WorldWideScience

Sample records for human protozoan parasite

  1. Human parasitic protozoan infection to infertility: a systematic review.

    Science.gov (United States)

    Shiadeh, Malihe Nourollahpour; Niyyati, Maryam; Fallahi, Shirzad; Rostami, Ali

    2016-02-01

    Protozoan parasitic diseases are endemic in many countries worldwide, especially in developing countries, where infertility is a major burden. It has been reported that such infections may cause infertility through impairment in male and female reproductive systems. We searched Medline, PubMed, and Scopus databases and Google scholar to identify the potentially relevant studies on protozoan parasitic infections and their implications in human and animal model infertility. Literature described that some of the protozoan parasites such as Trichomonas vaginalis may cause deformities of the genital tract, cervical neoplasia, and tubal and atypical pelvic inflammations in women and also non-gonoccocal urethritis, asthenozoospermia, and teratozoospermia in men. Toxopalasma gondii could cause endometritis, impaired folliculogenesis, ovarian and uterine atrophy, adrenal hypertrophy, vasculitis, and cessation of estrus cycling in female and also decrease in semen quality, concentration, and motility in male. Trypanosoma cruzi inhibits cell division in embryos and impairs normal implantation and development of placenta. Decrease in gestation rate, infection of hormone-producing glands, parasite invasion of the placenta, and overproduction of inflammatory cytokines in the oviducts and uterine horns are other possible mechanisms induced by Trypanosoma cruzi to infertility. Plasmodium spp. and Trypanosoma brucei spp. cause damage in pituitary gland, hormonal disorders, and decreased semen quality. Entamoeba histolytica infection leads to pelvic pain, salpingitis, tubo-ovarian abscess, and genital ulcers. Cutaneous and visceral leishmaniasis can induce genital lesion, testicular amyloidosis, inflammation of epididymis, prostatitis, and sperm abnormality in human and animals. In addition, some epidemiological studies have reported that rates of protozoan infections in infertile patients are higher than healthy controls. The current review indicates that protozoan parasitic

  2. Apoptotic markers in protozoan parasites

    Directory of Open Access Journals (Sweden)

    Fasel Nicolas

    2010-11-01

    Full Text Available Abstract The execution of the apoptotic death program in metazoans is characterized by a sequence of morphological and biochemical changes that include cell shrinkage, presentation of phosphatidylserine at the cell surface, mitochondrial alterations, chromatin condensation, nuclear fragmentation, membrane blebbing and the formation of apoptotic bodies. Methodologies for measuring apoptosis are based on these markers. Except for membrane blebbing and formation of apoptotic bodies, all other events have been observed in most protozoan parasites undergoing cell death. However, while techniques exist to detect these markers, they are often optimised for metazoan cells and therefore may not pick up subtle differences between the events occurring in unicellular organisms and multi-cellular organisms. In this review we discuss the markers most frequently used to analyze cell death in protozoan parasites, paying special attention to changes in cell morphology, mitochondrial activity, chromatin structure and plasma membrane structure/permeability. Regarding classical regulators/executors of apoptosis, we have reviewed the present knowledge of caspase-like and nuclease activities.

  3. Molecular characterization of intestinal protozoan parasites from ...

    African Journals Online (AJOL)

    Koffi Mathurin

    2014-02-17

    Feb 17, 2014 ... three major protozoan parasites which cause diarrhea. Out of ... 2010) regarding the under 5 mortality rate (U5MR) and .... Positive (%) Negative Total ..... Checkley W, Epstein LD, Gilman RH, Black RE, Cabrera L, Sterling CR.

  4. IMPORTANT PROTOZOAN PARASITES IN INDONESIA

    Directory of Open Access Journals (Sweden)

    Srisasi Gandahusada

    2012-09-01

    Full Text Available The most important protozoan parasites in Indonesia are the malaria parasites, Toxoplasma gondii and Entamoeba histolytica. After the second world war the residual insecticides and effective antimalarial drugs were used in the control of malaria. After development of resistance among mosquitoes to insecticides, the Malaria Control Programme was switched over to the Malaria Eradication Programme. Malaria incidence dropped heavily. However, due to the quick development of vector resistance and financial limitations, malaria came back and so did the Malaria Control Programme. P. falciparum and P.vivax are the most common species in Indonesia. Important vectors are An. sundaicus, An. aconitus, An. maculatus, An. hyrcanus group, An. balabacensis, An. farauti etc. An. sundaicus and An. aconitus have developed resistance to DDT and Dieldrin in Java. In 1959 the Malaria Eradication Programme was started in Java, Bali and Lampung. In 1965 the API dropped to 0,15 per thousand. From 1966 onwards malaria transmission was on the increase, because spraying activities were slowed down, but dropped again from 1974 onwards by occasional residual house spraying with DDT or Fenitrothion, malaria surveillance and treatment of malaria cases, resulting in an API of 0.18 per thousand in 1987. At present malaria is not transmitted in Jakarta and in capitals of the provinces and kabupatens, except in Irian Jaya, Nusa Tenggara Timur and one or two other provinces, but it still exists in rural areas. The distribution of chloroquine resistant P.falciparum is patchy. Resistance is at the RI, RII and RUT levels. The main problems of malaria control are : the increasing development of resistance of the vector to insecticides, the change of An.aconitus from zoophili to anthropophili and from indoor to outdoor biting, the increasing resistance of P.falciparum to chloroquine, the shortage of skilled manpower and limitation of budget. In Indonesia many newborns with congenital

  5. Dysfunctions at human intestinal barrier by water-borne protozoan parasites: lessons from cultured human fully differentiated colon cancer cell lines.

    Science.gov (United States)

    Liévin-Le Moal, Vanessa

    2013-06-01

    Some water-borne protozoan parasites induce diseases through their membrane-associated functional structures and virulence factors that hijack the host cellular molecules and signalling pathways leading to structural and functional lesions in the intestinal barrier. In this Microreview we analyse the insights on the mechanisms of pathogenesis of Entamoeba intestinalis, Giardia and Cryptosporidium observed in the human colon carcinoma fully differentiated colon cancer cell lines, cell subpopulations and clones expressing the structural and functional characteristics of highly specialized fully differentiated epithelial cells lining the intestinal epithelium and mimicking structurally and functionally an intestinal barrier. © 2013 John Wiley & Sons Ltd.

  6. Homologous Recombination in Protozoan Parasites and Recombinase Inhibitors

    Directory of Open Access Journals (Sweden)

    Andrew A. Kelso

    2017-09-01

    Full Text Available Homologous recombination (HR is a DNA double-strand break (DSB repair pathway that utilizes a homologous template to fully repair the damaged DNA. HR is critical to maintain genome stability and to ensure genetic diversity during meiosis. A specialized class of enzymes known as recombinases facilitate the exchange of genetic information between sister chromatids or homologous chromosomes with the help of numerous protein accessory factors. The majority of the HR machinery is highly conserved among eukaryotes. In many protozoan parasites, HR is an essential DSB repair pathway that allows these organisms to adapt to environmental conditions and evade host immune systems through genetic recombination. Therefore, small molecule inhibitors, capable of disrupting HR in protozoan parasites, represent potential therapeutic options. A number of small molecule inhibitors were identified that disrupt the activities of the human recombinase RAD51. Recent studies have examined the effect of two of these molecules on the Entamoeba recombinases. Here, we discuss the current understandings of HR in the protozoan parasites Trypanosoma, Leishmania, Plasmodium, and Entamoeba, and we review the small molecule inhibitors known to disrupt human RAD51 activity.

  7. Molecular detection of protozoan parasites in ticks infesting cattle ...

    African Journals Online (AJOL)

    An assessment of protozoan parasite load in the ticks infesting cattle entering the country by hooves through a major trans-boundary route in Ogun State was carried out using ... This is the first report on protozoan parasites detected in ticks infesting cattle entering Nigeria through a major trans-boundary route in Nigeria.

  8. Drug target identification in protozoan parasites.

    Science.gov (United States)

    Müller, Joachim; Hemphill, Andrew

    2016-08-01

    Despite the fact that diseases caused by protozoan parasites represent serious challenges for public health, animal production and welfare, only a limited panel of drugs has been marketed for clinical applications. Herein, the authors investigate two strategies, namely whole organism screening and target-based drug design. The present pharmacopoeia has resulted from whole organism screening, and the mode of action and targets of selected drugs are discussed. However, the more recent extensive genome sequencing efforts and the development of dry and wet lab genomics and proteomics that allow high-throughput screening of interactions between micromolecules and recombinant proteins has resulted in target-based drug design as the predominant focus in anti-parasitic drug development. Selected examples of target-based drug design studies are presented, and calcium-dependent protein kinases, important drug targets in apicomplexan parasites, are discussed in more detail. Despite the enormous efforts in target-based drug development, this approach has not yet generated market-ready antiprotozoal drugs. However, whole-organism screening approaches, comprising of both in vitro and in vivo investigations, should not be disregarded. The repurposing of already approved and marketed drugs could be a suitable strategy to avoid fastidious approval procedures, especially in the case of neglected or veterinary parasitoses.

