WorldWideScience

Sample records for human pulmonary imaging

  1. Molecular imaging of the human pulmonary vascular endothelium in pulmonary hypertension: a phase II safety and proof of principle trial

    Energy Technology Data Exchange (ETDEWEB)

    Harel, Francois [Montreal Heart Institute, Research Center, Montreal, QC (Canada); Universite de Montreal, Department of Nuclear Medicine, Montreal, Quebec (Canada); Langleben, David; Abikhzer, Gad [McGill University, Lady Davis Institute and Jewish General Hospital, Montreal, Quebec (Canada); Provencher, Steve; Guimond, Jean [Institut Universitaire de Cardiologie et de Pneumologie de Quebec, Quebec (Canada); Fournier, Alain; Letourneau, Myriam [INRS-Institut Armand-Frappier, Laval, Quebec (Canada); Finnerty, Vincent; Nguyen, Quang T.; Levac, Xavier [Montreal Heart Institute, Research Center, Montreal, QC (Canada); Mansour, Asmaa; Guertin, Marie-Claude [Montreal Health Innovation Coordination Center, Montreal, QC (Canada); Dupuis, Jocelyn [Montreal Heart Institute, Research Center, Montreal, QC (Canada); Universite de Montreal, Department of Medicine, Montreal, Quebec (Canada)

    2017-07-15

    The adrenomedullin receptor is densely expressed in the pulmonary vascular endothelium. PulmoBind, an adrenomedullin receptor ligand, was developed for molecular diagnosis of pulmonary vascular disease. We evaluated the safety of PulmoBind SPECT imaging and its capacity to detect pulmonary vascular disease associated with pulmonary hypertension (PH) in a human phase II study. Thirty patients with pulmonary arterial hypertension (PAH, n = 23) or chronic thromboembolic PH (CTEPH, n = 7) in WHO functional class II (n = 26) or III (n = 4) were compared to 15 healthy controls. Lung SPECT was performed after injection of 15 mCi {sup 99m}Tc-PulmoBind in supine position. Qualitative and semi-quantitative analyses of lung uptake were performed. Reproducibility of repeated testing was evaluated in controls after 1 month. PulmoBind injection was well tolerated without any serious adverse event. Imaging was markedly abnormal in PH with ∝50% of subjects showing moderate to severe heterogeneity of moderate to severe extent. The abnormalities were unevenly distributed between the right and left lungs as well as within each lung. Segmental defects compatible with pulmonary embolism were present in 7/7 subjects with CTEPH and in 2/23 subjects with PAH. There were no segmental defects in controls. The PulmoBind activity distribution index, a parameter indicative of heterogeneity, was elevated in PH (65% ± 28%) vs. controls (41% ± 13%, p = 0.0003). In the only subject with vasodilator-responsive idiopathic PAH, PulmoBind lung SPECT was completely normal. Repeated testing 1 month later in healthy controls was well tolerated and showed no significant variability of PulmoBind distribution. In this phase II study, molecular SPECT imaging of the pulmonary vascular endothelium using {sup 99m}Tc-PulmoBind was safe. PulmoBind showed potential to detect both pulmonary embolism and abnormalities indicative of pulmonary vascular disease in PAH. Phase III studies with this novel tracer and

  2. Multimodality imaging of pulmonary infarction

    International Nuclear Information System (INIS)

    Bray, T.J.P.; Mortensen, K.H.; Gopalan, D.

    2014-01-01

    Highlights: • A plethora of pulmonary and systemic disorders, often associated with grave outcomes, may cause pulmonary infarction. • A stereotypical infarct is a peripheral wedge shaped pleurally based opacity but imaging findings can be highly variable. • Multimodality imaging is key to diagnosing the presence, aetiology and complications of pulmonary infarction. • Multimodality imaging of pulmonary infarction together with any ancillary features often guide to early targeted treatment. • CT remains the principal imaging modality with MRI increasingly used alongside nuclear medicine studies and ultrasound. - Abstract: The impact of absent pulmonary arterial and venous flow on the pulmonary parenchyma depends on a host of factors. These include location of the occlusive insult, the speed at which the occlusion develops and the ability of the normal dual arterial supply to compensate through increased bronchial arterial flow. Pulmonary infarction occurs when oxygenation is cut off secondary to sudden occlusion with lack of recruitment of the dual supply arterial system. Thromboembolic disease is the commonest cause of such an insult but a whole range of disease processes intrinsic and extrinsic to the pulmonary arterial and venous lumen may also result in infarcts. Recognition of the presence of infarction can be challenging as imaging manifestations often differ from the classically described wedge shaped defect and a number of weighty causes need consideration. This review highlights aetiologies and imaging appearances of pulmonary infarction, utilising cases to illustrate the essential role of a multimodality imaging approach in order to arrive at the appropriate diagnosis

  3. Multimodality imaging of pulmonary infarction

    Energy Technology Data Exchange (ETDEWEB)

    Bray, T.J.P., E-mail: timothyjpbray@gmail.com [Department of Radiology, Papworth Hospital NHS Foundation Trust, Ermine Street, Papworth Everard, Cambridge CB23 3RE (United Kingdom); Mortensen, K.H., E-mail: mortensen@doctors.org.uk [Department of Radiology, Papworth Hospital NHS Foundation Trust, Ermine Street, Papworth Everard, Cambridge CB23 3RE (United Kingdom); University Department of Radiology, Addenbrookes Hospital, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Box 318, Cambridge CB2 0QQ (United Kingdom); Gopalan, D., E-mail: deepa.gopalan@btopenworld.com [Department of Radiology, Papworth Hospital NHS Foundation Trust, Ermine Street, Papworth Everard, Cambridge CB23 3RE (United Kingdom)

    2014-12-15

    Highlights: • A plethora of pulmonary and systemic disorders, often associated with grave outcomes, may cause pulmonary infarction. • A stereotypical infarct is a peripheral wedge shaped pleurally based opacity but imaging findings can be highly variable. • Multimodality imaging is key to diagnosing the presence, aetiology and complications of pulmonary infarction. • Multimodality imaging of pulmonary infarction together with any ancillary features often guide to early targeted treatment. • CT remains the principal imaging modality with MRI increasingly used alongside nuclear medicine studies and ultrasound. - Abstract: The impact of absent pulmonary arterial and venous flow on the pulmonary parenchyma depends on a host of factors. These include location of the occlusive insult, the speed at which the occlusion develops and the ability of the normal dual arterial supply to compensate through increased bronchial arterial flow. Pulmonary infarction occurs when oxygenation is cut off secondary to sudden occlusion with lack of recruitment of the dual supply arterial system. Thromboembolic disease is the commonest cause of such an insult but a whole range of disease processes intrinsic and extrinsic to the pulmonary arterial and venous lumen may also result in infarcts. Recognition of the presence of infarction can be challenging as imaging manifestations often differ from the classically described wedge shaped defect and a number of weighty causes need consideration. This review highlights aetiologies and imaging appearances of pulmonary infarction, utilising cases to illustrate the essential role of a multimodality imaging approach in order to arrive at the appropriate diagnosis.

  4. Pulmonary hypertension CT imaging

    International Nuclear Information System (INIS)

    Nedevska, A.

    2013-01-01

    Full text: The right heart catheterization is the gold standard in the diagnosis and determines the severity of pulmonary hypertension. The significant technical progress of noninvasive diagnostic imaging methods significantly improves the pixel density and spatial resolution in the study of cardiovascular structures, thus changes their role and place in the overall diagnostic plan. Learning points: What is the etiology, clinical manifestation and general pathophysiological disorders in pulmonary hypertension. What are the established diagnostic methods in the diagnosis and follow-up of patients with pulmonary hypertension. What is the recommended protocol for CT scanning for patients with clinically suspected or documented pulmonary hypertension. What are the important diagnostic findings in CT scan of a patient with pulmonary hypertension. Discussion: The prospect of instantaneous complex - anatomical and functional cardiopulmonary and vascular diagnostics seems extremely attractive. The contrast enhanced multislice computed (CT ) and magnetic resonance imaging are very suitable methods for imaging the structures of the right heart, with the possibility of obtaining multiple projections and three-dimensional imaging reconstructions . There are specific morphological features that, if carefully analyzed, provide diagnostic information. Thus, it is possible to avoid or at least reduce the frequency of use of invasive diagnostic cardiac catheterization in patients with pulmonary hypertension. Conclusion: This review focuses on the use of contrast-enhanced CT for comprehensive evaluation of patients with pulmonary hypertension and presents the observed characteristic changes in the chest, lung parenchyma , the structures of the right half of the heart and pulmonary vessels

  5. Pulmonary vascular imaging

    International Nuclear Information System (INIS)

    Fedullo, P.F.; Shure, D.

    1987-01-01

    A wide range of pulmonary vascular imaging techniques are available for the diagnostic evaluation of patients with suspected pulmonary vascular disease. The characteristics of any ideal technique would include high sensitivity and specificity, safety, simplicity, and sequential applicability. To date, no single technique meets these ideal characteristics. Conventional pulmonary angiography remains the gold standard for the diagnosis of acute thromboembolic disease despite the introduction of newer techniques such as digital subtraction angiography and magnetic resonance imaging. Improved noninvasive lower extremity venous testing methods, particularly impedance plethysmography, and ventilation-perfusion scanning can play significant roles in the noninvasive diagnosis of acute pulmonary emboli when properly applied. Ventilation-perfusion scanning may also be useful as a screening test to differentiate possible primary pulmonary hypertension from chronic thromboembolic pulmonary hypertension. And, finally, angioscopy may be a useful adjunctive technique to detect chronic thromboembolic disease and determine operability. Optimal clinical decision-making, however, will continue to require the proper interpretation of adjunctive information obtained from the less-invasive techniques, applied with an understanding of the natural history of the various forms of pulmonary vascular disease and with a knowledge of the capabilities and shortcomings of the individual techniques

  6. Physiology for the pulmonary functional imager

    Energy Technology Data Exchange (ETDEWEB)

    Levin, David L., E-mail: levin.david@mayo.edu [Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905 (United States); Schiebler, Mark L. [Department of Radiology, UW-Madison School of Medicine and Public Health, 600 Highland Avenue, Madison, WI 53792-3252 (United States); Hopkins, Susan R., E-mail: shopkins@ucsd.edu [Division of Physiology 0623A, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093 (United States)

    2017-01-15

    Highlights: • An understanding of the relevant pulmonary physiology is crucial to functional lung imaging. • Spatial resolution for pulmonary functional imaging can be substantially less than that used for anatomic/clinical imaging. • Regional deformation of the lung under the influence of gravity significantly affects the measurement of pulmonary perfusion. • Large vessels identified on perfusion imaging do not represent local blood flow. • Pulmonary diseases are typically characterized by a change in the matching of ventilation and perfusion. - Abstract: As pulmonary functional imaging moves beyond the realm of the radiologist and physicist, it is important that imagers have a common language and understanding of the relevant physiology of the lung. This review will focus on key physiological concepts and pitfalls relevant to functional lung imaging.

  7. Physiology for the pulmonary functional imager

    International Nuclear Information System (INIS)

    Levin, David L.; Schiebler, Mark L.; Hopkins, Susan R.

    2017-01-01

    Highlights: • An understanding of the relevant pulmonary physiology is crucial to functional lung imaging. • Spatial resolution for pulmonary functional imaging can be substantially less than that used for anatomic/clinical imaging. • Regional deformation of the lung under the influence of gravity significantly affects the measurement of pulmonary perfusion. • Large vessels identified on perfusion imaging do not represent local blood flow. • Pulmonary diseases are typically characterized by a change in the matching of ventilation and perfusion. - Abstract: As pulmonary functional imaging moves beyond the realm of the radiologist and physicist, it is important that imagers have a common language and understanding of the relevant physiology of the lung. This review will focus on key physiological concepts and pitfalls relevant to functional lung imaging.

  8. Lung imaging in pulmonary disease

    International Nuclear Information System (INIS)

    Taplin, G.V.; Chopra, S.K.

    1976-01-01

    Although it has been recognized for several years that chronic obstructive pulmonary disease (COPD) can cause lung perfusion defects which may simulate pulmonary embolism, relatively little use has been made of either the radioxenon or the radioaerosol inhalation lung imaging procedures until the last few years as a means of distinguishing pulmonary embolism (P.E.) from COPD is reported. Recent experience is reported with the use of both of these procedures in comparison with pulmonary function tests for the early detection of COPD in population studies and also in P.E. suspects. Equal emphasis is given to simultaneous aerosol ventilation-perfusion (V/P) imaging in the differential diagnosis of P.E. Finally, this paper is concerned with new developments in regional lung diffusion imaging following the inhalation of radioactive gases and rapidly absorbed radioaerosols. Their experimental basis is presented and their potential clinical applications in pulmonary embolism are discussed. As a result of these investigations, a functional (V/P) diagnosis of pulmonary embolism in patients may be possible in the near future with a sequential radioaerosol inhalation procedure alone

  9. A comparative analysis of pulmonary ventilation-perfusion imaging with pulmonary angiography in the diagnosis of pulmonary embolism

    International Nuclear Information System (INIS)

    Wang Jincheng; Mi Hongzhi; Wang Qian; Zhang Weijun; Lu Biao; Yang Hao; Ding Jian; Lu Yao

    2001-01-01

    Objective: To assess the value of ventilation-perfusion imaging in the diagnosis of pulmonary embolism (PE). Methods: Thirty consecutive patients with clinically suspected pulmonary embolism were studied, male: female 15:15, mean age was (36.2 +- 13.9) years. The chest radiograms were obtained in all 30 patients. All patients underwent radionuclide ventilation-perfusion imaging and pulmonary angiography. Results: Of the 30 patients, 22 with lobe, multiple segment or multi-subsegment perfusion defects and normal or nearly normal ventilation images were reported as PE. 20 of them were confirmed to be with PE by pulmonary angiography, 2 patients were not confirmed. Eight of 30 patients with multiple perfusion defects, ventilative abnormalities were reported as non-PE and the diagnoses were confirmed by pulmonary angiography. The sensitivity, specificity and accuracy of diagnosis of PE by ventilation-perfusion imaging was 100%, 80.0% and 93.3% respectively. Conclusions: (1) Ventilation-perfusion imaging is one of the most valuable methods in the diagnosis of PE. (2) The results suggest that pulmonary embolism can be diagnosed non-invasively in most patients on the basis of clinical manifestation, chest radiograms and ventilation-perfusion imaging findings. (3) Pulmonary angiography is required while clinical manifestation and ventilation-perfusion imaging findings are discordant with each other

  10. Pulmonary functional MR imaging for COPD

    International Nuclear Information System (INIS)

    Ohno, Yoshiharu

    2008-01-01

    Chronic obstructive pulmonary disease (COPD) is a slowly progressive disease characterized by airflow limitation, cough, sputum production, and, at later stages, dyspnea. COPD is currently the fourth-leading cause of mortality and the twelfth-leading cause of disability, and by the year 2020 it is expected to be the third-leading cause of death and the fifth-leading cause of disability worldwide. The diagnosis of COPD largely relies on a history of exposure to noxious stimuli and abnormal lung function test results. Since the pathology of COPD varies and the molecular mechanisms are only slightly understood, the diagnosis and stage assessment of COPD have relied on the results of pulmonary function test. In addition, CT and nuclear medicine study are utilized for assessment of regional morphological and functional abnormalities. Recently, pulmonary functional MR imaging is suggested as a new technique for assessment of regional physiopathologic information in various pulmonary diseases including COPD, pulmonary thromboembolism, lung cancer and interstitial lung diseases. This review article covers the brief description of theory and clinical application of contrast-enhanced perfusion MR imaging; hyperpolarized noble gas MR imaging and oxygen-enhanced MR imaging in COPD subjects. We believe that further basic studies as well as clinical applications of this new technique will define the real significance of pulmonary functional MR imaging for the future of pulmonary functional imaging and its usefulness for diagnosis and patients' management in COPD. (author)

  11. Imaging of pulmonary tuberculosis

    International Nuclear Information System (INIS)

    Van Dyck, P.; De Schepper, A.M.; Vanhoenacker, F.M.; Van den Brande, P.

    2003-01-01

    Tuberculosis, more than any other infectious disease, has always been a challenge, since it has been responsible for a great amount of morbidity and mortality in humans. After a steady decline in the number of new cases during the twentieth century, due to improved social and environmental conditions, early diagnosis, and the development of antituberculous medication, a stagnation and even an increase in the number of new cases was noted in the mid-1980s. The epidemiological alteration is multifactorial: global increase in developing countries; minority groups (HIV and other immunocompromised patients); and elderly patients due to an altered immune status. Other factors that may be responsible are a delayed diagnosis, especially in elderly patients, incomplete or inadequate therapy, and the emergence of multidrug-resistant tuberculosis. The course of the disease and its corresponding clinicoradiological pattern depends on the interaction between the organism and the host response. Classically, pulmonary tuberculosis has been classified in primary tuberculosis, which occurred previously in children, and postprimary tuberculosis, occurring in adult patients. In industrialized countries, however, there seems to be a shift of primary tuberculosis towards adults. Furthermore, due to an altered immunological response in certain groups, such as immunocompromised and elderly patients, an atypical radioclinical pattern may occur. The changing landscape, in which tuberculosis occurs, as well as the global resurgence, and the changed spectrum of the clinical and radiological presentation, justify a renewed interest of radiologists for the imaging features of pulmonary tuberculosis. This article deals with the usual imaging features of pulmonary tuberculosis as well as the atypical patterns encountered in immunodepressed and elderly patients. (orig.)

  12. Enhanced magnetic resonance pulmonary perfusion imaging in diagnosing pulmonary embolism: preliminary investigation

    International Nuclear Information System (INIS)

    Huang Xiaoyong; Du Jing; Zhang Zhaoqi; Guo Xi; Yan Zixu; Jiang Hong; Wang Wei

    2005-01-01

    Objective: This study was designed to investigate the sensitivity and specificity of magnetic resonance pulmonary perfusion imaging (MRPP) in diagnosing pulmonary embolism (PE) compared with enhanced magnetic resonance pulmonary angiography (MRPA) and pulmonary radionuclide perfusion imaging. Methods: Fourteen patients were definitely diagnosed as PE, whose ages were from 19 to 71 years old and mean 45.5 ± 19.8 years old. All patients under went MRPA and MRPP and 3 patients were examined again after thrombolytic treatment. Five patients underwent pulmonary radionuclide perfusion imaging. Setting ROI in top, middle, bottom of lung area and abnormal area respectively, we detected signal intensity and time-signal curve to obtain the transformation rate of signal (TROS) during perfusion peak value. Results: In 14 pulmonary embolism patients, MRPA found 62 branches of pulmonary artery obstruction. Fifty-five abnormal pulmonary perfusion zones were found by MRPP, and the above results were very alike. The coincidence was 88.71%. In 14 cases, MRPP could show 25 subsegments lesion below segments. In 5 patients who had both results Of MRPP and ECT at the same time. MRPP shows 33 perfusion defect zones and 37 segments were found by ECT, the sensitivity was 89.19%. After thrombolytic treatment, both the status of the affected pulmonary artery improved markedly and perfusion defect zones reduced obviously in 3 cases by MRPP and MRPA. TROS in normal perfusion zones perfusion defect zones and low perfusion zones had significant difference (t=22.882, P<0.01). Conclusion: Contrast enhanced MR pulmonary perfusion can show both perfusion defect zones and low perfusion zones in pulmonary embolism. Time-signal curve can show the period of maximum no perfusion zones in pulmonary artery embolism zones. And the amplitude of fluctuation is small with miminum TROS. MRPP has significant values especially in showing pulmonary artery embolism in segments and subsegments. Using both MRPP and

  13. The clinical value of pulmonary perfusion imaging complicated with pulmonary embolism in children of nephrotic syndrome

    International Nuclear Information System (INIS)

    Lin Jun; Chen Ning; Miao Weibing; Peng Jiequan; Jiang Zhihong; Wu Jing

    2001-01-01

    To investigate the clinical features of complicated with pulmonary embolism nephrotic syndrome in children. 99m Tc-MAA pulmonary perfusion imaging was performed on 30 nephrotic syndrome in children with elevated plasma D-dimer. Results shown that 14 of 30 patients were found to have pulmonary embolism (46.7%). Pulmonary perfusion imaging showed an involvement of 1 pulmonary segment in 3 cases, 2 segments in 2 cases and over 3 segments in other 9 cases. Among them, there were 7 segments involved in one case. After two weeks of heparin anti-coagulative therapy, most cases showed a recovery. The result of this study suggested that pulmonary embolism is a common complication of nephrotic syndrome. Pulmonary perfusion imaging is simple, effective and accurate method for the diagnosis of pulmonary embolism, and it also can help to assess the value of clinical therapy

  14. Chronic thromboembolic pulmonary hypertension - assessment by magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kreitner, Karl-Friedrich; Kunz, R.P.; Oberholzer, Katja; Neeb, Daniel; Gast, Klaus K.; Dueber, Christoph [Johannes-Gutenberg-University, Department of Diagnostic and Interventional Radiology, Mainz (Germany); Ley, Sebastian [Johannes-Gutenberg-University, Department of Diagnostic and Interventional Radiology, Mainz (Germany); German Cancer Research Center, Department of Radiology, Heidelberg (Germany); Heussel, Claus-Peter [Johannes-Gutenberg-University, Department of Diagnostic and Interventional Radiology, Mainz (Germany); Chest Clinic at University of Heidelberg, Department of Radiology, Heidelberg (Germany); Eberle, Balthasar [Johannes-Gutenberg-University, Department of Anesthesiology, Mainz (Germany); Inselspital, Department of Anesthesiology, Bern (Switzerland); Mayer, Eckhard [Johannes-Gutenberg-University, Department of Heart, Thorax and Vascular Surgery, Mainz (Germany); Kauczor, Hans-Ulrich [German Cancer Research Center, Department of Radiology, Heidelberg (Germany)

    2007-01-15

    Chronic thromboembolic pulmonary hypertension (CTEPH) is a severe disease that has been ignored for a long time. However, with the development of improved therapeutic modalities, cardiologists and thoracic surgeons have shown increasing interest in the diagnostic work-up of this entity. The diagnosis and management of chronic thromboembolic pulmonary hypertension require a multidisciplinary approach involving the specialties of pulmonary medicine, cardiology, radiology, anesthesiology and thoracic surgery. With this approach, pulmonary endarterectomy (PEA) can be performed with an acceptable mortality rate. This review article describes the developments in magnetic resonance (MR) imaging techniques for the diagnosis of chronic thromboembolic pulmonary hypertension. Techniques include contrast-enhanced MR angiography (ce-MRA), MR perfusion imaging, phase-contrast imaging of the great vessels, cine imaging of the heart and combined perfusion-ventilation MR imaging with hyperpolarized noble gases. It is anticipated that MR imaging will play a central role in the initial diagnosis and follow-up of patients with CTEPH. (orig.)

  15. Chronic thromboembolic pulmonary hypertension - assessment by magnetic resonance imaging

    International Nuclear Information System (INIS)

    Kreitner, Karl-Friedrich; Kunz, R.P.; Oberholzer, Katja; Neeb, Daniel; Gast, Klaus K.; Dueber, Christoph; Ley, Sebastian; Heussel, Claus-Peter; Eberle, Balthasar; Mayer, Eckhard; Kauczor, Hans-Ulrich

    2007-01-01

    Chronic thromboembolic pulmonary hypertension (CTEPH) is a severe disease that has been ignored for a long time. However, with the development of improved therapeutic modalities, cardiologists and thoracic surgeons have shown increasing interest in the diagnostic work-up of this entity. The diagnosis and management of chronic thromboembolic pulmonary hypertension require a multidisciplinary approach involving the specialties of pulmonary medicine, cardiology, radiology, anesthesiology and thoracic surgery. With this approach, pulmonary endarterectomy (PEA) can be performed with an acceptable mortality rate. This review article describes the developments in magnetic resonance (MR) imaging techniques for the diagnosis of chronic thromboembolic pulmonary hypertension. Techniques include contrast-enhanced MR angiography (ce-MRA), MR perfusion imaging, phase-contrast imaging of the great vessels, cine imaging of the heart and combined perfusion-ventilation MR imaging with hyperpolarized noble gases. It is anticipated that MR imaging will play a central role in the initial diagnosis and follow-up of patients with CTEPH. (orig.)

  16. Visualization of pulmonary nodules with magnetic resonance imaging (MRI)

    International Nuclear Information System (INIS)

    Plathow, C.; Deutsches Krebsforschungszentrum; Meinzer, H.-P.; Kauczor, H.-U.

    2006-01-01

    Visualization of pulmonary nodules using magnetic resonance imaging (MRI) plays a minor role compared with computed tomography (CT). Technical developments made it possible to apply MRI more and more frequently in functional imaging. Imaging of the motion of pulmonary nodules during respiration, e.g., to optimize high precision therapy techniques, is a new field of research. This paper describes developments in analysis and visualization of pulmonary nodules during respiration using MRI. Besides actual 2D techniques new 3D techniques to quantify motion of pulmonary nodules during respiration are presented. (orig.) [de

  17. MR imaging of the pulmonary vasculature - an update

    Energy Technology Data Exchange (ETDEWEB)

    Pedersen, Mark R.; Fisher, Mark T. [University of Iowa, Department of Radiology, Carver College of Medicine, Iowa City, Iowa (United States); Beek, Edwin J.R. van [University of Iowa, Department of Radiology, Carver College of Medicine, Iowa City, Iowa (United States); University of Iowa Hospitals and Clinics, JPP 3895, Department of Radiology, Iowa City, Iowa (United States)

    2006-06-15

    Although the advent of multi-detector row computed tomography (CT) angiography has been at the heart of improving the diagnostic management of pulmonary vascular disease, MR technology has also moved forward. This review outlines the current state of affairs of MR techniques for the assessment of pulmonary vascular diseases such as pulmonary hypertension, pulmonary arteritis and arteriovenous malformations. It highlights the main areas of MR angiography and MR perfusion imaging and discusses novel methods, such as non-contrast enhanced direct thrombus imaging, and will discuss its merits in the context of other diagnostic modalities. (orig.)

  18. 201Tl myocardial imaging in patients with pulmonary hypertension

    International Nuclear Information System (INIS)

    Cohen, H.A.; Baird, M.G.; Rouleau, J.R.; Fuhrmann, C.F.; Bailey, I.K.; Summer, W.R.; Strauss, H.W.; Pitt, B.

    1976-01-01

    The appearance of the right ventricular myocardium on thallium 201 myocardial perfusion images was evaluated in patients with chronic pulmonary hypertension and compared to patients without pulmonary hypertension. Four groups of patients were studied: (1) eight normals, (2) five patients with angiographically documented coronary artery disease and normal pulmonary artery pressures, (3) ten patients with moderate to severe pulmonary parenchymal or vascular disease and documented pulmonary hypertension and (4) eight patients with chronic left ventricular dysfunction and pulmonary hypertension discovered during cardiac catheterization. The right ventricular free wall was visualized on the thallium 201 myocardial perfusion image in only one of eight normals (group 1) and in only one of the five patients with coronary artery disease (group 2) and measured 0.5 cm and 0.9 cm in thickness, respectively. In patients with documented pulmonary hypertension the right ventricle was visualized on low contrast thallium 201 myocardial perfusion image in all patients. The apparent right ventricular free wall thickness measured from the ungated thallium 201 myocardial perfusion images was 1.7 +- 0.3 cm in group 3 and 1.5 +- 0.2 cm in group 4. Right ventricular hypertrophy was detected by electrocardiography in only five of ten patients in group 3 and only one of eight patients in group 4. Thallium 201 myocardial perfusion imaging appears to be a useful technique for assessing the effects of chronic pulmonary hypertension on the right ventricular myocardium

  19. Imaging of pulmonary emphysema: A pictorial review

    Science.gov (United States)

    Takahashi, Masashi; Fukuoka, Junya; Nitta, Norihisa; Takazakura, Ryutaro; Nagatani, Yukihiro; Murakami, Yoko; Otani, Hideji; Murata, Kiyoshi

    2008-01-01

    The term ‘emphysema’ is generally used in a morphological sense, and therefore imaging modalities have an important role in diagnosing this disease. In particular, high resolution computed tomography (HRCT) is a reliable tool for demonstrating the pathology of emphysema, even in subtle changes within secondary pulmonary lobules. Generally, pulmonary emphysema is classified into three types related to the lobular anatomy: centrilobular emphysema, panlobular emphysema, and paraseptal emphysema. In this pictorial review, we discuss the radiological – pathological correlation in each type of pulmonary emphysema. HRCT of early centrilobular emphysema shows an evenly distributed centrilobular tiny areas of low attenuation with ill-defined borders. With enlargement of the dilated airspace, the surrounding lung parenchyma is compressed, which enables observation of a clear border between the emphysematous area and the normal lung. Because the disease progresses from the centrilobular portion, normal lung parenchyma in the perilobular portion tends to be preserved, even in a case of far-advanced pulmonary emphysema. In panlobular emphysema, HRCT shows either panlobular low attenuation or ill-defined diffuse low attenuation of the lung. Paraseptal emphysema is characterized by subpleural well-defined cystic spaces. Recent topics related to imaging of pulmonary emphysema will also be discussed, including morphometry of the airway in cases of chronic obstructive pulmonary disease, combined pulmonary fibrosis and pulmonary emphysema, and bronchogenic carcinoma associated with bullous lung disease. PMID:18686729

  20. Evaluation of pulmonary emphysema by the fused image of CT image and ventilation SPECT image

    International Nuclear Information System (INIS)

    Okuda, Ituko; Maruno, Hiromasa; Mori, Kazuaki; Kohno, Tadashi; Kokubo, Takashi

    2007-01-01

    We evaluated pulmonary emphysema using a diagnostic device that could obtain a CT image, a ventilation single photon emission computed tomography (SPECT) image and a lung perfusion SPECT image in one examination. The fused image made from the CT image and SPECT image had very little position gap between images, and the precision was high. From the fused image, we were able to detect the areas in which emphysematous change was the most marked in the CT image, while the accumulation decrease was most remarkable in the ventilation SPECT image. Thus it was possible to obtain an accurate status of pulmonary emphysema, and our method was regarded as a useful technique. (author)

  1. A study of images of Projective Angles of pulmonary veins

    Energy Technology Data Exchange (ETDEWEB)

    Wang Jue [Beijing Anzhen Hospital, Beijing (China); Zhaoqi, Zhang [Beijing Anzhen Hospital, Beijing (China)], E-mail: zhaoqi5000@vip.sohu.com; Yu Wei; Miao Cuilian; Yan Zixu; Zhao Yike [Beijing Anzhen Hospital, Beijing (China)

    2009-09-15

    Aims: In images of magnetic resonance and computed tomography (CT) there are visible angles between pulmonary veins and the coronary, transversal or sagittal section of body. In this study these angles are measured and defined as Projective Angles of pulmonary veins. Several possible influential factors and characters of distribution are studied and analyzed for a better understanding of this imaging anatomic character of pulmonary veins. And it could be the anatomic base of adjusting correctly the angle of the central X-ray of the angiography of pulmonary veins undergoing the catheter ablation of atrial fibrillation (AF). Method: Images of contrast enhanced magnetic resonance angiography (CEMRA) and contrast enhanced computer tomography (CECT) of the left atrium and pulmonary veins of 137 health objects and patients with atrial fibrillation (AF) are processed with the technique of post-processing, and Projective Angles to the coronary and transversal sections are measured and analyzed statistically. Result: Project Angles of pulmonary veins are one of real and steady imaging anatomic characteristics of pulmonary veins. The statistical distribution of variables is relatively concentrated, with a fairly good representation of average value. It is possible to improve the angle of the central X-ray according to the average value in the selective angiography of pulmonary veins undergoing the catheter ablation of AF.

  2. Pulmonary ventilation and perfusion imaging with dual-energy CT

    Energy Technology Data Exchange (ETDEWEB)

    Thieme, Sven F. [Klinikum Grosshadern, Department of Clinical Radiology, Ludwig Maximilians University, Muenchen (Germany); Klinikum Grosshadern, Institut fuer Klinische Radiologie, LMU Muenchen, Muenchen (Germany); Hoegl, Sandra; Fisahn, Juergen; Irlbeck, Michael [Klinikum Grosshadern, Department of Anesthesiology, Ludwig Maximilians University, Muenchen (Germany); Nikolaou, Konstantin; Maxien, Daniel; Reiser, Maximilian F.; Becker, Christoph R.; Johnson, Thorsten R.C. [Klinikum Grosshadern, Department of Clinical Radiology, Ludwig Maximilians University, Muenchen (Germany)

    2010-12-15

    To evaluate the feasibility of dual-energy CT (DECT) ventilation imaging in combination with DE perfusion mapping for a comprehensive assessment of ventilation, perfusion, morphology and structure of the pulmonary parenchyma. Two dual-energy CT acquisitions for xenon-enhanced ventilation and iodine-enhanced perfusion mapping were performed in patients under artificial respiration. Parenchymal xenon and iodine distribution were mapped and correlated with structural or vascular abnormalities. In all datasets, image quality was sufficient for a comprehensive image reading of the pulmonary CTA images, lung window images and pulmonary functional parameter maps and led to expedient results in each patient. With dual-source CT systems, DECT of the lung with iodine or xenon administration is technically feasible and makes it possible to depict the regional iodine or xenon distribution representing the local perfusion and ventilation. (orig.)

  3. Dynamic image characteristics of pulmonary tuberculosis with diabetes mellitus

    International Nuclear Information System (INIS)

    Zhou Xinhua

    2000-01-01

    Objective: To analyze image characteristics of pulmonary tuberculosis associated with diabetes mellitus and observe the changes of pulmonary tuberculotic lesions influenced by the state of hyperglycosemia. Methods: Examinations of chest plain film and tomography were taken in 68 patients with pulmonary tuberculosis and diabetes, and additional CT scans were done in 38 patients among them. Radiological examinations of lung and blood sugar test were taken at the interval of 2, 3, and 4-6 months in all 68 patients under the treatment of regular blood sugar control and antituberculosis, which compared with 30 patients with pulmonary tuberculosis only. Results: The images of X-ray and CT showed major lesions of massive patchy shadow in 55 patients (80.9%), or multiple small patchy shadow in 13(19.1%) and cavity 61(89.7%). After 2 month's treatment, enlargement of patchy shadow and cavity were found in 9(23.7%)and 10(28.6%)cases, respectively with overall deterioration rates of 65.8% in group of 38 patients with level of blood sugar over 7.0 mmol/L, which was significantly higher than that of the control group 7.0 mmol/L(x 2 =16.4, P 2 = 0.81, P>0.5) with the well controlled blood sugar after treatment of 3 months or more. The follow-up images showed similar results between the groups of pulmonary tuberculosis only and the group of pulmonary tuberculosis with high level of blood sugar, in which the overall deterioration rates was significant less than the group of pulmonary tuberculosis with level of blood sugar more than 8.0 mmol/L(x 2 =5.46, P<0.025). Conclusion: There are imaging characteristics in patient with pulmonary tuberculosis and diabetes mellitus. The state of hyperglycosemia is a vital factor, which influences the radiological changes of pulmonary tuberculosis

  4. Pulmonary function-morphologic relationships assessed by SPECT-CT fusion images

    International Nuclear Information System (INIS)

    Suga, Kazuyoshi

    2012-01-01

    Pulmonary single photon emission computed tomography-computed tomography (SPECT-CT) fusion images provide objective and comprehensive assessment of pulmonary function and morphology relationships at cross-sectional lungs. This article reviewed the noteworthy findings of lung pathophysiology in wide-spectral lung disorders, which have been revealed on SPECT-CT fusion images in 8 years of experience. The fusion images confirmed the fundamental pathophysiologic appearance of lung low CT attenuation caused by airway obstruction-induced hypoxic vasoconstriction and that caused by direct pulmonary arterial obstruction as in acute pulmonary thromboembolism (PTE). The fusion images showed better correlation of lung perfusion distribution with lung CT attenuation changes at lung mosaic CT attenuation (MCA) compared with regional ventilation in the wide-spectral lung disorders, indicating that lung heterogeneous perfusion distribution may be a dominant mechanism of MCA on CT. SPECT-CT angiography fusion images revealed occasional dissociation between lung perfusion defects and intravascular clots in acute PTE, indicating the importance of assessment of actual effect of intravascular colts on peripheral lung perfusion. Perfusion SPECT-CT fusion images revealed the characteristic and preferential location of pulmonary infarction in acute PTE. The fusion images showed occasional unexpected perfusion defects in normal lung areas on CT in chronic obstructive pulmonary diseases and interstitial lung diseases, indicating the ability of perfusion SPECT superior to CT for detection of mild lesions in these disorders. The fusion images showed frequent ''steal phenomenon''-induced perfusion defects extending to the surrounding normal lung of arteriovenous fistulas and those at normal lungs on CT in hepatopulmonary syndrome. Comprehensive assessment of lung function-CT morphology on fusion images will lead to more profound understanding of lung pathophysiology in wide-spectral lung

  5. Humane metapneumovirus (HMPV) associated pulmonary infections in immunocompromised adults—Initial CT findings, disease course and comparison to respiratory-syncytial-virus (RSV) induced pulmonary infections

    International Nuclear Information System (INIS)

    Syha, R.; Beck, R.; Hetzel, J.; Ketelsen, D.; Grosse, U.; Springer, F.; Horger, M.

    2012-01-01

    Aim: To describe computed tomography (CT)-imaging findings in human metapneumovirus (HMPV)-related pulmonary infection as well as their temporal course and to analyze resemblances/differences to pulmonary infection induced by the closely related respiratory-syncytial-virus (RSV) in immunocompromised patients. Materials and methods: Chest-CT-scans of 10 HMPV PCR-positive patients experiencing pulmonary symptoms were evaluated retrospectively with respect to imaging findings and their distribution and results were then compared with data acquired in 13 patients with RSV pulmonary infection. Subsequently, we analyzed the course of chest-findings in HMPV patients. Results: In HMPV, 8/10 patients showed asymmetric pulmonary findings, whereas 13/13 patients with RSV-pneumonia presented more symmetrical bilateral pulmonary infiltrates. Image analysis yielded in HMPV patients following results: ground-glass-opacity (GGO) (n = 6), parenchymal airspace consolidations (n = 5), ill-defined nodular-like centrilobular opacities (n = 9), bronchial wall thickening (n = 8). In comparison, results in RSV patients were: GGO (n = 10), parenchymal airspace consolidations (n = 9), ill-defined nodular-like centrilobular opacities (n = 10), bronchial wall thickening (n = 4). In the course of the disease, signs of acute HMPV interstitial pneumonia regressed transforming temporarily in part into findings compatible with bronchitis/bronchiolitis. Conclusions: Early chest-CT findings in patients with HMPV-related pulmonary symptoms are compatible with asymmetric acute interstitial pneumonia accompanied by signs of bronchitis; the former transforming with time into bronchitis and bronchiolitis before they resolve. On the contrary, RSV-induced pulmonary infection exhibits mainly symmetric acute interstitial pneumonia.

  6. Humane metapneumovirus (HMPV) associated pulmonary infections in immunocompromised adults—Initial CT findings, disease course and comparison to respiratory-syncytial-virus (RSV) induced pulmonary infections

    Energy Technology Data Exchange (ETDEWEB)

    Syha, R., E-mail: roland.syha@med.uni-tuebingen.de [Department of Diagnostic Radiology, Eberhard-Karls-University, Hoppe-Seyler-Str.3, 72076 Tübingen (Germany); Beck, R. [Institute of Medical Virology, Eberhard-Karls-University, Elfriede-Authorn-Str. 6, 72076 Tübingen (Germany); Hetzel, J. [Department of Medical Oncology and Hematology, Eberhard-Karls-University, Otfried-Müller-Str. 10, 72070 Tübingen (Germany); Ketelsen, D.; Grosse, U.; Springer, F.; Horger, M. [Department of Diagnostic Radiology, Eberhard-Karls-University, Hoppe-Seyler-Str.3, 72076 Tübingen (Germany)

    2012-12-15

    Aim: To describe computed tomography (CT)-imaging findings in human metapneumovirus (HMPV)-related pulmonary infection as well as their temporal course and to analyze resemblances/differences to pulmonary infection induced by the closely related respiratory-syncytial-virus (RSV) in immunocompromised patients. Materials and methods: Chest-CT-scans of 10 HMPV PCR-positive patients experiencing pulmonary symptoms were evaluated retrospectively with respect to imaging findings and their distribution and results were then compared with data acquired in 13 patients with RSV pulmonary infection. Subsequently, we analyzed the course of chest-findings in HMPV patients. Results: In HMPV, 8/10 patients showed asymmetric pulmonary findings, whereas 13/13 patients with RSV-pneumonia presented more symmetrical bilateral pulmonary infiltrates. Image analysis yielded in HMPV patients following results: ground-glass-opacity (GGO) (n = 6), parenchymal airspace consolidations (n = 5), ill-defined nodular-like centrilobular opacities (n = 9), bronchial wall thickening (n = 8). In comparison, results in RSV patients were: GGO (n = 10), parenchymal airspace consolidations (n = 9), ill-defined nodular-like centrilobular opacities (n = 10), bronchial wall thickening (n = 4). In the course of the disease, signs of acute HMPV interstitial pneumonia regressed transforming temporarily in part into findings compatible with bronchitis/bronchiolitis. Conclusions: Early chest-CT findings in patients with HMPV-related pulmonary symptoms are compatible with asymmetric acute interstitial pneumonia accompanied by signs of bronchitis; the former transforming with time into bronchitis and bronchiolitis before they resolve. On the contrary, RSV-induced pulmonary infection exhibits mainly symmetric acute interstitial pneumonia.

  7. Comparison study between the MR images and pathomorphologic findings of the pulmonary hilar lymph nodes

    International Nuclear Information System (INIS)

    Kiyono, Kunihiro; Sakai, Fumikazu; Sone, Shusuke; Imai, Yutaka; Kawai, Takashi; Maruyama, Yuichiro; Shibata, Atsushi; Ito, Nobuo

    1995-01-01

    The MR images of the resected human lungs were correlated with pathomorphologic findings of the specimens to facilitate interpretation of the pulmonary hilum, specifically hilar lymph nodes. Normal hilar lymph nodes were demonstrated as low signal intensity structures on T1-, T2- and proton-density-weighted images. The walls of the pulmonary vessels and bronchi were shown as linear structures of relatively low intensity, with fatty tissue of high intensity surrounding these structures. Among these low signal intensity hilar lymph nodes were shown resulting from anthracosis, which were similar to those by fibrotic foci. (author)

  8. [MRI methods for pulmonary ventilation and perfusion imaging].

    Science.gov (United States)

    Sommer, G; Bauman, G

    2016-02-01

    Separate assessment of respiratory mechanics, gas exchange and pulmonary circulation is essential for the diagnosis and therapy of pulmonary diseases. Due to the global character of the information obtained clinical lung function tests are often not sufficiently specific in the differential diagnosis or have a limited sensitivity in the detection of early pathological changes. The standard procedures of pulmonary imaging are computed tomography (CT) for depiction of the morphology as well as perfusion/ventilation scintigraphy and single photon emission computed tomography (SPECT) for functional assessment. Magnetic resonance imaging (MRI) with hyperpolarized gases, O2-enhanced MRI, MRI with fluorinated gases and Fourier decomposition MRI (FD-MRI) are available for assessment of pulmonary ventilation. For assessment of pulmonary perfusion dynamic contrast-enhanced MRI (DCE-MRI), arterial spin labeling (ASL) and FD-MRI can be used. Imaging provides a more precise insight into the pathophysiology of pulmonary function on a regional level. The advantages of MRI are a lack of ionizing radiation, which allows a protective acquisition of dynamic data as well as the high number of available contrasts and therefore accessible lung function parameters. Sufficient clinical data exist only for certain applications of DCE-MRI. For the other techniques, only feasibility studies and case series of different sizes are available. The clinical applicability of hyperpolarized gases is limited for technical reasons. The clinical application of the techniques described, except for DCE-MRI, should be restricted to scientific studies.

  9. MRI methods for pulmonary ventilation and perfusion imaging

    International Nuclear Information System (INIS)

    Sommer, G.; Bauman, G.

    2016-01-01

    Separate assessment of respiratory mechanics, gas exchange and pulmonary circulation is essential for the diagnosis and therapy of pulmonary diseases. Due to the global character of the information obtained clinical lung function tests are often not sufficiently specific in the differential diagnosis or have a limited sensitivity in the detection of early pathological changes. The standard procedures of pulmonary imaging are computed tomography (CT) for depiction of the morphology as well as perfusion/ventilation scintigraphy and single photon emission computed tomography (SPECT) for functional assessment. Magnetic resonance imaging (MRI) with hyperpolarized gases, O 2 -enhanced MRI, MRI with fluorinated gases and Fourier decomposition MRI (FD-MRI) are available for assessment of pulmonary ventilation. For assessment of pulmonary perfusion dynamic contrast-enhanced MRI (DCE-MRI), arterial spin labeling (ASL) and FD-MRI can be used. Imaging provides a more precise insight into the pathophysiology of pulmonary function on a regional level. The advantages of MRI are a lack of ionizing radiation, which allows a protective acquisition of dynamic data as well as the high number of available contrasts and therefore accessible lung function parameters. Sufficient clinical data exist only for certain applications of DCE-MRI. For the other techniques, only feasibility studies and case series of different sizes are available. The clinical applicability of hyperpolarized gases is limited for technical reasons. The clinical application of the techniques described, except for DCE-MRI, should be restricted to scientific studies. (orig.) [de

  10. Identification of chronic thromboembolic pulmonary hypertension with MR imaging

    International Nuclear Information System (INIS)

    Gefter, W.B.; Palevsky, H.I.; Dinsmore, B.J.; Reichek, N.; DeRoos, A.; Kressel, H.Y.

    1988-01-01

    Thromboembolic pulmonary hypertension (TE-PHT) may be treatable by thromboendarterectomy. To evaluate the role of MR imaging in TE-PHT, the authors imaged eight patients with primary pulmonary hypertension or ASDs and seven patients with TE-PHT. Patients underwent conventional spin-echo (SE) imaging; three of seven patients with TE-PHT and eight of eight without emboli underwent cine MR studies. TE-PHT findings included focal areas of vessel wall thickening or plaquelike lesions in the central pulmonary arteries in six of seven. (Thrombus was not distinguished from flow-related signal in the seventh patient). Studies performed on three patients after thromboendarterectomy showed significant resolution of vascular lesions. Patients without emboli showed dilated central vessels without focal wall or lumen abnormality. Cine studies differentiated flow-related signal from thrombus, but wall thickening was better appreciated on SE images. MR imaging appears useful in identifying patients with TE-PHT who may benefit from surgery

  11. Fourier-based linear systems description of free-breathing pulmonary magnetic resonance imaging

    Science.gov (United States)

    Capaldi, D. P. I.; Svenningsen, S.; Cunningham, I. A.; Parraga, G.

    2015-03-01

    Fourier-decomposition of free-breathing pulmonary magnetic resonance imaging (FDMRI) was recently piloted as a way to provide rapid quantitative pulmonary maps of ventilation and perfusion without the use of exogenous contrast agents. This method exploits fast pulmonary MRI acquisition of free-breathing proton (1H) pulmonary images and non-rigid registration to compensate for changes in position and shape of the thorax associated with breathing. In this way, ventilation imaging using conventional MRI systems can be undertaken but there has been no systematic evaluation of fundamental image quality measurements based on linear systems theory. We investigated the performance of free-breathing pulmonary ventilation imaging using a Fourier-based linear system description of each operation required to generate FDMRI ventilation maps. Twelve subjects with chronic obstructive pulmonary disease (COPD) or bronchiectasis underwent pulmonary function tests and MRI. Non-rigid registration was used to co-register the temporal series of pulmonary images. Pulmonary voxel intensities were aligned along a time axis and discrete Fourier transforms were performed on the periodic signal intensity pattern to generate frequency spectra. We determined the signal-to-noise ratio (SNR) of the FDMRI ventilation maps using a conventional approach (SNRC) and using the Fourier-based description (SNRF). Mean SNR was 4.7 ± 1.3 for subjects with bronchiectasis and 3.4 ± 1.8, for COPD subjects (p>.05). SNRF was significantly different than SNRC (p<.01). SNRF was approximately 50% of SNRC suggesting that the linear system model well-estimates the current approach.

  12. Imaging findings of pulmonary vascular disorders in portal hypertension

    International Nuclear Information System (INIS)

    Nagasawa, Kenichi; Takahashi, Koji; Furuse, Makoto

    2004-01-01

    The purpose of this study was to demonstrate and compare the imaging findings of hepatopulmonary syndrome and portopulmonary hypertension. We retrospectively reviewed the imaging findings of five patients with hepatopulmonary syndrome and four patients with portopulmonary hypertension. We evaluated chest radiographs, chest and abdominal computed tomography (CT) scans, 99m Tc-macroaggregated albumin (MAA) lung perfusion scans, and pulmonary angiograms. In patients with hepatopulmonary syndrome, the presence of peripheral pulmonary vascular dilatation was detected by chest radiograph, chest CT scan, and pulmonary angiogram, especially the basilar segment. 99m Tc-MAA lung perfusion scan showed extrapulmonary tracer distribution (brain, thyroid, and kidney), which revealed pulmonary right-left shunting. In patients with portopulmonary hypertension, chest radiographs and chest CT scans showed the classic findings of primary pulmonary hypertension. In patients with both disorders, extrahepatic features of portal hypertension including ascites, splenomegaly, and portosystemic collateral vessels were seen on abdominal CT. In conclusion, chest radiographs and CT in hepatopulmonary syndrome usually showed peripheral pulmonary vascular dilatation, whereas those in portopulmonary hypertension showed central pulmonary artery dilatation. The extrahepatic features of portal hypertension might be helpful for the diagnosis of both disorders. (author)

  13. Assessment of pulmonary hypertension by CT and MR imaging

    International Nuclear Information System (INIS)

    Ley, Sebastian; Kreitner, Karl-Friedrich; Heussel, Claus P.; Fink, Christian; Kauczor, Hans-Ulrich; Borst, Mathias M.

    2004-01-01

    In the recent World Health Organization (WHO) classification the group of pulmonary arterial hypertension (PH) comprises the classic primary pulmonary hypertension and several conditions with definite or very high risk factors to develop pulmonary arterial hypertension. Therapeutic advances drive the need for a comprehensive pre-therapeutic evaluation for optimal treatment. Furthermore, follow-up examinations need to be performed to monitor changes in disease status and response to therapy. Up to now, the diagnostic imaging work-up of PH comprises mainly echocardiography, invasive right heart catheterization and ventilation/perfusion scintigraphy. Due to technical advances helical computed tomography (CT) and magnetic resonance imaging (MRI) became more important in the evaluation and for differential diagnosis of pulmonary arterial hypertension. Both modalities are reviewed and recommendations for clinical use are given. (orig.)

  14. Diagnosing acute pulmonary embolism with computed tomography: imaging update.

    Science.gov (United States)

    Devaraj, Anand; Sayer, Charlie; Sheard, Sarah; Grubnic, Sisa; Nair, Arjun; Vlahos, Ioannis

    2015-05-01

    Acute pulmonary embolism is recognized as a difficult diagnosis to make. It is potentially fatal if undiagnosed, yet increasing referral rates for imaging and falling diagnostic yields are topics which have attracted much attention. For patients in the emergency department with suspected pulmonary embolism, computed tomography pulmonary angiography (CTPA) is the test of choice for most physicians, and hence radiology has a key role to play in the patient pathway. This review will outline key aspects of the recent literature regarding the following issues: patient selection for imaging, the optimization of CTPA image quality and dose, preferred pathways for pregnant patients and other subgroups, and the role of CTPA beyond diagnosis. The role of newer techniques such as dual-energy CT and single-photon emission-CT will also be discussed.

  15. Fractal Dimension Analysis of MDCT Images for Quantifying the Morphological Changes of the Pulmonary Artery Tree in Patients with Pulmonary Hypertension

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Haitao; Li, Ning; Guo, Lijun; Gao, Fei; Liu, Cheng [Shandong University, Shandong Medical Imaging Research Institute, Shandong (Korea, Republic of)

    2011-06-15

    The aim of this study was to use fractal dimension (FD) analysis on multidetector CT (MDCT) images for quantifying the morphological changes of the pulmonary artery tree in patients with pulmonary hypertension (PH). Fourteen patients with PH and 17 patients without PH as controls were studied. All of the patients underwent contrast-enhanced helical CT and transthoracic echocardiography. The pulmonary artery trees were generated using post-processing software, and the FD and projected image area of the pulmonary artery trees were determined with Image J software in a personal computer. The FD, the projected image area and the pulmonary artery pressure (PAP) were statistically evaluated in the two groups. The FD, the projected image area and the PAP of the patients with PH were higher than those values of the patients without PH (p < 0.05, t-test). There was a high correlation of FD with the PAP (r = 0.82, p < 0.05, partial correlation analysis). There was a moderate correlation of FD with the projected image area (r = 0.49, p < 0.05, partial correlation analysis). There was a correlation of the PAP with the projected image area (r = 0.65, p < 0.05, Pearson correlation analysis). The FD of the pulmonary arteries in the PH patients was significantly higher than that of the controls. There is a high correlation of FD with the PAP.

  16. Fractal Dimension Analysis of MDCT Images for Quantifying the Morphological Changes of the Pulmonary Artery Tree in Patients with Pulmonary Hypertension

    International Nuclear Information System (INIS)

    Sun, Haitao; Li, Ning; Guo, Lijun; Gao, Fei; Liu, Cheng

    2011-01-01

    The aim of this study was to use fractal dimension (FD) analysis on multidetector CT (MDCT) images for quantifying the morphological changes of the pulmonary artery tree in patients with pulmonary hypertension (PH). Fourteen patients with PH and 17 patients without PH as controls were studied. All of the patients underwent contrast-enhanced helical CT and transthoracic echocardiography. The pulmonary artery trees were generated using post-processing software, and the FD and projected image area of the pulmonary artery trees were determined with Image J software in a personal computer. The FD, the projected image area and the pulmonary artery pressure (PAP) were statistically evaluated in the two groups. The FD, the projected image area and the PAP of the patients with PH were higher than those values of the patients without PH (p < 0.05, t-test). There was a high correlation of FD with the PAP (r = 0.82, p < 0.05, partial correlation analysis). There was a moderate correlation of FD with the projected image area (r = 0.49, p < 0.05, partial correlation analysis). There was a correlation of the PAP with the projected image area (r = 0.65, p < 0.05, Pearson correlation analysis). The FD of the pulmonary arteries in the PH patients was significantly higher than that of the controls. There is a high correlation of FD with the PAP.

  17. Clinical advance in radionuclide imaging of pulmonary cancer

    International Nuclear Information System (INIS)

    Deng Zhiyong; Yang Lichun

    2008-01-01

    Radionuclide imaging of pulmonary cancer develops very rapidly in recent years. Its important value on the diagnosis, staging, monitoring recur and metastasis after treatment, and judging the curative effect and prognosis has been demonstrated. Clinicians pay more attention to it than before. This present article introduces the imaging principle, clinical use, good and bad points, progress situation of 67 Ga, 201 Tl, 99 Tc m , 18 F and their labelled compounds, which are more commonly used in clinical. And introduces the clinical progress of radionuclide imaging of pulmonary neoplasm concerning 99 Tc m -sestamibi ( 99 Tc m -MIBI), 99 Tc m -HL91 and 18 F-fluorodeoxyglucose ( 18 F-FDG) with emphasis. (authors)

  18. Imaging in congenital pulmonary vein anomalies: the role of computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Dyer, Kevin Todd; McQuiston, Andrew Douglas [Medical University of South Carolina, Department of Radiology and Radiological Science, Charleston, SC (United States); Hlavacek, Anthony Marcus; Pietris, Nicholas Peter [Medical University of South Carolina, Department of Radiology and Radiological Science, Charleston, SC (United States); Medical University of South Carolina, Division of Cardiology Department of Pediatrics, Charleston, SC (United States); Meinel, Felix Gabriel [Medical University of South Carolina, Department of Radiology and Radiological Science, Charleston, SC (United States); Ludwig-Maximilians-University Hospital, Institute for Clinical Radiology, Munich (Germany); De Cecco, Carlo Nicola [Medical University of South Carolina, Department of Radiology and Radiological Science, Charleston, SC (United States); University of Rome ' ' Sapienza' ' - Polo Pontino, Department of Radiological Sciences Oncology and Pathology, Latina (Italy); Schoepf, Uwe Joseph [Medical University of South Carolina, Division of Cardiology Department of Medicine, Charleston, SC (United States); Medical University of South Carolina, Department of Radiology and Radiological Science, Charleston, SC (United States); Medical University of South Carolina, Division of Cardiology Department of Pediatrics, Charleston, SC (United States)

    2014-09-15

    Pulmonary venous anomalies comprise a wide spectrum of anatomical variations and their clinical presentations may vary from the relatively benign single partial anomalous pulmonary venous connection (PAPVC) to the critical obstructed total anomalous pulmonary venous connection (TAPVC). We briefly review the common anomalies encountered, while highlighting the utility that computed tomographic angiography (CTA) provides for this spectrum of extracardiac vascular malformations and connections. CTA has established itself as an invaluable imaging modality in these patients. A detailed knowledge of the CTA imaging findings in pulmonary venous anomalies is crucial to guide clinical decision-making in these patients. (orig.)

  19. Measurement of pulmonary vascular resistance of Fontan candidates with pulmonary arterial distortion by means of pulmonary perfusion imaging

    International Nuclear Information System (INIS)

    Park, In-Sam; Mizukami, Ayumi; Tomimatsu, Hirofumi; Kondou, Chisato; Nakanishi, Toshio; Nakazawa, Makoto; Momma, Kazuo

    1998-01-01

    We measured the distribution of blood flow to the right (R) and left lung (L) by means of pulmonary perfusion imaging and calculated pulmonary vascular resistance (Rp) in 13 patients, whose right and left pulmonary artery pressures were different by 2 to 9 mmHg due to pulmonary arterial distortion (5 interruption, 8 stenosis). The right lung/left lung blood flow ratio was determined and from the ratio and the total pulmonary blood flow, which was determined using the Fick's principle, the absolute values of right and left pulmonary blood flow were calculated. Using the right and left pulmonary blood flow and the right and left pulmonary arterial pressures, right and left pulmonary vascular resistance were calculated, separately. Vascular resistance of the whole lung (Rp) was then calculated using the following equation. 1/(Rp of total lung)=1/(Rp of right lung)+1/(Rp of left lung). Rp calculated from this equation was 1.8+/-0.8 U·m 2 and all values were less than 3 U·m 2 (range 0.3-2.8). Rp estimated from the conventional method using the total pulmonary blood flow and pulmonary arterial pressures, without using the right/left blood flow ratio, ranging from 0.4 to 3.8 U·m 2 and 5 of 13 patients showed Rp>3 U·m 2 . All patients underwent Fontan operation successfully. These data indicated that this method is useful to estimate Rp and to determine the indication of Fontan operation in patients with pulmonary arterial distortions. (author)

  20. The feasibility and accuracy of enhanced MR pulmonary perfusion imaging in evaluating therapeutic effect of pulmonary embolism

    International Nuclear Information System (INIS)

    Wang Nana; Lv Biao; Zhao Zhaoqi; Huang Xiaoyong; Lu Dongxu; Mi Hongzhi; Yu Weiyong

    2010-01-01

    Objective: To investigate the feasibility and accuracy of enhanced magnetic resonance pulmonary perfusion imaging (MRPP) in the diagnosis and follow-up of pulmonary embolism (PE). Methods: Sixty patients suspected of PE underwent MRPP. Twenty-seven patients also underwent radionuclide perfusion imaging. 22 patients repeated MRPP examination after 3 day to 1 month antieoagulation or thrombolytic therapy. The feasibility and accuracy of MRPP in the diagnosis and follow-up of PE were evaluated according to the transformation rate of signal (TROS), time-signal curve and some parameters of main pulmonary artery (such as peak value of flow, mean flow velocity and flow rate). The t test and rank sum test were used for the statistics. Results: MRPP showed a high agreement with radionuclide perfusion imaging. TROS was (2.86 ± 2.48) vs(6.72 ± 2.54) (t=3.370, P 0.05). Conclusion: MRPP shows a high agreement with radionuclide perfusion imaging and is a useful method for the diagnosis and follow-up of PE. (authors)

  1. Advanced virtual monoenergetic images: improving the contrast of dual-energy CT pulmonary angiography

    International Nuclear Information System (INIS)

    Meier, A.; Wurnig, M.; Desbiolles, L.; Leschka, S.; Frauenfelder, T.; Alkadhi, H.

    2015-01-01

    Aim: To investigate the value of advanced virtual monoenergetic image reconstruction (mono-plus) from dual-energy computed tomography (CT) for improving the contrast of CT pulmonary angiography (CTPA). Materials and methods: Forty consecutive patients (25 women, mean 62.5 years, range 28–87 years) underwent 192-section dual-source CTPA with dual-energy CT (90/150 SnkVp) after the administration of 60 ml contrast media (300 mg iodine/ml). Conventional virtual monochromatic images at 60 keV and 17 mono-plus image datasets from 40–190 keV (in 10 keV steps) were reconstructed. Subjective image quality (artefacts, subjective noise) was rated. Attenuation was measured in the pulmonary trunk and in the right lower lobe pulmonary artery; noise was measured in the periscapular musculature. The signal-to-noise (SNR) and contrast-to-noise ratios (CNR) were calculated for each patient and dataset. Comparisons between monochromatic images and mono-plus images were performed by repeated measures analysis of variance (ANOVA) with post-hoc Bonferroni correction. Results: Interreader agreement was good to excellent for subjective image quality (ICC: 0.616–0.889). As compared to conventional 60 keV images, artefacts occurred less (p=0.001) and subjective noise was rated lower (p<0.001) in mono-plus 40 keV images. Noise was lower (p<0.001), and the SNR and CNR in the pulmonary trunk and right lower lobe pulmonary artery were higher (both, p<0.001) in mono-plus 40 keV images compared to conventional monoenergetic 60 keV images. Transient interruption of contrast (TIC) was found in 14/40 (35%) of patients, with subjective contrast being similar 8/40 (20%) or higher 32/40 (80%) in mono-plus 40 keV as compared to conventional monoenergetic 60 keV images. Conclusions: Compared to conventional virtual monoenergetic imaging, mono-plus images at 40 keV improve the contrast of dual-energy CTPA. - Highlights: • Advanced monoenergetic image reconstruction from dual-energy CT

  2. Treatment Effect of Balloon Pulmonary Angioplasty in Chronic Thromboembolic Pulmonary Hypertension Quantified by Automatic Comparative Imaging in Computed Tomography Pulmonary Angiography.

    Science.gov (United States)

    Zhai, Zhiwei; Ota, Hideki; Staring, Marius; Stolk, Jan; Sugimura, Koichiro; Takase, Kei; Stoel, Berend C

    2018-05-01

    Balloon pulmonary angioplasty (BPA) in patients with inoperable chronic thromboembolic pulmonary hypertension (CTEPH) can have variable outcomes. To gain more insight into this variation, we designed a method for visualizing and quantifying changes in pulmonary perfusion by automatically comparing computed tomography (CT) pulmonary angiography before and after BPA treatment. We validated these quantifications of perfusion changes against hemodynamic changes measured with right-sided heart catheterization. We studied 14 consecutive CTEPH patients (12 women; age, 70.5 ± 24), who underwent CT pulmonary angiography and right-sided heart catheterization, before and after BPA. Posttreatment images were registered to pretreatment CT scans (using the Elastix toolbox) to obtain corresponding locations. Pulmonary vascular trees and their centerlines were detected using a graph cuts method and a distance transform method, respectively. Areas distal from vessels were defined as pulmonary parenchyma. Subsequently, the density changes within the vascular centerlines and parenchymal areas were calculated and corrected for inspiration level differences. For visualization, the densitometric changes were displayed in color-coded overlays. For quantification, the median and interquartile range of the density changes in the vascular and parenchymal areas (ΔVD and ΔPD) were calculated. The recorded changes in hemodynamic parameters, including changes in systolic, diastolic, and mean pulmonary artery pressure (ΔsPAP, ΔdPAP, and ΔmPAP, respectively) and vascular resistance (ΔPVR), were used as reference assessments of the treatment effect. Spearman correlation coefficients were employed to investigate the correlations between changes in perfusion and hemodynamic changes. Comparative imaging maps showed distinct patterns in perfusion changes among patients. Within pulmonary vessels, the interquartile range of ΔVD correlated significantly with ΔsPAP (R = -0.58, P = 0.03),

  3. Detection of pulmonary nodules on lung X-ray images. Studies on multi-resolutional filter and energy subtraction images

    International Nuclear Information System (INIS)

    Sawada, Akira; Sato, Yoshinobu; Kido, Shoji; Tamura, Shinichi

    1999-01-01

    The purpose of this work is to prove the effectiveness of an energy subtraction image for the detection of pulmonary nodules and the effectiveness of multi-resolutional filter on an energy subtraction image to detect pulmonary nodules. Also we study influential factors to the accuracy of detection of pulmonary nodules from viewpoints of types of images, types of digital filters and types of evaluation methods. As one type of images, we select an energy subtraction image, which removes bones such as ribs from the conventional X-ray image by utilizing the difference of X-ray absorption ratios at different energy between bones and soft tissue. Ribs and vessels are major causes of CAD errors in detection of pulmonary nodules and many researches have tried to solve this problem. So we select conventional X-ray images and energy subtraction X-ray images as types of images, and at the same time select ∇ 2 G (Laplacian of Guassian) filter, Min-DD (Minimum Directional Difference) filter and our multi-resolutional filter as types of digital filters. Also we select two evaluation methods and prove the effectiveness of an energy subtraction image, the effectiveness of Min-DD filter on a conventional X-ray image and the effectiveness of multi-resolutional filter on an energy subtraction image. (author)

  4. Subsolid pulmonary nodules: imaging evaluation and strategic management.

    Science.gov (United States)

    Godoy, Myrna C B; Sabloff, Bradley; Naidich, David P

    2012-07-01

    Given the higher rate of malignancy of subsolid pulmonary nodules and the considerably lower growth rate of ground-glass nodules (GGNs), dedicated standardized guidelines for management of these nodules have been proposed, including long-term low-dose computed tomography (CT) follow-up (≥3 years). Physicians must be familiar with the strategic management of subsolid pulmonary nodules, and should be able to identify imaging features that suggest invasive adenocarcinoma requiring a more aggressive management. Low-dose CT screening studies for early detection of lung cancer have increased our knowledge of pulmonary nodules, and in particular our understanding of the strong although imperfect correlation of the subsolid pulmonary nodules, including pure GGNs and part-solid nodules, with the spectrum of preinvasive to invasive lung adenocarcinoma. Serial CT imaging has shown stepwise progression in a subset of these nodules, characterized by increase in size and density of pure GGNs and development of a solid component, the latter usually indicating invasive adenocarcinoma. There is close correlation between the CT features of subsolid nodules (SSNs) and the spectrum of lung adenocarcinoma. Standardized guidelines are suggested for management of SSNs.

  5. Relationship between signal intensity of blood flow in the pulmonary artery obtained by magnetic resonance imaging and results of right cardiac catheterization in patients with pulmonary disease

    Energy Technology Data Exchange (ETDEWEB)

    Yuguchi, Yasutoshi; Nagao, Keiichi; Kouno, Norihiro; Tanabe, Nobuhiro; Okita, Shinya; Tojima, Hirokazu; Okada, Osamu; Kuriyama, Takayuki [Chiba Univ. (Japan). School of Medicine; Yamaguchi, Tetsuo

    1992-08-01

    Electrocardiogram-gated spin-echo magnetic resonance (MR) images of the chest were obtained in five normal controls and 35 patients with pulmonary disease (11 chronic obstructive pulmonary disease, 6 pulmonary thromboembolism, 5 primary pulmonary hypertension, 4 interstitial pulmonary disease, 4 pulmonary hypertension with disturbance of portal circulation, and 5 other diseases) who underwent right cardiac catheterization. In transverse images at the level of the right main pulmonary artery (rPA) and sagittal images at the level through the midsternal line and the spinal cord, the signal intensity of blood flow in the rPA was quantitatively evaluated, and the correlations with the MR signal intensity of intravascular flow and the parameters of hemodynamics were studied. In diastole MR images of both normal controls and patients mostly showed a significant signal and visible flow images. In systolic MR images, the mean values of hemodynamic parameters (mean pulmonary arterial pressure (mPAP), pulmonary arteriolar resistance (PAR), and cardiac index (CI)) were abnormal in patients with significant signal intensity of flow compared with those in patients without sufficient MR signal. The signal intensity was not correlated with mPAP; however, it significantly increased as PAR increased, and it increased as CI decreased both in diastole and in systole. Especially in systole, there was good correlation between the signal intensity in transverse MR images and CI and between signal intensity in sagittal MR images and PAR . These results suggest that the signal intensity of blood flow in the rPA on MR images can be used as an index of the severity of right heart failure associated with pulmonary disease. MR imaging is a useful modality to evaluate pulmonary circulation disturbance because of its ability to assess blood flow in the pulmonary artery noninvasively without interference from other structures such as bone and normal lung. (J.P.N.).

  6. Evaluation of postoperative follow-up of children's congenital heart disease with pulmonary hypertension by pulmonary imaging

    International Nuclear Information System (INIS)

    Zheng Jinghao; Zhang Shantong; Zeng Jihua

    1994-01-01

    Pulmonary perfusion imaging with 99m Tc labelled macroaggregated albumin (MAA) was performed in 48 cases of congenital heart diseases of children, including 32 cases with pulmonary hypertension (PH). The change in the total count ratio of the right lung against the left lung between right and left lateral decubitus positions (rt/lt) was used to assess the pulmonary arterial pressure postoperatively. The results showed that rt/lt ratio could qualitatively evaluate the pulmonary arterial pressure. The reproducibility of rt/lt ratio was quite good in experiments with rabbits. Some factors which affected the recovery of PH after operation have been discussed

  7. Clinical application of subtraction CT imaging for evaluation of pulmonary vascular permeability

    International Nuclear Information System (INIS)

    Kato, Shiro; Asai, Toshihiko; Yatagai, Shigeo; Oonuma, Noboru; Ohno, Kunihiko; Nakamoto, Takaaki; Iizuka, Masahiko

    1991-01-01

    In this clinical study, one normal subject, one patient with primary interstitial pneumonia, one patient with segmental pneumonia due to Staphylococcus aureus, one patient with post-operative esophageal carcinoma, and two patients with mitral stenosis were studied. Dynamic CT scan images under continuous injection of low osmotic contrast medium were analyzed in series, in an attempt to evaluate vascular permeability quantitatively. The following results were obtained. Subtraction CT scan image 10 minutes after the start of contrast medium injection in two patients with pneumonia, showed a reduction of pulmonary vascular permeability following therapy. Subtraction CT scan image of the patient with post-operative esophageal carcinoma treated with 25 Gy radiation showed a discrepancy between pulmonary vascular permeability and other findings. In hemodynamically stable patients with mitral stenosis, subtraction CT images demonstrated that pulmonary vascular permeability was not affected by pulmonary congestion, irrespective of its severity. (author)

  8. The role of lung imaging in pulmonary embolism

    Science.gov (United States)

    Mishkin, Fred S.; Johnson, Philip M.

    1973-01-01

    The advantages of lung scanning in suspected pulmonary embolism are its diagnostic sensitivity, simplicity and safety. The ability to delineate regional pulmonary ischaemia, to quantitate its extent and to follow its response to therapy provides valuable clinical data available by no other simple means. The negative scan effectively excludes pulmonary embolism but, although certain of its features favour the diagnosis of embolism, the positive scan inherently lacks specificity and requires angiographic confirmation when embolectomy, caval plication or infusion of a thrombolytic agent are contemplated. The addition of simple ventilation imaging techniques with radioxenon overcomes this limitation by providing accurate analog estimation or digital quantitation of regional ventilation: perfusion (V/Q) ratios fundamental to understanding the pathophysiologic consequences of embolism and other diseases of the lung. ImagesFig. 1Fig. 2Fig. 3Fig. 4Fig. 5Fig. 6Fig. 7p495-bFig. 8Fig. 9Fig. 10Fig. 11Fig. 12Fig. 13 PMID:4602128

  9. Role of four-dimensional echocardiography with high-definition flow imaging and spatiotemporal image correlation in detecting fetal pulmonary veins.

    Science.gov (United States)

    Sun, Xue; Zhang, Ying; Fan, Miao; Wang, Yu; Wang, Meilian; Siddiqui, Faiza Amber; Sun, Wei; Sun, Feifei; Zhang, Dongyu; Lei, Wenjia; Hu, Guyue

    2017-06-01

    Prenatal diagnosis of fetal total anomalous pulmonary vein connection (TAPVC) remains challenging for most screening sonographers. The purpose of this study was to evaluate the use of four-dimensional echocardiography with high-definition flow imaging and spatiotemporal image correlation (4D-HDFI) in identifying pulmonary veins in normal and TAPVC fetuses. We retrospectively reviewed and performed 4D-HDFI in 204 normal and 12 fetuses with confirmed diagnosis of TAPVC. Cardiac volumes were available for postanalysis to obtain 4D-rendered images of the pulmonary veins. For the normal fetuses, two other traditional modalities including color Doppler and HDFI were used to detect the number of pulmonary veins and comparisons were made between each of these traditional methods and 4D-HDFI. For conventional echocardiography, HDFI modality was superior to color Doppler in detecting more pulmonary veins in normal fetuses throughout the gestational period. 4D-HDFI was the best method during the second trimester of pregnancy in identifying normal fetal pulmonary veins. 4D-HDFI images vividly depicted the figure, course, and drainage of pulmonary veins in both normal and TAPVC fetuses. HDFI and the advanced 4D-HDFI technique could facilitate identification of the anatomical features of pulmonary veins in both normal and TAPVC fetuses; 4D-HDFI therefore provides additional and more precise information than conventional echocardiography techniques. © 2017, Wiley Periodicals, Inc.

  10. Computer-aided pulmonary image analysis in small animal models

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Ziyue; Mansoor, Awais; Mollura, Daniel J. [Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, National Institutes of Health (NIH), Bethesda, Maryland 32892 (United States); Bagci, Ulas, E-mail: ulasbagci@gmail.com [Center for Research in Computer Vision (CRCV), University of Central Florida (UCF), Orlando, Florida 32816 (United States); Kramer-Marek, Gabriela [The Institute of Cancer Research, London SW7 3RP (United Kingdom); Luna, Brian [Microfluidic Laboratory Automation, University of California-Irvine, Irvine, California 92697-2715 (United States); Kubler, Andre [Department of Medicine, Imperial College London, London SW7 2AZ (United Kingdom); Dey, Bappaditya; Jain, Sanjay [Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231 (United States); Foster, Brent [Department of Biomedical Engineering, University of California-Davis, Davis, California 95817 (United States); Papadakis, Georgios Z. [Radiology and Imaging Sciences, National Institutes of Health (NIH), Bethesda, Maryland 32892 (United States); Camp, Jeremy V. [Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky 40202 (United States); Jonsson, Colleen B. [National Institute for Mathematical and Biological Synthesis, University of Tennessee, Knoxville, Tennessee 37996 (United States); Bishai, William R. [Howard Hughes Medical Institute, Chevy Chase, Maryland 20815 and Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231 (United States); Udupa, Jayaram K. [Medical Image Processing Group, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States)

    2015-07-15

    Purpose: To develop an automated pulmonary image analysis framework for infectious lung diseases in small animal models. Methods: The authors describe a novel pathological lung and airway segmentation method for small animals. The proposed framework includes identification of abnormal imaging patterns pertaining to infectious lung diseases. First, the authors’ system estimates an expected lung volume by utilizing a regression function between total lung capacity and approximated rib cage volume. A significant difference between the expected lung volume and the initial lung segmentation indicates the presence of severe pathology, and invokes a machine learning based abnormal imaging pattern detection system next. The final stage of the proposed framework is the automatic extraction of airway tree for which new affinity relationships within the fuzzy connectedness image segmentation framework are proposed by combining Hessian and gray-scale morphological reconstruction filters. Results: 133 CT scans were collected from four different studies encompassing a wide spectrum of pulmonary abnormalities pertaining to two commonly used small animal models (ferret and rabbit). Sensitivity and specificity were greater than 90% for pathological lung segmentation (average dice similarity coefficient > 0.9). While qualitative visual assessments of airway tree extraction were performed by the participating expert radiologists, for quantitative evaluation the authors validated the proposed airway extraction method by using publicly available EXACT’09 data set. Conclusions: The authors developed a comprehensive computer-aided pulmonary image analysis framework for preclinical research applications. The proposed framework consists of automatic pathological lung segmentation and accurate airway tree extraction. The framework has high sensitivity and specificity; therefore, it can contribute advances in preclinical research in pulmonary diseases.

  11. A review of imaging modalities in pulmonary hypertension

    Directory of Open Access Journals (Sweden)

    Mona Ascha

    2017-01-01

    Full Text Available Pulmonary hypertension (PH is defined as resting mean pulmonary artery pressure ≥25 mmHg measured by right heart catheterization. PH is a progressive, life-threatening disease with a variety of etiologies. Swift and accurate diagnosis of PH and appropriate classification in etiologic group will allow for earlier treatment and improved outcomes. A number of imaging tools are utilized in the evaluation of PH, such as chest X-ray, computed tomography (CT, ventilation/perfusion (V/Q scan, and cardiac magnetic resonance imaging. Newer imaging tools such as dual-energy CT and single-photon emission computed tomography/computed tomography V/Q scanning have also emerged; however, their place in the diagnostic evaluation of PH remains to be determined. In general, each imaging technique provides incremental information, with varying degrees of sensitivity and specificity, which helps suspect the presence and identify the etiology of PH. The present study aims to provide a comprehensive review of the utility, advantages, and shortcomings of the imaging modalities that may be used to evaluate patients with PH.

  12. Perfusion abnormalities in congenital and neoplastic pulmonary disease: comparison of MR perfusion and multislice CT imaging

    International Nuclear Information System (INIS)

    Boll, Daniel T.; Lewin, Jonathan S.; Young, Philip; Gilkeson, Robert C.; Siwik, Ernest S.

