Leonardo

    2012-01-01

    Agricultural products and by products provide the primary materials for a variety of technological applications in diverse industrial sectors. Agro-industrial wastes, such as cotton and curaua fibers, are used to prepare nanofibers for use in thermoplastic films, where they are combined with polymeric matrices, and in biomedical applications such as tissue engineering, amongst other applications. The development of products containing nanofibers offers a promising alternative for the use of agricultural products, adding value to the chains of production. However, the emergence of new nanotechnological products demands that their risks to human health and the environment be evaluated. This has resulted in the creation of the new area of nanotoxicology, which addresses the toxicological aspects of these materials. Contributing to these developments, the present work involved a genotoxicological study of different nanofibers, employing chromosomal aberration and comet assays, as well as cytogenetic and molecular analyses, to obtain preliminary information concerning nanofiber safety. The methodology consisted of exposure of Allium cepa roots, and animal cell cultures (lymphocytes and fibroblasts), to different types of nanofibers. Negative controls, without nanofibers present in the medium, were used for comparison. The nanofibers induced different responses according to the cell type used. In plant cells, the most genotoxic nanofibers were those derived from green, white, and brown cotton, and curaua, while genotoxicity in animal cells was observed using nanofibers from brown cotton and curaua. An important finding was that ruby cotton nanofibers did not cause any significant DNA breaks in the cell types employed. This work demonstrates the feasibility of determining the genotoxic potential of nanofibers derived from plant cellulose to obtain information vital both for the future usage of these materials in agribusiness and for an understanding of their environmental

  1. Invitro genotoxicity, assessment of cytotoxicity and of Rely X luting cement on human lymphocyte cells before and after irradiation

    International Nuclear Information System (INIS)

    Shetty, Shilpa S.; Hegde, Mithra N.; Shabin; Hegde, Nidarsh D.; Suchetha Kumari; Sanjeev, Ganesh

    2013-01-01

    In dentistry, a luting agent is a viscous material placed between tooth structure and a prosthesis that by polymerization firmly attach the prosthesis to the tooth structure. Luting agents contact a large area of dentin when used for crown cementation. There is little information on biocompatibility tests, especially on the effect of electron beam irradiation on cytotoxicity for luting resin cements. To determine the in vitro cytotoxicity and genotoxicity of Rely X luting cement on human lymphocyte cells before and after irradiation. Rely X luting cement was obtained commercially. Samples were prepared as per the ISO standard size of 25x2x2 mm using polytetrafluoroethylene teflon mould and divided into two groups - non irradiated and irradiated groups. The samples in irradiated category were exposed to 200 Gy of electron beam irradiation at Microtron Centre, Mangalore University, Mangalore, India. For hemolysis the samples were immersed in phosphate buffer saline and incubated at 370℃ for 24 hrs, 7 days and 14 days. 200 μl of 24 hr material extract was mixed with human peripheral blood lymphocyte tested for comet assay by single cell DNA comet assay. Hemolytic activity of non irradiated Rely X luting cement after 24 hrs, 7 days and 14 days was 54.78±1.48, 69.91±2.41 and 43.21±0.92 respectively whereas hemolytic activity of irradiated Rely X luting cement after 24 hrs, 7 days and 14 days was 91.8±8.29, 56.95±19.7 and 41.34±12.30. The irradiation of Rely X luting cement with 200 Gy dose of electron beam irradiation caused an increase in the frequency of DNA damage when compared to that of the non-irradiated group. Based on the experimental condition, it is concluded that incomplete polymerization of the dental luting cements has resulted in the elution of the resin components which are responsible for the cytotoxicity and genotoxicity of Rely X luting cement on human lymphocyte cells. (author)

  2. Human leukocyte antigen-G in the male reproductive system and in seminal plasma.

    Science.gov (United States)

    Larsen, Margit Hørup; Bzorek, Michael; Pass, Malene B; Larsen, Lise Grupe; Nielsen, Mette Weidinger; Svendsen, Signe Goul; Lindhard, Anette; Hviid, Thomas Vauvert F

    2011-12-01

    One of the non-classical human leukocyte antigen (HLA) class Ib proteins, HLA-G, is believed to exert important immunoregulatory functions, especially during pregnancy. The presence of HLA protein in paternal seminal fluid has been suggested to have an influence on the risk of developing pre-eclampsia. We have investigated whether HLA-G protein is present in human seminal plasma and in different tissue samples of the male reproductive system. Western blot technique and a soluble HLA-G (sHLA-G) assay were used to detect sHLA-G in human seminal plasma samples. Immunohistochemical staining was performed on paraffin-embedded tissue samples. We detected sHLA-G protein in seminal plasma, and HLA-G expression in normal testis and in epididymal tissue of the male reproductive system but not in the seminal vesicle. Furthermore, the results indicated a weak expression of HLA-G in hyperplastic prostatic tissue. In summary, several of the findings reported in this study suggest an immunoregulatory role of HLA-G in the male reproductive system and in seminal plasma.

  3. Plants and Photosynthesis: Level III, Unit 3, Lesson 1; The Human Digestive System: Lesson 2; Functions of the Blood: Lesson 3; Human Circulation and Respiration: Lesson 4; Reproduction of a Single Cell: Lesson 5; Reproduction by Male and Female Cells: Lesson 6; The Human Reproductive System: Lesson 7; Genetics and Heredity: Lesson 8; The Nervous System: Lesson 9; The Glandular System: Lesson 10. Advanced General Education Program. A High School Self-Study Program.

    Science.gov (United States)

    Manpower Administration (DOL), Washington, DC. Job Corps.

    This self-study program for the high-school level contains lessons in the following subjects: Plants and Photosynthesis; The Human Digestive System; Functions of the Blood; Human Circulation and Respiration; Reproduction of a Single Cell; Reproduction by Male and Female Cells; The Human Reproductive System; Genetics and Heredity; The Nervous…

  4. Genotoxic potential of montmorillonite clay mineral and alteration in the expression of genes involved in toxicity mechanisms in the human hepatoma cell line HepG2.

    Science.gov (United States)

    Maisanaba, Sara; Hercog, Klara; Filipic, Metka; Jos, Ángeles; Zegura, Bojana

    2016-03-05

    Montmorillonite, also known as Cloisite(®)Na(+) (CNa(+)), is a natural clay with a wide range of well-documented and novel applications, such as pharmaceutical products or food packaging. Although considered a low toxic product, the expected increased exposure to CNa(+) arises concern on the potential consequences on human and environmental health especially as its genotoxicity has scarcely been investigated so far. Thus, we investigated, for the first time, the influence of non-cytotoxic concentrations of CNa(+) (15.65, 31.25 and 62.5 μg/mL) on genomic instability of human hepatoma cell line (HepG2) by determining the formation of micronuclei (MNi), nucleoplasmic bridges (NPBs) and nuclear buds (NBUDs) with the Cytokinesis block micronucleus cytome assay. Further on we studied the influence of CNa(+) on the expression of several genes involved in toxicity mechanisms using the real-time quantitative PCR. The results showed that CNa(+) increased the number of MNi, while the numbers of NBUDs and NPBs were not affected. In addition it deregulated genes in all the groups studied, mainly after longer time of exposure. These findings provide the evidence that CNa(+) is potentially genotoxic. Therefore further studies that will elucidate the molecular mechanisms involved in toxic activity of CNa(+) are needed for hazard identification and human safety assessment. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Potential of human twin embryos generated by embryo splitting in assisted reproduction and research.

    Science.gov (United States)

    Noli, Laila; Ogilvie, Caroline; Khalaf, Yacoub; Ilic, Dusko

    2017-03-01

    Embryo splitting or twinning has been widely used in veterinary medicine over 20 years to generate monozygotic twins with desirable genetic characteristics. The first human embryo splitting, reported in 1993, triggered fierce ethical debate on human embryo cloning. Since Dolly the sheep was born in 1997, the international community has acknowledged the complexity of the moral arguments related to this research and has expressed concerns about the potential for reproductive cloning in humans. A number of countries have formulated bans either through laws, decrees or official statements. However, in general, these laws specifically define cloning as an embryo that is generated via nuclear transfer (NT) and do not mention embryo splitting. Only the UK includes under cloning both embryo splitting and NT in the same legislation. On the contrary, the Ethics Committee of the American Society for Reproductive Medicine does not have a major ethical objection to transferring two or more artificially created embryos with the same genome with the aim of producing a single pregnancy, stating that 'since embryo splitting has the potential to improve the efficacy of IVF treatments for infertility, research to investigate the technique is ethically acceptable'. Embryo splitting has been introduced successfully to the veterinary medicine several decades ago and today is a part of standard practice. We present here an overview of embryo splitting experiments in humans and non-human primates and discuss the potential of this technology in assisted reproduction and research. A comprehensive literature search was carried out using PUBMED and Google Scholar databases to identify studies on embryo splitting in humans and non-human primates. 'Embryo splitting' and 'embryo twinning' were used as the keywords, alone or in combination with other search phrases relevant to the topics of biology of preimplantation embryos. A very limited number of studies have been conducted in humans and non-human

  6. Ameliorative Effects of Dimetylthiourea and N-Acetylcysteine on Nanoparticles Induced Cyto-Genotoxicity in Human Lung Cancer Cells-A549

    Science.gov (United States)

    Srivastava, Ritesh Kumar; Rahman, Qamar; Kashyap, Mahendra Pratap; Lohani, Mohtashim; Pant, Aditya Bhushan

    2011-01-01

    We study the ameliorative potential of dimetylthiourea (DMTU), an OH• radical trapper and N-acetylcysteine (NAC), a glutathione precursor/H2O2 scavenger against titanium dioxide nanoparticles (TiO2-NPs) and multi-walled carbon nanotubes (MWCNTs) induced cyto-genotoxicity in cultured human lung cancer cells-A549. Cytogenotoxicity was induced by exposing the cells to selected concentrations (10 and 50 µg/ml) of either of TiO2-NPs or MWCNTs for 24 h. Anti-cytogenotoxicity effects of DMTU and NAC were studied in two groups, i.e., treatment of 30 minutes prior to toxic insult (short term exposure), while the other group received DMTU and NAC treatment during nanoparticles exposure, i.e., 24 h (long term exposure). Investigations were carried out for cell viability, generation of reactive oxygen species (ROS), micronuclei (MN), and expression of markers of oxidative stress (HSP27, CYP2E1), genotoxicity (P53) and CYP2E1 dependent n- nitrosodimethylamine-demethylase (NDMA-d) activity. In general, the treatment of both DMTU and NAC was found to be effective significantly against TiO2-NPs and MWCNTs induced cytogenotoxicity in A549 cells. Long-term treatment of DMTU and NAC during toxic insults has shown better prevention than short-term pretreatment. Although, cells responded significantly to both DMTU and NAC, but responses were chemical specific. In part, TiO2-NPs induced toxic responses were mediated through OH• radicals generation and reduction in the antioxidant defense system. While in the case of MWCNTs, adverse effects were primarily due to altering/hampering the enzymatic antioxidant system. Data indicate the applicability of human lung cancer cells-A549 as a pre-screening tool to identify the target specific prophylactic and therapeutic potential of drugs candidate molecules against nanoparticles induced cellular damages. PMID:21980536

  7. Ameliorative effects of dimetylthiourea and N-acetylcysteine on nanoparticles induced cyto-genotoxicity in human lung cancer cells-A549.

    Directory of Open Access Journals (Sweden)

    Ritesh Kumar Srivastava

    Full Text Available We study the ameliorative potential of dimetylthiourea (DMTU, an OH• radical trapper and N-acetylcysteine (NAC, a glutathione precursor/H₂O₂ scavenger against titanium dioxide nanoparticles (TiO₂-NPs and multi-walled carbon nanotubes (MWCNTs induced cyto-genotoxicity in cultured human lung cancer cells-A549. Cytogenotoxicity was induced by exposing the cells to selected concentrations (10 and 50 µg/ml of either of TiO₂-NPs or MWCNTs for 24 h. Anti-cytogenotoxicity effects of DMTU and NAC were studied in two groups, i.e., treatment of 30 minutes prior to toxic insult (short term exposure, while the other group received DMTU and NAC treatment during nanoparticles exposure, i.e., 24 h (long term exposure. Investigations were carried out for cell viability, generation of reactive oxygen species (ROS, micronuclei (MN, and expression of markers of oxidative stress (HSP27, CYP2E1, genotoxicity (P⁵³ and CYP2E1 dependent n- nitrosodimethylamine-demethylase (NDMA-d activity. In general, the treatment of both DMTU and NAC was found to be effective significantly against TiO₂-NPs and MWCNTs induced cytogenotoxicity in A549 cells. Long-term treatment of DMTU and NAC during toxic insults has shown better prevention than short-term pretreatment. Although, cells responded significantly to both DMTU and NAC, but responses were chemical specific. In part, TiO₂-NPs induced toxic responses were mediated through OH• radicals generation and reduction in the antioxidant defense system. While in the case of MWCNTs, adverse effects were primarily due to altering/hampering the enzymatic antioxidant system. Data indicate the applicability of human lung cancer cells-A549 as a pre-screening tool to identify the target specific prophylactic and therapeutic potential of drugs candidate molecules against nanoparticles induced cellular damages.

  8. Human disturbance influences reproductive success and growth rate in California sea lions (Zalophus californianus.

    Directory of Open Access Journals (Sweden)

    Susannah S French

    Full Text Available The environment is currently undergoing changes at both global (e.g., climate change and local (e.g., tourism, pollution, habitat modification scales that have the capacity to affect the viability of animal and plant populations. Many of these changes, such as human disturbance, have an anthropogenic origin and therefore may be mitigated by management action. To do so requires an understanding of the impact of human activities and changing environmental conditions on population dynamics. We investigated the influence of human activity on important life history parameters (reproductive rate, and body condition, and growth rate of neonate pups for California sea lions (Zalophus californianus in the Gulf of California, Mexico. Increased human presence was associated with lower reproductive rates, which translated into reduced long-term population growth rates and suggested that human activities are a disturbance that could lead to population declines. We also observed higher body growth rates in pups with increased exposure to humans. Increased growth rates in pups may reflect a density dependent response to declining reproductive rates (e.g., decreased competition for resources. Our results highlight the potentially complex changes in life history parameters that may result from human disturbance, and their implication for population dynamics. We recommend careful monitoring of human activities in the Gulf of California and emphasize the importance of management strategies that explicitly consider the potential impact of human activities such as ecotourism on vertebrate populations.

  9. NTP-CERHR Monograph on the Potential Human Reproductive and Developmental Effects of Di-n-Butyl Phthalate (DBP).

    Science.gov (United States)

    2003-04-01

    TThe National Toxicology Program (NTP) Center for the Evaluation of Risks to Human Reproduction (CERHR) conducted an evaluation of the potential for di-n-butyl phthalate (DBP) to cause adverse effects on reproduction and development in humans. DBP is one of 7 phthalate chemicals evaluated by the NTP CERHR Phthalates Expert Panel. These phthalates were selected for evaluation because of high production volume, extent of human exposures, use in children's products, and/or published evidence of reproductive or developmental toxicity. Unlike many phthalates, DBP is not currently used as a plasticizer in polyvinyl chloride plastics. DBP is a component of latex adhesives and is used in cosmetics and other personal care products, as a plasticizer in cellulose plastics, and as a solvent for dyes. The results of this evaluation on DBP are published in a NTP-CERHR monograph which includes: 1) the NTP Brief, 2) the Expert Panel Report on the Reproductive and Developmental Toxicity of Di-n-Butyl Phthalate, and 3) public comments received on the Expert Panel Report. As stated in the NTP Brief, the NTP reached the following conclusions regarding the possible effects of exposure to DBP on human development and reproduction. First, although DBP could possibly affect human reproduction and development if exposures are sufficiently high, the NTP concludes that there is negligible concern for reproductive toxicity in exposed adults. Second, the NTP concludes that there is minimal concern for developmental effects when pregnant women are exposed to DBP levels estimated by the panel (2-10 mug/kg body weight/day). There is no direct evidence that exposure of people to DBP adversely affects reproduction or development, but studies reviewed by the expert panel show that oral exposure to high doses of DBP (>/=100 mg/kg body weight/day) may adversely affect the prenatal and early postnatal development in rodents. Finally, based on exposure estimates in women of reproductive age, the NTP

  10. Cytotoxicity and genotoxicity of coronaridine from Tabernaemontana catharinensis A.DC in a human laryngeal epithelial carcinoma cell line (Hep-2)

    Science.gov (United States)

    Rizo, Walace Fraga; Ferreira, Luis Eduardo; Colnaghi, Vanessa; Martins, Juliana Simões; Franchi, Leonardo Pereira; Takahashi, Catarina Satie; Beleboni, Rene Oliveira; Marins, Mozart; Pereira, Paulo Sérgio; Fachin, Ana Lúcia

    2013-01-01

    Cancer has become a major public health problem worldwide and the number of deaths due to this disease is increasing almost exponentially. In the constant search for new treatments, natural products of plant origin have provided a variety of new compounds to be explored as antitumor agents. Tabernaemontana catharinensis is a medicinal plant that produces alkaloids with expressive antitumor activity, such as heyneanine, coronaridine and voacangine. The aim of present study was firstly to screen the cytotoxic activity of the indole alkaloids heyneanine, coronaridine and voacangine against HeLa (human cervix tumor), 3T3 (normal mouse embryo fibroblasts), Hep-2 (human laryngeal epithelial carcinoma) and B-16 (murine skin) cell lines by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide); and secondly to analyze the apoptotic activity, cell membrane damage and genotoxicity of the compound that showed the best cytotoxic activity against the tumor cell lines tested. Coronaridine was the one that exhibited greater cytotoxic activity in the laryngeal carcinoma cell line Hep-2 (IC50 = 54.47 μg/mL) than the other alkaloids tested (voacangine IC50 = 159.33 g/mL, and heyneanine IC50 = 689.45 μg/mL). Coronaridine induced apoptosis in cell lines 3T3 and Hep-2, even at high concentrations. The evaluation of genotoxicity by comet assay showed further that coronaridine caused minimal DNA damage in the Hep-2 tumor cell line, and the LDH test showed that it did not affect the plasma membrane. These results suggest that further investigation of coronaridine as an antitumor agent has merit. PMID:23569415

  11. SIGNALING TO THE P53 TUMOR SUPPRESSOR THROUGH PATHWAYS ACTIVATED BY GENOTOXIC AND NON-GENOTOXIC STRESSES.

    Energy Technology Data Exchange (ETDEWEB)

    ANDERSON,C.W.APPELLA,E.

    2002-07-01

    The p53 tumor suppressor is a tetrameric transcription factor that is post-translational modified at {approx}18 different sites by phosphorylation, acetylation, or sumoylation in response to various cellular stress conditions. Specific posttranslational modifications, or groups of modifications, that result from the activation of different stress-induced signaling pathways are thought to modulate p53 activity to regulate cell fate by inducing cell cycle arrest, apoptosis, or cellular senescence. Here we review the posttranslational modifications to p53 and the pathways that produce them in response to both genotoxic and non-genotoxic stresses.

  12. Genotoxicity evaluation of HMG CoA reductase inhibitor rosuvastatin.

    Science.gov (United States)

    Berber, Ahmet Ali; Celik, Mustafa; Aksoy, Hüseyin

    2014-07-01

    The genotoxic potential of rosuvastatin as one of the statin drugs was assessed by chromosomal aberrations (CAs), micronucleus (MN) and DNA damage by comet assay in the human peripheral blood lymphocytes. Rosuvastatin was used at concentrations of 0.0625, 0.125, 0.25, 0.5 and 1 µg/mL for these in vitro assays. In all assays, a negative and positive control were also included. CA frequencies were significantly increased in all concentrations at 24 hours and significantly increased in all concentrations except 0.0625 µg/mL at 48 hours, compared to the negative control. Rosuvastatin has a decreased mitotic index (MI) at 0.5- and 1-µg/mL concentrations at 24 hours and at 0.25, 0.5 and 1 µg/mL at 48 hours. A significant increase was observed for induction of MN in all treatments, compared to the negative control. Cytokinesis-block proliferation indices were not affected by treatments with rosuvastatin. In the comet assay, significant increases in comet tail length and tail moment were observed at 0.0625-, 0.5- and 1-µg/mL concentrations. Comet intensity was significantly increased in all concentrations except 0.0625 µg/mL. According to these results, rosuvastatin is cytotoxic and clastogenic/aneugenic in human peripheral lymphocytes. Further studies should be conducted in other test systems to evaluate the full genotoxic potential of rosuvastatin.

  13. Genotoxicity of Nicotiana tabacum leaves on Helix aspersa.

    Science.gov (United States)

    da Silva, Fernanda R; Erdtmann, Bernardo; Dalpiaz, Tiago; Nunes, Emilene; Ferraz, Alexandre; Martins, Tales L C; Dias, Johny F; da Rosa, Darlan P; Porawskie, Marilene; Bona, Silvia; da Silva, Juliana

    2013-07-01

    Tobacco farmers are routinely exposed to complex mixtures of inorganic and organic chemicals present in tobacco leaves. In this study, we examined the genotoxicity of tobacco leaves in the snail Helix aspersa as a measure of the risk to human health. DNA damage was evaluated using the micronucleus test and the Comet assay and the concentration of cytochrome P450 enzymes was estimated. Two groups of snails were studied: one fed on tobacco leaves and one fed on lettuce (Lactuca sativa L) leaves (control group). All of the snails received leaves (tobacco and lettuce leaves were the only food provided) and water ad libitum. Hemolymph cells were collected after 0, 24, 48 and 72 h. The Comet assay and micronucleus test showed that exposure to tobacco leaves for different periods of time caused significant DNA damage. Inhibition of cytochrome P450 enzymes occurred only in the tobacco group. Chemical analysis indicated the presence of the alkaloid nicotine, coumarins, saponins, flavonoids and various metals. These results show that tobacco leaves are genotoxic in H. aspersa and inhibit cytochrome P450 activity, probably through the action of the complex chemical mixture present in the plant.

  14. Genotoxicity of Nicotiana tabacum leaves on Helix aspersa

    Directory of Open Access Journals (Sweden)

    Fernanda R. da Silva

    2013-01-01

    Full Text Available Tobacco farmers are routinely exposed to complex mixtures of inorganic and organic chemicals present in tobacco leaves. In this study, we examined the genotoxicity of tobacco leaves in the snail Helix aspersa as a measure of the risk to human health. DNA damage was evaluated using the micronucleus test and the Comet assay and the concentration of cytochrome P450 enzymes was estimated. Two groups of snails were studied: one fed on tobacco leaves and one fed on lettuce (Lactuca sativa L leaves (control group. All of the snails received leaves (tobacco and lettuce leaves were the only food provided and water ad libitum. Hemolymph cells were collected after 0, 24, 48 and 72 h. The Comet assay and micronucleus test showed that exposure to tobacco leaves for different periods of time caused significant DNA damage. Inhibition of cytochrome P450 enzymes occurred only in the tobacco group. Chemical analysis indicated the presence of the alkaloid nicotine, coumarins, saponins, flavonoids and various metals. These results show that tobacco leaves are genotoxic in H. aspersa and inhibit cytochrome P450 activity, probably through the action of the complex chemical mixture present in the plant.

  15. Development of a Fish Cell Biosensor System for Genotoxicity Detection Based on DNA Damage-Induced Trans-Activation of p21 Gene Expression

    Directory of Open Access Journals (Sweden)

    Huarong Guo

    2012-09-01

    Full Text Available p21CIP1/WAF1 is a p53-target gene in response to cellular DNA damage. Here we report the development of a fish cell biosensor system for high throughput genotoxicity detection of new drugs, by stably integrating two reporter plasmids of pGL3-p21-luc (human p21 promoter linked to firefly luciferase and pRL-CMV-luc (CMV promoter linked to Renilla luciferase into marine flatfish flounder gill (FG cells, referred to as p21FGLuc. Initial validation of this genotoxicity biosensor system showed that p21FGLuc cells had a wild-type p53 signaling pathway and responded positively to the challenge of both directly acting genotoxic agents (bleomycin and mitomycin C and indirectly acting genotoxic agents (cyclophosphamide with metabolic activation, but negatively to cyclophosphamide without metabolic activation and the non-genotoxic agents ethanol and D-mannitol, thus confirming a high specificity and sensitivity, fast and stable response to genotoxic agents for this easily maintained fish cell biosensor system. This system was especially useful in the genotoxicity detection of Di(2-ethylhexyl phthalate (DEHP, a rodent carcinogen, but negatively reported in most non-mammalian in vitro mutation assays, by providing a strong indication of genotoxicity for DEHP. A limitation for this biosensor system was that it might give false positive results in response to sodium butyrate and any other agents, which can trans-activate the p21 gene in a p53-independent manner.

  16. Evaluation of genotoxic effect of silver nanoparticles (Ag-Nps) in vitro and in vivo

    International Nuclear Information System (INIS)

    Tavares, Priscila; Balbinot, Fernanda; Martins de Oliveira, Hugo; Elibio Fagundes, Gabriela; Venâncio, Mireli; Vieira Ronconi, João Vitor; Merlini, Aline; Streck, Emílio L.; Marques da Silva, Paula; Moraes de Andrade, Vanessa

    2012-01-01

    Silver nanoparticles (Ag-NPs) are the most prominent nanoproducts. Due to their antimicrobial activity, they have been incorporated in different materials, such as catheters, clothes, electric home appliance, and many others. The genotoxicity of Ag-NPs (5–45 nm), in different concentrations and times of exposure, was evaluated by the comet assay in in vitro and in vivo conditions, respectively, using human peripheral blood and Swiss mice. The results showed the genotoxic effect of Ag-NPs in vitro, in all the doses tested in the initial hour of exposure, possibly through the reactive oxygen species generation. Nevertheless, the values for this damage decrease with time, indicating that the DNA may have been restored by the repair system. In the in vivo conditions, we found no genotoxicity of Ag-NPs in any hour of exposure and any dose investigated, which can be attributed to the activation of a cellular antioxidant network and the hydrophobic nature of Ag-NPs. Now, it is absolutely necessary to investigate the role of Ag-NPs in different cell lines in vivo.

  17. Evaluation of genotoxic effect of silver nanoparticles (Ag-Nps) in vitro and in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Tavares, Priscila; Balbinot, Fernanda; Martins de Oliveira, Hugo; Elibio Fagundes, Gabriela [PPGCS, Universidade do Extremo Sul Catarinense, Laboratorio de Biologia Celular e Molecular (Brazil); Venancio, Mireli; Vieira Ronconi, Joao Vitor; Merlini, Aline [Universidade do Extremo Sul Catarinense, Laboratorio de Sintese de Complexos Multifuncionais (Brazil); Streck, Emilio L. [Programa de Pos-Graduacao em Ciencias da Saude, Unidade Academica de Ciencias da Saude, Universidade do Extremo Sul Catarinense, Laboratorio de Fisiopatologia Experimental (Brazil); Marques da Silva, Paula [Universidade do Extremo Sul Catarinense, Laboratorio de Sintese de Complexos Multifuncionais (Brazil); Moraes de Andrade, Vanessa, E-mail: vmoraesdeandrade@yahoo.com.br [PPGCS, Universidade do Extremo Sul Catarinense, Laboratorio de Biologia Celular e Molecular (Brazil)

    2012-03-15

    Silver nanoparticles (Ag-NPs) are the most prominent nanoproducts. Due to their antimicrobial activity, they have been incorporated in different materials, such as catheters, clothes, electric home appliance, and many others. The genotoxicity of Ag-NPs (5-45 nm), in different concentrations and times of exposure, was evaluated by the comet assay in in vitro and in vivo conditions, respectively, using human peripheral blood and Swiss mice. The results showed the genotoxic effect of Ag-NPs in vitro, in all the doses tested in the initial hour of exposure, possibly through the reactive oxygen species generation. Nevertheless, the values for this damage decrease with time, indicating that the DNA may have been restored by the repair system. In the in vivo conditions, we found no genotoxicity of Ag-NPs in any hour of exposure and any dose investigated, which can be attributed to the activation of a cellular antioxidant network and the hydrophobic nature of Ag-NPs. Now, it is absolutely necessary to investigate the role of Ag-NPs in different cell lines in vivo.

  18. Hemocytes of zebra mussels (Dreissena polymorpha are relevant cells for the monitoring of environmental genotoxicity by the comet assay.

    Directory of Open Access Journals (Sweden)

    Marc Bonnard

    2015-06-01

    Full Text Available The measure of DNA integrity by the single cell gel electrophoresis (SCGE or comet assay is especially recommended for its sensitivity and its capacity for detecting different types of damages. Therefore, it has been applied in environmental genotoxicity in a variety of organisms. It appears today necessary to define both reference and threshold levels of DNA damage, for their application in in situ biomonitoring. However, little is known about the influence of both biological (sex, reproduction status or external (temperature… confounding factors on the measure of DNA damage by the comet assay. These variables need to be taken into account if the robustness of the assay is to be established (Jha, 2008. In the zebra mussel Dreissena polymorpha (recommended as a sentinel species in the evaluation of freshwater quality the measure of DNA damage by the comet assay is mainly performed on hemocytes, which are circulating cells involved in key physiological functions such as immunity, homeostasis, detoxication…. This communication will present and discuss results from an innovative study about the variability of the baseline level of DNA damage in hemocytes of mussels encaged for one year in the canal de l’Aisne à la Marne (Reims, according to their sex and their reproductive status. The sensitivity and the suitability of hemocytes in the evaluation of environmental genotoxicity will also be discussed, referring to observations during a 6 month-exposure of mussels in mesocosms to environmentally realistic concentrations of carbamazepine.

  19. Evaluation of Genotoxicity and 28-day Oral Dose Toxicity on Freeze-dried Powder of Tenebrio molitor Larvae (Yellow Mealworm).

    Science.gov (United States)

    Han, So-Ri; Yun, Eun-Young; Kim, Ji-Young; Hwang, Jae Sam; Jeong, Eun Ju; Moon, Kyoung-Sik

    2014-06-01

    The larval form of Tenebrio molitor (T. molitor) has been eaten in many countries and provides benefits as a new food source of protein for humans. However, no information exists regarding its safety for humans. The objective of the present study was to evaluate the genotoxicity and repeated dose oral toxicity of the freeze-dried powder of T. molitor larvae. The genotoxic potential was evaluated by a standard battery testing: bacterial reverse mutation test, in vitro chromosome aberration test, and in vivo micronucleus test. To assess the repeated dose toxicity, the powder was administered once daily by oral gavage to Sprague-Dawley (SD) rats at dose levels of 0, 300, 1000 and 3000 mg/kg/day for 28 days. The parameters which were applied to the study were mortality, clinical signs, body and organ weights, food consumption, ophthalmology, urinalysis, hematology, serum chemistry, gross findings and histopathologic examination. The freezedried powder of T. molitor larvae was not mutagenic or clastogenic based on results of in vitro and in vivo genotoxicity assays. Furthermore, no treatment-related changes or findings were observed in any parameters in rats after 28 days oral administration. In conclusion, the freeze-dried powder of T. molitor larvae was considered to be non-genotoxic and the NOAEL (No Observed Adverse Effect Level) was determined to be 3000 mg/kg/day in both sexes of SD rats under our experimental conditions.

  20. Antioxidant, genotoxic and antigenotoxic activities of daphne gnidium leaf extracts

    Directory of Open Access Journals (Sweden)

    Chaabane Fadwa

    2012-09-01

    Full Text Available Abstract Background Plants play a significant role in maintaining human health and improving the quality of human life. They serve humans well as valuable components of food, as well as in cosmetics, dyes, and medicines. In fact, many plant extracts prepared from plants have been shown to exert biological activity in vitro and in vivo. The present study explored antioxidant and antigenotoxic effects of Daphne gnidium leaf extracts. Methods The genotoxic potential of petroleum ether, chloroform, ethyl acetate, methanol and total oligomer flavonoid (TOF enriched extracts from leaves of Daphne gnidium, was assessed using Escherichia coli PQ37. Likewise, the antigenotoxicity of the same extracts was tested using the “SOS chromotest test”. Antioxidant activities were studied using non enzymatic and enzymatic method: NBT/Riboflavine and xantine oxidase. Results None of the different extracts produced a genotoxic effect, except TOF extract at the lowest tested dose. Our results showed that D. gnidium leaf extracts possess an antigenotoxic effect against the nitrofurantoin a mutagen of reference. Ethyl acetate and TOF extracts were the most effective in inhibiting xanthine oxidase activity. While, methanol extract was the most potent superoxide scavenger when tested with the NBT/Riboflavine assay. Conclusions The present study has demonstrated that D. gnidium leaf extract possess antioxidant and antigenotoxic effects. These activities could be ascribed to compounds like polyphenols and flavonoid. Further studies are required to isolate the active molecules.

  1. Chromium Is Elevated in Fin Whale (Balaenoptera physalus) Skin Tissue and Is Genotoxic to Fin Whale Skin Cells

    Science.gov (United States)

    Wise, Catherine F.; Wise, Sandra S.; Thompson, W. Douglas; Perkins, Christopher; Wise, John Pierce

    2015-01-01

    Hexavalent chromium (Cr(VI)) is present in the marine environment and is a known carcinogen and reproductive toxicant. Cr(VI) is the form of chromium that is well absorbed through the cell membrane. It is also the most prevalent form in seawater. We measured the total Cr levels in skin biopsies obtained from healthy free-ranging fin whales from the Gulf of Maine and found elevated levels relative to marine mammals in other parts of the world. The levels in fin whale biopsies ranged from 1.71 ug/g to 19.6 ug/g with an average level of 10.07 ug/g. We also measured the cytotoxicity and genotoxicity of Cr(VI) in fin whale skin cells. We found that particulate and soluble Cr(VI) are both cytotoxic and genotoxic to fin whale skin cells in a concentration-dependent manner. The concentration range used in our cell culture studies used environmentally relevant concentrations based on the biopsy measurements. These data suggest that Cr(VI) may be a concern for whales in the Gulf of Maine. PMID:25805270

  2. Genotoxic activity and induction of biotransformation enzymes in two human cell lines after treatment by Erika fuel extract.

    Science.gov (United States)

    Amat-Bronnert, Agnès; Castegnaro, Marcel; Pfohl-Leszkowicz, Annie

    2007-01-01

    On 12 December 1999, the tanker Erika broke in two parts at about 60km from the Brittany French coasts (Point of Penmarc'h, Sud Finistère, France). About 10,000tonnes of heavy oil fuel were released in the sea. DNA adduct have been detected in fish liver and mussels digestive gland exposed to the Erika oil spill. In order to investigate the mechanism by which Erika fuel extract exhibits genotoxic effects the induction of DNA adducts by an Erika fuel extract have been analysed on two cell lines, human epithelial bronchial cells (WI) and human hepatoma cells. DNA adducts, reflected by a diagonal radioactive zone and individual adducts are detected only in hepatoma cells indicating biotransformation via CYP 1A2 and CYP 1B1. In addition, Erika fuel extract induces some metabolizing enzymes such CYP 1A2, COX2 and 5-LOX, the two later are involved in cancer processes. Formation of leucotrienes B4 (LTB(4)), a mediator playing a role in inflammation, is induced in epithelial bronchial cells. Since inhalation is one of the ways of contamination for human, the above results are important for human health and prevention. Copyright © 2006 Elsevier B.V. All rights reserved.

  3. Clinically relevant known and candidate genes for obesity and their overlap with human infertility and reproduction.

    Science.gov (United States)

    Butler, Merlin G; McGuire, Austen; Manzardo, Ann M

    2015-04-01

    Obesity is a growing public health concern now reaching epidemic status worldwide for children and adults due to multiple problems impacting on energy intake and expenditure with influences on human reproduction and infertility. A positive family history and genetic factors are known to play a role in obesity by influencing eating behavior, weight and level of physical activity and also contributing to human reproduction and infertility. Recent advances in genetic technology have led to discoveries of new susceptibility genes for obesity and causation of infertility. The goal of our study was to provide an update of clinically relevant candidate and known genes for obesity and infertility using high resolution chromosome ideograms with gene symbols and tabular form. We used computer-based internet websites including PubMed to search for combinations of key words such as obesity, body mass index, infertility, reproduction, azoospermia, endometriosis, diminished ovarian reserve, estrogen along with genetics, gene mutations or variants to identify evidence for development of a master list of recognized obesity genes in humans and those involved with infertility and reproduction. Gene symbols for known and candidate genes for obesity were plotted on high resolution chromosome ideograms at the 850 band level. Both infertility and obesity genes were listed separately in alphabetical order in tabular form and those highlighted when involved with both conditions. By searching the medical literature and computer generated websites for key words, we found documented evidence for 370 genes playing a role in obesity and 153 genes for human reproduction or infertility. The obesity genes primarily affected common pathways in lipid metabolism, deposition or transport, eating behavior and food selection, physical activity or energy expenditure. Twenty-one of the obesity genes were also associated with human infertility and reproduction. Gene symbols were plotted on high resolution

  4. THE ROLE OF SOCIALLY RESPONSIBLE MARKETING IN THE REPRODUCTION OF THE HUMAN CAPITAL AND REDUCTION OF ITS FIKTIVIZATION PROCESSES

    Directory of Open Access Journals (Sweden)

    Olena Brintseva

    2017-12-01

    Full Text Available The urgency of the research. Before the modern person at different stages of reproduction of the human capital, there are many calls and risks that need to be considered and also to adapt to consequences of their action. Target setting. Use of marketing tools is rather a perspective direction of improvement of processes of the human capital reproduction. However, improvement of these processes is promoted by only socially responsible marketing. Uninvestigated parts of general matters defining. Almost unexplored are questions of use of marketing tools in the realization of processes of reproduction of the human capital. The purpose of the paper is to study the use of marketing tools for more effective implementation of reproduction processes of human capital at different stages. The issue of reproduction of human capital is considered in such areas: education, health, and social and labour sphere. Methodology. The paper is based on a critical analysis of scientific researches in the sphere of socially responsible marketing and processes of reproduction of human capital. These issues are researched by Blagov Yu.E., Carroll A., Hrishnova O.A., Kotler P., Lantos J., Lambin J., Libanova E.M., Mishchuk H.Yu., and others. Results. Issues of the human capital reproduction are considered in the following spheres: education, healthcare, and social and labour sphere. It is defined that in modern conditions, social responsibility has to become a basis for the creation of all system of the public relations and cover all stages of reproduction of the human capital. Socially irresponsible marketing leads to the formation, accumulation, and distribution of the fictitious human capital and other its unproductive forms. Practical implications. Now reproduction of the human capital in Ukraine is rather strongly influenced by fiktivization processes connected with the distribution of its unproductive forms. In this context, socially irresponsible marketing of

  5. Genotoxicity and potential carcinogenicity of cyanobacterial toxins - a review.

    Science.gov (United States)

    Zegura, Bojana; Straser, Alja; Filipič, Metka

    2011-01-01

    The occurrence of cyanobacterial blooms has increased significantly in many regions of the world in the last century due to water eutrophication. These blooms are hazardous to humans, animals, and plants due to the production of cyanotoxins, which can be classified in five different groups: hepatotoxins, neurotoxins, cytotoxins, dermatotoxins, and irritant toxins (lipopolysaccharides). There is evidence that certain cyanobacterial toxins are genotoxic and carcinogenic; however, the mechanisms of their potential carcinogenicity are not well understood. The most frequently occurring and widespread cyanotoxins in brackish and freshwater blooms are the cyclic heptapeptides, i.e., microcystins (MCs), and the pentapeptides, i.e., nodularins (NODs). The main mechanism associated with potential carcinogenic activity of MCs and NOD is the inhibition of protein phosphatases, which leads to the hyperphosphorylation of cellular proteins, which is considered to be associated with their tumor-promoting activity. Apart from this, MCs and NOD induce increased formation of reactive oxygen species and, consequently, oxidative DNA damage. There is also evidence that MCs and NOD induce micronuclei, and NOD was shown to have aneugenic activity. Both cyanotoxins interfere with DNA damage repair pathways, which, along with DNA damage, is an important factor involved in the carcinogenicity of these agents. Furthermore, these toxins increase the expression of TNF-α and early-response genes, including proto-oncogenes, genes involved in the response to DNA damage, cell cycle arrest, and apoptosis. Rodent studies indicate that MCs and NOD are tumor promotors, whereas NOD is thought to have also tumor-initiating activity. Another cyanobacterial toxin, cylindrospermopsin (CYN), which has been neglected for a long time, is lately being increasingly found in the freshwater environment. The principal mechanism of its toxicity is the irreversible inhibition of protein synthesis. It is pro-genotoxic

  6. Decisions to regulate genotoxic substances

    Energy Technology Data Exchange (ETDEWEB)

    Bengtsson, G

    1988-07-01

    Decisions to regulate genotoxic substances involve trade-offs between various incomparable factors such as risks to human health and other environmental risks, public perceptions, costs and uncertainties. Two different approaches towards these trade-offs are discussed. In one approach, all relevant factors are defined and trade-offs are considered using a general and very elaborate analysis. Cost-benefit analysis is an exponent of this approach. An illustration is given for the regulation of transboundary releases of radioactive materials. The other approach considers what is politically feasible for the time being and seeks a decision with much room for later corrections. Incrementalism is a philosophy in this vein. It is illustrated by reference to the regulation of transboundary air pollution. Weaknesses and strengths of the two approaches are discussed. (author)

  7. Decisions to regulate genotoxic substances

    International Nuclear Information System (INIS)

    Bengtsson, G.

    1988-01-01

    Decisions to regulate genotoxic substances involve trade-offs between various incomparable factors such as risks to human health and other environmental risks, public perceptions, costs and uncertainties. Two different approaches towards these trade-offs are discussed. In one approach, all relevant factors are defined and trade-offs are considered using a general and very elaborate analysis. Cost-benefit analysis is an exponent of this approach. An illustration is given for the regulation of transboundary releases of radioactive materials. The other approach considers what is politically feasible for the time being and seeks a decision with much room for later corrections. Incrementalism is a philosophy in this vein. It is illustrated by reference to the regulation of transboundary air pollution. Weaknesses and strengths of the two approaches are discussed. (author)

  8. Lifelong endurance training attenuates age-related genotoxic stress in human skeletal muscle

    OpenAIRE

    Cobley, James N; Sakellariou, George K; Murray, Scott; Waldron, Sarah; Gregson, Warren; Burniston, Jatin G; Morton, James P; Iwanejko, Lesley A; Close, Graeme L

    2013-01-01

    Background The aim of the present study was to determine the influence of age and habitual activity level, at rest and following a single bout of high-intensity exercise, on the levels of three proteins poly(ADP-ribose) polymerase-1 (PARP-1), cleaved-PARP-1 and poly(ADP-ribose) glycohydrolase (PARG), involved in the DNA repair and cell death responses to stress and genotoxic insults. Muscle biopsies were obtained from the vastus lateralis of young trained (22 ± 3 years, n = 6), young untraine...

  9. SPATIAL DEVELOPMENT QUALITIES AND HUMAN CAPITAL EXPANDED REPRODUCTION IN THE REPUBLIC OF KARELIA AND THE RUSSIA EUROPEAN NORTH ARCTIC REGIONS

    Directory of Open Access Journals (Sweden)

    Kekkonen A. L.

    2017-06-01

    Full Text Available The article presents the results of studies of the spatial development qualities and the human capital expanded reproduction of the Republic of Karelia and the Arctic regions of Russia’s European North. The aim of the article is the identification of characteristics, opportunities and threats of human capital reproduction in terms of region spatial development. The application of the research results is to provide recommendations for improving reproduction of the human capital and development of the education and vocational guidance systems, human capital management in the region. The study of spatial development and reproduction of the human capital used methods of logical, statistical and comparative analysis and SWOT- analysis principles. The results of the study allowed revealing the peculiarities of spatial development and human capital expanded reproduction of the Republic of Karelia in comparison with the Russian Arctic regions of the European North (Arkhangelsk Oblast, Murmansk Oblast, Komi Republic and Nenets Autonomous District. The Republic of Karelia has a special geographical position, and based on many socio-economic indicators is considered to be a «depressive» region. The expanded reproduction of human capital will bring the Republic of Karelia to the next level of development, taking into consideration external and internal factors as well as opportunities and threats. The results obtained in the study will expand the existing system of knowledge about reproduction of the human capital in the framework of spatial development, and the review of the expanded reproduction of human capital on the regional level will allow the government authorities to develop objective measures of quality formation of the region's human resources. It is proved that the introduction of the vocational guidance system in the region could lead to minimization of the threats associated with depopulation and the gap between education system and the

  10. Cytotoxic and genotoxic responses of human lung cells to combustion smoke particles of Miscanthus straw, softwood and beech wood chips

    Science.gov (United States)

    Arif, Ali Talib; Maschowski, Christoph; Garra, Patxi; Garcia-Käufer, Manuel; Petithory, Tatiana; Trouvé, Gwenaëlle; Dieterlen, Alain; Mersch-Sundermann, Volker; Khanaqa, Polla; Nazarenko, Irina; Gminski, Richard; Gieré, Reto

    2017-08-01

    Inhalation of particulate matter (PM) from residential biomass combustion is epidemiologically associated with cardiovascular and pulmonary diseases. This study investigates PM0.4-1 emissions from combustion of commercial Miscanthus straw (MS), softwood chips (SWC) and beech wood chips (BWC) in a domestic-scale boiler (40 kW). The PM0.4-1 emitted during combustion of the MS, SWC and BWC were characterized by ICP-MS/OES, XRD, SEM, TEM, and DLS. Cytotoxicity and genotoxicity in human alveolar epithelial A549 and human bronchial epithelial BEAS-2B cells were assessed by the WST-1 assay and the DNA-Alkaline Unwinding Assay (DAUA). PM0.4-1 uptake/translocation in cells was investigated with a new method developed using a confocal reflection microscope. SWC and BWC had a inherently higher residual water content than MS. The PM0.4-1 emitted during combustion of SWC and BWC exhibited higher levels of Polycyclic Aromatic Hydrocarbons (PAHs), a greater variety of mineral species and a higher heavy metal content than PM0.4-1 from MS combustion. Exposure to PM0.4-1 from combustion of SWC and BWC induced cytotoxic and genotoxic effects in human alveolar and bronchial cells, whereby the strongest effect was observed for BWC and was comparable to that caused by diesel PM (SRM 2 975), In contrast, PM0.4-1 from MS combustion did not induce cellular responses in the studied lung cells. A high PAH content in PM emissions seems to be a reliable chemical marker of both combustion efficiency and particle toxicity. Residual biomass water content strongly affects particulate emissions and their toxic potential. Therefore, to minimize the harmful effects of fine PM on health, improvement of combustion efficiency (aiming to reduce the presence of incomplete combustion products bound to PM) and application of fly ash capture technology, as well as use of novel biomass fuels like Miscanthus straw is recommended.

  11. Comparison of invitro cytotoxic and genotoxic potential of glass ionomer cement type IX on human lymphocytes before and after electron beam irradiation

    International Nuclear Information System (INIS)

    Hegde, Mithra N.; Brijesh; Shetty, Shilpa S.; Hegde, Nidarsh D.; Suchetha Kumari; Sanjeev, Ganesh

    2013-01-01

    Glass ionomer cements are widely used in dentistry as an adhesive restorative materials. However, the results of cytotoxicity and genotoxicity studies using these materials are inconclusive in literature. The aim of this study was to examine the cytotoxic and genotoxic potential of glass ionomer cement type IX available commercially before and after irradiation. Glass ionomer cement type IX was obtained commercially. Samples were prepared as per the ISO standard size of 25x2x2 mm using polytetrafluoroethylene teflon mould and divided into two groups - non irradiated and irradiated groups. The samples in radiated category were exposed to 10 KGy of electron beam irradiation at Microtron Centre, Mangalore University, Mangalore, India. For hemolysis assay, the samples were immersed in phosphate buffer saline and incubated at 370℃ for 24 hrs, 7 days and 14 days. 200 μL of 24 hr material extract was mixed with human peripheral blood lymphocyte tested for comet assay by single cell DNA comet assay and apoptosis by DNA diffusion assay. Hemolytic activity of non irradiated Glass ionomer cement type IX after 24 hrs, 7 days and 14 days was 78.18±10.13, 32.57±12.28, 38.56±4.68 respectively whereas hemolytic activity of irradiated Glass ionomer cement type IX after 24 hrs, 7 days and 14 days was 58.90±2.28, 35.04±1.09 and 34.26±7.71 respectively. The irradiation of Glass ionomer cement type IX with 10 KGy dose of electron beam irradiation did not show significant increase in the frequency of DNA damage when compared to that of the nonirradiated group. Apoptotic index did not show much difference between non-irradiated and irradiated groups. Taken together, we conclude that some components of glass ionomer cements show both genotoxic and cytotoxic effects. (author)

  12. Effects of Long-Term Exposure to 60 GHz Millimeter-Wavelength Radiation on the Genotoxicity and Heat Shock Protein (Hsp Expression of Cells Derived from Human Eye

    Directory of Open Access Journals (Sweden)

    Shin Koyama

    2016-08-01

    Full Text Available Human corneal epithelial (HCE-T and human lens epithelial (SRA01/04 cells derived from the human eye were exposed to 60 gigahertz (GHz millimeter-wavelength radiation for 24 h. There was no statistically significant increase in the micronucleus (MN frequency in cells exposed to 60 GHz millimeter-wavelength radiation at 1 mW/cm2 compared with sham-exposed controls and incubator controls. The MN frequency of cells treated with bleomycin for 1 h provided positive controls. The comet assay, used to detect DNA strand breaks, and heat shock protein (Hsp expression also showed no statistically significant effects of exposure. These results indicate that exposure to millimeter-wavelength radiation has no effect on genotoxicity in human eye cells.