  9. Cancer in the parasitic protozoans Trypanosoma brucei and Toxoplasma gondii.

    Science.gov (United States)

    Lun, Zhao-Rong; Lai, De-Hua; Wen, Yan-Zi; Zheng, Ling-Ling; Shen, Ji-Long; Yang, Ting-Bo; Zhou, Wen-Liang; Qu, Liang-Hu; Hide, Geoff; Ayala, Francisco J

    2015-07-21

    Cancer is a general name for more than 100 malignant diseases. It is postulated that all cancers start from a single abnormal cell that grows out of control. Untreated cancers can cause serious consequences and deaths. Great progress has been made in cancer research that has significantly improved our knowledge and understanding of the nature and mechanisms of the disease, but the origins of cancer are far from being well understood due to the limitations of suitable model systems and to the complexities of the disease. In view of the fact that cancers are found in various species of vertebrates and other metazoa, here, we suggest that cancer also occurs in parasitic protozoans such as Trypanosoma brucei, a blood parasite, and Toxoplasma gondii, an obligate intracellular pathogen. Without treatment, these protozoan cancers may cause severe disease and death in mammals, including humans. The simpler genomes of these single-cell organisms, in combination with their complex life cycles and fascinating life cycle differentiation processes, may help us to better understand the origins of cancers and, in particular, leukemias.

  10. Blood protozoan parasites of rodents in Jos, Plateau State, Nigerai ...

    African Journals Online (AJOL)

    One hundred and thirty rodents, comprising nine different species caught from seven different locations in Jos, Nigeria, were examined for blood protozoan parasites, and 82(63.08%) were positive, with Plasmodium 63(48.46%), Trypanosoma 4(3.08%), Toxoplasma 6(4.62%), Babesia 7(5.38%) and Anaplasma 2(1.54%).

  11. The past, present and future of fluorescent protein tags in anaerobic protozoan parasites.

    Science.gov (United States)

    Morin-Adeline, Victoria; Šlapeta, Jan

    2016-03-01

    The world health organization currently recognizes diarrhoeal diseases as a significant cause of death in children globally. Protozoan parasites such as Giardia and Entamoeba that thrive in the oxygen-deprived environment of the human gut are common etiological agents of diarrhoea. In the urogenital tract of humans, the anaerobic protozoan parasite Trichomonas vaginalis is notorious as the most common non-viral, sexually transmitted pathogen. Even with high medical impact, our understanding of anaerobic parasite physiology is scarce and as a result, treatment choices are limited. Fluorescent proteins (FPs) are invaluable tools as genetically encoded protein tags for advancing knowledge of cellular function. These FP tags emit fluorescent colours and once attached to a protein of interest, allow tracking of parasite proteins in the dynamic cellular space. Application of green FPs-like FPs in anaerobic protozoans is hindered by their oxygen dependency. In this review, we examine aspects of anaerobic parasite biology that clash with physio-chemical properties of FPs and limit their use as live-parasite protein tags. We expose novel FPs, such as miniSOG that do not require oxygen for signal production. The potential use of novel FPs has the opportunity to leverage the anaerobe parasitologist toolkit to that of aerobe parasitologist.

  12. Involvement of the actin cytoskeleton and p21rho-family GTPases in the pathogenesis of the human protozoan parasite Entamoeba histolytica

    Directory of Open Access Journals (Sweden)

    G.D. Godbold

    1998-08-01

    Full Text Available It has been estimated that infection with the enteric protozoan parasite Entamoeba histolytica kills more than 50,000 people a year. Central to the pathogenesis of this organism is its ability to directly lyse host cells and cause tissue destruction. Amebic lesions show evidence of cell lysis, tissue necrosis, and damage to the extracellular matrix. The specific molecular mechanisms by which these events are initiated, transmitted, and effected are just beginning to be uncovered. In this article we review what is known about host cell adherence and contact-dependent cytolysis. We cover the involvement of the actin cytoskeleton and small GTP-binding proteins of the p21rho-family in the process of cell killing and phagocytosis, and also look at how amebic interactions with molecules of the extracellular matrix contribute to its cytopathic effects.

  13. Impact and control of protozoan parasites in maricultured fishes.

    Science.gov (United States)

    Buchmann, Kurt

    2015-01-01

    Aquaculture, including both freshwater and marine production, has on a world scale exhibited one of the highest growth rates within animal protein production during recent decades and is expected to expand further at the same rate within the next 10 years. Control of diseases is one of the most prominent challenges if this production goal is to be reached. Apart from viral, bacterial, fungal and metazoan infections it has been documented that protozoan parasites affect health and welfare and thereby production of fish in marine aquaculture. Representatives within the main protozoan groups such as amoebae, dinoflagellates, kinetoplastid flagellates, diplomonadid flagellates, apicomplexans, microsporidians and ciliates have been shown to cause severe morbidity and mortality among farmed fish. Well studied examples are Neoparamoeba perurans, Amyloodinium ocellatum, Spironucleus salmonicida, Ichthyobodo necator, Cryptobia salmositica, Loma salmonae, Cryptocaryon irritans, Miamiensis avidus and Trichodina jadranica. The present report provides details on the parasites' biology and impact on productivity and evaluates tools for diagnosis, control and management. Special emphasis is placed on antiprotozoan immune responses in fish and a strategy for development of vaccines is presented.

  14. Genome and transcriptome studies of the protozoan parasites Trypanosoma cruzi and Giardia intestinalis

    OpenAIRE

    Franzén, Oscar

    2012-01-01

    Trypanosoma cruzi and Giardia intestinalis are two human pathogens and protozoan parasites responsible for the diseases Chagas disease and giardiasis, respectively. Both diseases cause su ering and illness in several million individuals. The former disease occurs primarily in South America and Central America, and the latter disease occurs worldwide. Current therapeutics are toxic and lack e cacy, and potential vaccines are far from the market. Increased knowledge about the bio...

  15. Seroprevalence rates of antibodies againstLeishmania infantum and other protozoan and rickettsial parasites in dogs

    Directory of Open Access Journals (Sweden)

    Silvana de Cássia Paulan

    Full Text Available Canine visceral leishmaniasis (CVL is caused by the protozoan Leishmania infantum, which infects dogs and humans in many regions of Brazil. The present study involved an indirect fluorescent antibody test (IFAT to analyze L. infantum,Ehrlichia spp., Babesia canis,Toxoplasma gondii and Neospora caninuminfection rates in serum samples from 93 dogs in a rural settlement in Ilha Solteira, SP, Brazil. The seroprevalence rates of anti-L. infantum, anti-Ehrlichia, anti-B. canis, anti-T. gondii and anti-N. caninum antibodies were 37.6%, 75.3%, 72%, 47.3% and 6.4%, respectively. In addition to IFAT, direct microscopic examination of popliteal lymph node aspirates revealed 26.9% of CVL positive dogs. Serological tests revealed that 17.2% of the dogs were seropositive for a single parasite, 29% for two parasites, 33% for three, 16.1% for four, and 1.1% for five parasites, while 3.2% were seronegative for five parasites. The presence of antibodies against these parasites in serum samples from dogs confirmed their exposure to these parasites in this rural area. Because of the potential zoonotic risk of these diseases, mainly leishmaniasis, ehrlichiosis and toxoplasmosis, special attention should focus on programs for the improvement of diagnostic assays and control measures against these parasites.

  16. Role of the Ubiquitin-Proteasome Systems in the Biology and Virulence of Protozoan Parasites

    Directory of Open Access Journals (Sweden)

    Christian Muñoz

    2015-01-01

    Full Text Available In eukaryotic cells, proteasomes perform crucial roles in many cellular pathways by degrading proteins to enforce quality control and regulate many cellular processes such as cell cycle progression, signal transduction, cell death, immune responses, metabolism, protein-quality control, and development. The catalytic heart of these complexes, the 20S proteasome, is highly conserved in bacteria, yeast, and humans. However, until a few years ago, the role of proteasomes in parasite biology was completely unknown. Here, we summarize findings about the role of proteasomes in protozoan parasites biology and virulence. Several reports have confirmed the role of proteasomes in parasite biological processes such as cell differentiation, cell cycle, proliferation, and encystation. Proliferation and cell differentiation are key steps in host colonization. Considering the importance of proteasomes in both processes in many different parasites such as Trypanosoma, Leishmania, Toxoplasma, and Entamoeba, parasite proteasomes might serve as virulence factors. Several pieces of evidence strongly suggest that the ubiquitin-proteasome pathway is also a viable parasitic therapeutic target. Research in recent years has shown that the proteasome is a valid drug target for sleeping sickness and malaria. Then, proteasomes are a key organelle in parasite biology and virulence and appear to be an attractive new chemotherapeutic target.

  17. Incidence of adult brain cancers is higher in countries where the protozoan parasite Toxoplasma gondii is common

    OpenAIRE

    Thomas, Frédéric; Lafferty, Kevin D.; Brodeur, Jacques; Elguero, Eric; Gauthier-Clerc, Michel; Missé, Dorothée

    2011-01-01

    We explored associations between the common protozoan parasite Toxoplasma gondii and brain cancers in human populations. We predicted that T. gondii could increase the risk of brain cancer because it is a long-lived parasite that encysts in the brain, where it provokes inflammation and inhibits apoptosis. We used a medical geography approach based on the national incidence of brain cancers and seroprevalence of T. gondii. We corrected reports of incidence for national gross domestic product b...