    2005-01-01

    The aim of this work was to assess magnetic resonance (MR) perfusion patterns of chronic, nonembolic pulmonary diseases of congenital and neoplastic origin and to compare the findings with results obtained with pulmonary, contrast-enhanced multislice computed tomography (CT) imaging to prove that congenital and neoplastic pulmonary conditions require MR imaging over the pulmonary perfusion cycle to successfully and directly detect changes in lung perfusion patterns. Twenty-five patients underwent concurrent CT and MR evaluation of chronic pulmonary diseases of congenital (n=15) or neoplastic (n=10) origin. Analysis of MR perfusion and contrast-enhanced CT datasets was realized by defining pulmonary and vascular regions of interest in corresponding positions. MR perfusion calculated time-to-peak enhancement, maximal enhancement and the area under the perfusion curve. CT datasets provided pulmonary signal-to-noise ratio measurements. Vessel centerlines of bronchial arteries were determined. Underlying perfusion type, such as pulmonary arterial or systemic arterial supply, as well as regions with significant variations in perfusion were determined statistically. Analysis of the pulmonary perfusion pattern detected pulmonary arterial supply in 19 patients; six patients showed systemic arterial supply. In pulmonary arterial perfusion, MR and multislice CT imaging consistently detected the perfusion type and regions with altered perfusion patterns. In bronchial arterial supply, MR perfusion and CT imaging showed significant perfusion differences. Patients with bronchial arterial supply had bronchial arteries ranging from 2.0 to 3.6 mm compared with submillimeter diameters in pulmonary arterial perfusion. Dynamic MR imaging of congenital and neoplastic pulmonary conditions allowed characterization of the pulmonary perfusion type. CT imaging suggested the presence of systemic arterial perfusion by visualizing hypertrophied bronchial arteries. (orig.)

  13. Dynamic Chest Image Analysis: Model-Based Perfusion Analysis in Dynamic Pulmonary Imaging

    Directory of Open Access Journals (Sweden)

    Kiuru Aaro

    2003-01-01

    Full Text Available The "Dynamic Chest Image Analysis" project aims to develop model-based computer analysis and visualization methods for showing focal and general abnormalities of lung ventilation and perfusion based on a sequence of digital chest fluoroscopy frames collected with the dynamic pulmonary imaging technique. We have proposed and evaluated a multiresolutional method with an explicit ventilation model for ventilation analysis. This paper presents a new model-based method for pulmonary perfusion analysis. According to perfusion properties, we first devise a novel mathematical function to form a perfusion model. A simple yet accurate approach is further introduced to extract cardiac systolic and diastolic phases from the heart, so that this cardiac information may be utilized to accelerate the perfusion analysis and improve its sensitivity in detecting pulmonary perfusion abnormalities. This makes perfusion analysis not only fast but also robust in computation; consequently, perfusion analysis becomes computationally feasible without using contrast media. Our clinical case studies with 52 patients show that this technique is effective for pulmonary embolism even without using contrast media, demonstrating consistent correlations with computed tomography (CT and nuclear medicine (NM studies. This fluoroscopical examination takes only about 2 seconds for perfusion study with only low radiation dose to patient, involving no preparation, no radioactive isotopes, and no contrast media.

  14. Pulmonary capillary recruitment in response to hypoxia in healthy humans: a possible role for hypoxic pulmonary venoconstriction?

    DEFF Research Database (Denmark)

    Taylor, Bryan J; Kjaergaard, Jesper; Snyder, Eric M

    2011-01-01

    We examined mechanisms by which hypoxia may elicit pulmonary capillary recruitment in humans. On separate occasions, twenty-five healthy adults underwent exposure to intravenous saline infusion (30 ml/kg ∼ 15 min) or 17-h normobaric hypoxia ( [FIO2 = 12.5%). Cardiac output (Q) and pulmonary...... capillary blood volume (Vc) were measured before and after saline infusion and hypoxic-exposure by a rebreathing method. Pulmonary artery systolic pressure (sPpa) and left ventricular (LV) diastolic function were assessed before and after hypoxic-exposure via echocardiography. Saline infusion increased Q......Ppa and LV diastolic function. In conclusion, hypoxia-induced pulmonary capillary recruitment in humans is only partly accounted for by changes in Q, sPpa and LV diastolic function. We speculate that hypoxic pulmonary venoconstriction may play a role in such recruitment....

  15. Diagnostic imaging of pulmonary lymphangiosis carcinomatosa

    International Nuclear Information System (INIS)

    Rehbock, B.; Hieckel, H.G.

    2004-01-01

    The diagnosis of pulmonary lymphangiosis carcinomatosa (PLC) is of great importance for the prognostically-oriented therapy stratification of tumor patients. In this field, high-resolution computed tomography (HRCT) is the state of the art in imaging. Using HRCT, it is possible to identify pulmonary parenchymal structures in a detailed fashion to evaluate interstitial patterns. This step is preceded by an x-ray of the thorax that detects pathological findings and rules out other diseases. The typical characteristics of PLC are described with particular attention to HR-phenomenology, and discussed in comparison with the literature regarding anatomy and pathogenesis. Finally, conclusions are drawn for differential diagnosis and supported by characteristic cases. (orig.) [de

  16. Method for imaging pulmonary arterial hypoplasia

    International Nuclear Information System (INIS)

    Triantafillou, M.

    2000-01-01

    Full text: Pulmonary hypoplasia represents an incomplete development of the lung, resulting in the reduction of distended lung volume. This is associated with small or absent number of airway divisions, alveoli, arteries and veins. Unilateral pulmonary Hypoplasia is often asymptomatic and may be demonstrated as a hypodense lung on a chest X-ray. Computer Tomography (CT) scanning would show anatomical detail and proximal vessels. Magnetic Resonance Imaging (MRI) will show no more detail than which the CT scan has already demonstrated. It is, also, difficult to visualise collateral vessels from systemic and/or bronchial vessels on both these modalities. Pulmonary Angiography would give the definitive answer, but it is time consuming and has significant risks associated with the procedure. There are high costs associated with these modalities. Nuclear Medicine Ventilation/Perfusion (V/Q) scan performed on these patients would demonstrate diminished ventilation due to reduced lung volume and absence of perfusion to the hypoplastic lung. To date, we have performed V/Q lung scan on two children in our department. Both cases demonstrate diminished ventilation with no perfusion to the hypoplastic lung. Though the gold standard is Pulmonary Angiography, V/Q scanning is cost effective, less time consuming and a non invasive procedure that can be performed as an outpatient. It is accurate as it demonstrates absent lung perfusion, confirming the patient has pulmonary arterial hypoplasia. Copyright (2000) The Australian and New Zealand Society of Nuclear Medicine Inc

  17. Imaging and imagining chronic obstructive pulmonary disease (COPD): Uruguayans draw their lungs.

    Science.gov (United States)

    Wainwright, Megan

    2017-09-11

    This anthropological study investigated what people imagined chronic obstructive pulmonary disease to look like in their lungs, what may be influencing these images and how this imagery shapes embodiment. Employing graphic elicitation, in one of multiple ethnographic interviews, participants were asked to draw their lungs: "If we could look inside your chest now, what would we see?" Lung drawings and accompanying narratives and fieldnotes from 14 participants were analyzed for themes and patterns. The theme of "imaging/imagining" emerged and three distinct patterns within this theme were identified: the microscope perspective, the X-ray perspective and the reduced pulmonary capacity perspective. These patterns demonstrate how embodiment can be shaped by an integration and reinterpretation of the medical images that form part of everyday clinic visits and pulmonary rehabilitation. Medical technology and images impact patients' embodiment. Understanding this is important for rehabilitation practitioners who work in a challenging space created by potentially conflicting medical narratives: on the one hand, chronic obstructive pulmonary disease is incurable permanent damage, and on the other, improvement is possible through rehabilitation. Drawing could be integrated into pulmonary rehabilitation and may help identify perceptions of the body that could hinder the rehabilitation process. Implications for rehabilitation Drawings, when combined with interviews, can lead to a deeper and more complex understanding of patients' perspectives and embodiment. Rehabilitation practitioners should be concerned with how patients embody the medical technology and imagery they are exposed to as part of the educational component of pulmonary rehabilitation and healthcare generally. Asking patients to visualize their illness through drawing may help pulmonary rehabilitation practitioners identify perceptions of the body which could hinder the patient's ability to reap the full benefit

  18. Pulmonary Cryptococcosis: Imaging Findings in 23 Non-AIDS Patients

    Energy Technology Data Exchange (ETDEWEB)

    Song, Kyoung Doo; Lee, Kyung Soo; Kim, Tae Sung; Yi, Chin A; Chung, Myung Jin [Samsung Medical Center, Seoul (Korea, Republic of); Man Pyo Chung; O Jung Kwon [Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2010-08-15

    We aimed to review the patterns of lung abnormalities of pulmonary cryptococcosis on CT images, position emission tomography (PET) findings of the disease, and the response of lung abnormalities to the therapies in non-AIDS patients. We evaluated the initial CT (n = 23) and 18F-fluorodeoxyglucose (FDG) PET (n = 10), and follow-up (n = 23) imaging findings of pulmonary cryptococcosis in 23 non-AIDS patients. Lung lesions were classified into five patterns at CT: single nodular, multiple clustered nodular, multiple scattered nodular, mass-like, and bronchopneumonic patterns. The CT pattern analyses, PET findings, and therapeutic responses were recorded. A clustered nodular pattern was the most prevalent and was observed in 10 (43%) patients. This pattern was followed by solitary pulmonary nodular (n = 4, 17%), scattered nodular (n = 3, 13%), bronchopneumonic (n = 2, 9%), and single mass (n = 1, 4%) patterns. On PET scans, six (60%) of 10 patients showed higher FDG uptake and four (40%) demonstrated lower FDG uptake than the mediastinal blood pool. With specific treatment of the disease, a complete clearance of lung abnormalities was noted in 15 patients, whereas a partial response was noted in seven patients. In one patient where treatment was not performed, the disease showed progression. Pulmonary cryptococcosis most commonly appears as clustered nodules and is a slowly progressive and slowly resolving pulmonary infection. In two-thirds of patients, lung lesions show high FDG uptake, thus simulating a possible malignant condition

  19. Imaging in chronic obstructive pulmonary disease.

    Science.gov (United States)

    Shaker, Saher B; Dirksen, Asger; Bach, Karen S; Mortensen, Jann

    2007-06-01

    Chronic obstructive pulmonary disease (COPD) is divided into pulmonary emphysema and chronic bronchitis (CB). Emphysema is defined patho-anatomically as "permanent enlargement of airspaces distal to the terminal bronchiole, accompanied by the destruction of their walls, and without obvious fibrosis" (1). These lesions are readily identified and quantitated using computed tomography (CT), whereas the accompanying hyperinflation is best detected on plain chest X-ray, especially in advanced disease. The diagnosis of CB is clinical and relies on the presence of productive cough for 3 months in 2 or more successive years. The pathological changes of mucosal inflammation and bronchial wall thickening have been more difficult to identify with available imaging techniques. However, recent studies using Multi-detector row CT (MDCT) reported more reproducible assessment of air wall thickening.

  20. MR imaging of the pulmonary vasculature: Cine and high-resolution techniques

    International Nuclear Information System (INIS)

    Gefter, W.B.; Hatabu, H.; Kressel, H.Y.; Axel, L.; Lenkinski, R.E.; Schiebler, M.L.; Dougherty, L.; Douglas, P.S.; Reichek, N.

    1987-01-01

    Pulmonary vessels were evaluated on 43 cine examinations (12 normals, 31 with cardiopulmonary diseases) at 1.5 T (General Electric). Arteries and veins could be differentiated by characteristic intensity fluctuations in 90%. Abnormal patterns were observed with elevated left atrial pressure, pulmonary hypertension, pulmonic stenosis, and mitral regurgitation. A small arteriovenous malformation was identified. Approaches to high-resolution imaging included surface coils, 24-cm field of view, and 256 x 256 matrix. Spin-echo (SE) sequences gated in systole or diastole, and GRASS with and without breath-holding were evaluated. Surface-coil SE diastolic images (4 NEX) visualized sixth- and seventh-generation vessels. Breath-hold GRASS showed fifth- and sixth-generation vessels without respiratory artifact. These are promising techniques for displaying the pulmonary circulation

  1. Pulmonary histiocytosis X - imaging aspects of pulmonary involvement

    International Nuclear Information System (INIS)

    Sabedotti, Ismail Fernando; Maeda, Lucimara; Ferreira, Daniel Miranda; Montandon, Cristiano; Marins, Jose Luiz C.

    1999-01-01

    Pulmonary histiocytosis X is an idiopathic disease which is and uncommon but important cause of pulmonary fibrosis in young adults. Chest radiographs and high resolution computed tomographic (HRCT) scans of the lungs of 7 patients diagnosed as pulmonary histiocytosis X were examined retrospectively. The authors reviewed the pathologic, clinical and radiographic features of pulmonary histiocytosis X, focusing on differential diagnosis and disease progression. Pulmonary histiocytosis X can be suspected on the basis of chest radiographic findings; predominantly upper lobe nodules and cysts present an increased sensitivity and are virtually pathognomonic of this disorder. Chest HRCT allows good assessment of the evolution of pulmonary histiocytosis X and is also valuable in distinguishing histiocytosis from other disorders that produces nodules or cysts. (author)

  2. Assessment of anatomic relation between pulmonary perfusion and morphology in pulmonary emphysema with breath-hold SPECT-CT fusion images

    International Nuclear Information System (INIS)

    Suga, Kazuyoshi; Kawakami, Yasuhiko; Iwanaga, Hideyuki; Hayashi, Noriko; Seto, Akiko; Matsunaga, Naofumi

    2008-01-01

    Anatomic relation between pulmonary perfusion and morphology in pulmonary emphysema was assessed on deep-inspiratory breath-hold (DIBrH) perfusion single-photon emission computed tomography (SPECT)-CT fusion images. Subjects were 38 patients with pulmonary emphysema and 11 non-smoker controls, who successfully underwent DIBrH and non-BrH perfusion SPECT using a dual-headed SPECT system during the period between January 2004 and June 2006. DIBrH SPECT was three-dimensionally co-registered with DIBrH CT to comprehend the relationship between lung perfusion defects and CT low attenuation areas (LAA). By comparing the appearance of lung perfusion on DIBrH with non-BrH SPECT, the correlation with the rate constant for the alveolar-capillary transfer of carbon monoxide (DLCO/VA) was compared between perfusion abnormalities on these SPECTs and LAA on CT. DIBrH SPECT provided fairly uniform perfusion in controls, but significantly enhanced perfusion heterogeneity when compared with non-BrH SPECT in pulmonary emphysema patients (P<0.001). The reliable DIBrH SPECT-CT fusion images confirmed more extended perfusion defects than LAA on CT in majority (73%) of patients. Perfusion abnormalities on DIBrH SPECT were more closely correlated with DLCO/VA than LAA on CT (P<0.05). DIBrH SPECT identifies affected lungs with perfusion abnormality better than does non-BrH SPECT in pulmonary emphysema. DIBrH SPECT-CT fusion images are useful for more accurately localizing affected lungs than morphologic CT alone in this disease. (author)

  3. Estimation of lung volume and pulmonary blood volume from radioisotopic images

    International Nuclear Information System (INIS)

    Kanazawa, Minoru

    1989-01-01

    Lung volume and pulmonary blood volume in man were estimated from the radioisotopic image using single photon emission computed tomography (SPECT). Six healthy volunteers were studied in a supine position with normal and altered lung volumes by applying continuous negative body-surface pressure (CNP) and by positive end-expiratory pressure (PEEP). 99m Tc labeled human serum albumin was administered as an aerosol to image the lungs. The CNP caused the diaphragm to be lowered and it increased the mean lung tissue volume obtained by SPECT from 3.09±0.49 l for baseline to 3.67±0.62 l for 10 cmH 2 O (p 2 O (p 2 O), respectively. The PEEP also increased the lung tissue volume to 3.68±0.68 l for 10 cmH 2 O as compared with the baseline (p 2 O PEEP. The lung tissue volume obtained by SPECT showed a positive correlation with functional residual capacity measured by the He dilution method (r=0.91, p 99m Tc-labeled red blood cells. The L/H ratio decreased after either the CNP or PEEP, suggesting a decrease in the blood volume per unit lung volume. However, it was suggested that the total pulmonary blood volume increased slightly either on the CNP (+7.4% for 10 cmH 2 O, p 2 O,p<0.05) when we extrapolated the L/H ratio to the whole lungs by multiplying the lung tissue volume obtained by SPECT. We concluded that SPECT could offer access to the estimation of lung volume and pulmonary blood volume in vivo. (author)

  4. Comparative analysis of radionuclide inhalation and perfusion lung imaging with X ray pulmonary angiography for the diagnosis of pulmonary embolism

    International Nuclear Information System (INIS)

    Zhang Yanyan; Chen Man; Shao Maogang; Zhang Songlin; Mao Jieming; Guo Jingxuan

    1993-01-01

    The result of radionuclide lung imaging was compared in 18 patients of pulmonary embolism (PE) and 2 normal persons. The discovered perfusion defects correlated well with the location of angiographic obstruction. The positive angiographic and radionuclide finding was in 141 and 104 emboli arteries respectively. The sensitivity of total emboli pulmonary segments of lung imaging was 73.8%, the specificity was 82.7 and the accuracy was 79%. The techniques correlated quite well (r = 0.83, P<0.001)

  5. CT perfusion imaging in response assessment of pulmonary metastases undergoing stereotactic ablative radiotherapy

    International Nuclear Information System (INIS)

    Sawyer, Brooke; Pun, Emma; Tay, Huilee; Kron, Tomas; Bressel, Mathias; Ball, David; Siva, Shankar; Samuel, Michael

    2015-01-01

    Stereotactic ablative body radiotherapy (SABR) is an emerging treatment technique for pulmonary metastases in which conventional Response Evaluation Criteria in Solid Tumours (RECIST) may be inadequate. This study aims to assess the utility of CT perfusion imaging in response assessment of pulmonary metastases after SABR. In this ethics board-approved prospective study, 11 patients underwent a 26-Gy single fraction of SABR to pulmonary metastases. CT perfusion imaging occurred prior to and at 14 and 70 days post-SABR. Blood flow (mL/100 mL/min), blood volume (mL/100 mL), time to peak (seconds) and surface permeability (mL/100 mL/min), perfusion parameters of pulmonary metastases undergoing SABR, were independently assessed by two radiologists. Inter-observer variability was analysed. CT perfusion results were analysed for early response assessment comparing day 14 with baseline scans and for late response by comparing day 70 with baseline scans. The largest diameter of the pulmonary metastases undergoing SABR was recorded. Ten patients completed all three scans and one patient had baseline and early response assessment CT perfusion scans only. There was strong level of inter-observer agreement of CT perfusion interpretation with a median intraclass coefficient of 0.87 (range 0.20–0.98). Changes in all four perfusion parameters and tumour sizes were not statistically significant. CT perfusion imaging of pulmonary metastases is a highly reproducible imaging technique that may provide additional response assessment information above that of conventional RECIST, and it warrants further study in a larger cohort of patients undergoing SABR.

  6. Objective quantification of pulmonary effects in X-ray chest images

    International Nuclear Information System (INIS)

    Oliveira, Marcela de; Giacomini, Guilherme; Alvarez, Matheus; Pereira, Paulo M.C.; Ribeiro, Sergio M.; Pina, Diana R. de

    2016-01-01

    Tuberculosis (TB) is an infectious lung disease of great concern worldwide. Even after treatment, TB leaves pulmonary sequelae that compromise the quality of life of patients. The exam of diagnostic imaging done more frequently is the X-ray chest. The evaluation of pulmonary involvement of these patients is performed visually by the radiologist. The detection and quantification aided by computer systems are of great importance for the more accurate assessment of pulmonary involvement. The objective of this study was to evaluate computationally the reduction of lung damage in X-ray of chest in patients treated with two different medication regimens. (author)

  7. Pulmonary disease in patients with human immunodeficiency virus infection

    DEFF Research Database (Denmark)

    Lundgren, J D; Orholm, Marianne; Lundgren, B

    1989-01-01

    cause pulmonary disease alone or in combination. Bilateral interstitial infiltrates are the most frequent chest x-ray abnormality and are most frequently caused by infection with Pneumocystis carinii. Cytomegalovirus, Mycobacterium tuberculosis, nonspecific interstitial pneumonitis and pulmonary Kaposi......Pulmonary disease is the most important cause of morbidity and mortality in patients infected with human immunodeficiency virus (HIV). All parts of the hospital system are expected to be involved in the diagnosis and treatment of HIV infected patients in the coming years. Many different processes......'s sarcoma are the most important parts of the differential diagnosis. An aggressive approach to the diagnosis of pulmonary disease in this patient population is indicated in order to provide optimal care and assess new therapies....

  8. Serial lung imaging with 123I-IMP in localized pulmonary lesions

    International Nuclear Information System (INIS)

    Nakajo, Masayuki; Shimada, Jurio; Shimozono, Michiko; Uchiyama, Noriaki; Hiraki, Yoshiyuki; Shinohara, Shinji.

    1988-01-01

    123 I-IMP (N-isopropyl-p-[ 123 I]-iodoamphetamine) dynamic (1 frame/min for 25 mins), 30-min and 4-hr static lung imaging was performed in a total of 65 patients with roentgenographic evidence of localized pulmonary lesion (12 with pneumonia, one with lung abscess, 5 with pulmonary tuberculosis, 3 with pneumoconiosis, one with lung fluke disease and 43 with various histological types of primary lung cancer). The findings in 65 of 70 (95 %) lesions in the initial 1 or 2-min dynamic 123 I-IMP images were analogous to those obtained by 99m Tc-MAA lung perfusion imaging and decreased activity was observed in 68 of 70 (97 %) lesions, suggesting that the initial images mainly reflected the relative distribution of pulmonary arterial blood flow. However, 123 I-IMP accumulated differently according to the pathological conditions afterwards. Decrease activity from 123 I-IMP was contineously observed in a cavity of the lung abscess, 2 of 2 tuberculomas, 3 of 7 large nodules of pneumoconiosis and all of the 42 cancerous lesions which were possible to be evaluated. Gradual increased in activity relative to that of ''normal lung fields'' was observed in all 14 lesions of pneumonia; pneumonic lesions of the lung abscess, tuberculosis and lung fluke disease; 4 of 7 large nodules of pneumoconiosis; all of 8 atelectatic lesions and 32 of 44 areas surrounding cancers (most of them had roentgenographic evidence of infiltrating shadows). Thus 123 I-IMP accumulated increasingly in pneumonic and atelectatic lesions, while it appeared not to accumulate in such lesions replacing lung tissues as cavity, caseous and fibrous lesions and primary lung cancers. 123 I-IMP can be used as a new lung imaging agent to provide diagnostic informations on the property of pulmonary lesions. (author)

  9. A continuum model for pressure-flow relationship in human pulmonary circulation.

    Science.gov (United States)

    Huang, Wei; Zhou, Qinlian; Gao, Jian; Yen, R T

    2011-06-01

    A continuum model was introduced to analyze the pressure-flow relationship for steady flow in human pulmonary circulation. The continuum approach was based on the principles of continuum mechanics in conjunction with detailed measurement of vascular geometry, vascular elasticity and blood rheology. The pulmonary arteries and veins were considered as elastic tubes and the "fifth-power law" was used to describe the pressure-flow relationship. For pulmonary capillaries, the "sheet-flow" theory was employed and the pressure-flow relationship was represented by the "fourth-power law". In this paper, the pressure-flow relationship for the whole pulmonary circulation and the longitudinal pressure distribution along the streamlines were studied. Our computed data showed general agreement with the experimental data for the normal subjects and the patients with mitral stenosis and chronic bronchitis in the literature. In conclusion, our continuum model can be used to predict the changes of steady flow in human pulmonary circulation.

  10. Agile convolutional neural network for pulmonary nodule classification using CT images.

    Science.gov (United States)

    Zhao, Xinzhuo; Liu, Liyao; Qi, Shouliang; Teng, Yueyang; Li, Jianhua; Qian, Wei

    2018-04-01

    To distinguish benign from malignant pulmonary nodules using CT images is critical for their precise diagnosis and treatment. A new Agile convolutional neural network (CNN) framework is proposed to conquer the challenges of a small-scale medical image database and the small size of the nodules, and it improves the performance of pulmonary nodule classification using CT images. A hybrid CNN of LeNet and AlexNet is constructed through combining the layer settings of LeNet and the parameter settings of AlexNet. A dataset with 743 CT image nodule samples is built up based on the 1018 CT scans of LIDC to train and evaluate the Agile CNN model. Through adjusting the parameters of the kernel size, learning rate, and other factors, the effect of these parameters on the performance of the CNN model is investigated, and an optimized setting of the CNN is obtained finally. After finely optimizing the settings of the CNN, the estimation accuracy and the area under the curve can reach 0.822 and 0.877, respectively. The accuracy of the CNN is significantly dependent on the kernel size, learning rate, training batch size, dropout, and weight initializations. The best performance is achieved when the kernel size is set to [Formula: see text], the learning rate is 0.005, the batch size is 32, and dropout and Gaussian initialization are used. This competitive performance demonstrates that our proposed CNN framework and the optimization strategy of the CNN parameters are suitable for pulmonary nodule classification characterized by small medical datasets and small targets. The classification model might help diagnose and treat pulmonary nodules effectively.

  11. Magnetic Resonance Imaging of the Lung as an Alternative for a Pregnant Woman with Pulmonary Tuberculosis.

    Science.gov (United States)

    Schloß, Manuel; Heckrodt, Jan; Schneider, Christian; Discher, Thomas; Krombach, Gabriele Anja

    2015-05-01

    We report a case of a pregnant 21-year-old woman with pulmonary tuberculosis in which magnetic resonance imaging of the lung was used to assess the extent and characteristics of the pathological changes. Although the lung has been mostly ignored in magnetic resonance imaging for many decades, today technical development enables detailed examinations of the lung. The technique is now entering the clinical arena and its indications are increasing. Magnetic resonance imaging of the lung is not only an alternative method without radiation exposure, it can provide additional information in pulmonary imaging compared to other modalities including computed tomography. We describe a successful application of magnetic resonance imaging of the lung and the imaging appearance of post-primary tuberculosis. This case report indicates that magnetic resonance imaging of the lung can potentially be the first choice imaging technique in pregnant women with suspected pulmonary tuberculosis.

  12. Tiny plastic lung mimics human pulmonary function

    Science.gov (United States)

    Careers Inclusion & Diversity Work-Life Balance Career Resources Apply for a Job Postdocs Students Goals Recycling Green Purchasing Pollution Prevention Reusing Water Resources Environmental Management Releases - 2016 » April » Tiny plastic lung mimics human pulmonary function Tiny plastic lung mimics

  13. Three-dimensional segmentation of pulmonary artery volume from thoracic computed tomography imaging

    Science.gov (United States)

    Lindenmaier, Tamas J.; Sheikh, Khadija; Bluemke, Emma; Gyacskov, Igor; Mura, Marco; Licskai, Christopher; Mielniczuk, Lisa; Fenster, Aaron; Cunningham, Ian A.; Parraga, Grace

    2015-03-01

    Chronic obstructive pulmonary disease (COPD), is a major contributor to hospitalization and healthcare costs in North America. While the hallmark of COPD is airflow limitation, it is also associated with abnormalities of the cardiovascular system. Enlargement of the pulmonary artery (PA) is a morphological marker of pulmonary hypertension, and was previously shown to predict acute exacerbations using a one-dimensional diameter measurement of the main PA. We hypothesized that a three-dimensional (3D) quantification of PA size would be more sensitive than 1D methods and encompass morphological changes along the entire central pulmonary artery. Hence, we developed a 3D measurement of the main (MPA), left (LPA) and right (RPA) pulmonary arteries as well as total PA volume (TPAV) from thoracic CT images. This approach incorporates segmentation of pulmonary vessels in cross-section for the MPA, LPA and RPA to provide an estimate of their volumes. Three observers performed five repeated measurements for 15 ex-smokers with ≥10 pack-years, and randomly identified from a larger dataset of 199 patients. There was a strong agreement (r2=0.76) for PA volume and PA diameter measurements, which was used as a gold standard. Observer measurements were strongly correlated and coefficients of variation for observer 1 (MPA:2%, LPA:3%, RPA:2%, TPA:2%) were not significantly different from observer 2 and 3 results. In conclusion, we generated manual 3D pulmonary artery volume measurements from thoracic CT images that can be performed with high reproducibility. Future work will involve automation for implementation in clinical workflows.

  14. Dosimetric analysis of imaging changes following pulmonary stereotactic body radiation therapy.

    Science.gov (United States)

    Prendergast, Brendan M; Bonner, James A; Popple, Richard A; Spencer, Sharon A; Fiveash, John B; Keene, Kimberly S; Cerfolio, Robert J; Minnich, Douglas J; Dobelbower, Michael C

    2011-02-01

    The aim of this study was to determine whether late patterns of pulmonary fibrosis are related to specific radiation doses administered during thoracic stereotactic body radiation therapy (SBRT). The records of all patients treated with SBRT for either pulmonary metastases or inoperable primary lung tumours at the University of Alabama at Birmingham from November 2005 to July 2008 were reviewed. Patients selected for analysis had diagnostic chest computed tomography (CT) scans acquired at least 180 days after completion of therapy. CT scans acquired at follow-up were co-registered with the original treatment planning CT scans for 12 eligible patients (17 lesions), and late-occurring pulmonary imaging abnormalities (IAs) were contoured. Dosimetric parameters analysed include D(80) , D(90) , V(18) and V(prescription dose) of the IA and V(14) and V(18) of the lung. Late pulmonary IAs were identified in 11 treated areas from nine patients. Late IAs could not be identified in six treated areas from three patients secondary to emphysema, tumour progression and severe atelectasis, respectively. The mean doses to 80% (D(80) ) and 90% (D(90) ) of the IAs were 18.4 and 14.5 Gy, respectively (ranges: 5.6-27.8 and 3.3-22.4 Gy). On average, 79.4% (range: 45.6-97.5%) of the IA received at least 18 Gy, while an average of 19.3% (range: 0.2-42.2%) received the prescription dose. On average, only 4.2% (range: 1.1-7.8%) of the lungs received 18 Gy. Imaging abnormalities consistent with pulmonary fibrosis are common after SBRT and are well approximated by the 18 Gy isodose distribution. The clinical ramification of these findings should be evaluated in future studies. © 2011 The Authors. Journal of Medical Imaging and Radiation Oncology © 2011 The Royal Australian and New Zealand College of Radiologists.

  15. Pulmonary vasculitis: imaging features

    International Nuclear Information System (INIS)

    Seo, Joon Beom; Im, Jung Gi; Chung, Jin Wook; Goo, Jin Mo; Park, Jae Hyung; Yeon, Kyung Mo; Song, Jae Woo

    1999-01-01

    Vasculitis is defined as an inflammatory process involving blood vessels, and can lead to destruction of the vascular wall and ischemic damage to the organs supplied by these vessels. The lung is commonly affected. A number of attempts have been made to classify and organize pulmonary vasculitis, but because the clinical manifestations and pathologic features of the condition overlap considerably, these afforts have failed to achieve a consensus. We classified pulmonary vasculitis as belonging to either the angitiis-granulomatosis group, the diffuse pulmonary hemorrhage with capillaritis group, or 'other'. Characteristic radiographic and CT findings of the different types of pulmonary vasculitis are illustrated, with a brief discussion of the respective disease entities

  16. Organ perfusion during voluntary pulmonary hyperinflation; a magnetic resonance imaging study

    DEFF Research Database (Denmark)

    Kristensen, Kasper Kyhl; Drvis, Ivan; Barak, Otto

    2016-01-01

    . Myocardial, pulmonary, skeletal muscle, kidney, and liver perfusion were evaluated by magnetic resonance imaging in 10 elite breath-hold divers at rest and during moderate GPI. Cardiac chamber volumes, stroke volume, and thus CO were determined from cardiac short-axis cine images. Organ volumes were assessed...

  17. Milrinone relaxes pulmonary veins in guinea pigs and humans.

    Directory of Open Access Journals (Sweden)

    Annette D Rieg

    Full Text Available INTRODUCTION: The phosphodiesterase-III inhibitor milrinone improves ventricular contractility, relaxes pulmonary arteries and reduces right ventricular afterload. Thus, it is used to treat heart failure and pulmonary hypertension (PH. However, its action on pulmonary veins (PVs is not defined, although particularly PH due to left heart disease primarily affects the pulmonary venous bed. We examined milrinone-induced relaxation in PVs from guinea pigs (GPs and humans. MATERIAL AND METHODS: Precision-cut lung slices (PCLS were prepared from GPs or from patients undergoing lobectomy. Milrinone-induced relaxation was studied by videomicroscopy in naïve PVs and in PVs pre-constricted with the ETA-receptor agonist BP0104. Baseline luminal area was defined as 100%. Intracellular cAMP was measured by ELISA and milrinone-induced changes of segmental vascular resistances were studied in the GP isolated perfused lung (IPL. RESULTS: In the IPL (GP, milrinone (10 µM lowered the postcapillary resistance of pre-constricted vessels. In PCLS (GP, milrinone relaxed naïve and pre-constricted PVs (120% and this relaxation was attenuated by inhibition of protein kinase G (KT 5823, adenyl cyclase (SQ 22536 and protein kinase A (KT 5720, but not by inhibition of NO-synthesis (L-NAME. In addition, milrinone-induced relaxation was dependent on the activation of K ATP-, BK Ca (2+- and Kv-channels. Human PVs also relaxed to milrinone (121%, however only if pre-constricted. DISCUSSION: Milrinone relaxes PVs from GPs and humans. In GPs, milrinone-induced relaxation is based on K ATP-, BK Ca (2+- and Kv-channel-activation and on cAMP/PKA/PKG. The relaxant properties of milrinone on PVs lead to reduced postcapillary resistance and hydrostatic pressures. Hence they alleviate pulmonary edema and suggest beneficial effects of milrinone in PH due to left heart disease.

  18. Milrinone relaxes pulmonary veins in guinea pigs and humans.

    Science.gov (United States)

    Rieg, Annette D; Suleiman, Said; Perez-Bouza, Alberto; Braunschweig, Till; Spillner, Jan W; Schröder, Thomas; Verjans, Eva; Schälte, Gereon; Rossaint, Rolf; Uhlig, Stefan; Martin, Christian

    2014-01-01

    The phosphodiesterase-III inhibitor milrinone improves ventricular contractility, relaxes pulmonary arteries and reduces right ventricular afterload. Thus, it is used to treat heart failure and pulmonary hypertension (PH). However, its action on pulmonary veins (PVs) is not defined, although particularly PH due to left heart disease primarily affects the pulmonary venous bed. We examined milrinone-induced relaxation in PVs from guinea pigs (GPs) and humans. Precision-cut lung slices (PCLS) were prepared from GPs or from patients undergoing lobectomy. Milrinone-induced relaxation was studied by videomicroscopy in naïve PVs and in PVs pre-constricted with the ETA-receptor agonist BP0104. Baseline luminal area was defined as 100%. Intracellular cAMP was measured by ELISA and milrinone-induced changes of segmental vascular resistances were studied in the GP isolated perfused lung (IPL). In the IPL (GP), milrinone (10 µM) lowered the postcapillary resistance of pre-constricted vessels. In PCLS (GP), milrinone relaxed naïve and pre-constricted PVs (120%) and this relaxation was attenuated by inhibition of protein kinase G (KT 5823), adenyl cyclase (SQ 22536) and protein kinase A (KT 5720), but not by inhibition of NO-synthesis (L-NAME). In addition, milrinone-induced relaxation was dependent on the activation of K ATP-, BK Ca (2+)- and Kv-channels. Human PVs also relaxed to milrinone (121%), however only if pre-constricted. Milrinone relaxes PVs from GPs and humans. In GPs, milrinone-induced relaxation is based on K ATP-, BK Ca (2+)- and Kv-channel-activation and on cAMP/PKA/PKG. The relaxant properties of milrinone on PVs lead to reduced postcapillary resistance and hydrostatic pressures. Hence they alleviate pulmonary edema and suggest beneficial effects of milrinone in PH due to left heart disease.

  19. The algorithm of imaging diagnostics of pulmonary embolism - time for a new definition?

    International Nuclear Information System (INIS)

    Roberts, H.C.; Kauczor, H.U.; Pitton, M.B.; Schweden, F.; Thelen, M.

    1997-01-01

    Acute pulmonary embolism (PE) is an increasing and underdiagnosed cause of mortality and morbidity in hospitalised patients; pulmonary hypertension based on chronic pulmonary embolism is an uncommon, but severe and surgically curable complication. Since clinical signs might be silent or unspecific, both acute and chronic PE require imaging methods for diagnosis and treatment planning. Chest radiographic findings are usually non-specific. Scintigraphy provides a high sensitivity for PE, but lacks anatomic resolution and sufficient specificity. Pulmonary angiography, albeit accurate, is an invasive procedure associated with low but still not negligible morbidity and mortality. Hence, non-invasive methods offer advantages. Spiral CT, for example, is most reliable in the diagnosis of acute and chronic PE: Such fast CT techniques provide a non-invasive means to detect and differentiate acute emboli and organised thrombi, as well as perfusion abnomalities and other concomitant findings. MRI offers both morphological and functional information on lung perfusion and right heart function, but its image quality still needs improvement to be comparable with CT. Thus, while MRI must still be tested in clinical studies. CT is recommended as a screening method in acute and chronic pulmonary embolism. (orig.) [de

  20. Serial lung imaging with /sup 123/I-IMP in localized pulmonary lesions

    Energy Technology Data Exchange (ETDEWEB)

    Nakajo, Masayuki; Shimada, Jurio; Shimozono, Michiko; Uchiyama, Noriaki; Hiraki, Yoshiyuki; Shinohara, Shinji.

    1988-05-01

    /sup 123/I-IMP (N-isopropyl-p-(/sup 123/I)-iodoamphetamine) dynamic (1 frame/min for 25 mins), 30-min and 4-hr static lung imaging was performed in a total of 65 patients with roentgenographic evidence of localized pulmonary lesion (12 with pneumonia, one with lung abscess, 5 with pulmonary tuberculosis, 3 with pneumoconiosis, one with lung fluke disease and 43 with various histological types of primary lung cancer). The findings in 65 of 70 (95 %) lesions in the initial 1 or 2-min dynamic /sup 123/I-IMP images were analogous to those obtained by /sup 99m/Tc-MAA lung perfusion imaging and decreased activity was observed in 68 of 70 (97 %) lesions, suggesting that the initial images mainly reflected the relative distribution of pulmonary arterial blood flow. However, /sup 123/I-IMP accumulated differently according to the pathological conditions afterwards. Decrease activity from /sup 123/I-IMP was contineously observed in a cavity of the lung abscess, 2 of 2 tuberculomas, 3 of 7 large nodules of pneumoconiosis and all of the 42 cancerous lesions which were possible to be evaluated. Gradual increased in activity relative to that of ''normal lung fields'' was observed in all 14 lesions of pneumonia; pneumonic lesions of the lung abscess, tuberculosis and lung fluke disease; 4 of 7 large nodules of pneumoconiosis; all of 8 atelectatic lesions and 32 of 44 areas surrounding cancers (most of them had roentgenographic evidence of infiltrating shadows). Thus /sup 123/I-IMP accumulated increasingly in pneumonic and atelectatic lesions, while it appeared not to accumulate in such lesions replacing lung tissues as cavity, caseous and fibrous lesions and primary lung cancers. /sup 123/I-IMP can be used as a new lung imaging agent to provide diagnostic informations on the property of pulmonary lesions.

  1. Ventilation/perfusion SPECT or SPECT/CT for lung function imaging in patients with pulmonary emphysema?

    Science.gov (United States)

    Froeling, Vera; Heimann, Uwe; Huebner, Ralf-Harto; Kroencke, Thomas J; Maurer, Martin H; Doellinger, Felix; Geisel, Dominik; Hamm, Bernd; Brenner, Winfried; Schreiter, Nils F

    2015-07-01

    To evaluate the utility of attenuation correction (AC) of V/P SPECT images for patients with pulmonary emphysema. Twenty-one patients (mean age 67.6 years) with pulmonary emphysema who underwent V/P SPECT/CT were included. AC/non-AC V/P SPECT images were compared visually and semiquantitatively. Visual comparison of AC/non-AC images was based on a 5-point likert scale. Semiquantitative comparison assessed absolute counts per lung (aCpLu) and lung lobe (aCpLo) for AC/non-AC images using software-based analysis; percentage counts (PC = (aCpLo/aCpLu) × 100) were calculated. Correlation between AC/non-AC V/P SPECT images was analyzed using Spearman's rho correlation coefficient; differences were tested for significance with the Wilcoxon rank sum test. Visual analysis revealed high conformity for AC and non-AC V/P SPECT images. Semiquantitative analysis of PC in AC/non-AC images had an excellent correlation and showed no significant differences in perfusion (ρ = 0.986) or ventilation (ρ = 0.979, p = 0.809) SPECT/CT images. AC of V/P SPECT images for lung lobe-based function imaging in patients with pulmonary emphysema do not improve visual or semiquantitative image analysis.

  2. The relationship between ventilatory lung motion and pulmonary perfusion shown by ventilatory lung motion imaging

    International Nuclear Information System (INIS)

    Fujii, Tadashige; Tanaka, Masao; Nakatsuka, Tatsuya; Yoshimura, Kazuhiko; Hirose, Yoshiki; Hirayama, Jiro; Kobayashi, Toshio; Handa, Kenjiro

    1991-01-01

    Using ventilatory lung motion imaging, which was obtained from two perfusion lung scintigrams with 99m Tc-macroaggregated albumin taken in maximal inspiration and maximal expiration, the lung motion (E-I/I) of the each unilateral lung was studied in various cardiopulmonary diseases. The sum of (E-I)/I(+) of the unilateral lung was decreased in the diseased lung for localized pleuropulmonary diseases, including primary lung cancer and pleural thickening, and in both lungs for heart diseases, and diffuse pulmonary diseases including diffuse interstitial pneumonia and diffuse panbronchiolitis. The sum of (E-I)/I(+) of the both lungs, which correlated with vital capacity and PaO 2 , was decreased in diffuse interstitial pneumonia, pulmonary emphysema, diffuse panbronchiolitis, primary lung cancer, pleural diseases and so on. (E-I)/I(+), correlated with pulmonary perfusion (n=49, r=0.51, p 81m Kr or 133 Xe (n=49, r=0.61, p<0.001) than pulmonary perfusion. The ventilatory lung motion imaging, which demonstrates the motion of the intra-pulmonary areas and lung edges, appears useful for estimating pulmonary ventilation of the perfused area as well as pulmonary perfusion. (author)

  3. Risk stratification of patients with combined acute pulmonary embolism and pulmonary hypertension using dynamic and regular pulmonary perfusion imaging

    International Nuclear Information System (INIS)

    Wang Xuemei; Wang Jing; Li Guohua; Wang Xiangcheng; Zhang Kaixiu; Liu Caiping

    2010-01-01

    Objective: To stratify the risks of patients with acute pulmonary embolism (APE) and pulmonary hypertension (PH) by dynamic pulmonary perfusion imaging (DPPI) and pulmonary perfusion imaging (PPI). Methods: From October 2007 to February 2009, 20 healthy volunteers (12 males, 8 females; mean age =48.47±13.47 years) and 31 APE patients (21 males, 10 females; mean age =47.68±18.06 years; from October 2007 to July 2009) were included in the study. DPPI and PPI were performed in all subjects. Percentage of perfusion defect scores (PPDs%) were calculated by semi-quantitative analysis of PPI. Risk levels were defined according to PPDs% calculated from PPI: normal (PPDs% =0); very low risk (0 60%). Lung equilibrium time (LET) was calculated on region of interest (ROI) drawn over DPPI. Clinical risk was scored by Aujesky method.The t-test, ANOVA and correlation analysis were used with SPSS 13.0 software. Results: (1) LET in healthy volunteers and APE patients was (12.18±3.28) and (32.90±14.29) s respectively (t = 6.81, P<0.01). (2) The correlation coefficient, coefficient of determination between LET and PPDs% in APE patients were 0.93 and 0.87, respectively. The correlation coefficient between LET and clinical risk score was 0.86. (3) The mean LET of APE patients in very low risk (n =5), low risk (n = 12), moderate risk (n=9), high risk (n=4) and very high risk groups (n=1) were (19.59 ±0.04), (25.03±0.08), (36.07±0.10), (57.15±0.06) and (70±0.00) s, respectively. There was significant difference among APE patients with different risk levels (F =16.78, P<0.01). Conclusions: (1) DPPI was a reliable, convenient and non-invasive method for the evaluation of PH in APE. (2) Combined LET of DPPI and PPDs% of PPI was valuable for risk stratification and prognosis estimation in APE patients. (authors)

  4. ITE inhibits growth of human pulmonary artery endothelial cells.

    Science.gov (United States)

    Pang, Ling-Pin; Li, Yan; Zou, Qing-Yun; Zhou, Chi; Lei, Wei; Zheng, Jing; Huang, Shi-An

    2017-10-01

    Pulmonary arterial hypertension (PAH), a deadly disorder is associated with excessive growth of human pulmonary artery endothelial (HPAECs) and smooth muscle (HPASMCs) cells. Current therapies primarily aim at promoting vasodilation, which only ameliorates clinical symptoms without a cure. 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE) is an endogenous aryl hydrocarbon receptor (AhR) ligand, and mediates many cellular function including cell growth. However, the roles of ITE in human lung endothelial cells remain elusive. Herein, we tested a hypothesis that ITE inhibits growth of human pulmonary artery endothelial cells via AhR. Immunohistochemistry was performed to localize AhR expression in human lung tissues. The crystal violet method and MTT assay were used to determine ITE's effects on growth of HPAECs. The AhR activation in HPAECs was confirmed using Western blotting and RT-qPCR. The role of AhR in ITE-affected proliferation of HPAECs was assessed using siRNA knockdown method followed by the crystal violet method. Immunohistochemistry revealed that AhR was present in human lung tissues, primarily in endothelial and smooth muscle cells of pulmonary veins and arteries, as well as in bronchial and alveolar sac epithelia. We also found that ITE dose- and time-dependently inhibited proliferation of HPAECs with a maximum inhibition of 83% at 20 µM after 6 days of treatment. ITE rapidly decreased AhR protein levels, while it increased mRNA levels of cytochrome P450 (CYP), family 1, member A1 (CYP1A1) and B1 (CYP1B1), indicating activation of the AhR/CYP1A1 and AhR/CYP1B1 pathways in HPAECs. The AhR siRNA significantly suppressed AhR protein expression, whereas it did not significantly alter ITE-inhibited growth of HPAECs. ITE suppresses growth of HPAECs independent of AhR, suggesting that ITE may play an important role in preventing excessive growth of lung endothelial cells.

  5. The manifestation of 18F-FDG imaging of coincidence SPECT in benign pulmonary diseases

    International Nuclear Information System (INIS)

    Miao Jisheng; Liu Jinjun; Wu Jiyong; Pan Huizhong; Wang Huoqiang; Shen Yi; Shi Degang

    2001-01-01

    Objective: To study the uptake of the 18 F-FDG in the benign pulmonary diseases with dual head SPECT coincidence detection system. Methods: Scanning were performed with dual head SPECT coincidence detection system for patients with pulmonary diseases,the uptake and the imaging characteristic of the diseases were analysed. Results: 1) In 28 tuberculosis (TB) patients, 19 cases with a negative imaging (68%, 19/28), whereas 9 cases with a positive result (32%, 9/28). The T/N value of the TB is 1.7 +- 1.2, but the T/N of the lung cancer is 4.1 +- 2.4, significantly different from them. In the skin PPD test, 9 cases with positive scans showed a 16.2 (12 - 22) mm diameter red spot, but 7 cases of negative scans with a 8.6 (0 - 15) mm diameter, both also have a significant difference. 2) Out of the 8 patients suffered from sarcoidosis, among them 5 active stage with positive scans, whereas another 3 remission cases with negative results. 3) In 18 inflammation cases, positive imagings were showed in 6 patients with cryptococcosis, mycoplasma pneumonia, mycosis, organized pneumonia, lung abscess and bacteria pneumonia. Conclusions: In some benign pulmonary diseases, 18 F-FDG imaging can be positive also. Analysing the characteristic of the imaging could rise specificity in lung cancer and also give some new clues to treatment of these benign pulmonary diseases

  6. Multilevel binomial logistic prediction model for malignant pulmonary nodules based on texture features of CT image

    International Nuclear Information System (INIS)

    Wang Huan; Guo Xiuhua; Jia Zhongwei; Li Hongkai; Liang Zhigang; Li Kuncheng; He Qian

    2010-01-01

    Purpose: To introduce multilevel binomial logistic prediction model-based computer-aided diagnostic (CAD) method of small solitary pulmonary nodules (SPNs) diagnosis by combining patient and image characteristics by textural features of CT image. Materials and methods: Describe fourteen gray level co-occurrence matrix textural features obtained from 2171 benign and malignant small solitary pulmonary nodules, which belongs to 185 patients. Multilevel binomial logistic model is applied to gain these initial insights. Results: Five texture features, including Inertia, Entropy, Correlation, Difference-mean, Sum-Entropy, and age of patients own aggregating character on patient-level, which are statistically different (P < 0.05) between benign and malignant small solitary pulmonary nodules. Conclusion: Some gray level co-occurrence matrix textural features are efficiently descriptive features of CT image of small solitary pulmonary nodules, which can profit diagnosis of earlier period lung cancer if combined patient-level characteristics to some extent.

  7. Computational Fluid Dynamics Modeling of the Human Pulmonary Arteries with Experimental Validation.

    Science.gov (United States)

    Bordones, Alifer D; Leroux, Matthew; Kheyfets, Vitaly O; Wu, Yu-An; Chen, Chia-Yuan; Finol, Ender A

    2018-05-21

    Pulmonary hypertension (PH) is a chronic progressive disease characterized by elevated pulmonary arterial pressure, caused by an increase in pulmonary arterial impedance. Computational fluid dynamics (CFD) can be used to identify metrics representative of the stage of PH disease. However, experimental validation of CFD models is often not pursued due to the geometric complexity of the model or uncertainties in the reproduction of the required flow conditions. The goal of this work is to validate experimentally a CFD model of a pulmonary artery phantom using a particle image velocimetry (PIV) technique. Rapid prototyping was used for the construction of the patient-specific pulmonary geometry, derived from chest computed tomography angiography images. CFD simulations were performed with the pulmonary model with a Reynolds number matching those of the experiments. Flow rates, the velocity field, and shear stress distributions obtained with the CFD simulations were compared to their counterparts from the PIV flow visualization experiments. Computationally predicted flow rates were within 1% of the experimental measurements for three of the four branches of the CFD model. The mean velocities in four transversal planes of study were within 5.9 to 13.1% of the experimental mean velocities. Shear stresses were qualitatively similar between the two methods with some discrepancies in the regions of high velocity gradients. The fluid flow differences between the CFD model and the PIV phantom are attributed to experimental inaccuracies and the relative compliance of the phantom. This comparative analysis yielded valuable information on the accuracy of CFD predicted hemodynamics in pulmonary circulation models.

  8. Lung uptake of thallium-201 on resting myocardial imaging in assessment of pulmonary edema

    Energy Technology Data Exchange (ETDEWEB)

    Tamaki, N.; Yonekura, Y.; Yamamoto, K. (Kyoto Univ. (Japan). Hospital)

    1981-03-01

    We have noted increased lung uptake of thallium-201 on resting myocardial images in patients with congestive heart failure. To evaluate this phenomenon, lung uptake of thallium on resting myocardial imaging was examined in 328 patients with various cardiovascular diseases. Increased lung uptake was observed in 117 cases (78%) with myocardial infarction, 32 (37%) with angina pectoris, 6 (27%) with hypertensive heart disease, 7 (30%) with hypertrophic cardiomyopathy, 6 (100%) with congestive cardiomyopathy, 11 (100%) with valvular heart disease, and 7 (71%) with congenital heart disease, however, only one (5%) of normal subjects revealed increased uptake. Left ventricular ejection fraction was evaluated in 32 cases with ischemic heart disease on the same day and it was significantly decreased as the lung uptake of thallium increased. Increased thallium activity in the lung seemed to be another noninvasive marker of lift heart failure in ischemic heart disease. Lung uptake of thallium was compared with pulmonary congestive signs on chest X-ray in 29 cases. The uptake was well correlated with the degree of pulmonary edema, and thallium myocardial image revealed remarkably increased lung uptake in all the patients accompanied with pulmonary interstitial edema on chest X-ray. Therefore, this phenomenon will demonstrate pulmonary edema, since thallium may be extracted to the increased interstitial distribution space of the lung as well as the myocardium in a patient with pulmonary edema. We conclude that thallium myocardial scintigraphy is useful not only in identification and localization of myocardial ischemia or infarction, but also in evaluation of pulmonary edema at the same time.

  9. Lung uptake of thallium-201 on resting myocardial imaging in assessment of pulmonary edema

    International Nuclear Information System (INIS)

    Tamaki, Nagara; Yonekura, Yoshiharu; Yamamoto, Kazutaka

    1981-01-01

    We have noted increased lung uptake of thallium-201 on resting myocardial images in patients with congestive heart failure. To evaluate this phenomenon, lung uptake of thallium on resting myocardial imaging was examined in 328 patients with various cardiovascular diseases. Increased lung uptake was observed in 117 cases (78%) with myocardial infarction, 32 (37%) with angina pectoris, 6 (27%) with hypertensive heart disease, 7 (30%) with hypertrophic cardiomyopathy, 6 (100%) with congestive cardiomyopathy, 11 (100%) with valvular heart disease, and 7 (71%) with congenital heart disease, however, only one (5%) of normal subjects revealed increased uptake. Left ventricular ejection fraction was evaluated in 32 cases with ischemic heart disease on the same day and it was significantly decreased as the lung uptake of thallium increased. Increased thallium activity in the lung seemed to be another noninvasive marker of lift heart failure in ischemic heart disease. Lung uptake of thallium was compared with pulmonary congestive signs on chest X-ray in 29 cases. The uptake was well correlated with the degree of pulmonary edema, and thallium myocardial image revealed remarkably increased lung uptake in all the patients accompanied with pulmonary interstitial edema on chest X-ray. Therefore, this phenomenon will demonstrate pulmonary edema, since thallium may be extracted to the increased interstitial distribution space of the lung as well as the myocardium in a patient with pulmonary edema. We conclude that thallium myocardial scintigraphy is useful not only in identification and localization of myocardial ischemia or infarction, but also in evaluation of pulmonary edema at the same time. (author)

  10. Imaging features of isolated unilateral pulmonary artery agenesis presenting in adulthood: a review of four cases

    International Nuclear Information System (INIS)

    Griffin, N.; Mansfield, L.; Redmond, K.C.; Dusmet, M.; Goldstraw, P.; Mittal, T.K.; Padley, S.

    2007-01-01

    Aim: To highlight the variation in clinical manifestations, imaging and management of four cases of unilateral pulmonary artery agenesis presenting in adulthood. Method: Four patients with unilateral pulmonary artery agenesis were referred to our institution between 1995 and 2005. They underwent a series of investigations, including chest radiography, echocardiography, ventilation perfusion scintigraphy, angiography, computed tomography (CT) and magnetic resonance imaging (MRI). Results: Two of the four patients had absence of the right main pulmonary artery, whilst the remaining two patients had absence of the left main pulmonary artery. One patient showed a restrictive defect on pulmonary function tests. Two patients who had ventilation perfusion scintigraphy showed absent perfusion and reduced ventilation on the affected side. Angiography (where performed), CT and MRI confirmed the anatomy and the presence of multiple collaterals. Bronchiectasis was demonstrated on CT in two patients, with one also demonstrating a mosaic attenuation pattern. One patient had an incidental lung tumour on the side of the agenesis, which was diagnosed as a chondroid hamartoma on histology. Three of the four patients eventually underwent resection of the affected lung. Conclusion: Isolated unilateral pulmonary artery agenesis has a non-specific presentation. Awareness of this condition can lead to earlier diagnosis, with cross-sectional imaging making an important contribution

  11. Imaging features of isolated unilateral pulmonary artery agenesis presenting in adulthood: a review of four cases

    Energy Technology Data Exchange (ETDEWEB)

    Griffin, N. [Royal Brompton and Harefield NHS Trust, London (United Kingdom)]. E-mail: nyreegriffin@hotmail.com; Mansfield, L. [Royal Brompton and Harefield NHS Trust, London (United Kingdom); Redmond, K.C. [Royal Brompton and Harefield NHS Trust, London (United Kingdom); Dusmet, M. [Royal Brompton and Harefield NHS Trust, London (United Kingdom); Goldstraw, P. [Royal Brompton and Harefield NHS Trust, London (United Kingdom); Mittal, T.K. [Royal Brompton and Harefield NHS Trust, London (United Kingdom); Padley, S. [Royal Brompton and Harefield NHS Trust, London (United Kingdom)

    2007-03-15

    Aim: To highlight the variation in clinical manifestations, imaging and management of four cases of unilateral pulmonary artery agenesis presenting in adulthood. Method: Four patients with unilateral pulmonary artery agenesis were referred to our institution between 1995 and 2005. They underwent a series of investigations, including chest radiography, echocardiography, ventilation perfusion scintigraphy, angiography, computed tomography (CT) and magnetic resonance imaging (MRI). Results: Two of the four patients had absence of the right main pulmonary artery, whilst the remaining two patients had absence of the left main pulmonary artery. One patient showed a restrictive defect on pulmonary function tests. Two patients who had ventilation perfusion scintigraphy showed absent perfusion and reduced ventilation on the affected side. Angiography (where performed), CT and MRI confirmed the anatomy and the presence of multiple collaterals. Bronchiectasis was demonstrated on CT in two patients, with one also demonstrating a mosaic attenuation pattern. One patient had an incidental lung tumour on the side of the agenesis, which was diagnosed as a chondroid hamartoma on histology. Three of the four patients eventually underwent resection of the affected lung. Conclusion: Isolated unilateral pulmonary artery agenesis has a non-specific presentation. Awareness of this condition can lead to earlier diagnosis, with cross-sectional imaging making an important contribution.

  12. Pulmonary embolism in pregnancy: comparison of pulmonary CT angiography and lung scintigraphy.

    LENUS (Irish Health Repository)

    Ridge, Carole A

    2012-02-01

    OBJECTIVE: The purpose of this study was to retrospectively compare the diagnostic adequacy of lung scintigraphy with that of pulmonary CT angiography (CTA) in the care of pregnant patients with suspected pulmonary embolism. MATERIALS AND METHODS: Patient characteristics, radiology report content, additional imaging performed, final diagnosis, and diagnostic adequacy were recorded for pregnant patients consecutively referred for lung scintigraphy or pulmonary CTA according to physician preference. Measurements of pulmonary arterial enhancement were performed on all pulmonary CTA images of pregnant patients. Lung scintigraphy and pulmonary CTA studies deemed inadequate for diagnosis at the time of image acquisition were further assessed, and the cause of diagnostic inadequacy was determined. The relative contribution of the inferior vena cava to the right side of the heart was measured on nondiagnostic CTA images and compared with that on CTA images of age-matched nonpregnant women, who were the controls. RESULTS: Twenty-eight pulmonary CTA examinations were performed on 25 pregnant patients, and 25 lung scintigraphic studies were performed on 25 pregnant patients. Lung scintigraphy was more frequently adequate for diagnosis than was pulmonary CTA (4% vs 35.7%) (p = 0.0058). Pulmonary CTA had a higher diagnostic inadequacy rate among pregnant than nonpregnant women (35.7% vs 2.1%) (p < 0.001). Transient interruption of contrast material by unopacified blood from the inferior vena cava was identified in eight of 10 nondiagnostic pulmonary CTA studies. CONCLUSION: We found that lung scintigraphy was more reliable than pulmonary CTA in pregnant patients. Transient interruption of contrast material by unopacified blood from the inferior vena cava is a common finding at pulmonary CTA of pregnant patients.

  13. Pulmonary imaging using dual-energy CT, a role of the assessment of iodine and air distribution

    Energy Technology Data Exchange (ETDEWEB)

    Ferda, Jiri, E-mail: e-mail@fnplzen.cz [Radiodiagnostic Clinic, Charles University Teaching Hospital Plzen, Alej Svobody 80, 30640 Plzen (Czech Republic); Ferdova, Eva; Mirka, Hynek; Baxa, Jan; Bednarova, Alena [Radiodiagnostic Clinic, Charles University Teaching Hospital Plzen, Alej Svobody 80, 30640 Plzen (Czech Republic); Flohr, Thomas; Schmidt, Bernhard [Siemens Healthcare, Computed Tomography, 91301 Siemensstr. 1, Forchheim (Germany); Matejovic, Martin [1st Internal Department, Charles University Teaching Hospital Plzen, Alej Svobody 80, 30640 Plzen (Czech Republic); Kreuzberg, Boris [Radiodiagnostic Clinic, Charles University Teaching Hospital Plzen, Alej Svobody 80, 30640 Plzen (Czech Republic)

    2011-02-15

    Aim: The aim of the study is to present the feasibility of using dual-energy CT and the evaluation of iodine and air distribution in differentiation of pathological conditions. Material and method: We used the data of 50 CT examinations performed due to suspected pulmonary embolism with any pathological finding except consolidation of the parenchyma. The patients underwent CT angiography of the pulmonary arteries on a dual-source CT (DSCT), with the two tubes independently operated at 140 and 80 kV. By exploiting the dual-energy information, iodine distribution maps were obtained in addition to the conventional CT images which served as a marker of pulmonary perfusion. Minimum intensity projections (MinIP) were used as a marker of air content. Results: By comparing the iodine distribution maps and MinIP images, it was possible to differentiate between the following templates of lung parenchyma: A - normal iodine and air distribution; B - iodine content deficit with minimal or with no redistribution of air; C - reduced iodine content and increased content of air; D - deficit of iodine content and increased content of air; E - increased iodine content and normal content of air; F - increased iodine content and reduced content of air; G - reduced perfusion and reduced content of air. The type A (five cases) was typical for the pulmonary embolism with preserved normal conditions of perfusion and ventilation. Type B (18 cases) occurred in pulmonary embolism; type C was found in case of inflammation of small respiratory airways (five cases); emphysema was typical for type D (nine cases); increased perfusion was observed in the parenchyma preserved from emphysema or preserved from embolism in cases of emphysema or pulmonary embolism; type F occurred in pulmonary interstitial edema (four cases) both with pulmonary infection; finally type G was found in interstitial lung diseases (five cases). Conclusion: Imaging of the pulmonary circulation by means of dual-energy CT opens

  14. An application of semiquantitative analysis of pulmonary scintigraphy to pulmonary tuberculosis sequelae

    International Nuclear Information System (INIS)

    Uchida, Kou; Miyasaka, Takashi; Nakayama, Hiroyuki; Suganuma, Yasuaki; Sim, Jae-Joon; Takahashi, Hideki; Takano, Masaaki; Kawata, Kanemitsu.

    1996-01-01

    We performed ventilation-perfusion scintigraphy in 13 patients with pulmonary tuberculosis sequelae and 21 with chronic obstructive pulmonary disease. We used 99m Tc-MAA for perfusion scintigram and 133 Xe gas for ventilation scintigram. We added the radioactivities during the rebreathing phase of the ventilation scintigram to make a computerized image of the lung volume. Regions of interest (ROIs) were derived from radioactivities on each image. ROIs included each whole lung on lung volume (L) image and areas where radioactivity was greater than 70% of the highest radioactivity on perfusion (P70) image. We counted the area of ROIs on L and P70, and used the ratio of perfusion to lung volume (P70/L) as a parameter of pulmonary perfusion. P70/L in patients with pulmonary tuberculosis sequelae was significantly higher than that in those with COPD. This suggested that the area of high pulmonary perfusion is larger in the patients with pulmonary tuberculosis sequelae as compared with those with COPD. (author)

  15. Submillisievert standard-pitch CT pulmonary angiography with ultra-low dose contrast media administration: A comparison to standard CT imaging.

    Science.gov (United States)

    Suntharalingam, Saravanabavaan; Mikat, Christian; Stenzel, Elena; Erfanian, Youssef; Wetter, Axel; Schlosser, Thomas; Forsting, Michael; Nassenstein, Kai

    2017-01-01

    To evaluate the image quality and radiation dose of submillisievert standard-pitch CT pulmonary angiography (CTPA) with ultra-low dose contrast media administration in comparison to standard CTPA. Hundred patients (56 females, 44 males, mean age 69.6±15.4 years; median BMI: 26.6, IQR: 5.9) with suspected pulmonary embolism were examined with two different protocols (n = 50 each, group A: 80 kVp, ref. mAs 115, 25 ml of contrast medium; group B: 100 kVp, ref. mAs 150, 60 ml of contrast medium) using a dual-source CT equipped with automated exposure control. Objective and subjective image qualities, radiation exposure as well as the frequency of pulmonary embolism were evaluated. There was no significant difference in subjective image quality scores between two groups regarding pulmonary arteries (p = 0.776), whereby the interobserver agreement was excellent (group A: k = 0.9; group B k = 1.0). Objective image analysis revealed that signal intensities (SI), signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of the pulmonary arteries were equal or significantly higher in group B. There was no significant difference in the frequency of pulmonary embolism (p = 0.65). Using the low dose and low contrast media protocol resulted in a radiation dose reduction by 71.8% (2.4 vs. 0.7 mSv; pcontrast agent volume can obtain sufficient image quality to exclude or diagnose pulmonary emboli while reducing radiation dose by approximately 71%.

  16. Evaluation of imaging of the ventilatory lung motion in pulmonary diseases

    International Nuclear Information System (INIS)

    Fujii, Tadashige; Kanai, Hisakata; Tanaka, Masao; Hirayama, Jiro; Handa, Kenjiro

    1988-01-01

    Using perfusion lung scintigram with 99m Tc-macroaggregated albumin at maximal expiration (E) and inspiration (I), images of the motion of the regional pulmonary areas and lung margins during ventilation ((E-I)/I) was obtained in patients with various respiratory diseases. The image of (E-I)/I consisted of positive and negative components. The former component visualized the motion of the regional pulmonary areas that corresponded with the ventilatory amplitude of the videodensigram. The sum of the positive component of (E-I)/I in both lungs correlated with the vital capacity (n = 50, r = 0.62). It was 163.5 ± 52.5 in cases with a vital capacity of more than 3.01, 94.1 ± 61.5 in primary lung cancer, 89.2 ± 44.7 in chronic obstructive lung diseases and 69.0 ± 27.5 in diffuse interstitial pneumonia. The distribution pattern of pulmonary perfusion and the positive component of (E-I)/I matched fairly in many cases, but did not match in some cases. The negative component of (E-I)/I demonstrated the ventilatory motion of the lung margin and its decreased activity was shown in cases with hypoventilation of various causes including pleural diseases. The sum of the negative component of (E-I)/I in the both lungs correlated with the vital capacity (n = 50, r = 0.44). These results suggest that this technique is useful to estimate the regional pulmonary ventilatioin and motion of the lung margins. (author)

  17. Pleiotropic effects of statins in distal human pulmonary artery smooth muscle cells

    Directory of Open Access Journals (Sweden)

    Butrous Ghazwan S

    2011-10-01

    Full Text Available Abstract Background Recent clinical data suggest statins have transient but significant effects in patients with pulmonary arterial hypertension. In this study we explored the molecular effects of statins on distal human pulmonary artery smooth muscle cells (PASMCs and their relevance to proliferation and apoptosis in pulmonary arterial hypertension. Methods Primary distal human PASMCs from patients and controls were treated with lipophilic (simvastatin, atorvastatin, mevastatin and fluvastatin, lipophobic (pravastatin and nitric-oxide releasing statins and studied in terms of their DNA synthesis, proliferation, apoptosis, matrix metalloproteinase-9 and endothelin-1 release. Results Treatment of human PASMCs with selected statins inhibited DNA synthesis, proliferation and matrix metalloproteinase-9 production in a concentration-dependent manner. Statins differed in their effectiveness, the rank order of anti-mitogenic potency being simvastatin > atorvastatin > > pravastatin. Nevertheless, a novel nitric oxide-releasing derivative of pravastatin (NCX 6550 was effective. Lipophilic statins, such as simvastatin, also enhanced the anti-proliferative effects of iloprost and sildenafil, promoted apoptosis and inhibited the release of the mitogen and survival factor endothelin-1. These effects were reversed by mevalonate and the isoprenoid intermediate geranylgeranylpyrophosphate and were mimicked by inhibitors of the Rho and Rho-kinase. Conclusions Lipophilic statins exert direct effects on distal human PASMCs and are likely to involve inhibition of Rho GTPase signalling. These findings compliment some of the recently documented effects in patients with pulmonary arterial hypertension.

  18. Automated detection of pulmonary nodules in CT images with support vector machines

    Science.gov (United States)

    Liu, Lu; Liu, Wanyu; Sun, Xiaoming

    2008-10-01

    Many methods have been proposed to avoid radiologists fail to diagnose small pulmonary nodules. Recently, support vector machines (SVMs) had received an increasing attention for pattern recognition. In this paper, we present a computerized system aimed at pulmonary nodules detection; it identifies the lung field, extracts a set of candidate regions with a high sensitivity ratio and then classifies candidates by the use of SVMs. The Computer Aided Diagnosis (CAD) system presented in this paper supports the diagnosis of pulmonary nodules from Computed Tomography (CT) images as inflammation, tuberculoma, granuloma..sclerosing hemangioma, and malignant tumor. Five texture feature sets were extracted for each lesion, while a genetic algorithm based feature selection method was applied to identify the most robust features. The selected feature set was fed into an ensemble of SVMs classifiers. The achieved classification performance was 100%, 92.75% and 90.23% in the training, validation and testing set, respectively. It is concluded that computerized analysis of medical images in combination with artificial intelligence can be used in clinical practice and may contribute to more efficient diagnosis.

  19. Single photon emission computed tomography study of human pulmonary perfusion: preliminary findings

    Energy Technology Data Exchange (ETDEWEB)

    Carratu, L; Sofia, M [Naples Univ. (Italy). Facolta di Medicina e Chirurgia; Salvatore, M; Muto, P; Ariemma, G [Istituto Nazionale per la Prevenzione, Lo Studio e La Cura dei Tumori Fondazione Pascale, Naples (Italy); Lopez-Majano, V [Cook County Hospital, Chicago, IL (USA). Nuclear Medicine Div.

    1984-02-01

    Single photon emission computed tomography (SPECT) was performed with /sup 99/Tcsup(m)-albumin macroaggregates to study human pulmonary perfusion in healthy subjects and patients with respiratory diseases such as chronic obstructive pulmonary disease (COPD) and lung neoplasms. The reconstructed SPECT data was displayed in coronal, transverse, sagittal plane sections and compared to conventional perfusion scans. The SPECT data gave more complicated anatomical information about the extent of damage and morphology of the pulmonary vascular bed. In healthy subjects and COPD patients, qualitative and quantitative assessment of pulmonary perfusion could be obtained from serial SPECT scans with respect to distribution and relative concentration of the injected radiopharmaceutical. Furthermore, SPECT of pulmonary perfusion has been useful in detecting the extent of damage to the pulmonary circulation. This is useful for the preoperative evaluation and staging of lung cancer.

  20. Pulmonary MR imaging with ultra-short TEs: Utility for disease severity assessment of connective tissue disease patients

    International Nuclear Information System (INIS)

    Ohno, Yoshiharu; Nishio, Mizuho; Koyama, Hisanobu; Takenaka, Daisuke; Takahashi, Masaya; Yoshikawa, Takeshi; Matsumoto, Sumiaki; Obara, Makoto; Cauteren, Marc van; Sugimura, Kazuro

    2013-01-01

    Purpose: To evaluate the utility of pulmonary magnetic resonance (MR) imaging with ultra-short echo times (UTEs) at a 3.0 T MR system for pulmonary functional loss and disease severity assessments of connective tissue disease (CTD) patients with interstitial lung disease (ILD). Materials and methods: This prospective study was approved by the institutional review board, and written informed consent was obtained from 18 CTD patients (eight men and ten women) and eight normal subjects with suspected chest disease (three men and five women). All subjects underwent thin-section MDCT, pulmonary MR imaging with UTEs, pulmonary function test and serum KL-6. Regional T2* maps were generated from each MR data set, and mean T2* values were determined from ROI measurements. From each thin-section MDCT data set, CT-based disease severity was evaluated with a visual scoring system. Mean T2* values for normal and CTD subjects were statistically compared by using Student's t-test. To assess capability for pulmonary functional loss and disease severity assessments, mean T2* values were statistically correlated with pulmonary functional parameters, serum KL-6 and CT-based disease severity. Results: Mean T2* values for normal and CTD subjects were significantly different (p = 0.0019) and showed significant correlations with %VC, %DL CO , serum KL-6 and CT-based disease severity of CTD patients (p < 0.05). Conclusion: Pulmonary MR imaging with UTEs is useful for pulmonary functional loss and disease severity assessments of CTD patients with ILD

  1. Pulmonary MR imaging with ultra-short TEs: Utility for disease severity assessment of connective tissue disease patients

    Energy Technology Data Exchange (ETDEWEB)

    Ohno, Yoshiharu, E-mail: yosirad@kobe-u.ac.jp [Advanced Biomedical Imaging Research Center, Kobe University Graduate School of Medicine, Kobe, Hyogo (Japan); Division of Functional and Diagnostic Imaging Research, Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Hyogo (Japan); Nishio, Mizuho [Division of Functional and Diagnostic Imaging Research, Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Hyogo (Japan); Koyama, Hisanobu [Division of Radiology, Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Hyogo (Japan); Takenaka, Daisuke [Division of Radiology, Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Hyogo (Japan); Department of Radiology, Hyogo Cancer Center, Akashi, Hyogo (Japan); Takahashi, Masaya [Advanced Imaging Research Center, Department of Radiology, University of Texas Southwestern Medical Center, Houston, TX (United States); Yoshikawa, Takeshi; Matsumoto, Sumiaki [Advanced Biomedical Imaging Research Center, Kobe University Graduate School of Medicine, Kobe, Hyogo (Japan); Division of Functional and Diagnostic Imaging Research, Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Hyogo (Japan); Obara, Makoto; Cauteren, Marc van [Philips Electronics Japan, Tokyo (Japan); Sugimura, Kazuro [Division of Radiology, Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Hyogo (Japan)

    2013-08-15

    Purpose: To evaluate the utility of pulmonary magnetic resonance (MR) imaging with ultra-short echo times (UTEs) at a 3.0 T MR system for pulmonary functional loss and disease severity assessments of connective tissue disease (CTD) patients with interstitial lung disease (ILD). Materials and methods: This prospective study was approved by the institutional review board, and written informed consent was obtained from 18 CTD patients (eight men and ten women) and eight normal subjects with suspected chest disease (three men and five women). All subjects underwent thin-section MDCT, pulmonary MR imaging with UTEs, pulmonary function test and serum KL-6. Regional T2* maps were generated from each MR data set, and mean T2* values were determined from ROI measurements. From each thin-section MDCT data set, CT-based disease severity was evaluated with a visual scoring system. Mean T2* values for normal and CTD subjects were statistically compared by using Student's t-test. To assess capability for pulmonary functional loss and disease severity assessments, mean T2* values were statistically correlated with pulmonary functional parameters, serum KL-6 and CT-based disease severity. Results: Mean T2* values for normal and CTD subjects were significantly different (p = 0.0019) and showed significant correlations with %VC, %DL{sub CO}, serum KL-6 and CT-based disease severity of CTD patients (p < 0.05). Conclusion: Pulmonary MR imaging with UTEs is useful for pulmonary functional loss and disease severity assessments of CTD patients with ILD.

  2. A computational pipeline for quantification of pulmonary infections in small animal models using serial PET-CT imaging.

    Science.gov (United States)

    Bagci, Ulas; Foster, Brent; Miller-Jaster, Kirsten; Luna, Brian; Dey, Bappaditya; Bishai, William R; Jonsson, Colleen B; Jain, Sanjay; Mollura, Daniel J

    2013-07-23

    in small animals and has great potential to become routinely used in clinics. Our proposed methodology showed that automated computed-aided lesion detection and quantification of pulmonary infections in small animal models are efficient and accurate as compared to the clinical standard of manual and semi-automated approaches. Automated analysis of images in pre-clinical applications can increase the efficiency and quality of pre-clinical findings that ultimately inform downstream experimental design in human clinical studies; this innovation will allow researchers and clinicians to more effectively allocate study resources with respect to research demands without compromising accuracy.

  3. Correlative magnetic resonance imaging in the evaluation of aortic and pulmonary artery abnormalities

    Energy Technology Data Exchange (ETDEWEB)

    Risius, B.; O' Donnell, J.K.; Geisinger, M.A.; Zelch, M.G.; George, C.R.; Graor, R.A.; Moodie, D.S.

    1985-05-01

    Magnetic resonance imaging (MRI) yields excellent quality images of the cardiovascular system utilizing the inherent natural contrast between flowing blood and the surrounding anatomic structures. To evaluate the clinical usefulness of MRI in the noninvasive diagnosis of large vessel disorders, the authors have performed MRI on 40 pts with either aortic or pulmonary artery abnormalities (18 thoracic or abdominal aortic aneurysms, 8 aorto-occlusive disease, 6 dissecting aneurysms, 4 Marfan's syndrome, 2 pulmonary artery aneurysms 1 pulmonary artery occlusion, 1 aortic coarctation). Images were obtained in the transverse, coronal and sagital body planes utilizing a 0.6T superconductive magnet. Cardiac and/or respiratory gating was employed in most cases. Correlation was made for all studies with conventional or digital subtraction angiography, computed tomography, and/or ultrasound. The diagnostic information obtained by MRI equaled or exceeded that obtained by other imaging techniques except for the few cases where cardiac arrhythmias precluded adequate gated acquisition. All aneurysms and their relationships to adjacent structures were readily demonstrated as were the presence or absence of mural thrombi and dissecting intimal flaps. Angiographically demonstrated atherosclerotic plaques and luminal stenoses were seen by MRI in all patients without arrhythmias. The authors concluded that MRI is a powerful noninvasive diagnostic aid in the delineation of large vessel disorders, especially where knowledge of anatomic interrelationships can guide surgical or other interventional planning.

  4. Computer-based quantitative computed tomography image analysis in idiopathic pulmonary fibrosis: A mini review.

    Science.gov (United States)

    Ohkubo, Hirotsugu; Nakagawa, Hiroaki; Niimi, Akio

    2018-01-01

    Idiopathic pulmonary fibrosis (IPF) is the most common type of progressive idiopathic interstitial pneumonia in adults. Many computer-based image analysis methods of chest computed tomography (CT) used in patients with IPF include the mean CT value of the whole lungs, density histogram analysis, density mask technique, and texture classification methods. Most of these methods offer good assessment of pulmonary functions, disease progression, and mortality. Each method has merits that can be used in clinical practice. One of the texture classification methods is reported to be superior to visual CT scoring by radiologist for correlation with pulmonary function and prediction of mortality. In this mini review, we summarize the current literature on computer-based CT image analysis of IPF and discuss its limitations and several future directions. Copyright © 2017 The Japanese Respiratory Society. Published by Elsevier B.V. All rights reserved.

