WorldWideScience

Sample records for human reliability program

  1. Human Reliability Program Overview

    Energy Technology Data Exchange (ETDEWEB)

    Bodin, Michael

    2012-09-25

    This presentation covers the high points of the Human Reliability Program, including certification/decertification, critical positions, due process, organizational structure, program components, personnel security, an overview of the US DOE reliability program, retirees and academia, and security program integration.

  2. Human factor reliability program

    International Nuclear Information System (INIS)

    Knoblochova, L.

    2017-01-01

    The human factor's reliability program was at Slovenske elektrarne, a.s. (SE) nuclear power plants. introduced as one of the components Initiatives of Excellent Performance in 2011. The initiative's goal was to increase the reliability of both people and facilities, in response to 3 major areas of improvement - Need for improvement of the results, Troubleshooting support, Supporting the achievement of the company's goals. The human agent's reliability program is in practice included: - Tools to prevent human error; - Managerial observation and coaching; - Human factor analysis; -Quick information about the event with a human agent; -Human reliability timeline and performance indicators; - Basic, periodic and extraordinary training in human factor reliability(authors)

  3. Human Reliability Program Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Landers, John; Rogers, Erin; Gerke, Gretchen

    2014-05-18

    A Human Reliability Program (HRP) is designed to protect national security as well as worker and public safety by continuously evaluating the reliability of those who have access to sensitive materials, facilities, and programs. Some elements of a site HRP include systematic (1) supervisory reviews, (2) medical and psychological assessments, (3) management evaluations, (4) personnel security reviews, and (4) training of HRP staff and critical positions. Over the years of implementing an HRP, the Department of Energy (DOE) has faced various challenges and overcome obstacles. During this 4-day activity, participants will examine programs that mitigate threats to nuclear security and the insider threat to include HRP, Nuclear Security Culture (NSC) Enhancement, and Employee Assistance Programs. The focus will be to develop an understanding of the need for a systematic HRP and to discuss challenges and best practices associated with mitigating the insider threat.

  4. Human reliability program: Components and effects

    International Nuclear Information System (INIS)

    Baley-Downes, S.

    1986-01-01

    The term ''Human Reliability Program'' (HRP) is defined as a series of selective controls which are implemented and integrated to identify the ''insider threat'' from current and prospective employees who are dishonest, disloyal and unreliable. The HRP, although not a prediction of human behaviour, is an excellent tool for decision making and should compliment security and improve employee quality. The HRP consists of several component applications such as management evaluation; appropriate background investigative requirements; occupational health examination and laboratory testing; drug/alcohol screening; psychological testing and interviews; polygraph examination; job related aberrant behaviour recognition; on-going education and training; document control; drug/alcohol rehabilitation; periodic HRP audit; and implementation of an onsite central clearing house. The components and effects of HRP are discussed in further detail in this paper

  5. Human performance for the success of equipment reliability programs

    International Nuclear Information System (INIS)

    Woodcock, J.

    2007-01-01

    Human performance is a critical element of programs directed at equipment reliability. Reliable equipment performance requires broad support from all levels of plant management and throughout all plant departments. Experience at both nuclear power plants and fuel manufacturing plants shows that human performance must be addressed during all phases of program implementation from the beginning through the establishment of a living, on-going process. At the beginning, certain organizational and management actions during the initiation of the program set the stage for successful adoption by station personnel, leading to more rapid benefits. For the long term, equipment reliability is a living process needed throughout the lifetime of a station, a program which must be motivated and measured. Sustained acceptance and participation by the plant personnel is a requirement, and culture is a key ingredient. This paper will provide an overview of key human performance issues to be considered, using the application of the INPO AP-913 Equipment Reliability Guideline as a basis and gives some best practices for training, communicating and implementing programs. The very last part includes ways to tell if the program is effective

  6. Accident Sequence Evaluation Program: Human reliability analysis procedure

    Energy Technology Data Exchange (ETDEWEB)

    Swain, A.D.

    1987-02-01

    This document presents a shortened version of the procedure, models, and data for human reliability analysis (HRA) which are presented in the Handbook of Human Reliability Analysis With emphasis on Nuclear Power Plant Applications (NUREG/CR-1278, August 1983). This shortened version was prepared and tried out as part of the Accident Sequence Evaluation Program (ASEP) funded by the US Nuclear Regulatory Commission and managed by Sandia National Laboratories. The intent of this new HRA procedure, called the ''ASEP HRA Procedure,'' is to enable systems analysts, with minimal support from experts in human reliability analysis, to make estimates of human error probabilities and other human performance characteristics which are sufficiently accurate for many probabilistic risk assessments. The ASEP HRA Procedure consists of a Pre-Accident Screening HRA, a Pre-Accident Nominal HRA, a Post-Accident Screening HRA, and a Post-Accident Nominal HRA. The procedure in this document includes changes made after tryout and evaluation of the procedure in four nuclear power plants by four different systems analysts and related personnel, including human reliability specialists. The changes consist of some additional explanatory material (including examples), and more detailed definitions of some of the terms. 42 refs.

  7. Accident Sequence Evaluation Program: Human reliability analysis procedure

    International Nuclear Information System (INIS)

    Swain, A.D.

    1987-02-01

    This document presents a shortened version of the procedure, models, and data for human reliability analysis (HRA) which are presented in the Handbook of Human Reliability Analysis With emphasis on Nuclear Power Plant Applications (NUREG/CR-1278, August 1983). This shortened version was prepared and tried out as part of the Accident Sequence Evaluation Program (ASEP) funded by the US Nuclear Regulatory Commission and managed by Sandia National Laboratories. The intent of this new HRA procedure, called the ''ASEP HRA Procedure,'' is to enable systems analysts, with minimal support from experts in human reliability analysis, to make estimates of human error probabilities and other human performance characteristics which are sufficiently accurate for many probabilistic risk assessments. The ASEP HRA Procedure consists of a Pre-Accident Screening HRA, a Pre-Accident Nominal HRA, a Post-Accident Screening HRA, and a Post-Accident Nominal HRA. The procedure in this document includes changes made after tryout and evaluation of the procedure in four nuclear power plants by four different systems analysts and related personnel, including human reliability specialists. The changes consist of some additional explanatory material (including examples), and more detailed definitions of some of the terms. 42 refs

  8. DOE Human Reliability Program Removals Report 2004-2006

    International Nuclear Information System (INIS)

    Center for Human Reliability Studies

    2007-01-01

    This report presents results of the comprehensive data analysis and assessment of all U.S. Department of Energy (DOE) and National Nuclear Security Administration (NNSA) facilities that have positions requiring workers to be certified in the Human Reliability Program (HRP). Those facilities include: Albuquerque, Amarillo, DOE Headquarters, Hanford, Idaho, Nevada, Oak Ridge, Oakland, and Savannah River. The HRP was established to ensure, through continuous review and evaluation, the reliability of individuals who have access to the DOE's most sensitive facilities, materials, and information

  9. Human reliability

    International Nuclear Information System (INIS)

    Embrey, D.E.

    1987-01-01

    Concepts and techniques of human reliability have been developed and are used mostly in probabilistic risk assessment. For this, the major application of human reliability assessment has been to identify the human errors which have a significant effect on the overall safety of the system and to quantify the probability of their occurrence. Some of the major issues within human reliability studies are reviewed and it is shown how these are applied to the assessment of human failures in systems. This is done under the following headings; models of human performance used in human reliability assessment, the nature of human error, classification of errors in man-machine systems, practical aspects, human reliability modelling in complex situations, quantification and examination of human reliability, judgement based approaches, holistic techniques and decision analytic approaches. (UK)

  10. Human reliability

    International Nuclear Information System (INIS)

    Bubb, H.

    1992-01-01

    This book resulted from the activity of Task Force 4.2 - 'Human Reliability'. This group was established on February 27th, 1986, at the plenary meeting of the Technical Reliability Committee of VDI, within the framework of the joint committee of VDI on industrial systems technology - GIS. It is composed of representatives of industry, representatives of research institutes, of technical control boards and universities, whose job it is to study how man fits into the technical side of the world of work and to optimize this interaction. In a total of 17 sessions, information from the part of ergonomy dealing with human reliability in using technical systems at work was exchanged, and different methods for its evaluation were examined and analyzed. The outcome of this work was systematized and compiled in this book. (orig.) [de

  11. The INEL Human Reliability Program: The first two years of experience

    International Nuclear Information System (INIS)

    Minner, D.E.

    1986-01-01

    This paper provides a review of the design, implementation, and operation of the INEL Human Reliability Program from January 1984 through June of 1986. Human Reliability Programs are defined in terms of the ''insider threat'' to security of nuclear facilities. The design of HRP's are discussed with special attention given the special challenge of the disgruntled employee. Each component of an HRP is reviewed noting pitfalls and opportunities with each: drug testing of applicants and incumbents, psychological evaluation by management, security clearance procedures and administration including the use of an Employee Review Board to recommend action prior to final management decision

  12. Improving human reliability through better nuclear power plant system design: Program for advanced nuclear power studies

    International Nuclear Information System (INIS)

    Golay, M.W.

    1993-01-01

    The project on ''Development of a Theory of the Dependence of Human Reliability upon System Designs as a Means of Improving Nuclear Power Plant Performance'' was been undertaken in order to address the problem of human error in advanced nuclear power plant designs. Lack of a mature theory has retarded progress in reducing likely frequencies of human errors. Work being pursued in this project is to perform a set of experiments involving human subjects who are required to operate, diagnose and respond to changes in computer-simulated systems, relevant to those encountered in nuclear power plants, which are made to differ in complexity in a systematic manner. The computer program used to present the problems to be solved also records the response of the operator as it unfolds

  13. Human reliability analysis

    International Nuclear Information System (INIS)

    Dougherty, E.M.; Fragola, J.R.

    1988-01-01

    The authors present a treatment of human reliability analysis incorporating an introduction to probabilistic risk assessment for nuclear power generating stations. They treat the subject according to the framework established for general systems theory. Draws upon reliability analysis, psychology, human factors engineering, and statistics, integrating elements of these fields within a systems framework. Provides a history of human reliability analysis, and includes examples of the application of the systems approach

  14. AECL's reliability and maintainability program

    International Nuclear Information System (INIS)

    Wolfe, W.A.; Nieuwhof, G.W.E.

    1976-05-01

    AECL's reliability and maintainability program for nuclear generating stations is described. How the various resources of the company are organized to design and construct stations that operate reliably and safely is shown. Reliability and maintainability includes not only special mathematically oriented techniques, but also the technical skills and organizational abilities of the company. (author)

  15. Equipment Reliability Program in NPP Krsko

    International Nuclear Information System (INIS)

    Skaler, F.; Djetelic, N.

    2006-01-01

    Operation that is safe, reliable, effective and acceptable to public is the common message in a mission statement of commercial nuclear power plants (NPPs). To fulfill these goals, nuclear industry, among other areas, has to focus on: 1 Human Performance (HU) and 2 Equipment Reliability (EQ). The performance objective of HU is as follows: The behaviors of all personnel result in safe and reliable station operation. While unwanted human behaviors in operations mostly result directly in the event, the behavior flaws either in the area of maintenance or engineering usually cause decreased equipment reliability. Unsatisfied Human performance leads even the best designed power plants into significant operating events, which can be found as well-known examples in nuclear industry. Equipment reliability is today recognized as the key to success. While the human performance at most NPPs has been improving since the start of WANO / INPO / IAEA evaluations, the open energy market has forced the nuclear plants to reduce production costs and operate more reliably and effectively. The balance between these two (opposite) goals has made equipment reliability even more important for safe, reliable and efficient production. Insisting on on-line operation by ignoring some principles of safety could nowadays in a well-developed safety culture and human performance environment exceed the cost of electricity losses. In last decade the leading USA nuclear companies put a lot of effort to improve equipment reliability primarily based on INPO Equipment Reliability Program AP-913 at their NPP stations. The Equipment Reliability Program is the key program not only for safe and reliable operation, but also for the Life Cycle Management and Aging Management on the way to the nuclear power plant life extension. The purpose of Equipment Reliability process is to identify, organize, integrate and coordinate equipment reliability activities (preventive and predictive maintenance, maintenance

  16. A reliability program approach to operational safety

    International Nuclear Information System (INIS)

    Mueller, C.J.; Bezella, W.A.

    1985-01-01

    A Reliability Program (RP) model based on proven reliability techniques is being formulated for potential application in the nuclear power industry. Methods employed under NASA and military direction, commercial airline and related FAA programs were surveyed and a review of current nuclear risk-dominant issues conducted. The need for a reliability approach to address dependent system failures, operating and emergency procedures and human performance, and develop a plant-specific performance data base for safety decision making is demonstrated. Current research has concentrated on developing a Reliability Program approach for the operating phase of a nuclear plant's lifecycle. The approach incorporates performance monitoring and evaluation activities with dedicated tasks that integrate these activities with operation, surveillance, and maintenance of the plant. The detection, root-cause evaluation and before-the-fact correction of incipient or actual systems failures as a mechanism for maintaining plant safety is a major objective of the Reliability Program. (orig./HP)

  17. Emergency diesel generator reliability program

    International Nuclear Information System (INIS)

    Serkiz, A.W.

    1989-01-01

    The need for an emergency diesel generator (EDG) reliability program has been established by 10 CFR Part 50, Section 50.63, Loss of All Alternating Current Power, which requires that utilities assess their station blackout duration and recovery capability. EDGs are the principal emergency ac power sources for coping with a station blackout. Regulatory Guide 1.155, Station Blackout, identifies a need for (1) an EDG reliability equal to or greater than 0.95, and (2) an EDG reliability program to monitor and maintain the required levels. The resolution of Generic Safety Issue (GSI) B-56 embodies the identification of a suitable EDG reliability program structure, revision of pertinent regulatory guides and Tech Specs, and development of an Inspection Module. Resolution of B-56 is coupled to the resolution of Unresolved Safety Issue (USI) A-44, Station Blackout, which resulted in the station blackout rule, 10 CFR 50.63 and Regulatory Guide 1.155, Station Blackout. This paper discusses the principal elements of an EDG reliability program developed for resolving GSI B-56 and related matters

  18. Human factors reliability Benchmark exercise

    International Nuclear Information System (INIS)

    Poucet, A.

    1989-06-01

    The Joint Research Centre of the European Commission has organized a Human Factors Reliability Benchmark Exercise (HF-RBE) with the aim of assessing the state of the art in human reliability modelling and assessment. Fifteen teams from eleven countries, representing industry, utilities, licensing organisations and research institutes, participated in the HF-RBE. The HF-RBE was organized around two study cases: (1) analysis of routine functional Test and Maintenance (T and M) procedures: with the aim of assessing the probability of test induced failures, the probability of failures to remain unrevealed and the potential to initiate transients because of errors performed in the test; (2) analysis of human actions during an operational transient: with the aim of assessing the probability that the operators will correctly diagnose the malfunctions and take proper corrective action. This report contains the final summary reports produced by the participants in the exercise

  19. Human factors reliability benchmark exercise

    International Nuclear Information System (INIS)

    Poucet, A.

    1989-08-01

    The Joint Research Centre of the European Commission has organised a Human Factors Reliability Benchmark Exercise (HF-RBE) with the aim of assessing the state of the art in human reliability modelling and assessment. Fifteen teams from eleven countries, representing industry, utilities, licensing organisations and research institutes, participated in the HF-RBE. The HF-RBE was organised around two study cases: (1) analysis of routine functional Test and Maintenance (TPM) procedures: with the aim of assessing the probability of test induced failures, the probability of failures to remain unrevealed and the potential to initiate transients because of errors performed in the test; (2) analysis of human actions during an operational transient: with the aim of assessing the probability that the operators will correctly diagnose the malfunctions and take proper corrective action. This report summarises the contributions received from the participants and analyses these contributions on a comparative basis. The aim of this analysis was to compare the procedures, modelling techniques and quantification methods used, to obtain insight in the causes and magnitude of the variability observed in the results, to try to identify preferred human reliability assessment approaches and to get an understanding of the current state of the art in the field identifying the limitations that are still inherent to the different approaches

  20. Human reliability assessment in context

    International Nuclear Information System (INIS)

    Hollnagel, Erik

    2005-01-01

    Human Reliability Assessment (HRA) is conducted on the unspoken premise that 'human error' is a meaningful concept and that it can be associated with individual actions. The basis for this assumption it found in the origin of HRA, as a necessary extension of PSA to account for the impact of failures emanating from human actions. Although it was natural to model HRA on PSA, a large number of studies have shown that the premises are wrong, specifically that human and technological functions cannot be decomposed in the same manner. The general experience from accident studies also indicates that action failures are a function of the context, and that it is the variability of the context rather than the 'human error probability' that is the much sought for signal. Accepting this will have significant consequences for the way in which HRA, and ultimately also PSA, should be pursued

  1. Human Reliability Analysis: session summary

    International Nuclear Information System (INIS)

    Hall, R.E.

    1985-01-01

    The use of Human Reliability Analysis (HRA) to identify and resolve human factors issues has significantly increased over the past two years. Today, utilities, research institutions, consulting firms, and the regulatory agency have found a common application of HRA tools and Probabilistic Risk Assessment (PRA). The ''1985 IEEE Third Conference on Human Factors and Power Plants'' devoted three sessions to the discussion of these applications and a review of the insights so gained. This paper summarizes the three sessions and presents those common conclusions that were discussed during the meeting. The paper concludes that session participants supported the use of an adequately documented ''living PRA'' to address human factors issues in design and procedural changes, regulatory compliance, and training and that the techniques can produce cost effective qualitative results that are complementary to more classical human factors methods

  2. Interim reliability evaluation program (IREP)

    International Nuclear Information System (INIS)

    Carlson, D.D.; Murphy, J.A.

    1981-01-01

    The Interim Reliability Evaluation Program (IREP), sponsored by the Office of Nuclear Regulatory Research of the US Nuclear Regulatory Commission, is currently applying probabilistic risk analysis techniques to two PWR and two BWR type power plants. Emphasis was placed on the systems analysis portion of the risk assessment, as opposed to accident phenomenology or consequence analysis, since the identification of risk significant plant features was of primary interest. Traditional event tree/fault tree modeling was used for the analysis. However, the study involved a more thorough investigation of transient initiators and of support system faults than studies in the past and substantially improved techniques were used to quantify accident sequence frequencies. This study also attempted to quantify the potential for operator recovery actions in the course of each significant accident

  3. Human reliability. Is probabilistic human reliability assessment possible?

    International Nuclear Information System (INIS)

    Mosneron Dupin, F.

    1996-01-01

    The possibility of carrying out Probabilistic Human Reliability Assessments (PHRA) is often doubted. Basing ourselves on the experience Electricite de France (EDF) has acquired in Probabilistic Safety Assessments for nuclear power plants, we show why the uncertainty of PHRA is very high. We then specify the limits of generic data and models for PHRA: very important factors are often poorly taken into account. To account for them, you need to have proper understanding of the actual context in which operators work. This demands surveys on the field (power plant and simulator) all of which must be carried out with behaviours science skills. The idea of estimating the probabilities of operator failure must not be abandoned, but probabilities must be given less importance, for they are only approximate indications. The qualitative aspects of PHRA should be given greater value (analysis process and qualitative insights). That is why the description (illustrated by case histories) of the main mechanisms of human behaviour, and of their manifestations in the nuclear power plant context (in terms of habits, attitudes, and informal methods and organization in particular) should be an important part of PHRA handbooks. These handbooks should also insist more on methods for gathering information on the actual context of the work of operators. Under these conditions, the PHRA should be possible and even desirable as a process for systematic analysis and assessment of human intervention. (author). 24 refs, 2 figs, 1 tab

  4. Human reliability. Is probabilistic human reliability assessment possible?

    Energy Technology Data Exchange (ETDEWEB)

    Mosneron Dupin, F

    1997-12-31

    The possibility of carrying out Probabilistic Human Reliability Assessments (PHRA) is often doubted. Basing ourselves on the experience Electricite de France (EDF) has acquired in Probabilistic Safety Assessments for nuclear power plants, we show why the uncertainty of PHRA is very high. We then specify the limits of generic data and models for PHRA: very important factors are often poorly taken into account. To account for them, you need to have proper understanding of the actual context in which operators work. This demands surveys on the field (power plant and simulator) all of which must be carried out with behaviours science skills. The idea of estimating the probabilities of operator failure must not be abandoned, but probabilities must be given less importance, for they are only approximate indications. The qualitative aspects of PHRA should be given greater value (analysis process and qualitative insights). That is why the description (illustrated by case histories) of the main mechanisms of human behaviour, and of their manifestations in the nuclear power plant context (in terms of habits, attitudes, and informal methods and organization in particular) should be an important part of PHRA handbooks. These handbooks should also insist more on methods for gathering information on the actual context of the work of operators. Under these conditions, the PHRA should be possible and even desirable as a process for systematic analysis and assessment of human intervention. (author). 24 refs, 2 figs, 1 tab.

  5. Common-Reliability Cumulative-Binomial Program

    Science.gov (United States)

    Scheuer, Ernest, M.; Bowerman, Paul N.

    1989-01-01

    Cumulative-binomial computer program, CROSSER, one of set of three programs, calculates cumulative binomial probability distributions for arbitrary inputs. CROSSER, CUMBIN (NPO-17555), and NEWTONP (NPO-17556), used independently of one another. Point of equality between reliability of system and common reliability of components found. Used by statisticians and users of statistical procedures, test planners, designers, and numerical analysts. Program written in C.

  6. Human reliability in complex systems: an overview

    International Nuclear Information System (INIS)

    Embrey, D.E.

    1976-07-01

    A detailed analysis is presented of the main conceptual background underlying the areas of human reliability and human error. The concept of error is examined and generalized to that of human reliability, and some of the practical and methodological difficulties of reconciling the different standpoints of the human factors specialist and the engineer discussed. Following a survey of general reviews available on human reliability, quantitative techniques for prediction of human reliability are considered. An in-depth critical analysis of the various quantitative methods is then presented, together with the data bank requirements for human reliability prediction. Reliability considerations in process control and nuclear plant, and also areas of design, maintenance, testing and emergency situations are discussed. The effects of stress on human reliability are analysed and methods of minimizing these effects discussed. Finally, a summary is presented and proposals for further research are set out. (author)

  7. Human Performance Modeling for Dynamic Human Reliability Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Boring, Ronald Laurids [Idaho National Laboratory; Joe, Jeffrey Clark [Idaho National Laboratory; Mandelli, Diego [Idaho National Laboratory

    2015-08-01

    Part of the U.S. Department of Energy’s (DOE’s) Light Water Reac- tor Sustainability (LWRS) Program, the Risk-Informed Safety Margin Charac- terization (RISMC) Pathway develops approaches to estimating and managing safety margins. RISMC simulations pair deterministic plant physics models with probabilistic risk models. As human interactions are an essential element of plant risk, it is necessary to integrate human actions into the RISMC risk framework. In this paper, we review simulation based and non simulation based human reliability analysis (HRA) methods. This paper summarizes the founda- tional information needed to develop a feasible approach to modeling human in- teractions in RISMC simulations.

  8. Space Mission Human Reliability Analysis (HRA) Project

    Science.gov (United States)

    Boyer, Roger

    2014-01-01

    The purpose of the Space Mission Human Reliability Analysis (HRA) Project is to extend current ground-based HRA risk prediction techniques to a long-duration, space-based tool. Ground-based HRA methodology has been shown to be a reasonable tool for short-duration space missions, such as Space Shuttle and lunar fly-bys. However, longer-duration deep-space missions, such as asteroid and Mars missions, will require the crew to be in space for as long as 400 to 900 day missions with periods of extended autonomy and self-sufficiency. Current indications show higher risk due to fatigue, physiological effects due to extended low gravity environments, and others, may impact HRA predictions. For this project, Safety & Mission Assurance (S&MA) will work with Human Health & Performance (HH&P) to establish what is currently used to assess human reliabiilty for human space programs, identify human performance factors that may be sensitive to long duration space flight, collect available historical data, and update current tools to account for performance shaping factors believed to be important to such missions. This effort will also contribute data to the Human Performance Data Repository and influence the Space Human Factors Engineering research risks and gaps (part of the HRP Program). An accurate risk predictor mitigates Loss of Crew (LOC) and Loss of Mission (LOM).The end result will be an updated HRA model that can effectively predict risk on long-duration missions.

  9. System-Reliability Cumulative-Binomial Program

    Science.gov (United States)

    Scheuer, Ernest M.; Bowerman, Paul N.

    1989-01-01

    Cumulative-binomial computer program, NEWTONP, one of set of three programs, calculates cumulative binomial probability distributions for arbitrary inputs. NEWTONP, CUMBIN (NPO-17555), and CROSSER (NPO-17557), used independently of one another. Program finds probability required to yield given system reliability. Used by statisticians and users of statistical procedures, test planners, designers, and numerical analysts. Program written in C.

  10. Software reliability and programming language

    International Nuclear Information System (INIS)

    Ehrenberger, W.

    1983-01-01

    When discussing advantages and drawbacks of programming languages, it is sometimes suggested to use these languages also for safety-related tasks. The author states the demands to be made on programming languages for this purpose. His recommendations are based on the work of TC7 of the European Workshop on Industrial Computer Systems and WG A3 of IEC SC 45a. (orig./HP) [de

  11. Human Reliability Data Bank: evaluation results

    International Nuclear Information System (INIS)

    Comer, M.K.; Donovan, M.D.; Gaddy, C.D.

    1985-01-01

    The US Nuclear Regulatory Commission (NRC), Sandia National Laboratories (SNL), and General Physics Corporation are conducting a research program to determine the practicality, acceptability, and usefulness of a Human Reliability Data Bank for nuclear power industry probabilistic risk assessment (PRA). As part of this program, a survey was conducted of existing human reliability data banks from other industries, and a detailed concept of a Data Bank for the nuclear industry was developed. Subsequently, a detailed specification for implementing the Data Bank was developed. An evaluation of this specification was conducted and is described in this report. The evaluation tested data treatment, storage, and retrieval using the Data Bank structure, as modified from NUREG/CR-2744, and detailed procedures for data processing and retrieval, developed prior to this evaluation and documented in the test specification. The evaluation consisted of an Operability Demonstration and Evaluation of the data processing procedures, a Data Retrieval Demonstration and Evaluation, a Retrospective Analysis that included a survey of organizations currently operating data banks for the nuclear power industry, and an Internal Analysis of the current Data Bank System

  12. Human reliability data bank: feasibility study

    International Nuclear Information System (INIS)

    Comer, K.; Miller, D.P.; Donovan, M.

    1984-01-01

    The US Nuclear Regulatory Commission and Sandia National Laboratories have been developing a plan for a human reliability data bank since August 1981. This research is in response to the data needs of the nuclear power industry's probabilistic risk assessment community. The three phases of the program are to: (A) develop the data bank concept, (B) develop an implementation plan and conduct a feasibility study, and (C) assist a sponsor in implementing the data bank. The program is now in Phase B. This paper describes the methods used in the feasibility study. Decisions to be made in the future regarding full-scale implementation will be based, in part, on the outcome of this study. 3 references, 2 figures

  13. Establishing monitoring programs for travel time reliability.

    Science.gov (United States)

    2014-01-01

    Within the second Strategic Highway Research Program (SHRP 2), Project L02 focused on creating a suite of methods by which transportation agencies could monitor and evaluate travel time reliability. Creation of the methods also produced an improved u...

  14. Review of some aspects of human reliability quantification

    International Nuclear Information System (INIS)

    Lydell, B.O.Y.; Spurgin, A.J.; Hannaman, G.W.; Lukic, Y.D.

    1986-01-01

    An area in systems reliability considered to be weak, is the characterization and quantification of the role of the operations and maintenance staff in combatting accidents. Several R and D programs are underway to improve the modeling of human interactions and some progress has been made. This paper describes a specific aspect of human reliability analysis which is referred to as modeling of cognitive processes. In particular, the basis for the so- called Human Cognitive Reliability (HCR) model is described and the focus is on its validation and on its benefits and limitations

  15. Space Mission Human Reliability Analysis (HRA) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of this project is to extend current ground-based Human Reliability Analysis (HRA) techniques to a long-duration, space-based tool to more effectively...

  16. Culture Representation in Human Reliability Analysis

    Energy Technology Data Exchange (ETDEWEB)

    David Gertman; Julie Marble; Steven Novack

    2006-12-01

    Understanding human-system response is critical to being able to plan and predict mission success in the modern battlespace. Commonly, human reliability analysis has been used to predict failures of human performance in complex, critical systems. However, most human reliability methods fail to take culture into account. This paper takes an easily understood state of the art human reliability analysis method and extends that method to account for the influence of culture, including acceptance of new technology, upon performance. The cultural parameters used to modify the human reliability analysis were determined from two standard industry approaches to cultural assessment: Hofstede’s (1991) cultural factors and Davis’ (1989) technology acceptance model (TAM). The result is called the Culture Adjustment Method (CAM). An example is presented that (1) reviews human reliability assessment with and without cultural attributes for a Supervisory Control and Data Acquisition (SCADA) system attack, (2) demonstrates how country specific information can be used to increase the realism of HRA modeling, and (3) discusses the differences in human error probability estimates arising from cultural differences.

  17. The SACADA database for human reliability and human performance

    International Nuclear Information System (INIS)

    James Chang, Y.; Bley, Dennis; Criscione, Lawrence; Kirwan, Barry; Mosleh, Ali; Madary, Todd; Nowell, Rodney; Richards, Robert; Roth, Emilie M.; Sieben, Scott; Zoulis, Antonios

    2014-01-01

    Lack of appropriate and sufficient human performance data has been identified as a key factor affecting human reliability analysis (HRA) quality especially in the estimation of human error probability (HEP). The Scenario Authoring, Characterization, and Debriefing Application (SACADA) database was developed by the U.S. Nuclear Regulatory Commission (NRC) to address this data need. An agreement between NRC and the South Texas Project Nuclear Operating Company (STPNOC) was established to support the SACADA development with aims to make the SACADA tool suitable for implementation in the nuclear power plants' operator training program to collect operator performance information. The collected data would support the STPNOC's operator training program and be shared with the NRC for improving HRA quality. This paper discusses the SACADA data taxonomy, the theoretical foundation, the prospective data to be generated from the SACADA raw data to inform human reliability and human performance, and the considerations on the use of simulator data for HRA. Each SACADA data point consists of two information segments: context and performance results. Context is a characterization of the performance challenges to task success. The performance results are the results of performing the task. The data taxonomy uses a macrocognitive functions model for the framework. At a high level, information is classified according to the macrocognitive functions of detecting the plant abnormality, understanding the abnormality, deciding the response plan, executing the response plan, and team related aspects (i.e., communication, teamwork, and supervision). The data are expected to be useful for analyzing the relations between context, error modes and error causes in human performance

  18. Human Reliability Assessment and Human Performance Evaluation: Research and Analysis Activities at the U.S. NRC

    International Nuclear Information System (INIS)

    Ramey-Smith, A.M.

    1998-01-01

    The author indicates the themes of the six programs identified by the US NRC mission on human performance and human reliability activities. They aim at developing the technical basis to support human performance, at developing and updating a model of human performance and human reliability, at fostering national and international dialogue and cooperation efforts on human performance evaluation, at conducting operating events analysis and database development, and at providing support to human performance and human reliability inspection

  19. Human Reliability Analysis for Design: Using Reliability Methods for Human Factors Issues

    Energy Technology Data Exchange (ETDEWEB)

    Ronald Laurids Boring

    2010-11-01

    This paper reviews the application of human reliability analysis methods to human factors design issues. An application framework is sketched in which aspects of modeling typically found in human reliability analysis are used in a complementary fashion to the existing human factors phases of design and testing. The paper provides best achievable practices for design, testing, and modeling. Such best achievable practices may be used to evaluate and human system interface in the context of design safety certifications.

  20. Human Reliability Analysis for Design: Using Reliability Methods for Human Factors Issues

    International Nuclear Information System (INIS)

    Boring, Ronald Laurids

    2010-01-01

    This paper reviews the application of human reliability analysis methods to human factors design issues. An application framework is sketched in which aspects of modeling typically found in human reliability analysis are used in a complementary fashion to the existing human factors phases of design and testing. The paper provides best achievable practices for design, testing, and modeling. Such best achievable practices may be used to evaluate and human system interface in the context of design safety certifications.

  1. Human reliability assessment and probabilistic risk assessment

    International Nuclear Information System (INIS)

    Embrey, D.E.; Lucas, D.A.

    1989-01-01

    Human reliability assessment (HRA) is used within Probabilistic Risk Assessment (PRA) to identify the human errors (both omission and commission) which have a significant effect on the overall safety of the system and to quantify the probability of their occurrence. There exist a variey of HRA techniques and the selection of an appropriate one is often difficult. This paper reviews a number of available HRA techniques and discusses their strengths and weaknesses. The techniques reviewed include: decompositional methods, time-reliability curves and systematic expert judgement techniques. (orig.)

  2. Human reliability analysis of control room operators

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Isaac J.A.L.; Carvalho, Paulo Victor R.; Grecco, Claudio H.S. [Instituto de Engenharia Nuclear (IEN), Rio de Janeiro, RJ (Brazil)

    2005-07-01

    Human reliability is the probability that a person correctly performs some system required action in a required time period and performs no extraneous action that can degrade the system Human reliability analysis (HRA) is the analysis, prediction and evaluation of work-oriented human performance using some indices as human error likelihood and probability of task accomplishment. Significant progress has been made in the HRA field during the last years, mainly in nuclear area. Some first-generation HRA methods were developed, as THERP (Technique for human error rate prediction). Now, an array of called second-generation methods are emerging as alternatives, for instance ATHEANA (A Technique for human event analysis). The ergonomics approach has as tool the ergonomic work analysis. It focus on the study of operator's activities in physical and mental form, considering at the same time the observed characteristics of operator and the elements of the work environment as they are presented to and perceived by the operators. The aim of this paper is to propose a methodology to analyze the human reliability of the operators of industrial plant control room, using a framework that includes the approach used by ATHEANA, THERP and the work ergonomics analysis. (author)

  3. A taxonomy for human reliability analysis

    International Nuclear Information System (INIS)

    Beattie, J.D.; Iwasa-Madge, K.M.

    1984-01-01

    A human interaction taxonomy (classification scheme) was developed to facilitate human reliability analysis in a probabilistic safety evaluation of a nuclear power plant, being performed at Ontario Hydro. A human interaction occurs, by definition, when operators or maintainers manipulate, or respond to indication from, a plant component or system. The taxonomy aids the fault tree analyst by acting as a heuristic device. It helps define the range and type of human errors to be identified in the construction of fault trees, while keeping the identification by different analysts consistent. It decreases the workload associated with preliminary quantification of the large number of identified interactions by including a category called 'simple interactions'. Fault tree analysts quantify these according to a procedure developed by a team of human reliability specialists. The interactions which do not fit into this category are called 'complex' and are quantified by the human reliability team. The taxonomy is currently being used in fault tree construction in a probabilistic safety evaluation. As far as can be determined at this early stage, the potential benefits of consistency and completeness in identifying human interactions and streamlining the initial quantification are being realized

  4. An approach for assessing human decision reliability

    International Nuclear Information System (INIS)

    Pyy, P.

    2000-01-01

    This paper presents a method to study human reliability in decision situations related to nuclear power plant disturbances. Decisions often play a significant role in handling of emergency situations. The method may be applied to probabilistic safety assessments (PSAs) in cases where decision making is an important dimension of an accident sequence. Such situations are frequent e.g. in accident management. In this paper, a modelling approach for decision reliability studies is first proposed. Then, a case study with two decision situations with relatively different characteristics is presented. Qualitative and quantitative findings of the study are discussed. In very simple decision cases with time pressure, time reliability correlation proved out to be a feasible reliability modelling method. In all other decision situations, more advanced probabilistic decision models have to be used. Finally, decision probability assessment by using simulator run results and expert judgement is presented

  5. Operational human performance reliability assessment (OHPRA)

    International Nuclear Information System (INIS)

    Haas, P.M.; Swanson, P.J.; Connelly, E.M.

    1993-01-01

    Operational Human Performance Reliability Assessment (OHPRA) is an approach for assessing human performance that is being developed in response to demands from modern process industries for practical and effective tools to assess and improve human performance, and therefore overall system performance and safety. The single most distinguishing feature of the approach is that is defines human performance in open-quotes operationalclose quotes terms. OHPRA is focused not on generation of human error probabilities, but on practical analysis of human performance to aid management in (1) identifying open-quotes fixableclose quotes problems and (2) providing input on the importance and nature of potential improvements. Development of the model in progress uses a unique approach for eliciting expert strategies for assessing performance. A PC-based model incorporating this expertise is planned. A preliminary version of the approach has already been used successfully to identify practical human performance problems in reactor and chemical process plant operations

  6. Human factors reliability benchmark exercise: a review

    International Nuclear Information System (INIS)

    Humphreys, P.

    1990-01-01

    The Human Factors Reliability Benchmark Exercise has addressed the issues of identification, analysis, representation and quantification of Human Error in order to identify the strengths and weaknesses of available techniques. Using a German PWR nuclear powerplant as the basis for the studies, fifteen teams undertook evaluations of a routine functional Test and Maintenance procedure plus an analysis of human actions during an operational transient. The techniques employed by the teams are discussed and reviewed on a comparative basis. The qualitative assessments performed by each team compare well, but at the quantification stage there is much less agreement. (author)

  7. Interim Reliability Evaluation Program procedures guide

    International Nuclear Information System (INIS)

    Carlson, D.D.; Gallup, D.R.; Kolaczkowski, A.M.; Kolb, G.J.; Stack, D.W.; Lofgren, E.; Horton, W.H.; Lobner, P.R.

    1983-01-01

    This document presents procedures for conducting analyses of a scope similar to those performed in Phase II of the Interim Reliability Evaluation Program (IREP). It documents the current state of the art in performing the plant systems analysis portion of a probabilistic risk assessment. Insights gained into managing such an analysis are discussed. Step-by-step procedures and methodological guidance constitute the major portion of the document. While not to be viewed as a cookbook, the procedures set forth the principal steps in performing an IREP analysis. Guidance for resolving the problems encountered in previous analyses is offered. Numerous examples and representative products from previous analyses clarify the discussion

  8. Human reliability analysis using event trees

    International Nuclear Information System (INIS)

    Heslinga, G.

    1983-01-01

    The shut-down procedure of a technologically complex installation as a nuclear power plant consists of a lot of human actions, some of which have to be performed several times. The procedure is regarded as a chain of modules of specific actions, some of which are analyzed separately. The analysis is carried out by making a Human Reliability Analysis event tree (HRA event tree) of each action, breaking down each action into small elementary steps. The application of event trees in human reliability analysis implies more difficulties than in the case of technical systems where event trees were mainly used until now. The most important reason is that the operator is able to recover a wrong performance; memory influences play a significant role. In this study these difficulties are dealt with theoretically. The following conclusions can be drawn: (1) in principle event trees may be used in human reliability analysis; (2) although in practice the operator will recover his fault partly, theoretically this can be described as starting the whole event tree again; (3) compact formulas have been derived, by which the probability of reaching a specific failure consequence on passing through the HRA event tree after several times of recovery is to be calculated. (orig.)

  9. Standardizing the practice of human reliability analysis

    International Nuclear Information System (INIS)

    Hallbert, B.P.

    1993-01-01

    The practice of human reliability analysis (HRA) within the nuclear industry varies greatly in terms of posited mechanisms that shape human performance, methods of characterizing and analytically modeling human behavior, and the techniques that are employed to estimate the frequency with which human error occurs. This variation has been a source of contention among HRA practitioners regarding the validity of results obtained from different HRA methods. It has also resulted in attempts to develop standard methods and procedures for conducting HRAs. For many of the same reasons, the practice of HRA has not been standardized or has been standardized only to the extent that individual analysts have developed heuristics and consistent approaches in their practice of HRA. From the standpoint of consumers and regulators, this has resulted in a lack of clear acceptance criteria for the assumptions, modeling, and quantification of human errors in probabilistic risk assessments

  10. Benchmark of systematic human action reliability procedure

    International Nuclear Information System (INIS)

    Spurgin, A.J.; Hannaman, G.W.; Moieni, P.

    1986-01-01

    Probabilistic risk assessment (PRA) methodology has emerged as one of the most promising tools for assessing the impact of human interactions on plant safety and understanding the importance of the man/machine interface. Human interactions were considered to be one of the key elements in the quantification of accident sequences in a PRA. The approach to quantification of human interactions in past PRAs has not been very systematic. The Electric Power Research Institute sponsored the development of SHARP to aid analysts in developing a systematic approach for the evaluation and quantification of human interactions in a PRA. The SHARP process has been extensively peer reviewed and has been adopted by the Institute of Electrical and Electronics Engineers as the basis of a draft guide for the industry. By carrying out a benchmark process, in which SHARP is an essential ingredient, however, it appears possible to assess the strengths and weaknesses of SHARP to aid human reliability analysts in carrying out human reliability analysis as part of a PRA

  11. The quantitative failure of human reliability analysis

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, C.T.

    1995-07-01

    This philosophical treatise argues the merits of Human Reliability Analysis (HRA) in the context of the nuclear power industry. Actually, the author attacks historic and current HRA as having failed in informing policy makers who make decisions based on risk that humans contribute to systems performance. He argues for an HRA based on Bayesian (fact-based) inferential statistics, which advocates a systems analysis process that employs cogent heuristics when using opinion, and tempers itself with a rational debate over the weight given subjective and empirical probabilities.

  12. Human reliability in probabilistic safety assessments

    International Nuclear Information System (INIS)

    Nunez Mendez, J.

    1989-01-01

    Nowadays a growing interest in medioambiental aspects is detected in our country. It implies an assessment of the risk involved in the industrial processess and installations in order to determine if those are into the acceptable limits. In these safety assessments, among which PSA (Probabilistic Safety Assessments), can be pointed out the role played by the human being in the system is one of the more relevant subjects. (This relevance has been demostrated in the accidents happenned). However in Spain there aren't manuals specifically dedicated to asses the human contribution to risk in the frame of PSAs. This report aims to improve this situation providing: a) a theoretical background to help the reader in the understanding of the nature of the human error, b) a guide to carry out a Human Reliability Analysis and c) a selected overwiev of the techniques and methodologies currently applied in this area. (Author)

  13. Human Reliability in Probabilistic Safety Assessments

    International Nuclear Information System (INIS)

    Nunez Mendez, J.

    1989-01-01

    Nowadays a growing interest in environmental aspects is detected in our country. It implies an assessment of the risk involved in the industrial processes and installations in order to determine if those are into the acceptable limits. In these safety assessments, among which PSA (Probabilistic Safety Assessments), can be pointed out the role played by the human being in the system is one of the more relevant subjects (This relevance has been demonstrated in the accidents happened) . However, in Spain there aren't manuals specifically dedicated to asses the human contribution to risk in the frame of PSAs. This report aims to improve this situation providing: a) a theoretical background to help the reader in the understanding of the nature of the human error, b) a quid to carry out a Human Reliability Analysis and c) a selected overview of the techniques and methodologies currently applied in this area. (Author) 20 refs

  14. Human reliability analysis of dependent events

    International Nuclear Information System (INIS)

    Swain, A.D.; Guttmann, H.E.

    1977-01-01

    In the human reliability analysis in WASH-1400, the continuous variable of degree of interaction among human events was approximated by selecting four points on this continuum to represent the entire continuum. The four points selected were identified as zero coupling (i.e., zero dependence), complete coupling (i.e., complete dependence), and two intermediate points--loose coupling (a moderate level of dependence) and tight coupling (a high level of dependence). The paper expands the WASH-1400 treatment of common mode failure due to the interaction of human activities. Mathematical expressions for the above four levels of dependence are derived for parallel and series systems. The psychological meaning of each level of dependence is illustrated by examples, with probability tree diagrams to illustrate the use of conditional probabilities resulting from the interaction of human actions in nuclear power plant tasks

  15. Achieving High Reliability Operations Through Multi-Program Integration

    Energy Technology Data Exchange (ETDEWEB)

    Holly M. Ashley; Ronald K. Farris; Robert E. Richards

    2009-04-01

    Over the last 20 years the Idaho National Laboratory (INL) has adopted a number of operations and safety-related programs which has each periodically taken its turn in the limelight. As new programs have come along there has been natural competition for resources, focus and commitment. In the last few years, the INL has made real progress in integrating all these programs and are starting to realize important synergies. Contributing to this integration are both collaborative individuals and an emerging shared vision and goal of the INL fully maturing in its high reliability operations. This goal is so powerful because the concept of high reliability operations (and the resulting organizations) is a masterful amalgam and orchestrator of the best of all the participating programs (i.e. conduct of operations, behavior based safety, human performance, voluntary protection, quality assurance, and integrated safety management). This paper is a brief recounting of the lessons learned, thus far, at the INL in bringing previously competing programs into harmony under the goal (umbrella) of seeking to perform regularly as a high reliability organization. In addition to a brief diagram-illustrated historical review, the authors will share the INL’s primary successes (things already effectively stopped or started) and the gaps yet to be bridged.

  16. Task Decomposition in Human Reliability Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Boring, Ronald Laurids [Idaho National Laboratory; Joe, Jeffrey Clark [Idaho National Laboratory

    2014-06-01

    In the probabilistic safety assessments (PSAs) used in the nuclear industry, human failure events (HFEs) are determined as a subset of hardware failures, namely those hardware failures that could be triggered by human action or inaction. This approach is top-down, starting with hardware faults and deducing human contributions to those faults. Elsewhere, more traditionally human factors driven approaches would tend to look at opportunities for human errors first in a task analysis and then identify which of those errors is risk significant. The intersection of top-down and bottom-up approaches to defining HFEs has not been carefully studied. Ideally, both approaches should arrive at the same set of HFEs. This question remains central as human reliability analysis (HRA) methods are generalized to new domains like oil and gas. The HFEs used in nuclear PSAs tend to be top-down— defined as a subset of the PSA—whereas the HFEs used in petroleum quantitative risk assessments (QRAs) are more likely to be bottom-up—derived from a task analysis conducted by human factors experts. The marriage of these approaches is necessary in order to ensure that HRA methods developed for top-down HFEs are also sufficient for bottom-up applications.

  17. Advancing Usability Evaluation through Human Reliability Analysis

    International Nuclear Information System (INIS)

    Ronald L. Boring; David I. Gertman

    2005-01-01

    This paper introduces a novel augmentation to the current heuristic usability evaluation methodology. The SPAR-H human reliability analysis method was developed for categorizing human performance in nuclear power plants. Despite the specialized use of SPAR-H for safety critical scenarios, the method also holds promise for use in commercial off-the-shelf software usability evaluations. The SPAR-H method shares task analysis underpinnings with human-computer interaction, and it can be easily adapted to incorporate usability heuristics as performance shaping factors. By assigning probabilistic modifiers to heuristics, it is possible to arrive at the usability error probability (UEP). This UEP is not a literal probability of error but nonetheless provides a quantitative basis to heuristic evaluation. When combined with a consequence matrix for usability errors, this method affords ready prioritization of usability issues

  18. Human factors considerations for reliability and safety

    International Nuclear Information System (INIS)

    Carnino, A.

    1985-01-01

    Human factors in many industries have become an important issue, since the last few years. They should be considered during the whole life time of a plant: design, fabrication and construction, licensing, operation. Improvements have been performed in the field of man-machine interface such as procedures, control room lay-out, operator aids, training. In order to meet the needs of reliability and probabilistic risk studies, quantification of human errors has been developed but needs still improvements in the field of cognitive behaviour, diagnosis and representation errors. Data banks to support these quantifications are still in a development stage. This applies to nuclear power plants and several examples are given to illustrate the above ideas. In conclusion, human factors field is in a very quickly evolving process but the tendency is still to adapt the man to the machines whilst the reverse would be desirable

  19. Research review and development trends of human reliability analysis techniques

    International Nuclear Information System (INIS)

    Li Pengcheng; Chen Guohua; Zhang Li; Dai Licao

    2011-01-01

    Human reliability analysis (HRA) methods are reviewed. The theoretical basis of human reliability analysis, human error mechanism, the key elements of HRA methods as well as the existing HRA methods are respectively introduced and assessed. Their shortcomings,the current research hotspot and difficult problems are identified. Finally, it takes a close look at the trends of human reliability analysis methods. (authors)

  20. Human reliability assessors guide: an overview

    International Nuclear Information System (INIS)

    Humphreys, P.

    1988-01-01

    The Human Reliability Assessors Guide 1 provides a review of techniques currently available for the quantification of Human Error Probabilities. The Guide has two main objectives. The first is to provide a clear and comprehensive description of eight major techniques which can be used to assess human reliability. This is supplemented by case studies taken from practical applications of each technique to industrial problems. The second objective is to provide practical guidelines for the selection of techniques. The selection process is aided by reference to a set of criteria against which each of the eight techniques have been evaluated. Utilising the criteria and critiques, a selection method is presented. This is designed to assist the potential user in choosing the technique, or combination of techniques, most suited to answering the users requirements. For each of the eight selected techniques, a summary of the origins of the technique is provided, together with a method description, detailed case studies, abstracted case studies and supporting references. (author)

  1. Impact of Advanced HSIs on Human Reliability

    Energy Technology Data Exchange (ETDEWEB)

    Duc, Duy Le; Kim, Jonghyun [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2013-10-15

    This study investigated how a digitalized control room may influence operators' performance. The new HSI system is highly supportive of knowledge-based works and during complex scenarios. The most noticeable enhancement and gained improvement came from the utilization of the CPS. The results also showed that for different task types, the effects of distinctive features are diverse. Since there is large flexibility in the design of advanced HSI systems, HRA should also consider the detailed design analysis for the plant of interest. Current designs of advanced Main Control Room (MCR) apply digital technology whose features include the Advanced Alarm System (AAS), Digital Information Display System (DIDS), Computerized Procedure System (CPS), and Soft Controls (SCs). Despite the significant improvements made to these features, the full impact have yet to be thoroughly assessed using Human Reliability Analysis (HRA). Furthermore, the evaluation criteria for these new features have not been provided; and there are no available data to perform adjustments for human error probabilities (HEPs), which have been developed for conventional control rooms. The aim of this study is to examine the potential effects of the new Human-System Interface (HSI) features on human reliability. Firstly, the characteristics and functions of the AAS, DIDS, CPS and SCs are assessed and categorized. Secondly, tasks related to the features are discussed, focusing on the differences between conventional and digital control rooms. Qualitative investigation of the impacts is performed by reviewing available literatures. Finally, a new model for the quantitative estimation of HEPs based on the Korean Standard HRA (K-HRA) method is proposed.

  2. Human Reliability Analysis for Small Modular Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Ronald L. Boring; David I. Gertman

    2012-06-01

    Because no human reliability analysis (HRA) method was specifically developed for small modular reactors (SMRs), the application of any current HRA method to SMRs represents tradeoffs. A first- generation HRA method like THERP provides clearly defined activity types, but these activity types do not map to the human-system interface or concept of operations confronting SMR operators. A second- generation HRA method like ATHEANA is flexible enough to be used for SMR applications, but there is currently insufficient guidance for the analyst, requiring considerably more first-of-a-kind analyses and extensive SMR expertise in order to complete a quality HRA. Although no current HRA method is optimized to SMRs, it is possible to use existing HRA methods to identify errors, incorporate them as human failure events in the probabilistic risk assessment (PRA), and quantify them. In this paper, we provided preliminary guidance to assist the human reliability analyst and reviewer in understanding how to apply current HRA methods to the domain of SMRs. While it is possible to perform a satisfactory HRA using existing HRA methods, ultimately it is desirable to formally incorporate SMR considerations into the methods. This may require the development of new HRA methods. More practicably, existing methods need to be adapted to incorporate SMRs. Such adaptations may take the form of guidance on the complex mapping between conventional light water reactors and small modular reactors. While many behaviors and activities are shared between current plants and SMRs, the methods must adapt if they are to perform a valid and accurate analysis of plant personnel performance in SMRs.

  3. Impact of Advanced HSIs on Human Reliability

    International Nuclear Information System (INIS)

    Duc, Duy Le; Kim, Jonghyun

    2013-01-01

    This study investigated how a digitalized control room may influence operators' performance. The new HSI system is highly supportive of knowledge-based works and during complex scenarios. The most noticeable enhancement and gained improvement came from the utilization of the CPS. The results also showed that for different task types, the effects of distinctive features are diverse. Since there is large flexibility in the design of advanced HSI systems, HRA should also consider the detailed design analysis for the plant of interest. Current designs of advanced Main Control Room (MCR) apply digital technology whose features include the Advanced Alarm System (AAS), Digital Information Display System (DIDS), Computerized Procedure System (CPS), and Soft Controls (SCs). Despite the significant improvements made to these features, the full impact have yet to be thoroughly assessed using Human Reliability Analysis (HRA). Furthermore, the evaluation criteria for these new features have not been provided; and there are no available data to perform adjustments for human error probabilities (HEPs), which have been developed for conventional control rooms. The aim of this study is to examine the potential effects of the new Human-System Interface (HSI) features on human reliability. Firstly, the characteristics and functions of the AAS, DIDS, CPS and SCs are assessed and categorized. Secondly, tasks related to the features are discussed, focusing on the differences between conventional and digital control rooms. Qualitative investigation of the impacts is performed by reviewing available literatures. Finally, a new model for the quantitative estimation of HEPs based on the Korean Standard HRA (K-HRA) method is proposed

  4. Concept development of the human reliability data bank

    International Nuclear Information System (INIS)

    Miller, D.P.

    1984-01-01

    The US Nuclear Regulatory Commission and Sandia National Laboratories initiated a three-phased research program in 1981 to develop a plan for a human reliability data bank. This research initiative was in response to the data needs of the nuclear power industry's probabilistic risk assessment community. The three phases are: (1) develop the data bank concept; (2) develop an implementation plan and conduct a feasibility test; and (3) assist the sponsor in implementing the data bank. This paper briefly describes some of the results of the work performed during Phase A and outlines the program elements schedules for Phase B

  5. Human reliability data collection and modelling

    International Nuclear Information System (INIS)

    1991-09-01

    The main purpose of this document is to review and outline the current state-of-the-art of the Human Reliability Assessment (HRA) used for quantitative assessment of nuclear power plants safe and economical operation. Another objective is to consider Human Performance Indicators (HPI) which can alert plant manager and regulator to departures from states of normal and acceptable operation. These two objectives are met in the three sections of this report. The first objective has been divided into two areas, based on the location of the human actions being considered. That is, the modelling and data collection associated with control room actions are addressed first in chapter 1 while actions outside the control room (including maintenance) are addressed in chapter 2. Both chapters 1 and 2 present a brief outline of the current status of HRA for these areas, and major outstanding issues. Chapter 3 discusses HPI. Such performance indicators can signal, at various levels, changes in factors which influence human performance. The final section of this report consists of papers presented by the participants of the Technical Committee Meeting. A separate abstract was prepared for each of these papers. Refs, figs and tabs

  6. A methodology to incorporate organizational factors into human reliability analysis

    International Nuclear Information System (INIS)

    Li Pengcheng; Chen Guohua; Zhang Li; Xiao Dongsheng

    2010-01-01

    A new holistic methodology for Human Reliability Analysis (HRA) is proposed to model the effects of the organizational factors on the human reliability. Firstly, a conceptual framework is built, which is used to analyze the causal relationships between the organizational factors and human reliability. Then, the inference model for Human Reliability Analysis is built by combining the conceptual framework with Bayesian networks, which is used to execute the causal inference and diagnostic inference of human reliability. Finally, a case example is presented to demonstrate the specific application of the proposed methodology. The results show that the proposed methodology of combining the conceptual model with Bayesian Networks can not only easily model the causal relationship between organizational factors and human reliability, but in a given context, people can quantitatively measure the human operational reliability, and identify the most likely root causes or the prioritization of root causes caused human error. (authors)

  7. Advances in human reliability analysis in Mexico

    International Nuclear Information System (INIS)

    Nelson, Pamela F.; Gonzalez C, M.; Ruiz S, T.; Guillen M, D.; Contreras V, A.

    2010-10-01

    Human Reliability Analysis (HRA) is a very important part of Probabilistic Risk Analysis (PRA), and constant work is dedicated to improving methods, guidance and data in order to approach realism in the results as well as looking for ways to use these to reduce accident frequency at plants. Further, in order to advance in these areas, several HRA studies are being performed globally. Mexico has participated in the International HRA Empirical study with the objective of -benchmarking- HRA methods by comparing HRA predictions to actual crew performance in a simulator, as well as in the empirical study on a US nuclear power plant currently in progress. The focus of the first study was the development of an understanding of how methods are applied by various analysts, and characterize the methods for their capability to guide the analysts to identify potential human failures, and associated causes and performance shaping factors. The HRA benchmarking study has been performed by using the Halden simulator, 14 European crews, and 15 HRA equipment s (NRC, EPRI, and foreign HRA equipment s using different HRA methods). This effort in Mexico is reflected through the work being performed on updating the Laguna Verde PRA to comply with the ASME PRA standard. In order to be considered an HRA with technical adequacy, that is, be considered as a capability category II, for risk-informed applications, the methodology used for the HRA in the original PRA is not considered sufficiently detailed, and the methodology had to upgraded. The HCR/CBDT/THERP method was chosen, since this is used in many nuclear plants with similar design. The HRA update includes identification and evaluation of human errors that can occur during testing and maintenance, as well as human errors that can occur during an accident using the Emergency Operating Procedures. The review of procedures for maintenance, surveillance and operation is a necessary step in HRA and provides insight into the possible

  8. Modeling human reliability analysis using MIDAS

    International Nuclear Information System (INIS)

    Boring, R. L.

    2006-01-01

    This paper documents current efforts to infuse human reliability analysis (HRA) into human performance simulation. The Idaho National Laboratory is teamed with NASA Ames Research Center to bridge the SPAR-H HRA method with NASA's Man-machine Integration Design and Analysis System (MIDAS) for use in simulating and modeling the human contribution to risk in nuclear power plant control room operations. It is anticipated that the union of MIDAS and SPAR-H will pave the path for cost-effective, timely, and valid simulated control room operators for studying current and next generation control room configurations. This paper highlights considerations for creating the dynamic HRA framework necessary for simulation, including event dependency and granularity. This paper also highlights how the SPAR-H performance shaping factors can be modeled in MIDAS across static, dynamic, and initiator conditions common to control room scenarios. This paper concludes with a discussion of the relationship of the workload factors currently in MIDAS and the performance shaping factors in SPAR-H. (authors)

  9. Individual Differences in Human Reliability Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey C. Joe; Ronald L. Boring

    2014-06-01

    While human reliability analysis (HRA) methods include uncertainty in quantification, the nominal model of human error in HRA typically assumes that operator performance does not vary significantly when they are given the same initiating event, indicators, procedures, and training, and that any differences in operator performance are simply aleatory (i.e., random). While this assumption generally holds true when performing routine actions, variability in operator response has been observed in multiple studies, especially in complex situations that go beyond training and procedures. As such, complexity can lead to differences in operator performance (e.g., operator understanding and decision-making). Furthermore, psychological research has shown that there are a number of known antecedents (i.e., attributable causes) that consistently contribute to observable and systematically measurable (i.e., not random) differences in behavior. This paper reviews examples of individual differences taken from operational experience and the psychological literature. The impact of these differences in human behavior and their implications for HRA are then discussed. We propose that individual differences should not be treated as aleatory, but rather as epistemic. Ultimately, by understanding the sources of individual differences, it is possible to remove some epistemic uncertainty from analyses.

  10. [Study of the relationship between human quality and reliability].

    Science.gov (United States)

    Long, S; Wang, C; Wang, L i; Yuan, J; Liu, H; Jiao, X

    1997-02-01

    To clarify the relationship between human quality and reliability, 1925 experiments in 20 subjects were carried out to study the relationship between disposition character, digital memory, graphic memory, multi-reaction time and education level and simulated aircraft operation. Meanwhile, effects of task difficulty and enviromental factor on human reliability were also studied. The results showed that human quality can be predicted and evaluated through experimental methods. The better the human quality, the higher the human reliability.

  11. Human Reliability Analysis For Computerized Procedures

    International Nuclear Information System (INIS)

    Boring, Ronald L.; Gertman, David I.; Le Blanc, Katya

    2011-01-01

    This paper provides a characterization of human reliability analysis (HRA) issues for computerized procedures in nuclear power plant control rooms. It is beyond the scope of this paper to propose a new HRA approach or to recommend specific methods or refinements to those methods. Rather, this paper provides a review of HRA as applied to traditional paper-based procedures, followed by a discussion of what specific factors should additionally be considered in HRAs for computerized procedures. Performance shaping factors and failure modes unique to computerized procedures are highlighted. Since there is no definitive guide to HRA for paper-based procedures, this paper also serves to clarify the existing guidance on paper-based procedures before delving into the unique aspects of computerized procedures.

  12. A model for assessing human cognitive reliability in PRA studies

    International Nuclear Information System (INIS)

    Hannaman, G.W.; Spurgin, A.J.; Lukic, Y.

    1985-01-01

    This paper summarizes the status of a research project sponsored by EPRI as part of the Probabilistic Risk Assessment (PRA) technology improvement program and conducted by NUS Corporation to develop a model of Human Cognitive Reliability (HCR). The model was synthesized from features identified in a review of existing models. The model development was based on the hypothesis that the key factors affecting crew response times are separable. The inputs to the model consist of key parameters the values of which can be determined by PRA analysts for each accident situation being assessed. The output is a set of curves which represent the probability of control room crew non-response as a function of time for different conditions affecting their performance. The non-response probability is then a contributor to the overall non-success of operating crews to achieve a functional objective identified in the PRA study. Simulator data and some small scale tests were utilized to illustrate the calibration of interim HCR model coefficients for different types of cognitive processing since the data were sparse. The model can potentially help PRA analysts make human reliability assessments more explicit. The model incorporates concepts from psychological models of human cognitive behavior, information from current collections of human reliability data sources and crew response time data from simulator training exercises

  13. A Research Roadmap for Computation-Based Human Reliability Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Boring, Ronald [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mandelli, Diego [Idaho National Lab. (INL), Idaho Falls, ID (United States); Joe, Jeffrey [Idaho National Lab. (INL), Idaho Falls, ID (United States); Smith, Curtis [Idaho National Lab. (INL), Idaho Falls, ID (United States); Groth, Katrina [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-08-01

    The United States (U.S.) Department of Energy (DOE) is sponsoring research through the Light Water Reactor Sustainability (LWRS) program to extend the life of the currently operating fleet of commercial nuclear power plants. The Risk Informed Safety Margin Characterization (RISMC) research pathway within LWRS looks at ways to maintain and improve the safety margins of these plants. The RISMC pathway includes significant developments in the area of thermalhydraulics code modeling and the development of tools to facilitate dynamic probabilistic risk assessment (PRA). PRA is primarily concerned with the risk of hardware systems at the plant; yet, hardware reliability is often secondary in overall risk significance to human errors that can trigger or compound undesirable events at the plant. This report highlights ongoing efforts to develop a computation-based approach to human reliability analysis (HRA). This computation-based approach differs from existing static and dynamic HRA approaches in that it: (i) interfaces with a dynamic computation engine that includes a full scope plant model, and (ii) interfaces with a PRA software toolset. The computation-based HRA approach presented in this report is called the Human Unimodels for Nuclear Technology to Enhance Reliability (HUNTER) and incorporates in a hybrid fashion elements of existing HRA methods to interface with new computational tools developed under the RISMC pathway. The goal of this research effort is to model human performance more accurately than existing approaches, thereby minimizing modeling uncertainty found in current plant risk models.