  18. Targeting channels and transporters in protozoan parasite infections

    Science.gov (United States)

    Meier, Anna; Erler, Holger; Beitz, Eric

    2018-03-01

    Infectious diseases caused by pathogenic protozoa are among the most significant causes of death in humans. Therapeutic options are scarce and massively challenged by the emergence of resistant parasite strains. Many of the current anti-parasite drugs target soluble enzymes, generate unspecific oxidative stress, or act by an unresolved mechanism within the parasite. In recent years, collections of drug-like compounds derived from large-scale phenotypic screenings, such as the malaria or pathogen box, have been made available to researchers free of charge boosting the identification of novel promising targets. Remarkably, several of the compound hits have been found to inhibit membrane proteins at the periphery of the parasites, i.e. channels and transporters for ions and metabolites. In this review, we will focus on the progress made on targeting channels and transporters at different levels and the potential for use against infections with apicomplexan parasites mainly Plasmodium spp. (malaria) and Toxoplasma gondii (toxoplasmosis), with kinetoplastids Trypanosoma brucei (sleeping sickness), Trypanosoma cruzi (Chagas disease) and Leishmania ssp. (leishmaniasis), and the amoeba Entamoeba histolytica (amoebiasis).

  19. Evolution of apoptosis-like programmed cell death in unicellular protozoan parasites.

    Science.gov (United States)

    Kaczanowski, Szymon; Sajid, Mohammed; Reece, Sarah E

    2011-03-25

    Apoptosis-like programmed cell death (PCD) has recently been described in multiple taxa of unicellular protists, including the protozoan parasites Plasmodium, Trypanosoma and Leishmania. Apoptosis-like PCD in protozoan parasites shares a number of morphological features with programmed cell death in multicellular organisms. However, both the evolutionary explanations and mechanisms involved in parasite PCD are poorly understood. Explaining why unicellular organisms appear to undergo 'suicide' is a challenge for evolutionary biology and uncovering death executors and pathways is a challenge for molecular and cell biology. Bioinformatics has the potential to integrate these approaches by revealing homologies in the PCD machinery of diverse taxa and evaluating their evolutionary trajectories. As the molecular mechanisms of apoptosis in model organisms are well characterised, and recent data suggest similar mechanisms operate in protozoan parasites, key questions can now be addressed. These questions include: which elements of apoptosis machinery appear to be shared between protozoan parasites and multicellular taxa and, have these mechanisms arisen through convergent or divergent evolution? We use bioinformatics to address these questions and our analyses suggest that apoptosis mechanisms in protozoan parasites and other taxa have diverged during their evolution, that some apoptosis factors are shared across taxa whilst others have been replaced by proteins with similar biochemical activities.

  20. ANTIOXIDANT ENZYMES, POTENTIAL VIRULENT FACTORS, IN DIFFERENT STRAINS OF THE OYSTER PROTOZOAN PARASITE, PERKINSUS MARINUS

    Science.gov (United States)

    The oyster protozoan parasite, Perkinsus marinus, is one of the two important parasites causing severe mortality in the eastern oysters (Crassostrea virginica) on the US east coast. Our recent study suggests that P. marinus cells and its extracellular products (ECP) could scaveng...

  1. Intestinal protozoan parasites with zoonotic potential in birds.

    Science.gov (United States)

    Marietto-Gonçalves, G A; Fernandes, T M; Silva, R J; Lopes, R S; Andreatti Filho, R L

    2008-10-01

    The aim of this study was to evaluate the occurrence of potentially zoonotic intestinal protozoan infections in exotic and wildlife Brazilian birds. Fecal samples from 207 birds of 45 species were examined. Infections by Balantidium sp., Entamoeba sp., and Blastocystis sp. were observed in 17 individuals (8.2%) of Gnorimopsar chopi, Oryzoborus angolensis, Sporophila caerulescens, Ramphastos toco, Aratinga leucophtalmus, and Pavo cristatus.

  2. The Occurrence of Some Nonblood Protozoan Parasites in Wild and Domestic Mammals in South Africa.

    Science.gov (United States)

    Lukášová, Radka; Halajian, Ali; Bártová, Eva; Kobédová, Kateřina; Swanepoel, Lourens H; O'Riain, M Justin

    2018-04-01

    Relatively little is known about protozoan parasites in African animals. Here we investigated the occurrence of protozoan parasites in mammals from South Africa. Oocysts of protozoan parasites were detected in 13 of 56 (23%) fecal samples using conventional microscopic examination methods. Cryptosporidium spp. and Cystoisospora spp. were detected in eight (14%) and five (9%) samples, respectively. Mixed parasitic infection of Cryptosporidium spp. and Cystoisospora spp. was recorded in banded mongoose ( Mungos mungo). Cryptosporidium spp. was detected for the first time in cheetah ( Acinonyx jubatus), spotted hyena ( Crocuta crocuta), and African polecat ( Ictonyx striatus). Antibodies to Toxoplasma gondii and Neospora caninum were not detected by enzyme-linked immunosorbent assay in any of 32 sera tested. We detected T. gondii by PCR in tissues of five of 243 (2%) animals: domestic dog ( Canis lupus familiaris), gerbil ( Gerbilliscus spp.), greater kudu ( Tragelaphus strepsiceros), honey badger ( Mellivora capensis), and white-tailed mongoose ( Ichneumia albicauda). Our isolation of T. gondii from white-tailed mongoose and honey badger was a unique finding. All tissue samples were negative for N. caninum. The study increases our knowledge on the occurrence of protozoan parasites in populations of wild and domestic animals in South Africa.

  3. DETECTION OF PROTOZOAN PARASITES IN SOURCE AND FINISHED WATER - 3RD EDITION ASM'S METHODS IN ENVIRONMENTAL MICROBIOLOGY

    Science.gov (United States)

    Protozoans are eukaryotic organisms which can live either a free-living or parasitic existence. Some free-living forms, under the right conditions, can become opportunistic parasites. Enteric pathogenic protozoans, like Giardia and Cryptosporidium, which are now known to be tra...

  4. Parasites and cancer: a review of the emergence of protozoan ...

    African Journals Online (AJOL)

    The role of infectious agents in the formation of cancers has been long established. However the bulk of the emphasis has been on oncogenic DNA viruses and to a lesser extent, bacteria. However,amidst parasites, only a few metazoans have been linked to cancer, and with feeble molecular bases. This review explores the ...

  5. Protozoan parasites of four species of wild anurans from a local zoo in Malaysia.

    Science.gov (United States)

    Mohammad, K N; Badrul, M M; Mohamad, N; Zainal-Abidin, A H

    2013-12-01

    The parasitic protozoan fauna in sixty-six anurans comprising of Duttaphrynus melanostictus, Phrynoidis juxtaspera, Hylarana erythraea and Polypedates leucomystax collected from Zoo Negara Malaysia was investigated. The distribution and prevalence rate of parasitic species in the digestive tract and blood were examined. Seven species of intestinal protozoa (Opalina ranarum, Cepedea dimidiata, Nycthetorus cordiformis, Entamoeba ranarum, Iodamoeba butschlii, Endamoeba blattae, and Tritrichomonas sp.) and two species of blood protozoa (Lankesterella sp. and Trypanosoma sp.) were recorded. Opalina ranarum was the most common protozoan found in the rectum and intestine (prevalence rate: 34.8%) infecting all host species, with P. juxtaspera heavily infected with the parasite, whereas Tritrichomonas sp. was the least prevalent intestinal species infecting only D. melanostictus. Both Lankesterella sp. and Trypanosoma sp. were found in the blood of H. erythraea.

  6. Cupiennin 1a exhibits a remarkably broad, non-stereospecific cytolytic activity on bacteria, protozoan parasites, insects, and human cancer cells.

    Science.gov (United States)

    Kuhn-Nentwig, Lucia; Willems, Jean; Seebeck, Thomas; Shalaby, Tarek; Kaiser, Marcel; Nentwig, Wolfgang

    2011-01-01

    Cupiennin 1a, a cytolytic peptide isolated from the venom of the spider Cupiennius salei, exhibits broad membranolytic activity towards bacteria, trypanosomes, and plasmodia, as well as human blood and cancer cells. In analysing the cytolytic activity of synthesised all-D: - and all-L: -cupiennin 1a towards pro- and eukaryotic cells, a stereospecific mode of membrane destruction could be excluded. The importance of negatively charged sialic acids on the outer leaflet of erythrocytes for the binding and haemolytic activity of L: -cupiennin 1a was demonstrated. Reducing the overall negative charges of erythrocytes by partially removing their sialic acids or by protecting them with tri- or pentalysine results in reduced haemolytic activity of the peptide.