  5. Diagnosing and mapping pulmonary emphysema on X-ray projection images: incremental value of grating-based X-ray dark-field imaging.

    Science.gov (United States)

    Meinel, Felix G; Schwab, Felix; Schleede, Simone; Bech, Martin; Herzen, Julia; Achterhold, Klaus; Auweter, Sigrid; Bamberg, Fabian; Yildirim, Ali Ö; Bohla, Alexander; Eickelberg, Oliver; Loewen, Rod; Gifford, Martin; Ruth, Ronald; Reiser, Maximilian F; Pfeiffer, Franz; Nikolaou, Konstantin

    2013-01-01

    To assess whether grating-based X-ray dark-field imaging can increase the sensitivity of X-ray projection images in the diagnosis of pulmonary emphysema and allow for a more accurate assessment of emphysema distribution. Lungs from three mice with pulmonary emphysema and three healthy mice were imaged ex vivo using a laser-driven compact synchrotron X-ray source. Median signal intensities of transmission (T), dark-field (V) and a combined parameter (normalized scatter) were compared between emphysema and control group. To determine the diagnostic value of each parameter in differentiating between healthy and emphysematous lung tissue, a receiver-operating-characteristic (ROC) curve analysis was performed both on a per-pixel and a per-individual basis. Parametric maps of emphysema distribution were generated using transmission, dark-field and normalized scatter signal and correlated with histopathology. Transmission values relative to water were higher for emphysematous lungs than for control lungs (1.11 vs. 1.06, pemphysema provides color-coded parametric maps, which show the best correlation with histopathology. In a murine model, the complementary information provided by X-ray transmission and dark-field images adds incremental diagnostic value in detecting pulmonary emphysema and visualizing its regional distribution as compared to conventional X-ray projections.

  6. Magnetic resonance imaging in pulmonary hypertension

    International Nuclear Information System (INIS)

    Neuhold, A.; Stiskal, M.; Czerny, C.; Frank, H.; Globits, S.; Glogar, D.; Mlczoch, J.

    1992-01-01

    We examined 23 patients with pulmonary hypertension of varying aetiology by MRI and compared the results with those of right heart catheterisation. The best correlation was obtained between right ventricular mural thickness and mean pulmonary pressure (R = 0.91, p = 0.001). There was significant correlation (R = 0.85, p = 0.001) for the diameter of the inferior vena cava, which was dilated in all patients with pulmonary hypertension. There was no significant correlation between mean pulmonary pressure and the diameters of the superior vena cava or the main pulmonary artery branches (R = 0.55 and 0.75 respectively, p 1 -weighted transverse sections. (orig./GDG) [de

  7. Improved detection of pulmonary nodules on energy-subtracted chest radiographs with a commercial computer-aided diagnosis software: comparison with human observers

    International Nuclear Information System (INIS)

    Szucs-Farkas, Zsolt; Patak, Michael A.; Yuksel-Hatz, Seyran; Ruder, Thomas; Vock, Peter

    2010-01-01

    To retrospectively analyze the performance of a commercial computer-aided diagnosis (CAD) software in the detection of pulmonary nodules in original and energy-subtracted (ES) chest radiographs. Original and ES chest radiographs of 58 patients with 105 pulmonary nodules measuring 5-30 mm and images of 25 control subjects with no nodules were randomized. Five blinded readers evaluated firstly the original postero-anterior images alone and then together with the subtracted radiographs. In a second phase, original and ES images were analyzed by a commercial CAD program. CT was used as reference standard. CAD results were compared to the readers' findings. True-positive (TP) and false-positive (FP) findings with CAD on subtracted and non-subtracted images were compared. Depending on the reader's experience, CAD detected between 11 and 21 nodules missed by readers. Human observers found three to 16 lesions missed by the CAD software. CAD used with ES images produced significantly fewer FPs than with non-subtracted images: 1.75 and 2.14 FPs per image, respectively (p=0.029). The difference for the TP nodules was not significant (40 nodules on ES images and 34 lesions in non-subtracted radiographs, p = 0.142). CAD can improve lesion detection both on energy subtracted and non-subtracted chest images, especially for less experienced readers. The CAD program marked less FPs on energy-subtracted images than on original chest radiographs. (orig.)

  8. Novel method to calculate pulmonary compliance images in rodents from computed tomography acquired at constant pressures

    International Nuclear Information System (INIS)

    Guerrero, Thomas; Castillo, Richard; Sanders, Kevin; Price, Roger; Komaki, Ritsuko; Cody, Dianna

    2006-01-01

    Our goal was to develop a method for generating high-resolution three-dimensional pulmonary compliance images in rodents from computed tomography (CT) images acquired at a series of constant pressures in ventilated animals. One rat and one mouse were used to demonstrate this technique. A pre-clinical GE flat panel CT scanner (maximum 31 line-pairs cm -1 resolution) was utilized for image acquisition. The thorax of each animal was imaged with breath-holds at 2, 6, 10, 14 and 18 cm H 2 O pressure in triplicate. A deformable image registration algorithm was applied to each pair of CT images to map corresponding tissue elements. Pulmonary compliance was calculated on a voxel by voxel basis using adjacent pairs of CT images. Triplicate imaging was used to estimate the measurement error of this technique. The 3D pulmonary compliance images revealed regional heterogeneity of compliance. The maximum total lung compliance measured 0.080 (±0.007) ml air per cm H 2 O per ml of lung and 0.039 (±0.004) ml air per cm H 2 O per ml of lung for the rat and mouse, respectively. In this study, we have demonstrated a unique method of quantifying regional lung compliance from 4 to 16 cm H 2 O pressure with sub-millimetre spatial resolution in rodents

  9. Right ventricle performances with echocardiography and 99mTc myocardial perfusion imaging in pulmonary arterial hypertension patients.

    Science.gov (United States)

    Liu, Jie; Fei, Lei; Huang, Guang-Qing; Shang, Xiao-Ke; Liu, Mei; Pei, Zhi-Jun; Zhang, Yong-Xue

    2018-05-01

    Right heart catheterization is commonly used to measure right ventricle hemodynamic parameters and is the gold standard for pulmonary arterial hypertension diagnosis; however, it is not suitable for patients' long-term follow-up. Non-invasive echocardiography and nuclear medicine have been applied to measure right ventricle anatomy and function, but the guidelines for the usefulness of clinical parameters remain to be established. The goal of this study is to identify reliable clinical parameters of right ventricle function in pulmonary arterial hypertension patients and analyze the relationship of these clinical parameters with the disease severity of pulmonary arterial hypertension. In this study, 23 normal subjects and 23 pulmonary arterial hypertension patients were recruited from January 2015 to March 2016. Pulmonary arterial hypertension patients were classified into moderate and severe pulmonary arterial hypertension groups according to their mean pulmonary arterial pressure levels. All the subjects were subjected to physical examination, chest X-ray, 12-lead electrocardiogram, right heart catheterization, two-dimensional echocardiography, and technetium 99m ( 99m Tc) myocardial perfusion imaging. Compared to normal subjects, the right heart catheterization indexes including right ventricle systolic pressure, right ventricle end diastolic pressure, pulmonary artery systolic pressure, pulmonary artery diastolic pressure, pulmonary vascular resistance, and right ventricle end systolic pressure increased in pulmonary arterial hypertension patients and were correlated with mean pulmonary arterial pressure levels. Echocardiography parameters, including tricuspid regurgitation peak velocity, tricuspid regurgitation pressure gradient, tricuspid annular plane systolic excursion and fractional area, right ventricle-myocardial performance index, were significantly associated with the mean pulmonary arterial pressure levels in pulmonary arterial hypertension patients

  10. 99Tcm-MIBI imaging in diagnosing benign/malign pulmonary disease and analysis of lung cancer DNA content

    International Nuclear Information System (INIS)

    Feng Yanlin; Tan Jiaju; Yang Jie; Zhu Zheng; Yu Fengwen; He Xiaohong; Huang Kemin; Yuan Baihong; Su Shaodi

    2002-01-01

    Objective: To evaluate the value of 99 Tc m -methoxyisobutylisonitrile (MIBI) lung imaging in diagnosing benign/malign pulmonary disease and the relation of 99 Tc m -MIBI uptake ratio (UR) with lung cancer DNA content. Methods: Early and delay imaging were performed on 27 cases of benign lung disease and 46 cases of malign lung disease. Visual analysis of the images and T/N uptake ratio measurement were performed on every case. Cancer cell DNA content and DNA index (DI) were measured in 24 cases of malign pulmonary disease. Results: The delay phase UR was 1.13 ± 0.19 in benign disease group, and the delay phase UR was 1.45 ± 0.21 in malign disease group (t6.51, P 99 Tc m -MIBI is not an ideal imaging agent for differentiating pulmonary benign/malign disease. Lung cancer DNA content may be reflected by delay phase UR

  11. Diagnostic accuracy of contrast-enhanced MR angiography and unenhanced proton MR imaging compared with CT pulmonary angiography in chronic thromboembolic pulmonary hypertension

    Energy Technology Data Exchange (ETDEWEB)

    Rajaram, Smitha [Unit of Academic Radiology, University of Sheffield, Sheffield (United Kingdom); Academic Unit of Radiology, C Floor, Royal Hallamshire Hospital, Sheffield (United Kingdom); Swift, Andrew J.; Wild, Jim M. [Unit of Academic Radiology, University of Sheffield, Sheffield (United Kingdom); Sheffield Cardiovascular Biomedical Research Unit, Sheffield (United Kingdom); Capener, David; Telfer, Adam [Unit of Academic Radiology, University of Sheffield, Sheffield (United Kingdom); Davies, Christine; Hill, Catherine [Sheffield Teaching Hospitals Trust, Department of Radiology, Sheffield (United Kingdom); Condliffe, Robin; Elliot, Charles; Kiely, David G. [Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield (United Kingdom); Sheffield Cardiovascular Biomedical Research Unit, Sheffield (United Kingdom); Hurdman, Judith [Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield (United Kingdom)

    2012-02-15

    To evaluate the diagnostic accuracy of contrast-enhanced MR angiography (CE-MRA) and the added benefit of unenhanced proton MR angiography compared with CT pulmonary angiography (CTPA) in patients with chronic thromboembolic disease (CTE). A 2 year retrospective study of 53 patients with chronic thromboembolic pulmonary hypertension who underwent CTPA and MRI for suspected pulmonary hypertension and a control group of 36 patients with no CT evidence of pulmonary embolism. The MRI was evaluated for CTE and the combined diagnostic accuracy of ce-MRA and unenhanced proton MRA was determined. CE-MRA generated lung perfusion maps were also assessed. The overall sensitivity and specificity of CE-MRA in diagnosing proximal and distal CTE were 98% and 94%, respectively. The sensitivity improved from 50% to 88% for central vessel disease when CE-MRA images were analysed with unenhanced proton MRA. The CE-MRA identified more stenoses (29/18), post-stenosis dilatation (23/7) and occlusions (37/29) compared with CTPA. The CE-MRA perfusion images showed a sensitivity of 92% for diagnosing CTE. CE-MRA has high sensitivity and specificity for diagnosing CTE. The sensitivity of CE-MRA for visualisation of adherent central and lobar thrombus significantly improves with the addition of unenhanced proton MRA which delineates the vessel wall. (orig.)

  12. Diagnostic accuracy of contrast-enhanced MR angiography and unenhanced proton MR imaging compared with CT pulmonary angiography in chronic thromboembolic pulmonary hypertension

    International Nuclear Information System (INIS)

    Rajaram, Smitha; Swift, Andrew J.; Wild, Jim M.; Capener, David; Telfer, Adam; Davies, Christine; Hill, Catherine; Condliffe, Robin; Elliot, Charles; Kiely, David G.; Hurdman, Judith

    2012-01-01

    To evaluate the diagnostic accuracy of contrast-enhanced MR angiography (CE-MRA) and the added benefit of unenhanced proton MR angiography compared with CT pulmonary angiography (CTPA) in patients with chronic thromboembolic disease (CTE). A 2 year retrospective study of 53 patients with chronic thromboembolic pulmonary hypertension who underwent CTPA and MRI for suspected pulmonary hypertension and a control group of 36 patients with no CT evidence of pulmonary embolism. The MRI was evaluated for CTE and the combined diagnostic accuracy of ce-MRA and unenhanced proton MRA was determined. CE-MRA generated lung perfusion maps were also assessed. The overall sensitivity and specificity of CE-MRA in diagnosing proximal and distal CTE were 98% and 94%, respectively. The sensitivity improved from 50% to 88% for central vessel disease when CE-MRA images were analysed with unenhanced proton MRA. The CE-MRA identified more stenoses (29/18), post-stenosis dilatation (23/7) and occlusions (37/29) compared with CTPA. The CE-MRA perfusion images showed a sensitivity of 92% for diagnosing CTE. CE-MRA has high sensitivity and specificity for diagnosing CTE. The sensitivity of CE-MRA for visualisation of adherent central and lobar thrombus significantly improves with the addition of unenhanced proton MRA which delineates the vessel wall. (orig.)

  13. Imaging method in the diagnosis of pulmonary thromboembolism

    International Nuclear Information System (INIS)

    Medaglia Monge, Luis Gerardo

    2011-01-01

    Pulmonary thromboembolism has been a common cause of morbidity and mortality. The same has become the third cause of acute cardiovascular disease after acute myocardial infarction and cerebral vascular accident which has produced thousands of deaths per year. Two large multicenter studies have found that although it was reported a mortality rate of up to 50-58% in patients with hemodynamic compromise, even at hemodynamically stable patients the mortality rate varied from 8-15%. Studies of autopsy have shown that up to 10% of the intrahospital deaths are secondary to pulmonary thromboembolism, despite its high incidence have been difficult to diagnose. Within the diagnostic arsenal that has accounted this entity are found: the clinical assessment, laboratory tests such as D dimer, ventilation-perfusion scintigraphy, venous Doppler U.S. of the lower limbs, pulmonary angiography and computed tomography angiography. Helical computed tomography angiography has offered, in daily clinical practice, the first line study in patients with suspected pulmonary thromboembolism, this happens at the end of the decade of the eighties. The computed tomography angiography has offered many advantages with respect to its competitors including availability, cost-benefit, volumetric image acquisition, and with the reconstruction resulting, identification of alternative diagnoses, the ability of valuation of pelvic veins and inferior limbs at the same time and good interobserver concordance. Computed tomography has revolutionized radiology and medicine, it has been noninvasive diagnostic technique of great power that is in continuous development. This technique by its high spatial and temporal resolution to study virtually any organ and has replaced other techniques previously established in the diagnostic algorithms. The benefits of the technique have been clear but is not without limitations. Computed tomography studies should be performed only when they are clinically justified and

  14. The preliminary study of MR diffusion weighted imaging with background body signal suppression on pulmonary diseases

    International Nuclear Information System (INIS)

    Wu Huawei; Cheng Jiejun; Xu Jianrong; Lu Qing; Ge Xin; Li Lei

    2008-01-01

    Objective: To evaluate maximum intensity projection (MIP) images and apparent diffusion coefficient (ADC) values of MR diffusion weighted imaging with background body signal suppression (DWIBS) on pulmonary diseases. Methods: Sixty-one patients with pulmonary diseases underwent DWlBS. The findings in three dimensional(3D) MIP image were observed and the ADC values of diseased region were measured. The diagnostic value of DWIBS on pulmonary diseases was evaluated. Results: Lung cancer and inflammatory disease were all demonstrated as dense intensity area on DWIBS. The mean ADC value of central lung cancer was (1.05±0.23) x 10 -3 mm 2 /s. The mean ADC value of peripheral lung cancer was (1.10 ± 0.17) x 10 -3 mm 2 /s. The mean ADC value of the inflammatory disease was (1.69 ± 0.29) x 10 -3 mm 2 /s. The mean ADC value had significant difference between peripheral lung cancer and the inflammatory disease (P<0.05). The MR sensitivity, specificity and accuracy in diagnosing the pulmonary diseases with DWIBS (86.84%, 82.60%, 85.24%, respectively) was higher than conventional MRI(78.94%, 78.26%, and 78.68%, respectively). Conclusion: DWIBS can demonstrate clearly the lesion's shape with 3D display. The quantitative measurement of ADC values is feasible. DWIBS may be a potential diagnostic method for differentiation on pulmonary diseases. (authors)

  15. CT pulmonary angiography of adult pulmonary vascular diseases: Technical considerations and interpretive pitfalls

    International Nuclear Information System (INIS)

    Taslakian, Bedros; Latson, Larry A.; Truong, Mylene T.; Aaltonen, Eric; Shiau, Maria C.; Girvin, Francis; Alpert, Jeffrey B.; Wickstrom, Maj; Ko, Jane P.

    2016-01-01

    Highlights: • CTPA plays a key role in the evaluation of pulmonary vascular diseases. • Improvements in CT technology have improved visualization of pulmonary arteries. • Knowledge of the technical pitfalls is essential for accurate diagnosis. • Dual energy CT imaging enables parenchymal iodine evaluation. • An awareness of the entities affecting the pulmonary arteries is important. - Abstract: Computed tomography pulmonary angiography (CTPA) has become the primary imaging modality for evaluating the pulmonary arteries. Although pulmonary embolism is the primary indication for CTPA, various pulmonary vascular abnormalities can be detected in adults. Knowledge of these disease entities and understanding technical pitfalls that can occur when performing CTPA are essential to enable accurate diagnosis and allow timely management. This review will cover a spectrum of acquired abnormalities including pulmonary embolism due to thrombus and foreign bodies, primary and metastatic tumor involving the pulmonary arteries, pulmonary hypertension, as well as pulmonary artery aneurysms and stenoses. Additionally, methods to overcome technical pitfalls and interventional treatment options will be addressed.

  16. CT pulmonary angiography of adult pulmonary vascular diseases: Technical considerations and interpretive pitfalls

    Energy Technology Data Exchange (ETDEWEB)

    Taslakian, Bedros, E-mail: bedros.taslakian@nyumc.org [Department of Radiology, NYU Langone Medical Center, NY (United States); Latson, Larry A., E-mail: larry.latson@nyumc.org [Department of Radiology, NYU Langone Medical Center, NY (United States); Truong, Mylene T., E-mail: mtruong@mdanderson.org [Department of Radiology, University of Texas, MD Anderson Cancer Center, TX (United States); Aaltonen, Eric, E-mail: Eric.Aaltonen@nyumc.org [Department of Radiology, NYU Langone Medical Center, NY (United States); Shiau, Maria C., E-mail: Maria.Shiau@nyumc.org [Department of Radiology, NYU Langone Medical Center, NY (United States); Girvin, Francis, E-mail: Francis.Girvin@nyumc.org [Department of Radiology, NYU Langone Medical Center, NY (United States); Alpert, Jeffrey B., E-mail: Jeffrey.Alpert@nyumc.org [Department of Radiology, NYU Langone Medical Center, NY (United States); Wickstrom, Maj, E-mail: Maj.Wickstrom@nyumc.org [Department of Radiology, NYU Langone Medical Center, NY (United States); Ko, Jane P., E-mail: Jane.Ko@nyumc.org [Department of Radiology, NYU Langone Medical Center, NY (United States)

    2016-11-15

    Highlights: • CTPA plays a key role in the evaluation of pulmonary vascular diseases. • Improvements in CT technology have improved visualization of pulmonary arteries. • Knowledge of the technical pitfalls is essential for accurate diagnosis. • Dual energy CT imaging enables parenchymal iodine evaluation. • An awareness of the entities affecting the pulmonary arteries is important. - Abstract: Computed tomography pulmonary angiography (CTPA) has become the primary imaging modality for evaluating the pulmonary arteries. Although pulmonary embolism is the primary indication for CTPA, various pulmonary vascular abnormalities can be detected in adults. Knowledge of these disease entities and understanding technical pitfalls that can occur when performing CTPA are essential to enable accurate diagnosis and allow timely management. This review will cover a spectrum of acquired abnormalities including pulmonary embolism due to thrombus and foreign bodies, primary and metastatic tumor involving the pulmonary arteries, pulmonary hypertension, as well as pulmonary artery aneurysms and stenoses. Additionally, methods to overcome technical pitfalls and interventional treatment options will be addressed.

  17. Level-set segmentation of pulmonary nodules in megavolt electronic portal images using a CT prior

    International Nuclear Information System (INIS)

    Schildkraut, J. S.; Prosser, N.; Savakis, A.; Gomez, J.; Nazareth, D.; Singh, A. K.; Malhotra, H. K.

    2010-01-01

    Purpose: Pulmonary nodules present unique problems during radiation treatment due to nodule position uncertainty that is caused by respiration. The radiation field has to be enlarged to account for nodule motion during treatment. The purpose of this work is to provide a method of locating a pulmonary nodule in a megavolt portal image that can be used to reduce the internal target volume (ITV) during radiation therapy. A reduction in the ITV would result in a decrease in radiation toxicity to healthy tissue. Methods: Eight patients with nonsmall cell lung cancer were used in this study. CT scans that include the pulmonary nodule were captured with a GE Healthcare LightSpeed RT 16 scanner. Megavolt portal images were acquired with a Varian Trilogy unit equipped with an AS1000 electronic portal imaging device. The nodule localization method uses grayscale morphological filtering and level-set segmentation with a prior. The treatment-time portion of the algorithm is implemented on a graphical processing unit. Results: The method was retrospectively tested on eight cases that include a total of 151 megavolt portal image frames. The method reduced the nodule position uncertainty by an average of 40% for seven out of the eight cases. The treatment phase portion of the method has a subsecond execution time that makes it suitable for near-real-time nodule localization. Conclusions: A method was developed to localize a pulmonary nodule in a megavolt portal image. The method uses the characteristics of the nodule in a prior CT scan to enhance the nodule in the portal image and to identify the nodule region by level-set segmentation. In a retrospective study, the method reduced the nodule position uncertainty by an average of 40% for seven out of the eight cases studied.

  18. Assessment of technetium-99m technegas scintigraphy for ventilatory impairment in pulmonary emphysema. Comparison of planar and SPECT images

    International Nuclear Information System (INIS)

    Satoh, Katashi; Tanabe, Masatada; Takahashi, Kazue

    1997-01-01

    Pulmonary emphysema can be diagnosed easily by X-ray CT (CT) as a low attenuation area. Recently Tc-99m-Technegas (Technegas) has been used for ventilation scintigraphy. The present study was undertaken to assess the usefulness of planar and SPECT images by using Technegas scintigraphy in patients with pulmonary emphysema. Technegas scintigraphy, CT and pulmonary function tests were performed in 20 patients (males, age 32-78 years). We classified the findings of Technegas images into 4 grades. Comparing planar and SPECT images of Technegas, more detailed findings were shown by SPECT than by planar images in mild cases (6 cases, 30%). In more severe cases, findings of SPECT and planar images were equivalent (14 cases, 70%). The degree of abnormal findings obtained by SPECT was equivalent to that obtained by CT in severe cases (6 cases, 30%). SPECT should be excluded in advanced stages as indicated by planar images. (author)

  19. Estimation of pulmonary vascular resistance in patients with pulmonary fibrosis by phase-contrast magnetic resonance imaging

    International Nuclear Information System (INIS)

    Ayukawa, Yuichiro; Murayama, Sadayuki; Tsuchiya, Nanae; Yara, Satomi; Fujita, Jiro

    2011-01-01

    The aim of this study was to assess pulmonary vascular resistance (PVR) in patients with pulmonary fibrosis (PF) by phase-contrast magnetic resonance imaging (MRI). Subjects were 11 healthy volunteers and 11 patients with PF. Using phase-contrast MRI, we measured pulmonary arterial blood flow and calculated the parameters of PVR. Parameters were compared between volunteers and patients using unpaired t-tests. The diagnostic capability of the parameters was evaluated by receiver operating characteristic (ROC) curve analysis. Patients underwent respiratory function tests (RFTs) and chest computed tomography (CT), and they were correlated with MRI parameters. Most MRI parameters were significantly different between volunteers and patients (t-test P values were <0.05 in 9 of 10 parameters). Regarding the RFT and CT visual score, only the %DLco/VA and acceleration time and the CT visual score and average flow volume had significant correlation [r=-0.667 (P=0.024) and r=-0.6 (P=0.031)], respectively. Our findings suggest that PVR derived from phase-contrast MRI is significantly higher in patients with PF than in volunteers. However, all but two of these parameters may not correlate with the severity of PF. (author)

  20. Correlation of the perfusion scintigram with pulmonary functions in chronic obstructive pulmonary disease

    Energy Technology Data Exchange (ETDEWEB)

    Uchida, Kou; Ashitaka, Tsuyoshi; Uchibori, Shigeyasu [Toho Univ., Tokyo (Japan). School of Medicine; Takano, Masaaki

    1992-11-01

    The authors carried out ventilation-perfusion scintigraphy and pulmonary function tests in 21 patients with chronic obstructive pulmonary disease. It was used [sup 99m]Tc-macroaggregate for perfusion scintigram and [sup 133]Xe gas for ventilation scintigram. It was added the radioactivities of rebreathing phase and made lung volume image using a computer. Regions of interest (ROIs) were derived from radioactivities in each image. ROIs on lung volume image included each whole lung and those on perfusion image included the areas which had relatively high radioactivity. The authors counted the area of ROIs on lung volume (L) and perfusion (P) images. Then it was used the ratio of perfusion to lung volume (P/L) as a parameter of pulmonary perfusion. P/L had the significant correlations with the vital capacity, the actual FFV[sub 1.0], arterial oxygen partial pressure, diffusing capacity, RV/TLC and peak flow rate. These results suggested that P/L was a useful parameter of pulmonary perfusion in chronic obstructive pulmonary disease. (author).

  1. Imaging features of diffuse pulmonary hemorrhage

    International Nuclear Information System (INIS)

    Schmit, M.; Vogel, W.; Horger, M.

    2006-01-01

    There are diverse etiologies of diffuse pulmonary hemorrhage, so specific diagnosis may be difficult. Conventional radiography tends to be misleading as hemoptysis may lacking in patients with hemorrhagic anemia. Diffuse pulmonary hemorrhage should be differentiated from focal pulmonary hemorrhage resulting from chronic bronchitis, bronchiectasis, active infection (tuberculosis) neoplasia, trauma, or embolism. (orig.)

  2. Imaging manifestations of the cavitation in pulmonary parenchyma of SARS

    International Nuclear Information System (INIS)

    Yuan Chunwang; Zhao Dawei; Wang Wei; Jia Cuiyu; Bai Chunsheng

    2004-01-01

    Objective: To investigate the imaging appearances of cavitation in pulmonary parenchyma and the clinical features of the cases of SARS. Methods: Chest imaging films and clinical data of 180 patients with clinically confirmed SARS were analyzed retrospectively. The imaging manifestations of cavitation and the clinical features of the patients were observed and evaluated. Results: Of 180 patients, cavitations were showed in 5 (2.8%), which were all found through X-ray or CT scanning. Most of them were round or irregular, and had thick wall. The 5 patients all had been in hospital and treated with more dosage antibiotics, antivirus medicines and glucocorticoid for long time, the glucocorticoid was used for 25-65 d, and in the first 10-15 days the dosage was 160-240 mg per day. In hospitalization, one of them had been diagnosed diabetes mellitus, four had increased fasting blood sugar, the counts of white blood cells [(14.1-20.4) x 10 9 /L] increased significantly, the percent of neutrophils might increased also. Meanwhile, there was a continue increase of lactate dehydrogenase (228.00-475.00 U/L), glutamic dehydrogenase (10.08-60.00 U/L) and hydroxybutyrate dehydrogenase (190.00-444.00 U/L) in lab examination. Conclusion: SARS can cause cavitation in pulmonary parenchyma in posterior process of the disease. CT scanning can find the cavitation earlier and accurately, catching the imaging features of them is helpful in differential diagnosis, guiding therapy and estimating prognosis

  3. Chronic pulmonary embolism - radiological imaging and differential diagnosis; Chronische Lungenembolie - Radiologische Bildmorphologie und Differenzialdiagnose

    Energy Technology Data Exchange (ETDEWEB)

    Coppenrath, E.; Herzog, P.; Attenberger, U.; Reiser, M. [Klinikum Innenstadt der Ludwig-Maximilians-Universitaet Muenchen, Institut fuer Klinische Radiologie, Muenchen (Germany)

    2007-08-15

    In chronic pulmonary embolism branches of the pulmonary arterial tree remain partially or totally occluded. This may lead to pulmonary hypertension with the development of right ventricular hypertrophy as well as structural changes of pulmonary arteries. Imaging of chronic pulmonary embolism should prove vessel occlusions (pulmonary angiography, MSCT, MRI) and reduction of regional lung perfusion (lung scanning, MSCT, MRI). According to current guidelines ventilation-perfusion lung scanning and pulmonary angiography are still recommended as the methods of choice. MSCT and MRI provide technical alternatives which are helpful in differential diagnosis versus other types of pulmonary hypertension. In spite of medical and surgical measures (in rare cases pulmonary thromboendarterectomy) the prognosis of chronic pulmonary embolism remains unfavourable. (orig.) [German] Bei der chronischen Lungenembolie sind Abschnitte der arteriellen Lungenstrombahn dauerhaft verschlossen. Dies kann zu einer Erhoehung des pulmonal-arteriellen Drucks mit den Folgen einer Rechtsherzbelastung und strukturellen Veraenderungen der Pulmonalarterien fuehren. Bildmorphologisch nachzuweisen sind Gefaessverschluesse (Pulmonalisangiographie, MSCT, MRT) und die Minderperfusion des Lungenparenchyms (Szintigraphie, MSCT, MRT). Nach den bisherigen Empfehlungen gelten fuer die Diagnostik der chronischen Lungenembolie die Lungenszintigraphie (Ventilation/Perfusion) und die Pulmonalisangiographie als Methoden der ersten Wahl. Die MSCT und MRT (Angiographie/Perfusion) stellen technische Alternativen dar. Differenzialdiagnostisch sind andere Formen der pulmonalen Hypertonie abzugrenzen. Trotz medikamentoeser und chirurgischer Therapiemassnahmen (z. B. pulmonale Thrombendarterektomie) bleibt die Prognose der chronischen Lungenembolie unguenstig. (orig.)

  4. Multi-level tree analysis of pulmonary artery/vein trees in non-contrast CT images

    Science.gov (United States)

    Gao, Zhiyun; Grout, Randall W.; Hoffman, Eric A.; Saha, Punam K.

    2012-02-01

    Diseases like pulmonary embolism and pulmonary hypertension are associated with vascular dystrophy. Identifying such pulmonary artery/vein (A/V) tree dystrophy in terms of quantitative measures via CT imaging significantly facilitates early detection of disease or a treatment monitoring process. A tree structure, consisting of nodes and connected arcs, linked to the volumetric representation allows multi-level geometric and volumetric analysis of A/V trees. Here, a new theory and method is presented to generate multi-level A/V tree representation of volumetric data and to compute quantitative measures of A/V tree geometry and topology at various tree hierarchies. The new method is primarily designed on arc skeleton computation followed by a tree construction based topologic and geometric analysis of the skeleton. The method starts with a volumetric A/V representation as input and generates its topologic and multi-level volumetric tree representations long with different multi-level morphometric measures. A new recursive merging and pruning algorithms are introduced to detect bad junctions and noisy branches often associated with digital geometric and topologic analysis. Also, a new notion of shortest axial path is introduced to improve the skeletal arc joining two junctions. The accuracy of the multi-level tree analysis algorithm has been evaluated using computer generated phantoms and pulmonary CT images of a pig vessel cast phantom while the reproducibility of method is evaluated using multi-user A/V separation of in vivo contrast-enhanced CT images of a pig lung at different respiratory volumes.

  5. Imaging findings of disseminated pulmonary tuberculosis in patients with acquired immunodeficiency syndrome

    International Nuclear Information System (INIS)

    Song Wenyan; Zhao Zuqi; Zhao Dawei; Jia Cuiyu; Zhang Ruichi; Liu JinXin; Guan Wanhua; Liang Yi

    2013-01-01

    Objective: To study the imaging findings of disseminated pulmonary tuberculosis in patients with acquired immunodeficiency syndrome (AIDS). Methods: X-ray and multi-slice CT (MSCT) data from 33 AIDS patients with disseminated pulmonary tuberculosis confirmed by clinical manifestations and laboratory tests were analyzed retrospectively. Results: Thirty patients underwent initial chest radiography examination, 29 patients showed abnormal appearances, including bilateral disseminations in 21 patients and unilateral multiple disseminations in 8 patients. All patients underwent MSCT examination, 26 patients showed bilateral disseminations and 7 patients showed unilateral multiple disseminations. The abnormal pulmonary appearances included nodule (n = 25), miliary nodule (n = 22), air-space consolidation (n = 22), cavity (n = 11), fibrosis (n = 7), ground-glass opacity (n = 7), pneumatocele (n = 4), calcification (n = 2). There were 20 patients with more than 3 abnormal appearances and 13 patients with one or two abnormal appearances. The extra-pulmonary tuberculosis included pleural effusion (n = 33), lymphadenopathy (n = 30), intestinal tuberculosis (n = 3), splenic tuberculosis (n = 1) and cerebral tuberculosis (n = 1). Conclusion: Disseminated pulmonary tuberculosis should be highly suspected in AIDS patients with diffused nodules, miliary nodules, air-space consolidations or multiple cavities, accompanied with pleural effusion and lymphadenopathy. (authors)

  6. CXCR1 regulates pulmonary anti-Pseudomonas host defense

    Science.gov (United States)

    Carevic, M.; Öz, H.; Fuchs, K.; Laval, J.; Schroth, C.; Frey, N.; Hector, A.; Bilich, T.; Haug, M.; Schmidt, A.; Autenrieth, S. E.; Bucher, K.; Beer-Hammer, S.; Gaggar, A.; Kneilling, M.; Benarafa, C.; Gao, J.; Murphy, P.; Schwarz, S.; Moepps, B.; Hartl, D.

    2016-01-01

    Pseudomonas aeruginosa is a key opportunistic pathogen causing disease in cystic fibrosis (CF) and other lung diseases such as chronic obstructive pulmonary disease (COPD). However, the pulmonary host defense mechanisms regulating anti-Pseudomonas aeruginosa immunity remain incompletely understood. Here we demonstrate, by studying an airway Pseudomonas aeruginosa infection model, in vivo bioluminescence imaging, neutrophil effector responses and human airway samples, that the chemokine receptor CXCR1 regulates pulmonary host defense against Pseudomonas aeruginosa. Mechanistically, CXCR1 regulated anti-Pseudomonas neutrophil responses through modulation of reactive oxygen species and interference with toll-like receptor 5 expression. These studies define CXCR1 as a novel non-canonical chemokine receptor that regulates pulmonary anti-Pseudomonas host defense with broad implications for CF, COPD and other infectious lung diseases. PMID:26950764

  7. Measuring the relative extent of pulmonary infiltrates by hierarchical classification of patient-specific image features

    Science.gov (United States)

    Tsevas, S.; Iakovidis, D. K.

    2011-11-01

    Pulmonary infiltrates are common radiological findings indicating the filling of airspaces with fluid, inflammatory exudates, or cells. They are most common in cases of pneumonia, acute respiratory syndrome, atelectasis, pulmonary oedema and haemorrhage, whereas their extent is usually correlated with the extent or the severity of the underlying disease. In this paper we propose a novel pattern recognition framework for the measurement of the extent of pulmonary infiltrates in routine chest radiographs. The proposed framework follows a hierarchical approach to the assessment of image content. It includes the following: (a) sampling of the lung fields; (b) extraction of patient-specific grey-level histogram signatures from each sample; (c) classification of the extracted signatures into classes representing normal lung parenchyma and pulmonary infiltrates; (d) the samples for which the probability of belonging to one of the two classes does not reach an acceptable level are rejected and classified according to their textural content; (e) merging of the classification results of the two classification stages. The proposed framework has been evaluated on real radiographic images with pulmonary infiltrates caused by bacterial infections. The results show that accurate measurements of the infiltration areas can be obtained with respect to each lung field area. The average measurement error rate on the considered dataset reached 9.7% ± 1.0%.

  8. Cardiac magnetic resonance imaging-derived pulmonary artery distensibility index correlates with pulmonary artery stiffness and predicts functional capacity in patients with pulmonary arterial hypertension

    International Nuclear Information System (INIS)

    Kang, Ki-Woon; Chang, Hyuk-Jae; Kim, Young-Jin; Choi, Byoung-Wook; Yang, Woo-In; Shim, Chi-Young; Ha, Jongwon; Chung, Namsik; Lee, Hye-Sun

    2011-01-01

    Increased stiffness of the pulmonary vascular bed is known to increase mortality in patients with pulmonary arterial hypertension (PAH); and pulmonary artery (PA) stiffness is also thought to be associated with exercise capacity. The purpose of the present study was to investigate whether cardiac magnetic resonance imaging (CMRI)-derived PA distensibility index correlates with PA stiffness estimated on right heart catheterization (RHC) and predicts functional capacity (FC) in patients with PAH. Thirty-five consecutive PAH patients (23% male, mean age, 44±13 years; 69% idiopathic) underwent CMRI, RHC, and 6-min walk test (6MWT). PA distensibility indices were derived from cross-sectional area change (%) in the transverse view, perpendicular to the axis of the main PA, on CMRI [(maximum area-minimum area)/minimum area during cardiac cycle]. Among the PA stiffness indices, pulmonary vascular resistance (PVR) and PA capacitance were calculated using hemodynamic dataset from RHC. CMRI-derived PA distensibility was inversely correlated with PVR (R 2 =0.34, P 2 =0.35, P 2 =0.61, P<0.001). Furthermore, PA distensibility <20% predicted poor FC (<400 m in 6MWT) with a sensitivity of 82% and a specificity of 94%. Non-invasive CMRI-derived PA distensibility index correlates with PA stiffness and can predict FC in patients with PAH. (author)

  9. Bag of frequencies: a descriptor of pulmonary nodules in Computed Tomography images

    NARCIS (Netherlands)

    Ciompi, F.; Jacobs, C.; Scholten, E.T.; Wille, M.M.W.; Jong, P.A. de; Prokop, M.; Ginneken, B. van

    2015-01-01

    We present a novel descriptor for the characterization of pulmonary nodules in computed tomography (CT) images. The descriptor encodes information on nodule morphology and has scale-invariant and rotation-invariant properties. Information on nodule morphology is captured by sampling intensity

  10. Optimal Monochromatic Energy Levels in Spectral CT Pulmonary Angiography for the Evaluation of Pulmonary Embolism

    Science.gov (United States)

    Wu, Huawei; Zhang, Qing; Hua, Jia; Hua, Xiaolan; Xu, Jianrong

    2013-01-01

    Background The aim of this study was to determine the optimal monochromatic spectral CT pulmonary angiography (sCTPA) levels to obtain the highest image quality and diagnostic confidence for pulmonary embolism detection. Methods The Institutional Review Board of the Shanghai Jiao Tong University School of Medicine approved this study, and written informed consent was obtained from all participating patients. Seventy-two patients with pulmonary embolism were scanned with spectral CT mode in the arterial phase. One hundred and one sets of virtual monochromatic spectral (VMS) images were generated ranging from 40 keV to 140 keV. Image noise, clot diameter and clot to artery contrast-to-noise ratio (CNR) from seven sets of VMS images at selected monochromatic levels in sCTPA were measured and compared. Subjective image quality and diagnostic confidence for these images were also assessed and compared. Data were analyzed by paired t test and Wilcoxon rank sum test. Results The lowest noise and the highest image quality score for the VMS images were obtained at 65 keV. The VMS images at 65 keV also had the second highest CNR value behind that of 50 keV VMS images. There was no difference in the mean noise and CNR between the 65 keV and 70 keV VMS images. The apparent clot diameter correlated with the keV levels. Conclusions The optimal energy level for detecting pulmonary embolism using dual-energy spectral CT pulmonary angiography was 65–70 keV. Virtual monochromatic spectral images at approximately 65–70 keV yielded the lowest image noise, high CNR and highest diagnostic confidence for the detection of pulmonary embolism. PMID:23667583

  11. Effects of electrocardiogram gating on CT pulmonary angiography image quality

    International Nuclear Information System (INIS)

    Ardley, Nicholas D.; Lau, Ken K.; Troupis, John M.; Buchan, Kevin; Paul, Eldho

    2014-01-01

    Pulmonary embolism (PE) is the third most common cause of death from cardiovascular disease. Computed-tomographic pulmonary angiography (CTPA) is an accurate and safe test for diagnosing PE. The aim of this retrospective analysis was to evaluate the effects on image quality (IQ) of electrocardiogram (ECG) gating during CTPA. Fifty consecutive patients presenting for CTPA were included in the study. A single acquisition was performed, resulting in two reconstructions: one at 75% of the R–R interval and the other without ECG influence. IQ evaluation was undertaken by two radiologists, focusing on respiratory and cardiac motion, image noise, low-contrast resolution, vessel and lung clarity, contrast media opacification and artefacts. Various regions of the lungs and vasculature were evaluated, and IQ scores were statistically compared. For the ECG-tagged reconstructions, IQ was noted to be better overall with regard to vessel clarity (P<0.05) and cardiac motion (P<0.05), while lung clarity was better only in the left lower zone (P<0.05). IQ was better with regard to image noise (P<0.05) and low-contrast resolution (P<0.05) in the non-ECG-tagged reconstructions. No statistical IQ difference between the two types of reconstruction was noted with regard to respiratory motion, contrast media opacification or presence of artefacts. The two types of reconstruction provide complementary information for evaluating CTPA results.

  12. Melatonin suppresses acrolein-induced IL-8 production in human pulmonary fibroblasts.

    Science.gov (United States)

    Kim, Gun-Dong; Lee, Seung Eun; Kim, Tae-Ho; Jin, Young-Ho; Park, Yong Seek; Park, Cheung-Seog

    2012-04-01

    Cigarette smoke (CS) causes harmful alterations in the lungs and airway structures and functions that characterize chronic obstructive pulmonary disease (COPD). In addition to COPD, active cigarette smoking causes other respiratory diseases and diminishes health status. Furthermore, recent studies show that, α, β-unsaturated aldehyde acrolein in CS induces the production of interleukin (IL)-8, which is known to be related to bronchitis, rhinitis, pulmonary fibrosis, and asthma. In addition, lung and pulmonary fibroblasts secrete IL-8, which has a chemotactic effect on leukocytes, and which in turn, play a critical role in lung inflammation. On the other hand, melatonin regulates circadian rhythm homeostasis in humans and has many other effects, which include antioxidant and anti-inflammatory effects, as demonstrated by the reduced expressions of iNOS, IL-1β, and IL-6 and increased glutathione (GSH) and superoxide dismutase activities. In this study, we investigated whether melatonin suppresses acrolein-induced IL-8 secretion in human pulmonary fibroblasts (HPFs). It was found that acrolein-induced IL-8 production was accompanied by increased levels of phosphorylation of Akt and extracellular signal-regulated kinases (ERK1/2) in HPFs, and that melatonin suppressed IL-8 production in HPFs. These results suggest that melatonin suppresses acrolein-induced IL-8 production via ERK1/2 and phosphatidylinositol 3-kinase (PI3K)/Akt signal inhibition in HPFs. © 2011 John Wiley & Sons A/S.

  13. Whole heart cine MR imaging of pulmonary veins in patients with congenital heart disease. Comparison with Spin Echo MR imaging

    International Nuclear Information System (INIS)

    Mitsui, Hideaki; Saito, Haruo; Ishibashi, Tadashi; Takahashi, Shoki; Zuguchi, Masayuki; Yamada, Shogo

    2002-01-01

    We evaluated the accuracy of Whole Heart Cine (WHC) magnetic resonance (MR) imaging in the depiction of pulmonary veins (PVs) in patients with congenital heart disease (CHD) compared to that of spin echo (SE) MR imaging. Among our 35 patients, 4 patients had anomalous PV return. Detectability of four PVs on each MR examination images were evaluated. MR imaging is an effective modality for the clarification of PVs, and WHC MR imaging is more useful in delineating PV anomalies than SE MR imaging. (author)

  14. Evaluation of regional pulmonary ventilation by videodensitometry using a new X-ray image processor

    International Nuclear Information System (INIS)

    Fujii, Tadashige; Kanai, Hisakata; Handa, Kenjiro; Takizawa, Masaomi

    1988-01-01

    A new video image processing device has been produced in order to assess regional pulmonary ventilation. This device consists of a microcomputer, digital frame memory, digitizer, videomonitor, joystick and videotape recorder. The changing radiographic density of the lungs during deep respiration and forced expiration is recorded by the videotape recorder, which is connected to an image intensifier television system. This device allows the examining physician to place 6 rectangular windows of variable size over any portion of the video image using the joystick, and to measure the brightness level within these windows simultaneously. It is very characteristic that the video-densitometric curve and marks of the windows are superimposed on the frozen final frame of the sampled images. By this procedure, fair videodensigrams were obtained in various respiratory diseases, and reduction of ventilatory amplitude was shown in the hypoventilatory regions. The joint use of video-densitometry and perfusion lung scintigraphy provided helpful information concerning the regional ventilation/perfusion relationship. The videodensitometry of the lung the new X-ray image processor offers routine screening evaluation of regional pulmonary ventilation abnormalities over the entire video image of the lungs without more effort required of the patients. (author)

  15. Significance of MR imaging in patients with pulmonary hypertension

    International Nuclear Information System (INIS)

    Frank, H.; Globits, S.; Mayr, H.; Lang, I.; Kneussl, M.; Glogar, D.; Miczoch, J.; Neuhold, A.; Imhof, H.

    1989-01-01

    To determine the diagnostic impact of MR imaging in pulmonary hypertension (PH), the authors have examined 12 PH patients with a 0.5- or 1.5-T magnet in a double-angulation projection with multisection, multiphase technique and a gradient-echo sequence. MR data were evaluated for right ventricular volumes or function and compared with data from 10 control subjects. In PH patients, MR imaging showed right ventricular enlargement with hypertrophy, right atrial enlargement, and abnormal septal motion. Right ventricular (RV) function was compromised, with reduced RV circumferential shortening. PH patients had a severe reduction of long-axis shortening and variable reduction of short-axis shortening that correlated with the degree of PH (r = .68, P <.01)

  16. Usefulness of virtual images of the visceral pleura in identifying the localization of peripheral small pulmonary nodules intraoperatively

    International Nuclear Information System (INIS)

    Kambayashi, Takatoyo

    2011-01-01

    The objective of this study was to assess the usefulness of virtual images of the visceral pleura in identifying the localization of peripheral small pulmonary nodules intraoperatively. We examined 12 cases with 12 peripheral small pulmonary nodules between 2008 and 2010. All lesions were predicted to be difficult to identify during surgery, and virtual images of the visceral pleura were made and evaluated before surgery. We predicted the usefulness of virtual images of the visceral pleura in identifying the localization of peripheral small pulmonary nodules. The mean maximum dimensions were 10.5±4.36 mm. The mean depth from the visceral pleura was 4.0±4.67 mm. The lesions were the solid type in 6 cases and the ground-glass opacity type in 6 cases. In 7 cases primary lung cancer was present, while the other 5 cases had only benign lesions. In all cases, changes in the visceral pleura could be identified with virtual images of the visceral pleura before surgery. We identified 7 lesions out of 12 intraoperatively. The reasons for the failure to identify the lesions were an inability to adequately observe the visceral pleura because of pleural adhesion, or failure to perform single lung ventilation in 3 cases. Another reason was that the changes in the visceral pleura were too minor to identify intraoperatively (2 cases). Virtual images of the visceral pleura may be useful for identifying the localization of peripheral small pulmonary nodules, and the prediction of whether or not the identification of lesions is possible intraoperatively, without preoperative marking in order to identify peripheral pulmonary nodules. (author)

  17. Assessing the utility of autofluorescence-based pulmonary optical endomicroscopy to predict the malignant potential of solitary pulmonary nodules in humans

    Science.gov (United States)

    Seth, Sohan; Akram, Ahsan R.; McCool, Paul; Westerfeld, Jody; Wilson, David; McLaughlin, Stephen; Dhaliwal, Kevin; Williams, Christopher K. I.

    2016-08-01

    Solitary pulmonary nodules are common, often incidental findings on chest CT scans. The investigation of pulmonary nodules is time-consuming and often leads to protracted follow-up with ongoing radiological surveillance, however, clinical calculators that assess the risk of the nodule being malignant exist to help in the stratification of patients. Furthermore recent advances in interventional pulmonology include the ability to both navigate to nodules and also to perform autofluorescence endomicroscopy. In this study we assessed the efficacy of incorporating additional information from label-free fibre-based optical endomicrosopy of the nodule on assessing risk of malignancy. Using image analysis and machine learning approaches, we find that this information does not yield any gain in predictive performance in a cohort of patients. Further advances with pulmonary endomicroscopy will require the addition of molecular tracers to improve information from this procedure.

  18. Automated detection of pulmonary nodules in PET/CT images: Ensemble false-positive reduction using a convolutional neural network technique

    Energy Technology Data Exchange (ETDEWEB)

    Teramoto, Atsushi, E-mail: teramoto@fujita-hu.ac.jp [Faculty of Radiological Technology, School of Health Sciences, Fujita Health University, 1-98 Dengakugakubo, Kutsukake, Toyoake, Aichi 470-1192 (Japan); Fujita, Hiroshi [Department of Intelligent Image Information, Division of Regeneration and Advanced Medical Sciences, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194 (Japan); Yamamuro, Osamu; Tamaki, Tsuneo [East Nagoya Imaging Diagnosis Center, 3-4-26 Jiyugaoka, Chikusa-ku, Nagoya, Aichi 464-0044 (Japan)

    2016-06-15

    Purpose: Automated detection of solitary pulmonary nodules using positron emission tomography (PET) and computed tomography (CT) images shows good sensitivity; however, it is difficult to detect nodules in contact with normal organs, and additional efforts are needed so that the number of false positives (FPs) can be further reduced. In this paper, the authors propose an improved FP-reduction method for the detection of pulmonary nodules in PET/CT images by means of convolutional neural networks (CNNs). Methods: The overall scheme detects pulmonary nodules using both CT and PET images. In the CT images, a massive region is first detected using an active contour filter, which is a type of contrast enhancement filter that has a deformable kernel shape. Subsequently, high-uptake regions detected by the PET images are merged with the regions detected by the CT images. FP candidates are eliminated using an ensemble method; it consists of two feature extractions, one by shape/metabolic feature analysis and the other by a CNN, followed by a two-step classifier, one step being rule based and the other being based on support vector machines. Results: The authors evaluated the detection performance using 104 PET/CT images collected by a cancer-screening program. The sensitivity in detecting candidates at an initial stage was 97.2%, with 72.8 FPs/case. After performing the proposed FP-reduction method, the sensitivity of detection was 90.1%, with 4.9 FPs/case; the proposed method eliminated approximately half the FPs existing in the previous study. Conclusions: An improved FP-reduction scheme using CNN technique has been developed for the detection of pulmonary nodules in PET/CT images. The authors’ ensemble FP-reduction method eliminated 93% of the FPs; their proposed method using CNN technique eliminates approximately half the FPs existing in the previous study. These results indicate that their method may be useful in the computer-aided detection of pulmonary nodules

  19. Automated detection of pulmonary nodules in PET/CT images: Ensemble false-positive reduction using a convolutional neural network technique

    International Nuclear Information System (INIS)

    Teramoto, Atsushi; Fujita, Hiroshi; Yamamuro, Osamu; Tamaki, Tsuneo

    2016-01-01

    Purpose: Automated detection of solitary pulmonary nodules using positron emission tomography (PET) and computed tomography (CT) images shows good sensitivity; however, it is difficult to detect nodules in contact with normal organs, and additional efforts are needed so that the number of false positives (FPs) can be further reduced. In this paper, the authors propose an improved FP-reduction method for the detection of pulmonary nodules in PET/CT images by means of convolutional neural networks (CNNs). Methods: The overall scheme detects pulmonary nodules using both CT and PET images. In the CT images, a massive region is first detected using an active contour filter, which is a type of contrast enhancement filter that has a deformable kernel shape. Subsequently, high-uptake regions detected by the PET images are merged with the regions detected by the CT images. FP candidates are eliminated using an ensemble method; it consists of two feature extractions, one by shape/metabolic feature analysis and the other by a CNN, followed by a two-step classifier, one step being rule based and the other being based on support vector machines. Results: The authors evaluated the detection performance using 104 PET/CT images collected by a cancer-screening program. The sensitivity in detecting candidates at an initial stage was 97.2%, with 72.8 FPs/case. After performing the proposed FP-reduction method, the sensitivity of detection was 90.1%, with 4.9 FPs/case; the proposed method eliminated approximately half the FPs existing in the previous study. Conclusions: An improved FP-reduction scheme using CNN technique has been developed for the detection of pulmonary nodules in PET/CT images. The authors’ ensemble FP-reduction method eliminated 93% of the FPs; their proposed method using CNN technique eliminates approximately half the FPs existing in the previous study. These results indicate that their method may be useful in the computer-aided detection of pulmonary nodules

  20. Development and application of pulmonary structure-function registration methods: towards pulmonary image-guidance tools for improved airway targeted therapies and outcomes

    Science.gov (United States)

    Guo, Fumin; Pike, Damien; Svenningsen, Sarah; Coxson, Harvey O.; Drozd, John J.; Yuan, Jing; Fenster, Aaron; Parraga, Grace

    2014-03-01

    Objectives: We aimed to develop a way to rapidly generate multi-modality (MRI-CT) pulmonary imaging structurefunction maps using novel non-rigid image registration methods. This objective is part of our overarching goal to provide an image processing pipeline to generate pulmonary structure-function maps and guide airway-targeted therapies. Methods: Anatomical 1H and functional 3He MRI were acquired in 5 healthy asymptomatic ex-smokers and 7 ex-smokers with chronic obstructive pulmonary disease (COPD) at inspiration breath-hold. Thoracic CT was performed within ten minutes of MRI using the same breath-hold volume. Landmark-based affine registration methods previously validated for imaging of COPD, was based on corresponding fiducial markers located in both CT and 1H MRI coronal slices and compared with shape-based CT-MRI non-rigid registration. Shape-based CT-MRI registration was developed by first identifying the shapes of the lung cavities manually, and then registering the two shapes using affine and thin-plate spline algorithms. We compared registration accuracy using the fiducial localization error (FLE) and target registration error (TRE). Results: For landmark-based registration, the TRE was 8.4±5.3 mm for whole lung and 7.8±4.6 mm for the R and L lungs registered independently (p=0.4). For shape-based registration, the TRE was 8.0±4.6 mm for whole lung as compared to 6.9±4.4 mm for the R and L lung registered independently and this difference was significant (p=0.01). The difference for shape-based (6.9±4.4 mm) and landmark-based R and L lung registration (7.8±4.6 mm) was also significant (p=.04) Conclusion: Shape-based registration TRE was significantly improved compared to landmark-based registration when considering L and R lungs independently.

  1. Dual time point FDG PET imaging in evaluating pulmonary nodules with low FDG avidity

    International Nuclear Information System (INIS)

    Chen Xiang; Zhao Jinhua; Song Jianhua; Xing Yan; Wang Taisong; Qiao Wenli

    2010-01-01

    A standardized uptake value (SUV) of 2.5 is frequently used as criteria to evaluate pulmonary lesions. However, false results may occur. Some studies have shown the usefulness of delayed PET for improving accuracy, while others recently have shown fewer promising results. This study was designed to investigate the accuracy of dual time point (DTP) FDG PET imaging in the evaluation of pulmonary lesions with an initial SUV less than 2.5. DTP FDG PET studies were conducted about 1 and 2 hours after FDG injection, and pulmonary lesions with an initial SUV less than 2.5 were identified. Nodules with pathologic results or imaging follow up were included. The differences in SUV and retention index (RI) between benign and malignant pulmonary lesions were analyzed. Receiver operating characteristics (ROC) analysis was performed to evaluate the discriminating validity of SUV and RI. 51 lesions were finally included. A RI greater than 0% was observed in 64% of the benign lesions; 56% had a RI greater than 10%. Among the malignancies, 80.8% had a RI greater than 0%, and 61.5% had a RI greater than 10%. We found no significant differences in SUV and RI between benign and malignant lesions. The area under the ROC curve did not differ from 0.5 whether using SUV or the retention index. Utilizing a SUV increase of 10%, the sensitivity was 61.5%, specificity 44% and accuracy was 52.9%. Dual time point FDG PET may not be of benefit in the evaluation of pulmonary nodules with low FDG avidity. (authors)

  2. Experimental study of pulmonary thromboembolism ischemia-reperfusion injury in canine model

    International Nuclear Information System (INIS)

    Li Jianjun; Zhai Renyou; Zhang Dongpo; Huang Qiang; Yu Ping; Dai Dingke; Bao Na

    2009-01-01

    Objective: To establish a canine model of pulmonary thromboembolism ischemia- reperfusion injury (PTE IRI) that may be used for imaging study. Methods: Ten male and 10 female healthy mongrel canines with (18.6±0.8) kg/body weight, were used. A Swan-Ganz catheter was introduced into the right internal jugular vein via a preset percutaneous sheath using the Seldinger technique, and then was with further insertion the pulmonary artery. Balloon occlusion of the right inferior lobe pulmonary artery for 4 hours was followed by removing the catheter and ending with 4 hours of reperfusion. CT was performed before ischemia, 4 h after ischemia and 4 h after reperfusion. At last, dogs were killed and the bilateral inferior lung tissues were prepared for the examination by light and electronic microscopy. Results: All canine models were successfully developed pulmonary thromboembolism ischemia-reperfusion injury. The examination of CT, light and electron microscopy consistently indicated the presence of permeability pulmonary edema after reperfusion. Conclusions: A closed-chest canine model in vivo of pulmonary thromboembolism ischemia-reperfusion injury can be established with virtual pathophysiological process in human and be as well as for imaging experimental study. (authors)

  3. Diagnóstico por imagem do tromboembolismo pulmonar agudo Imaging of acute pulmonary thromboembolism

    Directory of Open Access Journals (Sweden)

    C. Isabela S. Silva

    2004-10-01

    Full Text Available O diagnóstico do tromboembolismo pulmonar agudo é baseado na probabilidade clínica, uso do dímero D (quando disponível e na avaliação por imagem. Os principais métodos de imagem utilizados no diagnóstico são representados por cintilografia ventilação-perfusão, angiografia pulmonar e tomografia computadorizada (TC. Na última década vários estudos têm demonstrado que a TC espiral apresenta elevada sensibilidade e especificidade no diagnóstico de tromboembolismo pulmonar agudo. Uma melhor avaliação das artérias pulmonares tornou-se possível com a recente introdução dos equipamentos de TC espirais com multidetectores. Vários pesquisadores têm sugerido que a angiografia pulmonar por TC espiral deve substituir a cintilografia na avaliação de pacientes com suspeita clinica de tromboembolismo pulmonar agudo. Os autores discutem os principais métodos de imagem utilizados no diagnóstico de tromboembolismo pulmonar agudo enfatizando o papel da TC espiral.The diagnosis of acute pulmonary thromboembolism is based on the clinical probability, use of D-dimer (when available and imaging. The main imaging modalities used in the diagnosis are ventilation-perfusion (V/Q, scintigraphy, angiography, and computed tomography (CT. In the last decade several studies have demonstrated that spiral CT has a high sensitivity and specificity in the diagnosis of acute pulmonary thromboembolism. The evaluation of the pulmonary arteries has further improved with the recent introduction of multidetector spiral CT scanners. Various investigators have suggested that spiral CT pulmonary angiography should replace scintigraphy in the assessment of patients whose symptoms are suggestive of acute PE. This article discusses the role of the various imaging modalities in the diagnosis of acute pulmonary thromboembolism with emphasis on the role of spiral CT.

  4. Potential of image-guidance, gating and real-time tracking to improve accuracy in pulmonary stereotactic body radiotherapy

    International Nuclear Information System (INIS)

    Guckenberger, Matthias; Krieger, Thomas; Richter, Anne; Baier, Kurt; Wilbert, Juergen; Sweeney, Reinhart A.; Flentje, Michael

    2009-01-01

    Purpose: To evaluate the potential of image-guidance, gating and real-time tumor tracking to improve accuracy in pulmonary stereotactic body radiotherapy (SBRT). Materials and methods: Safety margins for compensation of inter- and intra-fractional uncertainties of the target position were calculated based on SBRT treatments of 43 patients with pre- and post-treatment cone-beam CT imaging. Safety margins for compensation of breathing motion were evaluated for 17 pulmonary tumors using respiratory correlated CT, model-based segmentation of 4D-CT images and voxel-based dose accumulation; the target in the mid-ventilation position was the reference. Results: Because of large inter-fractional base-line shifts of the tumor, stereotactic patient positioning and image-guidance based on the bony anatomy required safety margins of 12 mm and 9 mm, respectively. Four-dimensional image-guidance targeting the tumor itself and intra-fractional tumor tracking reduced margins to <5 mm and <3 mm, respectively. Additional safety margins are required to compensate for breathing motion. A quadratic relationship between tumor motion and margins for motion compensation was observed: safety margins of 2.4 mm and 6 mm were calculated for compensation of 10 mm and 20 mm motion amplitudes in cranio-caudal direction, respectively. Conclusion: Four-dimensional image-guidance with pre-treatment verification of the target position and online correction of errors reduced safety margins most effectively in pulmonary SBRT.

  5. Digital angiography in pulmonary embolism

    International Nuclear Information System (INIS)

    Bjoerk, L.

    1986-01-01

    Pulmonary digital subtraction angiography was diagnostic in 98.3% of patients with possible acute pulmonary embolism. The procedure was well tolerated even in severely ill patients. A large image intensifier made simultaneous imaging of both lungs possible reducing the number of contrast injections necessary. Small volumes of low iso-osmolar concentration of modern contrast media were used. There was no need for catherization of the pulmonary artery. Theoretical considerations and our limited experience indicate that this will reduce the number of complications compared with conventional pulmonary angiography. The procedure is rapidly performed and the diagnostic accuracy high. This makes digital subtraction angiography cost effective. Digital pulmonary angiography can be recommended as the primary diagnostic method in most patients with possible pulmonary embolism. (orig.)

  6. Non-infective pulmonary disease in HIV-positive children

    International Nuclear Information System (INIS)

    Theron, Salomine; Andronikou, Savvas; George, Reena; Plessis, Jaco du; Hayes, Murray; Mapukata, Ayanda; Goussard, Pierre; Gie, Robert

    2009-01-01

    It is estimated that over 90% of children infected with human immunodeficiency virus (HIV) live in the developing world and particularly in sub-Saharan Africa. Pulmonary disease is the most common clinical feature of acquired immunodeficiency syndrome (AIDS) in infants and children causing the most morbidity and mortality, and is the primary cause of death in 50% of cases. Children with lung disease are surviving progressively longer because of earlier diagnosis and antiretroviral treatment and, therefore, thoracic manifestations have continued to change and unexpected complications are being encountered. It has been reported that 33% of HIV-positive children have chronic changes on chest radiographs by the age of 4 years. Lymphocytic interstitial pneumonitis is common in the paediatric HIV population and is responsible for 30-40% of pulmonary disease. HIV-positive children also have a higher incidence of pulmonary malignancies, including lymphoma and pulmonary Kaposi sarcoma. Immune reconstitution inflammatory syndrome is seen after highly active antiretroviral treatment. Complications of pulmonary infections, aspiration and rarely interstitial pneumonitis are also seen. This review focuses on the imaging findings of non-infective chronic pulmonary disease. (orig.)

  7. Paediatric CT: the effects of increasing image noise on pulmonary nodule detection

    International Nuclear Information System (INIS)

    Punwani, Shonit; Davies, Warren; Greenhalgh, Rebecca; Humphries, Paul; Zhang, Jie

    2008-01-01

    A radiation dose of any magnitude can produce a detrimental effect manifesting as an increased risk of cancer. Cancer development may be delayed for many years following radiation exposure. Minimizing radiation dose in children is particularly important. However, reducing the dose can reduce image quality and may, therefore, hinder lesion detection. We investigated the effects of reducing the image signal-to-noise ratio (SNR) on CT lung nodule detection for a range of nodule sizes. A simulated nodule was placed at the periphery of the lung on an axial CT slice using image editing software. Multiple copies of the manipulated image were saved with various levels of superimposed noise. The image creation process was repeated for a range of nodule sizes. For a given nodule size, output images were read independently by four Fellows of The Royal College of Radiologists. The overall sensitivities in detecting nodules for the SNR ranges 0.8-0.99, 1-1.49, and 1.5-2.35 were 40.5%, 77.3% and 90.3%, respectively, and the specificities were 47.9%, 73.3% and 75%, respectively. The sensitivity for detecting lung nodules increased with nodule size and increasing SNR. There was 100% sensitivity for the detection of nodules of 4-10 mm in diameter at SNRs greater than 1.5. Reducing medical radiation doses in children is of paramount importance. For chest CT examinations this may be counterbalanced by reduced sensitivity and specificity combined with an increased uncertainty of pulmonary nodule detection. This study demonstrates that pulmonary nodules of 4 mm and greater in diameter can be detected with 100% sensitivity provided that the perceived image SNR is greater than 1.5. (orig.)

  8. Imaging pulmonary fibrosis

    International Nuclear Information System (INIS)

    Brauner, M.W.; Rety, F.; Naccache, J.M.; Girard, F.; Valeyre, D.F.

    2001-01-01

    Localized fibrosis of the lung is usually scar tissue while diffuse pulmonary fibrosis is more often a sign of active disease. Chronic infiltrative lung disease may be classified into four categories: idiopathic pneumonitis, collagen diseases, granulomatosis (sarcoidosis), and caused by known diseases (pneumoconiosis, hypersensitivity pneumonitis, drug-induced lung disease, radiation). (authors)

  9. Experimental study on early detection of alloxan-induced pulmonary injury by magnetic resonance imaging

    International Nuclear Information System (INIS)

    Awai, Kazuo; Fukuda, Hiroshi; Nakamura, Susumu; Fujikawa, Koichi; Utsumi, Toshio; Kajima, Toshio; Azuma, Kazuyoshi; Ito, Katsuhide.

    1995-01-01

    We studied the early detection of alloxan-induced pulmonary injury by magnetic resonance imaging in vivo. Permeability edema was induced in ten rats by intravenous injection of alloxan at 100 mg/Kg. T1-and T2-weighted images were acquired in five rats every 30 min for 120 min after alloxan injection. Five rats served as controls. The rats were sacrificed immediately after imaging and examined microscopically. CT images were also acquired in five rats every 30 min for 120 min after alloxan injection. Five rats served as controls. The rats were sacrificed immediately after imaging, and the wet-to-dry ratio of the lung was measured. In T1-weighted images, relative signal intensity from the lung with permeability edema rose from 30 min to 120 min, and was greater than that from normal lung every time. In T2-weighted images, there was no statistically significant difference in relative signal intensity of the lung between permeability edema and the control during 120 min. In CT images, there was also no statistically significant difference in lung density between permeability edema and the control during 120 min. There was no statistically significant difference in the wet-to-dry lung ratio between edematous lung and normal lung. In histological study, mild congestion and interstitial edema were observed in edematous lung. These results suggest the potential capability of MR imaging in detecting the early phase of permeability pulmonary edema. (author)

  10. sup(99m)Tc particle perfusion/sup(99m)Tc aerosol ventilation imaging using a subtraction technique in suspected pulmonary embolism

    International Nuclear Information System (INIS)

    Poeyhoenen, L.; Turjanmaa, V.; Virjo, A.

    1985-01-01

    It is generally acknowledged that ventilation-perfusion mismatch is diagnostic of pulmonary embolism. Lung ventilation imaging with radioactive gases is a good method for the detection of pulmonary embolism, but it is not in widespread use because of the limited availability of sup(81m)Kr gas and the poor physical properties of 133 Xe. Aerosols have been proposed, instead of gases for use in lung ventilation imaging. As perfusion and ventilation distributions may change very rapidly, the two imaging procedures should be done in rapid succession. The cheapest way to perform the combined perfusion-ventilation (Q/V) imaging is to use sup(99m)Tc-labelled macroaggregates and aerosols. In our method the perfusion imaging was done first, immediately followed by the ventilation imaging with sup(99m)Tc-labelled aerosols. A computer program was used to subtract the contribution of the perfusion from the combined Q/V image so that the pure ventilation image alone was obtained. The method was tested in 41 patients with suspected pulmonary embolism. (orig.)

  11. The imaging appearances of the pulmonary mucormycosis in patients with acquired immunodeficiency syndrome

    International Nuclear Information System (INIS)

    Liu Jinxin; Tang Xiaoping; Zhang Lieguang; Jiang Songfeng; Chen Bihua; Gan Xinqing; Huang Ruilian; Shi Hongling; Huang Wuzhi; Huang Deyang; Tang Yong

    2009-01-01

    Objective: To manifest the imaging appearances of the pulmonary mucormycosis in patients with acquired immunodeficiency syndrome (AIDS). Methods: The radiographic and high resolution computed tomography (HRCT) features of the pulmonary, mucormycosis in 13 patients with AIDS were retrospectively analyzed. Results: On radiography, the infiltrative lesions were found in 5 patients, 7 cases had reticular pattern, 4 cases had pleural effusion, 4 cases had enlarged hilar and mediastinal lymph nodes, 3 cases had diffuse milliary lesions, 3 cases had masses, 2 cases had ground-glass shadows, 2 cases had cystic lesions, cavity, pleural thickening, pericardial effusion and focal pneumothorax was presented in 1 case respectively. On HRCT, 7 cases had enlarged mediastinal lymph nodes, 7 cases had interlobular septal thickening, the infiltrative lesion were found in 6 patients, 5 cases had diffuse milliary lesions, 4 cases had pleural effusion, 3 cases had masses, 2 eases had ground-glass shadows, 2 cases had cystic lesions, cavity, pleural thickening, focal bronchiectasis, pericardial effusion and focal pneumothorax was presented in 1 case respectively. Conclusion: The main imaging appearances of the pulmonary mucormycosis in patients with AIDS include diffuse milliary lesion, enlarged hilar and mediastinal lymph node, interlobular septal thickening, infiltrative lesion, pleural effusion and mass. (authors)

  12. Pulmonary imaging techniques in the diagnosis of occupational interstitial lung disease

    International Nuclear Information System (INIS)

    Leonard, J.F.; Templeton, P.A.

    1992-01-01

    The chest radiograph is extensively used in evaluating workers at risk for developing occupational lung disease. Other pulmonary imaging techniques used in conjunction with the initial chest radiograph include conventional computed tomography, high resolution computed tomography, and gallium scintigraphy. This chapter evaluates the use of these techniques and their appropriate applications in the pneumoconioses, hypersensitivity pneumonitis, berylliosis, and hard metal diseases.65 references

  13. A study on quantifying COPD severity by combining pulmonary function tests and CT image analysis

    Science.gov (United States)

    Nimura, Yukitaka; Kitasaka, Takayuki; Honma, Hirotoshi; Takabatake, Hirotsugu; Mori, Masaki; Natori, Hiroshi; Mori, Kensaku

    2011-03-01

    This paper describes a novel method that can evaluate chronic obstructive pulmonary disease (COPD) severity by combining measurements of pulmonary function tests and measurements obtained from CT image analysis. There is no cure for COPD. However, with regular medical care and consistent patient compliance with treatments and lifestyle changes, the symptoms of COPD can be minimized and progression of the disease can be slowed. Therefore, many diagnosis methods based on CT image analysis have been proposed for quantifying COPD. Most of diagnosis methods for COPD extract the lesions as low-attenuation areas (LAA) by thresholding and evaluate the COPD severity by calculating the LAA in the lung (LAA%). However, COPD is usually the result of a combination of two conditions, emphysema and chronic obstructive bronchitis. Therefore, the previous methods based on only LAA% do not work well. The proposed method utilizes both of information including the measurements of pulmonary function tests and the results of the chest CT image analysis to evaluate the COPD severity. In this paper, we utilize a multi-class AdaBoost to combine both of information and classify the COPD severity into five stages automatically. The experimental results revealed that the accuracy rate of the proposed method was 88.9% (resubstitution scheme) and 64.4% (leave-one-out scheme).

  14. Optimization of imaging before pulmonary vein isolation by radiofrequency ablation: breath-held ungated versus ECG/breath-gated MRA

    Energy Technology Data Exchange (ETDEWEB)

    Allgayer, C.; Haller, S.; Bremerich, J. [University Hospital Basel, Department of Radiology, Basel (Switzerland); Zellweger, M.J.; Sticherling, C.; Buser, P.T. [University Hospital Basel, Department of Cardiology, Basel (Switzerland); Weber, O. [University Hospital Basel, Department of Medical Physics, Basel (Switzerland)

    2008-12-15

    Isolation of the pulmonary veins has emerged as a new therapy for atrial fibrillation. Pre-procedural magnetic resonance (MR) imaging enhances safety and efficacy; moreover, it reduces radiation exposure of the patients and interventional team. The purpose of this study was to optimize the MR protocol with respect to image quality and acquisition time. In 31 patients (23-73 years), the anatomy of the pulmonary veins, left atrium and oesophagus was assessed on a 1.5-Tesla scanner with four different sequences: (1) ungated two-dimensional true fast imaging with steady precession (2D-TrueFISP), (2) ECG/breath-gated 3D-TrueFISP, (3) ungated breath-held contrast-enhanced three-dimensional turbo fast low-angle shot (CE-3D-tFLASH), and (4) ECG/breath-gated CE-3D-TrueFISP. Image quality was scored from 1 (structure not visible) to 5 (excellent visibility), and the acquisition time was monitored. The pulmonary veins and left atrium were best visualized with CE-3D-tFLASH (scores 4.50 {+-} 0.52 and 4.59 {+-} 0.43) and ECG/breath-gated CE-3D-TrueFISP (4.47 {+-} 0.49 and 4.63 {+-} 0.39). Conspicuity of the oesophagus was optimal with CE-3D-TrueFISP and 2D-TrueFISP (4.59 {+-} 0.35 and 4.19 {+-} 0.46) but poor with CE-3D-tFLASH (1.03 {+-} 0.13) (p < 0.05). Acquisition times were shorter for 2D-TrueFISP (44 {+-} 1 s) and CE-3D-tFLASH (345 {+-} 113 s) compared with ECG/breath-gated 3D-TrueFISP (634 {+-} 197 s) and ECG/breath-gated CE-3D-TrueFISP (636 {+-} 230 s) (p < 0.05). In conclusion, an MR imaging protocol comprising CE-3D-tFLASH and 2D-TrueFISP allows assessment of the pulmonary veins, left atrium and oesophagus in less than 7 min and can be recommended for pre-procedural imaging before electric isolation of pulmonary veins. (orig.)

  15. CT imaging of bronchus related to solitary pulmonary lesion: comparison of minimum intensity projection and multi-planar reconstruction

    International Nuclear Information System (INIS)

    Zhou Jun; Shan Fei; Zhang Zhiyong; Yang Shan; Zhang Xingwei; Wu Dong; Zhan Songhua

    2011-01-01

    Objective: To investigate the clinical value of 64-slice computed tomography with MinIP and MPR for imaging the bronchus related to a solitary pulmonary lesion (SPL). Methods: Seventy-five subjects with solitary pulmonary lesions underwent chest 64-slice CT and their bronchi were analyzed retrospectively. All images of thin-section (0.625 mm) were reconstructed with MPR and MinIP into images of 1, 2, 3, and 5 mm thickness and 1 mm gap in two orthogonal planes along the long axis of bronchus related to the SPL. The image quality of four series of MinIP and MPR images was evaluated in the aspect of bronchus visibility and pulmonary vascular masking. One-way ANOVA with Bonferroni correction and interclass correlation coefficient were used in the statistical analysis. Results: (1) The mean scores of display of the bronchi on MinIP images of four series (4.85, 4.77 and 4.84, 4.63 and 4.67, 4.25 and 4.28, in 1, 2, 3, and 5 mm thickness, respectively) and on MPR images of 1 or 2 mm thickness (4.77 and 4.76, 4.04 and 4.27, in 1 and 2 mm thickness, respectively) were good or excellent. MPR images of 1 mm thickness and MinIP images of 1-3 mm thickness showed no significant differences (t=0.318, P> 0.05 for all), but they were superior to MinIP images of 5 mm thickness (t=6.318 and 6.610, P 0.05). (2) The effect of suppression of pulmonary vascular markings on MinIP images was better with the increase of slice thickness (F= 45.312 and 40.415, P<0.01). The mean scores of MinIP images of 3 mm and 5 mm thickness (4.67 and 4.64, 5.00 and 4.97, for 3 and 5 mm thickness, respectively) were good or excellent, but MinIP images of 2 mm thickness were just acceptable. Conclusion: MinIP images of 3 mm thickness may display the bronchus related to SPL more clearly. (authors)

  16. Dextromethorphan mediated bitter taste receptor activation in the pulmonary circuit causes vasoconstriction.

    Science.gov (United States)

    Upadhyaya, Jasbir D; Singh, Nisha; Sikarwar, Anurag S; Chakraborty, Raja; Pydi, Sai P; Bhullar, Rajinder P; Dakshinamurti, Shyamala; Chelikani, Prashen

    2014-01-01

    Activation of bitter taste receptors (T2Rs) in human airway smooth muscle cells leads to muscle relaxation and bronchodilation. This finding led to our hypothesis that T2Rs are expressed in human pulmonary artery smooth muscle cells and might be involved in regulating the vascular tone. RT-PCR was performed to reveal the expression of T2Rs in human pulmonary artery smooth muscle cells. Of the 25 T2Rs, 21 were expressed in these cells. Functional characterization was done by calcium imaging after stimulating the cells with different bitter agonists. Increased calcium responses were observed with most of the agonists, the largest increase seen for dextromethorphan. Previously in site-directed mutational studies, we have characterized the response of T2R1 to dextromethorphan, therefore, T2R1 was selected for further analysis in this study. Knockdown with T2R1 specific shRNA decreased mRNA levels, protein levels and dextromethorphan-induced calcium responses in pulmonary artery smooth muscle cells by up to 50%. To analyze if T2Rs are involved in regulating the pulmonary vascular tone, ex vivo studies using pulmonary arterial and airway rings were pursued. Myographic studies using porcine pulmonary arterial and airway rings showed that stimulation with dextromethorphan led to contraction of the pulmonary arterial and relaxation of the airway rings. This study shows that dextromethorphan, acting through T2R1, causes vasoconstrictor responses in the pulmonary circuit and relaxation in the airways.

