WorldWideScience

Sample records for human reliability analysis

  1. Human reliability analysis

    International Nuclear Information System (INIS)

    Dougherty, E.M.; Fragola, J.R.

    1988-01-01

    The authors present a treatment of human reliability analysis incorporating an introduction to probabilistic risk assessment for nuclear power generating stations. They treat the subject according to the framework established for general systems theory. Draws upon reliability analysis, psychology, human factors engineering, and statistics, integrating elements of these fields within a systems framework. Provides a history of human reliability analysis, and includes examples of the application of the systems approach

  2. Human Reliability Analysis: session summary

    International Nuclear Information System (INIS)

    Hall, R.E.

    1985-01-01

    The use of Human Reliability Analysis (HRA) to identify and resolve human factors issues has significantly increased over the past two years. Today, utilities, research institutions, consulting firms, and the regulatory agency have found a common application of HRA tools and Probabilistic Risk Assessment (PRA). The ''1985 IEEE Third Conference on Human Factors and Power Plants'' devoted three sessions to the discussion of these applications and a review of the insights so gained. This paper summarizes the three sessions and presents those common conclusions that were discussed during the meeting. The paper concludes that session participants supported the use of an adequately documented ''living PRA'' to address human factors issues in design and procedural changes, regulatory compliance, and training and that the techniques can produce cost effective qualitative results that are complementary to more classical human factors methods

  3. Space Mission Human Reliability Analysis (HRA) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of this project is to extend current ground-based Human Reliability Analysis (HRA) techniques to a long-duration, space-based tool to more effectively...

  4. Culture Representation in Human Reliability Analysis

    Energy Technology Data Exchange (ETDEWEB)

    David Gertman; Julie Marble; Steven Novack

    2006-12-01

    Understanding human-system response is critical to being able to plan and predict mission success in the modern battlespace. Commonly, human reliability analysis has been used to predict failures of human performance in complex, critical systems. However, most human reliability methods fail to take culture into account. This paper takes an easily understood state of the art human reliability analysis method and extends that method to account for the influence of culture, including acceptance of new technology, upon performance. The cultural parameters used to modify the human reliability analysis were determined from two standard industry approaches to cultural assessment: Hofstede’s (1991) cultural factors and Davis’ (1989) technology acceptance model (TAM). The result is called the Culture Adjustment Method (CAM). An example is presented that (1) reviews human reliability assessment with and without cultural attributes for a Supervisory Control and Data Acquisition (SCADA) system attack, (2) demonstrates how country specific information can be used to increase the realism of HRA modeling, and (3) discusses the differences in human error probability estimates arising from cultural differences.

  5. Human reliability analysis of control room operators

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Isaac J.A.L.; Carvalho, Paulo Victor R.; Grecco, Claudio H.S. [Instituto de Engenharia Nuclear (IEN), Rio de Janeiro, RJ (Brazil)

    2005-07-01

    Human reliability is the probability that a person correctly performs some system required action in a required time period and performs no extraneous action that can degrade the system Human reliability analysis (HRA) is the analysis, prediction and evaluation of work-oriented human performance using some indices as human error likelihood and probability of task accomplishment. Significant progress has been made in the HRA field during the last years, mainly in nuclear area. Some first-generation HRA methods were developed, as THERP (Technique for human error rate prediction). Now, an array of called second-generation methods are emerging as alternatives, for instance ATHEANA (A Technique for human event analysis). The ergonomics approach has as tool the ergonomic work analysis. It focus on the study of operator's activities in physical and mental form, considering at the same time the observed characteristics of operator and the elements of the work environment as they are presented to and perceived by the operators. The aim of this paper is to propose a methodology to analyze the human reliability of the operators of industrial plant control room, using a framework that includes the approach used by ATHEANA, THERP and the work ergonomics analysis. (author)

  6. A taxonomy for human reliability analysis

    International Nuclear Information System (INIS)

    Beattie, J.D.; Iwasa-Madge, K.M.

    1984-01-01

    A human interaction taxonomy (classification scheme) was developed to facilitate human reliability analysis in a probabilistic safety evaluation of a nuclear power plant, being performed at Ontario Hydro. A human interaction occurs, by definition, when operators or maintainers manipulate, or respond to indication from, a plant component or system. The taxonomy aids the fault tree analyst by acting as a heuristic device. It helps define the range and type of human errors to be identified in the construction of fault trees, while keeping the identification by different analysts consistent. It decreases the workload associated with preliminary quantification of the large number of identified interactions by including a category called 'simple interactions'. Fault tree analysts quantify these according to a procedure developed by a team of human reliability specialists. The interactions which do not fit into this category are called 'complex' and are quantified by the human reliability team. The taxonomy is currently being used in fault tree construction in a probabilistic safety evaluation. As far as can be determined at this early stage, the potential benefits of consistency and completeness in identifying human interactions and streamlining the initial quantification are being realized

  7. Human reliability analysis using event trees

    International Nuclear Information System (INIS)

    Heslinga, G.

    1983-01-01

    The shut-down procedure of a technologically complex installation as a nuclear power plant consists of a lot of human actions, some of which have to be performed several times. The procedure is regarded as a chain of modules of specific actions, some of which are analyzed separately. The analysis is carried out by making a Human Reliability Analysis event tree (HRA event tree) of each action, breaking down each action into small elementary steps. The application of event trees in human reliability analysis implies more difficulties than in the case of technical systems where event trees were mainly used until now. The most important reason is that the operator is able to recover a wrong performance; memory influences play a significant role. In this study these difficulties are dealt with theoretically. The following conclusions can be drawn: (1) in principle event trees may be used in human reliability analysis; (2) although in practice the operator will recover his fault partly, theoretically this can be described as starting the whole event tree again; (3) compact formulas have been derived, by which the probability of reaching a specific failure consequence on passing through the HRA event tree after several times of recovery is to be calculated. (orig.)

  8. The quantitative failure of human reliability analysis

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, C.T.

    1995-07-01

    This philosophical treatise argues the merits of Human Reliability Analysis (HRA) in the context of the nuclear power industry. Actually, the author attacks historic and current HRA as having failed in informing policy makers who make decisions based on risk that humans contribute to systems performance. He argues for an HRA based on Bayesian (fact-based) inferential statistics, which advocates a systems analysis process that employs cogent heuristics when using opinion, and tempers itself with a rational debate over the weight given subjective and empirical probabilities.

  9. Standardizing the practice of human reliability analysis

    International Nuclear Information System (INIS)

    Hallbert, B.P.

    1993-01-01

    The practice of human reliability analysis (HRA) within the nuclear industry varies greatly in terms of posited mechanisms that shape human performance, methods of characterizing and analytically modeling human behavior, and the techniques that are employed to estimate the frequency with which human error occurs. This variation has been a source of contention among HRA practitioners regarding the validity of results obtained from different HRA methods. It has also resulted in attempts to develop standard methods and procedures for conducting HRAs. For many of the same reasons, the practice of HRA has not been standardized or has been standardized only to the extent that individual analysts have developed heuristics and consistent approaches in their practice of HRA. From the standpoint of consumers and regulators, this has resulted in a lack of clear acceptance criteria for the assumptions, modeling, and quantification of human errors in probabilistic risk assessments

  10. Task Decomposition in Human Reliability Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Boring, Ronald Laurids [Idaho National Laboratory; Joe, Jeffrey Clark [Idaho National Laboratory

    2014-06-01

    In the probabilistic safety assessments (PSAs) used in the nuclear industry, human failure events (HFEs) are determined as a subset of hardware failures, namely those hardware failures that could be triggered by human action or inaction. This approach is top-down, starting with hardware faults and deducing human contributions to those faults. Elsewhere, more traditionally human factors driven approaches would tend to look at opportunities for human errors first in a task analysis and then identify which of those errors is risk significant. The intersection of top-down and bottom-up approaches to defining HFEs has not been carefully studied. Ideally, both approaches should arrive at the same set of HFEs. This question remains central as human reliability analysis (HRA) methods are generalized to new domains like oil and gas. The HFEs used in nuclear PSAs tend to be top-down— defined as a subset of the PSA—whereas the HFEs used in petroleum quantitative risk assessments (QRAs) are more likely to be bottom-up—derived from a task analysis conducted by human factors experts. The marriage of these approaches is necessary in order to ensure that HRA methods developed for top-down HFEs are also sufficient for bottom-up applications.

  11. Human reliability analysis of dependent events

    International Nuclear Information System (INIS)

    Swain, A.D.; Guttmann, H.E.

    1977-01-01

    In the human reliability analysis in WASH-1400, the continuous variable of degree of interaction among human events was approximated by selecting four points on this continuum to represent the entire continuum. The four points selected were identified as zero coupling (i.e., zero dependence), complete coupling (i.e., complete dependence), and two intermediate points--loose coupling (a moderate level of dependence) and tight coupling (a high level of dependence). The paper expands the WASH-1400 treatment of common mode failure due to the interaction of human activities. Mathematical expressions for the above four levels of dependence are derived for parallel and series systems. The psychological meaning of each level of dependence is illustrated by examples, with probability tree diagrams to illustrate the use of conditional probabilities resulting from the interaction of human actions in nuclear power plant tasks

  12. Advancing Usability Evaluation through Human Reliability Analysis

    International Nuclear Information System (INIS)

    Ronald L. Boring; David I. Gertman

    2005-01-01

    This paper introduces a novel augmentation to the current heuristic usability evaluation methodology. The SPAR-H human reliability analysis method was developed for categorizing human performance in nuclear power plants. Despite the specialized use of SPAR-H for safety critical scenarios, the method also holds promise for use in commercial off-the-shelf software usability evaluations. The SPAR-H method shares task analysis underpinnings with human-computer interaction, and it can be easily adapted to incorporate usability heuristics as performance shaping factors. By assigning probabilistic modifiers to heuristics, it is possible to arrive at the usability error probability (UEP). This UEP is not a literal probability of error but nonetheless provides a quantitative basis to heuristic evaluation. When combined with a consequence matrix for usability errors, this method affords ready prioritization of usability issues

  13. Research review and development trends of human reliability analysis techniques

    International Nuclear Information System (INIS)

    Li Pengcheng; Chen Guohua; Zhang Li; Dai Licao

    2011-01-01

    Human reliability analysis (HRA) methods are reviewed. The theoretical basis of human reliability analysis, human error mechanism, the key elements of HRA methods as well as the existing HRA methods are respectively introduced and assessed. Their shortcomings,the current research hotspot and difficult problems are identified. Finally, it takes a close look at the trends of human reliability analysis methods. (authors)

  14. Human Reliability Analysis for Design: Using Reliability Methods for Human Factors Issues

    Energy Technology Data Exchange (ETDEWEB)

    Ronald Laurids Boring

    2010-11-01

    This paper reviews the application of human reliability analysis methods to human factors design issues. An application framework is sketched in which aspects of modeling typically found in human reliability analysis are used in a complementary fashion to the existing human factors phases of design and testing. The paper provides best achievable practices for design, testing, and modeling. Such best achievable practices may be used to evaluate and human system interface in the context of design safety certifications.

  15. Human Reliability Analysis for Design: Using Reliability Methods for Human Factors Issues

    International Nuclear Information System (INIS)

    Boring, Ronald Laurids

    2010-01-01

    This paper reviews the application of human reliability analysis methods to human factors design issues. An application framework is sketched in which aspects of modeling typically found in human reliability analysis are used in a complementary fashion to the existing human factors phases of design and testing. The paper provides best achievable practices for design, testing, and modeling. Such best achievable practices may be used to evaluate and human system interface in the context of design safety certifications.

  16. Space Mission Human Reliability Analysis (HRA) Project

    Science.gov (United States)

    Boyer, Roger

    2014-01-01

    The purpose of the Space Mission Human Reliability Analysis (HRA) Project is to extend current ground-based HRA risk prediction techniques to a long-duration, space-based tool. Ground-based HRA methodology has been shown to be a reasonable tool for short-duration space missions, such as Space Shuttle and lunar fly-bys. However, longer-duration deep-space missions, such as asteroid and Mars missions, will require the crew to be in space for as long as 400 to 900 day missions with periods of extended autonomy and self-sufficiency. Current indications show higher risk due to fatigue, physiological effects due to extended low gravity environments, and others, may impact HRA predictions. For this project, Safety & Mission Assurance (S&MA) will work with Human Health & Performance (HH&P) to establish what is currently used to assess human reliabiilty for human space programs, identify human performance factors that may be sensitive to long duration space flight, collect available historical data, and update current tools to account for performance shaping factors believed to be important to such missions. This effort will also contribute data to the Human Performance Data Repository and influence the Space Human Factors Engineering research risks and gaps (part of the HRP Program). An accurate risk predictor mitigates Loss of Crew (LOC) and Loss of Mission (LOM).The end result will be an updated HRA model that can effectively predict risk on long-duration missions.

  17. Human Reliability Analysis for Small Modular Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Ronald L. Boring; David I. Gertman

    2012-06-01

    Because no human reliability analysis (HRA) method was specifically developed for small modular reactors (SMRs), the application of any current HRA method to SMRs represents tradeoffs. A first- generation HRA method like THERP provides clearly defined activity types, but these activity types do not map to the human-system interface or concept of operations confronting SMR operators. A second- generation HRA method like ATHEANA is flexible enough to be used for SMR applications, but there is currently insufficient guidance for the analyst, requiring considerably more first-of-a-kind analyses and extensive SMR expertise in order to complete a quality HRA. Although no current HRA method is optimized to SMRs, it is possible to use existing HRA methods to identify errors, incorporate them as human failure events in the probabilistic risk assessment (PRA), and quantify them. In this paper, we provided preliminary guidance to assist the human reliability analyst and reviewer in understanding how to apply current HRA methods to the domain of SMRs. While it is possible to perform a satisfactory HRA using existing HRA methods, ultimately it is desirable to formally incorporate SMR considerations into the methods. This may require the development of new HRA methods. More practicably, existing methods need to be adapted to incorporate SMRs. Such adaptations may take the form of guidance on the complex mapping between conventional light water reactors and small modular reactors. While many behaviors and activities are shared between current plants and SMRs, the methods must adapt if they are to perform a valid and accurate analysis of plant personnel performance in SMRs.

  18. Modeling human reliability analysis using MIDAS

    International Nuclear Information System (INIS)

    Boring, R. L.

    2006-01-01

    This paper documents current efforts to infuse human reliability analysis (HRA) into human performance simulation. The Idaho National Laboratory is teamed with NASA Ames Research Center to bridge the SPAR-H HRA method with NASA's Man-machine Integration Design and Analysis System (MIDAS) for use in simulating and modeling the human contribution to risk in nuclear power plant control room operations. It is anticipated that the union of MIDAS and SPAR-H will pave the path for cost-effective, timely, and valid simulated control room operators for studying current and next generation control room configurations. This paper highlights considerations for creating the dynamic HRA framework necessary for simulation, including event dependency and granularity. This paper also highlights how the SPAR-H performance shaping factors can be modeled in MIDAS across static, dynamic, and initiator conditions common to control room scenarios. This paper concludes with a discussion of the relationship of the workload factors currently in MIDAS and the performance shaping factors in SPAR-H. (authors)

  19. Advances in human reliability analysis in Mexico

    International Nuclear Information System (INIS)

    Nelson, Pamela F.; Gonzalez C, M.; Ruiz S, T.; Guillen M, D.; Contreras V, A.

    2010-10-01

    Human Reliability Analysis (HRA) is a very important part of Probabilistic Risk Analysis (PRA), and constant work is dedicated to improving methods, guidance and data in order to approach realism in the results as well as looking for ways to use these to reduce accident frequency at plants. Further, in order to advance in these areas, several HRA studies are being performed globally. Mexico has participated in the International HRA Empirical study with the objective of -benchmarking- HRA methods by comparing HRA predictions to actual crew performance in a simulator, as well as in the empirical study on a US nuclear power plant currently in progress. The focus of the first study was the development of an understanding of how methods are applied by various analysts, and characterize the methods for their capability to guide the analysts to identify potential human failures, and associated causes and performance shaping factors. The HRA benchmarking study has been performed by using the Halden simulator, 14 European crews, and 15 HRA equipment s (NRC, EPRI, and foreign HRA equipment s using different HRA methods). This effort in Mexico is reflected through the work being performed on updating the Laguna Verde PRA to comply with the ASME PRA standard. In order to be considered an HRA with technical adequacy, that is, be considered as a capability category II, for risk-informed applications, the methodology used for the HRA in the original PRA is not considered sufficiently detailed, and the methodology had to upgraded. The HCR/CBDT/THERP method was chosen, since this is used in many nuclear plants with similar design. The HRA update includes identification and evaluation of human errors that can occur during testing and maintenance, as well as human errors that can occur during an accident using the Emergency Operating Procedures. The review of procedures for maintenance, surveillance and operation is a necessary step in HRA and provides insight into the possible

  20. Human Reliability Analysis For Computerized Procedures

    International Nuclear Information System (INIS)

    Boring, Ronald L.; Gertman, David I.; Le Blanc, Katya

    2011-01-01

    This paper provides a characterization of human reliability analysis (HRA) issues for computerized procedures in nuclear power plant control rooms. It is beyond the scope of this paper to propose a new HRA approach or to recommend specific methods or refinements to those methods. Rather, this paper provides a review of HRA as applied to traditional paper-based procedures, followed by a discussion of what specific factors should additionally be considered in HRAs for computerized procedures. Performance shaping factors and failure modes unique to computerized procedures are highlighted. Since there is no definitive guide to HRA for paper-based procedures, this paper also serves to clarify the existing guidance on paper-based procedures before delving into the unique aspects of computerized procedures.

  1. Individual Differences in Human Reliability Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey C. Joe; Ronald L. Boring

    2014-06-01

    While human reliability analysis (HRA) methods include uncertainty in quantification, the nominal model of human error in HRA typically assumes that operator performance does not vary significantly when they are given the same initiating event, indicators, procedures, and training, and that any differences in operator performance are simply aleatory (i.e., random). While this assumption generally holds true when performing routine actions, variability in operator response has been observed in multiple studies, especially in complex situations that go beyond training and procedures. As such, complexity can lead to differences in operator performance (e.g., operator understanding and decision-making). Furthermore, psychological research has shown that there are a number of known antecedents (i.e., attributable causes) that consistently contribute to observable and systematically measurable (i.e., not random) differences in behavior. This paper reviews examples of individual differences taken from operational experience and the psychological literature. The impact of these differences in human behavior and their implications for HRA are then discussed. We propose that individual differences should not be treated as aleatory, but rather as epistemic. Ultimately, by understanding the sources of individual differences, it is possible to remove some epistemic uncertainty from analyses.

  2. Human Performance Modeling for Dynamic Human Reliability Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Boring, Ronald Laurids [Idaho National Laboratory; Joe, Jeffrey Clark [Idaho National Laboratory; Mandelli, Diego [Idaho National Laboratory

    2015-08-01

    Part of the U.S. Department of Energy’s (DOE’s) Light Water Reac- tor Sustainability (LWRS) Program, the Risk-Informed Safety Margin Charac- terization (RISMC) Pathway develops approaches to estimating and managing safety margins. RISMC simulations pair deterministic plant physics models with probabilistic risk models. As human interactions are an essential element of plant risk, it is necessary to integrate human actions into the RISMC risk framework. In this paper, we review simulation based and non simulation based human reliability analysis (HRA) methods. This paper summarizes the founda- tional information needed to develop a feasible approach to modeling human in- teractions in RISMC simulations.

  3. A methodology to incorporate organizational factors into human reliability analysis

    International Nuclear Information System (INIS)

    Li Pengcheng; Chen Guohua; Zhang Li; Xiao Dongsheng

    2010-01-01

    A new holistic methodology for Human Reliability Analysis (HRA) is proposed to model the effects of the organizational factors on the human reliability. Firstly, a conceptual framework is built, which is used to analyze the causal relationships between the organizational factors and human reliability. Then, the inference model for Human Reliability Analysis is built by combining the conceptual framework with Bayesian networks, which is used to execute the causal inference and diagnostic inference of human reliability. Finally, a case example is presented to demonstrate the specific application of the proposed methodology. The results show that the proposed methodology of combining the conceptual model with Bayesian Networks can not only easily model the causal relationship between organizational factors and human reliability, but in a given context, people can quantitatively measure the human operational reliability, and identify the most likely root causes or the prioritization of root causes caused human error. (authors)

  4. Application of DFM in human reliability analysis

    International Nuclear Information System (INIS)

    Yu Shaojie; Zhao Jun; Tong Jiejuan

    2011-01-01

    Combining with ATHEANA, the possible to identify EFCs and UAs using DFM is studied; and then Steam Generator Tube Rupture (SGTR) accident is modeled and solved. Through inductive analysis, 26 Prime Implicants (PIs) are obtained and the meaning of results is interpreted; and one of PIs is similar to the accident scenario of human failure event in one nuclear power plant. Finally, this paper discusses the methods of quantifying PIs, analysis of Error of commission (EOC) and so on. (authors)

  5. Probabilistic safety analysis and human reliability analysis. Proceedings. Working material

    International Nuclear Information System (INIS)

    1996-01-01

    An international meeting on Probabilistic Safety Assessment (PSA) and Human Reliability Analysis (HRA) was jointly organized by Electricite de France - Research and Development (EDF DER) and SRI International in co-ordination with the International Atomic Energy Agency. The meeting was held in Paris 21-23 November 1994. A group of international and French specialists in PSA and HRA participated at the meeting and discussed the state of the art and current trends in the following six topics: PSA Methodology; PSA Applications; From PSA to Dependability; Incident Analysis; Safety Indicators; Human Reliability. For each topic a background paper was prepared by EDF/DER and reviewed by the international group of specialists who attended the meeting. The results of this meeting provide a comprehensive overview of the most important questions related to the readiness of PSA for specific uses and areas where further research and development is required. Refs, figs, tabs

  6. Probabilistic safety analysis and human reliability analysis. Proceedings. Working material

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    An international meeting on Probabilistic Safety Assessment (PSA) and Human Reliability Analysis (HRA) was jointly organized by Electricite de France - Research and Development (EDF DER) and SRI International in co-ordination with the International Atomic Energy Agency. The meeting was held in Paris 21-23 November 1994. A group of international and French specialists in PSA and HRA participated at the meeting and discussed the state of the art and current trends in the following six topics: PSA Methodology; PSA Applications; From PSA to Dependability; Incident Analysis; Safety Indicators; Human Reliability. For each topic a background paper was prepared by EDF/DER and reviewed by the international group of specialists who attended the meeting. The results of this meeting provide a comprehensive overview of the most important questions related to the readiness of PSA for specific uses and areas where further research and development is required. Refs, figs, tabs.

  7. Human reliability

    International Nuclear Information System (INIS)

    Embrey, D.E.

    1987-01-01

    Concepts and techniques of human reliability have been developed and are used mostly in probabilistic risk assessment. For this, the major application of human reliability assessment has been to identify the human errors which have a significant effect on the overall safety of the system and to quantify the probability of their occurrence. Some of the major issues within human reliability studies are reviewed and it is shown how these are applied to the assessment of human failures in systems. This is done under the following headings; models of human performance used in human reliability assessment, the nature of human error, classification of errors in man-machine systems, practical aspects, human reliability modelling in complex situations, quantification and examination of human reliability, judgement based approaches, holistic techniques and decision analytic approaches. (UK)

  8. Human reliability analysis methods for probabilistic safety assessment

    International Nuclear Information System (INIS)

    Pyy, P.

    2000-11-01

    Human reliability analysis (HRA) of a probabilistic safety assessment (PSA) includes identifying human actions from safety point of view, modelling the most important of them in PSA models, and assessing their probabilities. As manifested by many incidents and studies, human actions may have both positive and negative effect on safety and economy. Human reliability analysis is one of the areas of probabilistic safety assessment (PSA) that has direct applications outside the nuclear industry. The thesis focuses upon developments in human reliability analysis methods and data. The aim is to support PSA by extending the applicability of HRA. The thesis consists of six publications and a summary. The summary includes general considerations and a discussion about human actions in the nuclear power plant (NPP) environment. A condensed discussion about the results of the attached publications is then given, including new development in methods and data. At the end of the summary part, the contribution of the publications to good practice in HRA is presented. In the publications, studies based on the collection of data on maintenance-related failures, simulator runs and expert judgement are presented in order to extend the human reliability analysis database. Furthermore, methodological frameworks are presented to perform a comprehensive HRA, including shutdown conditions, to study reliability of decision making, and to study the effects of wrong human actions. In the last publication, an interdisciplinary approach to analysing human decision making is presented. The publications also include practical applications of the presented methodological frameworks. (orig.)

  9. Incorporating process mining into human reliability analysis

    NARCIS (Netherlands)

    Kelly, D.L.

    2011-01-01

    It is well established that the human contribution to the risk of operation of complex technological systems is significant, with typical estimates lying in the range of 60-85%. Human errors have been a contributor to many significant catastrophic technological accidents. Examples are 1) the

  10. Human reliability analysis in Loviisa probabilistic safety analysis

    International Nuclear Information System (INIS)

    Illman, L.; Isaksson, J.; Makkonen, L.; Vaurio, J.K.; Vuorio, U.

    1986-01-01

    The human reliability analysis in the Loviisa PSA project is carried out for three major groups of errors in human actions: (A) errors made before an initiating event, (B) errors that initiate a transient and (C) errors made during transients. Recovery possibilities are also included in each group. The methods used or planned for each group are described. A simplified THERP approach is used for group A, with emphasis on test and maintenance error recovery aspects and dependencies between redundancies. For group B, task analyses and human factors assessments are made for startup, shutdown and operational transients, with emphasis on potential common cause initiators. For group C, both misdiagnosis and slow decision making are analyzed, as well as errors made in carrying out necessary or backup actions. New or advanced features of the methodology are described

  11. Comparison of Methods for Dependency Determination between Human Failure Events within Human Reliability Analysis

    International Nuclear Information System (INIS)

    Cepin, M.

    2008-01-01

    The human reliability analysis (HRA) is a highly subjective evaluation of human performance, which is an input for probabilistic safety assessment, which deals with many parameters of high uncertainty. The objective of this paper is to show that subjectivism can have a large impact on human reliability results and consequently on probabilistic safety assessment results and applications. The objective is to identify the key features, which may decrease subjectivity of human reliability analysis. Human reliability methods are compared with focus on dependency comparison between Institute Jozef Stefan human reliability analysis (IJS-HRA) and standardized plant analysis risk human reliability analysis (SPAR-H). Results show large differences in the calculated human error probabilities for the same events within the same probabilistic safety assessment, which are the consequence of subjectivity. The subjectivity can be reduced by development of more detailed guidelines for human reliability analysis with many practical examples for all steps of the process of evaluation of human performance

  12. Comparison of methods for dependency determination between human failure events within human reliability analysis

    International Nuclear Information System (INIS)

    Cepis, M.

    2007-01-01

    The Human Reliability Analysis (HRA) is a highly subjective evaluation of human performance, which is an input for probabilistic safety assessment, which deals with many parameters of high uncertainty. The objective of this paper is to show that subjectivism can have a large impact on human reliability results and consequently on probabilistic safety assessment results and applications. The objective is to identify the key features, which may decrease of subjectivity of human reliability analysis. Human reliability methods are compared with focus on dependency comparison between Institute Jozef Stefan - Human Reliability Analysis (IJS-HRA) and Standardized Plant Analysis Risk Human Reliability Analysis (SPAR-H). Results show large differences in the calculated human error probabilities for the same events within the same probabilistic safety assessment, which are the consequence of subjectivity. The subjectivity can be reduced by development of more detailed guidelines for human reliability analysis with many practical examples for all steps of the process of evaluation of human performance. (author)

  13. IEEE guide for the analysis of human reliability

    International Nuclear Information System (INIS)

    Dougherty, E.M. Jr.

    1987-01-01

    The Institute of Electrical and Electronics Engineers (IEEE) working group 7.4 of the Human Factors and Control Facilities Subcommittee of the Nuclear Power Engineering Committee (NPEC) has released its fifth draft of a Guide for General Principles of Human Action Reliability Analysis for Nuclear Power Generating Stations, for approval of NPEC. A guide is the least mandating in the IEEE hierarchy of standards. The purpose is to enhance the performance of an human reliability analysis (HRA) as a part of a probabilistic risk assessment (PRA), to assure reproducible results, and to standardize documentation. The guide does not recommend or even discuss specific techniques, which are too rapidly evolving today. Considerable maturation in the analysis of human reliability in a PRA context has taken place in recent years. The IEEE guide on this subject is an initial step toward bringing HRA out of the research and development arena into the toolbox of standard engineering practices

  14. MODELING HUMAN RELIABILITY ANALYSIS USING MIDAS

    Energy Technology Data Exchange (ETDEWEB)

    Ronald L. Boring; Donald D. Dudenhoeffer; Bruce P. Hallbert; Brian F. Gore

    2006-05-01

    This paper summarizes an emerging collaboration between Idaho National Laboratory and NASA Ames Research Center regarding the utilization of high-fidelity MIDAS simulations for modeling control room crew performance at nuclear power plants. The key envisioned uses for MIDAS-based control room simulations are: (i) the estimation of human error with novel control room equipment and configurations, (ii) the investigative determination of risk significance in recreating past event scenarios involving control room operating crews, and (iii) the certification of novel staffing levels in control rooms. It is proposed that MIDAS serves as a key component for the effective modeling of risk in next generation control rooms.

  15. Human reliability analysis of Lingao Nuclear Power Station

    International Nuclear Information System (INIS)

    Zhang Li; Huang Shudong; Yang Hong; He Aiwu; Huang Xiangrui; Zheng Tao; Su Shengbing; Xi Haiying

    2001-01-01

    The necessity of human reliability analysis (HRA) of Lingao Nuclear Power Station are analyzed, and the method and operation procedures of HRA is briefed. One of the human factors events (HFE) is analyzed in detail and some questions of HRA are discussed. The authors present the analytical results of 61 HFEs, and make a brief introduction of HRA contribution to Lingao Nuclear Power Station

  16. HUMAN RELIABILITY ANALYSIS DENGAN PENDEKATAN COGNITIVE RELIABILITY AND ERROR ANALYSIS METHOD (CREAM

    Directory of Open Access Journals (Sweden)

    Zahirah Alifia Maulida

    2015-01-01

    Full Text Available Kecelakaan kerja pada bidang grinding dan welding menempati urutan tertinggi selama lima tahun terakhir di PT. X. Kecelakaan ini disebabkan oleh human error. Human error terjadi karena pengaruh lingkungan kerja fisik dan non fisik.Penelitian kali menggunakan skenario untuk memprediksi serta mengurangi kemungkinan terjadinya error pada manusia dengan pendekatan CREAM (Cognitive Reliability and Error Analysis Method. CREAM adalah salah satu metode human reliability analysis yang berfungsi untuk mendapatkan nilai Cognitive Failure Probability (CFP yang dapat dilakukan dengan dua cara yaitu basic method dan extended method. Pada basic method hanya akan didapatkan nilai failure probabailty secara umum, sedangkan untuk extended method akan didapatkan CFP untuk setiap task. Hasil penelitian menunjukkan faktor- faktor yang mempengaruhi timbulnya error pada pekerjaan grinding dan welding adalah kecukupan organisasi, kecukupan dari Man Machine Interface (MMI & dukungan operasional, ketersediaan prosedur/ perencanaan, serta kecukupan pelatihan dan pengalaman. Aspek kognitif pada pekerjaan grinding yang memiliki nilai error paling tinggi adalah planning dengan nilai CFP 0.3 dan pada pekerjaan welding yaitu aspek kognitif execution dengan nilai CFP 0.18. Sebagai upaya untuk mengurangi nilai error kognitif pada pekerjaan grinding dan welding rekomendasi yang diberikan adalah memberikan training secara rutin, work instrucstion yang lebih rinci dan memberikan sosialisasi alat. Kata kunci: CREAM (cognitive reliability and error analysis method, HRA (human reliability analysis, cognitive error Abstract The accidents in grinding and welding sectors were the highest cases over the last five years in PT. X and it caused by human error. Human error occurs due to the influence of working environment both physically and non-physically. This study will implement an approaching scenario called CREAM (Cognitive Reliability and Error Analysis Method. CREAM is one of human

  17. Inclusion of task dependence in human reliability analysis

    International Nuclear Information System (INIS)

    Su, Xiaoyan; Mahadevan, Sankaran; Xu, Peida; Deng, Yong

    2014-01-01

    Dependence assessment among human errors in human reliability analysis (HRA) is an important issue, which includes the evaluation of the dependence among human tasks and the effect of the dependence on the final human error probability (HEP). This paper represents a computational model to handle dependence in human reliability analysis. The aim of the study is to automatically provide conclusions on the overall degree of dependence and calculate the conditional human error probability (CHEP) once the judgments of the input factors are given. The dependence influencing factors are first identified by the experts and the priorities of these factors are also taken into consideration. Anchors and qualitative labels are provided as guidance for the HRA analyst's judgment of the input factors. The overall degree of dependence between human failure events is calculated based on the input values and the weights of the input factors. Finally, the CHEP is obtained according to a computing formula derived from the technique for human error rate prediction (THERP) method. The proposed method is able to quantify the subjective judgment from the experts and improve the transparency in the HEP evaluation process. Two examples are illustrated to show the effectiveness and the flexibility of the proposed method. - Highlights: • We propose a computational model to handle dependence in human reliability analysis. • The priorities of the dependence influencing factors are taken into consideration. • The overall dependence degree is determined by input judgments and the weights of factors. • The CHEP is obtained according to a computing formula derived from THERP

  18. Accident Sequence Evaluation Program: Human reliability analysis procedure

    Energy Technology Data Exchange (ETDEWEB)

    Swain, A.D.

    1987-02-01

    This document presents a shortened version of the procedure, models, and data for human reliability analysis (HRA) which are presented in the Handbook of Human Reliability Analysis With emphasis on Nuclear Power Plant Applications (NUREG/CR-1278, August 1983). This shortened version was prepared and tried out as part of the Accident Sequence Evaluation Program (ASEP) funded by the US Nuclear Regulatory Commission and managed by Sandia National Laboratories. The intent of this new HRA procedure, called the ''ASEP HRA Procedure,'' is to enable systems analysts, with minimal support from experts in human reliability analysis, to make estimates of human error probabilities and other human performance characteristics which are sufficiently accurate for many probabilistic risk assessments. The ASEP HRA Procedure consists of a Pre-Accident Screening HRA, a Pre-Accident Nominal HRA, a Post-Accident Screening HRA, and a Post-Accident Nominal HRA. The procedure in this document includes changes made after tryout and evaluation of the procedure in four nuclear power plants by four different systems analysts and related personnel, including human reliability specialists. The changes consist of some additional explanatory material (including examples), and more detailed definitions of some of the terms. 42 refs.

  19. Accident Sequence Evaluation Program: Human reliability analysis procedure

    International Nuclear Information System (INIS)

    Swain, A.D.

    1987-02-01

    This document presents a shortened version of the procedure, models, and data for human reliability analysis (HRA) which are presented in the Handbook of Human Reliability Analysis With emphasis on Nuclear Power Plant Applications (NUREG/CR-1278, August 1983). This shortened version was prepared and tried out as part of the Accident Sequence Evaluation Program (ASEP) funded by the US Nuclear Regulatory Commission and managed by Sandia National Laboratories. The intent of this new HRA procedure, called the ''ASEP HRA Procedure,'' is to enable systems analysts, with minimal support from experts in human reliability analysis, to make estimates of human error probabilities and other human performance characteristics which are sufficiently accurate for many probabilistic risk assessments. The ASEP HRA Procedure consists of a Pre-Accident Screening HRA, a Pre-Accident Nominal HRA, a Post-Accident Screening HRA, and a Post-Accident Nominal HRA. The procedure in this document includes changes made after tryout and evaluation of the procedure in four nuclear power plants by four different systems analysts and related personnel, including human reliability specialists. The changes consist of some additional explanatory material (including examples), and more detailed definitions of some of the terms. 42 refs

  20. Fifty Years of THERP and Human Reliability Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ronald L. Boring

    2012-06-01

    In 1962 at a Human Factors Society symposium, Alan Swain presented a paper introducing a Technique for Human Error Rate Prediction (THERP). This was followed in 1963 by a Sandia Laboratories monograph outlining basic human error quantification using THERP and, in 1964, by a special journal edition of Human Factors on quantification of human performance. Throughout the 1960s, Swain and his colleagues focused on collecting human performance data for the Sandia Human Error Rate Bank (SHERB), primarily in connection with supporting the reliability of nuclear weapons assembly in the US. In 1969, Swain met with Jens Rasmussen of Risø National Laboratory and discussed the applicability of THERP to nuclear power applications. By 1975, in WASH-1400, Swain had articulated the use of THERP for nuclear power applications, and the approach was finalized in the watershed publication of the NUREG/CR-1278 in 1983. THERP is now 50 years old, and remains the most well known and most widely used HRA method. In this paper, the author discusses the history of THERP, based on published reports and personal communication and interviews with Swain. The author also outlines the significance of THERP. The foundations of human reliability analysis are found in THERP: human failure events, task analysis, performance shaping factors, human error probabilities, dependence, event trees, recovery, and pre- and post-initiating events were all introduced in THERP. While THERP is not without its detractors, and it is showing signs of its age in the face of newer technological applications, the longevity of THERP is a testament of its tremendous significance. THERP started the field of human reliability analysis. This paper concludes with a discussion of THERP in the context of newer methods, which can be seen as extensions of or departures from Swain’s pioneering work.

  1. Human reliability

    International Nuclear Information System (INIS)

    Bubb, H.

    1992-01-01

    This book resulted from the activity of Task Force 4.2 - 'Human Reliability'. This group was established on February 27th, 1986, at the plenary meeting of the Technical Reliability Committee of VDI, within the framework of the joint committee of VDI on industrial systems technology - GIS. It is composed of representatives of industry, representatives of research institutes, of technical control boards and universities, whose job it is to study how man fits into the technical side of the world of work and to optimize this interaction. In a total of 17 sessions, information from the part of ergonomy dealing with human reliability in using technical systems at work was exchanged, and different methods for its evaluation were examined and analyzed. The outcome of this work was systematized and compiled in this book. (orig.) [de

  2. Tailoring a Human Reliability Analysis to Your Industry Needs

    Science.gov (United States)

    DeMott, D. L.

    2016-01-01

    Companies at risk of accidents caused by human error that result in catastrophic consequences include: airline industry mishaps, medical malpractice, medication mistakes, aerospace failures, major oil spills, transportation mishaps, power production failures and manufacturing facility incidents. Human Reliability Assessment (HRA) is used to analyze the inherent risk of human behavior or actions introducing errors into the operation of a system or process. These assessments can be used to identify where errors are most likely to arise and the potential risks involved if they do occur. Using the basic concepts of HRA, an evolving group of methodologies are used to meet various industry needs. Determining which methodology or combination of techniques will provide a quality human reliability assessment is a key element to developing effective strategies for understanding and dealing with risks caused by human errors. There are a number of concerns and difficulties in "tailoring" a Human Reliability Assessment (HRA) for different industries. Although a variety of HRA methodologies are available to analyze human error events, determining the most appropriate tools to provide the most useful results can depend on industry specific cultures and requirements. Methodology selection may be based on a variety of factors that include: 1) how people act and react in different industries, 2) expectations based on industry standards, 3) factors that influence how the human errors could occur such as tasks, tools, environment, workplace, support, training and procedure, 4) type and availability of data, 5) how the industry views risk & reliability, and 6) types of emergencies, contingencies and routine tasks. Other considerations for methodology selection should be based on what information is needed from the assessment. If the principal concern is determination of the primary risk factors contributing to the potential human error, a more detailed analysis method may be employed

  3. Some developments in human reliability analysis approaches and tools

    Energy Technology Data Exchange (ETDEWEB)

    Hannaman, G W; Worledge, D H

    1988-01-01

    Since human actions have been recognized as an important contributor to safety of operating plants in most industries, research has been performed to better understand and account for the way operators interact during accidents through the control room and equipment interface. This paper describes the integration of a series of research projects sponsored by the Electric Power Research Institute to strengthen the methods for performing the human reliability analysis portion of the probabilistic safety studies. It focuses on the analytical framework used to guide the analysis, the development of the models for quantifying time-dependent actions, and simulator experiments used to validate the models.

  4. User's manual of a support system for human reliability analysis

    International Nuclear Information System (INIS)

    Yokobayashi, Masao; Tamura, Kazuo.

    1995-10-01

    Many kinds of human reliability analysis (HRA) methods have been developed. However, users are required to be skillful so as to use them, and also required complicated works such as drawing event tree (ET) and calculation of uncertainty bounds. Moreover, each method is not so complete that only one method of them is not enough to evaluate human reliability. Therefore, a personal computer (PC) based support system for HRA has been developed to execute HRA practically and efficiently. The system consists of two methods, namely, simple method and detailed one. The former uses ASEP that is a simplified THERP-technique, and combined method of OAT and HRA-ET/DeBDA is used for the latter. Users can select a suitable method for their purpose. Human error probability (HEP) data were collected and a database of them was built to use for the support system. This paper describes outline of the HRA methods, support functions and user's guide of the system. (author)

  5. An integrated approach to human reliability analysis -- decision analytic dynamic reliability model

    International Nuclear Information System (INIS)

    Holmberg, J.; Hukki, K.; Norros, L.; Pulkkinen, U.; Pyy, P.

    1999-01-01

    The reliability of human operators in process control is sensitive to the context. In many contemporary human reliability analysis (HRA) methods, this is not sufficiently taken into account. The aim of this article is that integration between probabilistic and psychological approaches in human reliability should be attempted. This is achieved first, by adopting such methods that adequately reflect the essential features of the process control activity, and secondly, by carrying out an interactive HRA process. Description of the activity context, probabilistic modeling, and psychological analysis form an iterative interdisciplinary sequence of analysis in which the results of one sub-task maybe input to another. The analysis of the context is carried out first with the help of a common set of conceptual tools. The resulting descriptions of the context promote the probabilistic modeling, through which new results regarding the probabilistic dynamics can be achieved. These can be incorporated in the context descriptions used as reference in the psychological analysis of actual performance. The results also provide new knowledge of the constraints of activity, by providing information of the premises of the operator's actions. Finally, the stochastic marked point process model gives a tool, by which psychological methodology may be interpreted and utilized for reliability analysis

  6. Application of human reliability analysis methodology of second generation

    International Nuclear Information System (INIS)

    Ruiz S, T. de J.; Nelson E, P. F.

    2009-10-01

    The human reliability analysis (HRA) is a very important part of probabilistic safety analysis. The main contribution of HRA in nuclear power plants is the identification and characterization of the issues that are brought together for an error occurring in the human tasks that occur under normal operation conditions and those made after abnormal event. Additionally, the analysis of various accidents in history, it was found that the human component has been a contributing factor in the cause. Because of need to understand the forms and probability of human error in the 60 decade begins with the collection of generic data that result in the development of the first generation of HRA methodologies. Subsequently develop methods to include in their models additional performance shaping factors and the interaction between them. So by the 90 mid, comes what is considered the second generation methodologies. Among these is the methodology A Technique for Human Event Analysis (ATHEANA). The application of this method in a generic human failure event, it is interesting because it includes in its modeling commission error, the additional deviations quantification to nominal scenario considered in the accident sequence of probabilistic safety analysis and, for this event the dependency actions evaluation. That is, the generic human failure event was required first independent evaluation of the two related human failure events . So the gathering of the new human error probabilities involves the nominal scenario quantification and cases of significant deviations considered by the potential impact on analyzed human failure events. Like probabilistic safety analysis, with the analysis of the sequences were extracted factors more specific with the highest contribution in the human error probabilities. (Author)

  7. IDHEAS – A NEW APPROACH FOR HUMAN RELIABILITY ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    G. W. Parry; J.A Forester; V.N. Dang; S. M. L. Hendrickson; M. Presley; E. Lois; J. Xing

    2013-09-01

    This paper describes a method, IDHEAS (Integrated Decision-Tree Human Event Analysis System) that has been developed jointly by the US NRC and EPRI as an improved approach to Human Reliability Analysis (HRA) that is based on an understanding of the cognitive mechanisms and performance influencing factors (PIFs) that affect operator responses. The paper describes the various elements of the method, namely the performance of a detailed cognitive task analysis that is documented in a crew response tree (CRT), and the development of the associated time-line to identify the critical tasks, i.e. those whose failure results in a human failure event (HFE), and an approach to quantification that is based on explanations of why the HFE might occur.

  8. Human factor reliability program

    International Nuclear Information System (INIS)

    Knoblochova, L.

    2017-01-01

    The human factor's reliability program was at Slovenske elektrarne, a.s. (SE) nuclear power plants. introduced as one of the components Initiatives of Excellent Performance in 2011. The initiative's goal was to increase the reliability of both people and facilities, in response to 3 major areas of improvement - Need for improvement of the results, Troubleshooting support, Supporting the achievement of the company's goals. The human agent's reliability program is in practice included: - Tools to prevent human error; - Managerial observation and coaching; - Human factor analysis; -Quick information about the event with a human agent; -Human reliability timeline and performance indicators; - Basic, periodic and extraordinary training in human factor reliability(authors)

  9. A Research Roadmap for Computation-Based Human Reliability Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Boring, Ronald [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mandelli, Diego [Idaho National Lab. (INL), Idaho Falls, ID (United States); Joe, Jeffrey [Idaho National Lab. (INL), Idaho Falls, ID (United States); Smith, Curtis [Idaho National Lab. (INL), Idaho Falls, ID (United States); Groth, Katrina [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-08-01

    The United States (U.S.) Department of Energy (DOE) is sponsoring research through the Light Water Reactor Sustainability (LWRS) program to extend the life of the currently operating fleet of commercial nuclear power plants. The Risk Informed Safety Margin Characterization (RISMC) research pathway within LWRS looks at ways to maintain and improve the safety margins of these plants. The RISMC pathway includes significant developments in the area of thermalhydraulics code modeling and the development of tools to facilitate dynamic probabilistic risk assessment (PRA). PRA is primarily concerned with the risk of hardware systems at the plant; yet, hardware reliability is often secondary in overall risk significance to human errors that can trigger or compound undesirable events at the plant. This report highlights ongoing efforts to develop a computation-based approach to human reliability analysis (HRA). This computation-based approach differs from existing static and dynamic HRA approaches in that it: (i) interfaces with a dynamic computation engine that includes a full scope plant model, and (ii) interfaces with a PRA software toolset. The computation-based HRA approach presented in this report is called the Human Unimodels for Nuclear Technology to Enhance Reliability (HUNTER) and incorporates in a hybrid fashion elements of existing HRA methods to interface with new computational tools developed under the RISMC pathway. The goal of this research effort is to model human performance more accurately than existing approaches, thereby minimizing modeling uncertainty found in current plant risk models.

  10. A Research Roadmap for Computation-Based Human Reliability Analysis

    International Nuclear Information System (INIS)

    Boring, Ronald; Mandelli, Diego; Joe, Jeffrey; Smith, Curtis; Groth, Katrina

    2015-01-01

    The United States (U.S.) Department of Energy (DOE) is sponsoring research through the Light Water Reactor Sustainability (LWRS) program to extend the life of the currently operating fleet of commercial nuclear power plants. The Risk Informed Safety Margin Characterization (RISMC) research pathway within LWRS looks at ways to maintain and improve the safety margins of these plants. The RISMC pathway includes significant developments in the area of thermalhydraulics code modeling and the development of tools to facilitate dynamic probabilistic risk assessment (PRA). PRA is primarily concerned with the risk of hardware systems at the plant; yet, hardware reliability is often secondary in overall risk significance to human errors that can trigger or compound undesirable events at the plant. This report highlights ongoing efforts to develop a computation-based approach to human reliability analysis (HRA). This computation-based approach differs from existing static and dynamic HRA approaches in that it: (i) interfaces with a dynamic computation engine that includes a full scope plant model, and (ii) interfaces with a PRA software toolset. The computation-based HRA approach presented in this report is called the Human Unimodels for Nuclear Technology to Enhance Reliability (HUNTER) and incorporates in a hybrid fashion elements of existing HRA methods to interface with new computational tools developed under the RISMC pathway. The goal of this research effort is to model human performance more accurately than existing approaches, thereby minimizing modeling uncertainty found in current plant risk models.

  11. Issues in benchmarking human reliability analysis methods: A literature review

    International Nuclear Information System (INIS)

    Boring, Ronald L.; Hendrickson, Stacey M.L.; Forester, John A.; Tran, Tuan Q.; Lois, Erasmia

    2010-01-01

    There is a diversity of human reliability analysis (HRA) methods available for use in assessing human performance within probabilistic risk assessments (PRA). Due to the significant differences in the methods, including the scope, approach, and underlying models, there is a need for an empirical comparison investigating the validity and reliability of the methods. To accomplish this empirical comparison, a benchmarking study comparing and evaluating HRA methods in assessing operator performance in simulator experiments is currently underway. In order to account for as many effects as possible in the construction of this benchmarking study, a literature review was conducted, reviewing past benchmarking studies in the areas of psychology and risk assessment. A number of lessons learned through these studies is presented in order to aid in the design of future HRA benchmarking endeavors.

  12. Issues in benchmarking human reliability analysis methods : a literature review.

    Energy Technology Data Exchange (ETDEWEB)

    Lois, Erasmia (US Nuclear Regulatory Commission); Forester, John Alan; Tran, Tuan Q. (Idaho National Laboratory, Idaho Falls, ID); Hendrickson, Stacey M. Langfitt; Boring, Ronald L. (Idaho National Laboratory, Idaho Falls, ID)

    2008-04-01

    There is a diversity of human reliability analysis (HRA) methods available for use in assessing human performance within probabilistic risk assessment (PRA). Due to the significant differences in the methods, including the scope, approach, and underlying models, there is a need for an empirical comparison investigating the validity and reliability of the methods. To accomplish this empirical comparison, a benchmarking study is currently underway that compares HRA methods with each other and against operator performance in simulator studies. In order to account for as many effects as possible in the construction of this benchmarking study, a literature review was conducted, reviewing past benchmarking studies in the areas of psychology and risk assessment. A number of lessons learned through these studies are presented in order to aid in the design of future HRA benchmarking endeavors.

  13. Limitations in simulator time-based human reliability analysis methods

    International Nuclear Information System (INIS)

    Wreathall, J.

    1989-01-01

    Developments in human reliability analysis (HRA) methods have evolved slowly. Current methods are little changed from those of almost a decade ago, particularly in the use of time-reliability relationships. While these methods were suitable as an interim step, the time (and the need) has come to specify the next evolution of HRA methods. As with any performance-oriented data source, power plant simulator data have no direct connection to HRA models. Errors reported in data are normal deficiencies observed in human performance; failures are events modeled in probabilistic risk assessments (PRAs). Not all errors cause failures; not all failures are caused by errors. Second, the times at which actions are taken provide no measure of the likelihood of failures to act correctly within an accident scenario. Inferences can be made about human reliability, but they must be made with great care. Specific limitations are discussed. Simulator performance data are useful in providing qualitative evidence of the variety of error types and their potential influences on operating systems. More work is required to combine recent developments in the psychology of error with the qualitative data collected at stimulators. Until data become openly available, however, such an advance will not be practical

  14. Inclusion of fatigue effects in human reliability analysis

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, Candice D. [Vanderbilt University, Nashville, TN (United States); Mahadevan, Sankaran, E-mail: sankaran.mahadevan@vanderbilt.edu [Vanderbilt University, Nashville, TN (United States)

    2011-11-15

    The effect of fatigue on human performance has been observed to be an important factor in many industrial accidents. However, defining and measuring fatigue is not easily accomplished. This creates difficulties in including fatigue effects in probabilistic risk assessments (PRA) of complex engineering systems that seek to include human reliability analysis (HRA). Thus the objectives of this paper are to discuss (1) the importance of the effects of fatigue on performance, (2) the difficulties associated with defining and measuring fatigue, (3) the current status of inclusion of fatigue in HRA methods, and (4) the future directions and challenges for the inclusion of fatigue, specifically sleep deprivation, in HRA. - Highlights: >We highlight the need for fatigue and sleep deprivation effects on performance to be included in human reliability analysis (HRA) methods. Current methods do not explicitly include sleep deprivation effects. > We discuss the difficulties in defining and measuring fatigue. > We review sleep deprivation research, and discuss the limitations and future needs of the current HRA methods.

  15. Inclusion of fatigue effects in human reliability analysis

    International Nuclear Information System (INIS)

    Griffith, Candice D.; Mahadevan, Sankaran

    2011-01-01

    The effect of fatigue on human performance has been observed to be an important factor in many industrial accidents. However, defining and measuring fatigue is not easily accomplished. This creates difficulties in including fatigue effects in probabilistic risk assessments (PRA) of complex engineering systems that seek to include human reliability analysis (HRA). Thus the objectives of this paper are to discuss (1) the importance of the effects of fatigue on performance, (2) the difficulties associated with defining and measuring fatigue, (3) the current status of inclusion of fatigue in HRA methods, and (4) the future directions and challenges for the inclusion of fatigue, specifically sleep deprivation, in HRA. - Highlights: →We highlight the need for fatigue and sleep deprivation effects on performance to be included in human reliability analysis (HRA) methods. Current methods do not explicitly include sleep deprivation effects. → We discuss the difficulties in defining and measuring fatigue. → We review sleep deprivation research, and discuss the limitations and future needs of the current HRA methods.

  16. Human reliability analysis for advanced control room of KNGR

    International Nuclear Information System (INIS)

    Kim, Myung-Ro; Park, Seong-Kyu

    2000-01-01

    There are two purposes in Human Reliability Analysis (HRA) which was performed during Korean Next Generation Reactor (KNGR) Phase 2 research project. One is to present the human error probability quantification results for Probabilistic Safety Assessment (PSA) and the other is to provide a list of the critical operator actions for Human Factor Engineering (HFE). Critical operator actions were identified from the KNGR HRA/RSA based on selection criteria and incorporated in the MMI Task Analysis, where they receive additional treatment. The use of HRA/PSA results in design, procedure development, and training was ensured by their incorporation in the MMI task analysis and MCR design such as fixed position alarms, displays and controls. Any dominant PSA sequence that takes credit for human performance to achieve acceptable results was incorporated in MMIS validation activities through the PSA-based critical operator actions. The integration of KNGR HRA into MMI design was sufficiently addressed all applicable review criteria of NUREG-0800, Chapter 18, Section 2 F and NUREG-0711. (S.Y.)

  17. Models and data requirements for human reliability analysis

    International Nuclear Information System (INIS)

    1989-03-01

    It has been widely recognised for many years that the safety of the nuclear power generation depends heavily on the human factors related to plant operation. This has been confirmed by the accidents at Three Mile Island and Chernobyl. Both these cases revealed how human actions can defeat engineered safeguards and the need for special operator training to cover the possibility of unexpected plant conditions. The importance of the human factor also stands out in the analysis of abnormal events and insights from probabilistic safety assessments (PSA's), which reveal a large proportion of cases having their origin in faulty operator performance. A consultants' meeting, organized jointly by the International Atomic Energy Agency (IAEA) and the International Institute for Applied Systems Analysis (IIASA) was held at IIASA in Laxenburg, Austria, December 7-11, 1987, with the aim of reviewing existing models used in Probabilistic Safety Assessment (PSA) for Human Reliability Analysis (HRA) and of identifying the data required. The report collects both the contributions offered by the members of the Expert Task Force and the findings of the extensive discussions that took place during the meeting. Refs, figs and tabs

  18. Modeling cognition dynamics and its application to human reliability analysis

    International Nuclear Information System (INIS)

    Mosleh, A.; Smidts, C.; Shen, S.H.

    1996-01-01

    For the past two decades, a number of approaches have been proposed for the identification and estimation of the likelihood of human errors, particularly for use in the risk and reliability studies of nuclear power plants. Despite the wide-spread use of the most popular among these methods, their fundamental weaknesses are widely recognized, and the treatment of human reliability has been considered as one of the soft spots of risk studies of large technological systems. To alleviate the situation, new efforts have focused on the development of human reliability models based on a more fundamental understanding of operator response and its cognitive aspects

  19. Standardization of domestic human reliability analysis and experience of human reliability analysis in probabilistic safety assessment for NPPs under design

    International Nuclear Information System (INIS)

    Kang, D. I.; Jung, W. D.

    2002-01-01

    This paper introduces the background and development activities of domestic standardization of procedure and method for Human Reliability Analysis (HRA) to avoid the intervention of subjectivity by HRA analyst in Probabilistic Safety Assessment (PSA) as possible, and the review of the HRA results for domestic nuclear power plants under design studied by Korea Atomic Energy Research Institute. We identify the HRA methods used for PSA for domestic NPPs and discuss the subjectivity of HRA analyst shown in performing a HRA. Also, we introduce the PSA guidelines published in USA and review the HRA results based on them. We propose the system of a standard procedure and method for HRA to be developed

  20. Multi-Unit Considerations for Human Reliability Analysis

    Energy Technology Data Exchange (ETDEWEB)

    St. Germain, S.; Boring, R.; Banaseanu, G.; Akl, Y.; Chatri, H.

    2017-03-01

    This paper uses the insights from the Standardized Plant Analysis Risk-Human Reliability Analysis (SPAR-H) methodology to help identify human actions currently modeled in the single unit PSA that may need to be modified to account for additional challenges imposed by a multi-unit accident as well as identify possible new human actions that might be modeled to more accurately characterize multi-unit risk. In identifying these potential human action impacts, the use of the SPAR-H strategy to include both errors in diagnosis and errors in action is considered as well as identifying characteristics of a multi-unit accident scenario that may impact the selection of the performance shaping factors (PSFs) used in SPAR-H. The lessons learned from the Fukushima Daiichi reactor accident will be addressed to further help identify areas where improved modeling may be required. While these multi-unit impacts may require modifications to a Level 1 PSA model, it is expected to have much more importance for Level 2 modeling. There is little currently written specifically about multi-unit HRA issues. A review of related published research will be presented. While this paper cannot answer all issues related to multi-unit HRA, it will hopefully serve as a starting point to generate discussion and spark additional ideas towards the proper treatment of HRA in a multi-unit PSA.

  1. Model-based human reliability analysis: prospects and requirements

    International Nuclear Information System (INIS)

    Mosleh, A.; Chang, Y.H.

    2004-01-01

    Major limitations of the conventional methods for human reliability analysis (HRA), particularly those developed for operator response analysis in probabilistic safety assessments (PSA) of nuclear power plants, are summarized as a motivation for the need and a basis for developing requirements for the next generation HRA methods. It is argued that a model-based approach that provides explicit cognitive causal links between operator behaviors and directly or indirectly measurable causal factors should be at the core of the advanced methods. An example of such causal model is briefly reviewed, where due to the model complexity and input requirements can only be currently implemented in a dynamic PSA environment. The computer simulation code developed for this purpose is also described briefly, together with current limitations in the models, data, and the computer implementation

  2. Current Human Reliability Analysis Methods Applied to Computerized Procedures

    Energy Technology Data Exchange (ETDEWEB)

    Ronald L. Boring

    2012-06-01

    Computerized procedures (CPs) are an emerging technology within nuclear power plant control rooms. While CPs have been implemented internationally in advanced control rooms, to date no US nuclear power plant has implemented CPs in its main control room (Fink et al., 2009). Yet, CPs are a reality of new plant builds and are an area of considerable interest to existing plants, which see advantages in terms of enhanced ease of use and easier records management by omitting the need for updating hardcopy procedures. The overall intent of this paper is to provide a characterization of human reliability analysis (HRA) issues for computerized procedures. It is beyond the scope of this document to propose a new HRA approach or to recommend specific methods or refinements to those methods. Rather, this paper serves as a review of current HRA as it may be used for the analysis and review of computerized procedures.

  3. Science Based Human Reliability Analysis: Using Digital Nuclear Power Plant Simulators for Human Reliability Research

    Science.gov (United States)

    Shirley, Rachel Elizabeth

    Nuclear power plant (NPP) simulators are proliferating in academic research institutions and national laboratories in response to the availability of affordable, digital simulator platforms. Accompanying the new research facilities is a renewed interest in using data collected in NPP simulators for Human Reliability Analysis (HRA) research. An experiment conducted in The Ohio State University (OSU) NPP Simulator Facility develops data collection methods and analytical tools to improve use of simulator data in HRA. In the pilot experiment, student operators respond to design basis accidents in the OSU NPP Simulator Facility. Thirty-three undergraduate and graduate engineering students participated in the research. Following each accident scenario, student operators completed a survey about perceived simulator biases and watched a video of the scenario. During the video, they periodically recorded their perceived strength of significant Performance Shaping Factors (PSFs) such as Stress. This dissertation reviews three aspects of simulator-based research using the data collected in the OSU NPP Simulator Facility: First, a qualitative comparison of student operator performance to computer simulations of expected operator performance generated by the Information Decision Action Crew (IDAC) HRA method. Areas of comparison include procedure steps, timing of operator actions, and PSFs. Second, development of a quantitative model of the simulator bias introduced by the simulator environment. Two types of bias are defined: Environmental Bias and Motivational Bias. This research examines Motivational Bias--that is, the effect of the simulator environment on an operator's motivations, goals, and priorities. A bias causal map is introduced to model motivational bias interactions in the OSU experiment. Data collected in the OSU NPP Simulator Facility are analyzed using Structural Equation Modeling (SEM). Data include crew characteristics, operator surveys, and time to recognize

  4. Applicability of simplified human reliability analysis methods for severe accidents

    Energy Technology Data Exchange (ETDEWEB)

    Boring, R.; St Germain, S. [Idaho National Lab., Idaho Falls, Idaho (United States); Banaseanu, G.; Chatri, H.; Akl, Y. [Canadian Nuclear Safety Commission, Ottawa, Ontario (Canada)

    2016-03-15

    Most contemporary human reliability analysis (HRA) methods were created to analyse design-basis accidents at nuclear power plants. As part of a comprehensive expansion of risk assessments at many plants internationally, HRAs will begin considering severe accident scenarios. Severe accidents, while extremely rare, constitute high consequence events that significantly challenge successful operations and recovery. Challenges during severe accidents include degraded and hazardous operating conditions at the plant, the shift in control from the main control room to the technical support center, the unavailability of plant instrumentation, and the need to use different types of operating procedures. Such shifts in operations may also test key assumptions in existing HRA methods. This paper discusses key differences between design basis and severe accidents, reviews efforts to date to create customized HRA methods suitable for severe accidents, and recommends practices for adapting existing HRA methods that are already being used for HRAs at the plants. (author)

  5. Human Reliability Analysis in Support of Risk Assessment for Positive Train Control

    Science.gov (United States)

    2003-06-01

    This report describes an approach to evaluating the reliability of human actions that are modeled in a probabilistic risk assessment : (PRA) of train control operations. This approach to human reliability analysis (HRA) has been applied in the case o...