  7. Polymeric immunoglobulin receptor in intestinal immune defense against the lumen-dwelling protozoan parasite Giardia.

    Science.gov (United States)

    Davids, Barbara J; Palm, J E Daniel; Housley, Michael P; Smith, Jennifer R; Andersen, Yolanda S; Martin, Martin G; Hendrickson, Barbara A; Johansen, Finn-Eirik; Svärd, Staffan G; Gillin, Frances D; Eckmann, Lars

    2006-11-01

    The polymeric Ig receptor (pIgR) is conserved in mammals and has an avian homologue, suggesting evolutionarily important functions in vertebrates. It transports multimeric IgA and IgM across polarized epithelia and is highly expressed in the intestine, yet little direct evidence exists for its importance in defense against common enteric pathogens. In this study, we demonstrate that pIgR can play a critical role in intestinal defense against the lumen-dwelling protozoan parasite Giardia, a leading cause of diarrheal disease. The receptor was essential for the eradication of Giardia when high luminal IgA levels were required. Clearance of Giardia muris, in which IgA plays a dominant role, was severely compromised in pIgR-deficient mice despite significant fecal IgA output at 10% of normal levels. In contrast, eradication of the human strain Giardia lamblia GS/M, for which adaptive immunity is less IgA dependent in mice, was unaffected by pIgR deficiency, indicating that pIgR had no physiologic role when lower luminal IgA levels were sufficient for parasite elimination. Immune IgA was greatly increased in the serum of pIgR-deficient mice, conferred passive protection against Giardia, and recognized several conserved giardial Ags, including ornithine carbamoyltransferase, arginine deiminase, alpha-enolase, and alpha- and beta-giardins, that are also detected in human giardiasis. Corroborative observations were made in mice lacking the J chain, which is required for pIgR-dependent transepithelial IgA transport. These results, together with prior data on pIgR-mediated immune neutralization of luminal cholera toxin, suggest that pIgR is essential in intestinal defense against pathogenic microbes with high-level and persistent luminal presence.

  8. Molecular systematics of the parasitic protozoan Giardia intestinalis.

    Science.gov (United States)

    Monis, P T; Andrews, R H; Mayrhofer, G; Ey, P L

    1999-09-01

    The long-standing controversy regarding whether Giardia intestinalis is a single species prevalent in both human and animal hosts or a species complex consisting of morphologically similar organisms that differ in host range and other biotypic characteristics is an issue with important medical, veterinary, and environmental management implications. In the past decade, highly distinct genotypes (some apparently confined to particular host groups) have been identified by genetic analysis of samples isolated from different host species. The aim of this study was to undertake a phylogenetic analysis of G. intestinalis that were representative of all known major genetic groups and compare them with other Giardia species, viz. G. ardeae, G. muris, and G. microti. Segments from four "housekeeping" genes (specifying glutamate dehydrogenase, triose phosphate isomerase, elongation factor 1 alpha, and 18S ribosomal RNA) were examined by analysis of 0.48-0.69-kb nucleotide sequences determined from DNA amplified in polymerase chain reactions from each locus. In addition, isolates were compared by allozymic analysis of electrophoretic data obtained for 21 enzymes representing 23 gene loci. The results obtained from these independent techniques and different loci were essentially congruous. Analyses using G. ardeae and/or G. muris as outgroups supported the monophyly of G. intestinalis and also showed that this species includes genotypes that represent at least seven deeply rooted lineages, herein designated assemblages A-G. Inclusion of G. microti in the analysis of 18S rRNA sequence data demonstrated the monophyly of Giardia with the same median body morphology but did not support the monophyly of G. intestinalis, instead placing G. microti within G. intestinalis. The findings support the hypothesis that G. intestinalis is a species complex and suggest that G. microti is a member of this complex.

  9. Community of protozoans and metazoans parasitizing Auchenipterus nuchalis (Auchenipteridae, a catfish from the Brazilian Amazon

    Directory of Open Access Journals (Sweden)

    Marcos Tavares Dias

    2017-05-01

    Full Text Available This paper describes the first study on parasite diversity in Auchenipterus nuchalis Spix & Agassiz, 1829 (Auchenipteridae. In 31 fish caught in a tributary of the Amazon River, 10,708 parasites were collected, such as Ichthyophthirius multifiliis, Piscinoodinium pilullare, Cosmetocleithrum striatuli, metacercariae of Posthodiplostomum sp, and larvae and adults of Procamallanus (Spirocamallanus inopinatus. These parasite species showed aggregated dispersion, except for C. striatuli, which had a uniform dispersion. The component community of parasites showed a low Brillouin diversity (0.67 ± 0.27, low species richness (3.5 ± 0.8 and low evenness (0.43 ± 0.17, and it was characterized by the presence of species with high prevalence and abundance. Protozoan species were the prevalent parasites, which may be a consequence of the host’s mode of life, while the low presence of endoparasites in A. nuchalis suggests that this fish may occupy an intermediate trophic level in the food web. These data represent the first record of such parasite species for this host.

  10. An Agar-Based Method for Plating Marine Protozoan Parasites of the Genus Perkinsus.

    Directory of Open Access Journals (Sweden)

    Emma R Cold

    Full Text Available The genus Perkinsus includes protozoan parasites of mollusks responsible for losses in the aquaculture industry and hampering the recovery of natural shellfish beds worldwide, and they are a key taxon for understanding intracellular parasitism adaptations. The ability to propagate the parasite in liquid media, in the absence of the host, has been crucial for improving understanding of its biology; however, alternative techniques to grow the parasite are needed to explore other basic aspects of the Perkinsus spp. biology. We optimized a DME: Ham's F12-5% FBS- containing solid agar medium for plating Perkinsus marinus. This solid medium supported trophozoite propagation both by binary fission and schizogony. Colonies were visible to the naked eye 17 days after plating. We tested the suitability of this method for several applications, including the following: 1 Subcloning P. marinus isolates: single discrete P. marinus colonies were obtained from DME: Ham's F12-5% FBS- 0.75% agar plates, which could be further propagated in liquid medium; 2 Subcloning engineered Perkinsus mediterraneus MOE[MOE]: GFP by streaking cultures on plates; 3 Chemical susceptibility: Infusing the DME: Ham's F12-5% FBS- 0.75% agar plates with triclosan resulted in inhibition of the parasite propagation in a dose-dependent manner. Altogether, our plating method has the potential for becoming a key tool for investigating diverse aspects of Perkinsus spp. biology, developing new molecular tools, and for biotechnological applications.

  11. Protozoan and metazoan parasites of Nile tilapia Oreochromis niloticus cultured in Brazil

    Directory of Open Access Journals (Sweden)

    Wanderson Pantoja MF

    2012-04-01

    Full Text Available Objective. This study describes the parasitic fauna and relative condition factor (Kn in Nile tilapia Oreochromis niloticus L. (Cichlidae from fish farms in the State of Amapá. Material and methods. 123 fish from four fish farms in the state of Amapá, Brazil were necropsied for parasitological and Kn analysis. Results. 64.2% of the examined fish, had the gills infected with Cichlidogyrus tilapiae Paperna, 1960 (Monogenoidea: Dactylogyridae; Ichthyophthirius multifiliis Fouquet, 1876 (Protozoa: Ciliophora, Trichodina Ehrenberg, 1830 and Paratrichodina africana Kazubski & El-Tantawy, 1986 (Protozoa: Trichodinidae. The highest prevalence found corresponded to Monogenoidea C. tilapiae while the lowest corresponded to Trichodinidae. However, I. multifiliis was the parasite that presented the greatest intensity and abundance. The differences found in the infection rates of the different fish farms due to causes further discussed. The parasitism did not influence the relative condition factor (Kn of fish. This was the first record of P. africana in Brazil and occurred in the Eastern Amazon. Conclusions. In Brazil, Lamproglena sp. is an emerging parasite in the Southern and Southeastern regions, but this crustacean was not found in the Nile tilapia in the State of Amapá. The parasitic infections in Nile tilapia farmed in Brazil are caused by protozoan, monogenoidea, crustacea and digenea species, and the regional differences on their prevalence and intensity rates are discussed in this study.

  12. Metazoan-protozoan parasite co-infections and host body weight in St Kilda Soay sheep.

    Science.gov (United States)

    Craig, B H; Tempest, L J; Pilkington, J G; Pemberton, J M

    2008-04-01

    For hundreds of years, the unmanaged Soay sheep population on St Kilda has survived despite enduring presumably deleterious co-infections of helminth, protozoan and arthropod parasites and intermittent periods of starvation. Important parasite taxa in young Soay sheep are strongyles (Trichostrongylus axei, Trichostrongylus vitrinus and Teladorsagia circumcincta), coccidia (11 Eimeria species) and keds (Melophagus ovinus) and in older animals, Teladorsagia circumcincta. In this research, associations between the intensity of different parasite taxa were investigated. Secondly, the intensities of different parasite taxa were tested for associations with variation in host weight, which is itself a determinant of over-winter survival in the host population. In lambs, the intensity of strongyle eggs was positively correlated with that of Nematodirus spp. eggs, while in yearlings and adults strongyle eggs and coccidia oocysts were positively correlated. In lambs and yearlings, of the parasite taxa tested, only strongyle eggs were significantly and negatively associated with host weight. However, in adult hosts, strongyles and coccidia were independently and negatively associated with host weight. These results are consistent with the idea that strongyles and coccidia are exerting independent selection on Soay sheep.