  17. Unusual signal intensity of congenital pulmonary airway malformation on fetal magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Owada, Keiho; Miyazaki, Osamu; Nosaka, Shunsuke [National Center for Child Health and Development, Department of Radiology, Tokyo (Japan); Matsuoka, Kentaro [National Center for Child Health and Development, Department of Pathology, Tokyo (Japan); Sago, Haruhiko [National Center for Child Health and Development, Department of Perinatal Medicine and Maternal Care, Tokyo (Japan)

    2015-05-01

    Congenital pulmonary airway malformation (CPAM) is classified into pathologically different types. These types are sometimes distinguishable by fetal lung MRI and are usually observed as higher-signal lesions on T2-weighted images than normal lung. We describe a case of unusual CPAM resembling neoplasms, with a lower signal than is found in normal lung. Histopathology showed a large number of mucogenic cells but found no evidence that could explain this feature on fetal MRI. An unusual low-signal mass associated with a pulmonary cyst in fetal lung on MRI may suggest an unusual type 1 CPAM. (orig.)

  18. Unusual signal intensity of congenital pulmonary airway malformation on fetal magnetic resonance imaging

    International Nuclear Information System (INIS)

    Owada, Keiho; Miyazaki, Osamu; Nosaka, Shunsuke; Matsuoka, Kentaro; Sago, Haruhiko

    2015-01-01

    Congenital pulmonary airway malformation (CPAM) is classified into pathologically different types. These types are sometimes distinguishable by fetal lung MRI and are usually observed as higher-signal lesions on T2-weighted images than normal lung. We describe a case of unusual CPAM resembling neoplasms, with a lower signal than is found in normal lung. Histopathology showed a large number of mucogenic cells but found no evidence that could explain this feature on fetal MRI. An unusual low-signal mass associated with a pulmonary cyst in fetal lung on MRI may suggest an unusual type 1 CPAM. (orig.)

  19. Pulmonary MRI at 3T: Non-enhanced pulmonary magnetic resonance Imaging Characterization Quotients for differentiation of infectious and malignant lesions

    Energy Technology Data Exchange (ETDEWEB)

    Nagel, Sebastian Niko, E-mail: sebastian.nagel@charite.de [Klinik und Hochschulambulanz für Radiologie, Charité – Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin (Germany); Kim, Damon, E-mail: damon.kim@charite.de [Klinik und Hochschulambulanz für Radiologie, Charité – Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin (Germany); Institut für Röntgendiagnostik, HELIOS Klinikum Berlin-Buch, Schwanebecker Chaussee 50, 13125 Berlin (Germany); Penzkofer, Tobias, E-mail: tobias.penzkofer@charite.de [Klinik und Hochschulambulanz für Radiologie, Charité – Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin (Germany); Steffen, Ingo G., E-mail: ingo.steffen@charite.de [Klinik und Hochschulambulanz für Radiologie, Charité – Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin (Germany); Wyschkon, Sebastian, E-mail: sebastian.wyschkon@charite.de [Klinik und Hochschulambulanz für Radiologie, Charité – Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin (Germany); and others

    2017-04-15

    Objective: To investigate 3T pulmonary magnetic resonance imaging (MRI) for characterization of solid pulmonary lesions in immunocompromised patients and to differentiate infectious from malignant lesions. Materials and methods: Thirty-eight pulmonary lesions in 29 patients were evaluated. Seventeen patients were immunocompromised (11 infections and 6 lymphomas) and 12 served as controls (4 bacterial pneumonias, 8 solid tumors). Ten of the 15 infections were acute. Signal intensities (SI) were measured in the lesion, chest wall muscle, and subcutaneous fat. Scaled SIs as Non-enhanced Imaging Characterization Quotients ((SI{sub Lesion} − SI{sub Muscle})/(SI{sub Fat} − SI{sub Muscle})*100) were calculated from the T2-weighted images using the mean SI (T2-NICQ{sub mean}) or the 90th percentile of SI (T2-NICQ{sub 90th}) of the lesion. Simple quotients were calculated by dividing the SI of the lesion by the SI of chest wall muscle (e.g. T1-Q{sub mean}: SI{sub Lesion}/SI{sub Muscle}). Results: Infectious pulmonary lesions showed a higher T2-NICQ{sub mean} (40.1 [14.6–56.0] vs. 20.9 [2.4–30.1], p < 0.05) and T2-NICQ{sub 90th} (74.3 [43.8–91.6] vs. 38.5 [15.8–48.1], p < 0.01) than malignant lesions. T1-Q{sub mean} was higher in malignant lesions (0.85 [0.68–0.94] vs. 0.93 [0.87–1.09], p < 0.05). Considering infections only, T2-NICQ{sub 90th} was lower when anti-infectious treatment was administered >24 h prior to MRI (81.8 [71.8–97.6] vs. 41.4 [26.6–51.1], p < 0.01). Using Youden’s index (YI), the optimal cutoff to differentiate infectious from malignant lesions was 43.1 for T2-NICQ{sub mean} (YI = 0.42, 0.47 sensitivity, 0.95 specificity) and 55.5 for T2-NICQ{sub 90th} (YI = 0.61, 0.71 sensitivity, 0.91 specificity). Combining T2-NICQ{sub 90th} and T1-Q{sub mean} increased diagnostic performance (YI = 0.72, 0.77 sensitivity, 0.95 specificity). Conclusion: Considering each quotient alone, T2-NICQ{sub 90th} showed the best diagnostic performance and

  20. Solitary pulmonary nodule

    Science.gov (United States)

    ... Adenocarcinoma - chest x-ray Pulmonary nodule - front view chest x-ray Pulmonary nodule, solitary - CT scan Respiratory system References Gotway MB, Panse PM, Gruden JF, Elicker BM. Thoracic radiology: noninvasive diagnostic imaging. In: Broaddus VC, Mason RJ, ...

  1. Basic studies on the estimation of the capacitance of human pulmonary 'venous' system using radionuclide angiocardiography

    International Nuclear Information System (INIS)

    Fujiwara, Hideki; Gotoh, Kohshi; Suzuki, Takahiko; Ohsumi, Yukio; Yagi, Yasuo; Hirakawa, Senri

    1993-01-01

    To establish the methodology to assess the capacitance of human pulmonary 'venous' system, using radionuclide angiocardiography and passive leg elevation, some basic aspects of the method were investigated. The pulmonary 'venous' system consisted of pulmonary veins and the left atrium. A short segment of the volume-pressure curve in human pulmonary 'venous' system was obtained as a line connecting the 2 points. (1) Pulmonary 'venous' volume-mean pulmonary capillary wedge pressure plot (P 'V' V-PCW plot) in supine position, where P 'V' V=0.7 x PBV. Pulmonary blood volume (PBV) was obtained by radionuclide angiocardiography, while mean pulmonary capillary wedge pressure (PCW) was simultaneously recorded by a floating catheter. (2) ΔP 'V' V-ΔPCW relation where ΔP 'V' V=0.8 x ΔPBV. Increment of the pulmonary blood volume (ΔPBV) during passive elevation of legs was measured from the baseline PBV and the percentage increase in the radioactivity over the right anterior chest during the leg elevation, after correction for (a) radioactivity from chest wall origin, and for (b) attenuation of the radioactive beams by the lung and the anterior chest wall. ΔPCW was the increase in PCW during leg elevation. The present study focussed on the details of the two corrections, (a) and (b), using, in parts, mechanical models. The present study also focussed on the reproducibility of the ΔP 'V' V, ΔPCW and Cp'v' (compliance of the pulmonary 'venous' system). The coefficient of variation was ±23% in ΔP 'V' V, ±18% in ΔPCW and ±18% in Cp'v', indicating a fair degree of reproducibility. (author)

  2. Magnetic resonance imaging of pulmonary infection in immunocompromised children: comparison with multidetector computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Ozcan, H.N.; Gormez, Aysegul; Oguz, Berna; Haliloglu, Mithat [Hacettepe University School of Medicine, Department of Radiology, Ankara (Turkey); Ozsurekci, Yasemin; Ceyhan, Mehmet [Hacettepe University School of Medicine, Department of Pediatric Infectious Disease, Ankara (Turkey); Karakaya, Jale [Hacettepe University School of Medicine, Department of Biostatistics, Ankara (Turkey); Unal, Sule; Cetin, Mualla [Hacettepe University School of Medicine, Department of Pediatric Hematology, Ankara (Turkey)

    2017-02-15

    Computed tomography (CT) is commonly used to detect pulmonary infection in immunocompromised children. To compare MRI and multidetector CT findings of pulmonary abnormalities in immunocompromised children. Seventeen neutropaenic children (6 girls; ages 2-18 years) were included. Non-contrast-enhanced CT was performed with a 64-detector CT scanner. Axial and coronal non-enhanced thoracic MRI was performed using a 1.5-T scanner within 24 h of the CT examination (true fast imaging with steady-state free precession, fat-saturated T2-weighted turbo spin echo with motion correction, T2-weighted half-Fourier single-shot turbo spin echo [HASTE], fat-saturated T1-weighted spoiled gradient echo). Pulmonary abnormalities (nodules, consolidations, ground glass opacities, atelectasis, pleural effusion and lymph nodes) were evaluated and compared among MRI sequences and between MRI and CT. The relationship between MRI sequences and nodule sizes was examined by chi- square test. Of 256 CT lesions, 207 (81%, 95% confidence interval [CI] 76-85%) were detected at MRI. Of 202 CT-detected nodules, 157 (78%, 95% CI 71-83%) were seen at motion-corrected MRI. Of the 1-5-mm nodules, 69% were detected by motion-corrected T2-weighted MRI and 38% by HASTE MRI. Sensitivity of MRI (both axial fat-saturated T2-weighted turbo spin echo with variable phase encoding directions (BLADE) images and HASTE sequences) to detect pulmonary abnormalities is promising. (orig.)

  3. Magnetic resonance imaging of pulmonary infection in immunocompromised children: comparison with multidetector computed tomography.

    Science.gov (United States)

    Ozcan, H Nursun; Gormez, Ayşegul; Ozsurekci, Yasemin; Karakaya, Jale; Oguz, Berna; Unal, Sule; Cetin, Mualla; Ceyhan, Mehmet; Haliloglu, Mithat

    2017-02-01

    Computed tomography (CT) is commonly used to detect pulmonary infection in immunocompromised children. To compare MRI and multidetector CT findings of pulmonary abnormalities in immunocompromised children. Seventeen neutropaenic children (6 girls; ages 2-18 years) were included. Non-contrast-enhanced CT was performed with a 64-detector CT scanner. Axial and coronal non-enhanced thoracic MRI was performed using a 1.5-T scanner within 24 h of the CT examination (true fast imaging with steady-state free precession, fat-saturated T2-weighted turbo spin echo with motion correction, T2-weighted half-Fourier single-shot turbo spin echo [HASTE], fat-saturated T1-weighted spoiled gradient echo). Pulmonary abnormalities (nodules, consolidations, ground glass opacities, atelectasis, pleural effusion and lymph nodes) were evaluated and compared among MRI sequences and between MRI and CT. The relationship between MRI sequences and nodule sizes was examined by chi- square test. Of 256 CT lesions, 207 (81%, 95% confidence interval [CI] 76-85%) were detected at MRI. Of 202 CT-detected nodules, 157 (78%, 95% CI 71-83%) were seen at motion-corrected MRI. Of the 1-5-mm nodules, 69% were detected by motion-corrected T2-weighted MRI and 38% by HASTE MRI. Sensitivity of MRI (both axial fat-saturated T2-weighted turbo spin echo with variable phase encoding directions (BLADE) images and HASTE sequences) to detect pulmonary abnormalities is promising.

  4. Magnetic resonance imaging of pulmonary infection in immunocompromised children: comparison with multidetector computed tomography

    International Nuclear Information System (INIS)

    Ozcan, H.N.; Gormez, Aysegul; Oguz, Berna; Haliloglu, Mithat; Ozsurekci, Yasemin; Ceyhan, Mehmet; Karakaya, Jale; Unal, Sule; Cetin, Mualla

    2017-01-01

    Computed tomography (CT) is commonly used to detect pulmonary infection in immunocompromised children. To compare MRI and multidetector CT findings of pulmonary abnormalities in immunocompromised children. Seventeen neutropaenic children (6 girls; ages 2-18 years) were included. Non-contrast-enhanced CT was performed with a 64-detector CT scanner. Axial and coronal non-enhanced thoracic MRI was performed using a 1.5-T scanner within 24 h of the CT examination (true fast imaging with steady-state free precession, fat-saturated T2-weighted turbo spin echo with motion correction, T2-weighted half-Fourier single-shot turbo spin echo [HASTE], fat-saturated T1-weighted spoiled gradient echo). Pulmonary abnormalities (nodules, consolidations, ground glass opacities, atelectasis, pleural effusion and lymph nodes) were evaluated and compared among MRI sequences and between MRI and CT. The relationship between MRI sequences and nodule sizes was examined by chi- square test. Of 256 CT lesions, 207 (81%, 95% confidence interval [CI] 76-85%) were detected at MRI. Of 202 CT-detected nodules, 157 (78%, 95% CI 71-83%) were seen at motion-corrected MRI. Of the 1-5-mm nodules, 69% were detected by motion-corrected T2-weighted MRI and 38% by HASTE MRI. Sensitivity of MRI (both axial fat-saturated T2-weighted turbo spin echo with variable phase encoding directions (BLADE) images and HASTE sequences) to detect pulmonary abnormalities is promising. (orig.)

  5. Bilateral meandering pulmonary veins

    Energy Technology Data Exchange (ETDEWEB)

    Thupili, Chakradhar R.; Udayasankar, Unni [Pediatric Imaging, Imaging Institute Cleveland Clinic, Cleveland, OH (United States); Renapurkar, Rahul [Imaging Institute Cleveland Clinic, Thoracic Imaging, L10, Cleveland, OH (United States)

    2015-06-15

    Meandering pulmonary veins is a rare clinical entity that can be mistaken for more complex congenital syndromes such as hypogenetic lung syndrome. We report imaging findings in a rare incidentally detected case of bilateral meandering pulmonary veins. We briefly discuss the role of imaging in diagnosing this condition, with particular emphasis on contrast-enhanced CT. (orig.)

  6. Motion robust high resolution 3D free-breathing pulmonary MRI using dynamic 3D image self-navigator.

    Science.gov (United States)

    Jiang, Wenwen; Ong, Frank; Johnson, Kevin M; Nagle, Scott K; Hope, Thomas A; Lustig, Michael; Larson, Peder E Z

    2018-06-01

    To achieve motion robust high resolution 3D free-breathing pulmonary MRI utilizing a novel dynamic 3D image navigator derived directly from imaging data. Five-minute free-breathing scans were acquired with a 3D ultrashort echo time (UTE) sequence with 1.25 mm isotropic resolution. From this data, dynamic 3D self-navigating images were reconstructed under locally low rank (LLR) constraints and used for motion compensation with one of two methods: a soft-gating technique to penalize the respiratory motion induced data inconsistency, and a respiratory motion-resolved technique to provide images of all respiratory motion states. Respiratory motion estimation derived from the proposed dynamic 3D self-navigator of 7.5 mm isotropic reconstruction resolution and a temporal resolution of 300 ms was successful for estimating complex respiratory motion patterns. This estimation improved image quality compared to respiratory belt and DC-based navigators. Respiratory motion compensation with soft-gating and respiratory motion-resolved techniques provided good image quality from highly undersampled data in volunteers and clinical patients. An optimized 3D UTE sequence combined with the proposed reconstruction methods can provide high-resolution motion robust pulmonary MRI. Feasibility was shown in patients who had irregular breathing patterns in which our approach could depict clinically relevant pulmonary pathologies. Magn Reson Med 79:2954-2967, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  7. Thallium-201 myocardial imaging for evaluation of pulmonary hypertension

    International Nuclear Information System (INIS)

    Ikuno, Yoshiyasu

    1979-01-01

    Thallium-201 ( 201 Tl) myocardial scintigraphy (TMS) was performed in 54 patients. The images were analysed semi-quantitatively by measuring the extent of radioisotope concentration in the right ventricular free wall and the size of the right ventricular cavity. The extent of radioisotope concentration (four degrees) was expressed as the right ventricular activity score (RVAS) and the size of the right ventricular cavity (three degrees) was expressed as the right ventricular cavity score (RVCS). The scores were added for a right ventricular total score (RVTS). To establish criteria for the diagnosis of pulmonary hypertension (PH) by means of TMS, these scores were compared with the values of pulmonary arterial mean pressure (PAMP). The criteria were evaluated by comparing them with conventional criteria for electrocardiographic diagnosis of right ventricular hypertrophy. Patients with a 2-point RVAS had a significantly higher PAMP than those with a 0 or 1-point RVAS (p 201 Tl myocardial scintigrams is a useful non-invasive method for evaluating PH and its severity. (J.P.N.)

  8. Model-based imaging of cardiac electrical function in human atria

    Science.gov (United States)

    Modre, Robert; Tilg, Bernhard; Fischer, Gerald; Hanser, Friedrich; Messnarz, Bernd; Schocke, Michael F. H.; Kremser, Christian; Hintringer, Florian; Roithinger, Franz

    2003-05-01

    Noninvasive imaging of electrical function in the human atria is attained by the combination of data from electrocardiographic (ECG) mapping and magnetic resonance imaging (MRI). An anatomical computer model of the individual patient is the basis for our computer-aided diagnosis of cardiac arrhythmias. Three patients suffering from Wolff-Parkinson-White syndrome, from paroxymal atrial fibrillation, and from atrial flutter underwent an electrophysiological study. After successful treatment of the cardiac arrhythmia with invasive catheter technique, pacing protocols with stimuli at several anatomical sites (coronary sinus, left and right pulmonary vein, posterior site of the right atrium, right atrial appendage) were performed. Reconstructed activation time (AT) maps were validated with catheter-based electroanatomical data, with invasively determined pacing sites, and with pacing at anatomical markers. The individual complex anatomical model of the atria of each patient in combination with a high-quality mesh optimization enables accurate AT imaging, resulting in a localization error for the estimated pacing sites within 1 cm. Our findings may have implications for imaging of atrial activity in patients with focal arrhythmias.

  9. Primary pulmonary choriocarcinoma after human chorionic gonadotropin normalization following hydatidiform mole

    DEFF Research Database (Denmark)

    Maestá, Izildinha; Leite, Fábio Vicente; Michelin, Odair Carlito

    2010-01-01

    BACKGROUND: Primary pulmonary choriocarcinoma (PPC) is rare and frequently leads to death. CASES: Two young patients presented with previous molar pregnancy and spontaneous serum human chorionic gonadotropin (hCG) normalization. Patient 1 was referred to our center after partial response to chemo...

  10. Pulmonary fungal infection: Imaging findings in immunocompetent and immunocompromised patients

    International Nuclear Information System (INIS)

    Chong, Semin; Lee, Kyung Soo; Yi, Chin A; Chung, Myung Jin; Kim, Tae Sung; Han, Joungho

    2006-01-01

    Histoplasmosis is the most common endemic mycosis in North America, and is followed by coccidioidomycosis and blastomycosis. Although the majority of these infections in immunocompetent persons are self-limited, some patients can develop severe pneumonitis or various forms of chronic pulmonary infection. Cryptococcoci, Aspergillus, Candidas, and Mucorals are ubiquitous organisms, which may affect immunocompromised patients. Specific imaging findings can be expected, depending on the organisms involved, underlying patients' conditions (immune status), and specific situations after immune depleting procedures

  11. Evaluation of pulmonary artery flow in acute massive pulmonary thromboembolism with MRI

    International Nuclear Information System (INIS)

    Li Yongzhong; Li Kuncheng; Zhao Xigang; Zhao Hong

    2004-01-01

    Objective: To probe into the value of MR imaging in evaluating the pulmonary artery hemodynamics and pulmonary artery pressure in acute massive pulmonary embolism. Methods: MR studies were performed in 21 patients with acute massive pulmonary embolism (diagnosed by contrast enhanced MR pulmonary angiography) and 20 healthy volunteers. The pulmonary artery hemodynamic parameters, such as the diameters of main and right pulmonary artery, peak velocity, average velocity, flow volume, flow patterns, and ejection acceleration time in main pulmonary artery were measured. The findings in patients and volunteers were compared. The hemodynamic parameters in patients were correlated with mean pulmonary artery pressure acquired with right heart catheterization. Results: The diameters of main pulmonary artery (2.93 vs 2.52 cm) and right pulmonary artery (2.49 vs 1.92 cm) in patients and volunteers showed significant differences (t=3.55, P<0.01 and t=4.19, P<0.01, respectively); Peak velocity (85.29 vs 100.63 cm/s), average velocity (11.00 vs 17.12 cm/s), flow volume (89.15 vs 98.96 ml/s), and ejection acceleration time (105.09 vs 163.85 ms) in main pulmonary artery were significantly different between patients and volunteers (t values were 2.89, 6.37, 2.21, and 9.46, respectively; P values were 0.01, <0.01, 0.03, and <0.01, respectively). The peak velocity-time curve of main pulmonary artery acquired with velocity encoded cine of MR in patients demonstrated earlier and lower peak velocity as well as abnormal retrograde flow. In addition, linear correlations were seen between the mean pulmonary pressure and the diameter of main pulmonary artery (r=0.62, P=0.001), diameter of right pulmonary artery (r=0.63, P=0.001), and ejection acceleration time (r=-0.55, P=0.005). Conclusion: MR imaging is a promising technique not only for the detection of pulmonary thromboemboli but also for the evaluation of hemodynamic parameters in pulmonary hypertension. (author)

  12. The diagnosis of small solitary pulmonary nodule: comparison of standard and inverse digital images on a high resolution monitor using ROC analysis

    International Nuclear Information System (INIS)

    Choi, Byeong Kyoo; Lee, In Sun; Seo, Joon Beom; Lee, Jin Seong; Song, Koun Sik; Lim, Tae Hwan

    2002-01-01

    To study the impact of inversion of soft-copy chest radiographs on the detection of small solitary pulmonary nodules using a high-resolution monitor. The study group consisted of 80 patients who had undergone posterior chest radiography; 40 had a solitary noncalcified pulmonary nodule approximately 1 cm in diameter, and 40 were control subjects. Standard and inverse digital images using the inversion tool on a PACS system were displayed on high-resolution monitors (2048x2560x8 bit). Ten radiologists were requested to rank each image using a five-point scale (1=definitely negative, 3=equivocal or indeterminate, 5=definite nodule), and the data were interpreted using receiver operating characteristic (ROC) analysis. The area under the ROC curve for pooled data of standard image sets was significantly larger than that of inverse image sets (0.8893 and 0.8095, respectively; p 0.05). For detecting small solitary pulmonary nodules, inverse digital images were significantly inferior to standard digital images

  13. Pulmonary infections in HIV-positive children

    International Nuclear Information System (INIS)

    George, Reena; Andronikou, Savvas; Theron, Salomine; Plessis, Jaco du; Hayes, Murray; Mapukata, Ayanda; Goussard, Pierre; Gie, Robert

    2009-01-01

    Infection of the lungs and airways by viral, bacterial, fungal and protozoal agents, often producing atypical radiographic features, is common in children with human immunodeficiency virus (HIV) infection. Conventional chest radiography and chest CT remain the most useful imaging modalities for evaluation of the immunocompromised patient presenting with a suspected pulmonary infection. In this review the radiological features of acute lung infections in this population are discussed. (orig.)

  14. Recent developments in diagnostic imaging techniques and management for acute pulmonary embolism. Multicenter registry by the Japanese Society of Pulmonary Embolism Research

    International Nuclear Information System (INIS)

    Sakuma, Masahito; Okada, Osamu; Nakamura, Mashio

    2003-01-01

    There are many reports on the diagnosis and management of acute pulmonary embolism (APE), but there have been no investigations concerning the actual conditions in which recent developments in diagnostic imaging techniques and therapies have been applied in clinical practice. The present study was designed to investigate the changes in diagnostic imaging techniques and therapies for APE. Three hundred and nine APE patients diagnosed during January 1994-October 1997 (Group 1) were compared with 257 APE patients diagnosed during November 1997-October 2000 (Group 2) in terms of the diagnostic imaging techniques and therapies for APE. Compared with Group 1, pulmonary angiography and contrast-enhanced computed tomography were more frequently performed for diagnosis in Group 2 [45.3% vs 56.8% (p=0.0069) and 13.9% vs 57.6% (p<0.0001), respectively]. Heparin and vena cava filter were used more often in Group 2 [74.4% vs 82.1% (p=0.033) and 18.4% vs 33.9% (p<0.0001), respectively]. The frequency of thrombolytic therapy was unchanged between the two groups. Warfarin use in discharged patients increased from 71.9% to 83.8% (p=0.0022). However, the examination rates for deep vein thrombosis (DVT) were low (60.8% in Group 1 and 65.4% in Group 2, p=0.29) and unchanged using any imaging techniques. The diagnostic imaging techniques for APE increased in variety and the management has improved, while the diagnosis for DVT remains unchanged. (author)

  15. Chronic thromboembolic pulmonary hypertension (CTEPH). Potential role of multidetector-row CT (MD-CT) and MR imaging in the diagnosis and differential diagnosis of the disease

    Energy Technology Data Exchange (ETDEWEB)

    Wirth, G.; Brueggemann, K.; Bostel, T.; Dueber, C.; Kreitner, K.F. [Universitaetsmedizin Mainz (Germany). Dept. of Radiology; Mayer, E. [Kerckhoff Hospital, Bad Nauheim (Germany). Dept. of Thoracic Surgery

    2014-08-15

    Chronic thromboembolic pulmonary hypertension (CTEPH) can be defined as pulmonary hypertension (resting mean pulmonary arterial pressure of 25 mm Hg or more determined at right heart catheterization) with persistent pulmonary perfusion defects. It is a rare, but underdiagnosed disease with estimated incidences ranging from 0.5% to 3.8% of patients after an acute pulmonary embolism (PE), and in up to 10% of those with a history of recurrent PE. CTEPH is the only form of pulmonary hypertension that can be surgically treated leading to normalization of pulmonary hemodynamics and exercise capacity in the vast majority of patients. The challenges for imaging in patients with suspected CTEPH are fourfold: the imaging modality should have a high diagnostic accuracy with regard to the presence of CTEPH and allow for differential diagnosis. It should enable detection of patients suitable for PEA with great certainty, and allow for quantification of PH by measuring pulmonary hemodynamics (mPAP and PVR), and finally, it can be used for therapy monitoring. This overview tries to elucidate the potential role of ECG-gated multidetector CT pulmonary angiography (MD-CTPA) and MR imaging, and summarizes the most important results that have been achieved so far. Generally speaking, ECG-gated MD-CTPA is superior to MR in the assessment of parenchymal and vascular pathologies of the lung, and allows for the assessment of cardiac structures. The implementation of iodine maps as a surrogate for lung perfusion enables functional assessment of lung perfusion by CT. MR imaging is the reference standard for the assessment of right heart function and lung perfusion, the latter delineating typical wedge-shaped perfusion defects in patients with CTEPH. New developments show that with MR techniques, an estimation of hemodynamic parameters like mean pulmonary arterial pressure and pulmonary vascular resistance will be possible. CT and MR imaging should be considered as complementary

  16. Dextromethorphan mediated bitter taste receptor activation in the pulmonary circuit causes vasoconstriction.

    Directory of Open Access Journals (Sweden)

    Jasbir D Upadhyaya

    Full Text Available Activation of bitter taste receptors (T2Rs in human airway smooth muscle cells leads to muscle relaxation and bronchodilation. This finding led to our hypothesis that T2Rs are expressed in human pulmonary artery smooth muscle cells and might be involved in regulating the vascular tone. RT-PCR was performed to reveal the expression of T2Rs in human pulmonary artery smooth muscle cells. Of the 25 T2Rs, 21 were expressed in these cells. Functional characterization was done by calcium imaging after stimulating the cells with different bitter agonists. Increased calcium responses were observed with most of the agonists, the largest increase seen for dextromethorphan. Previously in site-directed mutational studies, we have characterized the response of T2R1 to dextromethorphan, therefore, T2R1 was selected for further analysis in this study. Knockdown with T2R1 specific shRNA decreased mRNA levels, protein levels and dextromethorphan-induced calcium responses in pulmonary artery smooth muscle cells by up to 50%. To analyze if T2Rs are involved in regulating the pulmonary vascular tone, ex vivo studies using pulmonary arterial and airway rings were pursued. Myographic studies using porcine pulmonary arterial and airway rings showed that stimulation with dextromethorphan led to contraction of the pulmonary arterial and relaxation of the airway rings. This study shows that dextromethorphan, acting through T2R1, causes vasoconstrictor responses in the pulmonary circuit and relaxation in the airways.

  17. Case report: Pulmonary syphilis mimicking pulmonary hematogenous metastases on chest CT and integrated PET/CT

    International Nuclear Information System (INIS)

    Kim, Hyung Jun; Seon, Hyun Ju; Shin, Hyo Hyun; Choi, Yoo-Duk

    2011-01-01

    We report a case of syphilis with pulmonary involvement. Chest CT scan and 18 F-fluorodeoxyglucose (FDG) PET/CT showed multiple pulmonary nodules mimicking pulmonary hematogenous metastases. This was confirmed on follow-up images that showed therapeutic response to penicillin

  18. Juxta-Vascular Pulmonary Nodule Segmentation in PET-CT Imaging Based on an LBF Active Contour Model with Information Entropy and Joint Vector

    Directory of Open Access Journals (Sweden)

    Rui Hao

    2018-01-01

    Full Text Available The accurate segmentation of pulmonary nodules is an important preprocessing step in computer-aided diagnoses of lung cancers. However, the existing segmentation methods may cause the problem of edge leakage and cannot segment juxta-vascular pulmonary nodules accurately. To address this problem, a novel automatic segmentation method based on an LBF active contour model with information entropy and joint vector is proposed in this paper. Our method extracts the interest area of pulmonary nodules by a standard uptake value (SUV in Positron Emission Tomography (PET images, and automatic threshold iteration is used to construct an initial contour roughly. The SUV information entropy and the gray-value joint vector of Positron Emission Tomography–Computed Tomography (PET-CT images are calculated to drive the evolution of contour curve. At the edge of pulmonary nodules, evolution will be stopped and accurate results of pulmonary nodule segmentation can be obtained. Experimental results show that our method can achieve 92.35% average dice similarity coefficient, 2.19 mm Hausdorff distance, and 3.33% false positive with the manual segmentation results. Compared with the existing methods, our proposed method that segments juxta-vascular pulmonary nodules in PET-CT images is more accurate and efficient.

  19. Relation between lung perfusion defects and intravascular clots in acute pulmonary thromboembolism: assessment with breath-hold SPECT-CT pulmonary angiography fusion images.

    Science.gov (United States)

    Suga, Kazuyoshi; Yasuhiko, Kawakami; Iwanaga, Hideyuki; Tokuda, Osamu; Matsunaga, Naofumi

    2008-09-01

    The relation between lung perfusion defects and intravascular clots in acute pulmonary thromboembolism (PTE) was comprehensively assessed on deep-inspiratory breath-hold (DIBrH) perfusion SPECT-computed tomographic pulmonary angiography (CTPA) fusion images. Subjects were 34 acute PTE patients, who had successfully performed DIBrH perfusion SPECT using a dual-headed SPECT and a respiratory tracking system. Automated DIBrH SPECT-CTPA fusion images were used to assess the relation between lung perfusion defects and intravascular clots detected by CTPA. DIBrH SPECT visualized 175 lobar/segmental or subsegmental defects in 34 patients, and CTPA visualized 61 intravascular clots at variable locations in 30 (88%) patients, but no clots in four (12%) patients. In 30 patients with clots, the fusion images confirmed that 69 (41%) perfusion defects (20 segmental, 45 subsegmental and 4 lobar defects) of total 166 defects were located in lung territories without clots, although the remaining 97 (58%) defects were located in lung territories with clots. Perfusion defect was absent in lung territories with clots (one lobar branch and three segmental branches) in four (12%) of these patients. In four patients without clots, nine perfusion defects including four segmental ones were present. Because of unexpected dissociation between intravascular clots and lung perfusion defects, the present fusion images will be a useful adjunct to CTPA in the diagnosis of acute PTE.

  20. Multi-detector computed tomography (MDCT imaging of cardiovascular effects of pulmonary embolism: What the radiologists need to know

    Directory of Open Access Journals (Sweden)

    Mohamed Aboul-fotouh E. Mourad

    2017-09-01

    Full Text Available Background: Patients with pulmonary embolism have high mortality and morbidity rate due to right heart failure and circulatory collapse leading to sudden death. Multi-detector computed tomography MDCT can efficiently evaluate the cardiovascular factors related to pulmonary embolism. Objectives: To evaluate the diagnostic accuracy of multi-detector computed tomography (MDCT in differentiation of between sever and non-severe pulmonary embolism groups depending on the associated cardiovascular parameters and create a simple reporting system. Patients & methods: Prospective study contained 145 patients diagnosed clinically pulmonary embolism. All patients were examined by combined electrocardiographically gated computed tomography pulmonary angiography-computed tomography venography (ECG-CTPA-CTV using certain imaging criteria in a systematic manner. Results: Our study revealed 95 and 55 non-severe and severe pulmonary embolism groups respectively. Many cardiovascular parameters related to pulmonary embolism shows significant p value and can differentiate between sever and non-severe pulmonary embolism patients include pulmonary artery diameter, intraventricular septum flattening, bowing, superior vena cava and Azygos vein diameters, right and left ventricular diameters. Conclusion: Multi-detector computed tomography (MDCT can be valuable to assess the severity of pulmonary embolism using the related cardiovascular parameters and leading the management strategy aim for best outcome. Keywords: Pulmonary embolism, MDCT, Cardiovascular, Computed tomography venography

  1. Pulmonary histiocytosis X - imaging aspects of pulmonary involvement; Histiocitose X - aspectos radiologicos do acometimento pulmonar

    Energy Technology Data Exchange (ETDEWEB)

    Sabedotti, Ismail Fernando; Maeda, Lucimara; Ferreira, Daniel Miranda; Montandon, Cristiano; Marins, Jose Luiz C. [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Ciencias Medicas. Dept. de Radiologia

    1999-06-01

    Pulmonary histiocytosis X is an idiopathic disease which is and uncommon but important cause of pulmonary fibrosis in young adults. Chest radiographs and high resolution computed tomographic (HRCT) scans of the lungs of 7 patients diagnosed as pulmonary histiocytosis X were examined retrospectively. The authors reviewed the pathologic, clinical and radiographic features of pulmonary histiocytosis X, focusing on differential diagnosis and disease progression. Pulmonary histiocytosis X can be suspected on the basis of chest radiographic findings; predominantly upper lobe nodules and cysts present an increased sensitivity and are virtually pathognomonic of this disorder. Chest HRCT allows good assessment of the evolution of pulmonary histiocytosis X and is also valuable in distinguishing histiocytosis from other disorders that produces nodules or cysts. (author)

  2. Case report: Pulmonary syphilis mimicking pulmonary hematogenous metastases on chest CT and integrated PET/CT

    Directory of Open Access Journals (Sweden)

    Hyung Jun Kim

    2011-01-01

    Full Text Available We report a case of syphilis with pulmonary involvement. Chest CT scan and 18 F-fluorodeoxyglucose (FDG PET/CT showed multiple pulmonary nodules mimicking pulmonary hematogenous metastases. This was confirmed on follow-up images that showed therapeutic response to penicillin.

  3. Evaluation of chronic pulmonary emphysema ultrafast computed tomography

    International Nuclear Information System (INIS)

    Tsuchida, Fumihiro; Yagyu, Hisanaga; Ohishi, Shuji; Nakamura, Hiroyuki; Matsuoka, Takeshi

    2003-01-01

    We compared pulmonary ventilation dynamics between 41 patients with pulmonary emphysema and 11 healthy subjects with normal pulmonary function using ultrafast computed tomography (CT). Regions of interest (ROIs) for multislice scanning were selected from the anatomical levels of the carina in the right upper lung field. Several identical slices were selected from the inspiratory and expiratory scans. The average CT values in the ROIs (AvROI) were obtained during the inspiratory phase (inAvROI) and the expiratory phase (exAvROI. The ratio of change from inAvROI to exAvROI ((I-E)/E ratio) was also used for image analysis. Furthermore, possible correlations between the CT image parameters and pulmonary function test parameters were examined. The results showed that the exAvROI and inAvROI values and (I-E)/E ratio were lower in the emphysema group than in the normal pulmonary function group. Among the image data parameters, the exAvROI value correlated most closely with pulmonary function parameters, in particular, with the pulmonary diffusing capacity. These findings suggest that image data parameters of ventilation dynamics may be useful for evaluating the severity of pulmonary emphysema. (author)

  4. Pulmonary function and /sup 81m/Kr scans in obstructive pulmonary disease

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, E [Veterans Administration Hospital, Hines, IL; Mayron, L W; Gergans, G A; Shponka, S; Barnes, W E; Friedman, A M; Gindler, J E; Fishman, H; Sharp, J T

    1981-01-01

    Pulmonary ventilation in 13 normal subjects and in 18 patients with known chronic obstructive pulmonary disease (COPD) has been characterized with two modalities. Comparison consisted of correlating standard pulmonary function tests (PFT) and scintigraphic images of the lungs under steady state conditions during tidal respiration of krypton-81m. The lung scintigram was evaluated by inspection and a computer generated histogram in which the ratio of low level and high level ventilation of the lung was determined. Pulmonary function tests were the basis for verifying normality in 13 subjects. Scintigraphic imaging and histogram analysis in 18 patients with COPD produced two false negative results by each method. The combined scintigraphic histogram results correctly defined 13 of 13 normal subjects. The two scintigraphic methods differentiated normal subjects from patients with known COPD with a high level of comparability to PFT.

  5. Registration methods for pulmonary image analysis integration of morphological and physiological knowledge

    CERN Document Server

    Schmidt-Richberg, Alexander

    2014-01-01

    Various applications in the field of pulmonary image analysis require a registration of CT images of the lung. For example, a registration-based estimation of the breathing motion is employed to increase the accuracy of dose distribution in radiotherapy. Alexander Schmidt-Richberg develops methods to explicitly model morphological and physiological knowledge about respiration in algorithms for the registration of thoracic CT images. The author focusses on two lung-specific issues: on the one hand, the alignment of the interlobular fissures and on the other hand, the estimation of sliding motion at the lung boundaries. He shows that by explicitly considering these aspects based on a segmentation of the respective structure, registration accuracy can be significantly improved.

  6. MR-based assessment of pulmonary ventilation-perfusion in animal models

    International Nuclear Information System (INIS)

    Yang Jian; Wan Mingxi; Guo Youmin

    2003-01-01

    Objective: To show the feasibility and value in the diagnosis of airway obstruction and pulmonary embolism with MR oxygen-enhanced ventilation combined with pulmonary perfusion imaging. Methods: Eight canines were implemented for peripheral pulmonary embolism by intravenous injection of gelfoam granules at pulmonary segmental arterial level, and five of them were formed airway obstruction models by inserting self-made balloon catheter at second-bronchia. The oxygen-enhanced MR ventilation imaging was introduced by subtracting the images of pre- and post- inhaled pure oxygen. The MR pulmonary perfusion imaging was achieved by the first-pass contrast agent method. Moreover, the manifestation of MR ventilation and perfusion imaging was observed and contradistinguished with that of general pathologic anatomy, ventilation-perfusion scintigraphy, and pulmonary angiography. Results: The manifestations of airway obstruction regions in MR ventilation and perfusion imaging were matched, but those of pulmonary embolism regions were dismatched. The defect range of airway obstruction in MR ventilation image was smaller than that in ventilation scintigraphy. The abnormal perfusion regions of pulmonary embolism were divided into defect regions and reduce regions based on the time courses of signal intensity changes. The sensitivity and specificity of diagnosis on pulmonary embolism by MR ventilation combined with perfusion technique were 75.0% and 98.1%. The diagnostic results were in good coherence with ventilation-perfusion scintigraphy and pulmonary angiography (K=0.743, 0.899). Conclusion: The MR oxygen-enhanced ventilation combined with pulmonary perfusion imaging can be used to diagnose the airway and vascular abnormity in lung. This technique resembles the ventilation-perfusion scintigraphy. It can provide quantitative functional information and better spatial and temporal resolution, and possesses the value of clinical application

  7. Computer-assisted diagnostic tool to quantify the pulmonary veins in sickle cell associated pulmonary hypertension

    Science.gov (United States)

    Jajamovich, Guido H.; Pamulapati, Vivek; Alam, Shoaib; Mehari, Alem; Kato, Gregory J.; Wood, Bradford J.; Linguraru, Marius George

    2012-03-01

    Pulmonary hypertension is a common cause of death among patients with sickle cell disease. This study investigates the use of pulmonary vein analysis to assist the diagnosis of pulmonary hypertension non-invasively with CT-Angiography images. The characterization of the pulmonary veins from CT presents two main challenges. Firstly, the number of pulmonary veins is unknown a priori and secondly, the contrast material is degraded when reaching the pulmonary veins, making the edges of these vessels to appear faint. Each image is first denoised and a fast marching approach is used to segment the left atrium and pulmonary veins. Afterward, a geodesic active contour is employed to isolate the left atrium. A thinning technique is then used to extract the skeleton of the atrium and the veins. The locations of the pulmonary veins ostia are determined by the intersection of the skeleton and the contour of the atrium. The diameters of the pulmonary veins are measured in each vein at fixed distances from the corresponding ostium, and for each distance, the sum of the diameters of all the veins is computed. These indicators are shown to be significantly larger in sickle-cell patients with pulmonary hypertension as compared to controls (p-values < 0.01).

  8. [Pulmonary arterial hypertension associated to human immunodeficiency virus].

    Science.gov (United States)

    Sandoval-Gutiérrez, José Luis; Santos-Martínez, Luis Efren; Rodríguez-Silverio, Juan; Baranda-Tovar, Francisco Martín; Rivera-Rosales, Rosa María; Flores-Murrieta, Francisco Javier

    2015-01-01

    From the advent of the highly effective antiretroviral treatment, the life expectancy of patients with human immunodeficiency virus has increased significantly. At present, the causes of death are non-infectious complications. Between them, the pulmonary arterial hypertension has a special importance. It is important early detection to establish the therapeutic, with the objective of preventing a fatal outcome to future. Copyright © 2013 Instituto Nacional de Cardiología Ignacio Chávez. Published by Masson Doyma México S.A. All rights reserved.

  9. Assessment of pulmonary emphysema on CT teleradiology

    International Nuclear Information System (INIS)

    Satoh, Katashi; Kato, Koji; Mitani, Masahiro

    2003-01-01

    The present study assessed the current wave of using CT for the diagnosis of pulmonary emphysema using teleradiology. Thirty patients were examined. CT images were transmitted by Digital Imaging and Communications in Medicine (DICOM) to an image viewer and displayed in 4-image and 1-image arrays for reading. Pulmonary emphysema was found in 7 of the 30 patients. On both displays, the same diagnosis was obtained in 5 cases. In the remaining 2 cases, the low attenuation areas (LAAs) of mild centrilobular emphysema could be recognized only on the 1-image display. The diagnosis of pulmonary emphysema can be made by CT examination using teleradiology even in cases with mild lesions. (author)

  10. Estimation of pulmonary artery pressure in patients with primary pulmonary hypertension by quantitative analysis of magnetic resonance images.

    Science.gov (United States)

    Murray, T I; Boxt, L M; Katz, J; Reagan, K; Barst, R J

    1994-01-01

    The use of magnetic resonance (MR) images for estimating mean pulmonary artery pressure (PAP) was tested by comparing main pulmonary artery (MPA) and middescending thoracic aorta (AO) caliber in 12 patients with primary pulmonary hypertension (PPH) with measurements made in eight other patients who were observed for diseases other than heart disease (controls). The ratio MPA/AO and the ratios of vessel caliber normalized to body surface area (MPAI and AOI, respectively) were computed. The PAP was obtained in all PPH patients and compared with caliber measurements. The PPH MPA (3.6 +/- 0.8 cm) was significantly larger than the control MPA (2.9 +/- 0.3 cm, p = 0.02); the PPH MPAI (2.8 +/- 0.7 cm/M2) was significantly greater than the control MPA (1.7 +/- 0.2 cm/M2, p < 0.0001). Control AO (2.2 +/- 0.3 cm) was significantly greater than PPH AO (1.6 +/- 0.4 cm, p < 0.0001); there was no significant difference between control AOI (1.3 +/- 0.2 cm/M2) and PPH AOI (1.2 +/- 0.2 cm/M2, p = 0.25). The PPH MPA/AO (2.3 +/- 0.6) was significantly greater than the control MPA/AO (1.3 +/- 0.1, p < 0.0001); overlap between MPA in the two groups was eliminated by indexing values to AO caliber (MPA/AO). Among PPH patients there was strong correlation between PAP and MPA/AO (PAP = 24 x MPA/AO + 3.7, r = 0.7, p < 0.01). Increased MPA/AO denotes the presence of pulmonary hypertension and may be used to estimate PAP.

  11. Radiological features of pulmonary tuberculosis in human immunodeficiency virus-infected patients: correlation with the blood CD4 cell count

    International Nuclear Information System (INIS)

    Isusi, M.; Eguidazu, J.; Oleaga, L.; Grande, D.

    2000-01-01

    To describe the radiological features of pulmonary tuberculosis (TB) in patients infected with human immunodeficiency virus (HIV) and its correlation with the blood CD4 cell count. We present 44 HIV+patients, 24 with CD4 cell counts of less than 200 cells/mm''3 (group A) and 20 in whom the CD4 counts surpassed this level (group B). We also assessed the chest x-ray images to determine whether or not there was any correlation with the blood CD4 cell counts. Fisher's exact test was used for the statistical study of the differences in the radiological findings in the two groups. The incidence of atypical features was significantly greater in the patients with CD4 cell counts of less than 200 cells/mm''3 (group A) than in those with CD4 counts of over 200 cells/mm''3 (group B). Among HIV+patients, those with a more intact immune status were more likely to present lung x-ray images typical of post-primary TB, with cavitary lesions in upper lobes. The group of patients in whom the immune deficiency was more marked showed a greater incidence of atypical pulmonary findings, more characteristics of primary TB. (Author)

  12. Pulmonary embolism in pregnancy: is nuclear medicine imaging still a valid option?

    LENUS (Irish Health Repository)

    Ezwawah, O

    2008-10-01

    In this study we demonstrate our Radiology Department\\'s experience in utilizing low dose (half the normal dose) lung perfusion radionuclide scanning for pregnant patients as the initial investigation for suspected pulmonary embolism (PE). Secondly; we highlight the radiation dose reduction advantages of nuclear medicine imaging over multi-detector computed tomography in this group. We performed a retrospective study of 21 consecutive pregnant women who presented with suspected PE. These patients underwent either lung perfusion scanning or CT pulmonary angiography (CTPA), over a two-year period (May 2005 to July 2007). 19 patients of the cohort studied underwent low dose perfusion-only scintigraphy, with half the usual dose of radionuclide activity. All scans were considered of diagnostic quality. No patient in our study required a ventilation scan. No patient with a negative perfusion scan represented during the 3 month follow up period with PE. We conclude, nuclear medicine imaging is an effective initial investigation for pregnant patients with suspected PE. While scinitigraphy is associated with a greater fetal radiation dose than CTPA, it imparts a lower maternal dose and significantly lower dose to radiosensitive tissues such as breast.

  13. Pulmonary circulation

    International Nuclear Information System (INIS)

    Bongartz, G.; Boos, M.; Scheffler, K.; Steinbrich, W.

    1998-01-01

    Evaluation of the pulmonary vasculature is mainly indicated in patients with suspected pulmonary thromboembolism. The routine procedure so far is ventilation-perfusion scintigraphy alone or in combination with diagnostic assessment of the legs to rule out deep venous thrombosis. The results are still not reliable for the majority of patients. In the case of equivocal diagnosis, invasive conventional angiography is considered the gold standard. With steady improvements in tomographic imaging techniques, such as computed tomography (CT) or magnetic resonance imaging (MRI), non-invasive alternatives to the routine diagnostic work-up are given. Helical CT and CTA techniques are already in clinical use and estimated to sufficiently serve the demands for detection/exclusion of pulmonary thromboembolism. The disadvantages mainly concern peripheral disease and reconstruction artifacts. MRI and MR angiography have been implemented in the diagnosis of pulmonary vascular disease since the introduction of contrast-enhanced MRA. In breath-hold techniques, the entire lung vascularization can be delineated and thromboemboli can be detected. The clinical experience in this field is limited, but MRI has the potential to demonstrate its superiority over CT due to its improved delineation of the vascular periphery and the more comprehensive three-dimensional reconstruction. (orig.)

  14. Evaluation of pulmonary hypertension and surgical therapeutic efficacy using first-pass radionuclide pulmonary perfusion imaging in patients with pulmonary hypertension of valvular heart disease

    International Nuclear Information System (INIS)

    Wang Xuemei; Shi Rongfang; Fang Wei; Wang Daoyu; Zhou Baogui; Wang Qi; Pan Shiwei

    2004-01-01

    Objective: To evaluate pulmonary hypertension (PH) and surgical therapeutic efficacy using first-pass radionuclide pulmonary perfusion imaging (FPPPI) and pulmonary perfusion imaging (PPI) in patients with PH of valvular heart disease. Methods: One hundred and sixteen patients with valvular disease were included in the study. Swan-Ganz catheterization, echocardiography, FPPPI and PPI were performed on all patients before surgery. The patients were divided into four groups. Results: 1) Correlation coefficients were 0.856, 0.503 and 0.572 (P<0.01) between lung equilibrium time (LET) by FPPPI, superior lung/low lung ratio (S/L) by PPI , systolic pulmonary arterial pressure (SPAP) from echocardiography and SPAP from the catheter manometer. 2)The sensitivity, specificity and accuracy of PAP using FPPPI measuring were 94.7%, 68.3% and 85.3%, respectively. The sensitivity, specificity and accuracy of PAP using PPI measuring were 78.8%, 52.8% and 70.7%, respectively. The sensitivity, specificity and accuracy of PAP using FPPPI plus PPI measuring were 96.4%, 72.7% and 89.7%, respectively. 3)LET by FPPPI before surgery and 5-14 d after surgery were (27.71 ± 10.85) and (20.96 ± 6.25) s, respectively (P<0.001). SPL by PPI were 1.43 ± 0.41 and 1.30 ± 0.35, respectively (P<0.001). 4) Complete improvement rates of LET in the PAP slightly risen group, moderately risen group and weightily risen group were 47.6%, 34.5% and 1/4, respectively; part improvement rates of LET for corresponding groups were 40.5%, 62.1% and 3/4, respectively (P<0.001). Complete improvement rates of SPL were 31.0%, 34.5% and 0/4, respectively; part improvement rates of SPL were 35.7%, 55.2% and 3/4, respectively (P<0.05). Complete improvement rates of LET + SPL were 57.1%, 58.6% and 1/4; part improvement rates of LET+SPL were 38.1%, 41.4% and 3/4, respectively (P<0.01). Conclusions: 1)FPPPI is better than PPI and echocardiography for evaluating PH in valvular heart disease. 2)Combined FPPPI and PPI can

  15. Imaging diagnosis of acute pulmonary thromboembolism

    International Nuclear Information System (INIS)

    Mut, Fernando

    2005-01-01

    Pulmonary embolism (PE) is a frequent disease which requires an accurate diagnosis in order to establish an effective treatment considering that anticoagulant therapy may lead to complications. Lung ventilation / perfusion scintigraphy (LS V/Q) has been employed as the imaging meted of choice in patients with suspicion of PE. Pulmonary angiography is considered invasive, hence its utilization is usually reserved for otherwise unresolved cases. Other methods like venous Doppler ultrasound and echocardiography have a complementary role or are not widely indicated. The introduction of spiral CT (SCT), specially with multislice capabilities has made available a fast, relatively economic and efficient method for non-invasive diagnosis of PE. Availability of the technique is increasing and it has been included in some diagnostic algorithms for PE as the initial method of evaluation (and sometimes the only one). However, most research has been performed comparing this state-of-the-art technology with classical radionuclide protocols instead of using updated techniques such as SPECT and ultrafine radio aerosols. Moreover, SCT delivers much higher dose rates to the patient which must be taken into account specially in young individuals. In general, available evidence shows superior sensitivity of LS V/Q with higher specificity of SCT, within a context of similar overall accuracy provided optimized protocols are employed. Interpretation criteria for LS V/Q should be revised in an attempt to minimize indeterminate results, and together with the routine utilization of SPECT and novel ventilation systems should improve the performance of LS V/Q. The choice of the initial diagnostic modality should be guided by a correct determination of pre-test probability, clinical characteristics of the patient potentially influencing the efficacy and safety of the method, availability of the different techniques, relative costs and operator's experience. Such a selective and pragmatic

  16. SU-E-J-112: Intensity-Based Pulmonary Image Registration: An Evaluation Study

    Energy Technology Data Exchange (ETDEWEB)

    Yang, F; Meyer, J; Sandison, G [Department of Radiation Oncology, University of Washington Medical Center, Seattle, WA (United States)

    2015-06-15

    Purpose: Accurate alignment of thoracic CT images is essential for dose tracking and to safely implement adaptive radiotherapy in lung cancers. At the same time it is challenging given the highly elastic nature of lung tissue deformations. The objective of this study was to assess the performances of three state-of-art intensity-based algorithms in terms of their ability to register thoracic CT images subject to affine, barrel, and sinusoid transformation. Methods: Intensity similarity measures of the evaluated algorithms contained sum-of-squared difference (SSD), local mutual information (LMI), and residual complexity (RC). Five thoracic CT scans obtained from the EMPIRE10 challenge database were included and served as reference images. Each CT dataset was distorted by realistic affine, barrel, and sinusoid transformations. Registration performances of the three algorithms were evaluated for each distortion type in terms of intensity root mean square error (IRMSE) between the reference and registered images in the lung regions. Results: For affine distortions, the three algorithms differed significantly in registration of thoracic images both visually and nominally in terms of IRMSE with a mean of 0.011 for SSD, 0.039 for RC, and 0.026 for LMI (p<0.01; Kruskal-Wallis test). For barrel distortion, the three algorithms showed nominally no significant difference in terms of IRMSE with a mean of 0.026 for SSD, 0.086 for RC, and 0.054 for LMI (p=0.16) . A significant difference was seen for sinusoid distorted thoracic CT data with mean lung IRMSE of 0.039 for SSD, 0.092 for RC, and 0.035 for LMI (p=0.02). Conclusion: Pulmonary deformations might vary to a large extent in nature in a daily clinical setting due to factors ranging from anatomy variations to respiratory motion to image quality. It can be appreciated from the results of the present study that the suitability of application of a particular algorithm for pulmonary image registration is deformation-dependent.

  17. Vagal innervation is required for pulmonary function phenotype in Htr4-/- mice.

    Science.gov (United States)

    House, John S; Nichols, Cody E; Li, Huiling; Brandenberger, Christina; Virgincar, Rohan S; DeGraff, Laura M; Driehuys, Bastiaan; Zeldin, Darryl C; London, Stephanie J

    2017-04-01

    Human genome-wide association studies have identified over 50 loci associated with pulmonary function and related phenotypes, yet follow-up studies to determine causal genes or variants are rare. Single nucleotide polymorphisms in serotonin receptor 4 ( HTR4 ) are associated with human pulmonary function in genome-wide association studies and follow-up animal work has demonstrated that Htr4 is causally associated with pulmonary function in mice, although the precise mechanisms were not identified. We sought to elucidate the role of neural innervation and pulmonary architecture in the lung phenotype of Htr4 -/- animals. We report here that the Htr4 -/- phenotype in mouse is dependent on vagal innervation to the lung. Both ex vivo tracheal ring reactivity and in vivo flexiVent pulmonary functional analyses demonstrate that vagotomy abrogates the Htr4 -/- airway hyperresponsiveness phenotype. Hyperpolarized 3 He gas magnetic resonance imaging and stereological assessment of wild-type and Htr4 -/- mice reveal no observable differences in lung volume, inflation characteristics, or pulmonary microarchitecture. Finally, control of breathing experiments reveal substantive differences in baseline breathing characteristics between mice with/without functional HTR4 in breathing frequency, relaxation time, flow rate, minute volume, time of inspiration and expiration and breathing pauses. These results suggest that HTR4's role in pulmonary function likely relates to neural innervation and control of breathing. Copyright © 2017 the American Physiological Society.

  18. Human Pulmonary Infection by the Zoonotic Metastrongylus salmi Nematode. The First Reported Case in the Americas

    OpenAIRE

    Calvopina, Manuel; Caballero, Henry; Morita, Tatsushi; Korenaga, Masataka

    2016-01-01

    Pulmonary metastrongylosis, a zoonotic disease found primarily in pigs, is caused by eight different species of the cosmopolitan nematode Metastrongylus genus. To date, only four human cases have been reported, all from Europe. Herein, a severe case of pulmonary infection caused by Metastrongylus salmi in an Ecuadorian man, with successful treatment with ivermectin, is described.

  19. Value of a Computer-aided Detection System Based on Chest Tomosynthesis Imaging for the Detection of Pulmonary Nodules.

    Science.gov (United States)

    Yamada, Yoshitake; Shiomi, Eisuke; Hashimoto, Masahiro; Abe, Takayuki; Matsusako, Masaki; Saida, Yukihisa; Ogawa, Kenji

    2018-04-01

    Purpose To assess the value of a computer-aided detection (CAD) system for the detection of pulmonary nodules on chest tomosynthesis images. Materials and Methods Fifty patients with and 50 without pulmonary nodules underwent both chest tomosynthesis and multidetector computed tomography (CT) on the same day. Fifteen observers (five interns and residents, five chest radiologists, and five abdominal radiologists) independently evaluated tomosynthesis images of 100 patients for the presence of pulmonary nodules in a blinded and randomized manner, first without CAD, then with the inclusion of CAD marks. Multidetector CT images served as the reference standard. Free-response receiver operating characteristic analysis was used for the statistical analysis. Results The pooled diagnostic performance of 15 observers was significantly better with CAD than without CAD (figure of merit [FOM], 0.74 vs 0.71, respectively; P = .02). The average true-positive fraction and false-positive rate per all cases with CAD were 0.56 and 0.26, respectively, whereas those without CAD were 0.47 and 0.20, respectively. Subanalysis showed that the diagnostic performance of interns and residents was significantly better with CAD than without CAD (FOM, 0.70 vs 0.62, respectively; P = .001), whereas for chest radiologists and abdominal radiologists, the FOM with CAD values were greater but not significantly: 0.80 versus 0.78 (P = .38) and 0.74 versus 0.73 (P = .65), respectively. Conclusion CAD significantly improved diagnostic performance in the detection of pulmonary nodules on chest tomosynthesis images for interns and residents, but provided minimal benefit for chest radiologists and abdominal radiologists. © RSNA, 2017 Online supplemental material is available for this article.

  20. Pulmonary manifestations from systemic vasculitides

    International Nuclear Information System (INIS)

    Reuter, M.; Both, M.; Schnabel, A.

    2007-01-01

    Pulmonary vasculitides predominantly involve the small arterioles, capillaries and venules and include Wegener's granulomatosis, microscopic polyangiitis and the Churg-Strauss syndrome. Takayasu's arteriitis is a large vessel disease and may affect the main pulmonary arteries causing stenoses and occlusions. Knowledge of the natural course of disease and of clinical manifestations of pulmonary disease is helpful for an understanding of imaging findings. For this reason this article gives an overview not only of radiologic findings in chest X-ray and high resolution CT of the lungs but as well of clinical aspects of pulmonary vasculitides. Next to determination of disease extension the determination of disease activity is in the foreground of diagnostic imaging in vasculitides. Within this context principals of immunosuppressive therapy will be recognized. (orig.)

  1. Imaging diagnosis of pulmonary tuberculosis in immunocompromised patients

    International Nuclear Information System (INIS)

    Ma Daqing; Zhao Dawei; Pan Keqin

    2000-01-01

    Objective: To evaluate CT and X-ray features of pulmonary tuberculosis in diabetic patients, patients post kidney transplantation, and patients with acquired immunodeficiency syndrome (AIDS). Methods: The authors reviewed CT scans in 20 patients with diabetic patients, X-ray films in 10 cases after kidney transplantation, and CT scans in 2 patients with AIDS. Results: CT features of pulmonary tuberculosis in diabetic diseases included larger confluent consolidation (10 cases ), multiple small cavities within any given lesion (9 cases ) and non-segmental distribution (2 cases). Satellite lesions were found in most films. The X-ray appearances of pulmonary tuberculosis post kidney transplantation included patch and larger confluent consolidation (6 cases), and miliary tuberculosis(4 cases). The CT findings of pulmonary tuberculosis with AIDS were enlarged mediastinal lymph nodes (1 case), pulmonary infiltration (1 case), and extra chest lesions(2 cases) such as enlarged neck lymph nodes and post-peritoneal lymph nodes. Conclusion: The Main radiological findings of pulmonary tuberculosis in immunocompromised patients appear larger confluent consolidation, multiple small cavities within a given lesion, miliary tuberculosis, enlarged mediastinal lymph nodes, and extra chest enlarged lymph nodes

  2. A correlative study of CT findings and pulmonary function in patients with pulmonary involvement during the active phase of rheumatoid arthritis

    International Nuclear Information System (INIS)

    Zhu Xiaolei; Xu Defu

    2006-01-01

    Objective: It is a correlative study of CT findings and pulmonary function in patients with pulmonary involvement during the active phase of rheumatoid arthritis. Methods: The CT images of 28 cases of pulmonary involvement during the active phase of rheumatoid arthritis were retrospectively analyzed. The pulmonary abnormalities revealed on CT images including distribution and extend of the lesions were quantitatively analyzed and scored. The correlation of CT scores with the results of pulmonary function tests was compared statistically. Results: Interlobular septa thickening was shown in 16 cases; ground-glass opacification was revealed in 14 cases; irregular lines were found in 11 cases; bronchiolectasis was noted in 7 cases; micro nodules were demonstrated in 4 cases; and honey combing alteration was visualized in 3 cases. The abnormality most frequent seen on CT images was reticular shadow and ground-glass opacification. CT visual score had a negative correlation with pulmonary function. Conclusion: CT visual score provides quantitative evaluation of the pulmonary involvement during the active phase of rheumatoid arthritis, and also indicates the pulmonary function and prognosis as well. (authors)

  3. Detection of pulmonary nodules at paediatric CT: maximum intensity projections and axial source images are complementary

    International Nuclear Information System (INIS)

    Kilburn-Toppin, Fleur; Arthurs, Owen J.; Tasker, Angela D.; Set, Patricia A.K.

    2013-01-01

    Maximum intensity projection (MIP) images might be useful in helping to differentiate small pulmonary nodules from adjacent vessels on thoracic multidetector CT (MDCT). The aim was to evaluate the benefits of axial MIP images over axial source images for the paediatric chest in an interobserver variability study. We included 46 children with extra-pulmonary solid organ malignancy who had undergone thoracic MDCT. Three radiologists independently read 2-mm axial and 10-mm MIP image datasets, recording the number of nodules, size and location, overall time taken and confidence. There were 83 nodules (249 total reads among three readers) in 46 children (mean age 10.4 ± 4.98 years, range 0.3-15.9 years; 24 boys). Consensus read was used as the reference standard. Overall, three readers recorded significantly more nodules on MIP images (228 vs. 174; P < 0.05), improving sensitivity from 67% to 77.5% (P < 0.05) but with lower positive predictive value (96% vs. 85%, P < 0.005). MIP images took significantly less time to read (71.6 ± 43.7 s vs. 92.9 ± 48.7 s; P < 0.005) but did not improve confidence levels. Using 10-mm axial MIP images for nodule detection in the paediatric chest enhances diagnostic performance, improving sensitivity and reducing reading time when compared with conventional axial thin-slice images. Axial MIP and axial source images are complementary in thoracic nodule detection. (orig.)

  4. Isolated Left Pulmonary Artery Agenesis: A Case Report

    Directory of Open Access Journals (Sweden)

    Tansel Ansal Balcı

    2012-08-01

    Full Text Available Unilateral pulmonary artery agenesis without any cardiovascular malformation is a rare anomaly. We present the imaging findings of a patient who was diagnosed as isolated left pulmonary artery agenesis. A 27-year-old female patient was admitted to our hospital due to dyspnea during exercise for five years. Chest X-ray revealed minimally small left pulmonary hilum and left lung. She was admitted to our clinic with the suspicion of pulmonary artery pathology. Absent perfusion of the left lung with normal ventilation was visualized on scintigraphy. MDCT angiography of pulmonary arteries showed absent left main pulmonary artery with systemic collaterals around left hemithorax. Pulmonary artery agenesis can be asymptomatic and isolated until adulthood. Both scintigraphy and CT angiography images of pulmonary artery agenesis of a patient are rare in the literature. Pulmonary ventilation- perfusion scintigraphy can be used not only for pulmonary embolism but also pathologies involving pulmonary artery and its branches. (MIRT 2012;21:80-83

  5. Human Pulmonary Infection by the Zoonotic Metastrongylus salmi Nematode. The First Reported Case in the Americas

    Science.gov (United States)

    Calvopina, Manuel; Caballero, Henry; Morita, Tatsushi; Korenaga, Masataka

    2016-01-01

    Pulmonary metastrongylosis, a zoonotic disease found primarily in pigs, is caused by eight different species of the cosmopolitan nematode Metastrongylus genus. To date, only four human cases have been reported, all from Europe. Herein, a severe case of pulmonary infection caused by Metastrongylus salmi in an Ecuadorian man, with successful treatment with ivermectin, is described. PMID:27382078

  6. Massive Pulmonary Embolism: Treatment with Thrombus Fragmentation and Local Fibrinolysis with Recombinant Human-Tissue Plasminogen Activator

    International Nuclear Information System (INIS)

    Stock, Klaus Wilhelm; Jacob, Augustinus Ludwig; Schnabel, Karl Jakob; Bongartz, Georg; Steinbrich, Wolfgang

    1997-01-01

    Purpose: To report the results of thrombus fragmentation in combination with local fibrinolysis using recombinant human-tissue plasminogen activator (rtPA) in patients with massive pulmonary embolism. Methods: Five patients with massive pulmonary embolism were treated with thrombus fragmentation followed by intrapulmonary injection of rtPA. Clot fragmentation was performed with a guidewire, angiographic catheter, and balloon catheter. Three patients had undergone recent surgery; one of them received a reduced dosage of rtPA. Results: All patients survived and showed clinical improvement with a resultant significant (p < 0.05) decrease in the pulmonary blood pressure (mean systolic pulmonary blood pressure before treatment, 49 mmHg; 4 hr after treatment, 28 mmHg). Angiographic follow-up in three patients revealed a decrease in thrombus material and an increase in pulmonary perfusion. Two patients developed retroperitoneal hematomas requiring transfusion. Conclusion: Clot fragmentation and local fibrinolysis with rtPA was an effective therapy for massive pulmonary embolism. Bleeding at the puncture site was a frequent complication

  7. Live attenuated Francisella novicida vaccine protects against Francisella tularensis pulmonary challenge in rats and non-human primates.

    Directory of Open Access Journals (Sweden)

    Ping Chu

    2014-10-01

    Full Text Available Francisella tularensis causes the disease tularemia. Human pulmonary exposure to the most virulent form, F. tularensis subsp. tularensis (Ftt, leads to high morbidity and mortality, resulting in this bacterium being classified as a potential biothreat agent. However, a closely-related species, F. novicida, is avirulent in healthy humans. No tularemia vaccine is currently approved for human use. We demonstrate that a single dose vaccine of a live attenuated F. novicida strain (Fn iglD protects against subsequent pulmonary challenge with Ftt using two different animal models, Fischer 344 rats and cynomolgus macaques (NHP. The Fn iglD vaccine showed protective efficacy in rats, as did a Ftt iglD vaccine, suggesting no disadvantage to utilizing the low human virulent Francisella species to induce protective immunity. Comparison of specific antibody profiles in vaccinated rat and NHP sera by proteome array identified a core set of immunodominant antigens in vaccinated animals. This is the first report of a defined live attenuated vaccine that demonstrates efficacy against pulmonary tularemia in a NHP, and indicates that the low human virulence F. novicida functions as an effective tularemia vaccine platform.

  8. Single-energy computed tomography-based pulmonary perfusion imaging: Proof-of-principle in a canine model

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Tokihiro, E-mail: toyamamoto@ucdavis.edu [Department of Radiation Oncology, University of California Davis School of Medicine, Sacramento, California 95817 (United States); Kent, Michael S.; Wisner, Erik R. [Department of Surgical and Radiological Sciences, University of California Davis School of Veterinary Medicine, Davis, California 95616 (United States); Johnson, Lynelle R.; Stern, Joshua A. [Department of Medicine and Epidemiology, University of California Davis School of Veterinary Medicine, Davis, California 95616 (United States); Qi, Lihong [Department of Public Health Sciences, University of California Davis, Davis, California 95616 (United States); Fujita, Yukio [Department of Radiation Oncology, Tokai University, Isehara, Kanagawa 259-1193 (Japan); Boone, John M. [Department of Radiology, University of California Davis School of Medicine, Sacramento, California 95817 (United States)

    2016-07-15

    Purpose: Radiotherapy (RT) that selectively avoids irradiating highly functional lung regions may reduce pulmonary toxicity, which is substantial in lung cancer RT. Single-energy computed tomography (CT) pulmonary perfusion imaging has several advantages (e.g., higher resolution) over other modalities and has great potential for widespread clinical implementation, particularly in RT. The purpose of this study was to establish proof-of-principle for single-energy CT perfusion imaging. Methods: Single-energy CT perfusion imaging is based on the following: (1) acquisition of end-inspiratory breath-hold CT scans before and after intravenous injection of iodinated contrast agents, (2) deformable image registration (DIR) for spatial mapping of those two CT image data sets, and (3) subtraction of the precontrast image data set from the postcontrast image data set, yielding a map of regional Hounsfield unit (HU) enhancement, a surrogate for regional perfusion. In a protocol approved by the institutional animal care and use committee, the authors acquired CT scans in the prone position for a total of 14 anesthetized canines (seven canines with normal lungs and seven canines with diseased lungs). The elastix algorithm was used for DIR. The accuracy of DIR was evaluated based on the target registration error (TRE) of 50 anatomic pulmonary landmarks per subject for 10 randomly selected subjects as well as on singularities (i.e., regions where the displacement vector field is not bijective). Prior to perfusion computation, HUs of the precontrast end-inspiratory image were corrected for variation in the lung inflation level between the precontrast and postcontrast end-inspiratory CT scans, using a model built from two additional precontrast CT scans at end-expiration and midinspiration. The authors also assessed spatial heterogeneity and gravitationally directed gradients of regional perfusion for normal lung subjects and diseased lung subjects using a two-sample two-tailed t

  9. Single-energy computed tomography-based pulmonary perfusion imaging: Proof-of-principle in a canine model.

    Science.gov (United States)

    Yamamoto, Tokihiro; Kent, Michael S; Wisner, Erik R; Johnson, Lynelle R; Stern, Joshua A; Qi, Lihong; Fujita, Yukio; Boone, John M

    2016-07-01

    Radiotherapy (RT) that selectively avoids irradiating highly functional lung regions may reduce pulmonary toxicity, which is substantial in lung cancer RT. Single-energy computed tomography (CT) pulmonary perfusion imaging has several advantages (e.g., higher resolution) over other modalities and has great potential for widespread clinical implementation, particularly in RT. The purpose of this study was to establish proof-of-principle for single-energy CT perfusion imaging. Single-energy CT perfusion imaging is based on the following: (1) acquisition of end-inspiratory breath-hold CT scans before and after intravenous injection of iodinated contrast agents, (2) deformable image registration (DIR) for spatial mapping of those two CT image data sets, and (3) subtraction of the precontrast image data set from the postcontrast image data set, yielding a map of regional Hounsfield unit (HU) enhancement, a surrogate for regional perfusion. In a protocol approved by the institutional animal care and use committee, the authors acquired CT scans in the prone position for a total of 14 anesthetized canines (seven canines with normal lungs and seven canines with diseased lungs). The elastix algorithm was used for DIR. The accuracy of DIR was evaluated based on the target registration error (TRE) of 50 anatomic pulmonary landmarks per subject for 10 randomly selected subjects as well as on singularities (i.e., regions where the displacement vector field is not bijective). Prior to perfusion computation, HUs of the precontrast end-inspiratory image were corrected for variation in the lung inflation level between the precontrast and postcontrast end-inspiratory CT scans, using a model built from two additional precontrast CT scans at end-expiration and midinspiration. The authors also assessed spatial heterogeneity and gravitationally directed gradients of regional perfusion for normal lung subjects and diseased lung subjects using a two-sample two-tailed t-test. The mean TRE

  10. Single-energy computed tomography-based pulmonary perfusion imaging: Proof-of-principle in a canine model

    International Nuclear Information System (INIS)

    Yamamoto, Tokihiro; Kent, Michael S.; Wisner, Erik R.; Johnson, Lynelle R.; Stern, Joshua A.; Qi, Lihong; Fujita, Yukio; Boone, John M.

    2016-01-01

    Purpose: Radiotherapy (RT) that selectively avoids irradiating highly functional lung regions may reduce pulmonary toxicity, which is substantial in lung cancer RT. Single-energy computed tomography (CT) pulmonary perfusion imaging has several advantages (e.g., higher resolution) over other modalities and has great potential for widespread clinical implementation, particularly in RT. The purpose of this study was to establish proof-of-principle for single-energy CT perfusion imaging. Methods: Single-energy CT perfusion imaging is based on the following: (1) acquisition of end-inspiratory breath-hold CT scans before and after intravenous injection of iodinated contrast agents, (2) deformable image registration (DIR) for spatial mapping of those two CT image data sets, and (3) subtraction of the precontrast image data set from the postcontrast image data set, yielding a map of regional Hounsfield unit (HU) enhancement, a surrogate for regional perfusion. In a protocol approved by the institutional animal care and use committee, the authors acquired CT scans in the prone position for a total of 14 anesthetized canines (seven canines with normal lungs and seven canines with diseased lungs). The elastix algorithm was used for DIR. The accuracy of DIR was evaluated based on the target registration error (TRE) of 50 anatomic pulmonary landmarks per subject for 10 randomly selected subjects as well as on singularities (i.e., regions where the displacement vector field is not bijective). Prior to perfusion computation, HUs of the precontrast end-inspiratory image were corrected for variation in the lung inflation level between the precontrast and postcontrast end-inspiratory CT scans, using a model built from two additional precontrast CT scans at end-expiration and midinspiration. The authors also assessed spatial heterogeneity and gravitationally directed gradients of regional perfusion for normal lung subjects and diseased lung subjects using a two-sample two-tailed t

  11. TU-CD-BRA-08: Single-Energy Computed Tomography-Based Pulmonary Perfusion Imaging: Proof-Of-Principle in a Canine Model

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, T; Boone, J [University of California Davis School of Medicine, Sacramento, CA (United States); Kent, M; Wisner, E [University of California Davis School of Veterinary Medicine, Davis, CA (United States); Fujita, Y [Tokai University, Isehara (Japan)

    2015-06-15

    Purpose: Pulmonary perfusion imaging has provided significant insights into pulmonary diseases, and can be useful in radiotherapy. The purpose of this study was to prospectively establish proof-of-principle in a canine model for single-energy CT-based perfusion imaging, which has the potential for widespread clinical implementation. Methods: Single-energy CT perfusion imaging is based on: (1) acquisition of inspiratory breath-hold CT scans before and after intravenous injection of iodinated contrast medium, (2) deformable image registration (DIR) of the two CT image data sets, and (3) subtraction of the pre-contrast image from post-contrast image, yielding a map of Hounsfield unit (HU) enhancement. These subtraction image data sets hypothetically represent perfused blood volume, a surrogate for perfusion. In an IACUC-approved clinical trial, we acquired pre- and post-contrast CT scans in the prone posture for six anesthetized, mechanically-ventilated dogs. The elastix algorithm was used for DIR. The registration accuracy was quantified using the target registration errors (TREs) for 50 pulmonary landmarks in each dog. The gradient of HU enhancement between gravity-dependent (ventral) and non-dependent (dorsal) regions was evaluated to quantify the known effect of gravity, i.e., greater perfusion in ventral regions. Results: The lung volume difference between the two scans was 4.3±3.5% on average (range 0.3%–10.1%). DIR demonstrated an average TRE of 0.7±1.0 mm. HU enhancement in lung parenchyma was 34±10 HU on average and varied considerably between individual dogs, indicating the need for improvement of the contrast injection protocol. HU enhancement in ventral (gravity-dependent) regions was found to be greater than in dorsal regions. A population average ventral-to-dorsal gradient of HU enhancement was strong (R{sup 2}=0.94) and statistically significant (p<0.01). Conclusion: This canine study demonstrated relatively accurate DIR and a strong ventral

  12. TU-CD-BRA-08: Single-Energy Computed Tomography-Based Pulmonary Perfusion Imaging: Proof-Of-Principle in a Canine Model

    International Nuclear Information System (INIS)

    Yamamoto, T; Boone, J; Kent, M; Wisner, E; Fujita, Y

    2015-01-01

    Purpose: Pulmonary perfusion imaging has provided significant insights into pulmonary diseases, and can be useful in radiotherapy. The purpose of this study was to prospectively establish proof-of-principle in a canine model for single-energy CT-based perfusion imaging, which has the potential for widespread clinical implementation. Methods: Single-energy CT perfusion imaging is based on: (1) acquisition of inspiratory breath-hold CT scans before and after intravenous injection of iodinated contrast medium, (2) deformable image registration (DIR) of the two CT image data sets, and (3) subtraction of the pre-contrast image from post-contrast image, yielding a map of Hounsfield unit (HU) enhancement. These subtraction image data sets hypothetically represent perfused blood volume, a surrogate for perfusion. In an IACUC-approved clinical trial, we acquired pre- and post-contrast CT scans in the prone posture for six anesthetized, mechanically-ventilated dogs. The elastix algorithm was used for DIR. The registration accuracy was quantified using the target registration errors (TREs) for 50 pulmonary landmarks in each dog. The gradient of HU enhancement between gravity-dependent (ventral) and non-dependent (dorsal) regions was evaluated to quantify the known effect of gravity, i.e., greater perfusion in ventral regions. Results: The lung volume difference between the two scans was 4.3±3.5% on average (range 0.3%–10.1%). DIR demonstrated an average TRE of 0.7±1.0 mm. HU enhancement in lung parenchyma was 34±10 HU on average and varied considerably between individual dogs, indicating the need for improvement of the contrast injection protocol. HU enhancement in ventral (gravity-dependent) regions was found to be greater than in dorsal regions. A population average ventral-to-dorsal gradient of HU enhancement was strong (R"2=0.94) and statistically significant (p<0.01). Conclusion: This canine study demonstrated relatively accurate DIR and a strong ventral

  13. Correlation of semiquantitative analysis of the distribution of pulmonary perfusion with pulmonary function in chronic obstructive pulmonary disease

    International Nuclear Information System (INIS)

    Uchida, Kou; Nakayama, Hiroyuki; Yamagami, Ikue; Takahashi, Hideki; Takano, Masaaki.