  13. In vitro and in vivo genotoxicity assessment of HI-6 dimethanesulfonate/oxime.

    Science.gov (United States)

    Nakab, Lauren; Bardot, Isabelle; Bardot, Sébastien; Simar, Sophie; Marzin, Daniel; Nesslany, Fabrice

    2014-03-01

    Organophosphate compounds, which induce organophosphate poisoning, were originally used as pesticides. But this type of product has also been used as warfare nerve agent like sarin, soman, Russian VX, or tabun. HI-6-dimethanesulfonate is a salt of the oxime HI-6 used in the treatment of nerve-agent poisoning. It is known to be the best re-activator component of inactivated acetyl cholinesterase. HI-6-dimethanesulfonate has shown a higher level of solubility with similar potency to reactivate acetyl cholinesterase and a similar pharmacokinetics profile compared with HI-6 dichloride. HI-6 dimethanesulfonate was tested for its mutagenic and genotoxic potential by use of the standard ICH S2R (1) battery for the evaluation of pharmaceuticals. HI-6-dimethanesulfonate was mutagenic in the Ames test only in the presence of metabolic activation. In the mutation assay at the Tk locus in L5178Y mouse-lymphoma cells, HI-6-dimethanesulfonate showed mutagenic activity both with and without metabolic activation, with a significant increase in small colonies. The effects were in favour of a clastogenic activity. It was concluded that the compound was mutagenic and possibly clastogenic in vitro. In contrast, the in vivo micronucleus test in rat bone-marrow did not demonstrate any genotoxic activity and the Comet assay performed in rat liver did not show any statistically or biologically significant increases in DNA strand-breaks. The results of both in vivo studies performed on two different organs with two endpoints are sufficient to conclude the absence of a genotoxic hazard in vivo and to consider that there is no genotoxic concern in humans for HI-6-dimethanesulfonate. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Perinatal genotoxicity and carcinogenicity of anti-retroviral nucleoside analog drugs

    International Nuclear Information System (INIS)

    Poirier, Miriam C.; Olivero, Ofelia A.; Walker, Dale M.; Walker, Vernon E.

    2004-01-01

    The current worldwide spread of the human immunodeficiency virus-1 (HIV-1) to the heterosexual population has resulted in approximately 800 000 children born yearly to HIV-1-infected mothers. In the absence of anti-retroviral intervention, about 25% of the approximately 7000 children born yearly to HIV-1-infected women in the United States are HIV-1 infected. Administration of zidovudine (AZT) prophylaxis during pregnancy reduces the rate of infant HIV-1 infection to approximately 7%, and further reductions are achieved with the addition of lamivudine (3TC) in the clinical formulation Combivir. Whereas clinically this is a remarkable achievement, AZT and 3TC are DNA replication chain terminators known to induce various types of genotoxicity. Studies in rodents have demonstrated AZT-DNA incorporation, HPRT mutagenesis, telomere shortening, and tumorigenicity in organs of fetal mice exposed transplacentally to AZT. In monkeys, both AZT and 3TC become incorporated into the DNA from multiple fetal organs taken at birth after administration of human-equivalent protocols to pregnant dams during gestation, and telomere shortening has been found in monkey fetuses exposed to both drugs. In human infants, AZT-DNA and 3TC-DNA incorporation as well as HPRT and GPA mutagenesis have been documented in cord blood from infants exposed in utero to Combivir. In infants of mice, monkeys, and humans, levels of AZT-DNA incorporation were remarkably similar, and in newborn mice and humans, mutation frequencies were also very similar. Given the risk-benefit ratio, these highly successful drugs will continue to be used for prevention of vertical viral transmission, however evidence of genotoxicity in mouse and monkey models and in the infants themselves would suggest that exposed children should be followed well past adolescence for early detection of potential cancer hazard

  15. Reproduction and fertility in human immunodeficiency virus type-1 infection

    NARCIS (Netherlands)

    van Leeuwen, E.; Prins, J. M.; Jurriaans, S.; Boer, K.; Reiss, P.; Repping, S.; van der Veen, F.

    2007-01-01

    Human immunodeficiency virus type-1 (HIV-1) affects mostly men and women in their reproductive years. For those who have access to highly active antiretroviral therapy (HAART), the course of HIV-1 infection has shifted from a lethal to a chronic disease. As a result of this, many patients with HIV-1

  16. Genotoxic effects and oxidative stress induced by organic extracts of particulate matter(PM 10)collected from a subway tunnel in Seoul, Korea.

    Science.gov (United States)

    Jung, Mi Hyun; Kim, Ha Ryong; Park, Yong Joo; Park, Duck Shin; Chung, Kyu Hyuck; Oh, Seung Min

    2012-12-12

    Particulate matter (PM) has become an important health risk factor in our society. PM can easily deposit in the bronchi and lungs, causing diverse diseases such as respiratory infections, lung cancers and cardiovascular diseases. In recent days, more and more toxicological studies have been dealing with air particles in distinctive areas including industrial areas, transportation sites, or indoors. Studies on subway PM in particular, have been recognizing PM as an important health risk factor because many people use subways as a major mode of public transportation (4 million people a day in Korea). The main aim of the present study was to evaluate the genotoxic effects of organic extract (OE) of subway PM10 and potential attribution of PAHs to these effects. Particles were collected in the subway tunnel at Kil-eum station(Line 4) for one month and then extracted with Dichloromethane (DCM). Chinese Hamster Ovary cells(CHO-K1) and human normal bronchial cells (BEAS-2B) were exposed to OE, and MN and Comet assays were conducted to analyze the genotoxicity. The results showed that OE increased DNA or chromosome damages in both cell lines. In the modified Comet assay and MN assay with free radical scavengers, we confirmed that the genotoxic effect of OE was partially due to the oxidative damage on DNA. DCFHD Aassay also indicated that OE induced ROS generation in BEAS-2B cells. PAHs [benzo(a)anthracene,benzo(k)fluoranthrene, etc.], the most well-known carcinogens in polluted air, were detected in Kil-eum PM10. In conclusion, our findings confirmed that OE of subway PM10 has genotoxic effects on normal human lung cells, and oxidative stress could be one of the major mechanisms of these genotoxic effects.In addition, some genotoxic and carcinogenic PAHs were detected in OE by GC/MS/MS, even though PAHs level was not enough to increase CYP1A1 gene. Therefore, we suggest that additive or synergistic effects by unidentified chemicals as well as PAHs contained in OE of subway

  17. In vivo genotoxicity assessment in rats exposed to Prestige-like oil by inhalation.

    Science.gov (United States)

    Valdiglesias, Vanessa; Kiliç, Gözde; Costa, Carla; Amor-Carro, Óscar; Mariñas-Pardo, Luis; Ramos-Barbón, David; Méndez, Josefina; Pásaro, Eduardo; Laffon, Blanca

    2012-01-01

    One of the largest oil spill disasters in recent times was the accident of the oil tanker Prestige in front of the Galician coast in 2002. Thousands of people participated in the cleanup of the contaminated areas, being exposed to a complex mixture of toxic substances. Acute and prolonged respiratory symptoms and genotoxic effects were reported, although environmental exposure measurements were restricted to current determinations, such that attribution of effects observed to oil exposure is difficult to establish. The aim of this study was to analyze peripheral blood leukocytes (PBL) harvested from a rat model of subchronic exposure to a fuel oil with similar characteristics to that spilled by the Prestige tanker, in order to determine potential genotoxic effects under strictly controlled, in vivo exposure. Wistar Han and Brown Norway rats were exposed to the oil for 3 wk, and micronucleus test (MN) and comet assay, standard and modified with 8-oxoguanine DNA glycosylase (OGG1) enzyme, were employed to assess genotoxicity 72 h and 15 d after the last exposure. In addition, the potential effects of oil exposure on DNA repair capacity were determined by means of mutagen sensitivity assay. Results obtained from this study showed that inhalation oil exposure induced DNA damage in both Brown Norway and Wistar Han rats, especially in those animals evaluated 15 d after exposure. Although alterations in the DNA repair responses were noted, the sensitivity to oil substances varied depending on rat strain. Data support previous positive genotoxicity results reported in humans exposed to Prestige oil during cleanup tasks.

  18. Embryotoxicity and genotoxicity evaluation of sediments from Yangtze River estuary using zebrafish (Danio rerio) embryos.

    Science.gov (United States)

    Li, Qian; Chen, Ling; Liu, Li; Wu, Lingling

    2016-03-01

    Sediments function both as a sink and a source of pollutants in aquatic ecosystems and may impose serious effects on benthic organisms and human health. As one of the largest estuaries in the world, the Yangtze River estuary suffers from abundant wastewater from the coastal cities. In this study, the zebrafish (Danio rerio) embryos were employed in the fish embryo test and a comet assay to evaluate the embryotoxicity and genotoxicity of the sediments from the Yangtze River estuary, respectively. Results showed that the sediments from the Yangtze River estuary significantly increased mortality, induced development abnormalities, and reduced hatching rate and heart rate of zebrafish embryos after 96 h of exposure. Significant genotoxicity was observed in the samples relative to the controls. Relatively low-level embryotoxicity and genotoxicity of sediments were found in the Yangtze River compared with other river systems. Toxic responses were also discussed in relation to the analyzed organic contaminants in sediments. More attention should be paid to non-priority pollutant monitoring in the Yangtze River estuary.

  19. Genotoxicity of 2-bromo-3′-chloropropiophenone

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Fanxue; Yan, Jian; Li, Yan [Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079 (United States); Fu, Peter P. [Division of Biochemical Toxicology, National Center for Toxicological Research, Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079 (United States); Fossom, Linda H.; Sood, Ramesh K.; Mans, Daniel J.; Chu, Pei-I [Center for Drug Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993 (United States); Moore, Martha M. [Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079 (United States); Chen, Tao, E-mail: tao.chen@fda.hhs.gov [Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079 (United States)

    2013-07-15

    Impurities are present in any drug substance or drug product. They can be process-related impurities that are not completely removed during purification or are formed due to the degradation of the drug substance over the product shelf-life. Unlike the drug substance, impurities generally do not have beneficial effects and may present a risk without associated benefit. Therefore, their amount should be minimized. 2-Bromo-3′-chloropropiophenone (BCP) is an impurity of bupropion, a second-generation antidepressant and a smoking cessation aid. The United States Pharmacopeia recommends an acceptable level for BCP that is not more than 0.1% of the bupropion. Because exposure to genotoxic impurities even at low levels is of significant concern, it is important to determine whether or not BCP is genotoxic. Therefore, in this study the Ames test and the in vitro micronucleus assay were conducted to evaluate the genotoxicity of BCP. BCP was mutagenic with S9 metabolic activation, increasing the mutant frequencies in a concentration-dependent manner, up to 22- and 145-fold induction over the controls in Salmonella strains TA100 and TA1535, respectively. BCP was also positive in the in vitro micronucleus assay, resulting in up to 3.3- and 5.1-fold increase of micronucleus frequency for treatments in the absence and presence of S9, respectively; and 9.9- and 7.4-fold increase of aneuploidies without and with S9, respectively. The addition of N-acetyl-L-cysteine, an antioxidant, reduced the genotoxicity of BCP in both assays. Further studies showed that BCP treatment resulted in induction of reactive oxygen species (ROS) in the TK6 cells. The results suggest that BCP is mutagenic, clastogenic, and aneugenic, and that these activities are mediated via generation of reactive metabolites. - Highlights: • 2-Bromo-3′-chloropropiophenone is an impurity of bupropion. • BCP was positive in both the Ames test and the in vitro micronucleus assay. • It induced high frequencies of

  20. Genotoxicity of 2-bromo-3′-chloropropiophenone

    International Nuclear Information System (INIS)

    Meng, Fanxue; Yan, Jian; Li, Yan; Fu, Peter P.; Fossom, Linda H.; Sood, Ramesh K.; Mans, Daniel J.; Chu, Pei-I; Moore, Martha M.; Chen, Tao

    2013-01-01

    Impurities are present in any drug substance or drug product. They can be process-related impurities that are not completely removed during purification or are formed due to the degradation of the drug substance over the product shelf-life. Unlike the drug substance, impurities generally do not have beneficial effects and may present a risk without associated benefit. Therefore, their amount should be minimized. 2-Bromo-3′-chloropropiophenone (BCP) is an impurity of bupropion, a second-generation antidepressant and a smoking cessation aid. The United States Pharmacopeia recommends an acceptable level for BCP that is not more than 0.1% of the bupropion. Because exposure to genotoxic impurities even at low levels is of significant concern, it is important to determine whether or not BCP is genotoxic. Therefore, in this study the Ames test and the in vitro micronucleus assay were conducted to evaluate the genotoxicity of BCP. BCP was mutagenic with S9 metabolic activation, increasing the mutant frequencies in a concentration-dependent manner, up to 22- and 145-fold induction over the controls in Salmonella strains TA100 and TA1535, respectively. BCP was also positive in the in vitro micronucleus assay, resulting in up to 3.3- and 5.1-fold increase of micronucleus frequency for treatments in the absence and presence of S9, respectively; and 9.9- and 7.4-fold increase of aneuploidies without and with S9, respectively. The addition of N-acetyl-L-cysteine, an antioxidant, reduced the genotoxicity of BCP in both assays. Further studies showed that BCP treatment resulted in induction of reactive oxygen species (ROS) in the TK6 cells. The results suggest that BCP is mutagenic, clastogenic, and aneugenic, and that these activities are mediated via generation of reactive metabolites. - Highlights: • 2-Bromo-3′-chloropropiophenone is an impurity of bupropion. • BCP was positive in both the Ames test and the in vitro micronucleus assay. • It induced high frequencies of

  1. Human exposure to endocrine disrupting chemicals: effects on the male and female reproductive systems.

    Science.gov (United States)

    Sifakis, Stavros; Androutsopoulos, Vasilis P; Tsatsakis, Aristeidis M; Spandidos, Demetrios A

    2017-04-01

    Endocrine disrupting chemicals (EDCs) comprise a group of chemical compounds that have been examined extensively due to the potential harmful effects in the health of human populations. During the past decades, particular focus has been given to the harmful effects of EDCs to the reproductive system. The estimation of human exposure to EDCs can be broadly categorized into occupational and environmental exposure, and has been a major challenge due to the structural diversity of the chemicals that are derived by many different sources at doses below the limit of detection used by conventional methodologies. Animal and in vitro studies have supported the conclusion that endocrine disrupting chemicals affect the hormone dependent pathways responsible for male and female gonadal development, either through direct interaction with hormone receptors or via epigenetic and cell-cycle regulatory modes of action. In human populations, the majority of the studies point towards an association between exposure to EDCs and male and/or female reproduction system disorders, such as infertility, endometriosis, breast cancer, testicular cancer, poor sperm quality and/or function. Despite promising discoveries, a causal relationship between the reproductive disorders and exposure to specific toxicants is yet to be established, due to the complexity of the clinical protocols used, the degree of occupational or environmental exposure, the determination of the variables measured and the sample size of the subjects examined. Future studies should focus on a uniform system of examining human populations with regard to the exposure to specific EDCs and the direct effect on the reproductive system. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Dimeric ligands for GPCRs involved in human reproduction : synthesis and biological evaluation

    NARCIS (Netherlands)

    Bonger, Kimberly Michelle

    2008-01-01

    Dimeric ligands for G-protein coupled receptors that are involved in human reproduction, namely the gonadotropin releasing hormone receptor, the luteinizing hormone receptor and the follicle-stimulating hormone receptor, were synthesized and biologically evaluated.

  3. Evaluation of Genotoxicity and 28-day Oral Dose Toxicity on Freeze-dried Powder of Tenebrio molitor Larvae (Yellow Mealworm)

    Science.gov (United States)

    Han, So-Ri; Yun, Eun-Young; Kim, Ji-Young; Hwang, Jae Sam; Jeong, Eun Ju

    2014-01-01

    The larval form of Tenebrio molitor (T. molitor) has been eaten in many countries and provides benefits as a new food source of protein for humans. However, no information exists regarding its safety for humans. The objective of the present study was to evaluate the genotoxicity and repeated dose oral toxicity of the freeze-dried powder of T. molitor larvae. The genotoxic potential was evaluated by a standard battery testing: bacterial reverse mutation test, in vitro chromosome aberration test, and in vivo micronucleus test. To assess the repeated dose toxicity, the powder was administered once daily by oral gavage to Sprague-Dawley (SD) rats at dose levels of 0, 300, 1000 and 3000 mg/kg/day for 28 days. The parameters which were applied to the study were mortality, clinical signs, body and organ weights, food consumption, ophthalmology, urinalysis, hematology, serum chemistry, gross findings and histopathologic examination. The freezedried powder of T. molitor larvae was not mutagenic or clastogenic based on results of in vitro and in vivo genotoxicity assays. Furthermore, no treatment-related changes or findings were observed in any parameters in rats after 28 days oral administration. In conclusion, the freeze-dried powder of T. molitor larvae was considered to be non-genotoxic and the NOAEL (No Observed Adverse Effect Level) was determined to be 3000 mg/kg/day in both sexes of SD rats under our experimental conditions. PMID:25071922

  4. Human somatic cell nuclear transfer and reproductive cloning: an Ethics Committee opinion.

    Science.gov (United States)

    2016-04-01

    This document presents arguments that conclude that it is unethical to use somatic cell nuclear transfer (SCNT) for infertility treatment due to concerns about safety; the unknown impact of SCNT on children, families, and society; and the availability of other ethically acceptable means of assisted reproduction. This document replaces the ASRM Ethics Committee report titled, "Human somatic cell nuclear transfer and cloning," last published in Fertil Steril 2012;98:804-7. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  5. The Vitotox and ToxTracker assays: A two-test combination for quick and reliable assessment of genotoxic hazards.

    Science.gov (United States)

    Ates, Gamze; Favyts, Dorien; Hendriks, Giel; Derr, Remco; Mertens, Birgit; Verschaeve, Luc; Rogiers, Vera; Y Doktorova, Tatyana

    2016-11-01

    To ensure safety for humans, it is essential to characterize the genotoxic potential of new chemical entities, such as pharmaceutical and cosmetic substances. In a first tier, a battery of in vitro tests is recommended by international regulatory agencies. However, these tests suffer from inadequate specificity: compounds may be wrongly categorized as genotoxic, resulting in unnecessary, time-consuming, and expensive in vivo follow-up testing. In the last decade, novel assays (notably, reporter-based assays) have been developed in an attempt to overcome these drawbacks. Here, we have investigated the performance of two in vitro reporter-based assays, Vitotox and ToxTracker. A set of reference compounds was selected to span a variety of mechanisms of genotoxic action and applicability domains (e.g., pharmaceutical and cosmetic ingredients). Combining the performance of the two assays, we achieved 93% sensitivity and 79% specificity for prediction of gentoxicity for this set of compounds. Both assays permit quick high-throughput analysis of drug candidates, while requiring only small quantities of the test substances. Our study shows that these two assays, when combined, can be a reliable method for assessment of genotoxicity hazard. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Genotoxicity induced by Taenia solium and its reduction by immunization with calreticulin in a hamster model of taeniosis.

    Science.gov (United States)

    Salazar, Ana María; Mendlovic, Fela; Cruz-Rivera, Mayra; Chávez-Talavera, Oscar; Sordo, Monserrat; Avila, Guillermina; Flisser, Ana; Ostrosky-Wegman, Patricia

    2013-06-01

    Genotoxicity induced by neurocysticercosis has been demonstrated in vitro and in vivo in humans. The adult stage of Taenia solium lodges in the small intestine and is the main risk factor to acquire neurocysticercosis, nevertheless its carcinogenic potential has not been evaluated. In this study, we determined the genotoxic effect of T. solium infection in the hamster model of taeniosis. In addition, we assessed the effect of oral immunization with recombinant T. solium calreticulin (rTsCRT) plus cholera toxin as adjuvant on micronuclei induction, as this protein has been shown to induce 33-44% protection in the hamster model of taeniosis. Blood samples were collected from the orbital venous plexus of noninfected and infected hamsters at different days postinfection, as well as from orally immunized animals, to evaluate the frequency of micronucleated reticulocytes as a measure of genotoxicity induced by parasite exposure and rTsCRT vaccination. Our results indicate that infection with T. solium caused time-dependent DNA damage in vivo and that rTsCRT immunization reduced the genotoxic damage induced by the presence of the tapeworms. Copyright © 2013 Wiley Periodicals, Inc.

  7. Sexual Reproduction of Human Fungal Pathogens

    Science.gov (United States)

    Heitman, Joseph; Carter, Dee A.; Dyer, Paul S.; Soll, David R.

    2014-01-01

    We review here recent advances in our understanding of sexual reproduction in fungal pathogens that commonly infect humans, including Candida albicans, Cryptococcus neoformans/gattii, and Aspergillus fumigatus. Where appropriate or relevant, we introduce findings on other species associated with human infections. In particular, we focus on rapid advances involving genetic, genomic, and population genetic approaches that have reshaped our view of how fungal pathogens evolve. Rather than being asexual, mitotic, and largely clonal, as was thought to be prevalent as recently as a decade ago, we now appreciate that the vast majority of pathogenic fungi have retained extant sexual, or parasexual, cycles. In some examples, sexual and parasexual unions of pathogenic fungi involve closely related individuals, generating diversity in the population but with more restricted recombination than expected from fertile, sexual, outcrossing and recombining populations. In other cases, species and isolates participate in global outcrossing populations with the capacity for considerable levels of gene flow. These findings illustrate general principles of eukaryotic pathogen emergence with relevance for other fungi, parasitic eukaryotic pathogens, and both unicellular and multicellular eukaryotic organisms. PMID:25085958

  8. Comparison of the in vivo and in vitro genotoxicity of glyphosate isopropylamine salt in three different organisms.

    Science.gov (United States)

    Alvarez-Moya, Carlos; Silva, Mónica Reynoso; Ramírez, Carlos Valdez; Gallardo, David Gómez; Sánchez, Rafael León; Aguirre, Alejandro Canales; Velasco, Alfredo Feria

    2014-03-01

    There is considerable controversy with regard to the genotoxicity of glyphosate, with some reports stating that this compound is non-toxic for fish, birds and mammals. In this work, we used the comet assay to examine the genotoxicity of glyphosate isopropylamine (0.7, 7, 70 and 700 μM) in human lymphocytes, erythrocytes of Oreochromis niloticus and staminal nuclei of Tradescantia (4430) in vitro and in vivo. Cells, nuclei and fish that had and had not been exposed to 5 mM N-nitrosodiethylamine (NDEA) were used as positive and negative controls, respectively. Significant (p cell types and organisms tested. Human lymphocytes and Tradescantia hairs showed lower genetic damage in vivo compared to in vitro, possibly because of efficient metabolization of the herbicide. In O. niloticus erythrocytes, significant (p cells and organisms studied at concentrations of 0.7-7 μM.

  9. Recent perspectives on the relations between faecal mutagenicity, genotoxicity and diet

    Directory of Open Access Journals (Sweden)

    Silvia eGratz

    2011-03-01

    Full Text Available DNA damage is an essential component of the genesis of colonic cancer. Gut microbial products and food components are thought to be principally responsible for the damage that initiates disease progression. Modified Ames tests and Comet assays have been developed for measuring mutagenicity and genotoxicity. Their relevance to oncogenesis remains to be confirmed, as does the relative importance of different mutagenic and genotoxic compounds present in faecal water and the bacteria involved in their metabolism. Dietary intervention studies provide clues to the likely risks of oncogenesis. High-protein diets lead to increases in N-nitroso compounds in faecal water and greater DNA damage as measured by the Comet assay, for example. Other dietary interventions, such as non-digestible carbohydrates and probiotics, may lead to lower faecal genotoxicity. In order to make recommendations to the general public, we must develop a better understanding of how genotoxic compounds are formed in the colon, how accurate the Ames and Comet assays are, and how diet affects genotoxicity.

  10. Intermediate frequency magnetic field generated by a wireless power transmission device does not cause genotoxicity in vitro.

    Science.gov (United States)

    Shi, Dejing; Zhu, Chunbo; Lu, Rengui; Mao, Shitong; Qi, Yanhua

    2014-10-01

    The aim of this study was to evaluate effects of intermediate frequency magnetic fields (IFMF) generated by a wireless power transmission (WPT) based on magnetic resonance from the perspective of cellular genotoxicity on cultured human lens epithelial cells (HLECs). We evaluated the effects of exposure to 90 kHz magnetic fields at 93.36 µT on cellular genotoxicity in vitro for 2 and 4 h. The magnetic flux density is approximately 3.5 times higher than the reference level recommended by the International Commission on Non-Ionizing Radiation Protection (ICNIRP) guidelines. For assessment of genotoxicity, we studied cellular proliferation, apoptosis and DNA damage by Cell Counting Kit-8 (CCK-8) assay, flow cytometry analysis, alkaline comet assay and phosphorylated histone H2AX (γH2AX) foci formation test. We did not detect any effect of a 90 kHz IFMF generated by WPT based on magnetic resonance on cell proliferation, apoptosis, comet assay, and γH2AX foci formation test. Our results indicated that exposure to 90 kHz IFMF generated by WPT based on magnetic resonance at 93.36 µT for 2 and 4 h does not cause detectable cellular genotoxicity. © 2014 Wiley Periodicals, Inc.

  11. The genotoxic contribution of wood smoke to indoor respirable suspended particles

    Energy Technology Data Exchange (ETDEWEB)

    Boone, P.M. (John B. Pierce Foundation Laboratory, New Haven, CT (USA)); Rossman, T.G. (New York Univ. Medical Center, New York (USA)); Daisey, J.M. (Lawrence Berkeley Laboratory, CA (USA))

    1989-01-01

    The effect of wood burning stoves on the genotoxicity of indoor respirable organic matter was investigated for four homes during the winter and spring of 1986. Paired samples, one collected when the stove was not used and one when wood was burned, were extracted with dichloromethane and acetone. Aliquots of the dichloromethane extracts were analyzed with and without metabolic activation using the Microscreen bioassay. The Microscreen is a rapid, sensitive bioassay which measures a broad genotoxic endpoint, {lambda}-prophage induction. Per nanogram of organic material, wood smoke proved to be a major source of indirect (observed with metabolic activation) but not direct genotoxins in homes. The increase in indirect genotoxicity for extracts from aerosol containing wood smoke is probably due to higher concentrations of polycyclic aromatic hydrocarbons in the wood smoke aerosol as well as other unidentified classes. The direct genotoxicity observed for extracts of aerosol not containing wood smoke decreased with metabolic activation. This direct genotoxicity may be related to cooking activities in the homes. The trends in genotoxicity observed per nanogram of organic material are more pronounced when expressed per m{sup 3} of air due to the higher percentage of extractable material in aerosol containing wood smoke.

  12. Chemical fate and genotoxic risk associated with hypochlorite treatment of nicotine

    Energy Technology Data Exchange (ETDEWEB)

    Zarrelli, Armando, E-mail: zarrelli@unina.it [UdR Napoli 4 Consorzio INCA, IC-REACH, Department of Organic Chemistry and Biochemistry, University Federico II, Naples (Italy); DellaGreca, Marina; Parolisi, Alice; Iesce, Maria Rosaria; Cermola, Flavio; Temussi, Fabio [UdR Napoli 4 Consorzio INCA, IC-REACH, Department of Organic Chemistry and Biochemistry, University Federico II, Naples (Italy); Isidori, Marina; Lavorgna, Margherita [Department of Life Sciences, II University of Naples, Caserta (Italy); Passananti, Monica; Previtera, Lucio [UdR Napoli 4 Consorzio INCA, IC-REACH, Department of Organic Chemistry and Biochemistry, University Federico II, Naples (Italy)

    2012-06-01

    Nicotine, the main alkaloid of tobacco, is a non- prescription drug to which all members of a tobacco-smoking society are exposed either through direct smoke inhalation or through second-hand passive 'smoking'. Nicotine is also commercially available in some pharmaceutical products and is used worldwide as a botanical insecticide in agriculture. Nicotine dynamics in indoor and outdoor environments as well as the human excretions and the manufacturing process are responsible for its entry in the environment through municipal and industrial wastewater discharges. The presence of nicotine in surface and ground waters points out that it survives a conventional treatment process and persists in potable-water supplies. Complete removal of nicotine is instead reported when additional chlorination steps are used. In this paper a simulation of STP chlorination of nicotine and a genotoxic evaluation of its main degradation products are reported. Under laboratory conditions removal of nicotine seems not to be due to mineralization but to transformation in oxidized and chlorinated products. The by-products have been isolated after fractionation by diverse chromatographic procedures and their structures determined using mass spectrometry and {sup 1}H and {sup 13}C NMR spectroscopy. Preliminary genotoxic SOS Chromotests with Escherichia coli PQ37 evidence no toxicity of the products. - Highlights: Black-Right-Pointing-Pointer Processes of chlorination in the treatment of raw water. Black-Right-Pointing-Pointer STP chlorination of nicotine. Black-Right-Pointing-Pointer Genotoxic evaluation of main degradation products of nicotine.

  13. Chemical fate and genotoxic risk associated with hypochlorite treatment of nicotine

    International Nuclear Information System (INIS)

    Zarrelli, Armando; DellaGreca, Marina; Parolisi, Alice; Iesce, Maria Rosaria; Cermola, Flavio; Temussi, Fabio; Isidori, Marina; Lavorgna, Margherita; Passananti, Monica; Previtera, Lucio

    2012-01-01

    Nicotine, the main alkaloid of tobacco, is a non- prescription drug to which all members of a tobacco-smoking society are exposed either through direct smoke inhalation or through second-hand passive ‘smoking’. Nicotine is also commercially available in some pharmaceutical products and is used worldwide as a botanical insecticide in agriculture. Nicotine dynamics in indoor and outdoor environments as well as the human excretions and the manufacturing process are responsible for its entry in the environment through municipal and industrial wastewater discharges. The presence of nicotine in surface and ground waters points out that it survives a conventional treatment process and persists in potable-water supplies. Complete removal of nicotine is instead reported when additional chlorination steps are used. In this paper a simulation of STP chlorination of nicotine and a genotoxic evaluation of its main degradation products are reported. Under laboratory conditions removal of nicotine seems not to be due to mineralization but to transformation in oxidized and chlorinated products. The by-products have been isolated after fractionation by diverse chromatographic procedures and their structures determined using mass spectrometry and 1 H and 13 C NMR spectroscopy. Preliminary genotoxic SOS Chromotests with Escherichia coli PQ37 evidence no toxicity of the products. - Highlights: ► Processes of chlorination in the treatment of raw water. ► STP chlorination of nicotine. ► Genotoxic evaluation of main degradation products of nicotine.

  14. Cytotoxicity and genotoxicity of calcium silicate-based cements on an osteoblast lineage

    Directory of Open Access Journals (Sweden)

    Ana Lívia GOMES-CORNÉLIO

    2016-01-01

    Full Text Available Abstract Several calcium silicate-based biomaterials have been developed in recent years, in addition to Mineral Trioxide Aggregate (MTA. The aim of this study was to evaluate the cytotoxicity, genotoxicity and apoptosis/necrosis in human osteoblast cells (SAOS-2 of pure calcium silicate-based cements (CSC and modified formulations: modified calcium silicate-based cements (CSCM and three resin-based calcium silicate cements (CSCR1 (CSCR 2 (CSCR3. The following tests were performed after 24 hours of cement extract exposure: methyl-thiazolyl tetrazolium (MTT, apoptosis/necrosis assay and comet assay. The negative control (CT- was performed with untreated cells, and the positive control (CT+ used hydrogen peroxide. The data for MTT and apoptosis were submitted to analysis of variance and Bonferroni’s posttest (p < 0.05, and the data for the comet assay analysis, to the Kruskal-Wallis and Dunn tests (p < 0.05. The MTT test showed no significant difference among the materials in 2 mg/mL and 10 mg/mL concentrations. CSCR3 showed lower cell viability at 10 mg/mL. Only CSC showed lower cell viability at 50 mg/mL. CSCR1, CSCR2 and CSCR3 showed a higher percentage of initial apoptosis than the control in the apoptosis test, after 24 hours exposure. The same cements showed no genotoxicity in the concentration of 2 mg/mL, with the comet assay. CSC and CSCR2 were also not genotoxic at 10 mg/mL. All experimental materials showed viability with MTT. CSC and CSCR2 presented a better response to apoptosis and genotoxicity evaluation in the 10 mg/mL concentration, and demonstrated a considerable potential for use as reparative materials.

  15. Way forward in case of a false positive in vitro genotoxicity result for a cosmetic substance?

    Science.gov (United States)

    Doktorova, Tatyana Y; Ates, Gamze; Vinken, Mathieu; Vanhaecke, Tamara; Rogiers, Vera

    2014-02-01

    The currently used regulatory in vitro mutagenicity/genotoxicity test battery has a high sensitivity for detecting genotoxicants, but it suffers from a large number of irrelevant positive results (i.e. low specificity) thereby imposing the need for additional follow-up by in vitro and/or in vivo genotoxicity tests. This could have a major impact on the cosmetic industry in Europe, seen the imposed animal testing and marketing bans on cosmetics and their ingredients. Afflicted, but safe substances could therefore be lost. Using the example of triclosan, a cosmetic preservative, we describe here the potential applicability of a human toxicogenomics-based in vitro assay as a potential mechanistically based follow-up test for positive in vitro genotoxicity results. Triclosan shows a positive in vitro chromosomal aberration test, but is negative during in vivo follow-up tests. Toxicogenomics analysis unequivocally shows that triclosan is identified as a compound acting through non-DNA reactive mechanisms. This proof-of-principle study illustrates the potential of genome-wide transcriptomics data in combination with in vitro experimentation as a possible weight-of-evidence follow-up approach for de-risking a positive outcome in a standard mutagenicity/genotoxicity battery. As such a substantial number of cosmetic compounds wrongly identified as genotoxicants could be saved for the future. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Environmental and human risk assessment of landfill leachate: An integrated approach with the use of cytotoxic and genotoxic stress indices in mussel and human cells

    Energy Technology Data Exchange (ETDEWEB)

    Toufexi, Eirini; Tsarpali, Vasiliki [Section of Animal Biology, Department of Biology, School of Natural Sciences, University of Patras, GR 26500 Patras (Greece); Efthimiou, Ioanna; Vidali, Maria-Sophia; Vlastos, Dimitris [Department of Environmental and Natural Resources Management, University of Patras, 2 Seferi Str., GR 30100 Agrinio (Greece); Dailianis, Stefanos, E-mail: sdailianis@upatras.gr [Section of Animal Biology, Department of Biology, School of Natural Sciences, University of Patras, GR 26500 Patras (Greece)

    2013-09-15

    Highlights: • Landfill leachate poses a threat for aquatic biota and humans. • Leachate induces cytotoxic and oxidative effects on mussel hemocytes. • Increased levels of DNA damage were observed both in vivo and in vitro in hemocytes. • Leachate low doses enhance MN formation in human lymphocyte cultures. • Potential leachate aneugenic activity was detected in human lymphocytes. -- Abstract: The present study investigates leachate hazardous effects on marine biota and human cells, with the use of a battery of assays, both under in vivo and in vitro conditions. According to the results, mussels exposed for 4 days to 0.01 and 0.1% (v/v) of leachate showed increased levels of DNA damage and micronuclei (MN) frequencies in their hemocytes. Similarly, enhanced levels of DNA damage were also observed in hemocytes treated in vitro with relevant concentrations of leachate, followed by a significant enhancement of both superoxide anions (·O{sub 2}{sup −}) and lipid peroxidation products (malondialdehyde/MDA). On the other hand, human lymphocyte cultures treated with such a low concentrations of leachate (0.1, 0.2 and 1%, v/v), showed increased frequencies of MN formation and large MN size ratio, as well as decreased cell proliferation, as indicated by the use of the cytokinesis block micronucleus (CBMN) assay and Cytokinesis Block Proliferation Index (CBPI) respectively. These findings showed the clear-cut genotoxic and cytotoxic effects of leachate on both cellular types, as well as its potential aneugenic activity in human lymphocytes.

  17. Environmental and human risk assessment of landfill leachate: An integrated approach with the use of cytotoxic and genotoxic stress indices in mussel and human cells

    International Nuclear Information System (INIS)

    Toufexi, Eirini; Tsarpali, Vasiliki; Efthimiou, Ioanna; Vidali, Maria-Sophia; Vlastos, Dimitris; Dailianis, Stefanos

    2013-01-01

    Highlights: • Landfill leachate poses a threat for aquatic biota and humans. • Leachate induces cytotoxic and oxidative effects on mussel hemocytes. • Increased levels of DNA damage were observed both in vivo and in vitro in hemocytes. • Leachate low doses enhance MN formation in human lymphocyte cultures. • Potential leachate aneugenic activity was detected in human lymphocytes. -- Abstract: The present study investigates leachate hazardous effects on marine biota and human cells, with the use of a battery of assays, both under in vivo and in vitro conditions. According to the results, mussels exposed for 4 days to 0.01 and 0.1% (v/v) of leachate showed increased levels of DNA damage and micronuclei (MN) frequencies in their hemocytes. Similarly, enhanced levels of DNA damage were also observed in hemocytes treated in vitro with relevant concentrations of leachate, followed by a significant enhancement of both superoxide anions (·O 2 − ) and lipid peroxidation products (malondialdehyde/MDA). On the other hand, human lymphocyte cultures treated with such a low concentrations of leachate (0.1, 0.2 and 1%, v/v), showed increased frequencies of MN formation and large MN size ratio, as well as decreased cell proliferation, as indicated by the use of the cytokinesis block micronucleus (CBMN) assay and Cytokinesis Block Proliferation Index (CBPI) respectively. These findings showed the clear-cut genotoxic and cytotoxic effects of leachate on both cellular types, as well as its potential aneugenic activity in human lymphocytes

  18. Hepatotoxicity and genotoxicity of gasoline fumes in albino rats

    Directory of Open Access Journals (Sweden)

    Folarin O. Owagboriaye

    2017-09-01

    Full Text Available Toxic effects of gasoline fumes have been reported, but evidence of its hepatotoxicity and genotoxicity are rare. Therefore, this study assesses hepatotoxicity and genotoxicity of gasoline fumes on forty Albino rats randomly assigned to five experimental treatments (T with eight rats per treatment (T1, T2, T3, T4 and T5. T1(Control was housed in a section of experimental animal house free from gasoline fumes while T2, T3, T4 and T5 were exposed to gasoline fumes in exposure chambers for one, three, five and nine hours daily respectively for twelve weeks. Serum alanine aminotransferase (ALT, aspartate aminotransferase (AST, alkaline phosphatase (ALP and histopathological examination of the liver tissues were used as diagnostic markers to assess liver dysfunction. Genotoxicity test was conducted on the lung tissues using randomly amplified polymorphic DNA fingerprinting polymerase chain reaction (RAPD PCR technique. Significant increase (p < 0.05 in the level of ALT, AST and ALP for T2, T3, T4 and T5 compared to T1 were recorded. Photomicrograph examination of the liver sections of T1 showed hepatic tissue with normal liver cell architecture while that of T2, T3, T4 and T5 revealed degenerative changes in the ultrastructural integrity of the hepatic cells. Genotoxicity test revealed DNA bands at a reducing intensity from T1 to T5. Dendrogram showed DNA damage in the lungs of T3, T4 and T5 were closely similar and the genotoxic impact was more in T3. Frequent exposure to gasoline fumes was observed to induce hepatoxicity and genotoxicity, hence impairing the normal liver function and gene structure.

  19. Safety, identity and consent: a limited defense of reproductive human cloning.

    Science.gov (United States)

    Lane, Robert

    2006-06-01

    Some opponents of reproductive human cloning have argued that, because of its experimental nature, any attempt to create a child by way of cloning would risk serious birth defects or genetic abnormalities and would therefore be immoral. Some versions of this argument appeal to the consent of the person to be conceived in this way. In particular, they assume that if an experimental reproductive technology has not yet been shown to be safe, then, before we use it, we are morally obligated to get either the actual consent or the presumed consent of the person to be conceived. In this article, I attempt to explain the appeal of such consent-based arguments as deriving from a mistaken view of personal identity. I then argue that since this view is false, such arguments are unsound. Finally, I argue that even if reproductive cloning is unsafe, it may still be morally permissible in some circumstances.

  20. Current investigations into the genotoxicity of zinc oxide and silica nanoparticles in mammalian models in vitro and in vivo: carcinogenic/genotoxic potential, relevant mechanisms and biomarkers, artifacts, and limitations

    Directory of Open Access Journals (Sweden)

    Kwon JY

    2014-12-01

    Full Text Available Jee Young Kwon,1,* Preeyaporn Koedrith,2,* Young Rok Seo1 1Department of Life Science, Institute of Environmental Medicine, Dongguk University, Seoul, Republic of Korea; 2Faculty of Environment and Resource Studies, Mahidol University, Phuttamonthon District, NakhonPathom, Thailand *These authors contributed equally to this work and should be considered as co-first authors Abstract: Engineered nanoparticles (NPs are widely used in many sectors, such as food, medicine, military, and sport, but their unique characteristics may cause deleterious health effects. Close attention is being paid to metal NP genotoxicity; however, NP genotoxic/carcinogenic effects and the underlying mechanisms remain to be elucidated. In this review, we address some metal and metal oxide NPs of interest and current genotoxicity tests in vitro and in vivo. Metal NPs can cause DNA damage such as chromosomal aberrations, DNA strand breaks, oxidative DNA damage, and mutations. We also discuss several parameters that may affect genotoxic response, including physicochemical properties, widely used assays/end point tests, and experimental conditions. Although potential biomarkers of nanogenotoxicity or carcinogenicity are suggested, inconsistent findings in the literature render results inconclusive due to a variety of factors. Advantages and limitations related to different methods for investigating genotoxicity are described, and future directions and recommendations for better understanding genotoxic potential are addressed. Keywords: carcinogenicity, exposure assessment, genotoxicity, nanoparticles, risk evaluation

  1. Human therapeutic cloning (NTSC): applying research from mammalian reproductive cloning.

    Science.gov (United States)

    French, Andrew J; Wood, Samuel H; Trounson, Alan O

    2006-01-01

    Human therapeutic cloning or nuclear transfer stem cells (NTSC) to produce patient-specific stem cells, holds considerable promise in the field of regenerative medicine. The recent withdrawal of the only scientific publications claiming the successful generation of NTSC lines afford an opportunity to review the available research in mammalian reproductive somatic cell nuclear transfer (SCNT) with the goal of progressing human NTSC. The process of SCNT is prone to epigenetic abnormalities that contribute to very low success rates. Although there are high mortality rates in some species of cloned animals, most surviving clones have been shown to have normal phenotypic and physiological characteristics and to produce healthy offspring. This technology has been applied to an increasing number of mammals for utility in research, agriculture, conservation, and biomedicine. In contrast, attempts at SCNT to produce human embryonic stem cells (hESCs) have been disappointing. Only one group has published reliable evidence of success in deriving a cloned human blastocyst, using an undifferentiated hESC donor cell, and it failed to develop into a hESC line. When optimal conditions are present, it appears that in vitro development of cloned and parthenogenetic embryos, both of which may be utilized to produce hESCs, may be similar to in vitro fertilized embryos. The derivation of ESC lines from cloned embryos is substantially more efficient than the production of viable offspring. This review summarizes developments in mammalian reproductive cloning, cell-to-cell fusion alternatives, and strategies for oocyte procurement that may provide important clues facilitating progress in human therapeutic cloning leading to the successful application of cell-based therapies utilizing autologous hESC lines.

  2. Effects of depleted uranium on the reproductive success and F1 generation survival of zebrafish (Danio rerio)

    Energy Technology Data Exchange (ETDEWEB)

    Bourrachot, Stéphanie [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV/SERIS/LECO, Cadarache, Saint-Paul-lez-Durance 13115 (France); Brion, François [Institut National de l’Environnement Industriel et des Risques (INERIS), Unité d’évaluation des risques écotoxicologiques, BP2, 60550 Verneuil-en-Halatte (France); Pereira, Sandrine; Floriani, Magali; Camilleri, Virginie; Cavalié, Isabelle [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV/SERIS/LECO, Cadarache, Saint-Paul-lez-Durance 13115 (France); Palluel, Olivier [Institut National de l’Environnement Industriel et des Risques (INERIS), Unité d’évaluation des risques écotoxicologiques, BP2, 60550 Verneuil-en-Halatte (France); Adam-Guillermin, Christelle, E-mail: christelle.adam-guillermin@irsn.fr [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV/SERIS/LECO, Cadarache, Saint-Paul-lez-Durance 13115 (France)

    2014-09-15

    Highlights: • The effect of depleted uranium on zebrafish reproduction was studied. • An inhibition of egg production and an increase of F1 embryo mortality were observed. • Decreased circulating concentration of vitellogenin was observed in females. • Increased DNA damages were observed in parent gonads and in embryos. • U environmental concentration impairs reproduction and genetic integrity of fish. - Abstract: Despite the well-characterized occurrence of uranium (U) in the aquatic environment, very little is known about the chronic exposure of fish to low levels of U and its potential effect on reproduction. Therefore, this study was undertaken to investigate the effects of environmental concentrations of depleted U on the reproductive output of zebrafish (Danio rerio) and on survival and development of the F1 embryo-larvae following parental exposure to U. For that purpose, sexually mature male and female zebrafish were exposed to 20 and 250 μg/L of U for 14 days and allowed to reproduce in clean water during a further 14-day period. At all sampling times, whole-body vitellogenin concentrations and gonad histology were analyzed to investigate the effects of U exposure on these reproductive endpoints. In addition, accumulation of U in the gonads and its genotoxic effect on male and female gonad cells were quantified. The results showed that U strongly affected the capability of fish to reproduce and to generate viable individuals as evidenced by the inhibition of egg production and the increased rate of mortality of the F1 embryos. Interestingly, U exposure resulted in decreased circulating concentrations of vitellogenin in females. Increased concentrations of U were observed in gonads and eggs, which were most likely responsible for the genotoxic effects seen in fish gonads and in embryos exposed maternally to U. Altogether, these findings highlight the negative effect of environmentally relevant concentrations of U which alter the reproductive

  3. Effects of depleted uranium on the reproductive success and F1 generation survival of zebrafish (Danio rerio)

    International Nuclear Information System (INIS)

    Bourrachot, Stéphanie; Brion, François; Pereira, Sandrine; Floriani, Magali; Camilleri, Virginie; Cavalié, Isabelle; Palluel, Olivier; Adam-Guillermin, Christelle

    2014-01-01

    Highlights: • The effect of depleted uranium on zebrafish reproduction was studied. • An inhibition of egg production and an increase of F1 embryo mortality were observed. • Decreased circulating concentration of vitellogenin was observed in females. • Increased DNA damages were observed in parent gonads and in embryos. • U environmental concentration impairs reproduction and genetic integrity of fish. - Abstract: Despite the well-characterized occurrence of uranium (U) in the aquatic environment, very little is known about the chronic exposure of fish to low levels of U and its potential effect on reproduction. Therefore, this study was undertaken to investigate the effects of environmental concentrations of depleted U on the reproductive output of zebrafish (Danio rerio) and on survival and development of the F1 embryo-larvae following parental exposure to U. For that purpose, sexually mature male and female zebrafish were exposed to 20 and 250 μg/L of U for 14 days and allowed to reproduce in clean water during a further 14-day period. At all sampling times, whole-body vitellogenin concentrations and gonad histology were analyzed to investigate the effects of U exposure on these reproductive endpoints. In addition, accumulation of U in the gonads and its genotoxic effect on male and female gonad cells were quantified. The results showed that U strongly affected the capability of fish to reproduce and to generate viable individuals as evidenced by the inhibition of egg production and the increased rate of mortality of the F1 embryos. Interestingly, U exposure resulted in decreased circulating concentrations of vitellogenin in females. Increased concentrations of U were observed in gonads and eggs, which were most likely responsible for the genotoxic effects seen in fish gonads and in embryos exposed maternally to U. Altogether, these findings highlight the negative effect of environmentally relevant concentrations of U which alter the reproductive

  4. Sex-linked strategies of human reproductive behavior.

    Science.gov (United States)

    Jaffe, K; Urribarri, D; Chacon, G C; Diaz, G; Torres, A; Herzog, G

    1993-01-01

    We present data on fertility characteristics in the Venezuelan population for each sex separately, allowing a detailed comparative analysis of the variance in fertility between males and females. We show that the fertility distribution for both sexes is discontinuous, that the average female has a larger number of offspring per individual than the average male, and that highly fertile males outnumber highly fertile females so that the total number of offspring produced by males and females is balanced. Results indicate that a few males are responsible for a relative higher fertility of the average female and that interactions between polyandric females with monogamic and polygynic males are common. Among the Yanomami, a relatively unacculturated hunter-gatherer-horticulturist tribe, similar differences in fertility distribution of both sexes are apparent. The data suggest that human populations contain statistically distinct subpopulations, with different reproductive strategies, suggesting the existence of complex interactions among human populations which are not evident from the study of individuals or groups.