  6. Study and application of human reliability analysis for digital human-system interface

    International Nuclear Information System (INIS)

    Jia Ming; Liu Yanzi; Zhang Jianbo

    2014-01-01

    The knowledge of human-orientated abilities and limitations could be used to digital human-system interface (HSI) design by human reliability analysis (HRA) technology. Further, control room system design could achieve the perfect match of man-machine-environment. This research was conducted to establish an integrated HRA method. This method identified HSI potential design flaws which may affect human performance and cause human error. Then a systematic approach was adopted to optimize HSI. It turns out that this method is practical and objective, and effectively improves the safety, reliability and economy of nuclear power plant. This method was applied to CRP1000 projects under construction successfully with great potential. (authors)

  7. Human Reliability Assessment and Human Performance Evaluation: Research and Analysis Activities at the U.S. NRC

    International Nuclear Information System (INIS)

    Ramey-Smith, A.M.

    1998-01-01

    The author indicates the themes of the six programs identified by the US NRC mission on human performance and human reliability activities. They aim at developing the technical basis to support human performance, at developing and updating a model of human performance and human reliability, at fostering national and international dialogue and cooperation efforts on human performance evaluation, at conducting operating events analysis and database development, and at providing support to human performance and human reliability inspection

  8. Procedure for conducting a human-reliability analysis for nuclear power plants. Final report

    International Nuclear Information System (INIS)

    Bell, B.J.; Swain, A.D.

    1983-05-01

    This document describes in detail a procedure to be followed in conducting a human reliability analysis as part of a probabilistic risk assessment when such an analysis is performed according to the methods described in NUREG/CR-1278, Handbook for Human Reliability Analysis with Emphasis on Nuclear Power Plant Applications. An overview of the procedure describing the major elements of a human reliability analysis is presented along with a detailed description of each element and an example of an actual analysis. An appendix consists of some sample human reliability analysis problems for further study

  9. Improvement of human reliability analysis method for PRA

    International Nuclear Information System (INIS)

    Tanji, Junichi; Fujimoto, Haruo

    2013-09-01

    It is required to refine human reliability analysis (HRA) method by, for example, incorporating consideration for the cognitive process of operator into the evaluation of diagnosis errors and decision-making errors, as a part of the development and improvement of methods used in probabilistic risk assessments (PRAs). JNES has been developed a HRA method based on ATHENA which is suitable to handle the structured relationship among diagnosis errors, decision-making errors and operator cognition process. This report summarizes outcomes obtained from the improvement of HRA method, in which enhancement to evaluate how the plant degraded condition affects operator cognitive process and to evaluate human error probabilities (HEPs) which correspond to the contents of operator tasks is made. In addition, this report describes the results of case studies on the representative accident sequences to investigate the applicability of HRA method developed. HEPs of the same accident sequences are also estimated using THERP method, which is most popularly used HRA method, and comparisons of the results obtained using these two methods are made to depict the differences of these methods and issues to be solved. Important conclusions obtained are as follows: (1) Improvement of HRA method using operator cognitive action model. Clarification of factors to be considered in the evaluation of human errors, incorporation of degraded plant safety condition into HRA and investigation of HEPs which are affected by the contents of operator tasks were made to improve the HRA method which can integrate operator cognitive action model into ATHENA method. In addition, the detail of procedures of the improved method was delineated in the form of flowchart. (2) Case studies and comparison with the results evaluated by THERP method. Four operator actions modeled in the PRAs of representative BWR5 and 4-loop PWR plants were selected and evaluated as case studies. These cases were also evaluated using

  10. Launch and Assembly Reliability Analysis for Human Space Exploration Missions

    Science.gov (United States)

    Cates, Grant; Gelito, Justin; Stromgren, Chel; Cirillo, William; Goodliff, Kandyce

    2012-01-01

    NASA's future human space exploration strategy includes single and multi-launch missions to various destinations including cis-lunar space, near Earth objects such as asteroids, and ultimately Mars. Each campaign is being defined by Design Reference Missions (DRMs). Many of these missions are complex, requiring multiple launches and assembly of vehicles in orbit. Certain missions also have constrained departure windows to the destination. These factors raise concerns regarding the reliability of launching and assembling all required elements in time to support planned departure. This paper describes an integrated methodology for analyzing launch and assembly reliability in any single DRM or set of DRMs starting with flight hardware manufacturing and ending with final departure to the destination. A discrete event simulation is built for each DRM that includes the pertinent risk factors including, but not limited to: manufacturing completion; ground transportation; ground processing; launch countdown; ascent; rendezvous and docking, assembly, and orbital operations leading up to trans-destination-injection. Each reliability factor can be selectively activated or deactivated so that the most critical risk factors can be identified. This enables NASA to prioritize mitigation actions so as to improve mission success.

  11. Estimation of the human error probabilities in the human reliability analysis

    International Nuclear Information System (INIS)

    Liu Haibin; He Xuhong; Tong Jiejuan; Shen Shifei

    2006-01-01

    Human error data is an important issue of human reliability analysis (HRA). Using of Bayesian parameter estimation, which can use multiple information, such as the historical data of NPP and expert judgment data to modify the human error data, could get the human error data reflecting the real situation of NPP more truly. This paper, using the numeric compute program developed by the authors, presents some typical examples to illustrate the process of the Bayesian parameter estimation in HRA and discusses the effect of different modification data on the Bayesian parameter estimation. (authors)

  12. The role of human reliability analysis for enhancing crew performance

    International Nuclear Information System (INIS)

    Hannaman, G.W.; Joksimovich, V.; Worledge, D.H.; Spurgin, A.J.

    1986-01-01

    This paper summarizes some aspects of EPRI-sponsored research undertaken in support of improving the PRA technology. In particular, the consideration of how human actions that impact accident sequences can be analyzed in a systematic way to supplement the type of ergonomic studies normally carried out in support of control room design. The HRA/PRA approach described not only identifies the operator information and interface needs, but also helps to identify issues and areas for additional research. The process includes a link to data collections. Preliminary collections of data and analytical benchmark support the idea that such analytical frameworks and models provide support for ranking the importance of various human reliability issues

  13. Simulation and Non-Simulation Based Human Reliability Analysis Approaches

    Energy Technology Data Exchange (ETDEWEB)

    Boring, Ronald Laurids [Idaho National Lab. (INL), Idaho Falls, ID (United States); Shirley, Rachel Elizabeth [Idaho National Lab. (INL), Idaho Falls, ID (United States); Joe, Jeffrey Clark [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mandelli, Diego [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-12-01

    Part of the U.S. Department of Energy’s Light Water Reactor Sustainability (LWRS) Program, the Risk-Informed Safety Margin Characterization (RISMC) Pathway develops approaches to estimating and managing safety margins. RISMC simulations pair deterministic plant physics models with probabilistic risk models. As human interactions are an essential element of plant risk, it is necessary to integrate human actions into the RISMC risk model. In this report, we review simulation-based and non-simulation-based human reliability assessment (HRA) methods. Chapter 2 surveys non-simulation-based HRA methods. Conventional HRA methods target static Probabilistic Risk Assessments for Level 1 events. These methods would require significant modification for use in dynamic simulation of Level 2 and Level 3 events. Chapter 3 is a review of human performance models. A variety of methods and models simulate dynamic human performance; however, most of these human performance models were developed outside the risk domain and have not been used for HRA. The exception is the ADS-IDAC model, which can be thought of as a virtual operator program. This model is resource-intensive but provides a detailed model of every operator action in a given scenario, along with models of numerous factors that can influence operator performance. Finally, Chapter 4 reviews the treatment of timing of operator actions in HRA methods. This chapter is an example of one of the critical gaps between existing HRA methods and the needs of dynamic HRA. This report summarizes the foundational information needed to develop a feasible approach to modeling human interactions in the RISMC simulations.

  14. Human reliability analysis of performing tasks in plants based on fuzzy integral

    International Nuclear Information System (INIS)

    Washio, Takashi; Kitamura, Yutaka; Takahashi, Hideaki

    1991-01-01

    The effective improvement of the human working conditions in nuclear power plants might be a solution for the enhancement of the operation safety. The human reliability analysis (HRA) gives a methodological basis of the improvement based on the evaluation of human reliability under various working conditions. This study investigates some difficulties of the human reliability analysis using conventional linear models and recent fuzzy integral models, and provides some solutions to the difficulties. The following practical features of the provided methods are confirmed in comparison with the conventional methods: (1) Applicability to various types of tasks (2) Capability of evaluating complicated dependencies among working condition factors (3) A priori human reliability evaluation based on a systematic task analysis of human action processes (4) A conversion scheme to probability from indices representing human reliability. (author)

  15. Assessment of modern methods of human factor reliability analysis in PSA studies

    International Nuclear Information System (INIS)

    Holy, J.

    2001-12-01

    The report is structured as follows: Classical terms and objects (Probabilistic safety assessment as a framework for human reliability assessment; Human failure within the PSA model; Basic types of operator failure modelled in a PSA study and analyzed by HRA methods; Qualitative analysis of human reliability; Quantitative analysis of human reliability used; Process of analysis of nuclear reactor operator reliability in a PSA study); New terms and objects (Analysis of dependences; Errors of omission; Errors of commission; Error forcing context); and Overview and brief assessment of human reliability analysis (Basic characteristics of the methods; Assets and drawbacks of the use of each of HRA method; History and prospects of the use of the methods). (P.A.)

  16. Knowledge-base for the new human reliability analysis method, A Technique for Human Error Analysis (ATHEANA)

    International Nuclear Information System (INIS)

    Cooper, S.E.; Wreathall, J.; Thompson, C.M., Drouin, M.; Bley, D.C.

    1996-01-01

    This paper describes the knowledge base for the application of the new human reliability analysis (HRA) method, a ''A Technique for Human Error Analysis'' (ATHEANA). Since application of ATHEANA requires the identification of previously unmodeled human failure events, especially errors of commission, and associated error-forcing contexts (i.e., combinations of plant conditions and performance shaping factors), this knowledge base is an essential aid for the HRA analyst

  17. Human reliability and human factors in complex organizations: epistemological and critical analysis - practical avenues to action

    International Nuclear Information System (INIS)

    Llory, A.

    1991-08-01

    This article starts out with comment on the existence of persistent problems inherent to probabilistic safety assessments (PSA). It first surveys existing American documents on the subject which make a certain number of criticisms on human reliability analyses, e.g. limitations due to the scant quantities of data available, lack of a basic theoretical model, non-reproducibility of analyses, etc. The article therefore examines and criticizes the epistemological bases of these analyses. One of the fundamental points stressed is that human reliability analyses do not take account of all the special features of the work situation which result in human error (so as to draw up statistical data from a sufficiently representative number of cases), and consequently lose all notion of the 'relationships' between human errors and the different aspects of the working environment. The other key points of criticism concern the collective nature of work which is not taken into account, and the frequent confusion between what operatives actually do and their formally prescribed job-tasks. The article proposes aspects to be given thought in order to overcome these difficulties, e.g. quantitative assessment of the social environment within a company, non-linear model for assessment of the accident rate, analysis of stress levels in staff on off-shore platforms. The method approaches used in these three studies are of the same type, and could be transposed to human-reliability problems. The article then goes into greater depth on thinking aimed at developing a 'positive' view of the human factor (and not just a 'negative' one, i.e. centred on human errors and organizational malfunctions), applying investigation methods developed in the occupational human sciences (occupational psychodynamics, ergonomics, occupational sociology). The importance of operatives working as actors of a team is stressed

  18. Top-down and bottom-up definitions of human failure events in human reliability analysis

    International Nuclear Information System (INIS)

    Boring, Ronald Laurids

    2014-01-01

    In the probabilistic risk assessments (PRAs) used in the nuclear industry, human failure events (HFEs) are determined as a subset of hardware failures, namely those hardware failures that could be triggered by human action or inaction. This approach is top-down, starting with hardware faults and deducing human contributions to those faults. Elsewhere, more traditionally human factors driven approaches would tend to look at opportunities for human errors first in a task analysis and then identify which of those errors is risk significant. The intersection of top-down and bottom-up approaches to defining HFEs has not been carefully studied. Ideally, both approaches should arrive at the same set of HFEs. This question is crucial, however, as human reliability analysis (HRA) methods are generalized to new domains like oil and gas. The HFEs used in nuclear PRAs tend to be top-down - defined as a subset of the PRA - whereas the HFEs used in petroleum quantitative risk assessments (QRAs) often tend to be bottom-up - derived from a task analysis conducted by human factors experts. The marriage of these approaches is necessary in order to ensure that HRA methods developed for top-down HFEs are also sufficient for bottom-up applications.

  19. A Conceptual Framework of Human Reliability Analysis for Execution Human Error in NPP Advanced MCRs

    International Nuclear Information System (INIS)

    Jang, In Seok; Kim, Ar Ryum; Seong, Poong Hyun; Jung, Won Dea

    2014-01-01

    The operation environment of Main Control Rooms (MCRs) in Nuclear Power Plants (NPPs) has changed with the adoption of new human-system interfaces that are based on computer-based technologies. The MCRs that include these digital and computer technologies, such as large display panels, computerized procedures, and soft controls, are called Advanced MCRs. Among the many features of Advanced MCRs, soft controls are a particularly important feature because the operation action in NPP Advanced MCRs is performed by soft control. Using soft controls such as mouse control, and touch screens, operators can select a specific screen, then choose the controller, and finally manipulate the given devices. Due to the different interfaces between soft control and hardwired conventional type control, different human error probabilities and a new Human Reliability Analysis (HRA) framework should be considered in the HRA for advanced MCRs. In other words, new human error modes should be considered for interface management tasks such as navigation tasks, and icon (device) selection tasks in monitors and a new framework of HRA method taking these newly generated human error modes into account should be considered. In this paper, a conceptual framework for a HRA method for the evaluation of soft control execution human error in advanced MCRs is suggested by analyzing soft control tasks

  20. A Conceptual Framework of Human Reliability Analysis for Execution Human Error in NPP Advanced MCRs

    Energy Technology Data Exchange (ETDEWEB)

    Jang, In Seok; Kim, Ar Ryum; Seong, Poong Hyun [KAIST, Daejeon (Korea, Republic of); Jung, Won Dea [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-08-15

    The operation environment of Main Control Rooms (MCRs) in Nuclear Power Plants (NPPs) has changed with the adoption of new human-system interfaces that are based on computer-based technologies. The MCRs that include these digital and computer technologies, such as large display panels, computerized procedures, and soft controls, are called Advanced MCRs. Among the many features of Advanced MCRs, soft controls are a particularly important feature because the operation action in NPP Advanced MCRs is performed by soft control. Using soft controls such as mouse control, and touch screens, operators can select a specific screen, then choose the controller, and finally manipulate the given devices. Due to the different interfaces between soft control and hardwired conventional type control, different human error probabilities and a new Human Reliability Analysis (HRA) framework should be considered in the HRA for advanced MCRs. In other words, new human error modes should be considered for interface management tasks such as navigation tasks, and icon (device) selection tasks in monitors and a new framework of HRA method taking these newly generated human error modes into account should be considered. In this paper, a conceptual framework for a HRA method for the evaluation of soft control execution human error in advanced MCRs is suggested by analyzing soft control tasks.

  1. Human Reliability Program Overview

    Energy Technology Data Exchange (ETDEWEB)

    Bodin, Michael

    2012-09-25

    This presentation covers the high points of the Human Reliability Program, including certification/decertification, critical positions, due process, organizational structure, program components, personnel security, an overview of the US DOE reliability program, retirees and academia, and security program integration.

  2. Development of an analysis rule of diagnosis error for standard method of human reliability analysis

    International Nuclear Information System (INIS)

    Jeong, W. D.; Kang, D. I.; Jeong, K. S.

    2003-01-01

    This paper presents the status of development of Korea standard method for Human Reliability Analysis (HRA), and proposed a standard procedure and rules for the evaluation of diagnosis error probability. The quality of KSNP HRA was evaluated using the requirement of ASME PRA standard guideline, and the design requirement for the standard HRA method was defined. Analysis procedure and rules, developed so far, to analyze diagnosis error probability was suggested as a part of the standard method. And also a study of comprehensive application was performed to evaluate the suitability of the proposed rules

  3. Task analysis and computer aid development for human reliability analysis in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, W. C.; Kim, H.; Park, H. S.; Choi, H. H.; Moon, J. M.; Heo, J. Y.; Ham, D. H.; Lee, K. K.; Han, B. T. [Korea Advanced Institute of Science and Technology, Taejeon (Korea)

    2001-04-01

    Importance of human reliability analysis (HRA) that predicts the error's occurrence possibility in a quantitative and qualitative manners is gradually increased by human errors' effects on the system's safety. HRA needs a task analysis as a virtue step, but extant task analysis techniques have the problem that a collection of information about the situation, which the human error occurs, depends entirely on HRA analyzers. The problem makes results of the task analysis inconsistent and unreliable. To complement such problem, KAERI developed the structural information analysis (SIA) that helps to analyze task's structure and situations systematically. In this study, the SIA method was evaluated by HRA experts, and a prototype computerized supporting system named CASIA (Computer Aid for SIA) was developed for the purpose of supporting to perform HRA using the SIA method. Additionally, through applying the SIA method to emergency operating procedures, we derived generic task types used in emergency and accumulated the analysis results in the database of the CASIA. The CASIA is expected to help HRA analyzers perform the analysis more easily and consistently. If more analyses will be performed and more data will be accumulated to the CASIA's database, HRA analyzers can share freely and spread smoothly his or her analysis experiences, and there by the quality of the HRA analysis will be improved. 35 refs., 38 figs., 25 tabs. (Author)

  4. Cognitive modelling: a basic complement of human reliability analysis

    International Nuclear Information System (INIS)

    Bersini, U.; Cacciabue, P.C.; Mancini, G.

    1988-01-01

    In this paper the issues identified in modelling humans and machines are discussed in the perspective of the consideration of human errors managing complex plants during incidental as well as normal conditions. The dichotomy between the use of a cognitive versus a behaviouristic model approach is discussed and the complementarity aspects rather than the differences of the two methods are identified. A cognitive model based on a hierarchical goal-oriented approach and driven by fuzzy logic methodology is presented as the counterpart to the 'classical' THERP methodology for studying human errors. Such a cognitive model is discussed at length and its fundamental components, i.e. the High Level Decision Making and the Low Level Decision Making models, are reviewed. Finally, the inadequacy of the 'classical' THERP methodology to deal with cognitive errors is discussed on the basis of a simple test case. For the same case the cognitive model is then applied showing the flexibility and adequacy of the model to dynamic configuration with time-dependent failures of components and with consequent need for changing of strategy during the transient itself. (author)

  5. Human reliability data, human error and accident models--illustration through the Three Mile Island accident analysis

    International Nuclear Information System (INIS)

    Le Bot, Pierre

    2004-01-01

    Our first objective is to provide a panorama of Human Reliability data used in EDF's Safety Probabilistic Studies, and then, since these concepts are at the heart of Human Reliability and its methods, to go over the notion of human error and the understanding of accidents. We are not sure today that it is actually possible to provide in this field a foolproof and productive theoretical framework. Consequently, the aim of this article is to suggest potential paths of action and to provide information on EDF's progress along those paths which enables us to produce the most potentially useful Human Reliability analyses while taking into account current knowledge in Human Sciences. The second part of this article illustrates our point of view as EDF researchers through the analysis of the most famous civil nuclear accident, the Three Mile Island unit accident in 1979. Analysis of this accident allowed us to validate our positions regarding the need to move, in the case of an accident, from the concept of human error to that of systemic failure in the operation of systems such as a nuclear power plant. These concepts rely heavily on the notion of distributed cognition and we will explain how we applied it. These concepts were implemented in the MERMOS Human Reliability Probabilistic Assessment methods used in the latest EDF Probabilistic Human Reliability Assessment. Besides the fact that it is not very productive to focus exclusively on individual psychological error, the design of the MERMOS method and its implementation have confirmed two things: the significance of qualitative data collection for Human Reliability, and the central role held by Human Reliability experts in building knowledge about emergency operation, which in effect consists of Human Reliability data collection. The latest conclusion derived from the implementation of MERMOS is that, considering the difficulty in building 'generic' Human Reliability data in the field we are involved in, the best

  6. Science-Based Simulation Model of Human Performance for Human Reliability Analysis

    International Nuclear Information System (INIS)

    Kelly, Dana L.; Boring, Ronald L.; Mosleh, Ali; Smidts, Carol

    2011-01-01

    Human reliability analysis (HRA), a component of an integrated probabilistic risk assessment (PRA), is the means by which the human contribution to risk is assessed, both qualitatively and quantitatively. However, among the literally dozens of HRA methods that have been developed, most cannot fully model and quantify the types of errors that occurred at Three Mile Island. Furthermore, all of the methods lack a solid empirical basis, relying heavily on expert judgment or empirical results derived in non-reactor domains. Finally, all of the methods are essentially static, and are thus unable to capture the dynamics of an accident in progress. The objective of this work is to begin exploring a dynamic simulation approach to HRA, one whose models have a basis in psychological theories of human performance, and whose quantitative estimates have an empirical basis. This paper highlights a plan to formalize collaboration among the Idaho National Laboratory (INL), the University of Maryland, and The Ohio State University (OSU) to continue development of a simulation model initially formulated at the University of Maryland. Initial work will focus on enhancing the underlying human performance models with the most recent psychological research, and on planning follow-on studies to establish an empirical basis for the model, based on simulator experiments to be carried out at the INL and at the OSU.

  7. An Evidential Reasoning-Based CREAM to Human Reliability Analysis in Maritime Accident Process.

    Science.gov (United States)

    Wu, Bing; Yan, Xinping; Wang, Yang; Soares, C Guedes

    2017-10-01

    This article proposes a modified cognitive reliability and error analysis method (CREAM) for estimating the human error probability in the maritime accident process on the basis of an evidential reasoning approach. This modified CREAM is developed to precisely quantify the linguistic variables of the common performance conditions and to overcome the problem of ignoring the uncertainty caused by incomplete information in the existing CREAM models. Moreover, this article views maritime accident development from the sequential perspective, where a scenario- and barrier-based framework is proposed to describe the maritime accident process. This evidential reasoning-based CREAM approach together with the proposed accident development framework are applied to human reliability analysis of a ship capsizing accident. It will facilitate subjective human reliability analysis in different engineering systems where uncertainty exists in practice. © 2017 Society for Risk Analysis.

  8. An advanced human reliability analysis methodology: analysis of cognitive errors focused on

    International Nuclear Information System (INIS)

    Kim, J. H.; Jeong, W. D.

    2001-01-01

    The conventional Human Reliability Analysis (HRA) methods such as THERP/ASEP, HCR and SLIM has been criticised for their deficiency in analysing cognitive errors which occurs during operator's decision making process. In order to supplement the limitation of the conventional methods, an advanced HRA method, what is called the 2 nd generation HRA method, including both qualitative analysis and quantitative assessment of cognitive errors has been being developed based on the state-of-the-art theory of cognitive systems engineering and error psychology. The method was developed on the basis of human decision-making model and the relation between the cognitive function and the performance influencing factors. The application of the proposed method to two emergency operation tasks is presented

  9. Structured information analysis for human reliability analysis of emergency tasks in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Won Dea; Kim, Jae Whan; Park, Jin Kyun; Ha, Jae Joo [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-02-01

    More than twenty HRA (Human Reliability Analysis) methodologies have been developed and used for the safety analysis in nuclear field during the past two decades. However, no methodology appears to have universally been accepted, as various limitations have been raised for more widely used ones. One of the most important limitations of conventional HRA is insufficient analysis of the task structure and problem space. To resolve this problem, we suggest SIA (Structured Information Analysis) for HRA. The proposed SIA consists of three parts. The first part is the scenario analysis that investigates the contextual information related to the given task on the basis of selected scenarios. The second is the goals-means analysis to define the relations between the cognitive goal and task steps. The third is the cognitive function analysis module that identifies the cognitive patterns and information flows involved in the task. Through the three-part analysis, systematic investigation is made possible from the macroscopic information on the tasks to the microscopic information on the specific cognitive processes. It is expected that analysts can attain a structured set of information that helps to predict the types and possibility of human error in the given task. 48 refs., 12 figs., 11 tabs. (Author)

  10. A human reliability analysis of the University of New Mexico's AGN- 201M nuclear research reactor

    International Nuclear Information System (INIS)

    Brumburgh, G.P.; Heger, A.S.

    1992-01-01

    During 1990--1991, a probabilistic risk assessment was conducted on the University of New Mexico's AGN-201M nuclear research reactor to address the risk and consequence of a maximum hypothetical release accident. The assessment indicated a potential for consequential human error to precipitate Chis scenario. Subsequently, a human reliability analysis was performed to evaluate the significance of human interaction on the reactor's safety systems. This paper presents the results of that investigation

  11. Role of frameworks, models, data, and judgment in human reliability analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hannaman, G W

    1986-05-01

    Many advancements in the methods for treating human interactions in PRA studies have occurred in the last decade. These advancements appear to increase the capability of PRAs to extend beyond just the assessment of the human's importance to safety. However, variations in the application of these advanced models, data, and judgements in recent PRAs make quantitative comparisons among studies extremely difficult. This uncertainty in the analysis diminishes the usefulness of the PRA study for upgrading procedures, enhancing traning, simulator design, technical specification guidance, and for aid in designing the man-machine interface. Hence, there is a need for a framework to guide analysts in incorporating human interactions into the PRA systems analyses so that future users of a PRA study will have a clear understanding of the approaches, models, data, and assumptions which were employed in the initial study. This paper describes the role of the systematic human action reliability procedure (SHARP) in providing a road map through the complex terrain of human reliability that promises to improve the reproducibility of such analysis in the areas of selecting the models, data, representations, and assumptions. Also described is the role that a human cognitive reliability model can have in collecting data from simulators and helping analysts assign human reliability parameters in a PRA study. Use of these systematic approaches to perform or upgrade existing PRAs promises to make PRA studies more useful as risk management tools.

  12. Phoenix – A model-based Human Reliability Analysis methodology: Qualitative Analysis Procedure

    International Nuclear Information System (INIS)

    Ekanem, Nsimah J.; Mosleh, Ali; Shen, Song-Hua

    2016-01-01

    Phoenix method is an attempt to address various issues in the field of Human Reliability Analysis (HRA). Built on a cognitive human response model, Phoenix incorporates strong elements of current HRA good practices, leverages lessons learned from empirical studies, and takes advantage of the best features of existing and emerging HRA methods. Its original framework was introduced in previous publications. This paper reports on the completed methodology, summarizing the steps and techniques of its qualitative analysis phase. The methodology introduces the “Crew Response Tree” which provides a structure for capturing the context associated with Human Failure Events (HFEs), including errors of omission and commission. It also uses a team-centered version of the Information, Decision and Action cognitive model and “macro-cognitive” abstractions of crew behavior, as well as relevant findings from cognitive psychology literature and operating experience, to identify potential causes of failures and influencing factors during procedure-driven and knowledge-supported crew-plant interactions. The result is the set of identified HFEs and likely scenarios leading to each. The methodology itself is generic in the sense that it is compatible with various quantification methods, and can be adapted for use across different environments including nuclear, oil and gas, aerospace, aviation, and healthcare. - Highlights: • Produces a detailed, consistent, traceable, reproducible and properly documented HRA. • Uses “Crew Response Tree” to capture context associated with Human Failure Events. • Models dependencies between Human Failure Events and influencing factors. • Provides a human performance model for relating context to performance. • Provides a framework for relating Crew Failure Modes to its influencing factors.

  13. Human-centered modeling in human reliability analysis: some trends based on case studies

    International Nuclear Information System (INIS)

    Mosneron-Dupin, F.; Reer, B.; Heslinga, G.; Straeter, O.; Gerdes, V.; Saliou, G.; Ullwer, W.

    1997-01-01

    As an informal working group of researchers from France, Germany and The Netherlands created in 1993, the EARTH association is investigating significant subjects in the field of human reliability analysis (HRA). Our initial review of cases from nuclear operating experience showed that decision-based unrequired actions (DUA) contribute to risk significantly on the one hand. On the other hand, our evaluation of current HRA methods showed that these methods do not cover such actions adequately. Especially, practice-oriented guidelines for their predictive identification are lacking. We assumed that a basic cause for such difficulties was that these methods actually use a limited representation of the stimulus-organism-response (SOR) paradigm. We proposed a human-centered model, which better highlights the active role of the operators and the importance of their culture, attitudes and goals. This orientation was encouraged by our review of current HRA research activities. We therefore decided to envisage progress by identifying cognitive tendencies in the context of operating and simulator experience. For this purpose, advanced approaches for retrospective event analysis were discussed. Some orientations for improvements were proposed. By analyzing cases, various cognitive tendencies were identified, together with useful information about their context. Some of them match psychological findings already published in the literature, some of them are not covered adequately by the literature that we reviewed. Finally, this exploratory study shows that contextual and case-illustrated findings about cognitive tendencies provide useful help for the predictive identification of DUA in HRA. More research should be carried out to complement our findings and elaborate more detailed and systematic guidelines for using them in HRA studies

  14. Cognitive human reliability analysis for an assessment of the safety significance of complex transients

    International Nuclear Information System (INIS)

    Amico, P.J.; Hsu, C.J.; Youngblood, R.W.; Fitzpatrick, R.G.

    1989-01-01

    This paper reports that as part of a probabilistic assessment of the safety significance of complex transients at certain PWR power plants, it was necessary to perform a cognitive human reliability analysis. To increase the confidence in the results, it was desirable to make use of actual observations of operator response which were available for the assessment. An approach was developed which incorporated these observations into the human cognitive reliability (HCR) modeling approach. The results obtained provided additional insights over what would have been found using other approaches. These insights were supported by the observations, and it is suggested that this approach be considered for use in future probabilistic safety assessments

  15. Human reliability in non-destructive inspections of nuclear power plant components: modeling and analysis

    International Nuclear Information System (INIS)

    Vasconcelos, Vanderley de; Soares, Wellington Antonio; Marques, Raíssa Oliveira; Silva Júnior, Silvério Ferreira da; Raso, Amanda Laureano

    2017-01-01

    Non-destructive inspection (NDI) is one of the key elements in ensuring quality of engineering systems and their safe use. NDI is a very complex task, during which the inspectors have to rely on their sensory, perceptual, cognitive, and motor skills. It requires high vigilance once it is often carried out on large components, over a long period of time, and in hostile environments and restriction of workplace. A successful NDI requires careful planning, choice of appropriate NDI methods and inspection procedures, as well as qualified and trained inspection personnel. A failure of NDI to detect critical defects in safety-related components of nuclear power plants, for instance, may lead to catastrophic consequences for workers, public and environment. Therefore, ensuring that NDI methods are reliable and capable of detecting all critical defects is of utmost importance. Despite increased use of automation in NDI, human inspectors, and thus human factors, still play an important role in NDI reliability. Human reliability is the probability of humans conducting specific tasks with satisfactory performance. Many techniques are suitable for modeling and analyzing human reliability in NDI of nuclear power plant components. Among these can be highlighted Failure Modes and Effects Analysis (FMEA) and THERP (Technique for Human Error Rate Prediction). The application of these techniques is illustrated in an example of qualitative and quantitative studies to improve typical NDI of pipe segments of a core cooling system of a nuclear power plant, through acting on human factors issues. (author)

  16. Human reliability in non-destructive inspections of nuclear power plant components: modeling and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Vasconcelos, Vanderley de; Soares, Wellington Antonio; Marques, Raíssa Oliveira; Silva Júnior, Silvério Ferreira da; Raso, Amanda Laureano, E-mail: vasconv@cdtn.br, E-mail: soaresw@cdtn.br, E-mail: raissaomarques@gmail.com, E-mail: silvasf@cdtn.br, E-mail: amandaraso@hotmail.com [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-07-01

    Non-destructive inspection (NDI) is one of the key elements in ensuring quality of engineering systems and their safe use. NDI is a very complex task, during which the inspectors have to rely on their sensory, perceptual, cognitive, and motor skills. It requires high vigilance once it is often carried out on large components, over a long period of time, and in hostile environments and restriction of workplace. A successful NDI requires careful planning, choice of appropriate NDI methods and inspection procedures, as well as qualified and trained inspection personnel. A failure of NDI to detect critical defects in safety-related components of nuclear power plants, for instance, may lead to catastrophic consequences for workers, public and environment. Therefore, ensuring that NDI methods are reliable and capable of detecting all critical defects is of utmost importance. Despite increased use of automation in NDI, human inspectors, and thus human factors, still play an important role in NDI reliability. Human reliability is the probability of humans conducting specific tasks with satisfactory performance. Many techniques are suitable for modeling and analyzing human reliability in NDI of nuclear power plant components. Among these can be highlighted Failure Modes and Effects Analysis (FMEA) and THERP (Technique for Human Error Rate Prediction). The application of these techniques is illustrated in an example of qualitative and quantitative studies to improve typical NDI of pipe segments of a core cooling system of a nuclear power plant, through acting on human factors issues. (author)

  17. Human reliability analysis during PSA at Trillo NPP: main characteristics and analysis of diagnostic errors

    International Nuclear Information System (INIS)

    Barquin, M.A.; Gomez, F.

    1998-01-01

    The design difference between Trillo NPP and other Spanish nuclear power plants (basic Westinghouse and General Electric designs) were made clear in the Human Reliability Analysis of the Probabilistic Safety Analysis (PSA) for Trillo NPP. The object of this paper is to describe the most significant characteristics of the Human Reliability Analysis carried out in the PSA, with special emphasis on the possible diagnostic errors and their consequences, based on the characteristics in the Emergency Operations Manual for Trillo NPP. - In the case of human errors before the initiating event (type 1), the existence of four redundancies in most of the plant safety systems, means that the impact of this type or error on the final results of the PSA is insignificant. However, in the case common cause errors, especially in certain calibration errors, some actions are significant in the final equation for core damage - The number of human actions that the operator has to carry out during the accidents (type 3) modelled, is relatively small in comparison with this value in other PSAs. This is basically due to the high level of automation at Rillo NPP - The Plant Operations Manual cannot be strictly considered to be a symptoms-based procedure. The operation Group must select the chapter from the Operations Manual to be followed, after having diagnosed the perturbing event, using for this purpose and Emergency and Anomaly Decision Tree (M.O.3.0.1) based on the different indications, alarms and symptoms present in the plant after the perturbing event. For this reason, it was decided to analyse the possible diagnosis errors. In the bibliography on diagnosis and commission errors available at the present time, there is no precise methodology for the analysis of this type of error and its incorporation into PSAs. The method used in the PSA for Trillo y NPP to evaluate this type of interaction, is to develop a Diagnosis Error Table, the object of which is to identify the situations in

  18. Techniques and applications of the human reliability analysis in nuclear facilities

    International Nuclear Information System (INIS)

    Pinto, Fausto C.

    1995-01-01

    The analysis and prediction of the man-machine interaction are the objectives of human reliability analysis. In this work is presented in a manner that could be used by experts in the field of Probabilistic Safety Assessment, considering primarily the aspects of human errors. The Technique of Human Error Rate Prediction (THERP) is used in large scale to obtain data on human error. Applications of this technique are presented, as well as aspects of the state-of-art and of research and development of this particular field of work, where the construction of a reliable data bank is considered essential. In this work is also developed an application of the THERP for the TRIGA Mark 1 IPR R-1 Reactor of the Centro de Desenvolvimento de Tecnologia Nuclear, Brazilian research institute of nuclear technology. The results indicate that some changes must be made in the emergency procedures of the reactor, in order to achieve a higher level of safety

  19. Handbook of human-reliability analysis with emphasis on nuclear power plant applications. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Swain, A D; Guttmann, H E

    1983-08-01

    The primary purpose of the Handbook is to present methods, models, and estimated human error probabilities (HEPs) to enable qualified analysts to make quantitative or qualitative assessments of occurrences of human errors in nuclear power plants (NPPs) that affect the availability or operational reliability of engineered safety features and components. The Handbook is intended to provide much of the modeling and information necessary for the performance of human reliability analysis (HRA) as a part of probabilistic risk assessment (PRA) of NPPs. Although not a design guide, a second purpose of the Handbook is to enable the user to recognize error-likely equipment design, plant policies and practices, written procedures, and other human factors problems so that improvements can be considered. The Handbook provides the methodology to identify and quantify the potential for human error in NPP tasks.

  20. Handbook of human-reliability analysis with emphasis on nuclear power plant applications. Final report

    International Nuclear Information System (INIS)

    Swain, A.D.; Guttmann, H.E.

    1983-08-01

    The primary purpose of the Handbook is to present methods, models, and estimated human error probabilities (HEPs) to enable qualified analysts to make quantitative or qualitative assessments of occurrences of human errors in nuclear power plants (NPPs) that affect the availability or operational reliability of engineered safety features and components. The Handbook is intended to provide much of the modeling and information necessary for the performance of human reliability analysis (HRA) as a part of probabilistic risk assessment (PRA) of NPPs. Although not a design guide, a second purpose of the Handbook is to enable the user to recognize error-likely equipment design, plant policies and practices, written procedures, and other human factors problems so that improvements can be considered. The Handbook provides the methodology to identify and quantify the potential for human error in NPP tasks

  1. Systamatic approach to integration of a human reliability analysis into a NPP probabalistic risk assessment

    International Nuclear Information System (INIS)

    Fragola, J.R.

    1984-01-01

    This chapter describes the human reliability analysis tasks which were employed in the evaluation of the overall probability of an internal flood sequence and its consequences in terms of disabling vulnerable risk significant equipment. Topics considered include the problem familiarization process, the identification and classification of key human interactions, a human interaction review of potential initiators, a maintenance and operations review, human interaction identification, quantification model selection, the definition of operator-induced sequences, the quantification of specific human interactions, skill- and rule-based interactions, knowledge-based interactions, and the incorporation of human interaction-related events into the event tree structure. It is concluded that an integrated approach to the analysis of human interaction within the context of a Probabilistic Risk Assessment (PRA) is feasible

  2. The performance shaping factors influence analysis on the human reliability for NPP operation

    International Nuclear Information System (INIS)

    Farcasiu, M.; Nitoi, M.; Apostol, M.; Florescu, G.

    2008-01-01

    The Human Reliability Analysis (HRA) is an important step in Probabilistic Safety Assessment (PSA) studies and offers an advisability for concrete improvement of the man - machine - organization interfaces, reliability and safety. The goals of this analysis are to obtain sufficient details in order to understand and document all-important factors that affect human performance. The purpose of this paper is to estimate the human errors probabilities in view of the negative or positive effect of the human performance shaping factors (PSFs) for the mitigation of the initiating events which could occur in Nuclear Power Plant (NPP). Using THERP and SPAR-H methods, an analysis model of PSFs influence on the human reliability is performed. This model is applied to more important activities, that are necessary to mitigate 'one steam generator tube failure' event at Cernavoda NPP. The results are joint human error probabilities (JHEP) values estimated for the following situations: without regarding to PSFs influence; with PSFs in specific conditions; with PSFs which could have only positive influence and with PSFs which could have only negative influence. In addition, PSFs with negative influence were identified and using the DOE method, the necessary activities for changing negative influence were assigned. (authors)

  3. Human reliability analysis as an evaluation tool of the emergency evacuation process on industrial installation

    International Nuclear Information System (INIS)

    Santos, Isaac J.A.L. dos; Grecco, Claudio H.S.; Mol, Antonio C.A.; Carvalho, Paulo V.R.; Oliveira, Mauro V.; Botelho, Felipe Mury

    2007-01-01

    Human reliability is the probability that a person correctly performs some required activity by the system in a required time period and performs no extraneous activity that can degrade the system. Human reliability analysis (HRA) is the analysis, prediction and evaluation of work-oriented human performance using some indices as human error likelihood and probability of task accomplishment. The human error concept must not have connotation of guilt and punishment, having to be treated as a natural consequence, that emerges due to the not continuity between the human capacity and the system demand. The majority of the human error is a consequence of the work situation and not of the responsibility lack of the worker. The anticipation and the control of potentially adverse impacts of human action or interactions between the humans and the system are integral parts of the process safety, where the factors that influence the human performance must be recognized and managed. The aim of this paper is to propose a methodology to evaluate the emergency evacuation process on industrial installations including SLIM-MAUD, a HRA first-generation method, and using virtual reality and simulation software to build and to simulate the chosen emergency scenes. (author)

  4. Study on Performance Shaping Factors (PSFs) Quantification Method in Human Reliability Analysis (HRA)

    International Nuclear Information System (INIS)

    Kim, Ar Ryum; Jang, Inseok Jang; Seong, Poong Hyun; Park, Jinkyun; Kim, Jong Hyun

    2015-01-01

    The purpose of HRA implementation is 1) to achieve the human factor engineering (HFE) design goal of providing operator interfaces that will minimize personnel errors and 2) to conduct an integrated activity to support probabilistic risk assessment (PRA). For these purposes, various HRA methods have been developed such as technique for human error rate prediction (THERP), simplified plant analysis risk human reliability assessment (SPAR-H), cognitive reliability and error analysis method (CREAM) and so on. In performing HRA, such conditions that influence human performances have been represented via several context factors called performance shaping factors (PSFs). PSFs are aspects of the human's individual characteristics, environment, organization, or task that specifically decrements or improves human performance, thus respectively increasing or decreasing the likelihood of human errors. Most HRA methods evaluate the weightings of PSFs by expert judgment and explicit guidance for evaluating the weighting is not provided. It has been widely known that the performance of the human operator is one of the critical factors to determine the safe operation of NPPs. HRA methods have been developed to identify the possibility and mechanism of human errors. In performing HRA methods, the effect of PSFs which may increase or decrease human error should be investigated. However, the effect of PSFs were estimated by expert judgment so far. Accordingly, in order to estimate the effect of PSFs objectively, the quantitative framework to estimate PSFs by using PSF profiles is introduced in this paper

  5. Human reliability analysis as an evaluation tool of the emergency evacuation process on industrial installation

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Isaac J.A.L. dos; Grecco, Claudio H.S.; Mol, Antonio C.A.; Carvalho, Paulo V.R.; Oliveira, Mauro V.; Botelho, Felipe Mury [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)]. E-mail: luquetti@ien.gov.br; grecco@ien.gov.br; mol@ien.gov.br; paulov@ien.gov.br; mvitor@ien.gov.br; felipemury@superig.com.br

    2007-07-01

    Human reliability is the probability that a person correctly performs some required activity by the system in a required time period and performs no extraneous activity that can degrade the system. Human reliability analysis (HRA) is the analysis, prediction and evaluation of work-oriented human performance using some indices as human error likelihood and probability of task accomplishment. The human error concept must not have connotation of guilt and punishment, having to be treated as a natural consequence, that emerges due to the not continuity between the human capacity and the system demand. The majority of the human error is a consequence of the work situation and not of the responsibility lack of the worker. The anticipation and the control of potentially adverse impacts of human action or interactions between the humans and the system are integral parts of the process safety, where the factors that influence the human performance must be recognized and managed. The aim of this paper is to propose a methodology to evaluate the emergency evacuation process on industrial installations including SLIM-MAUD, a HRA first-generation method, and using virtual reality and simulation software to build and to simulate the chosen emergency scenes. (author)

  6. The application of two recently developed human reliability techniques to cognitive error analysis

    International Nuclear Information System (INIS)

    Gall, W.

    1990-01-01

    Cognitive error can lead to catastrophic consequences for manned systems, including those whose design renders them immune to the effects of physical slips made by operators. Four such events, pressurized water and boiling water reactor accidents which occurred recently, were analysed. The analysis identifies the factors which contributed to the errors and suggests practical strategies for error recovery or prevention. Two types of analysis were conducted: an unstructured analysis based on the analyst's knowledge of psychological theory, and a structured analysis using two recently-developed human reliability analysis techniques. In general, the structured techniques required less effort to produce results and these were comparable to those of the unstructured analysis. (author)

  7. Human reliability analysis for probabilistic safety assessments - review of methods and issues

    International Nuclear Information System (INIS)

    Srinivas, G.; Guptan, Rajee; Malhotra, P.K.; Ghadge, S.G.; Chandra, Umesh

    2011-01-01

    It is well known that the two major events in World Nuclear Power Plant Operating history, namely the Three Mile Island and Chernobyl, were Human failure events. Subsequent to these two events, several significant changes have been incorporated in Plant Design, Control Room Design and Operator Training to reduce the possibility of Human errors during plant transients. Still, human error contribution to Risk in Nuclear Power Plant operations has been a topic of continued attention for research, development and analysis. Probabilistic Safety Assessments attempt to capture all potential human errors with a scientifically computed failure probability, through Human Reliability Analysis. Several methods are followed by different countries to quantify the Human error probability. This paper reviews the various popular methods being followed, critically examines them with reference to their criticisms and brings out issues for future research. (author)

  8. Neuropsychological Aspects Observed in a Nuclear Plant Simulator and its Relation with Human Reliability Analysis

    International Nuclear Information System (INIS)

    Prado, E.A.P. do; Martins, M.; Pinheiro, A.; Silveira, J.

    2016-01-01

    This paper will discuss preliminary results of an evaluation methodology for the analysis and quantification of errors in manual (human) operation by training cognitive parameters and skill levels in the complex control system operation using Neuropsychophysiology and Neuro feedback equipment. The research was conducted using a game (nuclear power plant simulator) that simulates concepts of operation of a nuclear plant with a split sample evaluating aspects of learning and knowledge in the nuclear area. Operators were monitored using biomarkers (ECG, EEG, GSR, face detection and eye tracking) and the results were analyzed by Statistical multivariate techniques. An important component in the evaluation of complex systems is the human reliability during operation. Human reliability refers to the probability of the human element perform the tasks scheduled during the defined period for system operation when tested under specified environmental conditions, and additionally not to take any action detrimental to system operation.

  9. Case study on the use of PSA methods: Human reliability analysis

    International Nuclear Information System (INIS)

    1991-04-01

    The overall objective of treating human reliability in a probabilistic safety analysis is to ensure that the key human interactions of typical crews are accurately and systematically incorporated into the study in a traceable manner. An additional objective is to make the human reliability analysis (HRA) as realistic as possible, taking into account the emergency procedures, the man-machine interface, the focus of training process, and the knowledge and experience of the crews. Section 3 of the paper describes an overview of this analytical process which leads to three more detailed example problems described in Section 4. Section 5 discusses a peer review process. References are presented that are useful in performing HRAs. In addition appendices are provided for definitions, selected data and a generic list of performance shaping factors. 35 refs, figs and tabs

  10. Human Factors Reliability Analysis for Assuring Nuclear Safety Using Fuzzy Fault Tree

    International Nuclear Information System (INIS)

    Eisawy, E.A.-F. I.; Sallam, H.

    2016-01-01

    In order to ensure effective prevention of harmful events, the risk assessment process cannot ignore the role of humans in the dynamics of accidental events and thus the seriousness of the consequences that may derive from them. Human reliability analysis (HRA) involves the use of qualitative and quantitative methods to assess the human contribution to risk. HRA techniques have been developed in order to provide human error probability values associated with operators’ tasks to be included within the broader context of system risk assessment, and are aimed at reducing the probability of accidental events. Fault tree analysis (FTA) is a graphical model that displays the various combinations of equipment failures and human errors that can result in the main system failure of interest. FTA is a risk analysis technique to assess likelihood (in a probabilistic context) of an event. The objective data available to estimate the likelihood is often missing, and even if available, is subject to incompleteness and imprecision or vagueness. Without addressing incompleteness and imprecision in the available data, FTA and subsequent risk analysis give a false impression of precision and correctness that undermines the overall credibility of the process. To solve this problem, qualitative justification in the context of failure possibilities can be used as alternative for quantitative justification. In this paper, we introduce the approach of fuzzy reliability as solution for fault tree analysis drawbacks. A new fuzzy fault tree method is proposed for the analysis of human reliability based on fuzzy sets and fuzzy operations t-norms, co-norms, defuzzification, and fuzzy failure probability. (author)

  11. Review of the human reliability analysis performed for Empire State Electric Energy Research Corporation

    International Nuclear Information System (INIS)

    Swart, D.; Banz, I.

    1985-01-01

    The Empire State Electric Energy Research Corporation (ESEERCO) commissioned Westinghouse to conduct a human reliability analysis to identify and quantify human error probabilities associated with operator actions for four specific events which may occur in light water reactors: loss of coolant accident, steam generator tube rupture, steam/feed line break, and stuck open pressurizer spray valve. Human Error Probabilities (HEPs) derived from Swain's Technique for Human Error Rate Prediction (THERP) were compared to data obtained from simulator exercises. A correlation was found between the HEPs derived from Swain and the results of the simulator data. The results of this study provide a unique insight into human factors analysis. The HEPs obtained from such probabilistic studies can be used to prioritize scenarios for operator training situations, and thus improve the correlation between simulator exercises and real control room experiences

  12. Features of an advanced human reliability analysis method, AGAPE-ET

    International Nuclear Information System (INIS)

    Kim, Jae Whan; Jung, Won Dea; Park, Jin Kyun

    2005-01-01

    This paper presents the main features of an advanced human reliability analysis (HRA) method, AGAPE-ET. It has the capabilities to deal with the diagnosis failures and the errors of commission (EOC), which have not been normally treated in the conventional HRAs. For the analysis of the potential for diagnosis failures, an analysis framework, which is called the misdiagnosis tree analysis (MDTA), and a taxonomy of the misdiagnosis causes with appropriate quantification schemes are provided. For the identification of the EOC events from the misdiagnosis, some procedural guidance is given. An example of the application of the method is also provided

  13. Features of an advanced human reliability analysis method, AGAPE-ET

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Whan; Jung, Won Dea; Park, Jin Kyun [Korea Atomic Energy Research Institute, Taejeon (Korea, Republic of)

    2005-11-15

    This paper presents the main features of an advanced human reliability analysis (HRA) method, AGAPE-ET. It has the capabilities to deal with the diagnosis failures and the errors of commission (EOC), which have not been normally treated in the conventional HRAs. For the analysis of the potential for diagnosis failures, an analysis framework, which is called the misdiagnosis tree analysis (MDTA), and a taxonomy of the misdiagnosis causes with appropriate quantification schemes are provided. For the identification of the EOC events from the misdiagnosis, some procedural guidance is given. An example of the application of the method is also provided.

  14. DEPEND-HRA-A method for consideration of dependency in human reliability analysis

    International Nuclear Information System (INIS)

    Cepin, Marko

    2008-01-01

    A consideration of dependencies between human actions is an important issue within the human reliability analysis. A method was developed, which integrates the features of existing methods and the experience from a full scope plant simulator. The method is used on real plant-specific human reliability analysis as a part of the probabilistic safety assessment of a nuclear power plant. The method distinguishes dependency for pre-initiator events from dependency for initiator and post-initiator events. The method identifies dependencies based on scenarios, where consecutive human actions are modeled, and based on a list of minimal cut sets, which is obtained by running the minimal cut set analysis considering high values of human error probabilities in the evaluation. A large example study, which consisted of a large number of human failure events, demonstrated the applicability of the method. Comparative analyses that were performed show that both selection of dependency method and selection of dependency levels within the method largely impact the results of probabilistic safety assessment. If the core damage frequency is not impacted much, the listings of important basic events in terms of risk increase and risk decrease factors may change considerably. More efforts are needed on the subject, which will prepare the background for more detailed guidelines, which will remove the subjectivity from the evaluations as much as it is possible

  15. Human Reliability Analysis. Applicability of the HRA-concept in maintenance shutdown

    International Nuclear Information System (INIS)

    Obenius, Aino

    2007-08-01

    Probabilistic Safety Analysis (PSA) is performed for Swedish nuclear power plants in order to make predictions and improvements of system safety. The analysis of the Three Mile Island and Chernobyl accidents contributed to broaden the approach to nuclear power plant safety. A system perspective focusing on the interaction between aspects of Man, Technology and Organization (MTO) emerged in addition to the development of Human Factors knowledge. To take the human influence on the technical system into consideration when performing PSAs, a Human Reliability Analysis (HRA) is performed. PSA is performed for different stages and plant operating states, and the current state of Swedish analyses is Low power and Shutdown (LPSD), also called Shutdown PSA (SPSA). The purpose of this master's thesis is to describe methods and basic models used when analysing human reliability for the LPSD state. The following questions are at issue: 1. How can the LPSD state be characterised and defined? 2. What is important to take into consideration when performing a LPSD HRA? 3. How can human behaviour be modelled for a LPSD risk analysis? 4. According to available empirical material, how are the questions above treated in performed analysis of human operation during LPSD? 5. How does the result of the questions above affect the way methods for analysis of LPSD could and/or should be developed? The procedure of this project has mainly consisted of literature studies of available theory for modelling of human behaviour and risk analysis of the LPSD state. This study regards analysis of planned outages when maintenance, fuel change, tests and inspections are performed. The outage period is characterised by planned maintenance activities performed in rotating 3-shifts, around the clock, as well as many of the persons performing work tasks on the plant being external contractors. The working conditions are characterised by stress due to heat, radiation and physically demanding or monotonous

  16. Human reliability guidance - How to increase the synergies between human reliability, human factors, and system design and engineering. Phase 2: The American Point of View - Insights of how the US nuclear industry works with human reliability analysis

    Energy Technology Data Exchange (ETDEWEB)

    Oxstrand, J. (Vattenfall Ringhals AB, Stockholm (Sweden))

    2010-12-15

    The main goal of this Nordic Nuclear Safety Research Council (NKS) project is to produce guidance for how to use human reliability analysis (HRA) to strengthen overall safety. The project consists of two substudies: The Nordic Point of View - A User Needs Analysis, and The American Point of View - Insights of How the US Nuclear Industry Works with HRA. The purpose of the Nordic Point of View study was a user needs analysis that aimed to survey current HRA practices in the Nordic nuclear industry, with the main focus being to connect HRA to system design. In this study, 26 Nordic (Swedish and Finnish) nuclear power plant specialists with research, practitioner, and regulatory expertise in HRA, PRA, HSI, and human performance were interviewed. This study was completed in 2009. This study concludes that HRA is an important tool when dealing with human factors in control room design or modernizations. The Nordic Point of View study showed areas where the use of HRA in the Nordic nuclear industry could be improved. To gain more knowledge about how these improvements could be made, and what improvements to focus on, the second study was conducted. The second study is focused on the American nuclear industry, which has many more years of experience with risk assessment and human reliability than the Nordic nuclear industry. Interviews were conducted to collect information to help the author understand the similarities and differences between the American and the Nordic nuclear industries, and to find data regarding the findings from the first study. The main focus of this report is to identify potential HRA improvements based on the data collected in the American Point of View survey. (Author)

  17. Human reliability guidance - How to increase the synergies between human reliability, human factors, and system design and engineering. Phase 2: The American Point of View - Insights of how the US nuclear industry works with human reliability analysis

    International Nuclear Information System (INIS)

    Oxstrand, J.

    2010-12-01

    The main goal of this Nordic Nuclear Safety Research Council (NKS) project is to produce guidance for how to use human reliability analysis (HRA) to strengthen overall safety. The project consists of two substudies: The Nordic Point of View - A User Needs Analysis, and The American Point of View - Insights of How the US Nuclear Industry Works with HRA. The purpose of the Nordic Point of View study was a user needs analysis that aimed to survey current HRA practices in the Nordic nuclear industry, with the main focus being to connect HRA to system design. In this study, 26 Nordic (Swedish and Finnish) nuclear power plant specialists with research, practitioner, and regulatory expertise in HRA, PRA, HSI, and human performance were interviewed. This study was completed in 2009. This study concludes that HRA is an important tool when dealing with human factors in control room design or modernizations. The Nordic Point of View study showed areas where the use of HRA in the Nordic nuclear industry could be improved. To gain more knowledge about how these improvements could be made, and what improvements to focus on, the second study was conducted. The second study is focused on the American nuclear industry, which has many more years of experience with risk assessment and human reliability than the Nordic nuclear industry. Interviews were conducted to collect information to help the author understand the similarities and differences between the American and the Nordic nuclear industries, and to find data regarding the findings from the first study. The main focus of this report is to identify potential HRA improvements based on the data collected in the American Point of View survey. (Author)

  18. Evidential analytic hierarchy process dependence assessment methodology in human reliability analysis

    International Nuclear Information System (INIS)

    Chen, Lu Yuan; Zhou, Xinyi; Xiao, Fuyuan; Deng, Yong; Mahadevan, Sankaran

    2017-01-01

    In human reliability analysis, dependence assessment is an important issue in risky large complex systems, such as operation of a nuclear power plant. Many existing methods depend on an expert's judgment, which contributes to the subjectivity and restrictions of results. Recently, a computational method, based on the Dempster-Shafer evidence theory and analytic hierarchy process, has been proposed to handle the dependence in human reliability analysis. The model can deal with uncertainty in an analyst's judgment and reduce the subjectivity in the evaluation process. However, the computation is heavy and complicated to some degree. The most important issue is that the existing method is in a positive aspect, which may cause an underestimation of the risk. In this study, a new evidential analytic hierarchy process dependence assessment methodology, based on the improvement of existing methods, has been proposed, which is expected to be easier and more effective

  19. Evidential Analytic Hierarchy Process Dependence Assessment Methodology in Human Reliability Analysis

    Directory of Open Access Journals (Sweden)

    Luyuan Chen

    2017-02-01

    Full Text Available In human reliability analysis, dependence assessment is an important issue in risky large complex systems, such as operation of a nuclear power plant. Many existing methods depend on an expert's judgment, which contributes to the subjectivity and restrictions of results. Recently, a computational method, based on the Dempster–Shafer evidence theory and analytic hierarchy process, has been proposed to handle the dependence in human reliability analysis. The model can deal with uncertainty in an analyst's judgment and reduce the subjectivity in the evaluation process. However, the computation is heavy and complicated to some degree. The most important issue is that the existing method is in a positive aspect, which may cause an underestimation of the risk. In this study, a new evidential analytic hierarchy process dependence assessment methodology, based on the improvement of existing methods, has been proposed, which is expected to be easier and more effective.

  20. Evidential analytic hierarchy process dependence assessment methodology in human reliability analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Lu Yuan; Zhou, Xinyi; Xiao, Fuyuan; Deng, Yong [School of Computer and Information Science, Southwest University, Chongqing (China); Mahadevan, Sankaran [School of Engineering, Vanderbilt University, Nashville (United States)

    2017-02-15

    In human reliability analysis, dependence assessment is an important issue in risky large complex systems, such as operation of a nuclear power plant. Many existing methods depend on an expert's judgment, which contributes to the subjectivity and restrictions of results. Recently, a computational method, based on the Dempster-Shafer evidence theory and analytic hierarchy process, has been proposed to handle the dependence in human reliability analysis. The model can deal with uncertainty in an analyst's judgment and reduce the subjectivity in the evaluation process. However, the computation is heavy and complicated to some degree. The most important issue is that the existing method is in a positive aspect, which may cause an underestimation of the risk. In this study, a new evidential analytic hierarchy process dependence assessment methodology, based on the improvement of existing methods, has been proposed, which is expected to be easier and more effective.