    1997-01-01

    We carried out ventilation-perfusion scintigraphy and pulmonary function tests in 56 patients with chronic obstructive pulmonary disease (COPD) and 19 healthy volunteers. We used 99m Tc-macroaggregated albumin for the perfusion scintigraphy and 133 Xe gas for the ventilation scintigraphy. The lung volume image was created by computerized summation of the radioactivity in the rebreathing phase. Regions of interest (ROIs) were set automatically on lung volume image, which included each whole lung, and on perfusion image, including areas with relatively high radioactivity, with cut-off levels of 50%, 70%, and 90%. The number of pixels in each ROI was used as an index of lung volume (L) or perfusion (P). Perfusion per unit of lung volume (P/L) was also used as an index of perfusion. P70 and P70/L showed the better correlations than the other parameters, including significant correlations with vital capacity, FEV 1.0 , peak flow rate, RV/TLC, diffusing capacity and arterial oxygen partial pressure. The significant difference in P70 and P70/L between patients with hypoxemia and those without hypoxemia suggested that P70 and P70/L are useful indicators of the severity of COPD. We conclude that semiquantified values of pulmonary perfusion scintigraphy are significantly correlated with pulmonary function and the severity of COPD. (author)

  14. Unusual ventilation perfusion scintigram in a case of immunologic pulmonary edema clinically simulating pulmonary embolism

    International Nuclear Information System (INIS)

    Campeau, R.J.; Faust, J.M.; Ahmad, S.

    1987-01-01

    A case of immunologic pulmonary edema secondary to hydrochlorothiazide allergy developed in a 55-year-old woman that clinically simulated pulmonary embolism. The patient had abnormal washin images with normal washout images on an Xe-133 ventilation study. On the perfusion study, large bilateral central and posterior perfusion defects were present that showed an unusual mirror image pattern on the lateral and posterior oblique views. Resolution of radiographic and scintigraphic abnormalities occurred over a 3-day period in conjunction with corticosteroid therapy

  15. A confocal microscopic study of solitary pulmonary neuroendocrine cells in human airway epithelium

    Directory of Open Access Journals (Sweden)

    Sparrow Malcolm P

    2005-10-01

    Full Text Available Abstract Background Pulmonary neuroendocrine cells (PNEC are specialized epithelial cells that are thought to play important roles in lung development and airway function. PNEC occur either singly or in clusters called neuroepithelial bodies. Our aim was to characterize the three dimensional morphology of PNEC, their distribution, and their relationship to the epithelial nerves in whole mounts of adult human bronchi using confocal microscopy. Methods Bronchi were resected from non-diseased portions of a lobe of human lung obtained from 8 thoracotomy patients (Table 1 undergoing surgery for the removal of lung tumors. Whole mounts were stained with antibodies to reveal all nerves (PGP 9.5, sensory nerves (calcitonin gene related peptide, CGRP, and PNEC (PGP 9.5, CGRP and gastrin releasing peptide, GRP. The analysis and rendition of the resulting three-dimensional data sets, including side-projections, was performed using NIH-Image software. Images were colorized and super-imposed using Adobe Photoshop. Results PNEC were abundant but not homogenously distributed within the epithelium, with densities ranging from 65/mm2 to denser patches of 250/mm2, depending on the individual wholemount. Rotation of 3-D images revealed a complex morphology; flask-like with the cell body near the basement membrane and a thick stem extending to the lumen. Long processes issued laterally from its base, some lumenal and others with feet-like processes. Calcitonin gene-related peptide (CGRP was present in about 20% of PNEC, mainly in the processes. CGRP-positive nerves were sparse, with some associated with the apical part of the PNEC. Conclusion Our 3D-data demonstrates that PNEC are numerous and exhibit a heterogeneous peptide content suggesting an active and diverse PNEC population.

  16. Estimation of pulmonary water distribution and pulmonary congestion by computed tomography

    International Nuclear Information System (INIS)

    Morooka, Nobuhiro; Watanabe, Shigeru; Masuda, Yoshiaki; Inagaki, Yoshiaki

    1982-01-01

    Computed tomography (CT) of the lung in normal subjects and patients with congestive heart failure was performed in the supine position with deep inspiration to obtain pulmonary CT values and images. The mean CT value in normal subjects was higher in the posterior than anterior lung field, presumably because blood vessels were more dilated in the former than the latter due to the effects of gravity. The mean pulmonary CT value in patients with congestive heart failure was significantly increased possibly due to an increase in blood flow per unit lung volume arising from either pulmonary congestion or pulmonary interstitial and alveolar edema. The mean pulmonary CT value increased parallel to the severity of pulmonary congestion, interstitial or alveolar edema and was well correlated with the pulmonary arterial wedge pressure, indicating that such a correlation was a valuable tool in assessing therapeutic effects. The results of the present study indicatethat pulmonary CT is useful for the noninvasive estimation of intrapulmonary water content and its distribution, thereby providing an effective diagnostic clue to various conditions in congestive heart failure. (author)

  17. Hard-copy versus soft-copy with and without simple image manipulation for detection of pulmonary nodules and masses

    International Nuclear Information System (INIS)

    Kosuda, S.; Kaji, T.; Iwasaki, Y.; Kusano, S.; Kobayashi, H.; Watanabe, M.

    2000-01-01

    To compare interpretation performance on soft-copy presentations, with and without simple image manipulation, and on unmodified hard-copy presentations with regard to detection of pulmonary nodules and masses. Material and Methods: Fifty chest digital radiograph combinations of patients with a total of 60 nodules, 32 of which were 2.0 cm in diameter, were selected for the study. Three readers evaluated three separate image formats: unmodified hard- and soft-copies, and soft-copies with simple image manipulation of lung and mediastinum window settings, and zooming. The screen display was 1600x1200 pixels with 8 bits/pixel. Results: The sensitivity, accuracy, detectability, and Az value of the soft-copy systems were clearly inferior to hard-copy evaluation. The mean Az values were 0.921 for unmodified hard-copy, 0.820 for image-manipulated soft-copy, and 0.781 for unmodified soft-copy. Conclusion: Soft-copy interpretations were not as sensitive in detecting pulmonary nodules and masses as hard-copy evaluation

  18. Large-image intensifier photofluorography and conventional radiography in pulmonary emphysema

    International Nuclear Information System (INIS)

    Manninen, H.; Partanen, K.; Soimakallio, S.; Rytkoenen, H.

    1988-01-01

    Large-screen image intensifier (II) photofluorography was compared with full-size screen-film chest radiography in the diagnosis of pulmonary emphysema in 84 patients. Photospot films and conventional radiographs were interpreted independently by three radiologists. Computed tomography (CT) was used as an independent reference technique, and diagnostic performance of chest radiography in various CT patterns of emphysema was evaluated. The difference in diagnostic sensitivity for emphysema in favor of conventional chest radiography over photofluorography (0.65 versus 0.56) was statistically significant (p < 0.05). Specificity of the imaging modalities was equal: 0.78 in full-size films and 0.77 in photospot films. All CT patterns of emphysema had great false negative response rates in chest radiography, which is an inaccurate technique for the diagnosis of emphysema. CT is required for reliable radiologic evaluation of emphysema. (orig.)

  19. Nuclear magnetic resonance imaging with cardiac synchronization in chronic thrombosis of main pulmonary arteries. A case review with CT scan imaging correlation

    International Nuclear Information System (INIS)

    Coulomb, M.; Wolf, J.E.; Rose-Pittet, L.; Le Bas, J.F.; Dalsoglio, S.; Paramelle, B.

    1986-01-01

    Results of nuclear magnetic resonance exploration in a patient with chronic thrombosis of main pulmonary arteries are used to outline an elementary semiology in agreement with current documented data. Signs observed relate to the thrombosis and showing of flow due to associated pulmonary artery hypertension. Cardiac synchronization is essential: obtaining 2 echos by the spin-echo technique allows differentiation of circulatory slowing phenomena, which provoke increased strength of 2nd echo, from the thrombus itself. Correlations established with V/Q scintigraphy, angiography and CT scan findings in this case provided preliminary evaluation of use of this imaging technique in this affection [fr

  20. MR assessment of fetal pulmonary hypoplasia

    Energy Technology Data Exchange (ETDEWEB)

    Kuwashima, Shigeko; Kohno, Atsushi; Saiki, Natoru; Iimura, Fumitoshi; Kohno, Tatsuo; Hashimoto, Teisuke; Fujioka, Mutsuhisa [Dokkyo Univ. School of Medicine, Mibu, Tochigi (Japan)

    2000-08-01

    The purpose of this study is to evaluate pulmonary hypoplasia of the fetus using MRI. The subjects consisted of 36 fetuses (18 to 40 weeks' gestation). All fetuses or mothers had major anomalies diagnosed on fetal ultrasonography. MR imaging was performed with a 1.5-T magnet and HASTE (half-Fourier acquisition single-shot turbo spin-echo) sequence. MR images were evaluated with special attention to the intensity of the lung. A diagnosis of pulmonary hypoplasia was based on the clinical, surgical, and autopsy findings. All fetuses with normal pulmonary development showed high intensity in the lung, while all fetuses with pulmonary hypoplasia showed a low intensity in the lung, obscured pulmonary vessels and a small thorax. There was a close correlation between the lung intensity and pulmonary growth. MR assessment of lung intensity may facilitate the diagnosis of pulmonary hypoplasia, particularly after 26 weeks' gestation. Some of the normally developing lung showed a low intensity from 20 to 24 weeks of gestational age. The change to normal lung intensity may occur during this period. (author)

  1. Usefulness of video images from a X-ray simulator in recordings of the treatment portal of pulmonary lesion

    International Nuclear Information System (INIS)

    Nishioka, Masayuki; Sakurai, Makoto; Fujioka, Tomio; Fukuoka, Masahiro; Kusunoki, Yoko; Nakajima, Toshifumi; Onoyama, Yasuto.

    1992-01-01

    Movement of the target volume should be taken into consideration in treatment planning. Respiratory movement is the greatest motion in radiotherapy for the pulmonary lesion. We combined video with a X-ray simulator to record movement. Of 50 patients whose images were recorded, respiratory movements of 0 to 4 mm, of 5 to 9 mm, and of more than 10 mm were observed in 13, 21, and 16 patients, respectively. Discrepancies of 5 to 9 mm and of more than 10 mm between simulator films and video images were observed in 14 and 13 patients, respectively. These results show that video images are useful in recording the movement while considering respiratory motion. We recommend that video system added to a X-ray simulator is used for treatment planning, especially in radiotherapy for the pulmonary lesion. (author)

  2. Histogram-based quantitative evaluation of endobronchial ultrasonography images of peripheral pulmonary lesion.

    Science.gov (United States)

    Morikawa, Kei; Kurimoto, Noriaki; Inoue, Takeo; Mineshita, Masamichi; Miyazawa, Teruomi

    2015-01-01

    Endobronchial ultrasonography using a guide sheath (EBUS-GS) is an increasingly common bronchoscopic technique, but currently, no methods have been established to quantitatively evaluate EBUS images of peripheral pulmonary lesions. The purpose of this study was to evaluate whether histogram data collected from EBUS-GS images can contribute to the diagnosis of lung cancer. Histogram-based analyses focusing on the brightness of EBUS images were retrospectively conducted: 60 patients (38 lung cancer; 22 inflammatory diseases), with clear EBUS images were included. For each patient, a 400-pixel region of interest was selected, typically located at a 3- to 5-mm radius from the probe, from recorded EBUS images during bronchoscopy. Histogram height, width, height/width ratio, standard deviation, kurtosis and skewness were investigated as diagnostic indicators. Median histogram height, width, height/width ratio and standard deviation were significantly different between lung cancer and benign lesions (all p histogram standard deviation. Histogram standard deviation appears to be the most useful characteristic for diagnosing lung cancer using EBUS images. © 2015 S. Karger AG, Basel.

  3. Pulmonary hypertension associated with left-sided heart disease.

    Science.gov (United States)

    Maeder, Micha Tobias; Schoch, Otto D; Kleiner, Rebekka; Joerg, Lucas; Weilenmann, Daniel; Swiss Society For Pulmonary Hypertension

    2017-01-19

    Pulmonary hypertension associated with left-sided heart disease (PH-LHD) is the most common type of pulmonary hypertension. In patients with left-sided heart disease, the presence of pulmonary hypertension is typically a marker of more advanced disease, more severe symptoms, and worse prognosis. In contrast to pulmonary arterial hypertension, PH-LHD is characterised by an elevated pulmonary artery wedge pressure (postcapillary pulmonary hypertension) without or with an additional precapillary component (isolated postcapillary versus combined postcapillary and precapillary pulmonary hypertension). Transthoracic echocardiography is the primary nonin-vasive imaging tool to estimate the probability of pulmonary hypertension and to establish a working diagnosis on the mechanism of pulmonary hyperten-sion. However, right heart catheterisation is always required if significant pulmonary hypertension is sus-pected and exact knowledge of the haemodynamic constellation is necessary. The haemodynamic con-stellation (mean pulmonary artery pressure, mean pulmonary artery wedge pressure, left ventricular end-diastolic pressure) in combination with clinical infor-mation and imaging findings (mainly echocardiog-raphy, coronary angiography and cardiac magnetic resonance imaging) will usually allow the exact mech-anism underlying PH-LHD to be defined, which is a prerequisite for appropriate treatment. The general principle for the management of PH-LHD is to treat the underlying left-sided heart disease in an optimal man-ner using drugs and/or interventional or surgical ther-apy. There is currently no established indication for pulmonary arterial hypertension-specific therapies in PH-LHD, and specific therapies may even cause harm in patients with PH-LHD.

  4. Chronic obstructive pulmonary disease

    International Nuclear Information System (INIS)

    Karabulut, N.

    2012-01-01

    Full text: Chronic obstructive pulmonary diseases (COPD) denote progressive lung diseases characterized by airway obstruction. COPD exhibits specific morphologic changes in the lung parenchyma, central and peripheral airways and pulmonary vasculature. A person with COPD may have either emphysema or chronic bronchitis, but most have both. Some people with COPD may also have an asthma-like or reactive component. Imaging modalities play important role in the detection or exclusion of COPD, distribution and extent of disease processes. Combined inspiratory and expiratory high resolution CT allows phenotyping of COPD (emphysema predominant, airway predominant, or mixed) and quantification of severity. Magnetic resonance imaging enables functional evaluation and demonstrates ventilation defects correlating closely with pulmonary function tests. Imaging techniques are also helpful in guiding the treatment, such as bullectomy in patients with bullous emphysema, lung volume reduction surgery or endoscopic interventions in those with severe emphysema, and smoking cessation and medical treatment designed to stop lung destruction in patients with mild or moderate emphysema or bronchiectasis.

  5. Analysis of diaphragmatic movement before and after pulmonary rehabilitation using fluoroscopy imaging in patients with COPD

    Directory of Open Access Journals (Sweden)

    Chun EM

    2015-01-01

    rehabilitation in COPD patients in terms of cost and time savings compared with computed tomography or magnetic resonance imaging. Keywords: COPD, pulmonary rehabilitation, fluoroscopy, diaphragmatic movement

  6. Idiopathic pulmonary fibrosis. A rare cause of scintigraphic ventilation-perfusion mismatch

    International Nuclear Information System (INIS)

    Pochis, W.T.; Krasnow, A.Z.; Collier, B.D.; Mewissen, M.W.; Almagro, U.A.; Hellman, R.S.; Isitman, A.T.

    1990-01-01

    A case of idiopathic pulmonary fibrosis with multiple areas of mismatch on ventilation-perfusion lung imaging in the absence of pulmonary embolism is presented. Idiopathic pulmonary fibrosis is one of the few nonembolic diseases producing a pulmonary ventilation-perfusion mismatch. In this condition, chest radiographs may not detect the full extent of disease, and xenon-133 ventilation imaging may be relatively insensitive to morbid changes in small airways. Thus, when examining patients with idiopathic pulmonary fibrosis, one should be aware that abnormal perfusion imaging patterns without matching ventilation abnormalities are not always due to embolism. In this setting, contrast pulmonary angiography is often needed for accurate differential diagnosis

  7. Idiopathic pulmonary fibrosis. A rare cause of scintigraphic ventilation-perfusion mismatch

    Energy Technology Data Exchange (ETDEWEB)

    Pochis, W.T.; Krasnow, A.Z.; Collier, B.D.; Mewissen, M.W.; Almagro, U.A.; Hellman, R.S.; Isitman, A.T. (Medical College of Wisconsin, Milwaukee (USA))

    1990-05-01

    A case of idiopathic pulmonary fibrosis with multiple areas of mismatch on ventilation-perfusion lung imaging in the absence of pulmonary embolism is presented. Idiopathic pulmonary fibrosis is one of the few nonembolic diseases producing a pulmonary ventilation-perfusion mismatch. In this condition, chest radiographs may not detect the full extent of disease, and xenon-133 ventilation imaging may be relatively insensitive to morbid changes in small airways. Thus, when examining patients with idiopathic pulmonary fibrosis, one should be aware that abnormal perfusion imaging patterns without matching ventilation abnormalities are not always due to embolism. In this setting, contrast pulmonary angiography is often needed for accurate differential diagnosis.

  8. A preclinical Talbot-Lau prototype for x-ray dark-field imaging of human-sized objects.

    Science.gov (United States)

    Hauke, C; Bartl, P; Leghissa, M; Ritschl, L; Sutter, S M; Weber, T; Zeidler, J; Freudenberger, J; Mertelmeier, T; Radicke, M; Michel, T; Anton, G; Meinel, F G; Baehr, A; Auweter, S; Bondesson, D; Gaass, T; Dinkel, J; Reiser, M; Hellbach, K

    2018-03-26

    Talbot-Lau x-ray interferometry provides information about the scattering and refractive properties of an object - in addition to the object's attenuation features. Until recently, this method was ineligible for imaging human-sized objects as it is challenging to adapt Talbot-Lau interferometers (TLIs) to the relevant x-ray energy ranges. In this work, we present a preclinical Talbot-Lau prototype capable of imaging human-sized objects with proper image quality at clinically acceptable dose levels. The TLI is designed to match a setup of clinical relevance as closely as possible. The system provides a scan range of 120 × 30 cm 2 by using a scanning beam geometry. Its ultimate load is 100 kg. High aspect ratios and fine grid periods of the gratings ensure a reasonable setup length and clinically relevant image quality. The system is installed in a university hospital and is, therefore, exposed to the external influences of a clinical environment. To demonstrate the system's capabilities, a full-body scan of a euthanized pig was performed. In addition, freshly excised porcine lungs with an extrinsically provoked pneumothorax were mounted into a human thorax phantom and examined with the prototype. Both examination sequences resulted in clinically relevant image quality - even in the case of a skin entrance air kerma of only 0.3 mGy which is in the range of human thoracic imaging. The presented case of a pneumothorax and a reader study showed that the prototype's dark-field images provide added value for pulmonary diagnosis. We demonstrated that a dedicated design of a Talbot-Lau interferometer can be applied to medical imaging by constructing a preclinical Talbot-Lau prototype. We experienced that the system is feasible for imaging human-sized objects and the phase-stepping approach is suitable for clinical practice. Hence, we conclude that Talbot-Lau x-ray imaging has potential for clinical use and enhances the diagnostic power of medical x-ray imaging.

  9. Human Pulmonary Infection by the Zoonotic Metastrongylus salmi Nematode. The First Reported Case in the Americas.

    Science.gov (United States)

    Calvopina, Manuel; Caballero, Henry; Morita, Tatsushi; Korenaga, Masataka

    2016-10-05

    Pulmonary metastrongylosis, a zoonotic disease found primarily in pigs, is caused by eight different species of the cosmopolitan nematode Metastrongylus genus. To date, only four human cases have been reported, all from Europe. Herein, a severe case of pulmonary infection caused by Metastrongylus salmi in an Ecuadorian man, with successful treatment with ivermectin, is described. © The American Society of Tropical Medicine and Hygiene.

  10. Cloud-processed 4D CMR flow imaging for pulmonary flow quantification

    Energy Technology Data Exchange (ETDEWEB)

    Chelu, Raluca G., E-mail: ralucachelu@hotmail.com [Department of Radiology, Erasmus MC, Rotterdam (Netherlands); Department of Cardiology, Erasmus MC, Rotterdam (Netherlands); Wanambiro, Kevin W. [Department of Radiology, Erasmus MC, Rotterdam (Netherlands); Department of Radiology, Aga Khan University Hospital, Nairobi (Kenya); Hsiao, Albert [Department of Radiology, University of California, San Diego, CA (United States); Swart, Laurens E. [Department of Radiology, Erasmus MC, Rotterdam (Netherlands); Department of Cardiology, Erasmus MC, Rotterdam (Netherlands); Voogd, Teun [Department of Radiology, Erasmus MC, Rotterdam (Netherlands); Hoven, Allard T. van den; Kranenburg, Matthijs van [Department of Cardiology, Erasmus MC, Rotterdam (Netherlands); Coenen, Adriaan [Department of Radiology, Erasmus MC, Rotterdam (Netherlands); Department of Cardiology, Erasmus MC, Rotterdam (Netherlands); Boccalini, Sara [Department of Radiology, Erasmus MC, Rotterdam (Netherlands); Department of Radiology, University Hospital, Genoa (Italy); Wielopolski, Piotr A. [Department of Radiology, Erasmus MC, Rotterdam (Netherlands); Vogel, Mika W. [MR Applications and Workflow – Europe, GE Healthcare B.V. Hoevelaken (Netherlands); Krestin, Gabriel P. [Department of Radiology, Erasmus MC, Rotterdam (Netherlands); Vasanawala, Shreyas S. [Department of Radiology, Stanford University, Stanford, CA (United States); Budde, Ricardo P.J. [Department of Radiology, Erasmus MC, Rotterdam (Netherlands); Department of Cardiology, Erasmus MC, Rotterdam (Netherlands); Roos-Hesselink, Jolien W. [Department of Cardiology, Erasmus MC, Rotterdam (Netherlands); Nieman, Koen [Department of Radiology, Erasmus MC, Rotterdam (Netherlands); Department of Cardiology, Erasmus MC, Rotterdam (Netherlands)

    2016-10-15

    Highlights: • With 4D flow, any plane of interest can be interactively chosen for quantitative measurements. • Anatomical and flow data are obtained during an approximately 10-min free-breathing scan. • 4D CMR flow measurements correlated well with the 2D PC ones. • Eddy current correction is important for good results with 4D flow. - Abstract: Objectives: In this study, we evaluated a cloud-based platform for cardiac magnetic resonance (CMR) four-dimensional (4D) flow imaging, with fully integrated correction for eddy currents, Maxwell phase effects, and gradient field non-linearity, to quantify forward flow, regurgitation, and peak systolic velocity over the pulmonary artery. Methods: We prospectively recruited 52 adult patients during one-year period from July 2014. The 4D flow and planar (2D) phase-contrast (PC) were acquired during same scanning session, but 4D flow was scanned after injection of a gadolinium-based contrast agent. Eddy-currents were semi-automatically corrected using the web-based software. Flow over pulmonary valve was measured and the 4D flow values were compared against the 2D PC ones. Results: The mean forward flow was 92 (±30) ml/cycle measured with 4D flow and 86 (±29) ml/cycle measured with 2D PC, with a correlation of 0.82 and a mean difference of −6 ml/cycle (−41–29). For the regurgitant fraction the correlation was 0.85 with a mean difference of −0.95% (−17–15). Mean peak systolic velocity measured with 4D flow was 92 (±49) cm/s and 108 (±56) cm/s with 2D PC, having a correlation of 0.93 and a mean difference of 16 cm/s (−24–55). Conclusion: 4D flow imaging post-processed with an integrated cloud-based application accurately quantifies pulmonary flow. However, it may underestimate the peak systolic velocity.

  11. Cloud-processed 4D CMR flow imaging for pulmonary flow quantification

    International Nuclear Information System (INIS)

    Chelu, Raluca G.; Wanambiro, Kevin W.; Hsiao, Albert; Swart, Laurens E.; Voogd, Teun; Hoven, Allard T. van den; Kranenburg, Matthijs van; Coenen, Adriaan; Boccalini, Sara; Wielopolski, Piotr A.; Vogel, Mika W.; Krestin, Gabriel P.; Vasanawala, Shreyas S.; Budde, Ricardo P.J.; Roos-Hesselink, Jolien W.; Nieman, Koen

    2016-01-01

    Highlights: • With 4D flow, any plane of interest can be interactively chosen for quantitative measurements. • Anatomical and flow data are obtained during an approximately 10-min free-breathing scan. • 4D CMR flow measurements correlated well with the 2D PC ones. • Eddy current correction is important for good results with 4D flow. - Abstract: Objectives: In this study, we evaluated a cloud-based platform for cardiac magnetic resonance (CMR) four-dimensional (4D) flow imaging, with fully integrated correction for eddy currents, Maxwell phase effects, and gradient field non-linearity, to quantify forward flow, regurgitation, and peak systolic velocity over the pulmonary artery. Methods: We prospectively recruited 52 adult patients during one-year period from July 2014. The 4D flow and planar (2D) phase-contrast (PC) were acquired during same scanning session, but 4D flow was scanned after injection of a gadolinium-based contrast agent. Eddy-currents were semi-automatically corrected using the web-based software. Flow over pulmonary valve was measured and the 4D flow values were compared against the 2D PC ones. Results: The mean forward flow was 92 (±30) ml/cycle measured with 4D flow and 86 (±29) ml/cycle measured with 2D PC, with a correlation of 0.82 and a mean difference of −6 ml/cycle (−41–29). For the regurgitant fraction the correlation was 0.85 with a mean difference of −0.95% (−17–15). Mean peak systolic velocity measured with 4D flow was 92 (±49) cm/s and 108 (±56) cm/s with 2D PC, having a correlation of 0.93 and a mean difference of 16 cm/s (−24–55). Conclusion: 4D flow imaging post-processed with an integrated cloud-based application accurately quantifies pulmonary flow. However, it may underestimate the peak systolic velocity.

  12. Fast T1- and T2-weighted pulmonary MR-imaging in patients with bronchial carcinoma

    International Nuclear Information System (INIS)

    Both, M.; Schultze, J.; Reuter, M.; Bewig, B.; Hubner, R.; Bobis, I.; Noth, R.; Heller, M.; Biederer, J.

    2005-01-01

    Purpose: A prospective study to evaluate the diagnostic potential and limitations of three fast MRI sequences in patients with bronchial carcinoma based on the comparison with spiral CT. Material and methods: Three fast chest MRI sequences from 20 patients with central or peripheral bronchial carcinoma were evaluated by two observers for relation of tumour to adjacent structures, lymph node enlargement, additional pulmonary lesions and artefacts. The information from MR-imaging was compared with the results from spiral CT. MRI comprised a T1-3D-GRE breath-hold examination ('VIBE', TR/TE 4.5/1.9 ms, flip-angle 12 deg., matrix 502 x 512, 2.5 mm coronal slices), a breath-hold, T2-HASTE sequence (TR/TE 2000/43 ms, matrix 192 x 256, 10 mm coronal slices) and a respiration-triggered T2-TSE sequence (TR/TE 3000-6000/120 ms, matrix 270 x 512, 6 mm transverse slices). The FOV was adapted individually (380-480 mm). Results: The presence of the primary bronchial carcinoma and infiltration of thoracic structures by tumour tissue could be demonstrated by all sequences. VIBE sequence was more suitable for detecting small pulmonary nodules than the other MRI examinations, but compared to CT still 20% of these lesions were missed. Contrary to VIBE and T2-weighted TSE scans, HASTE sequence was limited in imaging mediastinal lymph nodes due to missing relevant findings in 2/20 patients. HASTE images significantly provided the lowest rate of artefacts in imaging lung parenchyma (P < 0.001 in peripheral parenchyma), but spatial resolution was limited in this sequence. Concerning the differentiation between tumour and adjacent atelectasis (n = 8), T2-weighted TSE imaging was superior to CT and VIBE in all cases and to HASTE sequence in 4/8 patients. Conclusion: The combination of VIBE and HASTE sequence allows for an adequate imaging of thoracic processes in patients with bronchial carcinoma, limited only in visualizing small pulmonary nodules. To obtain more detail resolution and to

  13. Magnetic resonance imaging in pulmonary hypertension. Magnetresonanztomographie bei pulmonaler Hypertension

    Energy Technology Data Exchange (ETDEWEB)

    Neuhold, A.; Stiskal, M.; Czerny, C. (Institut fuer Bildgebende Diagnostik, Rudolfinerhaus, Vienna (Austria)); Frank, H.; Globits, S.; Glogar, D.; Mlczoch, J. (Universitaetsklinik fuer Kardiologie, Vienna (Austria))

    1992-09-01

    We examined 23 patients with pulmonary hypertension of varying aetiology by MRI and compared the results with those of right heart catheterisation. The best correlation was obtained between right ventricular mural thickness and mean pulmonary pressure (R = 0.91, p = 0.001). There was significant correlation (R = 0.85, p = 0.001) for the diameter of the inferior vena cava, which was dilated in all patients with pulmonary hypertension. There was no significant correlation between mean pulmonary pressure and the diameters of the superior vena cava or the main pulmonary artery branches (R = 0.55 and 0.75 respectively, p < 0.05). Amongst functional measurements there was a correlation between right ventricular ejection fraction and mean pulmonary artery pressure (R = 0.71, p = 0.001). There was no correlation between right ventricular end-systolic and end-diastolic volume. In all patients with pulmonary hypertension, dynamic flow sensitive gradient echo sequences showed the presence of tricuspid insufficiency. A further semiquantitative criterion for the presence of pulmonary hypertension in 4 patients (17%) was an abnormal signal from the main pulmonary artery in early to mid-systole shown on T[sub 1]-weighted transverse sections. (orig./GDG).

  14. Radioaerosol inhalation lung imaging for the diagnosis of chronic obstructive pulmonary diseases in Thailand. Final report for the period 10 December 1987 - 15 December 1993

    Energy Technology Data Exchange (ETDEWEB)

    Buachum, V [Chulalongkorn Univ., Bangkok (Thailand). Nuclear Medicine Div.

    1993-12-01

    The radionuclide pulmonary function studies such as aerosol inhalation lung imaging, mucociliary clearance and pulmonary epithelial were developed and studied in normal and chronic obstructive pulmonary disease. The results of the aerosol inhalation lung imaging in 71 cases of COPD revealed that the aerosol inhalation lung scan was the most sensitive test for the diagnosis of early COPD as compared to the chest X-ray, vascular perfusion lung scan and spirometric test (% FEVI). The aerosol and perfusion lung scan were also performed in 21 cases of carcinoma of lung who had been treated with external radiation or chemotherapy. The result of study revealed 5 patients died during treatment, 5 patients were slightly improved, no significant change was detected in 10 cases and deterioration was found in one patient. The lung scintigraphy was studied in 15 cases of well differentiated carcinoma of thyroid with pulmonary metastasis who had I-131 treatment. The study showed that the radioactive iodine treatment dose had minimal effect on the post treatment lung imaging study. The perfusion and aerosol study in 15 cases of operated patients revealed no evidence of pulmonary embolism in post operative study. Abnormal vascular disease or pulmonary embolism was observed in one patient preoperatively. 12 refs, 13 figs, 13 tabs.

  15. Radioaerosol inhalation lung imaging for the diagnosis of chronic obstructive pulmonary diseases in Thailand. Final report for the period 10 December 1987 - 15 December 1993

    International Nuclear Information System (INIS)

    Buachum, V.

    1993-12-01

    The radionuclide pulmonary function studies such as aerosol inhalation lung imaging, mucociliary clearance and pulmonary epithelial were developed and studied in normal and chronic obstructive pulmonary disease. The results of the aerosol inhalation lung imaging in 71 cases of COPD revealed that the aerosol inhalation lung scan was the most sensitive test for the diagnosis of early COPD as compared to the chest X-ray, vascular perfusion lung scan and spirometric test (% FEVI). The aerosol and perfusion lung scan were also performed in 21 cases of carcinoma of lung who had been treated with external radiation or chemotherapy. The result of study revealed 5 patients died during treatment, 5 patients were slightly improved, no significant change was detected in 10 cases and deterioration was found in one patient. The lung scintigraphy was studied in 15 cases of well differentiated carcinoma of thyroid with pulmonary metastasis who had I-131 treatment. The study showed that the radioactive iodine treatment dose had minimal effect on the post treatment lung imaging study. The perfusion and aerosol study in 15 cases of operated patients revealed no evidence of pulmonary embolism in post operative study. Abnormal vascular disease or pulmonary embolism was observed in one patient preoperatively. 12 refs, 13 figs, 13 tabs

  16. CT evaluation of chronic thromboembolic pulmonary hypertension

    Energy Technology Data Exchange (ETDEWEB)

    Willemink, M.J. [Department of Radiology, St Antonius Hospital, Nieuwegein (Netherlands); Es, H.W. van, E-mail: h.es@antoniusziekenhuis.nl [Department of Radiology, St Antonius Hospital, Nieuwegein (Netherlands); Koobs, L. [Department of Radiology, St Antonius Hospital, Nieuwegein (Netherlands); Morshuis, W.J. [Department of Cardio-Thoracic Surgery, St Antonius Hospital, Nieuwegein (Netherlands); Snijder, R.J. [Department of Pulmonary Disease, St Antonius Hospital, Nieuwegein (Netherlands); Heesewijk, J.P.M. van [Department of Radiology, St Antonius Hospital, Nieuwegein (Netherlands)

    2012-03-15

    The educational objectives of this article are to provide an overview of the computed tomography (CT) findings in chronic thromboembolic pulmonary hypertension. This article reviews the key imaging findings at CT in patients with chronic thromboembolic pulmonary hypertension. After reading this article, the reader should have an improved awareness of the condition, its imaging features, and the CT imaging features associated with surgically accessible disease.

  17. CT evaluation of chronic thromboembolic pulmonary hypertension

    International Nuclear Information System (INIS)

    Willemink, M.J.; Es, H.W. van; Koobs, L.; Morshuis, W.J.; Snijder, R.J.; Heesewijk, J.P.M. van

    2012-01-01

    The educational objectives of this article are to provide an overview of the computed tomography (CT) findings in chronic thromboembolic pulmonary hypertension. This article reviews the key imaging findings at CT in patients with chronic thromboembolic pulmonary hypertension. After reading this article, the reader should have an improved awareness of the condition, its imaging features, and the CT imaging features associated with surgically accessible disease.

  18. Theophylline prevents NAD+ depletion via PARP-1 inhibition in human pulmonary epithelial cells

    International Nuclear Information System (INIS)

    Moonen, Harald J.J.; Geraets, Liesbeth; Vaarhorst, Anika; Bast, Aalt; Wouters, Emiel F.M.; Hageman, Geja J.

    2005-01-01

    Oxidative DNA damage, as occurs during exacerbations in chronic obstructive pulmonary disease (COPD), highly activates the nuclear enzyme poly(ADP-ribose)polymerase-1 (PARP-1). This can lead to cellular depletion of its substrate NAD + , resulting in an energy crisis and ultimately in cell death. Inhibition of PARP-1 results in preservation of the intracellular NAD + pool, and of NAD + -dependent cellular processes. In this study, PARP-1 activation by hydrogen peroxide decreased intracellular NAD + levels in human pulmonary epithelial cells, which was found to be prevented in a dose-dependent manner by theophylline, a widely used compound in the treatment of COPD. This enzyme inhibition by theophylline was confirmed in an ELISA using purified human PARP-1 and was found to be competitive by nature. These findings provide new mechanistic insights into the therapeutic effect of theophylline in oxidative stress-induced lung pathologies

  19. Abnormal intraluminal signal within the pulmonary arteries on MR imaging: Differentiation between slow blood flow and thrombus using an ECG-gated; multiphasic: Spin-echo technique

    International Nuclear Information System (INIS)

    White, R.D.; Higgins, C.B.

    1986-01-01

    The authors evaluated abnormal MR imaging signal patterns in the pulmonary arteries of 22 patients with pulmonary hypertension (n = 13), pulmonary embolus (n = 4), or both (n = 5). Using multiphasic (five or six phases; 19 patients) or standard (three patients with pulmonary embolus) ECG-gated, double spin-echo techniques, they were able to differentiate between causes of such abnormal signal patterns. The pattern of slow blood flow (abnormal signal in systole with fluctuating distribution during cardiac cycle, and intensity increasing visually from first to second echo) was noted in 89% of patients with pulmonary hypertension alone or in combination with pulmonary embolism, and was characteristic of high systolic pulmonary pressures (12 of 12 patients with pressure > 80 mm Hg, vs. 3 of 5 patients with pressure 55 mm Hg vs. 5 of 7 patients with pressures <55 mm Hg). This pattern was differentiated from that of thrombus (persistent signal with fixed distribution during cardiac cycle, and little to no visible intensity change from first to second echo), which was noted in six of seven proved embolus cases. Thus, gated multiphase MR imaging shows potential for the noninvasive visualization of pulmonary embolus and the differentiation of this entity from the slow blood flow of pulmonary hypertension

  20. Multi-frequency time-difference complex conductivity imaging of canine and human lungs using the KHU Mark1 EIT system

    International Nuclear Information System (INIS)

    Kuen, Jihyeon; Woo, Eung Je; Seo, Jin Keun

    2009-01-01

    We evaluated the performance of the lately developed electrical impedance tomography (EIT) system KHU Mark1 through time-difference imaging experiments of canine and human lungs. We derived a multi-frequency time-difference EIT (mftdEIT) image reconstruction algorithm based on the concept of the equivalent homogeneous complex conductivity. Imaging experiments were carried out at three different frequencies of 10, 50 and 100 kHz with three different postures of right lateral, sitting (or prone) and left lateral positions. For three normal canine subjects, we controlled the ventilation using a ventilator at three tidal volumes of 100, 150 and 200 ml. Three human subjects were asked to breath spontaneously at a normal tidal volume. Real- and imaginary-part images of the canine and human lungs were reconstructed at three frequencies and three postures. Images showed different stages of breathing cycles and we could interpret them based on the understanding of the proposed mftdEIT image reconstruction algorithm. Time series of images were further analyzed by using the functional EIT (fEIT) method. Images of human subjects showed the gravity effect on air distribution in two lungs. In the canine subjects, the morphological change seems to dominate the gravity effect. We could also observe that two different types of ventilation should have affected the results. The KHU Mark1 EIT system is expected to provide reliable mftdEIT images of the human lungs. In terms of the image reconstruction algorithm, it would be worthwhile including the effects of three-dimensional current flows inside the human thorax. We suggest clinical trials of the KHU Mark1 for pulmonary applications

  1. Multi-frequency time-difference complex conductivity imaging of canine and human lungs using the KHU Mark1 EIT system.

    Science.gov (United States)

    Kuen, Jihyeon; Woo, Eung Je; Seo, Jin Keun

    2009-06-01

    We evaluated the performance of the lately developed electrical impedance tomography (EIT) system KHU Mark1 through time-difference imaging experiments of canine and human lungs. We derived a multi-frequency time-difference EIT (mftdEIT) image reconstruction algorithm based on the concept of the equivalent homogeneous complex conductivity. Imaging experiments were carried out at three different frequencies of 10, 50 and 100 kHz with three different postures of right lateral, sitting (or prone) and left lateral positions. For three normal canine subjects, we controlled the ventilation using a ventilator at three tidal volumes of 100, 150 and 200 ml. Three human subjects were asked to breath spontaneously at a normal tidal volume. Real- and imaginary-part images of the canine and human lungs were reconstructed at three frequencies and three postures. Images showed different stages of breathing cycles and we could interpret them based on the understanding of the proposed mftdEIT image reconstruction algorithm. Time series of images were further analyzed by using the functional EIT (fEIT) method. Images of human subjects showed the gravity effect on air distribution in two lungs. In the canine subjects, the morphological change seems to dominate the gravity effect. We could also observe that two different types of ventilation should have affected the results. The KHU Mark1 EIT system is expected to provide reliable mftdEIT images of the human lungs. In terms of the image reconstruction algorithm, it would be worthwhile including the effects of three-dimensional current flows inside the human thorax. We suggest clinical trials of the KHU Mark1 for pulmonary applications.

  2. Oxygen-enhanced magnetic resonance ventilation imaging of lung

    International Nuclear Information System (INIS)

    Ohno, Yoshiharu; Chen Qun; Hatabu, Hiroto

    2001-01-01

    The oxygen-enhanced magnetic resonance (MR) ventilation imaging is a new technique, and the full extent of its physiological significance has not been elucidated. This review article includes background on (1) respiratory physiology; (2) mechanism and optimization of oxygen-enhanced MR imaging technique; (3) recent applications in animal and human models; and (4) merits and demerits of the technique in comparison with hyperpolarized noble gas MR ventilation imaging. Application of oxygen-enhanced MR ventilation imaging to patients with pulmonary diseases has been very limited. However, we believe that further basic studies, as well as clinical applications of this new technique will define the real significance of oxygen-enhanced MR ventilation imaging in the future of pulmonary functional imaging and its usefulness for diagnostic radiology

  3. Pulmonary vein and atrial wall pathology in human total anomalous pulmonary venous connection

    NARCIS (Netherlands)

    Douglas, Yvonne L.; Jongbloed, Monique R. M.; den Hartog, Wietske C. E.; Bartelings, Margot M.; Bogers, Ad J. J. C.; Ebels, Tjark; DeRuiter, Marco C.; Gittenberger-de Groot, Adriana C.

    2009-01-01

    Background: Normally, the inside of the left atrial (LA) body and pulmonary veins (PVs) is lined by vessel wall tissue covered by myocardium. In total anomalous pulmonary venous connection (TAPVC), no connection of the PVs with the LA body exists. These veins have an increased incidence of PV

  4. The contribution of pulmonary nuclear medicine; Imaging and physiology

    Energy Technology Data Exchange (ETDEWEB)

    Kawakami, Kenji (Jikei Univ., Tokyo (Japan). School of Medicine)

    1991-07-01

    The contribution of pulmonary nuclear medicine was evaluated in 115 patients with interstitial pulmonary diseases (IPD). Ventilation study (V) with {sup 81m}Kr or {sup 133}Xe, distribution of compliance in thoraco-pulmonary system (C) by {sup 81m}Kr gas bolus inhalation method, perfusion study (Q) with {sup 99m}Tc-MAA, {sup 67}Ga scintigraphy and an assessment of pulmonary epithelial permeability with {sup 99m}Tc-DTPA aerosol were performed as nuclear medicine procedures. Pulmonary function test (%DLco, vital capacity, and functional residual capacity) and blood gas analysis were also examined. Abnormalities in V were larger than that in Q, which was high V/Q mismatch finding, in interstitial pneumonia. Correlation between V/Q mismatch and PaO{sub 2} was, therefore, not significant. %DLco was decreased in cases with larger V/Q mismatches. {sup 67}Ga accumulated in the early stage of interstitial pneumonia when CT or chest X-ray did not show any finding. %DLco was decreased in cases with strong accumulation of {sup 67}Ga. {sup 67}Ga might be useful to evaluate activity of the disease. Pulmonary epithelial permeability was assessed by {sup 99m}Tc-DTPA inhalation study. This permeability became accelerated in idiopathic interstitial fibrosis and sarcoidosis. Pulmonary epithelial permeability may be useful as an indicator for epithelial cell injury. (author).

  5. Aspirin reduces lipopolysaccharide-induced pulmonary inflammation in human models of ARDS.

    Science.gov (United States)

    Hamid, U; Krasnodembskaya, A; Fitzgerald, M; Shyamsundar, M; Kissenpfennig, A; Scott, C; Lefrancais, E; Looney, M R; Verghis, R; Scott, J; Simpson, A J; McNamee, J; McAuley, D F; O'Kane, C M

    2017-11-01

    Platelets play an active role in the pathogenesis of acute respiratory distress syndrome (ARDS). Animal and observational studies have shown aspirin's antiplatelet and immunomodulatory effects may be beneficial in ARDS. To test the hypothesis that aspirin reduces inflammation in clinically relevant human models that recapitulate pathophysiological mechanisms implicated in the development of ARDS. Healthy volunteers were randomised to receive placebo or aspirin 75  or 1200 mg (1:1:1) for seven days prior to lipopolysaccharide (LPS) inhalation, in a double-blind, placebo-controlled, allocation-concealed study. Bronchoalveolar lavage (BAL) was performed 6 hours after inhaling 50 µg of LPS. The primary outcome measure was BAL IL-8. Secondary outcome measures included markers of alveolar inflammation (BAL neutrophils, cytokines, neutrophil proteases), alveolar epithelial cell injury, systemic inflammation (neutrophils and plasma C-reactive protein (CRP)) and platelet activation (thromboxane B2, TXB2). Human lungs, perfused and ventilated ex vivo (EVLP) were randomised to placebo or 24 mg aspirin and injured with LPS. BAL was carried out 4 hours later. Inflammation was assessed by BAL differential cell counts and histological changes. In the healthy volunteer (n=33) model, data for the aspirin groups were combined. Aspirin did not reduce BAL IL-8. However, aspirin reduced pulmonary neutrophilia and tissue damaging neutrophil proteases (Matrix Metalloproteinase (MMP)-8/-9), reduced BAL concentrations of tumour necrosis factor α and reduced systemic and pulmonary TXB2. There was no difference between high-dose and low-dose aspirin. In the EVLP model, aspirin reduced BAL neutrophilia and alveolar injury as measured by histological damage. These are the first prospective human data indicating that aspirin inhibits pulmonary neutrophilic inflammation, at both low and high doses. Further clinical studies are indicated to assess the role of aspirin in the

  6. Pulmonary artery pulsatility and effect on vessel diameter assessment in magnetic resonance imaging

    International Nuclear Information System (INIS)

    Shariat, Masoud; Schantz, Daryl; Yoo, Shi-Joon; Wintersperger, Bernd J.; Seed, Mike; Alnafisi, Bahiyah; Chu, Leysia; MacGowan, Christopher K.; Amerom, Joshua van; Grosse-Wortmann, Lars

    2014-01-01

    Background: Information about thoracic vascular sizes can crucially affect clinical decision-making in cardiovascular disease. A variety of imaging techniques such as catheter angiography, contrast enhanced computed tomography (CT) and cardiac magnetic resonance imaging (CMR) are routinely used to measure vascular diameters. Traditionally, CMR black blood sequences were the main anatomical tool for visualization of vascular anatomy and still are in many centers. More recently, the vessel diameters are measured on multiplanar reconstructions derived from static magnetic resonance angiography (MRA). This study was performed to investigate the variation of vessel diameter measurements on different CMR techniques with respect to their data acquisition scheme. Methods: We recruited two groups of patients for this prospective study. One group included patients with repaired tetralogy of Fallot (TOF), with at least moderate pulmonary insufficiency and another group of patients who underwent CMR as part of a diagnostic work-up for arrhythmogenic right ventricular cardiomyopathy (ARVC). Additional images of the right pulmonary artery (RPA) were acquired in the double inversion recovery (DIR) black blood, cine steady state free precession (SSFP) and MRA. All images were reviewed by two CMR trained readers using the electronic caliper provided within the picture archiving and communication system package. The maximum diameter of each artery was recorded in millimeters with up to one decimal point. Paired t-tests and Bland–Altman plots were used for comparison of measurements between different sequences. Results: A total of 52 patients were recruited for this study, 26 patients in the TOF group (15 males, age 12.55 ± 2.9) and 26 patients in the ARVC group (15 males, age 15.6 ± 2.3). In both groups, the RPA sizes were not significantly different between the DIR images and diastolic cine SSFP (p > 0.05). Measurements on DIR were significantly smaller than those made on

  7. Pulmonary artery pulsatility and effect on vessel diameter assessment in magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Shariat, Masoud, E-mail: masoudshariat@gmail.com [Department of Medical Imaging, University Health Network, University of Toronto, Toronto, Ontario (Canada); Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, Ontario (Canada); Schantz, Daryl, E-mail: daryl.schantz@gmail.com [Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, Ontario (Canada); Yoo, Shi-Joon, E-mail: shi-joon.yoo@sickkids.ca [Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, Ontario (Canada); Wintersperger, Bernd J., E-mail: bernd.wintersperger@uhn.ca [Department of Medical Imaging, University Health Network, University of Toronto, Toronto, Ontario (Canada); Seed, Mike, E-mail: mike.seed@sickkids.ca [Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, Ontario (Canada); Department of Cardiology, Hospital for Sick Children, Toronto, Ontario (Canada); Alnafisi, Bahiyah, E-mail: bahiyah.alnafisi@uhn.ca [Department of Medical Imaging, University Health Network, University of Toronto, Toronto, Ontario (Canada); Chu, Leysia, E-mail: leysia_99@yahoo.com [Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, Ontario (Canada); MacGowan, Christopher K., E-mail: christopher.macgowan@sickkids.ca [Department of Physiology and Experimental Medicine, Hospital for Sick Children, Toronto, Ontario (Canada); Amerom, Joshua van, E-mail: Joshu.vanamerom@sickkids.ca [Department of Physiology and Experimental Medicine, Hospital for Sick Children, Toronto, Ontario (Canada); Grosse-Wortmann, Lars, E-mail: lars.grosse-wortmann@sickkids.ca [Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, Ontario (Canada); Department of Cardiology, Hospital for Sick Children, Toronto, Ontario (Canada)

    2014-02-15

    Background: Information about thoracic vascular sizes can crucially affect clinical decision-making in cardiovascular disease. A variety of imaging techniques such as catheter angiography, contrast enhanced computed tomography (CT) and cardiac magnetic resonance imaging (CMR) are routinely used to measure vascular diameters. Traditionally, CMR black blood sequences were the main anatomical tool for visualization of vascular anatomy and still are in many centers. More recently, the vessel diameters are measured on multiplanar reconstructions derived from static magnetic resonance angiography (MRA). This study was performed to investigate the variation of vessel diameter measurements on different CMR techniques with respect to their data acquisition scheme. Methods: We recruited two groups of patients for this prospective study. One group included patients with repaired tetralogy of Fallot (TOF), with at least moderate pulmonary insufficiency and another group of patients who underwent CMR as part of a diagnostic work-up for arrhythmogenic right ventricular cardiomyopathy (ARVC). Additional images of the right pulmonary artery (RPA) were acquired in the double inversion recovery (DIR) black blood, cine steady state free precession (SSFP) and MRA. All images were reviewed by two CMR trained readers using the electronic caliper provided within the picture archiving and communication system package. The maximum diameter of each artery was recorded in millimeters with up to one decimal point. Paired t-tests and Bland–Altman plots were used for comparison of measurements between different sequences. Results: A total of 52 patients were recruited for this study, 26 patients in the TOF group (15 males, age 12.55 ± 2.9) and 26 patients in the ARVC group (15 males, age 15.6 ± 2.3). In both groups, the RPA sizes were not significantly different between the DIR images and diastolic cine SSFP (p > 0.05). Measurements on DIR were significantly smaller than those made on

  8. Effect of prepro-calcitonin gene-related peptide-expressing endothelial progenitor cells on pulmonary hypertension.

    Science.gov (United States)

    Zhao, Qiang; Liu, Zixiong; Wang, Zhe; Yang, Cheng; Liu, Jun; Lu, Jun

    2007-08-01

    Calcitonin gene-related peptide (CGRP) is a potent smooth muscle cell proliferation inhibitor and vasodilator. It is now believed that CGRP plays an important role in maintaining a low pulmonary vascular resistance. We evaluated the therapeutic effect of intravenously administered CGRP-expressing endothelial progenitor cells (EPCs) on left-to-right shunt-induced pulmonary hypertension in rats. Endothelial progenitor cells were obtained from cultured human peripheral blood mononuclear cells. The genetic sequence for CGRP was subcloned into cultured EPCs by human expression plasmid. Pulmonary hypertension was established in immunodeficient rats with an abdominal aorta to inferior vena cava shunt operation. The transfected EPCs were injected through the left jugular vein at 10 weeks after the shunt operation. Mean pulmonary artery pressure and total pulmonary vascular resistance were detected with right cardiac catheterization at 4 weeks. The distribution of EPCs in the lung tissue was examined with immunofluorescence technique. Histopathologic changes in the structure of the pulmonary arteries was observed with electron microscopy and subjected to computerized image analysis. The lungs of rats transplanted with CGRP-expressing EPCs demonstrated a decrease in both mean pulmonary artery pressure (17.64 +/- 0.79 versus 22.08 +/- 0.95 mm Hg; p = 0.018) and total pulmonary vascular resistance (1.26 +/- 0.07 versus 2.45 +/- 0.18 mm Hg x min/mL; p = 0.037) at 4 weeks. Immunofluorescence revealed that intravenously administered cells were incorporated into the pulmonary vasculature. Pulmonary vascular remodeling was remarkably attenuated with the administration of CGRP-expressing EPCs. The transplantation of CGRP-expressing EPCs may effectively attenuate established pulmonary hypertension and exert reversal effects on pulmonary vascular remodeling. Our findings suggest that the therapy based on the combination of both CGRP transfection and EPCs may be a potentially useful

  9. The dilatation of main pulmonary artery and right ventricle observed by enhanced chest computed tomography predict poor outcome in inoperable chronic thromboembolic pulmonary hypertension.

    Science.gov (United States)

    Ema, Ryogo; Sugiura, Toshihiko; Kawata, Naoko; Tanabe, Nobuhiro; Kasai, Hajime; Nishimura, Rintaro; Jujo, Takayuki; Shigeta, Ayako; Sakao, Seiichiro; Tatsumi, Koichiro

    2017-09-01

    Dilatation of the pulmonary artery and right ventricle on chest computed tomography images is often observed in patients with pulmonary hypertension. The clinical significance of these image findings has not been defined in chronic thromboembolic pulmonary hypertension. We investigated whether the pulmonary arterial and right ventricle dilatation was associated with poor outcome in chronic thromboembolic pulmonary hypertension. This was a retrospective cohort investigation in 60 subjects with inoperable chronic thromboembolic pulmonary hypertension diagnosed consecutively between 1997 and 2010 at Chiba University Hospital. Digital scout multi-detector chest computed tomography images were obtained. The main pulmonary arterial to ascending aortic diameter ratio and the right ventricular to left ventricular diameter ratio were calculated. Main pulmonary arterial to ascending aortic diameter ratio ranged from 0.85 to 1.84, and right ventricular to left ventricular diameter ratio ranged from 0.71 to 2.88. During the observation period of 1284.5days (range, 21-4550days), 13 patients required hospitalization due to worsening; 6 of them died. Kaplan-Meier analysis showed significant differences in hospitalization between the patients with main pulmonary arterial to ascending aortic diameter ratio of ≥1.1 and pulmonary hypertension. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  10. ACR Appropriateness Criteria® Suspected Pulmonary Hypertension.

    Science.gov (United States)

    Sirajuddin, Arlene; Donnelly, Edwin F; Crabtree, Traves P; Henry, Travis S; Iannettoni, Mark D; Johnson, Geoffrey B; Kazerooni, Ella A; Maldonado, Fabien; Olsen, Kathryn M; Wu, Carol C; Mohammed, Tan-Lucien; Kanne, Jeffrey P

    2017-05-01

    Pulmonary hypertension may be idiopathic or related to a large variety of diseases. Various imaging examinations that may be helpful in diagnosing and determining the etiology of pulmonary hypertension are discussed. Imaging examinations that may aid in the diagnosis of pulmonary hypertension include chest radiography, ultrasound echocardiography, ventilation/perfusion scans, CT, MRI, right heart catheterization, pulmonary angiography, and fluorine-18-2-fluoro-2-deoxy-d-glucose PET/CT. The American College of Radiology Appropriateness Criteria are evidence-based guidelines for specific clinical conditions that are reviewed annually by a multidisciplinary expert panel. The guideline development and revision include an extensive analysis of current medical literature from peer reviewed journals and the application of well-established methodologies (RAND/UCLA Appropriateness Method and Grading of Recommendations Assessment, Development, and Evaluation or GRADE) to rate the appropriateness of imaging and treatment procedures for specific clinical scenarios. In those instances where evidence is lacking or equivocal, expert opinion may supplement the available evidence to recommend imaging or treatment. Copyright © 2017 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  11. Pulmonary MR angiography and perfusion imaging—A review of methods and applications

    Energy Technology Data Exchange (ETDEWEB)

    Johns, Christopher S.; Swift, Andrew J.; Hughes, Paul J.C. [University of Sheffield (United Kingdom); Ohno, Yoshiharu [Division of Functional and Diagnostic Imaging Research, Department of Radiology, KobeUniversity Graduate School of Medicine, Kobe, Hyogo (Japan); Schiebler, Mark [UW-Madison School of Medicine and Public Health, Madison, WI (United States); Wild, Jim M., E-mail: j.m.wild@sheffield.ac.uk [University of Sheffield (United Kingdom)

    2017-01-15

    Highlights: • This article represents an overview of the methodology and clinical applications of pulmonary MRA and perfusion imaging. • Both contrast enhanced and non-contrast enhanced metholodology for MRA and perfusion are covered. • The current clinical uses and future directions of MRA and MR perfusion are discussed. - Abstract: The pulmonary vasculature and its role in perfusion and gas exchange is an important consideration in many conditions of the lung and heart. Currently the mainstay of imaging of the vasculature and perfusion of the lungs lies with CT and nuclear medicine perfusion scans, both of which require ionizing radiation exposure. Improvements in MRI techniques have increased the use of MRI in pulmonary vascular imaging. Here we review MRI methods for imaging the pulmonary vasculature and pulmonary perfusion, both using contrast enhanced and non-contrast enhanced methodology. In many centres pulmonary MR angiography and dynamic contrast enhanced perfusion MRI are now well established in the routine workflow of patients particularly with pulmonary hypertension and thromboembolic disease. However, these imaging modalities offer exciting new directions for future research and clinical use in other respiratory diseases where consideration of pulmonary perfusion and gas exchange can provide insight in to pathophysiology.

  12. Pulmonary MR angiography and perfusion imaging—A review of methods and applications

    International Nuclear Information System (INIS)

    Johns, Christopher S.; Swift, Andrew J.; Hughes, Paul J.C.; Ohno, Yoshiharu; Schiebler, Mark; Wild, Jim M.

    2017-01-01

    Highlights: • This article represents an overview of the methodology and clinical applications of pulmonary MRA and perfusion imaging. • Both contrast enhanced and non-contrast enhanced metholodology for MRA and perfusion are covered. • The current clinical uses and future directions of MRA and MR perfusion are discussed. - Abstract: The pulmonary vasculature and its role in perfusion and gas exchange is an important consideration in many conditions of the lung and heart. Currently the mainstay of imaging of the vasculature and perfusion of the lungs lies with CT and nuclear medicine perfusion scans, both of which require ionizing radiation exposure. Improvements in MRI techniques have increased the use of MRI in pulmonary vascular imaging. Here we review MRI methods for imaging the pulmonary vasculature and pulmonary perfusion, both using contrast enhanced and non-contrast enhanced methodology. In many centres pulmonary MR angiography and dynamic contrast enhanced perfusion MRI are now well established in the routine workflow of patients particularly with pulmonary hypertension and thromboembolic disease. However, these imaging modalities offer exciting new directions for future research and clinical use in other respiratory diseases where consideration of pulmonary perfusion and gas exchange can provide insight in to pathophysiology.

  13. Tc-99m Ciprofloxacin SPECT of Pulmonary Tuberculosis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Min Kyung; Hwang, Kyung Hoon [Gachon University Gil Hospital, Incheon (Korea, Republic of); Yoon, Min Ki [Good Samaritan Hospital, Pohang (Korea, Republic of); Choe, Won Sick [Kangbuk Samsung Hospital, Seoul (Korea, Republic of)

    2010-06-15

    Tc-99m ciprofloxacin is available for imaging infection. However, there has been no study on employing single photon emission computed tomography (SPECT) with using Tc-99m ciprofloxacin to image active pulmonary tuberculosis. Therefore, we conducted this study to assess the efficacy of Tc-99m ciprofloxacin SPECT for imaging active pulmonary tuberculosis. Twenty-one participants were enrolled in this prospective study. They were divided into two groups according to the clinical and radiological assessment. Group one (Gr. 1) consisted of five normal volunteers and six patients with inactive pulmonary tuberculosis. Group two (Gr. 2) consisted of ten patients with active pulmonary tuberculosis. SPECT was performed 3 h after injecting 555 MBq (15 mCi) of Tc-99m ciprofloxacin. The findings of Tc-99m ciprofloxacin SPECT were interpreted by a nuclear medicine specialist and then the results were analyzed according to the patients' clinical and radiological classifications. The results of Tc-99m ciprofloxacin SPECT were as follows: eight true-positive cases, ten true-negative cases, one false-positive case and two false-negative cases. The sensitivity and specificity was 80.0% and 90.0%, respectively. The positive predictive value was 88.9% and the negative predictive value was 83.3%. Conclusions Tc-99m ciprofloxacin SPECT is feasible for imaging active pulmonary tuberculosis. It is a useful nuclear-imaging method for discriminating between the active and inactive tuberculosis states in patients with a past medical history of pulmonary tuberculosis.

  14. Nuclear scan of pulmonary hemorrhage in radiopathic pulmonary hemosiderosis

    International Nuclear Information System (INIS)

    Miller, T.; Tanaka, T.

    1979-01-01

    Idiopathic pulmonary hemosiderosis, a disease of unknown etiology most often occuring in children, is characterized by recurring episodes of alveolar consolidation. Exacerbations of pulmonary hemorrhage coincide with episodes of alveolar filling; repeated episodes lead to progressive interstitial fibrosis and eventually to corpulmonale. Serial nuclear scans of the lungs after injection of radiolabeled red blood cells should parallel the pathologic and radiographic findings. We observed the accumulation of radiolabeled red blood cells in the lungs on scan images, a finding not previously reported

  15. Capability of differentiating smokers with normal pulmonary function from COPD patients: a comparison of CT pulmonary volume analysis and MR perfusion imaging

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Li; Xia, Yi; Guan, Yu; Yu, Hong; Liu, Shi-yuan [Changzheng Hospital of the Second Military Medical University, Department of Radiology, Shanghai (China); Zhang, Tie-feng; Li, Bing [Changzheng Hospital of the Second Military Medical University, Department of Respiration Medicine, Shanghai (China)

    2013-05-15

    To compare CT volume analysis with MR perfusion imaging in differentiating smokers with normal pulmonary function (controls) from COPD patients. Sixty-two COPD patients and 17 controls were included. The total lung volume (TLV), total emphysema volume (TEV) and emphysema index (EI) were quantified by CT. MR perfusion evaluated positive enhancement integral (PEI), maximum slope of increase (MSI), maximum slope of decrease (MSD), signal enhancement ratio (SER) and signal intensity ratio (R{sub SI}) of perfusion defects to normal lung. There were 19 class I, 17 class II, 14 class III and 12 class IV COPD patients. No differences were observed in TLV, TEV and EI between control and class I COPD. The control was different from class II, III and IV COPD in TEV and EI. The control was different from each class of COPD in R{sub SI,} MSI, PEI and MSD. Differences were found in R{sub SI} between class I and III, I and IV, and II and IV COPD. Amongst controls, MR detected perfusion defects more frequently than CT detected emphysema. Compared with CT, MR perfusion imaging shows higher potential to distinguish controls from mild COPD and appears more sensitive in identifying abnormalities amongst smokers with normal pulmonary function (controls). (orig.)

  16. Capability of differentiating smokers with normal pulmonary function from COPD patients: a comparison of CT pulmonary volume analysis and MR perfusion imaging

    International Nuclear Information System (INIS)

    Fan, Li; Xia, Yi; Guan, Yu; Yu, Hong; Liu, Shi-yuan; Zhang, Tie-feng; Li, Bing

    2013-01-01

    To compare CT volume analysis with MR perfusion imaging in differentiating smokers with normal pulmonary function (controls) from COPD patients. Sixty-two COPD patients and 17 controls were included. The total lung volume (TLV), total emphysema volume (TEV) and emphysema index (EI) were quantified by CT. MR perfusion evaluated positive enhancement integral (PEI), maximum slope of increase (MSI), maximum slope of decrease (MSD), signal enhancement ratio (SER) and signal intensity ratio (R SI ) of perfusion defects to normal lung. There were 19 class I, 17 class II, 14 class III and 12 class IV COPD patients. No differences were observed in TLV, TEV and EI between control and class I COPD. The control was different from class II, III and IV COPD in TEV and EI. The control was different from each class of COPD in R SI, MSI, PEI and MSD. Differences were found in R SI between class I and III, I and IV, and II and IV COPD. Amongst controls, MR detected perfusion defects more frequently than CT detected emphysema. Compared with CT, MR perfusion imaging shows higher potential to distinguish controls from mild COPD and appears more sensitive in identifying abnormalities amongst smokers with normal pulmonary function (controls). (orig.)

  17. Short linear shadows connecting pulmonary segmental arteries to oblique fissures in volumetric thin-section CT images: comparing CT, micro-CT and histopathology

    International Nuclear Information System (INIS)

    Guan, Chun-Shuang; Ma, Da-Qing; Chen, Jiang-Hong; Chen, Bu-Dong; Cui, Dun; Zhang, Yan-Song; Liu, Wei-Hua

    2016-01-01

    To retrospectively evaluate short linear shadows connecting pulmonary segmental arteries to oblique fissures in thin-section CT images and determine their anatomical basis. CT scanning was performed on 108 patients and 11 lung specimens with no lung diseases around the oblique fissures or hilar. Two radiologists evaluated the imaging. The parameters included length, thickness of short linear shadows, pulmonary segmental artery variations, and traction interlobar fissures, etc. The short linear shadows were not related to sex, age, or smoking history. The lengths of the short linear shadows were generally within 10 mm. The thicknesses of the short linear shadows ranged from 1 to 2 mm. Of the patients, 26.9 % showed pulmonary segmental artery variations; 66.7 % of short linear shadows pulled oblique fissures. In three-dimensional images, the short linear shadows appeared as arc planes, with one side edge connected to the oblique fissure, one side edge connected to a pulmonary segmental artery. On the tissue slices, the short linear shadow exhibited a band structure composed of connective tissues, small blood vessels, and small lymphatic vessels. Short linear shadows are a type of normal intrapulmonary membranes and can maintain the integrity of the oblique fissures and hilar structure. (orig.)

  18. Diagnostic performance of state-of-the-art imaging techniques for morphological assessment of vascular abnormalities in patients with chronic thromboembolic pulmonary hypertension (CTEPH)

    Energy Technology Data Exchange (ETDEWEB)

    Ley, Sebastian [University Hospital Heidelberg, Department of Diagnostic and Interventional Radiology, Heidelberg (Germany); Ley-Zaporozhan, Julia [University Hospital Heidelberg, Department of Diagnostic and Interventional Radiology, Heidelberg (Germany); Johannes Gutenberg University, Department of Diagnostic and Interventional Radiology; Universitaetsmedizin, Mainz (Germany); Pitton, Michael B.; Schneider, Jens; Wirth, Gesine M.; Dueber, Christoph; Kreitner, Karl-Friedrich [Johannes Gutenberg University, Department of Diagnostic and Interventional Radiology; Universitaetsmedizin, Mainz (Germany); Mayer, Eckhard [Kerckhoff-Hospital Bad Nauheim, Department of Thoracic Surgery, Bad Nauheim (Germany)

    2012-03-15

    To determine the most comprehensive imaging technique for the assessment of pulmonary arteries in patients with chronic thromboembolic pulmonary hypertension (CTEPH). 24 patients with CTEPH were examined by ECG-gated multi-detector CT angiography (MD-CTA), contrast-enhanced MR angiography (ce-MRA) and selective digital subtraction angiography (DSA) within 3 days. Two readers in consensus separately evaluated each imaging technique (48 main, 144 lobar and 449 segmental arteries) for typical changes like complete obstructions, vessel cut-offs, intimal irregularities, incorporated thrombus formations, and bands and webs. A joint interpretation of all three techniques served as a reference standard. Based on image quality, there was no non-diagnostic examination by either imaging technique. DSA did not sufficiently display 1 main, 3 lobar and 4 segmental arteries. The pulmonary trunk was not assessable by DSA. One patient showed thrombotic material at this level only by MD-CTA and MRA. Sensitivity and specificity of MD-CTA regarding CTEPH-related changes at the main/lobar and at the segmental levels were 100%/100% and 100%/99%, of ce-MRA 83.1%/98.6% and 87.7%/98.1%, and of DSA 65.7%/100% and 75.8%/100%, respectively. ECG-gated MD-CTA proved the most adequate technique for assessment of the pulmonary arteries in the diagnostic work-up of CTEPH patients. (orig.)

  19. Heterogeneity of pulmonary perfusion as a mechanistic image-based phenotype in emphysema susceptible smokers.

    Science.gov (United States)

    Alford, Sara K; van Beek, Edwin J R; McLennan, Geoffrey; Hoffman, Eric A

    2010-04-20

    Recent evidence suggests that endothelial dysfunction and pathology of pulmonary vascular responses may serve as a precursor to smoking-associated emphysema. Although it is known that emphysematous destruction leads to vasculature changes, less is known about early regional vascular dysfunction which may contribute to and precede emphysematous changes. We sought to test the hypothesis, via multidetector row CT (MDCT) perfusion imaging, that smokers showing early signs of emphysema susceptibility have a greater heterogeneity in regional perfusion parameters than emphysema-free smokers and persons who had never smoked (NS). Assuming that all smokers have a consistent inflammatory response, increased perfusion heterogeneity in emphysema-susceptible smokers would be consistent with the notion that these subjects may have the inability to block hypoxic vasoconstriction in patchy, small regions of inflammation. Dynamic ECG-gated MDCT perfusion scans with a central bolus injection of contrast were acquired in 17 NS, 12 smokers with normal CT imaging studies (SNI), and 12 smokers with subtle CT findings of centrilobular emphysema (SCE). All subjects had normal spirometry. Quantitative image analysis determined regional perfusion parameters, pulmonary blood flow (PBF), and mean transit time (MTT). Mean and coefficient of variation were calculated, and statistical differences were assessed with one-way ANOVA. MDCT-based MTT and PBF measurements demonstrate globally increased heterogeneity in SCE subjects compared with NS and SNI subjects but demonstrate similarity between NS and SNI subjects. These findings demonstrate a functional lung-imaging measure that provides a more mechanistically oriented phenotype that differentiates smokers with and without evidence of emphysema susceptibility.

  20. Assessment of smoking-induced impairment of pulmonary perfusion using three-dimensional SPECT images

    Energy Technology Data Exchange (ETDEWEB)

    Miyasaka, Takashi [Toho Univ., Tokyo (Japan). School of Medicine

    1997-09-01

    The effects of smoking on ventilation-perfusion lung scintigrams were investigated. The subjects comprised 40 healthy males (28 smokers and 12 nonsmokers) without a history of cardiopulmonary disease and with normal chest radiographs. After acquisition of planar images of ventilation lung scintigrams with 370 MBq of {sup 133}Xe gas, planar images and SPECT images of pulmonary perfusion flow were obtained using 185 MBq of {sup 99m}Tc-MAA. Planar imaging showed perfusion defects in only 5 smokers. In contrast, 16 subjects were found to have perfusion defects on SPECT images (p<0.05), indicating the usefulness of SPECT images in detecting minor vascular damage of the lung. Although perfusion defects were common in the smokers (p<0.05), their relationship to the BRINKMAN index was uncertain. The perfusion defects found in the smokers were nonsegmental and commonly involved the right upper lobe. Ventilation scans revealed only delayed washout of {sup 133}Xe in 4 smokers, suggesting that smoking-induced abnormal perfusion on SPECT appears earlier than impaired ventilation on scintigrams. (author)

  1. Automated computerized scheme for distinction between benign and malignant solitary pulmonary nodules on chest images

    International Nuclear Information System (INIS)

    Aoyama, Masahito; Li Qiang; Katsuragawa, Shigehiko; MacMahon, Heber; Doi, Kunio

    2002-01-01

    A novel automated computerized scheme has been developed to assist radiologists for their distinction between benign and malignant solitary pulmonary nodules on chest images. Our database consisted of 55 chest radiographs (33 primary lung cancers and 22 benign nodules). In this method, the location of a nodule was indicated first by a radiologist. The difference image with a nodule was produced by use of filters and then represented in a polar coordinate system. The nodule was segmented automatically by analysis of contour lines of the gray-level distribution based on the polar-coordinate representation. Two clinical parameters (age and sex) and 75 image features were determined from the outline, the image, and histogram analysis for inside and outside regions of the segmented nodule. Linear discriminant analysis (LDA) and knowledge about benign and malignant nodules were used to select initial feature combinations. Many combinations for subgroups of 77 features were evaluated as input to artificial neural networks (ANNs). The performance of ANNs with the selected 7 features by use of the round-robin test showed Az=0.872, which was greater than Az=0.854 obtained previously with the manual method (P=0.53). The performance of LDA (Az=0.886) was slightly improved compared to that of ANNs (P=0.59) and was greater than that of the manual method (Az=0.854) reported previously (P=0.40). The high level of its performance indicates the potential usefulness of this automated computerized scheme in assisting radiologists as a second opinion for distinction between benign and malignant solitary pulmonary nodules on chest images

  2. Classification decision tree in CT imaging: application to the differential diagnosis of solitary pulmonary nodules

    International Nuclear Information System (INIS)

    Ma Hongxia; Guo Yulin; Wang Qiuping; Qiang Yongqian; Liu Min; Guo Xiaojuan; Guo Youmin; Chen Qihang

    2008-01-01

    Objective: To establish classification and regression tree (CART) for differentiating benign from malignant solitary pulmonary nudules (SPN). Methods: One hundred and sixteen consecutive cases with 116 solitary pulmonary nodules, which finally were pathologically proven 54 malignant nodules and 62 benign nodules, were prospectively registered in this research. Twelve clinical presentations and 22 CT findings were collected as predictors. A classification tree was established to distinguish benign SPNs from malignant ones. In the observer test, two groups (one made of junior radiologists and one of senior radiologists) were independently presented with clinical information and CT images without knowing the pathologic and machine-learning results. Performance of observers and CART were compared by receiver operating characteristic analysis. Results: Receiver operating characteristic analysis showed areas under the curve of CART, senior radiologists and junior radiologists respectively were 0.910±0.029, 0.827±0.038, 0.612±0.052. Difference between areas(DBF) between CART and junior radiologists was 0.297(P<0.01). DBF between CART and senior radiologists was 0.083 (P<0.05). DBF between senior and junior radiologists was 0.214 (P<0.01). CART showed a best diagnostic efficiency, followed by junior radiologists, and then senior radiologists. Conclusion: Our data mining techniques using CART prove a high accuracy in differentiating benign from malignant pulmonary nodules based on clinical variables and CT findings. It will be a potentially useful tool in further application of artificial intelligence in the imaging diagnosis. (authors)

  3. Basics concepts and clinical applications of oxygen-enhanced MR imaging

    International Nuclear Information System (INIS)

    Ohno, Yoshiharu; Hatabu, Hiroto

    2007-01-01

    Oxygen-enhanced MR imaging is a new technique, and its physiological significance has not yet been fully elucidated. This review article covers (1) the theory of oxygen enhancement and its relationship with respiratory physiology; (2) design for oxygen-enhanced MR imaging sequencing; (3) a basic study of oxygen-enhanced MR imaging in animal models and humans; (4) a clinical study of oxygen-enhanced MR imaging; and (5) a comparison of advantages and disadvantages of this technique with those of hyperpolarized noble gas MR ventilation imaging. Oxygen-enhanced MR imaging provides not only the ventilation-related, but also respiration-related information. Oxygen-enhanced MR imaging has the potential to replace nuclear medicine studies for the identification of regional pulmonary function, and many investigators are now attempting to adapt this technique for routine clinical studies. We believe that further basic studies as well as clinical applications of this new technique will define the real significance of oxygen-enhanced MR imaging for the future of pulmonary functional imaging and its usefulness for diagnostic radiology and pulmonary medicine

  4. High-resolution imaging of pulmonary ventilation and perfusion with 68Ga-VQ respiratory gated (4-D) PET/CT

    International Nuclear Information System (INIS)

    Callahan, Jason; Hofman, Michael S.; Siva, Shankar; Kron, Tomas; Schneider, Michal E.; Binns, David; Eu, Peter; Hicks, Rodney J.

    2014-01-01

    Our group has previously reported on the use of 68 Ga-ventilation/perfusion (VQ) PET/CT scanning for the diagnosis of pulmonary embolism. We describe here the acquisition methodology for 68 Ga-VQ respiratory gated (4-D) PET/CT and the effects of respiratory motion on image coregistration in VQ scanning. A prospective study was performed in 15 patients with non-small-cell lung cancer. 4-D PET and 4-D CT images were acquired using an infrared marker on the patient's abdomen as a surrogate for breathing motion following inhalation of Galligas and intravenous administration of 68 Ga-macroaggregated albumin. Images were reconstructed with phase-matched attenuation correction. The lungs were contoured on CT and PET VQ images during free-breathing (FB) and at maximum inspiration (Insp) and expiration (Exp). The similarity between PET and CT volumes was measured using the Dice coefficient (DC) comparing the following groups; (1) FB-PET/CT, (2) InspPET/InspCT, (3) ExpPET/Exp CT, and (4) FB-PET/AveCT. A repeated measures one-way ANOVA with multiple comparison Tukey tests were performed to evaluate any difference between the groups. Diaphragmatic motion in the superior-inferior direction on the 4-D CT scan was also measured. 4-D VQ scanning was successful in all patients without additional acquisition time compared to the nongated technique. The highest volume overlap was between ExpPET and ExpCT and between FB-PET and AveCT with a DC of 0.82 and 0.80 for ventilation and perfusion, respectively. This was significantly better than the DC comparing the other groups (0.78-0.79, p 68 Ga-VQ 4-D PET/CT is feasible and the blurring caused by respiratory motion is well corrected with 4-D acquisition, which principally reduces artefact at the lung bases. The images with the highest spatial overlap were the combined expiration phase or FB PET and average CT. With higher resolution than SPECT/CT, the PET/CT technique has a broad range of potential clinical applications including

  5. Quantitation of pulmonary nodule's border structure by means of Fourier transform by using chest X-ray CT images

    International Nuclear Information System (INIS)

    Shikata, Hidenori; Masuyama, Hiroshi; Kido, Shoji

    1998-01-01

    In order to evaluate quantitatively the border structure of pulmonary nodules by using chest X-ray CT images, we investigated whether the sum of high-frequency elements of the power spectrum in a Fourier-transformed nodule's contour line becomes a valuable measure of the border structure of pulmonary nodules. We expect that this measure clearly reflects the radiologic characteristics of a nodule, that is, the contour line is clear or unclear in benign or malignant nodules, respectively. We evaluated and analyzed images statistically for 31 patients (15 benign, 16 malignant), and we were able to recognize a measurable difference between the benign and malignant cases. We conclude that we can evaluate the border structure of a nodule by our proposed measure, and that this measure is valuable for quantitative differential diagnosis. (author)

  6. Benzo(a)pyrene activation and detoxification by human pulmonary alveolar macrophages and lymphocytes

    International Nuclear Information System (INIS)

    Marshall, M.V.; McLemore, T.L.; Martin, R.R.; Marshall, M.H.; Wray, N.P.; Busbee, D.L.; Cantrell, E.T.; Arnott, M.S.; Griffin, A.C.