  5. Genotoxicity of tungsten carbide-cobalt (WC-Co) nanoparticles in vitro: mechanisms-of-action studies.

    Science.gov (United States)

    Moche, Hélène; Chevalier, Dany; Vezin, Hervé; Claude, Nancy; Lorge, Elisabeth; Nesslany, Fabrice

    2015-02-01

    We showed previously that tungsten carbide-cobalt (WC-Co) nanoparticles (NP) can be used as a nanoparticulate positive control in some in vitro mammalian genotoxicity assays. Here, we investigate the mechanisms of action involved in WC-Co NP genotoxicity in L5178Y mouse lymphoma cells and primary human lymphocytes, in vitro. Data from the micronucleus assay coupled with centromere staining and from the chromosome-aberration assay show the involvement of both clastogenic and aneugenic events. Experiments with the formamidopyrimidine DNA glycosylase (FPG)-modified comet assay showed a slight (non-significant) increase in FPG-sensitive sites in the L5178Y mouse lymphoma cells but not in the human lymphocytes. Electron paramagnetic resonance spin-trapping results showed the presence of hydroxyl radicals (•OH) in WC-Co NP suspensions, with or without cells, but with time-dependent production in the presence of cells. However, a significant difference in •OH production was observed between human lymphocytes from two different donors. Using H2O2, we showed that WC-Co NP can participate in Fenton-like reactions. Thus, •OH might be produced either via intrinsic generation by WC-Co NP or through a Fenton-like reaction in the presence of cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Genotoxic damage in pathology anatomy laboratory workers exposed to formaldehyde

    International Nuclear Information System (INIS)

    Costa, Solange; Coelho, Patricia; Costa, Carla; Silva, Susana; Mayan, Olga; Silva Santos, Luis; Gaspar, Jorge; Teixeira, Joao Paulo

    2008-01-01

    Formaldehyde (FA) is a chemical traditionally used in pathology and anatomy laboratories as a tissue preservative. Several epidemiological studies of occupational exposure to FA have indicated an increased risk of nasopharyngeal cancers in industrial workers, embalmers and pathology anatomists. There is also a clear evidence of nasal squamous cell carcinomas from inhalation studies in the rat. The postulated mode of action for nasal tumours in rats was considered biologically plausible and considered likely to be relevant to humans. Based on the available data IARC, the International Agency for Research on Cancer, has recently classified FA as a human carcinogen. Although the in vitro genotoxic as well as the in vivo carcinogenic potentials of FA are well documented in mammalian cells and in rodents, evidence for genotoxic effects and carcinogenic properties in humans is insufficient and conflicting thus remains to be more documented. To evaluate the genetic effects of long-term occupational exposure to FA a group of 30 Pathological Anatomy laboratory workers was tested for a variety of biological endpoints, cytogenetic tests (micronuclei, MN; sister chromatid exchange, SCE) and comet assay. The level of exposure to FA was evaluated near the breathing zone of workers, time weighted average of exposure was calculated for each subject. The association between the biomarkers and polymorphic genes of xenobiotic metabolising and DNA repair enzymes was also assessed. The mean level of exposure was 0.44 ± 0.08 ppm (0.04-1.58 ppm). MN frequency was significantly higher (p = 0.003) in the exposed subjects (5.47 ± 0.76) when compared with controls (3.27 ± 0.69). SCE mean value was significantly higher (p < 0.05) among the exposed group (6.13 ± 0.29) compared with control group (4.49 ± 0.16). Comet assay data showed a significant increase (p < 0.05) of TL in FA-exposed workers (60.00 ± 2.31) with respect to the control group (41.85 ± 1.97). A positive correlation was

  7. Ionizing radiation effect on human reproduction

    International Nuclear Information System (INIS)

    Jirous, J.

    1987-01-01

    A review is presented of the existing knowledge on the adverse effects of ionizing radiation on human reproduction. Some interesting findings have been obtained by interapolating the results of studies in mouse embryos to humans, important knowledge has been obtained in studies involving the population of Hiroshima and Nagasaki. The review summarizes the knowledge in the following conclusions: (1) prior to the blastocyst stage, the mammalian embryo is insensitive to teratogenic and growth retarding radiation effects but is highly sensitive to the lethal radiation effect; (2) in the early organogenesis, the embryo is very sensitive to growth retarding, teratogenic and lethal radiation effects. It can, however, partly offset growth retardation in the post-natal period; (3) in the early fetal development stage, the fetus shows reduced sensitivity to teratogenic damage of many organs; sensitivity of the central nervous system and growth retardation remain which can only be compensated post-natally with difficulties; (4) in the late stage of pregnancy the fetus is not significantly deformed as a result of irradiation but permanent cellular depletion can result in various organs and tissues post-natally if radiation doses are high. (L.O.). 22 refs

  8. High throughput comet assay to study genotoxicity of nanomaterials

    Directory of Open Access Journals (Sweden)

    Naouale El Yamani

    2015-06-01

    Full Text Available The unique physicochemical properties of engineered nanomaterials (NMs have accelerated their use in diverse industrial and domestic products. Although their presence in consumer products represents a major concern for public health safety, their potential impact on human health is poorly understood. There is therefore an urgent need to clarify the toxic effects of NMs and to elucidate the mechanisms involved. In view of the large number of NMs currently being used, high throughput (HTP screening technologies are clearly needed for efficient assessment of toxicity. The comet assay is the most used method in nanogenotoxicity studies and has great potential for increasing throughput as it is fast, versatile and robust; simple technical modifications of the assay make it possible to test many compounds (NMs in a single experiment. The standard gel of 70-100 μL contains thousands of cells, of which only a tiny fraction are actually scored. Reducing the gel to a volume of 5 μL, with just a few hundred cells, allows twelve gels to be set on a standard slide, or 96 as a standard 8x12 array. For the 12 gel format, standard slides precoated with agarose are placed on a metal template and gels are set on the positions marked on the template. The HTP comet assay, incorporating digestion of DNA with formamidopyrimidine DNA glycosylase (FPG to detect oxidised purines, has recently been applied to study the potential induction of genotoxicity by NMs via reactive oxygen. In the NanoTEST project we investigated the genotoxic potential of several well-characterized metal and polymeric nanoparticles with the comet assay. All in vitro studies were harmonized; i.e. NMs were from the same batch, and identical dispersion protocols, exposure time, concentration range, culture conditions, and time-courses were used. As a kidney model, Cos-1 fibroblast-like kidney cells were treated with different concentrations of iron oxide NMs, and cells embedded in minigels (12

  9. Human reproduction functions: Evaluation with radiobioassay

    International Nuclear Information System (INIS)

    El Hassan, N.D.

    1983-01-01

    Many studies reveal that the ovary is capable of responding to an adequate gonadotropic stimulus long before menarche. Similarly, the pituitary is capable of producing gonadotropins in response to an adequate hypothalamic signal before menarche. Recent studies in the primate confirm that the hypothalamus signals are temporarily different before menarche as compared to the reproductive years, so that if the luteotropic hormone (LRH) stimulus is pulsed to the pituitary at the required time sequence, the follicle stimulating hormone (FSH) and the luteinizing hormone (LH) as well as ovulation can be achieved even in the immature monkey. HPL is another hormone produced by the syncytiotrophoblast that is also used to identify pregnancies at a higher risk of fetal demise. It shares structural similarities with the human growth hormone (hGH) and PRL. HPL is diabetogenic. Its effect is mediated through glucose metabolism. Circulating HPL is elevated during multiple gestations. Its circulating levels in fact correlate with the fetoplacental mass. It has a short half-life and the larger the fetoplacental mass, the higher the HPL level. Hyperglycemic states are associated with a decrease in HPL levels, and hypoglycemia is associated with elevated levels of HPL. RIA through the measurement of HPL has helped in the management of the high-risk fetus and its mother. Through RIA other fetoplacental hormones are identifiable and their levels are obtainable. There is a human chorionic ACTH, a human chorionic TSH, and a human chorionic PRL. These can be involved in health and disease

  10. Genotoxicity of formaldehyde: Molecular basis of DNA damage and mutation

    Directory of Open Access Journals (Sweden)

    Masanobu eKawanishi

    2014-09-01

    Full Text Available Formaldehyde is commonly used in the chemical industry and is present in the environment, such as vehicle emissions, some building materials, food and tobacco smoke. It also occurs as a natural product in most organisms, the sources of which include a number of metabolic processes. It causes various acute and chronic adverse effects in humans if they inhale its fumes. Among the chronic effects on human health, we summarize data on genotoxicity and carcinogenicity in this review, and we particularly focus on the molecular mechanisms involved in the formaldehyde mutagenesis. Formaldehyde mainly induces N-hydroxymethyl mono-adducts on guanine, adenine and cytosine, and N-methylene crosslinks between adjacent purines in DNA. These crosslinks are types of DNA damage potentially fatal for cell survival if they are not removed by the nucleotide excision repair pathway. In the previous studies, we showed evidence that formaldehyde causes intra-strand crosslinks between purines in DNA using a unique method (Matsuda et al. Nucleic Acids Res. 26, 1769-1774,1998. Using shuttle vector plasmids, we also showed that formaldehyde as well as acetaldehyde induces tandem base substitutions, mainly at 5’-GG and 5’-GA sequences, which would arise from the intra-strand crosslinks. These mutation features are different from those of other aldehydes such as crotonaldehyde, acrolein, glyoxal and methylglyoxal. These findings provide molecular clues to improve our understanding of the genotoxicity and carcinogenicity of formaldehyde.

  11. Investigations on genotoxic effects of groundwater from the Mitterndorfer Senke and from the vicinity of Wiener Neustadt.

    Science.gov (United States)

    Knasmüller, S; Helma, C; Eckl, P M; Gottmann, E; Steinkellner, H; Kassie, F; Haider, T; Parzefall, W; Schulte-Hermann, R

    1998-12-11

    This report describes the first study on genotoxic effects of Austrian ground- and drinking waters. Samples from the Mitterndorfer Senke (MS) and the vicinity of Wiener Neustadt were tested over a three years period. The MS is the largest aquifer in Austria. Due to deposition of industrial and community wastes, chemicals have polluted the groundwater in this area. Aim of the present study was to elucidate if consumption of these waters might pose a carcinogenic risk to humans. 43 Water samples were tested in a test battery which consisted of bacterial gene mutation assays (Salmonella strains TA100 and TA98), micronucleus (MN) assays with cultures of primary rat hepatocytes and plant bioassays (MN tests with Tradescantia and Vicia faba). For the bacterial assays, the water samples were extracted with XAD resins. In total, 27.9% of the samples caused positive effects; 8 samples were active in Salmonella microsome assays, Strain TA100 was particularly sensitive upon addition of metabolic activation mix (6 positive samples). Four samples were positive exclusively in MN assays with cultures of primary rat hepatocytes; one sample gave positive results in all three bioassays. Finished waters from waterworks were consistently devoid of mutagenic activity under all experimental conditions. Overall, only a small fraction of the groundwaters caused mutagenic effects and in all cases the activities were moderate. Comparison of the results of the present study with data obtained in other investigations under similar experimental conditions shows that the genotoxicity of groundwaters of the MS area are lower than the effects caused by ground- and drinking waters from other countries. The fact that no genotoxic activity was detected in any of the finished drinking waters can be taken as an indication that consumption of these waters does not pose a health hazard arising from contamination with genotoxic carcinogens to humans.

  12. Amplification of arsenic genotoxicity by TiO2 nanoparticles in mammalian cells: new insights from physicochemical interactions and mitochondria.

    Science.gov (United States)

    Wang, Xinan; Liu, Yun; Wang, Juan; Nie, Yaguang; Chen, Shaopeng; Hei, Tom K; Deng, Zhaoxiang; Wu, Lijun; Zhao, Guoping; Xu, An

    2017-10-01

    Titanium dioxide nanoparticles (TiO 2 NPs) have shown great adsorption capacity for arsenic (As); however, the potential impact of TiO 2 NPs on the behavior and toxic responses of As remains largely unexplored. In the present study, we focused on the physicochemical interaction between TiO 2 NPs and As(III) to clarify the underlying mechanisms involved in their synergistic genotoxic effect on mammalian cells. Our data showed that As(III) mainly interacted with TiO 2 NPs by competitively occupying the sites of hydroxyl groups on the surface of TiO 2 NP aggregates, resulting in more aggregation of TiO 2 NPs. Although TiO 2 NPs at concentrations used here had no cytotoxic or genotoxic effects on cells, they efficiently increased the genotoxicity of As(III) in human-hamster hybrid (A L ) cells. The synergistic genotoxicity of TiO 2 NPs and As(III) was partially inhibited by various endocytosis pathway inhibitors while it was completely blocked by an As(III)-specific chelator. Using a mitochondrial membrane potential fluorescence probe, a reactive oxygen species (ROS) probe together with mitochondrial DNA-depleted ρ 0 A L cells, we discovered that mitochondria were essential for mediating the synergistic DNA-damaging effects of TiO 2 NPs and As(III). These data provide novel mechanistic proof that TiO 2 NPs enhanced the genotoxicity of As(III) via physicochemical interactions, which were mediated by mitochondria-dependent ROS.

  13. Modulation of the DNA repair system and ATR-p53 mediated apoptosis is relevant for tributyltin-induced genotoxic effects in human hepatoma G2 cells.

    Science.gov (United States)

    Li, Bowen; Sun, Lingbin; Cai, Jiali; Wang, Chonggang; Wang, Mengmeng; Qiu, Huiling; Zuo, Zhenghong

    2015-01-01

    The toxic effects of tributyltin (TBT) have been extensively documented in several types of cells, but the molecular mechanisms related to the genotoxic effects of TBT have still not been fully elucidated. Our study showed that exposure of human hepatoma G2 cells to 1-4 μmol/L TBT for 3 hr caused severe DNA damage in a concentration-dependent manner. Moreover, the expression levels of key DNA damage sensor genes such as the replication factor C, proliferating cell nuclear antigen and poly (ADP-ribose) polymerase-1 were inhabited in a concentration-dependent manner. We further demonstrated that TBT induced cell apoptosis via the p53-mediated pathway, which was most likely activated by the ataxia telangiectasia mutated and rad-3 related (ATR) protein kinase. The results also showed that cytochrome c, caspase-3, caspase-8, caspase-9, and the B-cell lymphoma 2 were involved in this process. Taken together, we demonstrated for the first time that the inhibition of the DNA repair system might be more responsible for TBT-induced genotoxic effects in cells. Then the generated DNA damage induced by TBT initiated ATR-p53-mediated apoptosis. Copyright © 2014. Published by Elsevier B.V.

  14. Genotoxic activities of the food contaminant 5-hydroxymethylfurfural using different in vitro bioassays.

    Science.gov (United States)

    Severin, Isabelle; Dumont, Coralie; Jondeau-Cabaton, Adeline; Graillot, Vanessa; Chagnon, Marie-Christine

    2010-02-01

    5-Hydroxymethylfurfural (5-HMF) is known as an indicator of quality deterioration in a wide range of foods. 5-HMF is formed as an intermediate in the Maillard reaction and has been identified in a wide variety of heat-processed foods. In recent years, the presence of 5-HMF in foods has raised toxicological concerns: data have shown cytotoxic, genotoxic and tumoral effects but further studies suggest that 5-HMF does not pose a serious health risk. However the subject is still a matter of debate. We investigated the genotoxicity of the food-borne contaminant 5-HMF using the Ames test, the micronucleus (MN) and the single-cell gel electrophoresis (SCGE) assays in the human metabolically active HepG2 cell line. Cytotoxic effect of 5-HMF was first assessed using Alamar Blue as a sensitive sub-lethal assay. 5-HMF did not induce any genic mutation in bacteria whatever the concentration in the Ames test. Furthermore, it does not induce clastogenic or aneugenic effects in the HepG2 cells. In contrast, 5-HMF induced HepG2 DNA damage at concentrations from 7.87 to 25 mM in the comet assay suggesting a weak genotoxic effect of 5-HMF in the HepG2 cells probably repaired. 2009 Elsevier Ireland Ltd. All rights reserved.

  15. What exactly is an exact copy? And why it matters when trying to ban human reproductive cloning in Australia

    Science.gov (United States)

    Gogarty, B

    2003-01-01

    This paper examines the current Australian regulatory response to human reproductive cloning. The central consideration is the capacity of the current regulatory regime to effectively deter human cloning efforts. A legislative prohibition on human cloning must be both effective and clear enough to allow researchers to know what practices are acceptable. This paper asks whether the current Australian regime evinces these qualities and suggests that Australia should follow the example set in the UK by the enactment of the Human Reproductive Cloning Act 2001. PMID:12672887

  16. What exactly is an exact copy? And why it matters when trying to ban human reproductive cloning in Australia.

    Science.gov (United States)

    Gogarty, B

    2003-04-01

    This paper examines the current Australian regulatory response to human reproductive cloning. The central consideration is the capacity of the current regulatory regime to effectively deter human cloning efforts. A legislative prohibition on human cloning must be both effective and clear enough to allow researchers to know what practices are acceptable. This paper asks whether the current Australian regime evinces these qualities and suggests that Australia should follow the example set in the UK by the enactment of the Human Reproductive Cloning Act 2001.

  17. Variation in male reproductive longevity across traditional societies.

    Directory of Open Access Journals (Sweden)

    Lucio Vinicius

    Full Text Available Most accounts of human life history propose that women have short reproductive spans relative to their adult lifespans, while men not only remain fertile but carry on reproducing until late life. Here we argue that studies have overlooked evidence for variation in male reproductive ageing across human populations. We apply a Bayesian approach to census data from Agta hunter-gatherers and Gambian farmers to show that long post-reproductive lifespans characterise not only women but also males in some traditional human populations. We calculate three indices of reproductive ageing in men (oldest age at reproduction, male late-life reproduction, and post-reproductive representation and identify a continuum of male reproductive longevity across eight traditional societies ranging from !Kung, Hadza and Agta hunter-gatherers exhibiting low levels of polygyny, early age at last reproduction and long post-reproductive lifespans, to male Gambian agriculturalists and Turkana pastoralists showing higher levels of polygyny, late-life reproduction and shorter post-reproductive lifespans. We conclude that the uniquely human detachment between rates of somatic senescence and reproductive decline, and the existence of post-reproductive lifespans, are features of both male and female life histories, and therefore not exclusive consequences of menopause.

  18. Comparison of in vitro test systems using bacterial and mammalian cells for genotoxicity assessment within the "health-related indication value (HRIV) concept.

    Science.gov (United States)

    Prantl, Eva-Maria; Kramer, Meike; Schmidt, Carsten K; Knauer, Martina; Gartiser, Stefan; Shuliakevich, Aliaksandra; Milas, Julia; Glatt, Hansruedi; Meinl, Walter; Hollert, Henner

    2018-02-01

    In numerous cases, the German health-related indication value (HRIV) concept has proved its practicability for the assessment of drinking water relevant trace substances (Umweltbundesamt 2003). The HRIV is based on the toxicological profile of a substance. An open point of the HRIV concept has been the assignment of standardized test procedures to be used for the assessment. The level of the HRIV is at its lowest as soon as the genotoxicity of the substance is detected. As a single test on its own, it is not sufficient enough to assess the human toxicological relevance of a genotoxic effect or exclude it in the case of a negative result; a reasonable test battery was required, technically oriented towards the already harmonized international, hierarchical evaluation for toxicological assessment of chemicals. Therefore, an important aim of this project was to define a strategy for the genotoxicological assessment of anthropogenic trace substances. The basic test battery for genotoxicity of micropollutants in drinking water needs to fulfill several requirements. Although quick test results are needed for the determination of HRIV, a high degree of transferability to human genotoxicity should be ensured. Therefore, an in vitro genotoxicity test battery consisting of the Ames fluctuation test with two tester strains (ISO 11350), the umu test and the micronucleus test, or from the Ames test with five tester strains (OECD 471) and the micronucleus test is proposed. On the basis of selected test substances, it could be shown that the test battery leads to positive, indifferent, and negative results. Given indifferent results, the health authority and the water supplier must assume that it is a genotoxic substance. Genetically modified tester strains are being sensitive to different chemical classes by expression of selected mammalian key enzymes for example nitroreductase, acetyltransferase, and glutathione-S-transferase. These strains may provide valuable additional

  19. Male reproductive system parameters in a two-generation reproduction study of ammonium perfluorooctanoate in rats and human relevance.

    Science.gov (United States)

    York, Raymond G; Kennedy, Gerald L; Olsen, Geary W; Butenhoff, John L

    2010-04-30

    Ammonium perfluorooctanoate (ammonium PFOA) is an industrial surfactant that has been used primarily as a processing aid in the manufacture of fluoropolymers. The environmental and metabolic stability of PFOA together with its presence in human blood and long elimination half-life have led to extensive toxicological studies in laboratory animals. Two recent publications based on observations from the Danish general population have reported: (1) a negative association between serum concentrations of PFOA in young adult males and their sperm counts and (2) a positive association among women with time to pregnancy. A two-generation reproduction study in rats was previously published (2004) in which no effects on functional reproduction were observed at doses up to 30mg ammonium PFOA/kg body weight. The article contained the simple statement: "In males, fertility was normal as were all sperm parameters". In order to place the recent human epidemiological data in perspective, herein we provide the detailed male reproductive parameters from that study, including sperm quality and testicular histopathology. Sperm parameters in rats from the two-generation study in all ammonium PFOA treatment groups were unaffected by treatment with ammonium PFOA. These observations reflected the normal fertility observations in these males. No evidence of altered testicular and sperm structure and function was observed in ammonium PFOA-treated rats whose mean group serum PFOA concentrations ranged up to approximately 50,000ng/mL. Given that median serum PFOA in the Danish cohorts was approximately 5ng/mL, it seems unlikely that concentrations observed in the general population, including those recently reported in Danish general population, could be associated causally with a real decrement in sperm number and quality.

  20. Human breast milk contamination with phthalates and alterations of endogenous reproductive hormones in infants three months of age

    DEFF Research Database (Denmark)

    Main, Katharina M; Mortensen, Gerda Krog; Kaleva, Marko M

    2006-01-01

    Phthalates adversely affect the male reproductive system in animals. We investigated whether phthalate monoester contamination of human breast milk had any influence on the postnatal surge of reproductive hormones in newborn boys as a sign of testicular dysgenesis....

  1. Borax counteracts genotoxicity of aluminum in rat liver.

    Science.gov (United States)

    Turkez, Hasan; Geyikoğlu, Fatime; Tatar, Abdulgani

    2013-10-01

    This study was carried out to evaluate the protective role of borax (BX) on genotoxicity induced by aluminum (Al) in rat liver, using liver micronucleus assay as an indicator of genotoxicity. Sprague-Dawley rats were randomly separated into six groups and each group had four animals. Aluminum chloride (AlCl₃; 5 mg/kg b.w.) and BX (3.25 and 13 mg/kg b.w.) were injected intraperitoneally to rats. Besides, animals were also treated with Al for 4 consecutive days followed by BX for 10 days. Rats were anesthetized after Al and BX injections and the hepatocytes were isolated for counting the number of micronucleated hepatocytes (MNHEPs). AlCl₃ was found to significantly (p < 0.05) increase the number of MNHEPs. Rats treated with BX, however, showed no increase in MNHEPs. Moreover, simultaneous treatments with BX significantly modulated the genotoxic effects of AlCl₃ in rats. It can be concluded that BX has beneficial influences and has the ability to antagonize Al toxicity.

  2. Assessing reproductive toxicity of two environmental toxicants with a novel in vitro human spermatogenic model

    Directory of Open Access Journals (Sweden)

    Charles A. Easley, IV

    2015-05-01

    Full Text Available Environmental influences and insults by reproductive toxicant exposure can lead to impaired spermatogenesis or infertility. Understanding how toxicants disrupt spermatogenesis is critical for determining how environmental factors contribute to impaired fertility. While current animal models are available, understanding of the reproductive toxic effects on human fertility requires a more robust model system. We recently demonstrated that human pluripotent stem cells can differentiate into spermatogonial stem cells/spermatogonia, primary and secondary spermatocytes, and haploid spermatids; a model that mimics many aspects of human spermatogenesis. Here, using this model system, we examine the effects of 2-bromopropane (2-BP and 1,2,dibromo-3-chloropropane (DBCP on in vitro human spermatogenesis. 2-BP and DBCP are non-endocrine disrupting toxicants that are known to impact male fertility. We show that acute treatment with either 2-BP or DBCP induces a reduction in germ cell viability through apoptosis. 2-BP and DBCP affect viability of different cell populations as 2-BP primarily reduces spermatocyte viability, whereas DBCP exerts a much greater effect on spermatogonia. Acute treatment with 2-BP or DBCP also reduces the percentage of haploid spermatids. Both 2-BP and DBCP induce reactive oxygen species (ROS formation leading to an oxidized cellular environment. Taken together, these results suggest that acute exposure with 2-BP or DBCP causes human germ cell death in vitro by inducing ROS formation. This system represents a unique platform for assessing human reproductive toxicity potential of various environmental toxicants in a rapid, efficient, and unbiased format.

  3. Reproductive physiology of a humanized GnRH receptor mouse model: application in evaluation of human-specific analogs.

    Science.gov (United States)

    Tello, Javier A; Kohout, Trudy; Pineda, Rafael; Maki, Richard A; Scott Struthers, R; Millar, Robert P

    2013-07-01

    The human GnRH receptor (GNRHR1) has a specific set of properties with physiological and pharmacological influences not appropriately modeled in laboratory animals or cell-based systems. To address this deficiency, we have generated human GNRHR1 knock-in mice and described their reproductive phenotype. Measurement of pituitary GNRHR1 transcripts from homozygous human GNRHR1 knock-in (ki/ki) mice revealed a severe reduction (7- to 8-fold) compared with the mouse Gnrhr1 in wild-type mice. ¹²⁵I-GnRH binding assays on pituitary membrane fractions corroborated reduced human GNRHR1 protein expression in ki/ki mice, as occurs with transfection of human GNRHR1 in cell lines. Female homozygous knock-in mice displayed normal pubertal onset, indicating that a large reduction in GNRHR1 expression is sufficient for this process. However, ki/ki females exhibited periods of prolonged estrous and/or metestrous and reduced fertility. No impairment was found in reproductive maturity or adult fertility in male ki/ki mice. Interestingly, the serum LH response to GnRH challenge was reduced in both knock-in males and females, indicating a reduced GNRHR1 signaling capacity. Small molecules targeting human GPCRs usually have poor activities at homologous rodent receptors, thus limiting their use in preclinical development. Therefore, we tested a human-specific GnRH1 antagonist, NBI-42902, in our mouse model and demonstrated abrogation of a GnRH1-induced serum LH rise in ki/ki mice and an absence of effect in littermates expressing the wild-type murine receptor. This novel model provides the opportunity to study the human receptor in vivo and for screening the activity of human-specific GnRH analogs.

  4. Reproduction in the space environment: Part I. Animal reproductive studies

    Science.gov (United States)

    Santy, P. A.; Jennings, R. T.; Craigie, D.

    1990-01-01

    Mankind's exploration and colonization of the frontier of space will ultimately depend on men's and women's ability to live, work, and reproduce in the space environment. This paper reviews animal studies, from microorganisms to mammals, done in space or under space-simulated conditions, which identify some of the key areas which might interfere with human reproductive physiology and/or embryonic development. Those space environmental factors which impacted almost all species included: microgravity, artificial gravity, radiation, and closed life support systems. These factors may act independently and in combination to produce their effects. To date, there have been no studies which have looked at the entire process of reproduction in any animal species. This type of investigation will be critical in understanding and preventing the problems which will affect human reproduction. Part II will discuss these problems directly as they relate to human physiology.

  5. Genotoxicity evaluation of the insecticide ethion in root of Allium ...

    African Journals Online (AJOL)

    USER

    2010-07-05

    Jul 5, 2010 ... In this study, the genotoxic effects of ethion were investigated in the mitotic cell division of Allium ... The use of plant root tips, particularly those of A. cepa and Vicia faba, as a bioassay test system for the genotoxicity of pesticides has shown extremely ..... the long run, even below the recommended dose.

  6. Genotoxicity test of irradiated foods

    International Nuclear Information System (INIS)

    Tanaka, Noriho

    2004-01-01

    Safety tests of radiation irradiated foods started as early as from 1967 in Japan and genotoxicity tests in the Hatano Res. Inst., from 1977. The latter is unique in the world and is reviewed in this paper. Tests included those for the initial injury of DNA, mutagenicity, chromosomal aberration and transformation with use of bacteria, cultured mammalian cells and animals (for chromosomal aberration, micronucleus formation and dominant lethality). Foods tested hitherto were onion, rice, wheat and flour, Vienna sausage, fish sausage (kamaboko), mandarian orange, potato, black pepper and red capsicum, of which extract or powder was subjected to the test. Irradiation doses and its purposes were 0.15-6 kGy γ-ray ( 60 Co) or electron beam by the accelerator (only for the orange), and suppression of germination, pesticide action or sterilization, respectively. Genotoxicity of all foods under tested conditions is shown negative. (N.I.)

  7. NTP-CERHR monograph on the potential human reproductive and developmental effects of bisphenol A.

    Science.gov (United States)

    Shelby, Michael D

    2008-09-01

    The National Toxicology Program (NTP) Center for the Evaluation of Risks to Human Reproduction (CERHR) conducted an evaluation of the potential for bisphenol A to cause adverse effects on reproduction and development in humans. The CERHR Expert Panel on Bisphenol A completed its evaluation in August 2007. CERHR selected bisphenol A for evaluation because of the: widespread human exposure; public concern for possible health effects from human exposures; high production volume; evidence of reproductive and developmental toxicity in laboratory animal studies Bisphenol A (CAS RN: 80-05-7) is a high production volume chemical used primarily in the production of polycarbonate plastics and epoxy resins. Polycarbonate plastics are used in some food and drink containers; the resins are used as lacquers to coat metal products such as food cans, bottle tops, and water supply pipes. To a lesser extent bisphenol A is used in the production of polyester resins, polysulfone resins, polyacrylate resins, and flame retardants. In addition, bisphenol A is used in the processing of polyvinyl chloride plastic and in the recycling of thermal paper. Some polymers used in dental sealants and tooth coatings contain bisphenol A. The primary source of exposure to bisphenol A for most people is assumed to occur through the diet. While air, dust, and water (including skin contact during bathing and swimming) are other possible sources of exposure, bisphenol A in food and beverages accounts for the majority of daily human exposure. The highest estimated daily intakes of bisphenol A in the general population occur in infants and children. The results of this bisphenol A evaluation are published in an NTP-CERHR Monograph that includes the (1) NTP Brief and (2) Expert Panel Report on the Reproductive and Developmental Toxicity of Bisphenol A. Additional information related to the evaluation process, including the peer review report for the NTP Brief and public comments received on the draft NTP

  8. Reduced costs of reproduction in females mediate a shift from a male-biased to a female-biased lifespan in humans

    Science.gov (United States)

    Bolund, Elisabeth; Lummaa, Virpi; Smith, Ken R.; Hanson, Heidi A.; Maklakov, Alexei A.

    2016-01-01

    The causes underlying sex differences in lifespan are strongly debated. While females commonly outlive males in humans, this is generally less pronounced in societies before the demographic transition to low mortality and fertility rates. Life-history theory suggests that reduced reproduction should benefit female lifespan when females pay higher costs of reproduction than males. Using unique longitudinal demographic records on 140,600 reproducing individuals from the Utah Population Database, we demonstrate a shift from male-biased to female-biased adult lifespans in individuals born before versus during the demographic transition. Only women paid a cost of reproduction in terms of shortened post-reproductive lifespan at high parities. Therefore, as fertility decreased over time, female lifespan increased, while male lifespan remained largely stable, supporting the theory that differential costs of reproduction in the two sexes result in the shifting patterns of sex differences in lifespan across human populations. Further, our results have important implications for demographic forecasts in human populations and advance our understanding of lifespan evolution. PMID:27087670

  9. Current issues in medically assisted reproduction and genetics in Europe: research, clinical practice, ethics, legal issues and policy. European Society of Human Genetics and European Society of Human Reproduction and Embryology.

    Science.gov (United States)

    Harper, Joyce C; Geraedts, Joep; Borry, Pascal; Cornel, Martina C; Dondorp, Wybo; Gianaroli, Luca; Harton, Gary; Milachich, Tanya; Kääriäinen, Helena; Liebaers, Inge; Morris, Michael; Sequeiros, Jorge; Sermon, Karen; Shenfield, Françoise; Skirton, Heather; Soini, Sirpa; Spits, Claudia; Veiga, Anna; Vermeesch, Joris Robert; Viville, Stéphane; de Wert, Guido; Macek, Milan

    2013-11-01

    In March 2005, a group of experts from the European Society of Human Genetics and European Society of Human Reproduction and Embryology met to discuss the interface between genetics and assisted reproductive technology (ART), and published an extended background paper, recommendations and two Editorials. Seven years later, in March 2012, a follow-up interdisciplinary workshop was held, involving representatives of both professional societies, including experts from the European Union Eurogentest2 Coordination Action Project. The main goal of this meeting was to discuss developments at the interface between clinical genetics and ARTs. As more genetic causes of reproductive failure are now recognised and an increasing number of patients undergo testing of their genome before conception, either in regular health care or in the context of direct-to-consumer testing, the need for genetic counselling and preimplantation genetic diagnosis (PGD) may increase. Preimplantation genetic screening (PGS) thus far does not have evidence from randomised clinical trials to substantiate that the technique is both effective and efficient. Whole-genome sequencing may create greater challenges both in the technological and interpretational domains, and requires further reflection about the ethics of genetic testing in ART and PGD/PGS. Diagnostic laboratories should be reporting their results according to internationally accepted accreditation standards (International Standards Organisation - ISO 15189). Further studies are needed in order to address issues related to the impact of ART on epigenetic reprogramming of the early embryo. The legal landscape regarding assisted reproduction is evolving but still remains very heterogeneous and often contradictory. The lack of legal harmonisation and uneven access to infertility treatment and PGD/PGS fosters considerable cross-border reproductive care in Europe and beyond. The aim of this paper is to complement previous publications and provide

  10. Screening potential genotoxic effect of aquatic plant extracts using the mussel micronucleus test

    Directory of Open Access Journals (Sweden)

    Bettina Eck-Varanka

    2016-01-01

    Full Text Available Objective: To assess the genotoxic potential of selected aquatic macrophytes: Ceratophyllum demersum L. (hornwort, family Ceratophyllaceae, Typha angustifolia L. (narrowleaf cattail, family Typhaceae, Stratiotes aloides L. (water soldier, family Butomaceae, and Oenanthe aquatica (L. Poir. (water dropwort, family Umbelliferae. Methods: For genotoxicity assessment, the mussel micronucleus test was applied. Micronucleus frequency was determined from the haemolymph of Unio pictorum L. (painter’s mussel. In parallel, total and hydrolisable tannin contents were determined. Results: All plant extracts elucidated significant mutagenic effect. Significant correlation was determined between tannin content and mutagenic capacity. Conclusions: The significant correlation between genotoxicity as expressed by micronucleus frequency and tannin content (both total and hydrolisable tannins indicate that tannin is amongst the main compounds being responsible for the genotoxic potential. It might be suggested that genotoxic capacity of these plants elucidate a real ecological effect in the ecosystem.

  11. Toxicity testing of human assisted reproduction devices using the mouse embryo assay.

    NARCIS (Netherlands)

    Punt-Van der Zalm, J.P.; Hendriks, J.C.M.; Westphal, J.R.; Kremer, J.A.M.; Teerenstra, S.; Wetzels, A.M.M.

    2009-01-01

    Systems to assess the toxicity of materials used in human assisted reproduction currently lack efficiency and/or sufficient discriminatory power. The development of 1-cell CBA/B6 F1 hybrid mouse embryos to blastocysts, expressed as blastocyst rate (BR), is used to measure toxicity. The embryos were

  12. A whole-cell bioreporter assay for quantitative genotoxicity evaluation of environmental samples.

    Science.gov (United States)

    Jiang, Bo; Li, Guanghe; Xing, Yi; Zhang, Dayi; Jia, Jianli; Cui, Zhisong; Luan, Xiao; Tang, Hui

    2017-10-01

    Whole-cell bioreporters have emerged as promising tools for genotoxicity evaluation, due to their rapidity, cost-effectiveness, sensitivity and selectivity. In this study, a method for detecting genotoxicity in environmental samples was developed using the bioluminescent whole-cell bioreporter Escherichia coli recA::luxCDABE. To further test its performance in a real world scenario, the E. coli bioreporter was applied in two cases: i) soil samples collected from chromium(VI) contaminated sites; ii) crude oil contaminated seawater collected after the Jiaozhou Bay oil spill which occurred in 2013. The chromium(VI) contaminated soils were pretreated by water extraction, and directly exposed to the bioreporter in two phases: aqueous soil extraction (water phase) and soil supernatant (solid phase). The results indicated that both extractable and soil particle fixed chromium(VI) were bioavailable to the bioreporter, and the solid-phase contact bioreporter assay provided a more precise evaluation of soil genotoxicity. For crude oil contaminated seawater, the response of the bioreporter clearly illustrated the spatial and time change in genotoxicity surrounding the spill site, suggesting that the crude oil degradation process decreased the genotoxic risk to ecosystem. In addition, the performance of the bioreporter was simulated by a modified cross-regulation gene expression model, which quantitatively described the DNA damage response of the E. coli bioreporter. Accordingly, the bioluminescent response of the bioreporter was calculated as the mitomycin C equivalent, enabling quantitative comparison of genotoxicities between different environmental samples. This bioreporter assay provides a rapid and sensitive screening tool for direct genotoxicity assessment of environmental samples. Copyright © 2017. Published by Elsevier Ltd.

  13. Legal and ethical standards for protecting women's human rights and the practice of conscientious objection in reproductive healthcare settings.

    Science.gov (United States)

    Zampas, Christina

    2013-12-01

    The practice of conscientious objection by healthcare workers is growing across the globe. It is most common in reproductive healthcare settings because of the religious or moral values placed on beliefs as to when life begins. It is often invoked in the context of abortion and contraceptive services, including the provision of information related to such services. Few states adequately regulate the practice, leading to denial of access to lawful reproductive healthcare services and violations of fundamental human rights. International ethical, health, and human rights standards have recently attempted to address these challenges by harmonizing the practice of conscientious objection with women's right to sexual and reproductive health services. FIGO ethical standards have had an important role in influencing human rights development in this area. They consider regulation of the unfettered use of conscientious objection essential to the realization of sexual and reproductive rights. Under international human rights law, states have a positive obligation to act in this regard. While ethical and human rights standards regarding this issue are growing, they do not yet exhaustively cover all the situations in which women's health and human rights are in jeopardy because of the practice. The present article sets forth existing ethical and human rights standards on the issue and illustrates the need for further development and clarity on balancing these rights and interests. Copyright © 2013 International Federation of Gynecology and Obstetrics. Published by Elsevier Ireland Ltd. All rights reserved.

  14. [The 14/2006 law on human assisted reproduction techniques: scientific and ethical considerations].

    Science.gov (United States)

    Lacadena, Juan-Ramón

    2006-01-01

    The new Spanish Law on Artificial Human Reproduction Techniques is analyzed from the scientific, ethical and legal points of view, paying special attention to the preimplantational diagnosis and the experimental utilization of gametes and preembryos. Other items are also analyzed.

  15. Evaluation of Genotoxic Pressure along the Sava River.

    Directory of Open Access Journals (Sweden)

    Stoimir Kolarević

    Full Text Available In this study we have performed a comprehensive genotoxicological survey along the 900 rkm of the Sava River. In total, 12 sites were chosen in compliance with the goals of GLOBAQUA project dealing with the effects of multiple stressors on biodiversity and functioning of aquatic ecosystems. The genotoxic potential was assessed using a complex battery of bioassays performed in prokaryotes and aquatic eukaryotes (freshwater fish. Battery comprised evaluation of mutagenicity by SOS/umuC test in Salmonella typhimurium TA1535/pSK1002. The level of DNA damage as a biomarker of exposure (comet assay and biomarker of effect (micronucleus assay and the level of oxidative stress as well (Fpg-modified comet assay was studied in blood cells of bleak and spirlin (Alburnus alburnus/Alburnoides bipunctatus respectively. Result indicated differential sensitivity of applied bioassays in detection of genotoxic pressure. The standard and Fpg-modified comet assay showed higher potential in differentiation of the sites based on genotoxic potential in comparison with micronucleus assay and SOS/umuC test. Our data represent snapshot of the current status of the river which indicates the presence of genotoxic potential along the river which can be traced to the deterioration of quality of the Sava River by communal and industrial wastewaters. The major highlight of the study is that we have provided complex set of data obtained from a single source (homogeneity of analyses for all samples.

  16. Plant genotoxicity: a molecular cytogenetic approach in plant bioassays.

    Science.gov (United States)

    Maluszynska, Jolanta; Juchimiuk, Jolanta

    2005-06-01

    It is important for the prevention of DNA changes caused by environment to understand the biological consequences of DNA damages and their molecular modes of action that lead to repair or alterations of the genetic material. Numerous genotoxicity assay systems have been developed to identify DNA reactive compounds. The available data show that plant bioassays are important tests in the detection of genotoxic contamination in the environment and the establishment of controlling systems. Plant system can detect a wide range of genetic damage, including gene mutations and chromosome aberrations. Recently introduced molecular cytogenetic methods allow analysis of genotoxicity, both at the chromosomal and DNA level. FISH gives a new possibility of the detection and analysis of chromosomal rearrangements in a great detail. DNA fragmentation can be estimated using the TUNEL test and the single cell gel electrophoresis (Comet assay).

  17. Evaluation of Cytotoxicity and Genotoxicity of Acacia aroma Leaf Extracts

    Directory of Open Access Journals (Sweden)

    C. M. Mattana

    2014-01-01

    Full Text Available Acacia aroma, native plant from San Luis, Argentina, is commonly used as antiseptic and for healing of wounds. The present study was conducted to investigate the in vitro cytotoxicity and genotoxicity of hot aqueous extract (HAE and ethanolic extract (EE of A. aroma. The cytotoxic activity was assayed by neutral red uptake assay on Vero cell. Cell treatment with a range from 100 to 5000 μg/mL of HAE and EE showed that 500 μg/mL and 100 μg/mL were the maximum noncytotoxic concentrations, respectively. The CC50 was 658 μg/mL for EE and 1020 μg/mL for HAE. The genotoxicity was tested by the single-cell gel electrophoresis comet assay. The results obtained in the evaluation of DNA cellular damage exposed to varied concentrations of the HAE showed no significant genotoxic effect at range of 1–20 mg/mL. The EE at 20 mg/mL showed moderate genotoxic effect related to the increase of the DNA percentage contained in tail of the comet; DNA was classified in category 2. At concentrations below 5 mg/mL, the results of cytotoxicity and genotoxicity of aqueous and ethanolic extracts of Acacia aroma guarantee the safety at cell and genomic level. However further studies are needed for longer periods including animal models to confirm the findings.

  18. Is Boric Acid Toxic to Reproduction in Humans? Assessment of the Animal Reproductive Toxicity Data and Epidemiological Study Results.

    Science.gov (United States)

    Duydu, Yalçın; Başaran, Nurşen; Ustündağ, Aylin; Aydın, Sevtap; Undeğer, Ulkü; Ataman, Osman Yavuz; Aydos, Kaan; Düker, Yalçın; Ickstadt, Katja; Waltrup, Brita Schulze; Golka, Klaus; Bolt, Hermann Maximilian

    2016-01-01

    Boric acid and sodium borates are classified as toxic to reproduction in the CLP Regulation under "Category 1B" with the hazard statement of "H360FD". This classification is based on the reprotoxic effects of boric acid and sodium borates in animal experiments at high doses. However, boron mediated reprotoxic effects have not been proven in epidemiological studies so far. The epidemiological study performed in Bandırma boric acid production plant is the most comprehensive published study in this field with 204 voluntarily participated male workers. Sperm quality parameters (sperm morphology, concentration and motility parameters), FSH, LH and testosterone levels were determined in all participated employees as the reproductive toxicity biomarkers of males. However, boron mediated unfavorable effects on reproduction in male workers have not been determined even in the workers under very high daily boron exposure (0.21 mg B/kg-bw/day) conditions. The NOAEL for rat reproductive toxicity is equivalent to a blood boron level of 2020 ng/g. This level is higher than the mean blood boron concentration (223.89 ± 69.49 ng/g) of the high exposure group workers in Bandırma boric acid production plant (Turkey) by a factor of 9. Accordingly, classifying boric acid and sodium borates under "Category 1B" as "presumed reproductive human toxicant in the CLP regulation seems scientifically not reasonable. The results of the epidemiological studies (including the study performed in China) support for a down-classification of boric acid from the category 1B, H360FD to category 2, H361d, (suspected of damaging the unborn child).

  19. Female Reproductive System

    Science.gov (United States)

    ... of the Female Reproductive System Print en español Sistema reproductor femenino About Human Reproduction All living things ... of Use Notice of Nondiscrimination Visit the Nemours Web site. Note: All information on KidsHealth® is for ...

  20. Bacterial Composition, Genotoxicity, and Cytotoxicity of Fecal Samples from Individuals Consuming Omnivorous or Vegetarian Diets

    Science.gov (United States)

    Federici, Ermanno; Prete, Roberta; Lazzi, Camilla; Pellegrini, Nicoletta; Moretti, Massimo; Corsetti, Aldo; Cenci, Giovanni

    2017-01-01

    This study analyzes the composition of viable fecal bacteria and gut toxicology biomarkers of 29 healthy volunteers, who followed omnivorous, lacto-ovo-vegetarian, or vegan diets. In particular, the research was focused on the prevalence of some representative viable bacteria from the four dominant phyla (Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria) commonly present in human feces, in order to evaluate the relationship between microorganisms selected by the habitual dietary patterns and the potential risk due to fecal water (FW) genotoxicity and cytotoxicity, considered as biomarkers for cancer risk and protective food activity. The relative differences of viable bacteria among dietary groups were generally not statistically significant. However, compared to omnivores, lacto-ovo-vegetarians showed low levels of total anaerobes. Otherwise, vegans showed total anaerobes counts similar to those of omnivores, but with lower number of bifidobacteria and the highest levels of bacteria from the Bacteroides–Prevotella genera. FW genotoxicity of lacto-ovo-vegetarians resulted significantly lower either in relation to that of omnivores and vegans. Lacto-ovo-vegetarians also showed the lowest levels of cytotoxicity, while the highest were found for vegans. These results highlighted that lacto-ovo-vegetarian diet was particularly effective in a favorable modulation of microbial activity, thus contributing to a significant reduction of the genotoxic and cytotoxic risk in the gut. PMID:28293225

  1. Bacterial Composition, Genotoxicity, and Cytotoxicity of Fecal Samples from Individuals Consuming Omnivorous or Vegetarian Diets.

    Science.gov (United States)

    Federici, Ermanno; Prete, Roberta; Lazzi, Camilla; Pellegrini, Nicoletta; Moretti, Massimo; Corsetti, Aldo; Cenci, Giovanni

    2017-01-01

    This study analyzes the composition of viable fecal bacteria and gut toxicology biomarkers of 29 healthy volunteers, who followed omnivorous, lacto-ovo-vegetarian, or vegan diets. In particular, the research was focused on the prevalence of some representative viable bacteria from the four dominant phyla (Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria) commonly present in human feces, in order to evaluate the relationship between microorganisms selected by the habitual dietary patterns and the potential risk due to fecal water (FW) genotoxicity and cytotoxicity, considered as biomarkers for cancer risk and protective food activity. The relative differences of viable bacteria among dietary groups were generally not statistically significant. However, compared to omnivores, lacto-ovo-vegetarians showed low levels of total anaerobes. Otherwise, vegans showed total anaerobes counts similar to those of omnivores, but with lower number of bifidobacteria and the highest levels of bacteria from the Bacteroides-Prevotella genera. FW genotoxicity of lacto-ovo-vegetarians resulted significantly lower either in relation to that of omnivores and vegans. Lacto-ovo-vegetarians also showed the lowest levels of cytotoxicity, while the highest were found for vegans. These results highlighted that lacto-ovo-vegetarian diet was particularly effective in a favorable modulation of microbial activity, thus contributing to a significant reduction of the genotoxic and cytotoxic risk in the gut.

  2. Assisted reproductive technology (ART) in humans: facts and uncertainties.

    Science.gov (United States)

    Ménézo, Y J; Veiga, A; Pouly, J L

    2000-01-15

    Since the first in vitro fertilization (IVF) in human, the number of patients using Assisted Reproductive Technologies (ART) has increased tremendously. ART technologies have increased in number and their spectrum has also widened. The first IVF babies are now more than 20 years old. All the retrospective analyses have demonstrated that the obstetrical and pediatrical impact has not really affected single births. The main problems observed occur with multiple pregnancies, including high costs for the couples and for society. The decrease in the number of embryos transferred has improved the situation and moreover does not impair the final results. IntraCytoplasmic Sperm Injection (ICSI) is a more debatable and questionable technique with a real negative genetic impact. The main problem is chromosome abnormalities more specifically related to the sex chromosomes. The question of a systematic genetic work-up on the patients entering ICSI programs is discussed. No negative impact of cryopreservation has been demonstrated even though some controversy arises from time to time. Pre-implantation Genetic Diagnosis (PGD) is now a interesting tool for patients carrying genetic defects. Blastocyst biopsy now has a future role in reproductive medicine. Gender selection through sperm sorting is also now a reality. As with the other developing bio-technologies related to reproduction, there are ethical questions. The decisions concerning these technologies do not belong solely to scientists but are rather a matter for society to decide.