  1. PROOF OF CONCEPT FOR A HUMAN RELIABILITY ANALYSIS METHOD FOR HEURISTIC USABILITY EVALUATION OF SOFTWARE

    International Nuclear Information System (INIS)

    Ronald L. Boring; David I. Gertman; Jeffrey C. Joe; Julie L. Marble

    2005-01-01

    An ongoing issue within human-computer interaction (HCI) is the need for simplified or ''discount'' methods. The current economic slowdown has necessitated innovative methods that are results driven and cost effective. The myriad methods of design and usability are currently being cost-justified, and new techniques are actively being explored that meet current budgets and needs. Recent efforts in human reliability analysis (HRA) are highlighted by the ten-year development of the Standardized Plant Analysis Risk HRA (SPAR-H) method. The SPAR-H method has been used primarily for determining human centered risk at nuclear power plants. The SPAR-H method, however, shares task analysis underpinnings with HCI. Despite this methodological overlap, there is currently no HRA approach deployed in heuristic usability evaluation. This paper presents an extension of the existing SPAR-H method to be used as part of heuristic usability evaluation in HCI

  2. Human reliability analysis for steam generator feed-and-bleed accident in Bushehr NPP-1

    Energy Technology Data Exchange (ETDEWEB)

    Jafarian, Reza [Valiasr University of Rafsanjan, Rafsanjan, 28 (Iran, Islamic Republic of); Sepanloo, Kamran [Atomic Energy Organization of Iran (AEOI), external link End of North Karegar Av., Tehran 14155-1339 (Iran, Islamic Republic of)

    2006-07-01

    According to the incident/accident reports, unsuccessful implementation of steam generator feed-and-bleed procedure is one of the most important events in nuclear power plants operation which greatly contributes to the level of risk of the plants. Generally, the loss of all feed water pumps flow (as one of the precursors) results in failure to maintain adequate cooling of the reactor core unless the operating crew initiate and follow the feed-and-bleed procedure correctly and timely. In this paper, firstly, a Human Reliability Analysis (HRA) event tree is presented delineating the major human activities and errors in the implementation of the steam generator (SG) feed-and-bleed procedure following the loss of (both normal and emergency) water feed to four SGs of Bushehr Nuclear Power Plant Unit 1 (BNPP-1). Secondly, the graphical method of task analysis as a part of HRA is used as a means of delineating correct and incorrect human actions. To be used in the probabilistic risk assessment (PRA), the outputs of the HRA event trees are fed into the system event trees, functional event trees or system fault trees. As a part of a probabilistic risk assessment of BNPP-1 and to assess the reliability of control room operators, a human reliability analysis model is applied based on the THERP (Technique for Human Error Rate Prediction) technique. The THERP method is used in the form of event trees named as the probability tree diagrams. In this research the Human Reliability Analysis event tree is constructed based on the background information and assumptions made and on a similar NPP task analysis. It is done so because the BNPP-1 is not an operational nuclear power plant. Thirdly, based on NUREG/CR-1278 Handbook, a computer program has been developed in Visual Basic language and used to illustrate the major human activities and determination of error rates of operators in the course of the implementation of the steam generator feed-and-bleed procedure. Finally, total

  3. Human reliability analysis for steam generator feed-and-bleed accident in Bushehr NPP-1

    International Nuclear Information System (INIS)

    Jafarian, Reza; Sepanloo, Kamran

    2006-01-01

    According to the incident/accident reports, unsuccessful implementation of steam generator feed-and-bleed procedure is one of the most important events in nuclear power plants operation which greatly contributes to the level of risk of the plants. Generally, the loss of all feed water pumps flow (as one of the precursors) results in failure to maintain adequate cooling of the reactor core unless the operating crew initiate and follow the feed-and-bleed procedure correctly and timely. In this paper, firstly, a Human Reliability Analysis (HRA) event tree is presented delineating the major human activities and errors in the implementation of the steam generator (SG) feed-and-bleed procedure following the loss of (both normal and emergency) water feed to four SGs of Bushehr Nuclear Power Plant Unit 1 (BNPP-1). Secondly, the graphical method of task analysis as a part of HRA is used as a means of delineating correct and incorrect human actions. To be used in the probabilistic risk assessment (PRA), the outputs of the HRA event trees are fed into the system event trees, functional event trees or system fault trees. As a part of a probabilistic risk assessment of BNPP-1 and to assess the reliability of control room operators, a human reliability analysis model is applied based on the THERP (Technique for Human Error Rate Prediction) technique. The THERP method is used in the form of event trees named as the probability tree diagrams. In this research the Human Reliability Analysis event tree is constructed based on the background information and assumptions made and on a similar NPP task analysis. It is done so because the BNPP-1 is not an operational nuclear power plant. Thirdly, based on NUREG/CR-1278 Handbook, a computer program has been developed in Visual Basic language and used to illustrate the major human activities and determination of error rates of operators in the course of the implementation of the steam generator feed-and-bleed procedure. Finally, total

  4. Human Reliability Analysis for steam generator feed-and-bleed accident in Bushehr NPP-1

    International Nuclear Information System (INIS)

    Jafarian, R.; Sepanloo, K.

    2005-01-01

    According to the incident/accident reports, unsuccessful implementation of steam generator feed-and-bleed procedure is one of the most important events in nuclear power plants operation which greatly contributes to the level of risk of the plants. Generally, the loss of all feed water pumps flow (as one of the precursors) results in failure to maintain adequate cooling of the reactor core unless the operating crew initiate and follow the feed-and-bleed procedure correctly and timely. In this paper, firstly, a Human Reliability Analysis (HRA) event tree is presented delineating the major human activities and errors in the implementation of the steam generator (SG) feed-and-bleed procedure following the loss of (both normal and emergency) water feed to four SGs of Bushehr Nuclear Power Plant unit1 (BNPP-1). Secondly, the graphical method of task analysis as a part of HRA is used as a means of delineating correct and incorrect human actions. To be used in the probabilistic risk assessment (PRA), the outputs of the HRA event trees are fed into the system event trees, functional event trees or system fault trees. As a part of a probabilistic risk assessment of BNPP-1 and to assess the reliability of control room operators, a human reliability analysis model is applied based on the THERP (Technique for Human Error Rate Prediction) technique. The THERP method is used in the form of event trees named as the probability tree diagrams. In this research the Human Reliability Analysis event tree is constructed based on the background information and assumptions made and on a similar NPP task analysis. It is done so because the BNPP-1 is not an operational nuclear power plant. Thirdly, based on NUREG/CR-1278 Handbook, a computer program has been developed in Visual Basic language and used to illustrate the major human activities and determination of error rates of operators in the course of the implementation of the steam generator feed-and-bleed procedure. Finally, total

  5. Use of eye tracking equipment for human reliability analysis applied to complex system operations

    International Nuclear Information System (INIS)

    Pinheiro, Andre Ricardo Mendonça; Prado, Eugenio Anselmo Pessoa do; Martins, Marcelo Ramos

    2017-01-01

    This article will discuss the preliminary results of an evaluation methodology for the analysis and quantification of manual character errors (human), by monitoring cognitive parameters and skill levels in the operation of a complex control system based on parameters provided by a eye monitoring equipment (Eye Tracker). The research was conducted using a simulator (game) that plays concepts of operation of a nuclear reactor with a split sample for evaluation of aspects of learning, knowledge and standard operating within the context addressed. bridge operators were monitored using the EYE TRACKING, eliminating the presence of the analyst in the evaluation of the operation, allowing the analysis of the results by means of multivariate statistical techniques within the scope of system reliability. The experiments aim to observe state change situations such as stops and scheduled departures, incidents assumptions and common operating characteristics. Preliminary results of this research object indicate that technical and cognitive aspects can contribute to improving the reliability of the available techniques in human reliability, making them more realistic both in the context of quantitative approaches to regulatory and training purposes, as well as reduced incidence of human error. (author)

  6. Use of eye tracking equipment for human reliability analysis applied to complex system operations

    Energy Technology Data Exchange (ETDEWEB)

    Pinheiro, Andre Ricardo Mendonça; Prado, Eugenio Anselmo Pessoa do; Martins, Marcelo Ramos, E-mail: andrericardopinheiro@usp.br, E-mail: eugenio.prado@labrisco.usp.br, E-mail: mrmatins@usp.br [Universidade de Sao Paulo (LABRISCO/USP), Sao Paulo, SP (Brazil). Lab. de Análise, Avaliação e Gerenciamento de Risco

    2017-07-01

    This article will discuss the preliminary results of an evaluation methodology for the analysis and quantification of manual character errors (human), by monitoring cognitive parameters and skill levels in the operation of a complex control system based on parameters provided by a eye monitoring equipment (Eye Tracker). The research was conducted using a simulator (game) that plays concepts of operation of a nuclear reactor with a split sample for evaluation of aspects of learning, knowledge and standard operating within the context addressed. bridge operators were monitored using the EYE TRACKING, eliminating the presence of the analyst in the evaluation of the operation, allowing the analysis of the results by means of multivariate statistical techniques within the scope of system reliability. The experiments aim to observe state change situations such as stops and scheduled departures, incidents assumptions and common operating characteristics. Preliminary results of this research object indicate that technical and cognitive aspects can contribute to improving the reliability of the available techniques in human reliability, making them more realistic both in the context of quantitative approaches to regulatory and training purposes, as well as reduced incidence of human error. (author)

  7. Human reliability analysis data obtainment through fuzzy logic in nuclear plants

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, C.S. do, E-mail: claudio.souza@ctmsp.mar.mil.br [Centro Tecnologico da Marinha em Sao Paulo (CTMSP), Av. Professor Lineu Prestes 2468, 05508-000 Sao Paulo, SP (Brazil); Mesquita, R.N. de, E-mail: rnavarro@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN - SP), Av. Professor Lineu Prestes 2242, 05508-000 Sao Paulo, SP (Brazil)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Human Error Probability estimates from operator's reactions to emergency situations. Black-Right-Pointing-Pointer Human Reliability Analysis input data obtainment through fuzzy logic inference. Black-Right-Pointing-Pointer Performance Shaping Factors evaluation influence level onto the operator's actions. - Abstract: Human error has been recognized as an important factor for many industrial and nuclear accidents occurrence. Human error data is scarcely available for different reasons among which, lapses in historical database registry methodology is an important one. Human Reliability Analysis (HRA) is an usual tool employed to estimate the probability that an operator will reasonably perform a system required task in required time without degrading the system. This meta-analysis requires specific Human Error Probability estimates for most of its procedure. This work obtains Human Error Probability (HEP) estimates from operator's actions in response to emergency situations hypothesis on Research Reactor IEA-R1 from IPEN, Brazil. Through this proposed methodology HRA should be able to be performed even with shortage of related human error statistical data. A Performance Shaping Factors (PSF's) evaluation in order to classify and estimate their influence level onto the operator's actions and to determine their actual state over the plant was also done. Both HEP estimation and PSF evaluation were done based on expert judgment using interviews and questionnaires. Expert group was established based on selected IEA-R1 operators, and their evaluation were put into a knowledge representation system which used linguistic variables and group evaluation values that were obtained through Fuzzy Logic and Fuzzy Set theory. HEP obtained values show good agreement with literature published data corroborating the proposed methodology as a good alternative to be used on HRA.

  8. Human reliability analysis data obtainment through fuzzy logic in nuclear plants

    International Nuclear Information System (INIS)

    Nascimento, C.S. do; Mesquita, R.N. de

    2012-01-01

    Highlights: ► Human Error Probability estimates from operator's reactions to emergency situations. ► Human Reliability Analysis input data obtainment through fuzzy logic inference. ► Performance Shaping Factors evaluation influence level onto the operator's actions. - Abstract: Human error has been recognized as an important factor for many industrial and nuclear accidents occurrence. Human error data is scarcely available for different reasons among which, lapses in historical database registry methodology is an important one. Human Reliability Analysis (HRA) is an usual tool employed to estimate the probability that an operator will reasonably perform a system required task in required time without degrading the system. This meta-analysis requires specific Human Error Probability estimates for most of its procedure. This work obtains Human Error Probability (HEP) estimates from operator's actions in response to emergency situations hypothesis on Research Reactor IEA-R1 from IPEN, Brazil. Through this proposed methodology HRA should be able to be performed even with shortage of related human error statistical data. A Performance Shaping Factors (PSF's) evaluation in order to classify and estimate their influence level onto the operator's actions and to determine their actual state over the plant was also done. Both HEP estimation and PSF evaluation were done based on expert judgment using interviews and questionnaires. Expert group was established based on selected IEA-R1 operators, and their evaluation were put into a knowledge representation system which used linguistic variables and group evaluation values that were obtained through Fuzzy Logic and Fuzzy Set theory. HEP obtained values show good agreement with literature published data corroborating the proposed methodology as a good alternative to be used on HRA.

  9. A review of the evolution of human reliability analysis methods at nuclear industry

    International Nuclear Information System (INIS)

    Oliveira, Lécio N. de; Santos, Isaac José A. Luquetti dos; Carvalho, Paulo V.R.

    2017-01-01

    This paper reviews the status of researches on the application of human reliability analysis methods at nuclear industry and its evolution along the years. Human reliability analysis (HRA) is one of the elements used in Probabilistic Safety Analysis (PSA) and is performed as part of PSAs to quantify the likelihood that people will fail to take action, such as errors of omission and errors of commission. Although HRA may be used at lots of areas, the focus of this paper is to review the applicability of HRA methods along the years at nuclear industry, especially in Nuclear Power Plants (NPP). An electronic search on CAPES Portal of Journals (A bibliographic database) was performed. This literature review covers original papers published since the first generation of HRA methods until the ones published on March 2017. A total of 94 papers were retrieved by the initial search and 13 were selected to be fully reviewed and for data extraction after the application of inclusion and exclusion criteria, quality and suitability evaluation according to applicability at nuclear industry. Results point out that the methods from first generation are more used in practice than methods from second generation. This occurs because it is more concentrated towards quantification, in terms of success or failure of human action what make them useful for quantitative risk assessment to PSA. Although the second generation considers context and error of commission in human error prediction, they are not wider used in practice at nuclear industry to PSA. (author)

  10. A review of the evolution of human reliability analysis methods at nuclear industry

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Lécio N. de; Santos, Isaac José A. Luquetti dos; Carvalho, Paulo V.R., E-mail: lecionoliveira@gmail.com, E-mail: luquetti@ien.gov.br, E-mail: paulov@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2017-11-01

    This paper reviews the status of researches on the application of human reliability analysis methods at nuclear industry and its evolution along the years. Human reliability analysis (HRA) is one of the elements used in Probabilistic Safety Analysis (PSA) and is performed as part of PSAs to quantify the likelihood that people will fail to take action, such as errors of omission and errors of commission. Although HRA may be used at lots of areas, the focus of this paper is to review the applicability of HRA methods along the years at nuclear industry, especially in Nuclear Power Plants (NPP). An electronic search on CAPES Portal of Journals (A bibliographic database) was performed. This literature review covers original papers published since the first generation of HRA methods until the ones published on March 2017. A total of 94 papers were retrieved by the initial search and 13 were selected to be fully reviewed and for data extraction after the application of inclusion and exclusion criteria, quality and suitability evaluation according to applicability at nuclear industry. Results point out that the methods from first generation are more used in practice than methods from second generation. This occurs because it is more concentrated towards quantification, in terms of success or failure of human action what make them useful for quantitative risk assessment to PSA. Although the second generation considers context and error of commission in human error prediction, they are not wider used in practice at nuclear industry to PSA. (author)

  11. Using Evidence Credibility Decay Model for dependence assessment in human reliability analysis

    International Nuclear Information System (INIS)

    Guo, Xingfeng; Zhou, Yanhui; Qian, Jin; Deng, Yong

    2017-01-01

    Highlights: • A new computational model is proposed for dependence assessment in HRA. • We combined three factors of “CT”, “TR” and “SP” within Dempster–Shafer theory. • The BBA of “SP” is reconstructed by discounting rate based on the ECDM. • Simulation experiments are illustrated to show the efficiency of the proposed method. - Abstract: Dependence assessment among human errors plays an important role in human reliability analysis. When dependence between two sequent tasks exists in human reliability analysis, if the preceding task fails, the failure probability of the following task is higher than success. Typically, three major factors are considered: “Closeness in Time” (CT), “Task Relatedness” (TR) and “Similarity of Performers” (SP). Assume TR is not changed, both SP and CT influence the degree of dependence level and SP is discounted by the time as the result of combine two factors in this paper. In this paper, a new computational model is proposed based on the Dempster–Shafer Evidence Theory (DSET) and Evidence Credibility Decay Model (ECDM) to assess the dependence between tasks in human reliability analysis. First, the influenced factors among human tasks are identified and the basic belief assignments (BBAs) of each factor are constructed based on expert evaluation. Then, the BBA of SP is discounted as the result of combining two factors and reconstructed by using the ECDM, the factors are integrated into a fused BBA. Finally, the dependence level is calculated based on fused BBA. Experimental results demonstrate that the proposed model not only quantitatively describe the fact that the input factors influence the dependence level, but also exactly show how the dependence level regular changes with different situations of input factors.

  12. An overview of the evolution of human reliability analysis in the context of probabilistic risk assessment

    International Nuclear Information System (INIS)

    Bley, Dennis C.; Lois, Erasmia; Kolaczkowski, Alan M.; Forester, John Alan; Wreathall, John; Cooper, Susan E.

    2009-01-01

    Since the Reactor Safety Study in the early 1970's, human reliability analysis (HRA) has been evolving towards a better ability to account for the factors and conditions that can lead humans to take unsafe actions and thereby provide better estimates of the likelihood of human error for probabilistic risk assessments (PRAs). The purpose of this paper is to provide an overview of recent reviews of operational events and advances in the behavioral sciences that have impacted the evolution of HRA methods and contributed to improvements. The paper discusses the importance of human errors in complex human-technical systems, examines why humans contribute to accidents and unsafe conditions, and discusses how lessons learned over the years have changed the perspective and approach for modeling human behavior in PRAs of complicated domains such as nuclear power plants. It is argued that it has become increasingly more important to understand and model the more cognitive aspects of human performance and to address the broader range of factors that have been shown to influence human performance in complex domains. The paper concludes by addressing the current ability of HRA to adequately predict human failure events and their likelihood

  13. An overview of the evolution of human reliability analysis in the context of probabilistic risk assessment.

    Energy Technology Data Exchange (ETDEWEB)

    Bley, Dennis C. (Buttonwood Consulting Inc., Oakton, VA); Lois, Erasmia (U.S. Nuclear Regulatory Commission, Washington, DC); Kolaczkowski, Alan M. (Science Applications International Corporation, Eugene, OR); Forester, John Alan; Wreathall, John (John Wreathall and Co., Dublin, OH); Cooper, Susan E. (U.S. Nuclear Regulatory Commission, Washington, DC)

    2009-01-01

    Since the Reactor Safety Study in the early 1970's, human reliability analysis (HRA) has been evolving towards a better ability to account for the factors and conditions that can lead humans to take unsafe actions and thereby provide better estimates of the likelihood of human error for probabilistic risk assessments (PRAs). The purpose of this paper is to provide an overview of recent reviews of operational events and advances in the behavioral sciences that have impacted the evolution of HRA methods and contributed to improvements. The paper discusses the importance of human errors in complex human-technical systems, examines why humans contribute to accidents and unsafe conditions, and discusses how lessons learned over the years have changed the perspective and approach for modeling human behavior in PRAs of complicated domains such as nuclear power plants. It is argued that it has become increasingly more important to understand and model the more cognitive aspects of human performance and to address the broader range of factors that have been shown to influence human performance in complex domains. The paper concludes by addressing the current ability of HRA to adequately predict human failure events and their likelihood.

  14. Development of a BN framework for human reliability analysis through virtual simulation

    International Nuclear Information System (INIS)

    Garg, Vipul; Santhosh, T.V.; Vinod, Gopika; Antony, P.D.

    2017-01-01

    Humans are an integral part of complex systems such as nuclear power plants and have to play a significant role in ensuring the safety and reliability of these systems. Failure to perform the intended task within the stipulated time by the operator can challenge the safety of the system. Human reliability analysis (HRA) is a widely practiced methodology to estimate the contribution of operator error towards the overall risk to the facility. HRA methods quantify this contribution in terms of human error probability (HEP) accounting for various psychological and physiological factors that influence the performance of the operator. These factors are referred to as human factors (HF), which enhance or degrade the human performance. The paper discusses the use of virtual simulation as a tool to generate the HF data from the virtual model of an in-house experimental facility. This paper also demonstrates the use of multi-attribute utility theory to determine a suitable HRA method amongst several HRA methods to quantify the HEP based on the desired set of HRA attributes. As classical HRA methods, generally, do not address the interactions among the HFs, the Bayesian network technique has been employed in this study to account for HF interactions. (author)

  15. A survey on the human reliability analysis methods for the design of Korean next generation reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Hee; Lee, J. W.; Park, J. C.; Kwack, H. Y.; Lee, K. Y.; Park, J. K.; Kim, I. S.; Jung, K. W

    2000-03-01

    Enhanced features through applying recent domestic technologies may characterize the safety and efficiency of KNGR(Korea Next Generation Reactor). Human engineered interface and control room environment are expected to be beneficial to the human aspects of KNGR design. However, since the current method for human reliability analysis is not up to date after THERP/SHARP, it becomes hard to assess the potential of human errors due to both of the positive and negative effect of the design changes in KNGR. This is a state of the art report on the human reliability analysis methods that are potentially available for the application to the KNGR design. We surveyed every technical aspects of existing HRA methods, and compared them in order to obtain the requirements for the assessment of human error potentials within KNGR design. We categorized the more than 10 methods into the first and the second generation according to the suggestion of Dr. Hollnagel. THERP was revisited in detail. ATHEANA proposed by US NRC for an advanced design and CREAM proposed by Dr. Hollnagel were reviewed and compared. We conclude that the key requirements might include the enhancement in the early steps for human error identification and the quantification steps with considerations of more extended error shaping factors over PSFs(performance shaping factors). The utilization of the steps and approaches of ATHEANA and CREAM will be beneficial to the attainment of an appropriate HRA method for KNGR. However, the steps and data from THERP will be still maintained because of the continuity with previous PSA activities in KNGR design.

  16. A survey on the human reliability analysis methods for the design of Korean next generation reactor

    International Nuclear Information System (INIS)

    Lee, Yong Hee; Lee, J. W.; Park, J. C.; Kwack, H. Y.; Lee, K. Y.; Park, J. K.; Kim, I. S.; Jung, K. W.

    2000-03-01

    Enhanced features through applying recent domestic technologies may characterize the safety and efficiency of KNGR(Korea Next Generation Reactor). Human engineered interface and control room environment are expected to be beneficial to the human aspects of KNGR design. However, since the current method for human reliability analysis is not up to date after THERP/SHARP, it becomes hard to assess the potential of human errors due to both of the positive and negative effect of the design changes in KNGR. This is a state of the art report on the human reliability analysis methods that are potentially available for the application to the KNGR design. We surveyed every technical aspects of existing HRA methods, and compared them in order to obtain the requirements for the assessment of human error potentials within KNGR design. We categorized the more than 10 methods into the first and the second generation according to the suggestion of Dr. Hollnagel. THERP was revisited in detail. ATHEANA proposed by US NRC for an advanced design and CREAM proposed by Dr. Hollnagel were reviewed and compared. We conclude that the key requirements might include the enhancement in the early steps for human error identification and the quantification steps with considerations of more extended error shaping factors over PSFs(performance shaping factors). The utilization of the steps and approaches of ATHEANA and CREAM will be beneficial to the attainment of an appropriate HRA method for KNGR. However, the steps and data from THERP will be still maintained because of the continuity with previous PSA activities in KNGR design

  17. A data-informed PIF hierarchy for model-based Human Reliability Analysis

    International Nuclear Information System (INIS)

    Groth, Katrina M.; Mosleh, Ali

    2012-01-01

    This paper addresses three problems associated with the use of Performance Shaping Factors in Human Reliability Analysis. (1) There are more than a dozen Human Reliability Analysis (HRA) methods that use Performance Influencing Factors (PIFs) or Performance Shaping Factors (PSFs) to model human performance, but there is not a standard set of PIFs used among the methods, nor is there a framework available to compare the PIFs used in various methods. (2) The PIFs currently in use are not defined specifically enough to ensure consistent interpretation of similar PIFs across methods. (3) There are few rules governing the creation, definition, and usage of PIF sets. This paper introduces a hierarchical set of PIFs that can be used for both qualitative and quantitative HRA. The proposed PIF set is arranged in a hierarchy that can be collapsed or expanded to meet multiple objectives. The PIF hierarchy has been developed with respect to a set fundamental principles necessary for PIF sets, which are also introduced in this paper. This paper includes definitions of the PIFs to allow analysts to map the proposed PIFs onto current and future HRA methods. The standardized PIF hierarchy will allow analysts to combine different types of data and will therefore make the best use of the limited data in HRA. The collapsible hierarchy provides the structure necessary to combine multiple types of information without reducing the quality of the information.

  18. Comparison of the THERP quantitative tables with the human reliability analysis techniques of second generation

    International Nuclear Information System (INIS)

    Alvarenga, Marco Antonio Bayout; Fonseca, Renato Alves

    2009-01-01

    The methodology THERP is classified as a Human Reliability Analysis (HRA) technique of first generation and its emergence was an important initial step for the development of HRA techniques in the industry. Due to the fact of being a first generation technique, THERP quantification tables of human errors are based on a taxonomy that does not take into account the human errors mechanisms. Concerning the three cognitive levels in the Rasmussen framework for the cognitive information processing in human beings, THERP deals in most cases with errors that happen in the perceptual-motor level (stimulus-response). In the rules level, this technique can work better using the time dependent probabilities curves of diagnosis errors, obtained in nuclear power plants simulators. Nevertheless, this is done without processing any error mechanisms. Another deficiency is the fact that the performance shaping factors are in limited number. Furthermore, the influences (predictable or not) of operational context, arising from operational deviations of the most probable (in terms of occurrence probabilities) standard scenarios beside the consequent operational tendencies (operator actions) are not estimated. This work makes a critical analysis of these deficiencies and it points out possible solutions in order to modify the THERP tables, seeking a realistic quantification, that does not underestimate or overestimate the human errors probabilities when applying the HRA techniques to nuclear power plants. The critical analysis is accomplished through a qualitative comparison between THERP, a HRA technique of first generation, with CREAM, as well as ATHEANA, which are HRA techniques of second generation. (author)

  19. Comparison of the THERP quantitative tables with the human reliability analysis techniques of second generation

    Energy Technology Data Exchange (ETDEWEB)

    Alvarenga, Marco Antonio Bayout; Fonseca, Renato Alves [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil)], e-mail: bayout@cnen.gov.br, e-mail: rfonseca@cnen.gov.br

    2009-07-01

    The methodology THERP is classified as a Human Reliability Analysis (HRA) technique of first generation and its emergence was an important initial step for the development of HRA techniques in the industry. Due to the fact of being a first generation technique, THERP quantification tables of human errors are based on a taxonomy that does not take into account the human errors mechanisms. Concerning the three cognitive levels in the Rasmussen framework for the cognitive information processing in human beings, THERP deals in most cases with errors that happen in the perceptual-motor level (stimulus-response). In the rules level, this technique can work better using the time dependent probabilities curves of diagnosis errors, obtained in nuclear power plants simulators. Nevertheless, this is done without processing any error mechanisms. Another deficiency is the fact that the performance shaping factors are in limited number. Furthermore, the influences (predictable or not) of operational context, arising from operational deviations of the most probable (in terms of occurrence probabilities) standard scenarios beside the consequent operational tendencies (operator actions) are not estimated. This work makes a critical analysis of these deficiencies and it points out possible solutions in order to modify the THERP tables, seeking a realistic quantification, that does not underestimate or overestimate the human errors probabilities when applying the HRA techniques to nuclear power plants. The critical analysis is accomplished through a qualitative comparison between THERP, a HRA technique of first generation, with CREAM, as well as ATHEANA, which are HRA techniques of second generation. (author)

  20. Human reliability analysis in the man-machine interface design review

    International Nuclear Information System (INIS)

    Kim, I.S.

    2001-01-01

    Advanced, computer-based man-machine interface (MMI) is emerging as part of the new design of nuclear power plants. The impact of advanced MMI on the operator performance, and as a result, on plant safety should be thoroughly evaluated before such technology is actually adopted in the plants. This paper discusses the applicability of human reliability analysis (HRA) to support the design review process. Both the first-generation and the second-generation HRA methods are considered focusing on a couple of promising HRA methods, i.e. ATHEANA and CREAM, with the potential to assist the design review process

  1. Multidisciplinary framework for human reliability analysis with an application to errors of commission and dependencies

    International Nuclear Information System (INIS)

    Barriere, M.T.; Luckas, W.J.; Wreathall, J.; Cooper, S.E.; Bley, D.C.; Ramey-Smith, A.

    1995-08-01

    Since the early 1970s, human reliability analysis (HRA) has been considered to be an integral part of probabilistic risk assessments (PRAs). Nuclear power plant (NPP) events, from Three Mile Island through the mid-1980s, showed the importance of human performance to NPP risk. Recent events demonstrate that human performance continues to be a dominant source of risk. In light of these observations, the current limitations of existing HRA approaches become apparent when the role of humans is examined explicitly in the context of real NPP events. The development of new or improved HRA methodologies to more realistically represent human performance is recognized by the Nuclear Regulatory Commission (NRC) as a necessary means to increase the utility of PRAS. To accomplish this objective, an Improved HRA Project, sponsored by the NRC's Office of Nuclear Regulatory Research (RES), was initiated in late February, 1992, at Brookhaven National Laboratory (BNL) to develop an improved method for HRA that more realistically assesses the human contribution to plant risk and can be fully integrated with PRA. This report describes the research efforts including the development of a multidisciplinary HRA framework, the characterization and representation of errors of commission, and an approach for addressing human dependencies. The implications of the research and necessary requirements for further development also are discussed

  2. Bridging Human Reliability Analysis and Psychology, Part 2: A Cognitive Framework to Support HRA

    Energy Technology Data Exchange (ETDEWEB)

    April M. Whaley; Stacey M. L. Hendrickson; Ronald L. Boring; Jing Xing

    2012-06-01

    This is the second of two papers that discuss the literature review conducted as part of the U.S. Nuclear Regulatory Commission (NRC) effort to develop a hybrid human reliability analysis (HRA) method in response to Staff Requirements Memorandum (SRM) SRM-M061020. This review was conducted with the goal of strengthening the technical basis within psychology, cognitive science and human factors for the hybrid HRA method being proposed. An overview of the literature review approach and high-level structure is provided in the first paper, whereas this paper presents the results of the review. The psychological literature review encompassed research spanning the entirety of human cognition and performance, and consequently produced an extensive list of psychological processes, mechanisms, and factors that contribute to human performance. To make sense of this large amount of information, the results of the literature review were organized into a cognitive framework that identifies causes of failure of macrocognition in humans, and connects those proximate causes to psychological mechanisms and performance influencing factors (PIFs) that can lead to the failure. This cognitive framework can serve as a tool to inform HRA. Beyond this, however, the cognitive framework has the potential to also support addressing human performance issues identified in Human Factors applications.

  3. Multidisciplinary framework for human reliability analysis with an application to errors of commission and dependencies

    Energy Technology Data Exchange (ETDEWEB)

    Barriere, M.T.; Luckas, W.J. [Brookhaven National Lab., Upton, NY (United States); Wreathall, J. [Wreathall (John) and Co., Dublin, OH (United States); Cooper, S.E. [Science Applications International Corp., Reston, VA (United States); Bley, D.C. [PLG, Inc., Newport Beach, CA (United States); Ramey-Smith, A. [Nuclear Regulatory Commission, Washington, DC (United States). Div. of Systems Technology

    1995-08-01

    Since the early 1970s, human reliability analysis (HRA) has been considered to be an integral part of probabilistic risk assessments (PRAs). Nuclear power plant (NPP) events, from Three Mile Island through the mid-1980s, showed the importance of human performance to NPP risk. Recent events demonstrate that human performance continues to be a dominant source of risk. In light of these observations, the current limitations of existing HRA approaches become apparent when the role of humans is examined explicitly in the context of real NPP events. The development of new or improved HRA methodologies to more realistically represent human performance is recognized by the Nuclear Regulatory Commission (NRC) as a necessary means to increase the utility of PRAS. To accomplish this objective, an Improved HRA Project, sponsored by the NRC`s Office of Nuclear Regulatory Research (RES), was initiated in late February, 1992, at Brookhaven National Laboratory (BNL) to develop an improved method for HRA that more realistically assesses the human contribution to plant risk and can be fully integrated with PRA. This report describes the research efforts including the development of a multidisciplinary HRA framework, the characterization and representation of errors of commission, and an approach for addressing human dependencies. The implications of the research and necessary requirements for further development also are discussed.

  4. Human reliability analysis for venting a BWR Mark I during a severe accident

    International Nuclear Information System (INIS)

    Nelson, W.R.; Blackman, H.S.

    1986-01-01

    A Human Reliability Analysis (HRA) was performed for the operator actions necessary to achieve containment venting for the Peach Bottom Atomic Power Station. This study was funded by the United States Nuclear Regulatory Commission (USNRC) and performed by the Idaho National Engineering Laboratory (INEL). The goal of the analysis was to estimate Human Error Probabilities (HEPs) to determine the likelihood that operators would fail to complete the venting process. The analysis was performed for two generic accident sequences: anticipated transient without scram (ATWS) and station blackout. Two major methods were used to estimate the HEPs: Technique for Human Error rate Prediction (THERP) and Success Likelihood Index Methodology (SLIM). For the ATWS scenarios analyzed, the calculated HEPs ranged from 0.23 to 0.35, depending on the number of vent paths that are required to reduce the containment pressure. It should be noted that the confidence bounds around these HEPs are large, However, even when considering the large confidence range, the failure probabilities are larger than what is typical for normal operator actions. For station blackout, the HEP is 1.0, resulting from the dangerous environmental conditions that are present, assuming that plant management would not deliberately expose personnel to a potentially fatal environment. These results are based on the analysis of draft procedures for containment venting. It is probable that careful revision of the procedures could reduce the human error probabilities

  5. Development of A Standard Method for Human Reliability Analysis (HRA) of Nuclear Power Plants

    International Nuclear Information System (INIS)

    Kang, Dae Il; Jung, Won Dea; Kim, Jae Whan

    2005-12-01

    According as the demand of risk-informed regulation and applications increase, the quality and reliability of a probabilistic safety assessment (PSA) has been more important. KAERI started a study to standardize the process and the rules of HRA (Human Reliability Analysis) which was known as a major contributor to the uncertainty of PSA. The study made progress as follows; assessing the level of quality of the HRAs in Korea and identifying the weaknesses of the HRAs, determining the requirements for developing a standard HRA method, developing the process and rules for quantifying human error probability. Since the risk-informed applications use the ASME and ANS PSA standard to ensure PSA quality, the standard HRA method was developed to meet the ASME and ANS HRA requirements with level of category II. The standard method was based on THERP and ASEP HRA that are widely used for conventional HRA. However, the method focuses on standardizing and specifying the analysis process, quantification rules and criteria to minimize the deviation of the analysis results caused by different analysts. Several HRA experts from different organizations in Korea participated in developing the standard method. Several case studies were interactively undertaken to verify the usability and applicability of the standard method

  6. Development of A Standard Method for Human Reliability Analysis of Nuclear Power Plants

    International Nuclear Information System (INIS)

    Jung, Won Dea; Kang, Dae Il; Kim, Jae Whan

    2005-12-01

    According as the demand of risk-informed regulation and applications increase, the quality and reliability of a probabilistic safety assessment (PSA) has been more important. KAERI started a study to standardize the process and the rules of HRA (Human Reliability Analysis) which was known as a major contributor to the uncertainty of PSA. The study made progress as follows; assessing the level of quality of the HRAs in Korea and identifying the weaknesses of the HRAs, determining the requirements for developing a standard HRA method, developing the process and rules for quantifying human error probability. Since the risk-informed applications use the ASME PSA standard to ensure PSA quality, the standard HRA method was developed to meet the ASME HRA requirements with level of category II. The standard method was based on THERP and ASEP HRA that are widely used for conventional HRA. However, the method focuses on standardizing and specifying the analysis process, quantification rules and criteria to minimize the deviation of the analysis results caused by different analysts. Several HRA experts from different organizations in Korea participated in developing the standard method. Several case studies were interactively undertaken to verify the usability and applicability of the standard method

  7. Development of A Standard Method for Human Reliability Analysis of Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Won Dea; Kang, Dae Il; Kim, Jae Whan

    2005-12-15

    According as the demand of risk-informed regulation and applications increase, the quality and reliability of a probabilistic safety assessment (PSA) has been more important. KAERI started a study to standardize the process and the rules of HRA (Human Reliability Analysis) which was known as a major contributor to the uncertainty of PSA. The study made progress as follows; assessing the level of quality of the HRAs in Korea and identifying the weaknesses of the HRAs, determining the requirements for developing a standard HRA method, developing the process and rules for quantifying human error probability. Since the risk-informed applications use the ASME PSA standard to ensure PSA quality, the standard HRA method was developed to meet the ASME HRA requirements with level of category II. The standard method was based on THERP and ASEP HRA that are widely used for conventional HRA. However, the method focuses on standardizing and specifying the analysis process, quantification rules and criteria to minimize the deviation of the analysis results caused by different analysts. Several HRA experts from different organizations in Korea participated in developing the standard method. Several case studies were interactively undertaken to verify the usability and applicability of the standard method.

  8. Development of A Standard Method for Human Reliability Analysis (HRA) of Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Dae Il; Jung, Won Dea; Kim, Jae Whan

    2005-12-15

    According as the demand of risk-informed regulation and applications increase, the quality and reliability of a probabilistic safety assessment (PSA) has been more important. KAERI started a study to standardize the process and the rules of HRA (Human Reliability Analysis) which was known as a major contributor to the uncertainty of PSA. The study made progress as follows; assessing the level of quality of the HRAs in Korea and identifying the weaknesses of the HRAs, determining the requirements for developing a standard HRA method, developing the process and rules for quantifying human error probability. Since the risk-informed applications use the ASME and ANS PSA standard to ensure PSA quality, the standard HRA method was developed to meet the ASME and ANS HRA requirements with level of category II. The standard method was based on THERP and ASEP HRA that are widely used for conventional HRA. However, the method focuses on standardizing and specifying the analysis process, quantification rules and criteria to minimize the deviation of the analysis results caused by different analysts. Several HRA experts from different organizations in Korea participated in developing the standard method. Several case studies were interactively undertaken to verify the usability and applicability of the standard method.

  9. Human Reliability Program Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Landers, John; Rogers, Erin; Gerke, Gretchen

    2014-05-18

    A Human Reliability Program (HRP) is designed to protect national security as well as worker and public safety by continuously evaluating the reliability of those who have access to sensitive materials, facilities, and programs. Some elements of a site HRP include systematic (1) supervisory reviews, (2) medical and psychological assessments, (3) management evaluations, (4) personnel security reviews, and (4) training of HRP staff and critical positions. Over the years of implementing an HRP, the Department of Energy (DOE) has faced various challenges and overcome obstacles. During this 4-day activity, participants will examine programs that mitigate threats to nuclear security and the insider threat to include HRP, Nuclear Security Culture (NSC) Enhancement, and Employee Assistance Programs. The focus will be to develop an understanding of the need for a systematic HRP and to discuss challenges and best practices associated with mitigating the insider threat.

  10. User`s manual of a support system for human reliability analysis

    Energy Technology Data Exchange (ETDEWEB)

    Yokobayashi, Masao [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Tamura, Kazuo

    1995-10-01

    Many kinds of human reliability analysis (HRA) methods have been developed. However, users are required to be skillful so as to use them, and also required complicated works such as drawing event tree (ET) and calculation of uncertainty bounds. Moreover, each method is not so complete that only one method of them is not enough to evaluate human reliability. Therefore, a personal computer (PC) based support system for HRA has been developed to execute HRA practically and efficiently. The system consists of two methods, namely, simple method and detailed one. The former uses ASEP that is a simplified THERP-technique, and combined method of OAT and HRA-ET/DeBDA is used for the latter. Users can select a suitable method for their purpose. Human error probability (HEP) data were collected and a database of them was built to use for the support system. This paper describes outline of the HRA methods, support functions and user`s guide of the system. (author).

  11. Human reliability in complex systems: an overview

    International Nuclear Information System (INIS)

    Embrey, D.E.

    1976-07-01

    A detailed analysis is presented of the main conceptual background underlying the areas of human reliability and human error. The concept of error is examined and generalized to that of human reliability, and some of the practical and methodological difficulties of reconciling the different standpoints of the human factors specialist and the engineer discussed. Following a survey of general reviews available on human reliability, quantitative techniques for prediction of human reliability are considered. An in-depth critical analysis of the various quantitative methods is then presented, together with the data bank requirements for human reliability prediction. Reliability considerations in process control and nuclear plant, and also areas of design, maintenance, testing and emergency situations are discussed. The effects of stress on human reliability are analysed and methods of minimizing these effects discussed. Finally, a summary is presented and proposals for further research are set out. (author)

  12. A shortened version of the THERP/Handbook approach to human reliability analysis for probabilistic risk assessment

    International Nuclear Information System (INIS)

    Swain, A.D.

    1986-01-01

    The approach to human reliability analysis (HRA) known as THERP/Handbook has been applied to several probabilistic risk assessments (PRAs) of nuclear power plants (NPPs) and other complex systems. The approach is based on a thorough task analysis of the man-machine interfaces, including the interactions among the people, involved in the operations being assessed. The idea is to assess fully the underlying performance shaping factors (PSFs) and dependence effects which result either in reliable or unreliable human performance

  13. Screening, sensitivity, and uncertainty for the CREAM method of Human Reliability Analysis

    International Nuclear Information System (INIS)

    Bedford, Tim; Bayley, Clare; Revie, Matthew

    2013-01-01

    This paper reports a sensitivity analysis of the Cognitive Reliability and Error Analysis Method for Human Reliability Analysis. We consider three different aspects: the difference between the outputs of the Basic and Extended methods, on the same HRA scenario; the variability in outputs through the choices made for common performance conditions (CPCs); and the variability in outputs through the assignment of choices for cognitive function failures (CFFs). We discuss the problem of interpreting categories when applying the method, compare its quantitative structure to that of first generation methods and discuss also how dependence is modelled with the approach. We show that the control mode intervals used in the Basic method are too narrow to be consistent with the Extended method. This motivates a new screening method that gives improved accuracy with respect to the Basic method, in the sense that (on average) halves the uncertainty associated with the Basic method. We make some observations on the design of a screening method that are generally applicable in Risk Analysis. Finally, we propose a new method of combining CPC weights with nominal probabilities so that the calculated probabilities are always in range (i.e. between 0 and 1), while satisfying sensible properties that are consistent with the overall CREAM method

  14. A study on the dependency evaluation for multiple human actions in human reliability analysis of probabilistic safety assessment

    International Nuclear Information System (INIS)

    Kang, D. I.; Yang, J. E.; Jung, W. D.; Sung, T. Y.; Park, J. H.; Lee, Y. H.; Hwang, M. J.; Kim, K. Y.; Jin, Y. H.; Kim, S. C.

    1997-02-01

    This report describes the study results on the method of the dependency evaluation and the modeling, and the limited value of human error probability (HEP) for multiple human actions in accident sequences of probabilistic safety assessment (PSA). THERP and Parry's method, which have been generally used in dependency evaluation of human reliability analysis (HRA), are introduced and their limitations are discussed. New dependency evaluation method in HRA is established to make up for the weak points of THERP and Parry's methods. The limited value of HEP is also established based on the review of several HRA related documents. This report describes the definition, the type, the evaluation method, and the evaluation example of dependency to help the reader's understanding. It is expected that this study results will give a guidance to HRA analysts in dependency evaluation of multiple human actions and enable PSA analysts to understand HRA in detail. (author). 23 refs., 3 tabs., 2 figs

  15. The treatment of commission errors in first generation human reliability analysis methods

    Energy Technology Data Exchange (ETDEWEB)

    Alvarengga, Marco Antonio Bayout; Fonseca, Renato Alves da, E-mail: bayout@cnen.gov.b, E-mail: rfonseca@cnen.gov.b [Comissao Nacional de Energia Nuclear (CNEN) Rio de Janeiro, RJ (Brazil); Melo, Paulo Fernando Frutuoso e, E-mail: frutuoso@nuclear.ufrj.b [Coordenacao dos Programas de Pos-Graduacao de Engenharia (PEN/COPPE/UFRJ), RJ (Brazil). Programa de Engenharia Nuclear

    2011-07-01

    Human errors in human reliability analysis can be classified generically as errors of omission and commission errors. Omission errors are related to the omission of any human action that should have been performed, but does not occur. Errors of commission are those related to human actions that should not be performed, but which in fact are performed. Both involve specific types of cognitive error mechanisms, however, errors of commission are more difficult to model because they are characterized by non-anticipated actions that are performed instead of others that are omitted (omission errors) or are entered into an operational task without being part of the normal sequence of this task. The identification of actions that are not supposed to occur depends on the operational context that will influence or become easy certain unsafe actions of the operator depending on the operational performance of its parameters and variables. The survey of operational contexts and associated unsafe actions is a characteristic of second-generation models, unlike the first generation models. This paper discusses how first generation models can treat errors of commission in the steps of detection, diagnosis, decision-making and implementation, in the human information processing, particularly with the use of THERP tables of errors quantification. (author)

  16. Human factors reliability Benchmark exercise

    International Nuclear Information System (INIS)

    Poucet, A.

    1989-06-01

    The Joint Research Centre of the European Commission has organized a Human Factors Reliability Benchmark Exercise (HF-RBE) with the aim of assessing the state of the art in human reliability modelling and assessment. Fifteen teams from eleven countries, representing industry, utilities, licensing organisations and research institutes, participated in the HF-RBE. The HF-RBE was organized around two study cases: (1) analysis of routine functional Test and Maintenance (T and M) procedures: with the aim of assessing the probability of test induced failures, the probability of failures to remain unrevealed and the potential to initiate transients because of errors performed in the test; (2) analysis of human actions during an operational transient: with the aim of assessing the probability that the operators will correctly diagnose the malfunctions and take proper corrective action. This report contains the final summary reports produced by the participants in the exercise

  17. Analysis Testing of Sociocultural Factors Influence on Human Reliability within Sociotechnical Systems: The Algerian Oil Companies

    Directory of Open Access Journals (Sweden)

    Abdelbaki Laidoune

    2016-09-01

    Conclusion: The explored sociocultural factors influence the human reliability both in qualitative and quantitative manners. The proposed model shows how reliability can be enhanced by some measures such as experience feedback based on, for example, safety improvements, training, and information. With that is added the continuous systems improvements to improve sociocultural reality and to reduce negative behaviors.

  18. Establishing guidance for the review of human reliability analysis in PSA

    International Nuclear Information System (INIS)

    Reer, B.; Dang, V.N.; Hirschberg, S.; Meyer, P.

    2000-01-01

    PSI was commissioned to develop Guidelines for the Regulatory Review of the Human Reliability Analysis (HRA) within Probabilistic Safety Assessments (PSAs) for nuclear power plants. In the Guidelines, HRA quality is addressed in terms of 97 indicators. Each indicator is formulated as a question, described as a specific feature of the analysis, and then explained in detail. Two analysis stages are distinguished: the selection of the human errors to be modelled, and their quantification to determine their impact on the core damage frequency. Review findings are grouped under two headings: transparency and adequacy. An analysis is 'transparent' if an externally qualified person is able to reproduce the analysis results, and 'adequate' if such results reflect the plant-specific conditions related to safety. To allocate resources efficiently, the review is structured in two phases: (1) The Quick Review, which clarifies whether the HRA has a fundamental deficiency and, furthermore, if it points to information needs and areas of emphasis for the detailed review, and (2) The Detailed Review, which results in well-grounded findings, based on extended examinations and close-plant contacts. (authors)

  19. Dependence assessment in human reliability analysis based on D numbers and AHP

    International Nuclear Information System (INIS)

    Zhou, Xinyi; Deng, Xinyang; Deng, Yong; Mahadevan, Sankaran

    2017-01-01

    Highlights: • D numbers and AHP are combined to implement dependence assessment in HRA. • A new tool, called D numbers, is used to deal with the uncertainty in HRA. • The proposed method can well address the fuzziness and subjectivity in linguistic assessment. • The proposed method is well applicable in dependence assessment which inherently has a linguistic assessment process. - Abstract: Since human errors always cause heavy loss especially in nuclear engineering, human reliability analysis (HRA) has attracted more and more attention. Dependence assessment plays a vital role in HRA, measuring the dependence degree of human errors. Many researches have been done while still have improvement space. In this paper, a dependence assessment model based on D numbers and analytic hierarchy process (AHP) is proposed. Firstly, identify the factors used to measure the dependence level of two human operations. Besides, in terms of the suggested dependence level, determine and quantify the anchor points for each factor. Secondly, D numbers and AHP are adopted in model. Experts evaluate the dependence level of human operations for each factor. Then, the evaluation results are presented as D numbers and fused by D number’s combination rule that can obtain the dependence probability of human operations for each factor. The weights of factors can be determined by AHP. Thirdly, based on the dependence probability for each factor and its corresponding weight, the dependence probability of two human operations and its confidence can be obtained. The proposed method can well address the fuzziness and subjectivity in linguistic assessment. The proposed method is well applicable to assess the dependence degree of human errors in HRA which inherently has a linguistic assessment process.

  20. Dependence assessment in human reliability analysis based on D numbers and AHP

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xinyi; Deng, Xinyang [School of Computer and Information Science, Southwest University, Chongqing 400715 (China); Deng, Yong, E-mail: ydeng@swu.edu.cn [School of Computer and Information Science, Southwest University, Chongqing 400715 (China); Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054 (China); Mahadevan, Sankaran [School of Engineering, Vanderbilt University, Nashville, TN 37235 (United States)

    2017-03-15

    Highlights: • D numbers and AHP are combined to implement dependence assessment in HRA. • A new tool, called D numbers, is used to deal with the uncertainty in HRA. • The proposed method can well address the fuzziness and subjectivity in linguistic assessment. • The proposed method is well applicable in dependence assessment which inherently has a linguistic assessment process. - Abstract: Since human errors always cause heavy loss especially in nuclear engineering, human reliability analysis (HRA) has attracted more and more attention. Dependence assessment plays a vital role in HRA, measuring the dependence degree of human errors. Many researches have been done while still have improvement space. In this paper, a dependence assessment model based on D numbers and analytic hierarchy process (AHP) is proposed. Firstly, identify the factors used to measure the dependence level of two human operations. Besides, in terms of the suggested dependence level, determine and quantify the anchor points for each factor. Secondly, D numbers and AHP are adopted in model. Experts evaluate the dependence level of human operations for each factor. Then, the evaluation results are presented as D numbers and fused by D number’s combination rule that can obtain the dependence probability of human operations for each factor. The weights of factors can be determined by AHP. Thirdly, based on the dependence probability for each factor and its corresponding weight, the dependence probability of two human operations and its confidence can be obtained. The proposed method can well address the fuzziness and subjectivity in linguistic assessment. The proposed method is well applicable to assess the dependence degree of human errors in HRA which inherently has a linguistic assessment process.

  1. CONSIDERATIONS FOR THE TREATMENT OF COMPUTERIZED PROCEDURES IN HUMAN RELIABILITY ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    Ronald L. Boring; David I. Gertman

    2012-07-01

    Computerized procedures (CPs) are an emerging technology within nuclear power plant control rooms. While CPs have been implemented internationally in advanced control rooms, to date no US nuclear power plant has implemented CPs in its main control room. Yet, CPs are a reality of new plant builds and are an area of considerable interest to existing plants, which see advantages in terms of easier records management by omitting the need for updating hardcopy procedures. The overall intent of this paper is to provide a characterization of human reliability analysis (HRA) issues for computerized procedures. It is beyond the scope of this document to propose a new HRA approach or to recommend specific methods or refinements to those methods. Rather, this paper serves as a review of current HRA as it may be used for the analysis and review of computerized procedures.

  2. HUMAN RELIABILITY ANALYSIS FOR COMPUTERIZED PROCEDURES, PART TWO: APPLICABILITY OF CURRENT METHODS

    Energy Technology Data Exchange (ETDEWEB)

    Ronald L. Boring; David I. Gertman

    2012-10-01

    Computerized procedures (CPs) are an emerging technology within nuclear power plant control rooms. While CPs have been implemented internationally in advanced control rooms, to date no U.S. nuclear power plant has implemented CPs in its main control room. Yet, CPs are a reality of new plant builds and are an area of considerable interest to existing plants, which see advantages in terms of easier records management by omitting the need for updating hardcopy procedures. The overall intent of this paper is to provide a characterization of human reliability analysis (HRA) issues for computerized procedures. It is beyond the scope of this document to propose a new HRA approach or to recommend specific methods or refinements to those methods. Rather, this paper serves as a review of current HRA as it may be used for the analysis and review of computerized procedures.

  3. Adapting Human Reliability Analysis from Nuclear Power to Oil and Gas Applications

    Energy Technology Data Exchange (ETDEWEB)

    Boring, Ronald Laurids [Idaho National Laboratory

    2015-09-01

    ABSTRACT: Human reliability analysis (HRA), as currently used in risk assessments, largely derives its methods and guidance from application in the nuclear energy domain. While there are many similarities be-tween nuclear energy and other safety critical domains such as oil and gas, there remain clear differences. This paper provides an overview of HRA state of the practice in nuclear energy and then describes areas where refinements to the methods may be necessary to capture the operational context of oil and gas. Many key distinctions important to nuclear energy HRA such as Level 1 vs. Level 2 analysis may prove insignifi-cant for oil and gas applications. On the other hand, existing HRA methods may not be sensitive enough to factors like the extensive use of digital controls in oil and gas. This paper provides an overview of these con-siderations to assist in the adaptation of existing nuclear-centered HRA methods to the petroleum sector.

  4. Integration of human reliability analysis into the probabilistic risk assessment process: phase 1

    International Nuclear Information System (INIS)

    Bell, B.J.; Vickroy, S.C.

    1985-01-01

    The US Nuclear Regulatory Commission and Pacific Northwest Laboratory initiated a research program in 1984 to develop a testable set of analytical procedures for integrating human reliability analysis (HRA) into the probabilistic risk assessment (PRA) process to more adequately assess the overall impact of human performance on risk. In this three phase program, stand-alone HRA/PRA analytic procedures will be developed and field evaluated to provide improved methods, techniques, and models for applying quantitative and qualitative human error data which systematically integrate HRA principles, techniques, and analyses throughout the entire PRA process. Phase 1 of the program involved analysis of state-of-the-art PRAs to define the structures and processes currently in use in the industry. Phase 2 research will involve developing a new or revised PRA methodology which will enable more efficient regulation of the industry using quantitative or qualitative results of the PRA. Finally, Phase 3 will be to field test those procedures to assure that the results generated by the new methodologies will be usable and acceptable to the NRC. This paper briefly describes the first phase of the program and outlines the second

  5. Integration of human reliability analysis into the probabilistic risk assessment process: Phase 1

    International Nuclear Information System (INIS)

    Bell, B.J.; Vickroy, S.C.

    1984-10-01

    A research program was initiated to develop a testable set of analytical procedures for integrating human reliability analysis (HRA) into the probabilistic risk assessment (PRA) process to more adequately assess the overall impact of human performance on risk. In this three-phase program, stand-alone HRA/PRA analytic procedures will be developed and field evaluated to provide improved methods, techniques, and models for applying quantitative and qualitative human error data which systematically integrate HRA principles, techniques, and analyses throughout the entire PRA process. Phase 1 of the program involved analysis of state-of-the-art PRAs to define the structures and processes currently in use in the industry. Phase 2 research will involve developing a new or revised PRA methodology which will enable more efficient regulation of the industry using quantitative or qualitative results of the PRA. Finally, Phase 3 will be to field test those procedures to assure that the results generated by the new methodologies will be usable and acceptable to the NRC. This paper briefly describes the first phase of the program and outlines the second

  6. Human factors reliability benchmark exercise

    International Nuclear Information System (INIS)

    Poucet, A.

    1989-08-01

    The Joint Research Centre of the European Commission has organised a Human Factors Reliability Benchmark Exercise (HF-RBE) with the aim of assessing the state of the art in human reliability modelling and assessment. Fifteen teams from eleven countries, representing industry, utilities, licensing organisations and research institutes, participated in the HF-RBE. The HF-RBE was organised around two study cases: (1) analysis of routine functional Test and Maintenance (TPM) procedures: with the aim of assessing the probability of test induced failures, the probability of failures to remain unrevealed and the potential to initiate transients because of errors performed in the test; (2) analysis of human actions during an operational transient: with the aim of assessing the probability that the operators will correctly diagnose the malfunctions and take proper corrective action. This report summarises the contributions received from the participants and analyses these contributions on a comparative basis. The aim of this analysis was to compare the procedures, modelling techniques and quantification methods used, to obtain insight in the causes and magnitude of the variability observed in the results, to try to identify preferred human reliability assessment approaches and to get an understanding of the current state of the art in the field identifying the limitations that are still inherent to the different approaches

  7. Review of advances in human reliability analysis of errors of commission, Part 1: EOC identification

    International Nuclear Information System (INIS)

    Reer, Bernhard

    2008-01-01

    In close connection with examples relevant to contemporary probabilistic safety assessment (PSA), a review of advances in human reliability analysis (HRA) of post-initiator errors of commission (EOCs), i.e. inappropriate actions under abnormal operating conditions, has been carried out. The review comprises both EOC identification (part 1) and quantification (part 2); part 1 is presented in this article. Emerging HRA methods addressing the problem of EOC identification are: A Technique for Human Event Analysis (ATHEANA), the EOC HRA method developed by Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS), the Misdiagnosis Tree Analysis (MDTA) method, and the Commission Errors Search and Assessment (CESA) method. Most of the EOCs referred to in predictive studies comprise the stop of running or the inhibition of anticipated functions; a few comprise the start of a function. The CESA search scheme-which proceeds from possible operator actions to the affected systems to scenarios and uses procedures and importance measures as key sources of input information-provides a formalized way for identifying relatively important scenarios with EOC opportunities. In the implementation however, attention should be paid regarding EOCs associated with familiar but non-procedural actions and EOCs leading to failures of manually initiated safety functions

  8. Correlation Relationship of Performance Shaping Factors (PSFs) for Human Reliability Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Bheka, M. Khumalo; Kim, Jonghyun [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2014-10-15

    At TMI-2, operators permitted thousands of gallons of water to escape from the reactor plant before realizing that the coolant pumps were behaving abnormally. The coolant pumps were then turned off, which in turn led to the destruction of the reactor itself as cooling was completely lost within the core. Human also plays a role in many aspects of complex systems e.g. in design and manufacture of hardware, interface between human and system and also in maintaining such systems as well as for coping with unusual events that place the NPP system at a risk. This is why human reliability analysis (HRA) - an aspect of risk assessments which systematically identifies and analyzes the causes and consequences of human decisions and actions - is important in nuclear power plant operations. It either upgrades or degrades human performance; therefore it has an impact on the possibility of error. These PSFs can be used in various HRA methods to estimate Human Error Probabilities (HEPs). There are many current HRA methods who propose sets of PSFs for normal operation mode of NPP. Some of these PSFs in the sets have some degree of dependency and overlap. Overlapping PSFs introduce error in HEP evaluations due to the fact that some elements are counted more than once in data; this skews the relationship amongst PSF and masks the way that the elements interact to affect performance. This study uses a causal model that represents dependencies and relationships amongst PSFs for HEP evaluation during normal NPP operational states. The model is built taking into consideration the dependencies among PSFs and thus eliminating overlap. The use of an interdependent model of PSFs is expected to produce more accurate HEPs compared to other current methods. PSF sets produced in this study can be further used as nodes (variables) and directed arcs (causal influence between nodes) in HEP evaluation methods such as Bayesian belief (BN) networks. This study was done to estimate the relationships

  9. Guidelines for the regulatory review of the human reliability analysis in PSAs

    International Nuclear Information System (INIS)

    Reer, Bernhard; Dang, V.N.; Hirschberg, Stefan; Meyer, Patrick

    2000-01-01

    In the review guidelines recently developed for the Swiss Federal Nuclear Inspectorate, the Human Reliability Analysis (HRA) is reviewed in two stages. The preliminary review is aimed at identifying major shortcomings and potential issues to be examined in the detailed review. The detailed review comprehensively addresses the overall adequacy and transparency of the HRA. For the two review stages, 97 indicators are defined in terms of questions focusing on verifiable features of the methodology, implementation and results. The guidelines provide steps for information gathering and present examples of acceptable practices as well as of potential deficiencies. Both review stages may result in requests for clarification, additional documentation or analyses. The first applications of the guidelines consist of the preliminary reviews of two HRAs. (author)

  10. Power electronics reliability analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Mark A.; Atcitty, Stanley

    2009-12-01

    This report provides the DOE and industry with a general process for analyzing power electronics reliability. The analysis can help with understanding the main causes of failures, downtime, and cost and how to reduce them. One approach is to collect field maintenance data and use it directly to calculate reliability metrics related to each cause. Another approach is to model the functional structure of the equipment using a fault tree to derive system reliability from component reliability. Analysis of a fictitious device demonstrates the latter process. Optimization can use the resulting baseline model to decide how to improve reliability and/or lower costs. It is recommended that both electric utilities and equipment manufacturers make provisions to collect and share data in order to lay the groundwork for improving reliability into the future. Reliability analysis helps guide reliability improvements in hardware and software technology including condition monitoring and prognostics and health management.

  11. An analysis of operational experience during low power and shutdown and a plan for addressing human reliability assessment issues

    International Nuclear Information System (INIS)

    Barriere, M.; Luckas, W.; Whitehead, D.; Ramey-Smith, A.

    1994-06-01

    Recent nuclear power plant events (e.g. Chernobyl, Diablo Canyon, and Vogtle) and US Nuclear Regulatory Commission (NRC) reports (e.g. NUREG-1449) have led to concerns regarding human reliability during low power and shutdown (LP ampersand S) conditions and limitations of human reliability analysis (HRA) methodologies in adequately representing the LP ampersand S environment. As a result of these concerns, the NRC initiated two parallel research projects to assess the influence of LP ampersand S conditions on human reliability through an analysis of operational experience at pressurized water reactors (PWRs) an boiling water reactors (BWRs). These research projects, performed by Brookhaven National Laboratory for PWRS, and Sandia National Laboratories for BWRs, identified unique aspects of human performance during LP ampersand S conditions and provided a program plan for research and development necessary to improve existing HRA methodologies. This report documents the results of the analysis of LP ampersand S operating experience and describes the improved HRA program plan

  12. Bridging Human Reliability Analysis and Psychology, Part 1: The Psychological Literature Review for the IDHEAS Method

    Energy Technology Data Exchange (ETDEWEB)

    April M. Whaley; Stacey M. L. Hendrickson; Ronald L. Boring; Jeffrey C. Joe; Katya L. Le Blanc; Jing Xing

    2012-06-01

    In response to Staff Requirements Memorandum (SRM) SRM-M061020, the U.S. Nuclear Regulatory Commission (NRC) is sponsoring work to update the technical basis underlying human reliability analysis (HRA) in an effort to improve the robustness of HRA. The ultimate goal of this work is to develop a hybrid of existing methods addressing limitations of current HRA models and in particular issues related to intra- and inter-method variabilities and results. This hybrid method is now known as the Integrated Decision-tree Human Event Analysis System (IDHEAS). Existing HRA methods have looked at elements of the psychological literature, but there has not previously been a systematic attempt to translate the complete span of cognition from perception to action into mechanisms that can inform HRA. Therefore, a first step of this effort was to perform a literature search of psychology, cognition, behavioral science, teamwork, and operating performance to incorporate current understanding of human performance in operating environments, thus affording an improved technical foundation for HRA. However, this literature review went one step further by mining the literature findings to establish causal relationships and explicit links between the different types of human failures, performance drivers and associated performance measures ultimately used for quantification. This is the first of two papers that detail the literature review (paper 1) and its product (paper 2). This paper describes the literature review and the high-level architecture used to organize the literature review, and the second paper (Whaley, Hendrickson, Boring, & Xing, these proceedings) describes the resultant cognitive framework.