    1980-01-01

    Comparisons of pulmonary alveolar macrophages and circulating lymphocytes from five smokers and five nonsmokers for their ability to metabolize benzo(a)pyrene as determined by high pressure liquid chromatography were carried out. Utilizing this approach, further investigation of activation and detoxification by several human cell types could provide the basis for more precise and comprehensive studies of carcinogen and drug metabolism in the human lung, and for a better assessment of cancer risk in selected populations

  7. Rare Presentation of Left Lower Lobe Pulmonary Artery Dissection

    Directory of Open Access Journals (Sweden)

    René Hako

    2017-01-01

    Full Text Available Background. Pulmonary arterial dissection with chronic pulmonary arterial hypertension as its major cause is a very rare but life-threatening condition. In most cases the main pulmonary trunk is the affected site usually without involvement of its branches. Segmental or lobar pulmonary artery dissection is extremely rare. Case Presentation. We report a unique case of left lower lobe pulmonary artery dissection in a 70-year-old male, with confirmed chronic pulmonary hypertension. To confirm dissection MDCT pulmonary angiography was used. Multiplanar reformation (MPR images in sagittal, coronal, oblique sagittal, and curved projections were generated. This case report presents morphologic CT features of rare chronic left lobar pulmonary artery dissection associated with chronic pulmonary hypertension at a place of localised pulmonary artery calcification. CT pulmonary angiography excluded signs of thromboembolism and potential motion or flow artefacts. Conclusion. To the best of our knowledge, no case of lower lobe pulmonary artery dissection with flap calcification has been reported yet. CT imaging of the chest is a key diagnostic tool that is able to detect an intimal flap and a false lumen within the pulmonary arterial tree and is preferred in differential diagnosis of rare complications of sustained pulmonary arterial hypertension.

  8. Computed Tomography Imaging findings in Chemical Warfare Victims with pulmonary Complications

    Directory of Open Access Journals (Sweden)

    Zahra Salehinezhad

    2013-05-01

    Full Text Available Introduction: Data on imaging findings in pulmonary complications of chemical agents is scarce. The current study aimed to evaluate radiological findings of late onset pulmonary complications in chemical warfare victims (CWV and to guide pulmonologists in diagnosis of these subjects. Materials and Methods: Ninety- three male CWV were enrolled in this prospective study, 20-25 years (mean=23 after exposure. Demographic and clinical data were recorded. High resolution computed Tomography (HRCT of the lung was performed during inspiration and expiration and was double reported blindly by two radiologists. Final diagnosis was made according to HRCT findings. The HRCT findings, final diagnosis, and distribution of the abnormalities were compared between subjects whom had been exposed to more complex chemical agents used during the second half of the war and simpler agents during the first half. Results: The most frequent HRCT findings were air trapping (56.7% and mosaic attenuation (35.1%. The distribution of abnormalities was mostly local (79.4% and bilateral (73% especially in lower regions (61.3%. The diagnosed respiratory diseases included bronchiolitis obliterans (43%, chronic obstructive pulmonary disease (COPD (27.9%, asthma (23.6%, bronchiectasis (13.9% and interstitial lung disease (ILD (9.6%. Frequency of subjects involved in the second half of the period of war was more than the first period (P-value < 0.05 but the HRCT findings were similar. Conclusions: Bronchiolitis obliterans with picture of focal bilateral air trapping was the most common finding in CWV but asthma appeared to have become a new problem in these subjects.

  9. An imaging analysis in pulmonary tuberculosis of old people

    International Nuclear Information System (INIS)

    Zhou Xiaoyong

    2004-01-01

    Objective: To evaluate the X-ray and clinical character of pulmonary tuberculosis in old people. Method: the X-ray and clinical character of pulmonary tuberculosis in 109 old people were compared with 109 cases pulmonary tuberculosis of university students. Results: 1) The clinical symptoms were atypical in 63.3% patients. 2) The male patients (74.3%) are more than the female patients. 3) The lesions are widespread and easily to form cavities (62.3%), both sides of pulmonary fall ill (56.9%). 4) It is easily to form tuberculosis bronchial sowing (32.1%), statistical significance was indicated (P<0.01). Conclusion: Because of the atypical location, unstable morphology and commonly complications. It is necessary for old People to take lung-ray once a year. (authors)

  10. The pathogenesis of bleomycin-induced lung injury in animals and its applicability to human idiopathic pulmonary fibrosis.

    Science.gov (United States)

    Williamson, James D; Sadofsky, Laura R; Hart, Simon P

    2015-03-01

    Idiopathic pulmonary fibrosis (IPF) is a devastating disease of unknown etiology, for which there is no curative pharmacological therapy. Bleomycin, an anti-neoplastic agent that causes lung fibrosis in human patients has been used extensively in rodent models to mimic IPF. In this review, we compare the pathogenesis and histological features of human IPF and bleomycin-induced pulmonary fibrosis (BPF) induced in rodents by intratracheal delivery. We discuss the current understanding of IPF and BPF disease development, from the contribution of alveolar epithelial cells and inflammation to the role of fibroblasts and cytokines, and draw conclusions about what we have learned from the intratracheal bleomycin model of lung fibrosis.

  11. Lung function imaging methods in Cystic Fibrosis pulmonary disease.

    Science.gov (United States)

    Kołodziej, Magdalena; de Veer, Michael J; Cholewa, Marian; Egan, Gary F; Thompson, Bruce R

    2017-05-17

    Monitoring of pulmonary physiology is fundamental to the clinical management of patients with Cystic Fibrosis. The current standard clinical practise uses spirometry to assess lung function which delivers a clinically relevant functional readout of total lung function, however does not supply any visible or localised information. High Resolution Computed Tomography (HRCT) is a well-established current 'gold standard' method for monitoring lung anatomical changes in Cystic Fibrosis patients. HRCT provides excellent morphological information, however, the X-ray radiation dose can become significant if multiple scans are required to monitor chronic diseases such as cystic fibrosis. X-ray phase-contrast imaging is another emerging X-ray based methodology for Cystic Fibrosis lung assessment which provides dynamic morphological and functional information, albeit with even higher X-ray doses than HRCT. Magnetic Resonance Imaging (MRI) is a non-ionising radiation imaging method that is garnering growing interest among researchers and clinicians working with Cystic Fibrosis patients. Recent advances in MRI have opened up the possibilities to observe lung function in real time to potentially allow sensitive and accurate assessment of disease progression. The use of hyperpolarized gas or non-contrast enhanced MRI can be tailored to clinical needs. While MRI offers significant promise it still suffers from poor spatial resolution and the development of an objective scoring system especially for ventilation assessment.

  12. Imaging approach to the diagnosis of pulmonary sequestration

    International Nuclear Information System (INIS)

    Hang, J.D.; Guo, Q.Y.; Chen, C.X.; Chen, L.Y.

    1996-01-01

    Purpose: To describe the characteristic features of pulmonary sequestration (PS), to evaluate the usefulness of various imaging modalities, and to find a rational approach to accurate diagnosis. Material and Methods: Twenty-four patients with PS proved by operation and pathology were reviewed retrospectively. Plain chest films were done in all patients, bronchography in 3, sonography in 14, CT in 6 (including CT angiography in 1 case), MR in 8 (including MR angiography in 1 case) and aortography in 12 (including DSA in 1 case). Results: Plain chest films demonstrated a solid mass in 14 patients and a cystic mass in 10. Bronchograms showed displacement of adjacent bronchi with no filling of contrast medium within the lesion in 2 cases, while another case had a blind intermediate portion of the right bronchus (hypoplasia of middle and lower lobes associated with extralobar sequestration). Sonography demonstrated a solid lung mass in 12 cases and a solid mass with cystic areas in 2, and detected vessel-like structures within the mass or in its surroundings in 12. Doppler analysis showed arterial spectral wave confirming a feeding artery. CT revealed a solid mass in all patients, a mass with low density area in 4, and emphysema surrounding the mass in 3. MR imaging depicted anomalous arteries in all patients and venous drainage in 4 cases. Aortography demonstrated anomalous systemic arterial supply to the PS in all patients. In this series, 21 cases (87.5%) were correctly diagnosed preoperatively by the imaging modalities. Conclusion: Plain chest films can provide a diagnostic due to PS. Sonography, CT and MR are helpful for showing arterial blood supply and for making a definite diagnosis. We recommend a rational imaging approach for the diagnosis of PS. (orig.)

  13. Pulmonary CT angiography protocol adapted to the hemodynamic effects of pregnancy.

    LENUS (Irish Health Repository)

    Ridge, Carole A

    2012-02-01

    OBJECTIVE: The purpose of this study was to compare the image quality of a standard pulmonary CT angiography (CTA) protocol with a pulmonary CTA protocol optimized for use in pregnant patients with suspected pulmonary embolism (PE). MATERIALS AND METHODS: Forty-five consecutive pregnant patients with suspected PE were retrospectively included in the study: 25 patients (group A) underwent standard-protocol pulmonary CTA and 20 patients (group B) were imaged using a protocol modified for pregnancy. The modified protocol used a shallow inspiration breath-hold and a high concentration, high rate of injection, and high volume of contrast material. Objective image quality and subjective image quality were evaluated by measuring pulmonary arterial enhancement, determining whether there was transient interruption of the contrast bolus by unopacified blood from the inferior vena cava (IVC), and assessing diagnostic adequacy. RESULTS: Objective and subjective image quality were significantly better for group B-that is, for the group who underwent the CTA protocol optimized for pregnancy. Mean pulmonary arterial enhancement and the percentage of studies characterized as adequate for diagnosis were higher in group B than in group A: 321 +\\/- 148 HU (SD) versus 178 +\\/- 67 HU (p = 0.0001) and 90% versus 64% (p = 0.05), respectively. Transient interruption of contrast material by unopacified blood from the IVC was observed more frequently in group A (39%) than in group B (10%) (p = 0.05). CONCLUSION: A pulmonary CTA protocol optimized for pregnancy significantly improved image quality by increasing pulmonary arterial opacification, improving diagnostic adequacy, and decreasing transient interruption of the contrast bolus by unopacified blood from the IVC.

  14. MRI of surgically created pulmonary artery narrowing in the dog

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, R.J.; Rocchini, A.P.; Bove, E.L.; Chenevert, T.L.; Gubin, B. (Michigan Univ., Ann Arbor (USA). Dept. of Radiology)

    1989-11-01

    Narrowing of the pulmonary arteries was created surgically in twelve dogs. In six of the dogs the narrowing was central (main pulmonary artery), and in the remaining six the narrowing was located peripherally at the hilar level of the right pulmonary artery beyond the pericardial reflection. MRI and angiography were performed in all dogs. MRI clearly delineated the site of the pulmonary band and the caliber of the pulmonary artery at the site of the band in all dogs (N=6). MRI was not able to visualize any of the stenosis of the right pulmonary arteries at the hila, beyond the pericardial reflection. In addition, optimal imaging planes to depict each segment of the central pulmonary arteries were determined. The capability to image in oblique planes is essential in evaluating the morphology of the central pulmonary arteries. (orig.).

  15. MRI of surgically created pulmonary artery narrowing in the dog

    International Nuclear Information System (INIS)

    Hernandez, R.J.; Rocchini, A.P.; Bove, E.L.; Chenevert, T.L.; Gubin, B.

    1989-01-01

    Narrowing of the pulmonary arteries was created surgically in twelve dogs. In six of the dogs the narrowing was central (main pulmonary artery), and in the remaining six the narrowing was located peripherally at the hilar level of the right pulmonary artery beyond the pericardial reflection. MRI and angiography were performed in all dogs. MRI clearly delineated the site of the pulmonary band and the caliber of the pulmonary artery at the site of the band in all dogs (N=6). MRI was not able to visualize any of the stenosis of the right pulmonary arteries at the hila, beyond the pericardial reflection. In addition, optimal imaging planes to depict each segment of the central pulmonary arteries were determined. The capability to image in oblique planes is essential in evaluating the morphology of the central pulmonary arteries. (orig.)

  16. Pulmonary ventilation and perfusion scintigraphy in patients with bronchial asthma

    International Nuclear Information System (INIS)

    Ono, Seiji; Hoshi, Hiroaki; Watanabe, Katsushi.

    1988-01-01

    Pulmonary ventilation and perfusion scan using Xe-133 gas and Tc-99m MAA were performed in 18 patients with bronchial asthma to evaluate the regional pulmonary function. The scintigraphic findings were compared with the results of the auscultation and the conventional pulmonary functioning examination (%FVC, %FEV 1.0 ). Ventilation image showed abnormality in 12 (70.6%) out of the asymptomatic 17 patients and perfusion image showed abnormality in 7 (41.2%) out of 17 patients. These 7 patients with abnormality on perfusion image all showed abnormality on ventilation image. The grade of abnormality in scintigraphic findings was compatible with the values of %FVC and %FEV 1.0 . In conclusion Xe-133 ventilation and Tc-99m MAA perfusion scan were useful procedures to estimate the pulmonary function of patients with bronchial asthma. (author)

  17. Intravascular pulmonary metastases

    International Nuclear Information System (INIS)

    Shepard, J.A.O.; Moore, E.H.; Templeton, P.A.; McLoud, T.C.

    1988-01-01

    The diagnosis of intravascular metastatic tumor emboli to the lungs is rarely made. The authors present a characteristic radiographic finding of intravascular lung metastases that they observed in four patients with diagnoses or right atrial myoxoma, invasive renal cell carcinoma, invasive pelvic osteosarcoma, and recurrent pelvic chondrosarcoma. Substantiation of intravascular pulmonary metastases was achieved by means of autopsy, pulmonary artery biopsy, and surgical documentation of tumor invasion of the inferior vena cava or pelvic veins. In all four cases, chest computed tomography (CT) demonstrated branching, beaded opacities extending from the hila into the periphery of the lung in the distribution of pulmonary arteries. In one case, similar findings were observed in magnetic resonance (MR) images of the chest. Follow-up studies in three cases showed progressive enlargement and varicosity of the abnormal pulmonary artery consistent with proliferation of intravascular tumor. In the case of metastatic osteosarcoma, intraluminal ossification was also observed at CT. In three of four cases, pulmonary infarction was demonstrated in the distribution of the abnormal pulmonary arteries seen at CT as small, peripheral, wedge-shaped opacities. The demonstration of progressively dilated and beaded pulmonary arteries in patients with extrathoracic malignancies is suggestive of intravascular lung metastases, particularly when accompanied by peripheral infarction

  18. Update on diagnostic strategies of pulmonary embolism

    International Nuclear Information System (INIS)

    Kauczor, H.U.; Heussel, C.P.; Thelen, M.

    1999-01-01

    Acute pulmonary embolism is a frequent disease with non-specific findings, high mortality, and multiple therapeutic options. A definitive diagnosis must be established by accurate, non-invasive, easily performed, cost-effective, and widely available imaging modalities. Conventional diagnostic strategies have relied on ventilation-perfusion scintigraphy complemented by venous imaging. If the results are inconclusive, pulmonary angiography, which is regarded as the gold standard, is to be performed. Recently, marked improvements in CT and MRI and shortcomings of scintigraphy led to an update of the diagnostic strategy. Spiral CT is successfully employed as a second-line procedure to clarify indeterminate scintigraphic results avoiding pulmonary angiography. It can also be used as a first-line screening tool if service and expertise is provided. Venous imaging is indicated if CT is inconclusive. The MRI technique can be applied as an alternative second-line test if spiral CT is not available or is contraindicated. It has the greatest potential for further developments and refinements. Echocardiography should be used as a first-line bedside examination in critical patients. If inconclusive stabilized patients undergo spiral CT, unstable patients should be referred for pulmonary angiography. Chronic thromboembolic pulmonary hypertension is a rare sequela of acute pulmonary embolism which can be cured surgically. Morphology, complications, and differential diagnoses are better illustrated by spiral CT and MRA, whereas invasive acquisition of hemodynamic data is the sole advantage of angiography. (orig.)

  19. Imaging features of diffuse pulmonary hemorrhage; Roentgenmorphologie von diffusen Lungenhaemorrhagien

    Energy Technology Data Exchange (ETDEWEB)

    Schmit, M.; Vogel, W.; Horger, M.

    2006-09-15

    There are diverse etiologies of diffuse pulmonary hemorrhage, so specific diagnosis may be difficult. Conventional radiography tends to be misleading as hemoptysis may lacking in patients with hemorrhagic anemia. Diffuse pulmonary hemorrhage should be differentiated from focal pulmonary hemorrhage resulting from chronic bronchitis, bronchiectasis, active infection (tuberculosis) neoplasia, trauma, or embolism. (orig.)

  20. Fusion imaging of computed tomographic pulmonary angiography and SPECT ventilation/perfusion scintigraphy: initial experience and potential benefit

    International Nuclear Information System (INIS)

    Harris, Benjamin; Bailey, Dale; Roach, Paul; Bailey, Elizabeth; King, Gregory

    2007-01-01

    The objective of this study was to examine the feasibility of fusing ventilation and perfusion data from single-photon emission computed tomography (SPECT) ventilation perfusion (V/Q) scintigraphy together with computed tomographic pulmonary angiography (CTPA) data. We sought to determine the accuracy of this fusion process. In addition, we correlated the findings of this technique with the final clinical diagnosis. Thirty consecutive patients (17 female, 13 male) who had undergone both CTPA and SPECT V/Q scintigraphy during their admission for investigation of potential pulmonary embolism were identified retrospectively. Image datasets from these two modalities were co-registered and fused using commercial software. Accuracy of the fusion process was determined subjectively by correlation between modalities of the anatomical boundaries and co-existent pleuro-parenchymal abnormalities. In all 30 cases, SPECT V/Q images were accurately fused with CTPA images. An automated registration algorithm was sufficient alone in 23 cases (77%). Additional linear z-axis scaling was applied in seven cases. There was accurate topographical co-localisation of vascular, parenchymal and pleural disease on the fused images. Nine patients who had positive CTPA performed as an initial investigation had co-localised perfusion defects on the subsequent fused CTPA/SPECT images. Three of the 11 V/Q scans initially reported as intermediate could be reinterpreted as low probability owing to co-localisation of defects with parenchymal or pleural pathology. Accurate fusion of SPECT V/Q scintigraphy to CTPA images is possible. This technique may be clinically useful in patients who have non-diagnostic initial investigations or in whom corroborative imaging is sought. (orig.)

  1. Nearest patch matching for color image segmentation supporting neural network classification in pulmonary tuberculosis identification

    Science.gov (United States)

    Rulaningtyas, Riries; Suksmono, Andriyan B.; Mengko, Tati L. R.; Saptawati, Putri

    2016-03-01

    Pulmonary tuberculosis is a deadly infectious disease which occurs in many countries in Asia and Africa. In Indonesia, many people with tuberculosis disease are examined in the community health center. Examination of pulmonary tuberculosis is done through sputum smear with Ziehl - Neelsen staining using conventional light microscope. The results of Ziehl - Neelsen staining will give effect to the appearance of tuberculosis (TB) bacteria in red color and sputum background in blue color. The first examination is to detect the presence of TB bacteria from its color, then from the morphology of the TB bacteria itself. The results of Ziehl - Neelsen staining in sputum smear give the complex color images, so that the clinicians have difficulty when doing slide examination manually because it is time consuming and needs highly training to detect the presence of TB bacteria accurately. The clinicians have heavy workload to examine many sputum smear slides from the patients. To assist the clinicians when reading the sputum smear slide, this research built computer aided diagnose with color image segmentation, feature extraction, and classification method. This research used K-means clustering with patch technique to segment digital sputum smear images which separated the TB bacteria images from the background images. This segmentation method gave the good accuracy 97.68%. Then, feature extraction based on geometrical shape of TB bacteria was applied to this research. The last step, this research used neural network with back propagation method to classify TB bacteria and non TB bacteria images in sputum slides. The classification result of neural network back propagation are learning time (42.69±0.02) second, the number of epoch 5000, error rate of learning 15%, learning accuracy (98.58±0.01)%, and test accuracy (96.54±0.02)%.

  2. Pulmonary venous abnormalities encountered on pre ...

    African Journals Online (AJOL)

    Multidetector computed tomography (MDCT) elegantly renders pulmonary venous anatomy. With increasing numbers of radiofrequency ablation procedures being performed, there is now a greater emphasis on pre-procedure imaging to delineate this anatomy. Pulmonary venous mapping studies can be performed with or ...

  3. Magnetic resonance imaging of anomalous pulmonary venous connections

    International Nuclear Information System (INIS)

    Choe, Yeon Hyeon; Lee, Heung Jae; Kim, Hak Soo; Ko, Jae Kon; Kim, Ji Eun; Han, Jae Jin

    1994-01-01

    We evaluated the capability of MR in the diagnosis of anomalous pulmonary venous connection (APVC). The patient group consisted of 11 total APVC and 8 partial APVC diagnosed with MR. Echocardiography was performed in all cases, cardiac angiography in 12 cases and operation in 12 cases. We compared MR findings with those of operation, echocardiography and cardiac angiography. In surgically proven 12 cases, diagnostic accuracy of preoperative MR, echocardiography and cardiac angiography was 100%, 67%, and 63%, respectively. In the remaining cases, MR findings well correlated with those of echocardiography or cardiac angiography. Stenosis of common pulmonary vein or superior vena cava was identified in 4 cases. In one patient, MR duplicated associated cortriatriatum clearly. MR is an effective modally in depicting anomalous pulmonary venous connections

  4. Automated detection system for pulmonary emphysema on 3D chest CT images

    Science.gov (United States)

    Hara, Takeshi; Yamamoto, Akira; Zhou, Xiangrong; Iwano, Shingo; Itoh, Shigeki; Fujita, Hiroshi; Ishigaki, Takeo

    2004-05-01

    An automatic extraction of pulmonary emphysema area on 3-D chest CT images was performed using an adaptive thresholding technique. We proposed a method to estimate the ratio of the emphysema area to the whole lung volume. We employed 32 cases (15 normal and 17 abnormal) which had been already diagnosed by radiologists prior to the study. The ratio in all the normal cases was less than 0.02, and in abnormal cases, it ranged from 0.01 to 0.26. The effectiveness of our approach was confirmed through the results of the present study.

  5. Human pulmonary dirofilariasis coexisting with intercostal neurilemmoma: A case report and literature review

    Directory of Open Access Journals (Sweden)

    Chia-Ying Li

    2013-10-01

    Full Text Available Human pulmonary dirofilariasis (HPD is a rare zoonotic infection caused by Dirofilaria immitis. Dogs are the definite hosts and humans are infected occasionally via a vector, generally a mosquito. Most thoracic neurilemmoma arise in the mediastinum and fewer tumors originate peripherally from the intercostal nerves. Most patients with HPD or thoracic neurilemmoma are asymptomatic and these diseases are often discovered incidentally. We present a 53-year-old female who was found to have a pulmonary nodule and a chest wall nodule during a routine health examination. She underwent a video-assisted thoracoscopic surgery (VATS with partial lung resection and local excision of the chest wall. The pathological examination revealed a coiled, degenerating Dirofilariasis immitis worm surrounded by granulomatous inflammation with caseous necrosis and a neurilemmoma composed of S-100 protein immunoreactive but smooth muscle actin negative spindle cells. Because these diseases are self-limiting and make further treatment unnecessary, video-assisted thoracoscopic surgery (VATS is considered preferable and less invasive for definitive diagnosis and management.

  6. The role of hyperpolarized 129xenon in MR imaging of pulmonary function

    International Nuclear Information System (INIS)

    Ebner, Lukas; Kammerman, Jeff; Driehuys, Bastiaan; Schiebler, Mark L.; Cadman, Robert V.; Fain, Sean B.

    2017-01-01

    Highlights: • Recent advances in hyperpolarized 129Xe MRI are reviewed. • Xenon MRI allows for functional imaging of ventilation, diffusion, and gas exchange. • Xenon’s unique gas exchange imaging capabilities are highlighted. • Applications to obstructive and restrictive lung diseases are presented. • These advances are ready for translation to clinical applications. - Abstract: In the last two decades, functional imaging of the lungs using hyperpolarized noble gases has entered the clinical stage. Both helium ( 3 He) and xenon ( 129 Xe) gas have been thoroughly investigated for their ability to assess both the global and regional patterns of lung ventilation. With advances in polarizer technology and the current transition towards the widely available 129 Xe gas, this method is ready for translation to the clinic. Currently, hyperpolarized (HP) noble gas lung MRI is limited to selected academic institutions; yet, the promising results from initial clinical trials have drawn the attention of the pulmonary medicine community. HP 129 Xe MRI provides not only 3-dimensional ventilation imaging, but also unique capabilities for probing regional lung physiology. In this review article, we aim to (1) provide a brief overview of current ventilation MR imaging techniques, (2) emphasize the role of HP 129 Xe MRI within the array of different imaging strategies, (3) discuss the unique imaging possibilities with HP 129 Xe MRI, and (4) propose clinical applications.

  7. Bovine aortic arch and idiopathic pulmonary artery aneurysm associated with bronchial compression

    Directory of Open Access Journals (Sweden)

    Süleyman Sezai Yıldız

    2015-09-01

    Full Text Available The left common carotid artery originating from the brachiocephalic trunk is termed the bovine aortic arch. Although it is the third most-common normal variant found in 9% humans, the origin of this term remains unclear. Until now, It has not been reported in the literature bovine aortic arch togetherness with pulmonary aneurysm and bronchial compression. Herein, we present a case with bovine aorta arch and pulmonary artery aneurysm associated with bronchial compression, which is incidentally detected by X-ray film. A 56-year-old Caucasian female admitted to the cardiology clinic with complaint of chest pain. Physical examination was unremarkable. Blood biochemistry values and cardiac markers were in normal range. Chest radiography revealed a widened mediastinum and prominent pulmonary conus with no active pulmonary disease. A subsequent transthoracic echocardiography revealed left ventricular hypertrophy, left atrial enlargement (diameter: 41 mm, mild mitral and tricuspid valve insufficiency, dilatation of main pulmonary artery (parasternal short-axis view diameter: 33 mm, normal pulmonary artery pressure and normal left ventricular systolic function. Computed tomography revealed bovine aortic arch associated with pulmonary artery aneurysm (diameter: 53 mm. And left main bronch of trachea was critically squeezed by aortic arch. Aortic and pulmonary vascular anomalies should be considered in patients with chest pain. And, identification with imaging modalities is important for prevention of chronic and irreversible complications.

  8. Automatic slice-alignment method in cardiac magnetic resonance imaging for evaluation of the right ventricle in patients with pulmonary hypertension

    Science.gov (United States)

    Yokoyama, Kenichi; Nitta, Shuhei; Kuhara, Shigehide; Ishimura, Rieko; Kariyasu, Toshiya; Imai, Masamichi; Nitatori, Toshiaki; Takeguchi, Tomoyuki; Shiodera, Taichiro

    2015-09-01

    We propose a new automatic slice-alignment method, which enables right ventricular scan planning in addition to the left ventricular scan planning developed in our previous work, to simplify right ventricular cardiac scan planning and assess its accuracy and the clinical acceptability of the acquired imaging planes in the evaluation of patients with pulmonary hypertension. Steady-state free precession (SSFP) sequences covering the whole heart in the end-diastolic phase with ECG gating were used to acquire 2D axial multislice images. To realize right ventricular scan planning, two morphological feature points are added to be detected and a total of eight morphological features of the heart were extracted from these series of images, and six left ventricular planes and four right ventricular planes were calculated simultaneously based on the extracted features. The subjects were 33 patients (25 with chronic thromboembolic pulmonary hypertension and 8 with idiopathic pulmonary arterial hypertension). The four right ventricular reference planes including right ventricular short-axis, 4-chamber, 2-chamber, and 3-chamber images were evaluated. The acceptability of the acquired imaging planes was visually evaluated using a 4-point scale, and the angular differences between the results obtained by this method and by conventional manual annotation were measured for each view. The average visual scores were 3.9±0.4 for short-axis images, 3.8±0.4 for 4-chamber images, 3.8±0.4 for 2-chamber images, and 3.5±0.6 for 3-chamber images. The average angular differences were 8.7±5.3, 8.3±4.9, 8.1±4.8, and 7.9±5.3 degrees, respectively. The processing time was less than 2.5 seconds in all subjects. The proposed method, which enables right ventricular scan planning in addition to the left ventricular scan planning developed in our previous work, can provide clinically acceptable planes in a short time and is useful because special proficiency in performing cardiac MR for

  9. Correlation of contrast-detail analysis and clinical image quality assessment in chest radiography with a human cadaver study.

    Science.gov (United States)

    De Crop, An; Bacher, Klaus; Van Hoof, Tom; Smeets, Peter V; Smet, Barbara S; Vergauwen, Merel; Kiendys, Urszula; Duyck, Philippe; Verstraete, Koenraad; D'Herde, Katharina; Thierens, Hubert

    2012-01-01

    To determine the correlation between the clinical and physical image quality of chest images by using cadavers embalmed with the Thiel technique and a contrast-detail phantom. The use of human cadavers fulfilled the requirements of the institutional ethics committee. Clinical image quality was assessed by using three human cadavers embalmed with the Thiel technique, which results in excellent preservation of the flexibility and plasticity of organs and tissues. As a result, lungs can be inflated during image acquisition to simulate the pulmonary anatomy seen on a chest radiograph. Both contrast-detail phantom images and chest images of the Thiel-embalmed bodies were acquired with an amorphous silicon flat-panel detector. Tube voltage (70, 81, 90, 100, 113, 125 kVp), copper filtration (0.1, 0.2, 0.3 mm Cu), and exposure settings (200, 280, 400, 560, 800 speed class) were altered to simulate different quality levels. Four experienced radiologists assessed the image quality by using a visual grading analysis (VGA) technique based on European Quality Criteria for Chest Radiology. The phantom images were scored manually and automatically with use of dedicated software, both resulting in an inverse image quality figure (IQF). Spearman rank correlations between inverse IQFs and VGA scores were calculated. A statistically significant correlation (r = 0.80, P chest radiography. © RSNA, 2011.

  10. Pulmonary ventilation imaging and function studies with krypton-81m

    International Nuclear Information System (INIS)

    Kaplan, E.; Mayron, L.W.; Gergans, G.A.; Friedman, A.M.; Gindler, J.E.

    1976-01-01

    Chronic obstructive lung disease is a significant entity throughout the world. It is etiologically related to smoking, air pollution and mining. To arrest asymptomatic disease, early diagnosis is required, implying an efficacious, reliable and available methodology, which has the potential for screening suspect populations. Krypton-81m is a 13-second radionuclide that emits a 190 keV gamma ray; it may be produced from a rubidium-81-krypton-81m generator and delivery system, devised, produced and evaluated by the authors. The generator effluent, in gaseous form, may be continually inhaled by a subject while static equilibrium images and dynamic studies of ventilation are produced with a gamma scintillation camera system. The wash-in of /sup 81m/Kr produces heterogeneous images, the activity being proportional to regional ventilation due to rapid decay. Minimal ventilatory delays are detectable. Normal subjects and patients with obstructive lung disease have been evaluated by static equilibrium and dynamic studies. The sensitivity of /sup 81m/Kr studies is currently being compared with various other pulmonary function tests, to evaluate its potential as an appropriate screening technique

  11. Inapparent pulmonary vascular disease in an ex-heroin user

    International Nuclear Information System (INIS)

    Antonelli Incalzi, R.; Ludovico Maini, C.; Giuliano Bonetti, M.; Campioni, P.; Pistelli, R.; Fuso, L.

    1986-01-01

    A severe pulmonary vascular derangement, usually reported in drug addicts, was diagnosed in a 28-year-old asymptomatic ex-heroin user by means of fortuitously performed pulmonary perfusion imaging. Neither physical findings nor pulmonary function tests, aroused suspicion of the diagnosis. A search for asymptomatic pulmonary vascular disease probably should be undertaken in drug addicts

  12. Aerosolized gadolinium-DTPA for demonstration of pulmonary ventilation in MR imaging of the lung

    International Nuclear Information System (INIS)

    Haage, P.; Adam, G.; Karaagac, S.; Pfeffer, J.G.; Glowinski, A.; Doehmen, S.; Guenther, R.W.; Misselwitz, B.; Tacke, J.

    2000-01-01

    Purpose: Magnetic resonance assessment of lung ventilation with aerosolized Gd-DTPA. Methods: Eleven experimental procedures were carried out in a domestic pig model. The intubated pigs were aerosolized for 30 minutes with an aqueous formulation of Gd-DTPA. The contrast agent aerosol was generated by a small particle aerosol generator. Imaging was performed on a 1.5 T MR imager using a T 1 -weighted turbo spin echo sequence with respiratory gating (T R 141 ms, T E 8.5 ms, 6 averages, slice thickness 10 mm). Pulmonary signal intensities before and after ventilation were measured in peripheral portions of both lungs. Results: Immediately after ventilation with aerosolized Gd-DTPA, the signal intensity in both lungs increased significantly in all animals with values up to 237% above baseline (mean 139%±48%), but within some cases considerable regional intra- and interindividual intensity differences. Distinctive parenchymal enhancement was readily visualized in all eleven cases with good spatial resolution. Conclusion: The presented data indicate that Gd-DTPA in aerosolized form can be used to demonstrate pulmonary ventilation in large animals with lung volumes comparable to man. Further experimental trials are necessary to improve reproducibility and to define the scope of this method for depicting lung disease. (orig.) [de

  13. Activation of endothelial and epithelial K(Ca) 2.3 calcium-activated potassium channels by NS309 relaxes human small pulmonary arteries and bronchioles

    DEFF Research Database (Denmark)

    Kroigaard, Christel; Dalsgaard, Thomas; Nielsen, Gorm

    2012-01-01

    BACKGROUND AND PURPOSE: Small (K(Ca) 2) and intermediate (K(Ca) 3.1) conductance calcium-activated potassium channels (K(Ca) ) may contribute to both epithelium- and endothelium-dependent relaxations, but this has not been established in human pulmonary arteries and bronchioles. Therefore, we inv...... targets for treatment of pulmonary hypertension and chronic obstructive pulmonary disease....

  14. Pulmonary parenchyma segmentation in thin CT image sequences with spectral clustering and geodesic active contour model based on similarity

    Science.gov (United States)

    He, Nana; Zhang, Xiaolong; Zhao, Juanjuan; Zhao, Huilan; Qiang, Yan

    2017-07-01

    While the popular thin layer scanning technology of spiral CT has helped to improve diagnoses of lung diseases, the large volumes of scanning images produced by the technology also dramatically increase the load of physicians in lesion detection. Computer-aided diagnosis techniques like lesions segmentation in thin CT sequences have been developed to address this issue, but it remains a challenge to achieve high segmentation efficiency and accuracy without much involvement of human manual intervention. In this paper, we present our research on automated segmentation of lung parenchyma with an improved geodesic active contour model that is geodesic active contour model based on similarity (GACBS). Combining spectral clustering algorithm based on Nystrom (SCN) with GACBS, this algorithm first extracts key image slices, then uses these slices to generate an initial contour of pulmonary parenchyma of un-segmented slices with an interpolation algorithm, and finally segments lung parenchyma of un-segmented slices. Experimental results show that the segmentation results generated by our method are close to what manual segmentation can produce, with an average volume overlap ratio of 91.48%.

  15. Pulmonary abscess

    International Nuclear Information System (INIS)

    Valencia Chavez, Maria de la Cruz

    2000-01-01

    Pulmonary abscess is defined as a suppurative process and bounded, caused by piogens organisms that it progresses to central necrosis and it commits an or more areas of the pulmonary parenchyma. Initially it is impossible to differ of a located pneumonia, but when the lesion communicates with a bronchus, part of the neurotic tissue is replaced by air, producing the classic image radiological fluid-air. The presence of multiple lesions smaller than 2 cms of diameter cm is defined arbitrarily as necrotizing pneumonia it is indistinguishable of an abscess. The paper includes the pathogenesis and etiology, clinical course, diagnostic and treatment

  16. Polyvinylpyrrolidone-Capped Silver Nanoparticle Inhibits Infection of Carbapenem-Resistant Strain of Acinetobacter baumannii in the Human Pulmonary Epithelial Cell

    Directory of Open Access Journals (Sweden)

    Vishvanath Tiwari

    2017-08-01

    Full Text Available Acinetobacter baumannii, an opportunistic ESKAPE pathogen, causes respiratory and urinary tract infections. Its prevalence increases gradually in the clinical setup. Pathogenicity of Acinetobacter is significantly influenced by its ability to infect and survive in human pulmonary cells. Therefore, it is important to study the infection of A. baumannii in human pulmonary host cell (A-549, monitoring surface interacting and internalized bacteria. It was found that during infection of A. baumannii, about 40% bacteria adhered to A-549, whereas 20% got internalized inside pulmonary cell and induces threefold increase in the reactive oxygen species production. We have synthesized polyvinylpyrrolidone (PVP-capped AgNPs using chemical methods and tested its efficacy against carbapenem-resistant strain of A. baumannii. PVP-capped silver nanoparticles (PVP-AgNPs (30 µM have shown antibacterial activity against carbapenem-resistant strain of A. baumannii and this concentration does not have any cytotoxic effect on the human pulmonary cell line (IC50 is 130 µM. Similarly, PVP-AgNPs treatment decreases 80% viability of intracellular bacteria, decreases adherence of A. baumannii to A-549 (40 to 2.2%, and decreases intracellular concentration (20 to 1.3% of A. baumannii. This concludes that PVP-AgNPs can be developed as a substitute for carbapenem to control the infection caused by carbapenem-resistant A. baumannii.

  17. Optimizing computed tomography pulmonary angiography using right atrium bolus monitoring combined with spontaneous respiration

    Energy Technology Data Exchange (ETDEWEB)

    Min, Wang; Jian, Li; Rui, Zhai [Jining No. 1 People' s Hospital, Department of Computed Tomography, Jining City, ShanDong Province (China); Wen, Li [Jining No. 1 People' s Hospital, Department of Gastroenterology, Jining, ShanDong (China); Dai, Lun-Hou [Shandong Chest Hospital, Department of Radiology, Jinan, ShanDong (China)

    2015-09-15

    CT pulmonary angiography (CTPA) aims to provide pulmonary arterial opacification in the absence of significant pulmonary venous filling. This requires accurate timing of the imaging acquisition to ensure synchronization with the peak pulmonary artery contrast concentration. This study was designed to test the utility of right atrium (RA) monitoring in ensuring optimal timing of CTPA acquisition. Sixty patients referred for CTPA were divided into two groups. Group A (n = 30): CTPA was performed using bolus triggering from the pulmonary trunk, suspended respiration and 70 ml of contrast agent (CA). Group B (n = 30): CTPA image acquisition was triggered using RA monitoring with spontaneous respiration and 40 ml of CA. Image quality was compared. Subjective image quality, average CT values of pulmonary arteries and density difference between artery and vein pairs were significantly higher whereas CT values of pulmonary veins were significantly lower in group B (all P < 0.05). There was no significant difference between the groups in the proportion of subjects where sixth grade pulmonary arteries were opacified (P > 0.05). RA monitoring combined with spontaneous respiration to trigger image acquisition in CTPA produces optimal contrast enhancement in pulmonary arterial structures with minimal venous filling even with reduced doses of CA. (orig.)

  18. Modulation of cGMP by human HO-1 retrovirus gene transfer in pulmonary microvessel endothelial cells.

    Science.gov (United States)

    Abraham, Nader G; Quan, Shuo; Mieyal, Paul A; Yang, Liming; Burke-Wolin, Theresa; Mingone, Christopher J; Goodman, Alvin I; Nasjletti, Alberto; Wolin, Michael S

    2002-11-01

    Carbon monoxide (CO) stimulates guanylate cyclase (GC) and increases guanosine 3',5'-cyclic monophosphate (cGMP) levels. We transfected rat-lung pulmonary endothelial cells with a retrovirus-mediated human heme oxygenase (hHO)-1 gene. Pulmonary cells that expressed hHO-1 exhibited a fourfold increase in HO activity associated with decreases in the steady-state levels of heme and cGMP without changes in soluble GC (sGC) and endothelial nitric oxide synthase (NOS) proteins or basal nitrite production. Heme elicited significant increases in CO production and intracellular cGMP levels in both pulmonary endothelial and pulmonary hHO-1-expressing cells. N(omega)-nitro-L-arginine methyl ester (L-NAME), an inhibitor of NOS, significantly decreased cGMP levels in heme-treated pulmonary endothelial cells but not heme-treated hHO-1-expressing cells. In the presence of exogenous heme, CO and cGMP levels in hHO-1-expressing cells exceeded the corresponding levels in pulmonary endothelial cells. Acute exposure of endothelial cells to SnCl2, which is an inducer of HO-1, increased cGMP levels, whereas chronic exposure decreased heme and cGMP levels. These results indicate that prolonged overexpression of HO-1 ultimately decreases sGC activity by limiting the availability of cellular heme. Heme activates sGC and enhances cGMP levels via a mechanism that is largely insensitive to NOS inhibition.

  19. Doppler ultrasonography of the human fetal pulmonary circulation

    NARCIS (Netherlands)

    J.A.M. Laudij (Jacqueline)

    2000-01-01

    textabstractPulmonary hypoplasia is a condition characterized by a decrease in the number of lung cells, airways and alveoli with a resulting decrease in organ size and weight. The reported incidence of pulmonary hypoplasia in the general population is about 1 per 1000 live births and it is one of

  20. The usefulness of 99mTc-Technegas scintigraphy for diagnosing pulmonary impairment caused by pulmonary emphysema

    International Nuclear Information System (INIS)

    Satoh, Katashi; Takahashi, Kazue; Kobayashi, Takuya; Yamamoto, Yuka; Nishiyama, Yoshihiro; Tanabe, Masatada

    1998-01-01

    X-ray computed tomography (CT) has been used for diagnosis of pulmonary emphysema because it can reveal the morphology of low attenuation areas. Recently, 99m Tc-Technegas imaging, one of several types of scintigraphic techniques, has been used for ventilation scintigraphy. Technegas scintigraphy was performed on 15 patients with pulmonary emphysema, and we compared the extent and degree of abnormal findings on Technegas scintigraphy with the extent of low attenuation areas shown by CT. We classified the findings of Technegas imaging into three grades, from mild to severe, according to the extent of peripheral irregularity and central hot spot formation. We also classified the findings of CT as centrilobular emphysema into three grades from mild to severe according to the extent of low attention areas in the peripheral lung fields. In 5 cases, CT and Technegas assessment resulted in equivalent diagnoses. In eight cases, Technegas images showed more detailed findings than CT images. In the two remaining cases, which were diagnosed as panlobular emphysema on CT, Technegas images showed the severe stage. Technegas scintigraphy was useful for diagnostic assessment of pulmonary emphysema, especially for panlobular emphysema, which is difficult to distinguish from the normal lung condition by CT assessment. (author)

  1. Diffusion-weighted MR-imaging for the detection of pulmonary nodules at 1.5 Tesla: intraindividual comparison with multidetector computed tomography

    International Nuclear Information System (INIS)

    Regier, Marc; Schwarz, Dorothee; Henes, Frank Oliver; Groth, Michael; Begemann, Philipp G.C.; Adam, Gerhard; Kooijman, Hendrik

    2011-01-01

    To investigate the feasibility of diffusion-weighted imaging (DWI) MRI for detecting pulmonary nodules at 1.5 Tesla in comparison with standard multidetector computed tomography (MDCT). Twenty patients with disseminated cancer disease in which MDCT had assured the presence of at least one pulmonary nodule were examined using a respiratory-gated DWI MR-sequence. Grey scale inverted source images and coronal maximum intensity projection (MIP) images were consensually analysed by two experienced radiologists. Size and location of any nodule detected were assessed. Additionally, the readers evaluated each hemithorax for the presence of at least one nodule and applied a four-point conspicuity scale (1-hemithorax definitely affected; 4-hemithorax definitely not affected). MDCT data served as reference. At MDCT, a total of 71 pulmonary noduIes was found (size 3–5 mm, n = 16; 6–9 mm, n = 22; ≥10 mm, n = 33). For the DWI MR-sequence, a sensitivity of 86.4% was calculated for nodules ranging 6–9 mm and 97% for nodules ≥10 mm. In contrast, only 43.8% of lesions ≤5 mm was detected. The separate analysis of each hemithorax for the presence of at least one pulmonary nodule revealed a specificity rate, PPV and NPV of DWI-MR of 92.3%, 96% and 80%, respectively. The presented study is the first to confirm the diagnostic potential of DWI-MR in the detection of solid lung nodules. This technique allows for the detection of nodules ≥6 mm with reasonably high sensitivity rates (>86%). The observation of false positive findings decreases the accuracy of this approach compared with MDCT.

  2. Detection and Severity Scoring of Chronic Obstructive Pulmonary Disease Using Volumetric Analysis of Lung CT Images

    International Nuclear Information System (INIS)

    Hosseini, Mohammad Parsa; Soltanian-Zadeh, Hamid; Akhlaghpoor, Shahram

    2012-01-01

    Chronic obstructive pulmonary disease (COPD) is a devastating disease.While there is no cure for COPD and the lung damage associated with this disease cannot be reversed, it is still very important to diagnose it as early as possible. In this paper, we propose a novel method based on the measurement of air trapping in the lungs from CT images to detect COPD and to evaluate its severity. Twenty-five patients and twelve normal adults were included in this study. The proposed method found volumetric changes of the lungs from inspiration to expiration. To this end, trachea CT images at full inspiration and expiration were compared and changes in the areas and volumes of the lungs between inspiration and expiration were used to define quantitative measures (features). Using these features,the subjects were classified into two groups of normal and COPD patients using a Bayesian classifier. In addition, t-tests were applied to evaluate discrimination powers of the features for this classification. For the cases studied, the proposed method estimated air trapping in the lungs from CT images without human intervention. Based on the results, a mathematical model was developed to relate variations of lung volumes to the severity of the disease. As a computer aided diagnosis (CAD) system, the proposed method may assist radiologists in the detection of COPD. It quantifies air trapping in the lungs and thus may assist them with the scoring of the disease by quantifying the severity of the disease

  3. Optimisation of window settings for traditional and noise-optimised virtual monoenergetic imaging in dual-energy computed tomography pulmonary angiography

    International Nuclear Information System (INIS)

    D'Angelo, Tommaso; ''G. Martino'' University Hospital, Messina; Bucher, Andreas M.; Lenga, Lukas; Arendt, Christophe T.; Peterke, Julia L.; Martin, Simon S.; Leithner, Doris; Vogl, Thomas J.; Wichmann, Julian L.; Caruso, Damiano; University Hospital, Latina; Mazziotti, Silvio; Blandino, Alfredo; Ascenti, Giorgio; University Hospital, Messina; Othman, Ahmed E.

    2018-01-01

    To define optimal window settings for displaying virtual monoenergetic images (VMI) of dual-energy CT pulmonary angiography (DE-CTPA). Forty-five patients who underwent clinically-indicated third-generation dual-source DE-CTPA were retrospectively evaluated. Standard linearly-blended (M 0 .6), 70-keV traditional VMI (M70), and 40-keV noise-optimised VMI (M40+) reconstructions were analysed. For M70 and M40+ datasets, the subjectively best window setting (width and level, B-W/L) was independently determined by two observers and subsequently related with pulmonary artery attenuation to calculate separate optimised values (O-W/L) using linear regression. Subjective evaluation of image quality (IQ) between W/L settings were assessed by two additional readers. Repeated measures of variance were performed to compare W/L settings and IQ indices between M 0 .6, M70, and M40+. B-W/L and O-W/L for M70 were 460/140 and 450/140, and were 1100/380 and 1070/380 for M40+, respectively, differing from standard DE-CTPA W/L settings (450/100). Highest subjective scores were observed for M40+ regarding vascular contrast, embolism demarcation, and overall IQ (all p<0.001). Application of O-W/L settings is beneficial to optimise subjective IQ of VMI reconstructions of DE-CTPA. A width slightly less than two times the pulmonary trunk attenuation and a level approximately of overall pulmonary vessel attenuation are recommended. (orig.)

  4. Magnetic resonance imaging of pulmonary perfusion. Technical requirements and diagnostic impact; MRT der Lungenperfusion. Technische Voraussetzungen und diagnostischer Stellenwert

    Energy Technology Data Exchange (ETDEWEB)

    Attenberger, U.I.; Buesing, K.; Schoenberg, S.O.; Fink, C. [Klinikum Mannheim der Universitaet Heidelberg, Institut fuer Klinische Radiologie und Nuklearmedizin, Universitaetsmedizin Mannheim, Mannheim (Germany); Ingrisch, M.; Reiser, M. [Klinikum der Ludwig-Maximilians-Universitaet Muenchen, Institut fuer Klinische Radiologie, Campus Grosshadern, Muenchen (Germany)

    2009-08-15

    With technical improvements in gradient hardware and the implementation of innovative k-space sampling techniques, such as parallel imaging, the feasibility of pulmonary perfusion MRI could be demonstrated in several studies. Dynamic contrast-enhanced 3D gradient echo sequences as used for time-resolved MR angiography have been established as the preferred pulse sequences for lung perfusion MRI. With these techniques perfusion of the entire lung can be visualized with a sufficiently high temporal and spatial resolution. In several trials in patients with acute pulmonary embolism, pulmonary hypertension and airway diseases, the clinical benefit and good correlation with perfusion scintigraphy have been demonstrated. The following review article describes the technical prerequisites, current post-processing techniques and the clinical indications for MR pulmonary perfusion imaging using MRI. (orig.) [German] Mit der Verfuegbarkeit leistungsfaehiger Gradientensysteme und schneller k-Raum-Akquisitionstechniken wie der parallelen Bildgebung konnten verschiedene Studien die Machbarkeit der Lungenperfusionsbildgebung in der MRT zeigen. In der Praxis haben sich dynamische kontrastverstaerkte 3D-Gradientenechosequenzen, wie sie fuer zeitaufgeloeste MR-Angiographien verwendet werden, fuer die Bildgebung der Lungenperfusion etabliert. Hiermit ist es moeglich, die Perfusion der gesamten Lunge mit ausreichend hoher zeitlicher und raeumlicher Aufloesung zu visualisieren. In mehren klinischen Studien konnte bei Patienten mit Lungenembolie, pulmonaler Hypertonie sowie Erkrankungen der Atemwege und des Lungenparenchyms der klinische Nutzen der Lungenperfusions-MRT und die gute Uebereinstimmung mit der Lungenperfusionsszintigraphie nachgewiesen werden. Der folgende Uebersichtsartikel beschreibt die technische Durchfuehrung, Bildnachverarbeitung und die klinischen Anwendungsgebiete der MRT zur Untersuchung der Lungenperfusion. (orig.)

  5. Partial anomalous pulmonary venous return in Turner syndrome.

    Science.gov (United States)

    van den Hoven, Allard T; Chelu, Raluca G; Duijnhouwer, Anthonie L; Demulier, Laurent; Devos, Daniel; Nieman, Koen; Witsenburg, Maarten; van den Bosch, Annemien E; Loeys, Bart L; van Hagen, Iris M; Roos-Hesselink, Jolien W

    2017-10-01

    The aim of this study is to describe the prevalence, anatomy, associations and clinical impact of partial anomalous pulmonary venous return in patients with Turner syndrome. All Turner patients who presented at our Turner clinic, between January 2007 and October 2015 were included in this study and underwent ECG, echocardiography and advanced imaging such as cardiac magnetic resonance or computed tomography as part of their regular clinical workup. All imaging was re-evaluated and detailed anatomy was described. Partial anomalous pulmonary venous return was diagnosed in 24 (25%) out of 96 Turner patients included and 14 (58%) of these 24 partial anomalous pulmonary venous return had not been reported previously. Right atrial or ventricular dilatation was present in 11 (46%) of 24 partial anomalous pulmonary venous return patients. When studied with advanced imaging modalities and looked for with specific attention, PAPVR is found in 1 out of 4 Turner patients. Half of these patients had right atrial and/or ventricular dilatation. Evaluation of pulmonary venous return should be included in the standard protocol in all Turner patients. Copyright © 2017. Published by Elsevier B.V.

  6. Evaluation of 16 detector row spiral CT in diagnosing pulmonary embolism

    International Nuclear Information System (INIS)

    Yu Xiaokun; Li Lei

    2008-01-01

    Objective: To investigate the value of 16 detector row spiral CT in the diagnosis of pulmonary embolism(PE). Methods: Imaging data of 20 patients (plain 16 detector row spiral CT scanning plus enhanced scanning imaging) highly suspected of PE was retrospectively analyzed. Results: Among the 20 cases, embolism was showed in 13 patients on 16 detector row spiral CT pulmonary angiography (MSCTPA). 6 cases of the 13 PE's patients have masculine findings on plain MSCT scanning images. Localized tenuous lung markings, dilated pulmonary artery, 'mosaic' sign, pleural or pericardial effusion, local high attenuation centrally in the pulmonary arteries and lung infarction occurred respectively. Conclusion: MSCTPA may be an effective, simple and safe technique for the diagnosis of PE. It was a reliable means in defecting PE However, for the cases unfit for contrast media and cases only suitable for unenhanced CT because of nonspecific heart-pulmonary symptom, noticeable abnormal signs of plain MSCT scanning could suggest the occurrence of pulmonary embolism. (authors)

  7. MRI methods for pulmonary ventilation and perfusion imaging; Methoden der MRT zur Ventilations- und Perfusionsbildgebung der Lunge

    Energy Technology Data Exchange (ETDEWEB)

    Sommer, G. [Universitaetsspital Basel, Klinik fuer Radiologie und Nuklearmedizin, Basel (Switzerland); Bauman, G. [Universitaetsspital Basel, Klinik fuer Radiologie und Nuklearmedizin - Radiologische Physik, Basel (Switzerland)

    2016-02-15

    Separate assessment of respiratory mechanics, gas exchange and pulmonary circulation is essential for the diagnosis and therapy of pulmonary diseases. Due to the global character of the information obtained clinical lung function tests are often not sufficiently specific in the differential diagnosis or have a limited sensitivity in the detection of early pathological changes. The standard procedures of pulmonary imaging are computed tomography (CT) for depiction of the morphology as well as perfusion/ventilation scintigraphy and single photon emission computed tomography (SPECT) for functional assessment. Magnetic resonance imaging (MRI) with hyperpolarized gases, O{sub 2}-enhanced MRI, MRI with fluorinated gases and Fourier decomposition MRI (FD-MRI) are available for assessment of pulmonary ventilation. For assessment of pulmonary perfusion dynamic contrast-enhanced MRI (DCE-MRI), arterial spin labeling (ASL) and FD-MRI can be used. Imaging provides a more precise insight into the pathophysiology of pulmonary function on a regional level. The advantages of MRI are a lack of ionizing radiation, which allows a protective acquisition of dynamic data as well as the high number of available contrasts and therefore accessible lung function parameters. Sufficient clinical data exist only for certain applications of DCE-MRI. For the other techniques, only feasibility studies and case series of different sizes are available. The clinical applicability of hyperpolarized gases is limited for technical reasons. The clinical application of the techniques described, except for DCE-MRI, should be restricted to scientific studies. (orig.) [German] Die separate Beurteilung von Atemmechanik, Gasaustauschprozessen und Lungenzirkulation ist wesentlich fuer die Diagnose und Therapie von Lungenerkrankungen. Klinische Lungenfunktionstests sind aufgrund ihrer zumeist nur globalen Aussage oft nicht hinreichend spezifisch in der Differenzialdiagnostik oder eingeschraenkt sensitiv bei der

  8. SPECT/CT and pulmonary embolism

    DEFF Research Database (Denmark)

    Mortensen, Jann; Borgwardt, Henrik Gutte

    2014-01-01

    the best diagnostic accuracy for PE. In addition, recent developments in the CTPA technique have made it possible to image the pulmonary arteries of the lungs in one breath-hold. This development is based on the change from a single-detector to multidetector CT technology with an increase in volume......Acute pulmonary embolism (PE) is diagnosed either by ventilation/perfusion (V/P) scintigraphy or pulmonary CT angiography (CTPA). In recent years both techniques have improved. Many nuclear medicine centres have adopted the single photon emission CT (SPECT) technique as opposed to the planar...

  9. Objective quantification of pulmonary effects in X-ray chest images; Quantificacao objetiva das sequelas pulmonares em imagens de raios-X de torax

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Marcela de; Giacomini, Guilherme; Alvarez, Matheus; Pereira, Paulo M.C.; Ribeiro, Sergio M.; Pina, Diana R. de [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Botucatu, SP (Brazil)

    2016-07-01

    Tuberculosis (TB) is an infectious lung disease of great concern worldwide. Even after treatment, TB leaves pulmonary sequelae that compromise the quality of life of patients. The exam of diagnostic imaging done more frequently is the X-ray chest. The evaluation of pulmonary involvement of these patients is performed visually by the radiologist. The detection and quantification aided by computer systems are of great importance for the more accurate assessment of pulmonary involvement. The objective of this study was to evaluate computationally the reduction of lung damage in X-ray of chest in patients treated with two different medication regimens. (author)

  10. Development of digital phantoms based on a finite element model to simulate low-attenuation areas in CT imaging for pulmonary emphysema quantification.

    Science.gov (United States)

    Diciotti, Stefano; Nobis, Alessandro; Ciulli, Stefano; Landini, Nicholas; Mascalchi, Mario; Sverzellati, Nicola; Innocenti, Bernardo

    2017-09-01

    To develop an innovative finite element (FE) model of lung parenchyma which simulates pulmonary emphysema on CT imaging. The model is aimed to generate a set of digital phantoms of low-attenuation areas (LAA) images with different grades of emphysema severity. Four individual parameter configurations simulating different grades of emphysema severity were utilized to generate 40 FE models using ten randomizations for each setting. We compared two measures of emphysema severity (relative area (RA) and the exponent D of the cumulative distribution function of LAA clusters size) between the simulated LAA images and those computed directly on the models output (considered as reference). The LAA images obtained from our model output can simulate CT-LAA images in subjects with different grades of emphysema severity. Both RA and D computed on simulated LAA images were underestimated as compared to those calculated on the models output, suggesting that measurements in CT imaging may not be accurate in the assessment of real emphysema extent. Our model is able to mimic the cluster size distribution of LAA on CT imaging of subjects with pulmonary emphysema. The model could be useful to generate standard test images and to design physical phantoms of LAA images for the assessment of the accuracy of indexes for the radiologic quantitation of emphysema.

  11. The pulmonary vasculature in a neonatal porcine model with increased pulmonary blood flow and pressure

    DEFF Research Database (Denmark)

    Stenbøg, Elisabeth Vidstid; Steinbruchel, Daniel Andreas; Thomsen, Anne Bloch

    2001-01-01

    Introduction: Hypertension and hyperperfusion of the pulmonary vascular bed in the setting of congenital cardiac malformations may lead to progressive pulmonary vascular disease. To improve the understanding of the basic mechanisms of this disease, there is a need for clinically relevant animal....... By three months of age, nearly all shunts had closed spontaneously, and haemodynamics were normal. Ligation of the left pulmonary artery resulted in a normal total pulmonary blood flow, despite only the right lung being perfused, and a 33% increase in systolic pulmonary arterial pressure...... in humans. Elevated circulating levels of endothelin were associated with abnormal haemodynamics rather than abnormal pathology. These findings could be valuable for future studies on the pathogenesis of hypertensive pulmonary vascular disease associated with congenital cardiac malformations....

  12. Pleural and pulmonary alterations caused by rheumatoid arthritis

    International Nuclear Information System (INIS)

    Bankier, A.A.; Fleischmann, D.; Kiener, H.P.; Wiesmayr, M.N.; Herold, C.J.

    1996-01-01

    Pulmonary complications caused by rheumatoid arthritis are a clinically relevant aspect of this chronic arthropathy. This article reviews pulmonary abnormalities induced by rheumatoid arthritis and their clinical and radiological findings. In addition, the role of different imaging modalities in the diagnostic work-up of pulmonary complications caused by rheumatoid arthritis is discussed. (orig./MG) [de

  13. Anatomical pulmonary magnetic resonance imaging segmentation for regional structure-function measurements of asthma

    Energy Technology Data Exchange (ETDEWEB)

    Guo, F. [Robarts Research Institute, University of Western Ontario, London, Ontario N6A 5B7 (Canada); Graduate Program in Biomedical Engineering, University of Western Ontario, London, Ontario N6A 5B9 (Canada); Svenningsen, S.; Eddy, R. L.; Capaldi, D. P. I.; Sheikh, K. [Robarts Research Institute, University of Western Ontario, London, Ontario N6A 5B7 (Canada); Department of Medical Biophysics, University of Western Ontario, London, Ontario N6A 5C1 (Canada); Fenster, A.; Parraga, G., E-mail: gparraga@robarts.ca [Robarts Research Institute, University of Western Ontario, London, Ontario N6A 5B7 (Canada); Graduate Program in Biomedical Engineering, University of Western Ontario, London, Ontario N6A 5B9 (Canada); Department of Medical Biophysics, University of Western Ontario, London, Ontario N6A 5C1 (Canada)

    2016-06-15

    Purpose: Pulmonary magnetic-resonance-imaging (MRI) and x-ray computed-tomography have provided strong evidence of spatially and temporally persistent lung structure-function abnormalities in asthmatics. This has generated a shift in their understanding of lung disease and supports the use of imaging biomarkers as intermediate endpoints of asthma severity and control. In particular, pulmonary {sup 1}H MRI can be used to provide quantitative lung structure-function measurements longitudinally and in response to treatment. However, to translate such biomarkers of asthma, robust methods are required to segment the lung from pulmonary {sup 1}H MRI. Therefore, their objective was to develop a pulmonary {sup 1}H MRI segmentation algorithm to provide regional measurements with the precision and speed required to support clinical studies. Methods: The authors developed a method to segment the left and right lung from {sup 1}H MRI acquired in 20 asthmatics including five well-controlled and 15 severe poorly controlled participants who provided written informed consent to a study protocol approved by Health Canada. Same-day spirometry and plethysmography measurements of lung function and volume were acquired as well as {sup 1}H MRI using a whole-body radiofrequency coil and fast spoiled gradient-recalled echo sequence at a fixed lung volume (functional residual capacity + 1 l). We incorporated the left-to-right lung volume proportion prior based on the Potts model and derived a volume-proportion preserved Potts model, which was approximated through convex relaxation and further represented by a dual volume-proportion preserved max-flow model. The max-flow model led to a linear problem with convex and linear equality constraints that implicitly encoded the proportion prior. To implement the algorithm, {sup 1}H MRI was resampled into ∼3 × 3 × 3 mm{sup 3} isotropic voxel space. Two observers placed seeds on each lung and on the background of 20 pulmonary {sup 1}H MR images

  14. Variations in alveolar partial pressure for carbon dioxide and oxygen have additive not synergistic acute effects on human pulmonary vasoconstriction.

    Science.gov (United States)

    Croft, Quentin P P; Formenti, Federico; Talbot, Nick P; Lunn, Daniel; Robbins, Peter A; Dorrington, Keith L

    2013-01-01

    The human pulmonary vasculature constricts in response to hypercapnia and hypoxia, with important consequences for homeostasis and adaptation. One function of these responses is to direct blood flow away from poorly-ventilated regions of the lung. In humans it is not known whether the stimuli of hypercapnia and hypoxia constrict the pulmonary blood vessels independently of each other or whether they act synergistically, such that the combination of hypercapnia and hypoxia is more effective than the sum of the responses to each stimulus on its own. We independently controlled the alveolar partial pressures of carbon dioxide (Paco 2) and oxygen (Pao 2) to examine their possible interaction on human pulmonary vasoconstriction. Nine volunteers each experienced sixteen possible combinations of four levels of Paco 2 (+6, +1, -4 and -9 mmHg, relative to baseline) with four levels of Pao 2 (175, 100, 75 and 50 mmHg). During each of these sixteen protocols Doppler echocardiography was used to evaluate cardiac output and systolic tricuspid pressure gradient, an index of pulmonary vasoconstriction. The degree of constriction varied linearly with both Paco 2 and the calculated haemoglobin oxygen desaturation (1-So2). Mixed effects modelling delivered coefficients defining the interdependence of cardiac output, systolic tricuspid pressure gradient, ventilation, Paco 2 and So2. No interaction was observed in the effects on pulmonary vasoconstriction of carbon dioxide and oxygen (p>0.64). Direct effects of the alveolar gases on systolic tricuspid pressure gradient greatly exceeded indirect effects arising from concurrent changes in cardiac output.

  15. Pulmonary Capillary Hemorrhage Induced by Different Imaging Modes of Diagnostic Ultrasound.

    Science.gov (United States)

    Miller, Douglas L; Dong, Zhihong; Dou, Chunyan; Raghavendran, Krishnan

    2018-05-01

    The induction of pulmonary capillary hemorrhage (PCH) is a well-established non-thermal biological effect of pulsed ultrasound in animal models. Typically, research has been done using laboratory pulsed ultrasound systems with a fixed beam and, recently, by B-mode diagnostic ultrasound. In this study, a GE Vivid 7 Dimension ultrasound machine with 10 L linear array probe was used at 6.6 MHz to explore the relative PCH efficacy of B-mode imaging, M-mode (fixed beam), color angio mode Doppler imaging and pulsed Doppler mode (fixed beam). Anesthetized rats were scanned in a warmed water bath, and thresholds were determined by scanning at different power steps, 2 dB apart, in different groups of six rats. Exposures were performed for 5 min, except for a 15-s M-mode group. Peak rarefactional pressure amplitude thresholds were 1.5 MPa for B-mode and 1.1 MPa for angio Doppler mode. For the non-scanned modes, thresholds were 1.1 MPa for M-mode and 0.6 MPa for pulsed Doppler mode with its relatively high duty cycle (7.7 × 10 -3 vs. 0.27 × 10 -3 for M-mode). Reducing the duration of M-mode to 15 s (from 300 s) did not significantly reduce PCH (area, volume or depth) for some power settings, but the threshold was increased to 1.4 MPa. Pulmonary sonographers should be aware of this unique adverse bio-effect of diagnostic ultrasound and should consider reduced on-screen mechanical index settings for potentially vulnerable patients. Copyright © 2018 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.

  16. [Role of MRI for detection and characterization of pulmonary nodules].

    Science.gov (United States)

    Sommer, G; Koenigkam-Santos, M; Biederer, J; Puderbach, M

    2014-05-01

    Due to physical and technical limitations, magnetic resonance imaging (MRI) has hitherto played only a minor role in image-based diagnostics of the lungs. However, as a consequence of important methodological developments during recent years, MRI has developed into a technically mature and clinically well-proven method for specific pulmonary questions. The purpose of this article is to provide an overview on the currently available sequences and techniques for assessment of pulmonary nodules and analyzes the clinical significance according to the current literature. The main focus is on the detection of lung metastases, the detection of primary pulmonary malignancies in high-risk individuals and the differentiation between pulmonary nodules of benign and malignant character. The MRI technique has a sensitivity of approximately 80 % for detection of malignant pulmonary nodules compared to the reference standard low-dose computed tomography (CT) and is thus somewhat inferior to CT. Advantages of MRI on the other hand are a higher specificity in differentiating malignant and benign pulmonary nodules and the absence of ionizing radiation exposure. A systematic use of MRI as a primary tool for detection and characterization of pulmonary nodules is currently not recommended due to insufficient data. The diagnostic potential of MRI for early detection and staging of malignant pulmonary diseases, however, seems promising. Therefore, further evaluation of MRI as a secondary imaging modality in clinical trials is highly warranted.

  17. Correlation analysis between pulmonary function test parameters and CT image parameters of emphysema

    Science.gov (United States)

    Liu, Cheng-Pei; Li, Chia-Chen; Yu, Chong-Jen; Chang, Yeun-Chung; Wang, Cheng-Yi; Yu, Wen-Kuang; Chen, Chung-Ming

    2016-03-01

    Conventionally, diagnosis and severity classification of Chronic Obstructive Pulmonary Disease (COPD) are usually based on the pulmonary function tests (PFTs). To reduce the need of PFT for the diagnosis of COPD, this paper proposes a correlation model between the lung CT images and the crucial index of the PFT, FEV1/FVC, a severity index of COPD distinguishing a normal subject from a COPD patient. A new lung CT image index, Mirage Index (MI), has been developed to describe the severity of COPD primarily with emphysema disease. Unlike conventional Pixel Index (PI) which takes into account all voxels with HU values less than -950, the proposed approach modeled these voxels by different sizes of bullae balls and defines MI as a weighted sum of the percentages of the bullae balls of different size classes and locations in a lung. For evaluation of the efficacy of the proposed model, 45 emphysema subjects of different severity were involved in this study. In comparison with the conventional index, PI, the correlation between MI and FEV1/FVC is -0.75+/-0.08, which substantially outperforms the correlation between PI and FEV1/FVC, i.e., -0.63+/-0.11. Moreover, we have shown that the emphysematous lesion areas constituted by small bullae balls are basically irrelevant to FEV1/FVC. The statistical analysis and special case study results show that MI can offer better assessment in different analyses.

  18. Contribution of quantitative perfusion pulmonary scintiscanning with particles to the study of the regional pulmonary blood flow distribution

    International Nuclear Information System (INIS)

    Barreto, S.S.M.

    1988-01-01

    The quantitative perfusion pulmonary scintiscanning with macro aggregates was studied by digital images of perfusion, obtained in scintiscanning chamber coupled to the data processing system. The study was developed in four phases, in the Nuclear Medicine Service of Porto Alegre Clinical Hospital. In each phase, it was studied groups with different ages and different clinical aspects (normal and cardiopathic persons), and they were submitted to several diagnostic techniques. The macro aggregates used was the human albumin and was labelled with technetium 99. A comparative evaluation of this method with others diagnostic techniques was also presented. (C.G.C)

  19. Magnetic resonance imaging - first human images in Australia

    International Nuclear Information System (INIS)

    Baddeley, H.; Doddrell, D.M.; Brooks, W.M.; Field, J.; Irving, M.; Williams, J.E.

    1986-01-01

    The use of magnetic resonance imaging, in the demonstration of internal human anatomy and in the diagnosis of disease, has the major advantages that the technique is non-invasive, does not require the use of ionizing radiation and that it can demonstrate neurological and cardiovascular lesions that cannot be diagnosed easily by other imaging methods. The first magnetic resonance images of humans were obtained in Australia in October 1985 on the research instrument of the Queensland Medical Magnetic Resonance Research Centre, which is based at the Mater Hospital in Brisbane

  20. Evaluation of solitary pulmonary metastasis of extrathoracic tumor with thin-slice computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Shiotani, Seiji; Yamada, Kouzo; Oshita, Fumihiro; Nomura, Ikuo; Noda, Kazumasa; Yamagata, Tatushi; Tajiri, Michihiko; Ishibashi, Makoto; Kameda, Youichi [Kanagawa Cancer Center, Yokohama (Japan)

    1995-10-01

    Thin-slice computed tomography (CT) images were compared with pathological findings in 9 specimens of solitary pulmonary nodules, which had been pathologically diagnosed as pulmonary metastasis of extrathoracic tumor. The thin-slice CT images were 2 mm-thick images reconstructed using a TCT-900S, HELIX (Toshiba, Tokyo) and examined at two different window and level settings. In every case, the surgical specimens were sliced transversely to correlate with the CT images. According to the image findings, the internal structure was of the solid-density type in every case, and the margin showed spiculation in 22%, notching in 67% and pleural indentation in 89%. Regarding the relationship between the pulmonary vessels and tumors, plural vascular involvement was revealed in every case. Thus, it was difficult to distinguish solitary pulmonary metastasis of extrathoracic tumor from primary lung cancer based on the thin-slice CT images. For some solitary pulmonary metastasis of extrathoracic tumor, a comprehensive diagnostic approach taking both the anamnesis and pathological findings into consideration was required. (author).

  1. Computed tomography in the detection of pulmonary metastases. Improvement by application of spiral technology

    International Nuclear Information System (INIS)

    Kauczor, H.U.; Hansen, M.; Schweden, F.; Strunk, H.; Mildenberger, P.; Thelen, M.

    1994-01-01

    Computed tomography is the imaging modality of choice for detection or exclusion of pulmonary metastases. In most cases these are spheric, multiple, bilateral, and located in the peripheral areas of the middle and lower fields of the lungs. Differential diagnosis of solitary pulmonary nodules is difficult. Evaluating whether they are malignant or benign is insufficient despite the application of multiple CT criteria. Spiral computed tomography acquiring an imaging volume in a breathhold has led to significant improvement in the sensitivity of detecting pulmonary nodules. Imaging protocols are presented, and the influence of the different parameters is discussed. Although not all pulmonary metastases may be detected with spiral computed tomography, it is the most important examination when considering pulmonary metastasectomy. Computed tomography is the imaging modality of choice when monitoring pulmonary metastases during systemic therapeutic regimens by measuring all nodules or 'indicator lesions'. (orig.) [de

  2. The value of T/NT in FDG imaging with a coincidence camera for diagnosis of pulmonary nodules and mass lesions

    International Nuclear Information System (INIS)

    Sun Da; Zhan Hongwei; Xu Wei; Ye Xiaojuan; Liu Qichang

    2004-01-01

    Objectives: To assess the value of T/NT in FDG imaging with a coincidence camera for diagnosis of pulmonary nodules and mass lesions. Methods: 18F-FDG imaging were performed in 57 patients with a mean age of 62.18 (range from 33 83 years old) for diagnosis of pulmonary nodules and mass lesions using a gamma camera with 1 inch crystal in coincidence mode (Siemens E.comduet). 175 296 MBq (5 8 mci) of 18F-FDG was given by iv on an empty stomach at least for 6 hours, and a whole body imaging without brain and legs was performed after 40 60 minutes. The count rate of target ROI and no-target ROI (T/NT) were calculated as a semiquantative analysis to differentiate malignant from inflammatory lesions. The result was compared with CT, MRI, and/or pathology. Results: The mean value of T/NT in malignant lesions (N=45) in lungs is 4.32 (range 1.61 10.62). But it is 1.52 (range 1.37 1.95) in inflammatory lesions (N=17) in lungs, and 4.09 (range 2.2 7.01) in lung tuberculosis lesions (N=5). In 45 malignant, the value of T/NT is less than 2.0 in only 3 lesions. So the overlapping of T/NT value is very little between malignant and inflammatory lesions. But there is full overlapping of T/NT value between malignant and tuberculosis lesions. Conclusions: Focal pulmonary nodules and mass lesions are commonly encountered in clinical practice, and PET with 18F-FDG has proved to be an accurate noninvasive test for identifying pulmonary malignant lesions. The technique of semiquantity with T/NT is useful to differentiate malignant from inflammatory lesions. But it is invalidate for distinguishing malignant from tuberculosis lesions. (authors)

  3. Ventilation-perfusion imaging and pulmonary angiography: changing pattern of use

    International Nuclear Information System (INIS)

    Teates, C.D.; Bezirdjian, D.R.; Bray, S.T.; Tegtmeyer, C.J.

    1981-01-01

    The hospital and departmental records of the University of Virginia Medical Center from 1976 to 1980 show an increasing frequency of ventilation studies relative to perfusion studies and a decrease in frequency of ventilation-perfusion diagnosis of pulmonary embolus. Pulmonary angiograms have increased from one per 68 nuclear studies to one per 14. A review of 70 patients with correlating angiography or autopsy shows that 89% of nuclear studies were accurate. We have revised our interpretation criteria and indications for pulmonary angiography

  4. Human brain imaging

    International Nuclear Information System (INIS)

    Kuhar, M.J.

    1987-01-01

    Just as there have been dramatic advances in the molecular biology of the human brain in recent years, there also have been remarkable advances in brain imaging. This paper reports on the development and broad application of microscopic imaging techniques which include the autoradiographic localization of receptors and the measurement of glucose utilization by autoradiography. These approaches provide great sensitivity and excellent anatomical resolution in exploring brain organization and function. The first noninvasive external imaging of receptor distributions in the living human brain was achieved by positron emission tomography (PET) scanning. Developments, techniques and applications continue to progress. Magnetic resonance imaging (MRI) is also becoming important. Its initial clinical applications were in examining the structure and anatomy of the brain. However, more recent uses, such as MRI spectroscopy, indicate the feasibility of exploring biochemical pathways in the brain, the metabolism of drugs in the brain, and also of examining some of these procedures at an anatomical resolution which is substantially greater than that obtainable by PET scanning. The issues will be discussed in greater detail

  5. Pulmonary toxicity and kinetic study of Cy5.5-conjugated superparamagnetic iron oxide nanoparticles by optical imaging

    International Nuclear Information System (INIS)

    Cho, Wan-Seob; Cho, Minjung; Kim, Seoung Ryul; Choi, Mina; Lee, Jeong Yeon; Han, Beom Seok; Park, Sue Nie; Yu, Mi Kyung; Jon, Sangyong; Jeong, Jayoung

    2009-01-01

    Recent advances in the development of nanotechnology and devices now make it possible to accurately deliver drugs or genes to the lung. Magnetic nanoparticles can be used as contrast agents, thermal therapy for cancer, and be made to concentrate to target sites through an external magnetic field. However, these advantages may also become problematic when taking into account safety and toxicological factors. This study demonstrated the pulmonary toxicity and kinetic profile of anti-biofouling polymer coated, Cy5.5-conjugated thermally cross-linked superparamagnetic iron oxide nanoparticles (TCL-SPION) by optical imaging. Negatively charged, 36 nm-sized, Cy5.5-conjugated TCL-SPION was prepared for optical imaging probe. Cy5.5-conjugated TCL-SPION was intratracheally instilled into the lung by a non-surgical method. Cy5.5-conjugated TCL-SPION slightly induced pulmonary inflammation. The instilled nanoparticles were distributed mainly in the lung and excreted in the urine via glomerular filtration. Urinary excretion was peaked at 3 h after instillation. No toxicity was found under the concentration of 1.8 mg/kg and the half-lives of nanoparticles in the lung and urine were estimated to be about 14.4 ± 0.54 h and 24.7 ± 1.02 h, respectively. Although further studies are required, our results showed that Cy5.5-conjugated TCL-SPION can be a good candidate for use in pulmonary delivery vehicles and diagnostic probes.