  3. Cell and genetic predictors of human blastocyst hatching success in assisted reproduction.

    Science.gov (United States)

    Syrkasheva, Anastasiya G; Dolgushina, Nataliya V; Romanov, Andrey Yu; Burmenskaya, Olga V; Makarova, Nataliya P; Ibragimova, Espet O; Kalinina, Elena A; Sukhikh, Gennady T

    2017-10-01

    The aim was to identify cell and genetic predictors of human blastocyst hatching success in assisted reproduction programmes via a prospective case-control study. Blastocysts, donated by couples in assisted reproduction programmes were used. Hatching success assessment was performed after 144-146 h post-fertilization. The mRNA expression levels of cathepsin V (CTSV), GATA-binding protein 3 (GATA3) and human chorionic gonadotropin beta subunit 3, 5, 7 and 8 (CGB) genes were detected by quantitative real-time polymerase chain reaction. The odds ratio (OR) of hatching due to zona pellucida (ZP) thickness, oocyte and sperm quality, embryo quality and mRNA expression of CTSV, GATA3 and CGB genes in blastocysts was determined. From 62 blastocysts included in the study, 47 (75.8%) were unable to hatch spontaneously. The ZP thickening, and oocyte and sperm quality did not affect human blastocyst ability to hatch, except the combination of cytoplasmic and extracytoplasmic oocyte dysmorphisms (OR = 1.25; 95% confidence interval = 1.08, 1.45). Hatching-capable blastocysts had higher Gardner scale grade and mRNA expression of CTSV, GATA3 and CGB genes than hatching-incapable blastocysts. The human blastocyst hatching success depends on the blastocyst Gardner grade, but not on ZP and gamete quality. Blastocyst development was regulated by CTSV, GATA3 and CGB gene expression.

  4. Critical effective methods to detect genotoxic carcinogens and neoplasm-promoting agents.

    Science.gov (United States)

    Weisburger, J H; Williams, G M

    1991-01-01

    Neoplasia in fish can result from contamination of waters with carcinogens and promoters. Cancer in fish, therefore, is a possible indicator of cancer risk to man and serves as a guide to the need for preventive approaches involving improved means of waste disposal and environmental hygiene. Moreover, cancer in fish indicates that this important food source may be contaminated. Detection of genotoxic carcinogens to which fish are exposed can be achieved quickly and efficiently by carefully selected batteries of complementary in vitro and in vivo bioassays. One such battery consists of the Ames test, a reverse mutation assay in prokaryotic Salmonella typhimurium, and the Williams test, involving DNA repair in freshly explanted metabolically highly competent liver cells from diverse species, including humans. Determination of DNA-carcinogen adducts by varied techniques, including 32P-postlabeling, as well as DNA breakage, mammalian cell mutagenicity, chromosome aberrations, sister chromatid exchange, or cell transformation represent additional approaches, each with its own advantages and disadvantages. More research is needed on systems to apprehend neoplasm promoters, but tests to determine interruption of intercellular communications through gap junctions appear promising. Other approaches rely on measurement of enzymes such as ornithine decarboxylase and protein kinase C. Approaches to the definition of risk to fish or humans require characterization of the genotoxic or nongenotoxic properties of a chemical, relative potency data obtained in select, limited rodent bioassays, and knowledge of prevailing environmental concentrations of specific carcinogens.

  5. Human rights advances in women's reproductive health in Africa.

    Science.gov (United States)

    Ngwena, Charles G; Brookman-Amissah, Eunice; Skuster, Patty

    2015-05-01

    The African Commission on Human and Peoples' Rights recently adopted General Comment No 2 to interpret provisions of Article 14 of the Protocol to the African Charter on the Rights Women. The provisions relate to women's rights to fertility control, contraception, family planning, information and education, and abortion. The present article highlights the General Comment's potential to promote women's sexual and reproductive rights in multiple ways. The General Comment's human rights value goes beyond providing states with guidance for framing their domestic laws, practices, and policies to comply with treaty obligations. General Comment No 2 is invaluable in educating all stakeholders-including healthcare providers, lawyers, policymakers, and judicial officers at the domestic level-about pertinent jurisprudence. Civil society and human rights advocates can use the General Comment to render the state accountable for failure to implement its treaty obligations. Copyright © 2015 International Federation of Gynecology and Obstetrics. Published by Elsevier Ireland Ltd. All rights reserved.

  6. Histological and genotoxic evaluation of gold nanoparticles in ovarian cells of zebrafish ( Danio rerio)

    Science.gov (United States)

    Dayal, Navami; Thakur, Mansee; Patil, Poonam; Singh, Dipty; Vanage, Geeta; Joshi, D. S.

    2016-10-01

    Gold nanoparticles (AuNPs) have attracted a lot of attention due to their usage in consumer- and therapy-based biomedical applications. These particles are frequently the medium-sized particles within the range of 10-50 nm. A number of scientific reports have addressed the cytotoxic potential of these NPs. However, their genotoxic potential with respect to reproductive aspects remains unclear. For assessment of safety and risks associated with AuNPs to female reproductive system, adult female zebrafish (Danio rerio) were exposed in vivo to 20 μg/g/day of AuNPs of two different sizes. AuNPs of 15 nm (type I) and 47 nm (type II) in diameters were administered orally to female zebrafish for a period of 28 days (chronic). The ability of these AuNPs to gain access to female reproductive organs was confirmed by their accumulation pattern through inductive coupled plasma mass spectroscopy. Gonads were assessed for changes in ovarian morphology at histopathological level followed by the confirmation of bioaccumulation of AuNPs using transmission electron microscopy. Using comet assay, strand breaks in DNA of ovarian cells were investigated. Chronic exposure to type I and II AuNPs showed distinctive patterns of bioaccumulation in ovaries. Interestingly, accumulated NPs resulted in gross cellular alterations in different cell types of ovarian tissue. Comet assay analysis revealed extensive number of strand breaks in ovarian cells from the NP exposed fishes. In conclusion, AuNPs ranging between 10 and 50 nm are capable of gaining access to ovaries of zebrafish and potential enough to cause strand breaks in ovarian cells. The findings of the present study highlight the adverse effects of these NPs to female reproductive system. It opens up further avenues for research on effects of these NPs on F1 generation descending from the exposed fishes.

  7. Histological and genotoxic evaluation of gold nanoparticles in ovarian cells of zebrafish (Danio rerio)

    Energy Technology Data Exchange (ETDEWEB)

    Dayal, Navami, E-mail: navamidayal@gmail.com [MGM Institute of Health Sciences, Department of Medical Genetics (India); Thakur, Mansee, E-mail: mansibiotech79@gmail.com [MGM Institute of Health Sciences and College of Engineering and Technology, Department of Medical Biotechnology and Central Research Laboratory (India); Patil, Poonam, E-mail: poonamparth14@yahoo.in [MGM Institute of Health Sciences, Department of Medical Biotechnology (India); Singh, Dipty, E-mail: diptyasingh@gmail.com; Vanage, Geeta, E-mail: geetavanage@gmail.com [National Institute of Research in Reproductive Health (ICMR), National Centre for Preclinical Reproductive and Genetic Toxicology (NIRRH) (India); Joshi, D. S. [MGM Institute of Health Sciences, Department of Medical Genetics (India)

    2016-10-15

    Gold nanoparticles (AuNPs) have attracted a lot of attention due to their usage in consumer- and therapy-based biomedical applications. These particles are frequently the medium-sized particles within the range of 10–50 nm. A number of scientific reports have addressed the cytotoxic potential of these NPs. However, their genotoxic potential with respect to reproductive aspects remains unclear. For assessment of safety and risks associated with AuNPs to female reproductive system, adult female zebrafish (Danio rerio) were exposed in vivo to 20 μg/g/day of AuNPs of two different sizes. AuNPs of 15 nm (type I) and 47 nm (type II) in diameters were administered orally to female zebrafish for a period of 28 days (chronic). The ability of these AuNPs to gain access to female reproductive organs was confirmed by their accumulation pattern through inductive coupled plasma mass spectroscopy. Gonads were assessed for changes in ovarian morphology at histopathological level followed by the confirmation of bioaccumulation of AuNPs using transmission electron microscopy. Using comet assay, strand breaks in DNA of ovarian cells were investigated. Chronic exposure to type I and II AuNPs showed distinctive patterns of bioaccumulation in ovaries. Interestingly, accumulated NPs resulted in gross cellular alterations in different cell types of ovarian tissue. Comet assay analysis revealed extensive number of strand breaks in ovarian cells from the NP exposed fishes. In conclusion, AuNPs ranging between 10 and 50 nm are capable of gaining access to ovaries of zebrafish and potential enough to cause strand breaks in ovarian cells. The findings of the present study highlight the adverse effects of these NPs to female reproductive system. It opens up further avenues for research on effects of these NPs on F{sub 1} generation descending from the exposed fishes.

  8. Histological and genotoxic evaluation of gold nanoparticles in ovarian cells of zebrafish (Danio rerio)

    International Nuclear Information System (INIS)

    Dayal, Navami; Thakur, Mansee; Patil, Poonam; Singh, Dipty; Vanage, Geeta; Joshi, D. S.

    2016-01-01

    Gold nanoparticles (AuNPs) have attracted a lot of attention due to their usage in consumer- and therapy-based biomedical applications. These particles are frequently the medium-sized particles within the range of 10–50 nm. A number of scientific reports have addressed the cytotoxic potential of these NPs. However, their genotoxic potential with respect to reproductive aspects remains unclear. For assessment of safety and risks associated with AuNPs to female reproductive system, adult female zebrafish (Danio rerio) were exposed in vivo to 20 μg/g/day of AuNPs of two different sizes. AuNPs of 15 nm (type I) and 47 nm (type II) in diameters were administered orally to female zebrafish for a period of 28 days (chronic). The ability of these AuNPs to gain access to female reproductive organs was confirmed by their accumulation pattern through inductive coupled plasma mass spectroscopy. Gonads were assessed for changes in ovarian morphology at histopathological level followed by the confirmation of bioaccumulation of AuNPs using transmission electron microscopy. Using comet assay, strand breaks in DNA of ovarian cells were investigated. Chronic exposure to type I and II AuNPs showed distinctive patterns of bioaccumulation in ovaries. Interestingly, accumulated NPs resulted in gross cellular alterations in different cell types of ovarian tissue. Comet assay analysis revealed extensive number of strand breaks in ovarian cells from the NP exposed fishes. In conclusion, AuNPs ranging between 10 and 50 nm are capable of gaining access to ovaries of zebrafish and potential enough to cause strand breaks in ovarian cells. The findings of the present study highlight the adverse effects of these NPs to female reproductive system. It opens up further avenues for research on effects of these NPs on F_1 generation descending from the exposed fishes.

  9. In-vitro Antioxidant, Cytotoxic, Cholinesterase Inhibitory Activities and Anti-Genotoxic Effects of Hypericum retusum Aucher Flowers, Fruits and Seeds Methanol Extracts in Human Mononuclear Leukocytes.

    Science.gov (United States)

    Keskin, Cumali; Aktepe, Necmettin; Yükselten, Yunus; Sunguroglu, Asuman; Boğa, Mehmet

    2017-01-01

    The present study investigates the antioxidant, anticancer, anticholinesterase, anti-genotoxic activities and phenolic contents of flower, fruit and seed methanol extracts of Hypericum retusum AUCHER. The amounts of protocatechuic acid, catechin, caffeic acid and syringic acid in methanol extracts were determined by HPLC. Total phenolic content of H. retusum seed extract was found more than fruit and flower extracts. The DPPH free radical scavenging activity of flower and seed methanol extracts showed close activity versus BHT as control. Among three extracts of H. retusum only flower methanol extract was exhibited considerable cytotoxic activities against to HeLa and NRK-52E cell lines. Moreover, seed methanol extract showed both acetyl and butyrl-cholinesterase inhibitory activity. The highest anti-genotoxic effects were seen 25 and 50 μg/mL concentrations. In this study, the extracts showed a strong antioxidant and anti-genotoxic effect. The seed extract was more efficient- than extracts of fruit and flowers. Our results suggest that the antioxidant and anti-genotoxic effects of extracts depend on their phenolic contents. Further studies should evaluate the in-vitro and in-vivo the benefits of H. retusum seed methanol extracts.

  10. Evaluation of the cytotoxic and genotoxic potential of lecithin/chitosan nanoparticles

    Science.gov (United States)

    Taner, Gökçe; Yeşilöz, Recep; Özkan Vardar, Deniz; Şenyiğit, Taner; Özer, Özgen; Degen, Gisela H.; Başaran, Nurşen

    2014-02-01

    Nanoparticles-based drug targeting delivery systems have been introduced in the treatment for various diseases because of their effective properties, although there have been conflicting results on the toxicity of nanoparticles. In the present study, the aim was to evaluate the cytotoxicity and the genotoxicity of different concentrations of lecithin/chitosan nanoparticles with and without clobetasol-17-propionate (CP) by neutral red uptake (NRU) cytotoxicity assay and single cell gel electrophoresis (Comet) and cytokinesis-blocked micronucleus assays. The IC50 values of lecithin/chitosan nanoparticles with/without CP were found as 1.9 and 1.8 %, respectively, in the NRU cytotoxicity test. High concentrations of lecithin/chitosan nanoparticles induced DNA damage in human lymphocytes as evaluated by comet assay. The micronucleus frequency was increased by the lecithin/chitosan treatment in a dose-dependent manner. Also at the two highest concentrations, a significant increase in micronucleus formation was observed. Lecithin/chitosan nanoparticles with CP did not increase the frequency of micronucleus and also did not induce additional DNA damage when compared with lecithin/chitosan nanoparticles without CP; therefore, CP itself has not found to be genotoxic at the studied concentration.

  11. Evaluation of genotoxic effects of surface waters using a battery of bioassays indicating different mode of action.

    Science.gov (United States)

    Han, Yingnan; Li, Na; Oda, Yoshimitsu; Ma, Mei; Rao, Kaifeng; Wang, Zijian; Jin, Wei; Hong, Gang; Li, Zhiguo; Luo, Yi

    2016-11-01

    With the burgeoning contamination of surface waters threatening human health, the genotoxic effects of surface waters have received much attention. Because mutagenic and carcinogenic compounds in water cause tumors by different mechanisms, a battery of bioassays that each indicate a different mode of action (MOA) is required to evaluate the genotoxic effects of contaminants in water samples. In this study, 15 water samples from two source water reservoirs and surrounding rivers in Shijiazhuang city of China were evaluated for genotoxic effects. Target chemical analyses of 14 genotoxic pollutants were performed according to the Environmental quality standards for surface water of China. Then, the in vitro cytokinesis-block micronucleus (CBMN) assay, based on a high-content screening technique, was used to detect the effect of chromosome damage. The SOS/umu test using strain TA1535/pSK1002 was used to detect effects on SOS repair of gene expression. Additionally, two other strains, NM2009 and NM3009, which are highly sensitive to aromatic amines and nitroarenes, respectively, were used in the SOS/umu test to avoid false negative results. In the water samples, only two of the genotoxic chemicals listed in the water standards were detected in a few samples, with concentrations that were below water quality standards. However, positive results for the CBMN assay were observed in two river samples, and positive results for the induction of umuC gene expression in TA1535/pSK1002 were observed in seven river samples. Moreover, positive results were observed for NM2009 with S9 and NM3009 without S9 in some samples that had negative results using the strain TA1535/pSK1002. Based on the results with NM2009 and NM3009, some unknown or undetected aromatic amines and nitroarenes were likely in the source water reservoirs and the surrounding rivers. Furthermore, these compounds were most likely the causative pollutants for the genotoxic effect of these water samples. Therefore

  12. Human rights and the sexual and reproductive health of women living with HIV--a literature review.

    Science.gov (United States)

    Kumar, Shubha; Gruskin, Sofia; Khosla, Rajat; Narasimhan, Manjulaa

    2015-01-01

    Even as the number of women living with HIV around the globe continues to grow, realization of their sexual and reproductive health and human rights remains compromised. The objective of this study was to review the current state of knowledge on the sexual and reproductive health and human rights of women living with HIV to assess evidence and gaps. Relevant databases were searched for peer-reviewed and grey literature. Search terms included a combination of MeSH terms and keywords representing women, HIV/AIDS, ART, human rights, sexual and reproductive health. We included both qualitative and quantitative literature published in English, French, or Spanish between July 2011 and December 2014. The search yielded 2228 peer-reviewed articles, of which 40 met the inclusion criteria in the final review. The grey literature search yielded 2186 documents of which seven met the inclusion criteria in the final review. Of the articles and documents reviewed, not a single peer-reviewed article described the explicit implementation of rights in programming, and only two documents from the grey literature did so. With one possible exception, no articles or documents were found which addressed rights comprehensively, or addressed the majority of relevant rights (i.e. equality; non-discrimination; participation; privacy and confidentiality; informed decision making; availability, accessibility, acceptability and quality (3AQ) of services individually or in their totality; and accountability). Additional findings indicate that the language of rights is used most often to describe the apparent neglect or violation of human rights and what does exist only addresses a few rights in the context of a few areas within sexual and reproductive health. Findings from this review suggest the need to better integrate rights into interventions, particularly with attention to provider training, service delivery, raising awareness and capacity building among the community of women living with

  13. Investigating Intergenerational Differences in Human PCB Exposure due to Variable Emissions and Reproductive Behaviors

    Science.gov (United States)

    Quinn, Cristina L.; Wania, Frank; Czub, Gertje; Breivik, Knut

    2011-01-01

    Background Reproductive behaviors—such as age of childbearing, parity, and breast-feeding prevalence—have changed over the same historical time period as emissions of polychlorinated biphenyls (PCB) and may produce intergenerational differences in human PCB exposure. Objectives Our goal in this study was to estimate prenatal, postnatal, and lifetime PCB exposures for women at different ages according to year of birth, and to evaluate the impact of reproductive characteristics on intergenerational differences in exposure. Methods We used the time-variant mechanistic model CoZMoMAN to calculate human bioaccumulation of PCBs, assuming both hypothetical constant and realistic time-variant emissions. Results Although exposure primarily depends on when an individual was born relative to the emission history of PCBs, reproductive behaviors can have a significant impact. Our model suggests that a mother’s reproductive history has a greater influence on the prenatal and postnatal exposures of her children than it does on her own cumulative lifetime exposure. In particular, a child’s birth order appears to have a strong influence on their prenatal exposure, whereas postnatal exposure is determined by the type of milk (formula or breast milk) fed to the infant. Conclusions Prenatal PCB exposure appears to be delayed relative to the time of PCB emissions, particularly among those born after the PCB production phaseout. Consequently, the health repercussions of environmental PCBs can be expected to persist for several decades, despite bans on their production for > 40 years. PMID:21156396

  14. IWGT report on quantitative approaches to genotoxicity risk assessment II. Use of point-of-departure (PoD) metrics in defining acceptable exposure limits and assessing human risk.

    Science.gov (United States)

    MacGregor, James T; Frötschl, Roland; White, Paul A; Crump, Kenny S; Eastmond, David A; Fukushima, Shoji; Guérard, Melanie; Hayashi, Makoto; Soeteman-Hernández, Lya G; Johnson, George E; Kasamatsu, Toshio; Levy, Dan D; Morita, Takeshi; Müller, Lutz; Schoeny, Rita; Schuler, Maik J; Thybaud, Véronique

    2015-05-01

    This is the second of two reports from the International Workshops on Genotoxicity Testing (IWGT) Working Group on Quantitative Approaches to Genetic Toxicology Risk Assessment (the QWG). The first report summarized the discussions and recommendations of the QWG related to the need for quantitative dose-response analysis of genetic toxicology data, the existence and appropriate evaluation of threshold responses, and methods to analyze exposure-response relationships and derive points of departure (PoDs) from which acceptable exposure levels could be determined. This report summarizes the QWG discussions and recommendations regarding appropriate approaches to evaluate exposure-related risks of genotoxic damage, including extrapolation below identified PoDs and across test systems and species. Recommendations include the selection of appropriate genetic endpoints and target tissues, uncertainty factors and extrapolation methods to be considered, the importance and use of information on mode of action, toxicokinetics, metabolism, and exposure biomarkers when using quantitative exposure-response data to determine acceptable exposure levels in human populations or to assess the risk associated with known or anticipated exposures. The empirical relationship between genetic damage (mutation and chromosomal aberration) and cancer in animal models was also examined. It was concluded that there is a general correlation between cancer induction and mutagenic and/or clastogenic damage for agents thought to act via a genotoxic mechanism, but that the correlation is limited due to an inadequate number of cases in which mutation and cancer can be compared at a sufficient number of doses in the same target tissues of the same species and strain exposed under directly comparable routes and experimental protocols. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Genotoxicity of drinking water treated with different disinfectants and effects of disinfection conditions detected by umu-test.

    Science.gov (United States)

    Nie, Xuebiao; Liu, Wenjun; Zhang, Liping; Liu, Qing

    2017-06-01

    The genotoxicity of drinking water treated with 6 disinfection methods and the effects of disinfection conditions were investigated using the umu-test. The pretreatment procedure of samples for the umu-test was optimized for drinking water analysis. The results of the umu-test were in good correlation with those of the Ames-test. The genotoxicity and production of haloacetic acids (HAAs) were the highest for chlorinated samples. UV+chloramination is the safest disinfection method from the aspects of genotoxicity, HAA production and inactivation effects. For chloramination, the effects of the mass ratio of Cl 2 to N of chloramine on genotoxicity were also studied. The changes of genotoxicity were different from those of HAA production, which implied that HAA production cannot represent the genotoxic potential of water. The genotoxicity per chlorine decay of chlorination and chloramination had similar trends, indicating that the reaction of organic matters and chlorine made a great contribution to the genotoxicity. The results of this study are of engineering significance for optimizing the operation of waterworks. Copyright © 2016. Published by Elsevier B.V.

  16. Force Reproduction Error Depends on Force Level, whereas the Position Reproduction Error Does Not

    NARCIS (Netherlands)

    Onneweer, B.; Mugge, W.; Schouten, Alfred Christiaan

    2016-01-01

    When reproducing a previously perceived force or position humans make systematic errors. This study determined the effect of force level on force and position reproduction, when both target and reproduction force are self-generated with the same hand. Subjects performed force reproduction tasks at

  17. Physical attractiveness and reproductive success in humans: Evidence from the late 20 century United States.

    Science.gov (United States)

    Jokela, Markus

    2009-09-01

    Physical attractiveness has been associated with mating behavior, but its role in reproductive success of contemporary humans has received surprisingly little attention. In the Wisconsin Longitudinal Study (1244 women, 997 men born between 1937 and 1940) we examined whether attractiveness assessed from photographs taken at age ~18 predicted the number of biological children at age 53-56. In women, attractiveness predicted higher reproductive success in a nonlinear fashion, so that attractive (second highest quartile) women had 16% and very attractive (highest quartile) women 6% more children than their less attractive counterparts. In men, there was a threshold effect so that men in the lowest attractiveness quartile had 13% fewer children than others who did not differ from each other in the average number of children. These associations were partly but not completely accounted for by attractive participants' increased marriage probability. A linear regression analysis indicated relatively weak directional selection gradient for attractiveness (β=0.06 in women, β=0.07 in men). These findings indicate that physical attractiveness may be associated with reproductive success in humans living in industrialized settings.

  18. Genotoxic potential of montmorillonite clay mineral and alteration in the expression of genes involved in toxicity mechanisms in the human hepatoma cell line HepG2

    Energy Technology Data Exchange (ETDEWEB)

    Maisanaba, Sara, E-mail: saramh@us.es [Area of Toxicology, Faculty of Pharmacy, University of Sevilla, Profesor García González no. 2, 41012 Seville (Spain); Hercog, Klara; Filipic, Metka [National Institute of Biology, Department for Genetic Toxicology and Cancer Biology, Vecna pot 111, 1000 Ljubljana (Slovenia); Jos, Ángeles [Area of Toxicology, Faculty of Pharmacy, University of Sevilla, Profesor García González no. 2, 41012 Seville (Spain); Zegura, Bojana [National Institute of Biology, Department for Genetic Toxicology and Cancer Biology, Vecna pot 111, 1000 Ljubljana (Slovenia)

    2016-03-05

    Highlights: • Cloisite{sup ®}Na{sup +} has a wide range of well-documented and novel applications. • Cloisite{sup ®}Na{sup +} induces micronucleus, but not nuclear bridges or nuclear buds in HepG2 cells. • Cloisite{sup ®}Na{sup +} induces changes in the gene expression. • Gene alteration is presented mainly after 24 h of exposure to Cloisite{sup ®}Na{sup +}. - Abstract: Montmorillonite, also known as Cloisite{sup ®}Na{sup +} (CNa{sup +}), is a natural clay with a wide range of well-documented and novel applications, such as pharmaceutical products or food packaging. Although considered a low toxic product, the expected increased exposure to CNa{sup +} arises concern on the potential consequences on human and environmental health especially as its genotoxicity has scarcely been investigated so far. Thus, we investigated, for the first time, the influence of non-cytotoxic concentrations of CNa{sup +} (15.65, 31.25 and 62.5 μg/mL) on genomic instability of human hepatoma cell line (HepG2) by determining the formation of micronuclei (MNi), nucleoplasmic bridges (NPBs) and nuclear buds (NBUDs) with the Cytokinesis block micronucleus cytome assay. Further on we studied the influence of CNa{sup +} on the expression of several genes involved in toxicity mechanisms using the real-time quantitative PCR. The results showed that CNa{sup +} increased the number of MNi, while the numbers of NBUDs and NPBs were not affected. In addition it deregulated genes in all the groups studied, mainly after longer time of exposure. These findings provide the evidence that CNa{sup +} is potentially genotoxic. Therefore further studies that will elucidate the molecular mechanisms involved in toxic activity of CNa{sup +} are needed for hazard identification and human safety assessment.

  19. Genistein genotoxicity: Critical considerations of in vitro exposure dose

    International Nuclear Information System (INIS)

    Klein, Catherine B.; King, Audrey A.

    2007-01-01

    The potential health benefits of soy-derived phytoestrogens include their reported utility as anticarcinogens, cardioprotectants and as hormone replacement alternatives in menopause. Although there is increasing popularity of dietary phytoestrogen supplementation and of vegetarian and vegan diets among adolescents and adults, concerns about potential detrimental or other genotoxic effects persist. While a variety of genotoxic effects of phytoestrogens have been reported in vitro, the concentrations at which such effects occurred were often much higher than the physiologically relevant doses achievable by dietary or pharmacologic intake of soy foods or supplements. This review focuses on in vitro studies of the most abundant soy phytoestrogen, genistein, critically examining dose as a crucial determinant of cellular effects. In consideration of levels of dietary genistein uptake and bioavailability we have defined in vitro concentrations of genistein > 5 μM as non-physiological, and thus 'high' doses, in contrast to much of the previous literature. In doing so, many of the often-cited genotoxic effects of genistein, including apoptosis, cell growth inhibition, topoisomerase inhibition and others become less obvious. Recent cellular, epigenetic and microarray studies are beginning to decipher genistein effects that occur at dietarily relevant low concentrations. In toxicology, the well accepted principle of 'the dose defines the poison' applies to many toxicants and can be invoked, as herein, to distinguish genotoxic versus potentially beneficial in vitro effects of natural dietary products such as genistein

  20. Reproductive cloning in humans and therapeutic cloning in primates: is the ethical debate catching up with the recent scientific advances?

    Science.gov (United States)

    Camporesi, S; Bortolotti, L

    2008-09-01

    After years of failure, in November 2007 primate embryonic stem cells were derived by somatic cellular nuclear transfer, also known as therapeutic cloning. The first embryo transfer for human reproductive cloning purposes was also attempted in 2006, albeit with negative results. These two events force us to think carefully about the possibility of human cloning which is now much closer to becoming a reality. In this paper we tackle this issue from two sides, first summarising what scientists have achieved so far, then discussing some of the ethical arguments in favour and against human cloning which are debated in the context of policy making and public consultation. Therapeutic cloning as a means to improve and save lives has uncontroversial moral value. As to human reproductive cloning, we consider and assess some common objections and failing to see them as conclusive. We do recognise, though, that there will be problems at the level of policy and regulation that might either impair the implementation of human reproductive cloning or make its accessibility restricted in a way that could become difficult to justify on moral grounds. We suggest using the time still available before human reproductive cloning is attempted successfully to create policies and institutions that can offer clear directives on its legitimate applications on the basis of solid arguments, coherent moral principles, and extensive public consultation.

  1. Determination of spectral markers of cytotoxicity and genotoxicity using in vitro Raman microspectroscopy: cellular responses to polyamidoamine dendrimer exposure.

    Science.gov (United States)

    Efeoglu, Esen; Casey, Alan; Byrne, Hugh J

    2017-10-09

    Although consumer exposure to nanomaterials is ever increasing, with potential increased applications in areas such as drug and/or gene delivery, contrast agents and diagnosis, the determination of the cyto- and geno-toxic effects of nanomaterials on human health and the environment still remains challenging. Although many techniques have been established and adapted to determine the cytotoxicity and genotoxicity of nano-sized materials, these techniques remain limited by the number of assays required, total cost, and use of labels and they struggle to explain the underlying interaction mechanisms. In this study, Raman microspectroscopy is employed as an in vitro label-free, high content screening technique to observe toxicological changes within the cell in a multi-parametric fashion. The evolution of spectral markers as a function of time and applied dose has been used to elucidate the mechanism of action of polyamidoamine (PAMAM) dendrimers associated with cytotoxicity and their impact on nuclear biochemistry. PAMAM dendrimers are chosen as a model nanomaterial due to their widely studied cytotoxic and genotoxic properties and commercial availability. Point spectra were acquired from the cytoplasm to monitor the cascade of toxic events occurring in the cytoplasm upon nanoparticle exposure, whereas the spectra acquired from the nucleus and the nucleolus were used to explore PAMAM-nuclear material interaction as well as genotoxic responses.

  2. [Role of leptin in human reproduction (anorexia, bulimia)].

    Science.gov (United States)

    Pilka, L; Rumpík, D; Pilka, R

    2012-12-01

    Leptin may act as the critical link between adipose tissue and the reproductive system, indicating whether adequate energy reserves are presenting for normal reproductive functions. Future interventional studies involving leptin administration are excepted to further clarify this role of leptin and may provide new therapeutic options for the reproductive dysfunctions associated with states of relative leptin deficiency or resistance.

  3. Dietary modulation of the biotransformation and genotoxicity of aflatoxin B1

    International Nuclear Information System (INIS)

    Gross-Steinmeyer, Kerstin; Eaton, David L.

    2012-01-01

    Diet and its various components are consistently identified as among the most important ‘risk factors’ for cancer worldwide, yet great uncertainty remains regarding the relative contribution of nutritive (e.g., vitamins, calories) vs. non-nutritive (e.g., phytochemicals, fiber, contaminants) factors in both cancer induction and cancer prevention. Among the most potent known human dietary carcinogens is the mycotoxin, aflatoxin B 1 (AFB). AFB and related aflatoxins are produced as secondary metabolites by the molds Aspergillus flavus and Aspergillus parasiticus that commonly infect poorly stored foods including peanuts, pistachios, corn, and rice. AFB is a potent hepatocarcinogenic agent in numerous animal species, and has been implicated in the etiology of human hepatocellular carcinoma. Recent research has shown that many diet-derived factors have great potential to influence AFB biotransformation, and some efficiently protect from AFB-induced genotoxicity. One key mode of action for reducing AFB-induced carcinogenesis in experimental animals was shown to be the induction of detoxification enzymes such as certain glutathione-S-transferases that are regulated through the Keap1–Nrf2–ARE signaling pathway. Although initial studies utilized the dithiolthione drug, oltipraz, as a prototypical inducer of antioxidant response, dietary components such as suforaphane (SFN) are also effective inducers of this pathway in rodent models. However, human GSTs in general do not appear to be extensively induced by SFN, and GSTM1 – the only human GST with measurable catalytic activity toward aflatoxin B 1 -8,9-epoxide (AFBO; the genotoxic metabolite of AFB), does not appear to be induced by SFN, at least in human hepatocytes, even though its expression in human liver cells does appear to offer considerable protection against AFB–DNA damage. Although induction of detoxification pathways has served as the primary mechanistic focus of chemoprevention studies, protective

  4. Contributions from assited human reproduction techniques' socio-legal research to the legislative field

    Directory of Open Access Journals (Sweden)

    Marisa Herrera

    2017-03-01

    Full Text Available This paper’s intention is to share some of the main results of two field-based research projects regarding assisted human reproduction practices in Argentina. Both projects have been developed in a dynamic legislative context involving medical coverage regulation, parentage determination and the right to know one's origins for children born with third party genetic material. Also, in this context, the Draft Civil and Commercial Code reform introduced two figures that were then removed in the parliamentary debate: post mortem fertilization and surrogate motherhood. All these issues concerning the use of assisted human reproduction challenge the legal field and are addressed in these research projects, one of them more from an explorative perspective and the other from a qualitative one. Therefore, this article aims to introduce some of the measured variables and the findings obtained to serve as relevant contributions to achieve a more appropriate legislation according with the medical and social reality.

  5. Genotoxic pressure of vineyard pesticides in fish: field and mesocosm surveys.

    Science.gov (United States)

    Bony, S; Gillet, C; Bouchez, A; Margoum, C; Devaux, A

    2008-09-17

    The present study deals with the genotoxicity assessment of vineyard pesticides in fish exposed in the field or in mesocosm conditions. Primary DNA damage was quantified as strand breaks using the single cell gel electrophoresis assay (Comet assay) applied to fish erythrocytes. In a first experiment, a significant genotoxic effect was observed following an upstream-downstream gradient in early life stages of brown trout (Salmo trutta fario) exposed in the Morcille River contaminated by a mixture of vineyard pesticides during three consecutive years. The pronounced response in terms of DNA damage reported in the present study could argue for a high sensitivity of fish early life stage and/or a high level of exposure to genotoxic compounds in the Morcille River. This stresses the interest in using trout larvae incubated in sediment bed to assess genotoxic compounds in the field. In a second experiment, adult European topminnow (Phoxinus phoxinus) were exposed in water running through artificial channels to a mixture of diuron and azoxystrobin, two of the main pesticides detected in the Morcille watershed. As compared with the unexposed channel, a 3-5-fold increase in the DNA damage was observed in fish exposed to chronic environmental pesticide concentrations (1-2 microg L(-1) for diuron and 0.5-1 microg L(-1) for axoxystrobin). A single 6h pulse of pesticide (14 microg L(-1) of diuron and 7 microg L(-1) of azoxystrobin) was applied to simulate transiently elevated chemical concentrations in the river following storm conditions. It did not increase genotoxicity. After a 1-month recovery period, DNA damage in exposed fish erythrocytes recovered to unexposed level, suggesting possible involvement of both repair mechanisms and cellular turnover in this transient response. This work highlights that vineyard treatment by pesticides and in particular diuron and azoxystrobin can represent a genotoxic threat to fish from contaminated watershed rivers.

  6. Cytotoxicity, genotoxicity, and mutagenicity of 1-chloro-2-hydroxy-3-butene and 1-chloro-3-buten-2-one, two alternative metabolites of 1,3-butadiene

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xin-Jie; Zeng, Fang-Mao; An, Jing; Yu, Ying-Xin [Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444 (China); Zhang, Xin-Yu, E-mail: xyzhang999@shu.edu.cn [Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444 (China); Elfarra, Adnan A., E-mail: elfarra@svm.vetmed.wisc.edu [Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706 (United States); Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, WI 53706 (United States)

    2013-08-15

    The cytotoxicity, genotoxicity, and mutagenicity of 1-chloro-2-hydroxy-3-butene (CHB), a known in vitro metabolite of the human carcinogen 1,3-butadiene, have not previously been investigated. Because CHB can be bioactivated by alcohol dehydrogenases to yield 1-chloro-3-buten-2-one (CBO), a bifunctional alkylating agent that caused globin-chain cross-links in erythrocytes, in the present study we investigated the cytotoxic and genotoxic potential of CHB and CBO in human normal hepatocyte L02 cells using the MTT assay, the relative cloning efficiency assay and the comet assay. We also investigated the mutagenic potential of these compounds with the Ames test using Salmonella strains TA1535 and TA1537. The results provide clear evidence for CHB and CBO being both cytotoxic and genotoxic with CBO being approximately 100-fold more potent than CHB. Interestingly, CHB generated both single-strand breaks and alkali-labile sites on DNA, whereas CBO produced only alkali-labile sites. CHB did not directly result in DNA breaks, whereas CBO was capable of directly generating breaks on DNA. Interestingly, both compounds did not induce DNA cross-links as examined by the comet assay. The Ames test results showed that CHB induced point mutation but not frameshift mutation, whereas the toxic effects of CBO made it difficult to reliably assess the mutagenic potential of CBO in the two strains. Collectively, the results suggest that CHB and CBO may play a role in the mutagenicity and carcinogenicity of 1,3-butadiene. - Highlights: • 1-Chloro-2-hydroxy-3-butene (CHB) is cytotoxic and genotoxic in human liver cells. • The CHB metabolite, 1-chloro-3-buten-2-one (CBO) is ∼ 100-fold more toxic than CHB. • CHB and CBO cause DNA alkali-labile sites, but only CBO directly causes DNA breaks. • CHB is mutagenic in the Ames test, but CBO is too toxic in the assay. • The results suggest a role for CHB in 1,3-butadiene genotoxicity and mutagenicity.

  7. Distinct Functional Domains of Ubc9 Dictate Cell Survival and Resistance to Genotoxic Stress

    Science.gov (United States)

    van Waardenburg, Robert C. A. M.; Duda, David M.; Lancaster, Cynthia S.; Schulman, Brenda A.; Bjornsti, Mary-Ann

    2006-01-01

    Covalent modification with SUMO alters protein function, intracellular localization, or protein-protein interactions. Target recognition is determined, in part, by the SUMO E2 enzyme, Ubc9, while Siz/Pias E3 ligases may facilitate select interactions by acting as substrate adaptors. A yeast conditional Ubc9P123L mutant was viable at 36°C yet exhibited enhanced sensitivity to DNA damage. To define functional domains in Ubc9 that dictate cellular responses to genotoxic stress versus those necessary for cell viability, a 1.75-Å structure of yeast Ubc9 that demonstrated considerable conservation of backbone architecture with human Ubc9 was solved. Nevertheless, differences in side chain geometry/charge guided the design of human/yeast chimeras, where swapping domains implicated in (i) binding residues within substrates that flank canonical SUMOylation sites, (ii) interactions with the RanBP2 E3 ligase, and (iii) binding of the heterodimeric E1 and SUMO had distinct effects on cell growth and resistance to DNA-damaging agents. Our findings establish a functional interaction between N-terminal and substrate-binding domains of Ubc9 and distinguish the activities of E3 ligases Siz1 and Siz2 in regulating cellular responses to genotoxic stress. PMID:16782883

  8. In vitro and in vivo genotoxic evaluation of Bothrops moojeni snake venom.

    Science.gov (United States)

    Novak Zobiole, Nathalia; Caon, Thiago; Wildgrube Bertol, Jéssica; Pereira, Cintia Alves de Souza; Okubo, Brunna Mary; Moreno, Susana Elisa; Cardozo, Francielle Tramontini Gomes de Sousa

    2015-06-01

    Bothrops moojeni Hoge (Viperidae) venom is a complex mixture of compounds with therapeutic potential that has been included in the research and development of new drugs. Along with the biological activity, the pharmaceutical applicability of this venom depends on its toxicological profile. This study evaluates the cytotoxicity and genotoxicity of the Bothrops moojeni venom (BMV). The in vitro cytotoxicity and genotoxicity of a pooled sample of BMV was assessed by the MTT and Comet assay, respectively. Genotoxicity was also evaluated in vivo through the micronucleus assay. BMV displayed a 50% cytotoxic concentration (CC50) on Vero cells of 4.09 µg/mL. Vero cells treated with 4 µg/mL for 90 min and 6 h presented significant (p < 0.05, ANOVA/Newman-Keuls test) higher DNA damage than the negative control in the Comet assay. The lower DNA damage found after 6 h compared with the 90 min treatment suggests a DNA repair effect. Mice intraperitoneally treated with BMV at 10, 30, or 80 µg/animal presented significant genotoxicity (p < 0.05, ANOVA/Newman-Keuls test) in relation to the negative control after 24 h of treatment. Contrary to the in vitro results, no DNA repair seemed to occur in vivo up to 96 h post-venom inoculation at a dose of 30 µg/animal. The results show that BMV presents cyto- and genotoxicity depending on the concentration/dose used. These findings emphasize the importance of toxicological studies, including assessment of genotoxicity, in the biological activity research of BMV and/or in the development of BMV-derived products.

  9. Considerations on photochemical genotoxicity. II: Report of the 2009 International Workshop on Genotoxicity Testing Working Group

    NARCIS (Netherlands)

    Lynch, A.M.; Guzzie, P.J.; Bauer, D.; Gocke, E.; Itoh, S.; Jacobs, A.; Krul, C.A.M.; Schepky, A.; Tanaka, N.; Kasper, P.

    2011-01-01

    A workshop to reappraise the previous IWGT recommendations for photogenotoxicity testing [E. Gocke, L. Muller, P.J. Guzzie, S. Brendler-Schwaab, S. Bulera, C.F. Chignell, L.M. Henderson, A. Jacobs, H. Murli, R.D. Snyder, N. Tanaka, Considerations on photochemical genotoxicity: report of the

  10. A comparison of foamy and lentiviral vector genotoxicity in SCID-repopulating cells shows foamy vectors are less prone to clonal dominance

    Directory of Open Access Journals (Sweden)

    Elizabeth M Everson

    2016-01-01

    Full Text Available Hematopoietic stem cell (HSC gene therapy using retroviral vectors has immense potential, but vector-mediated genotoxicity limits use in the clinic. Lentiviral vectors are less genotoxic than gammaretroviral vectors and have become the vector of choice in clinical trials. Foamy retroviral vectors have a promising integration profile and are less prone to read-through transcription than gammaretroviral or lentiviral vectors. Here, we directly compared the safety and efficacy of foamy vectors to lentiviral vectors in human CD34+ repopulating cells in immunodeficient mice. To increase their genotoxic potential, foamy and lentiviral vectors with identical transgene cassettes with a known genotoxic spleen focus forming virus promoter were used. Both vectors resulted in efficient marking in vivo and a total of 825 foamy and 460 lentiviral vector unique integration sites were recovered in repopulating cells 19 weeks after transplantation. Foamy vector proviruses were observed less often near RefSeq gene and proto-oncogene transcription start sites than lentiviral vectors. The foamy vector group were also more polyclonal with fewer dominant clones (two out of six mice than the lentiviral vector group (eight out of eight mice, and only lentiviral vectors had integrants near known proto-oncogenes in dominant clones. Our data further support the relative safety of foamy vectors for HSC gene therapy.

  11. AFFINITY BIOSENSOR BASED ON SCREEN-PRINTED ELECTRODE MODIFIED WITH DNA FOR GENOTOXIC COMPOUNDS DETECTION

    Directory of Open Access Journals (Sweden)

    Bambang Kuswandi

    2010-06-01

    Full Text Available An electrochemical method for the detection of the genotoxic compounds using a DNA-modified electrode was developed. This electrode was successfully used for the electrochemical detection of genotoxic compounds in water samples. The electrochemical results clearly demonstrated that, the development is related to the molecular interaction between the surface-linked DNA obtained from calf thymus and the target compounds, such as pollutants, in order to develop a simple device for rapid screening of genotoxic compounds in environmental samples. The detection of such compounds was measured by their effect on the oxidation signal of the guanine peak of the DNA immobilised on the surface of carbon based Screen-Printed Electrode (SPE in disposable mode, and monitored by square-wave voltametric analysis. The DNA biosensor is able to detect known intercalating and groove-binding genotoxic compounds such as Dioxin, Bisphenol A, PCBs, and Phtalates. Application to real water samples is discussed and reported.   Keywords: electrochemical, screen-printed electrode, DNA biosensor, genotoxic compounds

  12. Characterization of TCHQ-induced genotoxicity and mutagenesis using the pSP189 shuttle vector in mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang Jing, E-mail: avaecn@gmail.com [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Yu Shouyi [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Jiao Shouhai [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Shandong Institute of Endocrine and Metabolic Diseases, Shandong Academy of Medical Sciences, Jinan 250062 (China); Lv Xiaowen [Feed Safety Reference Laboratory of Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081 (China); Ma Min [Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Zhu Benzhan; Du Yuguo [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China)

    2012-01-03

    Tetrachlorohydroquinone (TCHQ) is a major toxic metabolite of the widely used wood preservative, pentachlorophenol (PCP), and it has also been implicated in PCP genotoxicity. However, the underlying mechanisms of genotoxicity and mutagenesis induced by TCHQ remain unclear. In this study, we examined the genotoxicity of TCHQ by using comet assays to detect DNA breakage and formation of TCHQ-DNA adducts. Then, we further verified the levels of mutagenesis by using the pSP189 shuttle vector in A549 human lung carcinoma cells. We demonstrated that TCHQ causes significant genotoxicity by inducing DNA breakage and forming DNA adducts. Additionally, DNA sequence analysis of the TCHQ-induced mutations revealed that 85.36% were single base substitutions, 9.76% were single base insertions, and 4.88% were large fragment deletions. More than 80% of the base substitutions occurred at G:C base pairs, and the mutations were G:C to C:G, G:C to T:A or G:C to A:T transversions and transitions. The most common types of mutations in A549 cells were G:C to A:T (37.14%) and A:T to C:G transitions (14.29%) and G:C to C:G (34.29%) and G:C to T:A (11.43%) transversions. We identified hotspots at nucleotides 129, 141, and 155 in the supF gene of plasmid pSP189. These mutation hotspots accounted for 63% of all single base substitutions. We conclude that TCHQ induces sequence-specific DNA mutations at high frequencies. Therefore, the safety of using this product would be carefully examined.

  13. Genotoxic Maillard byproducts in current phytopharmaceutical preparations of Echinodorus grandiflorus

    Directory of Open Access Journals (Sweden)

    ELISANGELA C. LIMA-DELLAMORA

    2014-09-01

    Full Text Available Extracts of Echinodorus grandiflorus obtained from dried leaves by three different techniques were evaluated by bacterial lysogenic induction assay (Inductest in relation to their genotoxic properties. Before being added to test cultures, extracts were sterilized either by steam sterilization or ultraviolet light. Only the extracts prepared by infusion and steam sterilized have shown genotoxic activity. The phytochemical analysis revealed the presence of the flavonoids isovitexin, isoorientin, swertisin and swertiajaponin, isolated from a genotoxic fraction. They were assayed separately and tested negative in the Inductest protocol. The development of browning color and sweet smell in extracts submitted to heat, prompted further chemical analysis in search for Maillard's reaction precursors. Several aminoacids and reducing sugars were cast in the extract. The presence of characteristic Maillard's melanoidins products was determined by spectrophotometry in the visible region and the inhibition of this reaction was observed when its characteristic inhibitor, sodium bisulfite, was added prior to heating. Remarkably, this is the first paper reporting on the appearance of such compounds in a phytomedicine preparation under a current phytopharmaceutical procedure. The genotoxic activity of such heat-prepared infusions imply in some risk of developing degenerative diseases for patients in long-term, uncontrolled use of such phytomedicines.

  14. Geno-toxicity assay of sediment and water samples from the Upper Silesia post-mining areas, Poland by means of Allium-test

    Energy Technology Data Exchange (ETDEWEB)

    Geras' kin, S.; Oudalova, A.; Michalik, B.; Dikareva, N.; Dikarev, V. [Russian Institute of Agricultural Radiology & Agroecology RAAS, Obninsk (Russian Federation)

    2011-05-15

    Genotoxic potential of two environmental compartments (water and sediment) from the Upper Silesia Coal Basin (USCB), Poland were evaluated and compared by employing root meristem cells of Allium cepa. The clear genotoxic effect of water and sediment sampled was shown, with an important contribution of severe types of cytogenetic abnormalities. The most biologically relevant pollutants were revealed through multivariate statistical analysis of relationships between biological effects registered and the environment contamination. Overall, results of simultaneous use of conventional monitoring methods and biological tests suggested that contemporary levels of persistent pollutants in post-mining areas of the USCB may enhance the risk both for human health and biological components of natural ecosystems.

  15. Correlation between serum anyloid a low density lipoprotein and genotoxicity in smokers

    International Nuclear Information System (INIS)

    Jamil, A.; Rashid, A.; Majeed, A.; Naveed, A.K.