  13. Human reliability analysis of errors of commission: a review of methods and applications

    Energy Technology Data Exchange (ETDEWEB)

    Reer, B

    2007-06-15

    Illustrated by specific examples relevant to contemporary probabilistic safety assessment (PSA), this report presents a review of human reliability analysis (HRA) addressing post initiator errors of commission (EOCs), i.e. inappropriate actions under abnormal operating conditions. The review addressed both methods and applications. Emerging HRA methods providing advanced features and explicit guidance suitable for PSA are: A Technique for Human Event Analysis (ATHEANA, key publications in 1998/2000), Methode d'Evaluation de la Realisation des Missions Operateur pour la Surete (MERMOS, 1998/2000), the EOC HRA method developed by the Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS, 2003), the Misdiagnosis Tree Analysis (MDTA) method (2005/2006), the Cognitive Reliability and Error Analysis Method (CREAM, 1998), and the Commission Errors Search and Assessment (CESA) method (2002/2004). As a result of a thorough investigation of various PSA/HRA applications, this paper furthermore presents an overview of EOCs (termination of safety injection, shutdown of secondary cooling, etc.) referred to in predictive studies and a qualitative review of cases of EOC quantification. The main conclusions of the review of both the methods and the EOC HRA cases are: (1) The CESA search scheme, which proceeds from possible operator actions to the affected systems to scenarios, may be preferable because this scheme provides a formalized way for identifying relatively important scenarios with EOC opportunities; (2) an EOC identification guidance like CESA, which is strongly based on the procedural guidance and important measures of systems or components affected by inappropriate actions, however should pay some attention to EOCs associated with familiar but non-procedural actions and EOCs leading to failures of manually initiated safety functions. (3) Orientations of advanced EOC quantification comprise a) modeling of multiple contexts for a given scenario, b) accounting for

  14. Human reliability analysis of errors of commission: a review of methods and applications

    International Nuclear Information System (INIS)

    Reer, B.

    2007-06-01

    Illustrated by specific examples relevant to contemporary probabilistic safety assessment (PSA), this report presents a review of human reliability analysis (HRA) addressing post initiator errors of commission (EOCs), i.e. inappropriate actions under abnormal operating conditions. The review addressed both methods and applications. Emerging HRA methods providing advanced features and explicit guidance suitable for PSA are: A Technique for Human Event Analysis (ATHEANA, key publications in 1998/2000), Methode d'Evaluation de la Realisation des Missions Operateur pour la Surete (MERMOS, 1998/2000), the EOC HRA method developed by the Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS, 2003), the Misdiagnosis Tree Analysis (MDTA) method (2005/2006), the Cognitive Reliability and Error Analysis Method (CREAM, 1998), and the Commission Errors Search and Assessment (CESA) method (2002/2004). As a result of a thorough investigation of various PSA/HRA applications, this paper furthermore presents an overview of EOCs (termination of safety injection, shutdown of secondary cooling, etc.) referred to in predictive studies and a qualitative review of cases of EOC quantification. The main conclusions of the review of both the methods and the EOC HRA cases are: (1) The CESA search scheme, which proceeds from possible operator actions to the affected systems to scenarios, may be preferable because this scheme provides a formalized way for identifying relatively important scenarios with EOC opportunities; (2) an EOC identification guidance like CESA, which is strongly based on the procedural guidance and important measures of systems or components affected by inappropriate actions, however should pay some attention to EOCs associated with familiar but non-procedural actions and EOCs leading to failures of manually initiated safety functions. (3) Orientations of advanced EOC quantification comprise a) modeling of multiple contexts for a given scenario, b) accounting for

  15. Human error probability evaluation as part of reliability analysis of digital protection system of advanced pressurized water reactor - APR 1400

    International Nuclear Information System (INIS)

    Varde, P. V.; Lee, D. Y.; Han, J. B.

    2003-03-01

    A case of study on human reliability analysis has been performed as part of reliability analysis of digital protection system of the reactor automatically actuates the shutdown system of the reactor when demanded. However, the safety analysis takes credit for operator action as a diverse mean for tripping the reactor for, though a low probability, ATWS scenario. Based on the available information two cases, viz., human error in tripping the reactor and calibration error for instrumentations in protection system, have been analyzed. Wherever applicable a parametric study has also been performed

  16. A Human Reliability Analysis of Post- Accident Human Errors in the Low Power and Shutdown PSA of KSNP

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Daeil; Kim, J. H.; Jang, S. C

    2007-03-15

    Korea Atomic Energy Research Institute, using the ANS low power and shutdown (LPSD) probabilistic risk assessment (PRA) Standard, evaluated the LPSD PSA model of the KSNP, Yonggwang Units 5 and 6, and identified the items to be improved. The evaluation results of human reliability analysis (HRA) of the post-accident human errors in the LPSD PSA model for the KSNP showed that 10 items among 19 items of supporting requirements for those in the ANS PRA Standard were identified as them to be improved. Thus, we newly carried out a HRA for post-accident human errors in the LPSD PSA model for the KSNP. Following tasks are the improvements in the HRA of post-accident human errors of the LPSD PSA model for the KSNP compared with the previous one: Interviews with operators in the interpretation of the procedure, modeling of operator actions, and the quantification results of human errors, site visit. Applications of limiting value to the combined post-accident human errors. Documentation of information of all the input and bases for the detailed quantifications and the dependency analysis using the quantification sheets The assessment results for the new HRA results of post-accident human errors using the ANS LPSD PRA Standard show that above 80% items of its supporting requirements for post-accident human errors were graded as its Category II. The number of the re-estimated human errors using the LPSD Korea Standard HRA method is 385. Among them, the number of individual post-accident human errors is 253. The number of dependent post-accident human errors is 135. The quantification results of the LPSD PSA model for the KSNP with new HEPs show that core damage frequency (CDF) is increased by 5.1% compared with the previous baseline CDF It is expected that this study results will be greatly helpful to improve the PSA quality for the domestic nuclear power plants because they have sufficient PSA quality to meet the Category II of Supporting Requirements for the post

  17. A Human Reliability Analysis of Post- Accident Human Errors in the Low Power and Shutdown PSA of KSNP

    International Nuclear Information System (INIS)

    Kang, Daeil; Kim, J. H.; Jang, S. C.

    2007-03-01

    Korea Atomic Energy Research Institute, using the ANS low power and shutdown (LPSD) probabilistic risk assessment (PRA) Standard, evaluated the LPSD PSA model of the KSNP, Yonggwang Units 5 and 6, and identified the items to be improved. The evaluation results of human reliability analysis (HRA) of the post-accident human errors in the LPSD PSA model for the KSNP showed that 10 items among 19 items of supporting requirements for those in the ANS PRA Standard were identified as them to be improved. Thus, we newly carried out a HRA for post-accident human errors in the LPSD PSA model for the KSNP. Following tasks are the improvements in the HRA of post-accident human errors of the LPSD PSA model for the KSNP compared with the previous one: Interviews with operators in the interpretation of the procedure, modeling of operator actions, and the quantification results of human errors, site visit. Applications of limiting value to the combined post-accident human errors. Documentation of information of all the input and bases for the detailed quantifications and the dependency analysis using the quantification sheets The assessment results for the new HRA results of post-accident human errors using the ANS LPSD PRA Standard show that above 80% items of its supporting requirements for post-accident human errors were graded as its Category II. The number of the re-estimated human errors using the LPSD Korea Standard HRA method is 385. Among them, the number of individual post-accident human errors is 253. The number of dependent post-accident human errors is 135. The quantification results of the LPSD PSA model for the KSNP with new HEPs show that core damage frequency (CDF) is increased by 5.1% compared with the previous baseline CDF It is expected that this study results will be greatly helpful to improve the PSA quality for the domestic nuclear power plants because they have sufficient PSA quality to meet the Category II of Supporting Requirements for the post

  18. Lessons Learned on Benchmarking from the International Human Reliability Analysis Empirical Study

    International Nuclear Information System (INIS)

    Boring, Ronald L.; Forester, John A.; Bye, Andreas; Dang, Vinh N.; Lois, Erasmia

    2010-01-01

    The International Human Reliability Analysis (HRA) Empirical Study is a comparative benchmark of the prediction of HRA methods to the performance of nuclear power plant crews in a control room simulator. There are a number of unique aspects to the present study that distinguish it from previous HRA benchmarks, most notably the emphasis on a method-to-data comparison instead of a method-to-method comparison. This paper reviews seven lessons learned about HRA benchmarking from conducting the study: (1) the dual purposes of the study afforded by joining another HRA study; (2) the importance of comparing not only quantitative but also qualitative aspects of HRA; (3) consideration of both negative and positive drivers on crew performance; (4) a relatively large sample size of crews; (5) the use of multiple methods and scenarios to provide a well-rounded view of HRA performance; (6) the importance of clearly defined human failure events; and (7) the use of a common comparison language to 'translate' the results of different HRA methods. These seven lessons learned highlight how the present study can serve as a useful template for future benchmarking studies.

  19. Lessons Learned on Benchmarking from the International Human Reliability Analysis Empirical Study

    Energy Technology Data Exchange (ETDEWEB)

    Ronald L. Boring; John A. Forester; Andreas Bye; Vinh N. Dang; Erasmia Lois

    2010-06-01

    The International Human Reliability Analysis (HRA) Empirical Study is a comparative benchmark of the prediction of HRA methods to the performance of nuclear power plant crews in a control room simulator. There are a number of unique aspects to the present study that distinguish it from previous HRA benchmarks, most notably the emphasis on a method-to-data comparison instead of a method-to-method comparison. This paper reviews seven lessons learned about HRA benchmarking from conducting the study: (1) the dual purposes of the study afforded by joining another HRA study; (2) the importance of comparing not only quantitative but also qualitative aspects of HRA; (3) consideration of both negative and positive drivers on crew performance; (4) a relatively large sample size of crews; (5) the use of multiple methods and scenarios to provide a well-rounded view of HRA performance; (6) the importance of clearly defined human failure events; and (7) the use of a common comparison language to “translate” the results of different HRA methods. These seven lessons learned highlight how the present study can serve as a useful template for future benchmarking studies.

  20. A task analysis-linked approach for integrating the human factor in reliability assessments of nuclear power plants

    International Nuclear Information System (INIS)

    Ryan, T.G.

    1988-01-01

    This paper describes an emerging Task Analysis-Linked Evaluation Technique (TALENT) for assessing the contributions of human error to nuclear power plant systems unreliability and risk. Techniques such as TALENT are emerging as a recognition that human error is a primary contributor to plant safety, however, it has been a peripheral consideration to data in plant reliability evaluations. TALENT also recognizes that involvement of persons with behavioral science expertise is required to support plant reliability and risk analyses. A number of state-of-knowledge human reliability analysis tools are also discussed which support the TALENT process. The core of TALENT is comprised of task, timeline and interface analysis data which provide the technology base for event and fault tree development, serve as criteria for selecting and evaluating performance shaping factors, and which provide a basis for auditing TALENT results. Finally, programs and case studies used to refine the TALENT process are described along with future research needs in the area. (author)

  1. Bayesian belief networks for human reliability analysis: A review of applications and gaps

    International Nuclear Information System (INIS)

    Mkrtchyan, L.; Podofillini, L.; Dang, V.N.

    2015-01-01

    The use of Bayesian Belief Networks (BBNs) in risk analysis (and in particular Human Reliability Analysis, HRA) is fostered by a number of features, attractive in fields with shortage of data and consequent reliance on subjective judgments: the intuitive graphical representation, the possibility of combining diverse sources of information, the use the probabilistic framework to characterize uncertainties. In HRA, BBN applications are steadily increasing, each emphasizing a different BBN feature or a different HRA aspect to improve. This paper aims at a critical review of these features as well as at suggesting research needs. Five groups of BBN applications are analysed: modelling of organizational factors, analysis of the relationships among failure influencing factors, BBN-based extensions of existing HRA methods, dependency assessment among human failure events, assessment of situation awareness. Further, the paper analyses the process for building BBNs and in particular how expert judgment is used in the assessment of the BBN conditional probability distributions. The gaps identified in the review suggest the need for establishing more systematic frameworks to integrate the different sources of information relevant for HRA (cognitive models, empirical data, and expert judgment) and to investigate algorithms to avoid elicitation of many relationships via expert judgment. - Highlights: • We analyze BBN uses for HRA applications; but some conclusions can be generalized. • Special review focus on BBN building approaches, key for model acceptance. • Gaps relate to the transparency of the BBN building and quantification phases. • Need for more systematic framework to integrate different sources of information. • Need of ways to avoid elicitation of many relationships via expert judgment

  2. Analysis Testing of Sociocultural Factors Influence on Human Reliability within Sociotechnical Systems: The Algerian Oil Companies.

    Science.gov (United States)

    Laidoune, Abdelbaki; Rahal Gharbi, Med El Hadi

    2016-09-01

    The influence of sociocultural factors on human reliability within an open sociotechnical systems is highlighted. The design of such systems is enhanced by experience feedback. The study was focused on a survey related to the observation of working cases, and by processing of incident/accident statistics and semistructured interviews in the qualitative part. In order to consolidate the study approach, we considered a schedule for the purpose of standard statistical measurements. We tried to be unbiased by supporting an exhaustive list of all worker categories including age, sex, educational level, prescribed task, accountability level, etc. The survey was reinforced by a schedule distributed to 300 workers belonging to two oil companies. This schedule comprises 30 items related to six main factors that influence human reliability. Qualitative observations and schedule data processing had shown that the sociocultural factors can negatively and positively influence operator behaviors. The explored sociocultural factors influence the human reliability both in qualitative and quantitative manners. The proposed model shows how reliability can be enhanced by some measures such as experience feedback based on, for example, safety improvements, training, and information. With that is added the continuous systems improvements to improve sociocultural reality and to reduce negative behaviors.

  3. Human Reliability Analysis for In-Tank Precipitation Alignment and Startup of Emergency Purge Ventilation Equipment. Revision 3

    International Nuclear Information System (INIS)

    Shapiro, B.J.; Britt, T.E.

    1994-10-01

    This report documents the methodology used for calculating the human error probability for establishing air based ventilation using emergency purge ventilation equipment on In-Tank Precipitation (ITP) processing tanks 48 and 49 after failure of the nitrogen purge system following a seismic event. The analyses were performed according to THERP (Technique for Human Error Rate Prediction) as described in NUREG/CR-1278-F, ''Handbook of Human Reliability Analysis with Emphasis on Nuclear Power Plant Applications.'' The calculated human error probabilities are provided as input to the Fault Tree Analysis for the ITP Nitrogen Purge System

  4. Capturing cognitive causal paths in human reliability analysis with Bayesian network models

    International Nuclear Information System (INIS)

    Zwirglmaier, Kilian; Straub, Daniel; Groth, Katrina M.

    2017-01-01

    reIn the last decade, Bayesian networks (BNs) have been identified as a powerful tool for human reliability analysis (HRA), with multiple advantages over traditional HRA methods. In this paper we illustrate how BNs can be used to include additional, qualitative causal paths to provide traceability. The proposed framework provides the foundation to resolve several needs frequently expressed by the HRA community. First, the developed extended BN structure reflects the causal paths found in cognitive psychology literature, thereby addressing the need for causal traceability and strong scientific basis in HRA. Secondly, the use of node reduction algorithms allows the BN to be condensed to a level of detail at which quantification is as straightforward as the techniques used in existing HRA. We illustrate the framework by developing a BN version of the critical data misperceived crew failure mode in the IDHEAS HRA method, which is currently under development at the US NRC . We illustrate how the model could be quantified with a combination of expert-probabilities and information from operator performance databases such as SACADA. This paper lays the foundations necessary to expand the cognitive and quantitative foundations of HRA. - Highlights: • A framework for building traceable BNs for HRA, based on cognitive causal paths. • A qualitative BN structure, directly showing these causal paths is developed. • Node reduction algorithms are used for making the BN structure quantifiable. • BN quantified through expert estimates and observed data (Bayesian updating). • The framework is illustrated for a crew failure mode of IDHEAS.

  5. Review of advances in human reliability analysis of errors of commission-Part 2: EOC quantification

    International Nuclear Information System (INIS)

    Reer, Bernhard

    2008-01-01

    In close connection with examples relevant to contemporary probabilistic safety assessment (PSA), a review of advances in human reliability analysis (HRA) of post-initiator errors of commission (EOCs), i.e. inappropriate actions under abnormal operating conditions, has been carried out. The review comprises both EOC identification (part 1) and quantification (part 2); part 2 is presented in this article. Emerging HRA methods in this field are: ATHEANA, MERMOS, the EOC HRA method developed by Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS), the MDTA method and CREAM. The essential advanced features are on the conceptual side, especially to envisage the modeling of multiple contexts for an EOC to be quantified (ATHEANA, MERMOS and MDTA), in order to explicitly address adverse conditions. There is promising progress in providing systematic guidance to better account for cognitive demands and tendencies (GRS, CREAM), and EOC recovery (MDTA). Problematic issues are associated with the implementation of multiple context modeling and the assessment of context-specific error probabilities. Approaches for task or error opportunity scaling (CREAM, GRS) and the concept of reference cases (ATHEANA outlook) provide promising orientations for achieving progress towards data-based quantification. Further development work is needed and should be carried out in close connection with large-scale applications of existing approaches

  6. A limited assessment of the ASEP human reliability analysis procedure using simulator examination results

    International Nuclear Information System (INIS)

    Gore, B.R.; Dukelow, J.S. Jr.; Mitts, T.M.; Nicholson, W.L.

    1995-10-01

    This report presents a limited assessment of the conservatism of the Accident Sequence Evaluation Program (ASEP) human reliability analysis (HRA) procedure described in NUREG/CR-4772. In particular, the, ASEP post-accident, post-diagnosis, nominal HRA procedure is assessed within the context of an individual's performance of critical tasks on the simulator portion of requalification examinations administered to nuclear power plant operators. An assessment of the degree to which operator perforn:Lance during simulator examinations is an accurate reflection of operator performance during actual accident conditions was outside the scope of work for this project; therefore, no direct inference can be made from this report about such performance. The data for this study are derived from simulator examination reports from the NRC requalification examination cycle. A total of 4071 critical tasks were identified, of which 45 had been failed. The ASEP procedure was used to estimate human error probability (HEP) values for critical tasks, and the HEP results were compared with the failure rates observed in the examinations. The ASEP procedure was applied by PNL operator license examiners who supplemented the limited information in the examination reports with expert judgment based upon their extensive simulator examination experience. ASEP analyses were performed for a sample of 162 critical tasks selected randomly from the 4071, and the results were used to characterize the entire population. ASEP analyses were also performed for all of the 45 failed critical tasks. Two tests were performed to assess the bias of the ASEP HEPs compared with the data from the requalification examinations. The first compared the average of the ASEP HEP values with the fraction of the population actually failed and it found a statistically significant factor of two bias on the average

  7. A mid-layer model for human reliability analysis: understanding the cognitive causes of human failure events

    International Nuclear Information System (INIS)

    Shen, Song-Hua; Chang, James Y.H.; Boring, Ronald L.; Whaley, April M.; Lois, Erasmia; Langfitt Hendrickson, Stacey M.; Oxstrand, Johanna H.; Forester, John Alan; Kelly, Dana L.; Mosleh, Ali

    2010-01-01

    The Office of Nuclear Regulatory Research (RES) at the US Nuclear Regulatory Commission (USNRC) is sponsoring work in response to a Staff Requirements Memorandum (SRM) directing an effort to establish a single human reliability analysis (HRA) method for the agency or guidance for the use of multiple methods. As part of this effort an attempt to develop a comprehensive HRA qualitative approach is being pursued. This paper presents a draft of the method's middle layer, a part of the qualitative analysis phase that links failure mechanisms to performance shaping factors. Starting with a Crew Response Tree (CRT) that has identified human failure events, analysts identify potential failure mechanisms using the mid-layer model. The mid-layer model presented in this paper traces the identification of the failure mechanisms using the Information-Diagnosis/Decision-Action (IDA) model and cognitive models from the psychological literature. Each failure mechanism is grouped according to a phase of IDA. Under each phase of IDA, the cognitive models help identify the relevant performance shaping factors for the failure mechanism. The use of IDA and cognitive models can be traced through fault trees, which provide a detailed complement to the CRT.

  8. A Mid-Layer Model for Human Reliability Analysis: Understanding the Cognitive Causes of Human Failure Events

    Energy Technology Data Exchange (ETDEWEB)

    Stacey M. L. Hendrickson; April M. Whaley; Ronald L. Boring; James Y. H. Chang; Song-Hua Shen; Ali Mosleh; Johanna H. Oxstrand; John A. Forester; Dana L. Kelly; Erasmia L. Lois

    2010-06-01

    The Office of Nuclear Regulatory Research (RES) is sponsoring work in response to a Staff Requirements Memorandum (SRM) directing an effort to establish a single human reliability analysis (HRA) method for the agency or guidance for the use of multiple methods. As part of this effort an attempt to develop a comprehensive HRA qualitative approach is being pursued. This paper presents a draft of the method’s middle layer, a part of the qualitative analysis phase that links failure mechanisms to performance shaping factors. Starting with a Crew Response Tree (CRT) that has identified human failure events, analysts identify potential failure mechanisms using the mid-layer model. The mid-layer model presented in this paper traces the identification of the failure mechanisms using the Information-Diagnosis/Decision-Action (IDA) model and cognitive models from the psychological literature. Each failure mechanism is grouped according to a phase of IDA. Under each phase of IDA, the cognitive models help identify the relevant performance shaping factors for the failure mechanism. The use of IDA and cognitive models can be traced through fault trees, which provide a detailed complement to the CRT.

  9. Quantitative developments in the cognitive reliability and error analysis method (CREAM) for the assessment of human performance

    International Nuclear Information System (INIS)

    Marseguerra, Marzio; Zio, Enrico; Librizzi, Massimo

    2006-01-01

    The current 'second generation' approaches in human reliability analysis focus their attention on the contextual conditions under which a given action is performed rather than on the notion of inherent human error probabilities, as was done in the earlier 'first generation' techniques. Among the 'second generation' methods, this paper considers the Cognitive Reliability and Error Analysis Method (CREAM) and proposes some developments with respect to a systematic procedure for computing probabilities of action failure. The starting point for the quantification is a previously introduced fuzzy version of the CREAM paradigm which is here further extended to include uncertainty on the qualification of the conditions under which the action is performed and to account for the fact that the effects of the common performance conditions (CPCs) on performance reliability may not all be equal. By the proposed approach, the probability of action failure is estimated by rating the performance conditions in terms of their effect on the action

  10. A review of the models for evaluating organizational factors in human reliability analysis

    International Nuclear Information System (INIS)

    Alvarenga, Marco Antonio Bayout; Fonseca, Renato Alves da; Melo, Paulo Fernando Ferreira Frutuoso e

    2009-01-01

    Human factors should be evaluated in three hierarchical levels. The first level should concern the cognitive behavior of human beings during the control of processes that occur through the man-machine interface. Here, one evaluates human errors through human reliability models of first and second generation, like THERP, ASEP and HCR (first generation) and ATHEANA and CREAM (second generation). In the second level, the focus is in the cognitive behavior of human beings when they work in groups, as in nuclear power plants. The focus here is in the anthropological aspects that govern the interaction among human beings. In the third level, one is interested in the influence that the organizational culture exerts on human beings as well as on the tasks being performed. Here, one adds to the factors of the second level the economical and political aspects that shape the company organizational culture. Nowadays, the methodologies of HRA incorporate organizational factors in the group and organization levels through performance shaping factors. This work makes a critical evaluation of the deficiencies concerning human factors and evaluates the potential of quantitative techniques that have been proposed in the last decade to model organizational factors, including the interaction among groups, with the intention of eliminating this chronic deficiency of HRA models. Two important techniques will be discussed in this context: STAMP, based on system theory and FRAM, which aims at modeling the nonlinearities of socio-technical systems. (author)

  11. A review of the models for evaluating organizational factors in human reliability analysis

    Energy Technology Data Exchange (ETDEWEB)

    Alvarenga, Marco Antonio Bayout; Fonseca, Renato Alves da [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil)], e-mail: bayout@cnen.gov.br, e-mail: rfonseca@cnen.gov.br; Melo, Paulo Fernando Ferreira Frutuoso e [Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear], e-mail: frutuoso@con.ufrj.br

    2009-07-01

    Human factors should be evaluated in three hierarchical levels. The first level should concern the cognitive behavior of human beings during the control of processes that occur through the man-machine interface. Here, one evaluates human errors through human reliability models of first and second generation, like THERP, ASEP and HCR (first generation) and ATHEANA and CREAM (second generation). In the second level, the focus is in the cognitive behavior of human beings when they work in groups, as in nuclear power plants. The focus here is in the anthropological aspects that govern the interaction among human beings. In the third level, one is interested in the influence that the organizational culture exerts on human beings as well as on the tasks being performed. Here, one adds to the factors of the second level the economical and political aspects that shape the company organizational culture. Nowadays, the methodologies of HRA incorporate organizational factors in the group and organization levels through performance shaping factors. This work makes a critical evaluation of the deficiencies concerning human factors and evaluates the potential of quantitative techniques that have been proposed in the last decade to model organizational factors, including the interaction among groups, with the intention of eliminating this chronic deficiency of HRA models. Two important techniques will be discussed in this context: STAMP, based on system theory and FRAM, which aims at modeling the nonlinearities of socio-technical systems. (author)

  12. Analysis of human reliability in the APS of fire. Application of NUREG-1921; Analisis de Fiabilidad Humana en el APS de Incendios. Aplicacion del NUREG-1921

    Energy Technology Data Exchange (ETDEWEB)

    Perez Torres, J. L.; Celaya Meler, M. A.

    2014-07-01

    An analysis of human reliability in a probabilistic safety analysis (APS) of fire aims to identify, describe, analyze and quantify, in a manner traceable, human actions that can affect the mitigation of an initiating event produced by a fire. (Author)

  13. Reliability analysis and operator modelling

    International Nuclear Information System (INIS)

    Hollnagel, Erik

    1996-01-01

    The paper considers the state of operator modelling in reliability analysis. Operator models are needed in reliability analysis because operators are needed in process control systems. HRA methods must therefore be able to account both for human performance variability and for the dynamics of the interaction. A selected set of first generation HRA approaches is briefly described in terms of the operator model they use, their classification principle, and the actual method they propose. In addition, two examples of second generation methods are also considered. It is concluded that first generation HRA methods generally have very simplistic operator models, either referring to the time-reliability relationship or to elementary information processing concepts. It is argued that second generation HRA methods must recognise that cognition is embedded in a context, and be able to account for that in the way human reliability is analysed and assessed

  14. Human reliability. Is probabilistic human reliability assessment possible?

    International Nuclear Information System (INIS)

    Mosneron Dupin, F.

    1996-01-01

    The possibility of carrying out Probabilistic Human Reliability Assessments (PHRA) is often doubted. Basing ourselves on the experience Electricite de France (EDF) has acquired in Probabilistic Safety Assessments for nuclear power plants, we show why the uncertainty of PHRA is very high. We then specify the limits of generic data and models for PHRA: very important factors are often poorly taken into account. To account for them, you need to have proper understanding of the actual context in which operators work. This demands surveys on the field (power plant and simulator) all of which must be carried out with behaviours science skills. The idea of estimating the probabilities of operator failure must not be abandoned, but probabilities must be given less importance, for they are only approximate indications. The qualitative aspects of PHRA should be given greater value (analysis process and qualitative insights). That is why the description (illustrated by case histories) of the main mechanisms of human behaviour, and of their manifestations in the nuclear power plant context (in terms of habits, attitudes, and informal methods and organization in particular) should be an important part of PHRA handbooks. These handbooks should also insist more on methods for gathering information on the actual context of the work of operators. Under these conditions, the PHRA should be possible and even desirable as a process for systematic analysis and assessment of human intervention. (author). 24 refs, 2 figs, 1 tab

  15. Human reliability. Is probabilistic human reliability assessment possible?

    Energy Technology Data Exchange (ETDEWEB)

    Mosneron Dupin, F

    1997-12-31

    The possibility of carrying out Probabilistic Human Reliability Assessments (PHRA) is often doubted. Basing ourselves on the experience Electricite de France (EDF) has acquired in Probabilistic Safety Assessments for nuclear power plants, we show why the uncertainty of PHRA is very high. We then specify the limits of generic data and models for PHRA: very important factors are often poorly taken into account. To account for them, you need to have proper understanding of the actual context in which operators work. This demands surveys on the field (power plant and simulator) all of which must be carried out with behaviours science skills. The idea of estimating the probabilities of operator failure must not be abandoned, but probabilities must be given less importance, for they are only approximate indications. The qualitative aspects of PHRA should be given greater value (analysis process and qualitative insights). That is why the description (illustrated by case histories) of the main mechanisms of human behaviour, and of their manifestations in the nuclear power plant context (in terms of habits, attitudes, and informal methods and organization in particular) should be an important part of PHRA handbooks. These handbooks should also insist more on methods for gathering information on the actual context of the work of operators. Under these conditions, the PHRA should be possible and even desirable as a process for systematic analysis and assessment of human intervention. (author). 24 refs, 2 figs, 1 tab.

  16. Multidisciplinary System Reliability Analysis

    Science.gov (United States)

    Mahadevan, Sankaran; Han, Song; Chamis, Christos C. (Technical Monitor)

    2001-01-01

    The objective of this study is to develop a new methodology for estimating the reliability of engineering systems that encompass multiple disciplines. The methodology is formulated in the context of the NESSUS probabilistic structural analysis code, developed under the leadership of NASA Glenn Research Center. The NESSUS code has been successfully applied to the reliability estimation of a variety of structural engineering systems. This study examines whether the features of NESSUS could be used to investigate the reliability of systems in other disciplines such as heat transfer, fluid mechanics, electrical circuits etc., without considerable programming effort specific to each discipline. In this study, the mechanical equivalence between system behavior models in different disciplines are investigated to achieve this objective. A new methodology is presented for the analysis of heat transfer, fluid flow, and electrical circuit problems using the structural analysis routines within NESSUS, by utilizing the equivalence between the computational quantities in different disciplines. This technique is integrated with the fast probability integration and system reliability techniques within the NESSUS code, to successfully compute the system reliability of multidisciplinary systems. Traditional as well as progressive failure analysis methods for system reliability estimation are demonstrated, through a numerical example of a heat exchanger system involving failure modes in structural, heat transfer and fluid flow disciplines.

  17. A perspective on Human Reliability Analysis (HRA) and studies on the application of HRA to Indian Pressurised Heavy Water Reactors

    International Nuclear Information System (INIS)

    Subramaniam, K.; Saraf, R.K.; Sanyasi Rao, V.V.S.; Venkat Raj, V.; Venkatraman, R.

    2000-05-01

    Probabilistic studies of risks show that the human factor contributes significantly to overall risk. The potential for and mechanisms of human error to affect plant risk and safety is evaluated by Human Reliability Analysis (HRA). HRA has quantitative and qualitative aspects, both of which are useful for Human Factors Engineering (HFE) which aims at designing operator interfaces that will minimise operator error and provide for error detection and recovery capability. HRA has therefore to be conducted as an integrated activity in support of PSA and HFE design. The objectives of HRA therefore, are to assure that potential effects on plant safety and reliability are analysed and that human actions that are important to plant risk are identified so that they can be addressed in both PSA and plant design. This report is in two parts. The first part presents a comprehensive overview of HRA. It attempts to provide an understanding of how human failures are incorporated into PSA models and how HRA is performed. The focus is on the HRA process, frameworks, techniques and models. The second part begins with a discussion on the application of HRA to IPHWRs and then continues with the presentation of three specific HRA case studies. This work was carried out by the working group on HRA constituted by AERB. Part of the work was done under the aegis of the IAEA Coordinated Research Programme (CRP) on collection and classification of human reliability data and use in PSA - Research contract No. 8239/RB. (author)

  18. Summary of project to develop handbook of human reliability analysis for nuclear power plant operations

    International Nuclear Information System (INIS)

    Swain, A.D.

    1978-01-01

    For the past two years Alan Swain and Henry E. Guttmann, of the Statistics, Computing, and Human Factors Division, Sandia Laboratories, have been developing a handbook to aid qualified persons to evaluate the effect of human error on the availability of engineered safety systems and features in nuclear power plants. The handbook includes a mathematical model, procedures, derived human failure data, and principles of human behavior and ergonomics. The handbook is expanding the human error analyses which were presented in WASH--1400. The work, under the sponsorship of Probabilistic Analysis Staff, NRC Office of Nuclear Regulatory Research (Dr. M.C. Cullingford, NRC Program Manager), is about half completed. An outline of the handbook contents is given in copies of vugraphs (attached), followed by copies of human performance model abstractors (also attached). A first draft of the handbook is scheduled for NRC review by July 1, 1979

  19. Application of objective clinical human reliability analysis (OCHRA) in assessment of technical performance in laparoscopic rectal cancer surgery.

    Science.gov (United States)

    Foster, J D; Miskovic, D; Allison, A S; Conti, J A; Ockrim, J; Cooper, E J; Hanna, G B; Francis, N K

    2016-06-01

    Laparoscopic rectal resection is technically challenging, with outcomes dependent upon technical performance. No robust objective assessment tool exists for laparoscopic rectal resection surgery. This study aimed to investigate the application of the objective clinical human reliability analysis (OCHRA) technique for assessing technical performance of laparoscopic rectal surgery and explore the validity and reliability of this technique. Laparoscopic rectal cancer resection operations were described in the format of a hierarchical task analysis. Potential technical errors were defined. The OCHRA technique was used to identify technical errors enacted in videos of twenty consecutive laparoscopic rectal cancer resection operations from a single site. The procedural task, spatial location, and circumstances of all identified errors were logged. Clinical validity was assessed through correlation with clinical outcomes; reliability was assessed by test-retest. A total of 335 execution errors identified, with a median 15 per operation. More errors were observed during pelvic tasks compared with abdominal tasks (p technical performance of laparoscopic rectal surgery.

  20. Analysis and Application of Reliability

    International Nuclear Information System (INIS)

    Jeong, Hae Seong; Park, Dong Ho; Kim, Jae Ju

    1999-05-01

    This book tells of analysis and application of reliability, which includes definition, importance and historical background of reliability, function of reliability and failure rate, life distribution and assumption of reliability, reliability of unrepaired system, reliability of repairable system, sampling test of reliability, failure analysis like failure analysis by FEMA and FTA, and cases, accelerated life testing such as basic conception, acceleration and acceleration factor, and analysis of accelerated life testing data, maintenance policy about alternation and inspection.

  1. Human reliability guidance - How to increase the synergies between human reliability, human factors, and system design and engineering. Phase 1: The Nordic Point of View - A user needs analysis

    International Nuclear Information System (INIS)

    Oxstrand, J.; Boring, R.L.

    2010-12-01

    The main goal of this Nordic Nuclear Safety Research (NKS) council project is to produce guidance for how to use human reliability analysis (HRA) to strengthen overall safety. This project is intended to work across (and hopefully diminish) the borders that exist between human reliability analysis (HRA) and human-system interaction, human performance, human factors, and probabilistic risk assessment at Nordic nuclear power plants. This project consists of two major phases, where the initial phase (phase 1) is a study of current practices in the Nordic region, which is presented in this report. Even though the project covers the synergies between HRA and all other relevant fields, the main focus for the phase is to bridge HRA and design. Interviews with 26 Swedish and Finnish plant experts are summarized the present report, and 10 principles to improve the utilization of HRA at plants are presented. A second study, which is not documented in this preliminary report, will chronicle insights into how the US nuclear industry works with HRA. To gain this knowledge the author will conduct interviews with the US regulator, research laboratories, and utilities. (Author)

  2. Application of Bayesian Belief networks to the human reliability analysis of an oil tanker operation focusing on collision accidents

    International Nuclear Information System (INIS)

    Martins, Marcelo Ramos; Maturana, Marcos Coelho

    2013-01-01

    During the last three decades, several techniques have been developed for the quantitative study of human reliability. In the 1980s, techniques were developed to model systems by means of binary trees, which did not allow for the representation of the context in which human actions occur. Thus, these techniques cannot model the representation of individuals, their interrelationships, and the dynamics of a system. These issues make the improvement of methods for Human Reliability Analysis (HRA) a pressing need. To eliminate or at least attenuate these limitations, some authors have proposed modeling systems using Bayesian Belief Networks (BBNs). The application of these tools is expected to address many of the deficiencies in current approaches to modeling human actions with binary trees. This paper presents a methodology based on BBN for analyzing human reliability and applies this method to the operation of an oil tanker, focusing on the risk of collision accidents. The obtained model was used to determine the most likely sequence of hazardous events and thus isolate critical activities in the operation of the ship to study Internal Factors (IFs), Skills, and Management and Organizational Factors (MOFs) that should receive more attention for risk reduction.

  3. MAPPS (Maintenance Personnel Performance Simulation): a computer simulation model for human reliability analysis

    International Nuclear Information System (INIS)

    Knee, H.E.; Haas, P.M.

    1985-01-01

    A computer model has been developed, sensitivity tested, and evaluated capable of generating reliable estimates of human performance measures in the nuclear power plant (NPP) maintenance context. The model, entitled MAPPS (Maintenance Personnel Performance Simulation), is of the simulation type and is task-oriented. It addresses a number of person-machine, person-environment, and person-person variables and is capable of providing the user with a rich spectrum of important performance measures including mean time for successful task performance by a maintenance team and maintenance team probability of task success. These two measures are particularly important for input to probabilistic risk assessment (PRA) studies which were the primary impetus for the development of MAPPS. The simulation nature of the model along with its generous input parameters and output variables allows its usefulness to extend beyond its input to PRA

  4. A human reliability analysis of the Three Mile power plant accident considering the THERP and ATHEANA methodologies

    International Nuclear Information System (INIS)

    Fonseca, Renato Alves da

    2004-03-01

    The main purpose of this work is the study of human reliability using the THERP (Technique for Human Error Prediction) and ATHEANA methods (A Technique for Human Error Analysis), and some tables and also, from case studies presented on the THERP Handbook to develop a qualitative and quantitative study of nuclear power plant accident. This accident occurred in the TMI (Three Mile Island Unit 2) power plant, PWR type plant, on March 28th, 1979. The accident analysis has revealed a series of incorrect actions, which resulted in the Unit 2 shut down and permanent loss of the reactor. This study also aims at enhancing the understanding of the THERP method and ATHEANA, and of its practical applications. In addition, it is possible to understand the influence of plant operational status on human failures and of these on equipment of a system, in this case, a nuclear power plant. (author)

  5. Modeling and Quantification of Team Performance in Human Reliability Analysis for Probabilistic Risk Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey C. JOe; Ronald L. Boring

    2014-06-01

    Probabilistic Risk Assessment (PRA) and Human Reliability Assessment (HRA) are important technical contributors to the United States (U.S.) Nuclear Regulatory Commission’s (NRC) risk-informed and performance based approach to regulating U.S. commercial nuclear activities. Furthermore, all currently operating commercial NPPs in the U.S. are required by federal regulation to be staffed with crews of operators. Yet, aspects of team performance are underspecified in most HRA methods that are widely used in the nuclear industry. There are a variety of "emergent" team cognition and teamwork errors (e.g., communication errors) that are 1) distinct from individual human errors, and 2) important to understand from a PRA perspective. The lack of robust models or quantification of team performance is an issue that affects the accuracy and validity of HRA methods and models, leading to significant uncertainty in estimating HEPs. This paper describes research that has the objective to model and quantify team dynamics and teamwork within NPP control room crews for risk informed applications, thereby improving the technical basis of HRA, which improves the risk-informed approach the NRC uses to regulate the U.S. commercial nuclear industry.

  6. Human Reliability analysis for digitized nuclear power plants: Case study on the LingAo II nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Yan Hua; Zhang, Li [Institute of Human Factors Engineering AND Safety Management, Hunan Institute of Technology, Hengyang (China); Dai, Cao; Li, Peng Cheng; Qing, Tao [Human Factors Institute, University of South China, Hengyang (China)

    2017-03-15

    The main control room (MCR) in advanced nuclear power plants (NPPs) has changed from analog to digital control system (DCS). Operation and control have become more automated, centralized, and accurate due to the digitalization of NPPs, which has improved the efficiency and security of the system. New issues associated with human reliability inevitably arise due to the adoption of new accident procedures and digitalization of main control rooms in NPPs. The LingAo II NPP is the first digital NPP in China to apply the state-oriented procedure. In order to address issues related to human reliability analysis for DCS and DCS + state-oriented procedure, the Hunan Institute of Technology conducted a research project based on a cooperative agreement with the LingDong Nuclear Power Co. Ltd. This paper is a brief introduction to the project.

  7. Human Reliability Analysis for Digitized Nuclear Power Plants: Case Study on the LingAo II Nuclear Power Plant

    Directory of Open Access Journals (Sweden)

    Yanhua Zou

    2017-03-01

    Full Text Available The main control room (MCR in advanced nuclear power plants (NPPs has changed from analog to digital control system (DCS. Operation and control have become more automated, centralized, and accurate due to the digitalization of NPPs, which has improved the efficiency and security of the system. New issues associated with human reliability inevitably arise due to the adoption of new accident procedures and digitalization of main control rooms in NPPs. The LingAo II NPP is the first digital NPP in China to apply the state-oriented procedure. In order to address issues related to human reliability analysis for DCS and DCS + state-oriented procedure, the Hunan Institute of Technology conducted a research project based on a cooperative agreement with the LingDong Nuclear Power Co. Ltd. This paper is a brief introduction to the project.

  8. Human reliability analysis for In-Tank Precipitation alignment and startup of emergency purge ventilation equipment

    International Nuclear Information System (INIS)

    Olsen, L.M.

    1993-08-01

    This report documents the methodology used for calculating the human error probability for establishing air based ventilation using emergency purge ventilation equipment on In-Tank Precipitation (ITP) processing tanks 48 and 49 after a failure of the nitrogen purge system following a seismic event. The analyses were performed according to THERP (Technique for Human Error Rate Prediction). The calculated human error probabilities are provided as input to the Fault Tree Analysis for the ITP Nitrogen Purge System. The analysis assumes a seismic event initiator leading to establishing air based ventilation on the ITP processing tanks 48 and 49. At the time of this analysis only the tanks and the emergency purge ventilation equipment are seismically qualified. Consequently, onsite and offsite power is assumed to be unavailable and all operator control actions are to be performed locally on the tank top. Assumptions regarding procedures, staffing, equipment locations, equipment tagging, equipment availability, and training were made and are documented in this report. The human error probability for establishing air based ventilation using the emergency purge ventilation equipment on In-Tank Precipitation processing tanks 48 and 49 after a failure of the nitrogen purge system following a seismic event is 4.2E-6 (median value on the lognormal scale). It is important to note that this result is predicated on the implementation of all of the assumptions listed in the ''Assumptions'' section of this report. This analysis was not based on the current conditions in ITP. The analysis is to be used as a tool to aid ITP operations personnel in achieving the training, procedural, and operational goals outlined in this document

  9. Human reliability analysis approach to level 1 PSA - shutdown and low power operation of Mochovce NPP, Unit 1, Slovakia

    International Nuclear Information System (INIS)

    Stojka, Tibor; Holy, Jaroslav

    2003-01-01

    The paper presents general approach, used methods and form of documentation of the results as have been applied within the Human Reliability Analysis (HRA) task of the shutdown and low power PSA (SPSA) study for Mochovce nuclear power plant, Unit 1, Slovakia. The paper describes main goals of the HRA task within the SPSA project, applied methods and data sources. Basic steps of the HRA task and human errors (HE) classification are also specified in its first part. The main part of the paper deals with pre-initiator human errors, human-induced initiators and response to initiator human errors. Since the expert judgment method (SLIM) was used for the last type of human errors probability assessment, also related activities are described including preparation works (performance shaping factors (PSFs) selection, development of PSF classification tables, preparation of aid tools for interview with plant experts), qualitative analysis (sources of information and basic steps) and quantitative analysis itself (human errors classification for final quantification including criteria used for the classification, description of structure of the spreadsheet used for quantification and treatment with dependencies). The last part of the paper describes form of documentation of the final results and provides some findings. (author)

  10. An analysis of the human reliability on Three Mile Island II accident considering THERP and ATHEANA methodologies

    International Nuclear Information System (INIS)

    Fonseca, Renato Alves da; Alvim, Antonio Carlos Marques

    2005-01-01

    The research on the Analysis of the Human Reliability becomes more important every day, as well as the study of the human factors and the contributions of the same ones to the incidents and accidents, mainly in complex plants or of high technology. The analysis here developed it uses the methodologies THERP (Technique for Human Error Prediction) and ATHEANA (A Technique for Human Error Analysis), as well as, the tables and the cases presented in THERP Handbook and to develop a qualitative and quantitative study of an occurred nuclear accident. The chosen accident was it of Three Mile Island (TMI). The accident analysis has revealed a series of incorrect actions that resulted in the permanent loss of the reactor and shutdown of Unit 2. This study also aims at enhancing the understanding of the THERP and ATHEANA methods and at practical applications. In addition, it is possible to understand the influence of plant operational status on human failures and the influence of human failures on equipment of a system, in this case, a nuclear power plant. (author)

  11. A method and application study on holistic decision tree for human reliability analysis in nuclear power plant

    International Nuclear Information System (INIS)

    Sun Feng; Zhong Shan; Wu Zhiyu

    2008-01-01

    The paper introduces a human reliability analysis method mainly used in Nuclear Power Plant Safety Assessment and the Holistic Decision Tree (HDT) method and how to apply it. The focus is primarily on providing the basic framework and some background of HDT method and steps to perform it. Influence factors and quality descriptors are formed by the interview with operators in Qinshan Nuclear Power Plant and HDT analysis performed for SGTR and SLOCA based on this information. The HDT model can use a graphic tree structure to indicate that error rate is a function of influence factors. HDT method is capable of dealing with the uncertainty in HRA, and it is reliable and practical. (authors)

  12. Waste package reliability analysis

    International Nuclear Information System (INIS)

    Pescatore, C.; Sastre, C.

    1983-01-01

    Proof of future performance of a complex system such as a high-level nuclear waste package over a period of hundreds to thousands of years cannot be had in the ordinary sense of the word. The general method of probabilistic reliability analysis could provide an acceptable framework to identify, organize, and convey the information necessary to satisfy the criterion of reasonable assurance of waste package performance according to the regulatory requirements set forth in 10 CFR 60. General principles which may be used to evaluate the qualitative and quantitative reliability of a waste package design are indicated and illustrated with a sample calculation of a repository concept in basalt. 8 references, 1 table

  13. Comparing the treatment of uncertainty in Bayesian networks and fuzzy expert systems used for a human reliability analysis application

    International Nuclear Information System (INIS)

    Baraldi, Piero; Podofillini, Luca; Mkrtchyan, Lusine; Zio, Enrico; Dang, Vinh N.

    2015-01-01

    The use of expert systems can be helpful to improve the transparency and repeatability of assessments in areas of risk analysis with limited data available. In this field, human reliability analysis (HRA) is no exception, and, in particular, dependence analysis is an HRA task strongly based on analyst judgement. The analysis of dependence among Human Failure Events refers to the assessment of the effect of an earlier human failure on the probability of the subsequent ones. This paper analyses and compares two expert systems, based on Bayesian Belief Networks and Fuzzy Logic (a Fuzzy Expert System, FES), respectively. The comparison shows that a BBN approach should be preferred in all the cases characterized by quantifiable uncertainty in the input (i.e. when probability distributions can be assigned to describe the input parameters uncertainty), since it provides a satisfactory representation of the uncertainty and its output is directly interpretable for use within PSA. On the other hand, in cases characterized by very limited knowledge, an analyst may feel constrained by the probabilistic framework, which requires assigning probability distributions for describing uncertainty. In these cases, the FES seems to lead to a more transparent representation of the input and output uncertainty. - Highlights: • We analyse treatment of uncertainty in two expert systems. • We compare a Bayesian Belief Network (BBN) and a Fuzzy Expert System (FES). • We focus on the input assessment, inference engines and output assessment. • We focus on an application problem of interest for human reliability analysis. • We emphasize the application rather than math to reach non-BBN or FES specialists

  14. Human reliability assessment in context

    International Nuclear Information System (INIS)

    Hollnagel, Erik

    2005-01-01

    Human Reliability Assessment (HRA) is conducted on the unspoken premise that 'human error' is a meaningful concept and that it can be associated with individual actions. The basis for this assumption it found in the origin of HRA, as a necessary extension of PSA to account for the impact of failures emanating from human actions. Although it was natural to model HRA on PSA, a large number of studies have shown that the premises are wrong, specifically that human and technological functions cannot be decomposed in the same manner. The general experience from accident studies also indicates that action failures are a function of the context, and that it is the variability of the context rather than the 'human error probability' that is the much sought for signal. Accepting this will have significant consequences for the way in which HRA, and ultimately also PSA, should be pursued

  15. Study on a new framework of Human Reliability Analysis to evaluate soft control execution error in advanced MCRs of NPPs

    International Nuclear Information System (INIS)

    Jang, Inseok; Kim, Ar Ryum; Jung, Wondea; Seong, Poong Hyun

    2016-01-01

    Highlights: • The operation environment of MCRs in NPPs has changed by adopting new HSIs. • The operation action in NPP Advanced MCRs is performed by soft control. • New HRA framework should be considered in the HRA for advanced MCRs. • HRA framework for evaluation of soft control execution human error is suggested. • Suggested method will be helpful to analyze human reliability in advance MCRs. - Abstract: Since the Three Mile Island (TMI)-2 accident, human error has been recognized as one of the main causes of Nuclear Power Plant (NPP) accidents, and numerous studies related to Human Reliability Analysis (HRA) have been carried out. Most of these methods were developed considering the conventional type of Main Control Rooms (MCRs). However, the operating environment of MCRs in NPPs has changed with the adoption of new Human-System Interfaces (HSIs) that are based on computer-based technologies. The MCRs that include these digital technologies, such as large display panels, computerized procedures, and soft controls, are called advanced MCRs. Among the many features of advanced MCRs, soft controls are a particularly important feature because operating actions in NPP advanced MCRs are performed by soft control. Due to the differences in interfaces between soft control and hardwired conventional type control, different Human Error Probabilities (HEPs) and a new HRA framework should be considered in the HRA for advanced MCRs. To this end, a new framework of a HRA method for evaluating soft control execution human error is suggested by performing a soft control task analysis and the literature regarding widely accepted human error taxonomies is reviewed. Moreover, since most current HRA databases deal with operation in conventional MCRs and are not explicitly designed to deal with digital HSIs, empirical analysis of human error and error recovery considering soft controls under an advanced MCR mockup are carried out to collect human error data, which is

  16. Peer-review study of the draft handbook for human-reliability analysis with emphasis on nuclear-power-plant applications, NUREG/CR-1278

    Energy Technology Data Exchange (ETDEWEB)

    Brune, R. L.; Weinstein, M.; Fitzwater, M. E.

    1983-01-01

    This report describes a peer review of the draft Handbook for Human Reliability Analysis with Emphasis on Nuclear Power Plant Applications, NUREG/CR-1278. The purpose of the study was to determine to what extent peers agree with the human behavior models and estimates of human error probabilities (HEPs) contained in the Handbook. Twenty-nine human factors experts participated in the study. Twenty of the participants were Americans; nine were from other countries. The peers performed human reliability analyses of a variety of human performance scenarios describing operator activities in nuclear power plant settings. They also answered questionnaires pertaining to the contents and application of the Handbook. An analysis of peer solutions to the human reliability analysis problems and peer responses to the questionnaire was performed. Recommendations regarding the format and contents of the Handbook were developed from the study findings.

  17. A Critique on the Effectiveness of Current Human Reliability Analysis Approach for the Human-Machine Interface Design in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Lee, Yong Hee

    2010-01-01

    Human Reliability Analysis (HRA) in cooperation of PSA has been conducted to evaluate the safety of a system and the validity of a system design. HRA has been believed to provide a quantitative value of human error potential and the safety level of a design alternative in Nuclear Power Plants (NPPs). However, it becomes doubtful that current HRA is worth to conduct to evaluate the human factors of NPP design, since there have been many critiques upon the virtue of HRA. Inevitably, the newer the technology becomes, the larger endeavors bound for the new facilitated methods. This paper describes the limitations and the obsolescence of the current HRA, especially for the design evaluation of Human-Machine Interface (HMI) utilizing the recent digital technologies. An alternative approach to the assessment of the human error potential of HMI design is proposed

  18. Evaluation of the reliability concerning the identification of human factors as contributing factors by a computer supported event analysis (CEA)

    International Nuclear Information System (INIS)

    Wilpert, B.; Maimer, H.; Loroff, C.

    2000-01-01

    The project's objectives are the evaluation of the reliability concerning the identification of Human Factors as contributing factors by a computer supported event analysis (CEA). CEA is a computer version of SOL (Safety through Organizational Learning). Parts of the first step were interviews with experts from the nuclear power industry and the evaluation of existing computer supported event analysis methods. This information was combined to a requirement profile for the CEA software. The next step contained the implementation of the software in an iterative process of evaluation. The completion of this project was the testing of the CEA software. As a result the testing demonstrated that it is possible to identify contributing factors with CEA validly. In addition, CEA received a very positive feedback from the experts. (orig.) [de

  19. Human factors reliability benchmark exercise: a review

    International Nuclear Information System (INIS)

    Humphreys, P.

    1990-01-01

    The Human Factors Reliability Benchmark Exercise has addressed the issues of identification, analysis, representation and quantification of Human Error in order to identify the strengths and weaknesses of available techniques. Using a German PWR nuclear powerplant as the basis for the studies, fifteen teams undertook evaluations of a routine functional Test and Maintenance procedure plus an analysis of human actions during an operational transient. The techniques employed by the teams are discussed and reviewed on a comparative basis. The qualitative assessments performed by each team compare well, but at the quantification stage there is much less agreement. (author)

  20. MR signal-fat-fraction analysis and T2* weighted imaging measure BAT reliably on humans without cold exposure.

    Science.gov (United States)

    Holstila, Milja; Pesola, Marko; Saari, Teemu; Koskensalo, Kalle; Raiko, Juho; Borra, Ronald J H; Nuutila, Pirjo; Parkkola, Riitta; Virtanen, Kirsi A

    2017-05-01

    Brown adipose tissue (BAT) is compositionally distinct from white adipose tissue (WAT) in terms of triglyceride and water content. In adult humans, the most significant BAT depot is localized in the supraclavicular area. Our aim is to differentiate brown adipose tissue from white adipose tissue using fat T2* relaxation time mapping and signal-fat-fraction (SFF) analysis based on a commercially available modified 2-point-Dixon (mDixon) water-fat separation method. We hypothesize that magnetic resonance (MR) imaging can reliably measure BAT regardless of the cold-induced metabolic activation, with BAT having a significantly higher water and iron content compared to WAT. The supraclavicular area of 13 volunteers was studied on 3T PET-MRI scanner using T2* relaxation time and SFF mapping both during cold exposure and at ambient temperature; and 18 F-FDG PET during cold exposure. Volumes of interest (VOIs) were defined semiautomatically in the supraclavicular fat depot, subcutaneous WAT and muscle. The supraclavicular fat depot (assumed to contain BAT) had a significantly lower SFF and fat T2* relaxation time compared to subcutaneous WAT. Cold exposure did not significantly affect MR-based measurements. SFF and T2* values measured during cold exposure and at ambient temperature correlated inversely with the glucose uptake measured by 18 F-FDG PET. Human BAT can be reliably and safely assessed using MRI without cold activation and PET-related radiation exposure. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Human reliability analysis in probabilistic safety assessment for nuclear power plants. A Safety Practice. A publication within the NUSS programme

    International Nuclear Information System (INIS)

    1995-01-01

    Probabilistic safety assessment (PSA) is playing an increasingly important role in the safe operation of nuclear power plants throughout the world. In order to establish a consistent framework for conducting PSA studies, for promoting technology transfer of the state of the art, and for encouraging uniformity in the way PSA is carried out, the IAEA is preparing a set of publications which gives guidance on various aspects of PSA. This document presents a practical approach for incorporating human reliability analysis (HRA) into PSA. It describes the steps needed and the documentation that should be provided both to support the PSA itself and to ensure effective communication of important information arising from the studies. It also describes a framework for analysing those human actions which could affect safety and for relating such human influences to specific parts of a PSA. This Safety Practice also addresses the limitations of PSA in taking account of human factors in relation to safety and risk. Refs, figs and tabs

  2. Integrated system reliability analysis

    DEFF Research Database (Denmark)

    Gintautas, Tomas; Sørensen, John Dalsgaard

    Specific targets: 1) The report shall describe the state of the art of reliability and risk-based assessment of wind turbine components. 2) Development of methodology for reliability and risk-based assessment of the wind turbine at system level. 3) Describe quantitative and qualitative measures...

  3. Framework for estimating response time data to conduct a seismic human reliability analysis - its feasibility

    International Nuclear Information System (INIS)

    Park, Jinkyun; Kin, Yochan; Jung, Wondea; Jang, Seung Cheol

    2014-01-01

    This is because the PSA has been used for several decades as the representative tool to evaluate the safety of NPPs. To this end, it is inevitable to evaluate human error probabilities (HEPs) in conducting important tasks being considered in the PSA framework (i.e., HFEs; human failure events), which are able to significantly affect the safety of NPPs. In addition, it should be emphasized that the provision of a realistic human performance data is an important precondition for calculating HEPs under a seismic condition. Unfortunately, it seems that HRA methods being currently used for calculating HEPs under a seismic event do not properly consider the performance variation of human operators. For this reason, in this paper, a framework to estimate response time data that are critical for calculating HEPs is suggested with respect to a seismic intensity. This paper suggested a systematic framework for estimating response time data that would be one of the most critical for calculating HEPs. Although extensive review of existing literatures is indispensable for identifying response times of human operators who have to conduct a series of tasks prescribed in procedures based on a couple of wrong indications, it is highly expected that response time data for seismic HRA can be properly secured through revisiting response time data collected from diverse situations without concerning a seismic event

  4. Incorporating emergency evacuation planning, through human reliability analysis, in the risk management of industrial installation

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Isaac J.A. Luquetti; Carvalho, Paulo V.R.; Grecco, Claudio H.S. [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)], Email: luquetti@ien.gov.br

    2009-07-01

    An industrial installation presents many risks in the form of the process hazards, such as fire, explosion, gas and radiation release. In these situations, workers may need to evacuate from the work environment as soon as possible. In this case, the emergency evacuation planning is a key element that involves an iterative process to identify the best evacuation routes and to estimate the time required to evacuate the area at risk. The mean aspects for a successful emergency evacuation are influenced by the type of human error and the severity of the initiator event. The aim of this paper is to present a methodological framework for the identification of the performance shaping factors and prediction of human error probabilities of the responsible by the emergency evacuation of the workers in an industrial installation, providing a proactive approach for the allocation of the human factors in the risk assessment of the industrial installation. (author)

  5. Operational human performance reliability assessment (OHPRA)

    International Nuclear Information System (INIS)

    Haas, P.M.; Swanson, P.J.; Connelly, E.M.

    1993-01-01

    Operational Human Performance Reliability Assessment (OHPRA) is an approach for assessing human performance that is being developed in response to demands from modern process industries for practical and effective tools to assess and improve human performance, and therefore overall system performance and safety. The single most distinguishing feature of the approach is that is defines human performance in open-quotes operationalclose quotes terms. OHPRA is focused not on generation of human error probabilities, but on practical analysis of human performance to aid management in (1) identifying open-quotes fixableclose quotes problems and (2) providing input on the importance and nature of potential improvements. Development of the model in progress uses a unique approach for eliciting expert strategies for assessing performance. A PC-based model incorporating this expertise is planned. A preliminary version of the approach has already been used successfully to identify practical human performance problems in reactor and chemical process plant operations

  6. Sensitive and reliable detection of genomic imbalances in human neuroblastomas using comparative genomic hybridisation analysis

    NARCIS (Netherlands)

    van Gele, M.; van Roy, N.; Jauch, A.; Laureys, G.; Benoit, Y.; Schelfhout, V.; de Potter, C. R.; Brock, P.; Uyttebroeck, A.; Sciot, R.; Schuuring, E.; Versteeg, R.; Speleman, F.

    1997-01-01

    Deletions of the short arm of chromosome 1, extra copies of chromosome 17q and MYCN amplification are the most frequently encountered genetic changes in neuroblastomas. Standard techniques for detection of one or more of these genetic changes are karyotyping, FISH analysis and LOH analysis by

  7. Structural systems reliability analysis

    International Nuclear Information System (INIS)

    Frangopol, D.