  13. Immune response in the adipose tissue of lean mice infected with the protozoan parasite Neospora caninum

    Science.gov (United States)

    Teixeira, Luzia; Moreira, João; Melo, Joana; Bezerra, Filipa; Marques, Raquel M; Ferreirinha, Pedro; Correia, Alexandra; Monteiro, Mariana P; Ferreira, Paula G; Vilanova, Manuel

    2015-01-01

    The adipose tissue can make important contributions to immune function. Nevertheless, only a limited number of reports have investigated in lean hosts the immune response elicited in this tissue upon infection. Previous studies suggested that the intracellular protozoan Neospora caninum might affect adipose tissue physiology. Therefore, we investigated in mice challenged with this protozoan if immune cell populations within adipose tissue of different anatomical locations could be differently affected. Early in infection, parasites were detected in the adipose tissue and by 7 days of infection increased numbers of macrophages, regulatory T (Treg) cells and T-bet+ cells were observed in gonadal, mesenteric, omental and subcutaneous adipose tissue. Increased expression of interferon-γ was also detected in gonadal adipose tissue of infected mice. Two months after infection, parasite DNA was no longer detected in these tissues, but T helper type 1 (Th1) cell numbers remained above control levels in the infected mice. Moreover, the Th1/Treg cell ratio was higher than that of controls in the mesenteric and subcutaneous adipose tissue. Interestingly, chronically infected mice presented a marked increase of serum leptin, a molecule that plays a role in energy balance regulation as well as in promoting Th1-type immune responses. Altogether, we show that an apicomplexa parasitic infection influences immune cellular composition of adipose tissue throughout the body as well as adipokine production, still noticed at a chronic phase of infection when parasites were already cleared from that particular tissue. This strengthens the emerging view that infections can have long-term consequences for the physiology of adipose tissue. PMID:25581844

  14. A Comparative Study of the Common Protozoan Parasites of Clarias gariepinus from the Wild and Cultured Environments in Benue State, Nigeria

    Science.gov (United States)

    Omeji, S.; Solomon, S. G.; Idoga, E. S.

    2011-01-01

    A total of one hundred and twenty Clarias gariepinus comprising 30 dead and 30 live fishes were examined for protozoan parasites infestation, sixty each from the wild and a pond (cultured environment) over a period of six months. Ichthyophthirius multifiliis was the most common protozoan parasites found in C. gariepinus from the wild (River Benue) and cultured (pond) environments. These protozoan parasites constitute 37.08% of the total parasites encountered for fishes in the pond and 42.51% of fishes in the wild. Among the body parts of the sampled fishes from the pond, the gills had the highest parasite load (38.86%). Also, the gills had the highest parasite load (40.54%) among the body parts of the fishes sampled from the wild. Fishes not infested with any protozoan parasites from the pond constituted 36.70% of the total fish sampled. On the other hand, fishes not infested with any protozoan parasites from the wild constituted 31.65% of the total fish sampled. Female fishes had more protozoan parasites than the male fishes. Bigger fishes of total length (25–48 cm) had more parasite load than the smaller ones (19–24 cm). Also, fishes between 150–750 g had more parasite load than the smaller ones of less than 150 g. Protozoan parasite load of fish from the cultured environment (pond) did not differ significantly (P < 0.05) from those from River Benue (wild). PMID:22028952

  15. A Comparative Study of the Common Protozoan Parasites of Clarias gariepinus from the Wild and Cultured Environments in Benue State, Nigeria

    Directory of Open Access Journals (Sweden)

    S. Omeji

    2011-01-01

    Full Text Available A total of one hundred and twenty Clarias gariepinus comprising 30 dead and 30 live fishes were examined for protozoan parasites infestation, sixty each from the wild and a pond (cultured environment over a period of six months. Ichthyophthirius multifiliis was the most common protozoan parasites found in C. gariepinus from the wild (River Benue and cultured (pond environments. These protozoan parasites constitute 37.08% of the total parasites encountered for fishes in the pond and 42.51% of fishes in the wild. Among the body parts of the sampled fishes from the pond, the gills had the highest parasite load (38.86%. Also, the gills had the highest parasite load (40.54% among the body parts of the fishes sampled from the wild. Fishes not infested with any protozoan parasites from the pond constituted 36.70% of the total fish sampled. On the other hand, fishes not infested with any protozoan parasites from the wild constituted 31.65% of the total fish sampled. Female fishes had more protozoan parasites than the male fishes. Bigger fishes of total length (25–48 cm had more parasite load than the smaller ones (19–24 cm. Also, fishes between 150–750 g had more parasite load than the smaller ones of less than 150 g. Protozoan parasite load of fish from the cultured environment (pond did not differ significantly (P<0.05 from those from River Benue (wild.

  16. The first suicides: a legacy inherited by parasitic protozoans from prokaryote ancestors.

    Science.gov (United States)

    Taylor-Brown, Emilie; Hurd, Hilary

    2013-04-18

    It is more than 25 years since the first report that a protozoan parasite could die by a process resulting in a morphological phenotype akin to apoptosis. Since then these phenotypes have been observed in many unicellular parasites, including trypanosomatids and apicomplexans, and experimental evidence concerning the molecular pathways that are involved is growing. These observations support the view that this form of programmed cell death is an ancient one that predates the evolution of multicellularity. Here we review various hypotheses that attempt to explain the origin of apoptosis, and look for support for these hypotheses amongst the parasitic protists as, with the exception of yeast, most of the work on death mechanisms in unicellular organisms has focussed on them. We examine the role that addiction modules may have played in the original eukaryote cell and the part played by mitochondria in the execution of present day cells, looking for examples from Leishmania spp. Trypanosoma spp. and Plasmodium spp. In addition, the expanding knowledge of proteases, nucleases and other molecules acting in protist execution pathways has enabled comparisons to be made with extant Archaea and bacteria and with biochemical pathways that evolved in metazoans. These comparisons lend support to the original sin hypothesis but also suggest that present-day death pathways may have had multifaceted beginnings.

  17. Pathogenic bacteriumVibrio harveyi: an endosymbiont in the marine parasitic ciliate protozoan Cryptocaryon irritans

    Institute of Scientific and Technical Information of China (English)

    QIAO Ying; WANG Jun; MAO Yong; LIU Min; CHEN Ruanni; SU Yongquan; KE Qiaozhen; HAN Kunhuang; ZHENG Weiqiang

    2017-01-01

    Vibrio harveyi, known as a pathogenic bacterium caused severe secondary bacterial infections of the large yellow croaker Larimichthys crocea, was identified as an endosymbiont in the marine parasitic ciliate protozoan Cryptocaryon irritans. Meta 16S sequencing method was used to identify the bacterial flora in C. irritans, and V. harveyi was isolated via culture-dependent method.Vibrio harveyi was observed in cytoplasm of C. irritans at the stage of tomont both by transmission electron microscopy and by Fluorescencein situ hybridization; no signal, however, was detected in nucleus area. The relationship betweenV. harveyi and C. irritans and the role of endosymbioticV. harveyi inC. irritans merit further investigation.

  18. Generation and analysis of expressed sequence tags from the ciliate protozoan parasite Ichthyophthirius multifiliis

    Directory of Open Access Journals (Sweden)

    Arias Covadonga

    2007-06-01

    Full Text Available Abstract Background The ciliate protozoan Ichthyophthirius multifiliis (Ich is an important parasite of freshwater fish that causes 'white spot disease' leading to significant losses. A genomic resource for large-scale studies of this parasite has been lacking. To study gene expression involved in Ich pathogenesis and virulence, our goal was to generate expressed sequence tags (ESTs for the development of a powerful microarray platform for the analysis of global gene expression in this species. Here, we initiated a project to sequence and analyze over 10,000 ESTs. Results We sequenced 10,368 EST clones using a normalized cDNA library made from pooled samples of the trophont, tomont, and theront life-cycle stages, and generated 9,769 sequences (94.2% success rate. Post-sequencing processing led to 8,432 high quality sequences. Clustering analysis of these ESTs allowed identification of 4,706 unique sequences containing 976 contigs and 3,730 singletons. These unique sequences represent over two million base pairs (~10% of Plasmodium falciparum genome, a phylogenetically related protozoan. BLASTX searches produced 2,518 significant (E-value -5 hits and further Gene Ontology (GO analysis annotated 1,008 of these genes. The ESTs were analyzed comparatively against the genomes of the related protozoa Tetrahymena thermophila and P. falciparum, allowing putative identification of additional genes. All the EST sequences were deposited by dbEST in GenBank (GenBank: EG957858–EG966289. Gene discovery and annotations are presented and discussed. Conclusion This set of ESTs represents a significant proportion of the Ich transcriptome, and provides a material basis for the development of microarrays useful for gene expression studies concerning Ich development, pathogenesis, and virulence.

  19. Studies evaluating the applicability of utilizing the same concentration techniques for the detection of protozoan parasites and viruses in water

    CSIR Research Space (South Africa)

    Kfir, R

    1995-01-01

    Full Text Available sample volume to about 101. This study shows that concentration techniques utilised for the isolation of enteric viruses can also be applied for the detection of protozoan parasites from water. This procedure allows for co-analysis of both viruses...

  20. Molecular characteristics of an immobilization antigen gene of the fish-parasitic protozoan Ichthyophthirius multifiliis strain ARS-6

    Science.gov (United States)

    Ichthyophthirius multifiliis, a ciliated protozoan parasite of fish, expresses surface antigens (i-antigens), which react with host antibodies that render them immobile. The nucleotide sequence of an i-antigen gene of Ichthyophthirius multifiliis strain ARS-6 was deduced. The predicted protein of 47...