  6. Septic pulmonary embolism caused by a Klebsiella pneumoniae liver abscess: clinical characteristics, imaging findings, and clinical courses

    Directory of Open Access Journals (Sweden)

    Deng-Wei Chou

    2015-06-01

    Full Text Available OBJECTIVES: Septic pulmonary embolism caused by a Klebsiella (K. pneumoniae liver abscess is rare but can cause considerable morbidity and mortality. However, clinical information regarding this condition is limited. This study was conducted to elucidate the full disease spectrum to improve its diagnosis and treatment. METHOD: We reviewed the clinical characteristics, imaging findings, and clinical courses of 14 patients diagnosed with septic pulmonary embolism caused by a K. pneumoniae liver abscess over a period of 9 years. RESULTS: The two most prevalent symptoms were fever and shortness of breath. Computed tomography findings included a feeding vessel sign (79%, nodules with or without cavities (79%, pleural effusions (71%, peripheral wedge-shaped opacities (64%, patchy ground-glass opacities (50%, air bronchograms within a nodule (36%, consolidations (21%, halo signs (14%, and lung abscesses (14%. Nine (64% of the patients developed severe complications and required intensive care. According to follow-up chest radiography, the infiltrates and consolidations were resolved within two weeks, and the nodular opacities were resolved within one month. Two (14% patients died of septic shock; one patient had metastatic meningitis, and the other had metastatic pericarditis. CONCLUSION: The clinical presentations ranged from insidious illness with fever and respiratory symptoms to respiratory failure and septic shock. A broad spectrum of imaging findings, ranging from nodules to multiple consolidations, was detected. Septic pulmonary embolism caused by a K. pneumoniae liver abscess combined with the metastatic infection of other vital organs confers a poor prognosis.

  7. Pulmonary intersegmental planes: imaging appearance and possible reasons leading to their visualization.

    Science.gov (United States)

    Zuo, Yi-Zhi; Liu, Chao; Liu, Shu-Wei

    2013-04-01

    To describe the normal imaging appearance of pulmonary intersegmental planes on thoracic computed tomographic (CT) scans and determine the possible reasons related to their visualization in terms of aging and anatomy. The study was approved by the internal ethics review board. Informed consent was obtained. A retrospective review was undertaken of 104 thoracic multidetector CT scans of an older group (>65 years) and younger group (planes were assessed. Group comparisons were made, and linear regression analysis was used to assess relationships between age and visualization of intersegmental planes. Thirty lung samples (10 × 10 × 10 mm(3)) from autopsy were scanned by using micro-CT. Thicknesses of intersegmental planes were measured. Significant differences of the thickness between visible and invisible intersegmental planes were assessed with the independent t test. In five fetal specimens (17-21 weeks in gestational age), 7.0-T magnetic resonance (MR) imaging was performed to determine the congenital difference of thickness of intersegmental planes. Within the right lung, appearance rates of visible intersegmental planes were 71.2% at S1-S3, 54.8% at S4-S5, and 70.2% at S7-S10. Within the left lung, appearance rates of visible intersegmental planes were 39.4% at S1+2 to S3, 64.4% at S4-S5, 18.3% at S7-S8, and 89.4% at S7-S10. Appearance rates of visible intersegmental planes on thoracic CT scans were not significantly different (P ≥ .38) between younger and older groups. Mean thicknesses of visible and invisible intersegmental planes were 681.3 μm ± 75.3 (standard deviation) and 221.7 μm ± 54.1, respectively. Visible intersegmental planes were significantly thicker than invisible intersegmental planes (P planes were also seen on fetal lung 7.0-T MR images. The thickness of pulmonary intersegmental planes and variation of intersegmental veins were closely related to visualization of intersegmental planes on thoracic CT scans. Aging was excluded as the

  8. Contrast-enhanced magnetic resonance imaging of pulmonary lesions: Description of a technique aiming clinical practice

    International Nuclear Information System (INIS)

    Koenigkam-Santos, Marcel; Optazaite, Elzbieta; Sommer, Gregor; Safi, Seyer; Heussel, Claus Peter; Kauczor, Hans-Ulrich

    2015-01-01

    To propose a technique for evaluation of pulmonary lesions using contrast-enhanced MRI; to assess morphological patterns of enhancement and correlate quantitative analysis with histopathology. Material and methods: Thirty-six patients were prospectively studied. Volumetric-interpolated T1W images were obtained during consecutive breath holds after bolus triggered contrast injection. Volume coverage of first three acquisitions was limited (higher temporal resolution) and last acquisition obtained at 4th min. Two radiologists individually evaluated the patterns of enhancement. Region-of-interest-based signal intensity (SI)-time curves were created to assess quantitative parameters. Results: Readers agreed moderately to substantially concerning lesions’ enhancement pattern. SI-time curves could be created for all lesions. In comparison to benign, malignant lesions showed higher values of maximum enhancement, early peak, slope and 4th min enhancement. Early peak >15% showed 100% sensitivity to detect malignancy, maximum enhancement >40% showed 100% specificity. Conclusions: The proposed technique is robust, simple to perform and can be applied in clinical scenario. It allows visual evaluation of enhancement pattern/progression together with creation of SI-time curves and assessment of derived quantitative parameters. Perfusion analysis was highly sensitive to detect malignancy, in accordance to what is recommended by most recent guidelines on imaging evaluation of pulmonary lesions

  9. Contrast-enhanced magnetic resonance imaging of pulmonary lesions: Description of a technique aiming clinical practice

    Energy Technology Data Exchange (ETDEWEB)

    Koenigkam-Santos, Marcel, E-mail: marcelk46@yahoo.com.br [Department of Diagnostic and Interventional Radiology, University of Heidelberg, Im Neuenheimer Feld 110, 69120 Heidelberg (Germany); Radiology Department, German Cancer Research Center (Deutsches Krebsforschungszentrum – DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany); Department of Radiology, University Hospital of the School of Medicine of Ribeirao Preto, University of Sao Paulo, Avenida Bandeirantes 3900, Campus Universitario Monte Alegre, 14048 900 Ribeirao Preto, Sao Paulo (Brazil); Optazaite, Elzbieta, E-mail: optazaite@andrulis.eu [Diagnostic and Interventional Radiology with Nuclear Medicine, Chest Clinic (Thoraxklinik), University of Heidelberg, Amalienstraße 5, 69126 Heidelberg (Germany); Sommer, Gregor, E-mail: gregor.sommer@usb.ch [Clinic of Radiology and Nuclear Medicine, University Hospital Basel, Petersgraben 4, CH-4031 Basel (Switzerland); Safi, Seyer, E-mail: seyer.safi@gmail.com [Surgery Department, Chest Clinic (Thoraxklinik), University of Heidelberg, Amalienstraße 5, 69126 Heidelberg (Germany); Heussel, Claus Peter, E-mail: heussel@uni-heidelberg.de [Diagnostic and Interventional Radiology with Nuclear Medicine, Chest Clinic (Thoraxklinik), University of Heidelberg, Amalienstraße 5, 69126 Heidelberg (Germany); Translational Lung Research Center (TLRC), Member of the German Center for Lung Research (DZL), Im Neuenheimer Feld 350, 69120 Heidelberg (Germany); Kauczor, Hans-Ulrich, E-mail: hans-ulrich.kauczor@med.uni-heidelberg.de [Department of Diagnostic and Interventional Radiology, University of Heidelberg, Im Neuenheimer Feld 110, 69120 Heidelberg (Germany); Translational Lung Research Center (TLRC), Member of the German Center for Lung Research (DZL), Im Neuenheimer Feld 350, 69120 Heidelberg (Germany); and others

    2015-01-15

    To propose a technique for evaluation of pulmonary lesions using contrast-enhanced MRI; to assess morphological patterns of enhancement and correlate quantitative analysis with histopathology. Material and methods: Thirty-six patients were prospectively studied. Volumetric-interpolated T1W images were obtained during consecutive breath holds after bolus triggered contrast injection. Volume coverage of first three acquisitions was limited (higher temporal resolution) and last acquisition obtained at 4th min. Two radiologists individually evaluated the patterns of enhancement. Region-of-interest-based signal intensity (SI)-time curves were created to assess quantitative parameters. Results: Readers agreed moderately to substantially concerning lesions’ enhancement pattern. SI-time curves could be created for all lesions. In comparison to benign, malignant lesions showed higher values of maximum enhancement, early peak, slope and 4th min enhancement. Early peak >15% showed 100% sensitivity to detect malignancy, maximum enhancement >40% showed 100% specificity. Conclusions: The proposed technique is robust, simple to perform and can be applied in clinical scenario. It allows visual evaluation of enhancement pattern/progression together with creation of SI-time curves and assessment of derived quantitative parameters. Perfusion analysis was highly sensitive to detect malignancy, in accordance to what is recommended by most recent guidelines on imaging evaluation of pulmonary lesions.

  10. Krypton 81m and xenon 133 for complementary ventilation imaging in pulmonary perfusion studies: a clinical comparison. Chapter 12

    International Nuclear Information System (INIS)

    Weber, P.M.; Remedios, L.V.dos.

    1978-01-01

    Twenty-four patients with suspected pulmonary embolism were studied to determine the relative usefulness of 133 Xe and 81 Krsup(m) as indicators of pulmonary ventilation in complementing perfusion studies. In most cases, where krypton produced results superior to xenon, this could be attributed to better resolution of the 190 keV photon and to the fact that multiple views could be obtained, with each view paired precisely with a corresponding perfusion image, the direct result of the ease of use of krypton and its short 13 second half-life. This was well demonstrated in both of the patients with presumed pulmonary embolism and co-existing other pulmonary disease in which the results with xenon and krypton differed. In each case the mis-match was obscured by closely related areas of delayed xenon wash-out. In those patients where xenon demonstrated greater sensitivity in identifying areas of pulmonary disease, the lesions noted on wash-out appeared as areas of positive activity, while with krypton the defects were always photogenic and, when small probably obscured by scatter from adjacent normal activity. In the patient who might have been improperly categorized as a mis-match without the krypton study, the xenon study may have been normal because of inadequate equilibration time. (author)

  11. Role of human pulmonary fibroblast-derived MCP-1 in cell activation and migration in experimental silicosis

    International Nuclear Information System (INIS)

    Liu, Xueting; Fang, Shencun; Liu, Haijun; Wang, Xingang; Dai, Xiaoniu; Yin, Qing; Yun, Tianwei; Wang, Wei; Zhang, Yingming; Liao, Hong; Zhang, Wei; Yao, Honghong; Chao, Jie

    2015-01-01

    Background: Silicosis is a systemic disease caused by inhaling silicon dioxide (SiO 2 ). Phagocytosis of SiO 2 in the lung initiates an inflammatory cascade that results in fibroblast proliferation and migration and subsequent fibrosis. Clinical evidence indicates that the activation of alveolar macrophages by SiO 2 produces rapid and sustained inflammation that is characterized by the generation of monocyte chemotactic protein 1 (MCP-1), which induces fibrosis. Pulmonary fibroblast-derived MCP-1 may play a critical role in fibroblast proliferation and migration. Methods and results: Experiments using primary cultured adult human pulmonary fibroblasts (HPF-a) demonstrated the following results: 1) SiO 2 treatment resulted in the rapid and sustained induction of MCP-1 as well as the elevation of the CC chemokine receptor type 2 (CCR2) protein levels; 2) pretreatment of HPF-a with RS-102895, a specific CCR2 inhibitor, abolished the SiO 2 -induced increase in cell activation and migration in both 2D and 3D culture systems; and 3) RNA interference targeting CCR2 prevented the SiO 2 -induced increase in cell migration. Conclusion: These data demonstrated that the up-regulation of pulmonary fibroblast-derived MCP-1 is involved in pulmonary fibroblast migration induced by SiO 2 . CCR2 was also up-regulated in response to SiO 2 , and this up-regulation facilitated the effect of MCP-1 on fibroblasts. Our study deciphered the link between fibroblast-derived MCP-1 and SiO 2 -induced cell migration. This finding provides novel insight into the potential of MCP-1 in the development of novel therapeutic strategies for silicosis. - Highlights: • Role of pulmonary fibroblast-derived MCP-1 in experimental silicosis was studied. • SiO 2 induced MCP-1 release from cultured human pulmonary fibroblast (HPF-a). • SiO 2 directly activated HPF-a via the MCP-1/CCR2 pathway. • SiO 2 increased HPF-a migration in both 2D and 3D model via the MCP-1/CCR2 pathway. • RNA-i of MCP-1/CCR2

  12. Role of human pulmonary fibroblast-derived MCP-1 in cell activation and migration in experimental silicosis

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xueting [Department of Physiology, Medical School of Southeast University, Nanjing, Jiangsu 210009 (China); Fang, Shencun [Nine Department of Respiratory Medicine, Nanjing Chest Hospital, Nanjing, Jiangsu 210029 (China); Liu, Haijun [Neurobiology Laboratory, New Drug Screening Centre, China Pharmaceutical University, Nanjing, Jiangsu 210009 (China); Wang, Xingang; Dai, Xiaoniu; Yin, Qing; Yun, Tianwei [Department of Physiology, Medical School of Southeast University, Nanjing, Jiangsu 210009 (China); Wang, Wei; Zhang, Yingming [Nine Department of Respiratory Medicine, Nanjing Chest Hospital, Nanjing, Jiangsu 210029 (China); Liao, Hong [Neurobiology Laboratory, New Drug Screening Centre, China Pharmaceutical University, Nanjing, Jiangsu 210009 (China); Zhang, Wei [Department of Physiology, Medical School of Southeast University, Nanjing, Jiangsu 210009 (China); Yao, Honghong [Department of Pharmacology, Medical School of Southeast University, Nanjing, Jiangsu 210009 (China); Chao, Jie, E-mail: chaojie@seu.edu.cn [Department of Physiology, Medical School of Southeast University, Nanjing, Jiangsu 210009 (China)

    2015-10-15

    Background: Silicosis is a systemic disease caused by inhaling silicon dioxide (SiO{sub 2}). Phagocytosis of SiO{sub 2} in the lung initiates an inflammatory cascade that results in fibroblast proliferation and migration and subsequent fibrosis. Clinical evidence indicates that the activation of alveolar macrophages by SiO{sub 2} produces rapid and sustained inflammation that is characterized by the generation of monocyte chemotactic protein 1 (MCP-1), which induces fibrosis. Pulmonary fibroblast-derived MCP-1 may play a critical role in fibroblast proliferation and migration. Methods and results: Experiments using primary cultured adult human pulmonary fibroblasts (HPF-a) demonstrated the following results: 1) SiO{sub 2} treatment resulted in the rapid and sustained induction of MCP-1 as well as the elevation of the CC chemokine receptor type 2 (CCR2) protein levels; 2) pretreatment of HPF-a with RS-102895, a specific CCR2 inhibitor, abolished the SiO{sub 2}-induced increase in cell activation and migration in both 2D and 3D culture systems; and 3) RNA interference targeting CCR2 prevented the SiO{sub 2}-induced increase in cell migration. Conclusion: These data demonstrated that the up-regulation of pulmonary fibroblast-derived MCP-1 is involved in pulmonary fibroblast migration induced by SiO{sub 2}. CCR2 was also up-regulated in response to SiO{sub 2}, and this up-regulation facilitated the effect of MCP-1 on fibroblasts. Our study deciphered the link between fibroblast-derived MCP-1 and SiO{sub 2}-induced cell migration. This finding provides novel insight into the potential of MCP-1 in the development of novel therapeutic strategies for silicosis. - Highlights: • Role of pulmonary fibroblast-derived MCP-1 in experimental silicosis was studied. • SiO{sub 2} induced MCP-1 release from cultured human pulmonary fibroblast (HPF-a). • SiO{sub 2} directly activated HPF-a via the MCP-1/CCR2 pathway. • SiO{sub 2} increased HPF-a migration in both 2D and 3D

  13. CT findings of pulmonary mucosa-associated lymphoid tissue lymphoma

    International Nuclear Information System (INIS)

    Zhang Weidong; Guan Yubao; Li Chuanxing; Wu Peihong

    2010-01-01

    Objective: To study the CT findings of pulmonary mucosa-associated lymphoid tissue (MALT) lymphoma. Methods: The CT examinations of 12 patients with pathologically proven pulmonary MALT lymphoma were reviewed retrospectively. Evaluated imaging findings included number, distribution, shape, attenuation and other associated findings of each lesion were evaluated. Results: Thirty-two pulmonary lesions, including consolidations, masses, nodules and lesions with ground glass attenuation, were identified in 12 patients. Multiple lesions were founded in 10 of 12 patients and solitary lesion in 2 patients. Multiple lesions found in one lung in 2 patients, and multiple lesions found in both lungs in 8 patients. Ten cases demonstrated 21 consolidation lesions with air bronchogram, and one of the ten cases demonstrated two lesions with airway dilatation. Three cases demonstrated 5 masses or nodular lesions, 3 of these 5 lesions showed air bronchogram. Two cases demonstrated 6 ground glass attenuation lesions. One case showed mediastinal and hilar lymphadenopathy. Conclusion: Pulmonary MALT lymphoma usually appears as multiple bilateral consolidations, masses, nodules with air bronchogram or lesions with ground- glass attenuation at CT imaging. The imaging findings described above and with an indolent clinical course may suggest the diagnosis of pulmonary MALT lymphoma. (authors)

  14. Magnetic resonance imaging compared with echocardiography in the evaluation of pulmonary artery abnormalities in children with tetralogy of Fallot following palliative and corrective surgery

    International Nuclear Information System (INIS)

    Greenberg, S.B.; Crisci, K.L.; Koenig, P.; Robinson, B.; Anisman, P.; Russo, P.

    1997-01-01

    Background. Abnormalities of the pulmonary arteries following palliative or corrective surgery for tetralogy of Fallot (TOF) are common. Our purpose was to compare the usefulness of magnetic resonance imaging (MRI) and echocardiography in the post- operative evaluation of the pulmonary arteries in children with TOF. Objective. Our hypothesis was that MRI is more sensitive than echocardiography in the detection of branch pulmonary artery abnormalities in children with TOF. Materials and methods. Pulmonary artery MRI and echocardiography were performed in 20 children following palliative and/or corrective surgery for TOF. MRI and echocardiography were compared in their ability to detect abnormalities of the pulmonary arteries. Angiographic or surgical correlation was available in 15 children. A perfusion scan for confirmation of pulmonary artery patency was available in one additional child. Results. Abnormalities of the branch pulmonary arteries identified by MRI included: absence or occlusion (2), focal stenosis (15), hypoplasia (2), aneurysm (1), and non-confluence (1). Echocardiography could not adequately visualize the right and left branch pulmonary arteries in eight and ten children, respectively. Echocardiography missed stenosis in 13 branch pulmonary arteries, patency of hypoplastic pulmonary arteries in two children, non-confluence of the pulmonary arteries in one child, and a left pulmonary artery aneurysm in one child. Abnormalities identified by MRI were confirmed in 16 children by angiography, surgery or perfusion scan. Conclusion. MRI is more sensitive than echocardiography for the evaluation of branch pulmonary artery abnormalities in children following surgery for TOF. (orig.)

  15. Prominent cerebral veins on susceptibility-weighted imaging (SWI) in pulmonary embolism

    Energy Technology Data Exchange (ETDEWEB)

    Oeztoprak, Bilge [Cumhuriyet University School of Medicine, Department of Radiology, Sivas (Turkey)

    2017-07-15

    Clinical applications of susceptibility-weighted imaging (SWI) are increasing steadily. The aim of this study is to investigate the appearance of cerebral veins on SWI, which is very sensitive to the deoxyhaemoglobin level in vessels, in pulmonary embolism (PE). The cranial SWI images of 19 patients with PE and 22 controls from September 2013 through March 2016 were retrospectively examined for the presence of prominent cerebral veins. MRI findings were correlated with blood oxygen levels. 12 of 19 patients with PE had hypoxemia and SWI images of 11 of these hypoxemic patients depicted prominent cerebral veins in the form of increased number, diameter, and elongation. The mean PaO{sub 2} and SaO{sub 2} in these patients were 48.5 ± 9.1 mmHg and 75.2 ± 8.0 %, respectively. There was a significant correlation between the presence of prominent veins on SWI and hypoxemia (p < 0.05). Of the 7 patients with normal blood oxygen pressure and saturation, 1 also showed an augmented appearance of cerebral veins on SWI. In the presence of neurological symptoms suggestive of an intracranial pathology in patients with PE, a SWI added to the conventional MRI sequences may predict hypoxemia and exclude other intracranial pathologies. (orig.)

  16. Compression of the Right Pulmonary Artery by a Massive Defects on Pulmonary Scintigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Makis, William [Brandon Regional Health Centre, Brandon (Canada); Derbekyan, Vilma [McGill Univ. Health Centre, Montreal (Canada)

    2012-03-15

    A 67 year old woman, who presented with a 2 month history of dyspnea, had a vectilation and perfusion lung scan that showed absent perfusion of the entire right lung scan that showed absent perfusion of the entire right lung with normal ventilation, as well as a rounded matched defect in the left lower lung adjacent to mialine, suspicious for an aortic aneurysm or dissection. CT pulmonary angiography revealed a massive descending aortic aneurysm compressing the right pulmonary artery as well as the left lung parenchyma, accounting for the bilateral perfusion scan defects. We present the Xe 133 ventilation, Tc 99m MAA perfusion and CT pulmonary angiography imaging findings of this rare case.

  17. Primary extraskeletal myxoid chondrosarcoma of pulmonary arteries: a rare mimic of acute pulmonary thromboembolism.

    Science.gov (United States)

    Gadabanahalli, Karthik; Belaval, Vinay V; Bhat, Venkatraman; Gorur, Imran M

    2015-04-01

    Primary extraskeletal myxoid chondrosarcoma of the pulmonary arteries is a very rare entity. Multimodality imaging reports on this entity are few. Myxoid chondrosarcoma is characterized by chondroid and neurogenic differentiation in extraskeletal locations. These tumours represent fewer than 2.5% of all soft-tissue sarcomas, and are most commonly found in the lower extremities, limb girdles, distal extremities and trunk. We report an unusual case of a 31-year old man with histopathologically proven extraskeletal myxoid chondrosarcoma of the pulmonary arteries mimicking acute pulmonary thromboembolism. © The Author 2015. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  18. High-resolution imaging of pulmonary ventilation and perfusion with {sup 68}Ga-VQ respiratory gated (4-D) PET/CT

    Energy Technology Data Exchange (ETDEWEB)

    Callahan, Jason [Centre for Molecular Imaging, Peter MacCallum Cancer Centre, East Melbourne, VIC (Australia); Hofman, Michael S. [The University of Melbourne, Department of Medicine, Peter MacCallum Cancer Centre, Centre for Molecular Imaging, East Melbourne, VIC (Australia); Siva, Shankar [The University of Melbourne, Peter MacCallum Cancer Centre, Department of Radiation Oncology, East Melbourne, VIC (Australia); The University of Melbourne, Sir Peter MacCallum Department of Oncology, East Melbourne, VIC (Australia); Kron, Tomas [The University of Melbourne, Sir Peter MacCallum Department of Oncology, East Melbourne, VIC (Australia); The University of Melbourne, Peter MacCallum Cancer Centre, Department of Physical Sciences, East Melbourne, VIC (Australia); Schneider, Michal E. [Monash University, Department of Medical Imaging and Radiation Science, Clayton, VIC (Australia); Binns, David; Eu, Peter [Peter MacCallum Cancer Centre, Centre for Cancer Imaging, East Melbourne, VIC (Australia); Hicks, Rodney J. [The University of Melbourne, Sir Peter MacCallum Department of Oncology, Peter MacCallum Cancer Centre, Centre for Molecular Imaging, East Melbourne, VIC (Australia)

    2014-02-15

    Our group has previously reported on the use of {sup 68}Ga-ventilation/perfusion (VQ) PET/CT scanning for the diagnosis of pulmonary embolism. We describe here the acquisition methodology for {sup 68}Ga-VQ respiratory gated (4-D) PET/CT and the effects of respiratory motion on image coregistration in VQ scanning. A prospective study was performed in 15 patients with non-small-cell lung cancer. 4-D PET and 4-D CT images were acquired using an infrared marker on the patient's abdomen as a surrogate for breathing motion following inhalation of Galligas and intravenous administration of {sup 68}Ga-macroaggregated albumin. Images were reconstructed with phase-matched attenuation correction. The lungs were contoured on CT and PET VQ images during free-breathing (FB) and at maximum inspiration (Insp) and expiration (Exp). The similarity between PET and CT volumes was measured using the Dice coefficient (DC) comparing the following groups; (1) FB-PET/CT, (2) InspPET/InspCT, (3) ExpPET/Exp CT, and (4) FB-PET/AveCT. A repeated measures one-way ANOVA with multiple comparison Tukey tests were performed to evaluate any difference between the groups. Diaphragmatic motion in the superior-inferior direction on the 4-D CT scan was also measured. 4-D VQ scanning was successful in all patients without additional acquisition time compared to the nongated technique. The highest volume overlap was between ExpPET and ExpCT and between FB-PET and AveCT with a DC of 0.82 and 0.80 for ventilation and perfusion, respectively. This was significantly better than the DC comparing the other groups (0.78-0.79, p < 0.05). These values agreed with a visual inspection of the images with improved image coregistration around the lung bases. The diaphragmatic motion during the 4-D CT scan was highly variable with a range of 0.4-3.4 cm (SD 0.81 cm) in the right lung and 0-2.8 cm (SD 0.83 cm) in the left lung. Right-sided diaphragmatic nerve palsy was observed in 3 of 15 patients. {sup 68}Ga-VQ 4-D

  19. circHIPK2-mediated σ-1R promotes endoplasmic reticulum stress in human pulmonary fibroblasts exposed to silica.

    Science.gov (United States)

    Cao, Zhouli; Xiao, Qingling; Dai, Xiaoniu; Zhou, Zewei; Jiang, Rong; Cheng, Yusi; Yang, Xiyue; Guo, Huifang; Wang, Jing; Xi, Zhaoqing; Yao, Honghong; Chao, Jie

    2017-12-13

    Silicosis is characterized by fibroblast accumulation and excessive deposition of extracellular matrix. Although the roles of SiO 2 -induced chemokines and cytokines released from alveolar macrophages have received significant attention, the direct effects of SiO 2 on protein production and functional changes in pulmonary fibroblasts have been less extensively studied. Sigma-1 receptor, which has been associated with cell proliferation and migration in the central nervous system, is expressed in the lung, but its role in silicosis remains unknown. To elucidate the role of sigma-1 receptor in fibrosis induced by silica, both the upstream molecular mechanisms and the functional effects on cell proliferation and migration were investigated. Both molecular biological assays and pharmacological techniques, combined with functional experiments, such as migration and proliferation, were applied in human pulmonary fibroblasts from adults to analyze the molecular and functional changes induced by SiO 2 . SiO 2 induced endoplasmic reticulum stress in association with enhanced expression of sigma-1 receptor. Endoplasmic reticulum stress promoted migration and proliferation of human pulmonary fibroblasts-adult exposed to SiO 2 , inducing the development of silicosis. Inhibition of sigma-1 receptor ameliorated endoplasmic reticulum stress and fibroblast functional changes induced by SiO 2 . circHIPK2 is involved in the regulation of sigma-1 receptor in human pulmonary fibroblasts-adult exposed to SiO 2 . Our study elucidated a link between SiO 2 -induced fibrosis and sigma-1 receptor signaling, thereby providing novel insight into the potential use of sigma-1 receptor/endoplasmic reticulum stress in the development of novel therapeutic strategies for silicosis treatment.

  20. Pulmonary complications in renal transplantation

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jung Bin; Choi, Yo Won; Jeon, Seok Chol; Park, Choong Ki; Lee, Seung Rho; Hahm, Chang Kok; Joo, Kyung Bin [Hanyang University College of Medicine, Seoul (Korea, Republic of)

    2003-04-01

    To evaluate the radiographic and CT findings of pulmonary complications other than pulmonary edema arising from renal transplantation. Among 393 patients who had undergone renal transplantation at our hospital during a previous ten-year period, 23 with pulmonary complications other than pulmonary edema were included in this study. The complications involved were infection caused by CMV (n=6), bacteria (n=4), fungus (n=4), tuberculosis (n=2), varicella (n=1) or chlamydia (n=1), and malignancy involving lung cancer (n=4) or Kaposi's sarcoma (n=1). Two chest radiologists reviewed all images. The complications manifesting mainly as pulmonary nodules were lung cancer (4/4), tuberculosis (1/2), and Kaposi's sarcoma (1/1). Pulmonary consolidation was a main feature in bacterial infection (4/4), fungal infection (3/4), tuberculosis (1/2), chlamydial infection (1/1), and varicellar pneumonia (1/1). Ground-glass attenuation was a main CT feature in CMV pneumonia (4/6), and increased interstitial making was a predominant radiographic feature in CMV pneumonia (2/6). The main radiologic features described above can be helpful for differential diagnosis of the pulmonary complications of renal transplantation.

  1. Functional live cell imaging of the pulmonary neuroepithelial body microenvironment

    NARCIS (Netherlands)

    De Proost, Ian; Pintelon, Isabel; Brouns, Inge; Kroese, A; Riccardi, Daniela; Kemp, Paul J.; Timmermans, Jean-Pierre; Adriaensen, Dirk

    Pulmonary neuroepithelial bodies (NEBs) are densely innervated groups of neuroendocrine cells invariably accompanied by Clara-like cells. Together with NEBs, Clara-like cells form the so-called "NEB microenvironment," which recently has been assigned a potential pulmonary stem cell niche. Conclusive

  2. Distinguishing Chronic Thromboembolic Pulmonary Hypertension From Other Causes of Pulmonary Hypertension Using CT.

    Science.gov (United States)

    Grosse, Alexandra; Grosse, Claudia; Lang, Irene M

    2017-12-01

    The purpose of this study was to discern imaging findings that separate chronic thromboembolic pulmonary hypertension (CTEPH) from other causes of pulmonary hypertension (PH). A total of 143 patients with proven PH (group 1, pulmonary arterial hypertension; group 2, PH due to left heart disease; group 3, PH due to lung disease; group 4, CTEPH; and group 5, PH due to unclear or multifactorial mechanisms) underwent MDCT angiography. The CT images were assessed for the presence of chronic pulmonary embolism (PE), disparity in segmental vessel size, mosaic perfusion, parenchymal densities, bronchial dilatation, and collateral arteries. The frequencies of vascular signs of chronic PE, disparity in segmental vessel size, mosaic perfusion, parenchymal densities, bronchial collateral arteries, and bronchial dilatation were statistically significantly higher in patients with CTEPH than in patients with nonthromboembolic PH. Vascular signs of chronic PE, mosaic perfusion, parenchymal densities, and bronchial dilatation without bronchial wall thickening were significantly more frequent in patients with CTEPH than in patients in groups 1, 2, 3, and 5. There was no significant difference in the frequencies of bronchial collateral arteries between patients with CTEPH and patients in groups 3 and 5. Most patients with CTEPH have direct vascular signs of chronic PE. Secondary signs include disparity in segmental vessel size, mosaic perfusion pattern, parenchymal densities, collateral bronchial arteries, and bronchial dilatation, which help distinguish CTEPH from other causes of PH.

  3. Use of a hybrid iterative reconstruction technique to reduce image noise and improve image quality in obese patients undergoing computed tomographic pulmonary angiography.

    Science.gov (United States)

    Kligerman, Seth; Mehta, Dhruv; Farnadesh, Mahmmoudreza; Jeudy, Jean; Olsen, Kathryn; White, Charles

    2013-01-01

    To determine whether an iterative reconstruction (IR) technique (iDose, Philips Healthcare) can reduce image noise and improve image quality in obese patients undergoing computed tomographic pulmonary angiography (CTPA). The study was Health Insurance Portability and Accountability Act compliant and approved by our institutional review board. A total of 33 obese patients (average body mass index: 42.7) underwent CTPA studies following standard departmental protocols. The data were reconstructed with filtered back projection (FBP) and 3 iDose strengths (iDoseL1, iDoseL3, and iDoseL5) for a total of 132 studies. FBP data were collected from 33 controls (average body mass index: 22) undergoing CTPA. Regions of interest were drawn at 6 identical levels in the pulmonary artery (PA), from the main PA to a subsegmental branch, in both the control group and study groups using each algorithm. Noise and attenuation were measured at all PA levels. Three thoracic radiologists graded each study on a scale of 1 (very poor) to 5 (ideal) by 4 categories: image quality, noise, PA enhancement, and "plastic" appearance. Statistical analysis was performed using an unpaired t test, 1-way analysis of variance, and linear weighted κ. Compared with the control group, there was significantly higher noise with FBP, iDoseL1, and iDoseL3 algorithms (Pnoise in the control group and iDoseL5 algorithm in the study group. Analysis within the study group showed a significant and progressive decrease in noise and increase in the contrast-to-noise ratio as the level of IR was increased (Pnoise and PA enhancement with increasing levels of iDose. The use of an IR technique leads to qualitative and quantitative improvements in image noise and image quality in obese patients undergoing CTPA.

  4. NFATc3 and VIP in Idiopathic Pulmonary Fibrosis and Chronic Obstructive Pulmonary Disease.

    Directory of Open Access Journals (Sweden)

    Anthony M Szema

    Full Text Available Idiopathic pulmonary fibrosis (IPF and chronic obstructive pulmonary disease (COPD are both debilitating lung diseases which can lead to hypoxemia and pulmonary hypertension (PH. Nuclear Factor of Activated T-cells (NFAT is a transcription factor implicated in the etiology of vascular remodeling in hypoxic PH. We have previously shown that mice lacking the ability to generate Vasoactive Intestinal Peptide (VIP develop spontaneous PH, pulmonary arterial remodeling and lung inflammation. Inhibition of NFAT attenuated PH in these mice suggesting a connection between NFAT and VIP. To test the hypotheses that: 1 VIP inhibits NFAT isoform c3 (NFATc3 activity in pulmonary vascular smooth muscle cells; 2 lung NFATc3 activation is associated with disease severity in IPF and COPD patients, and 3 VIP and NFATc3 expression correlate in lung tissue from IPF and COPD patients. NFAT activity was determined in isolated pulmonary arteries from NFAT-luciferase reporter mice. The % of nuclei with NFAT nuclear accumulation was determined in primary human pulmonary artery smooth muscle cell (PASMC cultures; in lung airway epithelia and smooth muscle and pulmonary endothelia and smooth muscle from IPF and COPD patients; and in PASMC from mouse lung sections by fluorescence microscopy. Both NFAT and VIP mRNA levels were measured in lungs from IPF and COPD patients. Empirical strategies applied to test hypotheses regarding VIP, NFATc3 expression and activity, and disease type and severity. This study shows a significant negative correlation between NFAT isoform c3 protein expression levels in PASMC, activity of NFATc3 in pulmonary endothelial cells, expression and activity of NFATc3 in bronchial epithelial cells and lung function in IPF patients, supporting the concept that NFATc3 is activated in the early stages of IPF. We further show that there is a significant positive correlation between NFATc3 mRNA expression and VIP RNA expression only in lungs from IPF patients

  5. Pulmonary Venous Obstruction in Cancer Patients

    Directory of Open Access Journals (Sweden)

    Chuang-Chi Liaw

    2015-01-01

    Full Text Available Background. We study the clinical significance and management of pulmonary venous obstruction in cancer patients. Methods. We conducted a prospective cohort study to characterize the syndrome that we term “pulmonary vein obstruction syndrome” (PVOS between January 2005 and March 2014. The criteria for inclusion were (1 episodes of shortness of breath; (2 chest X-ray showing abnormal pulmonary hilum shadow with or without presence of pulmonary edema and/or pleural effusion; (3 CT scan demonstrating pulmonary vein thrombosis/tumor with or without tumor around the vein. Results. Two hundred and twenty-two patients developed PVOS. Shortness of breath was the main symptom, which was aggravated by chemotherapy in 28 (13%, and medical/surgical procedures in 21 (9% and showed diurnal change in intensity in 32 (14%. Chest X-rays all revealed abnormal pulmonary hilum shadows and presence of pulmonary edema in 194 (87% and pleural effusion in 192 (86%. CT scans all showed pulmonary vein thrombosis/tumor (100% and surrounding the pulmonary veins by tumor lesions in 140 patients (63%. PVOS was treated with low molecular weight heparin in combination with dexamethasone, and 66% of patients got clinical/image improvement. Conclusion. Physicians should be alert to PVOS when shortness of breath occurs and chest X-ray reveals abnormal pulmonary hilum shadows.

  6. Neonatal Pulmonary Hemosiderosis

    Directory of Open Access Journals (Sweden)

    Boris Limme

    2014-01-01

    Full Text Available Idiopathic pulmonary hemosiderosis (IPH is a rare complex entity characterized clinically by acute or recurrent episodes of hemoptysis secondary to diffuse alveolar hemorrhage. The radiographic features are variable, including diffuse alveolar-type infiltrates, and interstitial reticular and micronodular patterns. We describe a 3-week-old infant presenting with hemoptysis and moderate respiratory distress. Idiopathic pulmonary hemosiderosis was the first working diagnosis at the Emergency Department and was confirmed, 2 weeks later, by histological studies (bronchoalveolar lavage. The immunosuppressive therapy by 1 mg/kg/d prednisone was immediately started, the baby returned home on steroid therapy at a dose of 0,5 mg/kg/d. The diagnosis of idiopathic pulmonary hemosiderosis should be evocated at any age, even in the neonate, when the clinical presentation (hemoptysis and abnormal radiological chest images is strongly suggestive.

  7. Pulmonary nuclear medicine: Techniques in diagnosis of lung disease

    International Nuclear Information System (INIS)

    Atkins, H.L.

    1984-01-01

    This book presents papers on the application of nuclear medicine to the diagnosis of lung diseases. Topics considered include lung physiology and anatomy, radiopharmaceuticals in pulmonary medicine, pulmonary embolism, obstructive pulmonary disease, diffuse infiltrative lung disease, pneumoconioses, tumor localization scans in primary lung tumors, the interactions of heart diseases and lung diseases on radionuclide tests of lung anatomy and function, radionuclide imaging in pediatric lung diseases, and future possibilities in pulmonary nuclear medicine

  8. Pulmonary Hypertension in Pregnancy: Critical Care Management

    Directory of Open Access Journals (Sweden)

    Adel M. Bassily-Marcus

    2012-01-01

    Full Text Available Pulmonary hypertension is common in critical care settings and in presence of right ventricular failure is challenging to manage. Pulmonary hypertension in pregnant patients carries a high mortality rates between 30–56%. In the past decade, new treatments for pulmonary hypertension have emerged. Their application in pregnant women with pulmonary hypertension may hold promise in reducing morbidity and mortality. Signs and symptoms of pulmonary hypertension are nonspecific in pregnant women. Imaging workup may have undesirable radiation exposure. Pulmonary artery catheter remains the gold standard for diagnosing pulmonary hypertension, although its use in the intensive care unit for other conditions has slowly fallen out of favor. Goal-directed bedside echocardiogram and lung ultrasonography provide attractive alternatives. Basic principles of managing pulmonary hypertension with right ventricular failure are maintaining right ventricular function and reducing pulmonary vascular resistance. Fluid resuscitation and various vasopressors are used with caution. Pulmonary-hypertension-targeted therapies have been utilized in pregnant women with understanding of their safety profile. Mainstay therapy for pulmonary embolism is anticoagulation, and the treatment for amniotic fluid embolism remains supportive care. Multidisciplinary team approach is crucial to achieving successful outcomes in these difficult cases.

  9. CT findings in patients with chronic thromboembolic pulmonary hypertension

    International Nuclear Information System (INIS)

    Heinrich, M.; Grgic, A.; Heckmann, M.; Kramann, B.; Tscholl, D.; Schaefers, H.J.; Uder, M.

    2005-01-01

    Chronic thromboembolic pulmonary hypertension (CTEPH) is thought to be a rare complication of pulmonary embolism. However, it was recently demonstrated that CTEPH is more common than previously thought after pulmonary embolism. Without treatment, CTEPH is associated with a very high mortality rate. Making the correct diagnosis early is essential, because there is a potential curative treatment in the form of pulmonary thromboendarterectomy (PTE). Because of the unspecific clinical symptoms of CTEPH, the different imaging modalities play a crucial role in diagnosis making. Since the introduction of the multi-detector CT technology, CT has become an important part in the diagnostic work up of pulmonary embolism and CTEPH and is often used as a first-line diagnostic tool. CT is not only a reliable tool for the diagnosis of CTEPH, but also is helpful in estimating the operability of these patients. PTE is still associated with a mortality rate of about 10%. Particularly an insufficient decrease of the pulmonary vascular resistance after PTE leads to a very high mortality rate. Therefore, it is crucial to correlate the degree of the surgical accessible obstruction of the pulmonary vasculature with the degree of pulmonary hypertension in deciding for or against PTE. The aim of this review is to describe the CT findings in patients with CTEPH and their use in differentiating CTEPH from other diseases like acute pulmonary embolism and primary pulmonary hypertension. Moreover, the correlation of different CT imaging features with surgical success after PTE will be discussed. (orig.)

  10. Is body weight the most appropriate criterion to select patients eligible for low-dose pulmonary CT angiography? Analysis of objective and subjective image quality at 80 kVp in 100 patients

    Energy Technology Data Exchange (ETDEWEB)

    Szucs-Farkas, Zsolt; Strautz, Tamara; Patak, Michael A.; Kurmann, Luzia; Vock, Peter; Schindera, Sebastian T. [University Hospital and University of Berne, Department of Diagnostic, Interventional and Paediatric Radiology, Berne (Switzerland)

    2009-08-15

    The objective of this retrospective study was to assess image quality with pulmonary CT angiography (CTA) using 80 kVp and to find anthropomorphic parameters other than body weight (BW) to serve as selection criteria for low-dose CTA. Attenuation in the pulmonary arteries, anteroposterior and lateral diameters, cross-sectional area and soft-tissue thickness of the chest were measured in 100 consecutive patients weighing less than 100 kg with 80 kVp pulmonary CTA. Body surface area (BSA) and contrast-to-noise ratios (CNR) were calculated. Three radiologists analyzed arterial enhancement, noise, and image quality. Image parameters between patients grouped by BW (group 1: 0-50 kg; groups 2-6: 51-100 kg, decadelly increasing) were compared. CNR was higher in patients weighing less than 60 kg than in the BW groups 71-99 kg (P between 0.025 and <0.001). Subjective ranking of enhancement (P=0.165-0.605), noise (P=0.063), and image quality (P=0.079) did not differ significantly across all patient groups. CNR correlated moderately strongly with weight (R=-0.585), BSA (R=-0.582), cross-sectional area (R=-0.544), and anteroposterior diameter of the chest (R=-0.457; P<0.001 all parameters). We conclude that 80 kVp pulmonary CTA permits diagnostic image quality in patients weighing up to 100 kg. Body weight is a suitable criterion to select patients for low-dose pulmonary CTA. (orig.)

  11. Initial isolated Takayasu's arteritis of the right pulmonary artery: MR appearance

    International Nuclear Information System (INIS)

    Ferretti, G.; Defaye, P.; Thony, F.; Ranchoup, Y.; Coulomb, M.

    1996-01-01

    Takayasu's arteritis involves the pulmonary artery tree in more than 50 % of the cases. Initial isolated involvement of the pulmonary artery by Takayasu's arteritis, however, is very rare. We report the case of a 34-year-old white woman who presented a clinical and radiographic pattern that mimicked an acute pulmonary embolism with pulmonary infarction. Pulmonary angiography showed stenosis lesions and occlusion of the right pulmonary artery tree. Magnetic resonance imaging demonstrated thickening of the pulmonary artery wall leading to the correct diagnosis. (orig.). With 3 figs

  12. Cardiovascular magnetic resonance in pulmonary hypertension

    Science.gov (United States)

    2012-01-01

    Pulmonary hypertension represents a group of conditions characterized by higher than normal pulmonary artery pressures. Despite improved treatments, outcomes in many instances remain poor. In recent years, there has been growing interest in the use of Cardiovascular Magnetic Resonance (CMR) in patients with pulmonary hypertension. This technique offers certain advantages over other imaging modalities since it is well suited to the assessment of the right ventricle and the proximal pulmonary arteries. Reflecting the relatively sparse evidence supporting its use, CMR is not routinely recommended for patients with pulmonary hypertension. However, it is particularly useful in patient with pulmonary arterial hypertension associated with congenital heart disease. Furthermore, it has proven informative in a number of ways; illustrating how right ventricular remodeling is favorably reversed by drug therapies and providing explicit confirmation of the importance of the right ventricle to clinical outcome. This review will discuss these aspects and practical considerations before speculating on future applications. PMID:22257586

  13. Magnetic resonance imaging compared with echocardiography in the evaluation of pulmonary artery abnormalities in children with tetralogy of Fallot following palliative and corrective surgery

    Energy Technology Data Exchange (ETDEWEB)

    Greenberg, S.B.; Crisci, K.L.; Koenig, P.; Robinson, B.; Anisman, P.; Russo, P. [St. Christopher`s Hospital for Children, Front Street at Erie Avenue, Philadelphia, PA 19134 (United States)

    1997-12-01

    Background. Abnormalities of the pulmonary arteries following palliative or corrective surgery for tetralogy of Fallot (TOF) are common. Our purpose was to compare the usefulness of magnetic resonance imaging (MRI) and echocardiography in the post- operative evaluation of the pulmonary arteries in children with TOF. Objective. Our hypothesis was that MRI is more sensitive than echocardiography in the detection of branch pulmonary artery abnormalities in children with TOF. Materials and methods. Pulmonary artery MRI and echocardiography were performed in 20 children following palliative and/or corrective surgery for TOF. MRI and echocardiography were compared in their ability to detect abnormalities of the pulmonary arteries. Angiographic or surgical correlation was available in 15 children. A perfusion scan for confirmation of pulmonary artery patency was available in one additional child. Results. Abnormalities of the branch pulmonary arteries identified by MRI included: absence or occlusion (2), focal stenosis (15), hypoplasia (2), aneurysm (1), and non-confluence (1). Echocardiography could not adequately visualize the right and left branch pulmonary arteries in eight and ten children, respectively. Echocardiography missed stenosis in 13 branch pulmonary arteries, patency of hypoplastic pulmonary arteries in two children, non-confluence of the pulmonary arteries in one child, and a left pulmonary artery aneurysm in one child. Abnormalities identified by MRI were confirmed in 16 children by angiography, surgery or perfusion scan. Conclusion. MRI is more sensitive than echocardiography for the evaluation of branch pulmonary artery abnormalities in children following surgery for TOF. (orig.) With 2 figs., 3 tabs., 11 refs.

  14. Fetal MRI correlates with postnatal CT angiogram assessment of pulmonary anatomy in tetralogy of Fallot with absent pulmonary valve.

    Science.gov (United States)

    Sun, Heather Y; Boe, Justin; Rubesova, Erika; Barth, Richard A; Tacy, Theresa A

    2014-01-01

    In tetralogy of Fallot with absent pulmonary valve, pulmonary stenosis and regurgitation results in significant pulmonary artery dilatation. Branch pulmonary artery dilatation often compresses the tracheobronchial tree, causing fluid trapping in fetal life and air trapping and/or atelectasis after birth. Prenatal diagnosis predicts poor prognosis, which depends on the degree of respiratory insufficiency from airway compromise and lung parenchymal disease after birth. Fetal magnetic resonance imaging (MRI) has been useful in evaluating the effects of congenital lung lesions on lung development and indicating severity of pulmonary hypoplasia. This report is the first demonstrating the utility of fetal MRI in tetralogy of Fallot/absent pulmonary valve patients, which predicted postnatal pulmonary artery size and visualized airway compression and lung parenchymal lesions. The distribution of lobar fluid trapping on fetal MRI correlated with air trapping on postnatal computed tomography angiogram. © 2013 Wiley Periodicals, Inc.

  15. Quantification of heterogeneity in lung disease with image-based pulmonary function testing.

    Science.gov (United States)

    Stahr, Charlene S; Samarage, Chaminda R; Donnelley, Martin; Farrow, Nigel; Morgan, Kaye S; Zosky, Graeme; Boucher, Richard C; Siu, Karen K W; Mall, Marcus A; Parsons, David W; Dubsky, Stephen; Fouras, Andreas

    2016-07-27

    Computed tomography (CT) and spirometry are the mainstays of clinical pulmonary assessment. Spirometry is effort dependent and only provides a single global measure that is insensitive for regional disease, and as such, poor for capturing the early onset of lung disease, especially patchy disease such as cystic fibrosis lung disease. CT sensitively measures change in structure associated with advanced lung disease. However, obstructions in the peripheral airways and early onset of lung stiffening are often difficult to detect. Furthermore, CT imaging poses a radiation risk, particularly for young children, and dose reduction tends to result in reduced resolution. Here, we apply a series of lung tissue motion analyses, to achieve regional pulmonary function assessment in β-ENaC-overexpressing mice, a well-established model of lung disease. The expiratory time constants of regional airflows in the segmented airway tree were quantified as a measure of regional lung function. Our results showed marked heterogeneous lung function in β-ENaC-Tg mice compared to wild-type littermate controls; identified locations of airway obstruction, and quantified regions of bimodal airway resistance demonstrating lung compensation. These results demonstrate the applicability of regional lung function derived from lung motion as an effective alternative respiratory diagnostic tool.

  16. The role of hyperpolarized {sup 129}xenon in MR imaging of pulmonary function

    Energy Technology Data Exchange (ETDEWEB)

    Ebner, Lukas [Cardiothoracic Imaging, Duke University Medical Center, Department of Radiology, Duke University, Durham, NC (United States); Kammerman, Jeff [Department of Medical Physics, University of Wisconsin, Madison, WI (United States); Driehuys, Bastiaan [Center for In Vivo Microscopy, Duke University, Durham, NC (United States); Schiebler, Mark L. [Department of Radiology, University of Wisconsin, Madison, WI (United States); Cadman, Robert V. [Department of Medical Physics, University of Wisconsin, Madison, WI (United States); Fain, Sean B., E-mail: sfain@wisc.edu [Departments of Medical Physics, Radiology, and Biomedical Engineering, University of Wisconsin, Madison, WI (United States)

    2017-01-15

    Highlights: • Recent advances in hyperpolarized 129Xe MRI are reviewed. • Xenon MRI allows for functional imaging of ventilation, diffusion, and gas exchange. • Xenon’s unique gas exchange imaging capabilities are highlighted. • Applications to obstructive and restrictive lung diseases are presented. • These advances are ready for translation to clinical applications. - Abstract: In the last two decades, functional imaging of the lungs using hyperpolarized noble gases has entered the clinical stage. Both helium ({sup 3}He) and xenon ({sup 129}Xe) gas have been thoroughly investigated for their ability to assess both the global and regional patterns of lung ventilation. With advances in polarizer technology and the current transition towards the widely available {sup 129}Xe gas, this method is ready for translation to the clinic. Currently, hyperpolarized (HP) noble gas lung MRI is limited to selected academic institutions; yet, the promising results from initial clinical trials have drawn the attention of the pulmonary medicine community. HP {sup 129}Xe MRI provides not only 3-dimensional ventilation imaging, but also unique capabilities for probing regional lung physiology. In this review article, we aim to (1) provide a brief overview of current ventilation MR imaging techniques, (2) emphasize the role of HP {sup 129}Xe MRI within the array of different imaging strategies, (3) discuss the unique imaging possibilities with HP {sup 129}Xe MRI, and (4) propose clinical applications.

  17. Free-breathing dynamic contrast-enhanced MRI for assessment of pulmonary lesions using golden-angle radial sparse parallel imaging.

    Science.gov (United States)

    Chen, Lihua; Liu, Daihong; Zhang, Jiuquan; Xie, Bing; Zhou, Xiaoyue; Grimm, Robert; Huang, Xuequan; Wang, Jian; Feng, Li

    2018-02-13

    Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) has been shown to be a promising technique for assessing lung lesions. However, DCE-MRI often suffers from motion artifacts and insufficient imaging speed. Therefore, highly accelerated free-breathing DCE-MRI is of clinical interest for lung exams. To test the performance of rapid free-breathing DCE-MRI for simultaneous qualitative and quantitative assessment of pulmonary lesions using Golden-angle RAdial Sparse Parallel (GRASP) imaging. Prospective. Twenty-six patients (17 males, mean age = 55.1 ± 14.4) with known pulmonary lesions. 3T MR scanner; a prototype fat-saturated, T 1 -weighted stack-of-stars golden-angle radial sequence for data acquisition and a Cartesian breath-hold volumetric-interpolated examination (BH-VIBE) sequence for comparison. After a dual-mode GRASP reconstruction, one with 3-second temporal resolution (3s-GRASP) and the other with 15-second temporal resolution (15s-GRASP), all GRASP and BH-VIBE images were pooled together for blind assessment by two experienced radiologists, who independently scored the overall image quality, lesion delineation, overall artifact level, and diagnostic confidence of each case. Perfusion analysis was performed for the 3s-GRASP images using a Tofts model to generate the volume transfer coefficient (K trans ) and interstitial volume (V e ). Nonparametric paired two-tailed Wilcoxon signed-rank test; Cohen's kappa; unpaired Student's t-test. 15s-GRASP achieved comparable image quality with conventional BH-VIBE (P > 0.05), except for the higher overall artifact level in the precontrast phase (P = 0.018). The K trans and V e in inflammation were higher than those in malignant lesions (K trans : 0.78 ± 0.52 min -1 vs. 0.37 ± 0.22 min -1 , P = 0.020; V e : 0.36 ± 0.16 vs. 0.26 ± 0.1, P = 0.177). Also, the K trans and V e in malignant lesions were also higher than those in benign lesions (K trans : 0.37

  18. 18F-Fluorodeoxyglucose positron emission tomography pulmonary imaging in idiopathic pulmonary fibrosis is reproducible: implications for future clinical trials

    International Nuclear Information System (INIS)

    Win, Thida; Lambrou, Tryphon; Hutton, Brian F.; Kayani, Irfan; Endozo, Raymondo; Shortman, Robert I.; Groves, Ashley M.; Screaton, Nicholas J.; Porter, Joanna C.; Maher, Toby M.; Lukey, Pauline

    2012-01-01

    Noninvasive markers of disease activity in patients with idiopathic pulmonary fibrosis (IPF) are lacking. We performed this study to investigate the reproducibility of pulmonary 18 F-FDG PET/CT in patients with IPF. The study group comprised 13 patients (11 men, 2 women; mean age 71.1 ± 9.9 years) with IPF recruited for two thoracic 18 F-FDG PET/CT studies performed within 2 weeks of each other. All patients were diagnosed with IPF in consensus at multidisciplinary meetings as a result of typical clinical, high-resolution CT and pulmonary function test features. Three methods for evaluating pulmonary 18 F-FDG uptake were used. The maximal 18 F-FDG pulmonary uptake (SUVmax) in the lungs was determined using manual region-of-interest placement. An 18 F-FDG uptake intensity histogram was automatically constructed from segmented lungs to evaluate the distribution of SUVs. Finally, mean SUV was determined for volumes-of-interest in pulmonary regions with interstitial lung changes identified on CT scans. Processing included correction for tissue fraction effects. Bland-Altman analysis was performed and interclass correlation coefficients (ICC) were determined to assess the reproducibility between the first and second PET scans, as well as the level of intraobserver and interobserver agreement. The mean time between the two scans was 6.3 ± 4.3 days. The interscan ICCs for pulmonary SUVmax analysis and mean SUV corrected for tissue fraction effects were 0.90 and 0.91, respectively. Intensity histograms were different in only 1 of the 13 paired studies. Intraobserver agreement was also excellent (0.80 and 0.85, respectively). Some bias was observed between observers, suggesting that serial studies would benefit from analysis by the same observer. This study demonstrated that there is excellent short-term reproducibility in pulmonary 18 F-FDG uptake in patients with IPF. (orig.)

  19. Low Cost, High-Throughput 3-D Pulmonary Imager Using Hyperpolarized Contrast Agents and Low-Field MRI

    Science.gov (United States)

    2017-10-01

    greater gas polarizations and production amounts/ throughputs- benefiting in particular from the advent of com- pact, high-power, relatively low- cost ...Award Number: W81XWH-15-1-0271 TITLE: Low- Cost , High-Throughput 3-D Pulmonary Imager Using Hyperpolarized Contrast Agents and Low-Field MRI...DISTRIBUTION STATEMENT: Approved for Public Release; Distribution Unlimited The views, opinions and/or findings contained in this report are those of the

  20. Subcentimeter Pulmonary Nodules Detected in Patients with Sarcoma

    Directory of Open Access Journals (Sweden)

    Michelle S. Ginsberg

    2000-01-01

    Full Text Available Background. Subcentimeter pulmonary nodules are being detected with increasing frequency in patients with sarcoma due to the greater use of chest CT, the advent of helical (spiral CT scanning and multidetector scanners, and the attendant decrease in image section thickness.Assessing the clinical significance of these pulmonary nodules is of particular importance in sarcoma patients, due to the frequent occurrence of pulmonary metastasis from sarcomas.

  1. Added value of lung perfused blood volume images using dual-energy CT for assessment of acute pulmonary embolism

    International Nuclear Information System (INIS)

    Okada, Munemasa; Kunihiro, Yoshie; Nakashima, Yoshiteru; Nomura, Takafumi; Kudomi, Shohei; Yonezawa, Teppei; Suga, Kazuyoshi; Matsunaga, Naofumi

    2015-01-01

    Purpose: To investigate the added value of lung perfused blood volume (LPBV) using dual-energy CT for the evaluation of intrapulmonary clot (IPC) in patients suspected of having acute pulmonary embolism (PE). Materials and methods: Institutional review board approval was obtained for this retrospective study. Eighty-three patients suspected of having PE who underwent CT pulmonary angiography (CTPA) using a dual-energy technique were enrolled in this study. Two radiologists who were blinded retrospectively and independently reviewed CTPA images alone and the combined images with color-coded LPBV over a 4-week interval, and two separate sessions were performed with a one-month interval. Inter- and intraobserver variability and diagnostic accuracy were evaluated for each reviewer with receiver operating characteristic (ROC) curve analysis. Results: Values for inter- and intraobserver agreement, respectively, were better for CTPA combined with LPBV (ICC = 0.847 and 0.937) than CTPA alone (ICC = 0.748 and 0.861). For both readers, diagnostic accuracy (area under the ROC curve [A z ]) were also superior, when CTPA alone (A z = 0.888 [reader 1] and 0.912 [reader 2]) was compared with that after the combination with LPBV images (A z = 0.966 [reader 1] and 0.959 [reader 2]) (p < 0.001). However, A z values of both images might not have significant difference in statistics, because A z value of CTPA alone was high and 95% confidence intervals overlapped in both images. Conclusion: Addition of dual-energy perfusion CT to CTPA improves detection of peripheral IPCs with better interobserver agreement

  2. A case of septic pulmonary embolism associated with renal abscess mimicking pulmonary metastases of renal malignancy

    International Nuclear Information System (INIS)

    Jung, Jo sung; Lee, Sang Mi; Kim, Han Jo; Jang, Si-Hyong; Lee, Jeong Won

    2014-01-01

    We report the case of a 46-year-old woman with acute febrile symptom who had multiple pulmonary nodules and a renal mass. She underwent 18 F-fluorode-oxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) to find a hidden malignancy and the cause of her fever. FDG PET/CT images demonstrated a renal mass and multiple lung nodules with intense FDG uptake, which was suspicious of a renal malignancy with multiple pulmonary metastatic lesions. CT-guided biopsies of the pulmonary and renal lesions only showed chronic inflammatory infiltrates without evidence of malignancy. She was diagnosed with septic pulmonary embolism from a renal abscess. One month after antibiotic treatment, the follow-up chest and abdomen CT showed improvement of the lung and renal lesions. This is the first case demonstrating the FDG PET/CT finding of septic pulmonary embolism associated with renal abscess in the published literature. (author)

  3. CT imaging of coexisting pulmonary tuberculosis and lung cancer

    International Nuclear Information System (INIS)

    Lv Yan; Xie Ruming; Zhou Xinhua; Zhou Zhen; Xu Jinping; He Wei; Guo Lifang; Ning Fenggang

    2013-01-01

    Objective: To study the CT characteristics of coexisting pulmonary tuberculosis and lung cancer. Methods: One hundred and four patients of coexisting pulmonary tuberculosis and lung cancer proved by histology, cytology or clinical underwent CT examination. All patients were divided into two groups, group Ⅰ were the patients with the lung cancer after tuberculosis or both found simultaneously (group Ⅰ a with peripheral lung cancer and group Ⅰ b with central lung cancer), group Ⅱ with tuberculosis during lung cancer chemotherapy (group Ⅱ a with peripheral lung cancer and group Ⅱ b with central lung cancer). Imaging characteristics of tuberculosis and lung cancer were compared. χ"2 test and t test were used for the statistical analysis. Results: Of 104 patients, there were 92 patients (88.5%) in group Ⅰ and 12 patients (11.5%) in group Ⅱ. Seventy patients (76.1%) of lung cancer and tuberculosis were located in the same lobe and 22 patients (23.9%) in the different lobes in group Ⅰ. There was no significant difference in distribution of tuberculosis between group Ⅰ and group Ⅱ (χ"2 = 4.302, P = 0.507). The fibrous stripes, nodules of calcification and pleural adhesion of tuberculosis were statistically significant between the two groups (χ"2 = 22.737, 15.193, 27.792, P < 0.05). There were 33 central lung cancers and 71 peripheral lung cancers. In group Ⅰ a (64 patients of peripheral lung cancers), 39 patients (60.9%) had typical manifestations and most of the lesions were ≥ 3 cm (n = 49, 76.6%), solid lesions showed variable enhancement. Conclusions: Secondary tuberculosis during lung cancer chemotherapy has the same CT characteristics with the common active tuberculosis. The morphology, enhancement pattern of lesion and follow-up are helpful for the diagnosis of lung cancer after tuberculosis. (authors)

  4. Canine histiocytic sarcoma presenting as a target lesion on brain magnetic resonance imaging and as a solitary pulmonary mass.

    Science.gov (United States)

    Hicks, Jill; Barber, Renee; Childs, Bronwen; Kirejczyk, Shannon Gm; Uhl, Elizabeth W

    2017-04-17

    A 6-year-old spayed female miniature schnauzer presented with generalized seizures and progressive multifocal intracranial neurologic disease. Thoracic radiographs and computed tomography (CT) revealed a large solitary pulmonary mass within the right cranial lung lobe. On brain magnetic resonance imaging (MRI), a solitary intraparenchymal mass within the left piriform lobe had a "target" appearance on both pre- and postcontrast sequences. Cerebrospinal fluid was unremarkable and histopathology indicated both masses represented histiocytic sarcoma. This case represents an uncommonly reported MRI appearance of histiocytic sarcoma in the canine brain and a large, solitary-appearing pulmonary histiocytic sarcoma in the same dog. © 2017 American College of Veterinary Radiology.

  5. Recombinant gamma interferon for the treatment of pulmonary and mycobacterial diseases

    International Nuclear Information System (INIS)

    Garcia, Idrian; Milanes, Maria T; Cayon, Isis; Santos, Yamilet et. al

    2009-01-01

    An increased antibiotic resistance is described for Mycobacterium tuberculosis and atypical mycobacterial species; therefore, new treatments are required. Immunocompromised patients have increased risk, as demonstrated by complications after BCG vaccination. On the other hand, idiopathic pulmonary fibrosis is a fatal disease, with no therapy available to modify course of the disease. Gamma interferon (IFN-γ) plays an essential role as main activator of cytokine secretion in macrophages, also showing a potent anti-fibrotic effects. To evaluate the adjuvant effect of IFN-γ on these three clinical scenarios, five clinical trials were carried out. Patients treated with IFN gamma had satisfactory response according to clinical, imaging and functional criteria since their first evaluations, significantly improving when compared to the control group receiving placebo in a study of pulmonary atypical mycobacteriosis. Fast sputum conversion was obtained in mycobacterial infections, including tuberculosis. In the idiopathic pulmonary fibrosis study, 75% of treated patients were considered as responders (improvement + stable). Here we report the cases of two nursing babies with suppurative regional lymphadenitis caused by BCG, who were successfully treated with recombinant human IFN-γ. Treatment was well tolerated, with most of the adverse reactions corresponding to classical flu-like symptoms produced by the cytokine. We can conclude that IFN-γ is useful and well tolerated as adjuvant therapy in patients with pulmonary mycobacterial diseases or idiopathic pulmonary fibrosis. (author)

  6. Congenital anomalies of the pulmonary arteries: spectrum of findings on computed tomography.

    Science.gov (United States)

    Bueno, J; Flors, L; Mejía, M

    Congenital anomalies of the pulmonary arteries are uncommon. They can occur in isolation or in association with congenital heart defects. Isolated congenital anomalies remain undiscovered until they are reported as incidental findings on imaging tests, usually not until adolescence. We review the embryological development and normal anatomy of the pulmonary arteries as well as the spectrum of computed tomography findings for various congenital anomalies: unilateral interruption of the pulmonary artery, anomalous origin of the left pulmonary artery (pulmonary artery sling), idiopathic aneurysm of the pulmonary artery, and other anomalies associated with congenital heart defects. Congenital anomalies of the pulmonary arteries represent a diagnostic challenge for clinicians and radiologists. Computed tomography is useful for their diagnosis, and general radiologists need to be familiar with their imaging appearance because they are often discovered incidentally. Copyright © 2016 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.

  7. Pulmonary langerhans cell histiocytosis

    Directory of Open Access Journals (Sweden)

    Suri Harpreet S

    2012-03-01

    Full Text Available Abstract Pulmonary Langerhans Cell Histiocytosis (PLCH is a relatively uncommon lung disease that generally, but not invariably, occurs in cigarette smokers. The pathologic hallmark of PLCH is the accumulation of Langerhans and other inflammatory cells in small airways, resulting in the formation of nodular inflammatory lesions. While the overwhelming majority of patients are smokers, mechanisms by which smoking induces this disease are not known, but likely involve a combination of events resulting in enhanced recruitment and activation of Langerhans cells in small airways. Bronchiolar inflammation may be accompanied by variable lung interstitial and vascular involvement. While cellular inflammation is prominent in early disease, more advanced stages are characterized by cystic lung destruction, cicatricial scarring of airways, and pulmonary vascular remodeling. Pulmonary function is frequently abnormal at presentation. Imaging of the chest with high resolution chest CT scanning may show characteristic nodular and cystic abnormalities. Lung biopsy is necessary for a definitive diagnosis, although may not be required in instances were imaging findings are highly characteristic. There is no general consensus regarding the role of immunosuppressive therapy in smokers with PLCH. All smokers must be counseled on the importance of smoking cessation, which may result in regression of disease and obviate the need for systemic immunosuppressive therapy. The prognosis for most patients is relatively good, particularly if longitudinal lung function testing shows stability. Complications like pneumothoraces and secondary pulmonary hypertension may shorten life expectancy. Patients with progressive disease may require lung transplantation.

  8. Transthoracic CT-guided biopsy with multiplanar reconstruction image improves diagnostic accuracy of solitary pulmonary nodules

    International Nuclear Information System (INIS)

    Ohno, Yoshiharu; Hatabu, Hiroto; Takenaka, Daisuke; Imai, Masatake; Ohbayashi, Chiho; Sugimura, Kazuro

    2004-01-01

    Objective: To evaluate the utility of multiplanar reconstruction (MPR) image for CT-guided biopsy and determine factors of influencing diagnostic accuracy and the pneumothorax rate. Materials and methods: 390 patients with 396 pulmonary nodules underwent transthoracic CT-guided aspiration biopsy (TNAB) and transthoracic CT-guided cutting needle core biopsy (TCNB) as follows: 250 solitary pulmonary nodules (SPNs) underwent conventional CT-guided biopsy (conventional method), 81 underwent CT-fluoroscopic biopsy (CT-fluoroscopic method) and 65 underwent conventional CT-guided biopsy in combination with MPR image (MPR method). Success rate, overall diagnostic accuracy, pneumothorax rate and total procedure time were compared in each method. Factors affecting diagnostic accuracy and pneumothorax rate of CT-guided biopsy were statistically evaluated. Results: Success rates (TNAB: 100.0%, TCNB: 100.0%) and overall diagnostic accuracies (TNAB: 96.9%, TCNB: 97.0%) of MPR were significantly higher than those using the conventional method (TNAB: 87.6 and 82.4%, TCNB: 86.3 and 81.3%) (P<0.05). Diagnostic accuracy were influenced by biopsy method, lesion size, and needle path length (P<0.05). Pneumothorax rate was influenced by pathological diagnostic method, lesion size, number of punctures and FEV1.0% (P<0.05). Conclusion: The use of MPR for CT-guided lung biopsy is useful for improving diagnostic accuracy with no significant increase in pneumothorax rate or total procedure time

  9. A mouse model of pulmonary metastasis from spontaneous osteosarcoma monitored in vivo by Luciferase imaging.

    Directory of Open Access Journals (Sweden)

    Silvia Miretti

    Full Text Available BACKGROUND: Osteosarcoma (OSA is lethal when metastatic after chemotherapy and/or surgical treatment. Thus animal models are necessary to study the OSA metastatic spread and to validate novel therapies able to control the systemic disease. We report the development of a syngeneic (Balb/c murine OSA model, using a cell line derived from a spontaneous murine tumor. METHODOLOGY: The tumorigenic and metastatic ability of OSA cell lines were assayed after orthotopic injection in mice distal femur. Expression profiling was carried out to characterize the parental and metastatic cell lines. Cells from metastases were propagated and engineered to express Luciferase, in order to follow metastases in vivo. PRINCIPAL FINDINGS: Luciferase bioluminescence allowed to monitor the primary tumor growth and revealed the appearance of spontaneous pulmonary metastases. In vivo assays showed that metastasis is a stable property of metastatic OSA cell lines after both propagation in culture and luciferase trasduction. When compared to parental cell line, both unmodified and genetically marked metastatic cells, showed comparable and stable differential expression of the enpp4, pfn2 and prkcd genes, already associated to the metastatic phenotype in human cancer. CONCLUSIONS: This OSA animal model faithfully recapitulates some of the most important features of the human malignancy, such as lung metastatization. Moreover, the non-invasive imaging allows monitoring the tumor progression in living mice. A great asset of this model is the metastatic phenotype, which is a stable property, not modifiable after genetic manipulation.

  10. Pulmonary manifestations from systemic vasculitides; Pulmonale Manifestationen bei systemischen Vaskulitiden

    Energy Technology Data Exchange (ETDEWEB)

    Reuter, M [Vivantes Klinikum Neukoelln, Berlin (Germany). Inst. fuer Radiologie und Interventionelle Therapie; Both, M [UKSH, Kiel (Germany). Klinik fuer Diagnostische Radiologie; Schnabel, A [Sana-Rheumazentrum Baden-Wuerttemberg, Bad Wildbad (Germany). Klinik fuer Internistische Rheumatologie und Klinische Immunologie

    2007-06-15

    Pulmonary vasculitides predominantly involve the small arterioles, capillaries and venules and include Wegener's granulomatosis, microscopic polyangiitis and the Churg-Strauss syndrome. Takayasu's arteriitis is a large vessel disease and may affect the main pulmonary arteries causing stenoses and occlusions. Knowledge of the natural course of disease and of clinical manifestations of pulmonary disease is helpful for an understanding of imaging findings. For this reason this article gives an overview not only of radiologic findings in chest X-ray and high resolution CT of the lungs but as well of clinical aspects of pulmonary vasculitides. Next to determination of disease extension the determination of disease activity is in the foreground of diagnostic imaging in vasculitides. Within this context principals of immunosuppressive therapy will be recognized. (orig.)

  11. Serial volumetric registration of pulmonary CT studies

    Science.gov (United States)

    Silva, José Silvestre; Silva, Augusto; Sousa Santos, Beatriz

    2008-03-01

    Detailed morphological analysis of pulmonary structures and tissue, provided by modern CT scanners, is of utmost importance as in the case of oncological applications both for diagnosis, treatment, and follow-up. In this case, a patient may go through several tomographic studies throughout a period of time originating volumetric sets of image data that must be appropriately registered in order to track suspicious radiological findings. The structures or regions of interest may change their position or shape in CT exams acquired at different moments, due to postural, physiologic or pathologic changes, so, the exams should be registered before any follow-up information can be extracted. Postural mismatching throughout time is practically impossible to avoid being particularly evident when imaging is performed at the limiting spatial resolution. In this paper, we propose a method for intra-patient registration of pulmonary CT studies, to assist in the management of the oncological pathology. Our method takes advantage of prior segmentation work. In the first step, the pulmonary segmentation is performed where trachea and main bronchi are identified. Then, the registration method proceeds with a longitudinal alignment based on morphological features of the lungs, such as the position of the carina, the pulmonary areas, the centers of mass and the pulmonary trans-axial principal axis. The final step corresponds to the trans-axial registration of the corresponding pulmonary masked regions. This is accomplished by a pairwise sectional registration process driven by an iterative search of the affine transformation parameters leading to optimal similarity metrics. Results with several cases of intra-patient, intra-modality registration, up to 7 time points, show that this method provides accurate registration which is needed for quantitative tracking of lesions and the development of image fusion strategies that may effectively assist the follow-up process.

  12. Clinical utility of ultra high pitch dual source thoracic CT imaging of acute pulmonary embolism in the emergency department: Are we one step closer towards a non-gated triple rule out?

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Daniel J., E-mail: danieljameshou@gmail.com; Tso, David K., E-mail: david.k.tso@gmail.com; Davison, Chris, E-mail: chrisdavison100@gmail.com; Inacio, Joao, E-mail: joao.r.inacio@gmail.com; Louis, Luck J., E-mail: lucklouis@gmail.com; Nicolaou, Savvakis, E-mail: savvas.nicolaou@vch.ca; Reimann, Anja J., E-mail: anja.reimann@gmx.de

    2013-10-01

    Objectives/Purpose: Aim of this study was to retrospectively compare the image quality and the radiation dose of an ultra high pitch CT scan for the evaluation of pulmonary embolism and visualization of cardiac structures in comparison to our institution's standard pulmonary embolism protocol. Method and materials: The study cohort consisted of 115 consecutive patients, 57 underwent CT pulmonary angiography on a dual source 128 slice scanner (Siemens Somatom Definition FLASH) via an ultra high pitch mode (Pitch 2.8) while 58 were scanned on a dual source 64 slice scanner (Siemens Somatom Definition Dual Source) with standard pitch (Pitch 0.9). Qualitative image assessment was determined by two blinded radiologists with 3 and 15 years’ experience in chest and cardiac CT. Quantitative image assessment was determined by the signal to noise ratio (SNR) and contrast to noise ratio (CNR). Effective radiation dose was calculated via the product of the dose length product. Results: For the ultra high pitch protocol, 14% (8/57) were positive for pulmonary embolus compared to 13.7% (8/58) for the standard pitch group. 98.2% of the ultra high pitch scans were diagnostic for pulmonary embolus vs. 94.8% of the standard protocol. Visualization of cardiac structures was significantly improved with the ultra high pitch protocol (p < 0.0001). Significantly more lung parenchymal motion was observed on the standard protocol (p < 0.0001). The mean pulmonary vessel attenuation, SNR, and CNR were not significantly different. The mean effective dose was lower for the ultra high pitch studies (4.09 mSv ± 0.78 vs. 7.72 mSv ± 2.60, p < 0.0001). Conclusion: Ultra high pitch CT imaging for pulmonary embolus is a technique which has potential to assess motion free evaluation of most cardiac structures and proximal coronary arteries at lower radiation doses.

  13. Image quality of multiplanar reconstruction of pulmonary CT scans using adaptive statistical iterative reconstruction.

    Science.gov (United States)

    Honda, O; Yanagawa, M; Inoue, A; Kikuyama, A; Yoshida, S; Sumikawa, H; Tobino, K; Koyama, M; Tomiyama, N

    2011-04-01

    We investigated the image quality of multiplanar reconstruction (MPR) using adaptive statistical iterative reconstruction (ASIR). Inflated and fixed lungs were scanned with a garnet detector CT in high-resolution mode (HR mode) or non-high-resolution (HR) mode, and MPR images were then reconstructed. Observers compared 15 MPR images of ASIR (40%) and ASIR (80%) with those of ASIR (0%), and assessed image quality using a visual five-point scale (1, definitely inferior; 5, definitely superior), with particular emphasis on normal pulmonary structures, artefacts, noise and overall image quality. The mean overall image quality scores in HR mode were 3.67 with ASIR (40%) and 4.97 with ASIR (80%). Those in non-HR mode were 3.27 with ASIR (40%) and 3.90 with ASIR (80%). The mean artefact scores in HR mode were 3.13 with ASIR (40%) and 3.63 with ASIR (80%), but those in non-HR mode were 2.87 with ASIR (40%) and 2.53 with ASIR (80%). The mean scores of the other parameters were greater than 3, whereas those in HR mode were higher than those in non-HR mode. There were significant differences between ASIR (40%) and ASIR (80%) in overall image quality (pASIR did not suppress the severe artefacts of contrast medium. In general, MPR image quality with ASIR (80%) was superior to that with ASIR (40%). However, there was an increased incidence of artefacts by ASIR when CT images were obtained in non-HR mode.

  14. Pulmonary infections in immunocompromised patients

    International Nuclear Information System (INIS)

    Choneva, I.; Abadjieva, D.; Kirilov, R.