    1975-01-01

    For an exact evaluation of the reliability of a structure it appears necessary to determine the distribution densities of the loads and resistances and to calculate the correlation coefficients between loads and between resistances. These statistical characteristics can be obtained only on the basis of a long activity period. In case that such studies are missing the statistical properties formulated here give upper and lower bounds of the reliability. (orig./HP) [de

  8. Human reliability analysis in support of a level 1 PRA for Surry during midloop operations

    International Nuclear Information System (INIS)

    Lin, J.C.; Bley, D.C.; Chu, T.-L.

    2004-01-01

    The objectives of this Level 1 probabilistic risk assessment (PRA) are to evaluate the important accident sequences initiated during midloop operations and to compare the qualitative and quantitative results with those for accidents initiated during power operations. The primary types of human actions analyzed in this study involve the dynamic operator actions and recovery actions that take place during the accident sequence following an initiating event. Two parts of the human actions were analyzed: failure to diagnose and failure to perform the action. The scope of the Level 1 PRA for Surry during midloop operations includes internal, fire, and flood initiating events. The major categories of dynamic operator actions taken during the accident sequence following an initiating event are: providing makeup to the reactor coolant system (RCS), restoring residual heat removal (RHR) cooling, establishing steam generator reflux cooling, establishing primary feed and spill, establishing gravity feed from refueling water storage tank (RWST), establishing high pressure recirculation, establishing recirculation spray, and cross-connecting RWSTs. All categories are not applicable to all initiating events and all plant operating states (POS). (author)

  9. The Maintenance Personnel Performance Simulation (MAPPS) model: A human reliability analysis tool

    International Nuclear Information System (INIS)

    Knee, H.E.

    1985-01-01

    The Maintenance Personnel Performance Simulation (MAPPS) model is a computerized, stochastic, task-oriented human behavioral model developed to provide estimates of nuclear power plant (NPP) maintenance team performance measures. It is capable of addressing person-machine, person-environment, and person-person relationships, and accounts for interdependencies that exist between the subelements that make up the maintenance task of interest. The primary measures of performance estimated by MAPPS are: 1) the probability of successfully completing the task of interest and 2) the task duration time. MAPPS also estimates a host of other performance indices, including the probability of an undetected error, identification of the most- and least-likely error-prone subelements, and maintenance team stress profiles during task execution

  10. Maintenance Personnel Performance Simulation (MAPPS) model: a human reliability analysis tool

    International Nuclear Information System (INIS)

    Knee, H.E.

    1985-01-01

    The Maintenance Personnel Performance Simulation (MAPPS) model is a computerized, stochastic, task-oriented human behavioral model developed to provide estimates of nuclear power plant (NPP) maintenance team performance measures. It is capable of addressing person-machine, person-environment, and person-person relationships, and accounts for interdependencies that exist between the subelements that make up the maintenance task of interest. The primary measures of performance estimated by MAPPS are: (1) the probability of successfully completing the task of interest; and (2) the task duration time. MAPPS also estimates a host of other performance indices, including the probability of an undetected error, identification of the most- and least-likely error-prone subelements, and maintenance team stress profiles during task execution. The MAPPS model was subjected to a number of evaluation efforts that focused upon its practicality, acceptability, usefulness, and validity. Methods used for these efforts included a case method approach, consensus estimation, and comparison with observed task performance measures at a NPP. Favorable results, such as close agreement between task duration times for two tasks observed in the field (67.0 and 119.8 minutes, respectively), and estimates by MAPPS (72.0 and 124.0 minutes, respectively) enhance the confidence in the future use of MAPPS. 8 refs., 1 fig

  11. A reliability simulation language for reliability analysis

    International Nuclear Information System (INIS)

    Deans, N.D.; Miller, A.J.; Mann, D.P.

    1986-01-01

    The results of work being undertaken to develop a Reliability Description Language (RDL) which will enable reliability analysts to describe complex reliability problems in a simple, clear and unambiguous way are described. Component and system features can be stated in a formal manner and subsequently used, along with control statements to form a structured program. The program can be compiled and executed on a general-purpose computer or special-purpose simulator. (DG)

  12. Scyllac equipment reliability analysis

    International Nuclear Information System (INIS)

    Gutscher, W.D.; Johnson, K.J.

    1975-01-01

    Most of the failures in Scyllac can be related to crowbar trigger cable faults. A new cable has been designed, procured, and is currently undergoing evaluation. When the new cable has been proven, it will be worked into the system as quickly as possible without causing too much additional down time. The cable-tip problem may not be easy or even desirable to solve. A tightly fastened permanent connection that maximizes contact area would be more reliable than the plug-in type of connection in use now, but it would make system changes and repairs much more difficult. The balance of the failures have such a low occurrence rate that they do not cause much down time and no major effort is underway to eliminate them. Even though Scyllac was built as an experimental system and has many thousands of components, its reliability is very good. Because of this the experiment has been able to progress at a reasonable pace

  13. Integrating reliability analysis and design

    International Nuclear Information System (INIS)

    Rasmuson, D.M.

    1980-10-01

    This report describes the Interactive Reliability Analysis Project and demonstrates the advantages of using computer-aided design systems (CADS) in reliability analysis. Common cause failure problems require presentations of systems, analysis of fault trees, and evaluation of solutions to these. Results have to be communicated between the reliability analyst and the system designer. Using a computer-aided design system saves time and money in the analysis of design. Computer-aided design systems lend themselves to cable routing, valve and switch lists, pipe routing, and other component studies. At EG and G Idaho, Inc., the Applicon CADS is being applied to the study of water reactor safety systems

  14. Benchmark of systematic human action reliability procedure

    International Nuclear Information System (INIS)

    Spurgin, A.J.; Hannaman, G.W.; Moieni, P.

    1986-01-01

    Probabilistic risk assessment (PRA) methodology has emerged as one of the most promising tools for assessing the impact of human interactions on plant safety and understanding the importance of the man/machine interface. Human interactions were considered to be one of the key elements in the quantification of accident sequences in a PRA. The approach to quantification of human interactions in past PRAs has not been very systematic. The Electric Power Research Institute sponsored the development of SHARP to aid analysts in developing a systematic approach for the evaluation and quantification of human interactions in a PRA. The SHARP process has been extensively peer reviewed and has been adopted by the Institute of Electrical and Electronics Engineers as the basis of a draft guide for the industry. By carrying out a benchmark process, in which SHARP is an essential ingredient, however, it appears possible to assess the strengths and weaknesses of SHARP to aid human reliability analysts in carrying out human reliability analysis as part of a PRA

  15. Human reliability in probabilistic safety assessments

    International Nuclear Information System (INIS)

    Nunez Mendez, J.

    1989-01-01

    Nowadays a growing interest in medioambiental aspects is detected in our country. It implies an assessment of the risk involved in the industrial processess and installations in order to determine if those are into the acceptable limits. In these safety assessments, among which PSA (Probabilistic Safety Assessments), can be pointed out the role played by the human being in the system is one of the more relevant subjects. (This relevance has been demostrated in the accidents happenned). However in Spain there aren't manuals specifically dedicated to asses the human contribution to risk in the frame of PSAs. This report aims to improve this situation providing: a) a theoretical background to help the reader in the understanding of the nature of the human error, b) a guide to carry out a Human Reliability Analysis and c) a selected overwiev of the techniques and methodologies currently applied in this area. (Author)

  16. Human Reliability in Probabilistic Safety Assessments

    International Nuclear Information System (INIS)

    Nunez Mendez, J.

    1989-01-01

    Nowadays a growing interest in environmental aspects is detected in our country. It implies an assessment of the risk involved in the industrial processes and installations in order to determine if those are into the acceptable limits. In these safety assessments, among which PSA (Probabilistic Safety Assessments), can be pointed out the role played by the human being in the system is one of the more relevant subjects (This relevance has been demonstrated in the accidents happened) . However, in Spain there aren't manuals specifically dedicated to asses the human contribution to risk in the frame of PSAs. This report aims to improve this situation providing: a) a theoretical background to help the reader in the understanding of the nature of the human error, b) a quid to carry out a Human Reliability Analysis and c) a selected overview of the techniques and methodologies currently applied in this area. (Author) 20 refs

  17. Reliability analysis of shutdown system

    International Nuclear Information System (INIS)

    Kumar, C. Senthil; John Arul, A.; Pal Singh, Om; Suryaprakasa Rao, K.

    2005-01-01

    This paper presents the results of reliability analysis of Shutdown System (SDS) of Indian Prototype Fast Breeder Reactor. Reliability analysis carried out using Fault Tree Analysis predicts a value of 3.5 x 10 -8 /de for failure of shutdown function in case of global faults and 4.4 x 10 -8 /de for local faults. Based on 20 de/y, the frequency of shutdown function failure is 0.7 x 10 -6 /ry, which meets the reliability target, set by the Indian Atomic Energy Regulatory Board. The reliability is limited by Common Cause Failure (CCF) of actuation part of SDS and to a lesser extent CCF of electronic components. The failure frequency of individual systems is -3 /ry, which also meets the safety criteria. Uncertainty analysis indicates a maximum error factor of 5 for the top event unavailability

  18. Risk analysis and reliability

    International Nuclear Information System (INIS)

    Uppuluri, V.R.R.

    1979-01-01

    Mathematical foundations of risk analysis are addressed. The importance of having the same probability space in order to compare different experiments is pointed out. Then the following topics are discussed: consequences as random variables with infinite expectations; the phenomenon of rare events; series-parallel systems and different kinds of randomness that could be imposed on such systems; and the problem of consensus of estimates of expert opinion

  19. Ergonomics design and operator training as contributors to human reliability

    International Nuclear Information System (INIS)

    Jackson, A.R.G.; Madden, V.J.; Umbers, I.G.; Williams, J.C.

    1987-01-01

    The safe operation of nuclear reactors depends not only on good physical safety engineering but on the human operators as well. The Central Electricity Generating Board's approach to human reliability includes the following aspects: ergonomics design (task analysis and the development of man-machine interfaces), analysis of human reliability, operational feedback, staff training and assessment, maintenance management, research programmes and management. This paper describes how these combine to achieve the highest practicable level of human reliability, not only for the Sizewell-B pressurized water reactor, but also for the Board's gas-cooled reactors. Examples are used to illustrate the topics considered. (UK)

  20. Human Reliability Data Bank: evaluation results

    International Nuclear Information System (INIS)

    Comer, M.K.; Donovan, M.D.; Gaddy, C.D.

    1985-01-01

    The US Nuclear Regulatory Commission (NRC), Sandia National Laboratories (SNL), and General Physics Corporation are conducting a research program to determine the practicality, acceptability, and usefulness of a Human Reliability Data Bank for nuclear power industry probabilistic risk assessment (PRA). As part of this program, a survey was conducted of existing human reliability data banks from other industries, and a detailed concept of a Data Bank for the nuclear industry was developed. Subsequently, a detailed specification for implementing the Data Bank was developed. An evaluation of this specification was conducted and is described in this report. The evaluation tested data treatment, storage, and retrieval using the Data Bank structure, as modified from NUREG/CR-2744, and detailed procedures for data processing and retrieval, developed prior to this evaluation and documented in the test specification. The evaluation consisted of an Operability Demonstration and Evaluation of the data processing procedures, a Data Retrieval Demonstration and Evaluation, a Retrospective Analysis that included a survey of organizations currently operating data banks for the nuclear power industry, and an Internal Analysis of the current Data Bank System

  1. Impact of Advanced HSIs on Human Reliability

    Energy Technology Data Exchange (ETDEWEB)

    Duc, Duy Le; Kim, Jonghyun [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2013-10-15

    This study investigated how a digitalized control room may influence operators' performance. The new HSI system is highly supportive of knowledge-based works and during complex scenarios. The most noticeable enhancement and gained improvement came from the utilization of the CPS. The results also showed that for different task types, the effects of distinctive features are diverse. Since there is large flexibility in the design of advanced HSI systems, HRA should also consider the detailed design analysis for the plant of interest. Current designs of advanced Main Control Room (MCR) apply digital technology whose features include the Advanced Alarm System (AAS), Digital Information Display System (DIDS), Computerized Procedure System (CPS), and Soft Controls (SCs). Despite the significant improvements made to these features, the full impact have yet to be thoroughly assessed using Human Reliability Analysis (HRA). Furthermore, the evaluation criteria for these new features have not been provided; and there are no available data to perform adjustments for human error probabilities (HEPs), which have been developed for conventional control rooms. The aim of this study is to examine the potential effects of the new Human-System Interface (HSI) features on human reliability. Firstly, the characteristics and functions of the AAS, DIDS, CPS and SCs are assessed and categorized. Secondly, tasks related to the features are discussed, focusing on the differences between conventional and digital control rooms. Qualitative investigation of the impacts is performed by reviewing available literatures. Finally, a new model for the quantitative estimation of HEPs based on the Korean Standard HRA (K-HRA) method is proposed.

  2. Impact of Advanced HSIs on Human Reliability

    International Nuclear Information System (INIS)

    Duc, Duy Le; Kim, Jonghyun

    2013-01-01

    This study investigated how a digitalized control room may influence operators' performance. The new HSI system is highly supportive of knowledge-based works and during complex scenarios. The most noticeable enhancement and gained improvement came from the utilization of the CPS. The results also showed that for different task types, the effects of distinctive features are diverse. Since there is large flexibility in the design of advanced HSI systems, HRA should also consider the detailed design analysis for the plant of interest. Current designs of advanced Main Control Room (MCR) apply digital technology whose features include the Advanced Alarm System (AAS), Digital Information Display System (DIDS), Computerized Procedure System (CPS), and Soft Controls (SCs). Despite the significant improvements made to these features, the full impact have yet to be thoroughly assessed using Human Reliability Analysis (HRA). Furthermore, the evaluation criteria for these new features have not been provided; and there are no available data to perform adjustments for human error probabilities (HEPs), which have been developed for conventional control rooms. The aim of this study is to examine the potential effects of the new Human-System Interface (HSI) features on human reliability. Firstly, the characteristics and functions of the AAS, DIDS, CPS and SCs are assessed and categorized. Secondly, tasks related to the features are discussed, focusing on the differences between conventional and digital control rooms. Qualitative investigation of the impacts is performed by reviewing available literatures. Finally, a new model for the quantitative estimation of HEPs based on the Korean Standard HRA (K-HRA) method is proposed

  3. Reliability Analysis of Wind Turbines

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard

    2008-01-01

    In order to minimise the total expected life-cycle costs of a wind turbine it is important to estimate the reliability level for all components in the wind turbine. This paper deals with reliability analysis for the tower and blades of onshore wind turbines placed in a wind farm. The limit states...... consideres are in the ultimate limit state (ULS) extreme conditions in the standstill position and extreme conditions during operating. For wind turbines, where the magnitude of the loads is influenced by the control system, the ultimate limit state can occur in both cases. In the fatigue limit state (FLS......) the reliability level for a wind turbine placed in a wind farm is considered, and wake effects from neighbouring wind turbines is taken into account. An illustrative example with calculation of the reliability for mudline bending of the tower is considered. In the example the design is determined according...

  4. Reliability analysis in intelligent machines

    Science.gov (United States)

    Mcinroy, John E.; Saridis, George N.

    1990-01-01

    Given an explicit task to be executed, an intelligent machine must be able to find the probability of success, or reliability, of alternative control and sensing strategies. By using concepts for information theory and reliability theory, new techniques for finding the reliability corresponding to alternative subsets of control and sensing strategies are proposed such that a desired set of specifications can be satisfied. The analysis is straightforward, provided that a set of Gaussian random state variables is available. An example problem illustrates the technique, and general reliability results are presented for visual servoing with a computed torque-control algorithm. Moreover, the example illustrates the principle of increasing precision with decreasing intelligence at the execution level of an intelligent machine.

  5. RELIABILITY ANALYSIS OF BENDING ELIABILITY ANALYSIS OF ...

    African Journals Online (AJOL)

    eobe

    Reliability analysis of the safety levels of the criteria slabs, have been .... was also noted [2] that if the risk level or β < 3.1), the ... reliability analysis. A study [6] has shown that all geometric variables, ..... Germany, 1988. 12. Hasofer, A. M and ...

  6. Survey of methods used to asses human reliability in the human factors reliability benchmark exercise

    International Nuclear Information System (INIS)

    Poucet, A.

    1988-01-01

    The Joint Research Centre of the European Commission has organised a Human Factors Reliability Benchmark Exercise (HF-RBE) with the aim to assess the state-of-the-art in human reliability modelling and assessment. Fifteen teams from eleven countries, representing industry, utilities, licensing organisations and research institutes, participate in the HF-RBE, which is organised around two study cases: (1) analysis of routine functional test and maintenance procedures, with the aim to assess the probability of test-induced failures, the probability of failures to remain unrevealed, and the potential to initiate transients because of errors performed in the test; and (2) analysis of human actions during an operational transient, with the aim to assess the probability that the operators will correctly diagnose the malfunctions and take proper corrective action. The paper briefly reports how the HF-RBE was structured and gives an overview of the methods that have been used for predicting human reliability in both study cases. The experience in applying these methods is discussed and the results obtained are compared. (author)

  7. Reliability analysis under epistemic uncertainty

    International Nuclear Information System (INIS)

    Nannapaneni, Saideep; Mahadevan, Sankaran

    2016-01-01

    This paper proposes a probabilistic framework to include both aleatory and epistemic uncertainty within model-based reliability estimation of engineering systems for individual limit states. Epistemic uncertainty is considered due to both data and model sources. Sparse point and/or interval data regarding the input random variables leads to uncertainty regarding their distribution types, distribution parameters, and correlations; this statistical uncertainty is included in the reliability analysis through a combination of likelihood-based representation, Bayesian hypothesis testing, and Bayesian model averaging techniques. Model errors, which include numerical solution errors and model form errors, are quantified through Gaussian process models and included in the reliability analysis. The probability integral transform is used to develop an auxiliary variable approach that facilitates a single-level representation of both aleatory and epistemic uncertainty. This strategy results in an efficient single-loop implementation of Monte Carlo simulation (MCS) and FORM/SORM techniques for reliability estimation under both aleatory and epistemic uncertainty. Two engineering examples are used to demonstrate the proposed methodology. - Highlights: • Epistemic uncertainty due to data and model included in reliability analysis. • A novel FORM-based approach proposed to include aleatory and epistemic uncertainty. • A single-loop Monte Carlo approach proposed to include both types of uncertainties. • Two engineering examples used for illustration.

  8. Human Reliability Analysis. Applicability of the HRA-concept in maintenance shutdown; Analys av maensklig tillfoerlitlighet. HRA-begreppets tillaempbarhet vid revisionsavstaellning

    Energy Technology Data Exchange (ETDEWEB)

    Obenius, Aino (MTO Psykologi AB, Stockholm (SE))

    2007-08-15

    Probabilistic Safety Analysis (PSA) is performed for Swedish nuclear power plants in order to make predictions and improvements of system safety. The analysis of the Three Mile Island and Chernobyl accidents contributed to broaden the approach to nuclear power plant safety. A system perspective focusing on the interaction between aspects of Man, Technology and Organization (MTO) emerged in addition to the development of Human Factors knowledge. To take the human influence on the technical system into consideration when performing PSAs, a Human Reliability Analysis (HRA) is performed. PSA is performed for different stages and plant operating states, and the current state of Swedish analyses is Low power and Shutdown (LPSD), also called Shutdown PSA (SPSA). The purpose of this master's thesis is to describe methods and basic models used when analysing human reliability for the LPSD state. The following questions are at issue: 1. How can the LPSD state be characterised and defined? 2. What is important to take into consideration when performing a LPSD HRA? 3. How can human behaviour be modelled for a LPSD risk analysis? 4. According to available empirical material, how are the questions above treated in performed analysis of human operation during LPSD? 5. How does the result of the questions above affect the way methods for analysis of LPSD could and/or should be developed? The procedure of this project has mainly consisted of literature studies of available theory for modelling of human behaviour and risk analysis of the LPSD state. This study regards analysis of planned outages when maintenance, fuel change, tests and inspections are performed. The outage period is characterised by planned maintenance activities performed in rotating 3-shifts, around the clock, as well as many of the persons performing work tasks on the plant being external contractors. The working conditions are characterised by stress due to heat, radiation and physically demanding or

  9. Reliability analysis techniques in power plant design

    International Nuclear Information System (INIS)

    Chang, N.E.

    1981-01-01

    An overview of reliability analysis techniques is presented as applied to power plant design. The key terms, power plant performance, reliability, availability and maintainability are defined. Reliability modeling, methods of analysis and component reliability data are briefly reviewed. Application of reliability analysis techniques from a design engineering approach to improving power plant productivity is discussed. (author)

  10. Review of some aspects of human reliability quantification

    International Nuclear Information System (INIS)

    Lydell, B.O.Y.; Spurgin, A.J.; Hannaman, G.W.; Lukic, Y.D.

    1986-01-01

    An area in systems reliability considered to be weak, is the characterization and quantification of the role of the operations and maintenance staff in combatting accidents. Several R and D programs are underway to improve the modeling of human interactions and some progress has been made. This paper describes a specific aspect of human reliability analysis which is referred to as modeling of cognitive processes. In particular, the basis for the so- called Human Cognitive Reliability (HCR) model is described and the focus is on its validation and on its benefits and limitations

  11. Proof-of-Concept Demonstrations for Computation-Based Human Reliability Analysis. Modeling Operator Performance During Flooding Scenarios

    International Nuclear Information System (INIS)

    Joe, Jeffrey Clark; Boring, Ronald Laurids; Herberger, Sarah Elizabeth Marie; Mandelli, Diego; Smith, Curtis Lee

    2015-01-01

    The United States (U.S.) Department of Energy (DOE) Light Water Reactor Sustainability (LWRS) program has the overall objective to help sustain the existing commercial nuclear power plants (NPPs). To accomplish this program objective, there are multiple LWRS 'pathways,' or research and development (R&D) focus areas. One LWRS focus area is called the Risk-Informed Safety Margin and Characterization (RISMC) pathway. Initial efforts under this pathway to combine probabilistic and plant multi-physics models to quantify safety margins and support business decisions also included HRA, but in a somewhat simplified manner. HRA experts at Idaho National Laboratory (INL) have been collaborating with other experts to develop a computational HRA approach, called the Human Unimodel for Nuclear Technology to Enhance Reliability (HUNTER), for inclusion into the RISMC framework. The basic premise of this research is to leverage applicable computational techniques, namely simulation and modeling, to develop and then, using RAVEN as a controller, seamlessly integrate virtual operator models (HUNTER) with 1) the dynamic computational MOOSE runtime environment that includes a full-scope plant model, and 2) the RISMC framework PRA models already in use. The HUNTER computational HRA approach is a hybrid approach that leverages past work from cognitive psychology, human performance modeling, and HRA, but it is also a significant departure from existing static and even dynamic HRA methods. This report is divided into five chapters that cover the development of an external flooding event test case and associated statistical modeling considerations.

  12. Using three-dimension virtual reality main control room for integrated system validation and human reliability analysis

    International Nuclear Information System (INIS)

    Yang Chihwei; Cheng Tsungchieh

    2011-01-01

    This study proposes the performance assessment in three-dimension virtual reality (3D-VR) main control room (MCR). The assessment is conducted for integrated system validation (ISV) purposes, and also for human reliability analyses (HRA). This paper describes the latest developments in 3D-VR applications, designated for the familiarization with MCR, specially taking into account the ISV and HRA. The experiences in 3D-VR application, the benefits and advantages of use of VR in training and maintenances of MCR operators in the target NPP are equally presented in this paper. Results gathered from the performance measurement lead to hazard mitigation and reduces the risk of human error in the operation and maintenance of nuclear equipments. The latest developments in simulation techniques, including 3D presentation enhances the above mentioned benefits, brings the MCR simulators closer to reality. In the near future, this type of 3D solutions should be applied more and more often in the design of MCR simulators. The presented 3D-VR are related to the MCR in NPPs, but the concept of composition and navigation through the system's elements can be easily applied for the purpose of any type of technical equipment and shall contribute in a similar manner to hazard prevention. (author)

  13. Proof-of-Concept Demonstrations for Computation-Based Human Reliability Analysis. Modeling Operator Performance During Flooding Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Joe, Jeffrey Clark [Idaho National Lab. (INL), Idaho Falls, ID (United States); Boring, Ronald Laurids [Idaho National Lab. (INL), Idaho Falls, ID (United States); Herberger, Sarah Elizabeth Marie [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mandelli, Diego [Idaho National Lab. (INL), Idaho Falls, ID (United States); Smith, Curtis Lee [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    The United States (U.S.) Department of Energy (DOE) Light Water Reactor Sustainability (LWRS) program has the overall objective to help sustain the existing commercial nuclear power plants (NPPs). To accomplish this program objective, there are multiple LWRS “pathways,” or research and development (R&D) focus areas. One LWRS focus area is called the Risk-Informed Safety Margin and Characterization (RISMC) pathway. Initial efforts under this pathway to combine probabilistic and plant multi-physics models to quantify safety margins and support business decisions also included HRA, but in a somewhat simplified manner. HRA experts at Idaho National Laboratory (INL) have been collaborating with other experts to develop a computational HRA approach, called the Human Unimodel for Nuclear Technology to Enhance Reliability (HUNTER), for inclusion into the RISMC framework. The basic premise of this research is to leverage applicable computational techniques, namely simulation and modeling, to develop and then, using RAVEN as a controller, seamlessly integrate virtual operator models (HUNTER) with 1) the dynamic computational MOOSE runtime environment that includes a full-scope plant model, and 2) the RISMC framework PRA models already in use. The HUNTER computational HRA approach is a hybrid approach that leverages past work from cognitive psychology, human performance modeling, and HRA, but it is also a significant departure from existing static and even dynamic HRA methods. This report is divided into five chapters that cover the development of an external flooding event test case and associated statistical modeling considerations.

  14. Human reliability assessment and probabilistic risk assessment

    International Nuclear Information System (INIS)

    Embrey, D.E.; Lucas, D.A.

    1989-01-01

    Human reliability assessment (HRA) is used within Probabilistic Risk Assessment (PRA) to identify the human errors (both omission and commission) which have a significant effect on the overall safety of the system and to quantify the probability of their occurrence. There exist a variey of HRA techniques and the selection of an appropriate one is often difficult. This paper reviews a number of available HRA techniques and discusses their strengths and weaknesses. The techniques reviewed include: decompositional methods, time-reliability curves and systematic expert judgement techniques. (orig.)

  15. An approach for assessing human decision reliability

    International Nuclear Information System (INIS)

    Pyy, P.

    2000-01-01

    This paper presents a method to study human reliability in decision situations related to nuclear power plant disturbances. Decisions often play a significant role in handling of emergency situations. The method may be applied to probabilistic safety assessments (PSAs) in cases where decision making is an important dimension of an accident sequence. Such situations are frequent e.g. in accident management. In this paper, a modelling approach for decision reliability studies is first proposed. Then, a case study with two decision situations with relatively different characteristics is presented. Qualitative and quantitative findings of the study are discussed. In very simple decision cases with time pressure, time reliability correlation proved out to be a feasible reliability modelling method. In all other decision situations, more advanced probabilistic decision models have to be used. Finally, decision probability assessment by using simulator run results and expert judgement is presented

  16. The SACADA database for human reliability and human performance

    International Nuclear Information System (INIS)

    James Chang, Y.; Bley, Dennis; Criscione, Lawrence; Kirwan, Barry; Mosleh, Ali; Madary, Todd; Nowell, Rodney; Richards, Robert; Roth, Emilie M.; Sieben, Scott; Zoulis, Antonios

    2014-01-01

    Lack of appropriate and sufficient human performance data has been identified as a key factor affecting human reliability analysis (HRA) quality especially in the estimation of human error probability (HEP). The Scenario Authoring, Characterization, and Debriefing Application (SACADA) database was developed by the U.S. Nuclear Regulatory Commission (NRC) to address this data need. An agreement between NRC and the South Texas Project Nuclear Operating Company (STPNOC) was established to support the SACADA development with aims to make the SACADA tool suitable for implementation in the nuclear power plants' operator training program to collect operator performance information. The collected data would support the STPNOC's operator training program and be shared with the NRC for improving HRA quality. This paper discusses the SACADA data taxonomy, the theoretical foundation, the prospective data to be generated from the SACADA raw data to inform human reliability and human performance, and the considerations on the use of simulator data for HRA. Each SACADA data point consists of two information segments: context and performance results. Context is a characterization of the performance challenges to task success. The performance results are the results of performing the task. The data taxonomy uses a macrocognitive functions model for the framework. At a high level, information is classified according to the macrocognitive functions of detecting the plant abnormality, understanding the abnormality, deciding the response plan, executing the response plan, and team related aspects (i.e., communication, teamwork, and supervision). The data are expected to be useful for analyzing the relations between context, error modes and error causes in human performance

  17. Human reliability assessment in a 99Mo/99mTc generator production facility using the standardized plant analysis risk-human (SPAR-H) technique.

    Science.gov (United States)

    Eyvazlou, Meysam; Dadashpour Ahangar, Ali; Rahimi, Azin; Davarpanah, Mohammad Reza; Sayyahi, Seyed Soheil; Mohebali, Mehdi

    2018-02-13

    Reducing human error is an important factor for enhancing safety protocols in various industries. Hence, analysis of the likelihood of human error in nuclear industries such as radiopharmaceutical production facilities has become more essential. This cross-sectional descriptive study was conducted to quantify the probability of human errors in a 99 Mo/ 99m Tc generator production facility in Iran. First, through expert interviews, the production process of the 99 Mo/ 99m Tc generator was analyzed using hierarchical task analysis (HTA). The standardized plant analysis risk-human (SPAR-H) method was then applied in order to calculate the probability of human error. Twenty tasks were determined using HTA. All of the eight performance shaping factors (PSF S ) were evaluated for the tasks. The mean probability of human error was 0.320. The highest and the lowest probability of human error in the 99 Mo/ 99m Tc generator production process, related to the 'loading the generator with the molybdenum solution' task and the 'generator elution' task, were 0.858 and 0.059, respectively. Required measures for reducing the human error probability (HEP) were suggested. These measures were derived from the level of PSF S that were evaluated in this study.

  18. Human factors reliability benchmark exercise, report of the SRD participation

    International Nuclear Information System (INIS)

    Waters, Trevor

    1988-01-01

    Within the scope of the Human Factors Reliability Benchmark Exercise, organised by the Joint Research Centre, Ispra, Italy, the Safety and Reliability Directorate (SRD) team has performed analysis of human factors in two different activities - a routine test and a non-routine operational transient. For both activities, an 'FMEA-like' task, potential errors, and the factors which affect performance. For analysis of the non-routine activity, which involved a significant amount of cognitive processing, such as diagnosis and decision making, a new approach for qualitative analysis has been developed. Modelling has been performed using both event trees and fault trees and examples are provided. Human error probabilities were estimated using the methods Absolute Probability Judgement (APJ), Human Cognitive Reliability Method (HCR), Human Error and Assessment and Reduction Technique (HEART), Success-Likelihood Index Method (SLIM), Technica Empiriza Stima Eurori Operatori (TESEO), and Technique for Human Error Rate Prediction (THERP). A discussion is provided of the lessons learnt in the course of the exercise and unresolved difficulties in the assessment of human reliability. (author)

  19. A human reliability analysis (HRA) method for identifying and assessing the error of commission (EOC) from a diagnosis failure

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Whan; Jung, Won Dea; Park, Jin Yun; Kang, Dae Il

    2005-01-01

    The study deals with a method for systematically identifying and assessing the EOC events that might be caused from a diagnosis failure or misdiagnosis of the expected events in accident scenarios of nuclear power plants. The method for EOC identification and assessment consists of three steps: analysis of the potential for a diagnosis failure (or misdiagnosis), identification of the EOC events from the diagnosis failure, quantitative assessment of the identified EOC events. As a tool for analysing a diagnosis failure, the MisDiagnosis Tree Analysis (MDTA) technique is proposed with the taxonomy of misdiagnosis causes. Also, the guidance on the identification of EOC events and the classification system and data are given for quantitiative assessment. As an applicaton of the proposed method, the EOCs identification and assessment for Younggwang 3 and 4 plants and their impact on the plant risk were performed. As the result, six events or event sequences were considered for diagnosis failures and about 20 new Human Failure Events (HFEs) involving EOCs were identified. According to the assessment of the risk impact of the identified HFEs, they increase the CDF by 11.4 % of the current CDF value, which corresponds to 10.2 % of the new CDF. The small loss of coolant accident (SLOCA) turned out to be a major contributor to the increase of CDF resulting in 9.2 % increaseof the current CDF.

  20. Integration of Human Reliability Analysis Models into the Simulation-Based Framework for the Risk-Informed Safety Margin Characterization Toolkit

    International Nuclear Information System (INIS)

    Boring, Ronald; Mandelli, Diego; Rasmussen, Martin; Ulrich, Thomas; Groth, Katrina; Smith, Curtis

    2016-01-01

    This report presents an application of a computation-based human reliability analysis (HRA) framework called the Human Unimodel for Nuclear Technology to Enhance Reliability (HUNTER). HUNTER has been developed not as a standalone HRA method but rather as framework that ties together different HRA methods to model dynamic risk of human activities as part of an overall probabilistic risk assessment (PRA). While we have adopted particular methods to build an initial model, the HUNTER framework is meant to be intrinsically flexible to new pieces that achieve particular modeling goals. In the present report, the HUNTER implementation has the following goals: • Integration with a high fidelity thermal-hydraulic model capable of modeling nuclear power plant behaviors and transients • Consideration of a PRA context • Incorporation of a solid psychological basis for operator performance • Demonstration of a functional dynamic model of a plant upset condition and appropriate operator response This report outlines these efforts and presents the case study of a station blackout scenario to demonstrate the various modules developed to date under the HUNTER research umbrella.

  1. Integration of Human Reliability Analysis Models into the Simulation-Based Framework for the Risk-Informed Safety Margin Characterization Toolkit

    Energy Technology Data Exchange (ETDEWEB)

    Boring, Ronald [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mandelli, Diego [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rasmussen, Martin [Norwegian Univ. of Science and Technology, Trondheim (Norway). Social Research; Herberger, Sarah [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ulrich, Thomas [Idaho National Lab. (INL), Idaho Falls, ID (United States); Groth, Katrina [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Smith, Curtis [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-06-01

    This report presents an application of a computation-based human reliability analysis (HRA) framework called the Human Unimodel for Nuclear Technology to Enhance Reliability (HUNTER). HUNTER has been developed not as a standalone HRA method but rather as framework that ties together different HRA methods to model dynamic risk of human activities as part of an overall probabilistic risk assessment (PRA). While we have adopted particular methods to build an initial model, the HUNTER framework is meant to be intrinsically flexible to new pieces that achieve particular modeling goals. In the present report, the HUNTER implementation has the following goals: • Integration with a high fidelity thermal-hydraulic model capable of modeling nuclear power plant behaviors and transients • Consideration of a PRA context • Incorporation of a solid psychological basis for operator performance • Demonstration of a functional dynamic model of a plant upset condition and appropriate operator response This report outlines these efforts and presents the case study of a station blackout scenario to demonstrate the various modules developed to date under the HUNTER research umbrella.

  2. Review of cause-based decision tree approach for the development of domestic standard human reliability analysis procedure in low power/shutdown operation probabilistic safety assessment

    International Nuclear Information System (INIS)

    Kang, D. I.; Jung, W. D.

    2003-01-01

    We review the Cause-Based Decision Tree (CBDT) approach to decide whether we incorporate it or not for the development of domestic standard Human Reliability Analysis (HRA) procedure in low power/shutdown operation Probabilistic Safety Assessment (PSA). In this paper, we introduce the cause based decision tree approach, quantify human errors using it, and identify merits and demerits of it in comparision with previously used THERP. The review results show that it is difficult to incorporate the CBDT method for the development of domestic standard HRA procedure in low power/shutdown PSA because the CBDT method need for the subjective judgment of HRA analyst like as THERP. However, it is expected that the incorporation of the CBDT method into the development of domestic standard HRA procedure only for the comparision of quantitative HRA results will relieve the burden of development of detailed HRA procedure and will help maintain consistent quantitative HRA results

  3. Fundamentals and applications of systems reliability analysis

    International Nuclear Information System (INIS)

    Boesebeck, K.; Heuser, F.W.; Kotthoff, K.

    1976-01-01

    The lecture gives a survey on the application of methods of reliability analysis to assess the safety of nuclear power plants. Possible statements of reliability analysis in connection with specifications of the atomic licensing procedure are especially dealt with. Existing specifications of safety criteria are additionally discussed with the help of reliability analysis by the example of the reliability analysis of a reactor protection system. Beyond the limited application to single safety systems, the significance of reliability analysis for a closed risk concept is explained in the last part of the lecture. (orig./LH) [de

  4. Human reliability analysis as part of the Probabilistic Safety Assessment - level 1 for the Kozloduy NPP unit 3

    International Nuclear Information System (INIS)

    Ilieva, M.

    1995-01-01

    Human errors probabilities have been evaluated using Accident Sequence Evaluation Program (ASEP). The model accounts for dynamic human actions as separate top events in event trees and excludes any 'repair' actions and operator actions to backup the failed automatic signals. A small loss of coolant accident (LOCA) is analysed as an example. Full diagram of the event tree and 4 different scenarios of human action are presented. 6 refs., 2 figs., 1 tab

  5. Human reliability analysis as part of the Probabilistic Safety Assessment - level 1 for the Kozloduy NPP unit 3

    Energy Technology Data Exchange (ETDEWEB)

    Ilieva, M [Risk Engineereing Ltd., Sofia (Bulgaria)

    1996-12-31

    Human errors probabilities have been evaluated using Accident Sequence Evaluation Program (ASEP). The model accounts for dynamic human actions as separate top events in event trees and excludes any `repair` actions and operator actions to backup the failed automatic signals. A small loss of coolant accident (LOCA) is analysed as an example. Full diagram of the event tree and 4 different scenarios of human action are presented. 6 refs., 2 figs., 1 tab.

  6. System ergonomics as an approach to improve human reliability

    International Nuclear Information System (INIS)

    Bubb, H.

    1988-01-01

    The application of system technics on ergonomical problems is called system ergonomics. This enables improvements of human reliability by design measures. The precondition for this is the knowledge of how information processing is performed by man and machine. By a separate consideration of sensory processing, cognitive processing, and motory processing it is possible to have a more exact idea of the system element 'man'. The system element 'machine' is well described by differential equations which allow an ergonomical assessment of the manouverability. The knowledge of information processing of man and machine enables a task analysis. This makes appear on one hand the human boundaries depending on the different properties of the task and on the other hand suitable ergonomical solution proposals which improve the reliability of the total system. It is a disadvantage, however, that the change of human reliability by such measures may not be quoted numerically at the moment. (orig.)

  7. Uses of human reliability analysis probabilistic risk assessment results to resolve personnel performance issues that could affect safety

    International Nuclear Information System (INIS)

    O'Brien, J.N.; Spettell, C.M.

    1985-10-01

    This report is the first in a series which documents research aimed at improving the usefulness of Probabilistic Risk Assessment (PRA) results in addressing human risk issues. This first report describes the results of an assessment of how well currently available PRA data addresses human risk issues of current concern to NRC. Findings indicate that PRA data could be far more useful in addressing human risk issues with modification of the development process and documentation structure of PRAs. In addition, information from non-PRA sources could be integrated with PRA data to address many other issues. 12 tabs

  8. Human factors considerations for reliability and safety

    International Nuclear Information System (INIS)

    Carnino, A.

    1985-01-01

    Human factors in many industries have become an important issue, since the last few years. They should be considered during the whole life time of a plant: design, fabrication and construction, licensing, operation. Improvements have been performed in the field of man-machine interface such as procedures, control room lay-out, operator aids, training. In order to meet the needs of reliability and probabilistic risk studies, quantification of human errors has been developed but needs still improvements in the field of cognitive behaviour, diagnosis and representation errors. Data banks to support these quantifications are still in a development stage. This applies to nuclear power plants and several examples are given to illustrate the above ideas. In conclusion, human factors field is in a very quickly evolving process but the tendency is still to adapt the man to the machines whilst the reverse would be desirable

  9. Foundations for a time reliability correlation system to quantify human reliability

    International Nuclear Information System (INIS)

    Dougherty, E.M. Jr.; Fragola, J.R.

    1988-01-01

    Time reliability correlations (TRCs) have been used in human reliability analysis (HRA) in conjunction with probabilistic risk assessment (PRA) to quantify post-initiator human failure events. The first TRCs were judgmental but recent data taken from simulators have provided evidence for development of a system of TRCs. This system has the equational form: t = tau R X tau U , where the first factor is the lognormally distributed random variable of successful response time, derived from the simulator data, and the second factor is a unitary lognormal random variable to account for uncertainty in the model. The first random variable is further factored into a median response time and a factor to account for the dominant type of behavior assumed to be involved in the response and a second factor to account for other influences on the reliability of the response

  10. Human Reliability Analysis for In-Tank Precipitation Alignment and Startup of Emergency Purge Ventilation Equipment. Revision 4

    International Nuclear Information System (INIS)

    Shapiro, B.J.; Britt, T.E.

    1995-06-01

    This report documents the methodology used for calculating the human error probability for establishing air based ventilation using emergency purge ventilation equipment on In-Tank Precipitation (ITP) processing tanks 48 and 49 after a failure of the nitrogen purge system following a seismic event. The analyses were performed according to THERP (Technique for Human Error Rate Prediction) as describes in NUREG/CR-1278-F

  11. Human reliability assessors guide: an overview

    International Nuclear Information System (INIS)

    Humphreys, P.

    1988-01-01

    The Human Reliability Assessors Guide 1 provides a review of techniques currently available for the quantification of Human Error Probabilities. The Guide has two main objectives. The first is to provide a clear and comprehensive description of eight major techniques which can be used to assess human reliability. This is supplemented by case studies taken from practical applications of each technique to industrial problems. The second objective is to provide practical guidelines for the selection of techniques. The selection process is aided by reference to a set of criteria against which each of the eight techniques have been evaluated. Utilising the criteria and critiques, a selection method is presented. This is designed to assist the potential user in choosing the technique, or combination of techniques, most suited to answering the users requirements. For each of the eight selected techniques, a summary of the origins of the technique is provided, together with a method description, detailed case studies, abstracted case studies and supporting references. (author)

  12. On Bayesian System Reliability Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen Ringi, M

    1995-05-01

    The view taken in this thesis is that reliability, the probability that a system will perform a required function for a stated period of time, depends on a person`s state of knowledge. Reliability changes as this state of knowledge changes, i.e. when new relevant information becomes available. Most existing models for system reliability prediction are developed in a classical framework of probability theory and they overlook some information that is always present. Probability is just an analytical tool to handle uncertainty, based on judgement and subjective opinions. It is argued that the Bayesian approach gives a much more comprehensive understanding of the foundations of probability than the so called frequentistic school. A new model for system reliability prediction is given in two papers. The model encloses the fact that component failures are dependent because of a shared operational environment. The suggested model also naturally permits learning from failure data of similar components in non identical environments. 85 refs.

  13. On Bayesian System Reliability Analysis

    International Nuclear Information System (INIS)

    Soerensen Ringi, M.

    1995-01-01

    The view taken in this thesis is that reliability, the probability that a system will perform a required function for a stated period of time, depends on a person's state of knowledge. Reliability changes as this state of knowledge changes, i.e. when new relevant information becomes available. Most existing models for system reliability prediction are developed in a classical framework of probability theory and they overlook some information that is always present. Probability is just an analytical tool to handle uncertainty, based on judgement and subjective opinions. It is argued that the Bayesian approach gives a much more comprehensive understanding of the foundations of probability than the so called frequentistic school. A new model for system reliability prediction is given in two papers. The model encloses the fact that component failures are dependent because of a shared operational environment. The suggested model also naturally permits learning from failure data of similar components in non identical environments. 85 refs

  14. Cost analysis of reliability investigations

    International Nuclear Information System (INIS)

    Schmidt, F.

    1981-01-01

    Taking Epsteins testing theory as a basis, premisses are formulated for the selection of cost-optimized reliability inspection plans. Using an example, the expected testing costs and inspection time periods of various inspection plan types, standardized on the basis of the exponential distribution, are compared. It can be shown that sequential reliability tests usually involve lower costs than failure or time-fixed tests. The most 'costly' test is to be expected with the inspection plan type NOt. (orig.) [de

  15. MR signal-fat-fraction analysis and T2*weighted imaging measure BAT reliably on humans without cold exposure

    NARCIS (Netherlands)

    Holstila, Milja; Pesola, Marko; Saari, Teemu; Koskensalo, Kalle; Raiko, Juho; Borra, Ronald J. H.; Nuutila, Pirjo; Parkkola, Riitta; Virtanen, Kirsi A.

    Objective. Brown adipose tissue (BAT) is compositionally distinct from white adipose tissue (WAT) in terms of triglyceride and water content. In adult humans, the most significant BAT depot is localized in the supraclavicular area. Our aim is to differentiate brown adipose tissue from white adipose

  16. Human reliability program: Components and effects

    International Nuclear Information System (INIS)

    Baley-Downes, S.

    1986-01-01

    The term ''Human Reliability Program'' (HRP) is defined as a series of selective controls which are implemented and integrated to identify the ''insider threat'' from current and prospective employees who are dishonest, disloyal and unreliable. The HRP, although not a prediction of human behaviour, is an excellent tool for decision making and should compliment security and improve employee quality. The HRP consists of several component applications such as management evaluation; appropriate background investigative requirements; occupational health examination and laboratory testing; drug/alcohol screening; psychological testing and interviews; polygraph examination; job related aberrant behaviour recognition; on-going education and training; document control; drug/alcohol rehabilitation; periodic HRP audit; and implementation of an onsite central clearing house. The components and effects of HRP are discussed in further detail in this paper

  17. Human reliability and human factors in complex organizations: epistemological and critical analysis - practical avenues to action; Fiabilite humaine et facteurs humains dans les organisations complexes: analyse epistemologique et critique voies pratiques pour l`action

    Energy Technology Data Exchange (ETDEWEB)

    Llory, A

    1991-08-01

    This article starts out with comment on the existence of persistent problems inherent to probabilistic safety assessments (PSA). It first surveys existing American documents on the subject which make a certain number of criticisms on human reliability analyses, e.g. limitations due to the scant quantities of data available, lack of a basic theoretical model, non-reproducibility of analyses, etc. The article therefore examines and criticizes the epistemological bases of these analyses. One of the fundamental points stressed is that human reliability analyses do not take account of all the special features of the work situation which result in human error (so as to draw up statistical data from a sufficiently representative number of cases), and consequently lose all notion of the `relationships` between human errors and the different aspects of the working environment. The other key points of criticism concern the collective nature of work which is not taken into account, and the frequent confusion between what operatives actually do and their formally prescribed job-tasks. The article proposes aspects to be given thought in order to overcome these difficulties, e.g. quantitative assessment of the social environment within a company, non-linear model for assessment of the accident rate, analysis of stress levels in staff on off-shore platforms. The method approaches used in these three studies are of the same type, and could be transposed to human-reliability problems. The article then goes into greater depth on thinking aimed at developing a `positive` view of the human factor (and not just a `negative` one, i.e. centred on human errors and organizational malfunctions), applying investigation methods developed in the occupational human sciences (occupational psychodynamics, ergonomics, occupational sociology). The importance of operatives working as actors of a team is stressed.

  18. Human reliability impact on in-service inspection

    International Nuclear Information System (INIS)

    Spanner, J.C. Sr.

    1986-01-01

    This paper describes a study conducted to identify, characterize, and evaluate the human reliability aspects of ultrasonic testing/inservice inspection (UT/ISI). Recent measurements of UT/ISI system effectiveness have revealed wide variations in performance; suggesting that insufficient emphasis is being placed on the human reliability aspects of nondestructive examination. It appears that NDE performance can be improved through application of the human factors principles relating to the task, training, procedure, environmental, and individual difference variables. These variables are collectively referred to as performance-shaping factors. A man-machine systems model was developed to describe the UT/ISI process using functional task descriptors. The relative operating characteristic (ROC) analysis method, which is derived from signal detection theory, offers unique attributes for analyzing NDT performance. The results of a limited human factors evaluation conducted in conjunction with a mini-round robin test are also described

  19. Human reliability data collection and modelling

    International Nuclear Information System (INIS)

    1991-09-01

    The main purpose of this document is to review and outline the current state-of-the-art of the Human Reliability Assessment (HRA) used for quantitative assessment of nuclear power plants safe and economical operation. Another objective is to consider Human Performance Indicators (HPI) which can alert plant manager and regulator to departures from states of normal and acceptable operation. These two objectives are met in the three sections of this report. The first objective has been divided into two areas, based on the location of the human actions being considered. That is, the modelling and data collection associated with control room actions are addressed first in chapter 1 while actions outside the control room (including maintenance) are addressed in chapter 2. Both chapters 1 and 2 present a brief outline of the current status of HRA for these areas, and major outstanding issues. Chapter 3 discusses HPI. Such performance indicators can signal, at various levels, changes in factors which influence human performance. The final section of this report consists of papers presented by the participants of the Technical Committee Meeting. A separate abstract was prepared for each of these papers. Refs, figs and tabs

  20. Reliability Analysis of Money Habitudes

    Science.gov (United States)

    Delgadillo, Lucy M.; Bushman, Brittani S.

    2015-01-01

    Use of the Money Habitudes exercise has gained popularity among various financial professionals. This article reports on the reliability of this resource. A survey administered to young adults at a western state university was conducted, and each Habitude or "domain" was analyzed using Cronbach's alpha procedures. Results showed all six…

  1. Power system reliability analysis using fault trees

    International Nuclear Information System (INIS)

    Volkanovski, A.; Cepin, M.; Mavko, B.

    2006-01-01

    The power system reliability analysis method is developed from the aspect of reliable delivery of electrical energy to customers. The method is developed based on the fault tree analysis, which is widely applied in the Probabilistic Safety Assessment (PSA). The method is adapted for the power system reliability analysis. The method is developed in a way that only the basic reliability parameters of the analysed power system are necessary as an input for the calculation of reliability indices of the system. The modeling and analysis was performed on an example power system consisting of eight substations. The results include the level of reliability of current power system configuration, the combinations of component failures resulting in a failed power delivery to loads, and the importance factors for components and subsystems. (author)

  2. DOE Human Reliability Program Removals Report 2004-2006

    International Nuclear Information System (INIS)

    Center for Human Reliability Studies

    2007-01-01

    This report presents results of the comprehensive data analysis and assessment of all U.S. Department of Energy (DOE) and National Nuclear Security Administration (NNSA) facilities that have positions requiring workers to be certified in the Human Reliability Program (HRP). Those facilities include: Albuquerque, Amarillo, DOE Headquarters, Hanford, Idaho, Nevada, Oak Ridge, Oakland, and Savannah River. The HRP was established to ensure, through continuous review and evaluation, the reliability of individuals who have access to the DOE's most sensitive facilities, materials, and information

  3. [Study of the relationship between human quality and reliability].

    Science.gov (United States)

    Long, S; Wang, C; Wang, L i; Yuan, J; Liu, H; Jiao, X

    1997-02-01

    To clarify the relationship between human quality and reliability, 1925 experiments in 20 subjects were carried out to study the relationship between disposition character, digital memory, graphic memory, multi-reaction time and education level and simulated aircraft operation. Meanwhile, effects of task difficulty and enviromental factor on human reliability were also studied. The results showed that human quality can be predicted and evaluated through experimental methods. The better the human quality, the higher the human reliability.

  4. Reliability analysis of software based safety functions

    International Nuclear Information System (INIS)

    Pulkkinen, U.

    1993-05-01

    The methods applicable in the reliability analysis of software based safety functions are described in the report. Although the safety functions also include other components, the main emphasis in the report is on the reliability analysis of software. The check list type qualitative reliability analysis methods, such as failure mode and effects analysis (FMEA), are described, as well as the software fault tree analysis. The safety analysis based on the Petri nets is discussed. The most essential concepts and models of quantitative software reliability analysis are described. The most common software metrics and their combined use with software reliability models are discussed. The application of software reliability models in PSA is evaluated; it is observed that the recent software reliability models do not produce the estimates needed in PSA directly. As a result from the study some recommendations and conclusions are drawn. The need of formal methods in the analysis and development of software based systems, the applicability of qualitative reliability engineering methods in connection to PSA and the need to make more precise the requirements for software based systems and their analyses in the regulatory guides should be mentioned. (orig.). (46 refs., 13 figs., 1 tab.)

  5. Human reliability data bank: feasibility study

    International Nuclear Information System (INIS)

    Comer, K.; Miller, D.P.; Donovan, M.

    1984-01-01

    The US Nuclear Regulatory Commission and Sandia National Laboratories have been developing a plan for a human reliability data bank since August 1981. This research is in response to the data needs of the nuclear power industry's probabilistic risk assessment community. The three phases of the program are to: (A) develop the data bank concept, (B) develop an implementation plan and conduct a feasibility study, and (C) assist a sponsor in implementing the data bank. The program is now in Phase B. This paper describes the methods used in the feasibility study. Decisions to be made in the future regarding full-scale implementation will be based, in part, on the outcome of this study. 3 references, 2 figures

  6. Quantification of human reliability in probabilistic safety assessment

    International Nuclear Information System (INIS)

    Hirschberg, S.; Dankg, Vinh N.

    1996-01-01

    Human performance may substantially influence the reliability and safety of complex technical systems. For this reason, Human Reliability Analysis (HRA) constitutes an important part of Probabilistic Safety Assessment (PSAs) or Quantitative Risk Analyses (QRAs). The results of these studies as well as analyses of past accidents and incidents clearly demonstrate the importance of human interactions. The contribution of human errors to the core damage frequency (CDF), as estimated in the Swedish nuclear PSAs, are between 15 and 88%. A survey of the FRAs in the Swiss PSAs shows that also for the Swiss nuclear power plants the estimated HE contributions are substantial (49% of the CDF due to internal events in the case of Beznau and 70% in the case of Muehleberg; for the total CDF, including external events, 25% respectively 20%). Similar results can be extracted from the PSAs carried out for French, German, and US plants. In PSAs or QRAs, the adequate treatment of the human interactions with the system is a key to the understanding of accident sequences and their relative importance to overall risk. The main objectives of HRA are: first, to ensure that the key human interactions are systematically identified and incorporated into the safety analysis in a traceable manner, and second, to quantify the probabilities of their success and failure. Adopting a structured and systematic approach to the assessment of human performance makes it possible to provide greater confidence that the safety and availability of human-machine systems is not unduly jeopardized by human performance problems. Section 2 discusses the different types of human interactions analysed in PSAs. More generally, the section presents how HRA fits in the overall safety analysis, that is, how the human interactions to be quantified are identified. Section 3 addresses the methods for quantification. Section 4 concludes the paper by presenting some recommendations and pointing out the limitations of the

  7. SHARP1: A revised systematic human action reliability procedure

    International Nuclear Information System (INIS)

    Wakefield, D.J.; Parry, G.W.; Hannaman, G.W.; Spurgin, A.J.

    1990-12-01

    Individual plant examinations (IPE) are being performed by utilities to evaluate plant-specific vulnerabilities to severe accidents. A major tool in performing an IPE is a probabilistic risk assessment (PRA). The importance of human interactions in determining the plant response in past PRAs is well documented. The modeling and quantification of the probabilities of human interactions have been the subjects of considerable research by the Electric Power Research Institute (EPRI). A revised framework, SHARP1, for incorporating human interactions into PRA is summarized in this report. SHARP1 emphasizes that the process stages are iterative and directed at specific goals rather than being performed sequentially in a stepwise procedure. This expanded summary provides the reader with a flavor of the full report content. Excerpts from the full report are presented, following the same outline as the full report. In the full report, the interface of the human reliability analysis with the plant logic model development in a PRA is given special attention. In addition to describing a methodology framework, the report also discusses the types of human interactions to be evaluated, and how to formulate a project team to perform the human reliability analysis. A concise description and comparative evaluation of the selected existing methods of quantification of human error are also presented. Four case studies are also provided to illustrate the SHARP1 process

  8. Reliability analysis of reactor pressure vessel intensity

    International Nuclear Information System (INIS)

    Zheng Liangang; Lu Yongbo

    2012-01-01

    This paper performs the reliability analysis of reactor pressure vessel (RPV) with ANSYS. The analysis method include direct Monte Carlo Simulation method, Latin Hypercube Sampling, central composite design and Box-Behnken Matrix design. The RPV integrity reliability under given input condition is proposed. The result shows that the effects on the RPV base material reliability are internal press, allowable basic stress and elasticity modulus of base material in descending order, and the effects on the bolt reliability are allowable basic stress of bolt material, preload of bolt and internal press in descending order. (authors)

  9. Reliability Analysis of Adhesive Bonded Scarf Joints

    DEFF Research Database (Denmark)

    Kimiaeifar, Amin; Toft, Henrik Stensgaard; Lund, Erik

    2012-01-01

    element analysis (FEA). For the reliability analysis a design equation is considered which is related to a deterministic code-based design equation where reliability is secured by partial safety factors together with characteristic values for the material properties and loads. The failure criteria......A probabilistic model for the reliability analysis of adhesive bonded scarfed lap joints subjected to static loading is developed. It is representative for the main laminate in a wind turbine blade subjected to flapwise bending. The structural analysis is based on a three dimensional (3D) finite...... are formulated using a von Mises, a modified von Mises and a maximum stress failure criterion. The reliability level is estimated for the scarfed lap joint and this is compared with the target reliability level implicitly used in the wind turbine standard IEC 61400-1. A convergence study is performed to validate...

  10. Discrete event simulation versus conventional system reliability analysis approaches

    DEFF Research Database (Denmark)

    Kozine, Igor

    2010-01-01

    Discrete Event Simulation (DES) environments are rapidly developing and appear to be promising tools for building reliability and risk analysis models of safety-critical systems and human operators. If properly developed, they are an alternative to the conventional human reliability analysis models...... and systems analysis methods such as fault and event trees and Bayesian networks. As one part, the paper describes briefly the author’s experience in applying DES models to the analysis of safety-critical systems in different domains. The other part of the paper is devoted to comparing conventional approaches...

  11. Reliability analysis of digital I and C systems at KAERI

    International Nuclear Information System (INIS)

    Kim, Man Cheol

    2013-01-01

    This paper provides an overview of the ongoing research activities on a reliability analysis of digital instrumentation and control (I and C) systems of nuclear power plants (NPPs) performed by the Korea Atomic Energy Research Institute (KAERI). The research activities include the development of a new safety-critical software reliability analysis method by integrating the advantages of existing software reliability analysis methods, a fault coverage estimation method based on fault injection experiments, and a new human reliability analysis method for computer-based main control rooms (MCRs) based on human performance data from the APR-1400 full-scope simulator. The research results are expected to be used to address various issues such as the licensing issues related to digital I and C probabilistic safety assessment (PSA) for advanced digital-based NPPs. (author)

  12. Radiocarbon dating uncertainty and the reliability of the PEWMA method of time-series analysis for research on long-term human-environment interaction.

    Science.gov (United States)

    Carleton, W Christopher; Campbell, David; Collard, Mark

    2018-01-01

    Statistical time-series analysis has the potential to improve our understanding of human-environment interaction in deep time. However, radiocarbon dating-the most common chronometric technique in archaeological and palaeoenvironmental research-creates challenges for established statistical methods. The methods assume that observations in a time-series are precisely dated, but this assumption is often violated when calibrated radiocarbon dates are used because they usually have highly irregular uncertainties. As a result, it is unclear whether the methods can be reliably used on radiocarbon-dated time-series. With this in mind, we conducted a large simulation study to investigate the impact of chronological uncertainty on a potentially useful time-series method. The method is a type of regression involving a prediction algorithm called the Poisson Exponentially Weighted Moving Average (PEMWA). It is designed for use with count time-series data, which makes it applicable to a wide range of questions about human-environment interaction in deep time. Our simulations suggest that the PEWMA method can often correctly identify relationships between time-series despite chronological uncertainty. When two time-series are correlated with a coefficient of 0.25, the method is able to identify that relationship correctly 20-30% of the time, providing the time-series contain low noise levels. With correlations of around 0.5, it is capable of correctly identifying correlations despite chronological uncertainty more than 90% of the time. While further testing is desirable, these findings indicate that the method can be used to test hypotheses about long-term human-environment interaction with a reasonable degree of confidence.

  13. Suggested improvements to the definitions of Standardized Plant Analysis of Risk-Human Reliability Analysis (SPAR-H) performance shaping factors, their levels and multipliers and the nominal tasks

    International Nuclear Information System (INIS)

    Laumann, Karin; Rasmussen, Martin

    2016-01-01

    This paper discusses the definitions and content of eight performance shaping factors (PSFs) used in Standardized Plant Analysis of Risk-Human Reliability Analysis (SPAR-H) and their levels and multipliers. Definitions of nominal tasks are also discussed. The discussion is based on a review of literature on PSFs, interviews with consultants who have carried out SPAR-H analysis in the petroleum industry and an evaluation of human reliability analysis reports based on SPAR-H analysis. We concluded that SPAR-H definitions and descriptions of the PSFs are unclear and overlap too much, making it difficult for the analyst to choose between them and select the appropriate level. This reduces inter-rater reliability and thus the consistency of SPAR-H analyses. New definitions of the PSFs, levels and multipliers are suggested with the aim to develop more specific definitions of the PSFs in order to increase the inter-rater reliability of SPAR-H. Another aim was to construct more varied and more nuanced levels and multipliers to improve the capacity of SPAR-H analysis to capture the degree of difficulty faced by operators in different scenarios. We also suggest that only one of two nominal SPAR-H tasks should be retained owing to the difficulty in distinguishing between them. - Highlights: • The SPAR-H guidelines should be revised. • Descriptions of the PSFs should be improved. • New definitions should reduce overlap between the PSFs. • The multipliers are based on an “old” method and should be revised. • Some PSF levels and multipliers in SPAR-H are not logical.