  14. A Research Roadmap for Computation-Based Human Reliability Analysis

    International Nuclear Information System (INIS)

    Boring, Ronald; Mandelli, Diego; Joe, Jeffrey; Smith, Curtis; Groth, Katrina

    2015-01-01

    The United States (U.S.) Department of Energy (DOE) is sponsoring research through the Light Water Reactor Sustainability (LWRS) program to extend the life of the currently operating fleet of commercial nuclear power plants. The Risk Informed Safety Margin Characterization (RISMC) research pathway within LWRS looks at ways to maintain and improve the safety margins of these plants. The RISMC pathway includes significant developments in the area of thermalhydraulics code modeling and the development of tools to facilitate dynamic probabilistic risk assessment (PRA). PRA is primarily concerned with the risk of hardware systems at the plant; yet, hardware reliability is often secondary in overall risk significance to human errors that can trigger or compound undesirable events at the plant. This report highlights ongoing efforts to develop a computation-based approach to human reliability analysis (HRA). This computation-based approach differs from existing static and dynamic HRA approaches in that it: (i) interfaces with a dynamic computation engine that includes a full scope plant model, and (ii) interfaces with a PRA software toolset. The computation-based HRA approach presented in this report is called the Human Unimodels for Nuclear Technology to Enhance Reliability (HUNTER) and incorporates in a hybrid fashion elements of existing HRA methods to interface with new computational tools developed under the RISMC pathway. The goal of this research effort is to model human performance more accurately than existing approaches, thereby minimizing modeling uncertainty found in current plant risk models.

  15. Survey of methods used to asses human reliability in the human factors reliability benchmark exercise

    International Nuclear Information System (INIS)

    Poucet, A.

    1988-01-01

    The Joint Research Centre of the European Commission has organised a Human Factors Reliability Benchmark Exercise (HF-RBE) with the aim to assess the state-of-the-art in human reliability modelling and assessment. Fifteen teams from eleven countries, representing industry, utilities, licensing organisations and research institutes, participate in the HF-RBE, which is organised around two study cases: (1) analysis of routine functional test and maintenance procedures, with the aim to assess the probability of test-induced failures, the probability of failures to remain unrevealed, and the potential to initiate transients because of errors performed in the test; and (2) analysis of human actions during an operational transient, with the aim to assess the probability that the operators will correctly diagnose the malfunctions and take proper corrective action. The paper briefly reports how the HF-RBE was structured and gives an overview of the methods that have been used for predicting human reliability in both study cases. The experience in applying these methods is discussed and the results obtained are compared. (author)

  16. Behavioral reliability program for the nuclear industry. Technical report

    International Nuclear Information System (INIS)

    Buchanan, J.C.; Davis, S.O.; Dunnette, M.D.; Meyer, P.; Sharac, J.

    1981-07-01

    The subject of the study was the development of standards for a behavioral observation program which could be used by the NRC licensed nuclear industry to detect indications of emotional instability in its employees who have access to protected and vital areas. Emphasis was placed on those observable characteristics which could be assessed by supervisors or peers in a work environment. The behavioral reliability program, as was defined in this report, encompasses the concept and basic components of the program, the definition of the behavioral reliability program, the definition of the behavioral reliability criterion, and a set of instructions for the creation and implementation of the program by an individual facility

  17. Program integration of predictive maintenance with reliability centered maintenance

    International Nuclear Information System (INIS)

    Strong, D.K. Jr; Wray, D.M.

    1990-01-01

    This paper addresses improving the safety and reliability of power plants in a cost-effective manner by integrating the recently developed reliability centered maintenance techniques with the traditional predictive maintenance techniques of nuclear power plants. The topics of the paper include a description of reliability centered maintenance (RCM), enhancing RCM with predictive maintenance, predictive maintenance programs, condition monitoring techniques, performance test techniques, the mid-Atlantic Reliability Centered Maintenance Users Group, test guides and the benefits of shared guide development

  18. Human Performance Westinghouse Program

    International Nuclear Information System (INIS)

    Garcia Gutierrez, A.; Gil, C.

    2010-01-01

    The objective of the Program consists in the excellence actuation, achieving the client success with a perfect realisation project. This program consists of different basic elements to reduce the human mistakes: the HuP tools, coaching, learning clocks and iKnow website. There is, too, a document file to consult and practice. All these elements are expounded in this paper.

  19. Human Sexuality Education Program.

    Science.gov (United States)

    Claremont Univ. Center, CA.

    This program provides information to students about human sexual biology, behavior and attitudes. The primary intent of the workshops described is to provide fuller information and opportunity for self awareness to encourage participants to be more responsible as sexual beings, and to restructure their attitudes. The program presents the…

  20. Human performance and reliability studies on nuclear power plant

    International Nuclear Information System (INIS)

    Miyaoka, S.

    1988-01-01

    The TMI accident in USA, the Chernobyl accident in USSR and other major accidents overseas have shown that it is necessary to investigate and research human factor problems related to operation, maintenance and others in order to increase the safety and reliability of nuclear power plants. Although a variety of countermeasures have been devised, the accidents and failures due to human factors still occur. So far, the problems related to human factors have not been fundamantally and systematically investigated. Also the data base related to this problem has not been developed. Therefore, the government and electric utility industry began the research on the prevention of the accidents caused by human errors. The basic research is carried out by the government, and the applied research is done by electric utility industry. The Central Research Institute of Electric Power Industry established the Human Factors Research Center on July 1, 1987. The research program in the Human Factors Research Center is divided into the basic research to clarity fundamental human characteristics, the systematic research to apply this information and the analytical research on human error experience. These research activities are reported. (Kako, I.)

  1. Status of an operating reliability program

    International Nuclear Information System (INIS)

    Johnson, R.A.

    1985-01-01

    This paper deals with productivity improvement programs (PIP) for nuclear generating plants. The PIP was implemented in 1979 as a joint effort between Commonwealth Edison's (CECo's) operating nuclear stations and the Station Nuclear Engineering Department. Goals were set to reduce nonproductivity by 10% over a 5 year period. This goal was accomplished December 31, 1983. Topics of discussion are program method, problem analysis and resolution, program results, program improvements, and proposed additions to the PIP. The program is providing CECo with greater electrical generating productivity

  2. Estimation of the human error probabilities in the human reliability analysis

    International Nuclear Information System (INIS)

    Liu Haibin; He Xuhong; Tong Jiejuan; Shen Shifei

    2006-01-01

    Human error data is an important issue of human reliability analysis (HRA). Using of Bayesian parameter estimation, which can use multiple information, such as the historical data of NPP and expert judgment data to modify the human error data, could get the human error data reflecting the real situation of NPP more truly. This paper, using the numeric compute program developed by the authors, presents some typical examples to illustrate the process of the Bayesian parameter estimation in HRA and discusses the effect of different modification data on the Bayesian parameter estimation. (authors)

  3. Selenide isotope generator for the Galileo mission. Reliability program plan

    International Nuclear Information System (INIS)

    1978-10-01

    The reliability program plan for the Selenide Isotope Generator (SIG) program is presented. It delineates the specific tasks that will be accomplished by Teledyne Energy Systems and its suppliers during design, development, fabrication and test of deliverable Radioisotopic Thermoelectric Generators (RTG), Electrical Heated Thermoelectric Generators (ETG) and associated Ground Support Equipment (GSE). The Plan is formulated in general accordance with procedures specified in DOE Reliability Engineering Program Requirements Publication No. SNS-2, dated June 17, 1974. The Reliability Program Plan presented herein defines the total reliability effort without further reference to Government Specifications. The reliability tasks to be accomplished are delineated herein and become the basis for contract compliance to the extent specified in the SIG contract Statement of Work

  4. Process evaluation of the human reliability data bank

    International Nuclear Information System (INIS)

    Miller, D.P.; Comer, K.

    1985-01-01

    The US Nuclear Regulatory Commission and Sandia National Laboratories have been developing a plan for a human reliability data bank since August 1981. This research is in response to the data need of the nuclear power industry's probabilistic risk assessment community. The three phases of the program are to: (a) develop the data bank concept, (b) develop an implementation plan and conduct a process evaluation, and (c) assist a sponsor in implementing the data bank. The program is now in Phase B. This paper describes the methods used and the results of the process evaluation. Decisions to be made in the future regarding full-scale implementation will be based, in part, on the outcome of this study

  5. Process evaluation of the human reliability data bank

    International Nuclear Information System (INIS)

    Miller, D.P.; Comer, K.

    1984-01-01

    The US Nuclear Regulatory Commission and Sandia National Laboratories have been developing a plan for a human reliability data bank since August 1981. This research is in response to the data needs of the nuclear power industry's probabilistic risk assessment community. The three phases of the program are to: (A) develop the data bank concept, (B) develop an implementation plan and conduct a process evaluation, and (C) assist a sponsor in implementing the data bank. The program is now in Phase B. This paper describes the methods used and the results of the process evaluation. Decisions to be made in the future regarding full-scale implementation will be based in part on the outcome of this study

  6. Simulation and Non-Simulation Based Human Reliability Analysis Approaches

    Energy Technology Data Exchange (ETDEWEB)

    Boring, Ronald Laurids [Idaho National Lab. (INL), Idaho Falls, ID (United States); Shirley, Rachel Elizabeth [Idaho National Lab. (INL), Idaho Falls, ID (United States); Joe, Jeffrey Clark [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mandelli, Diego [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-12-01

    Part of the U.S. Department of Energy’s Light Water Reactor Sustainability (LWRS) Program, the Risk-Informed Safety Margin Characterization (RISMC) Pathway develops approaches to estimating and managing safety margins. RISMC simulations pair deterministic plant physics models with probabilistic risk models. As human interactions are an essential element of plant risk, it is necessary to integrate human actions into the RISMC risk model. In this report, we review simulation-based and non-simulation-based human reliability assessment (HRA) methods. Chapter 2 surveys non-simulation-based HRA methods. Conventional HRA methods target static Probabilistic Risk Assessments for Level 1 events. These methods would require significant modification for use in dynamic simulation of Level 2 and Level 3 events. Chapter 3 is a review of human performance models. A variety of methods and models simulate dynamic human performance; however, most of these human performance models were developed outside the risk domain and have not been used for HRA. The exception is the ADS-IDAC model, which can be thought of as a virtual operator program. This model is resource-intensive but provides a detailed model of every operator action in a given scenario, along with models of numerous factors that can influence operator performance. Finally, Chapter 4 reviews the treatment of timing of operator actions in HRA methods. This chapter is an example of one of the critical gaps between existing HRA methods and the needs of dynamic HRA. This report summarizes the foundational information needed to develop a feasible approach to modeling human interactions in the RISMC simulations.

  7. Establishing monitoring programs for travel time reliability. [supporting datasets

    Science.gov (United States)

    2014-01-01

    The objective of this project was to develop system designs for programs to monitor travel time reliability and to prepare a guidebook that practitioners and others can use to design, build, operate, and maintain such systems. Generally, such travel ...

  8. Statis Program Analysis for Reliable, Trusted Apps

    Science.gov (United States)

    2017-02-01

    and prevent errors in their Java programs. The Checker Framework includes compiler plug-ins (“checkers”) that find bugs or verify their absence. It...versions of the Java language. 4.8 DATAFLOW FRAMEWORK The dataflow framework enables more accurate analysis of source code. (Despite their similar...names, the dataflow framework is independent of the (Information) Flow Checker of chapter 2.) In Java code, a given operation may be permitted or

  9. Ergonomics design and operator training as contributors to human reliability

    International Nuclear Information System (INIS)

    Jackson, A.R.G.; Madden, V.J.; Umbers, I.G.; Williams, J.C.

    1987-01-01

    The safe operation of nuclear reactors depends not only on good physical safety engineering but on the human operators as well. The Central Electricity Generating Board's approach to human reliability includes the following aspects: ergonomics design (task analysis and the development of man-machine interfaces), analysis of human reliability, operational feedback, staff training and assessment, maintenance management, research programmes and management. This paper describes how these combine to achieve the highest practicable level of human reliability, not only for the Sizewell-B pressurized water reactor, but also for the Board's gas-cooled reactors. Examples are used to illustrate the topics considered. (UK)

  10. Systems reliability analysis: applications of the SPARCS System-Reliability Assessment Computer Program

    International Nuclear Information System (INIS)

    Locks, M.O.

    1978-01-01

    SPARCS-2 (Simulation Program for Assessing the Reliabilities of Complex Systems, Version 2) is a PL/1 computer program for assessing (establishing interval estimates for) the reliability and the MTBF of a large and complex s-coherent system of any modular configuration. The system can consist of a complex logical assembly of independently failing attribute (binomial-Bernoulli) and time-to-failure (Poisson-exponential) components, without regard to their placement. Alternatively, it can be a configuration of independently failing modules, where each module has either or both attribute and time-to-failure components. SPARCS-2 also has an improved super modularity feature. Modules with minimal-cut unreliabiliy calculations can be mixed with those having minimal-path reliability calculations. All output has been standardized to system reliability or probability of success, regardless of the form in which the input data is presented, and whatever the configuration of modules or elements within modules

  11. Comparison of Methods for Dependency Determination between Human Failure Events within Human Reliability Analysis

    International Nuclear Information System (INIS)

    Cepin, M.

    2008-01-01

    The human reliability analysis (HRA) is a highly subjective evaluation of human performance, which is an input for probabilistic safety assessment, which deals with many parameters of high uncertainty. The objective of this paper is to show that subjectivism can have a large impact on human reliability results and consequently on probabilistic safety assessment results and applications. The objective is to identify the key features, which may decrease subjectivity of human reliability analysis. Human reliability methods are compared with focus on dependency comparison between Institute Jozef Stefan human reliability analysis (IJS-HRA) and standardized plant analysis risk human reliability analysis (SPAR-H). Results show large differences in the calculated human error probabilities for the same events within the same probabilistic safety assessment, which are the consequence of subjectivity. The subjectivity can be reduced by development of more detailed guidelines for human reliability analysis with many practical examples for all steps of the process of evaluation of human performance

  12. Comparison of methods for dependency determination between human failure events within human reliability analysis

    International Nuclear Information System (INIS)

    Cepis, M.

    2007-01-01

    The Human Reliability Analysis (HRA) is a highly subjective evaluation of human performance, which is an input for probabilistic safety assessment, which deals with many parameters of high uncertainty. The objective of this paper is to show that subjectivism can have a large impact on human reliability results and consequently on probabilistic safety assessment results and applications. The objective is to identify the key features, which may decrease of subjectivity of human reliability analysis. Human reliability methods are compared with focus on dependency comparison between Institute Jozef Stefan - Human Reliability Analysis (IJS-HRA) and Standardized Plant Analysis Risk Human Reliability Analysis (SPAR-H). Results show large differences in the calculated human error probabilities for the same events within the same probabilistic safety assessment, which are the consequence of subjectivity. The subjectivity can be reduced by development of more detailed guidelines for human reliability analysis with many practical examples for all steps of the process of evaluation of human performance. (author)

  13. Incorporating process mining into human reliability analysis

    NARCIS (Netherlands)

    Kelly, D.L.

    2011-01-01

    It is well established that the human contribution to the risk of operation of complex technological systems is significant, with typical estimates lying in the range of 60-85%. Human errors have been a contributor to many significant catastrophic technological accidents. Examples are 1) the

  14. Modeling cognition dynamics and its application to human reliability analysis

    International Nuclear Information System (INIS)

    Mosleh, A.; Smidts, C.; Shen, S.H.

    1996-01-01

    For the past two decades, a number of approaches have been proposed for the identification and estimation of the likelihood of human errors, particularly for use in the risk and reliability studies of nuclear power plants. Despite the wide-spread use of the most popular among these methods, their fundamental weaknesses are widely recognized, and the treatment of human reliability has been considered as one of the soft spots of risk studies of large technological systems. To alleviate the situation, new efforts have focused on the development of human reliability models based on a more fundamental understanding of operator response and its cognitive aspects

  15. Basic research on human reliability in nuclear power plants

    International Nuclear Information System (INIS)

    Zhang Li; Deng Zhiliang

    1996-10-01

    Human reliability in nuclear power plants is one of key factors in nuclear safety and economic operation. According to cognitive science, behaviour theory and ergonomic and on the bases of human cognitive behaviour characteristics, performance shaping factors, human error mechanisms and organization management, the project systematically studied the human reliability in nuclear power plant systems, established the basic theory and methods for analyzing human factor accidents and suggested feasible approaches and countermeasures for precaution against human factor accidents and improving human reliability. The achievement has been applied in operation departments, management departments and scientific research institutions of nuclear power, and has produced guiding significance and practical value to design, operation and management in nuclear power plants. (11 refs.)

  16. Automation of reliability evaluation procedures through CARE - The computer-aided reliability estimation program.

    Science.gov (United States)

    Mathur, F. P.

    1972-01-01

    Description of an on-line interactive computer program called CARE (Computer-Aided Reliability Estimation) which can model self-repair and fault-tolerant organizations and perform certain other functions. Essentially CARE consists of a repository of mathematical equations defining the various basic redundancy schemes. These equations, under program control, are then interrelated to generate the desired mathematical model to fit the architecture of the system under evaluation. The mathematical model is then supplied with ground instances of its variables and is then evaluated to generate values for the reliability-theoretic functions applied to the model.

  17. Generating human reliability estimates using expert judgment. Volume 2. Appendices

    International Nuclear Information System (INIS)

    Comer, M.K.; Seaver, D.A.; Stillwell, W.G.; Gaddy, C.D.

    1984-11-01

    The US Nuclear Regulatory Commission is conducting a research program to determine the practicality, acceptability, and usefulness of several different methods for obtaining human reliability data and estimates that can be used in nuclear power plant probabilistic risk assessments (PRA). One method, investigated as part of this overall research program, uses expert judgment to generate human error probability (HEP) estimates and associated uncertainty bounds. The project described in this document evaluated two techniques for using expert judgment: paired comparisons and direct numerical estimation. Volume 2 provides detailed procedures for using the techniques, detailed descriptions of the analyses performed to evaluate the techniques, and HEP estimates generated as part of this project. The results of the evaluation indicate that techniques using expert judgment should be given strong consideration for use in developing HEP estimates. Judgments were shown to be consistent and to provide HEP estimates with a good degree of convergent validity. Of the two techniques tested, direct numerical estimation appears to be preferable in terms of ease of application and quality of results

  18. Human reliability analysis methods for probabilistic safety assessment

    International Nuclear Information System (INIS)

    Pyy, P.

    2000-11-01

    Human reliability analysis (HRA) of a probabilistic safety assessment (PSA) includes identifying human actions from safety point of view, modelling the most important of them in PSA models, and assessing their probabilities. As manifested by many incidents and studies, human actions may have both positive and negative effect on safety and economy. Human reliability analysis is one of the areas of probabilistic safety assessment (PSA) that has direct applications outside the nuclear industry. The thesis focuses upon developments in human reliability analysis methods and data. The aim is to support PSA by extending the applicability of HRA. The thesis consists of six publications and a summary. The summary includes general considerations and a discussion about human actions in the nuclear power plant (NPP) environment. A condensed discussion about the results of the attached publications is then given, including new development in methods and data. At the end of the summary part, the contribution of the publications to good practice in HRA is presented. In the publications, studies based on the collection of data on maintenance-related failures, simulator runs and expert judgement are presented in order to extend the human reliability analysis database. Furthermore, methodological frameworks are presented to perform a comprehensive HRA, including shutdown conditions, to study reliability of decision making, and to study the effects of wrong human actions. In the last publication, an interdisciplinary approach to analysing human decision making is presented. The publications also include practical applications of the presented methodological frameworks. (orig.)

  19. Reliability centered Maintenance (RCM) program for Chashma NPP (CHASNUPP)

    International Nuclear Information System (INIS)

    Khalid, S.; Khan, S.A.

    2000-01-01

    This paper describes the proposed Reliability Centered Maintenance (RCM) program for Chashma Nuclear Power Plant (CHASNUPP). Major steps are the identification of risk critical components and the implementation of RCM procedures. Identification of risk critical components is based upon the CHASNUPP level 1 PSA results (performed under IAEA TC Project PAK/9/019) which is near completion. The other requirements for implementation of RCM program is the qualitative analysis to be performed for identifying the dominant potential failure modes of each risk critical component and determination of the necessary maintenance activities, required to ensure reliable operation of the identified risk critical components. Implementation of RCM program for these components will lead to improvement in plant availability and safety together with reduction in the maintenance cost. Development - implementation of RCM program at this stage will help the CHASNUPP Maintenance department who is now developing the maintenance program - procedures for CHASNUPP. (author)

  20. Human Genome Program

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    The DOE Human Genome program has grown tremendously, as shown by the marked increase in the number of genome-funded projects since the last workshop held in 1991. The abstracts in this book describe the genome research of DOE-funded grantees and contractors and invited guests, and all projects are represented at the workshop by posters. The 3-day meeting includes plenary sessions on ethical, legal, and social issues pertaining to the availability of genetic data; sequencing techniques, informatics support; and chromosome and cDNA mapping and sequencing.

  1. Application of DFM in human reliability analysis

    International Nuclear Information System (INIS)

    Yu Shaojie; Zhao Jun; Tong Jiejuan

    2011-01-01

    Combining with ATHEANA, the possible to identify EFCs and UAs using DFM is studied; and then Steam Generator Tube Rupture (SGTR) accident is modeled and solved. Through inductive analysis, 26 Prime Implicants (PIs) are obtained and the meaning of results is interpreted; and one of PIs is similar to the accident scenario of human failure event in one nuclear power plant. Finally, this paper discusses the methods of quantifying PIs, analysis of Error of commission (EOC) and so on. (authors)

  2. A reliability program for emergency diesel generators at nuclear power plants: Program structure

    International Nuclear Information System (INIS)

    Lofgren, E.V.; DeMoss, G.M.; Fragola, J.R.; Appignani, P.L.; Delarche, G.; Boccio, J.

    1988-04-01

    The purpose of this report is to provide technical guidelines for NRC staff use in the development of positions for evaluating emergency diesel generator (EDG) reliability programs. Such reviews will likely result following resolution of USI A-44 and GSI B-56. The diesel generator reliability program is a management system for achieving and maintaining a selected (or target) level of reliability. This can be achieved by: (1) understanding the factors that control the EDG reliability and (2) then applying reliability and maintenance techniques in the proper proportion to achieve selected performance goals. The concepts and guidelines discussed in this report are concepts and approaches that have been successful in applications where high levels of reliability must be maintained. Both an EDG reliability program process and a set of review items for NRC use are provided. The review items represent a checklist for reviewing EDG reliability programs. They do not, in themselves, constitute a reliability program. Rather, the review items are those distinctive features of a reliability program that must be present for the program to be effective

  3. PROVIDING RELIABILITY OF HUMAN RESOURCES IN PRODUCTION MANAGEMENT PROCESS

    Directory of Open Access Journals (Sweden)

    Anna MAZUR

    2014-07-01

    Full Text Available People are the most valuable asset of an organization and the results of a company mostly depends on them. The human factor can also be a weak link in the company and cause of the high risk for many of the processes. Reliability of the human factor in the process of the manufacturing process will depend on many factors. The authors include aspects of human error, safety culture, knowledge, communication skills, teamwork and leadership role in the developed model of reliability of human resources in the management of the production process. Based on the case study and the results of research and observation of the author present risk areas defined in a specific manufacturing process and the results of evaluation of the reliability of human resources in the process.

  4. MODELING HUMAN RELIABILITY ANALYSIS USING MIDAS

    Energy Technology Data Exchange (ETDEWEB)

    Ronald L. Boring; Donald D. Dudenhoeffer; Bruce P. Hallbert; Brian F. Gore

    2006-05-01

    This paper summarizes an emerging collaboration between Idaho National Laboratory and NASA Ames Research Center regarding the utilization of high-fidelity MIDAS simulations for modeling control room crew performance at nuclear power plants. The key envisioned uses for MIDAS-based control room simulations are: (i) the estimation of human error with novel control room equipment and configurations, (ii) the investigative determination of risk significance in recreating past event scenarios involving control room operating crews, and (iii) the certification of novel staffing levels in control rooms. It is proposed that MIDAS serves as a key component for the effective modeling of risk in next generation control rooms.

  5. High Speed Simulation Framework for Reliable Logic Programs

    International Nuclear Information System (INIS)

    Lee, Wan-Bok; Kim, Seog-Ju

    2006-01-01

    This paper shows a case study of designing a PLC logic simulator that was developed to simulate and verify PLC control programs for nuclear plant systems. The nuclear control system requires strict restrictions rather than normal process control system does, since it works with nuclear power plants requiring high reliability under severe environment. One restriction is the safeness of the control programs which can be assured by exploiting severe testing. Another restriction is the simulation speed of the control programs, that should be fast enough to control multi devices concurrently in real-time. To cope with these restrictions, we devised a logic compiler which generates C-code programs from given PLC logic programs. Once the logic program was translated into C-code, the program could be analyzed by conventional software analysis tools and could be used to construct a fast logic simulator after cross-compiling, in fact, that is a kind of compiled-code simulation

  6. Human reliability analysis of Lingao Nuclear Power Station

    International Nuclear Information System (INIS)

    Zhang Li; Huang Shudong; Yang Hong; He Aiwu; Huang Xiangrui; Zheng Tao; Su Shengbing; Xi Haiying

    2001-01-01

    The necessity of human reliability analysis (HRA) of Lingao Nuclear Power Station are analyzed, and the method and operation procedures of HRA is briefed. One of the human factors events (HFE) is analyzed in detail and some questions of HRA are discussed. The authors present the analytical results of 61 HFEs, and make a brief introduction of HRA contribution to Lingao Nuclear Power Station

  7. Reliability assurance program for operational emergency ac power system

    International Nuclear Information System (INIS)

    Heineman, J.B.; Ragland, W.A.; Mueller, C.J.

    1985-01-01

    A comprehensive review of emergency ac power systems in nuclear generating plants (the vast majority of these plants contain redundant diesel generator systems) delineates several operational areas that can be improved by instituting a reliability assurance program (RAP), which initially upgrades the diesel generator performance and provides for ongoing monitoring and maintenance based upon alert levels

  8. Predicting risk and human reliability: a new approach

    International Nuclear Information System (INIS)

    Duffey, R.; Ha, T.-S.

    2009-01-01

    Learning from experience describes human reliability and skill acquisition, and the resulting theory has been validated by comparison against millions of outcome data from multiple industries and technologies worldwide. The resulting predictions were used to benchmark the classic first generation human reliability methods adopted in probabilistic risk assessments. The learning rate, probabilities and response times are also consistent with the existing psychological models for human learning and error correction. The new approach also implies a finite lower bound probability that is not predicted by empirical statistical distributions that ignore the known and fundamental learning effects. (author)

  9. IEEE guide for the analysis of human reliability

    International Nuclear Information System (INIS)

    Dougherty, E.M. Jr.

    1987-01-01

    The Institute of Electrical and Electronics Engineers (IEEE) working group 7.4 of the Human Factors and Control Facilities Subcommittee of the Nuclear Power Engineering Committee (NPEC) has released its fifth draft of a Guide for General Principles of Human Action Reliability Analysis for Nuclear Power Generating Stations, for approval of NPEC. A guide is the least mandating in the IEEE hierarchy of standards. The purpose is to enhance the performance of an human reliability analysis (HRA) as a part of a probabilistic risk assessment (PRA), to assure reproducible results, and to standardize documentation. The guide does not recommend or even discuss specific techniques, which are too rapidly evolving today. Considerable maturation in the analysis of human reliability in a PRA context has taken place in recent years. The IEEE guide on this subject is an initial step toward bringing HRA out of the research and development arena into the toolbox of standard engineering practices

  10. EDF/EPRI collaborative program on operator reliability experiments

    International Nuclear Information System (INIS)

    Villemeur, A.; Meslin, T.; Mosneron, F.; Worledge, D.H.; Joksimovich, V.; Spurgin, A.J.

    1988-01-01

    Electricite de France (EDF) and Electric Power Research Institute (EPRI) have been involved in human reliability studies over the last few years, in the context of improvements in human reliability assessment (HRA) methodologies, and have been following a systematic process since 1982 which consists of addressing the following five ingredients: - First, classify human interactions into a limited number of classes. - Second, introduce an acceptable framework to organize the application of HRA to PRA studies. - Third, select approach(es) to quantification. - Fourth, test promising models. - Fifth, establish an appropriate data base for tested model(s) with regard to specific applications. EPRI has just recently completed Phase I of the fourth topic. This primarily focused on testing the fundamental hypotheses behing the human cognitive reliability (HCR) correlation, using power plant simulators. EDF has been carrying out simulator studies since 1980, both for man-machine interface validation and HRA data collection. This background of experience provided a stepping stone for the EPRI project. On the other hand, before 1986, EDF had mainly been concentrating on getting qualitative insights from the tests and lacked experience in quantitative analysis and modeling, while EPRI had made advances in this latter area. Before the EPRI Operator Reliability Experiments (ORE) project was initiated, it was abundantly clear to EPRI and EDF that cooperation between the two could be useful and that both parties could gain from the cooperation

  11. The dependence of human reliability upon task information content

    International Nuclear Information System (INIS)

    Hermanson, E.M.; Golay, M.W.

    1994-09-01

    The role of human error in safety mishaps is an important factor in system design. As systems become increasingly complex the capacity of the human to deal with the added complexity is diminished. It is therefore crucial to understand the relationship between system complexity and human reliability so that systems may be built in such a way as to minimize human error. One way of understanding this relationship is to quantify system complexity and then measure the human reaction in response to situations of varying complexity. The quantification of system complexity may be performed by determining the information content present in the tasks that the human must execute. The purpose of this work is therefore to build and perform a consistent experiment which will determine the extent to which human reliability depends upon task information content. Two main conclusions may be drawn from this work. The first is that human reliability depends upon task information content. Specifically, as the information content contained in a task increases, the capacity of a human to deal successfully with the task decreases monotonically. Here the definition of total success is the ability to complete the task at hand fully and correctly. Furthermore, there exists a value of information content below which a human can deal with the task successfully, but above which the success of an individual decreases monotonically with increasing information. These ideas should be generalizable to any model where system complexity can be clearly and consistently defined

  12. Human factors reliability benchmark exercise, report of the SRD participation

    International Nuclear Information System (INIS)

    Waters, Trevor

    1988-01-01

    Within the scope of the Human Factors Reliability Benchmark Exercise, organised by the Joint Research Centre, Ispra, Italy, the Safety and Reliability Directorate (SRD) team has performed analysis of human factors in two different activities - a routine test and a non-routine operational transient. For both activities, an 'FMEA-like' task, potential errors, and the factors which affect performance. For analysis of the non-routine activity, which involved a significant amount of cognitive processing, such as diagnosis and decision making, a new approach for qualitative analysis has been developed. Modelling has been performed using both event trees and fault trees and examples are provided. Human error probabilities were estimated using the methods Absolute Probability Judgement (APJ), Human Cognitive Reliability Method (HCR), Human Error and Assessment and Reduction Technique (HEART), Success-Likelihood Index Method (SLIM), Technica Empiriza Stima Eurori Operatori (TESEO), and Technique for Human Error Rate Prediction (THERP). A discussion is provided of the lessons learnt in the course of the exercise and unresolved difficulties in the assessment of human reliability. (author)

  13. Some areas of reliability technique which have been neglected to some extent - maintainability - human reliability - mechanical reliability - repairable systems

    International Nuclear Information System (INIS)

    Akersten, P.A.

    1985-01-01

    The present thesis consists of four papers, three of which are of a expositary nature and one more theoretical. The first two papers have a natural coupling to the man-machine interface. The first paper is devoted to the concept of maintainability and the role of man as maintenance technician. The second paper discusses aspects of human reliability, mainly studying man as operator. However, maintenance tasks can be studied in the same manner. The third paper concerns reliability prediction for mechanical components. This is an area of vital importance for the reliability practitioner, who needs realistic and easy-to-use mathematical models for different failure modes. The fourth paper discusses mathematical models for repairable systems, especially the problem of testing whether a constant event intensity model is adequate or not. (author)

  14. Foundations for a time reliability correlation system to quantify human reliability

    International Nuclear Information System (INIS)

    Dougherty, E.M. Jr.; Fragola, J.R.

    1988-01-01

    Time reliability correlations (TRCs) have been used in human reliability analysis (HRA) in conjunction with probabilistic risk assessment (PRA) to quantify post-initiator human failure events. The first TRCs were judgmental but recent data taken from simulators have provided evidence for development of a system of TRCs. This system has the equational form: t = tau R X tau U , where the first factor is the lognormally distributed random variable of successful response time, derived from the simulator data, and the second factor is a unitary lognormal random variable to account for uncertainty in the model. The first random variable is further factored into a median response time and a factor to account for the dominant type of behavior assumed to be involved in the response and a second factor to account for other influences on the reliability of the response

  15. RIO: a program to determine reliability importance and allocate optimal reliability goals

    International Nuclear Information System (INIS)

    Poloski, J.P.

    1978-09-01

    The designer of a nuclear plant must know the plant's associated risk limitations so that he can design the plant accordingly. To design a safety system, he must understand its importance and how it relates to the overall plant risk. The computer program RIO can aid the designer to understand a system's contribution to the plant's overall risk. The methodology developed and presented was sponsored by the Nuclear Research Applications Division of the Department of Energy for use in the Gas Cooled Fast Breeder Reactor (GCFR) Program. The principal motivation behind its development was the need to translate nuclear plants safety goals into reliability goals for systems which make up that plant. The method described herein will make use of the GCFR Accident Initiation and Progression Analyses (AIPA) event trees and other models in order to determine these reliability goals

  16. Inclusion of task dependence in human reliability analysis

    International Nuclear Information System (INIS)

    Su, Xiaoyan; Mahadevan, Sankaran; Xu, Peida; Deng, Yong

    2014-01-01

    Dependence assessment among human errors in human reliability analysis (HRA) is an important issue, which includes the evaluation of the dependence among human tasks and the effect of the dependence on the final human error probability (HEP). This paper represents a computational model to handle dependence in human reliability analysis. The aim of the study is to automatically provide conclusions on the overall degree of dependence and calculate the conditional human error probability (CHEP) once the judgments of the input factors are given. The dependence influencing factors are first identified by the experts and the priorities of these factors are also taken into consideration. Anchors and qualitative labels are provided as guidance for the HRA analyst's judgment of the input factors. The overall degree of dependence between human failure events is calculated based on the input values and the weights of the input factors. Finally, the CHEP is obtained according to a computing formula derived from the technique for human error rate prediction (THERP) method. The proposed method is able to quantify the subjective judgment from the experts and improve the transparency in the HEP evaluation process. Two examples are illustrated to show the effectiveness and the flexibility of the proposed method. - Highlights: • We propose a computational model to handle dependence in human reliability analysis. • The priorities of the dependence influencing factors are taken into consideration. • The overall dependence degree is determined by input judgments and the weights of factors. • The CHEP is obtained according to a computing formula derived from THERP

  17. System ergonomics as an approach to improve human reliability

    International Nuclear Information System (INIS)

    Bubb, H.

    1988-01-01

    The application of system technics on ergonomical problems is called system ergonomics. This enables improvements of human reliability by design measures. The precondition for this is the knowledge of how information processing is performed by man and machine. By a separate consideration of sensory processing, cognitive processing, and motory processing it is possible to have a more exact idea of the system element 'man'. The system element 'machine' is well described by differential equations which allow an ergonomical assessment of the manouverability. The knowledge of information processing of man and machine enables a task analysis. This makes appear on one hand the human boundaries depending on the different properties of the task and on the other hand suitable ergonomical solution proposals which improve the reliability of the total system. It is a disadvantage, however, that the change of human reliability by such measures may not be quoted numerically at the moment. (orig.)

  18. New advances in human reliability using the EPRIHRA calculator

    International Nuclear Information System (INIS)

    Julius, J. A.; Grobbelaar, J. F.

    2006-01-01

    This paper describes new advances in human reliability associated with the integration of HRA methods, lessons learned during the first few years of operation of the EPRI HRA / PRA Tools Users Group, and application of human reliability techniques in areas beyond the more traditional Level 1 internal events PRA. This paper is organized as follows. 1. EPRI HRA Users Group Overview (mission, membership, activities, approach) 2. HRA Methods Currently Used (selection, integration, and addressing dependencies) 3. New Advances in HRA Methods 4. Conclusions. (authors)

  19. Considerations on the elements of quantifying human reliability

    International Nuclear Information System (INIS)

    Straeter, Oliver

    2004-01-01

    This paper attempts to provide a contribution for the discussion of what the term 'data' means and how the qualitative perspective can be linked with the quantitative one. It will argue that the terms 'quantitative data' and 'qualitative data' are not distinct but a continuum that spans over the entire spectrum of the expertise that has to be involved in the HRA process. It elaborates the rational behind any human reliability quantification figure and suggests a scientific way forward to better data for human reliability assessment

  20. An integrated approach to human reliability analysis -- decision analytic dynamic reliability model

    International Nuclear Information System (INIS)

    Holmberg, J.; Hukki, K.; Norros, L.; Pulkkinen, U.; Pyy, P.

    1999-01-01

    The reliability of human operators in process control is sensitive to the context. In many contemporary human reliability analysis (HRA) methods, this is not sufficiently taken into account. The aim of this article is that integration between probabilistic and psychological approaches in human reliability should be attempted. This is achieved first, by adopting such methods that adequately reflect the essential features of the process control activity, and secondly, by carrying out an interactive HRA process. Description of the activity context, probabilistic modeling, and psychological analysis form an iterative interdisciplinary sequence of analysis in which the results of one sub-task maybe input to another. The analysis of the context is carried out first with the help of a common set of conceptual tools. The resulting descriptions of the context promote the probabilistic modeling, through which new results regarding the probabilistic dynamics can be achieved. These can be incorporated in the context descriptions used as reference in the psychological analysis of actual performance. The results also provide new knowledge of the constraints of activity, by providing information of the premises of the operator's actions. Finally, the stochastic marked point process model gives a tool, by which psychological methodology may be interpreted and utilized for reliability analysis

  1. System safety and reliability using object-oriented programming techniques

    International Nuclear Information System (INIS)

    Patterson-Hine, F.A.; Koen, B.V.

    1987-01-01

    Direct evaluation fault tree codes have been written in recursive, list-processing computer languages such as PL/1 (PATREC-I) and LISP (PATREC-L). The pattern-matching strategy implemented in these codes has been used extensively in France to evaluate system reliability. Recent reviews of the risk management process suggest that a data base containing plant-specific information be integrated with a package of codes used for probabilistic risk assessment (PRA) to alleviate some of the difficulties that make a PRA so costly and time-intensive. A new programming paradigm, object-oriented programming, is uniquely suited for the development of such a software system. A knowledge base and fault tree evaluation algorithm, based on previous experience with PATREC-L, have been implemented using object-oriented techniques, resulting in a reliability assessment environment that is easy to develop, modify, and extend

  2. Tailoring a Human Reliability Analysis to Your Industry Needs

    Science.gov (United States)

    DeMott, D. L.

    2016-01-01

    Companies at risk of accidents caused by human error that result in catastrophic consequences include: airline industry mishaps, medical malpractice, medication mistakes, aerospace failures, major oil spills, transportation mishaps, power production failures and manufacturing facility incidents. Human Reliability Assessment (HRA) is used to analyze the inherent risk of human behavior or actions introducing errors into the operation of a system or process. These assessments can be used to identify where errors are most likely to arise and the potential risks involved if they do occur. Using the basic concepts of HRA, an evolving group of methodologies are used to meet various industry needs. Determining which methodology or combination of techniques will provide a quality human reliability assessment is a key element to developing effective strategies for understanding and dealing with risks caused by human errors. There are a number of concerns and difficulties in "tailoring" a Human Reliability Assessment (HRA) for different industries. Although a variety of HRA methodologies are available to analyze human error events, determining the most appropriate tools to provide the most useful results can depend on industry specific cultures and requirements. Methodology selection may be based on a variety of factors that include: 1) how people act and react in different industries, 2) expectations based on industry standards, 3) factors that influence how the human errors could occur such as tasks, tools, environment, workplace, support, training and procedure, 4) type and availability of data, 5) how the industry views risk & reliability, and 6) types of emergencies, contingencies and routine tasks. Other considerations for methodology selection should be based on what information is needed from the assessment. If the principal concern is determination of the primary risk factors contributing to the potential human error, a more detailed analysis method may be employed

  3. Interim reliability evaluation program, Browns Ferry fault trees

    International Nuclear Information System (INIS)

    Stewart, M.E.

    1981-01-01

    An abbreviated fault tree method is used to evaluate and model Browns Ferry systems in the Interim Reliability Evaluation programs, simplifying the recording and displaying of events, yet maintaining the system of identifying faults. The level of investigation is not changed. The analytical thought process inherent in the conventional method is not compromised. But the abbreviated method takes less time, and the fault modes are much more visible

  4. The human factor in operation and maintenance of complex high-reliability systems

    International Nuclear Information System (INIS)

    Ryan, T.G.

    1989-01-01

    Human factors issues in probabilistic risk assessment (PRAs) of complex high-reliability systems are addressed. These PRAs influence system operation and technical support programs such as maintainability, test, and surveillance. Using the U.S. commercial nuclear power industry as the setting, the paper addresses the manner in which PRAs currently treat human performance, the state of quantification methods and source data for analyzing human performance, and the role of human factors specialist in the analysis. The paper concludes with a presentation of TALENT, an emerging concept for fully integrating broad-based human factors expertise into the PRA process, is presented. 47 refs

  5. Human reliability impact on in-service inspection

    International Nuclear Information System (INIS)

    Spanner, J.C. Sr.

    1986-01-01

    This paper describes a study conducted to identify, characterize, and evaluate the human reliability aspects of ultrasonic testing/inservice inspection (UT/ISI). Recent measurements of UT/ISI system effectiveness have revealed wide variations in performance; suggesting that insufficient emphasis is being placed on the human reliability aspects of nondestructive examination. It appears that NDE performance can be improved through application of the human factors principles relating to the task, training, procedure, environmental, and individual difference variables. These variables are collectively referred to as performance-shaping factors. A man-machine systems model was developed to describe the UT/ISI process using functional task descriptors. The relative operating characteristic (ROC) analysis method, which is derived from signal detection theory, offers unique attributes for analyzing NDT performance. The results of a limited human factors evaluation conducted in conjunction with a mini-round robin test are also described

  6. Fifty Years of THERP and Human Reliability Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ronald L. Boring

    2012-06-01

    In 1962 at a Human Factors Society symposium, Alan Swain presented a paper introducing a Technique for Human Error Rate Prediction (THERP). This was followed in 1963 by a Sandia Laboratories monograph outlining basic human error quantification using THERP and, in 1964, by a special journal edition of Human Factors on quantification of human performance. Throughout the 1960s, Swain and his colleagues focused on collecting human performance data for the Sandia Human Error Rate Bank (SHERB), primarily in connection with supporting the reliability of nuclear weapons assembly in the US. In 1969, Swain met with Jens Rasmussen of Risø National Laboratory and discussed the applicability of THERP to nuclear power applications. By 1975, in WASH-1400, Swain had articulated the use of THERP for nuclear power applications, and the approach was finalized in the watershed publication of the NUREG/CR-1278 in 1983. THERP is now 50 years old, and remains the most well known and most widely used HRA method. In this paper, the author discusses the history of THERP, based on published reports and personal communication and interviews with Swain. The author also outlines the significance of THERP. The foundations of human reliability analysis are found in THERP: human failure events, task analysis, performance shaping factors, human error probabilities, dependence, event trees, recovery, and pre- and post-initiating events were all introduced in THERP. While THERP is not without its detractors, and it is showing signs of its age in the face of newer technological applications, the longevity of THERP is a testament of its tremendous significance. THERP started the field of human reliability analysis. This paper concludes with a discussion of THERP in the context of newer methods, which can be seen as extensions of or departures from Swain’s pioneering work.

  7. Science Based Human Reliability Analysis: Using Digital Nuclear Power Plant Simulators for Human Reliability Research

    Science.gov (United States)

    Shirley, Rachel Elizabeth

    Nuclear power plant (NPP) simulators are proliferating in academic research institutions and national laboratories in response to the availability of affordable, digital simulator platforms. Accompanying the new research facilities is a renewed interest in using data collected in NPP simulators for Human Reliability Analysis (HRA) research. An experiment conducted in The Ohio State University (OSU) NPP Simulator Facility develops data collection methods and analytical tools to improve use of simulator data in HRA. In the pilot experiment, student operators respond to design basis accidents in the OSU NPP Simulator Facility. Thirty-three undergraduate and graduate engineering students participated in the research. Following each accident scenario, student operators completed a survey about perceived simulator biases and watched a video of the scenario. During the video, they periodically recorded their perceived strength of significant Performance Shaping Factors (PSFs) such as Stress. This dissertation reviews three aspects of simulator-based research using the data collected in the OSU NPP Simulator Facility: First, a qualitative comparison of student operator performance to computer simulations of expected operator performance generated by the Information Decision Action Crew (IDAC) HRA method. Areas of comparison include procedure steps, timing of operator actions, and PSFs. Second, development of a quantitative model of the simulator bias introduced by the simulator environment. Two types of bias are defined: Environmental Bias and Motivational Bias. This research examines Motivational Bias--that is, the effect of the simulator environment on an operator's motivations, goals, and priorities. A bias causal map is introduced to model motivational bias interactions in the OSU experiment. Data collected in the OSU NPP Simulator Facility are analyzed using Structural Equation Modeling (SEM). Data include crew characteristics, operator surveys, and time to recognize

  8. Applications of Human Performance Reliability Evaluation Concepts and Demonstration Guidelines

    Science.gov (United States)

    1977-03-15

    ship stops dead in the water and the AN/SQS-26 operator recommends a new heading (000°). At T + 14 minutes, the target ship begins a hard turn to...Various Simulated Conditions 82 9 Hunan Reliability for Each Simulated Operator (Baseline Run) 83 10 Human and Equipment Availabilit / under

  9. Human Genome Education Program

    Energy Technology Data Exchange (ETDEWEB)

    Richard Myers; Lane Conn

    2000-05-01

    The funds from the DOE Human Genome Program, for the project period 2/1/96 through 1/31/98, have provided major support for the curriculum development and field testing efforts for two high school level instructional units: Unit 1, ''Exploring Genetic Conditions: Genes, Culture and Choices''; and Unit 2, ''DNA Snapshots: Peaking at Your DNA''. In the original proposal, they requested DOE support for the partial salary and benefits of a Field Test Coordinator position to: (1) complete the field testing and revision of two high school curriculum units, and (2) initiate the education of teachers using these units. During the project period of this two-year DOE grant, a part-time Field-Test Coordinator was hired (Ms. Geraldine Horsma) and significant progress has been made in both of the original proposal objectives. Field testing for Unit 1 has occurred in over 12 schools (local and non-local sites with diverse student populations). Field testing for Unit 2 has occurred in over 15 schools (local and non-local sites) and will continue in 12-15 schools during the 96-97 school year. For both curricula, field-test sites and site teachers were selected for their interest in genetics education and in hands-on science education. Many of the site teachers had no previous experience with HGEP or the unit under development. Both of these first-year biology curriculum units, which contain genetics, biotechnology, societal, ethical and cultural issues related to HGP, are being implemented in many local and non-local schools (SF Bay Area, Southern California, Nebraska, Hawaii, and Texas) and in programs for teachers. These units will reach over 10,000 students in the SF Bay Area and continues to receive support from local corporate and private philanthropic organizations. Although HGEP unit development is nearing completion for both units, data is still being gathered and analyzed on unit effectiveness and student learning. The final field

  10. HUMAN RELIABILITY ANALYSIS DENGAN PENDEKATAN COGNITIVE RELIABILITY AND ERROR ANALYSIS METHOD (CREAM

    Directory of Open Access Journals (Sweden)

    Zahirah Alifia Maulida

    2015-01-01

    Full Text Available Kecelakaan kerja pada bidang grinding dan welding menempati urutan tertinggi selama lima tahun terakhir di PT. X. Kecelakaan ini disebabkan oleh human error. Human error terjadi karena pengaruh lingkungan kerja fisik dan non fisik.Penelitian kali menggunakan skenario untuk memprediksi serta mengurangi kemungkinan terjadinya error pada manusia dengan pendekatan CREAM (Cognitive Reliability and Error Analysis Method. CREAM adalah salah satu metode human reliability analysis yang berfungsi untuk mendapatkan nilai Cognitive Failure Probability (CFP yang dapat dilakukan dengan dua cara yaitu basic method dan extended method. Pada basic method hanya akan didapatkan nilai failure probabailty secara umum, sedangkan untuk extended method akan didapatkan CFP untuk setiap task. Hasil penelitian menunjukkan faktor- faktor yang mempengaruhi timbulnya error pada pekerjaan grinding dan welding adalah kecukupan organisasi, kecukupan dari Man Machine Interface (MMI & dukungan operasional, ketersediaan prosedur/ perencanaan, serta kecukupan pelatihan dan pengalaman. Aspek kognitif pada pekerjaan grinding yang memiliki nilai error paling tinggi adalah planning dengan nilai CFP 0.3 dan pada pekerjaan welding yaitu aspek kognitif execution dengan nilai CFP 0.18. Sebagai upaya untuk mengurangi nilai error kognitif pada pekerjaan grinding dan welding rekomendasi yang diberikan adalah memberikan training secara rutin, work instrucstion yang lebih rinci dan memberikan sosialisasi alat. Kata kunci: CREAM (cognitive reliability and error analysis method, HRA (human reliability analysis, cognitive error Abstract The accidents in grinding and welding sectors were the highest cases over the last five years in PT. X and it caused by human error. Human error occurs due to the influence of working environment both physically and non-physically. This study will implement an approaching scenario called CREAM (Cognitive Reliability and Error Analysis Method. CREAM is one of human

  11. Human genome. 1993 Program report

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    The purpose of this report is to update the Human Genome 1991-92 Program Report and provide new information on the DOE genome program to researchers, program managers, other government agencies, and the interested public. This FY 1993 supplement includes abstracts of 60 new or renewed projects and listings of 112 continuing and 28 completed projects. These two reports, taken together, present the most complete published view of the DOE Human Genome Program through FY 1993. Research is progressing rapidly toward 15-year goals of mapping and sequencing the DNA of each of the 24 different human chromosomes.

  12. User's manual of a support system for human reliability analysis

    International Nuclear Information System (INIS)

    Yokobayashi, Masao; Tamura, Kazuo.

    1995-10-01

    Many kinds of human reliability analysis (HRA) methods have been developed. However, users are required to be skillful so as to use them, and also required complicated works such as drawing event tree (ET) and calculation of uncertainty bounds. Moreover, each method is not so complete that only one method of them is not enough to evaluate human reliability. Therefore, a personal computer (PC) based support system for HRA has been developed to execute HRA practically and efficiently. The system consists of two methods, namely, simple method and detailed one. The former uses ASEP that is a simplified THERP-technique, and combined method of OAT and HRA-ET/DeBDA is used for the latter. Users can select a suitable method for their purpose. Human error probability (HEP) data were collected and a database of them was built to use for the support system. This paper describes outline of the HRA methods, support functions and user's guide of the system. (author)

  13. EPRI (Electric Power Research Institute) operator reliability experiments program - Training implications

    International Nuclear Information System (INIS)

    Joksimovich, V.; Spurgin, A.J.; Orvis, D.D.; Moieni, P.; Worledge, D.H.

    1990-01-01

    The primary purpose of the EPRI Operator Reliability Experiments (ORE) Program is to collect data for use in reliability and safety studies of nuclear power plant operation to more realistically take credit for operator performance in preventing core damage. The two objectives for fulfilling this purpose are: (1) to obtain quantitative/qualitative performance data on operating crew responses in the control room for potential accident sequences by using plant simulators, and (2) to test the Human Cognitive Reliability (HCR) correlation. This paper briefly discusses the background to this program, data collection and analysis, the results and quantitative/qualitative insights stemming from phase one which might be of interest to simulator operators and trainers

  14. SHARP1: A revised systematic human action reliability procedure

    International Nuclear Information System (INIS)

    Wakefield, D.J.; Parry, G.W.; Hannaman, G.W.; Spurgin, A.J.

    1990-12-01

    Individual plant examinations (IPE) are being performed by utilities to evaluate plant-specific vulnerabilities to severe accidents. A major tool in performing an IPE is a probabilistic risk assessment (PRA). The importance of human interactions in determining the plant response in past PRAs is well documented. The modeling and quantification of the probabilities of human interactions have been the subjects of considerable research by the Electric Power Research Institute (EPRI). A revised framework, SHARP1, for incorporating human interactions into PRA is summarized in this report. SHARP1 emphasizes that the process stages are iterative and directed at specific goals rather than being performed sequentially in a stepwise procedure. This expanded summary provides the reader with a flavor of the full report content. Excerpts from the full report are presented, following the same outline as the full report. In the full report, the interface of the human reliability analysis with the plant logic model development in a PRA is given special attention. In addition to describing a methodology framework, the report also discusses the types of human interactions to be evaluated, and how to formulate a project team to perform the human reliability analysis. A concise description and comparative evaluation of the selected existing methods of quantification of human error are also presented. Four case studies are also provided to illustrate the SHARP1 process

  15. Quantification of human reliability in probabilistic safety assessment

    International Nuclear Information System (INIS)

    Hirschberg, S.; Dankg, Vinh N.

    1996-01-01

    Human performance may substantially influence the reliability and safety of complex technical systems. For this reason, Human Reliability Analysis (HRA) constitutes an important part of Probabilistic Safety Assessment (PSAs) or Quantitative Risk Analyses (QRAs). The results of these studies as well as analyses of past accidents and incidents clearly demonstrate the importance of human interactions. The contribution of human errors to the core damage frequency (CDF), as estimated in the Swedish nuclear PSAs, are between 15 and 88%. A survey of the FRAs in the Swiss PSAs shows that also for the Swiss nuclear power plants the estimated HE contributions are substantial (49% of the CDF due to internal events in the case of Beznau and 70% in the case of Muehleberg; for the total CDF, including external events, 25% respectively 20%). Similar results can be extracted from the PSAs carried out for French, German, and US plants. In PSAs or QRAs, the adequate treatment of the human interactions with the system is a key to the understanding of accident sequences and their relative importance to overall risk. The main objectives of HRA are: first, to ensure that the key human interactions are systematically identified and incorporated into the safety analysis in a traceable manner, and second, to quantify the probabilities of their success and failure. Adopting a structured and systematic approach to the assessment of human performance makes it possible to provide greater confidence that the safety and availability of human-machine systems is not unduly jeopardized by human performance problems. Section 2 discusses the different types of human interactions analysed in PSAs. More generally, the section presents how HRA fits in the overall safety analysis, that is, how the human interactions to be quantified are identified. Section 3 addresses the methods for quantification. Section 4 concludes the paper by presenting some recommendations and pointing out the limitations of the

  16. Fuzzy Goal Programming Approach in Selective Maintenance Reliability Model

    Directory of Open Access Journals (Sweden)

    Neha Gupta

    2013-12-01

    Full Text Available 800x600 In the present paper, we have considered the allocation problem of repairable components for a parallel-series system as a multi-objective optimization problem and have discussed two different models. In first model the reliability of subsystems are considered as different objectives. In second model the cost and time spent on repairing the components are considered as two different objectives. These two models is formulated as multi-objective Nonlinear Programming Problem (MONLPP and a Fuzzy goal programming method is used to work out the compromise allocation in multi-objective selective maintenance reliability model in which we define the membership functions of each objective function and then transform membership functions into equivalent linear membership functions by first order Taylor series and finally by forming a fuzzy goal programming model obtain a desired compromise allocation of maintenance components. A numerical example is also worked out to illustrate the computational details of the method.  Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4

  17. A comparative evaluation of five human reliability assessment techniques

    International Nuclear Information System (INIS)

    Kirwan, B.

    1988-01-01

    A field experiment was undertaken to evaluate the accuracy, usefulness, and resources requirements of five human reliability quantification techniques (Techniques for Human Error Rate Prediction (THERP); Paired Comparisons, Human Error Assessment and Reduction Technique (HEART), Success Liklihood Index Method (SLIM)-Multi Attribute Utility Decomposition (MAUD), and Absolute Probability Judgement). This was achieved by assessing technique predictions against a set of known human error probabilities, and by comparing their predictions on a set of five realistic Probabilisitc Risk Assessment (PRA) human error. On a combined measure of accuracy THERP and Absolute Probability Judgement performed best, whilst HEART showed indications of accuracy and was lower in resources usage than other techniques. HEART and THERP both appear to benefit from using trained assessors in order to obtain the best results. SLIM and Paired Comparisons require further research on achieving a robust calibration relationship between their scale values and absolute probabilities. (author)

  18. Probabilistic safety analysis and human reliability analysis. Proceedings. Working material

    International Nuclear Information System (INIS)

    1996-01-01

    An international meeting on Probabilistic Safety Assessment (PSA) and Human Reliability Analysis (HRA) was jointly organized by Electricite de France - Research and Development (EDF DER) and SRI International in co-ordination with the International Atomic Energy Agency. The meeting was held in Paris 21-23 November 1994. A group of international and French specialists in PSA and HRA participated at the meeting and discussed the state of the art and current trends in the following six topics: PSA Methodology; PSA Applications; From PSA to Dependability; Incident Analysis; Safety Indicators; Human Reliability. For each topic a background paper was prepared by EDF/DER and reviewed by the international group of specialists who attended the meeting. The results of this meeting provide a comprehensive overview of the most important questions related to the readiness of PSA for specific uses and areas where further research and development is required. Refs, figs, tabs

  19. Issues in benchmarking human reliability analysis methods: A literature review

    International Nuclear Information System (INIS)

    Boring, Ronald L.; Hendrickson, Stacey M.L.; Forester, John A.; Tran, Tuan Q.; Lois, Erasmia

    2010-01-01

    There is a diversity of human reliability analysis (HRA) methods available for use in assessing human performance within probabilistic risk assessments (PRA). Due to the significant differences in the methods, including the scope, approach, and underlying models, there is a need for an empirical comparison investigating the validity and reliability of the methods. To accomplish this empirical comparison, a benchmarking study comparing and evaluating HRA methods in assessing operator performance in simulator experiments is currently underway. In order to account for as many effects as possible in the construction of this benchmarking study, a literature review was conducted, reviewing past benchmarking studies in the areas of psychology and risk assessment. A number of lessons learned through these studies is presented in order to aid in the design of future HRA benchmarking endeavors.

  20. Probabilistic safety analysis and human reliability analysis. Proceedings. Working material

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    An international meeting on Probabilistic Safety Assessment (PSA) and Human Reliability Analysis (HRA) was jointly organized by Electricite de France - Research and Development (EDF DER) and SRI International in co-ordination with the International Atomic Energy Agency. The meeting was held in Paris 21-23 November 1994. A group of international and French specialists in PSA and HRA participated at the meeting and discussed the state of the art and current trends in the following six topics: PSA Methodology; PSA Applications; From PSA to Dependability; Incident Analysis; Safety Indicators; Human Reliability. For each topic a background paper was prepared by EDF/DER and reviewed by the international group of specialists who attended the meeting. The results of this meeting provide a comprehensive overview of the most important questions related to the readiness of PSA for specific uses and areas where further research and development is required. Refs, figs, tabs.

  1. Issues in benchmarking human reliability analysis methods : a literature review.

    Energy Technology Data Exchange (ETDEWEB)

    Lois, Erasmia (US Nuclear Regulatory Commission); Forester, John Alan; Tran, Tuan Q. (Idaho National Laboratory, Idaho Falls, ID); Hendrickson, Stacey M. Langfitt; Boring, Ronald L. (Idaho National Laboratory, Idaho Falls, ID)

    2008-04-01

    There is a diversity of human reliability analysis (HRA) methods available for use in assessing human performance within probabilistic risk assessment (PRA). Due to the significant differences in the methods, including the scope, approach, and underlying models, there is a need for an empirical comparison investigating the validity and reliability of the methods. To accomplish this empirical comparison, a benchmarking study is currently underway that compares HRA methods with each other and against operator performance in simulator studies. In order to account for as many effects as possible in the construction of this benchmarking study, a literature review was conducted, reviewing past benchmarking studies in the areas of psychology and risk assessment. A number of lessons learned through these studies are presented in order to aid in the design of future HRA benchmarking endeavors.

  2. Human Research Program

    Data.gov (United States)

    National Aeronautics and Space Administration — Strategically, the HRP conducts research and technology development that: 1) enables the development or modification of Agency-level human health and performance...

  3. Human reliability: an evaluation of its understanding and prediction

    International Nuclear Information System (INIS)

    Joksimovich, V.

    1987-01-01

    This paper presents a viewpoint on the state-of-the-art in human reliability. The bases for this viewpoint are, by and large, research projects conducted by the NUS for the Electric Power Research Institute (EPRI) primarily with the objective of further enhancing the credibility of PRA methodology. The presentation is divided into the following key sections: Background and Overview, Methodology and Data Base with emphasis on the simulator data base

  4. Reliability of an interactive computer program for advance care planning.

    Science.gov (United States)

    Schubart, Jane R; Levi, Benjamin H; Camacho, Fabian; Whitehead, Megan; Farace, Elana; Green, Michael J

    2012-06-01

    Despite widespread efforts to promote advance directives (ADs), completion rates remain low. Making Your Wishes Known: Planning Your Medical Future (MYWK) is an interactive computer program that guides individuals through the process of advance care planning, explaining health conditions and interventions that commonly involve life or death decisions, helps them articulate their values/goals, and translates users' preferences into a detailed AD document. The purpose of this study was to demonstrate that (in the absence of major life changes) the AD generated by MYWK reliably reflects an individual's values/preferences. English speakers ≥30 years old completed MYWK twice, 4 to 6 weeks apart. Reliability indices were assessed for three AD components: General Wishes; Specific Wishes for treatment; and Quality-of-Life values (QoL). Twenty-four participants completed the study. Both the Specific Wishes and QoL scales had high internal consistency in both time periods (Knuder Richardson formula 20 [KR-20]=0.83-0.95, and 0.86-0.89). Test-retest reliability was perfect for General Wishes (κ=1), high for QoL (Pearson's correlation coefficient=0.83), but lower for Specific Wishes (Pearson's correlation coefficient=0.57). MYWK generates an AD where General Wishes and QoL (but not Specific Wishes) statements remain consistent over time.

  5. Reliability of an Interactive Computer Program for Advance Care Planning

    Science.gov (United States)

    Levi, Benjamin H.; Camacho, Fabian; Whitehead, Megan; Farace, Elana; Green, Michael J

    2012-01-01

    Abstract Despite widespread efforts to promote advance directives (ADs), completion rates remain low. Making Your Wishes Known: Planning Your Medical Future (MYWK) is an interactive computer program that guides individuals through the process of advance care planning, explaining health conditions and interventions that commonly involve life or death decisions, helps them articulate their values/goals, and translates users' preferences into a detailed AD document. The purpose of this study was to demonstrate that (in the absence of major life changes) the AD generated by MYWK reliably reflects an individual's values/preferences. English speakers ≥30 years old completed MYWK twice, 4 to 6 weeks apart. Reliability indices were assessed for three AD components: General Wishes; Specific Wishes for treatment; and Quality-of-Life values (QoL). Twenty-four participants completed the study. Both the Specific Wishes and QoL scales had high internal consistency in both time periods (Knuder Richardson formula 20 [KR-20]=0.83–0.95, and 0.86–0.89). Test-retest reliability was perfect for General Wishes (κ=1), high for QoL (Pearson's correlation coefficient=0.83), but lower for Specific Wishes (Pearson's correlation coefficient=0.57). MYWK generates an AD where General Wishes and QoL (but not Specific Wishes) statements remain consistent over time. PMID:22512830

  6. Limitations in simulator time-based human reliability analysis methods

    International Nuclear Information System (INIS)

    Wreathall, J.