    2018-01-01

    Objective:To investigate the relation between serum amyloid A-low density lipoprotein (SAA-LDL) and genotoxicity in smokers. Study Design:An experimental study. Place and Duration of Study:Army Medical College, Rawalpindi and National Institute of Health (NIH), Islamabad, from June 2014 to February 2015. Methodology:Seventy healthy Sprague Dawley rats were purchased from NIH and exposed to cigarette smoke in smoke chamber for three months. Blood samples were drawn from each rat at the end of the study period. SAA-LDL was determined by enzyme-linked immunosorbent assay (ELISA). Genotoxicity was assessed by cytokinesis block micronucleus (CBMN) assay. Pearson correlation was used to find correlation between SAA-LDL and genotoxicity. Results:Strong positive correlation was found between SAA-LDL and micronuclei frequency in smoke-exposed rats (r=0.799, N=70, p <0.01). Conclusion:Statistically significant strong positive correlation between SAA-LDL and genotoxicity in smoke-exposed rats shows that changes in one is associated with changes in other and vice versa. (author)

  16. Comparative cytotoxic and genotoxic potential of 13 drinking water disinfection by-products using a microplate-based cytotoxicity assay and a developed SOS/umu assay.

    Science.gov (United States)

    Zhang, Shao-Hui; Miao, Dong-Yue; Tan, Li; Liu, Ai-Lin; Lu, Wen-Qing

    2016-01-01

    The implications of disinfection by-products (DBPs) present in drinking water are of public health concern because of their potential mutagenic, carcinogenic and other toxic effects on humans. In this study, we selected 13 main DBPs found in drinking water to quantitatively analyse their cytotoxicity and genotoxicity using a microplate-based cytotoxicity assay and a developed SOS/umu assay in Salmonella typhimurium TA1535/pSK1002. With the developed SOS/umu test, eight DBPs: 3-chloro-4-(dichloromethyl)-5-hydroxy-2[5H]-fura3-chloro-4-(dichloromethyl)-5-hydroxy-2-[5H]-furanone (MX), dibromoacetonitrile (DBN), iodoacetic acid (IA), bromochloroacetonitrile (BCN), bromoacetic acid (BA), trichloroacetonitrile (TCN), dibromoacetic acid (DBA) and dichloroacetic acid (DCA) were significantly genotoxic to S. typhimurium. Three DBPs: chloroacetic acid (CA), trichloroacetic acid (TCA) and dichloroacetonitrile (DCN) were weakly genotoxic, whereas the remaining DBPs: chloroacetonitrile (CN) and chloral hydrate (CH) were negative. The rank order in decreasing genotoxicity was as follows: MX > DBN > IA > BCN > BA > TCN > DBA > DCA > CA, TCA, DCN > CN, CH. MX was approximately 370 000 times more genotoxic than DCA. In the microplate-based cytotoxicity assay, cytotoxic potencies of the 13 DBPs were compared and ranked in decreasing order as follows: MX > IA > DBN > BCN > BA > TCN > DCN > CA > DCA > DBA > CN > TCA > CH. MX was approximately 19 200 times more cytotoxic than CH. A statistically significant correlation was found between cytotoxicity and genotoxicity of the 13 DBPs in S. typhimurium. Results suggest that microplate-based cytotoxicity assay and the developed SOS/umu assay are feasible tools for analysing the cytotoxicity and genotoxicity of DBPs, particularly for comparing their toxic intensities quantitatively. © The Author 2015. Published by Oxford University Press on behalf of the UK Environmental Mutagen Society. All rights reserved. For permissions, please e

  17. Evaluation of genotoxicity of nitrile fragrance ingredients using in vitro and in vivo assays.

    Science.gov (United States)

    Bhatia, S P; Politano, V T; Api, A M

    2013-09-01

    Genotoxicity studies were conducted on a group of 8 fragrance ingredients that belong to the nitrile family. These nitriles are widely used in consumer products however there is very limited data in the literature regarding the genotoxicity of these nitriles. The 8 nitriles were assessed for genotoxicity using an Ames test, in vitro chromosome aberration test or in vitro micronucleus test. The positive results observed in the in vitro tests were further investigated using an in vivo micronucleus test. The results from these different tests were compared and these 8 nitriles are not considered to be genotoxic. Dodecanitrile and 2,2,3-trimethylcyclopent-3-enylacetonitrile were negative in the in vitro chromosome aberration test and in vitro micronucleus test, respectively. While citronellyl nitrile, 3-methyl-5-phenylpentanenitrile, cinnamyl nitrile, and 3-methyl-5-phenylpent-2-enenitrile revealed positive results in the in vitro tests, but confirmatory in vivo tests determined these nitriles to be negative in the in vivo micronucleus assay. The remaining two nitriles (benzonitrile and α-cyclohexylidene benzeneacetonitrile) were negative in the in vivo micronucleus test. This study aims to evaluate the genotoxicity potential of these nitriles as well as enrich the literature with genotoxicity data on fragrance ingredients. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Linking embryo toxicity with genotoxic responses in the freshwater snail Physa acuta: single exposure to benzo(a)pyrene, fluoxetine, bisphenol A, vinclozolin and exposure to binary mixtures with benzo(a)pyrene.

    Science.gov (United States)

    Sánchez-Argüello, Paloma; Aparicio, Natalia; Fernández, Carlos

    2012-06-01

    Genotoxic effects on fauna after waterborne pollutant exposure have been demonstrated by numerous research programmes. Less effort has been focused on establishing relationship between genotoxicity and long-term responses at higher levels of biological organization. Taking into account that embryos may be more sensitive indicators of reproductive impairment than alterations in fertility, we have developed two assays in multiwell plates to address correlations between embryo toxicity and genotoxicity. The potential teratogenicity was assessed by analyzing abnormal development and mortality of Physa acuta at embryonic stage. Genotoxicity was measured by the micronucleus (MN) test using embryonic cells. Our results showed that linkage between genotoxicity and embryo toxicity depends on mechanisms of action of compounds under study. Embryo toxic responses showed a clear dose-related tendency whereas no clear dose-dependent effect was observed in micronucleus induction. The higher embryo toxicity was produced by benzo(a)pyrene exposure followed by fluoxetine and bisphenol A. Vinclozolin was the lower embryo toxic compound. Binary mixtures with BaP always resulted in higher embryo toxicity than single exposures but antagonistic effects were observed for MN induction. Benzo(a)pyrene produced the higher MN induction at 0.04 mg/L, which also produced clear embryo toxic effects. Fluoxetine did not induce cytogenetic effects but 0.25mg/L altered embryonic development. Bisphenol A significantly reduced hatchability at 0.5mg/L while MN induction appeared with higher treatments than those that start causing teratogenicity. Much higher concentration of vinclozolin (5mg/L) reduced hatchability and induced maximum MN formation. In conclusion, while validating one biomarker of genotoxicity and employing one ecologically relevant effect, we have evaluated the relative sensitivity of a freshwater mollusc for a range of chemicals. The embryo toxicity test is a starting point for the

  19. The cyto- and genotoxicity of organotin compounds is dependent on the cellular uptake capability

    International Nuclear Information System (INIS)

    Dopp, E.; Hartmann, L.M.; Recklinghausen, U. von; Florea, A.M.; Rabieh, S.; Shokouhi, B.; Hirner, A.V.; Obe, G.; Rettenmeier, A.W.

    2007-01-01

    Organotin compounds have been widely used as stabilizers and anti-fouling agents with the result that they are ubiquitously distributed in the environment. Organotins accumulate in the food chain and potential effects on human health are disquieting. It is not known as yet whether cell surface adsorption or accumulation within the cell, or indeed both is a prerequisite for the toxicity of organotin compounds. In this study, the alkylated tin derivatives monomethyltin trichloride (MMT), dimethyltin dichloride (DMT), trimethyltin chloride (TMT) and tetramethyltin (TetraMT) were investigated for cyto- and genotoxic effects in CHO-9 cells in relation to the cellular uptake. To identify genotoxic effects, induction of micronuclei (MN), chromosome aberrations (CA) and sister chromatid exchanges (SCE) were analyzed and the nuclear division index (NDI) was calculated. The cellular uptake was assessed using ICP-MS analysis. The toxicity of the tin compounds was also evaluated after forced uptake by electroporation. Our results show that uptake of the organotin compounds was generally low but dose-dependent. Only weak genotoxic effects were observed after exposure of cells to DMT and TMT. MMT and TetraMT were negative in the test systems. After forced uptake by electroporation MMT, DMT and TMT induced significant DNA damage at non-cytotoxic concentrations. The results presented here indicate a considerable toxicological potential of some organotin species but demonstrate clearly that the toxicity is modulated by the cellular uptake capability

  20. Concentration- and time-dependent genotoxicity profiles of isoprene monoepoxides and diepoxide, and the cross-linking potential of isoprene diepoxide in cells

    Directory of Open Access Journals (Sweden)

    Yan Li

    2014-01-01

    Full Text Available Isoprene, a possible carcinogen, is a petrochemical and a natural product being primarily produced by plants. It is biotransformed to 2-ethenyl-2-methyloxirane (IP-1,2-O and 2-(1-methylethenyloxirane (IP-3,4-O, both of which can be further metabolized to 2-methyl-2,2′-bioxirane (MBO. MBO is mutagenic, but IP-1,2-O and IP-3,4-O are not. While IP-1,2-O has been reported being genotoxic, the genotoxicity of IP-3,4-O and MBO, and the cross-linking potential of MBO have not been examined. In the present study, we used the comet assay to investigate the concentration- and time-dependent genotoxicity profiles of the three metabolites and the cross-linking potential of MBO in human hepatocyte L02 cells. For the incubation time of 1 h, all metabolites showed positive concentration-dependent profiles with a potency rank order of IP-3,4-O > MBO > IP-1,2-O. In human hepatocellular carcinoma (HepG2 and human leukemia (HL60 cells, IP-3,4-O was still more potent in inducing DNA breaks than MBO at high concentrations (>200 μM, although at low concentrations (≤200 μM IP-3,4-O exhibited slightly lower or similar potency to MBO. Interestingly, their time-dependent genotoxicity profiles (0.5–4 h in L02 cells were different from each other: IP-1,2-O and MBO (200 μM exhibited negative and positive profiles, respectively, with IP-3,4-O lying in between, namely, IP-3,4-O-caused DNA breaks did not change over the exposure time. Further experiments demonstrated that hydrolysis of IP-1,2-O contributed to the negative profile and MBO induced cross-links at high concentrations and long incubation times. Collectively, the results suggested that IP-3,4-O might play a significant role in the toxicity of isoprene.

  1. Genotoxic and antigenotoxic properties of selenium compounds in the in vitro micronucleus assay with human whole blood lymphocytes and tk6 lymphoblastoid cells

    Directory of Open Access Journals (Sweden)

    Eduard Cemeli

    2006-01-01

    Full Text Available Selenium is known to possess both genotoxic and antigenotoxic properties. In the present study, we have evaluated the genotoxicity and antigenotoxicity of three selenium compounds (sodium selenate, sodium selenite and selenous acid by measuring in vitro micronucleus induction. Assays were conducted in whole blood lymphocytes and in the TK6 lymphoblastoid cell line, with and without co-treatment with potassium dichromate, a known genotoxic compound. In general, the compounds were more active in TK6 cells than they were in blood lymphocytes. Only 1 μM selenous acid increased the frequency of binucleated cells containing micronuclei (BNMN in blood lymphocytes, while all three selenium compounds increased BNMN in TK6 cells. In addition, combinations of selenous acid and potassium dichromate resulted in lower frequencies of BNMN than potassium dichromate alone in blood lymphocytes, while combinations of sodium selenate and potassium dichromate produced lower frequencies of BNMN than potassium dichromate alone in TK6 cells. The concentrations of selenium compounds that were used, in combination with the medium components and the biological physiology of the whole blood lymphocytes and TK6 cells, could have affected the redox potential of the compounds, switching the chemicals from a pro-oxidant to antioxidant status and vice-versa. The lower activities of the compounds in blood lymphocytes may be due to the protective effects of blood components. The results indicate that the genotoxic and antigenotoxic properties of selenium compounds are highly dependent upon the conditions under which they are evaluated.

  2. 42 CFR 9.7 - Reproduction.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Reproduction. 9.7 Section 9.7 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL PROVISIONS STANDARDS OF CARE FOR CHIMPANZEES HELD IN THE FEDERALLY SUPPORTED SANCTUARY SYSTEM § 9.7 Reproduction. Chimpanzee reproduction is...

  3. Cryopreservation of Embryos and Oocytes in Human Assisted Reproduction

    Directory of Open Access Journals (Sweden)

    János Konc

    2014-01-01

    Full Text Available Both sperm and embryo cryopreservation have become routine procedures in human assisted reproduction and oocyte cryopreservation is being introduced into clinical practice and is getting more and more widely used. Embryo cryopreservation has decreased the number of fresh embryo transfers and maximized the effectiveness of the IVF cycle. The data shows that women who had transfers of fresh and frozen embryos obtained 8% additional births by using their cryopreserved embryos. Oocyte cryopreservation offers more advantages compared to embryo freezing, such as fertility preservation in women at risk of losing fertility due to oncological treatment or chronic disease, egg donation, and postponing childbirth, and eliminates religious and/or other ethical, legal, and moral concerns of embryo freezing. In this review, the basic principles, methodology, and practical experiences as well as safety and other aspects concerning slow cooling and ultrarapid cooling (vitrification of human embryos and oocytes are summarized.

  4. Cryopreservation of embryos and oocytes in human assisted reproduction.

    Science.gov (United States)

    Konc, János; Kanyó, Katalin; Kriston, Rita; Somoskői, Bence; Cseh, Sándor

    2014-01-01

    Both sperm and embryo cryopreservation have become routine procedures in human assisted reproduction and oocyte cryopreservation is being introduced into clinical practice and is getting more and more widely used. Embryo cryopreservation has decreased the number of fresh embryo transfers and maximized the effectiveness of the IVF cycle. The data shows that women who had transfers of fresh and frozen embryos obtained 8% additional births by using their cryopreserved embryos. Oocyte cryopreservation offers more advantages compared to embryo freezing, such as fertility preservation in women at risk of losing fertility due to oncological treatment or chronic disease, egg donation, and postponing childbirth, and eliminates religious and/or other ethical, legal, and moral concerns of embryo freezing. In this review, the basic principles, methodology, and practical experiences as well as safety and other aspects concerning slow cooling and ultrarapid cooling (vitrification) of human embryos and oocytes are summarized.

  5. The Cook, the Thief, his Wife and her Lovert : on the evolution of the human reproductive strategy

    NARCIS (Netherlands)

    Schuiling, GA

    2003-01-01

    Human reproductive strategy differs from that of most other mammals, including Apes such as the closely related chimpanzee (Pan troglodytes) and the bonobo (Pan paniscus). For example, humans, although basically polygamic, exhibit a strong tendency to (serial) monogamy and-very rare for a

  6. Women Reproductive Rights in India: Prospective Future

    Directory of Open Access Journals (Sweden)

    Srinivas Kosgi

    2011-04-01

    Full Text Available Reproductive rights were established as a subset of the human rights. Parents have a basic human right to determine freely and responsibly the number and the spacing of their children. Issues regarding the reproductive rights are vigorously contested, regardless of the population’s socioeconomic level, religion or culture. Following review article discusses reproductive rights with respect to Indian context focusing on socio economic and cultural aspects. Also discusses sensitization of government and judicial agencies in protecting the reproductive rights with special focus on the protecting the reproductive rights of people with disability (mental illness and mental retardation.

  7. An alternative approach to studying the effects of ZnO nanoparticles in cultured human lymphocytes: combining electrochemistry and genotoxicity tests.

    Science.gov (United States)

    Branica, Gina; Mladinić, Marin; Omanović, Dario; Želježić, Davor

    2016-12-01

    Nanoparticle use has increased radically raising concern about possible adverse effects in humans. Zinc oxide nanoparticles (ZnO NPs) are among the most common nanomaterials in consumer and medical products. Several studies indicate problems with their safe use. The aim of our study was to see at which levels ZnO NPs start to produce adverse cytogenetic effects in human lymphocytes as an early attempt toward establishing safety limits for ZnO NP exposure in humans. We assessed the genotoxic effects of low ZnO NP concentrations (1.0, 2.5, 5, and 7.5 μg mL-1) in lymphocyte cultures over 14 days of exposure. We also tested whether low and high-density lymphocytes differed in their ability to accumulate ZnO NPs in these experimental conditions. Primary DNA damage (measured with the alkaline comet assay) increased with nanoparticle concentration in unseparated and high density lymphocytes. The same happened with the fragmentation of TP53 (measured with the comet-FISH). Nanoparticle accumulation was significant only with the two highest concentrations, regardless of lymphocyte density. High-density lymphocytes had significantly more intracellular Zn2+ than light-density ones. Our results suggest that exposure to ZnO NPs in concentrations above 5 μg mL-1 increases cytogenetic damage and intracellular Zn2+ levels in lymphocytes.

  8. Transformation of cefazolin during chlorination process: Products, mechanism and genotoxicity assessment

    Energy Technology Data Exchange (ETDEWEB)

    Li, Liping, E-mail: lisaleercees807@yahoo.cn; Wei, Dongbin, E-mail: weidb@rcees.ac.cn; Wei, Guohua, E-mail: wgh@rcees.ac.cn; Du, Yuguo, E-mail: duyuguo@rcees.ac.cn

    2013-11-15

    Highlights: • Base-catalyzed electrophilic substitution occurred in cefazolin chlorination. • Oxidation of thioether in cefazolin was found in chlorination process. • The pH conditions impacted on the occurrence of reaction types. • Genotoxicity had an elevation after chlorination of cefazolin. • Reaction pathways of cefazolin chlorination were replayed in surface water matrix. -- Abstract: Large quantities of cephalosporins have entered into aquatic environment in recent years, posing potential adverse effect to human health and ecological safety. In this study, cefazolin, one of widely used cephalosporins, was targeted to explore its transformation behaviors in chlorination disinfection process. With the help of ultra high performance liquid chromatography and high resolution mass spectroscopy, one chlorinated product and four oxidation products were detected in cefazolin chlorination system. The corresponding transformation pathways of cefazolin were proposed. Two kinds of reactions occurred in chlorination system, one was oxidation of thioether-sulfur to sulfoxide and di-sulfoxide, and the other was base-catalyzed electrophilic substitution of alpha-H of amide by chlorine atom. The pH value determined the occurrence of reaction types, and increasing chlorine dose promoted transformation of cefazolin. More importantly, genotoxicity in SOS/umu assay had an elevation after chlorination, which might be attributed to the formation of chlorinated product and sulfoxide during chlorination process.

  9. Transformation of cefazolin during chlorination process: Products, mechanism and genotoxicity assessment

    International Nuclear Information System (INIS)

    Li, Liping; Wei, Dongbin; Wei, Guohua; Du, Yuguo

    2013-01-01

    Highlights: • Base-catalyzed electrophilic substitution occurred in cefazolin chlorination. • Oxidation of thioether in cefazolin was found in chlorination process. • The pH conditions impacted on the occurrence of reaction types. • Genotoxicity had an elevation after chlorination of cefazolin. • Reaction pathways of cefazolin chlorination were replayed in surface water matrix. -- Abstract: Large quantities of cephalosporins have entered into aquatic environment in recent years, posing potential adverse effect to human health and ecological safety. In this study, cefazolin, one of widely used cephalosporins, was targeted to explore its transformation behaviors in chlorination disinfection process. With the help of ultra high performance liquid chromatography and high resolution mass spectroscopy, one chlorinated product and four oxidation products were detected in cefazolin chlorination system. The corresponding transformation pathways of cefazolin were proposed. Two kinds of reactions occurred in chlorination system, one was oxidation of thioether-sulfur to sulfoxide and di-sulfoxide, and the other was base-catalyzed electrophilic substitution of alpha-H of amide by chlorine atom. The pH value determined the occurrence of reaction types, and increasing chlorine dose promoted transformation of cefazolin. More importantly, genotoxicity in SOS/umu assay had an elevation after chlorination, which might be attributed to the formation of chlorinated product and sulfoxide during chlorination process

  10. The role of natural indigo dye in alleviation of genotoxicity of sodium dithionite as a reducing agent.

    Science.gov (United States)

    Bektaş, İdris; Karaman, Şengül; Dıraz, Emel; Çelik, Mustafa

    2016-12-01

    Indigo blue is a natural dye used for thousands of years by civilizations to dye fabric blue and it is naturally obtained from Isatis tinctoria. I. tinctoria is not only used for extraction of indigo blue color but also used medicinally in Traditional Chinese Medicine because of its active compounds. Sodium dithionite (Na 2 S 2 O 4 ) is used in dye bath for indigo blue extraction, but this reducing agent and its derivatives are major pollutants of textile industry and subsequently have hazardous influences on public health. Herein, the present study was designed to obtain the high yield of natural indigo dye but with low possible toxic effect. In this context, genotoxic effects of particular combinations of natural dye solutions obtained from Isatis tinctoria subsp. tomentolla with Na 2 S 2 O 4 as reducing agent were investigated. Dye solutions were obtained using two different pH levels (pH 9 and 11) and three different concentrations of Na 2 S 2 O 4 (2.5, 5 and 10 mg/ml). In addition to the dye solutions and reducing agent, aqueous extracts of I. tinctoria were assessed for their genotoxicity on human lymphocytes. For in vitro testing of genotoxicity, chromosomal aberrations (CAs), sister chromatid exchanges (SCEs) and mitotic indexes (MI) assays were used. Accordingly, Na 2 S 2 O 4 caused significant increases in CA and SCE as well decrease in MI but the genotoxic effects of sodium dithionite were reduced with natural indigo dye. As a result, aqueous extracts of Isatis leaves removed the toxic effects of sodium dithionite and showed anti-genotoxic effect. For the optimal and desired quality but with less toxic effects of natural dye, 2.5 mg/ml (for wool yarn) and 5 mg/ml (for cotton yarn) of Na 2 S 2 O 4 doses were found to be the best doses for reduction in the dye bath at Ph 9.

  11. In vitro cytotoxicity and genotoxicity of composite mixtures of natural rubber and leather residues used for textile applications.

    Science.gov (United States)

    Cavalcante, Dalita Gsm; Gomes, Andressa S; Dos Reis, Elton Ap; Danna, Caroline S; Kerche-Silva, Leandra E; Yoshihara, Eidi; Job, Aldo E

    2017-06-01

    A novel composite material has been developed from natural rubber and leather waste, and a corresponding patent has been filed. This new material may be incorporated into textile and footwear products. However, as leather waste contains chromium, the biocompatibility of this new material and its safety for use in humans must be investigated. The aim of the present study was to investigate the presence of chromium in this new material, determine the amount of each form of chromium present (trivalent or hexavalent), and evaluate the potential cytotoxic and genotoxic effects of the novel composite in two cell lines. The cellular viability was quantified using the MTT3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide reduction method and neutral red uptake assay, and genotoxic damage was analyzed using the comet assay. Our findings indicated that the extracts obtained from the composite were severely cytotoxic to both cell lines tested, and additionally highly genotoxic to MRC-5 cells. These biological responses do not appear to be attributable to the presence of chromium, as the trivalent form was predominantly found to be present in the extracts, indicating that hexavalent chromium is not formed during the production of the novel composite. The incorporation of this new material in applications that do not involve direct contact with the human skin is thus indicated, and it is suggested that the chain of production of this material be studied in order to improve its biocompatibility so that it may safely be used in the textile and footwear industries.

  12. SEX DIFFERENCES AND REPRODUCTIVE HORMONE INFLUENCES ON HUMAN ODOR PERCEPTION

    Science.gov (United States)

    Doty, Richard L.; Cameron, E. Leslie

    2009-01-01

    The question of whether men and women differ in their ability to smell has been the topic of scientific investigation for over a hundred years. Although conflicting findings abound, most studies suggest that, for at least some odorants, women outperform men on tests of odor detection, identification, discrimination, and memory. Most functional imaging and electrophysiological studies similarly imply that, when sex differences are present, they favor women. In this review we examine what is known about sex-related alterations in human smell function, including influences of the menstrual cycle, pregnancy, gonadectomy, and hormone replacement therapy on a range of olfactory measures. We conclude that the relationship between reproductive hormones and human olfactory function is complex and that simple associations between circulating levels of gonadal hormones and measures of olfactory function are rarely present. PMID:19272398

  13. Genotoxic effects of zinc oxide nanoparticles

    Science.gov (United States)

    Heim, Julia; Felder, Eva; Tahir, Muhammad Nawaz; Kaltbeitzel, Anke; Heinrich, Ulf Ruediger; Brochhausen, Christoph; Mailänder, Volker; Tremel, Wolfgang; Brieger, Juergen

    2015-05-01

    The potential toxicity of nanoparticles has currently provoked public and scientific discussions, and attempts to develop generally accepted handling procedures for nanoparticles are under way. The investigation of the impact of nanoparticles on human health is overdue and reliable test systems accounting for the special properties of nanomaterials must be developed. Nanoparticular zinc oxide (ZnO) may be internalised through ambient air or the topical application of cosmetics, only to name a few, with unpredictable health effects. Therefore, we analysed the determinants of ZnO nanoparticle (NP) genotoxicity. ZnO NPs (15-18 nm in diameter) were investigated at concentrations of 0.1, 10 and 100 μg mL-1 using the cell line A549. Internalised NPs were only infrequently detectable by TEM, but strongly increased Zn2+ levels in the cytoplasm and even more in the nuclear fraction, as measured by atom absorption spectroscopy, indicative of an internalised zinc and nuclear accumulation. We observed a time and dosage dependent reduction of cellular viability after ZnO NP exposure. ZnCl2 exposure to cells induced similar impairments of cellular viability. Complexation of Zn2+ with diethylene triamine pentaacetic acid (DTPA) resulted in the loss of toxicity of NPs, indicating the relevant role of Zn2+ for ZnO NP toxicity. Foci analyses showed the induction of DNA double strand breaks (DSBs) by ZnO NPs and increased intracellular reactive oxygen species (ROS) levels. Treatment of the cells with the ROS scavenger N-acetyl-l-cysteine (NAC) resulted in strongly decreased intracellular ROS levels and reduced DNA damage. However, a slow increase of ROS after ZnO NP exposure and reduced but not quashed DSBs after NAC-treatment suggest that Zn2+ may exert genotoxic activities without the necessity of preceding ROS-induction. Our data indicate that ZnO NP toxicity is a result of cellular Zn2+ intake. Subsequently increased ROS-levels cause DNA damage. However, we found evidence for

  14. Genotoxicity of clays with potential use in biopolymers for food packaging

    DEFF Research Database (Denmark)

    Sharma, Anoop Kumar; Mortensen, Alicja; Hadrup, Niels

    Genotoxicity of clays with potential use in biopolymers for food packaging Plastics produced from biopolymers are of commercial interest as they are manufactured from renewable resources such as agricultural crop wastes and have the potential to meet environmental and health requirements. Biopoly......Genotoxicity of clays with potential use in biopolymers for food packaging Plastics produced from biopolymers are of commercial interest as they are manufactured from renewable resources such as agricultural crop wastes and have the potential to meet environmental and health requirements...... in crude suspensions (suspended in cell culture medium) and crude suspensions filtrated through a 0.2 µm pore size filter in order to investigate the potential effect of “nanoparticles” only. The two clays showed noticeable differences in genotoxicity; both crude and filtered suspensions of Cloisite...

  15. Circadian rhythms and reproduction.

    Science.gov (United States)

    Boden, Michael J; Kennaway, David J

    2006-09-01

    There is a growing recognition that the circadian timing system, in particular recently discovered clock genes, plays a major role in a wide range of physiological systems. Microarray studies, for example, have shown that the expression of hundreds of genes changes many fold in the suprachiasmatic nucleus, liver heart and kidney. In this review, we discuss the role of circadian rhythmicity in the control of reproductive function in animals and humans. Circadian rhythms and clock genes appear to be involved in optimal reproductive performance, but there are sufficient redundancies in their function that many of the knockout mice produced do not show overt reproductive failure. Furthermore, important strain differences have emerged from the studies especially between the various Clock (Circadian Locomotor Output Cycle Kaput) mutant strains. Nevertheless, there is emerging evidence that the primary clock genes, Clock and Bmal1 (Brain and Muscle ARNT-like protein 1, also known as Mop3), strongly influence reproductive competency. The extent to which the circadian timing system affects human reproductive performance is not known, in part, because many of the appropriate studies have not been done. With the role of Clock and Bmal1 in fertility becoming clearer, it may be time to pursue the effect of polymorphisms in these genes in relation to the various types of infertility in humans.

  16. Two dechlorinated chlordecone derivatives formed by in situ chemical reduction are devoid of genotoxicity and mutagenicity and have lower proangiogenic properties compared to the parent compound.

    Science.gov (United States)

    Legeay, Samuel; Billat, Pierre-André; Clere, Nicolas; Nesslany, Fabrice; Bristeau, Sébastien; Faure, Sébastien; Mouvet, Christophe

    2018-05-01

    Chlordecone (CLD) is a chlorinated hydrocarbon insecticide, now classified as a persistent organic pollutant. Several studies have previously reported that chronic exposure to CLD leads to hepatotoxicity, neurotoxicity, raises early child development and pregnancy complications, and increases the risk of liver and prostate cancer. In situ chemical reduction (ISCR) has been identified as a possible way for the remediation of soils contaminated by CLD. In the present study, the objectives were (i) to evaluate the genotoxicity and the mutagenicity of two CLD metabolites formed by ISCR, CLD-5a-hydro, or CLD-5-hydro (5a- or 5- according to CAS nomenclature; CLD-1Cl) and tri-hydroCLD (CLD-3Cl), and (ii) to explore the angiogenic properties of these molecules. Mutagenicity and genotoxicity were investigated using the Ames's technique on Salmonella typhimurium and the in vitro micronucleus micromethod with TK6 human lymphoblastoid cells. The proangiogenic properties were evaluated on the in vitro capillary network formation of human primary endothelial cells. Like CLD, the dechlorinated derivatives of CLD studied were devoid of genotoxic and mutagenic activity. In the assay targeting angiogenic properties, significantly lower microvessel lengths formed by endothelial cells were observed for the CLD-3Cl-treated cells compared to the CLD-treated cells for two of the three tested concentrations. These results suggest that dechlorinated CLD derivatives are devoid of mutagenicity and genotoxicity and have lower proangiogenic properties than CLD.

  17. Genotoxic effects of boric acid and borax in zebrafish, Danio rerio using alkaline comet assay.

    Science.gov (United States)

    Gülsoy, Nagihan; Yavas, Cüneyd; Mutlu, Özal

    2015-01-01

    The present study is conducted to determine the potential mechanisms of Boron compounds, boric acid (BA) and borax (BX), on genotoxicity of zebrafish Danio rerio for 24, 48, 72 and 96-hours acute exposure (level:1, 4, 16, 64 mg/l BA and BX) in semi-static bioassay experiment. For that purpose, peripheral erythrocytes were drawn from caudal vein and Comet assay was applied to assess genotoxicity. Acute (96 hours) exposure and high concentrations of boric acid and borax increases % tail DNA and Olive tail moment. Genotoxicity was found for BA as concentration-dependent and BX as concentration and time dependent manner. In general, significant effects (P borax-induced genotoxicity in fish.

  18. Evaluation of genotoxic and anti-mutagenic properties of cleistanthin A and cleistanthoside A tetraacetate.

    Science.gov (United States)

    Himakoun, Lakana; Tuchinda, Patoomratana; Puchadapirom, Pranom; Tammasakchai, Ratigon; Leardkamolkarn, Vijittra

    2011-01-01

    Cleistanthin A (CleinA) and cleistanthoside A (CleisA) isolated from plant Phyllanthus taxodiifolius Beille have previously shown potent anticancer effects. To promote their medicinal benefits, CleisA was modified to cleistanthoside A tetraacetate (CleisTA) and evaluated for genotoxic and anti-mutagenic properties in comparison with CleinA. Both compounds showed no significant mutagenic activity to S. typhimulium bacteria and no cytotoxic effect to normal mammalian cells. The non genotoxic effect of CleinA was further confirmed by un-alteration of cytokinesis-block proliferation index (CBPI) and micronucleus (MN) frequency assays in Chinese hamster lung fibroblast (V79) cells, and of CleisTA was confirmed by un-changes of human peripheral blood lymphocytes (HPBL) chromosomal structure assay. Moreover, the metabolic form of CleinA efficiently demonstrated cytostasis effect to V79 cell and prevented mutagen induced Salmonella TA98 and TA100 reversion, whereas both metabolic and non-metabolic forms of CleisTA reduced HPBL mitotic index (%M.I) in a concentration-dependent relationship. The results support CleinA and CleisTA as the new lead compounds for anti-cancer drug development.

  19. Genotoxic Effects of Exposure to Gasoline Fumes on Petrol Pump Workers

    OpenAIRE

    Amrin Shaikh; Darshana Barot; Divya Chandel

    2018-01-01

    Background: Petrol pump workers are occupationally exposed to gasoline and its fumes consisting of several mutagenic chemicals. Objective: To evaluate the genotoxic effects of exposure to gasoline fumes on petrol pump workers. Methods: The study groups included 70 petrol pump workers (exposed group) and 70 healthy age-matched individuals with no known exposure (comparison group). Buccal micronucleus cytome assay (BMCyt) was performed to check the genotoxicity caused due to inhalation ...

  20. Genotoxicity assessment of some cosmetic and food additives.

    Science.gov (United States)

    Di Sotto, Antonella; Maffei, Francesca; Hrelia, Patrizia; Di Giacomo, Silvia; Pagano, Ester; Borrelli, Francesca; Mazzanti, Gabriela

    2014-02-01

    α-Hexylcinnamaldehyde (HCA) and p-tert-butyl-alpha-methylhydrocinnamic aldehyde (BMHCA) are synthetic aldehydes, characterized by a typical floral scent, which makes them suitable to be used as fragrances in personal care (perfumes, creams, shampoos, etc.) and household products, and as flavouring additives in food and pharmaceutical industry. The aldehydic structure suggests the need for a safety assessment for these compounds. Here, HCA and BMHCA were evaluated for their potential genotoxic risk, both at gene level (frameshift or base-substitution mutations) by the bacterial reverse mutation assay (Ames test), and at chromosomal level (clastogenicity and aneuploidy) by the micronucleus test. In order to evaluate a primary and repairable DNA damage, the comet assay has been also included. In spite of their potential hazardous chemical structure, a lack of mutagenicity was observed for both compounds in all bacterial strains tested, also in presence of the exogenous metabolic activator, showing that no genotoxic derivatives were produced by CYP450-mediated biotransformations. Neither genotoxicity at chromosomal level (i.e. clastogenicity or aneuploidy) nor single-strand breaks were observed. These findings will be useful in further assessing the safety of HCA and BMHCA as either flavour or fragrance chemicals. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Public and private regulation of reproductive technologies.

    Science.gov (United States)

    Byk, C

    1995-01-01

    Human reproduction is interrelated with privacy. However, in most countries where new reproductive technologies are used public regulations have been passed to provide a legal framework for such technologies. This interference in private life can be justified by the need to control medical intervention in the human reproductive process. But in order to find a balance between public regulations and other social regulations, this article analyses the impact private regulation may have on issues raised by reproductive technologies. It also addresses the issue of the influence of private bodies on the drafting of public regulations.

  2. Assessing the genotoxicity of urban air pollutants using two in situ plant bioassays

    Energy Technology Data Exchange (ETDEWEB)

    Villarini, M.; Fatigoni, C.; Dominici, L.; Maestri, S. [Department of Medical-Surgical Specialties and Public Health, University of Perugia, I-06126 (Italy); Ederli, L.; Pasqualini, S. [Department of Applied Biology, University of Perugia, I-06121 (Italy); Monarca, S. [Department of Medical-Surgical Specialties and Public Health, University of Perugia, I-06126 (Italy); Moretti, M., E-mail: massimo.moretti@unipg.i [Department of Medical-Surgical Specialties and Public Health, University of Perugia, I-06126 (Italy)

    2009-12-15

    Genotoxicity of urban air has been analysed almost exclusively in airborne particulates. We monitored the genotoxic effects of airborne pollutants in the urban air of Perugia (Central Italy). Two plant bioindicators with different genetic endpoints were used: micronuclei in meiotic pollen mother cells using Tradescantia-micronucleus bioassay (Trad-MCN) and DNA damage in nuclei of Nicotiana tabacum leaves using comet assay (Nicotiana-comet). Buds of Tradescantia clone no. 4430 and young N. tabacum cv. Xanthi plants were exposed for 24 h at three sites with different pollution levels. One control site (indoor control) was also used. The two bioassays showed different sensitivities toward urban pollutants: Trad-MCN assay was the most sensitive, but DNA damage in N. tabacum showed a better correlation with the pollutant concentrations. In situ biomonitoring of airborne genotoxins using higher plants combined with chemical analysis is thus recommended for characterizing genotoxicity of urban air. - Plant bioassays used to explore in situ the correlation between air pollution and genotoxicity.

  3. Assessing the genotoxicity of urban air pollutants using two in situ plant bioassays

    International Nuclear Information System (INIS)

    Villarini, M.; Fatigoni, C.; Dominici, L.; Maestri, S.; Ederli, L.; Pasqualini, S.; Monarca, S.; Moretti, M.

    2009-01-01

    Genotoxicity of urban air has been analysed almost exclusively in airborne particulates. We monitored the genotoxic effects of airborne pollutants in the urban air of Perugia (Central Italy). Two plant bioindicators with different genetic endpoints were used: micronuclei in meiotic pollen mother cells using Tradescantia-micronucleus bioassay (Trad-MCN) and DNA damage in nuclei of Nicotiana tabacum leaves using comet assay (Nicotiana-comet). Buds of Tradescantia clone no. 4430 and young N. tabacum cv. Xanthi plants were exposed for 24 h at three sites with different pollution levels. One control site (indoor control) was also used. The two bioassays showed different sensitivities toward urban pollutants: Trad-MCN assay was the most sensitive, but DNA damage in N. tabacum showed a better correlation with the pollutant concentrations. In situ biomonitoring of airborne genotoxins using higher plants combined with chemical analysis is thus recommended for characterizing genotoxicity of urban air. - Plant bioassays used to explore in situ the correlation between air pollution and genotoxicity.

  4. Genotoxicity Screening of Industrial Effluents using Onion bulbs ...

    African Journals Online (AJOL)

    Michael Horsfall

    ABSTRACT: The potential cytotoxicity and genotoxicity of three industrial wastewaters (brewery .... National recommended water quality criteria – correction; cWorld Health Organisation (1996). ..... Industrial Pollution Policy Management Study.

  5. Genotoxicity tests on D-tagatose.

    Science.gov (United States)

    Kruger, C L; Whittaker, M H; Frankos, V H

    1999-04-01

    D-tagatose is a low-calorie sweetener that tastes like sucrose. Its genotoxic potential was examined in five standard assays: the Ames Salmonella typhimurium reverse mutation assay, the Escherichia coli/mammalian microsome assay, a chromosomal aberration assay in Chinese hamster ovary cells, a mouse lymphoma forward mutation assay, and an in vivo mouse micronucleus assay. D-tagatose was not found to increase the number of revertants per plate relative to vehicle controls in either the S. typhimurium tester strains or the WP2uvrA- tester strain with or without metabolic activation at doses up to 5000 microg/plate. No significant increase in Chinese hamster ovary cells with chromosomal aberrations was observed at concentrations up to 5000 microg/ml with or without metabolic activation. D-tagatose was not found to increase the mutant frequency in mouse lymphoma L5178Y cells with or without metabolic activation up to concentrations of 5000 microg/ml. D-tagatose caused no significant increase in micronuclei in bone marrow polychromatic erythrocytes at doses up to 5000 mg/kg. D-tagatose was not found to be genotoxic under the conditions of any of the assays described above. Copyright 1999 Academic Press.

  6. The regulation of science and the Charter of Rights: would a ban on non-reproductive human cloning unjustifiably violate freedom of expression?

    Science.gov (United States)

    Billingsley, Barbara; Caulfield, Timothy

    2004-01-01

    Non-Reproductive Human Cloning (NRHC) allows researchers to develop and clone cells, including non-reproductive cells, and to research the etiology and transmission of disease. The ability to clone specific stem cells may also allow researchers to clone cells with genetic defects and analyze those cells with more precisions. Despite those potential benefits, Parliament has banned such cloning due to a myriad of social and ethical concerns. In May 2002, the Canadian Government introduced Bill C-13 on assisted human reproductive technologies. Bill C-13 deals with both the scientific and the clinical use of human reproductive materials, and it prohibits a number of other activities, including NRHC. Although the Supreme Court of Canada has never ruled on whether scientific experiments area form of expression, academic support exists for this notion. The authors go through the legal analysis that would be required to find that scientific experiments are expression, focusing in part on whether NRHC could be considered violent and thus fall outside the protection of section 2(b). The latter question is complicated by the ongoing policy debate over whether an "embryonic cell" is property of human life. The authors then consider whether a ban on NRHC could be justified under section 1 of the Charter. They conclude that both the breadth of the legislative purpose and the proportionality of the measure are problematic. Proportionality is a specific concern because the ban could be viewed as an outright denial of scientific freedom of expression. Although consistent with current jurisprudence on freedom of expression, this paper runs against the flow of government policy in the areas of regulation and prohibition of non-reproductive human cloning. As there has been no Charter litigation to date on whether scientific research is a form of expression, the authors introduce a new way of looking at the legality of the regulation of new reproductive technologies.

  7. In Vitro and In Vivo Genotoxicity Assessment of Aristolochia manshuriensis Kom.

    Directory of Open Access Journals (Sweden)

    Youn-Hwan Hwang

    2012-01-01

    Full Text Available Arisolochiae species plants containing aristolochic acids I and II (AA I and AA II are well known to cause aristolochic acid nephropathy (AAN. Recently, there are various approaches to use AAs-containing herbs after the removal of their toxic factors. However, there is little information about genotoxicity of Arisolochiae manshuriensis Kom. (AMK per se. To obtain safety information for AMK, its genotoxicity was evaluated in accordance with OECD guideline. To evaluate genotoxicity of AMK, we tested bacterial reverse mutation assay, chromosomal aberration test, and micronucleus test. Here, we also determined the amounts of AA I and II in AMK (2.85 ± 0.08 and 0.50 ± 0.02 mg/g extract, resp.. In bacterial reverse mutation assay, AMK dose-dependently increased revertant colony numbers in TA98, TA100 and TA1537 regardless of metabolic activation. AMK increased the incidence of chromosomal aberration in Chinese hamster ovary-K1 cells, but there was no statistically significant difference. The incidences of micronucleus in bone marrow erythrocyte were significantly increased in mice after oral administration of AMK (5000 mg/kg, comparing with those of vehicle group (P<0.05. The results of three standard tests suggest that the genotoxicity of AMK is directly related to the AAs contents in AMK.

  8. Genotoxicity of unmodified and organo-modified montmorillonite

    DEFF Research Database (Denmark)

    Sharma, Anoop Kumar; Schmidt, Bjørn; Frandsen, Henrik Lauritz

    2010-01-01

    absent in the filtered samples, which was independently confirmed by dynamic light-scattering measurements. Detection and identification of free quaternary ammonium modifier in the filtered sample was carried out by HPLC-Q-TOF/MS and revealed a total concentration of a mixture of quaternary ammonium...... assay, none of the clays produced ROS in a cell-free test system (the DCFH-DA assay). Inductively coupled plasma mass-spectrometry (ICP-MS) was used to detect clay particles in the filtered samples using aluminium as a tracer element characteristic to clay. The results indicated that clay particles were...... analogues of 1.57 mu g/ml. These findings suggest that the genotoxicity of organo-modified montmorillonite was caused by the organo-modifier. The detected organo-modifier mixture was synthesized and comet-assay results showed that the genotoxic potency of this synthesized organo-modifier was in the same...

  9. Women Reproductive Rights in India: Prospective Future.

    OpenAIRE

    Kosgi, S; Hegde, VN; Rao, S; Bhat, US; Pai, N

    2011-01-01

    Reproductive rights were established as a subset of the human rights. Parents have a basic human right to determine freely and responsibly the number and the spacing of their children. Issues regarding the reproductive rights are vigorously contested, regardless of the population’s socioeconomic level, religion or culture. Following review article discusses reproductive rights with respect to Indian context focusing on socio economic and cultural aspects. Also discusses sensitization of gover...

  10. Genotoxicity Biomonitoring Along a Coastal Zone Under Influence of Offshore Petroleum Exploration (Southeastern Brazil).

    Science.gov (United States)

    Gutiérrez, Juan Manuel; da Conceição, Moisés Basilio; Molisani, Mauricio Mussi; Weber, Laura Isabel

    2018-03-01

    Offshore oil exploration creates threats to coastal ecosystems, including increasing urbanization and associated effluent releases. Genotoxicity biomarkers in mussels were determined across a gradient of coastal zone influences of offshore petroleum exploration in southeastern Brazil. Coastal ecosystems such as estuaries, beaches and islands were seasonally monitored for genotoxicity evaluation using the brown mussel Perna perna. The greatest DNA damage (5.2% ± 1.9% tail DNA and 1.5‰  ± 0.8‰ MN) were observed in urban estuaries, while Santana Archipelago showed levels of genotoxicity near zero and is considered a reference site. Mussels from urban and pristine beaches showed intermediate damage levels, but were also influenced by urbanization. Thus, mussel genotoxicity biomarkers greatly indicated the proposed oil exploration and urbanization scenarios that consequently are genetically affecting coastal organisms.

  11. Methodological considerations for using umu assay to assess photo-genotoxicity of engineered nanoparticles

    DEFF Research Database (Denmark)

    Cupi, Denisa; Baun, Anders

    2016-01-01

    In this study we investigated the feasibility of high-throughput (96-well plate) umu assay to test the genotoxic effect of TiO2 engineered nanoparticles (ENPs) under UV light (full spectrum) and visible light (455nm). Exposure of TiO2 ENPs to up to 60min of UV light induced a photocatalytic...... production of ROS. However, UV light itself caused cytotoxic damage to Salmonella typhimurium at exposures >15min and a genotoxic effect at exposures >0.5min; and use of UV filters did not lower this effect. No genotoxicity of TiO2 ENPs was observed under visible light conditions at concentrations up to 100...

  12. Primary genotoxicity in the liver following pulmonary exposure to carbon black nanoparticles in mice

    DEFF Research Database (Denmark)

    Modrzynska, Justyna; Berthing, Trine; Ravn-Haren, Gitte

    2018-01-01

    Background Little is known about the mechanism underlying the genotoxicity observed in the liver following pulmonary exposure to carbon black (CB) nanoparticles (NPs). The genotoxicity could be caused by the presence of translocated particles or by circulating inflammatory mediators released during...

  13. Proteome-wide Identification of Poly(ADP-Ribosyl)ation Targets in Different Genotoxic Stress Responses

    DEFF Research Database (Denmark)

    Jungmichel, S.; Rosenthal, F.; Altmeyer, M.

    2013-01-01

    . Nuclear proteins encompassing nucleic acid binding properties are prominently PARylated upon genotoxic stress, consistent with the nuclear localization of ARTD1/PARP1 and ARTD2/PARP2. Distinct differences in proteins becoming PARylated upon various genotoxic insults are observed, exemplified...

  14. Human rights and the sexual and reproductive health of women living with HIV – a literature review

    Science.gov (United States)

    Kumar, Shubha; Gruskin, Sofia; Khosla, Rajat; Narasimhan, Manjulaa

    2015-01-01

    Introduction Even as the number of women living with HIV around the globe continues to grow, realization of their sexual and reproductive health and human rights remains compromised. The objective of this study was to review the current state of knowledge on the sexual and reproductive health and human rights of women living with HIV to assess evidence and gaps. Methods Relevant databases were searched for peer-reviewed and grey literature. Search terms included a combination of MeSH terms and keywords representing women, HIV/AIDS, ART, human rights, sexual and reproductive health. We included both qualitative and quantitative literature published in English, French, or Spanish between July 2011 and December 2014. Results and discussion The search yielded 2228 peer-reviewed articles, of which 40 met the inclusion criteria in the final review. The grey literature search yielded 2186 documents of which seven met the inclusion criteria in the final review. Of the articles and documents reviewed, not a single peer-reviewed article described the explicit implementation of rights in programming, and only two documents from the grey literature did so. With one possible exception, no articles or documents were found which addressed rights comprehensively, or addressed the majority of relevant rights (i.e. equality; non-discrimination; participation; privacy and confidentiality; informed decision making; availability, accessibility, acceptability and quality (3AQ) of services individually or in their totality; and accountability). Additional findings indicate that the language of rights is used most often to describe the apparent neglect or violation of human rights and what does exist only addresses a few rights in the context of a few areas within sexual and reproductive health. Conclusions Findings from this review suggest the need to better integrate rights into interventions, particularly with attention to provider training, service delivery, raising awareness and

  15. A novel mechanism of oxidative genotoxicity

    Indian Academy of Sciences (India)

    The genotoxicity of reactive oxygen species (ROS) is well established. The underlying mechanism involves oxidation of DNA by ROS. However, we have recently shown that hydrogen peroxide (H2O2), the major mediator of oxidative stress, can also cause genomic damage indirectly. Thus, H2O2 at pathologically relevant ...