  14. System Reliability Analysis Considering Correlation of Performances

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Saekyeol; Lee, Tae Hee [Hanyang Univ., Seoul (Korea, Republic of); Lim, Woochul [Mando Corporation, Seongnam (Korea, Republic of)

    2017-04-15

    Reliability analysis of a mechanical system has been developed in order to consider the uncertainties in the product design that may occur from the tolerance of design variables, uncertainties of noise, environmental factors, and material properties. In most of the previous studies, the reliability was calculated independently for each performance of the system. However, the conventional methods cannot consider the correlation between the performances of the system that may lead to a difference between the reliability of the entire system and the reliability of the individual performance. In this paper, the joint probability density function (PDF) of the performances is modeled using a copula which takes into account the correlation between performances of the system. The system reliability is proposed as the integral of joint PDF of performances and is compared with the individual reliability of each performance by mathematical examples and two-bar truss example.

  15. System Reliability Analysis Considering Correlation of Performances

    International Nuclear Information System (INIS)

    Kim, Saekyeol; Lee, Tae Hee; Lim, Woochul

    2017-01-01

    Reliability analysis of a mechanical system has been developed in order to consider the uncertainties in the product design that may occur from the tolerance of design variables, uncertainties of noise, environmental factors, and material properties. In most of the previous studies, the reliability was calculated independently for each performance of the system. However, the conventional methods cannot consider the correlation between the performances of the system that may lead to a difference between the reliability of the entire system and the reliability of the individual performance. In this paper, the joint probability density function (PDF) of the performances is modeled using a copula which takes into account the correlation between performances of the system. The system reliability is proposed as the integral of joint PDF of performances and is compared with the individual reliability of each performance by mathematical examples and two-bar truss example.

  16. Reliability analysis using network simulation

    International Nuclear Information System (INIS)

    Engi, D.

    1985-01-01

    The models that can be used to provide estimates of the reliability of nuclear power systems operate at many different levels of sophistication. The least-sophisticated models treat failure processes that entail only time-independent phenomena (such as demand failure). More advanced models treat processes that also include time-dependent phenomena such as run failure and possibly repair. However, many of these dynamic models are deficient in some respects because they either disregard the time-dependent phenomena that cannot be expressed in closed-form analytic terms or because they treat these phenomena in quasi-static terms. The next level of modeling requires a dynamic approach that incorporates not only procedures for treating all significant time-dependent phenomena but also procedures for treating these phenomena when they are conditionally linked or characterized by arbitrarily selected probability distributions. The level of sophistication that is required is provided by a dynamic, Monte Carlo modeling approach. A computer code that uses a dynamic, Monte Carlo modeling approach is Q-GERT (Graphical Evaluation and Review Technique - with Queueing), and the present study had demonstrated the feasibility of using Q-GERT for modeling time-dependent, unconditionally and conditionally linked phenomena that are characterized by arbitrarily selected probability distributions

  17. Analysis of information security reliability: A tutorial

    International Nuclear Information System (INIS)

    Kondakci, Suleyman

    2015-01-01

    This article presents a concise reliability analysis of network security abstracted from stochastic modeling, reliability, and queuing theories. Network security analysis is composed of threats, their impacts, and recovery of the failed systems. A unique framework with a collection of the key reliability models is presented here to guide the determination of the system reliability based on the strength of malicious acts and performance of the recovery processes. A unique model, called Attack-obstacle model, is also proposed here for analyzing systems with immunity growth features. Most computer science curricula do not contain courses in reliability modeling applicable to different areas of computer engineering. Hence, the topic of reliability analysis is often too diffuse to most computer engineers and researchers dealing with network security. This work is thus aimed at shedding some light on this issue, which can be useful in identifying models, their assumptions and practical parameters for estimating the reliability of threatened systems and for assessing the performance of recovery facilities. It can also be useful for the classification of processes and states regarding the reliability of information systems. Systems with stochastic behaviors undergoing queue operations and random state transitions can also benefit from the approaches presented here. - Highlights: • A concise survey and tutorial in model-based reliability analysis applicable to information security. • A framework of key modeling approaches for assessing reliability of networked systems. • The framework facilitates quantitative risk assessment tasks guided by stochastic modeling and queuing theory. • Evaluation of approaches and models for modeling threats, failures, impacts, and recovery analysis of information systems

  18. Design-related influencing factors of the computerized procedure system for inclusion into human reliability analysis of the advanced control room

    International Nuclear Information System (INIS)

    Kim, Jaewhan; Lee, Seung Jun; Jang, Seung Cheol; Ahn, Kwang-Il; Shin, Yeong Cheol

    2013-01-01

    This paper presents major design factors of the computerized procedure system (CPS) by task characteristics/requirements, with individual relative weight evaluated by the analytic hierarchy process (AHP) technique, for inclusion into human reliability analysis (HRA) of the advanced control rooms. Task characteristics/requirements of an individual procedural step are classified into four categories according to the dynamic characteristics of an emergency situation: (1) a single-static step, (2) a single-dynamic and single-checking step, (3) a single-dynamic and continuous-monitoring step, and (4) a multiple-dynamic and continuous-monitoring step. According to the importance ranking evaluation by the AHP technique, ‘clearness of the instruction for taking action’, ‘clearness of the instruction and its structure for rule interpretation’, and ‘adequate provision of requisite information’ were rated as of being higher importance for all the task classifications. Importance of ‘adequacy of the monitoring function’ and ‘adequacy of representation of the dynamic link or relationship between procedural steps’ is dependent upon task characteristics. The result of the present study gives a valuable insight on which design factors of the CPS should be incorporated, with relative importance or weight between design factors, into HRA of the advanced control rooms. (author)

  19. Reliability analysis of stiff versus flexible piping

    International Nuclear Information System (INIS)

    Lu, S.C.

    1985-01-01

    The overall objective of this research project is to develop a technical basis for flexible piping designs which will improve piping reliability and minimize the use of pipe supports, snubbers, and pipe whip restraints. The current study was conducted to establish the necessary groundwork based on the piping reliability analysis. A confirmatory piping reliability assessment indicated that removing rigid supports and snubbers tends to either improve or affect very little the piping reliability. The authors then investigated a couple of changes to be implemented in Regulatory Guide (RG) 1.61 and RG 1.122 aimed at more flexible piping design. They concluded that these changes substantially reduce calculated piping responses and allow piping redesigns with significant reduction in number of supports and snubbers without violating ASME code requirements. Furthermore, the more flexible piping redesigns are capable of exhibiting reliability levels equal to or higher than the original stiffer design. An investigation of the malfunction of pipe whip restraints confirmed that the malfunction introduced higher thermal stresses and tended to reduce the overall piping reliability. Finally, support and component reliabilities were evaluated based on available fragility data. Results indicated that the support reliability usually exhibits a moderate decrease as the piping flexibility increases. Most on-line pumps and valves showed an insignificant reduction in reliability for a more flexible piping design

  20. Preliminary Human Reliability Issues in Reviewing SMART PSA

    International Nuclear Information System (INIS)

    Lee, Chang Ju; Sheen, Cheol

    2010-01-01

    Human reliability analysis (HRA) identifies the human failure events (HFEs) that can negatively impact normal or emergency plant operations, and systematically estimates probabilities of HFEs using data (when available), models, or expert judgment. In case of newly-conceptualized reactors like SMART (System-integrated Modular Advanced Reactor), HRA results must be provided by first evaluating the applicability of a set of human errors that has been typically applied in PSAs for existing PWRs. Additional human errors should also be identified reflecting its unique design and operational features. The objective of this paper is double-folded: to discuss a direction of HRA used in confirming risk level of SAMRT-type reactors; and to extract preliminarily considerable points or issues for regulatory verification, referred to available safety guides

  1. Twenty-fifth water reactor safety information meeting: Proceedings. Volume 2: Human reliability analysis and human performance evaluation; Technical issues related to rulemakings; Risk-informed, performance-based initiatives; High burn-up fuel research

    International Nuclear Information System (INIS)

    Monteleone, S.

    1998-03-01

    This three-volume report contains papers presented at the conference. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from France, Japan, Norway, and Russia. The titles of the papers and the names of the authors have been updated and may differ from those that appeared in the final program of the meeting. This volume contains the following: (1) human reliability analysis and human performance evaluation; (2) technical issues related to rulemakings; (3) risk-informed, performance-based initiatives; and (4) high burn-up fuel research

  2. Twenty-fifth water reactor safety information meeting: Proceedings. Volume 2: Human reliability analysis and human performance evaluation; Technical issues related to rulemakings; Risk-informed, performance-based initiatives; High burn-up fuel research

    Energy Technology Data Exchange (ETDEWEB)

    Monteleone, S. [comp.] [Brookhaven National Lab., Upton, NY (United States)

    1998-03-01

    This three-volume report contains papers presented at the conference. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from France, Japan, Norway, and Russia. The titles of the papers and the names of the authors have been updated and may differ from those that appeared in the final program of the meeting. This volume contains the following: (1) human reliability analysis and human performance evaluation; (2) technical issues related to rulemakings; (3) risk-informed, performance-based initiatives; and (4) high burn-up fuel research. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  3. Reliability and validity of risk analysis

    International Nuclear Information System (INIS)

    Aven, Terje; Heide, Bjornar

    2009-01-01

    In this paper we investigate to what extent risk analysis meets the scientific quality requirements of reliability and validity. We distinguish between two types of approaches within risk analysis, relative frequency-based approaches and Bayesian approaches. The former category includes both traditional statistical inference methods and the so-called probability of frequency approach. Depending on the risk analysis approach, the aim of the analysis is different, the results are presented in different ways and consequently the meaning of the concepts reliability and validity are not the same.

  4. Multi-Disciplinary System Reliability Analysis

    Science.gov (United States)

    Mahadevan, Sankaran; Han, Song

    1997-01-01

    The objective of this study is to develop a new methodology for estimating the reliability of engineering systems that encompass multiple disciplines. The methodology is formulated in the context of the NESSUS probabilistic structural analysis code developed under the leadership of NASA Lewis Research Center. The NESSUS code has been successfully applied to the reliability estimation of a variety of structural engineering systems. This study examines whether the features of NESSUS could be used to investigate the reliability of systems in other disciplines such as heat transfer, fluid mechanics, electrical circuits etc., without considerable programming effort specific to each discipline. In this study, the mechanical equivalence between system behavior models in different disciplines are investigated to achieve this objective. A new methodology is presented for the analysis of heat transfer, fluid flow, and electrical circuit problems using the structural analysis routines within NESSUS, by utilizing the equivalence between the computational quantities in different disciplines. This technique is integrated with the fast probability integration and system reliability techniques within the NESSUS code, to successfully compute the system reliability of multi-disciplinary systems. Traditional as well as progressive failure analysis methods for system reliability estimation are demonstrated, through a numerical example of a heat exchanger system involving failure modes in structural, heat transfer and fluid flow disciplines.

  5. Reliability analysis techniques for the design engineer

    International Nuclear Information System (INIS)

    Corran, E.R.; Witt, H.H.

    1982-01-01

    This paper describes a fault tree analysis package that eliminates most of the housekeeping tasks involved in proceeding from the initial construction of a fault tree to the final stage of presenting a reliability analysis in a safety report. It is suitable for designers with relatively little training in reliability analysis and computer operation. Users can rapidly investigate the reliability implications of various options at the design stage and evolve a system which meets specified reliability objectives. Later independent review is thus unlikely to reveal major shortcomings necessitating modification and project delays. The package operates interactively, allowing the user to concentrate on the creative task of developing the system fault tree, which may be modified and displayed graphically. For preliminary analysis, system data can be derived automatically from a generic data bank. As the analysis proceeds, improved estimates of critical failure rates and test and maintenance schedules can be inserted. The technique is applied to the reliability analysis of the recently upgraded HIFAR Containment Isolation System. (author)

  6. Reliability analysis of Angra I safety systems

    International Nuclear Information System (INIS)

    Oliveira, L.F.S. de; Soto, J.B.; Maciel, C.C.; Gibelli, S.M.O.; Fleming, P.V.; Arrieta, L.A.

    1980-07-01

    An extensive reliability analysis of some safety systems of Angra I, are presented. The fault tree technique, which has been successfully used in most reliability studies of nuclear safety systems performed to date is employed. Results of a quantitative determination of the unvailability of the accumulator and the containment spray injection systems are presented. These results are also compared to those reported in WASH-1400. (E.G.) [pt

  7. Swimming pool reactor reliability and safety analysis

    International Nuclear Information System (INIS)

    Li Zhaohuan

    1997-01-01

    A reliability and safety analysis of Swimming Pool Reactor in China Institute of Atomic Energy is done by use of event/fault tree technique. The paper briefly describes the analysis model, analysis code and main results. Meanwhile it also describes the impact of unassigned operation status on safety, the estimation of effectiveness of defense tactics in maintenance against common cause failure, the effectiveness of recovering actions on the system reliability, the comparison of occurrence frequencies of the core damage by use of generic and specific data

  8. Reliability analysis techniques for the design engineer

    International Nuclear Information System (INIS)

    Corran, E.R.; Witt, H.H.

    1980-01-01

    A fault tree analysis package is described that eliminates most of the housekeeping tasks involved in proceeding from the initial construction of a fault tree to the final stage of presenting a reliability analysis in a safety report. It is suitable for designers with relatively little training in reliability analysis and computer operation. Users can rapidly investigate the reliability implications of various options at the design stage, and evolve a system which meets specified reliability objectives. Later independent review is thus unlikely to reveal major shortcomings necessitating modification and projects delays. The package operates interactively allowing the user to concentrate on the creative task of developing the system fault tree, which may be modified and displayed graphically. For preliminary analysis system data can be derived automatically from a generic data bank. As the analysis procedes improved estimates of critical failure rates and test and maintenance schedules can be inserted. The computations are standard, - identification of minimal cut-sets, estimation of reliability parameters, and ranking of the effect of the individual component failure modes and system failure modes on these parameters. The user can vary the fault trees and data on-line, and print selected data for preferred systems in a form suitable for inclusion in safety reports. A case history is given - that of HIFAR containment isolation system. (author)

  9. Reliability Analysis of Elasto-Plastic Structures

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle; Sørensen, John Dalsgaard

    1984-01-01

    . Failure of this type of system is defined either as formation of a mechanism or by failure of a prescribed number of elements. In the first case failure is independent of the order in which the elements fail, but this is not so by the second definition. The reliability analysis consists of two parts...... are described and the two definitions of failure can be used by the first formulation, but only the failure definition based on formation of a mechanism by the second formulation. The second part of the reliability analysis is an estimate of the failure probability for the structure on the basis...

  10. Reliability analysis and assessment of structural systems

    International Nuclear Information System (INIS)

    Yao, J.T.P.; Anderson, C.A.

    1977-01-01

    The study of structural reliability deals with the probability of having satisfactory performance of the structure under consideration within any specific time period. To pursue this study, it is necessary to apply available knowledge and methodology in structural analysis (including dynamics) and design, behavior of materials and structures, experimental mechanics, and the theory of probability and statistics. In addition, various severe loading phenomena such as strong motion earthquakes and wind storms are important considerations. For three decades now, much work has been done on reliability analysis of structures, and during this past decade, certain so-called 'Level I' reliability-based design codes have been proposed and are in various stages of implementation. These contributions will be critically reviewed and summarized in this paper. Because of the undesirable consequences resulting from the failure of nuclear structures, it is important and desirable to consider the structural reliability in the analysis and design of these structures. Moreover, after these nuclear structures are constructed, it is desirable for engineers to be able to assess the structural reliability periodically as well as immediately following the occurrence of severe loading conditions such as a strong-motion earthquake. During this past decade, increasing use has been made of techniques of system identification in structural engineering. On the basis of non-destructive test results, various methods have been developed to obtain an adequate mathematical model (such as the equations of motion with more realistic parameters) to represent the structural system

  11. Time-dependent reliability analysis of nuclear reactor operators using probabilistic network models

    International Nuclear Information System (INIS)

    Oka, Y.; Miyata, K.; Kodaira, H.; Murakami, S.; Kondo, S.; Togo, Y.

    1987-01-01

    Human factors are very important for the reliability of a nuclear power plant. Human behavior has essentially a time-dependent nature. The details of thinking and decision making processes are important for detailed analysis of human reliability. They have, however, not been well considered by the conventional methods of human reliability analysis. The present paper describes the models for the time-dependent and detailed human reliability analysis. Recovery by an operator is taken into account and two-operators models are also presented

  12. Reliability Analysis of a Steel Frame

    Directory of Open Access Journals (Sweden)

    M. Sýkora

    2002-01-01

    Full Text Available A steel frame with haunches is designed according to Eurocodes. The frame is exposed to self-weight, snow, and wind actions. Lateral-torsional buckling appears to represent the most critical criterion, which is considered as a basis for the limit state function. In the reliability analysis, the probabilistic models proposed by the Joint Committee for Structural Safety (JCSS are used for basic variables. The uncertainty model coefficients take into account the inaccuracy of the resistance model for the haunched girder and the inaccuracy of the action effect model. The time invariant reliability analysis is based on Turkstra's rule for combinations of snow and wind actions. The time variant analysis describes snow and wind actions by jump processes with intermittencies. Assuming a 50-year lifetime, the obtained values of the reliability index b vary within the range from 3.95 up to 5.56. The cross-profile IPE 330 designed according to Eurocodes seems to be adequate. It appears that the time invariant reliability analysis based on Turkstra's rule provides considerably lower values of b than those obtained by the time variant analysis.

  13. Human reliability assessment on the basis of operating experience

    International Nuclear Information System (INIS)

    Straeter, O.

    1997-01-01

    For development of methodology, available models for qualitative assessment of human errors (e.g. by Swain, Hacker, Rasmussen) and a variety of known systematic approaches for quantitiative assessment of inadequate human action (e.g. THERP, ASEP, HCR, SLIM) were taken as a basis to establish a job specification, which in turn was used for developing a method for acquisition, characterisation and evaluation of errors. This method encompasses the two processes of event analysis and event evaluation: The first step comprises analysis of events by analysis of information describing the conditions and scenarios of relevance to the inadequate human action examined. In addition to the description of process sequences, information is taken into account on possible conditions that may bring about failure. As an assessment of human reliability requires manifold approaches for evaluation, a connectionistic procedure was developed for evaluation of the compilation of events based on a debate about various approaches from the domain of artificial intelligence (AI). This procedure yields both qualitative and quantitative information through a homogenous approach. (orig./GL) [de

  14. Representative Sampling for reliable data analysis

    DEFF Research Database (Denmark)

    Petersen, Lars; Esbensen, Kim Harry

    2005-01-01

    regime in order to secure the necessary reliability of: samples (which must be representative, from the primary sampling onwards), analysis (which will not mean anything outside the miniscule analytical volume without representativity ruling all mass reductions involved, also in the laboratory) and data...

  15. Reliability analysis of prestressed concrete containment structures

    International Nuclear Information System (INIS)

    Jiang, J.; Zhao, Y.; Sun, J.

    1993-01-01

    The reliability analysis of prestressed concrete containment structures subjected to combinations of static and dynamic loads with consideration of uncertainties of structural and load parameters is presented. Limit state probabilities for given parameters are calculated using the procedure developed at BNL, while that with consideration of parameter uncertainties are calculated by a fast integration for time variant structural reliability. The limit state surface of the prestressed concrete containment is constructed directly incorporating the prestress. The sensitivities of the Choleskey decomposition matrix and the natural vibration character are calculated by simplified procedures. (author)

  16. Basic research on human reliability in nuclear power plants

    International Nuclear Information System (INIS)

    Zhang Li; Deng Zhiliang

    1996-10-01

    Human reliability in nuclear power plants is one of key factors in nuclear safety and economic operation. According to cognitive science, behaviour theory and ergonomic and on the bases of human cognitive behaviour characteristics, performance shaping factors, human error mechanisms and organization management, the project systematically studied the human reliability in nuclear power plant systems, established the basic theory and methods for analyzing human factor accidents and suggested feasible approaches and countermeasures for precaution against human factor accidents and improving human reliability. The achievement has been applied in operation departments, management departments and scientific research institutions of nuclear power, and has produced guiding significance and practical value to design, operation and management in nuclear power plants. (11 refs.)

  17. Prime implicants in dynamic reliability analysis

    International Nuclear Information System (INIS)

    Tyrväinen, Tero

    2016-01-01

    This paper develops an improved definition of a prime implicant for the needs of dynamic reliability analysis. Reliability analyses often aim to identify minimal cut sets or prime implicants, which are minimal conditions that cause an undesired top event, such as a system's failure. Dynamic reliability analysis methods take the time-dependent behaviour of a system into account. This means that the state of a component can change in the analysed time frame and prime implicants can include the failure of a component at different time points. There can also be dynamic constraints on a component's behaviour. For example, a component can be non-repairable in the given time frame. If a non-repairable component needs to be failed at a certain time point to cause the top event, we consider that the condition that it is failed at the latest possible time point is minimal, and the condition in which it fails earlier non-minimal. The traditional definition of a prime implicant does not account for this type of time-related minimality. In this paper, a new definition is introduced and illustrated using a dynamic flowgraph methodology model. - Highlights: • A new definition of a prime implicant is developed for dynamic reliability analysis. • The new definition takes time-related minimality into account. • The new definition is needed in dynamic flowgraph methodology. • Results can be represented by a smaller number of prime implicants.

  18. Reliability and risk analysis methods research plan

    International Nuclear Information System (INIS)

    1984-10-01

    This document presents a plan for reliability and risk analysis methods research to be performed mainly by the Reactor Risk Branch (RRB), Division of Risk Analysis and Operations (DRAO), Office of Nuclear Regulatory Research. It includes those activities of other DRAO branches which are very closely related to those of the RRB. Related or interfacing programs of other divisions, offices and organizations are merely indicated. The primary use of this document is envisioned as an NRC working document, covering about a 3-year period, to foster better coordination in reliability and risk analysis methods development between the offices of Nuclear Regulatory Research and Nuclear Reactor Regulation. It will also serve as an information source for contractors and others to more clearly understand the objectives, needs, programmatic activities and interfaces together with the overall logical structure of the program

  19. A human reliability analysis of the Three Mile power plant accident considering the THERP and ATHEANA methodologies; Uma analise da confiabilidade humana do acidente na Usina de Three Mile Island II considerando as metodologias Therp e Atheana

    Energy Technology Data Exchange (ETDEWEB)

    Fonseca, Renato Alves da

    2004-03-15

    The main purpose of this work is the study of human reliability using the THERP (Technique for Human Error Prediction) and ATHEANA methods (A Technique for Human Error Analysis), and some tables and also, from case studies presented on the THERP Handbook to develop a qualitative and quantitative study of nuclear power plant accident. This accident occurred in the TMI (Three Mile Island Unit 2) power plant, PWR type plant, on March 28th, 1979. The accident analysis has revealed a series of incorrect actions, which resulted in the Unit 2 shut down and permanent loss of the reactor. This study also aims at enhancing the understanding of the THERP method and ATHEANA, and of its practical applications. In addition, it is possible to understand the influence of plant operational status on human failures and of these on equipment of a system, in this case, a nuclear power plant. (author)

  20. Sensitivity analysis in a structural reliability context

    International Nuclear Information System (INIS)

    Lemaitre, Paul

    2014-01-01

    This thesis' subject is sensitivity analysis in a structural reliability context. The general framework is the study of a deterministic numerical model that allows to reproduce a complex physical phenomenon. The aim of a reliability study is to estimate the failure probability of the system from the numerical model and the uncertainties of the inputs. In this context, the quantification of the impact of the uncertainty of each input parameter on the output might be of interest. This step is called sensitivity analysis. Many scientific works deal with this topic but not in the reliability scope. This thesis' aim is to test existing sensitivity analysis methods, and to propose more efficient original methods. A bibliographical step on sensitivity analysis on one hand and on the estimation of small failure probabilities on the other hand is first proposed. This step raises the need to develop appropriate techniques. Two variables ranking methods are then explored. The first one proposes to make use of binary classifiers (random forests). The second one measures the departure, at each step of a subset method, between each input original density and the density given the subset reached. A more general and original methodology reflecting the impact of the input density modification on the failure probability is then explored. The proposed methods are then applied on the CWNR case, which motivates this thesis. (author)

  1. Migration of the model HCR to the SAIC/TRC in the analysis of human reliability of the APS de CN Vandellos II

    International Nuclear Information System (INIS)

    Nos, V.; Rosa, J. C. de la; Hernandez, H.

    2011-01-01

    This paper describes the systematics of adaptation and conversion of models, to migrate the detailed analysis of human actions from the APS (in operation at power) of NPP Vandellos, which uses the HCR to SAIC-CRT model. Are offered the results achieved after the migration and the main conclusions.

  2. Human reliability in high dose rate afterloading radiotherapy based on FMECA

    International Nuclear Information System (INIS)

    Deng Jun; Fan Yaohua; Yue Baorong; Wei Kedao; Ren Fuli

    2012-01-01

    Objective: To put forward reasonable and feasible recommendations against the procedure with relative high risk during the high dose rate (HDR) afterloading radiotherapy, so as to enhance its clinical application safety, through studying the human reliability in the process of carrying out the HDR afterloading radiotherapy. Methods: Basic data were collected by on-site investigation and process analysis as well as expert evaluation. Failure mode, effect and criticality analysis (FMECA) employed to study the human reliability in the execution of HDR afterloading radiotherapy. Results: The FMECA model of human reliability for HDR afterloading radiotherapy was established, through which 25 procedures with relative high risk index were found,accounting for 14.1% of total 177 procedures. Conclusions: FMECA method in human reliability study for HDR afterloading radiotherapy is feasible. The countermeasures are put forward to reduce the human error, so as to provide important basis for enhancing clinical application safety of HDR afterloading radiotherapy. (authors)

  3. Structural reliability analysis and seismic risk assessment

    International Nuclear Information System (INIS)

    Hwang, H.; Reich, M.; Shinozuka, M.

    1984-01-01

    This paper presents a reliability analysis method for safety evaluation of nuclear structures. By utilizing this method, it is possible to estimate the limit state probability in the lifetime of structures and to generate analytically the fragility curves for PRA studies. The earthquake ground acceleration, in this approach, is represented by a segment of stationary Gaussian process with a zero mean and a Kanai-Tajimi Spectrum. All possible seismic hazard at a site represented by a hazard curve is also taken into consideration. Furthermore, the limit state of a structure is analytically defined and the corresponding limit state surface is then established. Finally, the fragility curve is generated and the limit state probability is evaluated. In this paper, using a realistic reinforced concrete containment as an example, results of the reliability analysis of the containment subjected to dead load, live load and ground earthquake acceleration are presented and a fragility curve for PRA studies is also constructed

  4. Reliability analysis in interdependent smart grid systems

    Science.gov (United States)

    Peng, Hao; Kan, Zhe; Zhao, Dandan; Han, Jianmin; Lu, Jianfeng; Hu, Zhaolong

    2018-06-01

    Complex network theory is a useful way to study many real complex systems. In this paper, a reliability analysis model based on complex network theory is introduced in interdependent smart grid systems. In this paper, we focus on understanding the structure of smart grid systems and studying the underlying network model, their interactions, and relationships and how cascading failures occur in the interdependent smart grid systems. We propose a practical model for interdependent smart grid systems using complex theory. Besides, based on percolation theory, we also study the effect of cascading failures effect and reveal detailed mathematical analysis of failure propagation in such systems. We analyze the reliability of our proposed model caused by random attacks or failures by calculating the size of giant functioning components in interdependent smart grid systems. Our simulation results also show that there exists a threshold for the proportion of faulty nodes, beyond which the smart grid systems collapse. Also we determine the critical values for different system parameters. In this way, the reliability analysis model based on complex network theory can be effectively utilized for anti-attack and protection purposes in interdependent smart grid systems.

  5. PROVIDING RELIABILITY OF HUMAN RESOURCES IN PRODUCTION MANAGEMENT PROCESS

    Directory of Open Access Journals (Sweden)

    Anna MAZUR

    2014-07-01

    Full Text Available People are the most valuable asset of an organization and the results of a company mostly depends on them. The human factor can also be a weak link in the company and cause of the high risk for many of the processes. Reliability of the human factor in the process of the manufacturing process will depend on many factors. The authors include aspects of human error, safety culture, knowledge, communication skills, teamwork and leadership role in the developed model of reliability of human resources in the management of the production process. Based on the case study and the results of research and observation of the author present risk areas defined in a specific manufacturing process and the results of evaluation of the reliability of human resources in the process.

  6. Qualitative analysis in reliability and safety studies

    International Nuclear Information System (INIS)

    Worrell, R.B.; Burdick, G.R.

    1976-01-01

    The qualitative evaluation of system logic models is described as it pertains to assessing the reliability and safety characteristics of nuclear systems. Qualitative analysis of system logic models, i.e., models couched in an event (Boolean) algebra, is defined, and the advantages inherent in qualitative analysis are explained. Certain qualitative procedures that were developed as a part of fault-tree analysis are presented for illustration. Five fault-tree analysis computer-programs that contain a qualitative procedure for determining minimal cut sets are surveyed. For each program the minimal cut-set algorithm and limitations on its use are described. The recently developed common-cause analysis for studying the effect of common-causes of failure on system behavior is explained. This qualitative procedure does not require altering the fault tree, but does use minimal cut sets from the fault tree as part of its input. The method is applied using two different computer programs. 25 refs

  7. Sensitivity analysis in optimization and reliability problems

    International Nuclear Information System (INIS)

    Castillo, Enrique; Minguez, Roberto; Castillo, Carmen

    2008-01-01

    The paper starts giving the main results that allow a sensitivity analysis to be performed in a general optimization problem, including sensitivities of the objective function, the primal and the dual variables with respect to data. In particular, general results are given for non-linear programming, and closed formulas for linear programming problems are supplied. Next, the methods are applied to a collection of civil engineering reliability problems, which includes a bridge crane, a retaining wall and a composite breakwater. Finally, the sensitivity analysis formulas are extended to calculus of variations problems and a slope stability problem is used to illustrate the methods

  8. Sensitivity analysis in optimization and reliability problems

    Energy Technology Data Exchange (ETDEWEB)

    Castillo, Enrique [Department of Applied Mathematics and Computational Sciences, University of Cantabria, Avda. Castros s/n., 39005 Santander (Spain)], E-mail: castie@unican.es; Minguez, Roberto [Department of Applied Mathematics, University of Castilla-La Mancha, 13071 Ciudad Real (Spain)], E-mail: roberto.minguez@uclm.es; Castillo, Carmen [Department of Civil Engineering, University of Castilla-La Mancha, 13071 Ciudad Real (Spain)], E-mail: mariacarmen.castillo@uclm.es

    2008-12-15

    The paper starts giving the main results that allow a sensitivity analysis to be performed in a general optimization problem, including sensitivities of the objective function, the primal and the dual variables with respect to data. In particular, general results are given for non-linear programming, and closed formulas for linear programming problems are supplied. Next, the methods are applied to a collection of civil engineering reliability problems, which includes a bridge crane, a retaining wall and a composite breakwater. Finally, the sensitivity analysis formulas are extended to calculus of variations problems and a slope stability problem is used to illustrate the methods.

  9. Infusing Reliability Techniques into Software Safety Analysis

    Science.gov (United States)

    Shi, Ying

    2015-01-01

    Software safety analysis for a large software intensive system is always a challenge. Software safety practitioners need to ensure that software related hazards are completely identified, controlled, and tracked. This paper discusses in detail how to incorporate the traditional reliability techniques into the entire software safety analysis process. In addition, this paper addresses how information can be effectively shared between the various practitioners involved in the software safety analyses. The author has successfully applied the approach to several aerospace applications. Examples are provided to illustrate the key steps of the proposed approach.

  10. Subset simulation for structural reliability sensitivity analysis

    International Nuclear Information System (INIS)

    Song Shufang; Lu Zhenzhou; Qiao Hongwei

    2009-01-01

    Based on two procedures for efficiently generating conditional samples, i.e. Markov chain Monte Carlo (MCMC) simulation and importance sampling (IS), two reliability sensitivity (RS) algorithms are presented. On the basis of reliability analysis of Subset simulation (Subsim), the RS of the failure probability with respect to the distribution parameter of the basic variable is transformed as a set of RS of conditional failure probabilities with respect to the distribution parameter of the basic variable. By use of the conditional samples generated by MCMC simulation and IS, procedures are established to estimate the RS of the conditional failure probabilities. The formulae of the RS estimator, its variance and its coefficient of variation are derived in detail. The results of the illustrations show high efficiency and high precision of the presented algorithms, and it is suitable for highly nonlinear limit state equation and structural system with single and multiple failure modes

  11. Predicting risk and human reliability: a new approach

    International Nuclear Information System (INIS)

    Duffey, R.; Ha, T.-S.

    2009-01-01

    Learning from experience describes human reliability and skill acquisition, and the resulting theory has been validated by comparison against millions of outcome data from multiple industries and technologies worldwide. The resulting predictions were used to benchmark the classic first generation human reliability methods adopted in probabilistic risk assessments. The learning rate, probabilities and response times are also consistent with the existing psychological models for human learning and error correction. The new approach also implies a finite lower bound probability that is not predicted by empirical statistical distributions that ignore the known and fundamental learning effects. (author)

  12. The dependence of human reliability upon task information content

    International Nuclear Information System (INIS)

    Hermanson, E.M.; Golay, M.W.

    1994-09-01

    The role of human error in safety mishaps is an important factor in system design. As systems become increasingly complex the capacity of the human to deal with the added complexity is diminished. It is therefore crucial to understand the relationship between system complexity and human reliability so that systems may be built in such a way as to minimize human error. One way of understanding this relationship is to quantify system complexity and then measure the human reaction in response to situations of varying complexity. The quantification of system complexity may be performed by determining the information content present in the tasks that the human must execute. The purpose of this work is therefore to build and perform a consistent experiment which will determine the extent to which human reliability depends upon task information content. Two main conclusions may be drawn from this work. The first is that human reliability depends upon task information content. Specifically, as the information content contained in a task increases, the capacity of a human to deal successfully with the task decreases monotonically. Here the definition of total success is the ability to complete the task at hand fully and correctly. Furthermore, there exists a value of information content below which a human can deal with the task successfully, but above which the success of an individual decreases monotonically with increasing information. These ideas should be generalizable to any model where system complexity can be clearly and consistently defined

  13. Simulator training and human factor reliability in Kozloduy NPP, Bulgaria

    International Nuclear Information System (INIS)

    Stoychev, Kosta

    2007-01-01

    This is a PowerPoint presentation. Situated in North Bulgaria, in the vicinity of the town of Kozloduy, near the Danube River bank, there is the Bulgarian Kozloduy Nuclear Power plant operating four WWER-440 and two WWER-1000 units. Units 1 and 2 were commissioned in July, 1974 and November, 1975, respectively. These were shut down at the end of 2003. Units 3 and 4 were commissioned in December, 1980 and May, 1982. They were shut down at the end of 2006 as a precondition for Bulgaria's accession to the European Union. The 1000 MW units 5 and 6 of Kozloduy NPP were commissioned in September, 1988 and December, 1993, respectively. Large-scale modernization have been implemented and now the units meet all international safety standards. The paper describes the multifunctional simulator Kozloduy NPP for the operational staff training. The training stages are as follows: - Preparatory; -Theoretical studies; - Training at the Training Centre by means of technical devices; - Preparation and sitting for an exam before a Kozloduy NPP expert commission; - Simulator training ; - Preparation to obtain a permit for a license, corresponding to the position to begin work at the NPP; - Exams before the Nuclear Regulatory Agency (NRA) and licensing; - Shadow training at the working place; - Permission for unaided operation. The following positions are addressed by the simulator training: - Chief Plant Supervisor; - Shift Unit Supervisor; - Senior Reactor Operator; - Simulator Instructor; - Controller physicist; -Senior Turbine Operator; - Senior Operator of Turbine Feedwater Pumps of Kozloduy NPP. Improving of training method led to a reduction of number of significant events while worldwide practice proves that improvement of engineering resulted in an increase in the percentage of events, related to human factor. Analysis of human reliability in 2005 and 2006 in cooperation with representatives from Great Britain and the Technical University in Sofia were worked on the DTI NSP B

  14. Cognitive environment simulation: An artificial intelligence system for human performance assessment: Cognitive reliability analysis technique: [Technical report, May 1986-June 1987

    International Nuclear Information System (INIS)

    Woods, D.D.; Roth, E.M.

    1987-11-01

    This report documents the results of Phase II of a three phase research program to develop and validate improved methods to model the cognitive behavior of nuclear power plant (NPP) personnel. In Phase II a dynamic simulation capability for modeling how people form intentions to act in NPP emergency situations was developed based on techniques from artificial intelligence. This modeling tool, Cognitive Environment Simulation or CES, simulates the cognitive processes that determine situation assessment and intention formation. It can be used to investigate analytically what situations and factors lead to intention failures, what actions follow from intention failures (e.g., errors of omission, errors of commission, common mode errors), the ability to recover from errors or additional machine failures, and the effects of changes in the NPP person-machine system. The Cognitive Reliability Assessment Technique (or CREATE) was also developed in Phase II to specify how CES can be used to enhance the measurement of the human contribution to risk in probabilistic risk assessment (PRA) studies. 34 refs., 7 figs., 1 tab

  15. Some areas of reliability technique which have been neglected to some extent - maintainability - human reliability - mechanical reliability - repairable systems

    International Nuclear Information System (INIS)

    Akersten, P.A.

    1985-01-01

    The present thesis consists of four papers, three of which are of a expositary nature and one more theoretical. The first two papers have a natural coupling to the man-machine interface. The first paper is devoted to the concept of maintainability and the role of man as maintenance technician. The second paper discusses aspects of human reliability, mainly studying man as operator. However, maintenance tasks can be studied in the same manner. The third paper concerns reliability prediction for mechanical components. This is an area of vital importance for the reliability practitioner, who needs realistic and easy-to-use mathematical models for different failure modes. The fourth paper discusses mathematical models for repairable systems, especially the problem of testing whether a constant event intensity model is adequate or not. (author)

  16. System reliability analysis with natural language and expert's subjectivity

    International Nuclear Information System (INIS)

    Onisawa, T.

    1996-01-01

    This paper introduces natural language expressions and expert's subjectivity to system reliability analysis. To this end, this paper defines a subjective measure of reliability and presents the method of the system reliability analysis using the measure. The subjective measure of reliability corresponds to natural language expressions of reliability estimation, which is represented by a fuzzy set defined on [0,1]. The presented method deals with the dependence among subsystems and employs parametrized operations of subjective measures of reliability which can reflect expert 's subjectivity towards the analyzed system. The analysis results are also expressed by linguistic terms. Finally this paper gives an example of the system reliability analysis by the presented method

  17. Reliability analysis of containment isolation systems

    International Nuclear Information System (INIS)

    Pelto, P.J.; Counts, C.A.

    1984-06-01

    The Pacific Northwest Laboratory (PNL) is reviewing available information on containment systems design, operating experience, and related research as part of a project being conducted by the Division of Systems Integration, US Nuclear Regulatory Commission. The basic objective of this work is to collect and consolidate data relevant to assessing the functional performance of containment isolation systems and to use this data to the extent possible to characterize containment isolation system reliability for selected reference designs. This paper summarizes the results from initial efforts which focused on collection of data from available documents and briefly describes detailed review and analysis efforts which commenced recently. 5 references

  18. Reliability analysis of containment isolation systems

    International Nuclear Information System (INIS)

    Pelto, P.J.; Ames, K.R.; Gallucci, R.H.

    1985-06-01

    This report summarizes the results of the Reliability Analysis of Containment Isolation System Project. Work was performed in five basic areas: design review, operating experience review, related research review, generic analysis and plant specific analysis. Licensee Event Reports (LERs) and Integrated Leak Rate Test (ILRT) reports provided the major sources of containment performance information used in this study. Data extracted from LERs were assembled into a computer data base. Qualitative and quantitative information developed for containment performance under normal operating conditions and design basis accidents indicate that there is room for improvement. A rough estimate of overall containment unavailability for relatively small leaks which violate plant technical specifications is 0.3. An estimate of containment unavailability due to large leakage events is in the range of 0.001 to 0.01. These estimates are dependent on several assumptions (particularly on event duration times) which are documented in the report

  19. New advances in human reliability using the EPRIHRA calculator

    International Nuclear Information System (INIS)

    Julius, J. A.; Grobbelaar, J. F.

    2006-01-01

    This paper describes new advances in human reliability associated with the integration of HRA methods, lessons learned during the first few years of operation of the EPRI HRA / PRA Tools Users Group, and application of human reliability techniques in areas beyond the more traditional Level 1 internal events PRA. This paper is organized as follows. 1. EPRI HRA Users Group Overview (mission, membership, activities, approach) 2. HRA Methods Currently Used (selection, integration, and addressing dependencies) 3. New Advances in HRA Methods 4. Conclusions. (authors)

  20. Considerations on the elements of quantifying human reliability

    International Nuclear Information System (INIS)

    Straeter, Oliver

    2004-01-01

    This paper attempts to provide a contribution for the discussion of what the term 'data' means and how the qualitative perspective can be linked with the quantitative one. It will argue that the terms 'quantitative data' and 'qualitative data' are not distinct but a continuum that spans over the entire spectrum of the expertise that has to be involved in the HRA process. It elaborates the rational behind any human reliability quantification figure and suggests a scientific way forward to better data for human reliability assessment

  1. The Development of Marine Accidents Human Reliability Assessment Approach: HEART Methodology and MOP Model

    OpenAIRE

    Ludfi Pratiwi Bowo; Wanginingastuti Mutmainnah; Masao Furusho

    2017-01-01

    Humans are one of the important factors in the assessment of accidents, particularly marine accidents. Hence, studies are conducted to assess the contribution of human factors in accidents. There are two generations of Human Reliability Assessment (HRA) that have been developed. Those methodologies are classified by the differences of viewpoints of problem-solving, as the first generation and second generation. The accident analysis can be determined using three techniques of analysis; sequen...

  2. Integrated Reliability and Risk Analysis System (IRRAS)

    International Nuclear Information System (INIS)

    Russell, K.D.; McKay, M.K.; Sattison, M.B.; Skinner, N.L.; Wood, S.T.; Rasmuson, D.M.

    1992-01-01

    The Integrated Reliability and Risk Analysis System (IRRAS) is a state-of-the-art, microcomputer-based probabilistic risk assessment (PRA) model development and analysis tool to address key nuclear plant safety issues. IRRAS is an integrated software tool that gives the user the ability to create and analyze fault trees and accident sequences using a microcomputer. This program provides functions that range from graphical fault tree construction to cut set generation and quantification. Version 1.0 of the IRRAS program was released in February of 1987. Since that time, many user comments and enhancements have been incorporated into the program providing a much more powerful and user-friendly system. This version has been designated IRRAS 4.0 and is the subject of this Reference Manual. Version 4.0 of IRRAS provides the same capabilities as Version 1.0 and adds a relational data base facility for managing the data, improved functionality, and improved algorithm performance

  3. Condition-based Human Reliability Assessment for digitalized control room

    International Nuclear Information System (INIS)

    Kang, H. G.; Jang, S. C.; Eom, H. S.; Ha, J. J.

    2005-04-01

    In safety-critical systems, the generation failure of an actuation signal is caused by the concurrent failures of the automated systems and an operator action. These two sources of safety signals are complicatedly correlated. The failures of sensors or automated systems will cause a lack of necessary information for a human operator and result in error-forcing contexts such as the loss of corresponding alarms and indications. In the conventional analysis, the Human Error Probabilities (HEP) are estimated based on the assumption of 'normal condition of indications and alarms'. In order to construct a more realistic signal-generation failure model, we have to consider more complicated conditions in a more realistic manner. In this study, we performed two kinds of investigation for addressing this issue. We performed the analytic calculations for estimating the effect of sensors failures on the system unavailability and plant risk. For the single-parameter safety signals, the analysis result reveals that the quantification of the HEP should be performed by focusing on the 'no alarm from the automatic system and corresponding indications unavailable' situation. This study also proposes a Condition-Based Human Reliability Assessment (CBHRA) method in order to address these complicated conditions in a practical way. We apply the CBHRA method to the manual actuation of the safety features such as a reactor trip and auxiliary feedwater actuation in Korean Standard Nuclear Power Plants. In the case of conventional single HEP method, it is very hard to consider the multiple HE conditions. The merit of CBHRA is clearly shown in the application to the AFAS generation where no dominating HE condition exits. In this case, even if the HE conditions are carefully investigated, the single HEP method cannot accommodate the multiple conditions in a fault tree. On the other hand, the application result of the reactor trip in SLOCA shows that if there is a dominating condition, the use

  4. Use of Human Reliability Insights to Improve Decision-Making

    International Nuclear Information System (INIS)

    Julius, J. A.; Moieni, P.; Grobbelaar, J.; Kohlhepp, K.

    2016-01-01

    This paper describes the use of insights obtained during the development and application of human reliability analysis (HRA) as part of a probabilistic risk assessment (PRA) to support decision-making, including improvements to operations, training, and safety culture. Insights have been gained from the development and application of HRA as part of a PRA for nuclear power plants in the USA, Europe and Asia over the last two decades. These models consist of Level 1 and Level 2 PRA models of internal and external events, during full power and shutdown modes of plant operation. These insights include the use of human factors information to improve the qualitative portion of the HRA. The subsequent quantification in the HRA effectively prioritises the contributors to the unreliability of operator actions, and the process facilitates the identification of the factors that are important to the success of the operator actions. Additionally, the tools and techniques also allow for the evaluation of key assumptions and sources of uncertainty. The end results have been used to effectively support decision-making for day-to-day plant operations as well as licensing issues. HRA results have been used to provide feedback and improvements to plant procedures, operator training and other areas contributing the plant safety culture. Examples of the types of insights are presented in this paper. (author)

  5. Diakoptical reliability analysis of transistorized systems

    International Nuclear Information System (INIS)

    Kontoleon, J.M.; Lynn, J.W.; Green, A.E.

    1975-01-01

    Limitations both on high-speed core availability and computation time required for assessing the reliability of large-sized and complex electronic systems, such as used for the protection of nuclear reactors, are very serious restrictions which continuously confront the reliability analyst. Diakoptic methods simplify the solution of the electrical-network problem by subdividing a given network into a number of independent subnetworks and then interconnecting the solutions of these smaller parts by a systematic process involving transformations based on connection-matrix elements associated with the interconnecting links. However, the interconnection process is very complicated and it may be used only if the original system has been cut in such a manner that a relation can be established between the constraints appearing at both sides of the cut. Also, in dealing with transistorized systems, one of the difficulties encountered is that of modelling adequately their performance under various operating conditions, since their parameters are strongly affected by the imposed voltage and current levels. In this paper a new interconnection approach is presented which may be of use in the reliability analysis of large-sized transistorized systems. This is based on the partial optimization of the subdivisions of the torn network as well as on the optimization of the torn paths. The solution of the subdivisions is based on the principles of algebraic topology, with an algebraic structure relating the physical variables in a topological structure which defines the interconnection of the discrete elements. Transistors, and other nonlinear devices, are modelled using their actual characteristics, under normal and abnormal operating conditions. Use of so-called k factors is made to facilitate accounting for use of electrical stresses. The approach is demonstrated by way of an example. (author)

  6. Collection and classification of human error and human reliability data from Indian nuclear power plants for use in PSA

    International Nuclear Information System (INIS)

    Subramaniam, K.; Saraf, R.K.; Sanyasi Rao, V.V.S.; Venkat Raj, V.; Venkatraman, R.

    2000-01-01

    Complex systems such as NPPs involve a large number of Human Interactions (HIs) in every phase of plant operations. Human Reliability Analysis (HRA) in the context of a PSA, attempts to model the HIs and evaluate/predict their impact on safety and reliability using human error/human reliability data. A large number of HRA techniques have been developed for modelling and integrating HIs into PSA but there is a significant lack of HAR data. In the face of insufficient data, human reliability analysts have had to resort to expert judgement methods in order to extend the insufficient data sets. In this situation, the generation of data from plant operating experience assumes importance. The development of a HRA data bank for Indian nuclear power plants was therefore initiated as part of the programme of work on HRA. Later, with the establishment of the coordinated research programme (CRP) on collection of human reliability data and use in PSA by IAEA in 1994-95, the development was carried out under the aegis of the IAEA research contract No. 8239/RB. The work described in this report covers the activities of development of a data taxonomy and a human error reporting form (HERF) based on it, data structuring, review and analysis of plant event reports, collection of data on human errors, analysis of the data and calculation of human error probabilities (HEPs). Analysis of plant operating experience does yield a good amount of qualitative data but obtaining quantitative data on human reliability in the form of HEPs is seen to be more difficult. The difficulties have been highlighted and some ways to bring about improvements in the data situation have been discussed. The implementation of a data system for HRA is described and useful features that can be incorporated in future systems are also discussed. (author)

  7. Reliability Analysis Techniques for Communication Networks in Nuclear Power Plant

    International Nuclear Information System (INIS)

    Lim, T. J.; Jang, S. C.; Kang, H. G.; Kim, M. C.; Eom, H. S.; Lee, H. J.

    2006-09-01

    The objectives of this project is to investigate and study existing reliability analysis techniques for communication networks in order to develop reliability analysis models for nuclear power plant's safety-critical networks. It is necessary to make a comprehensive survey of current methodologies for communication network reliability. Major outputs of this study are design characteristics of safety-critical communication networks, efficient algorithms for quantifying reliability of communication networks, and preliminary models for assessing reliability of safety-critical communication networks

  8. Stochastic reliability analysis using Fokker Planck equations

    International Nuclear Information System (INIS)

    Hari Prasad, M.; Rami Reddy, G.; Srividya, A.; Verma, A.K.

    2011-01-01

    The Fokker-Planck equation describes the time evolution of the probability density function of the velocity of a particle, and can be generalized to other observables as well. It is also known as the Kolmogorov forward equation (diffusion). Hence, for any process, which evolves with time, the probability density function as a function of time can be represented with Fokker-Planck equation. In stochastic reliability analysis one is more interested in finding out the reliability or failure probability of the components or structures as a function of time rather than instantaneous failure probabilities. In this analysis the variables are represented with random processes instead of random variables. A random processes can be either stationary or non stationary. If the random process is stationary then the failure probability doesn't change with time where as in the case of non stationary processes the failure probability changes with time. In the present paper Fokker Planck equations have been used to find out the probability density function of the non stationary random processes. In this paper a flow chart has been provided which describes step by step process for carrying out stochastic reliability analysis using Fokker-Planck equations. As a first step one has to identify the failure function as a function of random processes. Then one has to solve the Fokker-Planck equation for each random process. In this paper the Fokker-Planck equation has been solved by using Finite difference method. As a result one gets the probability density values of the random process in the sample space as well as time space. Later at each time step appropriate probability distribution has to be identified based on the available probability density values. For checking the better fitness of the data Kolmogorov-Smirnov Goodness of fit test has been performed. In this way one can find out the distribution of the random process at each time step. Once one has the probability distribution

  9. Structural Reliability Analysis of Wind Turbines: A Review

    Directory of Open Access Journals (Sweden)

    Zhiyu Jiang

    2017-12-01

    Full Text Available The paper presents a detailed review of the state-of-the-art research activities on structural reliability analysis of wind turbines between the 1990s and 2017. We describe the reliability methods including the first- and second-order reliability methods and the simulation reliability methods and show the procedure for and application areas of structural reliability analysis of wind turbines. Further, we critically review the various structural reliability studies on rotor blades, bottom-fixed support structures, floating systems and mechanical and electrical components. Finally, future applications of structural reliability methods to wind turbine designs are discussed.

  10. Reliability Analysis of Tubular Joints in Offshore Structures

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle; Sørensen, John Dalsgaard

    1987-01-01

    Reliability analysis of single tubular joints and offshore platforms with tubular joints is" presented. The failure modes considered are yielding, punching, buckling and fatigue failure. Element reliability as well as systems reliability approaches are used and illustrated by several examples....... Finally, optimal design of tubular.joints with reliability constraints is discussed and illustrated by an example....

  11. Applications of Human Performance Reliability Evaluation Concepts and Demonstration Guidelines

    Science.gov (United States)

    1977-03-15

    ship stops dead in the water and the AN/SQS-26 operator recommends a new heading (000°). At T + 14 minutes, the target ship begins a hard turn to...Various Simulated Conditions 82 9 Hunan Reliability for Each Simulated Operator (Baseline Run) 83 10 Human and Equipment Availabilit / under

  12. Reliability Analysis of Structural Timber Systems

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Hoffmeyer, P.

    2000-01-01

    Structural systems like timber trussed rafters and roof elements made of timber can be expected to have some degree of redundancy and nonlinear/plastic behaviour when the loading consists of for example snow or imposed load. In this paper this system effect is modelled and the statistic...... of variation. In the paper a stochastic model is described for the strength of a single piece of timber taking into account the stochastic variation of the strength and stiffness with length. Also stochastic models for different types of loads are formulated. First, simple representative systems with different...... types of redundancy and non-linearity are considered. The statistical characteristics of the load bearing capacity are determined by reliability analysis. Next, more complex systems are considered modelling the mechanical behaviour of timber roof elements I stressed skin panels made of timber. Using...

  13. Reliability analysis of steel-containment strength

    International Nuclear Information System (INIS)

    Greimann, L.G.; Fanous, F.; Wold-Tinsae, A.; Ketalaar, D.; Lin, T.; Bluhm, D.

    1982-06-01

    A best estimate and uncertainty assessment of the resistance of the St. Lucie, Cherokee, Perry, WPPSS and Browns Ferry containment vessels was performed. The Monte Carlo simulation technique and second moment approach were compared as a means of calculating the probability distribution of the containment resistance. A uniform static internal pressure was used and strain ductility was taken as the failure criterion. Approximate methods were developed and calibrated with finite element analysis. Both approximate and finite element analyses were performed on the axisymmetric containment structure. An uncertainty assessment of the containment strength was then performed by the second moment reliability method. Based upon the approximate methods, the cumulative distribution for the resistance of each of the five containments (shell modes only) is presented

  14. A reliability analysis tool for SpaceWire network

    Science.gov (United States)

    Zhou, Qiang; Zhu, Longjiang; Fei, Haidong; Wang, Xingyou

    2017-04-01

    A SpaceWire is a standard for on-board satellite networks as the basis for future data-handling architectures. It is becoming more and more popular in space applications due to its technical advantages, including reliability, low power and fault protection, etc. High reliability is the vital issue for spacecraft. Therefore, it is very important to analyze and improve the reliability performance of the SpaceWire network. This paper deals with the problem of reliability modeling and analysis with SpaceWire network. According to the function division of distributed network, a reliability analysis method based on a task is proposed, the reliability analysis of every task can lead to the system reliability matrix, the reliability result of the network system can be deduced by integrating these entire reliability indexes in the matrix. With the method, we develop a reliability analysis tool for SpaceWire Network based on VC, where the computation schemes for reliability matrix and the multi-path-task reliability are also implemented. By using this tool, we analyze several cases on typical architectures. And the analytic results indicate that redundancy architecture has better reliability performance than basic one. In practical, the dual redundancy scheme has been adopted for some key unit, to improve the reliability index of the system or task. Finally, this reliability analysis tool will has a directive influence on both task division and topology selection in the phase of SpaceWire network system design.

  15. Human performance for the success of equipment reliability programs

    International Nuclear Information System (INIS)

    Woodcock, J.

    2007-01-01

    Human performance is a critical element of programs directed at equipment reliability. Reliable equipment performance requires broad support from all levels of plant management and throughout all plant departments. Experience at both nuclear power plants and fuel manufacturing plants shows that human performance must be addressed during all phases of program implementation from the beginning through the establishment of a living, on-going process. At the beginning, certain organizational and management actions during the initiation of the program set the stage for successful adoption by station personnel, leading to more rapid benefits. For the long term, equipment reliability is a living process needed throughout the lifetime of a station, a program which must be motivated and measured. Sustained acceptance and participation by the plant personnel is a requirement, and culture is a key ingredient. This paper will provide an overview of key human performance issues to be considered, using the application of the INPO AP-913 Equipment Reliability Guideline as a basis and gives some best practices for training, communicating and implementing programs. The very last part includes ways to tell if the program is effective

  16. Finite element reliability analysis of fatigue life

    International Nuclear Information System (INIS)

    Harkness, H.H.; Belytschko, T.; Liu, W.K.

    1992-01-01

    Fatigue reliability is addressed by the first-order reliability method combined with a finite element method. Two-dimensional finite element models of components with cracks in mode I are considered with crack growth treated by the Paris law. Probability density functions of the variables affecting fatigue are proposed to reflect a setting where nondestructive evaluation is used, and the Rosenblatt transformation is employed to treat non-Gaussian random variables. Comparisons of the first-order reliability results and Monte Carlo simulations suggest that the accuracy of the first-order reliability method is quite good in this setting. Results show that the upper portion of the initial crack length probability density function is crucial to reliability, which suggests that if nondestructive evaluation is used, the probability of detection curve plays a key role in reliability. (orig.)

  17. A model for assessing human cognitive reliability in PRA studies

    International Nuclear Information System (INIS)

    Hannaman, G.W.; Spurgin, A.J.; Lukic, Y.

    1985-01-01

    This paper summarizes the status of a research project sponsored by EPRI as part of the Probabilistic Risk Assessment (PRA) technology improvement program and conducted by NUS Corporation to develop a model of Human Cognitive Reliability (HCR). The model was synthesized from features identified in a review of existing models. The model development was based on the hypothesis that the key factors affecting crew response times are separable. The inputs to the model consist of key parameters the values of which can be determined by PRA analysts for each accident situation being assessed. The output is a set of curves which represent the probability of control room crew non-response as a function of time for different conditions affecting their performance. The non-response probability is then a contributor to the overall non-success of operating crews to achieve a functional objective identified in the PRA study. Simulator data and some small scale tests were utilized to illustrate the calibration of interim HCR model coefficients for different types of cognitive processing since the data were sparse. The model can potentially help PRA analysts make human reliability assessments more explicit. The model incorporates concepts from psychological models of human cognitive behavior, information from current collections of human reliability data sources and crew response time data from simulator training exercises

  18. Reliability Analysis and Optimal Design of Monolithic Vertical Wall Breakwaters

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Burcharth, Hans F.; Christiani, E.

    1994-01-01

    Reliability analysis and reliability-based design of monolithic vertical wall breakwaters are considered. Probabilistic models of the most important failure modes, sliding failure, failure of the foundation and overturning failure are described . Relevant design variables are identified...

  19. A comparative evaluation of five human reliability assessment techniques

    International Nuclear Information System (INIS)

    Kirwan, B.

    1988-01-01

    A field experiment was undertaken to evaluate the accuracy, usefulness, and resources requirements of five human reliability quantification techniques (Techniques for Human Error Rate Prediction (THERP); Paired Comparisons, Human Error Assessment and Reduction Technique (HEART), Success Liklihood Index Method (SLIM)-Multi Attribute Utility Decomposition (MAUD), and Absolute Probability Judgement). This was achieved by assessing technique predictions against a set of known human error probabilities, and by comparing their predictions on a set of five realistic Probabilisitc Risk Assessment (PRA) human error. On a combined measure of accuracy THERP and Absolute Probability Judgement performed best, whilst HEART showed indications of accuracy and was lower in resources usage than other techniques. HEART and THERP both appear to benefit from using trained assessors in order to obtain the best results. SLIM and Paired Comparisons require further research on achieving a robust calibration relationship between their scale values and absolute probabilities. (author)

  20. Probabilistic risk assessment course documentation. Volume 3. System reliability and analysis techniques, Session A - reliability

    International Nuclear Information System (INIS)

    Lofgren, E.V.

    1985-08-01

    This course in System Reliability and Analysis Techniques focuses on the quantitative estimation of reliability at the systems level. Various methods are reviewed, but the structure provided by the fault tree method is used as the basis for system reliability estimates. The principles of fault tree analysis are briefly reviewed. Contributors to system unreliability and unavailability are reviewed, models are given for quantitative evaluation, and the requirements for both generic and plant-specific data are discussed. Also covered are issues of quantifying component faults that relate to the systems context in which the components are embedded. All reliability terms are carefully defined. 44 figs., 22 tabs

  1. STARS software tool for analysis of reliability and safety

    International Nuclear Information System (INIS)

    Poucet, A.; Guagnini, E.

    1989-01-01

    This paper reports on the STARS (Software Tool for the Analysis of Reliability and Safety) project aims at developing an integrated set of Computer Aided Reliability Analysis tools for the various tasks involved in systems safety and reliability analysis including hazard identification, qualitative analysis, logic model construction and evaluation. The expert system technology offers the most promising perspective for developing a Computer Aided Reliability Analysis tool. Combined with graphics and analysis capabilities, it can provide a natural engineering oriented environment for computer assisted reliability and safety modelling and analysis. For hazard identification and fault tree construction, a frame/rule based expert system is used, in which the deductive (goal driven) reasoning and the heuristic, applied during manual fault tree construction, is modelled. Expert system can explain their reasoning so that the analyst can become aware of the why and the how results are being obtained. Hence, the learning aspect involved in manual reliability and safety analysis can be maintained and improved

  2. Human reliability: an evaluation of its understanding and prediction

    International Nuclear Information System (INIS)

    Joksimovich, V.