    1989-01-01

    Developments in human reliability analysis (HRA) methods have evolved slowly. Current methods are little changed from those of almost a decade ago, particularly in the use of time-reliability relationships. While these methods were suitable as an interim step, the time (and the need) has come to specify the next evolution of HRA methods. As with any performance-oriented data source, power plant simulator data have no direct connection to HRA models. Errors reported in data are normal deficiencies observed in human performance; failures are events modeled in probabilistic risk assessments (PRAs). Not all errors cause failures; not all failures are caused by errors. Second, the times at which actions are taken provide no measure of the likelihood of failures to act correctly within an accident scenario. Inferences can be made about human reliability, but they must be made with great care. Specific limitations are discussed. Simulator performance data are useful in providing qualitative evidence of the variety of error types and their potential influences on operating systems. More work is required to combine recent developments in the psychology of error with the qualitative data collected at stimulators. Until data become openly available, however, such an advance will not be practical

  7. Some developments in human reliability analysis approaches and tools

    Energy Technology Data Exchange (ETDEWEB)

    Hannaman, G W; Worledge, D H

    1988-01-01

    Since human actions have been recognized as an important contributor to safety of operating plants in most industries, research has been performed to better understand and account for the way operators interact during accidents through the control room and equipment interface. This paper describes the integration of a series of research projects sponsored by the Electric Power Research Institute to strengthen the methods for performing the human reliability analysis portion of the probabilistic safety studies. It focuses on the analytical framework used to guide the analysis, the development of the models for quantifying time-dependent actions, and simulator experiments used to validate the models.

  8. Reliability

    OpenAIRE

    Condon, David; Revelle, William

    2017-01-01

    Separating the signal in a test from the irrelevant noise is a challenge for all measurement. Low test reliability limits test validity, attenuates important relationships, and can lead to regression artifacts. Multiple approaches to the assessment and improvement of reliability are discussed. The advantages and disadvantages of several different approaches to reliability are considered. Practical advice on how to assess reliability using open source software is provided.

  9. Preliminary Human Reliability Issues in Reviewing SMART PSA

    International Nuclear Information System (INIS)

    Lee, Chang Ju; Sheen, Cheol

    2010-01-01

    Human reliability analysis (HRA) identifies the human failure events (HFEs) that can negatively impact normal or emergency plant operations, and systematically estimates probabilities of HFEs using data (when available), models, or expert judgment. In case of newly-conceptualized reactors like SMART (System-integrated Modular Advanced Reactor), HRA results must be provided by first evaluating the applicability of a set of human errors that has been typically applied in PSAs for existing PWRs. Additional human errors should also be identified reflecting its unique design and operational features. The objective of this paper is double-folded: to discuss a direction of HRA used in confirming risk level of SAMRT-type reactors; and to extract preliminarily considerable points or issues for regulatory verification, referred to available safety guides

  10. Modeling human intention formation for human reliability assessment

    International Nuclear Information System (INIS)

    Woods, D.D.; Roth, E.M.; Pople, H. Jr.

    1988-01-01

    This paper describes a dynamic simulation capability for modeling how people form intentions to act in nuclear power plant emergency situations. This modeling tool, Cognitive Environment Simulation or CES, was developed based on techniques from artificial intelligence. It simulates the cognitive processes that determine situation assessment and intention formation. It can be used to investigate analytically what situations and factors lead to intention failures, what actions follow from intention failures (e.g. errors of omission, errors of commission, common mode errors), the ability to recover from errors or additional machine failures, and the effects of changes in the NPP person machine system. One application of the CES modeling environment is to enhance the measurement of the human contribution to risk in probabilistic risk assessment studies. (author)

  11. Design-reliability assurance program application to ACP600

    International Nuclear Information System (INIS)

    Zhichao, Huang; Bo, Zhao

    2012-01-01

    ACP600 is a newly nuclear power plant technology made by CNNC in China and it is based on the Generation III NPPs design experience and general safety goals. The ACP600 Design Reliability Assurance Program (D-RAP) is implemented as an integral part of the ACP600 design process. A RAP is a formal management system which assures the collection of important characteristic information about plant performance throughout each phase of its life and directs the use of this information in the implementation of analytical and management process which are specifically designed to meet two specific objects: confirm the plant goals and cost effective improvements. In general, typical reliability assurance program have 4 broad functional elements: 1) Goals and performance criteria; 2) Management system and implementing procedures; 3) Analytical tools and investigative methods; and 4) Information management. In this paper we will use the D-RAP technical and Risk-Informed requirements, and establish the RAM and PSA model to optimize the ACP600 design. Compared with previous design process, the D-RAP is more competent for the higher design targets and requirements, enjoying more creativity through an easier implementation of technical breakthroughs. By using D-RAP, the plants goals, system goals, performance criteria and safety criteria can be easier to realize, and the design can be optimized and more rational

  12. Development of advanced methods and related software for human reliability evaluation within probabilistic safety analyses

    International Nuclear Information System (INIS)

    Kosmowski, K.T.; Mertens, J.; Degen, G.; Reer, B.

    1994-06-01

    Human Reliability Analysis (HRA) is an important part of Probabilistic Safety Analysis (PSA). The first part of this report consists of an overview of types of human behaviour and human error including the effect of significant performance shaping factors on human reliability. Particularly with regard to safety assessments for nuclear power plants a lot of HRA methods have been developed. The most important of these methods are presented and discussed in the report, together with techniques for incorporating HRA into PSA and with models of operator cognitive behaviour. Based on existing HRA methods the concept of a software system is described. For the development of this system the utilization of modern programming tools is proposed; the essential goal is the effective application of HRA methods. A possible integration of computeraided HRA within PSA is discussed. The features of Expert System Technology and examples of applications (PSA, HRA) are presented in four appendices. (orig.) [de

  13. Study and application of human reliability analysis for digital human-system interface

    International Nuclear Information System (INIS)

    Jia Ming; Liu Yanzi; Zhang Jianbo

    2014-01-01

    The knowledge of human-orientated abilities and limitations could be used to digital human-system interface (HSI) design by human reliability analysis (HRA) technology. Further, control room system design could achieve the perfect match of man-machine-environment. This research was conducted to establish an integrated HRA method. This method identified HSI potential design flaws which may affect human performance and cause human error. Then a systematic approach was adopted to optimize HSI. It turns out that this method is practical and objective, and effectively improves the safety, reliability and economy of nuclear power plant. This method was applied to CRP1000 projects under construction successfully with great potential. (authors)

  14. MPprimer: a program for reliable multiplex PCR primer design

    Directory of Open Access Journals (Sweden)

    Wang Xiaolei

    2010-03-01

    Full Text Available Abstract Background Multiplex PCR, defined as the simultaneous amplification of multiple regions of a DNA template or multiple DNA templates using more than one primer set (comprising a forward primer and a reverse primer in one tube, has been widely used in diagnostic applications of clinical and environmental microbiology studies. However, primer design for multiplex PCR is still a challenging problem and several factors need to be considered. These problems include mis-priming due to nonspecific binding to non-target DNA templates, primer dimerization, and the inability to separate and purify DNA amplicons with similar electrophoretic mobility. Results A program named MPprimer was developed to help users for reliable multiplex PCR primer design. It employs the widely used primer design program Primer3 and the primer specificity evaluation program MFEprimer to design and evaluate the candidate primers based on genomic or transcript DNA database, followed by careful examination to avoid primer dimerization. The graph-expanding algorithm derived from the greedy algorithm was used to determine the optimal primer set combinations (PSCs for multiplex PCR assay. In addition, MPprimer provides a virtual electrophotogram to help users choose the best PSC. The experimental validation from 2× to 5× plex PCR demonstrates the reliability of MPprimer. As another example, MPprimer is able to design the multiplex PCR primers for DMD (dystrophin gene which caused Duchenne Muscular Dystrophy, which has 79 exons, for 20×, 20×, 20×, 14×, and 5× plex PCR reactions in five tubes to detect underlying exon deletions. Conclusions MPprimer is a valuable tool for designing specific, non-dimerizing primer set combinations with constrained amplicons size for multiplex PCR assays.

  15. Application of human reliability analysis methodology of second generation

    International Nuclear Information System (INIS)

    Ruiz S, T. de J.; Nelson E, P. F.

    2009-10-01

    The human reliability analysis (HRA) is a very important part of probabilistic safety analysis. The main contribution of HRA in nuclear power plants is the identification and characterization of the issues that are brought together for an error occurring in the human tasks that occur under normal operation conditions and those made after abnormal event. Additionally, the analysis of various accidents in history, it was found that the human component has been a contributing factor in the cause. Because of need to understand the forms and probability of human error in the 60 decade begins with the collection of generic data that result in the development of the first generation of HRA methodologies. Subsequently develop methods to include in their models additional performance shaping factors and the interaction between them. So by the 90 mid, comes what is considered the second generation methodologies. Among these is the methodology A Technique for Human Event Analysis (ATHEANA). The application of this method in a generic human failure event, it is interesting because it includes in its modeling commission error, the additional deviations quantification to nominal scenario considered in the accident sequence of probabilistic safety analysis and, for this event the dependency actions evaluation. That is, the generic human failure event was required first independent evaluation of the two related human failure events . So the gathering of the new human error probabilities involves the nominal scenario quantification and cases of significant deviations considered by the potential impact on analyzed human failure events. Like probabilistic safety analysis, with the analysis of the sequences were extracted factors more specific with the highest contribution in the human error probabilities. (Author)

  16. HASP: human acts simulation program

    International Nuclear Information System (INIS)

    Asai, Kiyoshi; Kambayashi, Shaw; Higuchi, Kenji; Kume, Etsuo; Otani, Takayuki; Fujii, Minoru; Uenaka, Junji; Fujisaki, Masahide.

    1990-01-01

    The Human Acts Simulation Program (HASP) aims computer simulations of mechanized human acts in a nuclear plant by a human shaped intelligent robot. The HASP has started as a ten-year program at Japan Atomic Energy Research Institute since 1987. The purposes of HASP are threefold as follows; development of basic and generalized design technologies for intelligent robots, development of basic technologies for an advanced intelligent and automatic nuclear power plant, and provision of artificial intelligence techniques for researchers in the nuclear field. In this paper, the contents of the HASP are described. (author)

  17. IDHEAS – A NEW APPROACH FOR HUMAN RELIABILITY ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    G. W. Parry; J.A Forester; V.N. Dang; S. M. L. Hendrickson; M. Presley; E. Lois; J. Xing

    2013-09-01

    This paper describes a method, IDHEAS (Integrated Decision-Tree Human Event Analysis System) that has been developed jointly by the US NRC and EPRI as an improved approach to Human Reliability Analysis (HRA) that is based on an understanding of the cognitive mechanisms and performance influencing factors (PIFs) that affect operator responses. The paper describes the various elements of the method, namely the performance of a detailed cognitive task analysis that is documented in a crew response tree (CRT), and the development of the associated time-line to identify the critical tasks, i.e. those whose failure results in a human failure event (HFE), and an approach to quantification that is based on explanations of why the HFE might occur.

  18. Human reliability analysis in Loviisa probabilistic safety analysis

    International Nuclear Information System (INIS)

    Illman, L.; Isaksson, J.; Makkonen, L.; Vaurio, J.K.; Vuorio, U.

    1986-01-01

    The human reliability analysis in the Loviisa PSA project is carried out for three major groups of errors in human actions: (A) errors made before an initiating event, (B) errors that initiate a transient and (C) errors made during transients. Recovery possibilities are also included in each group. The methods used or planned for each group are described. A simplified THERP approach is used for group A, with emphasis on test and maintenance error recovery aspects and dependencies between redundancies. For group B, task analyses and human factors assessments are made for startup, shutdown and operational transients, with emphasis on potential common cause initiators. For group C, both misdiagnosis and slow decision making are analyzed, as well as errors made in carrying out necessary or backup actions. New or advanced features of the methodology are described

  19. Implementation of PATREC nuclear reliability program in PROLOG

    International Nuclear Information System (INIS)

    Koen, B.V.; Koen, D.B.

    1987-01-01

    PROLOG, the de facto computer language for research in artificial intelligence in Japan, is a logical choice for research in the pattern recognition strategy for evaluating the reliability of complex systems expressed as fault trees. PROLOG's basic data type is the tree, and its basic control construct is pattern matching. It is also based on recursive programming and allows dynamic allocation of memory, both of which are essential for an efficient reduction of the input tree. Since the inference engine of PROLOG automatically examines the user-defined data base in a systematic order, an additional advantage of this language is that the largest known pattern will always be found first without coding complex tree searches of the pattern library as was required in other computer languages such as PL/1 and LISP

  20. Inclusion of fatigue effects in human reliability analysis

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, Candice D. [Vanderbilt University, Nashville, TN (United States); Mahadevan, Sankaran, E-mail: sankaran.mahadevan@vanderbilt.edu [Vanderbilt University, Nashville, TN (United States)

    2011-11-15

    The effect of fatigue on human performance has been observed to be an important factor in many industrial accidents. However, defining and measuring fatigue is not easily accomplished. This creates difficulties in including fatigue effects in probabilistic risk assessments (PRA) of complex engineering systems that seek to include human reliability analysis (HRA). Thus the objectives of this paper are to discuss (1) the importance of the effects of fatigue on performance, (2) the difficulties associated with defining and measuring fatigue, (3) the current status of inclusion of fatigue in HRA methods, and (4) the future directions and challenges for the inclusion of fatigue, specifically sleep deprivation, in HRA. - Highlights: >We highlight the need for fatigue and sleep deprivation effects on performance to be included in human reliability analysis (HRA) methods. Current methods do not explicitly include sleep deprivation effects. > We discuss the difficulties in defining and measuring fatigue. > We review sleep deprivation research, and discuss the limitations and future needs of the current HRA methods.

  1. Inclusion of fatigue effects in human reliability analysis

    International Nuclear Information System (INIS)

    Griffith, Candice D.; Mahadevan, Sankaran

    2011-01-01

    The effect of fatigue on human performance has been observed to be an important factor in many industrial accidents. However, defining and measuring fatigue is not easily accomplished. This creates difficulties in including fatigue effects in probabilistic risk assessments (PRA) of complex engineering systems that seek to include human reliability analysis (HRA). Thus the objectives of this paper are to discuss (1) the importance of the effects of fatigue on performance, (2) the difficulties associated with defining and measuring fatigue, (3) the current status of inclusion of fatigue in HRA methods, and (4) the future directions and challenges for the inclusion of fatigue, specifically sleep deprivation, in HRA. - Highlights: →We highlight the need for fatigue and sleep deprivation effects on performance to be included in human reliability analysis (HRA) methods. Current methods do not explicitly include sleep deprivation effects. → We discuss the difficulties in defining and measuring fatigue. → We review sleep deprivation research, and discuss the limitations and future needs of the current HRA methods.

  2. Meeting Human Reliability Requirements through Human Factors Design, Testing, and Modeling

    Energy Technology Data Exchange (ETDEWEB)

    R. L. Boring

    2007-06-01

    In the design of novel systems, it is important for the human factors engineer to work in parallel with the human reliability analyst to arrive at the safest achievable design that meets design team safety goals and certification or regulatory requirements. This paper introduces the System Development Safety Triptych, a checklist of considerations for the interplay of human factors and human reliability through design, testing, and modeling in product development. This paper also explores three phases of safe system development, corresponding to the conception, design, and implementation of a system.

  3. Launch and Assembly Reliability Analysis for Human Space Exploration Missions

    Science.gov (United States)

    Cates, Grant; Gelito, Justin; Stromgren, Chel; Cirillo, William; Goodliff, Kandyce

    2012-01-01

    NASA's future human space exploration strategy includes single and multi-launch missions to various destinations including cis-lunar space, near Earth objects such as asteroids, and ultimately Mars. Each campaign is being defined by Design Reference Missions (DRMs). Many of these missions are complex, requiring multiple launches and assembly of vehicles in orbit. Certain missions also have constrained departure windows to the destination. These factors raise concerns regarding the reliability of launching and assembling all required elements in time to support planned departure. This paper describes an integrated methodology for analyzing launch and assembly reliability in any single DRM or set of DRMs starting with flight hardware manufacturing and ending with final departure to the destination. A discrete event simulation is built for each DRM that includes the pertinent risk factors including, but not limited to: manufacturing completion; ground transportation; ground processing; launch countdown; ascent; rendezvous and docking, assembly, and orbital operations leading up to trans-destination-injection. Each reliability factor can be selectively activated or deactivated so that the most critical risk factors can be identified. This enables NASA to prioritize mitigation actions so as to improve mission success.

  4. The role of human reliability analysis for enhancing crew performance

    International Nuclear Information System (INIS)

    Hannaman, G.W.; Joksimovich, V.; Worledge, D.H.; Spurgin, A.J.

    1986-01-01

    This paper summarizes some aspects of EPRI-sponsored research undertaken in support of improving the PRA technology. In particular, the consideration of how human actions that impact accident sequences can be analyzed in a systematic way to supplement the type of ergonomic studies normally carried out in support of control room design. The HRA/PRA approach described not only identifies the operator information and interface needs, but also helps to identify issues and areas for additional research. The process includes a link to data collections. Preliminary collections of data and analytical benchmark support the idea that such analytical frameworks and models provide support for ranking the importance of various human reliability issues

  5. Human Reliability Analysis in Support of Risk Assessment for Positive Train Control

    Science.gov (United States)

    2003-06-01

    This report describes an approach to evaluating the reliability of human actions that are modeled in a probabilistic risk assessment : (PRA) of train control operations. This approach to human reliability analysis (HRA) has been applied in the case o...

  6. Standardization of domestic human reliability analysis and experience of human reliability analysis in probabilistic safety assessment for NPPs under design

    International Nuclear Information System (INIS)

    Kang, D. I.; Jung, W. D.

    2002-01-01

    This paper introduces the background and development activities of domestic standardization of procedure and method for Human Reliability Analysis (HRA) to avoid the intervention of subjectivity by HRA analyst in Probabilistic Safety Assessment (PSA) as possible, and the review of the HRA results for domestic nuclear power plants under design studied by Korea Atomic Energy Research Institute. We identify the HRA methods used for PSA for domestic NPPs and discuss the subjectivity of HRA analyst shown in performing a HRA. Also, we introduce the PSA guidelines published in USA and review the HRA results based on them. We propose the system of a standard procedure and method for HRA to be developed

  7. Human reliability analysis for advanced control room of KNGR

    International Nuclear Information System (INIS)

    Kim, Myung-Ro; Park, Seong-Kyu

    2000-01-01

    There are two purposes in Human Reliability Analysis (HRA) which was performed during Korean Next Generation Reactor (KNGR) Phase 2 research project. One is to present the human error probability quantification results for Probabilistic Safety Assessment (PSA) and the other is to provide a list of the critical operator actions for Human Factor Engineering (HFE). Critical operator actions were identified from the KNGR HRA/RSA based on selection criteria and incorporated in the MMI Task Analysis, where they receive additional treatment. The use of HRA/PSA results in design, procedure development, and training was ensured by their incorporation in the MMI task analysis and MCR design such as fixed position alarms, displays and controls. Any dominant PSA sequence that takes credit for human performance to achieve acceptable results was incorporated in MMIS validation activities through the PSA-based critical operator actions. The integration of KNGR HRA into MMI design was sufficiently addressed all applicable review criteria of NUREG-0800, Chapter 18, Section 2 F and NUREG-0711. (S.Y.)

  8. Models and data requirements for human reliability analysis

    International Nuclear Information System (INIS)

    1989-03-01

    It has been widely recognised for many years that the safety of the nuclear power generation depends heavily on the human factors related to plant operation. This has been confirmed by the accidents at Three Mile Island and Chernobyl. Both these cases revealed how human actions can defeat engineered safeguards and the need for special operator training to cover the possibility of unexpected plant conditions. The importance of the human factor also stands out in the analysis of abnormal events and insights from probabilistic safety assessments (PSA's), which reveal a large proportion of cases having their origin in faulty operator performance. A consultants' meeting, organized jointly by the International Atomic Energy Agency (IAEA) and the International Institute for Applied Systems Analysis (IIASA) was held at IIASA in Laxenburg, Austria, December 7-11, 1987, with the aim of reviewing existing models used in Probabilistic Safety Assessment (PSA) for Human Reliability Analysis (HRA) and of identifying the data required. The report collects both the contributions offered by the members of the Expert Task Force and the findings of the extensive discussions that took place during the meeting. Refs, figs and tabs

  9. Human reliability assessment on the basis of operating experience

    International Nuclear Information System (INIS)

    Straeter, O.

    1997-01-01

    For development of methodology, available models for qualitative assessment of human errors (e.g. by Swain, Hacker, Rasmussen) and a variety of known systematic approaches for quantitiative assessment of inadequate human action (e.g. THERP, ASEP, HCR, SLIM) were taken as a basis to establish a job specification, which in turn was used for developing a method for acquisition, characterisation and evaluation of errors. This method encompasses the two processes of event analysis and event evaluation: The first step comprises analysis of events by analysis of information describing the conditions and scenarios of relevance to the inadequate human action examined. In addition to the description of process sequences, information is taken into account on possible conditions that may bring about failure. As an assessment of human reliability requires manifold approaches for evaluation, a connectionistic procedure was developed for evaluation of the compilation of events based on a debate about various approaches from the domain of artificial intelligence (AI). This procedure yields both qualitative and quantitative information through a homogenous approach. (orig./GL) [de

  10. Multi-Unit Considerations for Human Reliability Analysis

    Energy Technology Data Exchange (ETDEWEB)

    St. Germain, S.; Boring, R.; Banaseanu, G.; Akl, Y.; Chatri, H.

    2017-03-01

    This paper uses the insights from the Standardized Plant Analysis Risk-Human Reliability Analysis (SPAR-H) methodology to help identify human actions currently modeled in the single unit PSA that may need to be modified to account for additional challenges imposed by a multi-unit accident as well as identify possible new human actions that might be modeled to more accurately characterize multi-unit risk. In identifying these potential human action impacts, the use of the SPAR-H strategy to include both errors in diagnosis and errors in action is considered as well as identifying characteristics of a multi-unit accident scenario that may impact the selection of the performance shaping factors (PSFs) used in SPAR-H. The lessons learned from the Fukushima Daiichi reactor accident will be addressed to further help identify areas where improved modeling may be required. While these multi-unit impacts may require modifications to a Level 1 PSA model, it is expected to have much more importance for Level 2 modeling. There is little currently written specifically about multi-unit HRA issues. A review of related published research will be presented. While this paper cannot answer all issues related to multi-unit HRA, it will hopefully serve as a starting point to generate discussion and spark additional ideas towards the proper treatment of HRA in a multi-unit PSA.

  11. Specification of a Human Reliability Data Bank for conducting HRA segments of PRAs for nuclear power plants

    International Nuclear Information System (INIS)

    Comer, M.K.; Donovan, M.D.

    1985-02-01

    The US Nuclear Regulatory Commission (NRC), Sandia National Laboratories (SNL), and General Physics Corporation have conducted a research program to develop a Human Reliability Data Bank for nuclear power industry probabilistic risk assessment (PRA). As part of this program, a survey of existing human reliability data banks from other industries was conducted and a concept of a Data Bank for the nuclear industry was developed. The results of these efforts were published in the two volumes of NUREG/CR-2744: ''Human Reliability Data Bank for Nuclear Power Plant Operations: Volume 1, A Review of Existing Human Reliability Data Banks, and Volume 2, A Data Bank Concept and System Description.'' This document, NUREG/CR-4010, is the revised technical specification for the Human Reliability Data Bank. The organization of the Data Bank and a description of a data publication, the Human Reliability Data Manual, are provided. Details of the administration and operation of the Data Bank are discussed. Appendices present the detailed procedures for processing data, revising the Data Manual, operating the Data Bank, and reviewing data for the Data Bank. The final appendix is a skeleton version (structure only) of the Data Manual

  12. Implementing a Reliability Centered Maintenance Program at NASA's Kennedy Space Center

    National Research Council Canada - National Science Library

    Tuttle, Raymond

    1998-01-01

    .... A reliability centered maintenance (RCM) program seeks to offer equal or greater reliability at decreased cost by insuring only applicable, effective maintenance is performed and by in large part replacing time based maintenance...

  13. An analysis of operational experience during low power and shutdown and a plan for addressing human reliability assessment issues

    International Nuclear Information System (INIS)

    Barriere, M.; Luckas, W.; Whitehead, D.; Ramey-Smith, A.

    1994-06-01

    Recent nuclear power plant events (e.g. Chernobyl, Diablo Canyon, and Vogtle) and US Nuclear Regulatory Commission (NRC) reports (e.g. NUREG-1449) have led to concerns regarding human reliability during low power and shutdown (LP ampersand S) conditions and limitations of human reliability analysis (HRA) methodologies in adequately representing the LP ampersand S environment. As a result of these concerns, the NRC initiated two parallel research projects to assess the influence of LP ampersand S conditions on human reliability through an analysis of operational experience at pressurized water reactors (PWRs) an boiling water reactors (BWRs). These research projects, performed by Brookhaven National Laboratory for PWRS, and Sandia National Laboratories for BWRs, identified unique aspects of human performance during LP ampersand S conditions and provided a program plan for research and development necessary to improve existing HRA methodologies. This report documents the results of the analysis of LP ampersand S operating experience and describes the improved HRA program plan

  14. Design reliability assurance program for Korean next generation reactor

    International Nuclear Information System (INIS)

    Lee, Beom-Su; Han, Jin-Kyu; Na, Jang Hwan; Yoo, Kyung Yeong

    1997-01-01

    The Korean Next Generation Reactor (KNGR) project is to develop standardized nuclear power plant design for the construction of future nuclear power plants in Korea. The main purpose of the KNGR project is to develop the advanced nuclear power plants, which enhance safety and economics significantly through the incorporation of design concepts for severe accident prevention and mitigation, supplementary passive safety concept, simplification and application of modularization and so on. For those, Probabilistic Safety Assessment (PSA) and availability study will be performed at the early stage of the design, and the Design Reliability Assurance Program (D-RAP) is applied in the development of the KNGR to ensure that the safety and availability evaluated in the PSA and availability study at the early phase of the design is maintained through the detailed design, construction, procurement and operation of the plants. This paper presents the D-RAP concept that could be applied at the stage of the basic design of the nuclear power plants, based on the models for the reference plants and/or similar plants. 4 refs., 1 fig

  15. The NUCLARR databank: Human reliability and hardware failure data for the nuclear power industry

    International Nuclear Information System (INIS)

    Reece, W.J.

    1993-01-01

    Under the sponsorship of the US Nuclear Regulatory Commission (NRC), the Nuclear Computerized Library for Assessing Reactor Reliability (NUCLARR) was developed to provide human reliability and hardware failure data to analysts in the nuclear power industry. This IBM-compatible databank is contained on a set of floppy diskettes which include data files and a menu-driven system for locating, reviewing, sorting, and retrieving the data. NUCLARR contains over 2500 individual data records, drawn from more, than 60 sources. The system is upgraded annually, to include additional human error and hardware component failure data and programming enhancements (i.e., increased user-friendliness). NUCLARR is available from the NRC through project staff at the INEL

  16. Applicability of simplified human reliability analysis methods for severe accidents

    Energy Technology Data Exchange (ETDEWEB)

    Boring, R.; St Germain, S. [Idaho National Lab., Idaho Falls, Idaho (United States); Banaseanu, G.; Chatri, H.; Akl, Y. [Canadian Nuclear Safety Commission, Ottawa, Ontario (Canada)

    2016-03-15

    Most contemporary human reliability analysis (HRA) methods were created to analyse design-basis accidents at nuclear power plants. As part of a comprehensive expansion of risk assessments at many plants internationally, HRAs will begin considering severe accident scenarios. Severe accidents, while extremely rare, constitute high consequence events that significantly challenge successful operations and recovery. Challenges during severe accidents include degraded and hazardous operating conditions at the plant, the shift in control from the main control room to the technical support center, the unavailability of plant instrumentation, and the need to use different types of operating procedures. Such shifts in operations may also test key assumptions in existing HRA methods. This paper discusses key differences between design basis and severe accidents, reviews efforts to date to create customized HRA methods suitable for severe accidents, and recommends practices for adapting existing HRA methods that are already being used for HRAs at the plants. (author)

  17. Model-based human reliability analysis: prospects and requirements

    International Nuclear Information System (INIS)

    Mosleh, A.; Chang, Y.H.

    2004-01-01

    Major limitations of the conventional methods for human reliability analysis (HRA), particularly those developed for operator response analysis in probabilistic safety assessments (PSA) of nuclear power plants, are summarized as a motivation for the need and a basis for developing requirements for the next generation HRA methods. It is argued that a model-based approach that provides explicit cognitive causal links between operator behaviors and directly or indirectly measurable causal factors should be at the core of the advanced methods. An example of such causal model is briefly reviewed, where due to the model complexity and input requirements can only be currently implemented in a dynamic PSA environment. The computer simulation code developed for this purpose is also described briefly, together with current limitations in the models, data, and the computer implementation

  18. Current Human Reliability Analysis Methods Applied to Computerized Procedures

    Energy Technology Data Exchange (ETDEWEB)

    Ronald L. Boring

    2012-06-01

    Computerized procedures (CPs) are an emerging technology within nuclear power plant control rooms. While CPs have been implemented internationally in advanced control rooms, to date no US nuclear power plant has implemented CPs in its main control room (Fink et al., 2009). Yet, CPs are a reality of new plant builds and are an area of considerable interest to existing plants, which see advantages in terms of enhanced ease of use and easier records management by omitting the need for updating hardcopy procedures. The overall intent of this paper is to provide a characterization of human reliability analysis (HRA) issues for computerized procedures. It is beyond the scope of this document to propose a new HRA approach or to recommend specific methods or refinements to those methods. Rather, this paper serves as a review of current HRA as it may be used for the analysis and review of computerized procedures.

  19. Simulator training and human factor reliability in Kozloduy NPP, Bulgaria

    International Nuclear Information System (INIS)

    Stoychev, Kosta

    2007-01-01

    This is a PowerPoint presentation. Situated in North Bulgaria, in the vicinity of the town of Kozloduy, near the Danube River bank, there is the Bulgarian Kozloduy Nuclear Power plant operating four WWER-440 and two WWER-1000 units. Units 1 and 2 were commissioned in July, 1974 and November, 1975, respectively. These were shut down at the end of 2003. Units 3 and 4 were commissioned in December, 1980 and May, 1982. They were shut down at the end of 2006 as a precondition for Bulgaria's accession to the European Union. The 1000 MW units 5 and 6 of Kozloduy NPP were commissioned in September, 1988 and December, 1993, respectively. Large-scale modernization have been implemented and now the units meet all international safety standards. The paper describes the multifunctional simulator Kozloduy NPP for the operational staff training. The training stages are as follows: - Preparatory; -Theoretical studies; - Training at the Training Centre by means of technical devices; - Preparation and sitting for an exam before a Kozloduy NPP expert commission; - Simulator training ; - Preparation to obtain a permit for a license, corresponding to the position to begin work at the NPP; - Exams before the Nuclear Regulatory Agency (NRA) and licensing; - Shadow training at the working place; - Permission for unaided operation. The following positions are addressed by the simulator training: - Chief Plant Supervisor; - Shift Unit Supervisor; - Senior Reactor Operator; - Simulator Instructor; - Controller physicist; -Senior Turbine Operator; - Senior Operator of Turbine Feedwater Pumps of Kozloduy NPP. Improving of training method led to a reduction of number of significant events while worldwide practice proves that improvement of engineering resulted in an increase in the percentage of events, related to human factor. Analysis of human reliability in 2005 and 2006 in cooperation with representatives from Great Britain and the Technical University in Sofia were worked on the DTI NSP B

  20. SIMON. A computer program for reliability and statistical analysis using Monte Carlo simulation. Program description and manual

    International Nuclear Information System (INIS)

    Kongsoe, H.E.; Lauridsen, K.

    1993-09-01

    SIMON is a program for calculation of reliability and statistical analysis. The program is of the Monte Carlo type, and it is designed with high flexibility, and has a large potential for application to complex problems like reliability analyses of very large systems and of systems, where complex modelling or knowledge of special details are required. Examples of application of the program, including input and output, for reliability and statistical analysis are presented. (au) (3 tabs., 3 ills., 5 refs.)

  1. Exploration of reliability assurance program (RAP) for advanced nuclear power plant

    International Nuclear Information System (INIS)

    Chen Fang; Xu Rongbin

    2009-01-01

    This article describes the new requirements in US SRP on Reliability Assurance Program, inquires into the evolution of the reliability assurance requirements, and investigates the regulatory requirements on reliability assurance program for advanced reactors, it's main contents, and evaluation review practices and related issues, with the aim of enabling staff to understand be familiar and pay attention to this engineering program. This article may be as a reference for related workers. (authors)

  2. Improving human reliability through better nuclear power plant system design. Progress report

    International Nuclear Information System (INIS)

    Golay, M.W.

    1995-01-01

    The project on open-quotes Development of a Theory of the Dependence of Human Reliability upon System Designs as a Means of Improving Nuclear Power Plant Performanceclose quotes has been undertaken in order to address the important problem of human error in advanced nuclear power plant designs. Most of the creativity in formulating such concepts has focused upon improving the mechanical reliability of safety related plant systems. However, the lack of a mature theory has retarded similar progress in reducing the likely frequencies of human errors. The main design mechanism used to address this class of concerns has been to reduce or eliminate the human role in plant operations and accident response. The plan of work being pursued in this project is to perform a set of experiments involving human subject who are required to operate, diagnose and respond to changes in computer-simulated systems, relevant to those encountered in nuclear power plants. In the tests the systems are made to differ in complexity in a systematic manner. The computer program used to present the problems to be solved also records the response of the operator as it unfolds. Ultimately this computer is also to be used in compiling the results of the project. The work of this project is focused upon nuclear power plant applications. However, the persuasiveness of human errors in using all sorts of electromechanical machines gives it a much greater potential importance. Because of this we are attempting to pursue our work in a fashion permitting broad generalizations

  3. Use of Human Reliability Insights to Improve Decision-Making

    International Nuclear Information System (INIS)

    Julius, J. A.; Moieni, P.; Grobbelaar, J.; Kohlhepp, K.

    2016-01-01

    This paper describes the use of insights obtained during the development and application of human reliability analysis (HRA) as part of a probabilistic risk assessment (PRA) to support decision-making, including improvements to operations, training, and safety culture. Insights have been gained from the development and application of HRA as part of a PRA for nuclear power plants in the USA, Europe and Asia over the last two decades. These models consist of Level 1 and Level 2 PRA models of internal and external events, during full power and shutdown modes of plant operation. These insights include the use of human factors information to improve the qualitative portion of the HRA. The subsequent quantification in the HRA effectively prioritises the contributors to the unreliability of operator actions, and the process facilitates the identification of the factors that are important to the success of the operator actions. Additionally, the tools and techniques also allow for the evaluation of key assumptions and sources of uncertainty. The end results have been used to effectively support decision-making for day-to-day plant operations as well as licensing issues. HRA results have been used to provide feedback and improvements to plant procedures, operator training and other areas contributing the plant safety culture. Examples of the types of insights are presented in this paper. (author)

  4. Condition-based Human Reliability Assessment for digitalized control room

    International Nuclear Information System (INIS)

    Kang, H. G.; Jang, S. C.; Eom, H. S.; Ha, J. J.

    2005-04-01

    In safety-critical systems, the generation failure of an actuation signal is caused by the concurrent failures of the automated systems and an operator action. These two sources of safety signals are complicatedly correlated. The failures of sensors or automated systems will cause a lack of necessary information for a human operator and result in error-forcing contexts such as the loss of corresponding alarms and indications. In the conventional analysis, the Human Error Probabilities (HEP) are estimated based on the assumption of 'normal condition of indications and alarms'. In order to construct a more realistic signal-generation failure model, we have to consider more complicated conditions in a more realistic manner. In this study, we performed two kinds of investigation for addressing this issue. We performed the analytic calculations for estimating the effect of sensors failures on the system unavailability and plant risk. For the single-parameter safety signals, the analysis result reveals that the quantification of the HEP should be performed by focusing on the 'no alarm from the automatic system and corresponding indications unavailable' situation. This study also proposes a Condition-Based Human Reliability Assessment (CBHRA) method in order to address these complicated conditions in a practical way. We apply the CBHRA method to the manual actuation of the safety features such as a reactor trip and auxiliary feedwater actuation in Korean Standard Nuclear Power Plants. In the case of conventional single HEP method, it is very hard to consider the multiple HE conditions. The merit of CBHRA is clearly shown in the application to the AFAS generation where no dominating HE condition exits. In this case, even if the HE conditions are carefully investigated, the single HEP method cannot accommodate the multiple conditions in a fault tree. On the other hand, the application result of the reactor trip in SLOCA shows that if there is a dominating condition, the use

  5. Implementation of PATREC nuclear reliability program in LISP

    International Nuclear Information System (INIS)

    Patterson-Hine, F.A.; Koen, B.V.

    1985-01-01

    The reliability of large systems can be represented by reliability fault trees that contain the failure probabilities for the individual elements in the original network and the logical connectives that describe the interdependence of those probabilities. The PATREC 1 computer code was written to demonstrate the feasibility of using list processing techniques for the resolution of a reliability fault tree by pattern recognition. PATREC 1 was written in PL/1 and is used widely in France. The fault tree is expressed as a linked data structure, oriented, mapped into an end-ordered traverse, and used to retrieve known patterns stored as a linked-tree library. The basic idea of pattern recognition is to prune the fault tree by identifying known patterns, retrieving the corresponding mathematical equation, and evaluating the replacement leaves. This process is repeated until the original tree is reduced to a single leaf - the system reliability

  6. The cognitive environment simulation as a tool for modeling human performance and reliability

    International Nuclear Information System (INIS)

    Woods, D.D.; Pople, H. Jr.; Roth, E.M.

    1990-01-01

    The US Nuclear Regulatory Commission is sponsoring a research program to develop improved methods to model the cognitive behavior of nuclear power plant (NPP) personnel. Under this program, a tool for simulating how people form intentions to act in NPP emergency situations was developed using artificial intelligence (AI) techniques. This tool is called Cognitive Environment Simulation (CES). The Cognitive Reliability Assessment Technique (or CREATE) was also developed to specify how CBS can be used to enhance the measurement of the human contribution to risk in probabilistic risk assessment (PRA) studies. The next step in the research program was to evaluate the modeling tool and the method for using the tool for Human Reliability Analysis (HRA) in PRAs. Three evaluation activities were conducted. First, a panel of highly distinguished experts in cognitive modeling, AI, PRA and HRA provided a technical review of the simulation development work. Second, based on panel recommendations, CES was exercised on a family of steam generator tube rupture incidents where empirical data on operator performance already existed. Third, a workshop with HRA practitioners was held to analyze a worked example of the CREATE method to evaluate the role of CES/CREATE in HRA. The results of all three evaluations indicate that CES/CREATE represents a promising approach to modeling operator intention formation during emergency operations

  7. Human and organisational factors in the reliability of non-destructive testing (NOT)

    International Nuclear Information System (INIS)

    Norros, L.

    1998-01-01

    Non-destructive testing used in in-service inspections can be seen as a complicated activity system including three mutually related sub-activities: (1) definition of inspection programs and necessary resources, (2) carrying out diagnostic inspections, and (3) interpretation of the results from the view of plant safety and corrective measures. Various studies to investigate and measure the NDT performance have produced disappointing result. No clear correlations between single human factors and performance have been identified even though general agreement exists concerning the significance of human factors to the reliability of testing. Another incentive for our studies has been to test and evaluate the applicability of the international results in the Finnish circumstances. Three successive studies have thus been carried out on the human and organisational factors in non-destructive testing. (author)

  8. The Concept of Human Error and the Design of Reliable Human-Machine Systems

    DEFF Research Database (Denmark)

    Rasmussen, Jens

    1995-01-01

    The concept of human error is unreliable as a basis for design of reliable human-machine systems. Humans are basically highly adaptive and 'errors' are closely related to the process of adaptation and learning. Therefore, reliability of system operation depends on an interface that is not designed...... so as to support a pre-conceived operating procedure, but, instead, makes visible the deep, functional structure of the system together with the boundaries of acceptable operation in away that allows operators to 'touch' the boundaries and to learn to cope with the effects of errors in a reversible...... way. The concepts behind such 'ecological' interfaces are discussed, an it is argued that a 'typology' of visualization concepts is a pressing research need....

  9. Reliability program plan for the Kilowatt Isotope Power System (KIPS) technology verification phase

    International Nuclear Information System (INIS)

    1978-01-01

    Ths document is an integral part of the Kilowatt Isotope Power System (KIPS) Program Plan. This document defines the KIPS Reliability Program Plan for the Technology Verification Phase. This document delineates the reliability assurance tasks that are to be accomplished by Sundstrand and its suppliers during the design, fabrication and testing of the KIPS

  10. Human reliability and risk management in the transportation of spent nuclear fuel

    International Nuclear Information System (INIS)

    Tuler, S.; Kasperson, R.E.; Ratick, S.

    1989-01-01

    This paper summarizes work on human factor contributions to risks from spent nuclear fuel transportation. Human participation may have significant effects on the levels and types of risks by enabling or initiating incidents and exacerbating adverse consequences. Human errors are defined to be the result of mismatches between perceived system state and actual system state. In complex transportation systems such mismatches may be distributed in time (e.g., during different stages of design, implementation, operation, maintenance) and location (e.g., human error, its identification, and its recovery may be geographically and institutionally separate). Risk management programs may decrease the probability of undesirable events or attenuate the consequences of mismatches. This paper presents a methodology to identify the scope and types of human-task mismatches and to identify potential management options for their prevention, mitigation, or recovery. A review of transportation accident databases, in conjunction with human error models, is used to develop a taxonomy of human errors during design for the pre-identification of potential mismatches or after incidents have occurred to evaluate their causes. Risk management options to improve human reliability are identified by a matrix that relates the multiple stages of a spent nuclear fuel transportation system to management options (e.g., training, data analysis, regulation). The paper concludes with examples to illustrate how the methodology may be applied. (author)

  11. DATMAN: A reliability data analysis program using Bayesian updating

    International Nuclear Information System (INIS)

    Becker, M.; Feltus, M.A.

    1996-01-01

    Preventive maintenance (PM) techniques focus on the prevention of failures, in particular, system components that are important to plant functions. Reliability-centered maintenance (RCM) improves on the PM techniques by introducing a set of guidelines by which to evaluate the system functions. It also minimizes intrusive maintenance, labor, and equipment downtime without sacrificing system performance when its function is essential for plant safety. Both the PM and RCM approaches require that system reliability data be updated as more component failures and operation time are acquired. Systems reliability and the likelihood of component failures can be calculated by Bayesian statistical methods, which can update these data. The DATMAN computer code has been developed at Penn State to simplify the Bayesian analysis by performing tedious calculations needed for RCM reliability analysis. DATMAN reads data for updating, fits a distribution that best fits the data, and calculates component reliability. DATMAN provides a user-friendly interface menu that allows the user to choose from several common prior and posterior distributions, insert new failure data, and visually select the distribution that matches the data most accurately

  12. Integration of human reliability analysis into the probabilistic risk assessment process: phase 1

    International Nuclear Information System (INIS)

    Bell, B.J.; Vickroy, S.C.

    1985-01-01

    The US Nuclear Regulatory Commission and Pacific Northwest Laboratory initiated a research program in 1984 to develop a testable set of analytical procedures for integrating human reliability analysis (HRA) into the probabilistic risk assessment (PRA) process to more adequately assess the overall impact of human performance on risk. In this three phase program, stand-alone HRA/PRA analytic procedures will be developed and field evaluated to provide improved methods, techniques, and models for applying quantitative and qualitative human error data which systematically integrate HRA principles, techniques, and analyses throughout the entire PRA process. Phase 1 of the program involved analysis of state-of-the-art PRAs to define the structures and processes currently in use in the industry. Phase 2 research will involve developing a new or revised PRA methodology which will enable more efficient regulation of the industry using quantitative or qualitative results of the PRA. Finally, Phase 3 will be to field test those procedures to assure that the results generated by the new methodologies will be usable and acceptable to the NRC. This paper briefly describes the first phase of the program and outlines the second

  13. Integration of human reliability analysis into the probabilistic risk assessment process: Phase 1

    International Nuclear Information System (INIS)

    Bell, B.J.; Vickroy, S.C.

    1984-10-01

    A research program was initiated to develop a testable set of analytical procedures for integrating human reliability analysis (HRA) into the probabilistic risk assessment (PRA) process to more adequately assess the overall impact of human performance on risk. In this three-phase program, stand-alone HRA/PRA analytic procedures will be developed and field evaluated to provide improved methods, techniques, and models for applying quantitative and qualitative human error data which systematically integrate HRA principles, techniques, and analyses throughout the entire PRA process. Phase 1 of the program involved analysis of state-of-the-art PRAs to define the structures and processes currently in use in the industry. Phase 2 research will involve developing a new or revised PRA methodology which will enable more efficient regulation of the industry using quantitative or qualitative results of the PRA. Finally, Phase 3 will be to field test those procedures to assure that the results generated by the new methodologies will be usable and acceptable to the NRC. This paper briefly describes the first phase of the program and outlines the second

  14. Improvement of human reliability analysis method for PRA

    International Nuclear Information System (INIS)

    Tanji, Junichi; Fujimoto, Haruo

    2013-09-01

    It is required to refine human reliability analysis (HRA) method by, for example, incorporating consideration for the cognitive process of operator into the evaluation of diagnosis errors and decision-making errors, as a part of the development and improvement of methods used in probabilistic risk assessments (PRAs). JNES has been developed a HRA method based on ATHENA which is suitable to handle the structured relationship among diagnosis errors, decision-making errors and operator cognition process. This report summarizes outcomes obtained from the improvement of HRA method, in which enhancement to evaluate how the plant degraded condition affects operator cognitive process and to evaluate human error probabilities (HEPs) which correspond to the contents of operator tasks is made. In addition, this report describes the results of case studies on the representative accident sequences to investigate the applicability of HRA method developed. HEPs of the same accident sequences are also estimated using THERP method, which is most popularly used HRA method, and comparisons of the results obtained using these two methods are made to depict the differences of these methods and issues to be solved. Important conclusions obtained are as follows: (1) Improvement of HRA method using operator cognitive action model. Clarification of factors to be considered in the evaluation of human errors, incorporation of degraded plant safety condition into HRA and investigation of HEPs which are affected by the contents of operator tasks were made to improve the HRA method which can integrate operator cognitive action model into ATHENA method. In addition, the detail of procedures of the improved method was delineated in the form of flowchart. (2) Case studies and comparison with the results evaluated by THERP method. Four operator actions modeled in the PRAs of representative BWR5 and 4-loop PWR plants were selected and evaluated as case studies. These cases were also evaluated using

  15. Human reliability and human factors in complex organizations: epistemological and critical analysis - practical avenues to action

    International Nuclear Information System (INIS)

    Llory, A.

    1991-08-01

    This article starts out with comment on the existence of persistent problems inherent to probabilistic safety assessments (PSA). It first surveys existing American documents on the subject which make a certain number of criticisms on human reliability analyses, e.g. limitations due to the scant quantities of data available, lack of a basic theoretical model, non-reproducibility of analyses, etc. The article therefore examines and criticizes the epistemological bases of these analyses. One of the fundamental points stressed is that human reliability analyses do not take account of all the special features of the work situation which result in human error (so as to draw up statistical data from a sufficiently representative number of cases), and consequently lose all notion of the 'relationships' between human errors and the different aspects of the working environment. The other key points of criticism concern the collective nature of work which is not taken into account, and the frequent confusion between what operatives actually do and their formally prescribed job-tasks. The article proposes aspects to be given thought in order to overcome these difficulties, e.g. quantitative assessment of the social environment within a company, non-linear model for assessment of the accident rate, analysis of stress levels in staff on off-shore platforms. The method approaches used in these three studies are of the same type, and could be transposed to human-reliability problems. The article then goes into greater depth on thinking aimed at developing a 'positive' view of the human factor (and not just a 'negative' one, i.e. centred on human errors and organizational malfunctions), applying investigation methods developed in the occupational human sciences (occupational psychodynamics, ergonomics, occupational sociology). The importance of operatives working as actors of a team is stressed

  16. Procedure for conducting a human-reliability analysis for nuclear power plants. Final report

    International Nuclear Information System (INIS)

    Bell, B.J.; Swain, A.D.

    1983-05-01

    This document describes in detail a procedure to be followed in conducting a human reliability analysis as part of a probabilistic risk assessment when such an analysis is performed according to the methods described in NUREG/CR-1278, Handbook for Human Reliability Analysis with Emphasis on Nuclear Power Plant Applications. An overview of the procedure describing the major elements of a human reliability analysis is presented along with a detailed description of each element and an example of an actual analysis. An appendix consists of some sample human reliability analysis problems for further study

  17. Developing a system engineering program to improve performance and reliability

    International Nuclear Information System (INIS)

    Keuter, D.

    1985-01-01

    After several maintenance, operational, and equipment problems last year, Trojan set out on a mission to improve plant performance and reliability by strengthening its on-site engineering organization. This paper presents Trojan's plans in developing an on-site system engineering organization

  18. Reliability studies for the nuclear-powered artificial heart program

    International Nuclear Information System (INIS)

    Horita, M.; Zeigler, R.K.

    1976-04-01

    By assuming that the failures of an artificial heart system with a mean life of 10 y can be modeled by a particular probability distribution, both the probability of a failure in the system within t years and the reliability required of each subsystem and component were investigated

  19. Human reliability analysis of performing tasks in plants based on fuzzy integral

    International Nuclear Information System (INIS)

    Washio, Takashi; Kitamura, Yutaka; Takahashi, Hideaki

    1991-01-01

    The effective improvement of the human working conditions in nuclear power plants might be a solution for the enhancement of the operation safety. The human reliability analysis (HRA) gives a methodological basis of the improvement based on the evaluation of human reliability under various working conditions. This study investigates some difficulties of the human reliability analysis using conventional linear models and recent fuzzy integral models, and provides some solutions to the difficulties. The following practical features of the provided methods are confirmed in comparison with the conventional methods: (1) Applicability to various types of tasks (2) Capability of evaluating complicated dependencies among working condition factors (3) A priori human reliability evaluation based on a systematic task analysis of human action processes (4) A conversion scheme to probability from indices representing human reliability. (author)

  20. Human reliability analysis for steam generator feed-and-bleed accident in Bushehr NPP-1

    Energy Technology Data Exchange (ETDEWEB)

    Jafarian, Reza [Valiasr University of Rafsanjan, Rafsanjan, 28 (Iran, Islamic Republic of); Sepanloo, Kamran [Atomic Energy Organization of Iran (AEOI), external link End of North Karegar Av., Tehran 14155-1339 (Iran, Islamic Republic of)

    2006-07-01

    According to the incident/accident reports, unsuccessful implementation of steam generator feed-and-bleed procedure is one of the most important events in nuclear power plants operation which greatly contributes to the level of risk of the plants. Generally, the loss of all feed water pumps flow (as one of the precursors) results in failure to maintain adequate cooling of the reactor core unless the operating crew initiate and follow the feed-and-bleed procedure correctly and timely. In this paper, firstly, a Human Reliability Analysis (HRA) event tree is presented delineating the major human activities and errors in the implementation of the steam generator (SG) feed-and-bleed procedure following the loss of (both normal and emergency) water feed to four SGs of Bushehr Nuclear Power Plant Unit 1 (BNPP-1). Secondly, the graphical method of task analysis as a part of HRA is used as a means of delineating correct and incorrect human actions. To be used in the probabilistic risk assessment (PRA), the outputs of the HRA event trees are fed into the system event trees, functional event trees or system fault trees. As a part of a probabilistic risk assessment of BNPP-1 and to assess the reliability of control room operators, a human reliability analysis model is applied based on the THERP (Technique for Human Error Rate Prediction) technique. The THERP method is used in the form of event trees named as the probability tree diagrams. In this research the Human Reliability Analysis event tree is constructed based on the background information and assumptions made and on a similar NPP task analysis. It is done so because the BNPP-1 is not an operational nuclear power plant. Thirdly, based on NUREG/CR-1278 Handbook, a computer program has been developed in Visual Basic language and used to illustrate the major human activities and determination of error rates of operators in the course of the implementation of the steam generator feed-and-bleed procedure. Finally, total

  1. Human reliability analysis for steam generator feed-and-bleed accident in Bushehr NPP-1

    International Nuclear Information System (INIS)

    Jafarian, Reza; Sepanloo, Kamran

    2006-01-01

    According to the incident/accident reports, unsuccessful implementation of steam generator feed-and-bleed procedure is one of the most important events in nuclear power plants operation which greatly contributes to the level of risk of the plants. Generally, the loss of all feed water pumps flow (as one of the precursors) results in failure to maintain adequate cooling of the reactor core unless the operating crew initiate and follow the feed-and-bleed procedure correctly and timely. In this paper, firstly, a Human Reliability Analysis (HRA) event tree is presented delineating the major human activities and errors in the implementation of the steam generator (SG) feed-and-bleed procedure following the loss of (both normal and emergency) water feed to four SGs of Bushehr Nuclear Power Plant Unit 1 (BNPP-1). Secondly, the graphical method of task analysis as a part of HRA is used as a means of delineating correct and incorrect human actions. To be used in the probabilistic risk assessment (PRA), the outputs of the HRA event trees are fed into the system event trees, functional event trees or system fault trees. As a part of a probabilistic risk assessment of BNPP-1 and to assess the reliability of control room operators, a human reliability analysis model is applied based on the THERP (Technique for Human Error Rate Prediction) technique. The THERP method is used in the form of event trees named as the probability tree diagrams. In this research the Human Reliability Analysis event tree is constructed based on the background information and assumptions made and on a similar NPP task analysis. It is done so because the BNPP-1 is not an operational nuclear power plant. Thirdly, based on NUREG/CR-1278 Handbook, a computer program has been developed in Visual Basic language and used to illustrate the major human activities and determination of error rates of operators in the course of the implementation of the steam generator feed-and-bleed procedure. Finally, total

  2. Human Reliability Analysis for steam generator feed-and-bleed accident in Bushehr NPP-1

    International Nuclear Information System (INIS)

    Jafarian, R.; Sepanloo, K.

    2005-01-01

    According to the incident/accident reports, unsuccessful implementation of steam generator feed-and-bleed procedure is one of the most important events in nuclear power plants operation which greatly contributes to the level of risk of the plants. Generally, the loss of all feed water pumps flow (as one of the precursors) results in failure to maintain adequate cooling of the reactor core unless the operating crew initiate and follow the feed-and-bleed procedure correctly and timely. In this paper, firstly, a Human Reliability Analysis (HRA) event tree is presented delineating the major human activities and errors in the implementation of the steam generator (SG) feed-and-bleed procedure following the loss of (both normal and emergency) water feed to four SGs of Bushehr Nuclear Power Plant unit1 (BNPP-1). Secondly, the graphical method of task analysis as a part of HRA is used as a means of delineating correct and incorrect human actions. To be used in the probabilistic risk assessment (PRA), the outputs of the HRA event trees are fed into the system event trees, functional event trees or system fault trees. As a part of a probabilistic risk assessment of BNPP-1 and to assess the reliability of control room operators, a human reliability analysis model is applied based on the THERP (Technique for Human Error Rate Prediction) technique. The THERP method is used in the form of event trees named as the probability tree diagrams. In this research the Human Reliability Analysis event tree is constructed based on the background information and assumptions made and on a similar NPP task analysis. It is done so because the BNPP-1 is not an operational nuclear power plant. Thirdly, based on NUREG/CR-1278 Handbook, a computer program has been developed in Visual Basic language and used to illustrate the major human activities and determination of error rates of operators in the course of the implementation of the steam generator feed-and-bleed procedure. Finally, total

  3. A task analysis-linked approach for integrating the human factor in reliability assessments of nuclear power plants

    International Nuclear Information System (INIS)

    Ryan, T.G.

    1988-01-01

    This paper describes an emerging Task Analysis-Linked Evaluation Technique (TALENT) for assessing the contributions of human error to nuclear power plant systems unreliability and risk. Techniques such as TALENT are emerging as a recognition that human error is a primary contributor to plant safety, however, it has been a peripheral consideration to data in plant reliability evaluations. TALENT also recognizes that involvement of persons with behavioral science expertise is required to support plant reliability and risk analyses. A number of state-of-knowledge human reliability analysis tools are also discussed which support the TALENT process. The core of TALENT is comprised of task, timeline and interface analysis data which provide the technology base for event and fault tree development, serve as criteria for selecting and evaluating performance shaping factors, and which provide a basis for auditing TALENT results. Finally, programs and case studies used to refine the TALENT process are described along with future research needs in the area. (author)

  4. Video training and certification program improves reliability of postischemic neurologic deficit measurement in the rat.

    Science.gov (United States)

    Taninishi, Hideki; Pearlstein, Molly; Sheng, Huaxin; Izutsu, Miwa; Chaparro, Rafael E; Goldstein, Larry B; Warner, David S

    2016-12-01

    Scoring systems are used to measure behavioral deficits in stroke research. Video-assisted training is used to standardize stroke-related neurologic deficit scoring in humans. We hypothesized that a video-assisted training and certification program can improve inter-rater reliability in assessing neurologic function after middle cerebral artery occlusion in rats. Three expert raters scored neurologic deficits in post-middle cerebral artery occlusion rats using three published systems having different complexity levels (3, 18, or 48 points). The system having the highest point estimate for the correlation between neurologic score and infarct size was selected to create a video-assisted training and certification program. Eight trainee raters completed the video-assisted training and certification program. Inter-rater agreement ( Κ: score) and agreement with expert consensus scores were measured before and after video-assisted training and certification program completion. The 48-point system correlated best with infarct size. Video-assisted training and certification improved agreement with expert consensus scores (pretraining = 65 ± 10, posttraining = 87 ± 14, 112 possible scores, P  0.4 (pretraining = 4, posttraining = 9), and number of categories with an improvement in the Κ: score from pretraining to posttraining (n = 6). Video-assisted training and certification improved trainee inter-rater reliability and agreement with expert consensus behavioral scores in rats after middle cerebral artery occlusion. Video-assisted training and certification may be useful in multilaboratory preclinical studies. © The Author(s) 2015.

  5. Human Reliability and the Current Dilemma in Human-Machine Interface Design Strategies

    International Nuclear Information System (INIS)

    Passalacqua, Roberto; Yamada, Fumiaki

    2002-01-01

    Since human error dominates the probability of failures of still-existing human-requiring systems (as the Monju reactor), the human-machine interface needs to be improved. Several rationales may lead to the conclusion that 'humans' should limit themselves to monitor the 'machine'. For example, this is the trend in the aviation industry: newest aircrafts are designed to be able to return to a safe state by the use of control systems, which do not need human intervention. Thus, the dilemma whether we really need operators (for example in the nuclear industry) might arise. However, social-technical approaches in recent human error analyses are pointing out the so-called 'organizational errors' and the importance of a human-machine interface harmonization. Typically plant's operators are a 'redundant' safety system with a much lower reliability (than the machine): organizational factors and harmonization requirements suggest designing the human-machine interface in a way that allows improvement of operator's reliability. In addition, taxonomy studies of accident databases have also proved that operators' training should promote processes of decision-making. This is accomplished in the latest trends of PSA technology by introducing the concept of a 'Safety Monitor' that is a computer-based tool that uses a level 1 PSA model of the plant. Operators and maintenance schedulers of the Monju FBR will be able to perform real-time estimations of the plant risk level. The main benefits are risk awareness and improvements in decision-making by operators. Also scheduled maintenance can be approached in a more rational (safe and economic) way. (authors)

  6. Reliability program plan for the Isotope Brayton Ground Demonstration System (phase I)

    International Nuclear Information System (INIS)

    1975-01-01

    The reliability and quality assurance organizational relationships, the methods to be used, the tasks to be completed, and the documentation to be published are presented. The total program is intended to provide the necessary reliability and quality assurance associated with the design, fabrication, and testing of the GDS. It is consistent with the general objectives of the ERDA Quality Assurance (QA) program requirements document ''SNS-1'' dated April 1972 and reliability program requirements document ''SNS-2'' dated 17 June 1974 but has been specifically modified for the GDS with the intent of establishing background data for the subsequent Phase II effort

  7. The Reliable Replacement Warhead Program: Background and Current Developments

    National Research Council Canada - National Science Library

    Medalia, Jonathan

    2008-01-01

    ...), part of a larger Stockpile Stewardship Program (SSP), replaces components. Modifying some components would require a nuclear test, but the United States has observed a test moratorium since 1992...

  8. Use of reliability data for QA program evaluation

    International Nuclear Information System (INIS)

    Guarro, S.B.

    1985-01-01

    Possible analytical approaches for evaluation of the effectiveness in the operation of US commercial nuclear power plants are discussed. These approaches may be based on key plant component performance comparisons, correlation models, or comprehensive cost-benefit evaluation frameworks. As plant availability and reliability data must be used to quantify the models, the quality of these data conditions the amount of information that can ultimately be extracted. The potential impact of uncertainties in the data must be considered carefully, especially before application of the more complex models. 10 refs., 4 tabs

  9. Human Research Program Integrated Research Plan. Revision A January 2009

    Science.gov (United States)

    2009-01-01

    The Integrated Research Plan (IRP) describes the portfolio of Human Research Program (HRP) research and technology tasks. The IRP is the HRP strategic and tactical plan for research necessary to meet HRP requirements. The need to produce an IRP is established in HRP-47052, Human Research Program - Program Plan, and is under configuration management control of the Human Research Program Control Board (HRPCB). Crew health and performance is critical to successful human exploration beyond low Earth orbit. The Human Research Program (HRP) is essential to enabling extended periods of space exploration because it provides knowledge and tools to mitigate risks to human health and performance. Risks include physiological and behavioral effects from radiation and hypogravity environments, as well as unique challenges in medical support, human factors, and behavioral or psychological factors. The Human Research Program (HRP) delivers human health and performance countermeasures, knowledge, technologies and tools to enable safe, reliable, and productive human space exploration. Without HRP results, NASA will face unknown and unacceptable risks for mission success and post-mission crew health. This Integrated Research Plan (IRP) describes HRP s approach and research activities that are intended to address the needs of human space exploration and serve HRP customers and how they are integrated to provide a risk mitigation tool. The scope of the IRP is limited to the activities that can be conducted with the resources available to the HRP; it does not contain activities that would be performed if additional resources were available. The timescale of human space exploration is envisioned to take many decades. The IRP illustrates the program s research plan through the timescale of early lunar missions of extended duration.