  1. Incidence of adult brain cancers is higher in countries where the protozoan parasite Toxoplasma gondii is common

    Science.gov (United States)

    Thomas, Frédéric; Lafferty, Kevin D.; Brodeur, Jacques; Elguero, Eric; Gauthier-Clerc, Michel; Missé, Dorothée

    2012-01-01

    We explored associations between the common protozoan parasite Toxoplasma gondii and brain cancers in human populations. We predicted that T. gondii could increase the risk of brain cancer because it is a long-lived parasite that encysts in the brain, where it provokes inflammation and inhibits apoptosis. We used a medical geography approach based on the national incidence of brain cancers and seroprevalence of T. gondii. We corrected reports of incidence for national gross domestic product because wealth probably increases the ability to detect cancer. We also included gender, cell phone use and latitude as variables in our initial models. Prevalence of T. gondii explained 19 per cent of the residual variance in brain cancer incidence after controlling for the positive effects of gross domestic product and latitude among nations. Infection with T. gondii was associated with a 1.8-fold increase in the risk of brain cancers across the range of T. gondii prevalence in our dataset (4–67%). These results, though correlational, suggest that T. gondii should be investigated further as a possible oncogenic pathogen of humans.

  2. Calcium signaling in closely related protozoan groups (Alveolata): non-parasitic ciliates (Paramecium, Tetrahymena) vs. parasitic Apicomplexa (Plasmodium, Toxoplasma).

    Science.gov (United States)

    Plattner, H; Sehring, I M; Mohamed, I K; Miranda, K; De Souza, W; Billington, R; Genazzani, A; Ladenburger, E-M

    2012-05-01

    The importance of Ca2+-signaling for many subcellular processes is well established in higher eukaryotes, whereas information about protozoa is restricted. Recent genome analyses have stimulated such work also with Alveolates, such as ciliates (Paramecium, Tetrahymena) and their pathogenic close relatives, the Apicomplexa (Plasmodium, Toxoplasma). Here we compare Ca2+ signaling in the two closely related groups. Acidic Ca2+ stores have been characterized in detail in Apicomplexa, but hardly in ciliates. Two-pore channels engaged in Ca2+-release from acidic stores in higher eukaryotes have not been stingently characterized in either group. Both groups are endowed with plasma membrane- and endoplasmic reticulum-type Ca2+-ATPases (PMCA, SERCA), respectively. Only recently was it possible to identify in Paramecium a number of homologs of ryanodine and inositol 1,3,4-trisphosphate receptors (RyR, IP3R) and to localize them to widely different organelles participating in vesicle trafficking. For Apicomplexa, physiological experiments suggest the presence of related channels although their identity remains elusive. In Paramecium, IP3Rs are constitutively active in the contractile vacuole complex; RyR-related channels in alveolar sacs are activated during exocytosis stimulation, whereas in the parasites the homologous structure (inner membrane complex) may no longer function as a Ca2+ store. Scrutinized comparison of the two closely related protozoan phyla may stimulate further work and elucidate adaptation to parasitic life. See also "Conclusions" section. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Survey on the Ability of Wolbachia to Control Human Viral, Protozoan, and Filarial Disease Pathogens

    Directory of Open Access Journals (Sweden)

    Garedaghi Yagoob

    2014-04-01

    Full Text Available Objective: Most human filarial nematode parasites and arthropods are hosts for a bacterial endosymbiont, Wolbachia. In filariasis, Wolbachia are required for normal development, fertility, and survival. However, in arthropods, Wolbachia are largely parasitic and can influence development and reproduction, but are generally not required for host survival. Materials and Methods: Due to their obligate nature in filarial parasites, Wolbachia have been a target for drug discovery initiatives using several approaches including diversity and focused library screening and genomic sequence analysis. Results: In vitro and in vivo anti-Wolbachia antibiotic treatments have been shown to have adulticidal activity, a long sought goal of filarial parasite drug discovery. In mosquitoes, it has been shown that the presence of Wolbachia can inhibit the transmission of certain viruses, such as dengue, chikungunya, yellow fever, West Nile, as well as the infectivity of the malaria-causing protozoan, Plasmodium and filarial nematodes. Conclusion: Wolbachia can cause a form of conditional sterility that can be used to suppress populations of mosquitoes and additional medically important insects. Thus, Wolbachia, a pandemic endosymbiont, offers great potential for elimination of a wide-variety of devastating human diseases.

  4. Cloning and bacterial expression of adenosine-5'-triphosphate sulfurylase from the enteric protozoan parasite Entamoeba histolytica.

    Science.gov (United States)

    Nozaki, T; Arase, T; Shigeta, Y; Asai, T; Leustek, T; Takeuchi, T

    1998-12-08

    A gene encoding adenosine-5'-triphosphate sulfurylase (AS) was cloned from the enteric protozoan parasite Entamoeba histolytica by polymerase chain reaction using degenerate oligonucleotide primers corresponding to conserved regions of the protein from a variety of organisms. The deduced amino acid sequence of E. histolytica AS revealed a calculated molecular mass of 47925 Da and an unusual basic pI of 9.38. The amebic protein sequence showed 23-48% identities with AS from bacteria, yeasts, fungi, plants, and animals with the highest identities being to Synechocystis sp. and Bacillus subtilis (48 and 44%, respectively). Four conserved blocks including putative sulfate-binding and phosphate-binding regions were highly conserved in the E. histolytica AS. The upstream region of the AS gene contained three conserved elements reported for other E. histolytica genes. A recombinant E. histolytica AS revealed enzymatic activity, measured in both the forward and reverse directions. Expression of the E. histolytica AS complemented cysteine auxotrophy of the AS-deficient Escherichia coli strains. Genomic hybridization revealed that the AS gene exists as a single copy gene. In the literature, this is the first description of an AS gene in Protozoa.

  5. Molecular characterization of 5S ribosomal RNA genes and transcripts in the protozoan parasite Leishmania major.

    Science.gov (United States)

    Moreno-Campos, Rodrigo; Florencio-Martínez, Luis E; Nepomuceno-Mejía, Tomás; Rojas-Sánchez, Saúl; Vélez-Ramírez, Daniel E; Padilla-Mejía, Norma E; Figueroa-Angulo, Elisa; Manning-Cela, Rebeca; Martínez-Calvillo, Santiago

    2016-12-01

    Eukaryotic 5S rRNA, synthesized by RNA polymerase III (Pol III), is an essential component of the large ribosomal subunit. Most organisms contain hundreds of 5S rRNA genes organized into tandem arrays. However, the genome of the protozoan parasite Leishmania major contains only 11 copies of the 5S rRNA gene, which are interspersed and associated with other Pol III-transcribed genes. Here we report that, in general, the number and order of the 5S rRNA genes is conserved between different species of Leishmania. While in most organisms 5S rRNA genes are normally associated with the nucleolus, combined fluorescent in situ hybridization and indirect immunofluorescence experiments showed that 5S rRNA genes are mainly located at the nuclear periphery in L. major. Similarly, the tandemly repeated 5S rRNA genes in Trypanosoma cruzi are dispersed throughout the nucleus. In contrast, 5S rRNA transcripts in L. major were localized within the nucleolus, and scattered throughout the cytoplasm, where mature ribosomes are located. Unlike other rRNA species, stable antisense RNA complementary to 5S rRNA is not detected in L. major.

  6. Molecular and phylogenetic characterization of honey bee viruses, Nosema microsporidia, protozoan parasites, and parasitic mites in China.

    Science.gov (United States)

    Yang, Bu; Peng, Guangda; Li, Tianbang; Kadowaki, Tatsuhiko

    2013-02-01

    China has the largest number of managed honey bee colonies, which produce the highest quantity of honey and royal jelly in the world; however, the presence of honey bee pathogens and parasites has never been rigorously identified in Chinese apiaries. We thus conducted a molecular survey of honey bee RNA viruses, Nosema microsporidia, protozoan parasites, and tracheal mites associated with nonnative Apis mellifera ligustica and native Apis cerana cerana colonies in China. We found the presence of black queen cell virus (BQCV), chronic bee paralysis virus (CBPV), deformed wing virus (DWV), Israeli acute paralysis virus (IAPV), and sacbrood virus (SBV), but not that of acute bee paralysis virus (ABPV) or Kashmir bee virus (KBV). DWV was the most prevalent in the tested samples. Phylogenies of Chinese viral isolates demonstrated that genetically heterogeneous populations of BQCV, CBPV, DWV, and A. cerana-infecting SBV, and relatively homogenous populations of IAPV and A. meliifera-infecting new strain of SBV with single origins, are spread in Chinese apiaries. Similar to previous observations in many countries, Nosema ceranae, but not Nosema apis, was prevalent in the tested samples. Crithidia mellificae, but not Apicystis bombi was found in five samples, including one A. c. cerana colony, demonstrating that C. mellificae is capable of infecting multiple honey bee species. Based on kinetoplast-encoded cytochrome b sequences, the C. mellificae isolate from A. c. cerana represents a novel haplotype with 19 nucleotide differences from the Chinese and Japanese isolates from A. m. ligustica. This suggests that A. c. cerana is the native host for this specific haplotype. The tracheal mite, Acarapis woodi, was detected in one A. m. ligustica colony. Our results demonstrate that honey bee RNA viruses, N. ceranae, C. mellificae, and tracheal mites are present in Chinese apiaries, and some might be originated from native Asian honey bees.