  16. Physicochemical properties, in vitro cytotoxic and genotoxic effects of PM1.0 and PM2.5 from Shanghai, China.

    Science.gov (United States)

    Zou, Yajuan; Wu, Yizhao; Wang, Yali; Li, Yinsheng; Jin, Chengyu

    2017-08-01

    Exposure to ambient particulate matter (PM) links with a variety of respiratory diseases. However, compared with coarse particles (PM 10 ) and fine particles (PM 2.5 ), submicrometer particles (PM 1.0 ) may be a more important indicator of human health risks. In this study, the cytotoxic and genotoxic effects of PM 1.0 samples from Shanghai were examined using A549 cells, and compared with the effects of PM 2.5 , to better understand the health effects of PM 1.0 in this area. The PM 1.0 and PM 2.5 samples were characterized for morphology, water-soluble inorganic ions, organic and elemental carbon, and metal elements. The cytotoxicity of PMs was measured using cell viability and cell membrane damage assays. The genotoxic effects of PMs were determined using the comet assay, and DNA damage was quantified using olive tail moment (OTM) values. The physicochemical characterization indicated that PM 1.0 was enriched in carbonaceous elements and hazardous metals (Al, Zn, Pb, Mn, Cu, and V), whereas PM 2.5 was more abundant in large, irregular mineral particles. The biological results revealed that both PM 1.0 and PM 2.5 could induce significant cytotoxicity and genotoxicity in A549 cells, and that exposure to PM 1.0 caused more extensive toxic effects than exposure to PM 2.5 . The greater cytotoxic effects of PM 1.0 can be attributed to the combined effects of size and chemical composition, whereas the genotoxic effects of PM 1.0 may be mainly associated with chemical species.

  17. Flow cytometry based micronucleus assay for evaluation of genotoxic potential of 2-ACBs in hepatic cells HepG2

    International Nuclear Information System (INIS)

    Barbezan, Angélica B.; Santos, Carla J.B.; Carvalho, Luma R.; Vieira, Daniel P.; Villavicêncio, Anna L.C.H.; Santelli, Glaucia M.M.

    2017-01-01

    Food irradiation is approved for use in more than 60 countries for applications and purposes in a wide variety of foods, being an effective and safe method for preservation and long-term storage. 2-Alkylcyclobutanones (2-ACBs) are the only known radiolytic products generated from foods that contain fatty acids (Triglycerides) when irradiated. The acids analyzed in this study are palmitic and stearic, which when irradiated form 2-Dodecylcyclobutanones (2-dDCB) and 2-Tetradecylcyclobutanone (2-tDCB). Part of the 2-ACBs ingested is excreted through feces and part is deposited in adipose tissues. In vitro studies so far have been only in colon cells. The work used a human hepatoma cell line (HepG2) since the accumulation of fat in this organ is quite common. Micronucleus test was selected to evaluate possible genotoxic effects of 2-dDCB and 2-tDCB compounds when exposed to high concentrations (447, 1422 and 2235 μM) for 4 and 24 hours. Tests were performed in quadriplicates using flow cytometric analysis. None detectable genotoxic damage was observed after 4 hours of exposure to the compounds, and cytotoxic effects were only significant at the highest concentration (2235 μM) of 2-dDCB. After 24 hours of exposure, slight genotoxic damage was observed at all concentrations evaluated, and cytotoxic effects were only present when exposed to compound 2-tDCB. Although there is a genotoxic and cytotoxic effect in some of the situations tested, the two compounds predominantly induced proliferation reduction effects of this hepatic tumor cell line. (author)

  18. Flow cytometry based micronucleus assay for evaluation of genotoxic potential of 2-ACBs in hepatic cells HepG2

    Energy Technology Data Exchange (ETDEWEB)

    Barbezan, Angélica B.; Santos, Carla J.B.; Carvalho, Luma R.; Vieira, Daniel P.; Villavicêncio, Anna L.C.H., E-mail: abarbezan@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil); Santelli, Glaucia M.M. [Universidade de São Paulo (USP), SP (Brazil). Departamento de Biologia Celular e do Desenvolvimento

    2017-07-01

    Food irradiation is approved for use in more than 60 countries for applications and purposes in a wide variety of foods, being an effective and safe method for preservation and long-term storage. 2-Alkylcyclobutanones (2-ACBs) are the only known radiolytic products generated from foods that contain fatty acids (Triglycerides) when irradiated. The acids analyzed in this study are palmitic and stearic, which when irradiated form 2-Dodecylcyclobutanones (2-dDCB) and 2-Tetradecylcyclobutanone (2-tDCB). Part of the 2-ACBs ingested is excreted through feces and part is deposited in adipose tissues. In vitro studies so far have been only in colon cells. The work used a human hepatoma cell line (HepG2) since the accumulation of fat in this organ is quite common. Micronucleus test was selected to evaluate possible genotoxic effects of 2-dDCB and 2-tDCB compounds when exposed to high concentrations (447, 1422 and 2235 μM) for 4 and 24 hours. Tests were performed in quadriplicates using flow cytometric analysis. None detectable genotoxic damage was observed after 4 hours of exposure to the compounds, and cytotoxic effects were only significant at the highest concentration (2235 μM) of 2-dDCB. After 24 hours of exposure, slight genotoxic damage was observed at all concentrations evaluated, and cytotoxic effects were only present when exposed to compound 2-tDCB. Although there is a genotoxic and cytotoxic effect in some of the situations tested, the two compounds predominantly induced proliferation reduction effects of this hepatic tumor cell line. (author)

  19. Exploring the world of human development and reproduction.

    Science.gov (United States)

    Red-Horse, Kristy; Drake, Penelope M; Fisher, Susan

    2014-01-01

    Susan Fisher has spent her career studying human development, proteomics, and the intersection between the two. When she began studying human placentation, there had been extensive descriptive studies of this fascinating organ that intertwines with the mother's vasculature during pregnancy. Susan can be credited with numerous major findings on the mechanisms that regulate placental cytotrophoblast invasion. These include the discovery that cytotrophoblasts undergo vascular mimicry to insert themselves into uterine arteries, the finding that oxygen tension greatly effects placentation, and identifying how these responses go awry in pregnancy complications such as preeclamsia. Other important work has focused on the effect of post-translational modifications such as glycosylation on bacterial adhesion and reproduction. Susan has also forayed into the world of proteomics to identify cancer biomarkers. Because her work is truly groundbreaking, many of these findings inspire research in other laboratories around the world resulting in numerous follow up papers. Likewise, her mentoring and support inspires young scientists to go on and make their own important discoveries. In this interview, Susan shares what drove her science, how she continued to do important research while balancing other aspects of life, and provides insights for the next generation.

  20. Is the role of human female reproductive tract microbiota underestimated?

    Science.gov (United States)

    Kamińska, D; Gajecka, M

    2017-05-30

    An issue that is currently undergoing extensive study is the influence of human vaginal microbiota (VMB) on the health status of women and their neonates. Healthy women are mainly colonised with lactobacilli such as Lactobacillus crispatus, Lactobacillus jensenii, and Lactobacillus iners; however, other bacteria may be elements of the VMB, particularly in women with bacterial vaginosis. The implementation of culture-independent molecular methods in VMB characterisation, especially next-generation sequencing, have provided new information regarding bacterial diversity in the vagina, revealing a large number of novel, fastidious, and/or uncultivated bacterial species. These molecular studies have contributed new insights regarding the role of bacterial community composition. In this study, we discuss recent findings regarding the reproductive tract microbiome. Not only bacteria but also viruses and fungi constitute important components of the reproductive tract microbiome. We focus on aspects related to the impact of the maternal microbiome on foetal development, as well as the establishment of the neonatal microbiomes, including the placenta microbiome, and the haematogenous source of intrauterine infection. We also discuss whether the role of the vaginal microbiome is currently understood and appreciated.

  1. Insectivorous bat reproduction and human cave visitation in Cambodia: A perfect conservation storm?

    Science.gov (United States)

    Lim, Thona; Cappelle, Julien; Hoem, Thavry; Furey, Neil

    2018-01-01

    Cave roosting bats represent an important component of Southeast Asian bat diversity and are vulnerable to human disturbance during critical reproductive periods (pregnancy, lactation and weaning). Because dramatic growth of cave tourism in recent decades has raised concerns about impacts on cave bats in the region, we assessed the reproductive phenology of two insectivorous species (Hipposideros larvatus sensu lato and Taphozous melanopogon) at three caves in Cambodia for 23 months in 2014-2016 and evaluated human visitation to these sites between 2007 and 2014. Despite the differing foraging strategies employed by the two taxa, the temporal consistency observed in proportions of pregnant, lactating and juvenile bats indicates that their major birth peaks coincide with the time of greatest cave visitation annually, particularly for domestic visitors and namely during the Cambodian new year in April. They also reflect rainfall patterns and correspond with the reproductive phenology of insectivorous cave bats in Vietnam. These findings were predictable because 1) insect biomass and thus food availability for insectivorous bats are optimal for ensuring survival of young following this period, and 2) the Khmer new year is the most significant month for religious ceremonies and thus domestic cave visitation nationally, due to the abundance of Buddhist shrines and temples in Cambodian caves. While the impact of visitor disturbance on bat population recruitment cannot be empirically assessed due to lack of historical data, it is nonetheless likely to have been considerable and raises a conservation concern. Further, because growing evidence suggests that insectivorous cave bats exhibit reproductive synchrony across continental Southeast Asia where countless cave shrines are heavily frequented during April in Theravada Buddhist countries (e.g., Myanmar, Thailand, Cambodia and Laos), our results may have wider applicability in the region. We consequently advocate for

  2. Insectivorous bat reproduction and human cave visitation in Cambodia: A perfect conservation storm?

    Directory of Open Access Journals (Sweden)

    Thona Lim

    Full Text Available Cave roosting bats represent an important component of Southeast Asian bat diversity and are vulnerable to human disturbance during critical reproductive periods (pregnancy, lactation and weaning. Because dramatic growth of cave tourism in recent decades has raised concerns about impacts on cave bats in the region, we assessed the reproductive phenology of two insectivorous species (Hipposideros larvatus sensu lato and Taphozous melanopogon at three caves in Cambodia for 23 months in 2014-2016 and evaluated human visitation to these sites between 2007 and 2014. Despite the differing foraging strategies employed by the two taxa, the temporal consistency observed in proportions of pregnant, lactating and juvenile bats indicates that their major birth peaks coincide with the time of greatest cave visitation annually, particularly for domestic visitors and namely during the Cambodian new year in April. They also reflect rainfall patterns and correspond with the reproductive phenology of insectivorous cave bats in Vietnam. These findings were predictable because 1 insect biomass and thus food availability for insectivorous bats are optimal for ensuring survival of young following this period, and 2 the Khmer new year is the most significant month for religious ceremonies and thus domestic cave visitation nationally, due to the abundance of Buddhist shrines and temples in Cambodian caves. While the impact of visitor disturbance on bat population recruitment cannot be empirically assessed due to lack of historical data, it is nonetheless likely to have been considerable and raises a conservation concern. Further, because growing evidence suggests that insectivorous cave bats exhibit reproductive synchrony across continental Southeast Asia where countless cave shrines are heavily frequented during April in Theravada Buddhist countries (e.g., Myanmar, Thailand, Cambodia and Laos, our results may have wider applicability in the region. We consequently

  3. Insectivorous bat reproduction and human cave visitation in Cambodia: A perfect conservation storm?

    Science.gov (United States)

    Cappelle, Julien; Hoem, Thavry

    2018-01-01

    Cave roosting bats represent an important component of Southeast Asian bat diversity and are vulnerable to human disturbance during critical reproductive periods (pregnancy, lactation and weaning). Because dramatic growth of cave tourism in recent decades has raised concerns about impacts on cave bats in the region, we assessed the reproductive phenology of two insectivorous species (Hipposideros larvatus sensu lato and Taphozous melanopogon) at three caves in Cambodia for 23 months in 2014–2016 and evaluated human visitation to these sites between 2007 and 2014. Despite the differing foraging strategies employed by the two taxa, the temporal consistency observed in proportions of pregnant, lactating and juvenile bats indicates that their major birth peaks coincide with the time of greatest cave visitation annually, particularly for domestic visitors and namely during the Cambodian new year in April. They also reflect rainfall patterns and correspond with the reproductive phenology of insectivorous cave bats in Vietnam. These findings were predictable because 1) insect biomass and thus food availability for insectivorous bats are optimal for ensuring survival of young following this period, and 2) the Khmer new year is the most significant month for religious ceremonies and thus domestic cave visitation nationally, due to the abundance of Buddhist shrines and temples in Cambodian caves. While the impact of visitor disturbance on bat population recruitment cannot be empirically assessed due to lack of historical data, it is nonetheless likely to have been considerable and raises a conservation concern. Further, because growing evidence suggests that insectivorous cave bats exhibit reproductive synchrony across continental Southeast Asia where countless cave shrines are heavily frequented during April in Theravada Buddhist countries (e.g., Myanmar, Thailand, Cambodia and Laos), our results may have wider applicability in the region. We consequently advocate for

  4. Gap junction connexins in female reproductive organs: implications for women's reproductive health.

    Science.gov (United States)

    Winterhager, Elke; Kidder, Gerald M

    2015-01-01

    Connexins comprise a family of ~20 proteins that form intercellular membrane channels (gap junction channels) providing a direct route for metabolites and signalling molecules to pass between cells. This review provides a critical analysis of the evidence for essential roles of individual connexins in female reproductive function, highlighting implications for women's reproductive health. No systematic review has been carried out. Published literature from the past 35 years was surveyed for research related to connexin involvement in development and function of the female reproductive system. Because of the demonstrated utility of genetic manipulation for elucidating connexin functions in various organs, much of the cited information comes from research with genetically modified mice. In some cases, a distinction is drawn between connexin functions clearly related to the formation of gap junction channels and those possibly linked to non-channel roles. Based on work with mice, several connexins are known to be required for female reproductive functions. Loss of connexin43 (CX43) causes an oocyte deficiency, and follicles lacking or expressing less CX43 in granulosa cells exhibit reduced growth, impairing fertility. CX43 is also expressed in human cumulus cells and, in the context of IVF, has been correlated with pregnancy outcome, suggesting that this connexin may be a determinant of oocyte and embryo quality in women. Loss of CX37, which exclusively connects oocytes with granulosa cells in the mouse, caused oocytes to cease growing without acquiring meiotic competence. Blocking of CX26 channels in the uterine epithelium disrupted implantation whereas loss or reduction of CX43 expression in the uterine stroma impaired decidualization and vascularization in mouse and human. Several connexins are important in placentation and, in the human, CX43 is a key regulator of the fusogenic pathway from the cytotrophoblast to the syncytiotrophoblast, ensuring placental growth

  5. A Microchip for Integrated Single-Cell Gene Expression Profiling and Genotoxicity Detection

    Directory of Open Access Journals (Sweden)

    Hui Dong

    2016-09-01

    Full Text Available Microfluidics-based single-cell study is an emerging approach in personalized treatment or precision medicine studies. Single-cell gene expression holds a potential to provide treatment selections with maximized efficacy to help cancer patients based on a genetic understanding of their disease. This work presents a multi-layer microchip for single-cell multiplexed gene expression profiling and genotoxicity detection. Treated by three drug reagents (i.e., methyl methanesulfonate, docetaxel and colchicine with varied concentrations and time lengths, individual human cancer cells (MDA-MB-231 are lysed on-chip, and the released mRNA templates are captured and reversely transcribed into single strand DNA. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH, cyclin-dependent kinase inhibitor 1A (CDKN1A, and aurora kinase A (AURKA genes from single cells are amplified and real-time quantified through multiplex polymerase chain reaction. The microchip is capable of integrating all steps of single-cell multiplexed gene expression profiling, and providing precision detection of drug induced genotoxic stress. Throughput has been set to be 18, and can be further increased following the same approach. Numerical simulation of on-chip single cell trapping and heat transfer has been employed to evaluate the chip design and operation.

  6. Assessing genotoxic effects in fish from a marine protected area influenced by former mining activities and other stressors

    International Nuclear Information System (INIS)

    Gusso-Choueri, Paloma Kachel; Choueri, Rodrigo Brasil; Santos, Gustavo Souza; Seraphim de Araújo, Giuliana; Feitosa Cruz, Ana Carolina

    2016-01-01

    The goal of the current study was to evaluate different genotoxicity tools in order to assess a marine protected area (MPA) affected by former mining activities and urban settlements. A catfish (Cathorops spixii) was analyzed for genotoxic effects at the (i) molecular and at the (ii) chromosomal levels. Through factor analysis, genotoxicity was found to be linked to levels of metals bioaccumulated and PAH metabolites in the bile. Micronucleus and nuclear alteration were less vulnerable to the effects of confounding factors in mildly contaminated areas since they were more frequently associated with bioaccumulated metals than the DNA analysis. The different genotoxicity responses allowed for the identification of sources of pollution in the MPA. This approach was important for detecting environmental risks related to genotoxic contaminants in a mildly contaminated MPA. -- Highlights: •We assessed genotoxicity and bioaccumulation in catfish from a marine protected area. •The area is under the influence of past mining activities and urban settlements. •Cellular level responses were highly associated with body burdens of metals and As. •Responses at the molecular level were less associated with body burdens. •Genotoxicity in different organs helped identify pollution sources in MPA.

  7. Impacts of fullerene C60 and virgin olive oil on cadmium-induced genotoxicity in rats.

    Science.gov (United States)

    Aly, Fayza M; Kotb, Ahmed M; Haridy, Mohie A M; Hammad, Seddik

    2018-07-15

    Currently, cadmium is considered to be one of the major environmental pollutants. Environmentally, cadmium is released in various forms e.g. oxide, chloride and sulphide. The aim of the present study was to examine the genotoxic impact of fullerene nanoparticles C 60 (C 60 ) and virgin olive oil (VOO) on cadmium chloride (CdCl 2 )-induced genotoxicity in rats. To evaluate these effects on DNA damage and chromosomal frequency, 25 albino rats were randomly assigned to 5 groups (n=5 per group): Group 1 served as a control; Group 2 received a single intraperitoneal dose of CdCl 2 (3.5mg/kg); Group 3 animals were treated with C 60 (4mg/kg, orally) every other day for 20days; Group 4 received a single intraperitoneal dose of CdCl 2 (3.5mg/kg) and an oral dose of C 60 (4mg/kg); and Group 5 received a single intraperitoneal dose of CdCl 2 (3.5mg/kg) and oral doses of VOO every other day for 20 consecutive days. Genotoxic and anti-genotoxic effects of C 60 and VOO were evaluated in the liver, kidney and bone marrow using molecular and cytogenetic assays. As expected, CdCl 2 and C 60 administration was associated with band number alterations in both liver and kidney; however, C 60 pretreatment recovered to approximately basal number. Surprisingly, C 60 and VOO significantly attenuated the genotoxic effects caused by CdCl 2 in livers and kidneys. In bone marrow, in addition to a reduction in the chromosomal number, several chromosomal aberrations were caused by CdCl 2 . These chromosomal alterations were also reversed by C 60 and VOO. In conclusion, molecular and cytogenetic studies showed that C 60 and VOO exhibit anti-genotoxic agents against CdCl 2 -induced genotoxicity in rats. Further studies are needed to investigate the optimal conditions for potential biomedical applications of these anti-genotoxic agents. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. The cytotoxicity and genotoxicity of particulate and soluble hexavalent chromium in leatherback sea turtle lung cells.

    Science.gov (United States)

    Speer, Rachel M; Wise, Catherine F; Young, Jamie L; Aboueissa, AbouEl-Makarim; Martin Bras, Mark; Barandiaran, Mike; Bermúdez, Erick; Márquez-D'Acunti, Lirio; Wise, John Pierce

    2018-05-01

    Hexavalent chromium [Cr(VI)] is a marine pollution of concern as recent studies show it has a global distribution, with some regions showing high Cr concentrations in marine animal tissue, and it is extensively used. Leatherback sea turtles (Dermochelys coriacea) are an endangered marine species that may experience prolonged exposures to environmental contaminants including Cr(VI). Human activities have led to global Cr(VI) contamination of the marine environment. While Cr(VI) has been identified as a known human carcinogen, the health effects in marine species are poorly understood. In this study, we assessed the cytotoxic and genotoxic effects of particulate and soluble Cr(VI) in leatherback sea turtle lung cells. Both particulate and soluble Cr(VI) induced a concentration-dependent increase in cytotoxicity. Next, using a chromosome aberration assay, we assessed the genotoxic effects of Cr(VI) in leatherback sea turtle lung cells. Particulate and soluble Cr(VI) induced a concentration-dependent increase in clastogenicity in leatherback sea turtle lung cells. These data indicate that Cr(VI) may be a health concern for leatherback sea turtles and other long-lived marine species. Additionally, these data provide foundational support to use leatherback sea turtles as a valuable model species for monitoring the health effects of Cr(VI) in the environment and possibly as an indicator species to assess environmental human exposures and effects. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Comet assay evaluation of six chemicals of known genotoxic potential in rats.

    Science.gov (United States)

    Hobbs, Cheryl A; Recio, Leslie; Streicker, Michael; Boyle, Molly H; Tanaka, Jin; Shiga, Atsushi; Witt, Kristine L

    2015-07-01

    As a part of an international validation of the in vivo rat alkaline comet assay (comet assay) initiated by the Japanese Center for the Validation of Alternative Methods (JaCVAM) we examined six chemicals for potential to induce DNA damage: 2-acetylaminofluorene (2-AAF), N-nitrosodimethylamine (DMN), o-anisidine, 1,2-dimethylhydrazine dihydrochloride (1,2-DMH), sodium chloride, and sodium arsenite. DNA damage was evaluated in the liver and stomach of 7- to 9-week-old male Sprague Dawley rats. Of the five genotoxic carcinogens tested in our laboratory, DMN and 1,2-DMH were positive in the liver and negative in the stomach, 2-AAF and o-anisidine produced an equivocal result in liver and negative results in stomach, and sodium arsenite was negative in both liver and stomach. 1,2-DMH and DMN induced dose-related increases in hedgehogs in the same tissue (liver) that exhibited increased DNA migration. However, no cytotoxicity was indicated by the neutral diffusion assay (assessment of highly fragmented DNA) or histopathology in response to treatment with any of the tested chemicals. Therefore, the increased DNA damage resulting from exposure to DMN and 1,2-DMH was considered to represent a genotoxic response. Sodium chloride, a non-genotoxic non-carcinogen, was negative in both tissues as would be predicted. Although only two (1,2-DMH and DMN) out of five genotoxic carcinogens produced clearly positive results in the comet assay, the results obtained for o-anisidine and sodium arsenite in liver and stomach cells are consistent with the known mode of genotoxicity and tissue specificity exhibited by these carcinogens. In contrast, given the known genotoxic mode-of-action and target organ carcinogenicity of 2-AAF, it is unclear why this chemical failed to convincingly increase DNA migration in the liver. Thus, the results of the comet assay validation studies conducted in our laboratory were considered appropriate for five out of the six test chemicals. Copyright © 2015

  10. Biomedical research with human embryos: changes in the legislation on assisted reproduction in Spain.

    Science.gov (United States)

    Vidal Martínez, Jaime

    2006-01-01

    This study deals with issues of research with human embryos obtained through in vitro fertilization in the context of the Spanish Law. The paper focuses on Act 14/2006 on techniques of human assisted reproduction, which replaces the previous Act from 1988. The author claims that the main goals of Act 14/2006 are, on the one hand, to eliminate the restrictions affecting research with human embryos put in place by Act 45/2003 and, on the other, to pave the way for a future legislation on biomedical research. This paper argues for the need of an effective and adequate juridical protection of human embryos obtained in vitro according to responsibility and precautionary principles.

  11. Genotoxic evaluation of an industrial effluent from an oil refinery using plant and animal bioassays.

    Science.gov (United States)

    Rodrigues, Fernando Postalli; Angeli, José Pedro Friedmann; Mantovani, Mário Sérgio; Guedes, Carmen Luisa Barbosa; Jordão, Berenice Quinzani

    2010-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are genotoxic chemicals commonly found in effluents from oil refineries. Bioassays using plants and cells cultures can be employed for assessing environmental safety and potential genotoxicity. In this study, the genotoxic potential of an oil refinery effluent was analyzed by means of micronucleus (MN) testing of Alium cepa, which revealed no effect after 24 h of treatment. On the other hand, primary lesions in the DNA of rat (Rattus norvegicus) hepatoma cells (HTC) were observed through comet assaying after only 2 h of exposure. On considering the capacity to detect DNA damage of a different nature and of these cells to metabolize xenobiotics, we suggest the association of the two bioassays with these cell types, plant (Allium cepa) and mammal (HTC) cells, for more accurately assessing genotoxicity in environmental samples.

  12. Cells behaviors and genotoxicity on topological surface

    International Nuclear Information System (INIS)

    Yang, N.; Yang, M.K.; Bi, S.X.; Chen, L.; Zhu, Z.Y.; Gao, Y.T.; Du, Z.

    2013-01-01

    To investigate different cells behaviors and genotoxicity, which were driven by specific microenvironments, three patterned surfaces (pillars, wide grooves and narrow grooves) and one smooth surface were prepared by template-based technique. Vinculin is a membrane-cytoskeletal protein in focal adhesion plaques and associates with cell–cell and cell–matrix junctions, which can promote cell adhesion and spreading. The immunofluorescence staining of vinculin revealed that the narrow grooves patterned substrate was favorable for L929 cell adhesion. For cell multiplication, the narrow grooves surface was fitted for the proliferation of L929, L02 and MSC cells, the pillars surface was only in favor of L929 cells to proliferate during 7 days of cell cultivation. Cell genetic toxicity was evaluated by cellular micronuclei test (MNT). The results indicated that topological surfaces were more suitable for L929 cells to proliferate and maintain the stability of genome. On the contrary, the narrow grooves surface induced higher micronuclei ratio of L02 and MSC cells than other surfaces. With the comprehensive results of cell multiplication and MNT, it was concluded that the wide grooves surface was best fitted for L02 cells to proliferate and have less DNA damages, and the smooth surface was optimum for the research of MSC cells in vitro. - Highlights: • Different cells behaviors on microstructure surfaces were discussed in this paper. • The expression of cell protein of Vinculin was studied in this research. • Cellular micronuclei test was applied to evaluate cells' genotoxicity. • Cell genotoxicity was first studied in the research field of topological surfaces

  13. Aporrectodea caliginosa, a suitable earthworm species for field based genotoxicity assessment?

    International Nuclear Information System (INIS)

    Klobucar, Goeran I.V.; Stambuk, Anamaria; Srut, Maja; Husnjak, Ivana; Merkas, Martina; Traven, Luka; Cvetkovic, Zelimira

    2011-01-01

    There is a growing interest for the application of biomakers to field-collected earthworms. Therefore we have evaluated the usability of native populations of endogeic, widely distributed earthworm Aporrectodea caliginosa in the assessment of soil genotoxicity using the Comet assay. Validation of the Comet assay on earthworm coelomocytes has been established using commercially available Eisenia fetida exposed to copper, cadmium, and pentachlorophenol, along with A. caliginosa exposed to copper in a filter paper contact test. Neutral red retention time (NRRT) assay was conducted on copper exposed and field-collected earthworms. Significant DNA and lysosomal damage was measured using Comet and NRRT assays in native populations of A. caliginosa sampled from the polluted soils in the urban area in comparison to the earthworms from the reference site. The results of this study confirm the employment of A. caliginosa as a suitable species for the in situ soil toxicity and genotoxicity field surveys. - Research highlights: → Native A. caliginosa has shown significant biological effect measured by the Comet and NRRT assays. → The Comet assay on A. caliginosa and E. fetida has shown to be of similar sensitivity as the NRRT assay. → A. caliginosa is a suitable species for the in situ soil toxicity and genotoxicity field surveys. - Native populations of endogeic earthworm Aporrectodea caliginosa can be successfully applied in the genotoxicity field surveys using Comet assay.

  14. Aporrectodea caliginosa, a suitable earthworm species for field based genotoxicity assessment?

    Energy Technology Data Exchange (ETDEWEB)

    Klobucar, Goeran I.V., E-mail: gklobuca@zg.biol.pmf.hr [Department of Zoology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000 Zagreb (Croatia); Stambuk, Anamaria; Srut, Maja [Department of Zoology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000 Zagreb (Croatia); Husnjak, Ivana [Ministry of Environmental Protection, Physical Planning and Construction, Ulica Republike Austrije 14, Zagreb (Croatia); Merkas, Martina [Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Salata 12, 10000 Zagreb (Croatia); Traven, Luka [Department of Environmental Medicine, Medical Faculty, University of Rijeka, Brace Branchetta 20a, 51000 Rijeka (Croatia); Teaching Institute of Public Health of the Primorsko-goranska County, Kresimirova 52a, 51000 Rijeka (Croatia); Cvetkovic, Zelimira [Department of Ecology, Institute of Public Health, Mirogojska c. 16, 10000 Zagreb (Croatia)

    2011-04-15

    There is a growing interest for the application of biomakers to field-collected earthworms. Therefore we have evaluated the usability of native populations of endogeic, widely distributed earthworm Aporrectodea caliginosa in the assessment of soil genotoxicity using the Comet assay. Validation of the Comet assay on earthworm coelomocytes has been established using commercially available Eisenia fetida exposed to copper, cadmium, and pentachlorophenol, along with A. caliginosa exposed to copper in a filter paper contact test. Neutral red retention time (NRRT) assay was conducted on copper exposed and field-collected earthworms. Significant DNA and lysosomal damage was measured using Comet and NRRT assays in native populations of A. caliginosa sampled from the polluted soils in the urban area in comparison to the earthworms from the reference site. The results of this study confirm the employment of A. caliginosa as a suitable species for the in situ soil toxicity and genotoxicity field surveys. - Research highlights: > Native A. caliginosa has shown significant biological effect measured by the Comet and NRRT assays. > The Comet assay on A. caliginosa and E. fetida has shown to be of similar sensitivity as the NRRT assay. > A. caliginosa is a suitable species for the in situ soil toxicity and genotoxicity field surveys. - Native populations of endogeic earthworm Aporrectodea caliginosa can be successfully applied in the genotoxicity field surveys using Comet assay.

  15. Genotoxicity of dill (Anethum graveolens L.), peppermint (Menthaxpiperita L.) and pine (Pinus sylvestris L.) essential oils in human lymphocytes and Drosophila melanogaster.

    Science.gov (United States)

    Lazutka, J R; Mierauskiene, J; Slapsyte, G; Dedonyte, V

    2001-05-01

    Genotoxic properties of the essential oils extracted from dill (Anethum graveolens L.) herb and seeds, peppermint (Menthaxpiperita L.) herb and pine (Pinus sylvestris L.) needles were studied using chromosome aberration (CA) and sister chromatid exchange (SCE) tests in human lymphocytes in vitro, and Drosophila melanogaster somatic mutation and recombination test (SMART) in vivo. In the CA test, the most active essential oil was from dill seeds, then followed essential oils from dill herb, peppermint herb and pine needles, respectively. In the SCE test, the most active essential oils were from dill herb and seeds followed by essential oils from pine needles and peppermint herb. Essential oils from dill herb and seeds and pine needles induced CA and SCE in a clear dose-dependent manner, while peppermint essential oil induced SCE in a dose-independent manner. All essential oils were cytotoxic for human lymphocytes. In the SMART test, a dose-dependent increase in mutation frequency was observed for essential oils from pine and dill herb. Peppermint essential oil induced mutations in a dose-independent manner. Essential oil from dill seeds was almost inactive in the SMART test.

  16. Reproductive endocrinology of vitamin D.

    Science.gov (United States)

    Lorenzen, Mette; Boisen, Ida Marie; Mortensen, Li Juel; Lanske, Beate; Juul, Anders; Blomberg Jensen, Martin

    2017-09-15

    Vitamin D is a versatile hormone with several functions beyond its well-established role in maintenance of skeletal health and calcium homeostasis. The effects of vitamin D are mediated by the vitamin D receptor, which is expressed together with the vitamin D metabolizing enzymes in the reproductive tissues. The reproductive organs are therefore responsive to and able to metabolize vitamin D locally. The exact role remains to be clarified but several studies have suggested a link between vitamin D and production/release of reproductive hormones into circulation, which will be the main focus of this review. Current evidence is primarily based on small human association studies and rodent models. This highlights the need for randomized clinical trials, but also functional animal and human in vitro studies, and larger, prospective cohort studies are warranted. Given the high number of men and women suffering from reproductive problems and abnormal endocrinology research addressing the role of vitamin D in reproductive endocrinology may be of clinical importance. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Human implantation: the last barrier in assisted reproduction technologies?

    Science.gov (United States)

    Edwards, Robert G

    2006-12-01

    Implantation processes are highly complex involving the actions of numerous hormones, immunoglobulins, cytokines and other factors in the endometrium. They are also essential matters for the success of assisted reproduction. The nature of early embryonic development is of equal significance. It involves ovarian follicle growth, ovulation, fertilization and preimplantation growth. These processes are affected by imbalanced chromosomal constitutions or slow developmental periods. Post-implantation death is also a significant factor in cases of placental insufficiency or recurrent abortion. Clearly, many of these matters can significantly affect birth rates. This review is concerned primarily with the oocyte, the early embryo and its chromosomal anomalies, and the nature of factors involved in implantation. These are clearly among the most important features in determining successful embryonic and fetal growth. Successive sections cover the endocrine stimulation of follicle growth in mice and humans, growth of human embryos in vitro, their apposition and attachment to the uterus, factors involved in embryo attachment to uterine epithelium and later stages of implantation, and understanding the gene control of polarities and other aspects of preimplantation embryo differentiation. New aspects of knowledge include the use of human oocyte maturation in vitro as an approach to simpler forms of IVF, and new concepts in developmental genetics.

  18. Genotoxicity studies in semiconductor industry. 1. In vitro mutagenicity and genotoxicity studies of waste samples resulting from plasma etching

    Energy Technology Data Exchange (ETDEWEB)

    Braun, R.; Huettner, E.M.; Merten, H.; Raabe, F. (Institute of Plant Genetics and Crop Plant Research, Gatersleben (Germany))

    1993-07-01

    Solid waste samples taken from the etching reactor, the turbo pump, and the waste air system of a plasma etching technology line in semiconductor production were studied as to their genotoxic properties in a bacterial repair test, in the Ames/Salmonella microsome assay, in the SOS chromotest, in primary mouse hepatocytes, and in Chinese hamster V79 cell cultures. All three waste samples were found to be active by inducing of unscheduled DNA-synthesis in mouse hepatocytes in vitro. In the bacterial rec-type repair test with Proteus mirabilis, waste samples taken from the turbo pump and the vacuum pipe system were not genotoxic. The waste sample taken from the chlorine-mediated plasma reactor was clearly positive in the bacterial repair assay and in the SOS chromotest with Escherichia coli. Mutagenic activity was demonstrated for all samples in the presence and absence of S9 mix made from mouse liver homogenate. Again, highest mutagenic activity was recorded for the waste sample taken from the plasma reactor, while samples collected from the turbo pump and from the waste air system before dilution and liberation of the air were less mutagenic. For all samples chromosomal damage in V79 cells was not detected, indicating absence of clastogenic activity in vitro. Altogether, these results indicate generation of genotoxic and mutagenic products as a consequence of chlorine-mediated plasma etching in the microelectronics industry and the presence of genotoxins even in places distant from the plasma reactor. Occupational exposure can be expected both from the precipitated wastes and from chemicals reaching the environment with the air stream.

  19. Modulation of mitomycin C-induced genotoxicity by acetyl- and thio- analogues of salicylic acid.

    Science.gov (United States)

    Pawar, Amol Ashok; Vikram, Ajit; Tripathi, Durga Nand; Padmanabhan, Shweta; Ramarao, Poduri; Jena, Gopabandhu

    2009-01-01

    Recent reports regarding acetylsalicylic acid (ASA) and its metabolites suggest suppressive effects against mitomycin C (MMC)-induced genotoxicity in a mice chromosomal aberration assay. Keeping this in mind, the potential anti-genotoxic effect of the thio-analogue of salicylic acid namely thio-salicylic acid (TSA) was speculated upon. The present study investigated and compared the anti-genotoxic potential of ASA and TSA. The study was performed in male swiss mice (20+/-2 g) using single-cell gel electrophoresis and a peripheral blood micronucleus assay. ASA and TSA (5, 10 or 20 mg/kg) were administered 15 minutes after MMC (1 mg/kg) once daily for 3 or 7 days. Both ASA and TSA significantly decreased the DNA damage induced by MMC as indicated by a decrease in the comet parameters in bone marrow cells and decreased frequencies of micronucleated reticulocytes in peripheral blood. The results clearly demonstrate the anti-genotoxic potential of ASA and TSA.

  20. Genotoxicity assessment data for exfoliated buccal cells exposed to mobile phone radiation

    Directory of Open Access Journals (Sweden)

    F.M. de Oliveira

    2017-12-01

    Full Text Available Healthy mobile phone users aged 18–30 y.o. provided exfoliated buccal cells samples from the right and left inner cheeks. A total of 2000 cells per subject were screened for the presence of micronuclei as a sign of genotoxic damage, according to the mobile phone use profile of each user. Keywords: Electromagnetic fields, Mobile phones, Genotoxicity, Micronuclei, Exfoliated buccal cells, Feulgen stain

  1. Cytotoxic, genotoxic and cell-cycle disruptive effects of thio-dimethylarsinate in cultured human cells and the role of glutathione

    Energy Technology Data Exchange (ETDEWEB)

    Ochi, Takafumi [Laboratory of Toxicology, Faculty of Pharmaceutical Sciences, Teikyo University, Sagamiko, Kanagawa 229-0195 (Japan); Kita, Kayoko; Suzuki, Toshihide [Laboratory of Toxicology, Faculty of Pharmaceutical Sciences, Teikyo University, Sagamiko, Kanagawa 229-0195 (Japan); Rumpler, Alice; Goessler, Walter; Francesconi, Kevin A [Karl-Franzens University Graz, Institute of Chemistry-Analytical Chemistry, Universitaetsplatz 1, 8010 Graz (Austria)

    2008-04-01

    Thio-dimethylarsinate (thio-DMA), a recently discovered urine metabolite in humans, was investigated for its cytotoxic, genotoxic and cell-cycle disruptive effects in the cultured human hepatocarcinoma cell line, HepG2, and Syrian hamster embryo cells. In addition, the role of glutathione (GSH) on the cytotoxic effects of thio-DMA was investigated in terms of the effects of GSH depletion and the effects of exogenously added GSH. LC{sub 50} values of arsenicals for cells incubated for 48 h were 0.026 mM for thio-DMA, 0.343 mM for DMA and 3.66 mM for dithio-DMA. Depletion of cell GSH reduced the cytotoxic effects of thio-DMA. The cytotoxic effects of 0.02 mM and 0.05 mM thio-DMA were enhanced markedly when used in combination with 1 to 3 mM GSH, but decreased again when combined with 5 mM GSH. These results suggested that cytotoxic intermediates were generated by the interaction of thio-DMA with GSH, while an excessive amount of GSH suppressed the generation of these intermediates. Flow-cytometry showed that thio-DMA was an inducer of cells with 4N DNA and hypo 2N DNA. The results also demonstrated that cells arrested in the mitotic phase had abnormalities in their spindle organization and centrosome integrity. In addition, cells arrested in mitosis by thio-DMA had chromosome structural aberrations, such as chromatid gaps, chromatid breaks and chromatid exchanges. Moreover, the cytotoxic effects of thio-DMA may in part be associated with an apoptotic mode of cell death that was evaluated by the appearance of nucleosome level DNA fragmentations and an 85-kDa cleavage fragment of poly (ADP-ribose) polymerase. These findings suggest that the presence of thio-DMA in human urine has implications for human health in terms of arsenic metabolism and toxicity.

  2. Mutagenic and genotoxic activity of particulate matter MP2,5, in Pamplona, North Santander, Colombia

    Directory of Open Access Journals (Sweden)

    Martínez Montañez, Mónica Liseth

    2012-10-01

    Full Text Available Objective: To study the mutagenic and genotoxic activities of particulate material (MP2,5 collected in Pamplona, Norte de Santander, Colombia.Materials and methods: MP2,5 was monitored by means of a Partisol 2025 sequential air sampler with Plus Palmflex quartz filters. The latter were subjected to two extraction procedures: Soxhlet extraction using dichloromethane-acetone; and ultrasonic extraction using dichloromethane, acetone and dichloromethane/ acetone mix. The mutagenic and genotoxic activities were determined for each extract.Results: This is the first study conducted in Colombia that reports the mutagenic and genotoxic activities associated with particulate matter (MP2,5 taken from vehicular emissions in Pamplona, Norte de Santander. The mutagenic assay determined by the Ames test using Salmonella typhimurium strains TA98 and TA100 showed a high direct mutagenic activity in the analyzed extracts. On the other hand, the genotoxic activity, determined by means of the comet assay, was high too.Conclusion: Particulate material (MP2,5 present in air samples in Pamplona (northeastern Colombia is a risk factor for the exposed population because it can directly induce mutations and also cause genotoxic damage.

  3. Genotoxic effect of radio marked lymphocytes using Tc-99m complexes

    International Nuclear Information System (INIS)

    Pedraza L, M.; Ferro F, G.; Mendiola C, M.T.; Morales R, P.

    1997-01-01

    The genotoxic effect of radio marked lymphocytes was evaluated using 99m -Tc-HMPAO and 99m -Tc- gentisic acid complexes. With the results of this work it is pretended to contribute to the knowledge of genetic and structural damages that provokes the radiation in the marked lymphocytes. The d, 1-HMPAO was synthesized in laboratory with a yielding of 30 %. The radiochemical purity of the complexes was greater than 85%. Mouse lymphocytes obtained of sanguineous volumes 2 ml were used. The radio marked efficiency of cells was 19.6 ± 6.4% and 25.6 ± 5.8% for 99m Tc-HMPAO and 99m Tc gentisic acid respectively. The genotoxic effect was evaluated using the technique of Unicellular Electrophoresis in Micro gel (Comet assay). The results showed that both 99m Tc complexes produce genotoxicity due to their capacity to penetrate cells, therefore the Auger and M internal conversion electrons place all their energy obtaining doses of Gray order. (Author)

  4. Genotoxic evaluation of an industrial effluent from an oil refinery using plant and animal bioassays

    Directory of Open Access Journals (Sweden)

    Fernando Postalli Rodrigues

    2010-01-01

    Full Text Available Polycyclic aromatic hydrocarbons (PAHs are genotoxic chemicals commonly found in effluents from oil refineries. Bioassays using plants and cells cultures can be employed for assessing environmental safety and potential genotoxicity. In this study, the genotoxic potential of an oil refinery effluent was analyzed by means of micronucleus (MN testing of Alium cepa, which revealed no effect after 24 h of treatment. On the other hand, primary lesions in the DNA of rat (Rattus norvegicus hepatoma cells (HTC were observed through comet assaying after only 2 h of exposure. On considering the capacity to detect DNA damage of a different nature and of these cells to metabolize xenobiotics, we suggest the association of the two bioassays with these cell types, plant (Allium cepa and mammal (HTC cells, for more accurately assessing genotoxicity in environmental samples.

  5. Genotoxic potential of diesel exhaust particles from the combustion of first- and second-generation biodiesel fuels-the FuelHealth project.

    Science.gov (United States)

    Kowalska, Magdalena; Wegierek-Ciuk, Aneta; Brzoska, Kamil; Wojewodzka, Maria; Meczynska-Wielgosz, Sylwia; Gromadzka-Ostrowska, Joanna; Mruk, Remigiusz; Øvrevik, Johan; Kruszewski, Marcin; Lankoff, Anna

    2017-11-01

    Epidemiological data indicate that exposure to diesel exhaust particles (DEPs) from traffic emissions is associated with higher risk of morbidity and mortality related to cardiovascular and pulmonary diseases, accelerated progression of atherosclerotic plaques, and possible lung cancer. While the impact of DEPs from combustion of fossil diesel fuel on human health has been extensively studied, current knowledge of DEPs from combustion of biofuels provides limited and inconsistent information about its mutagenicity and genotoxicity, as well as possible adverse health risks. The objective of the present work was to compare the genotoxicity of DEPs from combustion of two first-generation fuels, 7% fatty acid methyl esters (FAME) (B7) and 20% FAME (B20), and a second-generation 20% FAME/hydrotreated vegetable oil (SHB: synthetic hydrocarbon biofuel) fuel. Our results revealed that particulate engine emissions from each type of biodiesel fuel induced genotoxic effects in BEAS-2B and A549 cells, manifested as the increased levels of single-strand breaks, the increased frequencies of micronuclei, or the deregulated expression of genes involved in DNA damage signaling pathways. We also found that none of the tested DEPs showed the induction of oxidative DNA damage and the gamma-H2AX-detectable double-strand breaks. The most pronounced differences concerning the tested particles were observed for the induction of single-strand breaks, with the greatest genotoxicity being associated with the B7-derived DEPs. The differences in other effects between DEPs from the different biodiesel blend percentage and biodiesel feedstock were also observed, but the magnitude of these variations was limited.

  6. HLA-G in human reproduction: aspects of genetics, function and pregnancy complications.

    Science.gov (United States)

    Hviid, Thomas Vauvert F

    2006-01-01

    The non-classical human leukocyte antigen (HLA) class Ib genes, HLA-E, -G and -F, are located on chromosome 6 in the human major histocompatibility complex (MHC). HLA class Ib antigens resemble the HLA class Ia antigens in many ways, but several major differences have been described. This review will, in particular, discuss HLA-G and its role in human reproduction and in the human MHC. HLA-G seems to be important in the modulation of the maternal immune system during pregnancy and thereby the maternal acceptance of the semiallogenic fetus. Recent findings regarding aspects of HLA-G polymorphism, the possible significance of this polymorphism in respect to HLA-G function and certain complications of pregnancy (such as pre-eclampsia and recurrent spontaneous abortions (RSA)) are discussed together with possible importance to IVF. Finally, aspects of a possible role of HLA-G in organ transplantation and in inflammatory or autoimmune disease, and of HLA-G in an evolutionary context, are also briefly examined.

  7. Ethanol potentiates the genotoxicity of the food-derived mammary carcinogen PhIP in human estrogen receptor-positive mammary cells: mechanistic support for lifestyle factors (cooked red meat and ethanol) associated with mammary cancer.

    Science.gov (United States)

    Malik, Durr-E-Shahwar; David, Rhiannon M; Gooderham, Nigel J

    2018-04-01

    Consumption of cooked/processed meat and ethanol are lifestyle risk factors in the aetiology of breast cancer. Cooking meat generates heterocyclic amines such as 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). Epidemiology, mechanistic and animal studies indicate that PhIP is a mammary carcinogen that could be causally linked to breast cancer incidence; PhIP is DNA damaging, mutagenic and oestrogenic. PhIP toxicity involves cytochrome P450 (CYP1 family)-mediated metabolic activation to DNA-damaging species, and transcriptional responses through Aryl hydrocarbon receptor (AhR) and estrogen-receptor-α (ER-α). Ethanol consumption is a modifiable lifestyle factor strongly associated with breast cancer risk. Ethanol toxicity involves alcohol dehydrogenase metabolism to reactive acetaldehyde, and is also a substrate for CYP2E1, which when uncoupled generates reactive oxygen species (ROS) and DNA damage. Here, using human mammary cells that differ in estrogen-receptor status, we explore genotoxicity of PhIP and ethanol and mechanisms behind this toxicity. Treatment with PhIP (10 -7 -10 -4 M) significantly induced genotoxicity (micronuclei formation) preferentially in ER-α positive human mammary cell lines (MCF-7, ER-α+) compared to MDA-MB-231 (ER-α-) cells. PhIP-induced CYP1A2 in both cell lines but CYP1B1 was selectively induced in ER-α(+) cells. ER-α inhibition in MCF-7 cells attenuated PhIP-mediated micronuclei formation and CYP1B1 induction. PhIP-induced CYP2E1 and ROS via ER-α-STAT-3 pathway, but only in ER-α (+) MCF-7 cells. Importantly, simultaneous treatments of physiological concentrations ethanol (10 -3 -10 -1 M) with PhIP (10 -7 -10 -4 M) increased oxidative stress and genotoxicity in MCF-7 cells, compared to the individual chemicals. Collectively, these data offer a mechanistic basis for the increased risk of breast cancer associated with dietary cooked meat and ethanol lifestyle choices.