    2013-01-01

    Full text: Introduction: The lung is one of the most commonly affected organs in immunocompromised patients. Primary complication is pulmonary infection which is associated with high morbidity and mortality. Although radiography and CT, as main diagnostic tools are reliable and credible methods, often there is difficulty with the correct diagnose. The reasons for this are that immunocompromised patients are potentially susceptible to infection by various microorganisms and that the radiographic findings are rarely specific for detecting a particular pathogen. What you will learn : Our objective is to present general nosological classification of pulmonary infections in immunocompromised patients, and to evaluate and analyze new imaging methods and discuss their correlation with the clinical setting, which aims to facilitate the diagnosis and to take a decision for the treatment. The experience indicates that a clinical environment conducive the immunocompromised patients to infection with certain pathogens, thereby changing the frequency of their occurrence. The most commonly cited fungal infections, cytomegalovirus infections, Pneumocystis carinii pneumonia and Pulmonary tuberculosis (PTB) of which convincing is the Imaging diagnosis primarily in fungal infections, and Pneumocystis carinii pneumonia and less accurate - in bacterial and viral infections. Discussion: The term 'immunocompromised' describes a subject with an increased risk for life-threatening infection as a result of congenital or acquired abnormalities of the immune system. Over the past few decades, the number of immunocompromised patients has grown considerably, reflecting the increased use of immunosuppressive drugs, and the syndrome of acquired immunodeficiency. Given the high incidence of pulmonary infections in immunocompromised patients (lung is one of the most commonly affected organs, such as lung infection is about 75% of pulmonary complications), rapid and accurate diagnosis is important

  15. 3D-CT angiography with ultrafast CT in the diagnosis of pulmonary thromboembolism

    International Nuclear Information System (INIS)

    Kuribayashi, Sachio; Hamada, Seiki; Takamiya, Makoto; Imakita, Satoshi; Yamada, Naoaki; Takase, Kei; Iino, Misako; Nakanishi, Norifumi

    1995-01-01

    The usefulness of 3D-CT angiography (3D-CTA) with ultrafast CT (UFCT) in the diagnosis of pulmonary thromboembolism (PTE) was evaluated. UFCT was carried out in 10 patients with PTE (acute: 5 cases, chronic: 5 cases) and one case with pulmonary artery thrombosis secondary to pulmonary hypertension with atrial septal defect. CT scanning was performed with Imatron C-100XL and C-150L. For the imaging, single-slice step volume scan mode was used with scan time of 100 msec and slice thickness of 6 mm. Contiguous axial images were obtained after contrast enhancement with slice interval of 6 mm. 3D-CTA was reconstructed from 2D-CT images with workstation, and was compared with pulmonary angiograms (PAG) or operative findings. The images of 3D-CTA had good quality and they were more useful than 2D-CT images in better understanding of the configuration and the extent of the thrombi. In comparison with PAG, 3D-CTA gave equivalent information in terms of central pulmonary emboli. Moreover, 3D-CTA had advantages over PAG in demonstrating both the blood lumen and the thrombus on the same image with capability of multi-directional displays. 3D-CTA with UFCT is the useful non-invasive imaging modality in the diagnosis of PTE. (author)

  16. An ROC study detecting ability of idiopathic pulmonary fibrosis using digital radiography

    International Nuclear Information System (INIS)

    Chung, Eun Chul; Im, Jung Gi; Han, Man Chung; Kim, Jong Hyo

    1991-01-01

    One potential advantage of the digital radiography system is its ability to enhance image quality by various types of processing. Digital unsharp masking is one of the simplest and most useful forms of enhancing processes. The efficacy of unsharp masking in radiological diagnosis has not been investigated thoroughly. To evaluate the effects of unsharp masking in film-digital chest images, 3 observers were shown 150 test radiographs. These test radiographs consisted of 50 unprocessed images (25 normals and 25 patients with idiopathic pulmonary fibrosis with honey combing) and their 100 processed images by using 450 and 15-sized masks respectively. An ROC analysis of these data suggests that unsharp masking is more effective in detecting idiopathic pulmonary fibrosis than unprocessed image (ρ < 0.05), and so it may improve diagnostic accuracy for interstitial fibrosis. In addition, the smaller mask size (15) is more effective than the larger one (mask size 45) (ρ < 0.05). By using this analytic approach, an optimal parameter in digital chest radiography may be investigated in many other forms of pulmonary disease such as pulmonary nodule or mediastinal mass

  17. An ROC study detecting ability of idiopathic pulmonary fibrosis using digital radiography

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Eun Chul; Im, Jung Gi; Han, Man Chung; Kim, Jong Hyo [College of Medicine, Ewha Womens University, Seoul (Korea, Republic of)

    1991-03-15

    One potential advantage of the digital radiography system is its ability to enhance image quality by various types of processing. Digital unsharp masking is one of the simplest and most useful forms of enhancing processes. The efficacy of unsharp masking in radiological diagnosis has not been investigated thoroughly. To evaluate the effects of unsharp masking in film-digital chest images, 3 observers were shown 150 test radiographs. These test radiographs consisted of 50 unprocessed images (25 normals and 25 patients with idiopathic pulmonary fibrosis with honey combing) and their 100 processed images by using 450 and 15-sized masks respectively. An ROC analysis of these data suggests that unsharp masking is more effective in detecting idiopathic pulmonary fibrosis than unprocessed image ({rho} < 0.05), and so it may improve diagnostic accuracy for interstitial fibrosis. In addition, the smaller mask size (15) is more effective than the larger one (mask size 45) ({rho} < 0.05). By using this analytic approach, an optimal parameter in digital chest radiography may be investigated in many other forms of pulmonary disease such as pulmonary nodule or mediastinal mass.

  18. Minimum intensity projection technique in the evaluation of pulmonary emphysema

    International Nuclear Information System (INIS)

    Ishii, Chikako; Tada, Shinpei; Fukuda, Kunihiko; Hayashi, Naganobu

    2000-01-01

    Clinically diagnosed 30 pulmonary emphysema patients were evaluated with helical CT. From 10 mm thickness and 10 mm/sec table speed helical CT date set, minimum intensity projection (Min-IP) were generated. Min-IP coronal images were well demonstrated distribution and degree of emphysema. Compared to the high resolution CT images (2 mm thickness), Min-IP images were as same as well evaluated the disease. Min-IP technique seem to be useful for evaluate distribution and degree of pulmonary emphysema. (author)

  19. Thoracoscopic or open surgery for pulmonary metastasectomy

    DEFF Research Database (Denmark)

    Eckardt, Jens; Licht, Peter B

    2014-01-01

    are now performed routinely worldwide. This prompted us to conduct a prospective observer-blinded study on pulmonary metastasectomy. METHODS: Eligible patients with oligometastatic pulmonary disease on computed tomography (CT) underwent high-definition VATS, with digital palpation by 1 surgical team...... number of additional nodules were detected during thoracotomy despite advancements in CT imaging and VATS technology. Many of these nodules were malignant and would have been missed if VATS was used exclusively. Consequently, we considered VATS inadequate if the intention is to resect all pulmonary...

  20. Mycobacterial and nonbacterial pulmonary complications in hospitalized patients with human immunodeficiency virus infection: A prospective, cohort study

    Directory of Open Access Journals (Sweden)

    Afessa Bekele

    2001-09-01

    Full Text Available Abstract Background A prospective observational study was done to describe nonbacterial pulmonary complications in hospitalized patients with human immunodeficiency virus (HIV infection. Methods The study included 1,225 consecutive hospital admissions of 599 HIV-infected patients treated from April 1995 through March 1998. Data included demographics, risk factors for HIV infection, Acute Physiology and Chronic Health Evaluation (APACHE II score, pulmonary complications, CD4+ lymphocyte count, hospital stay and case-fatality rate. Results Patient age (mean ± SD was 38.2 ± 8.9 years, 62% were men, and 84% were African American. The median APACHE II score was 14, and median CD4+ lymphocyte count was 60/μL. Pulmonary complications were Pneumocystis carinii pneumonia (85 in 78 patients, Mycobacterium avium complex (51 in 38, Mycobacterium tuberculosis (40 in 35, Mycobacterium gordonae (11 in 11, Mycobacterium kansasii (10 in 9, Cytomegalovirus (10 in 10, Nocardia asteroides (3 in 3, fungus ball (2 in 2, respiratory syncytial virus (1, herpes simplex virus (1, Histoplasma capsulatum (1, lymphoma (3 in 3, bronchogenic carcinoma (2 in 2, and Kaposi sarcoma (1. The case-fatality rate of patients was 11% with Pneumocystis carinii pneumonia; 5%, Mycobacterium tuberculosis; 6%, Mycobacterium avium complex; and 7%, noninfectious pulmonary complications. Conclusion Most pulmonary complications in hospitalized patients with HIV are from Pneumocystis and mycobacterial infection.

  1. Low-Cost, High-Throughput 3-D Pulmonary Imager Using Hyperpolarized Contrast Agents and Low-Field MRI

    Science.gov (United States)

    2017-10-01

    low- cost and high-throughput was a key element proposed for this project, which we believe will be of significant benefit to the patients suffering...Award Number: W81XWH-15-1-0272 TITLE: Low- Cost , High-Throughput 3-D Pulmonary Imager Using Hyperpolarized Contrast Agents and Low-Field MRI...STATEMENT: Approved for Public Release; Distribution Unlimited The views, opinions and/or findings contained in this report are those of the author(s

  2. Role of nuclear medicine in pulmonary neoplastic processes

    International Nuclear Information System (INIS)

    Waxman, A.D.

    1986-01-01

    It has been demonstrated that the single most important factor in determining survival in patients with bronchogenic carcinoma is the extent of spread of metastasis from the primary lesion. This explains the extensive efforts in developing accurate staging tests for pulmonary tumors, both primary and metastatic, with special emphasis on the determination of pulmonary hilar and mediastinal spread of disease. Continued improvements in nuclear medicine instrumentation along with the development of tumor specific radiopharmaceuticals, as well as agents that have the capability of tracking tumor viability, have changed the orientation of scintigraphic techniques in the evaluation of pulmonary neoplastic processes. Gallium scintigraphy is no longer considered as a primary imaging modality in the staging of pulmonary tumors, and in most institutions has been replaced by computed tomography (CT) for this purpose. It has been demonstrated that gallium, relative to other imaging modalities, is a sensitive indicator of hilar spread of tumor. However, because of the normally high background activity within the sternum and spine, mediastinal abnormalities are poorly detected. Since most pulmonary tumors metastasize via regional nodes to the pulmonary hilum and then to the mediastinum, the high sensitivity for the detection of pulmonary hilar abnormalities and the high specificity for mediastinal lesion detection suggest that gallium scintigraphy is a valuable adjunctive test when used appropriately. Thallium 201 as a tumor agent is being studied by several institutions. Preliminary results indicate a high degree of sensitivity for the detection of pulmonary hilar and mediastinal lesions and there are early indications that thallium is a promising agent to evaluate tumor viability. 52 references

  3. Medical image of the week: pulmonary herniation

    Directory of Open Access Journals (Sweden)

    Baalachandran R

    2014-10-01

    Full Text Available A 49-year-old obese gentleman with a known history of chronic obstructive pulmonary disease, diabetes mellitus and GERD presented with complaints of a popping sensation in his left chest with coughing and deep breathing, associated with pain at the same site. Physical examination showed small bulge at the level of the herniation that was most obvious with coughing. CT scan of chest done 2 months ago showed 2. 5 cm pulmonary hernia identified at the left 7-8 costal interspace (Figures 1 and 2. This was thought to have resulted from an open lung biopsy of his left lung done 4 years before presentation to evaluate for acute respiratory failure or chest tube insertion at same site 3 years prior to presentation for treatment of a pneumothorax. Surgical repair was done with round Bard Kugel hernia patch. His symptoms resolved after the procedure.

  4. Human herpes virus-8 DNA in bronchoalveolar lavage samples from patients with AIDS-associated pulmonary Kaposi's sarcoma

    DEFF Research Database (Denmark)

    Benfield, T L; Dodt, K K; Lundgren, Jens Dilling

    1997-01-01

    Kaposi's sarcoma (KS) is the most frequent AIDS-associated neoplasm, and often disseminates to visceral organs, including the lungs. An ante-mortem diagnosis of pulmonary KS is difficult. Recently, DNA sequences resembling a new human herpes virus (HHV-8), have been identified in various forms...

  5. Medical image of the week: acute amiodarone pulmonary toxicity

    Directory of Open Access Journals (Sweden)

    Mazursky K

    2015-10-01

    Full Text Available No abstract available. Article truncated after 150 words. A 71 year old man with a medical history significant for chronic obstructive pulmonary disease, coronary artery disease with post-operative status coronary artery bypass grafting, heart failure with reduced ejection fraction (25% and atrial fibrillation/flutter underwent an elective ablation of the tachyarrhythmia at another facility and was prescribed amiodarone post procedure. He started complaining of cough and dyspnea one day post procedure and was empirically treated with 2 weeks of broad spectrum antibiotics. He subsequently was transferred to our facility due to worsening symptoms. He also complained of nausea, anorexia with resultant weight loss since starting amiodarone, which was stopped 5 days prior to transfer. Infectious work up was negative. On arrival to our facility, he was diagnosed with small sub-segmental pulmonary emboli, pulmonary edema and possible acute amiodarone toxicity. His was profoundly hypoxic requiring high flow nasal cannula or 100% non-rebreather mask at all times. His symptoms persisted despite ...

  6. cDNA, deduced polypeptide structure and chromosomal assignment of human pulmonary surfactant proteolipid, SPL(pVal)

    International Nuclear Information System (INIS)

    Glasser, S.W.; Korfhagen, T.R.; Weaver, T.E.; Clark, J.C.; Pilot-Matias, T.; Meuth, J.; Fox, J.L.; Whitsett, J.A.

    1988-01-01

    In hyaline membrane disease of premature infants, lack of surfactant leads to pulmonary atelectasis and respiratory distress. Hydrophobic surfactant proteins of M/sub r/ = 5000-14,000 have been isolated from mammalian surfactants which enhance the rate of spreading and the surface tension lowering properties of phospholipids during dynamic compression. The authors have characterized the amino-terminal amino acid sequence of pulmonary proteolipids from ether/ethanol extracts of bovine, canine, and human surfactant. Two distinct peptides were identified and termed SPL(pVal) and SPL(Phe). An oligonucleotide probe based on the valine-rich amino-terminal amino acid sequence of SPL(pVal) was utilized to isolate cDNA and genomic DNA encoding the human protein, termed surfactant proteolipid SPL(pVal) on the basis of its unique polyvaline domain. The primary structure of a precursor protein of 20,870 daltons, containing the SPL(pVal) peptide, was deduced from the nucleotide sequence of the cDNAs. Hybrid-arrested translation and immunoprecipitation of labeled translation products of human mRNA demonstrated a precursor protein, the active hydrophobic peptide being produced by proteolytic processing. Two classes of cDNAs encoding SPL(pVal) were identified. Human SPL(pVal) mRNA was more abundant in the adult than in fetal lung. The SPL(pVal) gene locus was assigned to chromosome 8

  7. Applying cybernetic technology to diagnose human pulmonary sounds.

    Science.gov (United States)

    Chen, Mei-Yung; Chou, Cheng-Han

    2014-06-01

    Chest auscultation is a crucial and efficient method for diagnosing lung disease; however, it is a subjective process that relies on physician experience and the ability to differentiate between various sound patterns. Because the physiological signals composed of heart sounds and pulmonary sounds (PSs) are greater than 120 Hz and the human ear is not sensitive to low frequencies, successfully making diagnostic classifications is difficult. To solve this problem, we constructed various PS recognition systems for classifying six PS classes: vesicular breath sounds, bronchial breath sounds, tracheal breath sounds, crackles, wheezes, and stridor sounds. First, we used a piezoelectric microphone and data acquisition card to acquire PS signals and perform signal preprocessing. A wavelet transform was used for feature extraction, and the PS signals were decomposed into frequency subbands. Using a statistical method, we extracted 17 features that were used as the input vectors of a neural network. We proposed a 2-stage classifier combined with a back-propagation (BP) neural network and learning vector quantization (LVQ) neural network, which improves classification accuracy by using a haploid neural network. The receiver operating characteristic (ROC) curve verifies the high performance level of the neural network. To expand traditional auscultation methods, we constructed various PS diagnostic systems that can correctly classify the six common PSs. The proposed device overcomes the lack of human sensitivity to low-frequency sounds and various PS waves, characteristic values, and a spectral analysis charts are provided to elucidate the design of the human-machine interface.

  8. Neutrophil-Derived MMP-8 Drives AMPK-Dependent Matrix Destruction in Human Pulmonary Tuberculosis

    Science.gov (United States)

    Ong, Catherine W. M.; Elkington, Paul T.; Brilha, Sara; Ugarte-Gil, Cesar; Tome-Esteban, Maite T.; Tezera, Liku B.; Pabisiak, Przemyslaw J.; Moores, Rachel C.; Sathyamoorthy, Tarangini; Patel, Vimal; Gilman, Robert H.; Porter, Joanna C.; Friedland, Jon S.

    2015-01-01

    Pulmonary cavities, the hallmark of tuberculosis (TB), are characterized by high mycobacterial load and perpetuate the spread of M. tuberculosis. The mechanism of matrix destruction resulting in cavitation is not well defined. Neutrophils are emerging as key mediators of TB immunopathology and their influx are associated with poor outcomes. We investigated neutrophil-dependent mechanisms involved in TB-associated matrix destruction using a cellular model, a cohort of 108 patients, and in separate patient lung biopsies. Neutrophil-derived NF-kB-dependent matrix metalloproteinase-8 (MMP-8) secretion was up-regulated in TB and caused matrix destruction both in vitro and in respiratory samples of TB patients. Collagen destruction induced by TB infection was abolished by doxycycline, a licensed MMP inhibitor. Neutrophil extracellular traps (NETs) contain MMP-8 and are increased in samples from TB patients. Neutrophils lined the circumference of human pulmonary TB cavities and sputum MMP-8 concentrations reflected TB radiological and clinical disease severity. AMPK, a central regulator of catabolism, drove neutrophil MMP-8 secretion and neutrophils from AMPK-deficient patients secrete lower MMP-8 concentrations. AMPK-expressing neutrophils are present in human TB lung biopsies with phospho-AMPK detected in nuclei. These data demonstrate that neutrophil-derived MMP-8 has a key role in the immunopathology of TB and is a potential target for host-directed therapy in this infectious disease. PMID:25996154

  9. Neutrophil-Derived MMP-8 Drives AMPK-Dependent Matrix Destruction in Human Pulmonary Tuberculosis.

    Science.gov (United States)

    Ong, Catherine W M; Elkington, Paul T; Brilha, Sara; Ugarte-Gil, Cesar; Tome-Esteban, Maite T; Tezera, Liku B; Pabisiak, Przemyslaw J; Moores, Rachel C; Sathyamoorthy, Tarangini; Patel, Vimal; Gilman, Robert H; Porter, Joanna C; Friedland, Jon S

    2015-05-01

    Pulmonary cavities, the hallmark of tuberculosis (TB), are characterized by high mycobacterial load and perpetuate the spread of M. tuberculosis. The mechanism of matrix destruction resulting in cavitation is not well defined. Neutrophils are emerging as key mediators of TB immunopathology and their influx are associated with poor outcomes. We investigated neutrophil-dependent mechanisms involved in TB-associated matrix destruction using a cellular model, a cohort of 108 patients, and in separate patient lung biopsies. Neutrophil-derived NF-kB-dependent matrix metalloproteinase-8 (MMP-8) secretion was up-regulated in TB and caused matrix destruction both in vitro and in respiratory samples of TB patients. Collagen destruction induced by TB infection was abolished by doxycycline, a licensed MMP inhibitor. Neutrophil extracellular traps (NETs) contain MMP-8 and are increased in samples from TB patients. Neutrophils lined the circumference of human pulmonary TB cavities and sputum MMP-8 concentrations reflected TB radiological and clinical disease severity. AMPK, a central regulator of catabolism, drove neutrophil MMP-8 secretion and neutrophils from AMPK-deficient patients secrete lower MMP-8 concentrations. AMPK-expressing neutrophils are present in human TB lung biopsies with phospho-AMPK detected in nuclei. These data demonstrate that neutrophil-derived MMP-8 has a key role in the immunopathology of TB and is a potential target for host-directed therapy in this infectious disease.

  10. {sup 18}F-Fluorodeoxyglucose positron emission tomography pulmonary imaging in idiopathic pulmonary fibrosis is reproducible: implications for future clinical trials

    Energy Technology Data Exchange (ETDEWEB)

    Win, Thida [Lister Hospital, Respiratory Medicine, Stevenage (United Kingdom); Lambrou, Tryphon; Hutton, Brian F.; Kayani, Irfan; Endozo, Raymondo; Shortman, Robert I.; Groves, Ashley M. [UCL/UCH, Institute of Nuclear Medicine, London (United Kingdom); Screaton, Nicholas J. [Papworth Hospital, Radiology Department, Cambridge (United Kingdom); Porter, Joanna C. [UCL/UCH, Centre for Respiratory Diseases, London (United Kingdom); Maher, Toby M. [Royal Brompton Hospital, Interstitial Lung Disease Unit, London (United Kingdom); Lukey, Pauline [GSK, Fibrosis DPU, Research and Development, Stevenage (United Kingdom)

    2012-03-15

    Noninvasive markers of disease activity in patients with idiopathic pulmonary fibrosis (IPF) are lacking. We performed this study to investigate the reproducibility of pulmonary {sup 18}F-FDG PET/CT in patients with IPF. The study group comprised 13 patients (11 men, 2 women; mean age 71.1 {+-} 9.9 years) with IPF recruited for two thoracic {sup 18}F-FDG PET/CT studies performed within 2 weeks of each other. All patients were diagnosed with IPF in consensus at multidisciplinary meetings as a result of typical clinical, high-resolution CT and pulmonary function test features. Three methods for evaluating pulmonary {sup 18}F-FDG uptake were used. The maximal {sup 18}F-FDG pulmonary uptake (SUVmax) in the lungs was determined using manual region-of-interest placement. An {sup 18}F-FDG uptake intensity histogram was automatically constructed from segmented lungs to evaluate the distribution of SUVs. Finally, mean SUV was determined for volumes-of-interest in pulmonary regions with interstitial lung changes identified on CT scans. Processing included correction for tissue fraction effects. Bland-Altman analysis was performed and interclass correlation coefficients (ICC) were determined to assess the reproducibility between the first and second PET scans, as well as the level of intraobserver and interobserver agreement. The mean time between the two scans was 6.3 {+-} 4.3 days. The interscan ICCs for pulmonary SUVmax analysis and mean SUV corrected for tissue fraction effects were 0.90 and 0.91, respectively. Intensity histograms were different in only 1 of the 13 paired studies. Intraobserver agreement was also excellent (0.80 and 0.85, respectively). Some bias was observed between observers, suggesting that serial studies would benefit from analysis by the same observer. This study demonstrated that there is excellent short-term reproducibility in pulmonary {sup 18}F-FDG uptake in patients with IPF. (orig.)

  11. Genetics and Early Detection in Idiopathic Pulmonary Fibrosis

    Science.gov (United States)

    Putman, Rachel K.; Rosas, Ivan O.

    2014-01-01

    Genetic studies hold promise in helping to identify patients with early idiopathic pulmonary fibrosis (IPF). Recent studies using chest computed tomograms (CTs) in smokers and in the general population have demonstrated that imaging abnormalities suggestive of an early stage of pulmonary fibrosis are not uncommon and are associated with respiratory symptoms, physical examination abnormalities, and physiologic decrements expected, but less severe than those noted in patients with IPF. Similarly, recent genetic studies have demonstrated strong and replicable associations between a common promoter polymorphism in the mucin 5B gene (MUC5B) and both IPF and the presence of abnormal imaging findings in the general population. Despite these findings, it is important to note that the definition of early-stage IPF remains unclear, limited data exist to definitively connect abnormal imaging findings to IPF, and genetic studies assessing early-stage pulmonary fibrosis remain in their infancy. In this perspective we provide updated information on interstitial lung abnormalities and their connection to IPF. We summarize information on the genetics of pulmonary fibrosis by focusing on the recent genetic findings of MUC5B. Finally, we discuss the implications of these findings and suggest a roadmap for the use of genetics in the detection of early IPF. PMID:24547893

  12. Standards and Methodological Rigor in Pulmonary Arterial Hypertension Preclinical and Translational Research.

    Science.gov (United States)

    Provencher, Steeve; Archer, Stephen L; Ramirez, F Daniel; Hibbert, Benjamin; Paulin, Roxane; Boucherat, Olivier; Lacasse, Yves; Bonnet, Sébastien

    2018-03-30

    Despite advances in our understanding of the pathophysiology and the management of pulmonary arterial hypertension (PAH), significant therapeutic gaps remain for this devastating disease. Yet, few innovative therapies beyond the traditional pathways of endothelial dysfunction have reached clinical trial phases in PAH. Although there are inherent limitations of the currently available models of PAH, the leaky pipeline of innovative therapies relates, in part, to flawed preclinical research methodology, including lack of rigour in trial design, incomplete invasive hemodynamic assessment, and lack of careful translational studies that replicate randomized controlled trials in humans with attention to adverse effects and benefits. Rigorous methodology should include the use of prespecified eligibility criteria, sample sizes that permit valid statistical analysis, randomization, blinded assessment of standardized outcomes, and transparent reporting of results. Better design and implementation of preclinical studies can minimize inherent flaws in the models of PAH, reduce the risk of bias, and enhance external validity and our ability to distinguish truly promising therapies form many false-positive or overstated leads. Ideally, preclinical studies should use advanced imaging, study several preclinical pulmonary hypertension models, or correlate rodent and human findings and consider the fate of the right ventricle, which is the major determinant of prognosis in human PAH. Although these principles are widely endorsed, empirical evidence suggests that such rigor is often lacking in pulmonary hypertension preclinical research. The present article discusses the pitfalls in the design of preclinical pulmonary hypertension trials and discusses opportunities to create preclinical trials with improved predictive value in guiding early-phase drug development in patients with PAH, which will need support not only from researchers, peer reviewers, and editors but also from

  13. Effect of radiation dose and adaptive statistical iterative reconstruction on image quality of pulmonary computed tomography

    International Nuclear Information System (INIS)

    Sato, Jiro; Akahane, Masaaki; Inano, Sachiko; Terasaki, Mariko; Akai, Hiroyuki; Katsura, Masaki; Matsuda, Izuru; Kunimatsu, Akira; Ohtomo, Kuni

    2012-01-01

    The purpose of this study was to assess the effects of dose and adaptive statistical iterative reconstruction (ASIR) on image quality of pulmonary computed tomography (CT). Inflated and fixed porcine lungs were scanned with a 64-slice CT system at 10, 20, 40 and 400 mAs. Using automatic exposure control, 40 mAs was chosen as standard dose. Scan data were reconstructed with filtered back projection (FBP) and ASIR. Image pairs were obtained by factorial combination of images at a selected level. Using a 21-point scale, three experienced radiologists independently rated differences in quality between adjacently displayed paired images for image noise, image sharpness and conspicuity of tiny nodules. A subjective quality score (SQS) for each image was computed based on Anderson's functional measurement theory. The standard deviation was recorded as a quantitative noise measurement. At all doses examined, SQSs improved with ASIR for all evaluation items. No significant differences were noted between the SQSs for 40%-ASIR images obtained at 20 mAs and those for FBP images at 40 mAs. Compared to the FBP algorithm, ASIR for lung CT can enable an approximately 50% dose reduction from the standard dose while preserving visualization of small structures. (author)

  14. Non-invasive estimation of the human pulmonary blood volume with gamma camera and RI-angiocardiography

    International Nuclear Information System (INIS)

    Goto, Koshi; Hirano, Akihiko; Hirakawa, Senri

    1981-01-01

    A new, non-invasive method for the estimation of the human pulmonary blood volume (PBV), existing between the pulmonary artery bifurcation (PAB) and the left atrium (LA), has been developed in this laboratory, in the form of PBV = PPT sub(RCG) x 0.77 x CO, equation (6), given in Appendix. This was an extension of the classical Stewart-Hamilton method of indicator dilution, applied to radioisotope angiocardiography. Using a gamma-camera, the radio-isotope (99 m Tc-albumin) dilution curves were recorded externally at the region of PAB, LA and LV (left ventricle), among other things, in human subjects in supine position. The mean transit time (MTT) was determined for each region, and the difference in MTT, e.g., ΔMTT sub(PAB-LA), was measured. We calculated PBV between PAB and LA as PBV = ΔMTT sub(PAB-LA) x CO, equation (1) given in Appendix. Empirical time relations between ΔMTT sub(PAB-LA) and PPT sub(RCG) were examined in mechanical models and human subjects, through several steps represented by equations (2) to (5), given in Appendix, and our tentatively final formula was equation (6). The values of PBV estimated in this way were in good agreement with those of PBV measured invasively in the past, using two injection sites (PA and LA) and one sampling site (artery). (author)

  15. Key role of the endothelial TGF-β/ALK1/endoglin signaling pathway in humans and rodents pulmonary hypertension.

    Directory of Open Access Journals (Sweden)

    Benoît Gore

    Full Text Available Mutations affecting transforming growth factor-beta (TGF-β superfamily receptors, activin receptor-like kinase (ALK-1, and endoglin (ENG occur in patients with pulmonary arterial hypertension (PAH. To determine whether the TGF-β/ALK1/ENG pathway was involved in PAH, we investigated pulmonary TGF-β, ALK1, ALK5, and ENG expressions in human lung tissue and cultured pulmonary-artery smooth-muscle-cells (PA-SMCs and pulmonary endothelial cells (PECs from 14 patients with idiopathic PAH (iPAH and 15 controls. Seeing that ENG was highly expressed in PEC, we assessed the effects of TGF-β on Smad1/5/8 and Smad2/3 activation and on growth factor production by the cells. Finally, we studied the consequence of ENG deficiency on the chronic hypoxic-PH development by measuring right ventricular (RV systolic pressure (RVSP, RV hypertrophy, and pulmonary arteriolar remodeling in ENG-deficient (Eng+/- and wild-type (Eng+/+ mice. We also evaluated the pulmonary blood vessel density, macrophage infiltration, and cytokine expression in the lungs of the animals. Compared to controls, iPAH patients had higher serum and pulmonary TGF-β levels and increased ALK1 and ENG expressions in lung tissue, predominantly in PECs. Incubation of the cells with TGF-β led to Smad1/5/8 phosphorylation and to a production of FGF2, PDGFb and endothelin-inducing PA-SMC growth. Endoglin deficiency protected mice from hypoxic PH. As compared to wild-type, Eng+/- mice had a lower pulmonary vessel density, and no change in macrophage infiltration after exposure to chronic hypoxia despite the higher pulmonary expressions of interleukin-6 and monocyte chemoattractant protein-1. The TGF-β/ALK1/ENG signaling pathway plays a key role in iPAH and experimental hypoxic PH via a direct effect on PECs leading to production of growth factors and inflammatory cytokines involved in the pathogenesis of PAH.

  16. Study of two novel large-field-of-view image intensifiers versus conventional chest radiography with use of FROC methods and simulated pulmonary nodules

    International Nuclear Information System (INIS)

    Winter, L.H.L.; Chakraborty, D.P.; Van Waes, P.F.G.M.; Puylaert, C.B.A.J.

    1989-01-01

    Two novel large-field-of-view image intensifier (LFOV 1.1) tubes have been introduced whose image area makes them suitable for chest imaging. Both modalities present a 100-mm hard-copy image to the radiologist. A pulmonary nodule performance experiment was done to compare the diagnostic accuracy of these tubes with conventional full-size chest images. The data were analyzed with the maximum-likelihood FROCFIT program. The relative ranking in terms of decreasing A1 values was TLX, Siemens 43-cm mode, conventional radiography, and Siemens 57-cm mode

  17. Pulmonary Hernia in a Two-Year-Old Child

    Directory of Open Access Journals (Sweden)

    Jenna Fine

    2014-01-01

    Full Text Available Pulmonary hernia, also known as lung herniation or intercostal herniation, is best explained as the lung parenchyma protruding beyond the confines of the thoracic wall. This rare finding can be classified as congenital or acquired. Acquired pulmonary herniations are often the complication of blunt or penetrating trauma to the chest wall. This report describes a two-year-old male who fell onto a rigid post, striking his left lower chest. Imaging studies demonstrated a small pneumothorax as well as pulmonary herniation. The patient underwent a diagnostic thoracoscopy and repair of a pulmonary hernia within the 7th intercostal space without complication. In this case report, we aim to add to the limited body of existing literature on the surgical management of pulmonary hernias.

  18. Imaging of pulmonary vein anatomy using low-dose prospective ECG-triggered dual-source computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Blanke, Philipp; Baumann, Tobias; Langer, Mathias; Pache, Gregor [University Hospital Freiburg, Department of Diagnostic Radiology, Freiburg (Germany)

    2010-08-15

    To prospectively investigate the feasibility, image quality and radiation dose estimates for computed tomography angiography (CTA) of the pulmonary veins and left atrium using prospective electrocardiography (ECG)-triggered sequential dual-source (DS) data acquisition at end-systole in patients with paroxysmal atrial fibrillation undergoing radiofrequency ablation. Thirty-five patients (mean age 66.2 {+-} 12.6 years) with paroxysmal atrial fibrillation underwent prospective ECG-triggered sequential DS-CTA with tube current (250 mAs/rotation) centred 250 ms past the R-peak. Tube voltage was adjusted to the BMI (<25 kg/m{sup 2}: 100 kV, >25 kg/m{sup 2}: 120 kV). Presence of motion or stair-step artefacts was assessed. Effective radiation dose was calculated from the dose-length product. All data sets could be integrated into the electroanatomical mapping system. Twenty-two patients (63%) were in sinus rhythm (mean heart rate 69.2 {+-} 11.1 bpm, variability 1.0 {+-} 1.7 bpm) and 13 (37%) showed an ECG pattern of atrial fibrillation (mean heart rate 84.8 {+-} 16.6 bpm, variability 17.9 {+-} 7.5 bpm). Minor step artefacts were observed in three patients (23%) with atrial fibrillation. Mean estimated effective dose was 1.1 {+-} 0.3 and 3.0 {+-} 0.5 mSv for 100 and 120 kV respectively. Imaging of pulmonary vein anatomy is feasible using prospective ECG-triggered sequential data acquisition at end-systole regardless of heart rate or rhythm at the benefit of low radiation dose. (orig.)

  19. Effect of delay in hospital presentation on clinical and imaging findings in acute pulmonary thromboembolism.

    Science.gov (United States)

    Jenab, Yaser; Alemzadeh-Ansari, Mohammad Javad; Fehri, Seyedeh Arezoo; Ghaffari-Marandi, Neda; Jalali, Arash

    2014-04-01

    There is limited information on the extent and clinical importance of the delay in hospital presentation of acute pulmonary thromboembolism (PTE). The aim of this study was to investigate the delay in hospital presentation of PTE and its association with clinical and imaging findings in PTE. This prospective study was conducted on patients admitted to our hospital with a diagnosis of acute PTE between September 2007 and September 2011. Relationships between delay in hospital presentation and clinical findings, risk factors, imaging findings, and in-hospital mortality were analyzed. Of the 195 patients enrolled, 84 (43.1%) patients presented 3 days after the onset of symptoms. Patients with chest pain, history of immobility for more than 3 days, recent surgery, and estrogen use had significantly less delayed presentation. Right ventricular dysfunction was significantly more frequent in patients with delayed presentation (odds ratio [OR] = 2.38; 95% confidence interval [CI] 1.27-4.44; p = 0.006); however, no relationship was found between delay in presentation and pulmonary computed tomographic angiography or color Doppler sonography findings. Patients with delayed presentation were at higher risk of in-hospital mortality (OR = 4.32; 95% CI 1.12-16.49; p = 0.021). Our study showed that a significant portion of patients with acute PTE had delayed presentation. Also, patients with delayed presentation had worse echocardiographic findings and higher in-hospital mortality. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Pulmonary angiography with lopamidol 370

    International Nuclear Information System (INIS)

    Braun, S.D.; Saeed, M.; Perlmutt, L.M.; Newman, G.E.; Illescas, F.F.; Cohan, R.H.; Dunnick, N.R.

    1986-01-01

    Fifty-one consecutive patients who underwent pulmonary angiography with iopamidol, 370 mg/ml, were studied prospectively. Patients were asked to grade any heat or pain felt on injection, and were observed for coughing. Right atrial and pulmonary artery pressures were obtained before the first and after the final contrast agent injection. Pressure changes were compared with those in a consecutive group of 25 patients who underwent examinations performed with Na-meglumine diatrizoate, 370 mg/ml. Film quality was evaluated for patient motion. Iopamidol generated marked discomfort in only three patients. Pressure changes were largely unremarkable. In no case was there any significant motion artifact secondary to coughing. Iopamidol is a safe, well-tolerated contrast agent for pulmonary angiography. It improves image quality by nearly eliminating coughing

  1. Vibration response imaging in idiopathic pulmonary fibrosis: a pilot study.

    Science.gov (United States)

    Liu, Qing-Xia; Guan, Wei-Jie; Xie, Yan-Qing; An, Jia-Ying; Jiang, Mei; Zhu, Zheng; Guo, E; Yu, Xin-Xin; Liu, Wen-Ting; Gao, Yi; Zheng, Jin-Ping

    2014-07-01

    Vibration response imaging (VRI) is a novel imaging technique and little is known about its characteristics and diagnostic value in idiopathic pulmonary fibrosis (IPF). The aim of this study was to investigate the features of VRI in subjects with IPF. We enrolled 23 subjects with IPF (42-74 y old) and 28 healthy subjects (42-72 y old). Subjects with IPF were diagnosed by lung biopsy and underwent VRI, spirometry, lung diffusion testing, and chest x-ray or computed tomography, which entailed assessment of the value of VRI indices. The total VRI score correlated statistically with single-breath carbon monoxide diffusing capacity percent predicted (r = -0.30, P = .04), but not with FVC percent predicted, FEV1 percent predicted, and FEV1/FVC (r = -0.27, -0.22, and 0.19; all P > .05). Compared with healthy subjects (17.9%), 20 subjects with IPF (86.96%, P .05), except for the upper right and lower left lobes (P diagnostic value (sensitivity, 1.00; specificity, 0.82), followed by presence of abundant crackles (sensitivity, 0.70; specificity, 0.96). Total VRI score was not a sensitive indicator of IPF, owing to low assay sensitivity (0.70) and specificity (0.64). VRI may be helpful to discriminate between IPF subjects and healthy individuals. Maximum energy frame and abundant crackles might serve as a diagnostic tool for IPF. Copyright © 2014 by Daedalus Enterprises.

  2. A COMPREHENSIVE FRAMEWORK FOR AUTOMATIC DETECTION OF PULMONARY NODULES IN LUNG CT IMAGES

    Directory of Open Access Journals (Sweden)

    Mehdi Alilou

    2014-03-01

    Full Text Available Solitary pulmonary nodules may indicate an early stage of lung cancer. Hence, the early detection of nodules is the most efficient way for saving the lives of patients. The aim of this paper is to present a comprehensive Computer Aided Diagnosis (CADx framework for detection of the lung nodules in computed tomography images. The four major components of the developed framework are lung segmentation, identification of candidate nodules, classification and visualization. The process starts with segmentation of lung regions from the thorax. Then, inside the segmented lung regions, candidate nodules are identified using an approach based on multiple thresholds followed by morphological opening and 3D region growing algorithm. Finally, a combination of a rule-based procedure and support vector machine classifier (SVM is utilized to classify the candidate nodules. The proposed CADx method was validated on CT images of 60 patients, containing the total of 211 nodules, selected from the publicly available Lung Image Database Consortium (LIDC image dataset. Comparing to the other state of the art methods, the proposed framework demonstrated acceptable detection performance (Sensitivity: 0.80; Fp/Scan: 3.9. Furthermore, we visualize a range of anatomical structures including the 3D lung structure and the segmented nodules along with the Maximum Intensity Projection (MIP volume rendering method that will enable the radiologists to accurately and easily estimate the distance between the lung structures and the nodules which are frequently difficult at best to recognize from CT images.

  3. Medical image of the week: hematopneumatoceles from pulmonary lacerations

    Directory of Open Access Journals (Sweden)

    Chaddha U

    2017-07-01

    Full Text Available No abstract available. Article truncated after 150 words. A 17-year-old man was brought to the emergency room after a fall from a 50-foot bridge. He was hypoxemic on presentation, requiring endotracheal intubation. Chest computed tomography (CT revealed bilateral airspace opacities consistent with pulmonary contusions, and multiple air-fluid levels diagnostic of pulmonary lacerations (Figures 1-3. Pulmonary lacerations are rare complications of blunt chest trauma (1. They can be contained within the lung parenchyma or may extend through the visceral pleura causing a pneumothorax. Due to its elastic recoil, the surrounding lung tissue pulls back from the laceration resulting in a round or oval cavity that may fill with air (pneumatocele, blood (hematocele or both (hematopneumatocele. Lacerations are often obscured on chest x-ray as they are usually surrounded by contusion, requiring a CT for detection (2. They are classified into four types according to the mechanism of injury: Type 1 (compression rupture injury, most common type, usually centrally located, Type …

  4. Imaging pulmonary fibrosis; Imagerie des fibroses pulmonaires

    Energy Technology Data Exchange (ETDEWEB)

    Brauner, M.W.; Rety, F.; Naccache, J.M.; Girard, F.; Valeyre, D.F. [Hopital Avicenne, 93 - Bobigny (France). Service de radiologie et de pneumologie

    2001-02-01

    Localized fibrosis of the lung is usually scar tissue while diffuse pulmonary fibrosis is more often a sign of active disease. Chronic infiltrative lung disease may be classified into four categories: idiopathic pneumonitis, collagen diseases, granulomatosis (sarcoidosis), and caused by known diseases (pneumoconiosis, hypersensitivity pneumonitis, drug-induced lung disease, radiation). (authors)

  5. Pediatric Pulmonary Abscess

    Directory of Open Access Journals (Sweden)

    Kyle Barbour

    2018-04-01

    Full Text Available History of present illness: A 6-year-old previously healthy male presented to the emergency department with three days of left upper quadrant abdominal pain. Family endorsed one week of fevers, cough productive of yellow sputum, and non-bilious, non-bloody emesis. He denied shortness of breath and chest pain. On exam, the patient was febrile with otherwise normal vital signs. He had diffuse tenderness to his abdomen but clear lungs. Laboratory studies revealed leukocytosis to 25,000/mm3 with a left shift. Significant findings: Upright posterior-anterior plain chest films show a left lower lobe consolidation with an air-fluid level and a single septation consistent with a pulmonary abscess (white arrows. A small left pleural effusion was also present, seen as blunting of the left costophrenic angle and obscuration of the left hemidiaphragm (black arrows. Discussion: Pediatric pulmonary abscesses are rare, most commonly caused by aspiration, and the majority consequently arise in dependent portions of the lung.1 The most common pathogens in children are Streptococcus pneumoniaeand Staphylococcus aureus.1 Immunocompromised patients and those with existing pulmonary disease more commonly contract Pseudomonas aeruginosaor Bacteroides, and fungal pathogens are possible.1 Common symptoms include tachypnea, fever, and cough. Imaging is necessary to distinguish pulmonary abscesses from pneumonia, empyema, pneumatocele, and other etiologies. Plain film radiography may miss up to 18% of pulmonary abscesses yet is often the first modality to visualize an intrathoracic abnormality.2 If seen, pulmonary abscesses most often appear as consolidations with air-fluid levels. Generally, pulmonary abscesses are round with irregular, thick walls, whereas empyemas are elliptical with smooth, thin walls.3 However, these characteristics cannot definitively distinguish these processes.2 Advantages of plain films include being low cost and easily obtained. Computed

  6. Can multimodality imaging using {sup 18}F-FDG/{sup 18}F-FLT PET/CT benefit the diagnosis and management of patients with pulmonary lesions?

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Baixuan; Guan, Zhiwei; Liu, Changbin; Wang, Ruimin; Yin, Dayi; Zhang, Jinming; Chen, Yingmao; Yao, Shulin; Shao, Mingzhe; Wang, Hui; Tian, Jiahe [Chinese PLA General Hospital, Department of Nuclear Medicine, Beijing (China)

    2011-02-15

    Dual-tracer, {sup 18}F-fluorodeoxyglucose and {sup 18}F-fluorodeoxythymidine ({sup 18}F-FDG/{sup 18}F-FLT), dual-modality (positron emission tomography and computed tomography, PET/CT) imaging was used in a clinical trial on differentiation of pulmonary nodules. The aims of this trial were to investigate if multimodality imaging is of advantage and to what extent it could benefit the patients in real clinical settings. Seventy-three subjects in whom it was difficult to establish the diagnosis and determine management of their pulmonary lesions were prospectively enrolled in this clinical trial. All subjects underwent {sup 18}F-FDG and {sup 18}F-FLT PET/CT imaging sequentially. The images were interpreted with different strategies as either individual or combined modalities. The pathological or clinical evidence during a follow-up period of more than 22 months served as the standard of truth. The diagnostic performance of each interpretation and their impact on clinical decision making was investigated. {sup 18}F-FLT/{sup 18}F-FDG PET/CT was proven to be of clinical value in improving the diagnostic confidence in 28 lung tumours, 18 tuberculoses and 27 other benign lesions. The ratio between maximum standardized uptake values of {sup 18}F-FLT and {sup 18}F-FDG was found to be of great potential in separating the three subgroups of patients. The advantage could only be obtained with the full use of the multimodality interpretation. Multimodality imaging induced substantial change in clinical management in 31.5% of the study subjects and partial change in another 12.3%. Multimodality imaging using {sup 18}F-FDG/{sup 18}F-FLT PET/CT provided the best diagnostic efficacy and the opportunity for better management in this group of clinically challenging patients with pulmonary lesions. (orig.)

  7. Multislice CT imaging of pulmonary embolism

    International Nuclear Information System (INIS)

    Schoepf, J.U.; Kessler, M.A.; Rieger, C.T.; Herzog, P.; Wiesgigl, S.; Becker, C.R.; Exarhos, D.N.; Reiser, M.F.

    2001-01-01

    In recent years CT has been established as the method of choice for the diagnosis of central pulmonary embolism (PE) to the level of the segmental arteries. The key advantage of CT over competing modalities is the reliable detection of relevant alternative or additional disease causing the patient's symptoms. Although the clinical relevance of isolated peripheral emboli remains unclear, the alleged poor sensitivity of CT for the detection of such small clots has to date prevented the acceptance of CT as the gold standard for diagnosing PE. With the advent of multislice CT we can now cover the entire chest of a patient with 1-mm slices within one breath-hold. In comparison with thicker sections, the detection rate of subsegmental emboli can be significantly increased with 1-mm slices. In addition, the interobserver correlation which can be achieved with 1-mm sections by far exceeds the reproducibility of competing modalities. Meanwhile use of multislice CT for a combined diagnosis of PE and deep venous thrombosis with the same modality appears to be clinically accepted. In the vast majority of patients who receive a combined thoracic and venous multislice CT examination the scan either confirms the suspected diagnosis or reveals relevant alternative or additional disease. The therapeutic regimen is usually chosen based on the functional effect of embolic vascular occlusion. With the advent of fast CT scanning techniques, also functional parameters of lung perfusion can be non-invasively assessed by CT imaging. These advantages let multislice CT appear as an attractive modality for a non-invasive, fast, accurate, and comprehensive diagnosis of PE, its causes, effects, and differential diagnoses. (orig.)

  8. The acute pulmonary oedema in the intensive-care ward

    International Nuclear Information System (INIS)

    Marciniak, R.; Aronski, A.

    1989-01-01

    760 patients suffering from acute pulmonary oedema were treated between 1980 and 1986 at the Institute of Anaesthesiology of the Medical Academy in Wroclaw. The radiological image of the pulmonary oedema was subdivided into three forms (hilar, hilar and perihilar, and hilar with massive plane-shaped infiltrates). In the treatment of acute pulmonary oedema in the intensive-care ward a thorough diagnostic programme is mandatory after the immediately necessary measures have been taken. (orig.) [de

  9. Clinical manifestations and pulmonary radiological features in patients with triphosgene poisoning

    International Nuclear Information System (INIS)

    Ye Caier, Chen Weijian; Wu Enfu; Yang Yunjun; Ye Min; Liu Zaiyi

    2007-01-01

    Objective: To examine the clinical manifestations and pulmonary radiological features in patients with triphosgene poisoning. Methods: Clinical manifestations, laboratory tests and CT scans were analyzed retrospectively in 17 patients with triphosgene poisoning. We focused on the severity, development and repair of pulmonary impairment. Results: Plain film and CT scans in five mild cases demonstrated bilateral scattered pulmonary patchy shadows. Of 12 cases with moderate to severe diseases, three showed bilateral multiple pulmonary patchy shadows and nodules with confluence of part of the lesions on plain film and CT scans; bilateral lungs were involved in nine cases with imaging findings of bilateral disseminated pulmonary round or ovary nodules with different size, ill-defined and partly-confluent patchy shadows and thickening of both interlobular septum and the wall of bronchus. Of clinical interests, imaging findings were closely correlated with clinical course and laboratory results. Conclusion: Radiological examinations with plain films and CT scans could reveal the severity, evolvement of pulmonary edema in patients with triphosgene poisoning, and these are of clinical benefit in the early management and prognostic evaluation of patients with triphosgene poisoning. (authors)

  10. Multidetector-CT angiography in pulmonary embolism - can image parameters predict clinical outcome?

    Energy Technology Data Exchange (ETDEWEB)

    Heyer, Christoph M.; Lemburg, Stefan P.; Nicolas, Volkmar; Roggenland, Daniela [Berufsgenossenschaftliches Universitaetsklinikum Bergmannsheil GmbH, Ruhr-University of Bochum, Institute of Diagnostic Radiology, Interventional Radiology and Nuclear Medicine, Bochum (Germany); Knoop, Heiko [Berufsgenossenschaftliches Universitaetsklinikum Bergmannsheil GmbH, Medical Clinic III - Pneumology, Allergology, and Sleep Medicine, Bochum (Germany); Holland-Letz, Tim [Ruhr-University of Bochum, Department of Medical Informatics, Biometry and Epidemiology, Bochum (Germany)

    2011-09-15

    To assess if pulmonary CT angiography (CTA) can predict outcome in patients with pulmonary embolism (PE). Retrospective analysis of CTA studies of patients with PE and documentation of pulmonary artery (PA)/aorta ratio, right ventricular (RV)/left ventricular (LV) ratio, superior vena cava (SVC) diameter, pulmonary obstruction index (POI), ventricular septal bowing (VSB), venous contrast reflux (VCR), pulmonary infarction and pleural effusion. Furthermore, duration of total hospital stay, necessity for/duration of ICU therapy, necessity for mechanical ventilation and mortality were recorded. Comparison was performed by logistic/linear regression analysis with significance at 5%. 152 patients were investigated. Mean duration of hospital stay was 21 {+-} 24 days. 66 patients were admitted to the ICU; 20 received mechanical ventilation. Mean duration of ICU therapy was 3 {+-} 8 days. Mortality rate was 8%. Significant positive associations of POI, VCR and pulmonary infarction with necessity for ICU therapy were shown. VCR was significantly associated with necessity for mechanical ventilation and duration of ICU treatment. Pleural effusions were significantly associated with duration of total hospital stay whereas the RV/LV ratio correlated with mortality. Selected CTA findings showed significant associations with the clinical course of PE and may thus be used as predictive parameters. (orig.)

  11. Clinical evaluation of pulmonary perfusion MRI using FAIR (flow-sensitive alternating inversion recovery)-HASTE (Half-Fourier Single-Shot TurboSE) method

    International Nuclear Information System (INIS)

    Togami, Izumi; Sasai, Nobuya; Tsunoda, Masatoshi; Sei, Tetsurou; Sato, Shuhei; Yabuki, Takayuki; Hiraki, Yoshio

    2002-01-01

    The FAIR-HASTE method is a kind of noninvasive perfusion MR imaging obtained without the use of contrast media. By subtracting a flow-insensitive image from a flow-sensitive image, contrast enhancement of inflowing blood achieved. In the present study, we applied pulmonary perfusion FAIR-HASTE sequence for 23 patients with various pulmonary diseases, and compared the findings with those by pulmonary perfusion scintigraphy and Gadolinium perfusion MRI. Pulmonary perfusion imaging with the FAIR-HASTE method was possible in all clinical cases, and the findings corresponded well to those obtained by perfusion MRI using contrast media or pulmonary scintigraphy. The FAIR-HASTE method is a promising method for the evaluation of pulmonary perfusion. (author)

  12. IgM response to a human Pneumocystis carinii surface antigen in HIV-infected patients with pulmonary symptoms

    DEFF Research Database (Denmark)

    Lundgren, Bettina; Kovacs, J A; Mathiesen, Lars Reinhardt

    1993-01-01

    We have developed an ELISA to detect IgM antibodies to a major human Pneumocystis carinii surface antigen (gp95), and investigated the IgM response in 128 HIV-infected patients who underwent bronchoscopy for evaluation of pulmonary symptoms. Only 5 (4%) patients had IgM antibodies to P. carinii g...

  13. Definition, classification, and epidemiology of pulmonary arterial hypertension.

    Science.gov (United States)

    Hoeper, Marius M

    2009-08-01

    Pulmonary arterial hypertension (PAH) is a distinct subgroup of pulmonary hypertension that comprises idiopathic PAH, familial/heritable forms, and PAH associated with connective tissue disease, congenital heart disease, portal hypertension, human immunodeficiency virus (HIV) infection, and some other conditions. The hemodynamic definition of PAH was recently revised: PAH is now defined by a mean pulmonary artery pressure at rest > or =25 mm Hg in the presence of a pulmonary capillary wedge pressure or =30 mm Hg during exercise) that was used in the old definition of PAH has been removed because there are no robust data that would allow defining an upper limit of normal for the pulmonary pressure during exercise. The revised classification of pulmonary hypertension still consists of five major groups: (1) PAH, (2) pulmonary hypertension due to left heart disease, (3) pulmonary hypertension due to chronic lung disease and/or hypoxia, (4) chronic thromboembolic pulmonary hypertension, and (5) miscellaneous forms. Modifications have been made in some of these groups, such as the addition of schistosomiasis-related pulmonary hypertension and pulmonary hypertension in patients with chronic hemolytic anemia to group 1.

  14. Hyperpolarized 3He magnetic resonance imaging: Preliminary evaluation of phenotyping potential in chronic obstructive pulmonary disease

    International Nuclear Information System (INIS)

    Mathew, Lindsay; Kirby, Miranda; Etemad-Rezai, Roya; Wheatley, Andrew; McCormack, David G.; Parraga, Grace

    2011-01-01

    Rationale and objectives: Emphysema and small airway obstruction are the pathological hallmarks of chronic obstructive pulmonary disease (COPD). The aim of this pilot study in a small group of chronic obstructive pulmonary disease (COPD) patients was to quantify hyperpolarized helium-3 ( 3 He) magnetic resonance imaging (MRI) functional and structural measurements and to explore the potential role for 3 He MRI in detecting the lung structural and functional COPD phenotypes. Materials and methods: We evaluated 20 ex-smokers with stage I (n = 1), stage II (n = 9) and stage III COPD (n = 10). All subjects underwent same-day plethysmography, spirometry, 1 H MRI and hyperpolarized 3 He MRI at 3.0 T. 3 He ventilation defect percent (VDP) was generated from 3 He static ventilation images and 1 H thoracic images and the 3 He apparent diffusion coefficient (ADC) was derived from diffusion-weighted MRI. Results: Based on the relative contribution of normalized ADC and VDP, there was evidence of a predominant 3 He MRI measurement in seven patients (n = 3 mainly ventilation defects or VDP dominant (VD), n = 4 mainly increased ADC or ADC dominant (AD)). Analysis of variance (ANOVA) showed significantly lower ADC for subjects with predominantly elevated VDP (p = 0.02 compared to subjects with predominantly elevated ADC; p = 0.008 compared to mixed group) and significantly decreased VDP for subjects with predominantly elevated ADC (p = 0.003, compared to mixed group). Conclusion: In this small pilot study, a preliminary analysis shows the potential for 3 He MRI to categorize or phenotype COPD ex-smokers, providing good evidence of feasibility for larger prospective studies.

  15. Detection of pulmonary metastases in a patient with synovial cell sarcoma using In-111 labeled monoclonal antibody 19-24

    International Nuclear Information System (INIS)

    Swift, J.E.; Blend, M.J.; Bekerman, C.; Das Gupta, T.K.; Greager, J.A.

    1990-01-01

    A 35-year-old man was diagnosed in 1984 as having a synovial cell sarcoma of his right wrist without evidence of metastatic spread. The patient underwent regional hyperthermic chemoperfusion, wide-field excision, post-operative radiation therapy and systemic adjuvant chemotherapy. In 1986 and in 1987, because of new lesions found on chest radiographs, the patient underwent bilateral staging thoracotomies with resection of pulmonary metastases, followed by chemotherapy and radiotherapy. Later in 1987, a chest radiograph showed a large left hilar mass and multiple bilateral pulmonary nodules. Computerized tomography of the chest demonstrated a left hilar mass and two nodules in the right lower lung, raising the possibility of recurrent pulmonary metastatic cancer. As a diagnostic procedure, In-111 labeled monoclonal antibody (Mab) 19-24, produced against a human malignant fibrous histiocytoma, was infused intravenously, and 48-hour images revealed focal areas of increased uptake corresponding to the lesions seen on CT. At surgery, the lesions were confirmed to be synovial cell sarcoma. Imaging with Mabs specific for sarcoma may be particularly useful in sarcoma patients in whom there is clinical uncertainty regarding the nature of pulmonary lesions. In this case, the Mab was useful in distinguishing tumor deposits from postsurgical scarring and helped to guide subsequent surgery and treatment

  16. Humanity in God's Image: An Interdisciplinary Exploration

    DEFF Research Database (Denmark)

    Welz, Claudia

    . Claudia Welz offers an interdisciplinary exploration of theological and ethical 'visions' of the invisible. By analysing poetry and art, Welz exemplifies human self-understanding in the interface between the visual and the linguistic. The content of the imago Dei cannot be defined apart from the image......How can we, in our times, understand the biblical concept that human beings have been created in the image of an invisible God? This is a perennial but increasingly pressing question that lies at the heart of theological anthropology. Humanity in God's Image: An Interdisciplinary Exploration...

  17. Low-frequency high-definition power Doppler in visualizing and defining fetal pulmonary venous connections.

    Science.gov (United States)

    Liu, Lin; He, Yihua; Li, Zhian; Gu, Xiaoyan; Zhang, Ye; Zhang, Lianzhong

    2014-07-01

    The use of low-frequency high-definition power Doppler in assessing and defining pulmonary venous connections was investigated. Study A included 260 fetuses at gestational ages ranging from 18 to 36 weeks. Pulmonary veins were assessed by performing two-dimensional B-mode imaging, color Doppler flow imaging (CDFI), and low-frequency high-definition power Doppler. A score of 1 was assigned if one pulmonary vein was visualized, 2 if two pulmonary veins were visualized, 3 if three pulmonary veins were visualized, and 4 if four pulmonary veins were visualized. The detection rate between Exam-1 and Exam-2 (intra-observer variability) and between Exam-1 and Exam-3 (inter-observer variability) was compared. In study B, five cases with abnormal pulmonary venous connection were diagnosed and compared to their anatomical examination. In study A, there was a significant difference between CDFI and low-frequency high-definition power Doppler for the four pulmonary veins observed (P low-frequency high-definition power Doppler was higher than that when employing two-dimensional B-mode imaging or CDFI. There was no significant difference between the intra- and inter-observer variabilities using low-frequency high-definition power Doppler display of pulmonary veins (P > 0.05). The coefficient correlation between Exam-1 and Exam-2 was 0.844, and the coefficient correlation between Exam-1 and Exam-3 was 0.821. In study B, one case of total anomalous pulmonary venous return and four cases of partial anomalous pulmonary venous return were diagnosed by low-frequency high-definition power Doppler and confirmed by autopsy. The assessment of pulmonary venous connections by low-frequency high-definition power Doppler is advantageous. Pulmonary venous anatomy can and should be monitored during fetal heart examination.

  18. Validation of the Gatortail method for accurate sizing of pulmonary vessels from 3D medical images.

    Science.gov (United States)

    O'Dell, Walter G; Gormaley, Anne K; Prida, David A

    2017-12-01

    Detailed characterization of changes in vessel size is crucial for the diagnosis and management of a variety of vascular diseases. Because clinical measurement of vessel size is typically dependent on the radiologist's subjective interpretation of the vessel borders, it is often prone to high inter- and intra-user variability. Automatic methods of vessel sizing have been developed for two-dimensional images but a fully three-dimensional (3D) method suitable for vessel sizing from volumetric X-ray computed tomography (CT) or magnetic resonance imaging has heretofore not been demonstrated and validated robustly. In this paper, we refined and objectively validated Gatortail, a method that creates a mathematical geometric 3D model of each branch in a vascular tree, simulates the appearance of the virtual vascular tree in a 3D CT image, and uses the similarity of the simulated image to a patient's CT scan to drive the optimization of the model parameters, including vessel size, to match that of the patient. The method was validated with a 2-dimensional virtual tree structure under deformation, and with a realistic 3D-printed vascular phantom in which the diameter of 64 branches were manually measured 3 times each. The phantom was then scanned on a conventional clinical CT imaging system and the images processed with the in-house software to automatically segment and mathematically model the vascular tree, label each branch, and perform the Gatortail optimization of branch size and trajectory. Previously proposed methods of vessel sizing using matched Gaussian filters and tubularity metrics were also tested. The Gatortail method was then demonstrated on the pulmonary arterial tree segmented from a human volunteer's CT scan. The standard deviation of the difference between the manually measured and Gatortail-based radii in the 3D physical phantom was 0.074 mm (0.087 in-plane pixel units for image voxels of dimension 0.85 × 0.85 × 1.0 mm) over the 64 branches

  19. Impact of CT perfusion imaging on the assessment of peripheral chronic pulmonary thromboembolism: clinical experience in 62 patients

    Energy Technology Data Exchange (ETDEWEB)

    Le Faivre, Julien; Khung, Suonita; Faivre, Jean-Baptiste; Remy, Jacques; Remy-Jardin, Martine [University of Lille, Department of Thoracic Imaging, Hospital Calmette, Lille (France); Duhamel, Alain [University of Lille, Department of Biostatistics, Lille (France); Lamblin, Nicolas [University of Lille, Department of Cardiology, Cardiology Hospital, Lille (France)

    2016-11-15

    To evaluate the impact of CT perfusion imaging on the detection of peripheral chronic pulmonary embolisms (CPE). 62 patients underwent a dual-energy chest CT angiographic examination with (a) reconstruction of diagnostic and perfusion images; (b) enabling depiction of vascular features of peripheral CPE on diagnostic images and perfusion defects (20 segments/patient; total: 1240 segments examined). The interpretation of diagnostic images was of two types: (a) standard (i.e., based on cross-sectional images alone) or (b) detailed (i.e., based on cross-sectional images and MIPs). The segment-based analysis showed (a) 1179 segments analyzable on both imaging modalities and 61 segments rated as nonanalyzable on perfusion images; (b) the percentage of diseased segments was increased by 7.2 % when perfusion imaging was compared to the detailed reading of diagnostic images, and by 26.6 % when compared to the standard reading of images. At a patient level, the extent of peripheral CPE was higher on perfusion imaging, with a greater impact when compared to the standard reading of diagnostic images (number of patients with a greater number of diseased segments: n = 45; 72.6 % of the study population). Perfusion imaging allows recognition of a greater extent of peripheral CPE compared to diagnostic imaging. (orig.)

  20. Effectiveness of Adaptive Statistical Iterative Reconstruction for 64-Slice Dual-Energy Computed Tomography Pulmonary Angiography in Patients With a Reduced Iodine Load: Comparison With Standard Computed Tomography Pulmonary Angiography.

    Science.gov (United States)

    Lee, Ji Won; Lee, Geewon; Lee, Nam Kyung; Moon, Jin Il; Ju, Yun Hye; Suh, Young Ju; Jeong, Yeon Joo

    2016-01-01

    The aim of the study was to assess the effectiveness of the adaptive statistical iterative reconstruction (ASIR) for dual-energy computed tomography pulmonary angiography (DE-CTPA) with a reduced iodine load. One hundred forty patients referred for chest CT were randomly divided into a DE-CTPA group with a reduced iodine load or a standard CTPA group. Quantitative and qualitative image qualities of virtual monochromatic spectral (VMS) images with filtered back projection (VMS-FBP) and those with 50% ASIR (VMS-ASIR) in the DE-CTPA group were compared. Image qualities of VMS-ASIR images in the DE-CTPA group and ASIR images in the standard CTPA group were also compared. All quantitative and qualitative indices, except attenuation value of pulmonary artery in the VMS-ASIR subgroup, were superior to those in the VMS-FBP subgroup (all P ASIR images were superior to those of ASIR images in the standard CTPA group (P ASIR images of the DE-CTPA group than in ASIR images of the standard CTPA group (P = 0.001). The ASIR technique tends to improve the image quality of VMS imaging. Dual-energy computed tomography pulmonary angiography with ASIR can reduce contrast medium volume and produce images of comparable quality with those of standard CTPA.

  1. A multislice single breath-hold scheme for imaging alveolar oxygen tension in humans.

    Science.gov (United States)

    Hamedani, Hooman; Kadlecek, Stephen J; Emami, Kiarash; Kuzma, Nicholas N; Xu, Yinan; Xin, Yi; Mongkolwisetwara, Puttisarn; Rajaei, Jennia; Barulic, Amy; Wilson Miller, G; Rossman, Milton; Ishii, Masaru; Rizi, Rahim R

    2012-05-01

    Reliable, noninvasive, and high-resolution imaging of alveolar partial pressure of oxygen (p(A)O(2)) is a potentially valuable tool in the early diagnosis of pulmonary diseases. Several techniques have been proposed for regional measurement of p(A)O(2) based on the increased depolarization rate of hyperpolarized (3) He. In this study, we explore one such technique by applying a multislice p(A)O(2) -imaging scheme that uses interleaved-slice ordering to utilize interslice time-delays more efficiently. This approach addresses the low spatial resolution and long breath-hold requirements of earlier techniques, allowing p(A)O(2) measurements to be made over the entire human lung in 10-15 s with a typical resolution of 8.3 × 8.3 × 15.6 mm(3). PO(2) measurements in a glass syringe phantom were in agreement with independent gas analysis within 4.7 ± 4.1% (R = 0.9993). The technique is demonstrated in four human subjects (healthy nonsmoker, healthy former smoker, healthy smoker, and patient with COPD), each imaged six times on 3 different days during a 2-week span. Two independent measurements were performed in each session, consisting of 12 coronal slices. The overall p(A)O(2) mean across all subjects was 95.9 ± 12.2 Torr and correlated well with end-tidal O(2) (R = 0.805, P < 0.0001). The alveolar O(2) uptake rate was consistent with the expected range of 1-2 Torr/s. Repeatable visual features were observed in p(A)O(2) maps over different days, as were characteristic differences among the subjects and gravity-dependent effects. Copyright © 2011 Wiley Periodicals, Inc.

  2. Pedunculated Pulmonary Artery Sarcoma Suggested by Transthoracic Echocardiography.

    Science.gov (United States)

    Wang, Xiaobing; Ren, Weidong; Yang, Jun

    2016-04-01

    Pulmonary artery sarcoma (PAS) is an extremely rare malignancy. It is usually found after it grows large enough to occupy almost the entire lumen of the pulmonary artery and causes serious clinical symptoms. Thus, it is usually difficult to distinguish PAS from pulmonary thromboembolism based on imaging examinations. Few case reports had shown the attachment of PAS to pulmonary artery, a key characteristic for diagnosis, and differential diagnosis of PAS. In this case, we found a PAS, which did not cause local obstruction and some tumor emboli, which obstructed the branches of the pulmonary arteries and caused pulmonary hypertension and clinical symptoms. Transthoracic echocardiography (TTE) revealed a part of the tumor attached to the intima of the main pulmonary artery with a peduncle and had obvious mobility, which was suggestive of PAS and differentiated it from the pulmonary thromboembolism. To our knowledge, this is the first case report of a pedunculated PAS suggested by TTE. Combined with pulmonary artery computed tomography angiography, the diagnosis of PAS is strongly suggested before the operation. This case indicates that TTE could reveal the attachment and mobility of PAS in the main pulmonary and may provide useful information for the diagnosis and differential diagnosis of PAS, especially a pedunculated PAS. © 2015, Wiley Periodicals, Inc.

  3. Quantitative analysis of pulmonary artery and pulmonary collaterals in preoperative patients with pulmonary artery atresia using dual-source computed tomography

    International Nuclear Information System (INIS)

    Yin Lei; Lu, Bin; Han Lei; Wu Runze; Johnson, Laura; Xu Zhongying; Jiang Shiliang; Dai Ruping

    2011-01-01

    Objective: To evaluate the value of dual-source computed tomography (DSCT) in quantitatively measuring pulmonary arteries and major aortopulmonary collateral vessels in comparison with conventional angiographic (CA) on preoperative patients with pulmonary artery atresia and ventricular septal defect (PAA-VSD). Materials and methods: Twenty PAA-VSD patients who had complete imaging data of DSCT, CA and echocardiography (ECHO) studies were retrospectively analyzed. Using final clinical diagnosis as the standard, results of DSCT, CA and ECHO on the detection of cardiac malformations, measurement of diameters of pulmonary artery and collateral vessel, as well as the values of McGoon ratio, pulmonary arterial index (PAI) and total neopulmonary arterial index (TNPAI) were derived and compared. Results: In 20 patients, 51 of 54 (94.4%) cardiac malformations were visualized by DSCT, whereas 42 (77.8%) by ECHO (p = 0.027). Fourteen cases with aortopulmonary collateral vessels were all (100%) detected by DSCT, whereas 5 cases (35.7%) by ECHO (p = 0.001), and 13 cases (92.9%) by CA (p = 0.995). Sixteen cases with confluence of native pulmonary arteries were diagnosed by DSCT, whereas 10 cases by CA (p = 0.024). Measurement of the diameters of pulmonary arteries, collateral vessels, and descending aorta at the level of diaphragm were correlated well between DSCT and CA (r = 0.95-0.99). McGoon ratio (DSCT = 1.18 ± 0.60, CA = 1.23 ± 0.64), PAI (DSCT = 130.96 ± 99.38 mm 2 /m 2 , CA = 140.91 ± 107.87 mm 2 /m 2 ) and TNPAI (DSCT = 160.31 ± 125.62 mm 2 /m 2 , CA = 169.14 ± 122.81 mm 2 /m 2 ) were calculated respectively, without significant differences between DSCT and CA by paired t-tests (all p > 0.05). Conclusion: DSCT was efficient for evaluating and measuring native pulmonary artery and aortopulmonary collateral vessels prior to surgical procedures in PAA-VSD patients. Combined with echocardiography, DSCT showed potential to replace CA for evaluating pulmonary artery

  4. Computer-aided detection and automated CT volumetry of pulmonary nodules

    International Nuclear Information System (INIS)

    Marten, Katharina; Engelke, Christoph

    2007-01-01

    With use of multislice computed tomography (MSCT), small pulmonary nodules are being detected in vast numbers, constituting the majority of all noncalcified lung nodules. Although the prevalence of lung cancers among such lesions in lung cancer screening populations is low, their isolation may contribute to increased patient survival. Computer-aided diagnosis (CAD) has emerged as a diverse set of diagnostic tools to handle the large number of images in MSCT datasets and most importantly, includes automated detection and volumetry of pulmonary nodules. Current CAD systems can significantly enhance experienced radiologists' performance and outweigh human limitations in identifying small lesions and manually measuring their diameters, augment observer consistency in the interpretation of such examinations and may thus help to detect significantly higher rates of early malignomas and give more precise estimates on chemotherapy response than can radiologists alone. In this review, we give an overview of current CAD in lung nodule detection and volumetry and discuss their relative merits and limitations. (orig.)

  5. Comparative diagnostic value of pulmonary perfusion and ventilation scintigraphy and angiopneumography in pulmonary embolism

    International Nuclear Information System (INIS)

    Peltier, P.; Cesbron, J.P.; Dupas, B.; Crochet, D.; Delhumeau, J.

    1984-01-01

    Fourty-six patients suspected clinically of having a pulmonary embolism (PE) were investigated by angiopneumography (AGP) and perfusion (99m-Tc aggregates) and ventilation (99m-Tc colloid) scintigraohy (SPV Tc). Findings were assessed under blind conditions. A positive diagnosis of pulmonary embolism was made in 19 patients. The SPV Tc was considered as positive if perfusional deficiencies were greater than ventilatory defects, and this was evaluated as such in 23 cases (19 true and 4 false positives). False negatives were not observed. The 4 false positive results corresponded to scintigraphic anomalies suggestive of pulmonary emboli subsegmental in size; true positives were either subsegmental (8), segmental (6) or lobar (5). Sensitivity of the SPV Tc was therefore 100 %; its specificity, all results considered was 76 %, but was 100 % if only images of lobar or segmental lesions are considered [fr

  6. Labeling the pulmonary arterial tree in CT images for automatic quantification of pulmonary embolism

    NARCIS (Netherlands)

    Peters, R.J.M.; Marquering, H.A.; Dogan, H.; Hendriks, E.A.; De Roos, A.; Reiber, J.H.C.; Stoel, B.C.

    2007-01-01

    Contrast-enhanced CT Angiography has become an accepted diagnostic tool for detecting Pulmonary Embolism (PE). The CT obstruction index proposed by Qanadli, which is based on the number of obstructed arterial segments, enables the quantification of PE severity. Because the required manual

  7. Pulmonary Hypertension and Pulmonary Vasodilators.

    Science.gov (United States)

    Keller, Roberta L

    2016-03-01

    Pulmonary hypertension in the perinatal period can present acutely (persistent pulmonary hypertension of the newborn) or chronically. Clinical and echocardiographic diagnosis of acute pulmonary hypertension is well accepted but there are no broadly validated criteria for echocardiographic diagnosis of pulmonary hypertension later in the clinical course, although there are significant populations of infants with lung disease at risk for this diagnosis. Contributing cardiovascular comorbidities are common in infants with pulmonary hypertension and lung disease. It is not clear who should be treated without confirmation of pulmonary vascular disease by cardiac catheterization, with concurrent evaluation of any contributing cardiovascular comorbidities. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Imaging of pulmonary vein anatomy using low-dose prospective ECG-triggered dual-source computed tomography

    International Nuclear Information System (INIS)

    Blanke, Philipp; Baumann, Tobias; Langer, Mathias; Pache, Gregor

    2010-01-01

    To prospectively investigate the feasibility, image quality and radiation dose estimates for computed tomography angiography (CTA) of the pulmonary veins and left atrium using prospective electrocardiography (ECG)-triggered sequential dual-source (DS) data acquisition at end-systole in patients with paroxysmal atrial fibrillation undergoing radiofrequency ablation. Thirty-five patients (mean age 66.2 ± 12.6 years) with paroxysmal atrial fibrillation underwent prospective ECG-triggered sequential DS-CTA with tube current (250 mAs/rotation) centred 250 ms past the R-peak. Tube voltage was adjusted to the BMI ( 2 : 100 kV, >25 kg/m 2 : 120 kV). Presence of motion or stair-step artefacts was assessed. Effective radiation dose was calculated from the dose-length product. All data sets could be integrated into the electroanatomical mapping system. Twenty-two patients (63%) were in sinus rhythm (mean heart rate 69.2 ± 11.1 bpm, variability 1.0 ± 1.7 bpm) and 13 (37%) showed an ECG pattern of atrial fibrillation (mean heart rate 84.8 ± 16.6 bpm, variability 17.9 ± 7.5 bpm). Minor step artefacts were observed in three patients (23%) with atrial fibrillation. Mean estimated effective dose was 1.1 ± 0.3 and 3.0 ± 0.5 mSv for 100 and 120 kV respectively. Imaging of pulmonary vein anatomy is feasible using prospective ECG-triggered sequential data acquisition at end-systole regardless of heart rate or rhythm at the benefit of low radiation dose. (orig.)

  9. Primed infusion with delayed equilibrium of Gd.DTPA for enhanced imaging of small pulmonary metastases.

    Science.gov (United States)

    Kalber, Tammy L; Campbell-Washburn, Adrienne E; Siow, Bernard M; Sage, Elizabeth; Price, Anthony N; Ordidge, Katherine L; Walker-Samuel, Simon; Janes, Sam M; Lythgoe, Mark F

    2013-01-01

    To use primed infusions of the magnetic resonance imaging (MRI) contrast agent Gd.DTPA (Magnevist), to achieve an equilibrium between blood and tissue (eqMRI). This may increase tumor Gd concentrations as a novel cancer imaging methodology for the enhancement of small tumor nodules within the low signal-to-noise background of the lung. A primed infusion with a delay before equilibrium (eqMRI) of the Gd(III) chelator Gd.DTPA, via the intraperitoneal route, was used to evaluate gadolinium tumor enhancement as a function of a bolus injection, which is applied routinely in the clinic, compared to gadolinium maintained at equilibrium. A double gated (respiration and cardiac) spin-echo sequence at 9.4T was used to evaluate whole lungs pre contrast and then at 15 (representative of bolus enhancement), 25 and 35 minutes (representative of eqMRI). This was carried out in two lung metastasis models representative of high and low tumor cell seeding. Lungs containing discrete tumor nodes where inflation fixed and taken for haematoxylin and eosin staining as well as CD34 staining for correlation to MRI. We demonstrate that sustained Gd enhancement, afforded by Gd equilibrium, increases the detection of pulmonary metastases compared to bolus enhancement and those tumors which enhance at equilibrium are sub-millimetre in size (<0.7 mm(2)) with a similar morphology to early bronchoalveolar cell carcinomas. As Gd-chelates are routinely used in the clinic for detecting tumors by MRI, this methodology is readily transferable to the clinic and advances MRI as a methodology for the detection of small pulmonary tumors.

  10. Improved diagnosis of pulmonary emphysema using in vivo dark-field radiography.

    Science.gov (United States)

    Meinel, Felix G; Yaroshenko, Andre; Hellbach, Katharina; Bech, Martin; Müller, Mark; Velroyen, Astrid; Bamberg, Fabian; Eickelberg, Oliver; Nikolaou, Konstantin; Reiser, Maximilian F; Pfeiffer, Franz; Yildirim, Ali Ö

    2014-10-01

    The purpose of this study was to assess whether the recently developed method of grating-based x-ray dark-field radiography can improve the diagnosis of pulmonary emphysema in vivo. Pulmonary emphysema was induced in female C57BL/6N mice using endotracheal instillation of porcine pancreatic elastase and confirmed by in vivo pulmonary function tests, histopathology, and quantitative morphometry. The mice were anesthetized but breathing freely during imaging. Experiments were performed using a prototype small-animal x-ray dark-field scanner that was operated at 35 kilovolt (peak) with an exposure time of 5 seconds for each of the 10 grating steps. Images were compared visually. For quantitative comparison of signal characteristics, regions of interest were placed in the upper, middle, and lower zones of each lung. Receiver-operating-characteristic statistics were performed to compare the effectiveness of transmission and dark-field signal intensities and the combined parameter "normalized scatter" to differentiate between healthy and emphysematous lungs. A clear visual difference between healthy and emphysematous mice was found for the dark-field images. Quantitative measurements of x-ray dark-field signal and normalized scatter were significantly different between the mice with pulmonary emphysema and the control mice and showed good agreement with pulmonary function tests and quantitative histology. The normalized scatter showed a significantly higher discriminatory power (area under the receiver-operating-characteristic curve [AUC], 0.99) than dark-field (AUC, 0.90; P = 0.01) or transmission signal (AUC, 0.69; P pulmonary emphysema.

  11. Use of spiral CT angiography to judge central pulmonary vascular involvement from lung cancer

    International Nuclear Information System (INIS)

    Tan Qunyou; Zhao Shaohong; Wang Fangze; Cai Zulong

    2000-01-01

    Objective: To evaluate the accuracy of spiral CT angiography (SCTA) in judging central pulmonary vascular involvement from lung cancer located in the hilum and correlate the resultant images with pathologic and surgical findings. Methods: SCTA was done in 33 patients who were preoperatively diagnosed as having lung carcinoma located in the hilum. Contrast medium was injected at a rate of 3 ml/sec with a power injector. The delay time was from 20 to 25 seconds. The pitch was 1 with 3 mm-collimation. Images of central pu