    1987-01-01

    This paper presents a viewpoint on the state-of-the-art in human reliability. The bases for this viewpoint are, by and large, research projects conducted by the NUS for the Electric Power Research Institute (EPRI) primarily with the objective of further enhancing the credibility of PRA methodology. The presentation is divided into the following key sections: Background and Overview, Methodology and Data Base with emphasis on the simulator data base

  3. Weibull distribution in reliability data analysis in nuclear power plant

    International Nuclear Information System (INIS)

    Ma Yingfei; Zhang Zhijian; Zhang Min; Zheng Gangyang

    2015-01-01

    Reliability is an important issue affecting each stage of the life cycle ranging from birth to death of a product or a system. The reliability engineering includes the equipment failure data processing, quantitative assessment of system reliability and maintenance, etc. Reliability data refers to the variety of data that describe the reliability of system or component during its operation. These data may be in the form of numbers, graphics, symbols, texts and curves. Quantitative reliability assessment is the task of the reliability data analysis. It provides the information related to preventing, detect, and correct the defects of the reliability design. Reliability data analysis under proceed with the various stages of product life cycle and reliability activities. Reliability data of Systems Structures and Components (SSCs) in Nuclear Power Plants is the key factor of probabilistic safety assessment (PSA); reliability centered maintenance and life cycle management. The Weibull distribution is widely used in reliability engineering, failure analysis, industrial engineering to represent manufacturing and delivery times. It is commonly used to model time to fail, time to repair and material strength. In this paper, an improved Weibull distribution is introduced to analyze the reliability data of the SSCs in Nuclear Power Plants. An example is given in the paper to present the result of the new method. The Weibull distribution of mechanical equipment for reliability data fitting ability is very strong in nuclear power plant. It's a widely used mathematical model for reliability analysis. The current commonly used methods are two-parameter and three-parameter Weibull distribution. Through comparison and analysis, the three-parameter Weibull distribution fits the data better. It can reflect the reliability characteristics of the equipment and it is more realistic to the actual situation. (author)

  4. RELIABILITY ANALYSIS OF POWER DISTRIBUTION SYSTEMS

    Directory of Open Access Journals (Sweden)

    Popescu V.S.

    2012-04-01

    Full Text Available Power distribution systems are basic parts of power systems and reliability of these systems at present is a key issue for power engineering development and requires special attention. Operation of distribution systems is accompanied by a number of factors that produce random data a large number of unplanned interruptions. Research has shown that the predominant factors that have a significant influence on the reliability of distribution systems are: weather conditions (39.7%, defects in equipment(25% and unknown random factors (20.1%. In the article is studied the influence of random behavior and are presented estimations of reliability of predominantly rural electrical distribution systems.

  5. Reliability

    OpenAIRE

    Condon, David; Revelle, William

    2017-01-01

    Separating the signal in a test from the irrelevant noise is a challenge for all measurement. Low test reliability limits test validity, attenuates important relationships, and can lead to regression artifacts. Multiple approaches to the assessment and improvement of reliability are discussed. The advantages and disadvantages of several different approaches to reliability are considered. Practical advice on how to assess reliability using open source software is provided.

  6. The human factor in operation and maintenance of complex high-reliability systems

    International Nuclear Information System (INIS)

    Ryan, T.G.

    1989-01-01

    Human factors issues in probabilistic risk assessment (PRAs) of complex high-reliability systems are addressed. These PRAs influence system operation and technical support programs such as maintainability, test, and surveillance. Using the U.S. commercial nuclear power industry as the setting, the paper addresses the manner in which PRAs currently treat human performance, the state of quantification methods and source data for analyzing human performance, and the role of human factors specialist in the analysis. The paper concludes with a presentation of TALENT, an emerging concept for fully integrating broad-based human factors expertise into the PRA process, is presented. 47 refs

  7. Modeling human intention formation for human reliability assessment

    International Nuclear Information System (INIS)

    Woods, D.D.; Roth, E.M.; Pople, H. Jr.

    1988-01-01

    This paper describes a dynamic simulation capability for modeling how people form intentions to act in nuclear power plant emergency situations. This modeling tool, Cognitive Environment Simulation or CES, was developed based on techniques from artificial intelligence. It simulates the cognitive processes that determine situation assessment and intention formation. It can be used to investigate analytically what situations and factors lead to intention failures, what actions follow from intention failures (e.g. errors of omission, errors of commission, common mode errors), the ability to recover from errors or additional machine failures, and the effects of changes in the NPP person machine system. One application of the CES modeling environment is to enhance the measurement of the human contribution to risk in probabilistic risk assessment studies. (author)

  8. Reliability in perceptual analysis of voice quality.

    Science.gov (United States)

    Bele, Irene Velsvik

    2005-12-01

    This study focuses on speaking voice quality in male teachers (n = 35) and male actors (n = 36), who represent untrained and trained voice users, because we wanted to investigate normal and supranormal voices. In this study, both substantial and methodologic aspects were considered. It includes a method for perceptual voice evaluation, and a basic issue was rater reliability. A listening group of 10 listeners, 7 experienced speech-language therapists, and 3 speech-language therapist students evaluated the voices by 15 vocal characteristics using VA scales. Two sets of voice signals were investigated: text reading (2 loudness levels) and sustained vowel (3 levels). The results indicated a high interrater reliability for most perceptual characteristics. Connected speech was evaluated more reliably, especially at the normal level, but both types of voice signals were evaluated reliably, although the reliability for connected speech was somewhat higher than for vowels. Experienced listeners tended to be more consistent in their ratings than did the student raters. Some vocal characteristics achieved acceptable reliability even with a smaller panel of listeners. The perceptual characteristics grouped in 4 factors reflected perceptual dimensions.

  9. Human performance and reliability studies on nuclear power plant

    International Nuclear Information System (INIS)

    Miyaoka, S.

    1988-01-01

    The TMI accident in USA, the Chernobyl accident in USSR and other major accidents overseas have shown that it is necessary to investigate and research human factor problems related to operation, maintenance and others in order to increase the safety and reliability of nuclear power plants. Although a variety of countermeasures have been devised, the accidents and failures due to human factors still occur. So far, the problems related to human factors have not been fundamantally and systematically investigated. Also the data base related to this problem has not been developed. Therefore, the government and electric utility industry began the research on the prevention of the accidents caused by human errors. The basic research is carried out by the government, and the applied research is done by electric utility industry. The Central Research Institute of Electric Power Industry established the Human Factors Research Center on July 1, 1987. The research program in the Human Factors Research Center is divided into the basic research to clarity fundamental human characteristics, the systematic research to apply this information and the analytical research on human error experience. These research activities are reported. (Kako, I.)

  10. Reliability Analysis of Fatigue Fracture of Wind Turbine Drivetrain Components

    DEFF Research Database (Denmark)

    Berzonskis, Arvydas; Sørensen, John Dalsgaard

    2016-01-01

    in the volume of the casted ductile iron main shaft, on the reliability of the component. The probabilistic reliability analysis conducted is based on fracture mechanics models. Additionally, the utilization of the probabilistic reliability for operation and maintenance planning and quality control is discussed....

  11. Component reliability analysis for development of component reliability DB of Korean standard NPPs

    International Nuclear Information System (INIS)

    Choi, S. Y.; Han, S. H.; Kim, S. H.

    2002-01-01

    The reliability data of Korean NPP that reflects the plant specific characteristics is necessary for PSA and Risk Informed Application. We have performed a project to develop the component reliability DB and calculate the component reliability such as failure rate and unavailability. We have collected the component operation data and failure/repair data of Korean standard NPPs. We have analyzed failure data by developing a data analysis method which incorporates the domestic data situation. And then we have compared the reliability results with the generic data for the foreign NPPs

  12. Mathematical Methods in Survival Analysis, Reliability and Quality of Life

    CERN Document Server

    Huber, Catherine; Mesbah, Mounir

    2008-01-01

    Reliability and survival analysis are important applications of stochastic mathematics (probability, statistics and stochastic processes) that are usually covered separately in spite of the similarity of the involved mathematical theory. This title aims to redress this situation: it includes 21 chapters divided into four parts: Survival analysis, Reliability, Quality of life, and Related topics. Many of these chapters were presented at the European Seminar on Mathematical Methods for Survival Analysis, Reliability and Quality of Life in 2006.

  13. Reliability demonstration test planning using bayesian analysis

    International Nuclear Information System (INIS)

    Chandran, Senthil Kumar; Arul, John A.

    2003-01-01

    In Nuclear Power Plants, the reliability of all the safety systems is very critical from the safety viewpoint and it is very essential that the required reliability requirements be met while satisfying the design constraints. From practical experience, it is found that the reliability of complex systems such as Safety Rod Drive Mechanism is of the order of 10 -4 with an uncertainty factor of 10. To demonstrate the reliability of such systems is prohibitive in terms of cost and time as the number of tests needed is very large. The purpose of this paper is to develop a Bayesian reliability demonstrating testing procedure for exponentially distributed failure times with gamma prior distribution on the failure rate which can be easily and effectively used to demonstrate component/subsystem/system reliability conformance to stated requirements. The important questions addressed in this paper are: With zero failures, how long one should perform the tests and how many components are required to conclude with a given degree of confidence, that the component under test, meets the reliability requirement. The procedure is explained with an example. This procedure can also be extended to demonstrate with more number of failures. The approach presented is applicable for deriving test plans for demonstrating component failure rates of nuclear power plants, as the failure data for similar components are becoming available in existing plants elsewhere. The advantages of this procedure are the criterion upon which the procedure is based is simple and pertinent, the fitting of the prior distribution is an integral part of the procedure and is based on the use of information regarding two percentiles of this distribution and finally, the procedure is straightforward and easy to apply in practice. (author)

  14. Reliability analysis of pipe whip impacts

    International Nuclear Information System (INIS)

    Alzbutas, R.; Dundulis, G.; Kulak, R.F.; Marchertas, P.V.

    2003-01-01

    A probabilistic analysis of a group distribution header (GDH) guillotine break and the damage resulting from the failed GDH impacting against a neighbouring wall was carried out for the Ignalita RBMK-1500 reactor. The NEPTUNE software system was used for the deterministic transient analysis of a GDH guillotine break. Many deterministic analyses were performed using different values of the random variables that were specified by ProFES software. All the deterministic results were transferred to the ProFES system, which then performed probabilistic analyses of piping failure and wall damage. The Monte Carlo Simulation (MCS) method was used to study the sensitivity of the response variables and the effect of uncertainties of material properties and geometry parameters to the probability of limit states. The First Order Reliability Method (FORM) was used to study the probability of failure of the impacted-wall and the support-wall. The Response Surface (RS/MCS) method was used in order to express failure probability as function and to investigate the dependence between impact load and failure probability. The results of the probability analyses for a whipping GDH impacting onto an adjacent wall show that: (i) there is a 0.982 probability that after a GDH guillotine break contact between GDH and wall will occur; (ii) there is a probability of 0.013 that the ultimate tensile strength of concrete at the impact location will be reached, and a through-crack may open; (iii) there is a probability of 0.0126 that the ultimate compressive strength of concrete at the GDH support location will be reached, and the concrete may fail; (iv) at the impact location in the adjacent wall, there is a probability of 0.327 that the ultimate tensile strength of the rebars in the first layer will be reached and the rebars will fail; (v) at the GDH support location, there is a probability of 0.11 that the ultimate stress of the rebars in the first layer will be reached and the rebars will fail

  15. A priori and a posteriori approaches in human reliability

    International Nuclear Information System (INIS)

    Griffon-Fouco, M.; Gagnolet, P.

    1981-09-01

    The French atomic energy commission (CEA) and the French supplier in electric power (EDF) have joint studies on human factors in nuclear safety. This paper deals with these studies which are a combination of two approaches: - An a posteriori approach so as to know the rate of human errors and their causes: an analysis of incident data banks and an analysis of human errors on simulator are presented. - An a priori approach so as to know the potential factors of human errors: an analysis of the control rooms design and an analysis of the writing of procedures are presented. The possibility to take into account these two approaches to prevent and quantify human errors is discussed

  16. Reliability Analysis for Safety Grade PLC(POSAFE-Q)

    International Nuclear Information System (INIS)

    Choi, Kyung Chul; Song, Seung Whan; Park, Gang Min; Hwang, Sung Jae

    2012-01-01

    Safety Grade PLC(Programmable Logic Controller), POSAFE-Q, was developed recently in accordance with nuclear regulatory and requirements. In this paper, describe reliability analysis for digital safety grade PLC (especially POSAFE-Q). Reliability analysis scope is Prediction, Calculation of MTBF (Mean Time Between Failure), FMEA (Failure Mode Effect Analysis), PFD (Probability of Failure on Demand). (author)

  17. Development of advanced methods and related software for human reliability evaluation within probabilistic safety analyses

    International Nuclear Information System (INIS)

    Kosmowski, K.T.; Mertens, J.; Degen, G.; Reer, B.

    1994-06-01

    Human Reliability Analysis (HRA) is an important part of Probabilistic Safety Analysis (PSA). The first part of this report consists of an overview of types of human behaviour and human error including the effect of significant performance shaping factors on human reliability. Particularly with regard to safety assessments for nuclear power plants a lot of HRA methods have been developed. The most important of these methods are presented and discussed in the report, together with techniques for incorporating HRA into PSA and with models of operator cognitive behaviour. Based on existing HRA methods the concept of a software system is described. For the development of this system the utilization of modern programming tools is proposed; the essential goal is the effective application of HRA methods. A possible integration of computeraided HRA within PSA is discussed. The features of Expert System Technology and examples of applications (PSA, HRA) are presented in four appendices. (orig.) [de

  18. On action- and affectpsychology of human reliability. An access by training simulators for complex man-machine systems

    International Nuclear Information System (INIS)

    Schuette, M.

    2002-02-01

    Theoretical part and its topics: errors at the interface between man and machine; reliability analysis for man; the psychological explanation of action reliability of man (intention and control); a paradigma for human reliability (frustration and regression). Empirical part: Control room in a nuclear power plant: Influences on repeated blockages on component care in case of start-up operation; ship bridge: Frustration and regression while steering in a bight. Appendix: analysis of a social interaction.(GL)

  19. The DYLAM approach for the dynamic reliability analysis of systems

    International Nuclear Information System (INIS)

    Cojazzi, Giacomo

    1996-01-01

    In many real systems, failures occurring to the components, control failures and human interventions often interact with the physical system evolution in such a way that a simple reliability analysis, de-coupled from process dynamics, is very difficult or even impossible. In the last ten years many dynamic reliability approaches have been proposed to properly assess the reliability of these systems characterized by dynamic interactions. The DYLAM methodology, now implemented in its latest version, DYLAM-3, offers a powerful tool for integrating deterministic and failure events. This paper describes the main features of the DYLAM-3 code with reference to the classic fault-tree and event-tree techniques. Some aspects connected to the practical problems underlying dynamic event-trees are also discussed. A simple system, already analyzed with other dynamic methods is used as a reference for the numerical applications. The same system is also studied with a time-dependent fault-tree approach in order to show some features of dynamic methods vs classical techniques. Examples including stochastic failures, without and with repair, failures on demand and time dependent failure rates give an extensive overview of DYLAM-3 capabilities

  20. TIGER reliability analysis in the DSN

    Science.gov (United States)

    Gunn, J. M.

    1982-01-01

    The TIGER algorithm, the inputs to the program and the output are described. TIGER is a computer program designed to simulate a system over a period of time to evaluate system reliability and availability. Results can be used in the Deep Space Network for initial spares provisioning and system evaluation.

  1. Reliability analysis of an offshore structure

    DEFF Research Database (Denmark)

    Sorensen, J. D.; Faber, M. H.; Thoft-Christensen, P.

    1992-01-01

    A jacket type offshore structure from the North Sea is considered. The time variant reliability is estimated for failure defined as brittle fracture and crack through the tubular member walls. The stochastic modelling is described. The hot spot stress spectral moments as function of the stochasti...

  2. Reliability analysis of reactor protection systems

    International Nuclear Information System (INIS)

    Alsan, S.

    1976-07-01

    A theoretical mathematical study of reliability is presented and the concepts subsequently defined applied to the study of nuclear reactor safety systems. The theory is applied to investigations of the operational reliability of the Siloe reactor from the point of view of rod drop. A statistical study conducted between 1964 and 1971 demonstrated that most rod drop incidents arose from circumstances associated with experimental equipment (new set-ups). The reliability of the most suitable safety system for some recently developed experimental equipment is discussed. Calculations indicate that if all experimental equipment were equipped with these new systems, only 1.75 rod drop accidents would be expected to occur per year on average. It is suggested that all experimental equipment should be equipped with these new safety systems and tested every 21 days. The reliability of the new safety system currently being studied for the Siloe reactor was also investigated. The following results were obtained: definite failures must be detected immediately as a result of the disturbances produced; the repair time must not exceed a few hours; the equipment must be tested every week. Under such conditions, the rate of accidental rod drops is about 0.013 on average per year. The level of nondefinite failures is less than 10 -6 per hour and the level of nonprotection 1 hour per year. (author)

  3. Bypassing BDD Construction for Reliability Analysis

    DEFF Research Database (Denmark)

    Williams, Poul Frederick; Nikolskaia, Macha; Rauzy, Antoine

    2000-01-01

    In this note, we propose a Boolean Expression Diagram (BED)-based algorithm to compute the minimal p-cuts of boolean reliability models such as fault trees. BEDs make it possible to bypass the Binary Decision Diagram (BDD) construction, which is the main cost of fault tree assessment....

  4. Operator reliability analysis during NPP small break LOCA

    International Nuclear Information System (INIS)

    Zhang Jiong; Chen Shenglin

    1990-01-01

    To assess the human factor characteristic of a NPP main control room (MCR) design, the MCR operator reliability during a small break LOCA is analyzed, and some approaches for improving the MCR operator reliability are proposed based on the analyzing results

  5. Meeting Human Reliability Requirements through Human Factors Design, Testing, and Modeling

    Energy Technology Data Exchange (ETDEWEB)

    R. L. Boring

    2007-06-01

    In the design of novel systems, it is important for the human factors engineer to work in parallel with the human reliability analyst to arrive at the safest achievable design that meets design team safety goals and certification or regulatory requirements. This paper introduces the System Development Safety Triptych, a checklist of considerations for the interplay of human factors and human reliability through design, testing, and modeling in product development. This paper also explores three phases of safe system development, corresponding to the conception, design, and implementation of a system.

  6. Mechanical reliability analysis of tubes intended for hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Nahal, Mourad; Khelif, Rabia [Badji Mokhtar University, Annaba (Algeria)

    2013-02-15

    Reliability analysis constitutes an essential phase in any study concerning reliability. Many industrialists evaluate and improve the reliability of their products during the development cycle - from design to startup (design, manufacture, and exploitation) - to develop their knowledge on cost/reliability ratio and to control sources of failure. In this study, we obtain results for hardness, tensile, and hydrostatic tests carried out on steel tubes for transporting hydrocarbons followed by statistical analysis. Results obtained allow us to conduct a reliability study based on resistance request. Thus, index of reliability is calculated and the importance of the variables related to the tube is presented. Reliability-based assessment of residual stress effects is applied to underground pipelines under a roadway, with and without active corrosion. Residual stress has been found to greatly increase probability of failure, especially in the early stages of pipe lifetime.

  7. Concept development of the human reliability data bank

    International Nuclear Information System (INIS)

    Miller, D.P.

    1984-01-01

    The US Nuclear Regulatory Commission and Sandia National Laboratories initiated a three-phased research program in 1981 to develop a plan for a human reliability data bank. This research initiative was in response to the data needs of the nuclear power industry's probabilistic risk assessment community. The three phases are: (1) develop the data bank concept; (2) develop an implementation plan and conduct a feasibility test; and (3) assist the sponsor in implementing the data bank. This paper briefly describes some of the results of the work performed during Phase A and outlines the program elements schedules for Phase B

  8. Failure and Reliability Analysis for the Master Pump Shutdown System

    International Nuclear Information System (INIS)

    BEVINS, R.R.

    2000-01-01

    The Master Pump Shutdown System (MPSS) will be installed in the 200 Areas of the Hanford Site to monitor and control the transfer of liquid waste between tank farms and between the 200 West and 200 East areas through the Cross-Site Transfer Line. The Safety Function provided by the MPSS is to shutdown any waste transfer process within or between tank farms if a waste leak should occur along the selected transfer route. The MPSS, which provides this Safety Class Function, is composed of Programmable Logic Controllers (PLCs), interconnecting wires, relays, Human to Machine Interfaces (HMI), and software. These components are defined as providing a Safety Class Function and will be designated in this report as MPSS/PLC. Input signals to the MPSS/PLC are provided by leak detection systems from each of the tank farm leak detector locations along the waste transfer route. The combination of the MPSS/PLC, leak detection system, and transfer pump controller system will be referred to as MPSS/SYS. The components addressed in this analysis are associated with the MPSS/SYS. The purpose of this failure and reliability analysis is to address the following design issues of the Project Development Specification (PDS) for the MPSS/SYS (HNF 2000a): (1) Single Component Failure Criterion, (2) System Status Upon Loss of Electrical Power, (3) Physical Separation of Safety Class cables, (4) Physical Isolation of Safety Class Wiring from General Service Wiring, and (5) Meeting the MPSS/PLC Option 1b (RPP 1999) Reliability estimate. The failure and reliability analysis examined the system on a component level basis and identified any hardware or software elements that could fail and/or prevent the system from performing its intended safety function

  9. Reliability analysis of RC containment structures under combined loads

    International Nuclear Information System (INIS)

    Hwang, H.; Reich, M.; Kagami, S.

    1984-01-01

    This paper discusses a reliability analysis method and load combination design criteria for reinforced concrete containment structures under combined loads. The probability based reliability analysis method is briefly described. For load combination design criteria, derivations of the load factors for accidental pressure due to a design basis accident and safe shutdown earthquake (SSE) for three target limit state probabilities are presented

  10. Reliability analysis of protection system of advanced pressurized water reactor - APR 1400

    International Nuclear Information System (INIS)

    Varde, P. V.; Choi, J. G.; Lee, D. Y.; Han, J. B.

    2003-04-01

    Reliability analysis was carried out for the protection system of the Korean Advanced Pressurized Water Reactor - APR 1400. The main focus of this study was the reliability analysis of digital protection system, however, towards giving an integrated statement of complete protection reliability an attempt has been made to include the shutdown devices and other related aspects based on the information available to date. The sensitivity analysis has been carried out for the critical components / functions in the system. Other aspects like importance analysis and human error reliability for the critical human actions form part of this work. The framework provided by this study and the results obtained shows that this analysis has potential to be utilized as part of risk informed approach for future design / regulatory applications

  11. Reliability analysis of PLC safety equipment

    Energy Technology Data Exchange (ETDEWEB)

    Yu, J.; Kim, J. Y. [Chungnam Nat. Univ., Daejeon (Korea, Republic of)

    2006-06-15

    FMEA analysis for Nuclear Safety Grade PLC, failure rate prediction for nuclear safety grade PLC, sensitivity analysis for components failure rate of nuclear safety grade PLC, unavailability analysis support for nuclear safety system.

  12. Reliability analysis of PLC safety equipment

    International Nuclear Information System (INIS)

    Yu, J.; Kim, J. Y.

    2006-06-01

    FMEA analysis for Nuclear Safety Grade PLC, failure rate prediction for nuclear safety grade PLC, sensitivity analysis for components failure rate of nuclear safety grade PLC, unavailability analysis support for nuclear safety system

  13. Advances in methods and applications of reliability and safety analysis

    International Nuclear Information System (INIS)

    Fieandt, J.; Hossi, H.; Laakso, K.; Lyytikaeinen, A.; Niemelae, I.; Pulkkinen, U.; Pulli, T.

    1986-01-01

    The know-how of the reliability and safety design and analysis techniques of Vtt has been established over several years in analyzing the reliability in the Finnish nuclear power plants Loviisa and Olkiluoto. This experience has been later on applied and developed to be used in the process industry, conventional power industry, automation and electronics. VTT develops and transfers methods and tools for reliability and safety analysis to the private and public sectors. The technology transfer takes place in joint development projects with potential users. Several computer-aided methods, such as RELVEC for reliability modelling and analysis, have been developed. The tool developed are today used by major Finnish companies in the fields of automation, nuclear power, shipbuilding and electronics. Development of computer-aided and other methods needed in analysis of operating experience, reliability or safety is further going on in a number of research and development projects

  14. Digital Processor Module Reliability Analysis of Nuclear Power Plant

    International Nuclear Information System (INIS)

    Lee, Sang Yong; Jung, Jae Hyun; Kim, Jae Ho; Kim, Sung Hun

    2005-01-01

    The system used in plant, military equipment, satellite, etc. consists of many electronic parts as control module, which requires relatively high reliability than other commercial electronic products. Specially, Nuclear power plant related to the radiation safety requires high safety and reliability, so most parts apply to Military-Standard level. Reliability prediction method provides the rational basis of system designs and also provides the safety significance of system operations. Thus various reliability prediction tools have been developed in recent decades, among of them, the MI-HDBK-217 method has been widely used as a powerful tool for the prediction. In this work, It is explained that reliability analysis work for Digital Processor Module (DPM, control module of SMART) is performed by Parts Stress Method based on MIL-HDBK-217F NOTICE2. We are using the Relex 7.6 of Relex software corporation, because reliability analysis process requires enormous part libraries and data for failure rate calculation

  15. Time-dependent reliability sensitivity analysis of motion mechanisms

    International Nuclear Information System (INIS)

    Wei, Pengfei; Song, Jingwen; Lu, Zhenzhou; Yue, Zhufeng

    2016-01-01

    Reliability sensitivity analysis aims at identifying the source of structure/mechanism failure, and quantifying the effects of each random source or their distribution parameters on failure probability or reliability. In this paper, the time-dependent parametric reliability sensitivity (PRS) analysis as well as the global reliability sensitivity (GRS) analysis is introduced for the motion mechanisms. The PRS indices are defined as the partial derivatives of the time-dependent reliability w.r.t. the distribution parameters of each random input variable, and they quantify the effect of the small change of each distribution parameter on the time-dependent reliability. The GRS indices are defined for quantifying the individual, interaction and total contributions of the uncertainty in each random input variable to the time-dependent reliability. The envelope function method combined with the first order approximation of the motion error function is introduced for efficiently estimating the time-dependent PRS and GRS indices. Both the time-dependent PRS and GRS analysis techniques can be especially useful for reliability-based design. This significance of the proposed methods as well as the effectiveness of the envelope function method for estimating the time-dependent PRS and GRS indices are demonstrated with a four-bar mechanism and a car rack-and-pinion steering linkage. - Highlights: • Time-dependent parametric reliability sensitivity analysis is presented. • Time-dependent global reliability sensitivity analysis is presented for mechanisms. • The proposed method is especially useful for enhancing the kinematic reliability. • An envelope method is introduced for efficiently implementing the proposed methods. • The proposed method is demonstrated by two real planar mechanisms.

  16. Structural reliability analysis applied to pipeline risk analysis

    Energy Technology Data Exchange (ETDEWEB)

    Gardiner, M. [GL Industrial Services, Loughborough (United Kingdom); Mendes, Renato F.; Donato, Guilherme V.P. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)

    2009-07-01

    Quantitative Risk Assessment (QRA) of pipelines requires two main components to be provided. These are models of the consequences that follow from some loss of containment incident, and models for the likelihood of such incidents occurring. This paper describes how PETROBRAS have used Structural Reliability Analysis for the second of these, to provide pipeline- and location-specific predictions of failure frequency for a number of pipeline assets. This paper presents an approach to estimating failure rates for liquid and gas pipelines, using Structural Reliability Analysis (SRA) to analyze the credible basic mechanisms of failure such as corrosion and mechanical damage. SRA is a probabilistic limit state method: for a given failure mechanism it quantifies the uncertainty in parameters to mathematical models of the load-resistance state of a structure and then evaluates the probability of load exceeding resistance. SRA can be used to benefit the pipeline risk management process by optimizing in-line inspection schedules, and as part of the design process for new construction in pipeline rights of way that already contain multiple lines. A case study is presented to show how the SRA approach has recently been used on PETROBRAS pipelines and the benefits obtained from it. (author)

  17. Systems reliability analysis for the national ignition facility

    International Nuclear Information System (INIS)

    Majumdar, K.C.; Annese, C.E.; MacIntyre, A.T.; Sicherman, A.

    1996-01-01

    A Reliability, Availability and Maintainability (RAM) analysis was initiated for the National Ignition Facility (NIF). The NIF is an inertial confinement fusion research facility designed to achieve controlled thermonuclear reaction; the preferred site for the NIF is the Lawrence Livermore National Laboratory (LLNL). The NIF RAM analysis has three purposes: (1) to allocate top level reliability and availability goals for the systems, (2) to develop an operability model for optimum maintainability, and (3) to determine the achievability of the allocated goals of the RAM parameters for the NIF systems and the facility operation as a whole. An allocation model assigns the reliability and availability goals for front line and support systems by a top-down approach; reliability analysis uses a bottom-up approach to determine the system reliability and availability from component level to system level

  18. Probabilistic risk assessment for a loss of coolant accident in McMaster Nuclear Reactor and application of reliability physics model for modeling human reliability

    Science.gov (United States)

    Ha, Taesung

    A probabilistic risk assessment (PRA) was conducted for a loss of coolant accident, (LOCA) in the McMaster Nuclear Reactor (MNR). A level 1 PRA was completed including event sequence modeling, system modeling, and quantification. To support the quantification of the accident sequence identified, data analysis using the Bayesian method and human reliability analysis (HRA) using the accident sequence evaluation procedure (ASEP) approach were performed. Since human performance in research reactors is significantly different from that in power reactors, a time-oriented HRA model (reliability physics model) was applied for the human error probability (HEP) estimation of the core relocation. This model is based on two competing random variables: phenomenological time and performance time. The response surface and direct Monte Carlo simulation with Latin Hypercube sampling were applied for estimating the phenomenological time, whereas the performance time was obtained from interviews with operators. An appropriate probability distribution for the phenomenological time was assigned by statistical goodness-of-fit tests. The human error probability (HEP) for the core relocation was estimated from these two competing quantities: phenomenological time and operators' performance time. The sensitivity of each probability distribution in human reliability estimation was investigated. In order to quantify the uncertainty in the predicted HEPs, a Bayesian approach was selected due to its capability of incorporating uncertainties in model itself and the parameters in that model. The HEP from the current time-oriented model was compared with that from the ASEP approach. Both results were used to evaluate the sensitivity of alternative huinan reliability modeling for the manual core relocation in the LOCA risk model. This exercise demonstrated the applicability of a reliability physics model supplemented with a. Bayesian approach for modeling human reliability and its potential

  19. Interactive reliability analysis project. FY 80 progress report

    International Nuclear Information System (INIS)

    Rasmuson, D.M.; Shepherd, J.C.

    1981-03-01

    This report summarizes the progress to date in the interactive reliability analysis project. Purpose is to develop and demonstrate a reliability and safety technique that can be incorporated early in the design process. Details are illustrated in a simple example of a reactor safety system

  20. Reliability analysis of grid connected small wind turbine power electronics

    International Nuclear Information System (INIS)

    Arifujjaman, Md.; Iqbal, M.T.; Quaicoe, J.E.

    2009-01-01

    Grid connection of small permanent magnet generator (PMG) based wind turbines requires a power conditioning system comprising a bridge rectifier, a dc-dc converter and a grid-tie inverter. This work presents a reliability analysis and an identification of the least reliable component of the power conditioning system of such grid connection arrangements. Reliability of the configuration is analyzed for the worst case scenario of maximum conversion losses at a particular wind speed. The analysis reveals that the reliability of the power conditioning system of such PMG based wind turbines is fairly low and it reduces to 84% of initial value within one year. The investigation is further enhanced by identifying the least reliable component within the power conditioning system and found that the inverter has the dominant effect on the system reliability, while the dc-dc converter has the least significant effect. The reliability analysis demonstrates that a permanent magnet generator based wind energy conversion system is not the best option from the point of view of power conditioning system reliability. The analysis also reveals that new research is required to determine a robust power electronics configuration for small wind turbine conversion systems.

  1. Reliability analysis of wind embedded power generation system for ...

    African Journals Online (AJOL)

    This paper presents a method for Reliability Analysis of wind energy embedded in power generation system for Indian scenario. This is done by evaluating the reliability index, loss of load expectation, for the power generation system with and without integration of wind energy sources in the overall electric power system.

  2. The Development of Marine Accidents Human Reliability Assessment Approach: HEART Methodology and MOP Model

    Directory of Open Access Journals (Sweden)

    Ludfi Pratiwi Bowo

    2017-06-01

    Full Text Available Humans are one of the important factors in the assessment of accidents, particularly marine accidents. Hence, studies are conducted to assess the contribution of human factors in accidents. There are two generations of Human Reliability Assessment (HRA that have been developed. Those methodologies are classified by the differences of viewpoints of problem-solving, as the first generation and second generation. The accident analysis can be determined using three techniques of analysis; sequential techniques, epidemiological techniques and systemic techniques, where the marine accidents are included in the epidemiological technique. This study compares the Human Error Assessment and Reduction Technique (HEART methodology and the 4M Overturned Pyramid (MOP model, which are applied to assess marine accidents. Furthermore, the MOP model can effectively describe the relationships of other factors which affect the accidents; whereas, the HEART methodology is only focused on human factors.

  3. Analysis and assessment of water treatment plant reliability

    Directory of Open Access Journals (Sweden)

    Szpak Dawid

    2017-03-01

    Full Text Available The subject of the publication is the analysis and assessment of the reliability of the surface water treatment plant (WTP. In the study the one parameter method of reliability assessment was used. Based on the flow sheet derived from the water company the reliability scheme of the analysed WTP was prepared. On the basis of the daily WTP work report the availability index Kg for the individual elements included in the WTP, was determined. Then, based on the developed reliability scheme showing the interrelationships between elements, the availability index Kg for the whole WTP was determined. The obtained value of the availability index Kg was compared with the criteria values.

  4. Process evaluation of the human reliability data bank

    International Nuclear Information System (INIS)

    Miller, D.P.; Comer, K.

    1985-01-01

    The US Nuclear Regulatory Commission and Sandia National Laboratories have been developing a plan for a human reliability data bank since August 1981. This research is in response to the data need of the nuclear power industry's probabilistic risk assessment community. The three phases of the program are to: (a) develop the data bank concept, (b) develop an implementation plan and conduct a process evaluation, and (c) assist a sponsor in implementing the data bank. The program is now in Phase B. This paper describes the methods used and the results of the process evaluation. Decisions to be made in the future regarding full-scale implementation will be based, in part, on the outcome of this study

  5. Process evaluation of the human reliability data bank

    International Nuclear Information System (INIS)

    Miller, D.P.; Comer, K.

    1984-01-01

    The US Nuclear Regulatory Commission and Sandia National Laboratories have been developing a plan for a human reliability data bank since August 1981. This research is in response to the data needs of the nuclear power industry's probabilistic risk assessment community. The three phases of the program are to: (A) develop the data bank concept, (B) develop an implementation plan and conduct a process evaluation, and (C) assist a sponsor in implementing the data bank. The program is now in Phase B. This paper describes the methods used and the results of the process evaluation. Decisions to be made in the future regarding full-scale implementation will be based in part on the outcome of this study

  6. Reliability analysis applied to structural tests

    Science.gov (United States)

    Diamond, P.; Payne, A. O.

    1972-01-01

    The application of reliability theory to predict, from structural fatigue test data, the risk of failure of a structure under service conditions because its load-carrying capability is progressively reduced by the extension of a fatigue crack, is considered. The procedure is applicable to both safe-life and fail-safe structures and, for a prescribed safety level, it will enable an inspection procedure to be planned or, if inspection is not feasible, it will evaluate the life to replacement. The theory has been further developed to cope with the case of structures with initial cracks, such as can occur in modern high-strength materials which are susceptible to the formation of small flaws during the production process. The method has been applied to a structure of high-strength steel and the results are compared with those obtained by the current life estimation procedures. This has shown that the conventional methods can be unconservative in certain cases, depending on the characteristics of the structure and the design operating conditions. The suitability of the probabilistic approach to the interpretation of the results from full-scale fatigue testing of aircraft structures is discussed and the assumptions involved are examined.

  7. Analysis of operating reliability of WWER-1000 unit

    International Nuclear Information System (INIS)

    Bortlik, J.

    1985-01-01

    The nuclear power unit was divided into 33 technological units. Input data for reliability analysis were surveys of operating results obtained from the IAEA information system and certain indexes of the reliability of technological equipment determined using the Bayes formula. The missing reliability data for technological equipment were used from the basic variant. The fault tree of the WWER-1000 unit was determined for the peak event defined as the impossibility of reaching 100%, 75% and 50% of rated power. The period was observed of the nuclear power plant operation with reduced output owing to defect and the respective time needed for a repair of the equipment. The calculation of the availability of the WWER-1000 unit was made for different variant situations. Certain indexes of the operating reliability of the WWER-1000 unit which are the result of a detailed reliability analysis are tabulated for selected variants. (E.S.)

  8. Simulation Approach to Mission Risk and Reliability Analysis, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — It is proposed to develop and demonstrate an integrated total-system risk and reliability analysis approach that is based on dynamic, probabilistic simulation. This...

  9. PSA applications and piping reliability analysis: where do we stand?

    International Nuclear Information System (INIS)

    Lydell, B.O.Y.

    1997-01-01

    This reviews a recently proposed framework for piping reliability analysis. The framework was developed to promote critical interpretations of operational data on pipe failures, and to support application-specific-parameter estimation

  10. Reliability analysis of digital safety systems at nuclear power plants

    International Nuclear Information System (INIS)

    Sopira Vladimir; Kovacs, Zoltan

    2015-01-01

    Reliability analysis of digital reactor protection systems built on the basis of TELEPERM XS is described, and experience gained by the Slovak RELKO company during the past 20 years in this domain is highlighted. (orig.)

  11. reliability analysis of a two span floor designed according

    African Journals Online (AJOL)

    user

    deterministic approach, considering both ultimate and serviceability limit states. Reliability analysis of the floor ... loading, strength and stiffness parameters, dimensions .... to show that there is a direct relation between the failure probability (Pf) ...

  12. Data collection on the unit control room simulator as a method of operator reliability analysis

    International Nuclear Information System (INIS)

    Holy, J.

    1998-01-01

    The report consists of the following chapters: (1) Probabilistic assessment of nuclear power plant operation safety and human factor reliability analysis; (2) Simulators and simulations as human reliability analysis tools; (3) DOE project for using the collection and analysis of data from the unit control room simulator in human factor reliability analysis at the Paks nuclear power plant; (4) General requirements for the organization of the simulator data collection project; (5) Full-scale simulator at the Nuclear Power Plants Research Institute in Trnava, Slovakia, used as a training means for operators of the Dukovany NPP; (6) Assessment of the feasibility of quantification of important human actions modelled within a PSA study by employing simulator data analysis; (7) Assessment of the feasibility of using the various exercise topics for the quantification of the PSA model; (8) Assessment of the feasibility of employing the simulator in the analysis of the individual factors affecting the operator's activity; and (9) Examples of application of statistical methods in the analysis of the human reliability factor. (P.A.)

  13. Generating human reliability estimates using expert judgment. Volume 2. Appendices

    International Nuclear Information System (INIS)

    Comer, M.K.; Seaver, D.A.; Stillwell, W.G.; Gaddy, C.D.

    1984-11-01

    The US Nuclear Regulatory Commission is conducting a research program to determine the practicality, acceptability, and usefulness of several different methods for obtaining human reliability data and estimates that can be used in nuclear power plant probabilistic risk assessments (PRA). One method, investigated as part of this overall research program, uses expert judgment to generate human error probability (HEP) estimates and associated uncertainty bounds. The project described in this document evaluated two techniques for using expert judgment: paired comparisons and direct numerical estimation. Volume 2 provides detailed procedures for using the techniques, detailed descriptions of the analyses performed to evaluate the techniques, and HEP estimates generated as part of this project. The results of the evaluation indicate that techniques using expert judgment should be given strong consideration for use in developing HEP estimates. Judgments were shown to be consistent and to provide HEP estimates with a good degree of convergent validity. Of the two techniques tested, direct numerical estimation appears to be preferable in terms of ease of application and quality of results

  14. Safety and reliability analysis based on nonprobabilistic methods

    International Nuclear Information System (INIS)

    Kozin, I.O.; Petersen, K.E.

    1996-01-01

    Imprecise probabilities, being developed during the last two decades, offer a considerably more general theory having many advantages which make it very promising for reliability and safety analysis. The objective of the paper is to argue that imprecise probabilities are more appropriate tool for reliability and safety analysis, that they allow to model the behavior of nuclear industry objects more comprehensively and give a possibility to solve some problems unsolved in the framework of conventional approach. Furthermore, some specific examples are given from which we can see the usefulness of the tool for solving some reliability tasks

  15. HuRECA: Human Reliability Evaluator for Computer-based Control Room Actions

    International Nuclear Information System (INIS)

    Kim, Jae Whan; Lee, Seung Jun; Jang, Seung Cheol

    2011-01-01

    As computer-based design features such as computer-based procedures (CBP), soft controls (SCs), and integrated information systems are being adopted in main control rooms (MCR) of nuclear power plants, a human reliability analysis (HRA) method capable of dealing with the effects of these design features on human reliability is needed. From the observations of human factors engineering verification and validation experiments, we have drawn some major important characteristics on operator behaviors and design-related influencing factors (DIFs) from the perspective of human reliability. Firstly, there are new DIFs that should be considered in developing an HRA method for computer-based control rooms including especially CBP and SCs. In the case of the computer-based procedure rather than the paper-based procedure, the structural and managerial elements should be considered as important PSFs in addition to the procedural contents. In the case of the soft controllers, the so-called interface management tasks (or secondary tasks) should be reflected in the assessment of human error probability. Secondly, computer-based control rooms can provide more effective error recovery features than conventional control rooms. Major error recovery features for computer-based control rooms include the automatic logic checking function of the computer-based procedure and the information sharing feature of the general computer-based designs

  16. Comparative reliability of cheiloscopy and palatoscopy in human identification

    Directory of Open Access Journals (Sweden)

    Sharma Preeti

    2009-01-01

    Full Text Available Background: Establishing a person′s identity in postmortem scenarios can be a very difficult process. Dental records, fingerprint and DNA comparisons are probably the most common techniques used in this context, allowing fast and reliable identification processes. However, under certain circumstances they cannot always be used; sometimes it is necessary to apply different and less known techniques. In forensic identification, lip prints and palatal rugae patterns can lead us to important information and help in a person′s identification. This study aims to ascertain the use of lip prints and palatal rugae pattern in identification and sex differentiation. Materials and Methods: A total of 100 subjects, 50 males and 50 females were selected from among the students of Subharti Dental College, Meerut. The materials used to record lip prints were lipstick, bond paper, cellophane tape, a brush for applying the lipstick, and a magnifying lens. To study palatal rugae, alginate impressions were taken and the dental casts analyzed for their various patterns. Results: Statistical analysis (applying Z-test for proportion showed significant difference for type I, I′, IV and V lip patterns (P < 0.05 in males and females, while no significant difference was observed for the same in the palatal rugae patterns (P > 0.05. Conclusion: This study not only showed that palatal rugae and lip prints are unique to an individual, but also that lip prints is more reliable for recognition of the sex of an individual.

  17. Safety, reliability, risk management and human factors: an integrated engineering approach applied to nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Vasconcelos, Vanderley de; Silva, Eliane Magalhaes Pereira da; Costa, Antonio Carlos Lopes da; Reis, Sergio Carneiro dos [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)], e-mail: vasconv@cdtn.br, e-mail: silvaem@cdtn.br, e-mail: aclc@cdtn.br, e-mail: reissc@cdtn.br

    2009-07-01

    Nuclear energy has an important engineering legacy to share with the conventional industry. Much of the development of the tools related to safety, reliability, risk management, and human factors are associated with nuclear plant processes, mainly because the public concern about nuclear power generation. Despite the close association between these subjects, there are some important different approaches. The reliability engineering approach uses several techniques to minimize the component failures that cause the failure of the complex systems. These techniques include, for instance, redundancy, diversity, standby sparing, safety factors, and reliability centered maintenance. On the other hand system safety is primarily concerned with hazard management, that is, the identification, evaluation and control of hazards. Rather than just look at failure rates or engineering strengths, system safety would examine the interactions among system components. The events that cause accidents may be complex combinations of component failures, faulty maintenance, design errors, human actions, or actuation of instrumentation and control. Then, system safety deals with a broader spectrum of risk management, including: ergonomics, legal requirements, quality control, public acceptance, political considerations, and many other non-technical influences. Taking care of these subjects individually can compromise the completeness of the analysis and the measures associated with both risk reduction, and safety and reliability increasing. Analyzing together the engineering systems and controls of a nuclear facility, their management systems and operational procedures, and the human factors engineering, many benefits can be realized. This paper proposes an integration of these issues based on the application of systems theory. (author)

  18. Safety, reliability, risk management and human factors: an integrated engineering approach applied to nuclear facilities

    International Nuclear Information System (INIS)

    Vasconcelos, Vanderley de; Silva, Eliane Magalhaes Pereira da; Costa, Antonio Carlos Lopes da; Reis, Sergio Carneiro dos

    2009-01-01

    Nuclear energy has an important engineering legacy to share with the conventional industry. Much of the development of the tools related to safety, reliability, risk management, and human factors are associated with nuclear plant processes, mainly because the public concern about nuclear power generation. Despite the close association between these subjects, there are some important different approaches. The reliability engineering approach uses several techniques to minimize the component failures that cause the failure of the complex systems. These techniques include, for instance, redundancy, diversity, standby sparing, safety factors, and reliability centered maintenance. On the other hand system safety is primarily concerned with hazard management, that is, the identification, evaluation and control of hazards. Rather than just look at failure rates or engineering strengths, system safety would examine the interactions among system components. The events that cause accidents may be complex combinations of component failures, faulty maintenance, design errors, human actions, or actuation of instrumentation and control. Then, system safety deals with a broader spectrum of risk management, including: ergonomics, legal requirements, quality control, public acceptance, political considerations, and many other non-technical influences. Taking care of these subjects individually can compromise the completeness of the analysis and the measures associated with both risk reduction, and safety and reliability increasing. Analyzing together the engineering systems and controls of a nuclear facility, their management systems and operational procedures, and the human factors engineering, many benefits can be realized. This paper proposes an integration of these issues based on the application of systems theory. (author)

  19. Statis Program Analysis for Reliable, Trusted Apps

    Science.gov (United States)

    2017-02-01

    and prevent errors in their Java programs. The Checker Framework includes compiler plug-ins (“checkers”) that find bugs or verify their absence. It...versions of the Java language. 4.8 DATAFLOW FRAMEWORK The dataflow framework enables more accurate analysis of source code. (Despite their similar...names, the dataflow framework is independent of the (Information) Flow Checker of chapter 2.) In Java code, a given operation may be permitted or

  20. Reliability analysis of digital based I and C system

    Energy Technology Data Exchange (ETDEWEB)

    Kang, I. S.; Cho, B. S.; Choi, M. J. [KOPEC, Yongin (Korea, Republic of)

    1999-10-01

    Rapidly, digital technology is being widely applied in replacing analog component installed in existing plant and designing new nuclear power plant for control and monitoring system in Korea as well as in foreign countries. Even though many merits of digital technology, it is being faced with a new problem of reliability assurance. The studies for solving this problem are being performed vigorously in foreign countries. The reliability of KNGR Engineered Safety Features Component Control System (ESF-CCS), digital based I and C system, was analyzed to verify fulfillment of the ALWR EPRI-URD requirement for reliability analysis and eliminate hazards in design applied new technology. The qualitative analysis using FMEA and quantitative analysis using reliability block diagram were performed. The results of analyses are shown in this paper.

  1. Reliability analysis and utilization of PEMs in space application

    Science.gov (United States)

    Jiang, Xiujie; Wang, Zhihua; Sun, Huixian; Chen, Xiaomin; Zhao, Tianlin; Yu, Guanghua; Zhou, Changyi

    2009-11-01

    More and more plastic encapsulated microcircuits (PEMs) are used in space missions to achieve high performance. Since PEMs are designed for use in terrestrial operating conditions, the successful usage of PEMs in space harsh environment is closely related to reliability issues, which should be considered firstly. However, there is no ready-made methodology for PEMs in space applications. This paper discusses the reliability for the usage of PEMs in space. This reliability analysis can be divided into five categories: radiation test, radiation hardness, screening test, reliability calculation and reliability assessment. One case study is also presented to illuminate the details of the process, in which a PEM part is used in a joint space program Double-Star Project between the European Space Agency (ESA) and China. The influence of environmental constrains including radiation, humidity, temperature and mechanics on the PEM part has been considered. Both Double-Star Project satellites are still running well in space now.

  2. Reliability analysis of dispersion nuclear fuel elements

    Science.gov (United States)

    Ding, Shurong; Jiang, Xin; Huo, Yongzhong; Li, Lin an

    2008-03-01

    Taking a dispersion fuel element as a special particle composite, the representative volume element is chosen to act as the research object. The fuel swelling is simulated through temperature increase. The large strain elastoplastic analysis is carried out for the mechanical behaviors using FEM. The results indicate that the fission swelling is simulated successfully; the thickness increments grow linearly with burnup; with increasing of burnup: (1) the first principal stresses at fuel particles change from tensile ones to compression ones, (2) the maximum Mises stresses at the particles transfer from the centers of fuel particles to the location close to the interfaces between the matrix and the particles, their values increase with burnup; the maximum Mises stresses at the matrix exist in the middle location between the two particles near the mid-plane along the length (or width) direction, and the maximum plastic strains are also at the above region.

  3. Reliability analysis of dispersion nuclear fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Ding Shurong [Department of Mechanics and Engineering Science, Fudan University, Shanghai 200433 (China)], E-mail: dsr1971@163.com; Jiang Xin [Department of Mechanics and Engineering Science, Fudan University, Shanghai 200433 (China); Huo Yongzhong [Department of Mechanics and Engineering Science, Fudan University, Shanghai 200433 (China)], E-mail: yzhuo@fudan.edu.cn; Li Linan [Department of Mechanics, Tianjin University, Tianjin 300072 (China)

    2008-03-15

    Taking a dispersion fuel element as a special particle composite, the representative volume element is chosen to act as the research object. The fuel swelling is simulated through temperature increase. The large strain elastoplastic analysis is carried out for the mechanical behaviors using FEM. The results indicate that the fission swelling is simulated successfully; the thickness increments grow linearly with burnup; with increasing of burnup: (1) the first principal stresses at fuel particles change from tensile ones to compression ones, (2) the maximum Mises stresses at the particles transfer from the centers of fuel particles to the location close to the interfaces between the matrix and the particles, their values increase with burnup; the maximum Mises stresses at the matrix exist in the middle location between the two particles near the mid-plane along the length (or width) direction, and the maximum plastic strains are also at the above region.

  4. Durability reliability analysis for corroding concrete structures under uncertainty

    Science.gov (United States)

    Zhang, Hao

    2018-02-01

    This paper presents a durability reliability analysis of reinforced concrete structures subject to the action of marine chloride. The focus is to provide insight into the role of epistemic uncertainties on durability reliability. The corrosion model involves a number of variables whose probabilistic characteristics cannot be fully determined due to the limited availability of supporting data. All sources of uncertainty, both aleatory and epistemic, should be included in the reliability analysis. Two methods are available to formulate the epistemic uncertainty: the imprecise probability-based method and the purely probabilistic method in which the epistemic uncertainties are modeled as random variables. The paper illustrates how the epistemic uncertainties are modeled and propagated in the two methods, and shows how epistemic uncertainties govern the durability reliability.

  5. Reliability analysis of HVDC grid combined with power flow simulations

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yongtao; Langeland, Tore; Solvik, Johan [DNV AS, Hoevik (Norway); Stewart, Emma [DNV KEMA, Camino Ramon, CA (United States)

    2012-07-01

    Based on a DC grid power flow solver and the proposed GEIR, we carried out reliability analysis for a HVDC grid test system proposed by CIGRE working group B4-58, where the failure statistics are collected from literature survey. The proposed methodology is used to evaluate the impact of converter configuration on the overall reliability performance of the HVDC grid, where the symmetrical monopole configuration is compared with the bipole with metallic return wire configuration. The results quantify the improvement on reliability by using the later alternative. (orig.)

  6. Reliability analysis of neutron transport simulation using Monte Carlo method

    International Nuclear Information System (INIS)

    Souza, Bismarck A. de; Borges, Jose C.

    1995-01-01

    This work presents a statistical and reliability analysis covering data obtained by computer simulation of neutron transport process, using the Monte Carlo method. A general description of the method and its applications is presented. Several simulations, corresponding to slowing down and shielding problems have been accomplished. The influence of the physical dimensions of the materials and of the sample size on the reliability level of results was investigated. The objective was to optimize the sample size, in order to obtain reliable results, optimizing computation time. (author). 5 refs, 8 figs

  7. The Concept of Human Error and the Design of Reliable Human-Machine Systems

    DEFF Research Database (Denmark)

    Rasmussen, Jens

    1995-01-01

    The concept of human error is unreliable as a basis for design of reliable human-machine systems. Humans are basically highly adaptive and 'errors' are closely related to the process of adaptation and learning. Therefore, reliability of system operation depends on an interface that is not designed...... so as to support a pre-conceived operating procedure, but, instead, makes visible the deep, functional structure of the system together with the boundaries of acceptable operation in away that allows operators to 'touch' the boundaries and to learn to cope with the effects of errors in a reversible...... way. The concepts behind such 'ecological' interfaces are discussed, an it is argued that a 'typology' of visualization concepts is a pressing research need....

  8. Notes on human error analysis and prediction

    International Nuclear Information System (INIS)

    Rasmussen, J.

    1978-11-01

    The notes comprise an introductory discussion of the role of human error analysis and prediction in industrial risk analysis. Following this introduction, different classes of human errors and role in industrial systems are mentioned. Problems related to the prediction of human behaviour in reliability and safety analysis are formulated and ''criteria for analyzability'' which must be met by industrial systems so that a systematic analysis can be performed are suggested. The appendices contain illustrative case stories and a review of human error reports for the task of equipment calibration and testing as found in the US Licensee Event Reports. (author)

  9. Analysis of sodium valve reliability data at CREDO

    International Nuclear Information System (INIS)

    Bott, T.F.; Haas, P.M.

    1979-01-01

    The Centralized Reliability Data Organization (CREDO) has been established at Oak Ridge National Laboratory (ORNL) by the Department of Energy to provide a centralized source of data for reliability/maintainabilty analysis of advanced reactor systems. The current schedule calls for develoment of the data system at a moderate pace, with the first major distribution of data in late FY-1980. Continuous long-term collection of engineering, operating, and event data has been initiated at EBR-II and FFTF

  10. Reliability analysis and updating of deteriorating systems with subset simulation

    DEFF Research Database (Denmark)

    Schneider, Ronald; Thöns, Sebastian; Straub, Daniel

    2017-01-01

    An efficient approach to reliability analysis of deteriorating structural systems is presented, which considers stochastic dependence among element deterioration. Information on a deteriorating structure obtained through inspection or monitoring is included in the reliability assessment through B...... is an efficient and robust sampling-based algorithm suitable for such analyses. The approach is demonstrated in two case studies considering a steel frame structure and a Daniels system subjected to high-cycle fatigue....

  11. Use of COMCAN III in system design and reliability analysis

    International Nuclear Information System (INIS)

    Rasmuson, D.M.; Shepherd, J.C.; Marshall, N.H.; Fitch, L.R.

    1982-03-01

    This manual describes the COMCAN III computer program and its use. COMCAN III is a tool that can be used by the reliability analyst performing a probabilistic risk assessment or by the designer of a system desiring improved performance and efficiency. COMCAN III can be used to determine minimal cut sets of a fault tree, to calculate system reliability characteristics, and to perform qualitative common cause failure analysis

  12. Application of expert elicitation techniques in human reliability, assessment

    International Nuclear Information System (INIS)

    Sanyasi Rao, V.V.S.; Saraf, R.K.; Ghosh, A.K.; Kushwaha, H.S.

    2006-01-01

    Expert elicitation techniques are being used, in the area of technological forecasting, in estimating data needed for analysis when it is either difficult to arrive at the data by experimental means or when it is quite involved to plan and conduct the experiment. In this study, expert elicitation techniques are applied to the evaluation of the frequencies of the various accident sequences that can result from the initiating event (IE) 'High Pressure Process Water (HPPW) system failure' in typical Indian Pressurised Heavy Water Reactor (IPHWR) of the older generation. The Operating Procedure under Emergency Conditions (OPEC) for this IE involves human actions according to a pre-defined procedure. The Human Error Probabilities for all these human actions are obtained using expert elicitation techniques. These techniques aim at eliciting the opinion of the experts in the area of interest with regard to the issue in question. The uncertainty is analysed by employing the measure of dissonance and the most probable range of human error probabilities are arrived at by maximizing this measure. These values are combined using the same procedures mentioned above to yield a distribution representing the uncertainty associated with the predictions. (author)

  13. Reliability analysis framework for computer-assisted medical decision systems

    International Nuclear Information System (INIS)

    Habas, Piotr A.; Zurada, Jacek M.; Elmaghraby, Adel S.; Tourassi, Georgia D.

    2007-01-01

    We present a technique that enhances computer-assisted decision (CAD) systems with the ability to assess the reliability of each individual decision they make. Reliability assessment is achieved by measuring the accuracy of a CAD system with known cases similar to the one in question. The proposed technique analyzes the feature space neighborhood of the query case to dynamically select an input-dependent set of known cases relevant to the query. This set is used to assess the local (query-specific) accuracy of the CAD system. The estimated local accuracy is utilized as a reliability measure of the CAD response to the query case. The underlying hypothesis of the study is that CAD decisions with higher reliability are more accurate. The above hypothesis was tested using a mammographic database of 1337 regions of interest (ROIs) with biopsy-proven ground truth (681 with masses, 656 with normal parenchyma). Three types of decision models, (i) a back-propagation neural network (BPNN), (ii) a generalized regression neural network (GRNN), and (iii) a support vector machine (SVM), were developed to detect masses based on eight morphological features automatically extracted from each ROI. The performance of all decision models was evaluated using the Receiver Operating Characteristic (ROC) analysis. The study showed that the proposed reliability measure is a strong predictor of the CAD system's case-specific accuracy. Specifically, the ROC area index for CAD predictions with high reliability was significantly better than for those with low reliability values. This result was consistent across all decision models investigated in the study. The proposed case-specific reliability analysis technique could be used to alert the CAD user when an opinion that is unlikely to be reliable is offered. The technique can be easily deployed in the clinical environment because it is applicable with a wide range of classifiers regardless of their structure and it requires neither additional

  14. Reliability analysis and initial requirements for FC systems and stacks

    Science.gov (United States)

    Åström, K.; Fontell, E.; Virtanen, S.

    In the year 2000 Wärtsilä Corporation started an R&D program to develop SOFC systems for CHP applications. The program aims to bring to the market highly efficient, clean and cost competitive fuel cell systems with rated power output in the range of 50-250 kW for distributed generation and marine applications. In the program Wärtsilä focuses on system integration and development. System reliability and availability are key issues determining the competitiveness of the SOFC technology. In Wärtsilä, methods have been implemented for analysing the system in respect to reliability and safety as well as for defining reliability requirements for system components. A fault tree representation is used as the basis for reliability prediction analysis. A dynamic simulation technique has been developed to allow for non-static properties in the fault tree logic modelling. Special emphasis has been placed on reliability analysis of the fuel cell stacks in the system. A method for assessing reliability and critical failure predictability requirements for fuel cell stacks in a system consisting of several stacks has been developed. The method is based on a qualitative model of the stack configuration where each stack can be in a functional, partially failed or critically failed state, each of the states having different failure rates and effects on the system behaviour. The main purpose of the method is to understand the effect of stack reliability, critical failure predictability and operating strategy on the system reliability and availability. An example configuration, consisting of 5 × 5 stacks (series of 5 sets of 5 parallel stacks) is analysed in respect to stack reliability requirements as a function of predictability of critical failures and Weibull shape factor of failure rate distributions.

  15. Test-retest reliability of trunk accelerometric gait analysis

    DEFF Research Database (Denmark)

    Henriksen, Marius; Lund, Hans; Moe-Nilssen, R

    2004-01-01

    The purpose of this study was to determine the test-retest reliability of a trunk accelerometric gait analysis in healthy subjects. Accelerations were measured during walking using a triaxial accelerometer mounted on the lumbar spine of the subjects. Six men and 14 women (mean age 35.2; range 18...... a definite potential in clinical gait analysis....

  16. Reliability Analysis of a Two Dissimilar Unit Cold Standby System ...

    African Journals Online (AJOL)

    (2009) using linear first order differential equation evaluated the reliability and availability characteristics of two-dissimilar-unit cold standby system with three mode for which no cost benefit analysis was considered. El-said (1994) contributed on stochastic analysis of a two-dissimilar-unit standby redundant system.

  17. Small nuclear power reactor emergency electric power supply system reliability comparative analysis

    International Nuclear Information System (INIS)

    Bonfietti, Gerson

    2003-01-01

    This work presents an analysis of the reliability of the emergency power supply system, of a small size nuclear power reactor. Three different configurations are investigated and their reliability analyzed. The fault tree method is used as the main tool of analysis. The work includes a bibliographic review of emergency diesel generator reliability and a discussion of the design requirements applicable to emergency electrical systems. The influence of common cause failure influences is considered using the beta factor model. The operator action is considered using human failure probabilities. A parametric analysis shows the strong dependence between the reactor safety and the loss of offsite electric power supply. It is also shown that common cause failures can be a major contributor to the system reliability. (author)

  18. Recent advances in computational structural reliability analysis methods

    Science.gov (United States)

    Thacker, Ben H.; Wu, Y.-T.; Millwater, Harry R.; Torng, Tony Y.; Riha, David S.