  7. Faecal and protozoan parasite contamination of water spinach (Ipomoea aquatica) cultivated in urban wastewater in Phnom Penh, Cambodia

    DEFF Research Database (Denmark)

    Anh, Vuong Tuan; Tram, Nguyen Thuy; Klank, Lise Tønner

    2007-01-01

    Objective To identify the level of contamination with thermotolerant coliforms (ThC), intestinal helminth eggs and protozoan parasites in water spinach (Ipomoea aquatica) cultivated in a wastewater-fed lake in Phnom Penh, Cambodia. Methods The investigation was carried out from July 2004 to May...... into a stream. Water spinach samples were harvested at each of the three locations with and without wastewater contact according to the normal practices of farmers, and analysed for ThC, protozoan parasites (Giardia, Cryptosporidium and Cyclospora), and helminth eggs (Ascaris lumbricoides, Trichuris trichura...... and hookworm) using standard methods. Wastewater samples were also collected at each of the three locations and analysed for ThC and helminth eggs. Results High concentrations of ThC (approximately 10(5)-10(7)/g) were found in water spinach samples. ThC mean counts did not differ significantly, neither between...

  8. Lipid Synthesis in Protozoan Parasites: a Comparison Between Kinetoplastids and Apicomplexans

    Science.gov (United States)

    Ramakrishnan, Srinivasan; Serricchio, Mauro; Striepen, Boris; Bütikofer, Peter

    2013-01-01

    Lipid metabolism is of crucial importance for pathogens. Lipids serve as cellular building blocks, signalling molecules, energy stores, posttranslational modifiers, and pathogenesis factors. Parasites rely on a complex system of uptake and synthesis mechanisms to satisfy their lipid needs. The parameters of this system change dramatically as the parasite transits through the various stages of its life cycle. Here we discuss the tremendous recent advances that have been made in the understanding of the synthesis and uptake pathways for fatty acids and phospholipids in apicomplexan and kinetoplastid parasites, including Plasmodium, Toxoplasma, Cryptosporidium, Trypanosoma and Leishmania. Lipid synthesis differs in significant ways between parasites from both phyla and the human host. Parasites have acquired novel pathways through endosymbiosis, as in the case of the apicoplast, have dramatically reshaped substrate and product profiles, and have evolved specialized lipids to interact with or manipulate the host. These differences potentially provide opportunities for drug development. We outline the lipid pathways for key species in detail as they progress through the developmental cycle and highlight those that are of particular importance to the biology of the pathogens and/or are the most promising targets for parasite-specific treatment. PMID:23827884

  9. Parasite Infection, Carcinogenesis and Human Malignancy

    Directory of Open Access Journals (Sweden)

    Hoang van Tong

    2017-02-01

    Full Text Available Cancer may be induced by many environmental and physiological conditions. Infections with viruses, bacteria and parasites have been recognized for years to be associated with human carcinogenicity. Here we review current concepts of carcinogenicity and its associations with parasitic infections. The helminth diseases schistosomiasis, opisthorchiasis, and clonorchiasis are highly carcinogenic while the protozoan Trypanosoma cruzi, the causing agent of Chagas disease, has a dual role in the development of cancer, including both carcinogenic and anticancer properties. Although malaria per se does not appear to be causative in carcinogenesis, it is strongly associated with the occurrence of endemic Burkitt lymphoma in areas holoendemic for malaria. The initiation of Plasmodium falciparum related endemic Burkitt lymphoma requires additional transforming events induced by the Epstein-Barr virus. Observations suggest that Strongyloides stercoralis may be a relevant co-factor in HTLV-1-related T cell lymphomas. This review provides an overview of the mechanisms of parasitic infection-induced carcinogenicity.

  10. Far beyond Phagocytosis: Phagocyte-Derived Extracellular Traps Act Efficiently against Protozoan Parasites In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Liliana M. R. Silva

    2016-01-01

    Full Text Available Professional mononuclear phagocytes such as polymorphonuclear neutrophils (PMN, monocytes, and macrophages are considered as the first line of defence against invasive pathogens. The formation of extracellular traps (ETs by activated mononuclear phagocytes is meanwhile well accepted as an effector mechanism of the early host innate immune response acting against microbial infections. Recent investigations showed evidence that ETosis is a widely spread effector mechanism in vertebrates and invertebrates being utilized to entrap and kill bacteria, fungi, viruses, and protozoan parasites. ETs are released in response to intact protozoan parasites or to parasite-specific antigens in a controlled cell death process. Released ETs consist of nuclear DNA as backbone adorned with histones, antimicrobial peptides, and phagocyte-specific granular enzymes thereby producing a sticky extracellular matrix capable of entrapping and killing pathogens. This review summarizes recent data on protozoa-induced ETosis. Special attention will be given to molecular mechanisms of protozoa-induced ETosis and on its consequences for the parasites successful reproduction and life cycle accomplishment.

  11. Factores de virulencia del patógeno intestinal Entamoeba histolytica Virulence factors of the enteric protozoan parasite Entamoeba histolytica

    Directory of Open Access Journals (Sweden)

    Juanita Trejos-Suárez

    2009-06-01

    Full Text Available Entamoeba histolytica es un protozoo entérico causante de la amebiasis intestinal y extraintestinal. Se calcula que 10% de la población mundial está infectada por el complejo Entamoeba histolytica/Entamoeba dispar. Según la OMS, hay 500 millones de nuevas infecciones por año y, aproximadamente, 70.000 a 100.000 muertes a causas de ellas. Este parásito cumple un proceso de invasión muy elaborado, en el cual se secretan y expresan proteínas que le permiten adherirse al epitelio, degradar la matriz extracelular y producir citólisis de las células epiteliales para penetrar dentro de la mucosa. El entendimiento de estos factores de virulencia ha generado múltiples estudios en diferentes áreas de las ciencias biomédicas, desde métodos diagnósticos cada vez más sensibles y específicos hasta candidatos para vacunas, lo que abre nuevas expectativas terapéuticas a raíz de estos estudios.The enteric protozoan parasite Entamoeba histolytica is a human pathogen that causes widespread morbidity and mortality. It is estimated that 10% of the world’s population is infected with the complex Entamoeba histolytica/ Entamoeba dispar. According to the WHO there are 500 million new infections per year and it is the cause of approximately 70,000 - 100,000 deaths. This parasite has a very elaborate process of invasion, where there are expressed and secreted proteins that allow the parasite to adhere to the epithelium, to degrade extracellular matrix and to penetrate epithelial cells within the mucosa. Numerous studies have been carried out to understand how virulence factors work in diverse areas of biomedical sciences. The studies have proposed diagnostic tests to increase the sensitivity and specificity and to find vaccine candidates, which are an opening way to new therapeutic expectations.

  12. Protozoan Parasites of Rodents and Their Zoonotic Significance in Boyer-Ahmad District, Southwestern Iran

    Directory of Open Access Journals (Sweden)

    Zeinab Seifollahi

    2016-01-01

    Full Text Available Backgrounds. Wild rodents are reservoirs of various zoonotic diseases, such as toxoplasmosis, babesiosis, and leishmaniasis. The current study aimed to assess the protozoan infection of rodents in Boyer-Ahmad district, southwestern Iran. Materials and Methods. A total of 52 rodents were collected from different parts of Boyer-Ahmad district, in Kohgiluyeh and Boyer-Ahmad province, using Sherman live traps. Each rodent was anesthetized with ether, according to the ethics of working with animals, and was dissected. Samples were taken from various tissues and stool samples were collected from the contents of the colon and small intestines. Moreover, 2 to 5 mL of blood was taken from each of the rodents and the sera were examined for anti-Leishmania antibodies, by ELISA, or anti-T. gondii antibodies, by modified agglutination test (MAT. DNA was extracted from brain tissue samples of each rodent and PCR was used to identify the DNA of T. gondii. Results. Of the 52 stool samples of rodents studied by parasitological methods, intestinal protozoa infection was seen in 28 cases (53.8%. From 52 rodents, 19 (36.5% were infected with Trichomonas, 10 (19.2% with Giardia muris, and 11 (21.2% with Entamoeba spp. Also, 10 cases (19.2% were infected with Blastocystis, 3 (5.8% were infected with Chilomastix, 7 (13.5% were infected with Endolimax, 1 (1.9% was infected with Retortamonas, 3 (5.77% were infected with T. gondii, and 6 (11.54% were infected with Trypanosoma lewisi. Antibodies to T. gondii were detected in the sera of 5 (9.61% cases. Results of the molecular study showed T. gondii infection in 3 (5.77% of the rodents. Findings of this study showed that rodents in Kohgiluyeh and Boyer-Ahmad province, southwestern Iran, are infected with several blood and intestinal parasites; some of them might be potential risks to residents and domestic animals in the region.