  10. Development of reliability program for emergency diesel generators in domestic nuclear power plants

    International Nuclear Information System (INIS)

    Kim, Young Ho; Jung, Hyun Jong; Choi, Kwang Hee; Hong, Seoung Yeul

    2001-01-01

    Surveillance tests of Emergency Diesel Generators (EDGs) in Nuclear Power Plants (NPPs) have been conducted periodically to verify the reliability and integrity of the EDGs, however, it was found that these surveillance methods were so conservative and severe as to accelerate the degradation of the EDGs. Hence, new regulatory guideline, Reg. Guide 1.9 Rev. 3, was established by the U.S. NRC to resolve these problems. But it requires the additional implementation of reliability program of the EDGs to improve the actual reliability of them. In Korea, the EDGs of Yonggwang nuclear units 3 and 4 were the first plant applying new Reg. guide 1.9 rev.3 and implementing EDG reliability program. Furthermore it is expected that new guideline for the EDGs will be applied to other EDGs of Korean NPPs. In this paper, this reliability program is described, and it can be used as a reference for other EDGs in Korean NPPs

  11. Flash Memory Reliability: Read, Program, and Erase Latency Versus Endurance Cycling

    Science.gov (United States)

    Heidecker, Jason

    2010-01-01

    This report documents the efforts and results of the fiscal year (FY) 2010 NASA Electronic Parts and Packaging Program (NEPP) task for nonvolatile memory (NVM) reliability. This year's focus was to measure latency (read, program, and erase) of NAND Flash memories and determine how these parameters drift with erase/program/read endurance cycling.

  12. Insights from the interim reliability evaluation program pertinent to reactor safety issues

    International Nuclear Information System (INIS)

    Carlson, D.D.

    1983-01-01

    The Interim Reliability Evaluation Program (IREP) consisted of concurrent probabilistic analyses of four operating nuclear power plants. This paper presents and integrated view of the results of the analyses drawing insights pertinent to reactor safety. The importance to risk of accident sequences initiated by transients and small loss-of-coolant accidents was confirmed. Support systems were found to contribute significantly to the sets of dominant accident sequences, either due to single failures which could disable one or more mitigating systems or due to their initiating plant transients. Human errors in response to accidents also were important risk contributors. Consideration of operator recovery actions influences accident sequence frequency estimates, the list of accident sequences dominating core melt, and the set of dominant risk contributors. Accidents involving station blackout, reactor coolant pump seal leaks and ruptures, and loss-of-coolant accidents requiring manual initiation of coolant injection were found to be risk significant

  13. Human factors engineering plan for reviewing nuclear plant modernization programs

    International Nuclear Information System (INIS)

    O'Hara, John; Higgins, James

    2004-12-01

    The Swedish Nuclear Power Inspectorate reviews the human factors engineering (HFE) aspects of nuclear power plants (NPPs) involved in the modernization of the plant systems and control rooms. The purpose of a HFE review is to help ensure personnel and public safety by verifying that accepted HFE practices and guidelines are incorporated into the program and nuclear power plant design. Such a review helps to ensure the HFE aspects of an NPP are developed, designed, and evaluated on the basis of a structured top-down system analysis using accepted HFE principles. The review addresses eleven HFE elements: HFE Program Management, Operating Experience Review, Functional Requirements Analysis and Allocation, Task Analysis, Staffing, Human Reliability Analysis, Human-System Interface Design, Procedure Development, Training Program Development, Human Factors Verification and Validation, and Design Implementation

  14. Human factors engineering plan for reviewing nuclear plant modernization programs

    Energy Technology Data Exchange (ETDEWEB)

    O' Hara, John; Higgins, James [Brookhaven National Laboratory, Upton, NY (United States)

    2004-12-01

    The Swedish Nuclear Power Inspectorate reviews the human factors engineering (HFE) aspects of nuclear power plants (NPPs) involved in the modernization of the plant systems and control rooms. The purpose of a HFE review is to help ensure personnel and public safety by verifying that accepted HFE practices and guidelines are incorporated into the program and nuclear power plant design. Such a review helps to ensure the HFE aspects of an NPP are developed, designed, and evaluated on the basis of a structured top-down system analysis using accepted HFE principles. The review addresses eleven HFE elements: HFE Program Management, Operating Experience Review, Functional Requirements Analysis and Allocation, Task Analysis, Staffing, Human Reliability Analysis, Human-System Interface Design, Procedure Development, Training Program Development, Human Factors Verification and Validation, and Design Implementation.

  15. Assessment of modern methods of human factor reliability analysis in PSA studies

    International Nuclear Information System (INIS)

    Holy, J.

    2001-12-01

    The report is structured as follows: Classical terms and objects (Probabilistic safety assessment as a framework for human reliability assessment; Human failure within the PSA model; Basic types of operator failure modelled in a PSA study and analyzed by HRA methods; Qualitative analysis of human reliability; Quantitative analysis of human reliability used; Process of analysis of nuclear reactor operator reliability in a PSA study); New terms and objects (Analysis of dependences; Errors of omission; Errors of commission; Error forcing context); and Overview and brief assessment of human reliability analysis (Basic characteristics of the methods; Assets and drawbacks of the use of each of HRA method; History and prospects of the use of the methods). (P.A.)

  16. Overview of NRC's human factors regulatory research program

    International Nuclear Information System (INIS)

    Coffman, F.D. Jr.

    1989-01-01

    The human factors research program is divided into distinct and interrelated program activities: (1) Personnel Performance measurement, (2) Personnel Subsystem, (3) Human-System Interface, (4) Organization and Management, and (5) a group of Reliability Assessment activities. The purpose of the Personnel Performance Measurement activity is to improve the Agency's understanding of the factors influencing personnel performance and the effects on the safety of nuclear operations and maintenance by developing improvements to methods for collecting and managing personnel performance data. Personnel Subsystem research will broaden the understanding of such factors as staffing, qualifications, and training that influence human performance in the nuclear system and will develop the technical basis for regulatory guidance to reduce any adverse impact of these influences on nuclear safety. Research in the Human-System Interface activity will provide the technical basis for ensuring that the interface between the system and the human user supports safe operations and maintenance. Organization and Management research will result in the development of tools for evaluating organization and management issues within the nuclear industry. And finally, the Reliability Assessment group of activities includes multidisciplinary research that will integrate human and hardware considerations for evaluating reliability and risk in NRC licensing, inspection, and regulatory decisions

  17. Top-down and bottom-up definitions of human failure events in human reliability analysis

    International Nuclear Information System (INIS)

    Boring, Ronald Laurids

    2014-01-01

    In the probabilistic risk assessments (PRAs) used in the nuclear industry, human failure events (HFEs) are determined as a subset of hardware failures, namely those hardware failures that could be triggered by human action or inaction. This approach is top-down, starting with hardware faults and deducing human contributions to those faults. Elsewhere, more traditionally human factors driven approaches would tend to look at opportunities for human errors first in a task analysis and then identify which of those errors is risk significant. The intersection of top-down and bottom-up approaches to defining HFEs has not been carefully studied. Ideally, both approaches should arrive at the same set of HFEs. This question is crucial, however, as human reliability analysis (HRA) methods are generalized to new domains like oil and gas. The HFEs used in nuclear PRAs tend to be top-down - defined as a subset of the PRA - whereas the HFEs used in petroleum quantitative risk assessments (QRAs) often tend to be bottom-up - derived from a task analysis conducted by human factors experts. The marriage of these approaches is necessary in order to ensure that HRA methods developed for top-down HFEs are also sufficient for bottom-up applications.

  18. Human reliability data, human error and accident models--illustration through the Three Mile Island accident analysis

    International Nuclear Information System (INIS)

    Le Bot, Pierre

    2004-01-01

    Our first objective is to provide a panorama of Human Reliability data used in EDF's Safety Probabilistic Studies, and then, since these concepts are at the heart of Human Reliability and its methods, to go over the notion of human error and the understanding of accidents. We are not sure today that it is actually possible to provide in this field a foolproof and productive theoretical framework. Consequently, the aim of this article is to suggest potential paths of action and to provide information on EDF's progress along those paths which enables us to produce the most potentially useful Human Reliability analyses while taking into account current knowledge in Human Sciences. The second part of this article illustrates our point of view as EDF researchers through the analysis of the most famous civil nuclear accident, the Three Mile Island unit accident in 1979. Analysis of this accident allowed us to validate our positions regarding the need to move, in the case of an accident, from the concept of human error to that of systemic failure in the operation of systems such as a nuclear power plant. These concepts rely heavily on the notion of distributed cognition and we will explain how we applied it. These concepts were implemented in the MERMOS Human Reliability Probabilistic Assessment methods used in the latest EDF Probabilistic Human Reliability Assessment. Besides the fact that it is not very productive to focus exclusively on individual psychological error, the design of the MERMOS method and its implementation have confirmed two things: the significance of qualitative data collection for Human Reliability, and the central role held by Human Reliability experts in building knowledge about emergency operation, which in effect consists of Human Reliability data collection. The latest conclusion derived from the implementation of MERMOS is that, considering the difficulty in building 'generic' Human Reliability data in the field we are involved in, the best

  19. Intraobserver and intermethod reliability for using two different computer programs in preoperative lower limb alignment analysis

    Directory of Open Access Journals (Sweden)

    Mohamed Kenawey

    2016-12-01

    Conclusion: Computer assisted lower limb alignment analysis is reliable whether using graphics editing program or specialized planning software. However slight higher variability for angles away from the knee joint can be expected.

  20. A Conceptual Framework of Human Reliability Analysis for Execution Human Error in NPP Advanced MCRs

    International Nuclear Information System (INIS)

    Jang, In Seok; Kim, Ar Ryum; Seong, Poong Hyun; Jung, Won Dea

    2014-01-01

    The operation environment of Main Control Rooms (MCRs) in Nuclear Power Plants (NPPs) has changed with the adoption of new human-system interfaces that are based on computer-based technologies. The MCRs that include these digital and computer technologies, such as large display panels, computerized procedures, and soft controls, are called Advanced MCRs. Among the many features of Advanced MCRs, soft controls are a particularly important feature because the operation action in NPP Advanced MCRs is performed by soft control. Using soft controls such as mouse control, and touch screens, operators can select a specific screen, then choose the controller, and finally manipulate the given devices. Due to the different interfaces between soft control and hardwired conventional type control, different human error probabilities and a new Human Reliability Analysis (HRA) framework should be considered in the HRA for advanced MCRs. In other words, new human error modes should be considered for interface management tasks such as navigation tasks, and icon (device) selection tasks in monitors and a new framework of HRA method taking these newly generated human error modes into account should be considered. In this paper, a conceptual framework for a HRA method for the evaluation of soft control execution human error in advanced MCRs is suggested by analyzing soft control tasks

  1. A Conceptual Framework of Human Reliability Analysis for Execution Human Error in NPP Advanced MCRs

    Energy Technology Data Exchange (ETDEWEB)

    Jang, In Seok; Kim, Ar Ryum; Seong, Poong Hyun [KAIST, Daejeon (Korea, Republic of); Jung, Won Dea [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-08-15

    The operation environment of Main Control Rooms (MCRs) in Nuclear Power Plants (NPPs) has changed with the adoption of new human-system interfaces that are based on computer-based technologies. The MCRs that include these digital and computer technologies, such as large display panels, computerized procedures, and soft controls, are called Advanced MCRs. Among the many features of Advanced MCRs, soft controls are a particularly important feature because the operation action in NPP Advanced MCRs is performed by soft control. Using soft controls such as mouse control, and touch screens, operators can select a specific screen, then choose the controller, and finally manipulate the given devices. Due to the different interfaces between soft control and hardwired conventional type control, different human error probabilities and a new Human Reliability Analysis (HRA) framework should be considered in the HRA for advanced MCRs. In other words, new human error modes should be considered for interface management tasks such as navigation tasks, and icon (device) selection tasks in monitors and a new framework of HRA method taking these newly generated human error modes into account should be considered. In this paper, a conceptual framework for a HRA method for the evaluation of soft control execution human error in advanced MCRs is suggested by analyzing soft control tasks.

  2. Human Reliability and the Cost of Doing Business

    Science.gov (United States)

    DeMott, D. L.

    2014-01-01

    Human error cannot be defined unambiguously in advance of it happening, it often becomes an error after the fact. The same action can result in a tragic accident for one situation or a heroic action given a more favorable outcome. People often forget that we employ humans in business and industry for the flexibility and capability to change when needed. In complex systems, operations are driven by their specifications of the system and the system structure. People provide the flexibility to make it work. Human error has been reported as being responsible for 60%-80% of failures, accidents and incidents in high-risk industries. We don't have to accept that all human errors are inevitable. Through the use of some basic techniques, many potential human error events can be addressed. There are actions that can be taken to reduce the risk of human error.

  3. Reliability-based maintenance evaluations and standard preventive maintenance programs

    International Nuclear Information System (INIS)

    Varno, M.; McKinley, M.

    1993-01-01

    Due to recent issuance of 10CFR50.65, the U.S. Nuclear Regulatory Commission maintenance rule (Rule), and the open-quotes Industry Guideline for Monitoring the Effectiveness of Maintenance at Nuclear Power Plantsclose quotes prepared by the Nuclear Management and Resources Council, many utilities are undertaking review or evaluation of current preventive maintenance (PM) programs. Although PM optimization and documentation are not specifically required by the Rule, an appropriate and effective PM program (PMP) will be the cornerstone of the successful and cost-effective implementation of the Rule. Currently, a project is being conducted at the Vermont Yankee Nuclear Power Station (VYNPS) in conjunction with Quadrex Energy Services to evaluate, optimize, and document the PMP. The project began in March 1993 and is scheduled for completion in mid-1995. The initial scope for the project is the evaluation of those structures, systems, and components that are within the scope of the Rule. Because of the number of systems to be evaluated (∼50), the desired completion schedule, and cost considerations, a streamlined approach to PM optimization and documentation is being utilized

  4. A priori and a posteriori approaches in human reliability

    International Nuclear Information System (INIS)

    Griffon-Fouco, M.; Gagnolet, P.

    1981-09-01

    The French atomic energy commission (CEA) and the French supplier in electric power (EDF) have joint studies on human factors in nuclear safety. This paper deals with these studies which are a combination of two approaches: - An a posteriori approach so as to know the rate of human errors and their causes: an analysis of incident data banks and an analysis of human errors on simulator are presented. - An a priori approach so as to know the potential factors of human errors: an analysis of the control rooms design and an analysis of the writing of procedures are presented. The possibility to take into account these two approaches to prevent and quantify human errors is discussed

  5. Human reliability in high dose rate afterloading radiotherapy based on FMECA

    International Nuclear Information System (INIS)

    Deng Jun; Fan Yaohua; Yue Baorong; Wei Kedao; Ren Fuli

    2012-01-01

    Objective: To put forward reasonable and feasible recommendations against the procedure with relative high risk during the high dose rate (HDR) afterloading radiotherapy, so as to enhance its clinical application safety, through studying the human reliability in the process of carrying out the HDR afterloading radiotherapy. Methods: Basic data were collected by on-site investigation and process analysis as well as expert evaluation. Failure mode, effect and criticality analysis (FMECA) employed to study the human reliability in the execution of HDR afterloading radiotherapy. Results: The FMECA model of human reliability for HDR afterloading radiotherapy was established, through which 25 procedures with relative high risk index were found,accounting for 14.1% of total 177 procedures. Conclusions: FMECA method in human reliability study for HDR afterloading radiotherapy is feasible. The countermeasures are put forward to reduce the human error, so as to provide important basis for enhancing clinical application safety of HDR afterloading radiotherapy. (authors)

  6. Microgrid Reliability Modeling and Battery Scheduling Using Stochastic Linear Programming

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, Goncalo; Stadler, Michael; Siddiqui, Afzal; Marnay, Chris; DeForest, Nicholas; Barbosa-Povoa, Ana; Ferrao, Paulo

    2013-05-23

    This paper describes the introduction of stochastic linear programming into Operations DER-CAM, a tool used to obtain optimal operating schedules for a given microgrid under local economic and environmental conditions. This application follows previous work on optimal scheduling of a lithium-iron-phosphate battery given the output uncertainty of a 1 MW molten carbonate fuel cell. Both are in the Santa Rita Jail microgrid, located in Dublin, California. This fuel cell has proven unreliable, partially justifying the consideration of storage options. Several stochastic DER-CAM runs are executed to compare different scenarios to values obtained by a deterministic approach. Results indicate that using a stochastic approach provides a conservative yet more lucrative battery schedule. Lower expected energy bills result, given fuel cell outages, in potential savings exceeding 6percent.

  7. Sensitivity evaluation of human factors for reliability of the containment spray system

    International Nuclear Information System (INIS)

    Tsujimura, Yasuhiro; Suzuki, Eiji

    1988-01-01

    Evaluation of the human reliability is one of the most difficult problems that deal with the safety and reliability of large systems, especially of the Engineered Safety Features (ESF) of the nuclear power plant. Influences of human factors on the reliability of the Containment Spray System in the ESF were estimated by using the FTA method in this paper. As a result, the adequacy of the system structure and the effects of human factors on variations of the design of the system structure were explained. (author)

  8. Human reliability guidance - How to increase the synergies between human reliability, human factors, and system design and engineering. Phase 2: The American Point of View - Insights of how the US nuclear industry works with human reliability analysis

    Energy Technology Data Exchange (ETDEWEB)

    Oxstrand, J. (Vattenfall Ringhals AB, Stockholm (Sweden))

    2010-12-15

    The main goal of this Nordic Nuclear Safety Research Council (NKS) project is to produce guidance for how to use human reliability analysis (HRA) to strengthen overall safety. The project consists of two substudies: The Nordic Point of View - A User Needs Analysis, and The American Point of View - Insights of How the US Nuclear Industry Works with HRA. The purpose of the Nordic Point of View study was a user needs analysis that aimed to survey current HRA practices in the Nordic nuclear industry, with the main focus being to connect HRA to system design. In this study, 26 Nordic (Swedish and Finnish) nuclear power plant specialists with research, practitioner, and regulatory expertise in HRA, PRA, HSI, and human performance were interviewed. This study was completed in 2009. This study concludes that HRA is an important tool when dealing with human factors in control room design or modernizations. The Nordic Point of View study showed areas where the use of HRA in the Nordic nuclear industry could be improved. To gain more knowledge about how these improvements could be made, and what improvements to focus on, the second study was conducted. The second study is focused on the American nuclear industry, which has many more years of experience with risk assessment and human reliability than the Nordic nuclear industry. Interviews were conducted to collect information to help the author understand the similarities and differences between the American and the Nordic nuclear industries, and to find data regarding the findings from the first study. The main focus of this report is to identify potential HRA improvements based on the data collected in the American Point of View survey. (Author)

  9. Human reliability guidance - How to increase the synergies between human reliability, human factors, and system design and engineering. Phase 2: The American Point of View - Insights of how the US nuclear industry works with human reliability analysis

    International Nuclear Information System (INIS)

    Oxstrand, J.

    2010-12-01

    The main goal of this Nordic Nuclear Safety Research Council (NKS) project is to produce guidance for how to use human reliability analysis (HRA) to strengthen overall safety. The project consists of two substudies: The Nordic Point of View - A User Needs Analysis, and The American Point of View - Insights of How the US Nuclear Industry Works with HRA. The purpose of the Nordic Point of View study was a user needs analysis that aimed to survey current HRA practices in the Nordic nuclear industry, with the main focus being to connect HRA to system design. In this study, 26 Nordic (Swedish and Finnish) nuclear power plant specialists with research, practitioner, and regulatory expertise in HRA, PRA, HSI, and human performance were interviewed. This study was completed in 2009. This study concludes that HRA is an important tool when dealing with human factors in control room design or modernizations. The Nordic Point of View study showed areas where the use of HRA in the Nordic nuclear industry could be improved. To gain more knowledge about how these improvements could be made, and what improvements to focus on, the second study was conducted. The second study is focused on the American nuclear industry, which has many more years of experience with risk assessment and human reliability than the Nordic nuclear industry. Interviews were conducted to collect information to help the author understand the similarities and differences between the American and the Nordic nuclear industries, and to find data regarding the findings from the first study. The main focus of this report is to identify potential HRA improvements based on the data collected in the American Point of View survey. (Author)

  10. An Impact of Thermodynamic Processes in Human Bodies on Performance Reliability of Individuals

    Directory of Open Access Journals (Sweden)

    Smalko Zbigniew

    2015-01-01

    Full Text Available The article presents the problem of the influence of thermodynamic factors on human fallibility in different zones of thermal discomfort. Describes the processes of energy in the human body. Been given a formal description of the energy balance of the human body thermoregulation. Pointed to human reactions to temperature changes of internal and external environment, including reactions associated with exercise. The methodology to estimate and determine the reliability of indicators of human basal acting in different zones of thermal discomfort. The significant effect of thermodynamic factors on the reliability and security ofperson.

  11. RCM [reliability-centered maintenance] at Ginna: Preventive maintenance program optimization at year 20

    International Nuclear Information System (INIS)

    Edgar, E.C.

    1989-01-01

    The reliability-centered maintenance (RCM) program at Rochester Gas ampersand Electric Company's Ginna station is entering its second year. Of the 20 systems originally selected for evaluation, 10 are in various stages of completion, and recommendations resulting from the earliest systems studied are now being implemented. As expected, few major discoveries have been made in terms of preventive maintenance program failings or excesses. The performance of the now 20-yr-old plant has been excellent in recent years, and objectives focus more on ensuring continued high standards of safety, reliability, and economy than on maintenance program cost reduction

  12. Science-Based Simulation Model of Human Performance for Human Reliability Analysis

    International Nuclear Information System (INIS)

    Kelly, Dana L.; Boring, Ronald L.; Mosleh, Ali; Smidts, Carol

    2011-01-01

    Human reliability analysis (HRA), a component of an integrated probabilistic risk assessment (PRA), is the means by which the human contribution to risk is assessed, both qualitatively and quantitatively. However, among the literally dozens of HRA methods that have been developed, most cannot fully model and quantify the types of errors that occurred at Three Mile Island. Furthermore, all of the methods lack a solid empirical basis, relying heavily on expert judgment or empirical results derived in non-reactor domains. Finally, all of the methods are essentially static, and are thus unable to capture the dynamics of an accident in progress. The objective of this work is to begin exploring a dynamic simulation approach to HRA, one whose models have a basis in psychological theories of human performance, and whose quantitative estimates have an empirical basis. This paper highlights a plan to formalize collaboration among the Idaho National Laboratory (INL), the University of Maryland, and The Ohio State University (OSU) to continue development of a simulation model initially formulated at the University of Maryland. Initial work will focus on enhancing the underlying human performance models with the most recent psychological research, and on planning follow-on studies to establish an empirical basis for the model, based on simulator experiments to be carried out at the INL and at the OSU.

  13. Comparative reliability of cheiloscopy and palatoscopy in human identification

    Directory of Open Access Journals (Sweden)

    Sharma Preeti

    2009-01-01

    Full Text Available Background: Establishing a person′s identity in postmortem scenarios can be a very difficult process. Dental records, fingerprint and DNA comparisons are probably the most common techniques used in this context, allowing fast and reliable identification processes. However, under certain circumstances they cannot always be used; sometimes it is necessary to apply different and less known techniques. In forensic identification, lip prints and palatal rugae patterns can lead us to important information and help in a person′s identification. This study aims to ascertain the use of lip prints and palatal rugae pattern in identification and sex differentiation. Materials and Methods: A total of 100 subjects, 50 males and 50 females were selected from among the students of Subharti Dental College, Meerut. The materials used to record lip prints were lipstick, bond paper, cellophane tape, a brush for applying the lipstick, and a magnifying lens. To study palatal rugae, alginate impressions were taken and the dental casts analyzed for their various patterns. Results: Statistical analysis (applying Z-test for proportion showed significant difference for type I, I′, IV and V lip patterns (P < 0.05 in males and females, while no significant difference was observed for the same in the palatal rugae patterns (P > 0.05. Conclusion: This study not only showed that palatal rugae and lip prints are unique to an individual, but also that lip prints is more reliable for recognition of the sex of an individual.

  14. Generating human reliability estimates using expert judgment. Volume 1. Main report

    International Nuclear Information System (INIS)

    Comer, M.K.; Seaver, D.A.; Stillwell, W.G.; Gaddy, C.D.

    1984-11-01

    The US Nuclear Regulatory Commission is conducting a research program to determine the practicality, acceptability, and usefulness of several different methods for obtaining human reliability data and estimates that can be used in nuclear power plant probabilistic risk assessment (PRA). One method, investigated as part of this overall research program, uses expert judgment to generate human error probability (HEP) estimates and associated uncertainty bounds. The project described in this document evaluated two techniques for using expert judgment: paired comparisons and direct numerical estimation. Volume 1 of this report provides a brief overview of the background of the project, the procedure for using psychological scaling techniques to generate HEP estimates and conclusions from evaluation of the techniques. Results of the evaluation indicate that techniques using expert judgment should be given strong consideration for use in developing HEP estimates. In addition, HEP estimates for 35 tasks related to boiling water reactors (BMRs) were obtained as part of the evaluation. These HEP estimates are also included in the report

  15. Human Factors Regulatory Research Program Plan, FY 1989--FY 1992

    International Nuclear Information System (INIS)

    Coffman, F.; Persensky, J.; Ryan, T.; Ramey-Smith, A.; Goodman, C.; Serig, D.; Trager, E; Nuclear Regulatory Commission, Washington, DC; Nuclear Regulatory Commission, Washington, DC; Nuclear Regulatory Commission, Washington, DC

    1989-10-01

    This report describes the currently ongoing (FY 1989) and planned (FY 1989-1992) Human Factors Regulatory Research Program in the NRC Office of Nuclear Regulatory Research (RES). Examples of the influence of human factors on nuclear safety are presented, and the role of personnel is discussed. Current regulatory issues associated with human factors in the nuclear system and the purpose of the research plan are provided. The report describes the research process applied to the human factors research issues and the program activities: Personnel Performance Measurement, Personnel Subsystem, Human-System Interface. Organization and Management, and Reliability Assessment. The research being conducted within each activity is summarized along with the objectives, background information, and expected regulatory products. Budget and personnel forecasts are provided along with a summary of contractors performing some of the ongoing research. Appendices contain a chronology of human factors research at NRC, a description of the research approach, an update on human factors programs and initiatives in RES and other NRC offices, and the integration among these programs. 46 refs., 5 tabs

  16. Development of a Reliability Program approach to assuring operational nuclear safety

    International Nuclear Information System (INIS)

    Mueller, C.J.; Bezella, W.A.

    1985-01-01

    A Reliability Program (RP) model based on proven reliability techniques used in other high technology industries is being formulated for potential application in the nuclear power industry. Research findings are discussed. The reliability methods employed under NASA and military direction, commercial airline and related FAA programs were surveyed with several reliability concepts (e.g., quantitative reliability goals, reliability centered maintenance) appearing to be directly transferable. Other tasks in the RP development effort involved the benchmarking and evaluation of the existing nuclear regulations and practices relevant to safety/reliability integration. A review of current risk-dominant issues was also conducted using results from existing probabilistic risk assessment studies. The ongoing RP development tasks have concentrated on defining a RP for the operating phase of a nuclear plant's lifecycle. The RP approach incorporates safety systems risk/reliability analysis and performance monitoring activities with dedicated tasks that integrate these activities with operating, surveillance, and maintenance of the plant. The detection, root-cause evaluation and before-the-fact correction of incipient or actual systems failures as a mechanism for maintaining plant safety is a major objective of the RP

  17. Reliability and safety program plan outline for the operational phase of a waste isolation facility

    International Nuclear Information System (INIS)

    Ammer, H.G.; Wood, D.E.

    1977-01-01

    A Reliability and Safety Program plan outline has been prepared for the operational phase of a Waste Isolation Facility. The program includes major functions of risk assessment, technical support activities, quality assurance, operational safety, configuration monitoring, reliability analysis and support and coordination meetings. Detailed activity or task descriptions are included for each function. Activities are time-phased and presented in the PERT format for scheduling and interactions. Task descriptions include manloading, travel, and computer time estimates to provide data for future costing. The program outlined here will be used to provide guidance from a reliability and safety standpoint to design, procurement, construction, and operation of repositories for nuclear waste. These repositories are to be constructed under the National Waste Terminal Storage program under the direction of the Office of Waste Isolation, Union Carbide Corp. Nuclear Division

  18. Human Memory Organization for Computer Programs.

    Science.gov (United States)

    Norcio, A. F.; Kerst, Stephen M.

    1983-01-01

    Results of study investigating human memory organization in processing of computer programming languages indicate that algorithmic logic segments form a cognitive organizational structure in memory for programs. Statement indentation and internal program documentation did not enhance organizational process of recall of statements in five Fortran…

  19. Analysis Testing of Sociocultural Factors Influence on Human Reliability within Sociotechnical Systems: The Algerian Oil Companies

    Directory of Open Access Journals (Sweden)

    Abdelbaki Laidoune

    2016-09-01

    Conclusion: The explored sociocultural factors influence the human reliability both in qualitative and quantitative manners. The proposed model shows how reliability can be enhanced by some measures such as experience feedback based on, for example, safety improvements, training, and information. With that is added the continuous systems improvements to improve sociocultural reality and to reduce negative behaviors.

  20. Probabilistic safety assessment of Tehran Research Reactor using systems analysis programs for hands-on integrated reliability evaluations

    International Nuclear Information System (INIS)

    Hosseini, M.H.; Nematollahi, M.R.; Sepanloo, K.

    2004-01-01

    Probabilistic safety assessment application is found to be a practical tool for research reactor safety due to intense involvement of human interactions in an experimental facility. In this document the application of the probabilistic safety assessment to the Tehran Research Reactor is presented. The level 1 practicabilities safety assessment application involved: Familiarization with the plant, selection of accident initiators, mitigating functions and system definitions, event tree constructions and quantifications, fault tree constructions and quantification, human reliability, component failure data base development and dependent failure analysis. Each of the steps of the analysis given above is discussed with highlights from the selected results. Quantification of the constructed models is done using systems analysis programs for hands-on integrated reliability evaluations software

  1. John F. Kennedy Space Center, Safety, Reliability, Maintainability and Quality Assurance, Survey and Audit Program

    Science.gov (United States)

    1994-01-01

    This document is the product of the KSC Survey and Audit Working Group composed of civil service and contractor Safety, Reliability, and Quality Assurance (SR&QA) personnel. The program described herein provides standardized terminology, uniformity of survey and audit operations, and emphasizes process assessments rather than a program based solely on compliance. The program establishes minimum training requirements, adopts an auditor certification methodology, and includes survey and audit metrics for the audited organizations as well as the auditing organization.

  2. Implementation and Sustainability of the Russian Federation Ministry of Defense Nuclear Personnel Reliability Program

    International Nuclear Information System (INIS)

    Lata, Vasiliy; Coates, Cameron W.

    2010-01-01

    Through a cooperative effort between the US Department of Energy and the Russian Federation (RF) Ministry of Defense (MOD) a Personnel Reliability Program (PRP) for the nuclear handlers within the RF MOD is at the stage of implementation. Sustaining the program is of major significance for long term success. This paper will discuss the elements of the RF PRP and the equipment needs for implementation. Program requirements, documentation needs, training, and assurances of appropriate equipment use will be addressed.

  3. Application of expert elicitation techniques in human reliability, assessment

    International Nuclear Information System (INIS)

    Sanyasi Rao, V.V.S.; Saraf, R.K.; Ghosh, A.K.; Kushwaha, H.S.

    2006-01-01

    Expert elicitation techniques are being used, in the area of technological forecasting, in estimating data needed for analysis when it is either difficult to arrive at the data by experimental means or when it is quite involved to plan and conduct the experiment. In this study, expert elicitation techniques are applied to the evaluation of the frequencies of the various accident sequences that can result from the initiating event (IE) 'High Pressure Process Water (HPPW) system failure' in typical Indian Pressurised Heavy Water Reactor (IPHWR) of the older generation. The Operating Procedure under Emergency Conditions (OPEC) for this IE involves human actions according to a pre-defined procedure. The Human Error Probabilities for all these human actions are obtained using expert elicitation techniques. These techniques aim at eliciting the opinion of the experts in the area of interest with regard to the issue in question. The uncertainty is analysed by employing the measure of dissonance and the most probable range of human error probabilities are arrived at by maximizing this measure. These values are combined using the same procedures mentioned above to yield a distribution representing the uncertainty associated with the predictions. (author)

  4. Comparative reliability of structured versus unstructured interviews in the admission process of a residency program.

    Science.gov (United States)

    Blouin, Danielle; Day, Andrew G; Pavlov, Andrey

    2011-12-01

    Although never directly compared, structured interviews are reported as being more reliable than unstructured interviews. This study compared the reliability of both types of interview when applied to a common pool of applicants for positions in an emergency medicine residency program. In 2008, one structured interview was added to the two unstructured interviews traditionally used in our resident selection process. A formal job analysis using the critical incident technique guided the development of the structured interview tool. This tool consisted of 7 scenarios assessing 4 of the domains deemed essential for success as a resident in this program. The traditional interview tool assessed 5 general criteria. In addition to these criteria, the unstructured panel members were asked to rate each candidate on the same 4 essential domains rated by the structured panel members. All 3 panels interviewed all candidates. Main outcomes were the overall, interitem, and interrater reliabilities, the correlations between interview panels, and the dimensionality of each interview tool. Thirty candidates were interviewed. The overall reliability reached 0.43 for the structured interview, and 0.81 and 0.71 for the unstructured interviews. Analyses of the variance components showed a high interrater, low interitem reliability for the structured interview, and a high interrater, high interitem reliability for the unstructured interviews. The summary measures from the 2 unstructured interviews were significantly correlated, but neither was correlated with the structured interview. Only the structured interview was multidimensional. A structured interview did not yield a higher overall reliability than both unstructured interviews. The lower reliability is explained by a lower interitem reliability, which in turn is due to the multidimensionality of the interview tool. Both unstructured panels consistently rated a single dimension, even when prompted to assess the 4 specific domains

  5. On modeling human reliability in space flights - Redundancy and recovery operations

    Science.gov (United States)

    Aarset, M.; Wright, J. F.

    The reliability of humans is of paramount importance to the safety of space flight systems. This paper describes why 'back-up' operators might not be the best solution, and in some cases, might even degrade system reliability. The problem associated with human redundancy calls for special treatment in reliability analyses. The concept of Standby Redundancy is adopted, and psychological and mathematical models are introduced to improve the way such problems can be estimated and handled. In the past, human reliability has practically been neglected in most reliability analyses, and, when included, the humans have been modeled as a component and treated numerically the way technical components are. This approach is not wrong in itself, but it may lead to systematic errors if too simple analogies from the technical domain are used in the modeling of human behavior. In this paper redundancy in a man-machine system will be addressed. It will be shown how simplification from the technical domain, when applied to human components of a system, may give non-conservative estimates of system reliability.

  6. Assessment of human decision reliability - a case study

    International Nuclear Information System (INIS)

    Pyy, P

    1998-01-01

    In his discussion of this case study, the author indicates that human beings are not merely machines who use rules. Thus, more focus needs to be put on studying decision making situations and their contexts. Decision theory (both normative and descriptive) and contextual psychological approaches may offer tools to cope with operator decision making. Further an ideal decision space needs to be defined for operators. The case study specifically addressed a loss of feedwater scenario and the various operator decisions that were involved in that scenario. It was concluded from this particular study that there are significant differences in the crew decision behaviours that are not explained by process variables. Through use of evidence from simulator tests with expert judgement, an approach to estimate probabilities has been developed. The modelling approach presented in this discussion is an extension of current HRA paradigms, but a natural one since all human beings make decisions

  7. Research on cognitive reliability model for main control room considering human factors in nuclear power plants

    International Nuclear Information System (INIS)

    Jiang Jianjun; Zhang Li; Wang Yiqun; Zhang Kun; Peng Yuyuan; Zhou Cheng

    2012-01-01

    Facing the shortcomings of the traditional cognitive factors and cognitive model, this paper presents a Bayesian networks cognitive reliability model by taking the main control room as a reference background and human factors as the key points. The model mainly analyzes the cognitive reliability affected by the human factors, and for the cognitive node and influence factors corresponding to cognitive node, a series of methods and function formulas to compute the node cognitive reliability is proposed. The model and corresponding methods can be applied to the evaluation of cognitive process for the nuclear power plant operators and have a certain significance for the prevention of safety accidents in nuclear power plants. (authors)

  8. Cognitive modelling: a basic complement of human reliability analysis

    International Nuclear Information System (INIS)

    Bersini, U.; Cacciabue, P.C.; Mancini, G.

    1988-01-01

    In this paper the issues identified in modelling humans and machines are discussed in the perspective of the consideration of human errors managing complex plants during incidental as well as normal conditions. The dichotomy between the use of a cognitive versus a behaviouristic model approach is discussed and the complementarity aspects rather than the differences of the two methods are identified. A cognitive model based on a hierarchical goal-oriented approach and driven by fuzzy logic methodology is presented as the counterpart to the 'classical' THERP methodology for studying human errors. Such a cognitive model is discussed at length and its fundamental components, i.e. the High Level Decision Making and the Low Level Decision Making models, are reviewed. Finally, the inadequacy of the 'classical' THERP methodology to deal with cognitive errors is discussed on the basis of a simple test case. For the same case the cognitive model is then applied showing the flexibility and adequacy of the model to dynamic configuration with time-dependent failures of components and with consequent need for changing of strategy during the transient itself. (author)

  9. Overview of EPRI's human factors research program

    International Nuclear Information System (INIS)

    O'Brien, J.F.; Parris, H.L.

    1981-01-01

    The human factors engineering program in the Nuclear Power Division, EPRI is dedicated to the resolution of man-machine interface problems specific to the nuclear power industry. Particularly emphasis is placed on the capabilities and limitations of the people who operate and maintain the system, the tasks they must perform, and what they need to accomplish those tasks. Six human factors R and D projects are being conducted at the present time. In addition, technical consultation is being furnished to a study area, operator aids, being funded by another program area outside the human factors program area. All of these activities are summarized

  10. Reliability database development for use with an object-oriented fault tree evaluation program

    Science.gov (United States)

    Heger, A. Sharif; Harringtton, Robert J.; Koen, Billy V.; Patterson-Hine, F. Ann

    1989-01-01

    A description is given of the development of a fault-tree analysis method using object-oriented programming. In addition, the authors discuss the programs that have been developed or are under development to connect a fault-tree analysis routine to a reliability database. To assess the performance of the routines, a relational database simulating one of the nuclear power industry databases has been constructed. For a realistic assessment of the results of this project, the use of one of existing nuclear power reliability databases is planned.

  11. Collection and classification of human error and human reliability data from Indian nuclear power plants for use in PSA

    International Nuclear Information System (INIS)

    Subramaniam, K.; Saraf, R.K.; Sanyasi Rao, V.V.S.; Venkat Raj, V.; Venkatraman, R.

    2000-01-01

    Complex systems such as NPPs involve a large number of Human Interactions (HIs) in every phase of plant operations. Human Reliability Analysis (HRA) in the context of a PSA, attempts to model the HIs and evaluate/predict their impact on safety and reliability using human error/human reliability data. A large number of HRA techniques have been developed for modelling and integrating HIs into PSA but there is a significant lack of HAR data. In the face of insufficient data, human reliability analysts have had to resort to expert judgement methods in order to extend the insufficient data sets. In this situation, the generation of data from plant operating experience assumes importance. The development of a HRA data bank for Indian nuclear power plants was therefore initiated as part of the programme of work on HRA. Later, with the establishment of the coordinated research programme (CRP) on collection of human reliability data and use in PSA by IAEA in 1994-95, the development was carried out under the aegis of the IAEA research contract No. 8239/RB. The work described in this report covers the activities of development of a data taxonomy and a human error reporting form (HERF) based on it, data structuring, review and analysis of plant event reports, collection of data on human errors, analysis of the data and calculation of human error probabilities (HEPs). Analysis of plant operating experience does yield a good amount of qualitative data but obtaining quantitative data on human reliability in the form of HEPs is seen to be more difficult. The difficulties have been highlighted and some ways to bring about improvements in the data situation have been discussed. The implementation of a data system for HRA is described and useful features that can be incorporated in future systems are also discussed. (author)

  12. 76 FR 12271 - Human Reliability Program: Identification of Reviewing Official

    Science.gov (United States)

    2011-03-07

    ... federalism implications. Agencies are required to examine the constitutional and statutory authority...) of Executive Order 12988, ``Civil Justice Reform'' (61 FR 4729, February 7, 1996), imposes on Federal...

  13. 78 FR 56132 - Human Reliability Program: Technical Amendments

    Science.gov (United States)

    2013-09-12

    ... quantify); (2) tailor regulations to impose the least burden on society, consistent with obtaining... that may affect family well-being. This rule would not have any impact on the autonomy or integrity of...

  14. Use of performance shaping factors and quantified expert judgment in the evaluation of human reliability: an initial appraisal

    International Nuclear Information System (INIS)

    Embrey, D.E.

    1983-05-01

    The first part of the report considers the nature of human reliability assessment, and the techniques currently employed. It is concluded that most approaches are limited by the availability of data. Approaches to the subjective assessment of error are surveyed. A particular technique which has been developed, the Success Likelihood Index Methodology (SLIM), is described in detail, together with the practical steps for its implementation. The results from a trial application of a questionnaire designed to elicit judges' perceptions of the relative importance of performance shaping factors in determining human reliability are analyzed. A revised form of the questionnaire is presented for future use. A pilot experiment to investigate the relationship between subjectively derived indices of success for six tasks and their objective probability of success is described. The results indicate that the SLIM has potential value as a predictive technique. Some requirements for a program of research to produce a generally applicable methodology are set out

  15. An enhanced reliability-oriented workforce planning model for process industry using combined fuzzy goal programming and differential evolution approach

    Science.gov (United States)

    Ighravwe, D. E.; Oke, S. A.; Adebiyi, K. A.

    2018-03-01

    This paper draws on the "human reliability" concept as a structure for gaining insight into the maintenance workforce assessment in a process industry. Human reliability hinges on developing the reliability of humans to a threshold that guides the maintenance workforce to execute accurate decisions within the limits of resources and time allocations. This concept offers a worthwhile point of deviation to encompass three elegant adjustments to literature model in terms of maintenance time, workforce performance and return-on-workforce investments. These fully explain the results of our influence. The presented structure breaks new grounds in maintenance workforce theory and practice from a number of perspectives. First, we have successfully implemented fuzzy goal programming (FGP) and differential evolution (DE) techniques for the solution of optimisation problem in maintenance of a process plant for the first time. The results obtained in this work showed better quality of solution from the DE algorithm compared with those of genetic algorithm and particle swarm optimisation algorithm, thus expressing superiority of the proposed procedure over them. Second, the analytical discourse, which was framed on stochastic theory, focusing on specific application to a process plant in Nigeria is a novelty. The work provides more insights into maintenance workforce planning during overhaul rework and overtime maintenance activities in manufacturing systems and demonstrated capacity in generating substantially helpful information for practice.

  16. A human reliability assessment screening method for the NRU upgrade project

    International Nuclear Information System (INIS)

    Bremner, F.M.; Alsop, C.J.

    1997-01-01

    The National Research Universal (NRU) reactor is a 130MW, low pressure, heavy water cooled and moderated research reactor. The reactor is used for research, both in support of Canada's CANDU development program, and for a wide variety of other research applications. In addition, NRU plays an important part in the production of medical isotopes, e.g., generating 80% of worldwide supplies of Molybdenum-99. NRU is owned and operated by Atomic Energy of Canada Ltd. (AECL), and is currently undergoing upgrading as part of AECL's continuing commitment to operate their facilities in a safe manner. As part of these upgrades both deterministic and probabilistic safety assessments are being carried out. It was recognized that the assignment of Human Error Probabilities (HEPs) is an important part of the Probabilistic Safety Assessment (PSA) studies, particularly for a facility whose design predates modern ergonomic practices, and which will undergo a series of backfitted modifications whilst continuing to operate. A simple Human Reliability Assessment (HRA) screening method, looking at both pre- and post-accident errors, was used in the initial safety studies. However, following review of this method within AECL and externally by the regulator, it was judged that benefits could be gained for future error reduction by including additional features, as later described in this document. The HRA development project consisted of several stages; needs analysis, literature review, development of method (including testing and evaluation), and implementation. This paper discusses each of these stages in further detail. (author)

  17. Advanced control rooms and crew performance issues: Implications for human reliability

    International Nuclear Information System (INIS)

    O'Hara, J.M.; Hall, R.E.

    1991-01-01

    Recent trends in advanced control room (ACR) design are considered with respect to their impact on human performance. It is concluded that potentially negative influences exist, however, a variety of factors make it difficult to model, analyze, and quantify these effects for human reliability analyses (HRAs)

  18. Development of slim-maud: a multi-attribute utility approach to human reliability evaluation

    International Nuclear Information System (INIS)

    Embrey, D.E.

    1984-01-01

    This paper describes further work on the Success Likelihood Index Methodology (SLIM), a procedure for quantitatively evaluating human reliability in nuclear power plants and other systems. SLIM was originally developed by Human Reliability Associates during an earlier contract with Brookhaven National Laboratory (BNL). A further development of SLIM, SLIM-MAUD (Multi-Attribute Utility Decomposition) is also described. This is an extension of the original approach using an interactive, computer-based system. All of the work described in this report was supported by the Human Factors and Safeguards Branch of the US Nuclear Regulatory Commission

  19. Results of the reliability benchmark exercise and the future CEC-JRC program

    International Nuclear Information System (INIS)

    Amendola, A.

    1985-01-01

    As a contribution towards identifying problem areas and for assessing probabilistic safety assessment (PSA) methods and procedures of analysis, JRC has organized a wide-range Benchmark Exercise on systems reliability. This has been executed by ten different teams involving seventeen organizations from nine European countries. The exercise has been based on a real case (Auxiliary Feedwater System of EDF Paluel PWR 1300 MWe Unit), starting from analysis of technical specifications, logical and topological layout and operational procedures. Terms of references included both qualitative and quantitative analyses. The subdivision of the exercise into different phases and the rules adopted allowed assessment of the different components of the spread of the overall results. It appeared that modelling uncertainties may overwhelm data uncertainties and major efforts must be spent in order to improve consistency and completeness of qualitative analysis. After successful completion of the first exercise, CEC-JRC program has planned separate exercises on analysis of dependent failures and human factors before approaching the evaluation of a complete accident sequence

  20. Human Performance Westinghouse Program; Programa Human Performance de Westinghouse

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Gutierrez, A.; Gil, C.

    2010-07-01

    The objective of the Program consists in the excellence actuation, achieving the client success with a perfect realisation project. This program consists of different basic elements to reduce the human mistakes: the HuP tools, coaching, learning clocks and Know website. There is, too, a document file to consult and practice. All these elements are expounded in this paper.

  1. Reliability of a structured interview for admission to an emergency medicine residency program.

    Science.gov (United States)

    Blouin, Danielle

    2010-10-01

    Interviews are most important in resident selection. Structured interviews are more reliable than unstructured ones. We sought to measure the interrater reliability of a newly designed structured interview during the selection process to an Emergency Medicine residency program. The critical incident technique was used to extract the desired dimensions of performance. The interview tool consisted of 7 clinical scenarios and 1 global rating. Three trained interviewers marked each candidate on all scenarios without discussing candidates' responses. Interitem consistency and estimates of variance were computed. Twenty-eight candidates were interviewed. The generalizability coefficient was 0.67. Removing the central tendency ratings increased the coefficient to 0.74. Coefficients of interitem consistency ranged from 0.64 to 0.74. The structured interview tool provided good although suboptimal interrater reliability. Increasing the number of scenarios improves reliability as does applying differential weights to the rating scale anchors. The latter would also facilitate the identification of those candidates with extreme ratings.

  2. Reliability programs for nuclear power plants. Regulatory standard S-98 revision 1

    International Nuclear Information System (INIS)

    2005-07-01

    The purpose of this regulatory standard is to help assure, in accordance with the purpose of the Nuclear Safety and Control Act (NSCA), that a licensee who constructs or operates a nuclear power plant (NPP) develops and implements a reliability program that assures that the systems important to safety at the plant can and will meet their defined design and performance specifications at acceptable levels of reliability throughout the lifetime of the facility. This regulatory standard describes the requirements of a reliability program for a nuclear power plant. The licensee shall implement the requirements described in this regulatory standard when a condition of a licence or other legally enforceable instrument so requires.(author)

  3. Reliability and Availability Analysis of Some Systems with Common-Cause Failures Using SPICE Circuit Simulation Program

    Directory of Open Access Journals (Sweden)

    Muhammad Taher Abuelma'atti

    1999-01-01

    Full Text Available The effectiveness of SPICE circuit simulation program in calculating probabilities, reliability, steady-state availability and mean-time to failure of repairable systems described by Markov models is demonstrated. Two examples are presented. The first example is a warm standby system with common-cause failures and human errors. The second example is a non-identical unit parallel system with common-cause failures. In both cases recourse to numerical solution is inevitable to obtain the Laplace transforms of the probabilities. Results obtained using SPICE are compared with previously published results obtained using the Laplace transform method. Full SPICE listings are included.

  4. 48 CFR 1852.246-70 - Mission Critical Space System Personnel Reliability Program.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Mission Critical Space... CONTRACT CLAUSES Texts of Provisions and Clauses 1852.246-70 Mission Critical Space System Personnel Reliability Program. As prescribed in 1846.370(a), insert the following clause: Mission Critical Space System...

  5. Value-Added Models for Teacher Preparation Programs: Validity and Reliability Threats, and a Manageable Alternative

    Science.gov (United States)

    Brady, Michael P.; Heiser, Lawrence A.; McCormick, Jazarae K.; Forgan, James

    2016-01-01

    High-stakes standardized student assessments are increasingly used in value-added evaluation models to connect teacher performance to P-12 student learning. These assessments are also being used to evaluate teacher preparation programs, despite validity and reliability threats. A more rational model linking student performance to candidates who…

  6. Role of frameworks, models, data, and judgment in human reliability analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hannaman, G W

    1986-05-01

    Many advancements in the methods for treating human interactions in PRA studies have occurred in the last decade. These advancements appear to increase the capability of PRAs to extend beyond just the assessment of the human's importance to safety. However, variations in the application of these advanced models, data, and judgements in recent PRAs make quantitative comparisons among studies extremely difficult. This uncertainty in the analysis diminishes the usefulness of the PRA study for upgrading procedures, enhancing traning, simulator design, technical specification guidance, and for aid in designing the man-machine interface. Hence, there is a need for a framework to guide analysts in incorporating human interactions into the PRA systems analyses so that future users of a PRA study will have a clear understanding of the approaches, models, data, and assumptions which were employed in the initial study. This paper describes the role of the systematic human action reliability procedure (SHARP) in providing a road map through the complex terrain of human reliability that promises to improve the reproducibility of such analysis in the areas of selecting the models, data, representations, and assumptions. Also described is the role that a human cognitive reliability model can have in collecting data from simulators and helping analysts assign human reliability parameters in a PRA study. Use of these systematic approaches to perform or upgrade existing PRAs promises to make PRA studies more useful as risk management tools.

  7. Human reliability in non-destructive inspections of nuclear power plant components: modeling and analysis

    International Nuclear Information System (INIS)

    Vasconcelos, Vanderley de; Soares, Wellington Antonio; Marques, Raíssa Oliveira; Silva Júnior, Silvério Ferreira da; Raso, Amanda Laureano

    2017-01-01

    Non-destructive inspection (NDI) is one of the key elements in ensuring quality of engineering systems and their safe use. NDI is a very complex task, during which the inspectors have to rely on their sensory, perceptual, cognitive, and motor skills. It requires high vigilance once it is often carried out on large components, over a long period of time, and in hostile environments and restriction of workplace. A successful NDI requires careful planning, choice of appropriate NDI methods and inspection procedures, as well as qualified and trained inspection personnel. A failure of NDI to detect critical defects in safety-related components of nuclear power plants, for instance, may lead to catastrophic consequences for workers, public and environment. Therefore, ensuring that NDI methods are reliable and capable of detecting all critical defects is of utmost importance. Despite increased use of automation in NDI, human inspectors, and thus human factors, still play an important role in NDI reliability. Human reliability is the probability of humans conducting specific tasks with satisfactory performance. Many techniques are suitable for modeling and analyzing human reliability in NDI of nuclear power plant components. Among these can be highlighted Failure Modes and Effects Analysis (FMEA) and THERP (Technique for Human Error Rate Prediction). The application of these techniques is illustrated in an example of qualitative and quantitative studies to improve typical NDI of pipe segments of a core cooling system of a nuclear power plant, through acting on human factors issues. (author)

  8. Human reliability in non-destructive inspections of nuclear power plant components: modeling and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Vasconcelos, Vanderley de; Soares, Wellington Antonio; Marques, Raíssa Oliveira; Silva Júnior, Silvério Ferreira da; Raso, Amanda Laureano, E-mail: vasconv@cdtn.br, E-mail: soaresw@cdtn.br, E-mail: raissaomarques@gmail.com, E-mail: silvasf@cdtn.br, E-mail: amandaraso@hotmail.com [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-07-01

    Non-destructive inspection (NDI) is one of the key elements in ensuring quality of engineering systems and their safe use. NDI is a very complex task, during which the inspectors have to rely on their sensory, perceptual, cognitive, and motor skills. It requires high vigilance once it is often carried out on large components, over a long period of time, and in hostile environments and restriction of workplace. A successful NDI requires careful planning, choice of appropriate NDI methods and inspection procedures, as well as qualified and trained inspection personnel. A failure of NDI to detect critical defects in safety-related components of nuclear power plants, for instance, may lead to catastrophic consequences for workers, public and environment. Therefore, ensuring that NDI methods are reliable and capable of detecting all critical defects is of utmost importance. Despite increased use of automation in NDI, human inspectors, and thus human factors, still play an important role in NDI reliability. Human reliability is the probability of humans conducting specific tasks with satisfactory performance. Many techniques are suitable for modeling and analyzing human reliability in NDI of nuclear power plant components. Among these can be highlighted Failure Modes and Effects Analysis (FMEA) and THERP (Technique for Human Error Rate Prediction). The application of these techniques is illustrated in an example of qualitative and quantitative studies to improve typical NDI of pipe segments of a core cooling system of a nuclear power plant, through acting on human factors issues. (author)

  9. The Development of Marine Accidents Human Reliability Assessment Approach: HEART Methodology and MOP Model

    OpenAIRE

    Ludfi Pratiwi Bowo; Wanginingastuti Mutmainnah; Masao Furusho

    2017-01-01

    Humans are one of the important factors in the assessment of accidents, particularly marine accidents. Hence, studies are conducted to assess the contribution of human factors in accidents. There are two generations of Human Reliability Assessment (HRA) that have been developed. Those methodologies are classified by the differences of viewpoints of problem-solving, as the first generation and second generation. The accident analysis can be determined using three techniques of analysis; sequen...

  10. A human reliability analysis of the University of New Mexico's AGN- 201M nuclear research reactor

    International Nuclear Information System (INIS)

    Brumburgh, G.P.; Heger, A.S.

    1992-01-01

    During 1990--1991, a probabilistic risk assessment was conducted on the University of New Mexico's AGN-201M nuclear research reactor to address the risk and consequence of a maximum hypothetical release accident. The assessment indicated a potential for consequential human error to precipitate Chis scenario. Subsequently, a human reliability analysis was performed to evaluate the significance of human interaction on the reactor's safety systems. This paper presents the results of that investigation

  11. reliability reliability

    African Journals Online (AJOL)

    eobe

    Corresponding author, Tel: +234-703. RELIABILITY .... V , , given by the code of practice. However, checks must .... an optimization procedure over the failure domain F corresponding .... of Concrete Members based on Utility Theory,. Technical ...

  12. Knowledge-base for the new human reliability analysis method, A Technique for Human Error Analysis (ATHEANA)

    International Nuclear Information System (INIS)

    Cooper, S.E.; Wreathall, J.; Thompson, C.M., Drouin, M.; Bley, D.C.

    1996-01-01

    This paper describes the knowledge base for the application of the new human reliability analysis (HRA) method, a ''A Technique for Human Error Analysis'' (ATHEANA). Since application of ATHEANA requires the identification of previously unmodeled human failure events, especially errors of commission, and associated error-forcing contexts (i.e., combinations of plant conditions and performance shaping factors), this knowledge base is an essential aid for the HRA analyst

  13. Human-centered modeling in human reliability analysis: some trends based on case studies

    International Nuclear Information System (INIS)

    Mosneron-Dupin, F.; Reer, B.; Heslinga, G.; Straeter, O.; Gerdes, V.; Saliou, G.; Ullwer, W.

    1997-01-01

    As an informal working group of researchers from France, Germany and The Netherlands created in 1993, the EARTH association is investigating significant subjects in the field of human reliability analysis (HRA). Our initial review of cases from nuclear operating experience showed that decision-based unrequired actions (DUA) contribute to risk significantly on the one hand. On the other hand, our evaluation of current HRA methods showed that these methods do not cover such actions adequately. Especially, practice-oriented guidelines for their predictive identification are lacking. We assumed that a basic cause for such difficulties was that these methods actually use a limited representation of the stimulus-organism-response (SOR) paradigm. We proposed a human-centered model, which better highlights the active role of the operators and the importance of their culture, attitudes and goals. This orientation was encouraged by our review of current HRA research activities. We therefore decided to envisage progress by identifying cognitive tendencies in the context of operating and simulator experience. For this purpose, advanced approaches for retrospective event analysis were discussed. Some orientations for improvements were proposed. By analyzing cases, various cognitive tendencies were identified, together with useful information about their context. Some of them match psychological findings already published in the literature, some of them are not covered adequately by the literature that we reviewed. Finally, this exploratory study shows that contextual and case-illustrated findings about cognitive tendencies provide useful help for the predictive identification of DUA in HRA. More research should be carried out to complement our findings and elaborate more detailed and systematic guidelines for using them in HRA studies

  14. An Evidential Reasoning-Based CREAM to Human Reliability Analysis in Maritime Accident Process.

    Science.gov (United States)

    Wu, Bing; Yan, Xinping; Wang, Yang; Soares, C Guedes

    2017-10-01

    This article proposes a modified cognitive reliability and error analysis method (CREAM) for estimating the human error probability in the maritime accident process on the basis of an evidential reasoning approach. This modified CREAM is developed to precisely quantify the linguistic variables of the common performance conditions and to overcome the problem of ignoring the uncertainty caused by incomplete information in the existing CREAM models. Moreover, this article views maritime accident development from the sequential perspective, where a scenario- and barrier-based framework is proposed to describe the maritime accident process. This evidential reasoning-based CREAM approach together with the proposed accident development framework are applied to human reliability analysis of a ship capsizing accident. It will facilitate subjective human reliability analysis in different engineering systems where uncertainty exists in practice. © 2017 Society for Risk Analysis.

  15. Review of EPRI Nuclear Human Factors Program

    International Nuclear Information System (INIS)

    Hanes, L.F.; O'Brien, J.F.

    1996-01-01

    The Electric Power Research Institute (EPRI) Human Factors Program, which is part of the EPRI Nuclear Power Group, was established in 1975. Over the years, the Program has changed emphasis based on the shifting priorities and needs of the commercial nuclear power industry. The Program has produced many important products that provide significant safety and economic benefits for EPRI member utilities. This presentation will provide a brief history of the Program and products. Current projects and products that have been released recently will be mentioned

  16. Substation design improvement with a probabilistic reliability approach using the TOPASE program

    Energy Technology Data Exchange (ETDEWEB)

    Bulot, M.; Heroin, G.; Bergerot, J-L.; Le Du, M. [Electricite de France (France)

    1997-12-31

    TOPASE, (the French acronym for Probabilistic Tools and Data Processing for the Analysis of Electric Systems), developed by Electricite de France (EDF) to perform reliability studies on transmission substations, was described. TOPASE serves a dual objective of assisting in the automation of HV substation studies, as well as enabling electrical systems experts who are not necessarily specialists in reliability studies to perform such studies. The program is capable of quantifying the occurrence rate of undesirable events and of identifying critical equipment and the main incident scenarios. The program can be used to improve an existing substation, to choose an HV structure during the design stage, or to choose a system of protective devices. Data collected during 1996 and 1997 will be analyzed to identify useful experiences and to validate the basic concepts of the program. 4 figs.

  17. Planning and implementation of reliability/quality programs to energy plants

    International Nuclear Information System (INIS)

    Quenon, J.

    1986-01-01

    Quality Assurance principles have long been applied in part to many varied industrial enterprises. The advent of commercial nuclear power brought the evolution of a more comprehensive approach to the applications of quality assurance programs in this industry. However, the application philosophy was almost totally aimed at assuring the safety of the worker and the public. Recently, there has been a strong movement by industries and business in the U.S. and Europe to apply quality assurance in a more general way to assure overall reliability as well as safety. This paper describes an approach to enable management to not only make initial determinations of how to apply the elements of a reliability/quality assurance program, but how to continuously adjust the program to optimize the benefits that can be obtained

  18. Analysis and recommendations for a reliable programming of software based safety systems

    International Nuclear Information System (INIS)

    Nunez McLeod, J.; Nunez McLeod, J.E.; Rivera, S.S.

    1997-01-01

    The present paper summarizes the results of several studies performed for the development of high software on i486 microprocessors, towards its utilization for control and safety systems for nuclear power plants. The work is based on software programmed in C language. Several recommendations oriented to high reliability software are analyzed, relating the requirements on high level language to its influence on assembler level. Several metrics are implemented, that allow for the quantification of the results achieved. New metrics were developed and other were adapted, in order to obtain more efficient indexes for the software description. Such metrics are helpful to visualize the adaptation of the software under development to the quality rules under use. A specific program developed to assist the reliability analyst on this quantification is also present in the paper. It performs the analysis of an executable program written in C language, disassembling it and evaluating its inter al structures. (author)

  19. The application of cognitive models to the evaluation and prediction of human reliability

    International Nuclear Information System (INIS)

    Embrey, D.E.; Reason, J.T.

    1986-01-01

    The first section of the paper provides a brief overview of a number of important principles relevant to human reliability modeling that have emerged from cognitive models, and presents a synthesis of these approaches in the form of a Generic Error Modeling System (GEMS). The next section illustrates the application of GEMS to some well known nuclear power plant (NPP) incidents in which human error was a major contributor. The way in which design recommendations can emerge from analyses of this type is illustrated. The third section describes the use of cognitive models in the classification of human errors for prediction and data collection purposes. The final section addresses the predictive modeling of human error as part of human reliability assessment in Probabilistic Risk Assessment

  20. Handbook of human-reliability analysis with emphasis on nuclear power plant applications. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Swain, A D; Guttmann, H E

    1983-08-01

    The primary purpose of the Handbook is to present methods, models, and estimated human error probabilities (HEPs) to enable qualified analysts to make quantitative or qualitative assessments of occurrences of human errors in nuclear power plants (NPPs) that affect the availability or operational reliability of engineered safety features and components. The Handbook is intended to provide much of the modeling and information necessary for the performance of human reliability analysis (HRA) as a part of probabilistic risk assessment (PRA) of NPPs. Although not a design guide, a second purpose of the Handbook is to enable the user to recognize error-likely equipment design, plant policies and practices, written procedures, and other human factors problems so that improvements can be considered. The Handbook provides the methodology to identify and quantify the potential for human error in NPP tasks.