  8. Mequindox Induced Genotoxicity and Carcinogenicity in Mice

    Directory of Open Access Journals (Sweden)

    Qianying Liu

    2018-04-01

    Full Text Available Mequindox (MEQ, acting as an inhibitor of deoxyribonucleic acid (DNA synthesis, is a synthetic heterocyclic N-oxides. To investigate the potential carcinogenicity of MEQ, four groups of Kun-Ming (KM mice (50 mice/sex/group were fed with diets containing MEQ (0, 25, 55, and 110 mg/kg for one and a half years. The result showed adverse effects on body weights, feed consumption, hematology, serum chemistry, organ weights, relative organ weights, and incidence of tumors during most of the study period. Treatment-related changes in hematology, serum chemistry, relative weights and histopathological examinations revealed that the hematological system, liver, kidneys, and adrenal glands, as well as the developmental and reproductive system, were the main targets after MEQ administration. Additionally, MEQ significantly increased the frequency of micronucleated normochromatic erythrocytes in bone marrow cells of mice. Furthermore, MEQ increased the incidence of tumors, including mammary fibroadenoma, breast cancer, corticosuprarenaloma, haemangiomas, hepatocarcinoma, and pulmonary adenoma. Interestingly, the higher incidence of tumors was noted in M25 mg/kg group, the lowest dietary concentration tested, which was equivalent to approximately 2.25 and 1.72 mg/kg b.w./day in females and males, respectively. It was assumed that the lower toxicity might be a reason for its higher tumor incidence in M25 mg/kg group. This finding suggests a potential relationships among the dose, general toxicity and carcinogenicity in vivo, and further study is required to reveal this relationship. In conclusion, the present study demonstrates that MEQ is a genotoxic carcinogen in KM mice.

  9. Widespread presence of human BOULE homologs among animals and conservation of their ancient reproductive function.

    Directory of Open Access Journals (Sweden)

    Chirag Shah

    2010-07-01

    Full Text Available Sex-specific traits that lead to the production of dimorphic gametes, sperm in males and eggs in females, are fundamental for sexual reproduction and accordingly widespread among animals. Yet the sex-biased genes that underlie these sex-specific traits are under strong selective pressure, and as a result of adaptive evolution they often become divergent. Indeed out of hundreds of male or female fertility genes identified in diverse organisms, only a very small number of them are implicated specifically in reproduction in more than one lineage. Few genes have exhibited a sex-biased, reproductive-specific requirement beyond a given phylum, raising the question of whether any sex-specific gametogenesis factors could be conserved and whether gametogenesis might have evolved multiple times. Here we describe a metazoan origin of a conserved human reproductive protein, BOULE, and its prevalence from primitive basal metazoans to chordates. We found that BOULE homologs are present in the genomes of representative species of each of the major lineages of metazoans and exhibit reproductive-specific expression in all species examined, with a preponderance of male-biased expression. Examination of Boule evolution within insect and mammalian lineages revealed little evidence for accelerated evolution, unlike most reproductive genes. Instead, purifying selection was the major force behind Boule evolution. Furthermore, loss of function of mammalian Boule resulted in male-specific infertility and a global arrest of sperm development remarkably similar to the phenotype in an insect boule mutation. This work demonstrates the conservation of a reproductive protein throughout eumetazoa, its predominant testis-biased expression in diverse bilaterian species, and conservation of a male gametogenic requirement in mice. This shows an ancient gametogenesis requirement for Boule among Bilateria and supports a model of a common origin of spermatogenesis.

  10. Study on cellular genotoxicities induced by alpha particles irradiation in combination with NNK treatment

    International Nuclear Information System (INIS)

    Li Ping; Yang Zhihua; Pan Xiujie; Cao Zhenshan; Mi Na; Chen Zhongmin; Liu Gang; Wei Han; Li Huiying; Zhu Maoxiang

    2006-01-01

    Objective: To investigate cellular genotoxicities of aplha particles irradiation in combination with NNK treatment. Methods: Exponentially growing immortalized human bronchial epithelial cells were divided into the normal control group (NC), alpha particles irradiation (α), NNK administration group (NNK), NNK administration (100 μg/ml) followed by alpha particles irradiation group (NNK + α), and alpha particles irradiation followed by NNK administration (100 μg/ml) group (μ + NNK). DNA damage were detected by single cell gel electrophoresis (SCGE); multinuclear cell assay was used to detect the frequency of the HPRT gene mutation; cell micronucleus frequency were detected by cytogenetic methods. Results: In the group exposed to both alpha particles irradiation and NNK, DNA damage, HPRT gene mutation frequency, and cell micronucleus frequency were significantly higher than those in the same dose groups irradiated with alpha particles or NNK administration alone. Subtracted the NNK effect, DNA damage, HPRT gene mutation frequency and cell micronucleus frequency in the group irradiated by alpha particles in combination with NNK administration were significantly higher than those of alpha particles irradiation alone. Conclusion: The genotoxicity of alpha particles irradiation in combination with NNK administration had synergistic effect. (authors)

  11. Increased levels of etheno-DNA adducts and genotoxicity biomarkers of long-term exposure to pure diesel engine exhaust.

    Science.gov (United States)

    Shen, Meili; Bin, Ping; Li, Haibin; Zhang, Xiao; Sun, Xin; Duan, Huawei; Niu, Yong; Meng, Tao; Dai, Yufei; Gao, Weimin; Yu, Shanfa; Gu, Guizhen; Zheng, Yuxin

    2016-02-01

    Etheno-DNA adducts are biomarkers for assessing oxidative stress. In this study, the aim was to detect the level of etheno-DNA adducts and explore the relationship between the etheno-DNA adducts and genotoxicity biomarkers of the diesel engine exhaust (DEE)-exposed workers. We recruited 86 diesel engine testing workers with long-term exposure to DEE and 99 non-DEE-exposed workers. The urinary mono-hydroxylated polycyclic aromatic hydrocarbons (OH-PAHs) and etheno-DNA adducts (εdA and εdC) were detected by HPLC-MS/MS and UPLC-MS/MS, respectively. Genotoxicity biomarkers were also evaluated by comet assay and cytokinesis-block micronucleus assay. The results showed that urinary εdA was significantly higher in the DEE-exposed workers (p<0.001), exhibited 2.1-fold increase compared with the non-DEE-exposed workers. The levels of urinary OH-PAHs were positively correlated with the level of εdA among all the study subjects (p<0.001). Moreover, we found that the increasing level of εdA was significantly associated with the increased olive tail moment, percentage of tail DNA, or frequency of micronucleus in the study subjects (p<0.01). No significant association was observed between the εdC level and any measured genotoxicity biomarkers. In summary, εdA could serve as an indicator for DEE exposure in the human population. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Implementation of the three Rs in the human hazard assessment of Brazilian medicinal plants: an evaluation of the cytotoxic and genotoxic potentials of Dipteryx alata Vogel.

    Science.gov (United States)

    Esteves-Pedro, Natália M; Rodas, Andrea C D; Dal Belo, Cháriston A; Oshima-Franco, Yoko; dos Santos, Márcio G; Lopes, Patricia S

    2011-05-01

    In Brazil, medicinal plants are widely used by the indigenous people, which leads to a constant requirement for toxicity tests to be performed on the plant extracts. Although the current Brazilian Directive 90/2004 on the preclinical toxicity testing of phytotherapeutics recommends only in vivo tests, some Brazilian researchers would like to change this situation by implementing the Three Rs in the toxicological testing of medicinal plants. The present study evaluated the cytotoxic and genotoxic potentials of bark extracts from Dipteryx alata Vogel, a medicinal plant of the Brazilian cerrado, by using CHO-K1 (Chinese hamster ovary) cells. An IC50 value was obtained, which corresponded to 0.16mg/ml of plant extract, and from this the equivalent LD50 was determined as 705mg/kg. In order to determine the genotoxic potential of the sample, the frequency of micronucleus formation was assessed. CHO-K1 cells were exposed, during targeted mitosis, to different concentrations of plant extract and cytochalasin B, in the presence and absence of an appropriate metabolic activation system (an S9 mix). The results obtained indicated that it might be possible to implement the Three Rs in assessing the potential human hazard of medicinal plants. The publication of such data can increase awareness of the Three Rs by showing how to optimise the management of animal use, if in vivo toxicological experiments are required. 2011 FRAME.

  13. Size- and coating-dependent cytotoxicity and genotoxicity of silver nanoparticles evaluated using in vitro standard assays.

    Science.gov (United States)

    Guo, Xiaoqing; Li, Yan; Yan, Jian; Ingle, Taylor; Jones, Margie Yvonne; Mei, Nan; Boudreau, Mary D; Cunningham, Candice K; Abbas, Mazhar; Paredes, Angel M; Zhou, Tong; Moore, Martha M; Howard, Paul C; Chen, Tao

    2016-11-01

    The physicochemical characteristics of silver nanoparticles (AgNPs) may greatly alter their toxicological potential. To explore the effects of size and coating on the cytotoxicity and genotoxicity of AgNPs, six different types of AgNPs, having three different sizes and two different coatings, were investigated using the Ames test, mouse lymphoma assay (MLA) and in vitro micronucleus assay. The genotoxicities of silver acetate and silver nitrate were evaluated to compare the genotoxicity of nanosilver to that of ionic silver. The Ames test produced inconclusive results for all types of the silver materials due to the high toxicity of silver to the test bacteria and the lack of entry of the nanoparticles into the cells. Treatment of L5718Y cells with AgNPs and ionic silver resulted in concentration-dependent cytotoxicity, mutagenicity in the Tk gene and the induction of micronuclei from exposure to nearly every type of the silver materials. Treatment of TK6 cells with these silver materials also resulted in concentration-dependent cytotoxicity and significantly increased micronucleus frequency. With both the MLA and micronucleus assays, the smaller the AgNPs, the greater the cytotoxicity and genotoxicity. The coatings had less effect on the relative genotoxicity of AgNPs than the particle size. Loss of heterozygosity analysis of the induced Tk mutants indicated that the types of mutations induced by AgNPs were different from those of ionic silver. These results suggest that AgNPs induce cytotoxicity and genotoxicity in a size- and coating-dependent manner. Furthermore, while the MLA and in vitro micronucleus assay (in both types of cells) are useful to quantitatively measure the genotoxic potencies of AgNPs, the Ames test cannot.

  14. Multi-walled carbon nanotube-induced genotoxic, inflammatory and pro-fibrotic responses in mice: Investigating the mechanisms of pulmonary carcinogenesis

    DEFF Research Database (Denmark)

    Rahman, Luna; Jacobsen, Nicklas Raun; Aziz, Syed Abdul

    2017-01-01

    The International Agency for Research on Cancer has classified one type of multi-walled carbon nanotubes (MWCNTs) as possibly carcinogenic to humans. However, the underlying mechanisms of MWCNT- induced carcinogenicity are not known. In this study, the genotoxic, mutagenic, inflammatory, and fibr......The International Agency for Research on Cancer has classified one type of multi-walled carbon nanotubes (MWCNTs) as possibly carcinogenic to humans. However, the underlying mechanisms of MWCNT- induced carcinogenicity are not known. In this study, the genotoxic, mutagenic, inflammatory......, and fibrotic potential of MWCNTs were investigated. Muta™Mouse adult females were exposed to 36±6 or 109±18μg/mouse of Mitsui-7, or 26±2 or 78±5μg/mouse of NM-401, once a week for four consecutive weeks via intratracheal instillations, alongside vehicle-treated controls. Samples were collected 90days following...... extents. However, there was no evidence of DNA damage as measured by the comet assay following Mitsui-7 exposure, or increases in lacZ mutant frequency, for either MWCNTs. Increased p53 expression was observed in the fibrotic foci induced by both MWCNTs. Gene expression analysis revealed perturbations...

  15. In vivo micronucleus test as a biomarker of genotoxicity in free-range goats from suspected contaminated environment

    Directory of Open Access Journals (Sweden)

    Afusat Jagun Jubril

    2017-09-01

    Conclusion: The finding indicates the prevalence and frequency of micronucleus as a biomarker of genotoxicity and an indicator of exposure to environmental genotoxic subtances. Hence, this highlights the relevance of these goats as important sentinel animal model. These findings, therefore, serve as a preliminary data for further studies on the latent genotoxic environmental contaminants and their potential deleterious impact. [J Adv Vet Anim Res 2017; 4(3.000: 281-287

  16. Assessment of in vitro cyto/genotoxicity of sequentially treated electroplating effluent on the human hepatocarcinoma HuH-7 cell line.

    Science.gov (United States)

    Naik, Umesh Chandra; Das, Mihir Tanay; Sauran, Swati; Thakur, Indu Shekhar

    2014-03-01

    The present study compares in vitro toxicity of electroplating effluent after the batch treatment process with that obtained after the sequential treatment process. Activated charcoal prepared from sugarcane bagasse through chemical carbonization, and tolerant indigenous bacteria, Bacillus sp. strain IST105, were used individually and sequentially for the treatment of electroplating effluent. The sequential treatment involving activated charcoal followed by bacterial treatment removed 99% of Cr(VI) compared with the batch processes, which removed 40% (charcoal) and 75% (bacteria), respectively. Post-treatment in vitro cyto/genotoxicity was evaluated by the MTT test and the comet assay in human HuH-7 hepatocarcinoma cells. The sequentially treated sample showed an increase in LC50 value with a 6-fold decrease in comet-assay DNA migration compared with that of untreated samples. A significant decrease in DNA migration and an increase in LC50 value of treated effluent proved the higher effectiveness of the sequential treatment process over the individual batch processes. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Genotoxic Effect of Atrazine, Arsenic, Cadmium and Nitrate ...

    African Journals Online (AJOL)

    Atrazine has clastogenic effects and may also act as tumor promoter as it induces the aromatase enzyme. ... bladder cancer. This study ... in MCF-10A cells, suggesting that estrogen receptor modulated the genotoxicity of estrogen. Cd caused ...

  18. Cytotoxicity and genotoxicity of intravitreal adalimumab administration in rabbit retinal cells

    Directory of Open Access Journals (Sweden)

    Álcio Coutinho de Paula

    2015-04-01

    Full Text Available Purpose: To assess the cytotoxicity and genotoxicity of intravitreal adalimumab treatment in an animal experimental model using cytological and molecular techniques. Methods: Eighteen rabbits were randomly assigned to three groups: control, adalimumab treatment, and placebo. Cytotoxicity on retinal cells was evaluated using flow cytometry assays to determine the level of apoptosis and necrosis. Genotoxicity was evaluated by comet assays to assess DNA damage, and quantitative real-time polymerase chain reaction (qPCR was used to evaluate expression of apoptosis-inducing caspases (8 and 3. Results: No cytotoxicity or genotoxicity was observed in any of the two treatment groups (adalimumab and placebo following intravitreal administration compared with the control group. Flow cytometry analysis revealed that more than 90% of the cells were viable, and only a low proportion of retinal cells presented apoptotic (~10% or necrotic (<1% activity across all groups. Molecular damage was also low with a maximum of 6.4% DNA degradation observed in the comet assays. In addition, no increase in gene expression of apoptosis-inducing caspases was observed on retinal cells by qPCR in both the adalimumab and placebo groups compared with the control group. Conclusion: The use of adalimumab resulted in no detectable cytotoxicity or genotoxicity on retinal cells for up to 60 days upon administration. These results therefore indicate that adalimumab may be a safe option for intravitreal application to treat ocular inflammatory diseases in which TNF-α is involved.

  19. Genotoxicity and cytotoxicity induced by eluates from orthodontic glass ionomer cements in vitro

    Directory of Open Access Journals (Sweden)

    Fernanda Angelieri

    2018-01-01

    Full Text Available The aim of this study was to investigate genotoxicity and cytotoxicity of some orthodontic glass ionomer cements commercially available by means of the single cell gel (comet assay. For this purpose, five commercial orthodontic glass ionomer cements (Vidrion C®, Meron®, Optiband®, Multicure® and Ultra Band Lok® were tested in murine fibroblasts in vitro. For this purpose, eluates from each cement were prepared according manufactures instructions at 0, 2, 4, 8, 18, 32 and 64 days of immersion in artificial saliva at 37 °C. All orthodontic glass ionomer cements failed to induce cytotoxicity to murine fibroblasts for all periods evaluated in this study. However, Vidrion C® was able to induce genotoxicity after 64 days of exposure to eluates. Meron® also demonstrated genotoxicity as depicted by increasing DNA damage on 2nd day. Multicure® demonstrated genotoxicity on 32nd day and Ultra band Lok on 18th, 32nd days of exposure. Taken together, our results demonstrated that orthodontic cements derived from resin-modified glass ionomer composite (Multicure® and compomer (Ultra Band Lok® cause genetic damage in mammalian cells in vitro.

  20. Cyanotoxins: producing organisms, occurrence, toxicity, mechanism of action and human health toxicological risk evaluation.

    Science.gov (United States)

    Buratti, Franca M; Manganelli, Maura; Vichi, Susanna; Stefanelli, Mara; Scardala, Simona; Testai, Emanuela; Funari, Enzo

    2017-03-01

    Cyanobacteria were present on the earth 3.5 billion years ago; since then they have colonized almost all terrestrial and aquatic ecosystems. They produce a high number of bioactive molecules, among which some are cyanotoxins. Cyanobacterial growth at high densities, forming blooms, is increasing in extension and frequency, following anthropogenic activities and climate changes, giving rise to some concern for human health and animal life exposed to cyanotoxins. Numerous cases of lethal poisonings have been associated with cyanotoxins ingestion in wild animal and livestock. In humans few episodes of lethal or severe human poisonings have been recorded after acute or short-term exposure, but the repeated/chronic exposure to low cyanotoxin levels remains a critical issue. The properties of the most frequently detected cyanotoxins (namely, microcystins, nodularins, cylindrospermopsin and neurotoxins) are here critically reviewed, describing for each toxin the available information on producing organisms, biosynthesis/genetic and occurrence, with a focus on the toxicological profile (including kinetics, acute systemic toxicity, mechanism and mode of action, local effects, repeated toxicity, genotoxicity, carcinogenicity, reproductive toxicity; human health effects and epidemiological studies; animal poisoning) with the derivation of health-based values and considerations on the risks for human health.

  1. Assessment of genotoxicity of methyl-tert-butyl ether, benzene, toluene, ethylbenzene, and xylene to human lymphocytes using comet assay

    International Nuclear Information System (INIS)

    Chen, Colin S.; Hseu, You C.; Liang, Shih H.; Kuo, J.-Y.; Chen, Ssu. C.

    2008-01-01

    Methyl-tert-butyl ether (MTBE) is a gasoline oxygenate and antiknock additive substituting for lead alkyls currently in use worldwide. Benzene, toluene, ethylbenzene, and xylene (BTEX) are volatile monoaromatic hydrocarbons which are commonly found together in crude petroleum and petroleum products such as gasoline. The aim of this study is to evaluate the genotoxic effects of these tested chemicals in human lymphocytes. Using the alkaline comet assay, we showed that all of the tested chemicals induce DNA damage in isolated human lymphocytes. This effect could follow from the induction of DNA strands breaks. The neutral version of the test revealed that MTBE, benzene, and xylenes induce DNA double-strand breaks at 200 μM. Apart from MTBE, the spin traps, 5,5-dimethyl-pyrroline-N-oxide (DMPO) and N-tert-butyl-α-phenylnitrone (PBN) can decrease the level of DNA damage in BTEX at 200 μM. This indicated that DNA damage could result from the participation of free radicals in DNA-damaging effect, which was further supported by the fact that post-treatment of formamidopyrimidine-DNA glycosylase (Fpg), enzyme recognizing oxidized DNA purines, gave rise to a significant increase in the extent of DNA damage in cells treated with benzene, and xylene at 200 μM. The results obtained suggested that MTBE and BTEX could induce a variety type of DNA damage such as single-strand breaks (SSBs), double-strand breaks (DSBs), and oxidative base modification

  2. Application of the Single Cell Gel Electrophoresis (SCGE) Assay to Genotoxicity Evaluation in Plants and Animals

    International Nuclear Information System (INIS)

    Kim, Jin Kyu

    2007-10-01

    Application of the Single Cell Gel Electrophoresis (SCGE) Assay to Genotoxicity Evaluation in Plants and Animals. Recently, the importance of ionizing radiation and chemicals has been recognized since radio- and chemical therapy is directly related to the control of various diseases such as cancer. Radiation and the chemicals can cause biological damages while they have great applicability. It is of necessity to analyze rapidly, easily and accurately the biological effects, especially DNA damage due to those factors. Recently SCGE (single cell gel electrophoresis assay, alias comet assay) has been developed for the efficient evaluation of DNA damage. In this report, the comprehensive review will be given on the rationale, the technical applications and the advantages and shortcomings of SCGE assay. This method can be directly applied to study on toxicity, cancer, and aging in terms of the evaluation of DNA damages due to radiation and chemicals on human cellular level. It is also suggested that comet assay be used for testing genotoxicity of suspected substances, detecting irradiated foods, screening radioprotective candidates, and studying DNA repair process in various biological systems

  3. Application of the Single Cell Gel Electrophoresis (SCGE) Assay to Genotoxicity Evaluation in Plants and Animals

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Kyu

    2007-10-15

    Application of the Single Cell Gel Electrophoresis (SCGE) Assay to Genotoxicity Evaluation in Plants and Animals. Recently, the importance of ionizing radiation and chemicals has been recognized since radio- and chemical therapy is directly related to the control of various diseases such as cancer. Radiation and the chemicals can cause biological damages while they have great applicability. It is of necessity to analyze rapidly, easily and accurately the biological effects, especially DNA damage due to those factors. Recently SCGE (single cell gel electrophoresis assay, alias comet assay) has been developed for the efficient evaluation of DNA damage. In this report, the comprehensive review will be given on the rationale, the technical applications and the advantages and shortcomings of SCGE assay. This method can be directly applied to study on toxicity, cancer, and aging in terms of the evaluation of DNA damages due to radiation and chemicals on human cellular level. It is also suggested that comet assay be used for testing genotoxicity of suspected substances, detecting irradiated foods, screening radioprotective candidates, and studying DNA repair process in various biological systems.

  4. Benzophenone guttiferone A from Garcinia achachairu Rusby (Clusiaceae presents genotoxic effects in different cells of mice.

    Directory of Open Access Journals (Sweden)

    Peterson Menezes Terrazas

    Full Text Available Benzophenones from natural sources and those of synthetic analogues present several reports of potent biological properties, and Guttiferone A represents a promising medicinal natural compound with analgesic and gastroprotective profiles. Considering that there are no reports that assess the genetic toxicity of Guttiferone A, the present study was undertaken to investigate the genotoxic potential of this benzophenone isolated from seeds of Garcinia achachairu in terms of DNA damage in different cells of Swiss albino mice using the comet assay, and its clastogenic/aneugenic effects in bone marrow cells in vivo by the micronucleus test. Cytotoxicity was assessed by scoring polychromatic (PCE and normochromatic (NCE erythrocytes ratio. Guttiferone A was administered by oral gavage at doses of 15, 30 and 60 mg/kg. The results showed that Guttiferone A produced genotoxic effects in leukocytes, liver, bone marrow, brain and testicle cells and clastogenic/aneugenic effects in bone marrow erythrocytes of mice. The PCE/NCE ratio indicated no cytotoxicity. Since guttiferone A is harmful to the genetic material we suggest caution in its use by humans.

  5. Non-genotoxic carcinogens: early effects on gap junctions, cell proliferation and apoptosis in the rat

    International Nuclear Information System (INIS)

    Mally, Angela; Chipman, James Kevin

    2002-01-01

    Non-genotoxic carcinogens are thought to induce tumour formation by disturbing the balance between cell growth and cell death. Gap junctions (GJ) contribute to the maintenance of tissue homeostasis by allowing the intercellular exchange of growth regulatory signals and potential inhibition of GJ intercellular communication through loss of connexin (Cx) plaques has been shown to be involved in the cancer process. We have investigated the time- and dose-dependent effects of the non-genotoxic hepatocarcinogens Wy-14,643, 2,3,7,8-tetrachlorodibenzo-p-dioxin, methapyrilene and hexachlorobenzene and the male rat kidney carcinogens chloroform, p-dichlorobenzene and d-limonene on gap junction plaque expression in relation to proliferation and apoptosis. With the exception of limonene, all non-genotoxic carcinogens significantly reduced the expression of GJ plaques containing Cx32 in their respective target tissue. No dose-dependent, significant effects were seen in non-target organs. Although alteration of Cx32 expression did not appear to correlate with induction of cell proliferation, out data suggest that the interaction of both processes--interference of GJ coupled with a proliferative stimulus (at the carcinogenic dose)--may be important in non-genotoxic carcinogenesis and provide a potential alert for non-genotoxic carcinogens in short-term toxicity tests

  6. Mercury-induced genotoxicity in marine diatom (Chaetoceros tenuissimus)

    Digital Repository Service at National Institute of Oceanography (India)

    Sarker, S.; Desai, S.R.; Verlecar, X.N.; Sarker, M.S.; Sarkar, A.

    In this paper, we present an evaluation of genotoxic responses in marine diatom, Chaetoceros tenuissimus, isolated from Kandla Creek (lat 23.03° N, long 70.22° E), Gujarat, India, in terms of impairment of DNA integrity as a function...

  7. Cytotoxicity and genotoxicity of a monazite component: lanthanum effects on the viability and induction of breaks in the DNA of human lymphocytes; Citotoxicidade e genotoxicidade de um componente da monazita: efeitos do lantanio na viabilidade e inducao de quebras no DNA de linfocitos humanos

    Energy Technology Data Exchange (ETDEWEB)

    Paiva, Amanda Valle de Almeida

    2007-07-01

    The Monazite is a mineral extracted from open mines. It is constituted by lanthanum element aggregated with cerium, yttrium and thorium [(Ce, La, Y, Th)PO{sub 4}]. Lanthanum (La) is a rare-earth metal with applications in agriculture, industry and medicine. Since lanthanides and their compounds show a broad spectrum of applications there is an increased risk of incorporation in human. Inhalation of aerosols containing La is the main route of incorporation in workers exposed to several chemical forms of La. Herein, we examined the effect of lanthanum nitrate - La(NO{sub 3}){sub 3} in human lymphocytes. JURKAT cells and human peripheral lymphocytes (HPL) were used to evaluate the effect of La(NO{sub 3}){sub 3} on viability (apoptosis or necrosis) and DNA strand breaks induction or/and alkali-labile sites (ALS). We demonstrate that La has a cytotoxic and genotoxic effect on both cell lines. The results indicate that necrosis is the pathway by which La(NO{sub 3}){sub 3} induces cytotoxicity. The vitamin E is able to diminish DNA strand breaks induced by La(NO{sub 3}){sub 3} suggesting that reactive oxygen species (ROS) may be involved in the genotoxic process. (author)

  8. Genotoxicity of carbon nanofibers: Are they potentially more or less dangerous than carbon nanotubes or asbestos?

    International Nuclear Information System (INIS)

    Kisin, E.R.; Murray, A.R.; Sargent, L.; Lowry, D.; Chirila, M.; Siegrist, K.J.; Schwegler-Berry, D.; Leonard, S.; Castranova, V.; Fadeel, B.; Kagan, V.E.; Shvedova, A.A.

    2011-01-01

    The production of carbon nanofibers and nanotubes (CNF/CNT) and their composite products is increasing globally. CNF are generating great interest in industrial sectors such as energy production and electronics, where alternative materials may have limited performance or are produced at a much higher cost. However, despite the increasing industrial use of carbon nanofibers, information on their potential adverse health effects is limited. In the current study, we examine the cytotoxic and genotoxic potential of carbon-based nanofibers (Pyrograf (registered) -III) and compare this material with the effects of asbestos fibers (crocidolite) or single-walled carbon nanotubes (SWCNT). The genotoxic effects in the lung fibroblast (V79) cell line were examined using two complementary assays: the comet assay and micronucleus (MN) test. In addition, we utilized fluorescence in situ hybridization to detect the chromatin pan-centromeric signals within the MN indicating their origin by aneugenic (chromosomal malsegregation) or clastogenic (chromosome breakage) mechanisms. Cytotoxicity tests revealed a concentration- and time-dependent loss of V79 cell viability after exposure to all tested materials in the following sequence: asbestos > CNF > SWCNT. Additionally, cellular uptake and generation of oxygen radicals was seen in the murine RAW264.7 macrophages following exposure to CNF or asbestos but not after administration of SWCNT. DNA damage and MN induction were found after exposure to all tested materials with the strongest effect seen for CNF. Finally, we demonstrated that CNF induced predominately centromere-positive MN in primary human small airway epithelial cells (SAEC) indicating aneugenic events. Further investigations are warranted to elucidate the possible mechanisms involved in CNF-induced genotoxicity.

  9. [Genotoxic damage among artisanal and small-scale mining workers exposed to mercury].

    Science.gov (United States)

    Rosales-Rimache, Jaime A; Elizabeth Malca, Nancy; Alarcón, Jhonatan J; Chávez, Manuel; Gonzáles, Marco Antonio

    2013-01-01

    To determine the genotoxic damage among artisanal and small-scale mining workers exposed to mercury. Observational cross-sectional study which evaluated mercury-exposed workers (n=83), whose cells were collected by mouth swab for further staining, microscopic observance, micronuclei count, and other nuclear alterations. 24-hour urine was also collected for the determination of inorganic mercury. 68.7% of participants were male, the mean age being 43 ± 12,4 years (range: 16-76). The average time of occupational exposure to mercury was 12,1 ± 6,7 years, and the contact with mercury was 4,1 ± 3,6 kg per person per day. 93% of participants failed to wear personal protection gear while handling mercury. Results of biological monitoring showed that 17% of participants had concentrations of mercury in urine higher than 2,5 µg/L, this value being the detection limit of the measurement technique used. Results of the genotoxic evaluation evidenced that 15% of people with labor exposure to mercury presented micronuclei in mouth epithelial cells, and other indicators of nuclear alteration such as nucleoplasmic bridges, gemmation and binucleation were found, which are also considered genotoxic events associated to the exposure of physical or chemical risk agents. The finding of micronuclei in mouth epithelial cells reflects genotoxic damage associated to the labor exposure of mercury used in artisanal and small-scale mining activities.

  10. High Dose Ascorbate Causes Both Genotoxic and Metabolic Stress in Glioma Cells

    Science.gov (United States)

    Castro, Maria Leticia; Carson, Georgia M.; McConnell, Melanie J.; Herst, Patries M.

    2017-01-01

    We have previously shown that exposure to high dose ascorbate causes double stranded breaks (DSBs) and a build-up in S-phase in glioblastoma (GBM) cell lines. Here we investigated whether or not this was due to genotoxic stress as well as metabolic stress generated by exposure to high dose ascorbate, radiation, ascorbate plus radiation and H2O2 in established and primary GBM cell lines. Genotoxic stress was measured as phosphorylation of the variant histone protein, H2AX, 8-oxo-7,8-dihydroguanine (8OH-dG) positive cells and cells with comet tails. Metabolic stress was measured as a decrease in NADH flux, mitochondrial membrane potential (by CMXRos), ATP levels (by ATP luminescence) and mitochondrial superoxide production (by mitoSOX). High dose ascorbate, ascorbate plus radiation, and H2O2 treatments induced both genotoxic and metabolic stress. Exposure to high dose ascorbate blocked DNA synthesis in both DNA damaged and undamaged cell of ascorbate sensitive GBM cell lines. H2O2 treatment blocked DNA synthesis in all cell lines with and without DNA damage. DNA synthesis arrest in cells with damaged DNA is likely due to both genotoxic and metabolic stress. However, arrest in DNA synthesis in cells with undamaged DNA is likely due to oxidative damage to components of the mitochondrial energy metabolism pathway. PMID:28737676

  11. Raphanus sativus extract protects against Zearalenone induced reproductive toxicity, oxidative stress and mutagenic alterations in male Balb/c mice.

    Science.gov (United States)

    Ben Salah-Abbès, Jalila; Abbès, Samir; Abdel-Wahhab, Mosaad A; Oueslati, Ridha

    2009-04-01

    Zearalenone (ZEN) is a non-steroidal estrogenic mycotoxin produced by several species of Fusarium in cereals and agricultural products. It has been implicated in several mycotoxicosis in farm animals and in humans. There is unequivocal evidence of reproductive toxicity of ZEN in male mice although the mechanism of action is unknown. Several reports suggest that exposure to ZEN resulted in oxidative stress, genotoxicity and perturbation of reproductive parameters. Therefore, the aim of the current study was to evaluate the protective effects of aqueous extract of Raphanus sativus growing in Tunisia against ZEN-induced reproductive toxicity and oxidative stress. Fifty male Balb/c mice were divided into five groups and treated for 28 days as follows: the control group, olive oil-treated groups, another treated with ZEN (40 mg/kg b.w), the last one treated with R. sativus extract alone (15 mg/kg b.w) and the other with ZEN + R. sativus extract. Testis samples were collected for the epididymal sperm count, testosterone concentration, and MDA level, GPx, CAT and SOD activities. Blood samples were collected for different biochemical analyses. Also, RAPD-PCR method was performed to assess the antigenotoxic effect of the extract in germ cells. The results indicated that ZEN-induced toxicological effects in accordance to those reported in the literature: decreasing in the sperm number, testosterone level and antioxidant enzyme status. The RAPD-PCR analysis revealed an alteration in the DNA bands patterns between control and ZEN-treated mice. The extract alone, rich in many antioxidant compounds, was safe and succeeded in counteracting the oxidative stress and protect against the toxicity resulting from ZEN.

  12. Effects of wood dust:Inflammation, Genotoxicity and Cancer

    DEFF Research Database (Denmark)

    Lange, Jette Bornholdt

    cell line A549 measuring inflammatory and DNA damaging effects. The second part consists of a molecular analysis of the K-ras gene for mutations in the hotspots codons in human sinonasal cancers. Design, calibration and validation of the assays were performed. Cancer at the sinonasal cavities is rare...... with incidence rates between of 0.3 to 1.4 per 100,000 for men and 0.1 to 0.8 per 100,000 for women in Europe, depending on country. However, cancer at this site is associated with occupational exposures including wood dust. Especially the adenocarcinoma subtype is strongly associated with exposure to wood dust...... and their potential to cause DNA damage. Contrary to our hypothesis, we showed that pure wood dust is able to cause primary DNA damage, independent of inflammation as well as hardwoods had no higher inflammatory or genotoxic potential than softwoods. To investigate the molecular mechanisms behind the wood dust...

  13. Genotoxic and apoptotic effects of Goeckerman therapy for psoriasis

    Energy Technology Data Exchange (ETDEWEB)

    Borska, L.; Andrys, C.; Krejsek, J.; Hamakova, K.; Kremlacek, J.; Palicka, V.; Ranna, D.; Fiala, Z. [Charles University Prague, Prague (Czech Republic). Faculty of Medicine

    2010-03-15

    Goeckerman therapy (GT) for psoriasis is based on cutaneous application of crude coal tar (polycyclic aromatic hydrocarbons (PAH)) and exposure to ultraviolet radiation (UVR). PAH and UVR are mutagenic, carcinogenic and immunotoxic agents that promote apoptosis. We evaluated dermal absorption of PAH as well as the genotoxic and apoptotic effects of GT in 20 patients with psoriasis, by determining numbers of chromosomal abnormalities in peripheral lymphocytes, and levels of 1-hydroxypyrene (1-OHP), p53 protein and soluble FasL (sFasL) in urine and/or blood, before and after GT. Psoriasis Area and Severity Index (PASI) score was used to evaluate clinical efficacy of GT. Compared with pre-treatment levels, there was a significant increase in urine 1-OHP, indicating a high degree of dermal absorption of PAH (P <0.01). We also found a significant increase in the number of chromosomal abnormalities in peripheral blood lymphocytes (P <0.001), suggesting that GT is genotoxic; significantly increased p53 protein in plasma (P <0.05), an indicator of cell response to DNA damage; and significantly increased sFasL in serum (P <0.01), an indicator of apoptosis. The PASI score was significantly decreased after GT (P <0.001), confirming clinical benefit of this treatment. Our results demonstrate high dermal absorption of PAH during GT and provide evidence that GT promotes genotoxicity and apoptosis.

  14. Observations of the effect of atmospheric processes on the genotoxic potency of airborne particulate matter

    DEFF Research Database (Denmark)

    Feilberg, Anders; Nielsen, Torben; Binderup, Mona-Lise

    2002-01-01

    In this study, the relationship between genotoxic potency and the occurrence of polycyclic aromatic hydrocarbons (PAH), including benzo(a)pyrene (BaP), and nitro-PAH in urban and semi-rural air masses has been investigated. The Salmonella/microsome assay has been used as a measure of genotoxic po...

  15. Human exposure to endocrine disrupting compounds: Their role in reproductive systems, metabolic syndrome and breast cancer. A review.

    Science.gov (United States)

    Giulivo, Monica; Lopez de Alda, Miren; Capri, Ettore; Barceló, Damià

    2016-11-01

    Endocrine disrupting chemicals (EDCs) are released into the environment from different sources. They are mainly used in packaging industries, pesticides and food constituents. Clinical evidence, experimental models, and epidemiological studies suggest that EDCs have major risks for humans by targeting different organs and systems in the body (e.g. reproductive system, breast tissue, adipose tissue, pancreas, etc.). Due to the ubiquity of human exposure to these compounds the aim of this review is to describe the most recent data on the effects induced by phthalates, bisphenol A and parabens in a critical window of exposure: in utero, during pregnancy, infants, and children. The interactions and mechanisms of toxicity of EDCs in relation to human general health problems, especially those broadening the term of endocrine disruption to 'metabolic disruption', should be deeply investigated. These include endocrine disturbances, with particular reference to reproductive problems and breast, testicular and ovarian cancers, and metabolic diseases such as obesity or diabetes. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Genotoxicity of two heavy metal compounds: lead nitrate and cobalt chloride in Polychaete Perinereis cultrifera.

    Science.gov (United States)

    Singh, Nisha; Bhagat, Jacky; Ingole, Baban S

    2017-07-01

    The present study explores the in vivo and in vitro genotoxic effects of lead nitrate, [Pb(NO 3 ) 2 ] a recognized environmental pollutant and cobalt chloride (CoCl 2 ), an emerging environmental pollutant in polychaete Perinereis cultrifera using comet assay. Despite widespread occurrence and extensive industrial applications, no previous published reports on genotoxicity of these compounds are available in polychaete as detected by comet assay. Polychaetes were exposed in vivo to Pb(NO 3 ) 2 (0, 100, 500, and 1000 μg/l) and CoCl 2 (0, 100, 300, and 500 μg/l) for 5 days. At 100 μg/l Pb(NO 3 ) 2 concentration, tail DNA (TDNA) values in coelomocytes were increase by 1.16, 1.43, and 1.55-fold after day 1, day 3, and day 5, whereas, OTM showed 1.12, 2.33, and 2.10-fold increase in in vivo. Pb(NO 3 ) 2 showed a concentration and time-dependent genotoxicity whereas CoCl 2 showed a concentration-dependent genotoxicity in in vivo. A concentration-dependent increase in DNA damage was observed in in vitro studies for Pb(NO 3 ) 2 and CoCl 2 . DNA damage at 500 μg/L showed almost threefold increase in TDNA and approximately fourfold increase in OTM as compared to control in in vitro. Our studies suggest that Pb(NO 3 ) 2 and CoCl 2 have potential to cause genotoxic damage, with Pb(NO 3 ) 2 being more genotoxic in polychaete and should be used more carefully in industrial and other activities. Graphical abstract.

  17. p53-competent cells and p53-deficient cells display different susceptibility to oxygen functionalized graphene cytotoxicity and genotoxicity.

    Science.gov (United States)

    Petibone, Dayton M; Mustafa, Thikra; Bourdo, Shawn E; Lafont, Andersen; Ding, Wei; Karmakar, Alokita; Nima, Zeid A; Watanabe, Fumiya; Casciano, Daniel; Morris, Suzanne M; Dobrovolsky, Vasily N; Biris, Alexandru S

    2017-11-01

    Due to the distinctive physical, electrical, and chemical properties of graphene nanomaterials, numerous efforts pursuing graphene-based biomedical and industrial applications are underway. Oxidation of pristine graphene surfaces mitigates its otherwise hydrophobic characteristic thereby improving its biocompatibility and functionality. Yet, the potential widespread use of oxidized graphene derivatives raises concern about adverse impacts on human health. The p53 tumor suppressor protein maintains cellular and genetic stability after toxic exposures. Here, we show that p53 functional status correlates with oxygen functionalized graphene (f-G) cytotoxicity and genotoxicity in vitro. The f-G exposed p53-competent cells, but not p53-deficient cells, initiated G 0 /G 1 phase cell cycle arrest, suppressed reactive oxygen species, and entered apoptosis. There was p53-dependent f-G genotoxicity evident as increased structural chromosome damage, but not increased gene mutation or chromatin loss. In conclusion, the cytotoxic and genotoxic potential for f-G in exposed cells was dependent on the p53 functional status. These findings have broad implications for the safe and effective implementation of oxidized graphene derivatives into biomedical and industrial applications. Published 2017. This article has been contributed to by US Government employees and their work is in the public domain in the USA. Published 2017. This article has been contributed to by US Government employees and their work is in the public domain in the USA.

  18. Genotoxicity of indium tin oxide by comet test

    Directory of Open Access Journals (Sweden)

    İbrahim Hakkı Ciğerci

    2015-06-01

    Full Text Available Indium tin oxide (ITO is used for liquid crystal display (LCDs, electrochromic displays, flat panel displays, field emission displays, touch or laptop computer screens, cell phones, energy conserving architectural windows, defogging aircraft and automobile windows, heat-reflecting coatings to increase light bulb efficiency, gas sensors, antistatic window coatings, wear resistant layers on glass, nanowires and nanorods because of its unique properties of high electrical conductivity, transparency and mechanical resistance.Genotoxic effects of ITO were investigated on the root cells of Allium cepa by Comet assay. A. cepa roots were treated with the aqueous dispersions of ITO at 5 different concentrations (12.5, 25, 50, 75, and 100 ppm for 4 h. A significant increase in DNA damage was a observed at all concentrations of ITO by Comet assay. These result indicate that ITO exhibit genotoxic activity in A. cepa root meristematic cells.

  19. Therapeutic Response to Non-genotoxic Activation of p53 by Nutlin3a Is Driven by PUMA-Mediated Apoptosis in Lymphoma Cells

    Directory of Open Access Journals (Sweden)

    Liz J. Valente

    2016-03-01

    Full Text Available Nutlin3a is a small-molecule antagonist of MDM2 that promotes non-genotoxic activation of p53 through p53 protein stabilization and transactivation of p53 target genes. Nutlin3a is the forerunner of a class of cancer therapeutics that have reached clinical trials. Using transgenic and gene-targeted mouse models lacking the critical p53 target genes, p21, Puma, and Noxa, we found that only loss of PUMA conferred profound protection against Nutlin3a-induced killing in both non-transformed lymphoid cells and Eμ-Myc lymphomas in vitro and in vivo. CRISPR/Cas9-mediated targeting of the PUMA gene rendered human hematopoietic cancer cell lines markedly resistant to Nutlin3a-induced cell death. These results demonstrate that PUMA-mediated apoptosis, but not p21-mediated cell-cycle arrest or senescence, is a critical determinant of the therapeutic response to non-genotoxic p53 activation by Nutlin3a. Importantly, in human cancer, PUMA expression may predict patient responses to treatment with MDM2 antagonists.

  20. Comparative study of reproductive skew and pair-bond stability using genealogies from 80 small-scale human societies.

    Science.gov (United States)

    Ellsworth, Ryan M; Shenk, Mary K; Bailey, Drew H; Walker, Robert S

    2016-05-01

    Genealogies contain information on the prevalence of different sibling types that result from past reproductive behavior. Full sibling sets stem from stable monogamy, paternal half siblings primarily indicate male reproductive skew, and maternal half siblings reflect unstable pair bonds. Full and half sibling types are calculated for a total of 61,181 siblings from published genealogies for 80 small-scale societies, including foragers, horticulturalists, agriculturalists, and pastoralists from around the world. Most siblings are full (61%) followed by paternal half siblings (27%) and maternal half siblings (13%). Paternal half siblings are positively correlated with more polygynous marriages, higher at low latitudes, and slightly higher in nonforagers, Maternal half sibling fractions are slightly higher at low latitudes but do not vary with subsistence. Partible paternity societies in Amazonia have more paternal half siblings indicating higher male reproductive skew. Sibling counts from genealogies provide a convenient method to simultaneously investigate the reproductive skew and pair-bond stability dimensions of human mating systems cross-culturally. Am. J. Hum. Biol. 28:335-342, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  1. Reproductive Liberty and Overpopulation

    OpenAIRE

    Carol A. Kates

    2004-01-01

    Despite substantial evidence pointing to a looming Malthusian catastrophe, governmental measures to reduce population have been opposed both by religious conservatives and by many liberals, especially liberal feminists. Liberal critics have claimed that 'utilitarian' population policies violate a 'fundamental right of reproductive liberty'. This essay argues that reproductive liberty should not be considered a fundamental human right, or certainly not an indefeasible right. It should, instead...

  2. Metabolic profile and genotoxicity in obese rats exposed to cigarette smoke.

    Science.gov (United States)

    Damasceno, Debora C; Sinzato, Yuri K; Bueno, Aline; Dallaqua, Bruna; Lima, Paula H; Calderon, Iracema M P; Rudge, Marilza V C; Campos, Kleber E

    2013-08-01

    Experimental studies have shown that exposure to cigarette smoke has negative effects on lipid metabolism and oxidative stress status. Cigarette smoke exposure in nonpregnant and pregnant rats causes significant genotoxicity (DNA damage). However, no previous studies have directly evaluated the effects of obesity or the association between obesity and cigarette smoke exposure on genotoxicity. Therefore, the aim of the present investigation was to evaluate DNA damage levels, oxidative stress status and lipid profiles in obese Wistar rats exposed to cigarette smoke. Female rats subcutaneously (s.c.) received a monosodium glutamate solution or vehicle (control) during the neonatal period to induce obesity. The rats were randomly distributed into three experimental groups: control, obese exposed to filtered air, and obese exposed to tobacco cigarette smoke. After a 2-month exposure period, the rats were anesthetized and killed to obtain blood samples for genotoxicity, lipid profile, and oxidative stress status analyses. The obese rats exposed to tobacco cigarette smoke presented higher DNA damage, triglycerides, total cholesterol, free fatty acids, VLDL-c, HDL-c, and LDL-c levels compared to control and obese rats exposed to filtered air. Both obese groups showed reduced SOD activity. These results showed that cigarette smoke enhanced the effects of obesity. In conclusion, the association between obesity and cigarette smoke exposure exacerbated the genotoxicity, negatively impacted the biochemical profile and antioxidant defenses and caused early glucose intolerance. Thus, the changes caused by cigarette smoke exposure can trigger the earlier onset of metabolic disorders associated with obesity, such as diabetes and metabolic syndrome. Copyright © 2012 The Obesity Society.

  3. Lung inflammation and genotoxicity in mice lungs after pulmonary exposure to candle light combustion particles

    DEFF Research Database (Denmark)

    Skovmand, Astrid; Damiao Gouveia, Ana Cecilia; Koponen, Ismo Kalevi

    2017-01-01

    Candle burning produces a large amount of particles that contribute substantially to the exposure to indoor particulate matter. The exposures to various types of combustion particles, such as diesel exhaust particles, have been associated with increased risk of lung cancer by mechanisms that invo......Candle burning produces a large amount of particles that contribute substantially to the exposure to indoor particulate matter. The exposures to various types of combustion particles, such as diesel exhaust particles, have been associated with increased risk of lung cancer by mechanisms...... that involve oxidative stress, inflammation and genotoxicity. The aim of this study was to compare pulmonary effects of candle light combustion particles (CP) with two benchmark diesel exhaust particles (A-DEP and SRM2975). Intratracheal (i.t.) instillation of CP (5mg/kg bodyweight) in C57BL/6n mice produced......-DEP or SRM2975. The i.t. instillation of CP did not generate oxidative damage to DNA in lung tissue, measured as DNA strand breaks and human 8-oxoguanine glycosylase-sensitive sites by the comet assay. The lack of genotoxic response was confirmed in lung epithelial (A549) cells, although the exposure to CP...