    1993-10-01

    The goal of structural reliability analysis is to determine the probability that the structure will adequately perform its intended function when operating under the given environmental conditions. Thus, the notion of reliability admits the possibility of failure. Given the fact that many different modes of failure are usually possible, achievement of this goal is a formidable task, especially for large, complex structural systems. The traditional (deterministic) design methodology attempts to assure reliability by the application of safety factors and conservative assumptions. However, the safety factor approach lacks a quantitative basis in that the level of reliability is never known and usually results in overly conservative designs because of compounding conservatisms. Furthermore, problem parameters that control the reliability are not identified, nor their importance evaluated. A summary of recent advances in computational structural reliability assessment is presented. A significant level of activity in the research and development community was seen recently, much of which was directed towards the prediction of failure probabilities for single mode failures. The focus is to present some early results and demonstrations of advanced reliability methods applied to structural system problems. This includes structures that can fail as a result of multiple component failures (e.g., a redundant truss), or structural components that may fail due to multiple interacting failure modes (e.g., excessive deflection, resonate vibration, or creep rupture). From these results, some observations and recommendations are made with regard to future research needs.

  19. Human Reliability in Probabilistic Safety Assessments; Fiabilidad Humana en los Analisis Probabilisticos de Seguridad

    Energy Technology Data Exchange (ETDEWEB)

    Nunez Mendez, J

    1989-07-01

    Nowadays a growing interest in environmental aspects is detected in our country. It implies an assessment of the risk involved in the industrial processes and installations in order to determine if those are into the acceptable limits. In these safety assessments, among which PSA (Probabilistic Safety Assessments), can be pointed out the role played by the human being in the system is one of the more relevant subjects (This relevance has been demonstrated in the accidents happened) . However, in Spain there aren't manuals specifically dedicated to asses the human contribution to risk in the frame of PSAs. This report aims to improve this situation providing: a) a theoretical background to help the reader in the understanding of the nature of the human error, b) a quid to carry out a Human Reliability Analysis and c) a selected overview of the techniques and methodologies currently applied in this area. (Author) 20 refs.

  20. Human Reliability in Probabilistic Safety Assessments; Fiabilidad Humana en los Analisis Probabilisticos de Seguridad

    Energy Technology Data Exchange (ETDEWEB)

    Nunez Mendez, J.

    1989-07-01

    Nowadays a growing interest in environmental aspects is detected in our country. It implies an assessment of the risk involved in the industrial processes and installations in order to determine if those are into the acceptable limits. In these safety assessments, among which PSA (Probabilistic Safety Assessments), can be pointed out the role played by the human being in the system is one of the more relevant subjects (This relevance has been demonstrated in the accidents happened) . However, in Spain there aren't manuals specifically dedicated to asses the human contribution to risk in the frame of PSAs. This report aims to improve this situation providing: a) a theoretical background to help the reader in the understanding of the nature of the human error, b) a quid to carry out a Human Reliability Analysis and c) a selected overview of the techniques and methodologies currently applied in this area. (Author) 20 refs.

  1. Reliability analysis for Atucha II reactor protection system signals

    International Nuclear Information System (INIS)

    Roca, Jose Luis

    1996-01-01

    Atucha II is a 745 MW Argentine Power Nuclear Reactor constructed by ENACE SA, Nuclear Argentine Company for Electrical Power Generation and SIEMENS AG KWU, Erlangen, Germany. A preliminary modular logic analysis of RPS (Reactor Protection System) signals was performed by means of the well known Swedish professional risk and reliability software named Risk-Spectrum taking as a basis a reference signal coded as JR17ER003 which command the two moderator loops valves. From the reliability and behavior knowledge for this reference signal follows an estimation of the reliability for the other 97 RPS signals. Because the preliminary character of this analysis Main Important Measures are not performed at this stage. Reliability is by the statistic value named unavailability predicted. The scope of this analysis is restricted from the measurement elements to the RPS buffer outputs. In the present context only one redundancy is analyzed so in the Instrumentation and Control area there no CCF (Common Cause Failures) present for signals. Finally those unavailability values could be introduced in the failure domain for the posterior complete Atucha II reliability analysis which includes all mechanical and electromechanical features. Also an estimation of the spurious frequency of RPS signals defined as faulty by no trip is performed

  2. Reliability analysis for Atucha II reactor protection system signals

    International Nuclear Information System (INIS)

    Roca, Jose L.

    2000-01-01

    Atucha II is a 745 MW Argentine power nuclear reactor constructed by Nuclear Argentine Company for Electric Power Generation S.A. (ENACE S.A.) and SIEMENS AG KWU, Erlangen, Germany. A preliminary modular logic analysis of RPS (Reactor Protection System) signals was performed by means of the well known Swedish professional risk and reliability software named Risk-Spectrum taking as a basis a reference signal coded as JR17ER003 which command the two moderator loops valves. From the reliability and behavior knowledge for this reference signal follows an estimation of the reliability for the other 97 RPS signals. Because the preliminary character of this analysis Main Important Measures are not performed at this stage. Reliability is by the statistic value named unavailability predicted. The scope of this analysis is restricted from the measurement elements to the RPS buffer outputs. In the present context only one redundancy is analyzed so in the Instrumentation and Control area there no CCF (Common Cause Failures) present for signals. Finally those unavailability values could be introduced in the failure domain for the posterior complete Atucha II reliability analysis which includes all mechanical and electromechanical features. Also an estimation of the spurious frequency of RPS signals defined as faulty by no trip is performed. (author)

  3. The development of a reliable amateur boxing performance analysis template.

    Science.gov (United States)

    Thomson, Edward; Lamb, Kevin; Nicholas, Ceri

    2013-01-01

    The aim of this study was to devise a valid performance analysis system for the assessment of the movement characteristics associated with competitive amateur boxing and assess its reliability using analysts of varying experience of the sport and performance analysis. Key performance indicators to characterise the demands of an amateur contest (offensive, defensive and feinting) were developed and notated using a computerised notational analysis system. Data were subjected to intra- and inter-observer reliability assessment using median sign tests and calculating the proportion of agreement within predetermined limits of error. For all performance indicators, intra-observer reliability revealed non-significant differences between observations (P > 0.05) and high agreement was established (80-100%) regardless of whether exact or the reference value of ±1 was applied. Inter-observer reliability was less impressive for both analysts (amateur boxer and experienced analyst), with the proportion of agreement ranging from 33-100%. Nonetheless, there was no systematic bias between observations for any indicator (P > 0.05), and the proportion of agreement within the reference range (±1) was 100%. A reliable performance analysis template has been developed for the assessment of amateur boxing performance and is available for use by researchers, coaches and athletes to classify and quantify the movement characteristics of amateur boxing.

  4. Reliability analysis of cluster-based ad-hoc networks

    International Nuclear Information System (INIS)

    Cook, Jason L.; Ramirez-Marquez, Jose Emmanuel

    2008-01-01

    The mobile ad-hoc wireless network (MAWN) is a new and emerging network scheme that is being employed in a variety of applications. The MAWN varies from traditional networks because it is a self-forming and dynamic network. The MAWN is free of infrastructure and, as such, only the mobile nodes comprise the network. Pairs of nodes communicate either directly or through other nodes. To do so, each node acts, in turn, as a source, destination, and relay of messages. The virtue of a MAWN is the flexibility this provides; however, the challenge for reliability analyses is also brought about by this unique feature. The variability and volatility of the MAWN configuration makes typical reliability methods (e.g. reliability block diagram) inappropriate because no single structure or configuration represents all manifestations of a MAWN. For this reason, new methods are being developed to analyze the reliability of this new networking technology. New published methods adapt to this feature by treating the configuration probabilistically or by inclusion of embedded mobility models. This paper joins both methods together and expands upon these works by modifying the problem formulation to address the reliability analysis of a cluster-based MAWN. The cluster-based MAWN is deployed in applications with constraints on networking resources such as bandwidth and energy. This paper presents the problem's formulation, a discussion of applicable reliability metrics for the MAWN, and illustration of a Monte Carlo simulation method through the analysis of several example networks

  5. Fatigue Reliability Analysis of a Mono-Tower Platform

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Sørensen, John Dalsgaard; Brincker, Rune

    1991-01-01

    In this paper, a fatigue reliability analysis of a Mono-tower platform is presented. The failure mode, fatigue failure in the butt welds, is investigated with two different models. The one with the fatigue strength expressed through SN relations, the other with the fatigue strength expressed thro...... of the natural period, damping ratio, current, stress spectrum and parameters describing the fatigue strength. Further, soil damping is shown to be significant for the Mono-tower.......In this paper, a fatigue reliability analysis of a Mono-tower platform is presented. The failure mode, fatigue failure in the butt welds, is investigated with two different models. The one with the fatigue strength expressed through SN relations, the other with the fatigue strength expressed...... through linear-elastic fracture mechanics (LEFM). In determining the cumulative fatigue damage, Palmgren-Miner's rule is applied. Element reliability, as well as systems reliability, is estimated using first-order reliability methods (FORM). The sensitivity of the systems reliability to various parameters...

  6. State of the art report on aging reliability analysis

    International Nuclear Information System (INIS)

    Choi, Sun Yeong; Yang, Joon Eon; Han, Sang Hoon; Ha, Jae Joo

    2002-03-01

    The goal of this report is to describe the state of the art on aging analysis methods to calculate the effects of component aging quantitatively. In this report, we described some aging analysis methods which calculate the increase of Core Damage Frequency (CDF) due to aging by including the influence of aging into PSA. We also described several research topics required for aging analysis for components of domestic NPPs. We have described a statistical model and reliability physics model which calculate the effect of aging quantitatively by using PSA method. It is expected that the practical use of the reliability-physics model will be increased though the process with the reliability-physics model is more complicated than statistical model

  7. Reliability analysis of the reactor protection system with fault diagnosis

    International Nuclear Information System (INIS)

    Lee, D.Y.; Han, J.B.; Lyou, J.

    2004-01-01

    The main function of a reactor protection system (RPS) is to maintain the reactor core integrity and reactor coolant system pressure boundary. The RPS consists of the 2-out-of-m redundant architecture to assure a reliable operation. The system reliability of the RPS is a very important factor for the probability safety assessment (PSA) evaluation in the nuclear field. To evaluate the system failure rate of the k-out-of-m redundant system is not so easy with the deterministic method. In this paper, the reliability analysis method using the binomial process is suggested to calculate the failure rate of the RPS system with a fault diagnosis function. The suggested method is compared with the result of the Markov process to verify the validation of the suggested method, and applied to the several kinds of RPS architectures for a comparative evaluation of the reliability. (orig.)

  8. Reliability Analysis of Wireless Sensor Networks Using Markovian Model

    Directory of Open Access Journals (Sweden)

    Jin Zhu

    2012-01-01

    Full Text Available This paper investigates reliability analysis of wireless sensor networks whose topology is switching among possible connections which are governed by a Markovian chain. We give the quantized relations between network topology, data acquisition rate, nodes' calculation ability, and network reliability. By applying Lyapunov method, sufficient conditions of network reliability are proposed for such topology switching networks with constant or varying data acquisition rate. With the conditions satisfied, the quantity of data transported over wireless network node will not exceed node capacity such that reliability is ensured. Our theoretical work helps to provide a deeper understanding of real-world wireless sensor networks, which may find its application in the fields of network design and topology control.

  9. Reliability of the Emergency Severity Index: Meta-analysis

    Directory of Open Access Journals (Sweden)

    Amir Mirhaghi

    2015-01-01

    Full Text Available Objectives: Although triage systems based on the Emergency Severity Index (ESI have many advantages in terms of simplicity and clarity, previous research has questioned their reliability in practice. Therefore, the aim of this meta-analysis was to determine the reliability of ESI triage scales. Methods: This metaanalysis was performed in March 2014. Electronic research databases were searched and articles conforming to the Guidelines for Reporting Reliability and Agreement Studies were selected. Two researchers independently examined selected abstracts. Data were extracted in the following categories: version of scale (latest/older, participants (adult/paediatric, raters (nurse, physician or expert, method of reliability (intra/inter-rater, reliability statistics (weighted/unweighted kappa and the origin and publication year of the study. The effect size was obtained by the Z-transformation of reliability coefficients. Data were pooled with random-effects models and a meta-regression was performed based on the method of moments estimator. Results: A total of 19 studies from six countries were included in the analysis. The pooled coefficient for the ESI triage scales was substantial at 0.791 (95% confidence interval: 0.787‒0.795. Agreement was higher with the latest and adult versions of the scale and among expert raters, compared to agreement with older and paediatric versions of the scales and with other groups of raters, respectively. Conclusion: ESI triage scales showed an acceptable level of overall reliability. However, ESI scales require more development in order to see full agreement from all rater groups. Further studies concentrating on other aspects of reliability assessment are needed.

  10. CRITICAL ANALYSIS OF THE RELIABILITY OF INTUITIVE MORAL DECISIONS

    Directory of Open Access Journals (Sweden)

    V. V. Nadurak

    2017-06-01

    Full Text Available Purpose of the research is a critical analysis of the reliability of intuitive moral decisions. Methodology. The work is based on the methodological attitude of empirical ethics, involving the use of findings from empirical research in ethical reflection and decision making. Originality. The main kinds of intuitive moral decisions are identified: 1 intuitively emotional decisions (i.e. decisions made under the influence of emotions that accompanies the process of moral decision making; 2 decisions made under the influence of moral risky psychological aptitudes (unconscious human tendencies that makes us think in a certain way and make decisions, unacceptable from the logical and ethical point of view; 3 intuitively normative decisions (decisions made under the influence of socially learned norms, that cause evaluative feeling «good-bad», without conscious reasoning. It was found that all of these kinds of intuitive moral decisions can lead to mistakes in the moral life. Conclusions. Considering the fact that intuition systematically leads to erroneous moral decisions, intuitive reaction cannot be the only source for making such decisions. The conscious rational reasoning can compensate for weaknesses of intuition. In this case, there is a necessity in theoretical model that would structure the knowledge about the interactions between intuitive and rational factors in moral decisions making and became the basis for making suggestions that would help us to make the right moral decision.

  11. Development of a methodology for the application of the analysis of human reliability to individualized temporary storage facility; Desarrollo de una metodologia de aplicacion del Analisis de Fiabilidad Humana a una instalacion de Almacen Temporal Individualizado

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, P.; Dies, J.; Tapia, C.; Blas, A. de

    2014-07-01

    The paper aims to present the methodology that has been developed with the purpose of applying an ATI without the need of having experts during the process of modelling and quantification analysis of HRA. The developed methodology is based on ATHEANA and relies on the use of other methods of analysis of human action and in-depth analysis. (Author)

  12. Statistical models and methods for reliability and survival analysis

    CERN Document Server

    Couallier, Vincent; Huber-Carol, Catherine; Mesbah, Mounir; Huber -Carol, Catherine; Limnios, Nikolaos; Gerville-Reache, Leo

    2013-01-01

    Statistical Models and Methods for Reliability and Survival Analysis brings together contributions by specialists in statistical theory as they discuss their applications providing up-to-date developments in methods used in survival analysis, statistical goodness of fit, stochastic processes for system reliability, amongst others. Many of these are related to the work of Professor M. Nikulin in statistics over the past 30 years. The authors gather together various contributions with a broad array of techniques and results, divided into three parts - Statistical Models and Methods, Statistical

  13. Human Reliability Assessments: Using the Past (Shuttle) to Predict the Future (Orion)

    Science.gov (United States)

    DeMott, Diana L.; Bigler, Mark A.

    2017-01-01

    NASA (National Aeronautics and Space Administration) Johnson Space Center (JSC) Safety and Mission Assurance (S&MA) uses two human reliability analysis (HRA) methodologies. The first is a simplified method which is based on how much time is available to complete the action, with consideration included for environmental and personal factors that could influence the human's reliability. This method is expected to provide a conservative value or placeholder as a preliminary estimate. This preliminary estimate or screening value is used to determine which placeholder needs a more detailed assessment. The second methodology is used to develop a more detailed human reliability assessment on the performance of critical human actions. This assessment needs to consider more than the time available, this would include factors such as: the importance of the action, the context, environmental factors, potential human stresses, previous experience, training, physical design interfaces, available procedures/checklists and internal human stresses. The more detailed assessment is expected to be more realistic than that based primarily on time available. When performing an HRA on a system or process that has an operational history, we have information specific to the task based on this history and experience. In the case of a Probabilistic Risk Assessment (PRA) that is based on a new design and has no operational history, providing a "reasonable" assessment of potential crew actions becomes more challenging. To determine what is expected of future operational parameters, the experience from individuals who had relevant experience and were familiar with the system and process previously implemented by NASA was used to provide the "best" available data. Personnel from Flight Operations, Flight Directors, Launch Test Directors, Control Room Console Operators, and Astronauts were all interviewed to provide a comprehensive picture of previous NASA operations. Verification of the

  14. Bayesian Inference for NASA Probabilistic Risk and Reliability Analysis

    Science.gov (United States)

    Dezfuli, Homayoon; Kelly, Dana; Smith, Curtis; Vedros, Kurt; Galyean, William

    2009-01-01

    This document, Bayesian Inference for NASA Probabilistic Risk and Reliability Analysis, is intended to provide guidelines for the collection and evaluation of risk and reliability-related data. It is aimed at scientists and engineers familiar with risk and reliability methods and provides a hands-on approach to the investigation and application of a variety of risk and reliability data assessment methods, tools, and techniques. This document provides both: A broad perspective on data analysis collection and evaluation issues. A narrow focus on the methods to implement a comprehensive information repository. The topics addressed herein cover the fundamentals of how data and information are to be used in risk and reliability analysis models and their potential role in decision making. Understanding these topics is essential to attaining a risk informed decision making environment that is being sought by NASA requirements and procedures such as 8000.4 (Agency Risk Management Procedural Requirements), NPR 8705.05 (Probabilistic Risk Assessment Procedures for NASA Programs and Projects), and the System Safety requirements of NPR 8715.3 (NASA General Safety Program Requirements).

  15. Reliability analysis of reactor inspection robot(RIROB)

    International Nuclear Information System (INIS)

    Eom, H. S.; Kim, J. H.; Lee, J. C.; Choi, Y. R.; Moon, S. S.

    2002-05-01

    This report describes the method and the result of the reliability analysis of RIROB developed in Korea Atomic Energy Research Institute. There are many classic techniques and models for the reliability analysis. These techniques and models have been used widely and approved in other industries such as aviation and nuclear industry. Though these techniques and models have been approved in real fields they are still insufficient for the complicated systems such RIROB which are composed of computer, networks, electronic parts, mechanical parts, and software. Particularly the application of these analysis techniques to digital and software parts of complicated systems is immature at this time thus expert judgement plays important role in evaluating the reliability of the systems at these days. In this report we proposed a method which combines diverse evidences relevant to the reliability to evaluate the reliability of complicated systems such as RIROB. The proposed method combines diverse evidences and performs inference in formal and in quantitative way by using the benefits of Bayesian Belief Nets (BBN)

  16. Reliability-Based Robustness Analysis for a Croatian Sports Hall

    DEFF Research Database (Denmark)

    Čizmar, Dean; Kirkegaard, Poul Henning; Sørensen, John Dalsgaard

    2011-01-01

    This paper presents a probabilistic approach for structural robustness assessment for a timber structure built a few years ago. The robustness analysis is based on a structural reliability based framework for robustness and a simplified mechanical system modelling of a timber truss system....... A complex timber structure with a large number of failure modes is modelled with only a few dominant failure modes. First, a component based robustness analysis is performed based on the reliability indices of the remaining elements after the removal of selected critical elements. The robustness...... is expressed and evaluated by a robustness index. Next, the robustness is assessed using system reliability indices where the probabilistic failure model is modelled by a series system of parallel systems....

  17. Human Reliability and the Current Dilemma in Human-Machine Interface Design Strategies

    International Nuclear Information System (INIS)

    Passalacqua, Roberto; Yamada, Fumiaki

    2002-01-01

    Since human error dominates the probability of failures of still-existing human-requiring systems (as the Monju reactor), the human-machine interface needs to be improved. Several rationales may lead to the conclusion that 'humans' should limit themselves to monitor the 'machine'. For example, this is the trend in the aviation industry: newest aircrafts are designed to be able to return to a safe state by the use of control systems, which do not need human intervention. Thus, the dilemma whether we really need operators (for example in the nuclear industry) might arise. However, social-technical approaches in recent human error analyses are pointing out the so-called 'organizational errors' and the importance of a human-machine interface harmonization. Typically plant's operators are a 'redundant' safety system with a much lower reliability (than the machine): organizational factors and harmonization requirements suggest designing the human-machine interface in a way that allows improvement of operator's reliability. In addition, taxonomy studies of accident databases have also proved that operators' training should promote processes of decision-making. This is accomplished in the latest trends of PSA technology by introducing the concept of a 'Safety Monitor' that is a computer-based tool that uses a level 1 PSA model of the plant. Operators and maintenance schedulers of the Monju FBR will be able to perform real-time estimations of the plant risk level. The main benefits are risk awareness and improvements in decision-making by operators. Also scheduled maintenance can be approached in a more rational (safe and economic) way. (authors)

  18. Distribution System Reliability Analysis for Smart Grid Applications

    Science.gov (United States)

    Aljohani, Tawfiq Masad

    Reliability of power systems is a key aspect in modern power system planning, design, and operation. The ascendance of the smart grid concept has provided high hopes of developing an intelligent network that is capable of being a self-healing grid, offering the ability to overcome the interruption problems that face the utility and cost it tens of millions in repair and loss. To address its reliability concerns, the power utilities and interested parties have spent extensive amount of time and effort to analyze and study the reliability of the generation and transmission sectors of the power grid. Only recently has attention shifted to be focused on improving the reliability of the distribution network, the connection joint between the power providers and the consumers where most of the electricity problems occur. In this work, we will examine the effect of the smart grid applications in improving the reliability of the power distribution networks. The test system used in conducting this thesis is the IEEE 34 node test feeder, released in 2003 by the Distribution System Analysis Subcommittee of the IEEE Power Engineering Society. The objective is to analyze the feeder for the optimal placement of the automatic switching devices and quantify their proper installation based on the performance of the distribution system. The measures will be the changes in the reliability system indices including SAIDI, SAIFI, and EUE. The goal is to design and simulate the effect of the installation of the Distributed Generators (DGs) on the utility's distribution system and measure the potential improvement of its reliability. The software used in this work is DISREL, which is intelligent power distribution software that is developed by General Reliability Co.

  19. Human reliability and risk management in the transportation of spent nuclear fuel

    International Nuclear Information System (INIS)

    Tuler, S.; Kasperson, R.E.; Ratick, S.

    1989-01-01

    This paper summarizes work on human factor contributions to risks from spent nuclear fuel transportation. Human participation may have significant effects on the levels and types of risks by enabling or initiating incidents and exacerbating adverse consequences. Human errors are defined to be the result of mismatches between perceived system state and actual system state. In complex transportation systems such mismatches may be distributed in time (e.g., during different stages of design, implementation, operation, maintenance) and location (e.g., human error, its identification, and its recovery may be geographically and institutionally separate). Risk management programs may decrease the probability of undesirable events or attenuate the consequences of mismatches. This paper presents a methodology to identify the scope and types of human-task mismatches and to identify potential management options for their prevention, mitigation, or recovery. A review of transportation accident databases, in conjunction with human error models, is used to develop a taxonomy of human errors during design for the pre-identification of potential mismatches or after incidents have occurred to evaluate their causes. Risk management options to improve human reliability are identified by a matrix that relates the multiple stages of a spent nuclear fuel transportation system to management options (e.g., training, data analysis, regulation). The paper concludes with examples to illustrate how the methodology may be applied. (author)

  20. Reliability and risk analysis data base development: an historical perspective

    International Nuclear Information System (INIS)

    Fragola, Joseph R.

    1996-01-01

    Galvagni, R. Risk based decision analysis in design. Fourth SRA Europe Conference Proceedings, Rome, Italy, 18-20 October 1993). These factors, although they continue to be heuristically based, attempt to account for uncertainties in the design environment (e.g., the load spectra) and residual materials defects (Fragola, J.R. et al., Investigation of the risk implications of space shuttle solid rocket booster chamber pressure excursions. SAIC Document No. SAIC/NY 95-01-10, New York, NY). Although the approaches may appear different, at least at first glance, the intention in both the insurance and design arenas was to establish an 'infrastructure of confidence' to enable rational decision making for future endeavours. Maturity in the design process of conventional structures such as bridges, buildings, boilers, and highways has led to the loss of recognition of the role that robustness plays in these designs to qualify them against their normal failure environment. So routinely do we expect these designs to survive that we tend to think of the individual failures (which do occur on occasion) as isolated 'freak' accidents. Attempts to uncover potential underlying classes and document associated attributes are rare, and even when they are undertaken 'human error' or 'one-of-a-kind accidents' is often cited as the major cause which somehow seems to absolve the analyst from the responsibility of further data collection (Levy, M. and Salvadori, M., Why Buildings Fall Down, W.W. Norton and Co., New York, NY, 1992; Pecht, M., Nash, F.R. and Long, J.H., Understanding and solving the real reliability assurance problems. 1995 Proceedings of Annual RAMS Symposium, IEEE, New York, NY, 1995). The confusion has proliferated to the point where legitimate calls for scepticism regarding the scant data resources available (Evans, R.A., Bayes paradox. IEEE Trans. Reliab., R-31 (1982) 321) have given way to cries that some data sources be abandoned altogether (Cushing, M. et al., Comparison

  1. An efficient phased mission reliability analysis for autonomous vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Remenyte-Prescott, R., E-mail: R.Remenyte-Prescott@nottingham.ac.u [Nottingham Transportation Engineering Centre, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD (United Kingdom); Andrews, J.D. [Nottingham Transportation Engineering Centre, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD (United Kingdom); Chung, P.W.H. [Department of Computer Science, Loughborough University, Loughborough LE11 3TU (United Kingdom)

    2010-03-15

    Autonomous systems are becoming more commonly used, especially in hazardous situations. Such systems are expected to make their own decisions about future actions when some capabilities degrade due to failures of their subsystems. Such decisions are made without human input, therefore they need to be well-informed in a short time when the situation is analysed and future consequences of the failure are estimated. The future planning of the mission should take account of the likelihood of mission failure. The reliability analysis for autonomous systems can be performed using the methodologies developed for phased mission analysis, where the causes of failure for each phase in the mission can be expressed by fault trees. Unmanned autonomous vehicles (UAVs) are of a particular interest in the aeronautical industry, where it is a long term ambition to operate them routinely in civil airspace. Safety is the main requirement for the UAV operation and the calculation of failure probability of each phase and the overall mission is the topic of this paper. When components or subsystems fail or environmental conditions throughout the mission change, these changes can affect the future mission. The new proposed methodology takes into account the available diagnostics data and is used to predict future capabilities of the UAV in real time. Since this methodology is based on the efficient BDD method, the quickly provided advice can be used in making decisions. When failures occur appropriate actions are required in order to preserve safety of the autonomous vehicle. The overall decision making strategy for autonomous vehicles is explained in this paper. Some limitations of the methodology are discussed and further improvements are presented based on experimental results.

  2. An efficient phased mission reliability analysis for autonomous vehicles

    International Nuclear Information System (INIS)

    Remenyte-Prescott, R.; Andrews, J.D.; Chung, P.W.H.

    2010-01-01

    Autonomous systems are becoming more commonly used, especially in hazardous situations. Such systems are expected to make their own decisions about future actions when some capabilities degrade due to failures of their subsystems. Such decisions are made without human input, therefore they need to be well-informed in a short time when the situation is analysed and future consequences of the failure are estimated. The future planning of the mission should take account of the likelihood of mission failure. The reliability analysis for autonomous systems can be performed using the methodologies developed for phased mission analysis, where the causes of failure for each phase in the mission can be expressed by fault trees. Unmanned autonomous vehicles (UAVs) are of a particular interest in the aeronautical industry, where it is a long term ambition to operate them routinely in civil airspace. Safety is the main requirement for the UAV operation and the calculation of failure probability of each phase and the overall mission is the topic of this paper. When components or subsystems fail or environmental conditions throughout the mission change, these changes can affect the future mission. The new proposed methodology takes into account the available diagnostics data and is used to predict future capabilities of the UAV in real time. Since this methodology is based on the efficient BDD method, the quickly provided advice can be used in making decisions. When failures occur appropriate actions are required in order to preserve safety of the autonomous vehicle. The overall decision making strategy for autonomous vehicles is explained in this paper. Some limitations of the methodology are discussed and further improvements are presented based on experimental results.

  3. Structural reliability analysis based on the cokriging technique

    International Nuclear Information System (INIS)

    Zhao Wei; Wang Wei; Dai Hongzhe; Xue Guofeng

    2010-01-01

    Approximation methods are widely used in structural reliability analysis because they are simple to create and provide explicit functional relationships between the responses and variables in stead of the implicit limit state function. Recently, the kriging method which is a semi-parameter interpolation technique that can be used for deterministic optimization and structural reliability has gained popularity. However, to fully exploit the kriging method, especially in high-dimensional problems, a large number of sample points should be generated to fill the design space and this can be very expensive and even impractical in practical engineering analysis. Therefore, in this paper, a new method-the cokriging method, which is an extension of kriging, is proposed to calculate the structural reliability. cokriging approximation incorporates secondary information such as the values of the gradients of the function being approximated. This paper explores the use of the cokriging method for structural reliability problems by comparing it with the Kriging method based on some numerical examples. The results indicate that the cokriging procedure described in this work can generate approximation models to improve on the accuracy and efficiency for structural reliability problems and is a viable alternative to the kriging.

  4. Reliability analysis - systematic approach based on limited data

    International Nuclear Information System (INIS)

    Bourne, A.J.

    1975-11-01

    The initial approaches required for reliability analysis are outlined. These approaches highlight the system boundaries, examine the conditions under which the system is required to operate, and define the overall performance requirements. The discussion is illustrated by a simple example of an automatic protective system for a nuclear reactor. It is then shown how the initial approach leads to a method of defining the system, establishing performance parameters of interest and determining the general form of reliability models to be used. The overall system model and the availability of reliability data at the system level are next examined. An iterative process is then described whereby the reliability model and data requirements are systematically refined at progressively lower hierarchic levels of the system. At each stage, the approach is illustrated with examples from the protective system previously described. The main advantages of the approach put forward are the systematic process of analysis, the concentration of assessment effort in the critical areas and the maximum use of limited reliability data. (author)

  5. DATMAN: A reliability data analysis program using Bayesian updating

    International Nuclear Information System (INIS)

    Becker, M.; Feltus, M.A.

    1996-01-01

    Preventive maintenance (PM) techniques focus on the prevention of failures, in particular, system components that are important to plant functions. Reliability-centered maintenance (RCM) improves on the PM techniques by introducing a set of guidelines by which to evaluate the system functions. It also minimizes intrusive maintenance, labor, and equipment downtime without sacrificing system performance when its function is essential for plant safety. Both the PM and RCM approaches require that system reliability data be updated as more component failures and operation time are acquired. Systems reliability and the likelihood of component failures can be calculated by Bayesian statistical methods, which can update these data. The DATMAN computer code has been developed at Penn State to simplify the Bayesian analysis by performing tedious calculations needed for RCM reliability analysis. DATMAN reads data for updating, fits a distribution that best fits the data, and calculates component reliability. DATMAN provides a user-friendly interface menu that allows the user to choose from several common prior and posterior distributions, insert new failure data, and visually select the distribution that matches the data most accurately

  6. System Reliability Analysis Capability and Surrogate Model Application in RAVEN

    Energy Technology Data Exchange (ETDEWEB)

    Rabiti, Cristian [Idaho National Lab. (INL), Idaho Falls, ID (United States); Alfonsi, Andrea [Idaho National Lab. (INL), Idaho Falls, ID (United States); Huang, Dongli [Idaho National Lab. (INL), Idaho Falls, ID (United States); Gleicher, Frederick [Idaho National Lab. (INL), Idaho Falls, ID (United States); Wang, Bei [Idaho National Lab. (INL), Idaho Falls, ID (United States); Adbel-Khalik, Hany S. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Pascucci, Valerio [Idaho National Lab. (INL), Idaho Falls, ID (United States); Smith, Curtis L. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-11-01

    This report collect the effort performed to improve the reliability analysis capabilities of the RAVEN code and explore new opportunity in the usage of surrogate model by extending the current RAVEN capabilities to multi physics surrogate models and construction of surrogate models for high dimensionality fields.

  7. Factorial validation and reliability analysis of the brain fag syndrome ...

    African Journals Online (AJOL)

    Results: Two valid factors emerged with items 1-3 and items 4, 5 & 7 loading on respectively, making the BFSS a twodimensional (multidimensional) scale which measures 2 aspects of brain fag [labeled burning sensation and crawling sensation respectively]. The reliability analysis yielded a Cronbach Alpha coefficient of ...

  8. Post-event human decision errors: operator action tree/time reliability correlation

    Energy Technology Data Exchange (ETDEWEB)

    Hall, R E; Fragola, J; Wreathall, J

    1982-11-01

    This report documents an interim framework for the quantification of the probability of errors of decision on the part of nuclear power plant operators after the initiation of an accident. The framework can easily be incorporated into an event tree/fault tree analysis. The method presented consists of a structure called the operator action tree and a time reliability correlation which assumes the time available for making a decision to be the dominating factor in situations requiring cognitive human response. This limited approach decreases the magnitude and complexity of the decision modeling task. Specifically, in the past, some human performance models have attempted prediction by trying to emulate sequences of human actions, or by identifying and modeling the information processing approach applicable to the task. The model developed here is directed at describing the statistical performance of a representative group of hypothetical individuals responding to generalized situations.

  9. Post-event human decision errors: operator action tree/time reliability correlation

    International Nuclear Information System (INIS)

    Hall, R.E.; Fragola, J.; Wreathall, J.

    1982-11-01

    This report documents an interim framework for the quantification of the probability of errors of decision on the part of nuclear power plant operators after the initiation of an accident. The framework can easily be incorporated into an event tree/fault tree analysis. The method presented consists of a structure called the operator action tree and a time reliability correlation which assumes the time available for making a decision to be the dominating factor in situations requiring cognitive human response. This limited approach decreases the magnitude and complexity of the decision modeling task. Specifically, in the past, some human performance models have attempted prediction by trying to emulate sequences of human actions, or by identifying and modeling the information processing approach applicable to the task. The model developed here is directed at describing the statistical performance of a representative group of hypothetical individuals responding to generalized situations

  10. A study of operational and testing reliability in software reliability analysis

    International Nuclear Information System (INIS)

    Yang, B.; Xie, M.

    2000-01-01

    Software reliability is an important aspect of any complex equipment today. Software reliability is usually estimated based on reliability models such as nonhomogeneous Poisson process (NHPP) models. Software systems are improving in testing phase, while it normally does not change in operational phase. Depending on whether the reliability is to be predicted for testing phase or operation phase, different measure should be used. In this paper, two different reliability concepts, namely, the operational reliability and the testing reliability, are clarified and studied in detail. These concepts have been mixed up or even misused in some existing literature. Using different reliability concept will lead to different reliability values obtained and it will further lead to different reliability-based decisions made. The difference of the estimated reliabilities is studied and the effect on the optimal release time is investigated

  11. A human reliability based usability evaluation method for safety-critical software

    International Nuclear Information System (INIS)

    Boring, R. L.; Tran, T. Q.; Gertman, D. I.; Ragsdale, A.

    2006-01-01

    Boring and Gertman (2005) introduced a novel method that augments heuristic usability evaluation methods with that of the human reliability analysis method of SPAR-H. By assigning probabilistic modifiers to individual heuristics, it is possible to arrive at the usability error probability (UEP). Although this UEP is not a literal probability of error, it nonetheless provides a quantitative basis to heuristic evaluation. This method allows one to seamlessly prioritize and identify usability issues (i.e., a higher UEP requires more immediate fixes). However, the original version of this method required the usability evaluator to assign priority weights to the final UEP, thus allowing the priority of a usability issue to differ among usability evaluators. The purpose of this paper is to explore an alternative approach to standardize the priority weighting of the UEP in an effort to improve the method's reliability. (authors)

  12. ZERBERUS - the code for reliability analysis of crack containing structures

    International Nuclear Information System (INIS)

    Cizelj, L.; Riesch-Oppermann, H.

    1992-04-01

    Brief description of the First- and Second Order Reliability Methods, being the theoretical background of the code, is given. The code structure is described in detail, with special emphasis to the new application fields. The numerical example investigates failure probability of steam generator tubing affected by stress corrosion cracking. The changes necessary to accommodate this analysis within the ZERBERUS code are explained. Analysis results are compared to different Monte Carlo techniques. (orig./HP) [de

  13. Maintenance management of railway infrastructures based on reliability analysis

    International Nuclear Information System (INIS)

    Macchi, Marco; Garetti, Marco; Centrone, Domenico; Fumagalli, Luca; Piero Pavirani, Gian

    2012-01-01

    Railway infrastructure maintenance plays a crucial role for rail transport. It aims at guaranteeing safety of operations and availability of railway tracks and related equipment for traffic regulation. Moreover, it is one major cost for rail transport operations. Thus, the increased competition in traffic market is asking for maintenance improvement, aiming at the reduction of maintenance expenditures while keeping the safety of operations. This issue is addressed by the methodology presented in the paper. The first step of the methodology consists of a family-based approach for the equipment reliability analysis; its purpose is the identification of families of railway items which can be given the same reliability targets. The second step builds the reliability model of the railway system for identifying the most critical items, given a required service level for the transportation system. The two methods have been implemented and tested in practical case studies, in the context of Rete Ferroviaria Italiana, the Italian public limited company for railway transportation.

  14. Reliability Analysis of Free Jet Scour Below Dams

    Directory of Open Access Journals (Sweden)

    Chuanqi Li

    2012-12-01

    Full Text Available Current formulas for calculating scour depth below of a free over fall are mostly deterministic in nature and do not adequately consider the uncertainties of various scouring parameters. A reliability-based assessment of scour, taking into account uncertainties of parameters and coefficients involved, should be performed. This paper studies the reliability of a dam foundation under the threat of scour. A model for calculating the reliability of scour and estimating the probability of failure of the dam foundation subjected to scour is presented. The Maximum Entropy Method is applied to construct the probability density function (PDF of the performance function subject to the moment constraints. Monte Carlo simulation (MCS is applied for uncertainty analysis. An example is considered, and there liability of its scour is computed, the influence of various random variables on the probability failure is analyzed.

  15. Analysis of the Reliability of the "Alternator- Alternator Belt" System

    Directory of Open Access Journals (Sweden)

    Ivan Mavrin

    2012-10-01

    Full Text Available Before starting and also during the exploitation of va1ioussystems, it is vety imp011ant to know how the system and itsparts will behave during operation regarding breakdowns, i.e.failures. It is possible to predict the service behaviour of a systemby determining the functions of reliability, as well as frequencyand intensity of failures.The paper considers the theoretical basics of the functionsof reliability, frequency and intensity of failures for the twomain approaches. One includes 6 equal intetvals and the other13 unequal intetvals for the concrete case taken from practice.The reliability of the "alternator- alternator belt" system installedin the buses, has been analysed, according to the empiricaldata on failures.The empitical data on failures provide empirical functionsof reliability and frequency and intensity of failures, that arepresented in tables and graphically. The first analysis perfO!med by dividing the mean time between failures into 6 equaltime intervals has given the forms of empirical functions of fa ilurefrequency and intensity that approximately cotTespond totypical functions. By dividing the failure phase into 13 unequalintetvals with two failures in each interval, these functions indicateexplicit transitions from early failure inte1val into the randomfailure interval, i.e. into the ageing intetval. Functions thusobtained are more accurate and represent a better solution forthe given case.In order to estimate reliability of these systems with greateraccuracy, a greater number of failures needs to be analysed.

  16. An exact method for solving logical loops in reliability analysis

    International Nuclear Information System (INIS)

    Matsuoka, Takeshi

    2009-01-01

    This paper presents an exact method for solving logical loops in reliability analysis. The systems that include logical loops are usually described by simultaneous Boolean equations. First, present a basic rule of solving simultaneous Boolean equations. Next, show the analysis procedures for three-component system with external supports. Third, more detailed discussions are given for the establishment of logical loop relation. Finally, take up two typical structures which include more than one logical loop. Their analysis results and corresponding GO-FLOW charts are given. The proposed analytical method is applicable to loop structures that can be described by simultaneous Boolean equations, and it is very useful in evaluating the reliability of complex engineering systems.

  17. Reliability analysis of service water system under earthquake

    International Nuclear Information System (INIS)

    Yu Yu; Qian Xiaoming; Lu Xuefeng; Wang Shengfei; Niu Fenglei

    2013-01-01

    Service water system is one of the important safety systems in nuclear power plant, whose failure probability is always gained by system reliability analysis. The probability of equipment failure under the earthquake is the function of the peak acceleration of earthquake motion, while the occurrence of earthquake is of randomicity, thus the traditional fault tree method in current probability safety assessment is not powerful enough to deal with such case of conditional probability problem. An analysis frame was put forward for system reliability evaluation in seismic condition in this paper, in which Monte Carlo simulation was used to deal with conditional probability problem. Annual failure probability of service water system was calculated, and failure probability of 1.46X10 -4 per year was obtained. The analysis result is in accordance with the data which indicate equipment seismic resistance capability, and the rationality of the model is validated. (authors)

  18. A framework for intelligent reliability centered maintenance analysis

    International Nuclear Information System (INIS)

    Cheng Zhonghua; Jia Xisheng; Gao Ping; Wu Su; Wang Jianzhao

    2008-01-01

    To improve the efficiency of reliability-centered maintenance (RCM) analysis, case-based reasoning (CBR), as a kind of artificial intelligence (AI) technology, was successfully introduced into RCM analysis process, and a framework for intelligent RCM analysis (IRCMA) was studied. The idea for IRCMA is based on the fact that the historical records of RCM analysis on similar items can be referenced and used for the current RCM analysis of a new item. Because many common or similar items may exist in the analyzed equipment, the repeated tasks of RCM analysis can be considerably simplified or avoided by revising the similar cases in conducting RCM analysis. Based on the previous theory studies, an intelligent RCM analysis system (IRCMAS) prototype was developed. This research has focused on the description of the definition, basic principles as well as a framework of IRCMA, and discussion of critical techniques in the IRCMA. Finally, IRCMAS prototype is presented based on a case study

  19. Operator reliability study for Probabilistic Safety Analysis of an operating research reactor

    International Nuclear Information System (INIS)

    Mohamed, F.; Hassan, A.; Yahaya, R.; Rahman, I.; Maskin, M.; Praktom, P.; Charlie, F.

    2015-01-01

    Highlights: • Human Reliability Analysis (HRA) for Level 1 Probabilistic Safety Analysis (PSA) is performed on research nuclear reactor. • Implemented qualitative HRA framework is addressed. • Human Failure Events of significant impact to the reactor safety are derived. - Abstract: A Level 1 Probabilistic Safety Analysis (PSA) for the TRIGA Mark II research reactor of Malaysian Nuclear Agency has been developed to evaluate the potential risk in its operation. In conjunction to this PSA development, Human Reliability Analysis (HRA) is performed in order to determine human contribution to the risk. The aim of this study is to qualitatively analyze human actions (HAs) involved in the operation of this reactor according to the qualitative part of the HRA framework for PSA which is namely the identification, qualitative screening and modeling of HAs. By performing this framework, Human Failure Events (HFEs) of significant impact to the reactor safety are systematically analyzed and incorporated into the PSA structure. A part of the findings in this study will become the input for the subsequent quantitative part of the HRA framework, i.e. the Human Error Probability (HEP) quantification

  20. Principle of maximum entropy for reliability analysis in the design of machine components

    Science.gov (United States)

    Zhang, Yimin

    2018-03-01

    We studied the reliability of machine components with parameters that follow an arbitrary statistical distribution using the principle of maximum entropy (PME). We used PME to select the statistical distribution that best fits the available information. We also established a probability density function (PDF) and a failure probability model for the parameters of mechanical components using the concept of entropy and the PME. We obtained the first four moments of the state function for reliability analysis and design. Furthermore, we attained an estimate of the PDF with the fewest human bias factors using the PME. This function was used to calculate the reliability of the machine components, including a connecting rod, a vehicle half-shaft, a front axle, a rear axle housing, and a leaf spring, which have parameters that typically follow a non-normal distribution. Simulations were conducted for comparison. This study provides a design methodology for the reliability of mechanical components for practical engineering projects.

  1. Reliability analysis of operator's monitoring behavior in digital main control room of nuclear power plants and its application

    International Nuclear Information System (INIS)

    Zhang Li; Hu Hong; Li Pengcheng; Jiang Jianjun; Yi Cannan; Chen Qingqing

    2015-01-01

    In order to build a quantitative model to analyze operators' monitoring behavior reliability of digital main control room of nuclear power plants, based on the analysis of the design characteristics of digital main control room of a nuclear power plant and operator's monitoring behavior, and combining with operators' monitoring behavior process, monitoring behavior reliability was divided into three parts including information transfer reliability among screens, inside-screen information sampling reliability and information detection reliability. Quantitative calculation model of information transfer reliability among screens was established based on Senders's monitoring theory; the inside screen information sampling reliability model was established based on the allocation theory of attention resources; and considering the performance shaping factor causality, a fuzzy Bayesian method was presented to quantify information detection reliability and an example of application was given. The results show that the established model of monitoring behavior reliability gives an objective description for monitoring process, which can quantify the monitoring reliability and overcome the shortcomings of traditional methods. Therefore, it provides theoretical support for operator's monitoring behavior reliability analysis in digital main control room of nuclear power plants and improves the precision of human reliability analysis. (authors)

  2. Reliability test and failure analysis of high power LED packages

    International Nuclear Information System (INIS)

    Chen Zhaohui; Zhang Qin; Wang Kai; Luo Xiaobing; Liu Sheng

    2011-01-01

    A new type application specific light emitting diode (LED) package (ASLP) with freeform polycarbonate lens for street lighting is developed, whose manufacturing processes are compatible with a typical LED packaging process. The reliability test methods and failure criterions from different vendors are reviewed and compared. It is found that test methods and failure criterions are quite different. The rapid reliability assessment standards are urgently needed for the LED industry. 85 0 C/85 RH with 700 mA is used to test our LED modules with three other vendors for 1000 h, showing no visible degradation in optical performance for our modules, with two other vendors showing significant degradation. Some failure analysis methods such as C-SAM, Nano X-ray CT and optical microscope are used for LED packages. Some failure mechanisms such as delaminations and cracks are detected in the LED packages after the accelerated reliability testing. The finite element simulation method is helpful for the failure analysis and design of the reliability of the LED packaging. One example is used to show one currently used module in industry is vulnerable and may not easily pass the harsh thermal cycle testing. (semiconductor devices)

  3. Importance of independent and dependent human error to system reliability and plant safety

    International Nuclear Information System (INIS)

    Dach, K.

    1988-08-01

    Uncertainty analysis of the quantification of the unavailability for the emergency core cooling system was made. The reliability analysis of the low pressure injection system (LPIS) of the ECCS of WWER-440 reactor was also performed. Results of reliability analysis proved that LPIS reliability under normal conditions is sufficient and can be increased by two orders of magnitude. This increase in reliability can be achieved by means of simple changes such as securing an opening of the quick-acting fittings at LPIS discharge line. A method for analysis of systems uncertainty with periodic inspected components was elaborated and verified by performing an analysis of the medium size system. Refs, figs and tabs

  4. Human Reliability and the Cost of Doing Business

    Science.gov (United States)

    DeMott, D. L.

    2014-01-01

    Human error cannot be defined unambiguously in advance of it happening, it often becomes an error after the fact. The same action can result in a tragic accident for one situation or a heroic action given a more favorable outcome. People often forget that we employ humans in business and industry for the flexibility and capability to change when needed. In complex systems, operations are driven by their specifications of the system and the system structure. People provide the flexibility to make it work. Human error has been reported as being responsible for 60%-80% of failures, accidents and incidents in high-risk industries. We don't have to accept that all human errors are inevitable. Through the use of some basic techniques, many potential human error events can be addressed. There are actions that can be taken to reduce the risk of human error.

  5. Reliability analysis of maintenance operations for railway tracks

    International Nuclear Information System (INIS)

    Rhayma, N.; Bressolette, Ph.; Breul, P.; Fogli, M.; Saussine, G.

    2013-01-01

    Railway engineering is confronted with problems due to degradation of the railway network that requires important and costly maintenance work. However, because of the lack of knowledge on the geometrical and mechanical parameters of the track, it is difficult to optimize the maintenance management. In this context, this paper presents a new methodology to analyze the behavior of railway tracks. It combines new diagnostic devices which permit to obtain an important amount of data and thus to make statistics on the geometric and mechanical parameters and a non-intrusive stochastic approach which can be coupled with any mechanical model. Numerical results show the possibilities of this methodology for reliability analysis of different maintenance operations. In the future this approach will give important informations to railway managers to optimize maintenance operations using a reliability analysis

  6. Reliability analysis based on the losses from failures.

    Science.gov (United States)

    Todinov, M T

    2006-04-01

    The conventional reliability analysis is based on the premise that increasing the reliability of a system will decrease the losses from failures. On the basis of counterexamples, it is demonstrated that this is valid only if all failures are associated with the same losses. In case of failures associated with different losses, a system with larger reliability is not necessarily characterized by smaller losses from failures. Consequently, a theoretical framework and models are proposed for a reliability analysis, linking reliability and the losses from failures. Equations related to the distributions of the potential losses from failure have been derived. It is argued that the classical risk equation only estimates the average value of the potential losses from failure and does not provide insight into the variability associated with the potential losses. Equations have also been derived for determining the potential and the expected losses from failures for nonrepairable and repairable systems with components arranged in series, with arbitrary life distributions. The equations are also valid for systems/components with multiple mutually exclusive failure modes. The expected losses given failure is a linear combination of the expected losses from failure associated with the separate failure modes scaled by the conditional probabilities with which the failure modes initiate failure. On this basis, an efficient method for simplifying complex reliability block diagrams has been developed. Branches of components arranged in series whose failures are mutually exclusive can be reduced to single components with equivalent hazard rate, downtime, and expected costs associated with intervention and repair. A model for estimating the expected losses from early-life failures has also been developed. For a specified time interval, the expected losses from early-life failures are a sum of the products of the expected number of failures in the specified time intervals covering the

  7. Solid Rocket Booster Large Main and Drogue Parachute Reliability Analysis

    Science.gov (United States)

    Clifford, Courtenay B.; Hengel, John E.

    2009-01-01

    The parachutes on the Space Transportation System (STS) Solid Rocket Booster (SRB) are the means for decelerating the SRB and allowing it to impact the water at a nominal vertical velocity of 75 feet per second. Each SRB has one pilot, one drogue, and three main parachutes. About four minutes after SRB separation, the SRB nose cap is jettisoned, deploying the pilot parachute. The pilot chute then deploys the drogue parachute. The drogue chute provides initial deceleration and proper SRB orientation prior to frustum separation. At frustum separation, the drogue pulls the frustum from the SRB and allows the main parachutes that are mounted in the frustum to unpack and inflate. These chutes are retrieved, inspected, cleaned, repaired as needed, and returned to the flight inventory and reused. Over the course of the Shuttle Program, several improvements have been introduced to the SRB main parachutes. A major change was the replacement of the small (115 ft. diameter) main parachutes with the larger (136 ft. diameter) main parachutes. Other modifications were made to the main parachutes, main parachute support structure, and SRB frustum to eliminate failure mechanisms, improve damage tolerance, and improve deployment and inflation characteristics. This reliability analysis is limited to the examination of the SRB Large Main Parachute (LMP) and drogue parachute failure history to assess the reliability of these chutes. From the inventory analysis, 68 Large Main Parachutes were used in 651 deployments, and 7 chute failures occurred in the 651 deployments. Logistic regression was used to analyze the LMP failure history, and it showed that reliability growth has occurred over the period of use resulting in a current chute reliability of R = .9983. This result was then used to determine the reliability of the 3 LMPs on the SRB, when all must function. There are 29 drogue parachutes that were used in 244 deployments, and no in-flight failures have occurred. Since there are no

  8. High-Reliable PLC RTOS Development and RPS Structure Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, H. S.; Song, D. Y.; Sohn, D. S.; Kim, J. H. [Enersys Co., Daejeon (Korea, Republic of)

    2008-04-15

    One of the KNICS objectives is to develop a platform for Nuclear Power Plant(NPP) I and C(Instrumentation and Control) system, especially plant protection system. The developed platform is POSAFE-Q and this work supports the development of POSAFE-Q with the development of high-reliable real-time operating system(RTOS) and programmable logic device(PLD) software. Another KNICS objective is to develop safety I and C systems, such as Reactor Protection System(RPS) and Engineered Safety Feature-Component Control System(ESF-CCS). This work plays an important role in the structure analysis for RPS. Validation and verification(V and V) of the safety critical software is an essential work to make digital plant protection system highly reliable and safe. Generally, the reliability and safety of software based system can be improved by strict quality assurance framework including the software development itself. In other words, through V and V, the reliability and safety of a system can be improved and the development activities like software requirement specification, software design specification, component tests, integration tests, and system tests shall be appropriately documented for V and V.

  9. High-Reliable PLC RTOS Development and RPS Structure Analysis

    International Nuclear Information System (INIS)

    Sohn, H. S.; Song, D. Y.; Sohn, D. S.; Kim, J. H.

    2008-04-01

    One of the KNICS objectives is to develop a platform for Nuclear Power Plant(NPP) I and C(Instrumentation and Control) system, especially plant protection system. The developed platform is POSAFE-Q and this work supports the development of POSAFE-Q with the development of high-reliable real-time operating system(RTOS) and programmable logic device(PLD) software. Another KNICS objective is to develop safety I and C systems, such as Reactor Protection System(RPS) and Engineered Safety Feature-Component Control System(ESF-CCS). This work plays an important role in the structure analysis for RPS. Validation and verification(V and V) of the safety critical software is an essential work to make digital plant protection system highly reliable and safe. Generally, the reliability and safety of software based system can be improved by strict quality assurance framework including the software development itself. In other words, through V and V, the reliability and safety of a system can be improved and the development activities like software requirement specification, software design specification, component tests, integration tests, and system tests shall be appropriately documented for V and V.

  10. Reliability analysis with linguistic data: An evidential network approach

    International Nuclear Information System (INIS)

    Zhang, Xiaoge; Mahadevan, Sankaran; Deng, Xinyang

    2017-01-01

    In practical applications of reliability assessment of a system in-service, information about the condition of a system and its components is often available in text form, e.g., inspection reports. Estimation of the system reliability from such text-based records becomes a challenging problem. In this paper, we propose a four-step framework to deal with this problem. In the first step, we construct an evidential network with the consideration of available knowledge and data. Secondly, we train a Naive Bayes text classification algorithm based on the past records. By using the trained Naive Bayes algorithm to classify the new records, we build interval basic probability assignments (BPA) for each new record available in text form. Thirdly, we combine the interval BPAs of multiple new records using an evidence combination approach based on evidence theory. Finally, we propagate the interval BPA through the evidential network constructed earlier to obtain the system reliability. Two numerical examples are used to demonstrate the efficiency of the proposed method. We illustrate the effectiveness of the proposed method by comparing with Monte Carlo Simulation (MCS) results. - Highlights: • We model reliability analysis with linguistic data using evidential network. • Two examples are used to demonstrate the efficiency of the proposed method. • We compare the results with Monte Carlo Simulation (MCS).

  11. Reliability analysis for new technology-based transmitters

    Energy Technology Data Exchange (ETDEWEB)

    Brissaud, Florent, E-mail: florent.brissaud.2007@utt.f [Institut National de l' Environnement Industriel et des Risques (INERIS), Parc Technologique Alata, BP 2, 60550 Verneuil-en-Halatte (France); Universite de Technologie de Troyes (UTT), Institut Charles Delaunay (ICD) and STMR UMR CNRS 6279, 12 rue Marie Curie, BP 2060, 10010 Troyes cedex (France); Barros, Anne; Berenguer, Christophe [Universite de Technologie de Troyes (UTT), Institut Charles Delaunay (ICD) and STMR UMR CNRS 6279, 12 rue Marie Curie, BP 2060, 10010 Troyes cedex (France); Charpentier, Dominique [Institut National de l' Environnement Industriel et des Risques (INERIS), Parc Technologique Alata, BP 2, 60550 Verneuil-en-Halatte (France)

    2011-02-15

    The reliability analysis of new technology-based transmitters has to deal with specific issues: various interactions between both material elements and functions, undefined behaviours under faulty conditions, several transmitted data, and little reliability feedback. To handle these particularities, a '3-step' model is proposed, based on goal tree-success tree (GTST) approaches to represent both the functional and material aspects, and includes the faults and failures as a third part for supporting reliability analyses. The behavioural aspects are provided by relationship matrices, also denoted master logic diagrams (MLD), with stochastic values which represent direct relationships between system elements. Relationship analyses are then proposed to assess the effect of any fault or failure on any material element or function. Taking these relationships into account, the probabilities of malfunction and failure modes are evaluated according to time. Furthermore, uncertainty analyses tend to show that even if the input data and system behaviour are not well known, these previous results can be obtained in a relatively precise way. An illustration is provided by a case study on an infrared gas transmitter. These properties make the proposed model and corresponding reliability analyses especially suitable for intelligent transmitters (or 'smart sensors').

  12. Reliability engineering analysis of ATLAS data reprocessing campaigns

    International Nuclear Information System (INIS)

    Vaniachine, A; Golubkov, D; Karpenko, D

    2014-01-01

    During three years of LHC data taking, the ATLAS collaboration completed three petascale data reprocessing campaigns on the Grid, with up to 2 PB of data being reprocessed every year. In reprocessing on the Grid, failures can occur for a variety of reasons, while Grid heterogeneity makes failures hard to diagnose and repair quickly. As a result, Big Data processing on the Grid must tolerate a continuous stream of failures, errors and faults. While ATLAS fault-tolerance mechanisms improve the reliability of Big Data processing in the Grid, their benefits come at costs and result in delays making the performance prediction difficult. Reliability Engineering provides a framework for fundamental understanding of the Big Data processing on the Grid, which is not a desirable enhancement but a necessary requirement. In ATLAS, cost monitoring and performance prediction became critical for the success of the reprocessing campaigns conducted in preparation for the major physics conferences. In addition, our Reliability Engineering approach supported continuous improvements in data reprocessing throughput during LHC data taking. The throughput doubled in 2011 vs. 2010 reprocessing, then quadrupled in 2012 vs. 2011 reprocessing. We present the Reliability Engineering analysis of ATLAS data reprocessing campaigns providing the foundation needed to scale up the Big Data processing technologies beyond the petascale.

  13. Sensitivity evaluation of human factors for reliability of the containment spray system

    International Nuclear Information System (INIS)

    Tsujimura, Yasuhiro; Suzuki, Eiji

    1988-01-01

    Evaluation of the human reliability is one of the most difficult problems that deal with the safety and reliability of large systems, especially of the Engineered Safety Features (ESF) of the nuclear power plant. Influences of human factors on the reliability of the Containment Spray System in the ESF were estimated by using the FTA method in this paper. As a result, the adequacy of the system structure and the effects of human factors on variations of the design of the system structure were explained. (author)

  14. An Impact of Thermodynamic Processes in Human Bodies on Performance Reliability of Individuals

    Directory of Open Access Journals (Sweden)

    Smalko Zbigniew

    2015-01-01

    Full Text Available The article presents the problem of the influence of thermodynamic factors on human fallibility in different zones of thermal discomfort. Describes the processes of energy in the human body. Been given a formal description of the energy balance of the human body thermoregulation. Pointed to human reactions to temperature changes of internal and external environment, including reactions associated with exercise. The methodology to estimate and determine the reliability of indicators of human basal acting in different zones of thermal discomfort. The significant effect of thermodynamic factors on the reliability and security ofperson.

  15. Interobserver Reliability of the Total Body Score System for Quantifying Human Decomposition.

    Science.gov (United States)

    Dabbs, Gretchen R; Connor, Melissa; Bytheway, Joan A

    2016-03-01

    Several authors have tested the accuracy of the Total Body Score (TBS) method for quantifying decomposition, but none have examined the reliability of the method as a scoring system by testing interobserver error rates. Sixteen participants used the TBS system to score 59 observation packets including photographs and written descriptions of 13 human cadavers in different stages of decomposition (postmortem interval: 2-186 days). Data analysis used a two-way random model intraclass correlation in SPSS (v. 17.0). The TBS method showed "almost perfect" agreement between observers, with average absolute correlation coefficients of 0.990 and average consistency correlation coefficients of 0.991. While the TBS method may have sources of error, scoring reliability is not one of them. Individual component scores were examined, and the influences of education and experience levels were investigated. Overall, the trunk component scores were the least concordant. Suggestions are made to improve the reliability of the TBS method. © 2016 American Academy of Forensic Sciences.

  16. ANALYSIS OF AVAILABILITY AND RELIABILITY IN RHIC OPERATIONS

    International Nuclear Information System (INIS)

    PILAT, F.; INGRASSIA, P.; MICHNOFF, R.

    2006-01-01

    RHIC has been successfully operated for 5 years as a collider for different species, rang