  1. Handbook of human-reliability analysis with emphasis on nuclear power plant applications. Final report

    International Nuclear Information System (INIS)

    Swain, A.D.; Guttmann, H.E.

    1983-08-01

    The primary purpose of the Handbook is to present methods, models, and estimated human error probabilities (HEPs) to enable qualified analysts to make quantitative or qualitative assessments of occurrences of human errors in nuclear power plants (NPPs) that affect the availability or operational reliability of engineered safety features and components. The Handbook is intended to provide much of the modeling and information necessary for the performance of human reliability analysis (HRA) as a part of probabilistic risk assessment (PRA) of NPPs. Although not a design guide, a second purpose of the Handbook is to enable the user to recognize error-likely equipment design, plant policies and practices, written procedures, and other human factors problems so that improvements can be considered. The Handbook provides the methodology to identify and quantify the potential for human error in NPP tasks

  2. Reliability and integrity management program for PBMR helium pressure boundary components - HTR2008-58036

    International Nuclear Information System (INIS)

    Fleming, K. N.; Gamble, R.; Gosselin, S.; Fletcher, J.; Broom, N.

    2008-01-01

    The purpose of this paper is to present the results of a study to establish strategies for the reliability and integrity management (RIM) of passive metallic components for the PBMR. The RIM strategies investigated include design elements, leak detection and testing approaches, and non-destructive examinations. Specific combinations of strategies are determined to be necessary and sufficient to achieve target reliability goals for passive components. This study recommends a basis for the RIM program for the PBMR Demonstration Power Plant (DPP) and provides guidance for the development by the American Society of Mechanical Engineers (ASME) of RIM requirements for Modular High Temperature Gas-Cooled Reactors (MHRs). (authors)

  3. Cognitive human reliability analysis for an assessment of the safety significance of complex transients

    International Nuclear Information System (INIS)

    Amico, P.J.; Hsu, C.J.; Youngblood, R.W.; Fitzpatrick, R.G.

    1989-01-01

    This paper reports that as part of a probabilistic assessment of the safety significance of complex transients at certain PWR power plants, it was necessary to perform a cognitive human reliability analysis. To increase the confidence in the results, it was desirable to make use of actual observations of operator response which were available for the assessment. An approach was developed which incorporated these observations into the human cognitive reliability (HCR) modeling approach. The results obtained provided additional insights over what would have been found using other approaches. These insights were supported by the observations, and it is suggested that this approach be considered for use in future probabilistic safety assessments

  4. Reliability of an Automated High-Resolution Manometry Analysis Program across Expert Users, Novice Users, and Speech-Language Pathologists

    Science.gov (United States)

    Jones, Corinne A.; Hoffman, Matthew R.; Geng, Zhixian; Abdelhalim, Suzan M.; Jiang, Jack J.; McCulloch, Timothy M.

    2014-01-01

    Purpose: The purpose of this study was to investigate inter- and intrarater reliability among expert users, novice users, and speech-language pathologists with a semiautomated high-resolution manometry analysis program. We hypothesized that all users would have high intrarater reliability and high interrater reliability. Method: Three expert…

  5. Department of Defense need for a micro-electromechanical systems (MEMS) reliability assessment program

    Science.gov (United States)

    Zunino, James L., III; Skelton, Donald

    2005-01-01

    As the United States (U.S.) Army transforms into a lighter, more lethal, and more agile force, the technologies that support both legacy and emerging weapon systems must decrease in size while increasing in intelligence. Micro-electromechanical systems (MEMS) are one such technology that the Army as well as entire DOD will heavily rely on in achieving these objectives. Current and future military applications of MEMS devices include safety and arming devices, guidance systems, sensors/detectors, inertial measurement units, tracking devices, radio frequency devices, wireless radio frequency identification (RFID), etc. Even though the reliance on MEMS devices has been increasing, there have been no studies performed to determine their reliability and failure mechanisms. Furthermore, no standardized test protocols exist for assessing reliability. Accordingly, the U.S. Army Corrosion Office at Picatinny, NJ has initiated the MEMS Reliability Assessment Program to address this issue.

  6. Human reliability analysis as an evaluation tool of the emergency evacuation process on industrial installation

    International Nuclear Information System (INIS)

    Santos, Isaac J.A.L. dos; Grecco, Claudio H.S.; Mol, Antonio C.A.; Carvalho, Paulo V.R.; Oliveira, Mauro V.; Botelho, Felipe Mury

    2007-01-01

    Human reliability is the probability that a person correctly performs some required activity by the system in a required time period and performs no extraneous activity that can degrade the system. Human reliability analysis (HRA) is the analysis, prediction and evaluation of work-oriented human performance using some indices as human error likelihood and probability of task accomplishment. The human error concept must not have connotation of guilt and punishment, having to be treated as a natural consequence, that emerges due to the not continuity between the human capacity and the system demand. The majority of the human error is a consequence of the work situation and not of the responsibility lack of the worker. The anticipation and the control of potentially adverse impacts of human action or interactions between the humans and the system are integral parts of the process safety, where the factors that influence the human performance must be recognized and managed. The aim of this paper is to propose a methodology to evaluate the emergency evacuation process on industrial installations including SLIM-MAUD, a HRA first-generation method, and using virtual reality and simulation software to build and to simulate the chosen emergency scenes. (author)

  7. Study on Performance Shaping Factors (PSFs) Quantification Method in Human Reliability Analysis (HRA)

    International Nuclear Information System (INIS)

    Kim, Ar Ryum; Jang, Inseok Jang; Seong, Poong Hyun; Park, Jinkyun; Kim, Jong Hyun

    2015-01-01

    The purpose of HRA implementation is 1) to achieve the human factor engineering (HFE) design goal of providing operator interfaces that will minimize personnel errors and 2) to conduct an integrated activity to support probabilistic risk assessment (PRA). For these purposes, various HRA methods have been developed such as technique for human error rate prediction (THERP), simplified plant analysis risk human reliability assessment (SPAR-H), cognitive reliability and error analysis method (CREAM) and so on. In performing HRA, such conditions that influence human performances have been represented via several context factors called performance shaping factors (PSFs). PSFs are aspects of the human's individual characteristics, environment, organization, or task that specifically decrements or improves human performance, thus respectively increasing or decreasing the likelihood of human errors. Most HRA methods evaluate the weightings of PSFs by expert judgment and explicit guidance for evaluating the weighting is not provided. It has been widely known that the performance of the human operator is one of the critical factors to determine the safe operation of NPPs. HRA methods have been developed to identify the possibility and mechanism of human errors. In performing HRA methods, the effect of PSFs which may increase or decrease human error should be investigated. However, the effect of PSFs were estimated by expert judgment so far. Accordingly, in order to estimate the effect of PSFs objectively, the quantitative framework to estimate PSFs by using PSF profiles is introduced in this paper

  8. Human reliability analysis as an evaluation tool of the emergency evacuation process on industrial installation

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Isaac J.A.L. dos; Grecco, Claudio H.S.; Mol, Antonio C.A.; Carvalho, Paulo V.R.; Oliveira, Mauro V.; Botelho, Felipe Mury [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)]. E-mail: luquetti@ien.gov.br; grecco@ien.gov.br; mol@ien.gov.br; paulov@ien.gov.br; mvitor@ien.gov.br; felipemury@superig.com.br

    2007-07-01

    Human reliability is the probability that a person correctly performs some required activity by the system in a required time period and performs no extraneous activity that can degrade the system. Human reliability analysis (HRA) is the analysis, prediction and evaluation of work-oriented human performance using some indices as human error likelihood and probability of task accomplishment. The human error concept must not have connotation of guilt and punishment, having to be treated as a natural consequence, that emerges due to the not continuity between the human capacity and the system demand. The majority of the human error is a consequence of the work situation and not of the responsibility lack of the worker. The anticipation and the control of potentially adverse impacts of human action or interactions between the humans and the system are integral parts of the process safety, where the factors that influence the human performance must be recognized and managed. The aim of this paper is to propose a methodology to evaluate the emergency evacuation process on industrial installations including SLIM-MAUD, a HRA first-generation method, and using virtual reality and simulation software to build and to simulate the chosen emergency scenes. (author)

  9. Latest scientific and technological knowledge of human-reliability quantification - December 1991

    International Nuclear Information System (INIS)

    Berg, H.P.; Schott, H.

    1992-02-01

    Again an again real incidents and accidents show that human factors may seriously affect the safety of plants. This is also true for, e.g. nuclear facilities. The major methods which are used to quantify the reliability of humans are described. These methods are applied in the framework of German and international risk analyses. Since in probabilistic safety analyses data bases are of great importance of the, however, naturally very difficult quantitative evaluation of human errors, the study also discusses the present limits to the treatment of human misbehavior in safety analyses. (orig.) [de

  10. Neuropsychological Aspects Observed in a Nuclear Plant Simulator and its Relation with Human Reliability Analysis

    International Nuclear Information System (INIS)

    Prado, E.A.P. do; Martins, M.; Pinheiro, A.; Silveira, J.

    2016-01-01

    This paper will discuss preliminary results of an evaluation methodology for the analysis and quantification of errors in manual (human) operation by training cognitive parameters and skill levels in the complex control system operation using Neuropsychophysiology and Neuro feedback equipment. The research was conducted using a game (nuclear power plant simulator) that simulates concepts of operation of a nuclear plant with a split sample evaluating aspects of learning and knowledge in the nuclear area. Operators were monitored using biomarkers (ECG, EEG, GSR, face detection and eye tracking) and the results were analyzed by Statistical multivariate techniques. An important component in the evaluation of complex systems is the human reliability during operation. Human reliability refers to the probability of the human element perform the tasks scheduled during the defined period for system operation when tested under specified environmental conditions, and additionally not to take any action detrimental to system operation.

  11. Techniques and applications of the human reliability analysis in nuclear facilities

    International Nuclear Information System (INIS)

    Pinto, Fausto C.

    1995-01-01

    The analysis and prediction of the man-machine interaction are the objectives of human reliability analysis. In this work is presented in a manner that could be used by experts in the field of Probabilistic Safety Assessment, considering primarily the aspects of human errors. The Technique of Human Error Rate Prediction (THERP) is used in large scale to obtain data on human error. Applications of this technique are presented, as well as aspects of the state-of-art and of research and development of this particular field of work, where the construction of a reliable data bank is considered essential. In this work is also developed an application of the THERP for the TRIGA Mark 1 IPR R-1 Reactor of the Centro de Desenvolvimento de Tecnologia Nuclear, Brazilian research institute of nuclear technology. The results indicate that some changes must be made in the emergency procedures of the reactor, in order to achieve a higher level of safety

  12. Lessons learned from the PISC III study of the influence on human factors on inspection reliability

    International Nuclear Information System (INIS)

    Murgatroyd, R.A.; Worrall, G.M.; Crutzen, S.

    1995-01-01

    Results from the PISC II Programme suggested that differences existed between manual inspectors in terms of their skills, knowledge and working practices which could exert a significant influence on the reliability on an inspection. Therefore, a programme of work on human reliability studies was initiated in the PISC III Programme as Action 7, with the objectives of studying and identifying causes of variability in inspection activities, and identifying some of the factors influencing the reliability of inspection in industrial conditions. It was foreseen that the information from Action 7 would aid in the development of methods for reducing the incidence of human error in inspection activities. This paper gives a brief summary of the programme and describes the lessons learned as a result of the work. A considerably more detailed description of the work is available as a PISC report. 3 refs, 3 figs

  13. EVALUATION OF HUMAN RELIABILITY IN SELECTED ACTIVITIES IN THE RAILWAY INDUSTRY

    Directory of Open Access Journals (Sweden)

    Erika SUJOVÁ

    2016-07-01

    Full Text Available The article focuses on evaluation of human reliability in the human – machine system in the railway industry. Based on a survey of a train dispatcher and of selected activities, we have identified risk factors affecting the dispatcher‘s work and the evaluated risk level of their influence on the reliability and safety of preformed activities. The research took place at the authors‘ work place between 2012-2013. A survey method was used. With its help, authors were able to identify selected work activities of train dispatcher’s risk factors that affect his/her work and the evaluated seriousness of its in-fluence on the reliability and safety of performed activities. Amongst the most important finding fall expressions of un-clear and complicated internal regulations and work processes, a feeling of being overworked, fear for one’s safety at small, insufficiently protected stations.

  14. A limited assessment of the ASEP human reliability analysis procedure using simulator examination results

    International Nuclear Information System (INIS)

    Gore, B.R.; Dukelow, J.S. Jr.; Mitts, T.M.; Nicholson, W.L.

    1995-10-01

    This report presents a limited assessment of the conservatism of the Accident Sequence Evaluation Program (ASEP) human reliability analysis (HRA) procedure described in NUREG/CR-4772. In particular, the, ASEP post-accident, post-diagnosis, nominal HRA procedure is assessed within the context of an individual's performance of critical tasks on the simulator portion of requalification examinations administered to nuclear power plant operators. An assessment of the degree to which operator perforn:Lance during simulator examinations is an accurate reflection of operator performance during actual accident conditions was outside the scope of work for this project; therefore, no direct inference can be made from this report about such performance. The data for this study are derived from simulator examination reports from the NRC requalification examination cycle. A total of 4071 critical tasks were identified, of which 45 had been failed. The ASEP procedure was used to estimate human error probability (HEP) values for critical tasks, and the HEP results were compared with the failure rates observed in the examinations. The ASEP procedure was applied by PNL operator license examiners who supplemented the limited information in the examination reports with expert judgment based upon their extensive simulator examination experience. ASEP analyses were performed for a sample of 162 critical tasks selected randomly from the 4071, and the results were used to characterize the entire population. ASEP analyses were also performed for all of the 45 failed critical tasks. Two tests were performed to assess the bias of the ASEP HEPs compared with the data from the requalification examinations. The first compared the average of the ASEP HEP values with the fraction of the population actually failed and it found a statistically significant factor of two bias on the average

  15. An efficient particle swarm approach for mixed-integer programming in reliability-redundancy optimization applications

    International Nuclear Information System (INIS)

    Santos Coelho, Leandro dos

    2009-01-01

    The reliability-redundancy optimization problems can involve the selection of components with multiple choices and redundancy levels that produce maximum benefits, and are subject to the cost, weight, and volume constraints. Many classical mathematical methods have failed in handling nonconvexities and nonsmoothness in reliability-redundancy optimization problems. As an alternative to the classical optimization approaches, the meta-heuristics have been given much attention by many researchers due to their ability to find an almost global optimal solutions. One of these meta-heuristics is the particle swarm optimization (PSO). PSO is a population-based heuristic optimization technique inspired by social behavior of bird flocking and fish schooling. This paper presents an efficient PSO algorithm based on Gaussian distribution and chaotic sequence (PSO-GC) to solve the reliability-redundancy optimization problems. In this context, two examples in reliability-redundancy design problems are evaluated. Simulation results demonstrate that the proposed PSO-GC is a promising optimization technique. PSO-GC performs well for the two examples of mixed-integer programming in reliability-redundancy applications considered in this paper. The solutions obtained by the PSO-GC are better than the previously best-known solutions available in the recent literature

  16. An efficient particle swarm approach for mixed-integer programming in reliability-redundancy optimization applications

    Energy Technology Data Exchange (ETDEWEB)

    Santos Coelho, Leandro dos [Industrial and Systems Engineering Graduate Program, LAS/PPGEPS, Pontifical Catholic University of Parana, PUCPR, Imaculada Conceicao, 1155, 80215-901 Curitiba, Parana (Brazil)], E-mail: leandro.coelho@pucpr.br

    2009-04-15

    The reliability-redundancy optimization problems can involve the selection of components with multiple choices and redundancy levels that produce maximum benefits, and are subject to the cost, weight, and volume constraints. Many classical mathematical methods have failed in handling nonconvexities and nonsmoothness in reliability-redundancy optimization problems. As an alternative to the classical optimization approaches, the meta-heuristics have been given much attention by many researchers due to their ability to find an almost global optimal solutions. One of these meta-heuristics is the particle swarm optimization (PSO). PSO is a population-based heuristic optimization technique inspired by social behavior of bird flocking and fish schooling. This paper presents an efficient PSO algorithm based on Gaussian distribution and chaotic sequence (PSO-GC) to solve the reliability-redundancy optimization problems. In this context, two examples in reliability-redundancy design problems are evaluated. Simulation results demonstrate that the proposed PSO-GC is a promising optimization technique. PSO-GC performs well for the two examples of mixed-integer programming in reliability-redundancy applications considered in this paper. The solutions obtained by the PSO-GC are better than the previously best-known solutions available in the recent literature.

  17. A reliability program for emergency diesel generators at nuclear power plants: Maintenance, surveillance, and condition monitoring

    International Nuclear Information System (INIS)

    Lofgren, E.V.; Henderson, W.; Burghardt, D.; Kripps, L.; Rothleder, B.

    1988-12-01

    This report is a companion report on NUREG/CR-5078, Volume 1, ''A Reliability Program for Emergency Diesel Generators at Nuclear Power Plants: Program Structure.'' The purpose of this report is to provide technical findings and insights related to: failure evaluation, troubleshooting, maintenance, surveillance, and condition monitoring. Examples and recommendations are provided for each of these areas based on actual emergency diesel generator (EDG) operating experience and the opinions of diesel generator experts. This report expands the more general guidance provided in Volume 1. In addition, a discussion of EDG interactions with other plant systems (e.g., instrument, air, service water, dc power) is provided since experience has shown that these support systems and their operation can adversely affect EDG reliability. Portions of this report have been designed for use by onsite personnel for evaluating operational characteristics of EDGs. 5 refs., 8 figs., 7 tabs

  18. Indian program for development of technologies relevant to reliable, non-intrusive, concealed-contraband detection

    International Nuclear Information System (INIS)

    Auluck, S.K.H.

    2007-01-01

    Generating capability for reliable, non-intrusive detection of concealed-contraband, particularly, organic contraband like explosives and narcotics, has become a national priority. This capability spans a spectrum of technologies. If a technology mission addressing the needs of a highly sophisticated technology like PFNA is set up, the capabilities acquired would be adequate to meet the requirements of many other sets of technologies. This forms the background of the Indian program for development of technologies relevant to reliable, non-intrusive, concealed contraband detection. One of the central themes of the technology development programs would be modularization of the neutron source and detector technologies, so that common elements can be combined in different ways for meeting a variety of application requirements. (author)

  19. Systamatic approach to integration of a human reliability analysis into a NPP probabalistic risk assessment

    International Nuclear Information System (INIS)

    Fragola, J.R.

    1984-01-01

    This chapter describes the human reliability analysis tasks which were employed in the evaluation of the overall probability of an internal flood sequence and its consequences in terms of disabling vulnerable risk significant equipment. Topics considered include the problem familiarization process, the identification and classification of key human interactions, a human interaction review of potential initiators, a maintenance and operations review, human interaction identification, quantification model selection, the definition of operator-induced sequences, the quantification of specific human interactions, skill- and rule-based interactions, knowledge-based interactions, and the incorporation of human interaction-related events into the event tree structure. It is concluded that an integrated approach to the analysis of human interaction within the context of a Probabilistic Risk Assessment (PRA) is feasible

  20. The performance shaping factors influence analysis on the human reliability for NPP operation

    International Nuclear Information System (INIS)

    Farcasiu, M.; Nitoi, M.; Apostol, M.; Florescu, G.

    2008-01-01

    The Human Reliability Analysis (HRA) is an important step in Probabilistic Safety Assessment (PSA) studies and offers an advisability for concrete improvement of the man - machine - organization interfaces, reliability and safety. The goals of this analysis are to obtain sufficient details in order to understand and document all-important factors that affect human performance. The purpose of this paper is to estimate the human errors probabilities in view of the negative or positive effect of the human performance shaping factors (PSFs) for the mitigation of the initiating events which could occur in Nuclear Power Plant (NPP). Using THERP and SPAR-H methods, an analysis model of PSFs influence on the human reliability is performed. This model is applied to more important activities, that are necessary to mitigate 'one steam generator tube failure' event at Cernavoda NPP. The results are joint human error probabilities (JHEP) values estimated for the following situations: without regarding to PSFs influence; with PSFs in specific conditions; with PSFs which could have only positive influence and with PSFs which could have only negative influence. In addition, PSFs with negative influence were identified and using the DOE method, the necessary activities for changing negative influence were assigned. (authors)

  1. Evaluating the reliability of uranium concentration and isotope ratio measurements via an interlaboratory comparison program

    International Nuclear Information System (INIS)

    Oliveira Junior, Olivio Pereira de; Oliveira, Inez Cristina de; Pereira, Marcia Regina; Tanabe, Eduardo

    2009-01-01

    The nuclear fuel cycle is a strategic area for the Brazilian development because it is associated with the generation of electricity needed to boost the country economy. Uranium is one the chemical elements in this cycle and its concentration and isotope composition must be accurately known. In this present work, the reliability of the uranium concentration and isotope ratio measurements carried out at the CTMSP analytical laboratories is evaluated by the results obtained in an international interlaboratory comparison program. (author)

  2. Guide for monitoring effectiveness of utility Reliability Centered Maintenance (RCM) programs

    International Nuclear Information System (INIS)

    Midgett, W.D.; Wilson, J.F.; Krochmal, D.F.; Owsenek, L.W.

    1991-02-01

    Reliability centered maintenance (RCM) programs help utilities optimize preventive maintenance efforts while improving plant safety and economy through increased dependability of plant components. The project team developed this guide and accompanying methodology based on status updates from the Ginna and San Onofre demonstration projects. These updates addressed areas ranging from system selection to the effectiveness of RCM program implementation. In addition, the team incorporated information from a 12-utility survey soliciting opinions on the need for a methodology to monitor RCM cost-effectiveness. An analysis of the 12-utility survey showed that no techniques had been developed to measure RCM program cost-effectiveness. Thus, this guide addresses two key areas: Pros and cons of various monitoring techniques available to assess the overall effectiveness of RCM and a methodology for specifically evaluating the cost-effectiveness of RCM programs. 1 fig

  3. A cost-efficient and reliable energy management of a micro-grid using intelligent demand-response program

    International Nuclear Information System (INIS)

    Safamehr, Hossein; Rahimi-Kian, Ashkan

    2015-01-01

    Providing a cost-efficient and reliable energy is one of the main issues in human societies of the 21st century. In response to this demand, new features of micro grid technology have provided huge potentials, specifically by the capability of having an interactive coordination between energy suppliers and consumers. Accordingly, this paper offers an improved model for achieving an optimal Demand Response programing. To solve the proposed multi-objective optimization problem, Artificial Bee Colony algorithm and quasi-static technique are utilized. The considered objectives in this paper are minimizing the overall cost of energy consumption and also improving the technical parameters of micro grid over a time horizon. This optimization is subject to several constraints such as satisfying the energy balance and the operating constraints of each energy supply sources. Manageable load or load as source is another enabling feature existing in smart energy networks, which is considered in this paper and its effect on cost reduction and reliability improvement is studied. Trying to examine the performance of the proposed Demand Response Programing in real conditions, the uncertainties are also analyzed by stochastic methods. The results show significant improvements which are obtained by applying just intelligent programming and management. - Highlights: • This paper presents a cost-efficient and reliable energy management of a micro-grid. • New models of battery and manageable loads are formulated. • Artificial Bee Colony algorithm is used to solve the optimization problem. • Quasi-static technique is used to simplify the solving procedure. • The uncertainties are also analyzed by stochastic methods.

  4. Designing time-of-use program based on stochastic security constrained unit commitment considering reliability index

    International Nuclear Information System (INIS)

    Nikzad, Mehdi; Mozafari, Babak; Bashirvand, Mahdi; Solaymani, Soodabeh; Ranjbar, Ali Mohamad

    2012-01-01

    Recently in electricity markets, a massive focus has been made on setting up opportunities for participating demand side. Such opportunities, also known as demand response (DR) options, are triggered by either a grid reliability problem or high electricity prices. Two important challenges that market operators are facing are appropriate designing and reasonable pricing of DR options. In this paper, time-of-use program (TOU) as a prevalent time-varying program is modeled linearly based on own and cross elasticity definition. In order to decide on TOU rates, a stochastic model is proposed in which the optimum TOU rates are determined based on grid reliability index set by the operator. Expected Load Not Supplied (ELNS) is used to evaluate reliability of the power system in each hour. The proposed stochastic model is formulated as a two-stage stochastic mixed-integer linear programming (SMILP) problem and solved using CPLEX solver. The validity of the method is tested over the IEEE 24-bus test system. In this regard, the impact of the proposed pricing method on system load profile; operational costs and required capacity of up- and down-spinning reserve as well as improvement of load factor is demonstrated. Also the sensitivity of the results to elasticity coefficients is investigated. -- Highlights: ► Time-of-use demand response program is linearly modeled. ► A stochastic model is proposed to determine the optimum TOU rates based on ELNS index set by the operator. ► The model is formulated as a short-term two-stage stochastic mixed-integer linear programming problem.

  5. HuRECA: Human Reliability Evaluator for Computer-based Control Room Actions

    International Nuclear Information System (INIS)

    Kim, Jae Whan; Lee, Seung Jun; Jang, Seung Cheol

    2011-01-01

    As computer-based design features such as computer-based procedures (CBP), soft controls (SCs), and integrated information systems are being adopted in main control rooms (MCR) of nuclear power plants, a human reliability analysis (HRA) method capable of dealing with the effects of these design features on human reliability is needed. From the observations of human factors engineering verification and validation experiments, we have drawn some major important characteristics on operator behaviors and design-related influencing factors (DIFs) from the perspective of human reliability. Firstly, there are new DIFs that should be considered in developing an HRA method for computer-based control rooms including especially CBP and SCs. In the case of the computer-based procedure rather than the paper-based procedure, the structural and managerial elements should be considered as important PSFs in addition to the procedural contents. In the case of the soft controllers, the so-called interface management tasks (or secondary tasks) should be reflected in the assessment of human error probability. Secondly, computer-based control rooms can provide more effective error recovery features than conventional control rooms. Major error recovery features for computer-based control rooms include the automatic logic checking function of the computer-based procedure and the information sharing feature of the general computer-based designs

  6. Human reliability analysis for probabilistic safety assessments - review of methods and issues

    International Nuclear Information System (INIS)

    Srinivas, G.; Guptan, Rajee; Malhotra, P.K.; Ghadge, S.G.; Chandra, Umesh

    2011-01-01

    It is well known that the two major events in World Nuclear Power Plant Operating history, namely the Three Mile Island and Chernobyl, were Human failure events. Subsequent to these two events, several significant changes have been incorporated in Plant Design, Control Room Design and Operator Training to reduce the possibility of Human errors during plant transients. Still, human error contribution to Risk in Nuclear Power Plant operations has been a topic of continued attention for research, development and analysis. Probabilistic Safety Assessments attempt to capture all potential human errors with a scientifically computed failure probability, through Human Reliability Analysis. Several methods are followed by different countries to quantify the Human error probability. This paper reviews the various popular methods being followed, critically examines them with reference to their criticisms and brings out issues for future research. (author)

  7. Case study on the use of PSA methods: Human reliability analysis

    International Nuclear Information System (INIS)

    1991-04-01

    The overall objective of treating human reliability in a probabilistic safety analysis is to ensure that the key human interactions of typical crews are accurately and systematically incorporated into the study in a traceable manner. An additional objective is to make the human reliability analysis (HRA) as realistic as possible, taking into account the emergency procedures, the man-machine interface, the focus of training process, and the knowledge and experience of the crews. Section 3 of the paper describes an overview of this analytical process which leads to three more detailed example problems described in Section 4. Section 5 discusses a peer review process. References are presented that are useful in performing HRAs. In addition appendices are provided for definitions, selected data and a generic list of performance shaping factors. 35 refs, figs and tabs

  8. Analysis Testing of Sociocultural Factors Influence on Human Reliability within Sociotechnical Systems: The Algerian Oil Companies.

    Science.gov (United States)

    Laidoune, Abdelbaki; Rahal Gharbi, Med El Hadi

    2016-09-01

    The influence of sociocultural factors on human reliability within an open sociotechnical systems is highlighted. The design of such systems is enhanced by experience feedback. The study was focused on a survey related to the observation of working cases, and by processing of incident/accident statistics and semistructured interviews in the qualitative part. In order to consolidate the study approach, we considered a schedule for the purpose of standard statistical measurements. We tried to be unbiased by supporting an exhaustive list of all worker categories including age, sex, educational level, prescribed task, accountability level, etc. The survey was reinforced by a schedule distributed to 300 workers belonging to two oil companies. This schedule comprises 30 items related to six main factors that influence human reliability. Qualitative observations and schedule data processing had shown that the sociocultural factors can negatively and positively influence operator behaviors. The explored sociocultural factors influence the human reliability both in qualitative and quantitative manners. The proposed model shows how reliability can be enhanced by some measures such as experience feedback based on, for example, safety improvements, training, and information. With that is added the continuous systems improvements to improve sociocultural reality and to reduce negative behaviors.

  9. Safety, reliability, risk management and human factors: an integrated engineering approach applied to nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Vasconcelos, Vanderley de; Silva, Eliane Magalhaes Pereira da; Costa, Antonio Carlos Lopes da; Reis, Sergio Carneiro dos [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)], e-mail: vasconv@cdtn.br, e-mail: silvaem@cdtn.br, e-mail: aclc@cdtn.br, e-mail: reissc@cdtn.br

    2009-07-01

    Nuclear energy has an important engineering legacy to share with the conventional industry. Much of the development of the tools related to safety, reliability, risk management, and human factors are associated with nuclear plant processes, mainly because the public concern about nuclear power generation. Despite the close association between these subjects, there are some important different approaches. The reliability engineering approach uses several techniques to minimize the component failures that cause the failure of the complex systems. These techniques include, for instance, redundancy, diversity, standby sparing, safety factors, and reliability centered maintenance. On the other hand system safety is primarily concerned with hazard management, that is, the identification, evaluation and control of hazards. Rather than just look at failure rates or engineering strengths, system safety would examine the interactions among system components. The events that cause accidents may be complex combinations of component failures, faulty maintenance, design errors, human actions, or actuation of instrumentation and control. Then, system safety deals with a broader spectrum of risk management, including: ergonomics, legal requirements, quality control, public acceptance, political considerations, and many other non-technical influences. Taking care of these subjects individually can compromise the completeness of the analysis and the measures associated with both risk reduction, and safety and reliability increasing. Analyzing together the engineering systems and controls of a nuclear facility, their management systems and operational procedures, and the human factors engineering, many benefits can be realized. This paper proposes an integration of these issues based on the application of systems theory. (author)

  10. Safety, reliability, risk management and human factors: an integrated engineering approach applied to nuclear facilities

    International Nuclear Information System (INIS)

    Vasconcelos, Vanderley de; Silva, Eliane Magalhaes Pereira da; Costa, Antonio Carlos Lopes da; Reis, Sergio Carneiro dos

    2009-01-01

    Nuclear energy has an important engineering legacy to share with the conventional industry. Much of the development of the tools related to safety, reliability, risk management, and human factors are associated with nuclear plant processes, mainly because the public concern about nuclear power generation. Despite the close association between these subjects, there are some important different approaches. The reliability engineering approach uses several techniques to minimize the component failures that cause the failure of the complex systems. These techniques include, for instance, redundancy, diversity, standby sparing, safety factors, and reliability centered maintenance. On the other hand system safety is primarily concerned with hazard management, that is, the identification, evaluation and control of hazards. Rather than just look at failure rates or engineering strengths, system safety would examine the interactions among system components. The events that cause accidents may be complex combinations of component failures, faulty maintenance, design errors, human actions, or actuation of instrumentation and control. Then, system safety deals with a broader spectrum of risk management, including: ergonomics, legal requirements, quality control, public acceptance, political considerations, and many other non-technical influences. Taking care of these subjects individually can compromise the completeness of the analysis and the measures associated with both risk reduction, and safety and reliability increasing. Analyzing together the engineering systems and controls of a nuclear facility, their management systems and operational procedures, and the human factors engineering, many benefits can be realized. This paper proposes an integration of these issues based on the application of systems theory. (author)

  11. Status of the reliability centered maintenance program at Ontario Hydro's Bruce 'A' Nuclear Division

    International Nuclear Information System (INIS)

    Khan, I.

    1995-01-01

    Bruce A started a preventive maintenance (PM) quality improvement program in August of 1991. This initiative was taken to address the concerns expressed by the AECB and the Peer Audits finding. The concerns were on the quality of the Bruce A PM Program and its execution in the field. Reliability Centered Maintenance (RCM) analysis was selected as the PM program quality improvement and optimization technique. Therefore, RCM became a key component of Bruce A's Integrated PM program and maintenance strategy. As a result of RCM implementation, and improvements in the work planning and scheduling process, Bruce A is seeing downward trends in the corrective maintenance work load, maintenance preventable forced outages, overdue/missed PM tasks and corrective maintenance backlog. Control Room Operators have reported observing an improvement in systems and equipment response to transients. Other benefits include a documented, controlled and traceable PM program. In addition, the team approach required by RCM has started to improve staff confidence in the PM program which, in turn, is improving the compliance with the PM program. (author)

  12. Review of the human reliability analysis performed for Empire State Electric Energy Research Corporation

    International Nuclear Information System (INIS)

    Swart, D.; Banz, I.

    1985-01-01

    The Empire State Electric Energy Research Corporation (ESEERCO) commissioned Westinghouse to conduct a human reliability analysis to identify and quantify human error probabilities associated with operator actions for four specific events which may occur in light water reactors: loss of coolant accident, steam generator tube rupture, steam/feed line break, and stuck open pressurizer spray valve. Human Error Probabilities (HEPs) derived from Swain's Technique for Human Error Rate Prediction (THERP) were compared to data obtained from simulator exercises. A correlation was found between the HEPs derived from Swain and the results of the simulator data. The results of this study provide a unique insight into human factors analysis. The HEPs obtained from such probabilistic studies can be used to prioritize scenarios for operator training situations, and thus improve the correlation between simulator exercises and real control room experiences

  13. The Development of Marine Accidents Human Reliability Assessment Approach: HEART Methodology and MOP Model

    Directory of Open Access Journals (Sweden)

    Ludfi Pratiwi Bowo

    2017-06-01

    Full Text Available Humans are one of the important factors in the assessment of accidents, particularly marine accidents. Hence, studies are conducted to assess the contribution of human factors in accidents. There are two generations of Human Reliability Assessment (HRA that have been developed. Those methodologies are classified by the differences of viewpoints of problem-solving, as the first generation and second generation. The accident analysis can be determined using three techniques of analysis; sequential techniques, epidemiological techniques and systemic techniques, where the marine accidents are included in the epidemiological technique. This study compares the Human Error Assessment and Reduction Technique (HEART methodology and the 4M Overturned Pyramid (MOP model, which are applied to assess marine accidents. Furthermore, the MOP model can effectively describe the relationships of other factors which affect the accidents; whereas, the HEART methodology is only focused on human factors.

  14. Balancing human and technical reliability in the design of advanced nuclear reactors

    International Nuclear Information System (INIS)

    Papin, Bernard

    2011-01-01

    Highlights: ► Human factors exigencies are often overseen during the early design phases of NPP. ► Optimization of reactors safety is only based on technical reliability considerations. ► The search for more technical reliability often leads to more system complexity. ► System complexity is a major contributor to the operator's poor performance. ► Our method enables to assess plant complexity and it's impact on human performance. - Abstract: The strong influence of human factors (HF) on the safety of nuclear facilities is nowadays recognised and the designers are now enforced to consider HF requirements in the design of new facilities. Yet, this consideration of human factors requirements is still more or less restricted to the latest phases of the projects, essentially for the design of human-system interfaces (HSI's) and control rooms, although the design options influencing at most the human performance in operation are indeed fixed during the very early phases of the new reactors projects. The main reason of this late consideration of HF is that there exist few methods and models for anticipating the influence of fundamental design options on the future performance of operation teams. This paper describes a set of new tools permitting (i) determination of the impact of the fundamental process design options on the future activity of the operation teams and (ii) assessment of the influence of these operational constraints on teams performance. These tools are intended to guide the design of future 4th generation (GEN4) reactors, within the frame of a global risk-informed design approach, considering technical and human reliability exigencies in a balanced way.

  15. Self-Reliability and Motivation in a Nuclear Security Culture Enhancement Program

    Energy Technology Data Exchange (ETDEWEB)

    Rogers,E.; deBoer,G.; Crawford, C.; De Castro, K.; Landers, J.

    2009-10-19

    The threat of nuclear terrorism has become a global concern. Many countries continue to make efforts to strengthen nuclear security by enhancing systems of nuclear material protection, control, and accounting (MPC&A). Though MPC&A systems can significantly upgrade nuclear security, they do not eliminate the "human factor." Gen. Eugene Habiger, a former "Assistant Secretary for Safeguards and Security" at the U.S. Department of Energy’s (DOE) nuclear-weapons complex and a former commander of U.S. strategic nuclear forces, has observed that "good security is 20% equipment and 80% people." Although eliminating the "human factor" is not possible, accounting for and mitigating the risk of the insider threat is an essential element in establishing an effective nuclear security culture. This paper will consider the organizational role in mitigating the risk associated with the malicious insider through monitoring and enhancing human reliability and motivation as well as enhancing the nuclear security culture.

  16. Self-Reliability and Motivation in a Nuclear Security Culture Enhancement Program

    International Nuclear Information System (INIS)

    Rogers, E.; deBoer, G.; Crawford, C.; De Castro, K.; Landers, J.

    2009-01-01

    The threat of nuclear terrorism has become a global concern. Many countries continue to make efforts to strengthen nuclear security by enhancing systems of nuclear material protection, control, and accounting (MPC and A). Though MPC and A systems can significantly upgrade nuclear security, they do not eliminate the 'human factor.' Gen. Eugene Habiger, a former 'Assistant Secretary for Safeguards and Security' at the U.S. Department of Energy's (DOE) nuclear-weapons complex and a former commander of U.S. strategic nuclear forces, has observed that 'good security is 20% equipment and 80% people.' Although eliminating the 'human factor' is not possible, accounting for and mitigating the risk of the insider threat is an essential element in establishing an effective nuclear security culture. This paper will consider the organizational role in mitigating the risk associated with the malicious insider through monitoring and enhancing human reliability and motivation as well as enhancing the nuclear security culture.

  17. An overview of the evolution of human reliability analysis in the context of probabilistic risk assessment

    International Nuclear Information System (INIS)

    Bley, Dennis C.; Lois, Erasmia; Kolaczkowski, Alan M.; Forester, John Alan; Wreathall, John; Cooper, Susan E.

    2009-01-01

    Since the Reactor Safety Study in the early 1970's, human reliability analysis (HRA) has been evolving towards a better ability to account for the factors and conditions that can lead humans to take unsafe actions and thereby provide better estimates of the likelihood of human error for probabilistic risk assessments (PRAs). The purpose of this paper is to provide an overview of recent reviews of operational events and advances in the behavioral sciences that have impacted the evolution of HRA methods and contributed to improvements. The paper discusses the importance of human errors in complex human-technical systems, examines why humans contribute to accidents and unsafe conditions, and discusses how lessons learned over the years have changed the perspective and approach for modeling human behavior in PRAs of complicated domains such as nuclear power plants. It is argued that it has become increasingly more important to understand and model the more cognitive aspects of human performance and to address the broader range of factors that have been shown to influence human performance in complex domains. The paper concludes by addressing the current ability of HRA to adequately predict human failure events and their likelihood

  18. An overview of the evolution of human reliability analysis in the context of probabilistic risk assessment.

    Energy Technology Data Exchange (ETDEWEB)

    Bley, Dennis C. (Buttonwood Consulting Inc., Oakton, VA); Lois, Erasmia (U.S. Nuclear Regulatory Commission, Washington, DC); Kolaczkowski, Alan M. (Science Applications International Corporation, Eugene, OR); Forester, John Alan; Wreathall, John (John Wreathall and Co., Dublin, OH); Cooper, Susan E. (U.S. Nuclear Regulatory Commission, Washington, DC)

    2009-01-01

    Since the Reactor Safety Study in the early 1970's, human reliability analysis (HRA) has been evolving towards a better ability to account for the factors and conditions that can lead humans to take unsafe actions and thereby provide better estimates of the likelihood of human error for probabilistic risk assessments (PRAs). The purpose of this paper is to provide an overview of recent reviews of operational events and advances in the behavioral sciences that have impacted the evolution of HRA methods and contributed to improvements. The paper discusses the importance of human errors in complex human-technical systems, examines why humans contribute to accidents and unsafe conditions, and discusses how lessons learned over the years have changed the perspective and approach for modeling human behavior in PRAs of complicated domains such as nuclear power plants. It is argued that it has become increasingly more important to understand and model the more cognitive aspects of human performance and to address the broader range of factors that have been shown to influence human performance in complex domains. The paper concludes by addressing the current ability of HRA to adequately predict human failure events and their likelihood.

  19. DEPEND-HRA-A method for consideration of dependency in human reliability analysis

    International Nuclear Information System (INIS)

    Cepin, Marko

    2008-01-01

    A consideration of dependencies between human actions is an important issue within the human reliability analysis. A method was developed, which integrates the features of existing methods and the experience from a full scope plant simulator. The method is used on real plant-specific human reliability analysis as a part of the probabilistic safety assessment of a nuclear power plant. The method distinguishes dependency for pre-initiator events from dependency for initiator and post-initiator events. The method identifies dependencies based on scenarios, where consecutive human actions are modeled, and based on a list of minimal cut sets, which is obtained by running the minimal cut set analysis considering high values of human error probabilities in the evaluation. A large example study, which consisted of a large number of human failure events, demonstrated the applicability of the method. Comparative analyses that were performed show that both selection of dependency method and selection of dependency levels within the method largely impact the results of probabilistic safety assessment. If the core damage frequency is not impacted much, the listings of important basic events in terms of risk increase and risk decrease factors may change considerably. More efforts are needed on the subject, which will prepare the background for more detailed guidelines, which will remove the subjectivity from the evaluations as much as it is possible

  20. Optimal design methods for a digital human-computer interface based on human reliability in a nuclear power plant

    International Nuclear Information System (INIS)

    Jiang, Jianjun; Zhang, Li; Xie, Tian; Wu, Daqing; Li, Min; Wang, Yiqun; Peng, Yuyuan; Peng, Jie; Zhang, Mengjia; Li, Peiyao; Ma, Congmin; Wu, Xing

    2017-01-01

    Highlights: • A complete optimization process is established for digital human-computer interfaces of Npps. • A quick convergence search method is proposed. • The authors propose an affinity error probability mapping function to test human reliability. - Abstract: This is the second in a series of papers describing the optimal design method for a digital human-computer interface of nuclear power plant (Npp) from three different points based on human reliability. The purpose of this series is to explore different optimization methods from varying perspectives. This present paper mainly discusses the optimal design method for quantity of components of the same factor. In monitoring process, quantity of components has brought heavy burden to operators, thus, human errors are easily triggered. To solve the problem, the authors propose an optimization process, a quick convergence search method and an affinity error probability mapping function. Two balanceable parameter values of the affinity error probability function are obtained by experiments. The experimental results show that the affinity error probability mapping function about human-computer interface has very good sensitivity and stability, and that quick convergence search method for fuzzy segments divided by component quantity has better performance than general algorithm.

  1. Reliability Analysis of RSG-GAS Primary Cooling System to Support Aging Management Program

    Science.gov (United States)

    Deswandri; Subekti, M.; Sunaryo, Geni Rina

    2018-02-01

    Multipurpose Research Reactor G.A. Siwabessy (RSG-GAS) which has been operating since 1987 is one of the main facilities on supporting research, development and application of nuclear energy programs in BATAN. Until now, the RSG-GAS research reactor has been successfully operated safely and securely. However, because it has been operating for nearly 30 years, the structures, systems and components (SSCs) from the reactor would have started experiencing an aging phase. The process of aging certainly causes a decrease in reliability and safe performances of the reactor, therefore the aging management program is needed to resolve the issues. One of the programs in the aging management is to evaluate the safety and reliability of the system and also screening the critical components to be managed.One method that can be used for such purposes is the Fault Tree Analysis (FTA). In this papers FTA method is used to screening the critical components in the RSG-GAS Primary Cooling System. The evaluation results showed that the primary isolation valves are the basic events which are dominant against the system failure.

  2. Probabilistic risk assessment for a loss of coolant accident in McMaster Nuclear Reactor and application of reliability physics model for modeling human reliability

    Science.gov (United States)

    Ha, Taesung

    A probabilistic risk assessment (PRA) was conducted for a loss of coolant accident, (LOCA) in the McMaster Nuclear Reactor (MNR). A level 1 PRA was completed including event sequence modeling, system modeling, and quantification. To support the quantification of the accident sequence identified, data analysis using the Bayesian method and human reliability analysis (HRA) using the accident sequence evaluation procedure (ASEP) approach were performed. Since human performance in research reactors is significantly different from that in power reactors, a time-oriented HRA model (reliability physics model) was applied for the human error probability (HEP) estimation of the core relocation. This model is based on two competing random variables: phenomenological time and performance time. The response surface and direct Monte Carlo simulation with Latin Hypercube sampling were applied for estimating the phenomenological time, whereas the performance time was obtained from interviews with operators. An appropriate probability distribution for the phenomenological time was assigned by statistical goodness-of-fit tests. The human error probability (HEP) for the core relocation was estimated from these two competing quantities: phenomenological time and operators' performance time. The sensitivity of each probability distribution in human reliability estimation was investigated. In order to quantify the uncertainty in the predicted HEPs, a Bayesian approach was selected due to its capability of incorporating uncertainties in model itself and the parameters in that model. The HEP from the current time-oriented model was compared with that from the ASEP approach. Both results were used to evaluate the sensitivity of alternative huinan reliability modeling for the manual core relocation in the LOCA risk model. This exercise demonstrated the applicability of a reliability physics model supplemented with a. Bayesian approach for modeling human reliability and its potential

  3. Evidential analytic hierarchy process dependence assessment methodology in human reliability analysis

    International Nuclear Information System (INIS)

    Chen, Lu Yuan; Zhou, Xinyi; Xiao, Fuyuan; Deng, Yong; Mahadevan, Sankaran

    2017-01-01

    In human reliability analysis, dependence assessment is an important issue in risky large complex systems, such as operation of a nuclear power plant. Many existing methods depend on an expert's judgment, which contributes to the subjectivity and restrictions of results. Recently, a computational method, based on the Dempster-Shafer evidence theory and analytic hierarchy process, has been proposed to handle the dependence in human reliability analysis. The model can deal with uncertainty in an analyst's judgment and reduce the subjectivity in the evaluation process. However, the computation is heavy and complicated to some degree. The most important issue is that the existing method is in a positive aspect, which may cause an underestimation of the risk. In this study, a new evidential analytic hierarchy process dependence assessment methodology, based on the improvement of existing methods, has been proposed, which is expected to be easier and more effective

  4. Evidential Analytic Hierarchy Process Dependence Assessment Methodology in Human Reliability Analysis

    Directory of Open Access Journals (Sweden)

    Luyuan Chen

    2017-02-01

    Full Text Available In human reliability analysis, dependence assessment is an important issue in risky large complex systems, such as operation of a nuclear power plant. Many existing methods depend on an expert's judgment, which contributes to the subjectivity and restrictions of results. Recently, a computational method, based on the Dempster–Shafer evidence theory and analytic hierarchy process, has been proposed to handle the dependence in human reliability analysis. The model can deal with uncertainty in an analyst's judgment and reduce the subjectivity in the evaluation process. However, the computation is heavy and complicated to some degree. The most important issue is that the existing method is in a positive aspect, which may cause an underestimation of the risk. In this study, a new evidential analytic hierarchy process dependence assessment methodology, based on the improvement of existing methods, has been proposed, which is expected to be easier and more effective.

  5. Evidential analytic hierarchy process dependence assessment methodology in human reliability analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Lu Yuan; Zhou, Xinyi; Xiao, Fuyuan; Deng, Yong [School of Computer and Information Science, Southwest University, Chongqing (China); Mahadevan, Sankaran [School of Engineering, Vanderbilt University, Nashville (United States)

    2017-02-15

    In human reliability analysis, dependence assessment is an important issue in risky large complex systems, such as operation of a nuclear power plant. Many existing methods depend on an expert's judgment, which contributes to the subjectivity and restrictions of results. Recently, a computational method, based on the Dempster-Shafer evidence theory and analytic hierarchy process, has been proposed to handle the dependence in human reliability analysis. The model can deal with uncertainty in an analyst's judgment and reduce the subjectivity in the evaluation process. However, the computation is heavy and complicated to some degree. The most important issue is that the existing method is in a positive aspect, which may cause an underestimation of the risk. In this study, a new evidential analytic hierarchy process dependence assessment methodology, based on the improvement of existing methods, has been proposed, which is expected to be easier and more effective.

  6. IAEA Nuclear Security Human Resource Development Program

    International Nuclear Information System (INIS)

    Braunegger-Guelich, A.

    2009-01-01

    The IAEA is at the forefront of international efforts to strengthen the world's nuclear security framework. The current Nuclear Security Plan for 2006-2009 was approved by the IAEA Board of Governors in September 2005. This Plan has three main points of focus: needs assessment, prevention, detection and response. Its overall objective is to achieve improved worldwide security of nuclear and other radioactive material in use, storage and transport, and of their associated facilities. This will be achieved, in particular, through the provision of guidelines and recommendations, human resource development, nuclear security advisory services and assistance for the implementation of the framework in States, upon request. The presentation provides an overview of the IAEA nuclear security human resource development program that is divided into two parts: training and education. Whereas the training program focuses on filling gaps between the actual performance of personnel working in the area of nuclear security and the required competencies and skills needed to meet the international requirements and recommendations described in UN and IAEA documents relating to nuclear security, the Educational Program in Nuclear Security aims at developing nuclear security experts and specialists, at fostering a nuclear security culture and at establishing in this way sustainable knowledge in this field within a State. The presentation also elaborates on the nuclear security computer based learning component and provides insights into the use of human resource development as a tool in achieving the IAEA's long term goal of improving sustainable nuclear security in States. (author)

  7. Human Factors Reliability Analysis for Assuring Nuclear Safety Using Fuzzy Fault Tree

    International Nuclear Information System (INIS)

    Eisawy, E.A.-F. I.; Sallam, H.

    2016-01-01

    In order to ensure effective prevention of harmful events, the risk assessment process cannot ignore the role of humans in the dynamics of accidental events and thus the seriousness of the consequences that may derive from them. Human reliability analysis (HRA) involves the use of qualitative and quantitative methods to assess the human contribution to risk. HRA techniques have been developed in order to provide human error probability values associated with operators’ tasks to be included within the broader context of system risk assessment, and are aimed at reducing the probability of accidental events. Fault tree analysis (FTA) is a graphical model that displays the various combinations of equipment failures and human errors that can result in the main system failure of interest. FTA is a risk analysis technique to assess likelihood (in a probabilistic context) of an event. The objective data available to estimate the likelihood is often missing, and even if available, is subject to incompleteness and imprecision or vagueness. Without addressing incompleteness and imprecision in the available data, FTA and subsequent risk analysis give a false impression of precision and correctness that undermines the overall credibility of the process. To solve this problem, qualitative justification in the context of failure possibilities can be used as alternative for quantitative justification. In this paper, we introduce the approach of fuzzy reliability as solution for fault tree analysis drawbacks. A new fuzzy fault tree method is proposed for the analysis of human reliability based on fuzzy sets and fuzzy operations t-norms, co-norms, defuzzification, and fuzzy failure probability. (author)

  8. Human Reliability Assessments: Using the Past (Shuttle) to Predict the Future (Orion)

    Science.gov (United States)

    DeMott, Diana L.; Bigler, Mark A.

    2017-01-01

    NASA (National Aeronautics and Space Administration) Johnson Space Center (JSC) Safety and Mission Assurance (S&MA) uses two human reliability analysis (HRA) methodologies. The first is a simplified method which is based on how much time is available to complete the action, with consideration included for environmental and personal factors that could influence the human's reliability. This method is expected to provide a conservative value or placeholder as a preliminary estimate. This preliminary estimate or screening value is used to determine which placeholder needs a more detailed assessment. The second methodology is used to develop a more detailed human reliability assessment on the performance of critical human actions. This assessment needs to consider more than the time available, this would include factors such as: the importance of the action, the context, environmental factors, potential human stresses, previous experience, training, physical design interfaces, available procedures/checklists and internal human stresses. The more detailed assessment is expected to be more realistic than that based primarily on time available. When performing an HRA on a system or process that has an operational history, we have information specific to the task based on this history and experience. In the case of a Probabilistic Risk Assessment (PRA) that is based on a new design and has no operational history, providing a "reasonable" assessment of potential crew actions becomes more challenging. To determine what is expected of future operational parameters, the experience from individuals who had relevant experience and were familiar with the system and process previously implemented by NASA was used to provide the "best" available data. Personnel from Flight Operations, Flight Directors, Launch Test Directors, Control Room Console Operators, and Astronauts were all interviewed to provide a comprehensive picture of previous NASA operations. Verification of the

  9. Systems Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE) Quality Assurance Manual

    Energy Technology Data Exchange (ETDEWEB)

    C. L. Smith; R. Nims; K. J. Kvarfordt; C. Wharton

    2008-08-01

    The Systems Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE) is a software application developed for performing a complete probabilistic risk assessment using a personal computer running the Microsoft Windows operating system. SAPHIRE is primarily funded by the U.S. Nuclear Regulatory Commission (NRC). The role of the INL in this project is that of software developer and tester. This development takes place using formal software development procedures and is subject to quality assurance (QA) processes. The purpose of this document is to describe how the SAPHIRE software QA is performed for Version 6 and 7, what constitutes its parts, and limitations of those processes.

  10. Use of eye tracking equipment for human reliability analysis applied to complex system operations

    International Nuclear Information System (INIS)

    Pinheiro, Andre Ricardo Mendonça; Prado, Eugenio Anselmo Pessoa do; Martins, Marcelo Ramos

    2017-01-01

    This article will discuss the preliminary results of an evaluation methodology for the analysis and quantification of manual character errors (human), by monitoring cognitive parameters and skill levels in the operation of a complex control system based on parameters provided by a eye monitoring equipment (Eye Tracker). The research was conducted using a simulator (game) that plays concepts of operation of a nuclear reactor with a split sample for evaluation of aspects of learning, knowledge and standard operating within the context addressed. bridge operators were monitored using the EYE TRACKING, eliminating the presence of the analyst in the evaluation of the operation, allowing the analysis of the results by means of multivariate statistical techniques within the scope of system reliability. The experiments aim to observe state change situations such as stops and scheduled departures, incidents assumptions and common operating characteristics. Preliminary results of this research object indicate that technical and cognitive aspects can contribute to improving the reliability of the available techniques in human reliability, making them more realistic both in the context of quantitative approaches to regulatory and training purposes, as well as reduced incidence of human error. (author)

  11. Use of eye tracking equipment for human reliability analysis applied to complex system operations

    Energy Technology Data Exchange (ETDEWEB)

    Pinheiro, Andre Ricardo Mendonça; Prado, Eugenio Anselmo Pessoa do; Martins, Marcelo Ramos, E-mail: andrericardopinheiro@usp.br, E-mail: eugenio.prado@labrisco.usp.br, E-mail: mrmatins@usp.br [Universidade de Sao Paulo (LABRISCO/USP), Sao Paulo, SP (Brazil). Lab. de Análise, Avaliação e Gerenciamento de Risco

    2017-07-01

    This article will discuss the preliminary results of an evaluation methodology for the analysis and quantification of manual character errors (human), by monitoring cognitive parameters and skill levels in the operation of a complex control system based on parameters provided by a eye monitoring equipment (Eye Tracker). The research was conducted using a simulator (game) that plays concepts of operation of a nuclear reactor with a split sample for evaluation of aspects of learning, knowledge and standard operating within the context addressed. bridge operators were monitored using the EYE TRACKING, eliminating the presence of the analyst in the evaluation of the operation, allowing the analysis of the results by means of multivariate statistical techniques within the scope of system reliability. The experiments aim to observe state change situations such as stops and scheduled departures, incidents assumptions and common operating characteristics. Preliminary results of this research object indicate that technical and cognitive aspects can contribute to improving the reliability of the available techniques in human reliability, making them more realistic both in the context of quantitative approaches to regulatory and training purposes, as well as reduced incidence of human error. (author)

  12. Development of a BN framework for human reliability analysis through virtual simulation

    International Nuclear Information System (INIS)

    Garg, Vipul; Santhosh, T.V.; Vinod, Gopika; Antony, P.D.

    2017-01-01

    Humans are an integral part of complex systems such as nuclear power plants and have to play a significant role in ensuring the safety and reliability of these systems. Failure to perform the intended task within the stipulated time by the operator can challenge the safety of the system. Human reliability analysis (HRA) is a widely practiced methodology to estimate the contribution of operator error towards the overall risk to the facility. HRA methods quantify this contribution in terms of human error probability (HEP) accounting for various psychological and physiological factors that influence the performance of the operator. These factors are referred to as human factors (HF), which enhance or degrade the human performance. The paper discusses the use of virtual simulation as a tool to generate the HF data from the virtual model of an in-house experimental facility. This paper also demonstrates the use of multi-attribute utility theory to determine a suitable HRA method amongst several HRA methods to quantify the HEP based on the desired set of HRA attributes. As classical HRA methods, generally, do not address the interactions among the HFs, the Bayesian network technique has been employed in this study to account for HF interactions. (author)

  13. Establishing the Appropriate Attributes in Current Human Reliability Assessment Techniques for Nuclear Safety

    International Nuclear Information System (INIS)

    Bowie, Jane; Munley, Gary; Dang, Vinh; Wreathall, John; Bye, Andreas; Cooper, Susan; Marble, Julie; Peters, Sean; Xing, Jing; Fauchille, Veronique; Fiset, Jean Yves; Haage, Monica; Johanson, Gunnar; Jung, Won Dae; Kim, Jaewhan; Lee, Seung Jung; Kubicek, Jan; Le Bot, Pierre; Pesme, Helene; Preischl, Wolfgang; Salway, Alice; Amri, Abdallah; Lamarre, Greg; White, Andrew; )

    2015-03-01

    This report presents the results of a joint task of the Working Groups on Risk Assessment (WGRISK) and on Human and Organisational Factors (WGHOF) of the OECD/NEA CSNI, to identify desirable attributes of Human Reliability Assessment (HRA) methods, and to evaluate a range of HRA methods used in OECD member countries against those attributes. The purpose of this project is to provide information that will support regulators and operators of nuclear facilities when making judgements about the appropriateness of HRA methods for conducting assessments in support of Probabilistic Safety Assessments (PSA). The task was performed by an international team of Human Factors, HRA and PSA experts from a broad range of OECD member countries. As in other reviews of HRA methods, the study did not set out to recommend or promote the use of any particular HRA method. Rather the study aims to identify the strengths and limitations of commonly used and developing methods to aid those responsible for production of HRAs in selecting appropriate tools for specific HRA applications. The study also aims to assist regulators when making judgements on the appropriateness of the application of an HRA technique within nuclear-related probabilistic safety assessments. The report is aimed at practitioners in the field of human reliability assessment, human factors, and risk assessment more generally

  14. Human Reliability in Probabilistic Safety Assessments; Fiabilidad Humana en los Analisis Probabilisticos de Seguridad

    Energy Technology Data Exchange (ETDEWEB)

    Nunez Mendez, J

    1989-07-01

    Nowadays a growing interest in environmental aspects is detected in our country. It implies an assessment of the risk involved in the industrial processes and installations in order to determine if those are into the acceptable limits. In these safety assessments, among which PSA (Probabilistic Safety Assessments), can be pointed out the role played by the human being in the system is one of the more relevant subjects (This relevance has been demonstrated in the accidents happened) . However, in Spain there aren't manuals specifically dedicated to asses the human contribution to risk in the frame of PSAs. This report aims to improve this situation providing: a) a theoretical background to help the reader in the understanding of the nature of the human error, b) a quid to carry out a Human Reliability Analysis and c) a selected overview of the techniques and methodologies currently applied in this area. (Author) 20 refs.

  15. Human Reliability in Probabilistic Safety Assessments; Fiabilidad Humana en los Analisis Probabilisticos de Seguridad

    Energy Technology Data Exchange (ETDEWEB)

    Nunez Mendez, J.

    1989-07-01

    Nowadays a growing interest in environmental aspects is detected in our country. It implies an assessment of the risk involved in the industrial processes and installations in order to determine if those are into the acceptable limits. In these safety assessments, among which PSA (Probabilistic Safety Assessments), can be pointed out the role played by the human being in the system is one of the more relevant subjects (This relevance has been demonstrated in the accidents happened) . However, in Spain there aren't manuals specifically dedicated to asses the human contribution to risk in the frame of PSAs. This report aims to improve this situation providing: a) a theoretical background to help the reader in the understanding of the nature of the human error, b) a quid to carry out a Human Reliability Analysis and c) a selected overview of the techniques and methodologies currently applied in this area. (Author) 20 refs.

  16. The Reliability of Multisource Feedback in Competency-Based Assessment Programs: The Effects of Multiple Occasions and Assessor Groups

    NARCIS (Netherlands)

    Moonen-van Loon, J.M.; Overeem, K.; Govaerts, M.J.; Verhoeven, B.H.; Vleuten, C.P.M. van der; Driessen, E.W.

    2015-01-01

    PURPOSE: Residency programs around the world use multisource feedback (MSF) to evaluate learners' performance. Studies of the reliability of MSF show mixed results. This study aimed to identify the reliability of MSF as practiced across occasions with varying numbers of assessors from different

  17. Human reliability analysis data obtainment through fuzzy logic in nuclear plants

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, C.S. do, E-mail: claudio.souza@ctmsp.mar.mil.br [Centro Tecnologico da Marinha em Sao Paulo (CTMSP), Av. Professor Lineu Prestes 2468, 05508-000 Sao Paulo, SP (Brazil); Mesquita, R.N. de, E-mail: rnavarro@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN - SP), Av. Professor Lineu Prestes 2242, 05508-000 Sao Paulo, SP (Brazil)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Human Error Probability estimates from operator's reactions to emergency situations. Black-Right-Pointing-Pointer Human Reliability Analysis input data obtainment through fuzzy logic inference. Black-Right-Pointing-Pointer Performance Shaping Factors evaluation influence level onto the operator's actions. - Abstract: Human error has been recognized as an important factor for many industrial and nuclear accidents occurrence. Human error data is scarcely available for different reasons among which, lapses in historical database registry methodology is an important one. Human Reliability Analysis (HRA) is an usual tool employed to estimate the probability that an operator will reasonably perform a system required task in required time without degrading the system. This meta-analysis requires specific Human Error Probability estimates for most of its procedure. This work obtains Human Error Probability (HEP) estimates from operator's actions in response to emergency situations hypothesis on Research Reactor IEA-R1 from IPEN, Brazil. Through this proposed methodology HRA should be able to be performed even with shortage of related human error statistical data. A Performance Shaping Factors (PSF's) evaluation in order to classify and estimate their influence level onto the operator's actions and to determine their actual state over the plant was also done. Both HEP estimation and PSF evaluation were done based on expert judgment using interviews and questionnaires. Expert group was established based on selected IEA-R1 operators, and their evaluation were put into a knowledge representation system which used linguistic variables and group evaluation values that were obtained through Fuzzy Logic and Fuzzy Set theory. HEP obtained values show good agreement with literature published data corroborating the proposed methodology as a good alternative to be used on HRA.