  4. Genotoxic and reprotoxic effects of tritium and external gamma irradiation on aquatic animals.

    Science.gov (United States)

    Adam-Guillermin, Christelle; Pereira, Sandrine; Della-Vedova, Claire; Hinton, Tom; Garnier-Laplace, Jacqueline

    2012-01-01

    Aquatic ecosystems are chronically exposed to natural radioactivity or to artificial radionuclides released by human activities (e.g., nuclear medicine and biology,nuclear industry, military applications). Should the nuclear industry expand in the future, radioactive environmental releases, under normal operating conditions or accidental ones, are expected to increase, which raises public concerns about possible consequences on the environment and human health. Radionuclide exposures may drive macromolecule alterations, and among macromolecules DNA is the major target for ionizing radiations. DNA damage, if not correctly repaired, may induce mutations, teratogenesis, and reproductive effects. As such, damage at the molecular level may have consequences at the population level. In this review, we present an overview of the literature dealing with the effects of radionuclides on DNA, development, and reproduction of aquatic organisms. The review focuses on the main radionuclides that are released by nuclear power plants under normal operating conditions, γ emitters and tritium. Additionally, we fitted nonlinear curves to the dose-response data provided in the reviewed publications and manuscripts, and thus obtained endpoints commonly associated with ecotoxicological studies, such as the EDR(10). These were then used as a common metric for comparing the values and data published in the literature.The effects of tritium on aquatic organisms were reviewed for dose rates that ranged from 29 nGy/day to 29 Gy/day. Although beta emission from tritium decay presents a rather special risk of damage to DNA, genotoxicity-induced by tritium has been scarcely studied. Most of the effects studied have related to reproduction and development. Species sensitivity and the form of tritium present are important factors that drive the ecotoxicity of tritium. We have concluded from this review that invertebrates are more sensitive to the effects of tritium than are vertebrates

  5. Tradescantia micronucleus test indicates genotoxic potential of traffic emissions in European cities

    International Nuclear Information System (INIS)

    Klumpp, Andreas; Ansel, Wolfgang; Klumpp, Gabriele; Calatayud, Vicent; Garrec, Jean Pierre; He Shang; Penuelas, Josep; Ribas, Angela; Ro-Poulsen, Helge; Rasmussen, Stine; Sanz, Maria Jose; Vergne, Phillippe

    2006-01-01

    Urban atmospheres contain complex mixtures of air pollutants including mutagenic and carcinogenic substances such as benzene, diesel soot, heavy metals and polycyclic aromatic hydrocarbons. In the frame of a European network for the assessment of air quality by the use of bioindicator plants, the Tradescantia micronucleus (Trad-MCN) test was applied to examine the genotoxicity of urban air pollution. Cuttings of Tradescantia clone no. 4430 were exposed to ambient air at 65 monitoring sites in 10 conurbations employing a standardised methodology. The tests revealed an elevated genotoxic potential mainly at those urban sites which were exposed to severe car traffic emissions. This bioassay proved to be a suitable tool to detect local 'hot spots' of mutagenic air pollution in urban areas. For its use in routine monitoring programmes, however, further standardisation of cultivation and exposure techniques is recommended in order to reduce the variability of results due to varying environmental conditions. - The Tradescantia micronucleus test can be used to assess genotoxic potential at urban sites

  6. Tradescantia micronucleus test indicates genotoxic potential of traffic emissions in European cities

    Energy Technology Data Exchange (ETDEWEB)

    Klumpp, Andreas [Institute for Landscape and Plant Ecology (320), University of Hohenheim, 70593 Stuttgart (Germany)]. E-mail: aklumpp@uni-hohenheim.de; Ansel, Wolfgang [Institute for Landscape and Plant Ecology (320), University of Hohenheim, 70593 Stuttgart (Germany); Klumpp, Gabriele [Institute for Landscape and Plant Ecology (320), University of Hohenheim, 70593 Stuttgart (Germany); Calatayud, Vicent [Fundacion CEAM, Parque Tecnologico, c/Charles Darwin 14, 46980 Paterna, Valencia (Spain); Garrec, Jean Pierre [INRA Nancy, Laboratoire Pollution Atmospherique, 54280 Champenoux (France); He Shang [INRA Nancy, Laboratoire Pollution Atmospherique, 54280 Champenoux (France); Penuelas, Josep [Unitat Ecofisiologia CSIC-CEAB-CREAF, Universitat Autonoma de Barcelona, Ed. C, 08193 Bellaterra, Barcelona (Spain); Ribas, Angela [Unitat Ecofisiologia CSIC-CEAB-CREAF, Universitat Autonoma de Barcelona, Ed. C, 08193 Bellaterra, Barcelona (Spain); Ro-Poulsen, Helge [Botanical Institute, University of Copenhagen, Oster Farimagsgade 2D, 1353 Copenhagen K (Denmark); Rasmussen, Stine [Botanical Institute, University of Copenhagen, Oster Farimagsgade 2D, 1353 Copenhagen K (Denmark); Sanz, Maria Jose [Fundacion CEAM, Parque Tecnologico, c/Charles Darwin 14, 46980 Paterna, Valencia (Spain); Vergne, Phillippe [ENS Lyon and Lyon Botanical Garden, 46 Allee d' Italie, 69364 Lyon Cedex 07 (France)

    2006-02-15

    Urban atmospheres contain complex mixtures of air pollutants including mutagenic and carcinogenic substances such as benzene, diesel soot, heavy metals and polycyclic aromatic hydrocarbons. In the frame of a European network for the assessment of air quality by the use of bioindicator plants, the Tradescantia micronucleus (Trad-MCN) test was applied to examine the genotoxicity of urban air pollution. Cuttings of Tradescantia clone no. 4430 were exposed to ambient air at 65 monitoring sites in 10 conurbations employing a standardised methodology. The tests revealed an elevated genotoxic potential mainly at those urban sites which were exposed to severe car traffic emissions. This bioassay proved to be a suitable tool to detect local 'hot spots' of mutagenic air pollution in urban areas. For its use in routine monitoring programmes, however, further standardisation of cultivation and exposure techniques is recommended in order to reduce the variability of results due to varying environmental conditions. - The Tradescantia micronucleus test can be used to assess genotoxic potential at urban sites.

  7. In vitro evaluation of the cyto-genotoxic potential of Ruthenium(II) SCAR complexes: a promising class of antituberculosis agents.

    Science.gov (United States)

    De Grandis, Rone Aparecido; Resende, Flávia Aparecida; da Silva, Monize Martins; Pavan, Fernando Rogério; Batista, Alzir Azevedo; Varanda, Eliana Aparecida

    2016-03-01

    Tuberculosis is a top infectious disease killer worldwide, caused by the bacteria Mycobacterium tuberculosis. Increasing incidences of multiple drug-resistance (MDR) strains are emerging as one of the major public health threats. However, the drugs in use are still incapable of controlling the appalling upsurge of MDR. In recent years a marked number of research groups have devoted their attention toward the development of specific and cost-effective antimicrobial agents against targeted MDR-Tuberculosis. In previous studies, ruthenium(II) complexes (SCAR) have shown a promising activity against MDR-Tuberculosis although few studies have indeed considered ruthenium toxicity. Therefore, within the preclinical requirements, we have sought to determine the cyto-genotoxicity of three SCAR complexes in this present study. The treatment with the SCARs induced a concentration-dependent decrease in cell viability in CHO-K1 and HepG2 cells. Based on the clonogenic survival, SCAR 5 was found to be more cytotoxic while SCAR 6 exhibited selectivity action on tumor cells. Although SCAR 4 and 5 did not indicate any mutagenic activity as evidenced by the Ames and Cytokinesis block micronucleus cytome assays, the complex SCAR 6 was found to engender a frameshift mutation detected by Salmonella typhimurium in the presence of S9. Similarly, we observed a chromosomal damage in HepG2 cells with significant increases of micronuclei and nucleoplasmic bridges. These data indicate that SCAR 4 and 5 complexes did not show genotoxicity in our models while SCAR 6 was considered mutagenic. This study presented a comprehensive genotoxic evaluation of SCAR complexes were shown to be genotoxic in vitro. All in all, further studies are required to fully elucidate how the properties can affect human health. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Biomonitoring of the genotoxic effects and oxidative potentials of commercial edible dung beetles (Onitis sp.), grasshopper (Caelifera sp.) and mole crickets (Gryllotalpa sp.) in vitro.

    Science.gov (United States)

    Koc, Kubra; Incekara, Umit; Turkez, Hasan

    2014-09-01

    In this investigation, the genotoxic and oxidative effects of water soluble extracts of dung beetles, flying grasshopper and mole crickets have been assessed on cultured human blood cells. The extracts were added to the culture tubes at 12 different concentrations (0-2000 ppm). Micronucleus test was used to monitor the DNA and the chromosomal damage produced by aqueous extracts in vitro. In addition, to assess the oxidative effects, total antioxidant capacity (TAC) and total oxidant status (TOS) levels were also measured. Our results indicated that these extracts did not show genotoxic effects at the tested concentrations. However, the extracts caused dose-dependent alterations in both TAC and TOS levels. Based on the findings, it was concluded that the studied insects can be consumed safely, but it is necessary to consider the cellular damages which are likely to appear depending on oxidative stress at higher concentrations. It has also been suggested that this in vitro approach for oxidative and genotoxicity assessments may be useful to evaluate the potential health risks of edible insects. © The Author(s) 2014.

  9. Evaluation of genotoxic potential of neurotoxin anatoxin-a with the use of umuC test.

    Science.gov (United States)

    Sieroslawska, Anna; Rymuszka, Anna

    2010-01-01

    The aim of this study was to evaluate genotoxicity of anatoxin-a, cyanotoxin of neurotoxic activity. Additionally, other frequently detected cyanotoxin of previously described genotoxic potential, microcystin-LR, was used at the same concentrations, as well as the mixture of both toxins, anatoxin-a and microcystin-LR. Genotoxicity of the toxins was determined with the use of the umuC assay, in which the induction and expression of the umuC - lacZ reporter gene was assessed. The test was conducted on Salmonella typhimurium TA 1535/pSK1002 strain, with and without metabolic transformation. The toxin concentrations were 0.25, 0.5, 1 and 2 µg/ml. The exposure time was 2 h. The highest inefficient concentration of anatoxin-a without metabolic transformation was 0.25 µg/ml, of microcystin-LR was 0.5 µg/ml and in case of the toxin mixture all used concentrations induced the umuC gene. When S9 fraction was added to the samples, no effects were detected. To our knowledge, this is the first report on genotoxic effects of anatoxin-a. Although the study is preliminary and needs further research, however, indicates the new potential activity of the toxin, as well as the possible increase of genotoxicity of other cyanotoxins, more stable in the environment, e.g. microcystin-LR.

  10. Current methods in risk assessment of genotoxic chemicals.

    Science.gov (United States)

    Cartus, Alexander; Schrenk, Dieter

    2017-08-01

    Chemical contaminants and residues are undesired chemicals occurring in consumer products such as food and drugs, at the workplace and in the environment, i.e. in air, soil and water. These compounds can be detected even at very low concentrations and lead frequently to considerable concerns among consumers and in the media. Thus it is a major challenge for modern toxicology to provide transparent and versatile tools for the risk assessment of such compounds in particular with respect to human health. Well-known examples of toxic contaminants are dioxins or mercury (in the environment), mycotoxins (from infections by molds) or acrylamide (from thermal treatment of food). The process of toxicological risk assessment of such chemicals is based on i) the knowledge of their contents in food, air, water etc., ii) the routes and extent of exposure of humans, iii) the toxicological properties of the compound, and, iv) its mode(s) of action. In this process quantitative dose-response relationships, usually in experimental animals, are of outstanding importance. For a successful risk assessment, in particular of genotoxic chemicals, several conditions and models such as the Margin of Exposure (MoE) approach or the Threshold of Toxicological Concern (TTC) concept exist, which will be discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Initial hazard screening for genotoxicity of photo-transformation products of ciprofloxacin by applying a combination of experimental and in-silico testing

    International Nuclear Information System (INIS)

    Toolaram, Anju Priya; Haddad, Tarek; Leder, Christoph; Kümmerer, Klaus

    2016-01-01

    Ciprofloxacin (CIP) is a broad-spectrum antibiotic found within μg/L concentration range in the aquatic environment. It is a known contributor of umuC induction in hospital wastewater samples. CIP can undergo photolysis to result in many transformation products (TPs) of mostly unknown toxicity. The aims of this study were to determine the genotoxicity of the UV mixtures and to understand the possible genotoxic role of the stable TPs. As such, CIP and its UV-irradiated mixtures were investigated in a battery of genotoxicity and cytotoxicity in vitro assays. The combination index (CI) analysis of residual CIP in the irradiated mixtures was performed for the umu assay. Further, Quantitative Structure–Activity Relationships (QSARs) predicted selected genotoxicity endpoints of the identified TPs. CIP achieved primary elimination after 128 min of irradiation but was not completely mineralized. Nine photo-TPs were identified. The irradiated mixtures were neither mutagenic in the Ames test nor genotoxic in the in vitro micronucleus (MN) test. Like CIP, the irradiated mixtures were umuC inducing. The CI analysis revealed that the irradiated mixtures and the corresponding CIP concentration in the mixtures shared similar umuC potentials. QSAR predictions suggested that the TPs may be capable of inducing chromosome aberration, MN in vivo, bacterial mutation and mammalian mutation. However, the experimental testing for a few genotoxic endpoints did not show significant genotoxic activity for the TPs present as a component of the whole mixture analysis and therefore, further genotoxic endpoints may need to be investigated to fully confirm this. - Highlights: • Identified photo-transformation products (TPs) retained the quinolone core. • Experimental and in silico tools assessed for genotoxicity of TPs in the mixtures. • Some of the TPs were predicted as genotoxic by QSAR analysis. • Irradiated mixtures were neither micronuclei inducing nor mutagenic in Ames test

  12. Chronic Exposure to Particulate Nickel Induces Neoplastic Transformation in Human Lung Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Amie L. Holmes

    2013-11-01

    Full Text Available Nickel is a well-known human lung carcinogen with the particulate form being the most potent; however, the carcinogenic mechanism remains largely unknown. Few studies have investigated the genotoxicity and carcinogenicity of nickel in its target cell, human bronchial epithelial cells. Thus, the goal of this study was to investigate the effects of particulate nickel in human lung epithelial cells. We found that nickel subsulfide induced concentration- and time-dependent increases in both cytotoxicity and genotoxicity in human lung epithelial cells (BEP2D. Chronic exposure to nickel subsulfide readily induced cellular transformation, inducing 2.55, 2.9 and 2.35 foci per dish after exposure to 1, 2.5 and 5 μg/cm2 nickel subsulfide, respectively. Sixty-one, 100 and 70 percent of the foci isolated from 1, 2.5, and 5 μg/cm2 nickel subsulfide treatments formed colonies in soft agar and the degree of soft agar colony growth increased in a concentration-dependent manner. Thus, chronic exposure to particulate nickel induces genotoxicity and cellular transformation in human lung epithelial cells.

  13. Assisted human reproduction: psychological and ethical dilemmas

    National Research Council Canada - National Science Library

    Singer, Dani; Hunter, Myra

    2003-01-01

    ... Psychological therapy and counselling with individuals and families after donor conception Sharon A Pettle Chapter 9 182 Policy development in third party reproduction: an international perspective...

  14. Chlamydia trachomatis and Genital Mycoplasmas: Pathogens with an Impact on Human Reproductive Health

    Directory of Open Access Journals (Sweden)

    Sunčanica Ljubin-Sternak

    2014-01-01

    Full Text Available The most prevalent, curable sexually important diseases are those caused by Chlamydia trachomatis (C. trachomatis and genital mycoplasmas. An important characteristic of these infections is their ability to cause long-term sequels in upper genital tract, thus potentially affecting the reproductive health in both sexes. Pelvic inflammatory disease (PID, tubal factor infertility (TFI, and ectopic pregnancy (EP are well documented complications of C. trachomatis infection in women. The role of genital mycoplasmas in development of PID, TFI, and EP requires further evaluation, but growing evidence supports a significant role for these in the pathogenesis of chorioamnionitis, premature membrane rupture, and preterm labor in pregnant woman. Both C. trachomatis and genital mycoplasmas can affect the quality of sperm and possibly influence the fertility of men. For the purpose of this paper, basic, epidemiologic, clinical, therapeutic, and public health issue of these infections were reviewed and discussed, focusing on their impact on human reproductive health.

  15. Ecotoxicity and genotoxicity assessment of cytostatic pharmaceuticals

    Czech Academy of Sciences Publication Activity Database

    Zounková, R.; Odráška, P.; Doležalová, L.; Hilscherová, Klára; Maršálek, Blahoslav; Bláha, Luděk

    2007-01-01

    Roč. 26, č. 10 (2007), s. 2208-2214 ISSN 0730-7268 Grant - others:GA MŠk(CZ) 2B06171; ECODIS(XE) 518043-1 Institutional research plan: CEZ:AV0Z60050516 Source of funding: R - rámcový projekt EK Keywords : cytostatic pharmaceuticals * genotoxicity * antineoplastics Subject RIV: EF - Botanics Impact factor: 2.309, year: 2007

  16. Genoprotective and Genotoxic Effects of Thymoquinone on ...

    African Journals Online (AJOL)

    Comet assays and apoptotic cell studies were performed to evaluate the effect of TQ on the cytotoxicity and genotoxicity-induced by DXR. Results: TQ treatment, alone, (5.0, 10, or 20 µM) increased DNA damage index (DI) in a concentrationdependent manner (0.64 ± 0.09, 0.84 ± 0.07, and 0.93 ± 0.06, respectively).

  17. In vitro evaluation of mutagenicity and genotoxicity of sitagliptin ...

    African Journals Online (AJOL)

    Keywords: Sitagliptin, Artificial sweeteners, Comet assay, DNA damage, Ames assay, Genotoxicity,. Mutagenicity. Tropical Journal of Pharmaceutical Research is indexed by Science Citation Index (SciSearch), Scopus,. International Pharmaceutical Abstract, Chemical Abstracts, Embase, Index Copernicus, EBSCO, African.

  18. In vivo genotoxicity evaluation of an artichoke (Cynara scolymus L.) aqueous extract.

    Science.gov (United States)

    Zan, Meriele A; Ferraz, Alexandre B F; Richter, Marc F; Picada, Jaqueline N; de Andrade, Heloisa H R; Lehmann, Mauricio; Dihl, Rafael R; Nunes, Emilene; Semedo, Juliane; Da Silva, Juliana

    2013-02-01

    The Cynara scolymus (artichoke) is widely consumed as tea or food and shows important therapeutic properties. However, few studies have assessed the possible toxic effects of artichoke extracts. This study evaluates genotoxic and mutagenic activities of artichoke leaf aqueous extract in mice using the comet assay and the micronucleus test. Leaf extracts were given by gavage (500 mg/kg, 1000 mg/kg, and 2000 mg/kg) for 3 consecutive days. Extract composition was investigated using phytochemical screening and high-performance liquid chromatography (HPLC). In addition, antioxidant capacity was analyzed through the diphenyl-picrylhydrazyl (DPPH) and xanthine oxidase assay. Phytochemical screening detected the presence of phenolic compounds, flavonoids, and saponins. HPLC analyses indicated the presence of chlorogenic acid, caffeic acid, isoquercetrin, and rutin. Extracts showed a dose-dependent free radical scavenging effect of DPPH and an inhibitory effect of xanthine oxidase. The genotoxic results showed that leaf extracts did not increase micronuclei in peripheral blood cells. Compared to the control group, a significant increase in comet assay values was observed only in bone marrow of group treated with 2000 mg/kg, the highest dose tested, indicating that artichoke tea should be consumed with moderation. This is the first report of in vivo mutagenic and genotoxic evaluation with C. scolymus. The present study revealed leaf aqueous extract from artichoke shows lack of mutagenicity in vivo, and low genotoxicity and antioxidant activity; indicating that artichoke tea should be consumed with moderation. © 2013 Institute of Food Technologists®

  19. Genotoxicity assessment of magnetic iron oxide nanoparticles with different particle sizes and surface coatings

    International Nuclear Information System (INIS)

    Liu, Yanping; Xia, Qiyue; Liu, Ying; Zhang, Shuyang; Cheng, Feng; Wang, Li; Li, Hongxia; Xiao, Kai; Zhong, Zhihui

    2014-01-01

    Magnetic iron oxide nanoparticles (IONPs) have been widely used for various biomedical applications such as magnetic resonance imaging and drug delivery. However, their potential toxic effects, including genotoxicity, need to be thoroughly understood. In the present study, the genotoxicity of IONPs with different particle sizes (10, 30 nm) and surface coatings (PEG, PEI) were assessed using three standard genotoxicity assays, the Salmonella typhimurium reverse mutation assay (Ames test), the in vitro mammalian chromosome aberration test, and the in vivo micronucleus assay. In the Ames test, SMG-10 (PEG coating, 10 nm) showed a positive mutagenic response in all the five test bacterial strains with and without metabolic activation, whereas SEI-10 (PEI coating, 10 nm) showed no mutagenesis in all tester strains regardless of metabolic activation. SMG-30 (PEG coating, 30 nm) was not mutagenic in the absence of metabolic activation, and became mutagenic in the presence of metabolic activation. In the chromosomal aberration test, no increase in the incidence of chromosomal aberrations was observed for all three IONPs. In the in vivo micronucleus test, there was no evidence of increased micronuclei frequencies for all three IONPs, indicating that they were not clastogenic in vivo. Taken together, our results demonstrated that IONPs with PEG coating exhibited mutagenic activity without chromosomal and clastogenic abnormalities, and smaller IONPs (SMG-10) had stronger mutagenic potential than larger ones (SMG-30); whereas, IONPs with SEI coating (SEI-10) were not genotoxic in all three standard genotoxicity assays. This suggests that the mutagenicity of IONPs depends on their particle size and surface coating. (paper)

  20. Inhibition of Photo-Genotoxic Effects of UV Radiation on Human Peripheral Blood Lymphocites by Echinacea Purpurea (L.) Moench Herbal Extract

    International Nuclear Information System (INIS)

    Segvic Klaric, M.; Kosalec, I.; Vladimir-Knezevic, S.; Blazekovic, B.; Milic, M.; Kopjar, N.

    2011-01-01

    Ultraviolet (UV) radiation has many negative effects on human skin, including acute and chronic inflammation and oxidative stress which might cause DNA damage leading to skin photoaging and photocarcinogenesis. It was suggested that intake of phenolic acids, which are active components of some medicinal plants, might reduce DNA damage caused by UV radiation. Therefore, the purpose of this study was to check wheather the pretreatment of human peripheral blood lymphocytes with lyophilisate of Echinacea purpurea (L.) Moench (EH) extract (1 and 10 mg/mL) could reduce or prevent primary DNA damage induced by UVC radiation (253.7 nm) in laboratory conditions. Primary DNA damage was studied using the alkaline comet assay on isolated human blood lymphocytes. Plant extract used in this experiment contains phenolic acids (3.47 %), flavonoids (0.13 %), tannins (0.86 %) and proanthocyanidins (0.26 %). HPLC analysis showed that lyophilisate of EH extract contains 3.65 % of chicoric acid. Exposure of lymphocytes to UV radiation (30 and 60 min) caused a significant increase in the level of primary DNA damage (P < 0.001). Pretreatment of cells with both concentrations of EH was not genotoxic, and successfully protected the cells against the effects of UV radiation (30 min). Both concentrations of EH significantly reduced comet tail length after 60 min of UV radiation, while only pre-treatment with 1 mg/mL significantly reduced the values of tail intensity and tail moment (P < 0.001). Positive results obtained in this study speak in favour of continuing the research on effectiveness of Echinacea purpurea preparations and their potential application in developing cosmetic products for skin protection. (author)

  1. Histopathological and genotoxic effects of chlorpyrifos in rats.

    Science.gov (United States)

    Ezzi, Lobna; Belhadj Salah, Imen; Haouas, Zohra; Sakly, Amina; Grissa, Intissar; Chakroun, Sana; Kerkeni, Emna; Hassine, Mohsen; Mehdi, Meriem; Ben Cheikh, Hassen

    2016-03-01

    This study aims to investigate the effects of chlorpyrifos's sub-acute exposure on male rats. Two groups with six animals each were orally treated, respectively, with 3.1 mg/kg b w and 6.2 mg/kg b w of chlorpyrifos during 4 weeks. The genotoxic effect of chlopyrifos was investigated using the comet assay and the micronucleus test. Some hematological and liver's histopathological changes were also evaluated. Results revealed that chlorpyrifos induced histopathological alterations in liver parenchyma. The lymphoid infiltration observed in liver sections and the increase in white blood cells parameter are signs of inflammation. A significant increase in the platelet' count and in polychromatic erythrocytes/normochromatic erythrocytes (PCE/NCE) ratio was observed in chlorpyrifos-treated groups which could be due to the stimulatory effect of chlorpyrifos on cell formation in the bone marrow at lower doses. In addition, the increase of bone marrow micronucleus percentage and the comet tail length revealed a genotoxic potential of chlorpyrifos in vivo.

  2. Biomonitoring of genotoxic exposure among stainless steel welders

    DEFF Research Database (Denmark)

    Knudsen, Lisbeth E.; Boisen, T; Christensen, J M

    1992-01-01

    A biosurvey in the Danish metal industry measured the genotoxic exposure from stainless steel welding. The study comprised measurements of chromosomal aberrations (CA), sister-chromatid exchanges (SCE), unscheduled DNA synthesis (UDS) in peripheral lymphocytes and serum immunoglobulin G. Environm......A biosurvey in the Danish metal industry measured the genotoxic exposure from stainless steel welding. The study comprised measurements of chromosomal aberrations (CA), sister-chromatid exchanges (SCE), unscheduled DNA synthesis (UDS) in peripheral lymphocytes and serum immunoglobulin G....... A higher frequency of chromosomal aberrations, classified as translocations, double minutes, exchanges and rings, was observed in stainless steel welders than in non-welders. SCE was lower in welders working with both MMA and TIG welding than in reference persons. N-Acetoxy-N-acetylaminofluorene (NA...... lymphocytes in exposed persons compared with non-exposed are suggested. MMA welding gave the highest exposure to chromium, an increased number of chromosomal aberrations and a decrease in SCE when compared with TIG welding. Consequently improvements in the occupational practice of stainless steel welding...

  3. Genotoxic and teratogenic potential of marine sediment extracts investigated with comet assay and zebrafish test

    International Nuclear Information System (INIS)

    Kammann, Ulrike; Biselli, Scarlett; Huehnerfuss, Heinrich; Reineke, Ninja; Theobald, Norbert; Vobach, Michael; Wosniok, Werner

    2004-01-01

    Organic extracts of marine sediments from the North Sea and the Baltic Sea were investigated with two toxicity assays. The comet assay based on the fish cell line Epithelioma papulosum cyprini (EPC) was applied to determine the genotoxic potential; zebrafish embryos (Danio rerio) were used to quantify the teratogenic potential of the samples. EC 50 values were calculated from dose-response curves for both test systems. Highest teratogenic and genotoxic effects normalised to total organic carbon (TOC) content were detected in sediment samples of different origins. Polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) are not likely to be the causes of the observed effects, as demonstrated by a two-step fractionation procedure of selected extracts. The toxic potential was more pronounced in fractions having polarity higher than those possessed by PAHs and PCBs. The suitability of the two in vitro test systems for assessing genotoxic and teratogenic effects of marine sediment extracts could be demonstrated. - Capsule: In vitro toxicity assays are used to assess genotoxic and teratogenic effects of environmental extracts

  4. Investigation of genotoxic potential of various sizes Fe2O3 nanoparticles with comet assay

    Directory of Open Access Journals (Sweden)

    İbrahim Hakkı Ciğerci

    2015-06-01

    In this study, genotoxic potential of <50 nm and <100 nm Fe2O3 nanoparticles were investigated by using Comet Assay. Allium cepa root meristems were exposed with five doses (0.001, 0.01, 0.1, 1, 10 mM of <50 nm for 4 hour and three doses (2.5, 5 (EC50, 10 mM for <100 nm of Fe2O3 nanoparticle for 24 and 96 h. Methyl methanesulfonate -MMS (10 ppm was used as a positive control. The results were also analyzed statistically by using SPSS by Windows, 18.0. It was determined that different doses of <50 nm Fe2O3 nanoparticle have no genotoxic effect of DNA. Different doses of <100 nm Fe2O3 have no genotoxic but only 10 mM dose have genotoxic effect on DNA. When compared <50 nm with <100 nm of Fe2O3 nanoparticle; <50 nm have more effects than <100 nm of Fe2O3 on DNA damage.

  5. 21 CFR 884.6150 - Assisted reproduction micromanipulators and microinjectors.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Assisted reproduction micromanipulators and... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES OBSTETRICAL AND GYNECOLOGICAL DEVICES Assisted Reproduction Devices § 884.6150 Assisted reproduction micromanipulators and microinjectors. (a) Identification...

  6. 21 CFR 884.6140 - Assisted reproduction micropipette fabrication instruments.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Assisted reproduction micropipette fabrication... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES OBSTETRICAL AND GYNECOLOGICAL DEVICES Assisted Reproduction Devices § 884.6140 Assisted reproduction micropipette fabrication instruments. (a) Identification...

  7. The Potential of Nanotechnology in Medically Assisted Reproduction

    Directory of Open Access Journals (Sweden)

    Mariana H. Remião

    2018-01-01

    Full Text Available Reproductive medicine is a field of science which searches for new alternatives not only to help couples achieve pregnancy and preserve fertility, but also to diagnose and treat diseases which can impair the normal operation of the reproductive tract. Assisted reproductive technology (ART is a set of methodologies applied to cases related to infertility. Despite being highly practiced worldwide, ART presents some challenges, which still require special attention. Nanotechnology, as a tool for reproductive medicine, has been considered to help overcome some of those impairments. Over recent years, nanotechnology approaches applied to reproductive medicine have provided strategies to improve diagnosis and increase specificity and sensitivity. For in vitro embryo production, studies in non-human models have been used to deliver molecules to gametes and embryos. The exploration of nanotechnology for ART would bring great advances. In this way, experiments in non-human models to test the development and safety of new protocols using nanomaterials are very important for informing potential future employment in humans. This paper presents recent developments in nanotechnology regarding impairments still faced by ART: ovary stimulation, multiple pregnancy, and genetic disorders. New perspectives for further use of nanotechnology in reproductive medicine studies are also discussed.

  8. Moesin Is a Biomarker for the Assessment of Genotoxic Carcinogens in Mouse Lymphoma

    Science.gov (United States)

    Lee, Yoen Jung; Choi, In-Kwon; Sheen, Yhun Yhong; Park, Sue Nie; Kwon, Ho Jeong

    2012-01-01

    1,2-Dibromoethane and glycidol are well known genotoxic carcinogens, which have been widely used in industry. To identify a specific biomarker for these carcinogens in cells, the cellular proteome of L5178Y mouse lymphoma cells treated with these compounds was analyzed by 2-dimensional gel electrophoresis (2-DE) and MALDI-TOF mass spectrometry (MS). Of 50 protein spots showing a greater than 1.5-fold increase or decrease in intensity compared to control cells on a 2-D gel, we focused on the candidate biomarker moesin. Western analysis using monoclonal rabbit anti-moesin confirmed the identity of the protein and its increased level of expression upon exposure to the carcinogenic compounds. Moesin expression also increased in cells treated with six additional genotoxic carcinogens, verifying that moesin could serve as a biomarker to monitor phenotypic change upon exposure to genotoxic carcinogens in L5178Y mouse lymphoma cells. PMID:22358511

  9. Use of the Microscreen phage-induction assay to assess the genotoxicity of 14 hazardous industrial wastes

    Energy Technology Data Exchange (ETDEWEB)

    Houk, V.S.; DeMarini, D.M.

    1988-01-01

    The Microscreen phage-induction assay, which quantitatively measures the induction of prophage lambda in Escherichia coli WP2s lambda, was used to test 14 crude (unfractionated) hazardous industrial-waste samples for genotoxic activity in the presence and absence of metabolic activation. Eleven of the 14 wastes induced prophage, and induction was observed at concentrations as low as 0.4 picograms per ml. Comparisons between the mutagenicity of these waste samples in Salmonella and their ability to induce prophage lambda indicate that the Microscreen phage-induction assay detected genotoxic activity in all but one of the wastes that were mutagenic in Salmonella. Moreover, the Microscreen assay detected as genotoxic 5 additional wastes that were not detected in the Salmonella assay. The applicability of the Microscreen phage-induction assay for screening hazardous wastes for genotoxic activity is discussed along with some of the problems associated with screening highly toxic wastes containing toxic volatile compounds.

  10. Use of the microscreen phage-induction assay to assess the genotoxicity of 14 hazardous industrial wastes

    Energy Technology Data Exchange (ETDEWEB)

    Houk, V.S.; DeMarini, D.M.

    1988-01-01

    The Microscreen phage-induction assay, which quantitatively measures the induction of prophage lambda in Escherichia coli WP2s(lambda), was used to test 14 crude (unfractionated) hazardous industrial waste samples for genotoxic activity in the presence and absence of metabolic activation. Eleven of the 14 wastes induced prophage, and induction was observed at concentrations as low as 0.4 pg per ml. Comparisons between the ability of these waste samples to induce prophage and their mutagenicity in the Salmonella reverse mutation assay indicate that the phage-induction assay detected genotoxic activity in all but one of the wastes that were mutagenic in Salmonella. Moreover, the Microscreen assay detected as genotoxic five additional wastes that were not detected in the Salmonella assay. The applicability of the Microscreen phage-induction assay for screening hazardous wastes for genotoxic activity is discussed, as are some of the problems associated with screening highly toxic wastes containing toxic volatile compounds.

  11. The influence of abiotic factors present in the Rio de la Plata over the chromium genotoxicity

    International Nuclear Information System (INIS)

    Lopez, L.C.; Moretton, J.

    1997-01-01

    The alterations suffered by the well-known environmental genotoxic agent, Cr(V I), were studied. Cr(V I) salts were dissolved in water effluent river receptors waters such as from the Rio de la Plata. The influence of abiotic factors present in this kind of water was evaluated using the Rec. assay in Bacillus subtilis. The results detected a soluble fraction that potentiated Cr(V I) genotoxicity. This substance (or group of substances) is sensible to sterilization by heat and UV radiation, and its activity seems to decrease with particulate matter. Its genotoxicity was not affected by high concentrations of particulate matter in the Rio de la Plata water. In samples where chromium salts were added to raw river water, abiotic interference due to sterilization process occurred. A decrease in genotoxicity was found after filtration through inorganic filters (0.22 μ m) and an increase was noticed after exposure to UV radiation. (Author)

  12. Sensitivity of human cells expressing low-fidelity or weak-catalytic-activity variants of DNA polymerase ζ to genotoxic stresses.

    Science.gov (United States)

    Suzuki, Tetsuya; Grúz, Petr; Honma, Masamitsu; Adachi, Noritaka; Nohmi, Takehiko

    2016-09-01

    Translesion DNA polymerases (TLS pols) play critical roles in defense mechanisms against genotoxic agents. The defects or mutations of TLS pols are predicted to result in hypersensitivity of cells to environmental mutagens. In this study, human cells expressing DNA polymerase ζ (Pol ζ) variants with low fidelity or weak catalytic activity have been established with Nalm-6-MSH+ cells and their sensitivity to mutagenicity and cytotoxicity of benzo[a]pyrene diol epoxide (BPDE) and ultraviolet-C light (UV-C) was examined. The low-fidelity mutants were engineered by knocking-in DNA sequences that direct changes of leucine 2618 to either phenylalanine (L2618F) or methionine (L2618M) of Pol ζ. The weak-catalytic-activity mutants were generated by knocking-in DNA sequences that direct changes of either tyrosine 2779 to phenylalanine (Y2779F) or aspartate 2781 to asparagine (D2781N). In addition, a +1 frameshift mutation, i.e., CCC to CCCC, was introduced in the coding region of the TK1 gene to measure the mutant frequencies. Doubling time and spontaneous TK mutant frequencies of the established cell lines were similar to those of the wild-type cells. The low-fidelity mutants displayed, however, higher sensitivity to the mutagenicity of BPDE and UV-C than the wild-type cells although their cytotoxic sensitivity was not changed. In contrast, the weak-catalytic-activity mutants were more sensitive to the cytotoxicity of BPDE and UV-C than the wild-type cells, and displayed much higher sensitivity to the clastogenicity of BPDE than the wild-type cells in an in vitro micronucleus assay. These results indicate that human Pol ζ is involved in TLS across DNA lesions induced by BPDE and UV-C and also that the TLS plays important roles in induction of mutations, clastogenicity and in cellular survival of the damaged human cells. Similarities and differences in in vivo roles of yeast and human Pol ζ in genome integrity are discussed. Copyright © 2016 Elsevier B.V. All rights

  13. Antimycotic Activity and Genotoxic Evaluation of Citrus sinensis and Citrus latifolia Essential Oils.

    Science.gov (United States)

    Ruiz-Pérez, Nancy J; González-Ávila, Marisela; Sánchez-Navarrete, Jaime; Toscano-Garibay, Julia D; Moreno-Eutimio, Mario A; Sandoval-Hernández, Teresa; Arriaga-Alba, Myriam

    2016-05-03

    The aim of this study was to evaluate the antifungal activity of essential oils (EOs) of Citrus sinensis (C. sinensis) and Citrus latifolia (C. latifolia) against five Candida species: Candida albicans, Candida tropicalis, Candida glabrata, Candida lusitaniae and Candida guilliermondii; and perform its genotoxic evaluation. The EOs of C. sinensis and C. latifolia were obtained from the peel by hydro-distillation. The major components determined by GC-MS were in C. sinensis, d-limonene (96%) and α-myrcene (2.79%); and in C. latifolia, d-limonene (51.64%), β-thujene (14.85%), β-pinene (12.79%) and γ-terpinene (12.8%). Antifungal properties were studied by agar diffusion method, where C. sinensis presented low activity and C. latifolia essential oil was effective to inhibit growing of C. lusitaniae and C. guilliermondii with IC50 of 6.90 and 2.92 μg respectively. The minimum inhibitory concentrations (MIC) for C. sinensis were in a range of 0.42-3.71 μg and for C. latifolia of 0.22-1.30 μg. Genotoxic evaluation was done by Ames test where none of the oils induced point mutations. Flow cytometry was used to measure toxicity in human oral epithelial cells, C. sinensis was not cytotoxic and C. latifolia was toxic at 21.8 μg. These properties might bestow different odontological applications to each essential oil.

  14. Electrochemical Genotoxicity Assay Based on a SOS/umu Test Using Hydrodynamic Voltammetry in a Droplet

    Science.gov (United States)

    Kuramitz, Hideki; Sazawa, Kazuto; Nanayama, Yasuaki; Hata, Noriko; Taguchi, Shigeru; Sugawara, Kazuharu; Fukushima, Masami

    2012-01-01

    The SOS/umu genotoxicity assay evaluates the primary DNA damage caused by chemicals from the β-galactosidase activity of S. typhimurium. One of the weaknesses of the common umu test system based on spectrophotometric detection is that it is unable to measure samples containing a high concentration of colored dissolved organic matters, sediment, and suspended solids. However, umu tests with electrochemical detection techniques prove to be a better strategy because it causes less interference, enables the analysis of turbid samples and allows detection even in small volumes without loss of sensitivity. Based on this understanding, we aim to develop a new umu test system with hydrodynamic chronoamperometry using a rotating disk electrode (RDE) in a microliter droplet. PAPG when used as a substrate is not electroactive at the potential at which PAP is oxidized to p-quinone imine (PQI), so the current response of chronoamperometry resulting from the oxidation of PAP to PQI is directly proportional to the enzymatic activity of S. typhimurium. This was achieved by performing genotoxicity tests for 2-(2-furyl)-3-(5-nitro-2-furyl)-acrylamide (AF-2) and 2-aminoanthracene (2-AA) as model genotoxic compounds. The results obtained in this study indicated that the signal detection in the genotoxicity assay based on hydrodynamic voltammetry was less influenced by the presence of colored components and sediment particles in the samples when compared to the usual colorimetric signal detection. The influence caused by the presence of humic acids (HAs) and artificial sediment on the genotoxic property of selected model compounds such as 4-nitroquinoline-N-oxide (4-NQO), 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX), 1,8-dinitropyrene (1,8-DNP) and 1-nitropyrene (1-NP) were also investigated. The results showed that the genotoxicity of 1-NP and MX changed in the presence of 10 mg·L−1 HAs. The genotoxicity of tested chemicals with a high hydrophobicity such as 1,8-DNP

  15. A mixture of honey bee products ameliorates the genotoxic side effects of cyclophosphamide

    Directory of Open Access Journals (Sweden)

    Maha Aly Fahmy

    2015-08-01

    Full Text Available Objective: To evaluate the protective role of a mixture of honey bee products (honey, royal jelly and pollen grains against the genotoxicity induced by the anticancer drug cyclophosphamide (CP. Methods: The study included chromosomal aberration analysis in mice bone marrow cells, induction of morphological sperm abnormalities, DNA fragmentation and histopathological changes induced in liver cells of mice. CP was injected intraperitoneally at the dose of 20 mg/ kg body weight. The mixture of honey bee products was administrated orally for different periods of time 5, 10 and 15 days with a dose exactly equivalent to the daily intake of human beings. Results: The results revealed that honey mixture ameliorated the genotoxic side effects of CP. For chromosomal aberrations the percentage reached 25.20 ± 1.30 for CP treated group, while it reached half of that value 12.30 ± 0.54 in CP-group pretreated with honey mixture for 15 days. Breaks, fragments and multiple aberrations were the most pronounced types of aberrations induced after CP treatment and honey mixture reduced these types of abnormalities. CP induced significant percentage of sperm abnormalities 8.52 ± 0.17 compared to control 3.10 ± 0.10. The percentage of sperm abnormalities reached nearly to the control value in CP- mice treated with honey mixture for 15 days. Honey also reduced the incidence of liver DNA damage induced by CP. The results also indicated that CP had a marked damaging effect on liver tissue including severe dilatation, congestion of main blood vessels and massive infiltration of inflammatory cells with irregular general pattern of the tissue. These effects were greatly ameliorated by using oral administration of honey mixture for different periods of time. Conclusions: The results concluded that honey bee mixture can be used as chemopreventive agent for minimizing the genotoxic side effects of the anticancer drug CP and open the field for its use in many applications.

  16. Cytotoxic and genotoxic studies of essential oil from Rosa damascene Mill., Kashan, Iran.

    Science.gov (United States)

    Shokrzadeh, Mohammad; Habibi, Emran; Modanloo, Mona

    2017-08-01

    Aim Rosa damascene Mill. belongs to the family of Roseaceae and its essential oil is produced in large amounts in Iran. The wide application of rose oil has raised questions about potential adverse health effects. We have investigated cytotoxic activity and genotoxic effects of Rosa oil from Kashan, Iran. Methods The cytotoxic effect and IC50 of the essential oil on the cell lines was studied followed by MTT assay. In this assay mitochondrial oxidoreductase enzymes with reducing the tetrazolium dye MTT (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) reflect the number of viable cells. Genotoxic effect of the oil was evaluated by micronucleus assay by evaluating produced micronuclei due to cytogenetic damage in binucleated lymphocytes. Results The results showed that essential oil significantly had cytotoxic and genotoxic effects at doses over 10µg/mL (pessential oil of Rose showed lower IC50 in cancer cell line (A549) in comparison with the normal cell line (NIH3T3). Conclusion Cytotoxic and genotoxic properties of essential oil of Rose in Kashan, Iran, are safe at a dose of 10µg/mL. Also, a good cytotoxic effect was shown and could be introduced as an anticancer compound. Further studies are needed with regard to anti-cancer effects of Rose essential oil. Copyright© by the Medical Assotiation of Zenica-Doboj Canton.

  17. The application of single cell gel electrophoresis or comet assay to human monitoring studies

    Directory of Open Access Journals (Sweden)

    Valverde Mahara

    1999-01-01

    Full Text Available Objective. In the search of new human genotoxic biomarkers, the single cell gel electrophoresis assay has been proposed as a sensible alternative. Material and methods. This technique detects principally single strand breaks as well as alkali-labile and repair-retarded sites. Results. Herein we present our experience using the single cell gel electrophoresis assay in human population studies, both occupationally and environmentally exposed. Conclusions. We discuss the assay feasibility as a genotoxic biomarker.

  18. Genotoxic effects of high dose rate X-ray and low dose rate gamma radiation in ApcMin/+ mice.

    Science.gov (United States)

    Graupner, Anne; Eide, Dag M; Brede, Dag A; Ellender, Michele; Lindbo Hansen, Elisabeth; Oughton, Deborah H; Bouffler, Simon D; Brunborg, Gunnar; Olsen, Ann Karin

    2017-10-01

    Risk estimates for radiation-induced cancer in humans are based on epidemiological data largely drawn from the Japanese atomic bomb survivor studies, which received an acute high dose rate (HDR) ionising radiation. Limited knowledge exists about the effects of chronic low dose rate (LDR) exposure, particularly with respect to the application of the dose and dose rate effectiveness factor. As part of a study to investigate the development of colon cancer following chronic LDR vs. acute HDR radiation, this study presents the results of genotoxic effects in blood of exposed mice. CBAB6 F1 Apc +/+ (wild type) and Apc Min/+ mice were chronically exposed to estimated whole body absorbed doses of 1.7 or 3.2 Gy 60 Co-γ-rays at a LDR (2.2 mGy h -1 ) or acutely exposed to 2.6 Gy HDR X-rays (1.3 Gy min -1 ). Genotoxic endpoints assessed in blood included chromosomal damage (flow cytometry based micronuclei (MN) assay), mutation analyses (Pig-a gene mutation assay), and levels of DNA lesions (Comet assay, single-strand breaks (ssb), alkali labile sites (als), oxidized DNA bases). Ionising radiation (ca. 3 Gy) induced genotoxic effects dependent on the dose rate. Chromosomal aberrations (MN assay) increased 3- and 10-fold after chronic LDR and acute HDR, respectively. Phenotypic mutation frequencies as well as DNA lesions (ssb/als) were modulated after acute HDR but not after chronic LDR. The Apc Min/+ genotype did not influence the outcome in any of the investigated endpoints. The results herein will add to the scant data available on genotoxic effects following chronic LDR of ionising radiation. Environ. Mol. Mutagen. 58:560-569, 2017. © 2017 The Authors Environmental and Molecular Mutagenesis published by Wiley Periodicals, Inc. on behalf of Environmental Mutagen Society. © 2017 The Authors Environmental and Molecular Mutagenesis published by Wiley Periodicals, Inc. on behalf of Environmental Mutagen Society.

  19. Biomonitoring of genotoxicity using micronuclei assay in native population of Astyanax jacuhiensis (Characiformes: Characidae) at sites under petrochemical influence

    Energy Technology Data Exchange (ETDEWEB)

    Torres de Lemos, Clarice [Divisao de Biologia, Programa de Pesquisas Ambientais, Departamento de Laboratorios, Fundacao Estadual de Protecao Ambiental Henrique Luis Roessler (FEPAM), Avenida Dr. Salvador Franca, 1707, 90690-000, Porto Alegre, RS (Brazil)], E-mail: claricetl@fepam.rs.gov.br; Almeida Iranco, Fabio de; D' Avila de Oliveira, Nanci Cristina; Dornelles de Souza, Getulio [Divisao de Biologia, Programa de Pesquisas Ambientais, Departamento de Laboratorios, Fundacao Estadual de Protecao Ambiental Henrique Luis Roessler (FEPAM), Avenida Dr. Salvador Franca, 1707, 90690-000, Porto Alegre, RS (Brazil); Guimaraes Fachel, Jandyra Maria [Instituto de Matematica, Departamento de Estatistica, Universidade Federal do Rio Grande do Sul. Av. Bento Goncalves, 9500, 91509-9000, Porto Alegre, RS (Brazil)

    2008-11-15

    Bom Jardim brook is a small stream that flows through an area under the influence of a Petrochemical Complex, demanding control over its quality, so a genotoxic evaluation was performed. This study was conducted in situ, based on previous analysis on the same subject. These were performed both in vitro, with Salmonella typhimurium and human lymphocytes, and in vivo, using bioassays with fish exposed to water from the study area. The purpose of this research was to assess the quality of the aquatic environment and possible effects from petrochemical pollution to surrounding native populations. Micronuclei (MNE) and nuclear abnormalities (NA) frequencies in peripheral blood of Astyanax jacuhiensis, a native fish species collected from the study area, were used as biomarkers. Study period was from summer/99 to spring/2001, using samples obtained seasonally at two ponds upstream from the industrial area (BJN and BJPa) and two sites in Bom Jardim brook (BJ002 and BJ000), which are subject to Complex influence. MNE and NA frequencies found in individuals from BJ002 and BJ000 were similar, showing positive genotoxic responses related to control sites BJN and BJPa. No differential sensitivity could be verified for micronuclei induction between genders of A. jacuhiensis in the studied population. This study showed that sites subject to petrochemical influence were under higher genotoxic impact. Biomarkers adequacy to the case and the sensitivity of A. jacuhiensis for water monitoring could be also inferred.

  20. Biomonitoring of genotoxicity using micronuclei assay in native population of Astyanax jacuhiensis (Characiformes: Characidae) at sites under petrochemical influence

    International Nuclear Information System (INIS)

    Torres de Lemos, Clarice; Almeida Iranco, Fabio de; D'Avila de Oliveira, Nanci Cristina; Dornelles de Souza, Getulio; Guimaraes Fachel, Jandyra Maria

    2008-01-01

    Bom Jardim brook is a small stream that flows through an area under the influence of a Petrochemical Complex, demanding control over its quality, so a genotoxic evaluation was performed. This study was conducted in situ, based on previous analysis on the same subject. These were performed both in vitro, with Salmonella typhimurium and human lymphocytes, and in vivo, using bioassays with fish exposed to water from the study area. The purpose of this research was to assess the quality of the aquatic environment and possible effects from petrochemical pollution to surrounding native populations. Micronuclei (MNE) and nuclear abnormalities (NA) frequencies in peripheral blood of Astyanax jacuhiensis, a native fish species collected from the study area, were used as biomarkers. Study period was from summer/99 to spring/2001, using samples obtained seasonally at two ponds upstream from the industrial area (BJN and BJPa) and two sites in Bom Jardim brook (BJ002 and BJ000), which are subject to Complex influence. MNE and NA frequencies found in individuals from BJ002 and BJ000 were similar, showing positive genotoxic responses related to control sites BJN and BJPa. No differential sensitivity could be verified for micronuclei induction between genders of A. jacuhiensis in the studied population. This study showed that sites subject to petrochemical influence were under higher genotoxic impact. Biomarkers adequacy to the case and the sensitivity of A. jacuhiensis for water monitoring could be also inferred