  18. Human reliability analysis data obtainment through fuzzy logic in nuclear plants

    International Nuclear Information System (INIS)

    Nascimento, C.S. do; Mesquita, R.N. de

    2012-01-01

    Highlights: ► Human Error Probability estimates from operator's reactions to emergency situations. ► Human Reliability Analysis input data obtainment through fuzzy logic inference. ► Performance Shaping Factors evaluation influence level onto the operator's actions. - Abstract: Human error has been recognized as an important factor for many industrial and nuclear accidents occurrence. Human error data is scarcely available for different reasons among which, lapses in historical database registry methodology is an important one. Human Reliability Analysis (HRA) is an usual tool employed to estimate the probability that an operator will reasonably perform a system required task in required time without degrading the system. This meta-analysis requires specific Human Error Probability estimates for most of its procedure. This work obtains Human Error Probability (HEP) estimates from operator's actions in response to emergency situations hypothesis on Research Reactor IEA-R1 from IPEN, Brazil. Through this proposed methodology HRA should be able to be performed even with shortage of related human error statistical data. A Performance Shaping Factors (PSF's) evaluation in order to classify and estimate their influence level onto the operator's actions and to determine their actual state over the plant was also done. Both HEP estimation and PSF evaluation were done based on expert judgment using interviews and questionnaires. Expert group was established based on selected IEA-R1 operators, and their evaluation were put into a knowledge representation system which used linguistic variables and group evaluation values that were obtained through Fuzzy Logic and Fuzzy Set theory. HEP obtained values show good agreement with literature published data corroborating the proposed methodology as a good alternative to be used on HRA.

  19. The United States nuclear plant reliability data program: Its description and status

    International Nuclear Information System (INIS)

    Wise, M.J.

    1975-01-01

    The American National Standards Institute Subcommittee N18-20 has developed and implemented the United States Nuclear Plant Reliability Data System (NPRDS). The NPRDS is designed to accumulate, store, analyse, and report reliability and failure statistics on systems and components of nuclear power plants related to nuclear safety. Input data to the NPRDS consist of engineering, operating, and failure information submitted on a voluntary basis by participating utilities. Prior to entry into the computerized data base, the data are thoroughly checked for accuracy by both the submitting organizations and the NPRDS operating contractor. The data base is the source of various periodic output reports to the nuclear power industry and is utilized to produce special reports upon request. The present data base represents data accumulated from about thirty nuclear units with additional units expected to begin submitting data immediately. The objective is to have essentially all operating nuclear units in the United States of America participating in the program by the end of 1975. The first NPRDS annual reports containing meaningful reliability and failure statistics are expected to be produced following the end of 1975. (author)

  20. A study on the dependency evaluation for multiple human actions in human reliability analysis of probabilistic safety assessment

    International Nuclear Information System (INIS)

    Kang, D. I.; Yang, J. E.; Jung, W. D.; Sung, T. Y.; Park, J. H.; Lee, Y. H.; Hwang, M. J.; Kim, K. Y.; Jin, Y. H.; Kim, S. C.

    1997-02-01

    This report describes the study results on the method of the dependency evaluation and the modeling, and the limited value of human error probability (HEP) for multiple human actions in accident sequences of probabilistic safety assessment (PSA). THERP and Parry's method, which have been generally used in dependency evaluation of human reliability analysis (HRA), are introduced and their limitations are discussed. New dependency evaluation method in HRA is established to make up for the weak points of THERP and Parry's methods. The limited value of HEP is also established based on the review of several HRA related documents. This report describes the definition, the type, the evaluation method, and the evaluation example of dependency to help the reader's understanding. It is expected that this study results will give a guidance to HRA analysts in dependency evaluation of multiple human actions and enable PSA analysts to understand HRA in detail. (author). 23 refs., 3 tabs., 2 figs

  1. Using Evidence Credibility Decay Model for dependence assessment in human reliability analysis

    International Nuclear Information System (INIS)

    Guo, Xingfeng; Zhou, Yanhui; Qian, Jin; Deng, Yong

    2017-01-01

    Highlights: • A new computational model is proposed for dependence assessment in HRA. • We combined three factors of “CT”, “TR” and “SP” within Dempster–Shafer theory. • The BBA of “SP” is reconstructed by discounting rate based on the ECDM. • Simulation experiments are illustrated to show the efficiency of the proposed method. - Abstract: Dependence assessment among human errors plays an important role in human reliability analysis. When dependence between two sequent tasks exists in human reliability analysis, if the preceding task fails, the failure probability of the following task is higher than success. Typically, three major factors are considered: “Closeness in Time” (CT), “Task Relatedness” (TR) and “Similarity of Performers” (SP). Assume TR is not changed, both SP and CT influence the degree of dependence level and SP is discounted by the time as the result of combine two factors in this paper. In this paper, a new computational model is proposed based on the Dempster–Shafer Evidence Theory (DSET) and Evidence Credibility Decay Model (ECDM) to assess the dependence between tasks in human reliability analysis. First, the influenced factors among human tasks are identified and the basic belief assignments (BBAs) of each factor are constructed based on expert evaluation. Then, the BBA of SP is discounted as the result of combining two factors and reconstructed by using the ECDM, the factors are integrated into a fused BBA. Finally, the dependence level is calculated based on fused BBA. Experimental results demonstrate that the proposed model not only quantitatively describe the fact that the input factors influence the dependence level, but also exactly show how the dependence level regular changes with different situations of input factors.

  2. A review of the models for evaluating organizational factors in human reliability analysis

    International Nuclear Information System (INIS)

    Alvarenga, Marco Antonio Bayout; Fonseca, Renato Alves da; Melo, Paulo Fernando Ferreira Frutuoso e

    2009-01-01

    Human factors should be evaluated in three hierarchical levels. The first level should concern the cognitive behavior of human beings during the control of processes that occur through the man-machine interface. Here, one evaluates human errors through human reliability models of first and second generation, like THERP, ASEP and HCR (first generation) and ATHEANA and CREAM (second generation). In the second level, the focus is in the cognitive behavior of human beings when they work in groups, as in nuclear power plants. The focus here is in the anthropological aspects that govern the interaction among human beings. In the third level, one is interested in the influence that the organizational culture exerts on human beings as well as on the tasks being performed. Here, one adds to the factors of the second level the economical and political aspects that shape the company organizational culture. Nowadays, the methodologies of HRA incorporate organizational factors in the group and organization levels through performance shaping factors. This work makes a critical evaluation of the deficiencies concerning human factors and evaluates the potential of quantitative techniques that have been proposed in the last decade to model organizational factors, including the interaction among groups, with the intention of eliminating this chronic deficiency of HRA models. Two important techniques will be discussed in this context: STAMP, based on system theory and FRAM, which aims at modeling the nonlinearities of socio-technical systems. (author)

  3. A review of the models for evaluating organizational factors in human reliability analysis

    Energy Technology Data Exchange (ETDEWEB)

    Alvarenga, Marco Antonio Bayout; Fonseca, Renato Alves da [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil)], e-mail: bayout@cnen.gov.br, e-mail: rfonseca@cnen.gov.br; Melo, Paulo Fernando Ferreira Frutuoso e [Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear], e-mail: frutuoso@con.ufrj.br

    2009-07-01

    Human factors should be evaluated in three hierarchical levels. The first level should concern the cognitive behavior of human beings during the control of processes that occur through the man-machine interface. Here, one evaluates human errors through human reliability models of first and second generation, like THERP, ASEP and HCR (first generation) and ATHEANA and CREAM (second generation). In the second level, the focus is in the cognitive behavior of human beings when they work in groups, as in nuclear power plants. The focus here is in the anthropological aspects that govern the interaction among human beings. In the third level, one is interested in the influence that the organizational culture exerts on human beings as well as on the tasks being performed. Here, one adds to the factors of the second level the economical and political aspects that shape the company organizational culture. Nowadays, the methodologies of HRA incorporate organizational factors in the group and organization levels through performance shaping factors. This work makes a critical evaluation of the deficiencies concerning human factors and evaluates the potential of quantitative techniques that have been proposed in the last decade to model organizational factors, including the interaction among groups, with the intention of eliminating this chronic deficiency of HRA models. Two important techniques will be discussed in this context: STAMP, based on system theory and FRAM, which aims at modeling the nonlinearities of socio-technical systems. (author)

  4. Designing and Assessing the Validity and Reliability of the Hospital Readiness Assessment Tools to Conducting Quality Improvement Program

    Directory of Open Access Journals (Sweden)

    Kamal Gholipoor

    2016-09-01

    Full Text Available Background and objectives : Identifying the readiness of hospital and its strengths and weaknesses can be useful in developing appropriate planning and situation analyses and management to getting effective in clinical audit programs. The aim of this study was to design and assess the validity of the Hospital Readiness Assessment Tools to conduct quality improvement and clinical audit programs. Material and Methods: In this study, based on the results of a systematic review of literature, an initial questionnaire with 77 items was designed. Questionnaire content validity was reviewed by experts in the field of hospital management and quality improvement in Tabriz University of Medical Sciences. For this purpose, 20 questionnaires were sent to experts. Finally, 15 participants returned completed questionnaire. Questionnaire validity was reviewed and confirmed based on Content Validity Index and Content Validity Ratio. Questionnaire reliability was confirmed based on Cronbach's alpha index (α = 0.96 in a pilot study by participation of 30 hospital managers. Results: The results showed that the final questionnaire contains 54 questions as nine category as: data and information (9 items, teamwork (12 questions, resources (5 questions, patient and education (5, intervention design and implementation (5 questions, clinical audit management (4 questions, human resources (6 questions, evidence and standard (4 items and evaluation and feedback (4 items. The final questionnaire content validity index was 0.91 and final questionnaire Cronbach's alpha coefficient was 0.96. Conclusion: Considering the relative good validity and reliability of the designed tool in this study, it appears that the questionnaire can be used to identify and assess the readiness of hospitals for quality improvement and clinical audit program implementation

  5. Development of reliability and probabilistic safety assessment program RiskA

    International Nuclear Information System (INIS)

    Wu, Yican

    2015-01-01

    Highlights: • There are four parts in the structure of RiskA. User input part lets users input the PSA model and some necessary data by GUI or model transformation tool. In calculation engine part, fault tree analysis, event tree analysis, uncertainty analysis, sensitivity analysis, importance analysis and failure mode and effects analysis are supplied. User output part outputs the analysis results, user customized reports and some other data. The last part includes reliability database, some other common tools and help documents. • RiskA has several advanced features. Extensible framework makes it easy to add any new functions, making RiskA to be a large platform of reliability and probabilistic safety assessment. It is very fast to analysis fault tree in RiskA because many advanced algorithm improvement were made. Many model formats can be imported and exported, which made the PSA model in the commercial software can be easily transformed to adapt RiskA platform. Web-based co-modeling let several users in different places work together whenever they are online. • The comparison between RiskA and other mature PSA codes (e.g. CAFTA, RiskSpectrum, XFTA) has demonstrated that the calculation and analysis of RiskA is correct and efficient. Based on the development of this code package, many applications of safety and reliability analysis of some research reactors and nuclear power plants were performed. The development of RiskA appears to be of realistic and potential value for academic research and practical operation safety management of nuclear power plants in China and abroad. - Abstract: PSA (probabilistic safety assessment) software, the indispensable tool in nuclear safety assessment, has been widely used. An integrated reliability and PSA program named RiskA has been developed by FDS Team. RiskA supplies several standard PSA modules including fault tree analysis, event tree analysis, uncertainty analysis, failure mode and effect analysis and reliability

  6. Human reliability analysis—Taxonomy and praxes of human entropy boundary conditions for marine and offshore applications

    International Nuclear Information System (INIS)

    El-Ladan, S.B.; Turan, O.

    2012-01-01

    This is the first stage towards the development of a human reliability model called human entropy (HENT). The paper presents qualitative and quantitative taxonomies and praxes of performance shaping factors (PSF) for Marine and Offshore operations. Three structured and guided expert elicitation methods were used in this study. The experts interrogated accident reports and databases from which the generic root causes of failures/accidents in operations are determined. The elicitations led to the development of 9 qualitative and quantitative human influencing factors, which are called Human Entropy Boundary Conditions (HEBC). Further explications of the 9 HEBC gave birth to 137 quantifiable explanatory variables, which are called hypothetical constructs (HyC). The HyCs are used to identify potential risks due to shrinkages in safety standards. Human entropy is a detour from traditional human error and was used as a result of tripartite human failure modes; error, local rationality and extraneous acts, all of which signify disorderliness and are seemingly inevitable in maritime operations. The praxes and scaling of HEBC was developed as guidance towards a practical oriented HRA and provide inputs for measuring human disorderliness in maritime operations.

  7. Human factors engineering program review model

    International Nuclear Information System (INIS)

    1994-07-01

    The staff of the Nuclear Regulatory Commission is performing nuclear power plant design certification reviews based on a design process plan that describes the human factors engineering (HFE) program elements that are necessary and sufficient to develop an acceptable detailed design specification and an acceptable implemented design. There are two principal reasons for this approach. First, the initial design certification applications submitted for staff review did not include detailed design information. Second, since human performance literature and industry experiences have shown that many significant human factors issues arise early in the design process, review of the design process activities and results is important to the evaluation of an overall design. However, current regulations and guidance documents do not address the criteria for design process review. Therefore, the HFE Program Review Model (HFE PRM) was developed as a basis for performing design certification reviews that include design process evaluations as well as review of the final design. A central tenet of the HFE PRM is that the HFE aspects of the plant should be developed, designed, and evaluated on the basis of a structured top-down system analysis using accepted HFE principles. The HFE PRM consists of ten component elements. Each element in divided into four sections: Background, Objective, Applicant Submittals, and Review Criteria. This report describes the development of the HFE PRM and gives a detailed description of each HFE review element

  8. A survey on the human reliability analysis methods for the design of Korean next generation reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Hee; Lee, J. W.; Park, J. C.; Kwack, H. Y.; Lee, K. Y.; Park, J. K.; Kim, I. S.; Jung, K. W

    2000-03-01

    Enhanced features through applying recent domestic technologies may characterize the safety and efficiency of KNGR(Korea Next Generation Reactor). Human engineered interface and control room environment are expected to be beneficial to the human aspects of KNGR design. However, since the current method for human reliability analysis is not up to date after THERP/SHARP, it becomes hard to assess the potential of human errors due to both of the positive and negative effect of the design changes in KNGR. This is a state of the art report on the human reliability analysis methods that are potentially available for the application to the KNGR design. We surveyed every technical aspects of existing HRA methods, and compared them in order to obtain the requirements for the assessment of human error potentials within KNGR design. We categorized the more than 10 methods into the first and the second generation according to the suggestion of Dr. Hollnagel. THERP was revisited in detail. ATHEANA proposed by US NRC for an advanced design and CREAM proposed by Dr. Hollnagel were reviewed and compared. We conclude that the key requirements might include the enhancement in the early steps for human error identification and the quantification steps with considerations of more extended error shaping factors over PSFs(performance shaping factors). The utilization of the steps and approaches of ATHEANA and CREAM will be beneficial to the attainment of an appropriate HRA method for KNGR. However, the steps and data from THERP will be still maintained because of the continuity with previous PSA activities in KNGR design.

  9. A survey on the human reliability analysis methods for the design of Korean next generation reactor

    International Nuclear Information System (INIS)

    Lee, Yong Hee; Lee, J. W.; Park, J. C.; Kwack, H. Y.; Lee, K. Y.; Park, J. K.; Kim, I. S.; Jung, K. W.

    2000-03-01

    Enhanced features through applying recent domestic technologies may characterize the safety and efficiency of KNGR(Korea Next Generation Reactor). Human engineered interface and control room environment are expected to be beneficial to the human aspects of KNGR design. However, since the current method for human reliability analysis is not up to date after THERP/SHARP, it becomes hard to assess the potential of human errors due to both of the positive and negative effect of the design changes in KNGR. This is a state of the art report on the human reliability analysis methods that are potentially available for the application to the KNGR design. We surveyed every technical aspects of existing HRA methods, and compared them in order to obtain the requirements for the assessment of human error potentials within KNGR design. We categorized the more than 10 methods into the first and the second generation according to the suggestion of Dr. Hollnagel. THERP was revisited in detail. ATHEANA proposed by US NRC for an advanced design and CREAM proposed by Dr. Hollnagel were reviewed and compared. We conclude that the key requirements might include the enhancement in the early steps for human error identification and the quantification steps with considerations of more extended error shaping factors over PSFs(performance shaping factors). The utilization of the steps and approaches of ATHEANA and CREAM will be beneficial to the attainment of an appropriate HRA method for KNGR. However, the steps and data from THERP will be still maintained because of the continuity with previous PSA activities in KNGR design

  10. A review of the evolution of human reliability analysis methods at nuclear industry

    International Nuclear Information System (INIS)

    Oliveira, Lécio N. de; Santos, Isaac José A. Luquetti dos; Carvalho, Paulo V.R.

    2017-01-01

    This paper reviews the status of researches on the application of human reliability analysis methods at nuclear industry and its evolution along the years. Human reliability analysis (HRA) is one of the elements used in Probabilistic Safety Analysis (PSA) and is performed as part of PSAs to quantify the likelihood that people will fail to take action, such as errors of omission and errors of commission. Although HRA may be used at lots of areas, the focus of this paper is to review the applicability of HRA methods along the years at nuclear industry, especially in Nuclear Power Plants (NPP). An electronic search on CAPES Portal of Journals (A bibliographic database) was performed. This literature review covers original papers published since the first generation of HRA methods until the ones published on March 2017. A total of 94 papers were retrieved by the initial search and 13 were selected to be fully reviewed and for data extraction after the application of inclusion and exclusion criteria, quality and suitability evaluation according to applicability at nuclear industry. Results point out that the methods from first generation are more used in practice than methods from second generation. This occurs because it is more concentrated towards quantification, in terms of success or failure of human action what make them useful for quantitative risk assessment to PSA. Although the second generation considers context and error of commission in human error prediction, they are not wider used in practice at nuclear industry to PSA. (author)

  11. A review of the evolution of human reliability analysis methods at nuclear industry

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Lécio N. de; Santos, Isaac José A. Luquetti dos; Carvalho, Paulo V.R., E-mail: lecionoliveira@gmail.com, E-mail: luquetti@ien.gov.br, E-mail: paulov@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2017-11-01

    This paper reviews the status of researches on the application of human reliability analysis methods at nuclear industry and its evolution along the years. Human reliability analysis (HRA) is one of the elements used in Probabilistic Safety Analysis (PSA) and is performed as part of PSAs to quantify the likelihood that people will fail to take action, such as errors of omission and errors of commission. Although HRA may be used at lots of areas, the focus of this paper is to review the applicability of HRA methods along the years at nuclear industry, especially in Nuclear Power Plants (NPP). An electronic search on CAPES Portal of Journals (A bibliographic database) was performed. This literature review covers original papers published since the first generation of HRA methods until the ones published on March 2017. A total of 94 papers were retrieved by the initial search and 13 were selected to be fully reviewed and for data extraction after the application of inclusion and exclusion criteria, quality and suitability evaluation according to applicability at nuclear industry. Results point out that the methods from first generation are more used in practice than methods from second generation. This occurs because it is more concentrated towards quantification, in terms of success or failure of human action what make them useful for quantitative risk assessment to PSA. Although the second generation considers context and error of commission in human error prediction, they are not wider used in practice at nuclear industry to PSA. (author)

  12. Systems analysis programs for hands-on integrated reliability evaluations (SAPHIRE), Version 5.0

    International Nuclear Information System (INIS)

    Russell, K.D.; Kvarfordt, K.J.; Hoffman, C.L.

    1995-10-01

    The Systems Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE) refers to a set of several microcomputer programs that were developed to create and analyze probabilistic risk assessments (PRAs), primarily for nuclear power plants. The Graphical Evaluation Module (GEM) is a special application tool designed for evaluation of operational occurrences using the Accident Sequence Precursor (ASP) program methods. GEM provides the capability for an analyst to quickly and easily perform conditional core damage probability (CCDP) calculations. The analyst can then use the CCDP calculations to determine if the occurrence of an initiating event or a condition adversely impacts safety. It uses models and data developed in the SAPHIRE specially for the ASP program. GEM requires more data than that normally provided in SAPHIRE and will not perform properly with other models or data bases. This is the first release of GEM and the developers of GEM welcome user comments and feedback that will generate ideas for improvements to future versions. GEM is designated as version 5.0 to track GEM codes along with the other SAPHIRE codes as the GEM relies on the same, shared database structure

  13. A study of adopting maintenance rule under the periodic safety review and reliability centered maintenance program

    International Nuclear Information System (INIS)

    Kilyoo, Kim

    2001-01-01

    U.S Maintenance Rule (MR) has three main functions. One is to monitor the performance changes of SSCs (Structure, System, and Component) caused by risk informed applications. Periodic Safety Review (PSR) program is widely adopted in Europe while it is not adopted in U. S. A where MR and new oversight program are instead used. Recently, in Korea, it was determined to adopt PSR, and the first PSR program has started this year for Kori unit 1 as a pilot plant. Also, a traditional Reliability Centered Maintenance (RCM) has been performed for 4 systems of YGN unit 1 and 2 and it will be applied to the other nuclear power plants in Korea. However, since MR is adopting many useful concept of RCM, traditional RCM could not be further performed without being associated with MR. Thus, MR, RCM and PSR have recently become hot issue policies which should be well associated each other in Korea, and this paper suggests a desirable new maintenance process which would embrace the concepts of the three policies, and also discusses whether U.S. MR is necessary even though a PSR program is already adopted, and if necessary, then how cost-effectively it can be introduced to. (author)

  14. Summary of project to develop handbook of human reliability analysis for nuclear power plant operations

    International Nuclear Information System (INIS)

    Swain, A.D.

    1978-01-01

    For the past two years Alan Swain and Henry E. Guttmann, of the Statistics, Computing, and Human Factors Division, Sandia Laboratories, have been developing a handbook to aid qualified persons to evaluate the effect of human error on the availability of engineered safety systems and features in nuclear power plants. The handbook includes a mathematical model, procedures, derived human failure data, and principles of human behavior and ergonomics. The handbook is expanding the human error analyses which were presented in WASH--1400. The work, under the sponsorship of Probabilistic Analysis Staff, NRC Office of Nuclear Regulatory Research (Dr. M.C. Cullingford, NRC Program Manager), is about half completed. An outline of the handbook contents is given in copies of vugraphs (attached), followed by copies of human performance model abstractors (also attached). A first draft of the handbook is scheduled for NRC review by July 1, 1979

  15. Multidisciplinary framework for human reliability analysis with an application to errors of commission and dependencies

    International Nuclear Information System (INIS)

    Barriere, M.T.; Luckas, W.J.; Wreathall, J.; Cooper, S.E.; Bley, D.C.; Ramey-Smith, A.

    1995-08-01

    Since the early 1970s, human reliability analysis (HRA) has been considered to be an integral part of probabilistic risk assessments (PRAs). Nuclear power plant (NPP) events, from Three Mile Island through the mid-1980s, showed the importance of human performance to NPP risk. Recent events demonstrate that human performance continues to be a dominant source of risk. In light of these observations, the current limitations of existing HRA approaches become apparent when the role of humans is examined explicitly in the context of real NPP events. The development of new or improved HRA methodologies to more realistically represent human performance is recognized by the Nuclear Regulatory Commission (NRC) as a necessary means to increase the utility of PRAS. To accomplish this objective, an Improved HRA Project, sponsored by the NRC's Office of Nuclear Regulatory Research (RES), was initiated in late February, 1992, at Brookhaven National Laboratory (BNL) to develop an improved method for HRA that more realistically assesses the human contribution to plant risk and can be fully integrated with PRA. This report describes the research efforts including the development of a multidisciplinary HRA framework, the characterization and representation of errors of commission, and an approach for addressing human dependencies. The implications of the research and necessary requirements for further development also are discussed

  16. Quantitative evaluation of the impact of human reliability in risk assessment for nuclear power plants

    International Nuclear Information System (INIS)

    Samanta, P.K.

    1981-01-01

    The role of human beings in the safe operation of a nuclear power plant has been a matter of concern. This study describes methods for the quantitative description of that role and its impact on the risk from nuclear power plants. The impact of human errors was calculated by observing the changes in risk parameters, such as core melt probability, release category probabilities, accident sequence probabilities and system unavailabilities due to changes in the contribution to unavailablity of human errors, within the framework of risk assessment methodology. It was found that for operational pressurized water reactors the opportunity for reduction in core melt probability by reducing the human error rates without simultaneous reduction of hardware failures is limited, but that core melt probability would significantly increase as human error rates increased. More importantly, most of the dominant accident sequences showed a significant increase in their probabilities with an increase in human error rates. Release categories resulting in high consequences showed a much larger sensitivity to human errors than categories resulting in low consequences. A combination of structural importance and reliability importance measure was used to describe the importance of individual errors

  17. Bridging Human Reliability Analysis and Psychology, Part 2: A Cognitive Framework to Support HRA

    Energy Technology Data Exchange (ETDEWEB)

    April M. Whaley; Stacey M. L. Hendrickson; Ronald L. Boring; Jing Xing

    2012-06-01

    This is the second of two papers that discuss the literature review conducted as part of the U.S. Nuclear Regulatory Commission (NRC) effort to develop a hybrid human reliability analysis (HRA) method in response to Staff Requirements Memorandum (SRM) SRM-M061020. This review was conducted with the goal of strengthening the technical basis within psychology, cognitive science and human factors for the hybrid HRA method being proposed. An overview of the literature review approach and high-level structure is provided in the first paper, whereas this paper presents the results of the review. The psychological literature review encompassed research spanning the entirety of human cognition and performance, and consequently produced an extensive list of psychological processes, mechanisms, and factors that contribute to human performance. To make sense of this large amount of information, the results of the literature review were organized into a cognitive framework that identifies causes of failure of macrocognition in humans, and connects those proximate causes to psychological mechanisms and performance influencing factors (PIFs) that can lead to the failure. This cognitive framework can serve as a tool to inform HRA. Beyond this, however, the cognitive framework has the potential to also support addressing human performance issues identified in Human Factors applications.

  18. Multidisciplinary framework for human reliability analysis with an application to errors of commission and dependencies

    Energy Technology Data Exchange (ETDEWEB)

    Barriere, M.T.; Luckas, W.J. [Brookhaven National Lab., Upton, NY (United States); Wreathall, J. [Wreathall (John) and Co., Dublin, OH (United States); Cooper, S.E. [Science Applications International Corp., Reston, VA (United States); Bley, D.C. [PLG, Inc., Newport Beach, CA (United States); Ramey-Smith, A. [Nuclear Regulatory Commission, Washington, DC (United States). Div. of Systems Technology

    1995-08-01

    Since the early 1970s, human reliability analysis (HRA) has been considered to be an integral part of probabilistic risk assessments (PRAs). Nuclear power plant (NPP) events, from Three Mile Island through the mid-1980s, showed the importance of human performance to NPP risk. Recent events demonstrate that human performance continues to be a dominant source of risk. In light of these observations, the current limitations of existing HRA approaches become apparent when the role of humans is examined explicitly in the context of real NPP events. The development of new or improved HRA methodologies to more realistically represent human performance is recognized by the Nuclear Regulatory Commission (NRC) as a necessary means to increase the utility of PRAS. To accomplish this objective, an Improved HRA Project, sponsored by the NRC`s Office of Nuclear Regulatory Research (RES), was initiated in late February, 1992, at Brookhaven National Laboratory (BNL) to develop an improved method for HRA that more realistically assesses the human contribution to plant risk and can be fully integrated with PRA. This report describes the research efforts including the development of a multidisciplinary HRA framework, the characterization and representation of errors of commission, and an approach for addressing human dependencies. The implications of the research and necessary requirements for further development also are discussed.

  19. PROOF OF CONCEPT FOR A HUMAN RELIABILITY ANALYSIS METHOD FOR HEURISTIC USABILITY EVALUATION OF SOFTWARE

    International Nuclear Information System (INIS)

    Ronald L. Boring; David I. Gertman; Jeffrey C. Joe; Julie L. Marble

    2005-01-01

    An ongoing issue within human-computer interaction (HCI) is the need for simplified or ''discount'' methods. The current economic slowdown has necessitated innovative methods that are results driven and cost effective. The myriad methods of design and usability are currently being cost-justified, and new techniques are actively being explored that meet current budgets and needs. Recent efforts in human reliability analysis (HRA) are highlighted by the ten-year development of the Standardized Plant Analysis Risk HRA (SPAR-H) method. The SPAR-H method has been used primarily for determining human centered risk at nuclear power plants. The SPAR-H method, however, shares task analysis underpinnings with HCI. Despite this methodological overlap, there is currently no HRA approach deployed in heuristic usability evaluation. This paper presents an extension of the existing SPAR-H method to be used as part of heuristic usability evaluation in HCI

  20. Post-event human decision errors: operator action tree/time reliability correlation

    Energy Technology Data Exchange (ETDEWEB)

    Hall, R E; Fragola, J; Wreathall, J

    1982-11-01

    This report documents an interim framework for the quantification of the probability of errors of decision on the part of nuclear power plant operators after the initiation of an accident. The framework can easily be incorporated into an event tree/fault tree analysis. The method presented consists of a structure called the operator action tree and a time reliability correlation which assumes the time available for making a decision to be the dominating factor in situations requiring cognitive human response. This limited approach decreases the magnitude and complexity of the decision modeling task. Specifically, in the past, some human performance models have attempted prediction by trying to emulate sequences of human actions, or by identifying and modeling the information processing approach applicable to the task. The model developed here is directed at describing the statistical performance of a representative group of hypothetical individuals responding to generalized situations.

  1. Post-event human decision errors: operator action tree/time reliability correlation

    International Nuclear Information System (INIS)

    Hall, R.E.; Fragola, J.; Wreathall, J.

    1982-11-01

    This report documents an interim framework for the quantification of the probability of errors of decision on the part of nuclear power plant operators after the initiation of an accident. The framework can easily be incorporated into an event tree/fault tree analysis. The method presented consists of a structure called the operator action tree and a time reliability correlation which assumes the time available for making a decision to be the dominating factor in situations requiring cognitive human response. This limited approach decreases the magnitude and complexity of the decision modeling task. Specifically, in the past, some human performance models have attempted prediction by trying to emulate sequences of human actions, or by identifying and modeling the information processing approach applicable to the task. The model developed here is directed at describing the statistical performance of a representative group of hypothetical individuals responding to generalized situations

  2. Notes on human factors problems in process plant reliability and safety prediction

    International Nuclear Information System (INIS)

    Rasmussen, J.; Taylor, J.R.

    1976-09-01

    The basis for plant operator reliability evaluation is described. Principles for plant design, necessary to permit reliability evaluation, are outlined. Five approaches to the plant operator reliability problem are described. Case stories, illustrating operator reliability problems, are given. (author)

  3. A human reliability based usability evaluation method for safety-critical software

    International Nuclear Information System (INIS)

    Boring, R. L.; Tran, T. Q.; Gertman, D. I.; Ragsdale, A.

    2006-01-01

    Boring and Gertman (2005) introduced a novel method that augments heuristic usability evaluation methods with that of the human reliability analysis method of SPAR-H. By assigning probabilistic modifiers to individual heuristics, it is possible to arrive at the usability error probability (UEP). Although this UEP is not a literal probability of error, it nonetheless provides a quantitative basis to heuristic evaluation. This method allows one to seamlessly prioritize and identify usability issues (i.e., a higher UEP requires more immediate fixes). However, the original version of this method required the usability evaluator to assign priority weights to the final UEP, thus allowing the priority of a usability issue to differ among usability evaluators. The purpose of this paper is to explore an alternative approach to standardize the priority weighting of the UEP in an effort to improve the method's reliability. (authors)

  4. Human Reliability Analysis. Applicability of the HRA-concept in maintenance shutdown

    International Nuclear Information System (INIS)

    Obenius, Aino

    2007-08-01

    Probabilistic Safety Analysis (PSA) is performed for Swedish nuclear power plants in order to make predictions and improvements of system safety. The analysis of the Three Mile Island and Chernobyl accidents contributed to broaden the approach to nuclear power plant safety. A system perspective focusing on the interaction between aspects of Man, Technology and Organization (MTO) emerged in addition to the development of Human Factors knowledge. To take the human influence on the technical system into consideration when performing PSAs, a Human Reliability Analysis (HRA) is performed. PSA is performed for different stages and plant operating states, and the current state of Swedish analyses is Low power and Shutdown (LPSD), also called Shutdown PSA (SPSA). The purpose of this master's thesis is to describe methods and basic models used when analysing human reliability for the LPSD state. The following questions are at issue: 1. How can the LPSD state be characterised and defined? 2. What is important to take into consideration when performing a LPSD HRA? 3. How can human behaviour be modelled for a LPSD risk analysis? 4. According to available empirical material, how are the questions above treated in performed analysis of human operation during LPSD? 5. How does the result of the questions above affect the way methods for analysis of LPSD could and/or should be developed? The procedure of this project has mainly consisted of literature studies of available theory for modelling of human behaviour and risk analysis of the LPSD state. This study regards analysis of planned outages when maintenance, fuel change, tests and inspections are performed. The outage period is characterised by planned maintenance activities performed in rotating 3-shifts, around the clock, as well as many of the persons performing work tasks on the plant being external contractors. The working conditions are characterised by stress due to heat, radiation and physically demanding or monotonous

  5. After reliability centred maintenance. Preventive maintenance living program implementation at Bruce Power

    International Nuclear Information System (INIS)

    Harazim, Michael L.; Ferguson, Brian J.

    2003-01-01

    Industrial preventive maintenance (PM) programs represent a large part of plant O and M costs. PM Optimization (PMO) projects represent an effective mechanism for identifying unnecessary PM, extending PM intervals and infusing predictive maintenance (PdM) methods. However, once optimized, what process prevents the PM program from returning to a state of disarray? This is the function of a PM living program (PMLP). In 1997, an independent performance assessment identified concerns with the applicability and effectiveness of all Ontario Power Generation, Inc. (OPGI) PM programs. In response, OPGI instituted an Integrated Maintenance Program (IMP) including Reliability Centred Maintenance (RCM) and a PMLP. It should be noted that the PMLP was developed for the 3 OPGI nuclear Sites (i.e. Bruce, Pickering, and Darlington). Effective 1 May 2001, the Bruce Site has been leased to a group of investors lead by British Energy. This paper is written in historical context and therefore refers to the Bruce Site as part of OPGI. The PMLP is made up of five elements: 1) process control, 2) change control, 3) worker feedback, 4) program performance metrics, and 5) deferral module. A PMLP software tool, originally applied to Duke Energy nuclear plants, was enhanced and customized specifically for the OPGI PMLP, and then implemented at all three of OPGI's nuclear sites. The objective of the OPGI PMLP was to: Provide processes/procedures for continual optimization of all site PM tasks, Ensure effective and timely revision of PM tasks in the work management system, Ensure PM tasks remain applicable/effective at all times, Maintain and enhance PM consistency on a component, system and Site basis, Ensure that new predictive maintenance techniques are applied and integrated with the PM program, Ensure that mandated PM tasks are identified and executed, Provide a mechanism for craft feedback, Meet regulatory requirements for PM program effectiveness, and Provide PM task deferral

  6. Systems Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE), Version 5.0: Integrated Reliability and Risk Analysis System (IRRAS) reference manual. Volume 2

    International Nuclear Information System (INIS)

    Russell, K.D.; Kvarfordt, K.J.; Skinner, N.L.; Wood, S.T.; Rasmuson, D.M.

    1994-07-01

    The Systems Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE) refers to a set of several microcomputer programs that were developed to create and analyze probabilistic risk assessments (PRAs), primarily for nuclear power plants. The Integrated Reliability and Risk Analysis System (IRRAS) is a state-of-the-art, microcomputer-based probabilistic risk assessment (PRA) model development and analysis tool to address key nuclear plant safety issues. IRRAS is an integrated software tool that gives the use the ability to create and analyze fault trees and accident sequences using a microcomputer. This program provides functions that range from graphical fault tree construction to cut set generation and quantification to report generation. Version 1.0 of the IRRAS program was released in February of 1987. Since then, many user comments and enhancements have been incorporated into the program providing a much more powerful and user-friendly system. This version has been designated IRRAS 5.0 and is the subject of this Reference Manual. Version 5.0 of IRRAS provides the same capabilities as earlier versions and ads the ability to perform location transformations, seismic analysis, and provides enhancements to the user interface as well as improved algorithm performance. Additionally, version 5.0 contains new alphanumeric fault tree and event used for event tree rules, recovery rules, and end state partitioning

  7. User`s manual of a support system for human reliability analysis

    Energy Technology Data Exchange (ETDEWEB)

    Yokobayashi, Masao [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Tamura, Kazuo

    1995-10-01

    Many kinds of human reliability analysis (HRA) methods have been developed. However, users are required to be skillful so as to use them, and also required complicated works such as drawing event tree (ET) and calculation of uncertainty bounds. Moreover, each method is not so complete that only one method of them is not enough to evaluate human reliability. Therefore, a personal computer (PC) based support system for HRA has been developed to execute HRA practically and efficiently. The system consists of two methods, namely, simple method and detailed one. The former uses ASEP that is a simplified THERP-technique, and combined method of OAT and HRA-ET/DeBDA is used for the latter. Users can select a suitable method for their purpose. Human error probability (HEP) data were collected and a database of them was built to use for the support system. This paper describes outline of the HRA methods, support functions and user`s guide of the system. (author).

  8. A data-informed PIF hierarchy for model-based Human Reliability Analysis

    International Nuclear Information System (INIS)

    Groth, Katrina M.; Mosleh, Ali

    2012-01-01

    This paper addresses three problems associated with the use of Performance Shaping Factors in Human Reliability Analysis. (1) There are more than a dozen Human Reliability Analysis (HRA) methods that use Performance Influencing Factors (PIFs) or Performance Shaping Factors (PSFs) to model human performance, but there is not a standard set of PIFs used among the methods, nor is there a framework available to compare the PIFs used in various methods. (2) The PIFs currently in use are not defined specifically enough to ensure consistent interpretation of similar PIFs across methods. (3) There are few rules governing the creation, definition, and usage of PIF sets. This paper introduces a hierarchical set of PIFs that can be used for both qualitative and quantitative HRA. The proposed PIF set is arranged in a hierarchy that can be collapsed or expanded to meet multiple objectives. The PIF hierarchy has been developed with respect to a set fundamental principles necessary for PIF sets, which are also introduced in this paper. This paper includes definitions of the PIFs to allow analysts to map the proposed PIFs onto current and future HRA methods. The standardized PIF hierarchy will allow analysts to combine different types of data and will therefore make the best use of the limited data in HRA. The collapsible hierarchy provides the structure necessary to combine multiple types of information without reducing the quality of the information.

  9. Self-Reliability and Motivation in a Nuclear Security Culture Enhancement Program

    Energy Technology Data Exchange (ETDEWEB)

    Crawford,C.; de Boer,G.; De Castro, K; Landers, Ph.D., J; Rogers, E

    2009-10-19

    The threat of nuclear terrorism has become a global concern. Many countries continue to make efforts to strengthen nuclear security by enhancing systems of nuclear material protection, control, and accounting (MPC&A). Though MPC&A systems can significantly upgrade nuclear security, they do not eliminate the "human factor." This paper will describe some of the key elements of a comprehensive, sustainable nuclear security culture enhancement program and how implementation can mitigate the insider threat.

  10. In-plant application of industry experience to enhance human reliability

    International Nuclear Information System (INIS)

    Hannaman, G.W.; Singh, A.

    1993-01-01

    This paper describes the way that modern data-base computer tools can enhance the ability to collect, organize, evaluate, and use industry experience. By combining the computer tools with knowledge from human reliability assessment tools, data, and frameworks, the data base can become a tool for collecting and assessing the lessons learned from past events. By integrating the data-base system with plant risk models, engineers can focus on those activities that can enhance over-all system reliability. The evaluation helps identify technology and tools to reduce human errors during operations and maintenance. Learning from both in-plant and industry experience can help enhance safety and reduce the cost of plant operations. Utility engineers currently assess events that occur in nuclear plants throughout the world for in-plant applicability. Established computer information networks, documents, bulletins, and other information sources provide a large number of event descriptions to help individual plants benefit from this industry experience. The activities for coordinating reviews of event descriptions from other plants for in-plant applications require substantial engineering time to collect, organize, evaluate, and apply. Data-base tools can help engineers efficiently handle and sort the data so that they can concentrate on understanding the importance of the event, developing cost-effective interventions, and communicating implementation plans for plant improvement. An Electric Power Research Institute human reliability project has developed a classification system with modern data-base software to help engineers efficiently process, assess, and apply information contained in the events to enhance plant operation. Plant-specific classification of industry experience provides a practical method for efficiently taking into account industry when planning maintenance activities and reviewing plant safety

  11. On action- and affectpsychology of human reliability. An access by training simulators for complex man-machine systems

    International Nuclear Information System (INIS)

    Schuette, M.

    2002-02-01

    Theoretical part and its topics: errors at the interface between man and machine; reliability analysis for man; the psychological explanation of action reliability of man (intention and control); a paradigma for human reliability (frustration and regression). Empirical part: Control room in a nuclear power plant: Influences on repeated blockages on component care in case of start-up operation; ship bridge: Frustration and regression while steering in a bight. Appendix: analysis of a social interaction.(GL)

  12. Systems Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE)

    International Nuclear Information System (INIS)

    C. L. Smith

    2006-01-01

    The Systems Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE) is a software application developed for performing a complete probabilistic risk assessment (PRA) using a personal computer (PC) running the Microsoft Windows operating system. SAPHIRE is primarily funded by the U.S. Nuclear Regulatory Commission (NRC) and developed by the Idaho National Laboratory (INL). INL's primary role in this project is that of software developer and tester. However, INL also plays an important role in technology transfer by interfacing and supporting SAPHIRE users, who constitute a wide range of PRA practitioners from the NRC, national laboratories, the private sector, and foreign countries. SAPHIRE can be used to model a complex system's response to initiating events and quantify associated consequential outcome frequencies. Specifically, for nuclear power plant applications, SAPHIRE can identify important contributors to core damage (Level 1 PRA) and containment failure during a severe accident which lead to releases (Level 2 PRA). It can be used for a PRA where the reactor is at full power, low power, or at shutdown conditions. Furthermore, it can be used to analyze both internal and external initiating events and has special features for transforming an internal events model to a model for external events, such as flooding and fire analysis. It can also be used in a limited manner to quantify risk in terms of release consequences to the public and environment (Level 3 PRA). SAPHIRE also includes a separate module called the Graphical Evaluation Module (GEM). GEM is a special user interface linked to SAPHIRE that automates the SAPHIRE process steps for evaluating operational events at commercial nuclear power plants. Using GEM, an analyst can estimate the risk associated with operational events (for example, to calculate a conditional core damage probability) very efficiently and expeditiously. This report provides an overview of the functions

  13. The application of two recently developed human reliability techniques to cognitive error analysis

    International Nuclear Information System (INIS)

    Gall, W.

    1990-01-01

    Cognitive error can lead to catastrophic consequences for manned systems, including those whose design renders them immune to the effects of physical slips made by operators. Four such events, pressurized water and boiling water reactor accidents which occurred recently, were analysed. The analysis identifies the factors which contributed to the errors and suggests practical strategies for error recovery or prevention. Two types of analysis were conducted: an unstructured analysis based on the analyst's knowledge of psychological theory, and a structured analysis using two recently-developed human reliability analysis techniques. In general, the structured techniques required less effort to produce results and these were comparable to those of the unstructured analysis. (author)

  14. Features of an advanced human reliability analysis method, AGAPE-ET

    International Nuclear Information System (INIS)

    Kim, Jae Whan; Jung, Won Dea; Park, Jin Kyun

    2005-01-01

    This paper presents the main features of an advanced human reliability analysis (HRA) method, AGAPE-ET. It has the capabilities to deal with the diagnosis failures and the errors of commission (EOC), which have not been normally treated in the conventional HRAs. For the analysis of the potential for diagnosis failures, an analysis framework, which is called the misdiagnosis tree analysis (MDTA), and a taxonomy of the misdiagnosis causes with appropriate quantification schemes are provided. For the identification of the EOC events from the misdiagnosis, some procedural guidance is given. An example of the application of the method is also provided

  15. Features of an advanced human reliability analysis method, AGAPE-ET

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Whan; Jung, Won Dea; Park, Jin Kyun [Korea Atomic Energy Research Institute, Taejeon (Korea, Republic of)

    2005-11-15

    This paper presents the main features of an advanced human reliability analysis (HRA) method, AGAPE-ET. It has the capabilities to deal with the diagnosis failures and the errors of commission (EOC), which have not been normally treated in the conventional HRAs. For the analysis of the potential for diagnosis failures, an analysis framework, which is called the misdiagnosis tree analysis (MDTA), and a taxonomy of the misdiagnosis causes with appropriate quantification schemes are provided. For the identification of the EOC events from the misdiagnosis, some procedural guidance is given. An example of the application of the method is also provided.

  16. Human reliability analysis in the man-machine interface design review

    International Nuclear Information System (INIS)

    Kim, I.S.

    2001-01-01

    Advanced, computer-based man-machine interface (MMI) is emerging as part of the new design of nuclear power plants. The impact of advanced MMI on the operator performance, and as a result, on plant safety should be thoroughly evaluated before such technology is actually adopted in the plants. This paper discusses the applicability of human reliability analysis (HRA) to support the design review process. Both the first-generation and the second-generation HRA methods are considered focusing on a couple of promising HRA methods, i.e. ATHEANA and CREAM, with the potential to assist the design review process

  17. Development of an analysis rule of diagnosis error for standard method of human reliability analysis

    International Nuclear Information System (INIS)

    Jeong, W. D.; Kang, D. I.; Jeong, K. S.

    2003-01-01

    This paper presents the status of development of Korea standard method for Human Reliability Analysis (HRA), and proposed a standard procedure and rules for the evaluation of diagnosis error probability. The quality of KSNP HRA was evaluated using the requirement of ASME PRA standard guideline, and the design requirement for the standard HRA method was defined. Analysis procedure and rules, developed so far, to analyze diagnosis error probability was suggested as a part of the standard method. And also a study of comprehensive application was performed to evaluate the suitability of the proposed rules

  18. Proof-of-Concept Demonstrations for Computation-Based Human Reliability Analysis. Modeling Operator Performance During Flooding Scenarios

    International Nuclear Information System (INIS)

    Joe, Jeffrey Clark; Boring, Ronald Laurids; Herberger, Sarah Elizabeth Marie; Mandelli, Diego; Smith, Curtis Lee

    2015-01-01

    The United States (U.S.) Department of Energy (DOE) Light Water Reactor Sustainability (LWRS) program has the overall objective to help sustain the existing commercial nuclear power plants (NPPs). To accomplish this program objective, there are multiple LWRS 'pathways,' or research and development (R&D) focus areas. One LWRS focus area is called the Risk-Informed Safety Margin and Characterization (RISMC) pathway. Initial efforts under this pathway to combine probabilistic and plant multi-physics models to quantify safety margins and support business decisions also included HRA, but in a somewhat simplified manner. HRA experts at Idaho National Laboratory (INL) have been collaborating with other experts to develop a computational HRA approach, called the Human Unimodel for Nuclear Technology to Enhance Reliability (HUNTER), for inclusion into the RISMC framework. The basic premise of this research is to leverage applicable computational techniques, namely simulation and modeling, to develop and then, using RAVEN as a controller, seamlessly integrate virtual operator models (HUNTER) with 1) the dynamic computational MOOSE runtime environment that includes a full-scope plant model, and 2) the RISMC framework PRA models already in use. The HUNTER computational HRA approach is a hybrid approach that leverages past work from cognitive psychology, human performance modeling, and HRA, but it is also a significant departure from existing static and even dynamic HRA methods. This report is divided into five chapters that cover the development of an external flooding event test case and associated statistical modeling considerations.

  19. Proof-of-Concept Demonstrations for Computation-Based Human Reliability Analysis. Modeling Operator Performance During Flooding Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Joe, Jeffrey Clark [Idaho National Lab. (INL), Idaho Falls, ID (United States); Boring, Ronald Laurids [Idaho National Lab. (INL), Idaho Falls, ID (United States); Herberger, Sarah Elizabeth Marie [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mandelli, Diego [Idaho National Lab. (INL), Idaho Falls, ID (United States); Smith, Curtis Lee [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    The United States (U.S.) Department of Energy (DOE) Light Water Reactor Sustainability (LWRS) program has the overall objective to help sustain the existing commercial nuclear power plants (NPPs). To accomplish this program objective, there are multiple LWRS “pathways,” or research and development (R&D) focus areas. One LWRS focus area is called the Risk-Informed Safety Margin and Characterization (RISMC) pathway. Initial efforts under this pathway to combine probabilistic and plant multi-physics models to quantify safety margins and support business decisions also included HRA, but in a somewhat simplified manner. HRA experts at Idaho National Laboratory (INL) have been collaborating with other experts to develop a computational HRA approach, called the Human Unimodel for Nuclear Technology to Enhance Reliability (HUNTER), for inclusion into the RISMC framework. The basic premise of this research is to leverage applicable computational techniques, namely simulation and modeling, to develop and then, using RAVEN as a controller, seamlessly integrate virtual operator models (HUNTER) with 1) the dynamic computational MOOSE runtime environment that includes a full-scope plant model, and 2) the RISMC framework PRA models already in use. The HUNTER computational HRA approach is a hybrid approach that leverages past work from cognitive psychology, human performance modeling, and HRA, but it is also a significant departure from existing static and even dynamic HRA methods. This report is divided into five chapters that cover the development of an external flooding event test case and associated statistical modeling considerations.

  20. Reliability and availability of redundant systems: Computational program and the use of nomograms

    International Nuclear Information System (INIS)

    Signoret, J.P.

    1975-01-01

    A rigorous mathematical approach to determining the reliability and availability of repairable actively redundant systems - (r/m) systems - is considered for the case where the m units comprising the system are identical and the failure and repair rates, lambda and μ respectively, are constant. The method used involves the Markov processes, operator calculus and matrix calculus. All the results of the study are handled by the FIDIAS program, which is a practical tool for calculating with a high degree of precision the reliability or availability of such (r/m) systems whatever the values of m and r. In the FIDIAS-TC version of FIDIAS it is possible to plot curves with a Benson plotter, so that nomograms are produced for rapid and simple determination of the probabilities of failure or non-availability of the (r/m) systems considered. The practical application of nomograms is of interest because (2/3) and (2/4) actively redundant systems are very often used in the control circuits of power reactors. It is shown how easily one can compare these two systems using nomograms and how one can determine lambda or μ as a function of the anticipated result

  1. Improving reliability of state estimation programming and computing suite based on analyzing a fault tree

    Directory of Open Access Journals (Sweden)

    Kolosok Irina

    2017-01-01

    Full Text Available Reliable information on the current state parameters obtained as a result of processing the measurements from systems of the SCADA and WAMS data acquisition and processing through methods of state estimation (SE is a condition that enables to successfully manage an energy power system (EPS. SCADA and WAMS systems themselves, as any technical systems, are subject to failures and faults that lead to distortion and loss of information. The SE procedure enables to find erroneous measurements, therefore, it is a barrier for the distorted information to penetrate into control problems. At the same time, the programming and computing suite (PCS implementing the SE functions may itself provide a wrong decision due to imperfection of the software algorithms and errors. In this study, we propose to use a fault tree to analyze consequences of failures and faults in SCADA and WAMS and in the very SE procedure. Based on the analysis of the obtained measurement information and on the SE results, we determine the state estimation PCS fault tolerance level featuring its reliability.

  2. Interim reliability evaluation program: analysis of the Arkansas Nuclear One. Unit 1 Nuclear Power Plant

    International Nuclear Information System (INIS)

    Kolb, G.J.; Kunsman, D.M.; Bell, B.J.

    1982-06-01

    This report represents the results of the analysis of Arkansas Nuclear One (ANO) Unit 1 nuclear power plant which was performed as part of the Interim Reliability Evaluation Program (IREP). The IREP has several objectives, two of which are achieved by the analysis presented in this report. These objectives are: (1) the identification, in a preliminary way, of those accident sequences which are expected to dominate the public health and safety risks; and (2) the development of state-of-the-art plant system models which can be used as a foundation for subsequent, more intensive applications of probabilistic risk assessment. The primary methodological tools used in the analysis were event trees and fault trees. These tools were used to study core melt accidents initiated by loss of coolant accidents (LOCAs) of six different break size ranges and eight different types of transients

  3. A dynamic programming algorithm for the buffer allocation problem in homogeneous asymptotically reliable serial production lines

    Directory of Open Access Journals (Sweden)

    Diamantidis A. C.

    2004-01-01

    Full Text Available In this study, the buffer allocation problem (BAP in homogeneous, asymptotically reliable serial production lines is considered. A known aggregation method, given by Lim, Meerkov, and Top (1990, for the performance evaluation (i.e., estimation of throughput of this type of production lines when the buffer allocation is known, is used as an evaluative method in conjunction with a newly developed dynamic programming (DP algorithm for the BAP. The proposed algorithm is applied to production lines where the number of machines is varying from four up to a hundred machines. The proposed algorithm is fast because it reduces the volume of computations by rejecting allocations that do not lead to maximization of the line's throughput. Numerical results are also given for large production lines.

  4. 49 CFR Appendix E to Part 238 - General Principles of Reliability-Based Maintenance Programs

    Science.gov (United States)

    2010-10-01

    ... STANDARDS Pt. 238, App. E Appendix E to Part 238—General Principles of Reliability-Based Maintenance... 49 Transportation 4 2010-10-01 2010-10-01 false General Principles of Reliability-Based... the design level of safety and reliability of the equipment; (2) To restore safety and reliability to...

  5. Reliability constrained decision model for energy service provider incorporating demand response programs

    International Nuclear Information System (INIS)

    Mahboubi-Moghaddam, Esmaeil; Nayeripour, Majid; Aghaei, Jamshid

    2016-01-01

    Highlights: • The operation of Energy Service Providers (ESPs) in electricity markets is modeled. • Demand response as the cost-effective solution is used for energy service provider. • The market price uncertainty is modeled using the robust optimization technique. • The reliability of the distribution network is embedded into the framework. • The simulation results demonstrate the benefits of robust framework for ESPs. - Abstract: Demand response (DR) programs are becoming a critical concept for the efficiency of current electric power industries. Therefore, its various capabilities and barriers have to be investigated. In this paper, an effective decision model is presented for the strategic behavior of energy service providers (ESPs) to demonstrate how to participate in the day-ahead electricity market and how to allocate demand in the smart distribution network. Since market price affects DR and vice versa, a new two-step sequential framework is proposed, in which unit commitment problem (UC) is solved to forecast the expected locational marginal prices (LMPs), and successively DR program is applied to optimize the total cost of providing energy for the distribution network customers. This total cost includes the cost of purchased power from the market and distributed generation (DG) units, incentive cost paid to the customers, and compensation cost of power interruptions. To obtain compensation cost, the reliability evaluation of the distribution network is embedded into the framework using some innovative constraints. Furthermore, to consider the unexpected behaviors of the other market participants, the LMP prices are modeled as the uncertainty parameters using the robust optimization technique, which is more practical compared to the conventional stochastic approach. The simulation results demonstrate the significant benefits of the presented framework for the strategic performance of ESPs.

  6. Dependence assessment in human reliability analysis based on D numbers and AHP

    International Nuclear Information System (INIS)

    Zhou, Xinyi; Deng, Xinyang; Deng, Yong; Mahadevan, Sankaran

    2017-01-01

    Highlights: • D numbers and AHP are combined to implement dependence assessment in HRA. • A new tool, called D numbers, is used to deal with the uncertainty in HRA. • The proposed method can well address the fuzziness and subjectivity in linguistic assessment. • The proposed method is well applicable in dependence assessment which inherently has a linguistic assessment process. - Abstract: Since human errors always cause heavy loss especially in nuclear engineering, human reliability analysis (HRA) has attracted more and more attention. Dependence assessment plays a vital role in HRA, measuring the dependence degree of human errors. Many researches have been done while still have improvement space. In this paper, a dependence assessment model based on D numbers and analytic hierarchy process (AHP) is proposed. Firstly, identify the factors used to measure the dependence level of two human operations. Besides, in terms of the suggested dependence level, determine and quantify the anchor points for each factor. Secondly, D numbers and AHP are adopted in model. Experts evaluate the dependence level of human operations for each factor. Then, the evaluation results are presented as D numbers and fused by D number’s combination rule that can obtain the dependence probability of human operations for each factor. The weights of factors can be determined by AHP. Thirdly, based on the dependence probability for each factor and its corresponding weight, the dependence probability of two human operations and its confidence can be obtained. The proposed method can well address the fuzziness and subjectivity in linguistic assessment. The proposed method is well applicable to assess the dependence degree of human errors in HRA which inherently has a linguistic assessment process.

  7. Dependence assessment in human reliability analysis based on D numbers and AHP

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xinyi; Deng, Xinyang [School of Computer and Information Science, Southwest University, Chongqing 400715 (China); Deng, Yong, E-mail: ydeng@swu.edu.cn [School of Computer and Information Science, Southwest University, Chongqing 400715 (China); Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054 (China); Mahadevan, Sankaran [School of Engineering, Vanderbilt University, Nashville, TN 37235 (United States)

    2017-03-15

    Highlights: • D numbers and AHP are combined to implement dependence assessment in HRA. • A new tool, called D numbers, is used to deal with the uncertainty in HRA. • The proposed method can well address the fuzziness and subjectivity in linguistic assessment. • The proposed method is well applicable in dependence assessment which inherently has a linguistic assessment process. - Abstract: Since human errors always cause heavy loss especially in nuclear engineering, human reliability analysis (HRA) has attracted more and more attention. Dependence assessment plays a vital role in HRA, measuring the dependence degree of human errors. Many researches have been done while still have improvement space. In this paper, a dependence assessment model based on D numbers and analytic hierarchy process (AHP) is proposed. Firstly, identify the factors used to measure the dependence level of two human operations. Besides, in terms of the suggested dependence level, determine and quantify the anchor points for each factor. Secondly, D numbers and AHP are adopted in model. Experts evaluate the dependence level of human operations for each factor. Then, the evaluation results are presented as D numbers and fused by D number’s combination rule that can obtain the dependence probability of human operations for each factor. The weights of factors can be determined by AHP. Thirdly, based on the dependence probability for each factor and its corresponding weight, the dependence probability of two human operations and its confidence can be obtained. The proposed method can well address the fuzziness and subjectivity in linguistic assessment. The proposed method is well applicable to assess the dependence degree of human errors in HRA which inherently has a linguistic assessment process.

  8. Interobserver Reliability of the Total Body Score System for Quantifying Human Decomposition.

    Science.gov (United States)

    Dabbs, Gretchen R; Connor, Melissa; Bytheway, Joan A

    2016-03-01

    Several authors have tested the accuracy of the Total Body Score (TBS) method for quantifying decomposition, but none have examined the reliability of the method as a scoring system by testing interobserver error rates. Sixteen participants used the TBS system to score 59 observation packets including photographs and written descriptions of 13 human cadavers in different stages of decomposition (postmortem interval: 2-186 days). Data analysis used a two-way random model intraclass correlation in SPSS (v. 17.0). The TBS method showed "almost perfect" agreement between observers, with average absolute correlation coefficients of 0.990 and average consistency correlation coefficients of 0.991. While the TBS method may have sources of error, scoring reliability is not one of them. Individual component scores were examined, and the influences of education and experience levels were investigated. Overall, the trunk component scores were the least concordant. Suggestions are made to improve the reliability of the TBS method. © 2016 American Academy of Forensic Sciences.

  9. Comparison of the THERP quantitative tables with the human reliability analysis techniques of second generation

    International Nuclear Information System (INIS)

    Alvarenga, Marco Antonio Bayout; Fonseca, Renato Alves

    2009-01-01

    The methodology THERP is classified as a Human Reliability Analysis (HRA) technique of first generation and its emergence was an important initial step for the development of HRA techniques in the industry. Due to the fact of being a first generation technique, THERP quantification tables of human errors are based on a taxonomy that does not take into account the human errors mechanisms. Concerning the three cognitive levels in the Rasmussen framework for the cognitive information processing in human beings, THERP deals in most cases with errors that happen in the perceptual-motor level (stimulus-response). In the rules level, this technique can work better using the time dependent probabilities curves of diagnosis errors, obtained in nuclear power plants simulators. Nevertheless, this is done without processing any error mechanisms. Another deficiency is the fact that the performance shaping factors are in limited number. Furthermore, the influences (predictable or not) of operational context, arising from operational deviations of the most probable (in terms of occurrence probabilities) standard scenarios beside the consequent operational tendencies (operator actions) are not estimated. This work makes a critical analysis of these deficiencies and it points out possible solutions in order to modify the THERP tables, seeking a realistic quantification, that does not underestimate or overestimate the human errors probabilities when applying the HRA techniques to nuclear power plants. The critical analysis is accomplished through a qualitative comparison between THERP, a HRA technique of first generation, with CREAM, as well as ATHEANA, which are HRA techniques of second generation. (author)

  10. The treatment of commission errors in first generation human reliability analysis methods

    Energy Technology Data Exchange (ETDEWEB)

    Alvarengga, Marco Antonio Bayout; Fonseca, Renato Alves da, E-mail: bayout@cnen.gov.b, E-mail: rfonseca@cnen.gov.b [Comissao Nacional de Energia Nuclear (CNEN) Rio de Janeiro, RJ (Brazil); Melo, Paulo Fernando Frutuoso e, E-mail: frutuoso@nuclear.ufrj.b [Coordenacao dos Programas de Pos-Graduacao de Engenharia (PEN/COPPE/UFRJ), RJ (Brazil). Programa de Engenharia Nuclear

    2011-07-01

    Human errors in human reliability analysis can be classified generically as errors of omission and commission errors. Omission errors are related to the omission of any human action that should have been performed, but does not occur. Errors of commission are those related to human actions that should not be performed, but which in fact are performed. Both involve specific types of cognitive error mechanisms, however, errors of commission are more difficult to model because they are characterized by non-anticipated actions that are performed instead of others that are omitted (omission errors) or are entered into an operational task without being part of the normal sequence of this task. The identification of actions that are not supposed to occur depends on the operational context that will influence or become easy certain unsafe actions of the operator depending on the operational performance of its parameters and variables. The survey of operational contexts and associated unsafe actions is a characteristic of second-generation models, unlike the first generation models. This paper discusses how first generation models can treat errors of commission in the steps of detection, diagnosis, decision-making and implementation, in the human information processing, particularly with the use of THERP tables of errors quantification. (author)

  11. Comparison of the THERP quantitative tables with the human reliability analysis techniques of second generation

    Energy Technology Data Exchange (ETDEWEB)

    Alvarenga, Marco Antonio Bayout; Fonseca, Renato Alves [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil)], e-mail: bayout@cnen.gov.br, e-mail: rfonseca@cnen.gov.br

    2009-07-01

    The methodology THERP is classified as a Human Reliability Analysis (HRA) technique of first generation and its emergence was an important initial step for the development of HRA techniques in the industry. Due to the fact of being a first generation technique, THERP quantification tables of human errors are based on a taxonomy that does not take into account the human errors mechanisms. Concerning the three cognitive levels in the Rasmussen framework for the cognitive information processing in human beings, THERP deals in most cases with errors that happen in the perceptual-motor level (stimulus-response). In the rules level, this technique can work better using the time dependent probabilities curves of diagnosis errors, obtained in nuclear power plants simulators. Nevertheless, this is done without processing any error mechanisms. Another deficiency is the fact that the performance shaping factors are in limited number. Furthermore, the influences (predictable or not) of operational context, arising from operational deviations of the most probable (in terms of occurrence probabilities) standard scenarios beside the consequent operational tendencies (operator actions) are not estimated. This work makes a critical analysis of these deficiencies and it points out possible solutions in order to modify the THERP tables, seeking a realistic quantification, that does not underestimate or overestimate the human errors probabilities when applying the HRA techniques to nuclear power plants. The critical analysis is accomplished through a qualitative comparison between THERP, a HRA technique of first generation, with CREAM, as well as ATHEANA, which are HRA techniques of second generation. (author)

  12. An advanced human reliability analysis methodology: analysis of cognitive errors focused on

    International Nuclear Information System (INIS)

    Kim, J. H.; Jeong, W. D.

    2001-01-01

    The conventional Human Reliability Analysis (HRA) methods such as THERP/ASEP, HCR and SLIM has been criticised for their deficiency in analysing cognitive errors which occurs during operator's decision making process. In order to supplement the limitation of the conventional methods, an advanced HRA method, what is called the 2 nd generation HRA method, including both qualitative analysis and quantitative assessment of cognitive errors has been being developed based on the state-of-the-art theory of cognitive systems engineering and error psychology. The method was developed on the basis of human decision-making model and the relation between the cognitive function and the performance influencing factors. The application of the proposed method to two emergency operation tasks is presented

  13. Systems analysis programs for hands-on integrated reliability evaluations (SAPHIRE) version 5.0

    International Nuclear Information System (INIS)

    Russell, K.D.; Kvarfordt, K.J.; Skinner, N.L.; Wood, S.T.

    1994-07-01

    The Systems Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE) refers to a set of several microcomputer programs that were developed to create and analyze probabilistic risk assessments (PRAs), primarily for nuclear power plants. This volume is the reference manual for the Systems Analysis and Risk Assessment (SARA) System Version 5.0, a microcomputer-based system used to analyze the safety issues of a open-quotes familyclose quotes [i.e., a power plant, a manufacturing facility, any facility on which a probabilistic risk assessment (PRA) might be performed]. The SARA database contains PRA data primarily for the dominant accident sequences of a family and descriptive information about the family including event trees, fault trees, and system model diagrams. The number of facility databases that can be accessed is limited only by the amount of disk storage available. To simulate changes to family systems, SARA users change the failure rates of initiating and basic events and/or modify the structure of the cut sets that make up the event trees, fault trees, and systems. The user then evaluates the effects of these changes through the recalculation of the resultant accident sequence probabilities and importance measures. The results are displayed in tables and graphs that may be printed for reports. A preliminary version of the SARA program was completed in August 1985 and has undergone several updates in response to user suggestions and to maintain compatibility with the other SAPHIRE programs. Version 5.0 of SARA provides the same capability as earlier versions and adds the ability to process unlimited cut sets; display fire, flood, and seismic data; and perform more powerful cut set editing

  14. Raman spectroscopy of human skin: looking for a quantitative algorithm to reliably estimate human age

    Science.gov (United States)

    Pezzotti, Giuseppe; Boffelli, Marco; Miyamori, Daisuke; Uemura, Takeshi; Marunaka, Yoshinori; Zhu, Wenliang; Ikegaya, Hiroshi

    2015-06-01

    The possibility of examining soft tissues by Raman spectroscopy is challenged in an attempt to probe human age for the changes in biochemical composition of skin that accompany aging. We present a proof-of-concept report for explicating the biophysical links between vibrational characteristics and the specific compositional and chemical changes associated with aging. The actual existence of such links is then phenomenologically proved. In an attempt to foster the basics for a quantitative use of Raman spectroscopy in assessing aging from human skin samples, a precise spectral deconvolution is performed as a function of donors' ages on five cadaveric samples, which emphasizes the physical significance and the morphological modifications of the Raman bands. The outputs suggest the presence of spectral markers for age identification from skin samples. Some of them appeared as authentic "biological clocks" for the apparent exactness with which they are related to age. Our spectroscopic approach yields clear compositional information of protein folding and crystallization of lipid structures, which can lead to a precise identification of age from infants to adults. Once statistically validated, these parameters might be used to link vibrational aspects at the molecular scale for practical forensic purposes.

  15. Human error data collection as a precursor to the development of a human reliability assessment capability in air traffic management

    International Nuclear Information System (INIS)

    Kirwan, Barry; Gibson, W. Huw; Hickling, Brian

    2008-01-01

    Quantified risk and safety assessments are now required for safety cases for European air traffic management (ATM) services. Since ATM is highly human-dependent for its safety, this suggests a need for formal human reliability assessment (HRA), as carried out in other industries such as nuclear power. Since the fundamental aspect of HRA is human error data, in the form of human error probabilities (HEPs), it was decided to take a first step towards development of an ATM HRA approach by deriving some HEPs in an ATM context. This paper reports a study, which collected HEPs via analysing the results of a real-time simulation involving air traffic controllers (ATCOs) and pilots, with a focus on communication errors. This study did indeed derive HEPs that were found to be concordant with other known communication human error data. This is a first step, and shows promise for HRA in ATM, since HEPs have been derived which could be used in safety assessments, although these HEPs are for only one (albeit critical) aspect of ATCOs' tasks (communications). The paper discusses options and potential ways forward for the development of a full HRA capability in ATM

  16. A structural approach to constructing perspective efficient and reliable human-computer interfaces

    International Nuclear Information System (INIS)

    Balint, L.

    1989-01-01

    The principles of human-computer interface (HCI) realizations are investigated with the aim of getting closer to a general framework and thus, to a more or less solid background of constructing perspective efficient, reliable and cost-effective human-computer interfaces. On the basis of characterizing and classifying the different HCI solutions, the fundamental problems of interface construction are pointed out especially with respect to human error occurrence possibilities. The evolution of HCI realizations is illustrated by summarizing the main properties of past, present and foreseeable future interface generations. HCI modeling is pointed out to be a crucial problem in theoretical and practical investigations. Suggestions concerning HCI structure (hierarchy and modularity), HCI functional dynamics (mapping from input to output information), minimization of human error caused system failures (error-tolerance, error-recovery and error-correcting) as well as cost-effective HCI design and realization methodology (universal and application-oriented vs. application-specific solutions) are presented. The concept of RISC-based and SCAMP-type HCI components is introduced with the aim of having a reduced interaction scheme in communication and a well defined architecture in HCI components' internal structure. HCI efficiency and reliability are dealt with, by taking into account complexity and flexibility. The application of fast computerized prototyping is also briefly investigated as an experimental device of achieving simple, parametrized, invariant HCI models. Finally, a concise outline of an approach of how to construct ideal HCI's is also suggested by emphasizing the open questions and the need of future work related to the proposals, as well. (author). 14 refs, 6 figs

  17. A shortened version of the THERP/Handbook approach to human reliability analysis for probabilistic risk assessment

    International Nuclear Information System (INIS)

    Swain, A.D.

    1986-01-01

    The approach to human reliability analysis (HRA) known as THERP/Handbook has been applied to several probabilistic risk assessments (PRAs) of nuclear power plants (NPPs) and other complex systems. The approach is based on a thorough task analysis of the man-machine interfaces, including the interactions among the people, involved in the operations being assessed. The idea is to assess fully the underlying performance shaping factors (PSFs) and dependence effects which result either in reliable or unreliable human performance

  18. Development of A Standard Method for Human Reliability Analysis (HRA) of Nuclear Power Plants

    International Nuclear Information System (INIS)

    Kang, Dae Il; Jung, Won Dea; Kim, Jae Whan

    2005-12-01

    According as the demand of risk-informed regulation and applications increase, the quality and reliability of a probabilistic safety assessment (PSA) has been more important. KAERI started a study to standardize the process and the rules of HRA (Human Reliability Analysis) which was known as a major contributor to the uncertainty of PSA. The study made progress as follows; assessing the level of quality of the HRAs in Korea and identifying the weaknesses of the HRAs, determining the requirements for developing a standard HRA method, developing the process and rules for quantifying human error probability. Since the risk-informed applications use the ASME and ANS PSA standard to ensure PSA quality, the standard HRA method was developed to meet the ASME and ANS HRA requirements with level of category II. The standard method was based on THERP and ASEP HRA that are widely used for conventional HRA. However, the method focuses on standardizing and specifying the analysis process, quantification rules and criteria to minimize the deviation of the analysis results caused by different analysts. Several HRA experts from different organizations in Korea participated in developing the standard method. Several case studies were interactively undertaken to verify the usability and applicability of the standard method

  19. Development of A Standard Method for Human Reliability Analysis of Nuclear Power Plants

    International Nuclear Information System (INIS)

    Jung, Won Dea; Kang, Dae Il; Kim, Jae Whan

    2005-12-01

    According as the demand of risk-informed regulation and applications increase, the quality and reliability of a probabilistic safety assessment (PSA) has been more important. KAERI started a study to standardize the process and the rules of HRA (Human Reliability Analysis) which was known as a major contributor to the uncertainty of PSA. The study made progress as follows; assessing the level of quality of the HRAs in Korea and identifying the weaknesses of the HRAs, determining the requirements for developing a standard HRA method, developing the process and rules for quantifying human error probability. Since the risk-informed applications use the ASME PSA standard to ensure PSA quality, the standard HRA method was developed to meet the ASME HRA requirements with level of category II. The standard method was based on THERP and ASEP HRA that are widely used for conventional HRA. However, the method focuses on standardizing and specifying the analysis process, quantification rules and criteria to minimize the deviation of the analysis results caused by different analysts. Several HRA experts from different organizations in Korea participated in developing the standard method. Several case studies were interactively undertaken to verify the usability and applicability of the standard method

  20. Development of A Standard Method for Human Reliability Analysis of Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Won Dea; Kang, Dae Il; Kim, Jae Whan

    2005-12-15

    According as the demand of risk-informed regulation and applications increase, the quality and reliability of a probabilistic safety assessment (PSA) has been more important. KAERI started a study to standardize the process and the rules of HRA (Human Reliability Analysis) which was known as a major contributor to the uncertainty of PSA. The study made progress as follows; assessing the level of quality of the HRAs in Korea and identifying the weaknesses of the HRAs, determining the requirements for developing a standard HRA method, developing the process and rules for quantifying human error probability. Since the risk-informed applications use the ASME PSA standard to ensure PSA quality, the standard HRA method was developed to meet the ASME HRA requirements with level of category II. The standard method was based on THERP and ASEP HRA that are widely used for conventional HRA. However, the method focuses on standardizing and specifying the analysis process, quantification rules and criteria to minimize the deviation of the analysis results caused by different analysts. Several HRA experts from different organizations in Korea participated in developing the standard method. Several case studies were interactively undertaken to verify the usability and applicability of the standard method.

  1. Development of A Standard Method for Human Reliability Analysis (HRA) of Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Dae Il; Jung, Won Dea; Kim, Jae Whan

    2005-12-15

    According as the demand of risk-informed regulation and applications increase, the quality and reliability of a probabilistic safety assessment (PSA) has been more important. KAERI started a study to standardize the process and the rules of HRA (Human Reliability Analysis) which was known as a major contributor to the uncertainty of PSA. The study made progress as follows; assessing the level of quality of the HRAs in Korea and identifying the weaknesses of the HRAs, determining the requirements for developing a standard HRA method, developing the process and rules for quantifying human error probability. Since the risk-informed applications use the ASME and ANS PSA standard to ensure PSA quality, the standard HRA method was developed to meet the ASME and ANS HRA requirements with level of category II. The standard method was based on THERP and ASEP HRA that are widely used for conventional HRA. However, the method focuses on standardizing and specifying the analysis process, quantification rules and criteria to minimize the deviation of the analysis results caused by different analysts. Several HRA experts from different organizations in Korea participated in developing the standard method. Several case studies were interactively undertaken to verify the usability and applicability of the standard method.

  2. A Human Reliability Analysis of Post- Accident Human Errors in the Low Power and Shutdown PSA of KSNP

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Daeil; Kim, J. H.; Jang, S. C

    2007-03-15

    Korea Atomic Energy Research Institute, using the ANS low power and shutdown (LPSD) probabilistic risk assessment (PRA) Standard, evaluated the LPSD PSA model of the KSNP, Yonggwang Units 5 and 6, and identified the items to be improved. The evaluation results of human reliability analysis (HRA) of the post-accident human errors in the LPSD PSA model for the KSNP showed that 10 items among 19 items of supporting requirements for those in the ANS PRA Standard were identified as them to be improved. Thus, we newly carried out a HRA for post-accident human errors in the LPSD PSA model for the KSNP. Following tasks are the improvements in the HRA of post-accident human errors of the LPSD PSA model for the KSNP compared with the previous one: Interviews with operators in the interpretation of the procedure, modeling of operator actions, and the quantification results of human errors, site visit. Applications of limiting value to the combined post-accident human errors. Documentation of information of all the input and bases for the detailed quantifications and the dependency analysis using the quantification sheets The assessment results for the new HRA results of post-accident human errors using the ANS LPSD PRA Standard show that above 80% items of its supporting requirements for post-accident human errors were graded as its Category II. The number of the re-estimated human errors using the LPSD Korea Standard HRA method is 385. Among them, the number of individual post-accident human errors is 253. The number of dependent post-accident human errors is 135. The quantification results of the LPSD PSA model for the KSNP with new HEPs show that core damage frequency (CDF) is increased by 5.1% compared with the previous baseline CDF It is expected that this study results will be greatly helpful to improve the PSA quality for the domestic nuclear power plants because they have sufficient PSA quality to meet the Category II of Supporting Requirements for the post

  3. A Human Reliability Analysis of Post- Accident Human Errors in the Low Power and Shutdown PSA of KSNP

    International Nuclear Information System (INIS)

    Kang, Daeil; Kim, J. H.; Jang, S. C.

    2007-03-01

    Korea Atomic Energy Research Institute, using the ANS low power and shutdown (LPSD) probabilistic risk assessment (PRA) Standard, evaluated the LPSD PSA model of the KSNP, Yonggwang Units 5 and 6, and identified the items to be improved. The evaluation results of human reliability analysis (HRA) of the post-accident human errors in the LPSD PSA model for the KSNP showed that 10 items among 19 items of supporting requirements for those in the ANS PRA Standard were identified as them to be improved. Thus, we newly carried out a HRA for post-accident human errors in the LPSD PSA model for the KSNP. Following tasks are the improvements in the HRA of post-accident human errors of the LPSD PSA model for the KSNP compared with the previous one: Interviews with operators in the interpretation of the procedure, modeling of operator actions, and the quantification results of human errors, site visit. Applications of limiting value to the combined post-accident human errors. Documentation of information of all the input and bases for the detailed quantifications and the dependency analysis using the quantification sheets The assessment results for the new HRA results of post-accident human errors using the ANS LPSD PRA Standard show that above 80% items of its supporting requirements for post-accident human errors were graded as its Category II. The number of the re-estimated human errors using the LPSD Korea Standard HRA method is 385. Among them, the number of individual post-accident human errors is 253. The number of dependent post-accident human errors is 135. The quantification results of the LPSD PSA model for the KSNP with new HEPs show that core damage frequency (CDF) is increased by 5.1% compared with the previous baseline CDF It is expected that this study results will be greatly helpful to improve the PSA quality for the domestic nuclear power plants because they have sufficient PSA quality to meet the Category II of Supporting Requirements for the post

  4. QA support for TFTR reliability improvement program in preparation for DT operation

    International Nuclear Information System (INIS)

    Parsells, R.F.; Howard, H.P.

    1987-01-01

    As TFTR approaches experiments in the Q=1 regime, machine reliability becomes a major variable in achieving experimental objectives. This paper describes the methods used to quantify current reliability levels, levels required for D-T operations, proposed methods for reliability growth and improvement, and tracking of reliability performance in that growth. Included in this scope are data collection techniques and short comings, bounding current reliability on the upper end, and requirements for D-T operations. Problem characterization through Pareto diagrams provides insight into recurrent failure modes and the use of Duane plots for charting of reliability changes both cumulative and instantaneous, is explained and demonstrated

  5. SAPHIRE6.64, System Analysis Programs for Hands-on Integrated Reliability

    International Nuclear Information System (INIS)

    2001-01-01

    1 - Description of program or function: SAPHIRE is a collection of programs developed for the purpose of performing those functions necessary to create and analyze a complete Probabilistic Risk Assessment (PRA) primarily for nuclear power plants. The programs included in this suite are the Integrated Reliability and Risk Analysis System (IRRAS), the System Analysis and Risk Assessment (SARA) system, the Models And Results Database (MAR-D) system, and the Fault tree, Event tree and P and ID (FEP) editors. Previously these programs were released as separate packages. These programs include functions to allow the user to create event trees and fault trees, to define accident sequences and basic event failure data, to solve system and accident sequence fault trees, to quantify cut sets, and to perform uncertainty analysis on the results. Also included in this program are features to allow the analyst to generate reports and displays that can be used to document the results of an analysis. Since this software is a very detailed technical tool, the user of this program should be familiar with PRA concepts and the methods used to perform these analyses. 2 - Methods: SAPHIRE is written in MODULA-2 and uses an integrated commercial graphics package to interactively construct and edit fault trees. The fault tree solving methods used are industry recognized top down algorithms. For quantification, the program uses standard methods to propagate the failure information through the generated cut sets. SAPHIRE includes a separate module called the Graphical Evaluation Module (GEM). GEM provides a highly specialized user interface with SAPHIRE which automates the process for evaluating operational events at commercial nuclear power plants. Using GEM an analyst can estimate the risk associated with operational events (that is, perform a Level 1, Level 2, and Level 3 analysis for operational events) in a very efficient and expeditious manner. This on-line reference guide will

  6. Human reliability analysis for venting a BWR Mark I during a severe accident

    International Nuclear Information System (INIS)

    Nelson, W.R.; Blackman, H.S.

    1986-01-01

    A Human Reliability Analysis (HRA) was performed for the operator actions necessary to achieve containment venting for the Peach Bottom Atomic Power Station. This study was funded by the United States Nuclear Regulatory Commission (USNRC) and performed by the Idaho National Engineering Laboratory (INEL). The goal of the analysis was to estimate Human Error Probabilities (HEPs) to determine the likelihood that operators would fail to complete the venting process. The analysis was performed for two generic accident sequences: anticipated transient without scram (ATWS) and station blackout. Two major methods were used to estimate the HEPs: Technique for Human Error rate Prediction (THERP) and Success Likelihood Index Methodology (SLIM). For the ATWS scenarios analyzed, the calculated HEPs ranged from 0.23 to 0.35, depending on the number of vent paths that are required to reduce the containment pressure. It should be noted that the confidence bounds around these HEPs are large, However, even when considering the large confidence range, the failure probabilities are larger than what is typical for normal operator actions. For station blackout, the HEP is 1.0, resulting from the dangerous environmental conditions that are present, assuming that plant management would not deliberately expose personnel to a potentially fatal environment. These results are based on the analysis of draft procedures for containment venting. It is probable that careful revision of the procedures could reduce the human error probabilities

  7. NKA/KRU project on operator training, control room designing and human reliability. Summary report

    International Nuclear Information System (INIS)

    1981-06-01

    A Nordic integrated project on human reliability in the conditions of new advanced technology seeks to establish: - The actual repertoire of activities and tasks performed by the operating staff of a nuclear power plant and its dependence on the present and future levels of automation. - The knowledge required for these activities and appropriate means for training plant operators and for competence evaluation and retraining in coping with the rare events. - Models of human operator performance; how do operators read information and make decisions under normal and abnormal plant conditions and how does their performance depend upon control room design. - The typical limits of human capabilities and mechanisms of human errors as they are represented in existing records of incidents and accidents in industrial plants. - The use of process computers for improved design of data presentation and operator support systems, especially for disturbance analysis and diagnosis during infrequent plant disturbance. - Development of experimental techniques to validate research results and proposals for improved man/machine interfaces and other computer-based support systems. (EG)

  8. The development of a nuclear chemical plant human reliability management approach: HRMS and JHEDI

    International Nuclear Information System (INIS)

    Kirwan, Barry

    1997-01-01

    In the late 1980's, amidst the qualitative and quantitative validation of certain Human Reliability Assessment (HRA) techniques, there was a desire for a new technique specifically for a nuclear reprocessing plant being designed. The technique was to have the following attributes: it should be data-based rather than involving pure expert judgement; it was to be flexible, so that it would allow both relatively rapid screening and more detailed assessment; and it was to have sensitivity analysis possibilities, so that Human Factors design-related parameters, albeit at a gross level, could be brought into the risk assessment equation. The techniques and literature were surveyed, and it was decided that no one technique fulfilled these requirements, and so a new approach was developed. Two techniques were devised, the Human Reliability Management System (HRMS), and the Justification of Human Error Data Information (JHEDI) technique, the latter being essentially a quicker screening version of the former. Both techniques carry out task analysis, error analysis, and Performance Shaping Factor-based quantification, but JHEDI involves less detailed assessment than HRMS. Additionally, HRMS can be utilised to determine error reduction mechanisms, based on the way the Performance Shaping Factors are contributing to the assessed error probabilities. Both techniques are fully computerised and assessments are highly documentable and auditable, which was seen as a useful feature both by the company developing the techniques, and by the regulatory authorities assessing the final output risk assessments into which these two techniques fed data. This paper focuses in particular on the quantification process used by these techniques. The quantification approach for both techniques was principally one of extrapolation from real data to the desired Human Error Probability (HEP), based on a comparison between Performance Shaping Factor (PSF) profiles for the real, and the to

  9. Reliability and acceptability of a five-station multiple mini-interview model for residency program recruitment

    Directory of Open Access Journals (Sweden)

    Julian Diaz Fraga

    2013-12-01

    Full Text Available Background: Standard interviews are used by most residency programs in the United States for assessment of aptitude of the non-cognitive competencies, but variability of interviewer skill, interviewer bias, interviewer leniency or stringency, and context specificity limit reliability. Aim: To investigate reliability and acceptability of five-station multiple mini-interview (MMI model for resident selection into an internal medicine residency program in the United States. Setting: One independent academic medical center. Participants: Two hundred and thirty-seven applicants and 17 faculty interviewers. Program description: Five, 10-min MMI stations with five different interviewers blinded to the candidate's records and one traditional 20-min interview with the program director. Candidates were rated on two items: interpersonal and communication skills, and overall performance. Program evaluation: Generalizability data showed that the reliability of our process was high (>0.9. The results of anonymous surveys demonstrated that both applicants and interviewers consider the MMI as a fair and more effective tool to evaluate non-cognitive traits, and prefer the MMI to standard interviews. Discussion: The MMI process for residency interviews can generate reliable interview results using only five stations, and it is acceptable and preferred over standard interview modalities by the applicants and faculty members of one US residency program.

  10. Phoenix – A model-based Human Reliability Analysis methodology: Qualitative Analysis Procedure

    International Nuclear Information System (INIS)

    Ekanem, Nsimah J.; Mosleh, Ali; Shen, Song-Hua

    2016-01-01

    Phoenix method is an attempt to address various issues in the field of Human Reliability Analysis (HRA). Built on a cognitive human response model, Phoenix incorporates strong elements of current HRA good practices, leverages lessons learned from empirical studies, and takes advantage of the best features of existing and emerging HRA methods. Its original framework was introduced in previous publications. This paper reports on the completed methodology, summarizing the steps and techniques of its qualitative analysis phase. The methodology introduces the “Crew Response Tree” which provides a structure for capturing the context associated with Human Failure Events (HFEs), including errors of omission and commission. It also uses a team-centered version of the Information, Decision and Action cognitive model and “macro-cognitive” abstractions of crew behavior, as well as relevant findings from cognitive psychology literature and operating experience, to identify potential causes of failures and influencing factors during procedure-driven and knowledge-supported crew-plant interactions. The result is the set of identified HFEs and likely scenarios leading to each. The methodology itself is generic in the sense that it is compatible with various quantification methods, and can be adapted for use across different environments including nuclear, oil and gas, aerospace, aviation, and healthcare. - Highlights: • Produces a detailed, consistent, traceable, reproducible and properly documented HRA. • Uses “Crew Response Tree” to capture context associated with Human Failure Events. • Models dependencies between Human Failure Events and influencing factors. • Provides a human performance model for relating context to performance. • Provides a framework for relating Crew Failure Modes to its influencing factors.

  11. Space Shuttle Program Primary Avionics Software System (PASS) Success Legacy - Quality and Reliability Date

    Science.gov (United States)

    Orr, James K.; Peltier, Daryl

    2010-01-01

    Thsi slide presentation reviews the avionics software system on board the space shuttle, with particular emphasis on the quality and reliability. The Primary Avionics Software System (PASS) provides automatic and fly-by-wire control of critical shuttle systems which executes in redundant computers. Charts given show the number of space shuttle flights vs time, PASS's development history, and other charts that point to the reliability of the system's development. The reliability of the system is also compared to predicted reliability.

  12. Human reliability guidance - How to increase the synergies between human reliability, human factors, and system design and engineering. Phase 1: The Nordic Point of View - A user needs analysis

    International Nuclear Information System (INIS)

    Oxstrand, J.; Boring, R.L.

    2010-12-01

    The main goal of this Nordic Nuclear Safety Research (NKS) council project is to produce guidance for how to use human reliability analysis (HRA) to strengthen overall safety. This project is intended to work across (and hopefully diminish) the borders that exist between human reliability analysis (HRA) and human-system interaction, human performance, human factors, and probabilistic risk assessment at Nordic nuclear power plants. This project consists of two major phases, where the initial phase (phase 1) is a study of current practices in the Nordic region, which is presented in this report. Even though the project covers the synergies between HRA and all other relevant fields, the main focus for the phase is to bridge HRA and design. Interviews with 26 Swedish and Finnish plant experts are summarized the present report, and 10 principles to improve the utilization of HRA at plants are presented. A second study, which is not documented in this preliminary report, will chronicle insights into how the US nuclear industry works with HRA. To gain this knowledge the author will conduct interviews with the US regulator, research laboratories, and utilities. (Author)

  13. Postretrieval new learning does not reliably induce human memory updating via reconsolidation.

    Science.gov (United States)

    Hardwicke, Tom E; Taqi, Mahdi; Shanks, David R

    2016-05-10

    Reconsolidation theory proposes that retrieval can destabilize an existing memory trace, opening a time-dependent window during which that trace is amenable to modification. Support for the theory is largely drawn from nonhuman animal studies that use invasive pharmacological or electroconvulsive interventions to disrupt a putative postretrieval restabilization ("reconsolidation") process. In human reconsolidation studies, however, it is often claimed that postretrieval new learning can be used as a means of "updating" or "rewriting" existing memory traces. This proposal warrants close scrutiny because the ability to modify information stored in the memory system has profound theoretical, clinical, and ethical implications. The present study aimed to replicate and extend a prominent 3-day motor-sequence learning study [Walker MP, Brakefield T, Hobson JA, Stickgold R (2003) Nature 425(6958):616-620] that is widely cited as a convincing demonstration of human reconsolidation. However, in four direct replication attempts (n = 64), we did not observe the critical impairment effect that has previously been taken to indicate disruption of an existing motor memory trace. In three additional conceptual replications (n = 48), we explored the broader validity of reconsolidation-updating theory by using a declarative recall task and sequences similar to phone numbers or computer passwords. Rather than inducing vulnerability to interference, memory retrieval appeared to aid the preservation of existing sequence knowledge relative to a no-retrieval control group. These findings suggest that memory retrieval followed by new learning does not reliably induce human memory updating via reconsolidation.

  14. Task analysis and computer aid development for human reliability analysis in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, W. C.; Kim, H.; Park, H. S.; Choi, H. H.; Moon, J. M.; Heo, J. Y.; Ham, D. H.; Lee, K. K.; Han, B. T. [Korea Advanced Institute of Science and Technology, Taejeon (Korea)

    2001-04-01

    Importance of human reliability analysis (HRA) that predicts the error's occurrence possibility in a quantitative and qualitative manners is gradually increased by human errors' effects on the system's safety. HRA needs a task analysis as a virtue step, but extant task analysis techniques have the problem that a collection of information about the situation, which the human error occurs, depends entirely on HRA analyzers. The problem makes results of the task analysis inconsistent and unreliable. To complement such problem, KAERI developed the structural information analysis (SIA) that helps to analyze task's structure and situations systematically. In this study, the SIA method was evaluated by HRA experts, and a prototype computerized supporting system named CASIA (Computer Aid for SIA) was developed for the purpose of supporting to perform HRA using the SIA method. Additionally, through applying the SIA method to emergency operating procedures, we derived generic task types used in emergency and accumulated the analysis results in the database of the CASIA. The CASIA is expected to help HRA analyzers perform the analysis more easily and consistently. If more analyses will be performed and more data will be accumulated to the CASIA's database, HRA analyzers can share freely and spread smoothly his or her analysis experiences, and there by the quality of the HRA analysis will be improved. 35 refs., 38 figs., 25 tabs. (Author)

  15. Screening, sensitivity, and uncertainty for the CREAM method of Human Reliability Analysis

    International Nuclear Information System (INIS)

    Bedford, Tim; Bayley, Clare; Revie, Matthew

    2013-01-01

    This paper reports a sensitivity analysis of the Cognitive Reliability and Error Analysis Method for Human Reliability Analysis. We consider three different aspects: the difference between the outputs of the Basic and Extended methods, on the same HRA scenario; the variability in outputs through the choices made for common performance conditions (CPCs); and the variability in outputs through the assignment of choices for cognitive function failures (CFFs). We discuss the problem of interpreting categories when applying the method, compare its quantitative structure to that of first generation methods and discuss also how dependence is modelled with the approach. We show that the control mode intervals used in the Basic method are too narrow to be consistent with the Extended method. This motivates a new screening method that gives improved accuracy with respect to the Basic method, in the sense that (on average) halves the uncertainty associated with the Basic method. We make some observations on the design of a screening method that are generally applicable in Risk Analysis. Finally, we propose a new method of combining CPC weights with nominal probabilities so that the calculated probabilities are always in range (i.e. between 0 and 1), while satisfying sensible properties that are consistent with the overall CREAM method

  16. Selection of suitable hand gestures for reliable myoelectric human computer interface.

    Science.gov (United States)

    Castro, Maria Claudia F; Arjunan, Sridhar P; Kumar, Dinesh K

    2015-04-09

    Myoelectric controlled prosthetic hand requires machine based identification of hand gestures using surface electromyogram (sEMG) recorded from the forearm muscles. This study has observed that a sub-set of the hand gestures have to be selected for an accurate automated hand gesture recognition, and reports a method to select these gestures to maximize the sensitivity and specificity. Experiments were conducted where sEMG was recorded from the muscles of the forearm while subjects performed hand gestures and then was classified off-line. The performances of ten gestures were ranked using the proposed Positive-Negative Performance Measurement Index (PNM), generated by a series of confusion matrices. When using all the ten gestures, the sensitivity and specificity was 80.0% and 97.8%. After ranking the gestures using the PNM, six gestures were selected and these gave sensitivity and specificity greater than 95% (96.5% and 99.3%); Hand open, Hand close, Little finger flexion, Ring finger flexion, Middle finger flexion and Thumb flexion. This work has shown that reliable myoelectric based human computer interface systems require careful selection of the gestures that have to be recognized and without such selection, the reliability is poor.

  17. Are We Hoping For A Bounce A Study On Resilience And Human Relations In A High Reliability Organization

    Science.gov (United States)

    2016-03-01

    negatively impact the organization’s resilience when faced with workplace stressors (Gittell, 2008, p. 26). Consequently, this reduces an organization’s...2014). Organizational resilience and the challenge for human resource management: Conceptualizations and frameworks for theory and practice. Paper...A BOUNCE? A STUDY ON RESILIENCE AND HUMAN RELATIONS IN A HIGH RELIABILITY ORGANIZATION by Robert D. Johns March 2016 Thesis Advisor

  18. MAPPS (Maintenance Personnel Performance Simulation): a computer simulation model for human reliability analysis

    International Nuclear Information System (INIS)

    Knee, H.E.; Haas, P.M.

    1985-01-01

    A computer model has been developed, sensitivity tested, and evaluated capable of generating reliable estimates of human performance measures in the nuclear power plant (NPP) maintenance context. The model, entitled MAPPS (Maintenance Personnel Performance Simulation), is of the simulation type and is task-oriented. It addresses a number of person-machine, person-environment, and person-person variables and is capable of providing the user with a rich spectrum of important performance measures including mean time for successful task performance by a maintenance team and maintenance team probability of task success. These two measures are particularly important for input to probabilistic risk assessment (PRA) studies which were the primary impetus for the development of MAPPS. The simulation nature of the model along with its generous input parameters and output variables allows its usefulness to extend beyond its input to PRA

  19. Guidelines for the regulatory review of the human reliability analysis in PSAs

    International Nuclear Information System (INIS)

    Reer, Bernhard; Dang, V.N.; Hirschberg, Stefan; Meyer, Patrick

    2000-01-01

    In the review guidelines recently developed for the Swiss Federal Nuclear Inspectorate, the Human Reliability Analysis (HRA) is reviewed in two stages. The preliminary review is aimed at identifying major shortcomings and potential issues to be examined in the detailed review. The detailed review comprehensively addresses the overall adequacy and transparency of the HRA. For the two review stages, 97 indicators are defined in terms of questions focusing on verifiable features of the methodology, implementation and results. The guidelines provide steps for information gathering and present examples of acceptable practices as well as of potential deficiencies. Both review stages may result in requests for clarification, additional documentation or analyses. The first applications of the guidelines consist of the preliminary reviews of two HRAs. (author)

  20. Human and organisational factors influencing the reliability of non-destructive testing. An international literary survey

    International Nuclear Information System (INIS)

    Kettunen, J.; Norros, L.

    1996-04-01

    The aim of the study is to chart human and organisational factors influencing the reliability of non-destructive testing (NDT). The emphasis will be in ultrasonic testing (UT) and in the planning and execution of in-service inspections during nuclear power plant maintenance outages. Being a literary survey this study is mainly based on the foreign and domestic research available on the topic. In consequence, the results presented in this report reflect the ideas of international research community. In addition to this, Finnish nuclear power plant operators (Imatran Voima Oy and Teollisuuden Voima Oy), independent inspection organisations and the Finnish Centre for Radiation and Nuclear Safety have provided us with valuable information on NDT theory and practice. Especially, a kind of 'big picture' of non-destructive testing has been pursued in the study. (6 figs., 2 tabs.)

  1. CONSIDERATIONS FOR THE TREATMENT OF COMPUTERIZED PROCEDURES IN HUMAN RELIABILITY ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    Ronald L. Boring; David I. Gertman

    2012-07-01

    Computerized procedures (CPs) are an emerging technology within nuclear power plant control rooms. While CPs have been implemented internationally in advanced control rooms, to date no US nuclear power plant has implemented CPs in its main control room. Yet, CPs are a reality of new plant builds and are an area of considerable interest to existing plants, which see advantages in terms of easier records management by omitting the need for updating hardcopy procedures. The overall intent of this paper is to provide a characterization of human reliability analysis (HRA) issues for computerized procedures. It is beyond the scope of this document to propose a new HRA approach or to recommend specific methods or refinements to those methods. Rather, this paper serves as a review of current HRA as it may be used for the analysis and review of computerized procedures.

  2. HUMAN RELIABILITY ANALYSIS FOR COMPUTERIZED PROCEDURES, PART TWO: APPLICABILITY OF CURRENT METHODS

    Energy Technology Data Exchange (ETDEWEB)

    Ronald L. Boring; David I. Gertman

    2012-10-01

    Computerized procedures (CPs) are an emerging technology within nuclear power plant control rooms. While CPs have been implemented internationally in advanced control rooms, to date no U.S. nuclear power plant has implemented CPs in its main control room. Yet, CPs are a reality of new plant builds and are an area of considerable interest to existing plants, which see advantages in terms of easier records management by omitting the need for updating hardcopy procedures. The overall intent of this paper is to provide a characterization of human reliability analysis (HRA) issues for computerized procedures. It is beyond the scope of this document to propose a new HRA approach or to recommend specific methods or refinements to those methods. Rather, this paper serves as a review of current HRA as it may be used for the analysis and review of computerized procedures.

  3. Adapting Human Reliability Analysis from Nuclear Power to Oil and Gas Applications

    Energy Technology Data Exchange (ETDEWEB)

    Boring, Ronald Laurids [Idaho National Laboratory

    2015-09-01

    ABSTRACT: Human reliability analysis (HRA), as currently used in risk assessments, largely derives its methods and guidance from application in the nuclear energy domain. While there are many similarities be-tween nuclear energy and other safety critical domains such as oil and gas, there remain clear differences. This paper provides an overview of HRA state of the practice in nuclear energy and then describes areas where refinements to the methods may be necessary to capture the operational context of oil and gas. Many key distinctions important to nuclear energy HRA such as Level 1 vs. Level 2 analysis may prove insignifi-cant for oil and gas applications. On the other hand, existing HRA methods may not be sensitive enough to factors like the extensive use of digital controls in oil and gas. This paper provides an overview of these con-siderations to assist in the adaptation of existing nuclear-centered HRA methods to the petroleum sector.

  4. Digital music exposure reliably induces temporary threshold shift in normal-hearing human subjects.

    Science.gov (United States)

    Le Prell, Colleen G; Dell, Shawna; Hensley, Brittany; Hall, James W; Campbell, Kathleen C M; Antonelli, Patrick J; Green, Glenn E; Miller, James M; Guire, Kenneth

    2012-01-01

    One of the challenges for evaluating new otoprotective agents for potential benefit in human populations is the availability of an established clinical paradigm with real-world relevance. These studies were explicitly designed to develop a real-world digital music exposure that reliably induces temporary threshold shift (TTS) in normal-hearing human subjects. Thirty-three subjects participated in studies that measured effects of digital music player use on hearing. Subjects selected either rock or pop music, which was then presented at 93 to 95 (n = 10), 98 to 100 (n = 11), or 100 to 102 (n = 12) dBA in-ear exposure level for a period of 4 hr. Audiograms and distortion product otoacoustic emissions (DPOAEs) were measured before and after music exposure. Postmusic tests were initiated 15 min, 1 hr 15 min, 2 hr 15 min, and 3 hr 15 min after the exposure ended. Additional tests were conducted the following day and 1 week later. Changes in thresholds after the lowest-level exposure were difficult to distinguish from test-retest variability; however, TTS was reliably detected after higher levels of sound exposure. Changes in audiometric thresholds had a "notch" configuration, with the largest changes observed at 4 kHz (mean = 6.3 ± 3.9 dB; range = 0-14 dB). Recovery was largely complete within the first 4 hr postexposure, and all subjects showed complete recovery of both thresholds and DPOAE measures when tested 1 week postexposure. These data provide insight into the variability of TTS induced by music-player use in a healthy, normal-hearing, young adult population, with music playlist, level, and duration carefully controlled. These data confirm the likelihood of temporary changes in auditory function after digital music-player use. Such data are essential for the development of a human clinical trial protocol that provides a highly powered design for evaluating novel therapeutics in human clinical trials. Care must be taken to fully inform potential subjects in

  5. Digital music exposure reliably induces temporary threshold shift (TTS) in normal hearing human subjects

    Science.gov (United States)

    Le Prell, C. G.; Dell, S.; Hensley, B.; Hall, J. W.; Campbell, K. C. M.; Antonelli, P. J.; Green, G. E.; Miller, J. M.; Guire, K.

    2012-01-01

    Objectives One of the challenges for evaluating new otoprotective agents for potential benefit in human populations is availability of an established clinical paradigm with real world relevance. These studies were explicitly designed to develop a real-world digital music exposure that reliably induces temporary threshold shift (TTS) in normal hearing human subjects. Design Thirty-three subjects participated in studies that measured effects of digital music player use on hearing. Subjects selected either rock or pop music, which was then presented at 93–95 (n=10), 98–100 (n=11), or 100–102 (n=12) dBA in-ear exposure level for a period of four hours. Audiograms and distortion product otoacoustic emissions (DPOAEs) were measured prior to and after music exposure. Post-music tests were initiated 15 min, 1 hr 15 min, 2 hr 15 min, and 3 hr 15 min after the exposure ended. Additional tests were conducted the following day and one week later. Results Changes in thresholds after the lowest level exposure were difficult to distinguish from test-retest variability; however, TTS was reliably detected after higher levels of sound exposure. Changes in audiometric thresholds had a “notch” configuration, with the largest changes observed at 4 kHz (mean=6.3±3.9dB; range=0–13 dB). Recovery was largely complete within the first 4 hours post-exposure, and all subjects showed complete recovery of both thresholds and DPOAE measures when tested 1-week post-exposure. Conclusions These data provide insight into the variability of TTS induced by music player use in a healthy, normal-hearing, young adult population, with music playlist, level, and duration carefully controlled. These data confirm the likelihood of temporary changes in auditory function following digital music player use. Such data are essential for the development of a human clinical trial protocol that provides a highly powered design for evaluating novel therapeutics in human clinical trials. Care must be

  6. Human reliability analysis during PSA at Trillo NPP: main characteristics and analysis of diagnostic errors

    International Nuclear Information System (INIS)

    Barquin, M.A.; Gomez, F.

    1998-01-01

    The design difference between Trillo NPP and other Spanish nuclear power plants (basic Westinghouse and General Electric designs) were made clear in the Human Reliability Analysis of the Probabilistic Safety Analysis (PSA) for Trillo NPP. The object of this paper is to describe the most significant characteristics of the Human Reliability Analysis carried out in the PSA, with special emphasis on the possible diagnostic errors and their consequences, based on the characteristics in the Emergency Operations Manual for Trillo NPP. - In the case of human errors before the initiating event (type 1), the existence of four redundancies in most of the plant safety systems, means that the impact of this type or error on the final results of the PSA is insignificant. However, in the case common cause errors, especially in certain calibration errors, some actions are significant in the final equation for core damage - The number of human actions that the operator has to carry out during the accidents (type 3) modelled, is relatively small in comparison with this value in other PSAs. This is basically due to the high level of automation at Rillo NPP - The Plant Operations Manual cannot be strictly considered to be a symptoms-based procedure. The operation Group must select the chapter from the Operations Manual to be followed, after having diagnosed the perturbing event, using for this purpose and Emergency and Anomaly Decision Tree (M.O.3.0.1) based on the different indications, alarms and symptoms present in the plant after the perturbing event. For this reason, it was decided to analyse the possible diagnosis errors. In the bibliography on diagnosis and commission errors available at the present time, there is no precise methodology for the analysis of this type of error and its incorporation into PSAs. The method used in the PSA for Trillo y NPP to evaluate this type of interaction, is to develop a Diagnosis Error Table, the object of which is to identify the situations in

  7. Asymmetric Programming: A Highly Reliable Metadata Allocation Strategy for MLC NAND Flash Memory-Based Sensor Systems

    Science.gov (United States)

    Huang, Min; Liu, Zhaoqing; Qiao, Liyan

    2014-01-01

    While the NAND flash memory is widely used as the storage medium in modern sensor systems, the aggressive shrinking of process geometry and an increase in the number of bits stored in each memory cell will inevitably degrade the reliability of NAND flash memory. In particular, it's critical to enhance metadata reliability, which occupies only a small portion of the storage space, but maintains the critical information of the file system and the address translations of the storage system. Metadata damage will cause the system to crash or a large amount of data to be lost. This paper presents Asymmetric Programming, a highly reliable metadata allocation strategy for MLC NAND flash memory storage systems. Our technique exploits for the first time the property of the multi-page architecture of MLC NAND flash memory to improve the reliability of metadata. The basic idea is to keep metadata in most significant bit (MSB) pages which are more reliable than least significant bit (LSB) pages. Thus, we can achieve relatively low bit error rates for metadata. Based on this idea, we propose two strategies to optimize address mapping and garbage collection. We have implemented Asymmetric Programming on a real hardware platform. The experimental results show that Asymmetric Programming can achieve a reduction in the number of page errors of up to 99.05% with the baseline error correction scheme. PMID:25310473

  8. Asymmetric Programming: A Highly Reliable Metadata Allocation Strategy for MLC NAND Flash Memory-Based Sensor Systems

    Directory of Open Access Journals (Sweden)

    Min Huang

    2014-10-01

    Full Text Available While the NAND flash memory is widely used as the storage medium in modern sensor systems, the aggressive shrinking of process geometry and an increase in the number of bits stored in each memory cell will inevitably degrade the reliability of NAND flash memory. In particular, it’s critical to enhance metadata reliability, which occupies only a small portion of the storage space, but maintains the critical information of the file system and the address translations of the storage system. Metadata damage will cause the system to crash or a large amount of data to be lost. This paper presents Asymmetric Programming, a highly reliable metadata allocation strategy for MLC NAND flash memory storage systems. Our technique exploits for the first time the property of the multi-page architecture of MLC NAND flash memory to improve the reliability of metadata. The basic idea is to keep metadata in most significant bit (MSB pages which are more reliable than least significant bit (LSB pages. Thus, we can achieve relatively low bit error rates for metadata. Based on this idea, we propose two strategies to optimize address mapping and garbage collection. We have implemented Asymmetric Programming on a real hardware platform. The experimental results show that Asymmetric Programming can achieve a reduction in the number of page errors of up to 99.05% with the baseline error correction scheme.

  9. Improvements in valve reliability due to implementation of effective condition monitoring programs

    International Nuclear Information System (INIS)

    Hale, Stan

    2003-01-01

    Modern diagnostic systems for motor-operated valves, pneumatic control valves and checkvalves have facilitated a shift in the maintenance philosophy for valves and actuators in nuclear power plants from schedule based to condition-based maintenance (CBM). This shift enables plant management to focus resources and schedule priority on the plant equipment that warrants attention thereby not wasting resources or increasing the human factors risk on equipment that has not degraded. The most recent initiatives combine condition monitoring with risk/safety insights to focus attention and resonances on the right equipment at the right time consistent with each component's safety-significance. The activities of the ASME working groups responsible for nuclear O and M codes have kept pace with the technology and process improvements necessary to maximize the technical and economic benefits of condition based and risk informed maintenance. This paper discusses adoption of valve condition monitoring in the nuclear power industry, changes to ASME codes and standards during the 90's to facilitate adoption of condition monitoring technology for in-service testing and recent efforts to combine risk insights with condition monitoring strategies to achieve the highest level of valve reliability and nuclear safety without over inflating maintenance cost. (author)

  10. Correlation Relationship of Performance Shaping Factors (PSFs) for Human Reliability Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Bheka, M. Khumalo; Kim, Jonghyun [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2014-10-15

    At TMI-2, operators permitted thousands of gallons of water to escape from the reactor plant before realizing that the coolant pumps were behaving abnormally. The coolant pumps were then turned off, which in turn led to the destruction of the reactor itself as cooling was completely lost within the core. Human also plays a role in many aspects of complex systems e.g. in design and manufacture of hardware, interface between human and system and also in maintaining such systems as well as for coping with unusual events that place the NPP system at a risk. This is why human reliability analysis (HRA) - an aspect of risk assessments which systematically identifies and analyzes the causes and consequences of human decisions and actions - is important in nuclear power plant operations. It either upgrades or degrades human performance; therefore it has an impact on the possibility of error. These PSFs can be used in various HRA methods to estimate Human Error Probabilities (HEPs). There are many current HRA methods who propose sets of PSFs for normal operation mode of NPP. Some of these PSFs in the sets have some degree of dependency and overlap. Overlapping PSFs introduce error in HEP evaluations due to the fact that some elements are counted more than once in data; this skews the relationship amongst PSF and masks the way that the elements interact to affect performance. This study uses a causal model that represents dependencies and relationships amongst PSFs for HEP evaluation during normal NPP operational states. The model is built taking into consideration the dependencies among PSFs and thus eliminating overlap. The use of an interdependent model of PSFs is expected to produce more accurate HEPs compared to other current methods. PSF sets produced in this study can be further used as nodes (variables) and directed arcs (causal influence between nodes) in HEP evaluation methods such as Bayesian belief (BN) networks. This study was done to estimate the relationships

  11. Bridging Human Reliability Analysis and Psychology, Part 1: The Psychological Literature Review for the IDHEAS Method

    Energy Technology Data Exchange (ETDEWEB)

    April M. Whaley; Stacey M. L. Hendrickson; Ronald L. Boring; Jeffrey C. Joe; Katya L. Le Blanc; Jing Xing

    2012-06-01

    In response to Staff Requirements Memorandum (SRM) SRM-M061020, the U.S. Nuclear Regulatory Commission (NRC) is sponsoring work to update the technical basis underlying human reliability analysis (HRA) in an effort to improve the robustness of HRA. The ultimate goal of this work is to develop a hybrid of existing methods addressing limitations of current HRA models and in particular issues related to intra- and inter-method variabilities and results. This hybrid method is now known as the Integrated Decision-tree Human Event Analysis System (IDHEAS). Existing HRA methods have looked at elements of the psychological literature, but there has not previously been a systematic attempt to translate the complete span of cognition from perception to action into mechanisms that can inform HRA. Therefore, a first step of this effort was to perform a literature search of psychology, cognition, behavioral science, teamwork, and operating performance to incorporate current understanding of human performance in operating environments, thus affording an improved technical foundation for HRA. However, this literature review went one step further by mining the literature findings to establish causal relationships and explicit links between the different types of human failures, performance drivers and associated performance measures ultimately used for quantification. This is the first of two papers that detail the literature review (paper 1) and its product (paper 2). This paper describes the literature review and the high-level architecture used to organize the literature review, and the second paper (Whaley, Hendrickson, Boring, & Xing, these proceedings) describes the resultant cognitive framework.

  12. Systems Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE) Code Reference Manual

    Energy Technology Data Exchange (ETDEWEB)

    C. L. Smith; K. J. Kvarfordt; S. T. Wood

    2008-08-01

    The Systems Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE) is a software application developed for performing a complete probabilistic risk assessment (PRA) using a personal computer. SAPHIRE is funded by the U.S. Nuclear Regulatory Commission (NRC) and developed by the Idaho National Laboratory (INL). The INL's primary role in this project is that of software developer. However, the INL also plays an important role in technology transfer by interfacing and supporting SAPHIRE users comprised of a wide range of PRA practitioners from the NRC, national laboratories, the private sector, and foreign countries. SAPHIRE can be used to model a complex system’s response to initiating events, quantify associated damage outcome frequencies, and identify important contributors to this damage (Level 1 PRA) and to analyze containment performance during a severe accident and quantify radioactive releases (Level 2 PRA). It can be used for a PRA evaluating a variety of operating conditions, for example, for a nuclear reactor at full power, low power, or at shutdown conditions. Furthermore, SAPHIRE can be used to analyze both internal and external initiating events and has special features for transforming models built for internal event analysis to models for external event analysis. It can also be used in a limited manner to quantify risk in terms of release consequences to both the public and the environment (Level 3 PRA). SAPHIRE includes a separate module called the Graphical Evaluation Module (GEM). GEM provides a highly specialized user interface with SAPHIRE that automates SAPHIRE process steps for evaluating operational events at commercial nuclear power plants. Using GEM, an analyst can estimate the risk associated with operational events in a very efficient and expeditious manner. This reference guide will introduce the SAPHIRE Version 7.0 software. A brief discussion of the purpose and history of the software is included along with

  13. Systems Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE) Code Reference Manual

    Energy Technology Data Exchange (ETDEWEB)

    C. L. Smith; K. J. Kvarfordt; S. T. Wood

    2006-07-01

    The Systems Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE) is a software application developed for performing a complete probabilistic risk assessment (PRA) using a personal computer. SAPHIRE is funded by the U.S. Nuclear Regulatory Commission (NRC) and developed by the Idaho National Laboratory (INL). The INL's primary role in this project is that of software developer. However, the INL also plays an important role in technology transfer by interfacing and supporting SAPHIRE users comprised of a wide range of PRA practitioners from the NRC, national laboratories, the private sector, and foreign countries. SAPHIRE can be used to model a complex system’s response to initiating events, quantify associated damage outcome frequencies, and identify important contributors to this damage (Level 1 PRA) and to analyze containment performance during a severe accident and quantify radioactive releases (Level 2 PRA). It can be used for a PRA evaluating a variety of operating conditions, for example, for a nuclear reactor at full power, low power, or at shutdown conditions. Furthermore, SAPHIRE can be used to analyze both internal and external initiating events and has special features for ansforming models built for internal event analysis to models for external event analysis. It can also be used in a limited manner to quantify risk in terms of release consequences to both the public and the environment (Level 3 PRA). SAPHIRE includes a separate module called the Graphical Evaluation Module (GEM). GEM provides a highly specialized user interface with SAPHIRE that automates SAPHIRE process steps for evaluating operational events at commercial nuclear power plants. Using GEM, an analyst can estimate the risk associated with operational events in a very efficient and expeditious manner. This reference guide will introduce the SAPHIRE Version 7.0 software. A brief discussion of the purpose and history of the software is included along with

  14. Interim reliability-evaluation program: analysis of the Browns Ferry, Unit 1, nuclear plant. Appendix B - system descriptions and fault trees

    International Nuclear Information System (INIS)

    Mays, S.E.; Poloski, J.P.; Sullivan, W.H.; Trainer, J.E.; Bertucio, R.C.; Leahy, T.J.

    1982-07-01

    This report describes a risk study of the Browns Ferry, Unit 1, nuclear plant. The study is one of four such studies sponsored by the NRC Office of Research, Division of Risk Assessment, as part of its Interim Reliability Evaluation Program (IREP), Phase II. This report is contained in four volumes: a main report and three appendixes. Appendix B provides a description of Browns Ferry, Unit 1, plant systems and the failure evaluation of those systems as they apply to accidents at Browns Ferry. Information is presented concerning front-line system fault analysis; support system fault analysis; human error models and probabilities; and generic control circuit analyses

  15. Reliability of lower limb alignment measures using an established landmark-based method with a customized computer software program

    Science.gov (United States)

    Sled, Elizabeth A.; Sheehy, Lisa M.; Felson, David T.; Costigan, Patrick A.; Lam, Miu; Cooke, T. Derek V.

    2010-01-01

    The objective of the study was to evaluate the reliability of frontal plane lower limb alignment measures using a landmark-based method by (1) comparing inter- and intra-reader reliability between measurements of alignment obtained manually with those using a computer program, and (2) determining inter- and intra-reader reliability of computer-assisted alignment measures from full-limb radiographs. An established method for measuring alignment was used, involving selection of 10 femoral and tibial bone landmarks. 1) To compare manual and computer methods, we used digital images and matching paper copies of five alignment patterns simulating healthy and malaligned limbs drawn using AutoCAD. Seven readers were trained in each system. Paper copies were measured manually and repeat measurements were performed daily for 3 days, followed by a similar routine with the digital images using the computer. 2) To examine the reliability of computer-assisted measures from full-limb radiographs, 100 images (200 limbs) were selected as a random sample from 1,500 full-limb digital radiographs which were part of the Multicenter Osteoarthritis (MOST) Study. Three trained readers used the software program to measure alignment twice from the batch of 100 images, with two or more weeks between batch handling. Manual and computer measures of alignment showed excellent agreement (intraclass correlations [ICCs] 0.977 – 0.999 for computer analysis; 0.820 – 0.995 for manual measures). The computer program applied to full-limb radiographs produced alignment measurements with high inter- and intra-reader reliability (ICCs 0.839 – 0.998). In conclusion, alignment measures using a bone landmark-based approach and a computer program were highly reliable between multiple readers. PMID:19882339

  16. Reliability Calculations

    DEFF Research Database (Denmark)

    Petersen, Kurt Erling

    1986-01-01

    Risk and reliability analysis is increasingly being used in evaluations of plant safety and plant reliability. The analysis can be performed either during the design process or during the operation time, with the purpose to improve the safety or the reliability. Due to plant complexity and safety...... and availability requirements, sophisticated tools, which are flexible and efficient, are needed. Such tools have been developed in the last 20 years and they have to be continuously refined to meet the growing requirements. Two different areas of application were analysed. In structural reliability probabilistic...... approaches have been introduced in some cases for the calculation of the reliability of structures or components. A new computer program has been developed based upon numerical integration in several variables. In systems reliability Monte Carlo simulation programs are used especially in analysis of very...

  17. Conceptual framework for a Danish human biomonitoring program

    Directory of Open Access Journals (Sweden)

    Fauser Patrik

    2008-01-01

    Full Text Available Abstract The aim of this paper is to present the conceptual framework for a Danish human biomonitoring (HBM program. The EU and national science-policy interface, that is fundamental for a realization of the national and European environment and human health strategies, is discussed, including the need for a structured and integrated environmental and human health surveillance program at national level. In Denmark, the initiative to implement such activities has been taken. The proposed framework of the Danish monitoring program constitutes four scientific expert groups, i.e. i. Prioritization of the strategy for the monitoring program, ii. Collection of human samples, iii. Analysis and data management and iv. Dissemination of results produced within the program. This paper presents the overall framework for data requirements and information flow in the integrated environment and health surveillance program. The added value of an HBM program, and in this respect the objectives of national and European HBM programs supporting environmental health integrated policy-decisions and human health targeted policies, are discussed. In Denmark environmental monitoring has been prioritized by extensive surveillance systems of pollution in oceans, lakes and soil as well as ground and drinking water. Human biomonitoring has only taken place in research programs and few incidences of e.g. lead contamination. However an arctic program for HBM has been in force for decades and from the preparations of the EU-pilot project on HBM increasing political interest in a Danish program has developed.

  18. Structured information analysis for human reliability analysis of emergency tasks in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Won Dea; Kim, Jae Whan; Park, Jin Kyun; Ha, Jae Joo [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-02-01

    More than twenty HRA (Human Reliability Analysis) methodologies have been developed and used for the safety analysis in nuclear field during the past two decades. However, no methodology appears to have universally been accepted, as various limitations have been raised for more widely used ones. One of the most important limitations of conventional HRA is insufficient analysis of the task structure and problem space. To resolve this problem, we suggest SIA (Structured Information Analysis) for HRA. The proposed SIA consists of three parts. The first part is the scenario analysis that investigates the contextual information related to the given task on the basis of selected scenarios. The second is the goals-means analysis to define the relations between the cognitive goal and task steps. The third is the cognitive function analysis module that identifies the cognitive patterns and information flows involved in the task. Through the three-part analysis, systematic investigation is made possible from the macroscopic information on the tasks to the microscopic information on the specific cognitive processes. It is expected that analysts can attain a structured set of information that helps to predict the types and possibility of human error in the given task. 48 refs., 12 figs., 11 tabs. (Author)

  19. Review of advances in human reliability analysis of errors of commission, Part 1: EOC identification

    International Nuclear Information System (INIS)

    Reer, Bernhard

    2008-01-01

    In close connection with examples relevant to contemporary probabilistic safety assessment (PSA), a review of advances in human reliability analysis (HRA) of post-initiator errors of commission (EOCs), i.e. inappropriate actions under abnormal operating conditions, has been carried out. The review comprises both EOC identification (part 1) and quantification (part 2); part 1 is presented in this article. Emerging HRA methods addressing the problem of EOC identification are: A Technique for Human Event Analysis (ATHEANA), the EOC HRA method developed by Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS), the Misdiagnosis Tree Analysis (MDTA) method, and the Commission Errors Search and Assessment (CESA) method. Most of the EOCs referred to in predictive studies comprise the stop of running or the inhibition of anticipated functions; a few comprise the start of a function. The CESA search scheme-which proceeds from possible operator actions to the affected systems to scenarios and uses procedures and importance measures as key sources of input information-provides a formalized way for identifying relatively important scenarios with EOC opportunities. In the implementation however, attention should be paid regarding EOCs associated with familiar but non-procedural actions and EOCs leading to failures of manually initiated safety functions

  20. A Review of Human Reliability Needs in the U.S. Nuclear Industry

    Energy Technology Data Exchange (ETDEWEB)

    Boring, Ronald Laurids [Idaho National Laboratory

    2015-08-01

    In this survey, 34 subject matter experts from the U.S. nuclear industry were interviewed to determine specific needs for human reliability analysis (HRA). Conclusions from the interviews are detailed in this article. A summary of the findings includes: (1) The need for improved guidance on the use of HRA methods generally and for specific applications. (2) The need for additional training in HRA to provide more hands-on experience in the application of HRA methods. (3) Thedevelopment of HRA approaches suitable for advanced reactors, severe accident situations, and low-power and shutdown applications. (4) The refinement of HRA methods to account forfactors such as crew variability, latent errors, more sophisticated dependency modeling, and errors of commission. (5) The continued need for simplified HRA methods appropriate for field applications. (6) The need for tighter coupling of HRA and human factors. (7) The need for improvements in the quantitative basis of HRA methods. These findings suggest the field of HRA is mature but still benefits from refinements.

  1. Modeling and Quantification of Team Performance in Human Reliability Analysis for Probabilistic Risk Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey C. JOe; Ronald L. Boring

    2014-06-01

    Probabilistic Risk Assessment (PRA) and Human Reliability Assessment (HRA) are important technical contributors to the United States (U.S.) Nuclear Regulatory Commission’s (NRC) risk-informed and performance based approach to regulating U.S. commercial nuclear activities. Furthermore, all currently operating commercial NPPs in the U.S. are required by federal regulation to be staffed with crews of operators. Yet, aspects of team performance are underspecified in most HRA methods that are widely used in the nuclear industry. There are a variety of "emergent" team cognition and teamwork errors (e.g., communication errors) that are 1) distinct from individual human errors, and 2) important to understand from a PRA perspective. The lack of robust models or quantification of team performance is an issue that affects the accuracy and validity of HRA methods and models, leading to significant uncertainty in estimating HEPs. This paper describes research that has the objective to model and quantify team dynamics and teamwork within NPP control room crews for risk informed applications, thereby improving the technical basis of HRA, which improves the risk-informed approach the NRC uses to regulate the U.S. commercial nuclear industry.

  2. Human reliability-based MC and A models for detecting insider theft

    International Nuclear Information System (INIS)

    Duran, Felicia Angelica; Wyss, Gregory Dane

    2010-01-01

    Material control and accounting (MC and A) safeguards operations that track and account for critical assets at nuclear facilities provide a key protection approach for defeating insider adversaries. These activities, however, have been difficult to characterize in ways that are compatible with the probabilistic path analysis methods that are used to systematically evaluate the effectiveness of a site's physical protection (security) system (PPS). MC and A activities have many similar characteristics to operator procedures performed in a nuclear power plant (NPP) to check for anomalous conditions. This work applies human reliability analysis (HRA) methods and models for human performance of NPP operations to develop detection probabilities for MC and A activities. This has enabled the development of an extended probabilistic path analysis methodology in which MC and A protections can be combined with traditional sensor data in the calculation of PPS effectiveness. The extended path analysis methodology provides an integrated evaluation of a safeguards and security system that addresses its effectiveness for attacks by both outside and inside adversaries.

  3. Establishing guidance for the review of human reliability analysis in PSA

    International Nuclear Information System (INIS)

    Reer, B.; Dang, V.N.; Hirschberg, S.; Meyer, P.

    2000-01-01

    PSI was commissioned to develop Guidelines for the Regulatory Review of the Human Reliability Analysis (HRA) within Probabilistic Safety Assessments (PSAs) for nuclear power plants. In the Guidelines, HRA quality is addressed in terms of 97 indicators. Each indicator is formulated as a question, described as a specific feature of the analysis, and then explained in detail. Two analysis stages are distinguished: the selection of the human errors to be modelled, and their quantification to determine their impact on the core damage frequency. Review findings are grouped under two headings: transparency and adequacy. An analysis is 'transparent' if an externally qualified person is able to reproduce the analysis results, and 'adequate' if such results reflect the plant-specific conditions related to safety. To allocate resources efficiently, the review is structured in two phases: (1) The Quick Review, which clarifies whether the HRA has a fundamental deficiency and, furthermore, if it points to information needs and areas of emphasis for the detailed review, and (2) The Detailed Review, which results in well-grounded findings, based on extended examinations and close-plant contacts. (authors)

  4. Human factors perspective on the reliability of NDT in nuclear applications

    International Nuclear Information System (INIS)

    Bertovic, Marija; Mueller, Christina; Fahlbruch, Babette

    2013-01-01

    A series of research studies have been conducted over the course of five years venturing into the fields of in-service inspections (ISI) in nuclear power plants (NPPs) and inspection of manufactured components to be used for permanent nuclear waste disposal. This paper will provide an overview of four research studies, present selected experimental results and suggest ways for optimization of the NDT process, procedures, and training. The experimental results have shown that time pressure and mental workload negatively influence the quality of the manual inspection performance. Noticeable were influences of the organization of the working schedule, communication, procedures, supervision, and demonstration task. Customized Failure Mode and Effects Analysis (FMEA) was used to identify potential human risks, arising during acquisition and evaluation of NDT data. Several preventive measures were suggested and furthermore discussed, with respect to problems that could arise from their application. Experimental results show that implementing human redundancy in critical tasks, such as defect identification, as well as using an automated aid (software) to help operators in decision making about the existence and size of defects, could lead to other kinds of problems, namely social loafing and automation bias that might affect the reliability of NDT in an undesired manner. Shifting focus from the operator, as the main source of errors, to the organization, as the underlying source, is a recommended approach to ensure safety. (orig.) [de

  5. Lessons Learned on Benchmarking from the International Human Reliability Analysis Empirical Study

    International Nuclear Information System (INIS)

    Boring, Ronald L.; Forester, John A.; Bye, Andreas; Dang, Vinh N.; Lois, Erasmia

    2010-01-01

    The International Human Reliability Analysis (HRA) Empirical Study is a comparative benchmark of the prediction of HRA methods to the performance of nuclear power plant crews in a control room simulator. There are a number of unique aspects to the present study that distinguish it from previous HRA benchmarks, most notably the emphasis on a method-to-data comparison instead of a method-to-method comparison. This paper reviews seven lessons learned about HRA benchmarking from conducting the study: (1) the dual purposes of the study afforded by joining another HRA study; (2) the importance of comparing not only quantitative but also qualitative aspects of HRA; (3) consideration of both negative and positive drivers on crew performance; (4) a relatively large sample size of crews; (5) the use of multiple methods and scenarios to provide a well-rounded view of HRA performance; (6) the importance of clearly defined human failure events; and (7) the use of a common comparison language to 'translate' the results of different HRA methods. These seven lessons learned highlight how the present study can serve as a useful template for future benchmarking studies.

  6. Lessons Learned on Benchmarking from the International Human Reliability Analysis Empirical Study

    Energy Technology Data Exchange (ETDEWEB)

    Ronald L. Boring; John A. Forester; Andreas Bye; Vinh N. Dang; Erasmia Lois

    2010-06-01

    The International Human Reliability Analysis (HRA) Empirical Study is a comparative benchmark of the prediction of HRA methods to the performance of nuclear power plant crews in a control room simulator. There are a number of unique aspects to the present study that distinguish it from previous HRA benchmarks, most notably the emphasis on a method-to-data comparison instead of a method-to-method comparison. This paper reviews seven lessons learned about HRA benchmarking from conducting the study: (1) the dual purposes of the study afforded by joining another HRA study; (2) the importance of comparing not only quantitative but also qualitative aspects of HRA; (3) consideration of both negative and positive drivers on crew performance; (4) a relatively large sample size of crews; (5) the use of multiple methods and scenarios to provide a well-rounded view of HRA performance; (6) the importance of clearly defined human failure events; and (7) the use of a common comparison language to “translate” the results of different HRA methods. These seven lessons learned highlight how the present study can serve as a useful template for future benchmarking studies.

  7. Reliability, Resilience, and Vulnerability criteria for the evaluation of Human Health Risks

    Science.gov (United States)

    Rodak, C. M.; Silliman, S. E.; Bolster, D.

    2011-12-01

    Understanding the impact of water quality on the health of a general population is challenging due high degrees of uncertainty and variability in hydrological, toxicological and human aspects of the system. Assessment of the impact of changes in water quality of a public water supply is critical to management of that water supply. We propose the use of three different system evaluation criteria: Reliability, Resilience and Vulnerability (RRV) as a tool for assessing the impact of uncertainty in the arrival of contaminant mass through time with respect to human health risks on a variable population. These criteria were first introduced to the water resources community by Hashimoto et al (1982). Most simply one can understand these criteria as the following: Reliability is the likelihood of the system being in a state of success; Resilience is the probability that the system will return to a state of success at t+1 if it is in failure at time step t, and Vulnerability is the severity of failure, which here is defined as the maximum health risk. These concepts are applied to a theoretical example where the water quality at a water supply well varies over time: health impact is considered based on sliding, 30-year windows of exposure to water derived from the well. We apply the methodology, in terms of uncertainty in water quality deviations, to eight simulated breakthrough curves of a contaminant at the well: each curve represents equal mass of contaminant arriving at the well over a 70-year lifetime of the well, but different mass distributions over time. These curves are used to investigate the impact of uncertainty in the distribution through time of the contaminant mass at the well, as well as the initial arrival of the contaminant over the 70-year lifetime of the well. In addition to extending the health risk through time with uncertainty in mass distribution, we incorporate variability in the human population to examine the evolution of the three criteria within

  8. Human resources in nuclear power program

    International Nuclear Information System (INIS)

    Machi, Sueo

    2008-01-01

    plant or nuclear power plant manufacture. Newly hired graduates or technical personnel working in industry undergo further training. Those working for the NPP manufactures undergo training in designs, manufacturing and construction while those working with the power companies undertake plant operation training using simulator, plant maintenance, safety culture and design specification. A survey of newly hired BS and MS graduates in engineering by power companies for nuclear power sector in Japan showed that 221 graduates were hired in 1997 and the number dropped to 134 in 1999 and maintained this level up to 2001. These engineering graduates majored in electronics, nuclear, chemistry, mechanics and others. Meanwhile, 30% of the engineering graduates hired by 3 major NPP manufactures for their NPP division are nuclear engineers while the other 70% consists of engineers majoring in mechanics, electronics, materials and other majors. The number of staff for NPP division will have to be increased in future to meet increased demand in Japan and overseas. The human resource development for nuclear energy is faced with the dilemma because the young generation is losing interest in science and technology and many experienced nuclear engineers are retiring and there is a decreasing number of new construction of NPPs till 2030. Possible solutions are to improve public perception on nuclear power, ensure effective succession of nuclear knowledge and experience to young engineers and technicians, strengthen R and D on generationIV NPP and Fast Breeder Reactors (FBR), and strengthen nuclear education and training. In support of this human resource development, the Japanese government provided funding of US$3.4 million in 2007. Within the framework of the Forum for Nuclear Cooperation in Asia (FNCA), the Asian Nuclear Training and Education Program (ANTEP) has the following objectives: (1) to train and educate nuclear engineers and scientists and specialists of radiation applications

  9. A mid-layer model for human reliability analysis: understanding the cognitive causes of human failure events

    International Nuclear Information System (INIS)

    Shen, Song-Hua; Chang, James Y.H.; Boring, Ronald L.; Whaley, April M.; Lois, Erasmia; Langfitt Hendrickson, Stacey M.; Oxstrand, Johanna H.; Forester, John Alan; Kelly, Dana L.; Mosleh, Ali

    2010-01-01

    The Office of Nuclear Regulatory Research (RES) at the US Nuclear Regulatory Commission (USNRC) is sponsoring work in response to a Staff Requirements Memorandum (SRM) directing an effort to establish a single human reliability analysis (HRA) method for the agency or guidance for the use of multiple methods. As part of this effort an attempt to develop a comprehensive HRA qualitative approach is being pursued. This paper presents a draft of the method's middle layer, a part of the qualitative analysis phase that links failure mechanisms to performance shaping factors. Starting with a Crew Response Tree (CRT) that has identified human failure events, analysts identify potential failure mechanisms using the mid-layer model. The mid-layer model presented in this paper traces the identification of the failure mechanisms using the Information-Diagnosis/Decision-Action (IDA) model and cognitive models from the psychological literature. Each failure mechanism is grouped according to a phase of IDA. Under each phase of IDA, the cognitive models help identify the relevant performance shaping factors for the failure mechanism. The use of IDA and cognitive models can be traced through fault trees, which provide a detailed complement to the CRT.

  10. A Mid-Layer Model for Human Reliability Analysis: Understanding the Cognitive Causes of Human Failure Events

    Energy Technology Data Exchange (ETDEWEB)

    Stacey M. L. Hendrickson; April M. Whaley; Ronald L. Boring; James Y. H. Chang; Song-Hua Shen; Ali Mosleh; Johanna H. Oxstrand; John A. Forester; Dana L. Kelly; Erasmia L. Lois

    2010-06-01

    The Office of Nuclear Regulatory Research (RES) is sponsoring work in response to a Staff Requirements Memorandum (SRM) directing an effort to establish a single human reliability analysis (HRA) method for the agency or guidance for the use of multiple methods. As part of this effort an attempt to develop a comprehensive HRA qualitative approach is being pursued. This paper presents a draft of the method’s middle layer, a part of the qualitative analysis phase that links failure mechanisms to performance shaping factors. Starting with a Crew Response Tree (CRT) that has identified human failure events, analysts identify potential failure mechanisms using the mid-layer model. The mid-layer model presented in this paper traces the identification of the failure mechanisms using the Information-Diagnosis/Decision-Action (IDA) model and cognitive models from the psychological literature. Each failure mechanism is grouped according to a phase of IDA. Under each phase of IDA, the cognitive models help identify the relevant performance shaping factors for the failure mechanism. The use of IDA and cognitive models can be traced through fault trees, which provide a detailed complement to the CRT.

  11. Explicating Practicum Program Theory: A Case Example in Human Ecology

    Science.gov (United States)

    Chandler, Kathryn M. M.; Williamson, Deanna L.

    2013-01-01

    This study explicated the theory underpinning the Human Ecology Practicum Program offered in the Department of Human Ecology at the University of Alberta. The program has operated for 40 years but never been formally evaluated. Using a document analysis, focus group and individual interviews, and a stakeholder working group, we explored…

  12. Fuzzy sets as extension of probabilistic models for evaluating human reliability

    International Nuclear Information System (INIS)

    Przybylski, F.

    1996-11-01

    On the base of a survey of established quantification methodologies for evaluating human reliability, a new computerized methodology was developed in which a differential consideration of user uncertainties is made. In this quantification method FURTHER (FUzzy Sets Related To Human Error Rate Prediction), user uncertainties are quantified separately from model and data uncertainties. As tools fuzzy sets are applied which, however, stay hidden to the method's user. The user in the quantification process only chooses an action pattern, performance shaping factors and natural language expressions. The acknowledged method HEART (Human Error Assessment and Reduction Technique) serves as foundation of the fuzzy set approach FURTHER. By means of this method, the selection of a basic task in connection with its basic error probability, the decision how correct the basic task's selection is, the selection of a peformance shaping factor, and the decision how correct the selection and how important the performance shaping factor is, were identified as aspects of fuzzification. This fuzzification is made on the base of data collection and information from literature as well as of the estimation by competent persons. To verify the ammount of additional information to be received by the usage of fuzzy sets, a benchmark session was accomplished. In this benchmark twelve actions were assessed by five test-persons. In case of the same degree of detail in the action modelling process, the bandwidths of the interpersonal evaluations decrease in FURTHER in comparison with HEART. The uncertainties of the single results could not be reduced up to now. The benchmark sessions conducted so far showed plausible results. A further testing of the fuzzy set approach by using better confirmed fuzzy sets can only be achieved in future practical application. Adequate procedures, however, are provided. (orig.) [de

  13. Reliable generation of induced pluripotent stem cells from human lymphoblastoid cell lines.

    Science.gov (United States)

    Barrett, Robert; Ornelas, Loren; Yeager, Nicole; Mandefro, Berhan; Sahabian, Anais; Lenaeus, Lindsay; Targan, Stephan R; Svendsen, Clive N; Sareen, Dhruv

    2014-12-01

    Patient-specific induced pluripotent stem cells (iPSCs) hold great promise for many applications, including disease modeling to elucidate mechanisms involved in disease pathogenesis, drug screening, and ultimately regenerative medicine therapies. A frequently used starting source of cells for reprogramming has been dermal fibroblasts isolated from skin biopsies. However, numerous repositories containing lymphoblastoid cell lines (LCLs) generated from a wide array of patients also exist in abundance. To date, this rich bioresource has been severely underused for iPSC generation. We first attempted to create iPSCs from LCLs using two existing methods but were unsuccessful. Here we report a new and more reliable method for LCL reprogramming using episomal plasmids expressing pluripotency factors and p53 shRNA in combination with small molecules. The LCL-derived iPSCs (LCL-iPSCs) exhibited identical characteristics to fibroblast-derived iPSCs (fib-iPSCs), wherein they retained their genotype, exhibited a normal pluripotency profile, and readily differentiated into all three germ-layer cell types. As expected, they also maintained rearrangement of the heavy chain immunoglobulin locus. Importantly, we also show efficient iPSC generation from LCLs of patients with spinal muscular atrophy and inflammatory bowel disease. These LCL-iPSCs retained the disease mutation and could differentiate into neurons, spinal motor neurons, and intestinal organoids, all of which were virtually indistinguishable from differentiated cells derived from fib-iPSCs. This method for reliably deriving iPSCs from patient LCLs paves the way for using invaluable worldwide LCL repositories to generate new human iPSC lines, thus providing an enormous bioresource for disease modeling, drug discovery, and regenerative medicine applications. ©AlphaMed Press.

  14. Reliability of instruments in a cooperative, multisite study: employment intervention demonstration program.

    Science.gov (United States)

    Salyers, M P; McHugo, G J; Cook, J A; Razzano, L A; Drake, R E; Mueser, K T

    2001-09-01

    Reliability of well-known instruments was examined in 202 people with severe mental illness participating in a multisite vocational study. We examined interrater reliability of the Positive and Negative Syndrome Scale (PANSS) and the internal consistency and test-retest reliability of the PANSS, the Rosenberg Self-Esteem Scale, the Medical Outcomes Study Short Form-36 (SF-36), and the Quality of Life Interview. Most scales had good levels of reliability, with intraclass correlation coefficients (ICCs) and coefficient alphas above .70. However, the SF-36 scales were generally less stable over time, particularly Social Functioning (ICC = .55). Test-retest reliability was lower among less educated respondents and among ethnic minorities. We recommend close monitoring of psychometric issues in future multisite studies.

  15. Characterizing reliability in a product/process design-assurance program

    Energy Technology Data Exchange (ETDEWEB)

    Kerscher, W.J. III [Delphi Energy and Engine Management Systems, Flint, MI (United States); Booker, J.M.; Bement, T.R.; Meyer, M.A. [Los Alamos National Lab., NM (United States)

    1997-10-01

    Over the years many advancing techniques in the area of reliability engineering have surfaced in the military sphere of influence, and one of these techniques is Reliability Growth Testing (RGT). Private industry has reviewed RGT as part of the solution to their reliability concerns, but many practical considerations have slowed its implementation. It`s objective is to demonstrate the reliability requirement of a new product with a specified confidence. This paper speaks directly to that objective but discusses a somewhat different approach to achieving it. Rather than conducting testing as a continuum and developing statistical confidence bands around the results, this Bayesian updating approach starts with a reliability estimate characterized by large uncertainty and then proceeds to reduce the uncertainty by folding in fresh information in a Bayesian framework.

  16. Conceptual framework for a Danish human biomonitoring program

    DEFF Research Database (Denmark)

    Thomsen, Marianne; Knudsen, Lisbeth E.; Vorkamp, Katrin

    2008-01-01

    of pollution in oceans, lakes and soil as well as ground and drinking water. Human biomonitoring has only taken place in research programs and few incidences of e.g. lead contamination. However an arctic program for HBM has been in force for decades and from the preparations of the EU-pilot project on HBM......The aim of this paper is to present the conceptual framework for a Danish human biomonitoring (HBM) program. The EU and national science-policy interface, that is fundamental for a realization of the national and European environment and human health strategies, is discussed, including the need...... for the monitoring program, ii. Collection of human samples, iii. Analysis and data management and iv. Dissemination of results produced within the program. This paper presents the overall framework for data requirements and information flow in the integrated environment and health surveillance program. The added...

  17. Human error probability evaluation as part of reliability analysis of digital protection system of advanced pressurized water reactor - APR 1400

    International Nuclear Information System (INIS)

    Varde, P. V.; Lee, D. Y.; Han, J. B.

    2003-03-01

    A case of study on human reliability analysis has been performed as part of reliability analysis of digital protection system of the reactor automatically actuates the shutdown system of the reactor when demanded. However, the safety analysis takes credit for operator action as a diverse mean for tripping the reactor for, though a low probability, ATWS scenario. Based on the available information two cases, viz., human error in tripping the reactor and calibration error for instrumentations in protection system, have been analyzed. Wherever applicable a parametric study has also been performed

  18. Implementation of a personnel reliability program as a facilitator of biosafety and biosecurity culture in BSL-3 and BSL-4 laboratories.

    Science.gov (United States)

    Higgins, Jacki J; Weaver, Patrick; Fitch, J Patrick; Johnson, Barbara; Pearl, R Marene

    2013-06-01

    In late 2010, the National Biodefense Analysis and Countermeasures Center (NBACC) implemented a Personnel Reliability Program (PRP) with the goal of enabling active participation by its staff to drive and improve the biosafety and biosecurity culture at the organization. A philosophical keystone for accomplishment of NBACC's scientific mission is simultaneous excellence in operations and outreach. Its personnel reliability program builds on this approach to: (1) enable and support a culture of responsibility based on human performance principles, (2) maintain compliance with regulations, and (3) address the risk associated with the insider threat. Recently, the Code of Federal Regulations (CFR) governing use and possession of biological select agents and toxins (BSAT) was amended to require a pre-access suitability assessment and ongoing evaluation for staff accessing Tier 1 BSAT. These 2 new requirements are in addition to the already required Federal Bureau of Investigation (FBI) Security Risk Assessment (SRA). Two years prior to the release of these guidelines, NBACC developed its PRP to supplement the SRA requirement as a means to empower personnel and foster an operational environment where any and all work with BSAT is conducted in a safe, secure, and reliable manner.

  19. Human reliability analysis of errors of commission: a review of methods and applications

    Energy Technology Data Exchange (ETDEWEB)

    Reer, B

    2007-06-15

    Illustrated by specific examples relevant to contemporary probabilistic safety assessment (PSA), this report presents a review of human reliability analysis (HRA) addressing post initiator errors of commission (EOCs), i.e. inappropriate actions under abnormal operating conditions. The review addressed both methods and applications. Emerging HRA methods providing advanced features and explicit guidance suitable for PSA are: A Technique for Human Event Analysis (ATHEANA, key publications in 1998/2000), Methode d'Evaluation de la Realisation des Missions Operateur pour la Surete (MERMOS, 1998/2000), the EOC HRA method developed by the Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS, 2003), the Misdiagnosis Tree Analysis (MDTA) method (2005/2006), the Cognitive Reliability and Error Analysis Method (CREAM, 1998), and the Commission Errors Search and Assessment (CESA) method (2002/2004). As a result of a thorough investigation of various PSA/HRA applications, this paper furthermore presents an overview of EOCs (termination of safety injection, shutdown of secondary cooling, etc.) referred to in predictive studies and a qualitative review of cases of EOC quantification. The main conclusions of the review of both the methods and the EOC HRA cases are: (1) The CESA search scheme, which proceeds from possible operator actions to the affected systems to scenarios, may be preferable because this scheme provides a formalized way for identifying relatively important scenarios with EOC opportunities; (2) an EOC identification guidance like CESA, which is strongly based on the procedural guidance and important measures of systems or components affected by inappropriate actions, however should pay some attention to EOCs associated with familiar but non-procedural actions and EOCs leading to failures of manually initiated safety functions. (3) Orientations of advanced EOC quantification comprise a) modeling of multiple contexts for a given scenario, b) accounting for

  20. Human reliability analysis of errors of commission: a review of methods and applications

    International Nuclear Information System (INIS)

    Reer, B.

    2007-06-01

    Illustrated by specific examples relevant to contemporary probabilistic safety assessment (PSA), this report presents a review of human reliability analysis (HRA) addressing post initiator errors of commission (EOCs), i.e. inappropriate actions under abnormal operating conditions. The review addressed both methods and applications. Emerging HRA methods providing advanced features and explicit guidance suitable for PSA are: A Technique for Human Event Analysis (ATHEANA, key publications in 1998/2000), Methode d'Evaluation de la Realisation des Missions Operateur pour la Surete (MERMOS, 1998/2000), the EOC HRA method developed by the Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS, 2003), the Misdiagnosis Tree Analysis (MDTA) method (2005/2006), the Cognitive Reliability and Error Analysis Method (CREAM, 1998), and the Commission Errors Search and Assessment (CESA) method (2002/2004). As a result of a thorough investigation of various PSA/HRA applications, this paper furthermore presents an overview of EOCs (termination of safety injection, shutdown of secondary cooling, etc.) referred to in predictive studies and a qualitative review of cases of EOC quantification. The main conclusions of the review of both the methods and the EOC HRA cases are: (1) The CESA search scheme, which proceeds from possible operator actions to the affected systems to scenarios, may be preferable because this scheme provides a formalized way for identifying relatively important scenarios with EOC opportunities; (2) an EOC identification guidance like CESA, which is strongly based on the procedural guidance and important measures of systems or components affected by inappropriate actions, however should pay some attention to EOCs associated with familiar but non-procedural actions and EOCs leading to failures of manually initiated safety functions. (3) Orientations of advanced EOC quantification comprise a) modeling of multiple contexts for a given scenario, b) accounting for

  1. A perspective on Human Reliability Analysis (HRA) and studies on the application of HRA to Indian Pressurised Heavy Water Reactors

    International Nuclear Information System (INIS)

    Subramaniam, K.; Saraf, R.K.; Sanyasi Rao, V.V.S.; Venkat Raj, V.; Venkatraman, R.

    2000-05-01

    Probabilistic studies of risks show that the human factor contributes significantly to overall risk. The potential for and mechanisms of human error to affect plant risk and safety is evaluated by Human Reliability Analysis (HRA). HRA has quantitative and qualitative aspects, both of which are useful for Human Factors Engineering (HFE) which aims at designing operator interfaces that will minimise operator error and provide for error detection and recovery capability. HRA has therefore to be conducted as an integrated activity in support of PSA and HFE design. The objectives of HRA therefore, are to assure that potential effects on plant safety and reliability are analysed and that human actions that are important to plant risk are identified so that they can be addressed in both PSA and plant design. This report is in two parts. The first part presents a comprehensive overview of HRA. It attempts to provide an understanding of how human failures are incorporated into PSA models and how HRA is performed. The focus is on the HRA process, frameworks, techniques and models. The second part begins with a discussion on the application of HRA to IPHWRs and then continues with the presentation of three specific HRA case studies. This work was carried out by the working group on HRA constituted by AERB. Part of the work was done under the aegis of the IAEA Coordinated Research Programme (CRP) on collection and classification of human reliability data and use in PSA - Research contract No. 8239/RB. (author)

  2. Bayesian belief networks for human reliability analysis: A review of applications and gaps

    International Nuclear Information System (INIS)

    Mkrtchyan, L.; Podofillini, L.; Dang, V.N.

    2015-01-01

    The use of Bayesian Belief Networks (BBNs) in risk analysis (and in particular Human Reliability Analysis, HRA) is fostered by a number of features, attractive in fields with shortage of data and consequent reliance on subjective judgments: the intuitive graphical representation, the possibility of combining diverse sources of information, the use the probabilistic framework to characterize uncertainties. In HRA, BBN applications are steadily increasing, each emphasizing a different BBN feature or a different HRA aspect to improve. This paper aims at a critical review of these features as well as at suggesting research needs. Five groups of BBN applications are analysed: modelling of organizational factors, analysis of the relationships among failure influencing factors, BBN-based extensions of existing HRA methods, dependency assessment among human failure events, assessment of situation awareness. Further, the paper analyses the process for building BBNs and in particular how expert judgment is used in the assessment of the BBN conditional probability distributions. The gaps identified in the review suggest the need for establishing more systematic frameworks to integrate the different sources of information relevant for HRA (cognitive models, empirical data, and expert judgment) and to investigate algorithms to avoid elicitation of many relationships via expert judgment. - Highlights: • We analyze BBN uses for HRA applications; but some conclusions can be generalized. • Special review focus on BBN building approaches, key for model acceptance. • Gaps relate to the transparency of the BBN building and quantification phases. • Need for more systematic framework to integrate different sources of information. • Need of ways to avoid elicitation of many relationships via expert judgment

  3. Human Reliability Analysis for In-Tank Precipitation Alignment and Startup of Emergency Purge Ventilation Equipment. Revision 3

    International Nuclear Information System (INIS)

    Shapiro, B.J.; Britt, T.E.

    1994-10-01

    This report documents the methodology used for calculating the human error probability for establishing air based ventilation using emergency purge ventilation equipment on In-Tank Precipitation (ITP) processing tanks 48 and 49 after failure of the nitrogen purge system following a seismic event. The analyses were performed according to THERP (Technique for Human Error Rate Prediction) as described in NUREG/CR-1278-F, ''Handbook of Human Reliability Analysis with Emphasis on Nuclear Power Plant Applications.'' The calculated human error probabilities are provided as input to the Fault Tree Analysis for the ITP Nitrogen Purge System

  4. Military Personnel: DMDC Data on Officers' Commissioning Programs is Insufficiently Reliable and Needs to be Corrected

    National Research Council Canada - National Science Library

    Stewart, Derek B

    2007-01-01

    .... The purpose of this report is to bring to your attention reliability issues with DMDC data that we encountered while preparing our report and to provide you with our recommendations to address these issues...

  5. Capturing cognitive causal paths in human reliability analysis with Bayesian network models

    International Nuclear Information System (INIS)

    Zwirglmaier, Kilian; Straub, Daniel; Groth, Katrina M.

    2017-01-01

    reIn the last decade, Bayesian networks (BNs) have been identified as a powerful tool for human reliability analysis (HRA), with multiple advantages over traditional HRA methods. In this paper we illustrate how BNs can be used to include additional, qualitative causal paths to provide traceability. The proposed framework provides the foundation to resolve several needs frequently expressed by the HRA community. First, the developed extended BN structure reflects the causal paths found in cognitive psychology literature, thereby addressing the need for causal traceability and strong scientific basis in HRA. Secondly, the use of node reduction algorithms allows the BN to be condensed to a level of detail at which quantification is as straightforward as the techniques used in existing HRA. We illustrate the framework by developing a BN version of the critical data misperceived crew failure mode in the IDHEAS HRA method, which is currently under development at the US NRC . We illustrate how the model could be quantified with a combination of expert-probabilities and information from operator performance databases such as SACADA. This paper lays the foundations necessary to expand the cognitive and quantitative foundations of HRA. - Highlights: • A framework for building traceable BNs for HRA, based on cognitive causal paths. • A qualitative BN structure, directly showing these causal paths is developed. • Node reduction algorithms are used for making the BN structure quantifiable. • BN quantified through expert estimates and observed data (Bayesian updating). • The framework is illustrated for a crew failure mode of IDHEAS.

  6. Review of advances in human reliability analysis of errors of commission-Part 2: EOC quantification

    International Nuclear Information System (INIS)

    Reer, Bernhard

    2008-01-01

    In close connection with examples relevant to contemporary probabilistic safety assessment (PSA), a review of advances in human reliability analysis (HRA) of post-initiator errors of commission (EOCs), i.e. inappropriate actions under abnormal operating conditions, has been carried out. The review comprises both EOC identification (part 1) and quantification (part 2); part 2 is presented in this article. Emerging HRA methods in this field are: ATHEANA, MERMOS, the EOC HRA method developed by Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS), the MDTA method and CREAM. The essential advanced features are on the conceptual side, especially to envisage the modeling of multiple contexts for an EOC to be quantified (ATHEANA, MERMOS and MDTA), in order to explicitly address adverse conditions. There is promising progress in providing systematic guidance to better account for cognitive demands and tendencies (GRS, CREAM), and EOC recovery (MDTA). Problematic issues are associated with the implementation of multiple context modeling and the assessment of context-specific error probabilities. Approaches for task or error opportunity scaling (CREAM, GRS) and the concept of reference cases (ATHEANA outlook) provide promising orientations for achieving progress towards data-based quantification. Further development work is needed and should be carried out in close connection with large-scale applications of existing approaches

  7. Human reliability under sleep deprivation: Derivation of performance shaping factor multipliers from empirical data

    International Nuclear Information System (INIS)

    Griffith, Candice D.; Mahadevan, Sankaran

    2015-01-01

    This paper develops a probabilistic approach that could use empirical data to derive values of performance shaping factor (PSF) multipliers for use in quantitative human reliability analysis (HRA). The proposed approach is illustrated with data on sleep deprivation effects on performance. A review of existing HRA methods reveals that sleep deprivation is not explicitly included at present, and expert opinion is frequently used to inform HRA model multipliers. In this paper, quantitative data from empirical studies regarding the effect of continuous hours of wakefulness on performance measures (reaction time, accuracy, and number of lapses) are used to develop a method to derive PSF multiplier values for sleep deprivation, in the context of the SPAR-H model. Data is extracted from the identified studies according to the meta-analysis research synthesis method and used to investigate performance trends and error probabilities. The error probabilities in test and control conditions are compared, and the resulting probability ratios are suggested for use in informing the selection of PSF multipliers in HRA methods. Although illustrated for sleep deprivation, the proposed methodology is general, and can be applied to other performance shaping factors. - Highlights: • Method proposed to derive performance shaping factor multipliers from empirical data. • Studies reporting the effect of sleep deprivation on performance are analyzed. • Test data using psychomotor vigilance tasks are analyzed. • Error probability multipliers computed for reaction time, lapses, and accuracy measures.

  8. Quantitative developments in the cognitive reliability and error analysis method (CREAM) for the assessment of human performance

    International Nuclear Information System (INIS)

    Marseguerra, Marzio; Zio, Enrico; Librizzi, Massimo

    2006-01-01

    The current 'second generation' approaches in human reliability analysis focus their attention on the contextual conditions under which a given action is performed rather than on the notion of inherent human error probabilities, as was done in the earlier 'first generation' techniques. Among the 'second generation' methods, this paper considers the Cognitive Reliability and Error Analysis Method (CREAM) and proposes some developments with respect to a systematic procedure for computing probabilities of action failure. The starting point for the quantification is a previously introduced fuzzy version of the CREAM paradigm which is here further extended to include uncertainty on the qualification of the conditions under which the action is performed and to account for the fact that the effects of the common performance conditions (CPCs) on performance reliability may not all be equal. By the proposed approach, the probability of action failure is estimated by rating the performance conditions in terms of their effect on the action

  9. Assessments and applications to enhance human reliability and reduce risk during less-than-full-power operations

    International Nuclear Information System (INIS)

    Hannaman, G.W.; Singh, A.

    1992-01-01

    Study of events, interviews with plant personnel, and applications of risk studies indicate that the risk of a potential accident during less-than-full-power (LTFP) operation is becoming a greater fraction of the risk as improvements are made to the full-power operations. Industry efforts have been increased to reduce risk and the cost of shutdown operations. These efforts consider the development and application of advanced tools to help utilities proactively identify issues and develop contingencies and interventions to enhance reliability and reduce risk of low-power operations at nuclear power plants. The role for human reliability assessments is to help improve utility outage planning to better achieve schedule and risk control objectives. Improvements are expected to include intervention tools to identify and reduce human error, definition of new instructional modules, and prioritization of risk reduction issues for operators. The Electric Power Research Institute is sponsoring a project to address the identification and quantification of factors that affect human reliability during LTFP operation of nuclear power plants. The results of this project are expected to promote the development of proactively applied interventions and contingencies for enhanced human reliability during shutdown operations

  10. Importance of independent and dependent human error to system reliability and plant safety

    International Nuclear Information System (INIS)

    Dach, K.

    1988-08-01

    Uncertainty analysis of the quantification of the unavailability for the emergency core cooling system was made. The reliability analysis of the low pressure injection system (LPIS) of the ECCS of WWER-440 reactor was also performed. Results of reliability analysis proved that LPIS reliability under normal conditions is sufficient and can be increased by two orders of magnitude. This increase in reliability can be achieved by means of simple changes such as securing an opening of the quick-acting fittings at LPIS discharge line. A method for analysis of systems uncertainty with periodic inspected components was elaborated and verified by performing an analysis of the medium size system. Refs, figs and tabs

  11. Korean round-robin result for new international program to assess the reliability of emerging nondestructive techniques

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung Cho; Kim, Jin Gyum; Kang, Sung Sik; Jhung, Myung Jo [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2017-04-15

    The Korea Institute of Nuclear Safety, as a representative organization of Korea, in February 2012 participated in an international Program to Assess the Reliability of Emerging Nondestructive Techniques initiated by the U.S. Nuclear Regulatory Commission. The goal of the Program to Assess the Reliability of Emerging Nondestructive Techniques is to investigate the performance of emerging and prospective novel nondestructive techniques to find flaws in nickel-alloy welds and base materials. In this article, Korean round-robin test results were evaluated with respect to the test blocks and various nondestructive examination techniques. The test blocks were prepared to simulate large-bore dissimilar metal welds, small-bore dissimilar metal welds, and bottom-mounted instrumentation penetration welds in nuclear power plants. Also, lessons learned from the Korean round-robin test were summarized and discussed.

  12. Human Research Program: Space Human Factors and Habitability Element

    Science.gov (United States)

    Russo, Dane M.

    2007-01-01

    The three project areas of the Space Human Factors and Habitability Element work together to achieve a working and living environment that will keep crews healthy, safe, and productive throughout all missions -- from Earth orbit to Mars expeditions. The Advanced Environmental Health (AEH) Project develops and evaluates advanced habitability systems and establishes requirements and health standards for exploration missions. The Space Human Factors Engineering (SHFE) Project s goal is to ensure a safe and productive environment for humans in space. With missions using new technologies at an ever-increasing rate, it is imperative that these advances enhance crew performance without increasing stress or risk. The ultimate goal of Advanced Food Technology (AFT) Project is to develop and deliver technologies for human centered spacecraft that will support crews on missions to the moon, Mars, and beyond.

  13. An evaluation of the Browns Ferry Nuclear Plant preventive maintenance program based on reliability centered maintenance analysis

    International Nuclear Information System (INIS)

    McCullough, C.L.; McCullough, C.A.

    1989-01-01

    Reliability centered maintenance (RCM) techniques were used to support a preventative maintenance (PM) upgrade program (PMUP) performed at TVA Browns Ferry Nuclear Plant (BFNP). The purpose of the RCM analysis was to identify critical equipment based on risk and economic importance and to evaluate the PM activities applicable to that equipment. The analysis may be conveniently divided into three steps, which will be outlined in the Approach section of this paper. The net benefit of the RCM approach was a prioritization of the focus of the PM upgrade program so that plant components receive attention proportional to their importance, and assurance that PM activities properly address the most likely component failure causes

  14. The cognitive environment simulation as a tool for modeling human performance and reliability

    International Nuclear Information System (INIS)

    Woods, D.D.; Pople, H. Jr.

    1989-01-01

    Various studies have shown that intention errors, or cognitive error, are a major contributor to the risk of disaster. Intention formation refers to the cognitive processes by which an agent decides on what actions are appropriate to carry out (information gathering, situation assessment, diagnosis, response selection). Understanding, measuring, predicting and correcting cognitive errors depends on the answers to the question - what are difficult problems? The answer to this question defines what are risky situations from the point of view of what incidents will the human-technical system manage safely and what incidents will the human-technical system manage poorly and evolve towards negative outcomes. The authors have made progress in the development of such measuring devices through an NRC sponsored research program on cognitive modeling of operator performance. The approach is based on the demand-resource match view of human error. In this approach the difficulty of a problem depends on both the nature of the problem itself and on the resources (e.g., knowledge, plans) available to solve the problem. One can test the difficulty posed by a domain incident, given some set of resources by running the incident through a cognitive simulation that carries out the cognitive activities of a limited resource problem solver in a dynamic, uncertain, risky and highly doctrinal (pre-planned routines and procedures) world. The cognitive simulation that they have developed to do this in NPP accidents is called the Cognitive Environment Simulation (CES). They will illustrate the power of this approach by comparing the behavior of operators in variants on a simulated accident to the behavior of CES in the same accidents

  15. Systems analysis programs for hands-on integrated reliability evaluations (SAPHIRE) version 5.0, technical reference manual

    International Nuclear Information System (INIS)

    Russell, K.D.; Atwood, C.L.; Galyean, W.J.; Sattison, M.B.; Rasmuson, D.M.

    1994-07-01

    The Systems Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE) refers to a set of several microcomputer programs that were developed to create and analyze probabilistic risk assessments (PRAs), primarily for nuclear power plants. This volume provides information on the principles used in the construction and operation of Version 5.0 of the Integrated Reliability and Risk Analysis System (IRRAS) and the System Analysis and Risk Assessment (SARA) system. It summarizes the fundamental mathematical concepts of sets and logic, fault trees, and probability. This volume then describes the algorithms that these programs use to construct a fault tree and to obtain the minimal cut sets. It gives the formulas used to obtain the probability of the top event from the minimal cut sets, and the formulas for probabilities that are appropriate under various assumptions concerning repairability and mission time. It defines the measures of basic event importance that these programs can calculate. This volume gives an overview of uncertainty analysis using simple Monte Carlo sampling or Latin Hypercube sampling, and states the algorithms used by these programs to generate random basic event probabilities from various distributions. Further references are given, and a detailed example of the reduction and quantification of a simple fault tree is provided in an appendix

  16. Prevent cervical cancer by screening with reliable human papillomavirus detection and genotyping

    International Nuclear Information System (INIS)

    Ge, Shichao; Gong, Bo; Cai, Xushan; Yang, Xiaoer; Gan, Xiaowei; Tong, Xinghai; Li, Haichuan; Zhu, Meijuan; Yang, Fengyun; Zhou, Hongrong; Hong, Guofan

    2012-01-01

    The incidence of cervical cancer is expected to rise sharply in China. A reliable routine human papillomavirus (HPV) detection and genotyping test to be supplemented by the limited Papanicolaou cytology facilities is urgently needed to help identify the patients with cervical precancer for preventive interventions. To this end, we evaluated a nested polymerase chain reaction (PCR) protocol for detection of HPV L1 gene DNA in cervicovaginal cells. The PCR amplicons were genotyped by direct DNA sequencing. In parallel, split samples were subjected to a Digene HC2 HPV test which has been widely used for “cervical cancer risk” screen. Of the 1826 specimens, 1655 contained sufficient materials for analysis and 657 were truly negative. PCR/DNA sequencing showed 674 infected by a single high-risk HPV, 188 by a single low-risk HPV, and 136 by multiple HPV genotypes with up to five HPV genotypes in one specimen. In comparison, the HC2 test classified 713 specimens as infected by high-risk HPV, and 942 as negative for HPV infections. The high-risk HC2 test correctly detected 388 (57.6%) of the 674 high-risk HPV isolates in clinical specimens, mislabeled 88 (46.8%) of the 188 low-risk HPV isolates as high-risk genotypes, and classified 180 (27.4%) of the 657 “true-negative” samples as being infected by high-risk HPV. It was found to cross-react with 20 low-risk HPV genotypes. We conclude that nested PCR detection of HPV followed by short target DNA sequencing can be used for screening and genotyping to formulate a paradigm in clinical management of HPV-related disorders in a rapidly developing economy

  17. Enhanced human performance of utility maintenance programs

    International Nuclear Information System (INIS)

    Fresco, A.; Haber, S.; O'Brien, J.

    1993-01-01

    Assuring the safe operation of a nuclear power plant depends, to a large extent, on how effectively one understands and manages the aging-related degradation that occurs in structures, systems, and components (SSCs). Aging-related degradation is typically managed through a nuclear plant's maintenance program. A review of 44 Maintenance Team Inspection (MTI) Reports indicated that while some plant organizations appeared to assume a proactive mode in preventing aging-related failures of their SSCs important to safety, others seemed to be taking a passive or reactive mode. Across all plants, what is clearly needed, is a strong recognition of the importance of aging-related degradation and the use of existing organizational assets to effectively detect and mitigate those effects. Many of those assets can be enhanced by the consideration of organizational and management factors necessary for the implementation of an effective aging management program. This report provides a discussion of this program

  18. Application of Bayesian Belief networks to the human reliability analysis of an oil tanker operation focusing on collision accidents

    International Nuclear Information System (INIS)

    Martins, Marcelo Ramos; Maturana, Marcos Coelho

    2013-01-01

    During the last three decades, several techniques have been developed for the quantitative study of human reliability. In the 1980s, techniques were developed to model systems by means of binary trees, which did not allow for the representation of the context in which human actions occur. Thus, these techniques cannot model the representation of individuals, their interrelationships, and the dynamics of a system. These issues make the improvement of methods for Human Reliability Analysis (HRA) a pressing need. To eliminate or at least attenuate these limitations, some authors have proposed modeling systems using Bayesian Belief Networks (BBNs). The application of these tools is expected to address many of the deficiencies in current approaches to modeling human actions with binary trees. This paper presents a methodology based on BBN for analyzing human reliability and applies this method to the operation of an oil tanker, focusing on the risk of collision accidents. The obtained model was used to determine the most likely sequence of hazardous events and thus isolate critical activities in the operation of the ship to study Internal Factors (IFs), Skills, and Management and Organizational Factors (MOFs) that should receive more attention for risk reduction.

  19. Human decomposition and the reliability of a 'Universal' model for post mortem interval estimations.

    Science.gov (United States)

    Cockle, Diane L; Bell, Lynne S

    2015-08-01

    Human decomposition is a complex biological process driven by an array of variables which are not clearly understood. The medico-legal community have long been searching for a reliable method to establish the post-mortem interval (PMI) for those whose deaths have either been hidden, or gone un-noticed. To date, attempts to develop a PMI estimation method based on the state of the body either at the scene or at autopsy have been unsuccessful. One recent study has proposed that two simple formulae, based on the level of decomposition humidity and temperature, could be used to accurately calculate the PMI for bodies outside, on or under the surface worldwide. This study attempted to validate 'Formula I' [1] (for bodies on the surface) using 42 Canadian cases with known PMIs. The results indicated that bodies exposed to warm temperatures consistently overestimated the known PMI by a large and inconsistent margin for Formula I estimations. And for bodies exposed to cold and freezing temperatures (less than 4°C), then the PMI was dramatically under estimated. The ability of 'Formulae II' to estimate the PMI for buried bodies was also examined using a set of 22 known Canadian burial cases. As these cases used in this study are retrospective, some of the data needed for Formula II was not available. The 4.6 value used in Formula II to represent the standard ratio of time that burial decelerates the rate of decomposition was examined. The average time taken to achieve each stage of decomposition both on, and under the surface was compared for the 118 known cases. It was found that the rate of decomposition was not consistent throughout all stages of decomposition. The rates of autolysis above and below the ground were equivalent with the buried cases staying in a state of putrefaction for a prolonged period of time. It is suggested that differences in temperature extremes and humidity levels between geographic regions may make it impractical to apply formulas developed in

  20. The National Surgical Quality Improvement Program 30-Day Challenge: Microsurgical Breast Reconstruction Outcomes Reporting Reliability

    Directory of Open Access Journals (Sweden)

    Austin D. Chen

    2018-03-01

    Conclusion:. For immediate, free-tissue breast reconstruction, the ACS-NSQIP may be reliable for monitoring and comparing SSI, WD, URO, and URA rates. However, clinicians may find it useful to understand limitations of the ACS-NSQIP for complications and risk factors, as it may underreport complications occurring beyond 30 days.

  1. R&D program benefits estimation: DOE Office of Electricity Delivery and Energy Reliability

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2006-12-04

    The overall mission of the U.S. Department of Energy’s Office of Electricity Delivery and Energy Reliability (OE) is to lead national efforts to modernize the electric grid, enhance the security and reliability of the energy infrastructure, and facilitate recovery from disruptions to the energy supply. In support of this mission, OE conducts a portfolio of research and development (R&D) activities to advance technologies to enhance electric power delivery. Multiple benefits are anticipated to result from the deployment of these technologies, including higher quality and more reliable power, energy savings, and lower cost electricity. In addition, OE engages State and local government decision-makers and the private sector to address issues related to the reliability and security of the grid, including responding to national emergencies that affect energy delivery. The OE R&D activities are comprised of four R&D lines: High Temperature Superconductivity (HTS), Visualization and Controls (V&C), Energy Storage and Power Electronics (ES&PE), and Distributed Systems Integration (DSI).

  2. Reliability and validity of a novel Kinect-based software program for measuring posture, balance and side-bending.

    Science.gov (United States)

    Grooten, Wilhelmus Johannes Andreas; Sandberg, Lisa; Ressman, John; Diamantoglou, Nicolas; Johansson, Elin; Rasmussen-Barr, Eva

    2018-01-08

    Clinical examinations are subjective and often show a low validity and reliability. Objective and highly reliable quantitative assessments are available in laboratory settings using 3D motion analysis, but these systems are too expensive to use for simple clinical examinations. Qinematic™ is an interactive movement analyses system based on the Kinect camera and is an easy-to-use clinical measurement system for assessing posture, balance and side-bending. The aim of the study was to test the test-retest the reliability and construct validity of Qinematic™ in a healthy population, and to calculate the minimal clinical differences for the variables of interest. A further aim was to identify the discriminative validity of Qinematic™ in people with low-back pain (LBP). We performed a test-retest reliability study (n = 37) with around 1 week between the occasions, a construct validity study (n = 30) in which Qinematic™ was tested against a 3D motion capture system, and a discriminative validity study, in which a group of people with LBP (n = 20) was compared to healthy controls (n = 17). We tested a large range of psychometric properties of 18 variables in three sections: posture (head and pelvic position, weight distribution), balance (sway area and velocity in single- and double-leg stance), and side-bending. The majority of the variables in the posture and balance sections, showed poor/fair reliability (ICC validity (Spearman reliability (ICC =0.898), excellent validity (r = 0.943), and Qinematic™ could differentiate between LPB and healthy individuals (p = 0.012). This paper shows that a novel software program (Qinematic™) based on the Kinect camera for measuring balance, posture and side-bending has poor psychometric properties, indicating that the variables on balance and posture should not be used for monitoring individual changes over time or in research. Future research on the dynamic tasks of Qinematic™ is warranted.

  3. Automated discovery of functional generality of human gene expression programs.

    Directory of Open Access Journals (Sweden)

    Georg K Gerber

    2007-08-01

    Full Text Available An important research problem in computational biology is the identification of expression programs, sets of co-expressed genes orchestrating normal or pathological processes, and the characterization of the functional breadth of these programs. The use of human expression data compendia for discovery of such programs presents several challenges including cellular inhomogeneity within samples, genetic and environmental variation across samples, uncertainty in the numbers of programs and sample populations, and temporal behavior. We developed GeneProgram, a new unsupervised computational framework based on Hierarchical Dirichlet Processes that addresses each of the above challenges. GeneProgram uses expression data to simultaneously organize tissues into groups and genes into overlapping programs with consistent temporal behavior, to produce maps of expression programs, which are sorted by generality scores that exploit the automatically learned groupings. Using synthetic and real gene expression data, we showed that GeneProgram outperformed several popular expression analysis methods. We applied GeneProgram to a compendium of 62 short time-series gene expression datasets exploring the responses of human cells to infectious agents and immune-modulating molecules. GeneProgram produced a map of 104 expression programs, a substantial number of which were significantly enriched for genes involved in key signaling pathways and/or bound by NF-kappaB transcription factors in genome-wide experiments. Further, GeneProgram discovered expression programs that appear to implicate surprising signaling pathways or receptor types in the response to infection, including Wnt signaling and neurotransmitter receptors. We believe the discovered map of expression programs involved in the response to infection will be useful for guiding future biological experiments; genes from programs with low generality scores might serve as new drug targets that exhibit minimal

  4. Assessment of the human factor in the quantification of technical system reliability taking into consideration cognitive-causal aspects. Partial project 2. Modeling of the human behavior for reliability considerations. Final report

    International Nuclear Information System (INIS)

    Jennerich, Marco; Imbsweiler, Jonas; Straeter, Oliver; Arenius, Marcus

    2015-03-01

    This report presents the findings of the project for the consideration of human factor in the quantification of the reliability of technical systems, taking into account cognitive-causal aspects concerning the modeling of human behavior of reliability issues (funded by the Federal Ministry of Economics and Technology; grant number 15014328). This project is part of a joint project with the University of Applied Sciences Zittau / Goerlitz for assessing the human factor in the quantification of the reliability of technical systems. The concern of the University of Applied Sciences Zittau / Goerlitz is the mathematical modeling of human reliability by means of a fuzzy set approach (grant number 1501432A). The part of the project presented here provides the necessary data basis for the evaluation of the mathematical modeling using fuzzy set approach. At the appropriate places in this report, the interfaces and data bases between the two projects are outlined accordingly. HRA-methods (Human Reliability Analysis) are an essential component to analyze the reliability of socio-technical systems. Various methods have been established and are used in different areas of application. The established HRA methods have been checked on their congruence. In particular the underlying models and their parameters such as performance-influencing factors and situational influences have been investigated. The elaborated parameters were combined into a hierarchical class structure. Cross-domain incidents were studied. The specific performance-influencing factors have been worked out and have been integrated into a cross-domain database. The dominant (critical) situational factors and their interactions within the event data were identified using the CAHR method (connectionism Assessment of Human Reliability). Task dependent cognitive load profiles have been defined. Within these profiles qualitative and quantitative data of the possibility of emergence of errors have been acquired. This

  5. DOE Human Genome Program contractor-grantee workshop

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-01-01

    This volume contains the proceedings for the DOE Human Genome Program`s Contractor-Grantee Workshop V held in Sante Fe, New Mexico January 28, February 1, 1996. Presentations were divided into sessions entitled Sequencing; Mapping; Informatics; Ethical, Legal, and Social Issues; and Infrastructure. Reports of individual projects described herein are separately indexed and abstracted for the database.

  6. Human genome program report. Part 1, overview and progress

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    This report contains Part 1 of a two-part report to reflect research and progress in the U.S. Department of Energy Human Genome Program from 1994 through 1996, with specified updates made just before publication. Part 1 consists of the program overview and report on progress.

  7. Reliable Autonomous Surface Mobility (RASM) in Support of Human Exploration, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — ProtoInnovations, LLC and Carnegie Mellon University have formed a partnership to commercially develop rover-autonomy technologies into Reliable Autonomous Surface...

  8. The Role of Human Error in Design, Construction, and Reliability of Marine Structures.

    Science.gov (United States)

    1994-10-01

    the fundamental reason for the disparities between computed or notional reliabilities and actuarial relia- bilities. Another important finding from...Marine Structures Lack of recognition of HOE is the fundamental reason for the disparities between computed or notional reliabilities and actuarial ...Conference on Offshore Mechanics and Arctic Engineering, ASME Paper No. OMAE-92-1372, Calgary, Alberta, Canada. Bea, R. G., et al. (1994). "Quality Assurance

  9. Analysis of human reliability in the APS of fire. Application of NUREG-1921; Analisis de Fiabilidad Humana en el APS de Incendios. Aplicacion del NUREG-1921

    Energy Technology Data Exchange (ETDEWEB)

    Perez Torres, J. L.; Celaya Meler, M. A.

    2014-07-01

    An analysis of human reliability in a probabilistic safety analysis (APS) of fire aims to identify, describe, analyze and quantify, in a manner traceable, human actions that can affect the mitigation of an initiating event produced by a fire. (Author)

  10. Application of objective clinical human reliability analysis (OCHRA) in assessment of technical performance in laparoscopic rectal cancer surgery.

    Science.gov (United States)

    Foster, J D; Miskovic, D; Allison, A S; Conti, J A; Ockrim, J; Cooper, E J; Hanna, G B; Francis, N K

    2016-06-01

    Laparoscopic rectal resection is technically challenging, with outcomes dependent upon technical performance. No robust objective assessment tool exists for laparoscopic rectal resection surgery. This study aimed to investigate the application of the objective clinical human reliability analysis (OCHRA) technique for assessing technical performance of laparoscopic rectal surgery and explore the validity and reliability of this technique. Laparoscopic rectal cancer resection operations were described in the format of a hierarchical task analysis. Potential technical errors were defined. The OCHRA technique was used to identify technical errors enacted in videos of twenty consecutive laparoscopic rectal cancer resection operations from a single site. The procedural task, spatial location, and circumstances of all identified errors were logged. Clinical validity was assessed through correlation with clinical outcomes; reliability was assessed by test-retest. A total of 335 execution errors identified, with a median 15 per operation. More errors were observed during pelvic tasks compared with abdominal tasks (p technical performance of laparoscopic rectal surgery.

  11. Usability: Human Research Program - Space Human Factors and Habitability

    Science.gov (United States)

    Sandor, Aniko; Holden, Kritina L.

    2009-01-01

    The Usability project addresses the need for research in the area of metrics and methodologies used in hardware and software usability testing in order to define quantifiable and verifiable usability requirements. A usability test is a human-in-the-loop evaluation where a participant works through a realistic set of representative tasks using the hardware/software under investigation. The purpose of this research is to define metrics and methodologies for measuring and verifying usability in the aerospace domain in accordance with FY09 focus on errors, consistency, and mobility/maneuverability. Usability metrics must be predictive of success with the interfaces, must be easy to obtain and/or calculate, and must meet the intent of current Human Systems Integration Requirements (HSIR). Methodologies must work within the constraints of the aerospace domain, be cost and time efficient, and be able to be applied without extensive specialized training.

  12. Twenty-fifth water reactor safety information meeting: Proceedings. Volume 2: Human reliability analysis and human performance evaluation; Technical issues related to rulemakings; Risk-informed, performance-based initiatives; High burn-up fuel research

    International Nuclear Information System (INIS)

    Monteleone, S.

    1998-03-01

    This three-volume report contains papers presented at the conference. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from France, Japan, Norway, and Russia. The titles of the papers and the names of the authors have been updated and may differ from those that appeared in the final program of the meeting. This volume contains the following: (1) human reliability analysis and human performance evaluation; (2) technical issues related to rulemakings; (3) risk-informed, performance-based initiatives; and (4) high burn-up fuel research

  13. Twenty-fifth water reactor safety information meeting: Proceedings. Volume 2: Human reliability analysis and human performance evaluation; Technical issues related to rulemakings; Risk-informed, performance-based initiatives; High burn-up fuel research

    Energy Technology Data Exchange (ETDEWEB)

    Monteleone, S. [comp.] [Brookhaven National Lab., Upton, NY (United States)

    1998-03-01

    This three-volume report contains papers presented at the conference. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from France, Japan, Norway, and Russia. The titles of the papers and the names of the authors have been updated and may differ from those that appeared in the final program of the meeting. This volume contains the following: (1) human reliability analysis and human performance evaluation; (2) technical issues related to rulemakings; (3) risk-informed, performance-based initiatives; and (4) high burn-up fuel research. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  14. Validity and reliability of portfolio assessment of competency in a baccalaureate dental hygiene program

    Science.gov (United States)

    Gadbury-Amyot, Cynthia C.

    This study examined validity and reliability of portfolio assessment using Messick's (1996, 1995) unified framework of construct validity. Theoretical and empirical evidence was sought for six aspects of construct validity. The sample included twenty student portfolios. Each portfolio were evaluated by seven faculty raters using a primary trait analysis scoring rubric. There was a significant relationship (r = .81--.95; p Dental Hygiene Board Examination (r = .60; p Dental Testing Service examination was both weak and nonsignificant (r = .19; p > .05). An open-ended survey was used to elicit student feedback on portfolio development. A majority of the students (76%) perceived value in the development of programmatic portfolios. In conclusion, the pattern of findings from this study suggest that portfolios can serve as a valid and reliable measure for assessing student competency.

  15. Measurement of Cue-Induced Craving in Human Methamphetamine- Dependent Subjects New Methodological Hopes for Reliable Assessment of Treatment Efficacy

    Directory of Open Access Journals (Sweden)

    Zahra Alam Mehrjerdi

    2011-09-01

    Full Text Available Methamphetamine (MA is a highly addictive psychostimulant drug with crucial impacts on individuals on various levels. Exposure to methamphetamine-associated cues in laboratory can elicit measureable craving and autonomic reactivity in most individuals with methamphetamine dependence and the cue reactivity can model how craving would result in continued drug seeking behaviors and relapse in real environments but study on this notion is still limited. In this brief article, the authors review studies on cue-induced craving in human methamphetamine- dependent subjects in a laboratory-based approach. Craving for methamphetamine is elicited by a variety of methods in laboratory such as paraphernalia, verbal and visual cues and imaginary scripts. In this article, we review the studies applying different cues as main methods of craving incubation in laboratory settings. The brief reviewed literature provides strong evidence that craving for methamphetamine in laboratory conditions is significantly evoked by different cues. Cue-induced craving has important treatment and clinical implications for psychotherapists and clinicians when we consider the role of induced craving in evoking intense desire or urge to use methamphetamine after or during a period of successful craving prevention program. Elicited craving for methamphetamine in laboratory conditions is significantly influenced by methamphetamine-associated cues and results in rapid craving response toward methamphetamine use. This notion can be used as a main core for laboratory-based assessment of treatment efficacy for methamphetamine-dependent patients. In addition, the laboratory settings for studying craving can bridge the gap between somehow-non-reliable preclinical animal model studies and budget demanding randomized clinical trials.

  16. Systems Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE) Version 5.0: Data loading manual. Volume 10

    International Nuclear Information System (INIS)

    VanHorn, R.L.; Wolfram, L.M.; Fowler, R.D.; Beck, S.T.; Smith, C.L.

    1995-04-01

    The Systems Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE) suite of programs can be used to organize and standardize in an electronic format information from probabilistic risk assessments or individual plant examinations. The Models and Results Database (MAR-D) program of the SAPHIRE suite serves as the repository for probabilistic risk assessment and individual plant examination data and information. This report demonstrates by examples the common electronic and manual methods used to load these types of data. It is not a stand alone document but references documents that contribute information relative to the data loading process. This document provides a more detailed discussion and instructions for using SAPHIRE 5.0 only when enough information on a specific topic is not provided by another available source

  17. Reliability calculations

    International Nuclear Information System (INIS)

    Petersen, K.E.

    1986-03-01

    Risk and reliability analysis is increasingly being used in evaluations of plant safety and plant reliability. The analysis can be performed either during the design process or during the operation time, with the purpose to improve the safety or the reliability. Due to plant complexity and safety and availability requirements, sophisticated tools, which are flexible and efficient, are needed. Such tools have been developed in the last 20 years and they have to be continuously refined to meet the growing requirements. Two different areas of application were analysed. In structural reliability probabilistic approaches have been introduced in some cases for the calculation of the reliability of structures or components. A new computer program has been developed based upon numerical integration in several variables. In systems reliability Monte Carlo simulation programs are used especially in analysis of very complex systems. In order to increase the applicability of the programs variance reduction techniques can be applied to speed up the calculation process. Variance reduction techniques have been studied and procedures for implementation of importance sampling are suggested. (author)

  18. Measuring Program Quality, Part 2: Addressing Potential Cultural Bias in a Rater Reliability Exam

    Science.gov (United States)

    Richer, Amanda; Charmaraman, Linda; Ceder, Ineke

    2018-01-01

    Like instruments used in afterschool programs to assess children's social and emotional growth or to evaluate staff members' performance, instruments used to evaluate program quality should be free from bias. Practitioners and researchers alike want to know that assessment instruments, whatever their type or intent, treat all people fairly and do…

  19. MERMOS: an EDF project to update the PHRA methodology (Probabilistic Human Reliability Assessment)

    International Nuclear Information System (INIS)

    Le Bot, Pierre; Desmares, E.; Bieder, C.; Cara, F.; Bonnet, J.L.

    1998-01-01

    To account for successive evolution of nuclear power plants emergency operation, EDF had several times to review PHRA methodologies. It was particularly the case when event-based procedures were left behind to the benefit of state-based procedures. A more recent updating was necessary to get pieces of information on the new unit type N4 safety. The extent of changes in operation for this unit type (especially the computerization of both the control room and the procedures) required to deeply rethink existing PHRA methods. It also seemed necessary to - more explicitly than in the past - base the design of methods on concepts evolved in human sciences. These are the main ambitions of the project named MERMOS that started in 1996. The design effort for a new PHRA method is carried out by a multidisciplinary team involving reliability engineers, psychologists and ergonomists. An independent expert is in charge of project review. The method, considered as the analysis tool dedicated to PHRA analysts, is one of the two outcomes of the project. The other one is the formalization of the design approach for the method, aimed at a good appropriation of the method by the analysts. EDF's specificity in the field of PHRA and more generally PSA is that the method is not used by the designers but by analysts. Keeping track of the approach is also meant to guarantee its transposition to other EDF unit types such as 900 or 1300 MW PWR. The PHRA method is based upon a model of emergency operation called 'SAD model'. The formalization effort of the design approach lead to clarify and justify it. The model describes and explains both functioning and dys-functioning of emergency operation in PSA scenarios. It combines a systemic approach and what is called distributed cognition in cognitive sciences. Collective aspects are considered as an important feature in explaining phenomena under study in operation dys-functioning. The PHRA method is to be operational early next year (1998

  20. Nurture of human resources for geological repository program

    International Nuclear Information System (INIS)

    Fujiwara, A.

    2004-01-01

    The Japanese geological repository program entered the implementing stage in 2002. At the implementing stage of the program, different sectors need various human resources to conduct their functions. This paper discusses a suitable framework of nurture of the human resources to progress the geological repository program. The discussion is based on considering of specific characters involved in the program and of the multidisciplinary knowledge related to geological disposal. Considering the specific characters of the project, two types of the human resources need to be nurtured. First type is the core persons with the highest knowledge on geological disposal. They are expected to communicate with the various stakeholders and pass down the whole knowledge of the project to the next generation. Another is to conduct the project as the managers, the engineers and the workers. The former human resources can be developed through the broad practice and experience in each sector. The latter human resources can be effectively developed by training of the fundamental knowledge on geological disposal at training centers as well as by conventional on-the-job training. The sectors involved in the program need to take their own roles in the nurture of these human resources. (author)