  13. Prevalence of the protozoan parasite Cryptosporidium on three organic pig farms in Denmark

    DEFF Research Database (Denmark)

    Petersen, Heidi H.; Jianmin, Wang; Mejer, Helena

    2013-01-01

    Pigs are a potential source of contamination with Cryptosporidium spp., which can lead to infection in humans. Two species C. parvum and C. hominis can cause an acute diarrheal illness in humans, which can become severe in e.g. patients with HIV. The oocyst can survive for long periods in the env......Pigs are a potential source of contamination with Cryptosporidium spp., which can lead to infection in humans. Two species C. parvum and C. hominis can cause an acute diarrheal illness in humans, which can become severe in e.g. patients with HIV. The oocyst can survive for long periods...... in the environment and is resistant to many common disinfectants. In order to estimate the prevalence of the zoonotic parasite Cryptosporidium in organic pigs and to improve our knowledge of the parasite epidemiology, the prevalence was monitored four times between September 2011 and June 2012 in three Danish...... organic pig farms. Faecal samples were collected for examination of Cryptosporidium spp. with a total of 994 pigs grouped as sows, fatteners, young pigs and piglets. The number of pigs in each age group was 298, 232, 315 and 161 respectively, distributed on the three farms. Faecal samples were collected...

  14. Proteomic characterization of the hemolymph of Octopus vulgaris infected by the protozoan parasite Aggregata octopiana.

    Science.gov (United States)

    Castellanos-Martínez, Sheila; Diz, Angel P; Álvarez-Chaver, Paula; Gestal, Camino

    2014-06-13

    the octopus immune defense against a parasite infection. Particularly, it is centered in the host-parasite relationship developed between the octopus and the protozoan A. octopiana, which induces severe gastrointestinal injuries in octopus that produce a malabsorption syndrome. The common octopus is a commercially important species with a high potential for aquaculture in semi-open systems, and this pathology reduces the condition of the octopus populations on-growing in open-water systems resulting in important economical loses. This is the first proteomic approach developed on this host-parasite relationship, and therefore, the contribution of this work goes from i) ecological, since this particular relationship is tending to be established as a model of host-parasite interaction in natural populations; ii) evolutionary, due to the characterization of immune molecules that could contribute to understand the functioning of the immune defense in these highly evolved mollusks; and iii) to economical view. The results of this study provide an overview of the octopus hemolymph proteome. Furthermore, proteins influenced by the level of infection and implicated in the octopus cellular response are also showed. Consequently, a set of biomarkers for disease resistance is suggested for further research that could be valuable for the improvement of the octopus culture, taken into account their high economical value, the declining of landings and the need for the diversification of reared species in order to ensure the growth of the aquaculture activity. Although cephalopods are model species for biomedical studies and possess potential in aquaculture, their genomes have not been sequenced yet, which limits the application of genomic data to research important biological processes. Similarly, the octopus proteome, like other non-model organisms, is poorly represented in public databases. Most of the proteins were identified from an octopus' hemocyte RNA-seq database that we

  15. Mass spectrometric analysis of L-cysteine metabolism: physiological role and fate of L-cysteine in the enteric protozoan parasite Entamoeba histolytica.

    Science.gov (United States)

    Jeelani, Ghulam; Sato, Dan; Soga, Tomoyoshi; Watanabe, Haruo; Nozaki, Tomoyoshi

    2014-11-04

    L-cysteine is essential for virtually all living organisms, from bacteria to higher eukaryotes. Besides having a role in the synthesis of virtually all proteins and of taurine, cysteamine, glutathione, and other redox-regulating proteins, L-cysteine has important functions under anaerobic/microaerophilic conditions. In anaerobic or microaerophilic protozoan parasites, such as Entamoeba histolytica, L-cysteine has been implicated in growth, attachment, survival, and protection from oxidative stress. However, a specific role of this amino acid or related metabolic intermediates is not well understood. In this study, using stable-isotope-labeled L-cysteine and capillary electrophoresis-time of flight mass spectrometry, we investigated the metabolism of L-cysteine in E. histolytica. [U-(13)C3, (15)N]L-cysteine was rapidly metabolized into three unknown metabolites, besides L-cystine and L-alanine. These metabolites were identified as thiazolidine-4-carboxylic acid (T4C), 2-methyl thiazolidine-4-carboxylic acid (MT4C), and 2-ethyl-thiazolidine-4-carboxylic acid (ET4C), the condensation products of L-cysteine with aldehydes. We demonstrated that these 2-(R)-thiazolidine-4-carboxylic acids serve for storage of L-cysteine. Liberation of L-cysteine occurred when T4C was incubated with amebic lysates, suggesting enzymatic degradation of these L-cysteine derivatives. Furthermore, T4C and MT4C significantly enhanced trophozoite growth and reduced intracellular reactive oxygen species (ROS) levels when it was added to cultures, suggesting that 2-(R)-thiazolidine-4-carboxylic acids are involved in the defense against oxidative stress. Amebiasis is a human parasitic disease caused by the protozoan parasite Entamoeba histolytica. In this parasite, L-cysteine is the principal low-molecular-weight thiol and is assumed to play a significant role in supplying the amino acid during trophozoite invasion, particularly when the parasites move from the anaerobic intestinal lumen to highly

  16. An immobilization antigen gene of the fish-parasitic protozoan Ichthyophthirius multifiliis strain ARS-6

    Science.gov (United States)

    Ichthyophthirius multifiliis (Ich) is a severe fish parasite that causes ‘white spot’ disease in many freshwater fish and leads to high mortality. The antigens on the parasite surface are involved in the antibody-mediated immobilization and hence designated as immobilization antigens (i-antigens). ...

  17. A role for Sar1 and ARF1 GTPases during Golgi biogenesis in the protozoan parasite Trypanosoma brucei

    Science.gov (United States)

    Yavuz, Sevil; Warren, Graham

    2017-01-01

    A single Golgi stack is duplicated and partitioned into two daughter cells during the cell cycle of the protozoan parasite Trypanosoma brucei. The source of components required to generate the new Golgi and the mechanism by which it forms are poorly understood. Using photoactivatable GFP, we show that the existing Golgi supplies components directly to the newly forming Golgi in both intact and semipermeabilized cells. The movement of a putative glycosyltransferase, GntB, requires the Sar1 and ARF1 GTPases in intact cells. In addition, we show that transfer of GntB from the existing Golgi to the new Golgi can be recapitulated in semipermeabilized cells and is sensitive to the GTP analogue GTPγS. We suggest that the existing Golgi is a key source of components required to form the new Golgi and that this process is regulated by small GTPases. PMID:28495798

  18. De novo arachidonic acid synthesis in Perkinsus marinus, a protozoan parasite of the eastern oyster Crassostrea virginica.

    Science.gov (United States)

    Chu, Fu-Lin E; Lund, Eric; Soudant, Philippe; Harvey, Ellen

    2002-02-01

    The capability of synthesizing fatty acids de novo in the meront stage of the oyster protozoan parasite, Perkinsus marinus, was investigated employing stable-isotope-labeled precursors (1,2 13C-acetate and palmitic-d(31) acid). Fatty acid methyl esters derived from 1,2 13C-acetate and palmitic-d(31) acid were analyzed using gas chromatography/mass spectrometry and gas chromatography/flame ionization detection. Results revealed that in vitro cultured P. marinus meronts utilized 13C-acetate to synthesize a range of saturated and unsaturated fatty acids. The saturated fatty acids 14:0, 16:0, 18:0, 20:0, 22:0, 24:0 and the unsaturated fatty acids, 18:1(n-9), 18:2(n-6), 20:1(n-9), 20:2(n-6), 20:2(n-9), 20:3(n-6), 20:4(n-6) were found to contain 13C, after 7, 14, and 21 days incubation with the precursor. This indicates that meronts can synthesize fatty acid de novo using acetate as a substrate. Meronts efficiently elongated 16:0-d(31) to 18:0, 20:0, 22:0, 24:0, but desaturation activity was limited, after 7 and 14 days cultivation. Only a small quantity of 18:1-d(29) was detected. This suggests that meronts cannot directly convert exogenous palmitic acid or its products of elongation to unsaturated counterparts. The ability to synthesize 20:4(n-6) from acetate is particularly interesting. No parasitic protozoan has been reported to be capable of synthesizing long chain essential fatty acids, such as 20:4(n-6) de novo. Future study will be directed to determine whether the observed in vitro activities indeed reflect the in vivo activities, when meronts are associated with the host.

  19. Global analysis of gene expression in response to L-Cysteine deprivation in the anaerobic protozoan parasite Entamoeba histolytica

    Science.gov (United States)

    2011-01-01

    Background Entamoeba histolytica, an enteric protozoan parasite, causes amebic colitis and extra intestinal abscesses in millions of inhabitants of endemic areas. E. histolytica completely lacks glutathione metabolism but possesses L-cysteine as the principle low molecular weight thiol. L-Cysteine is essential for the structure, stability, and various protein functions, including catalysis, electron transfer, redox regulation, nitrogen fixation, and sensing for regulatory processes. Recently, we demonstrated that in E. histolytica, L-cysteine regulates various metabolic pathways including energy, amino acid, and phospholipid metabolism. Results In this study, employing custom-made Affymetrix microarrays, we performed time course (3, 6, 12, 24, and 48 h) gene expression analysis upon L-cysteine deprivation. We identified that out of 9,327 genes represented on the array, 290 genes encoding proteins with functions in metabolism, signalling, DNA/RNA regulation, electron transport, stress response, membrane transport, vesicular trafficking/secretion, and cytoskeleton were differentially expressed (≥3 fold) at one or more time points upon L-cysteine deprivation. Approximately 60% of these modulated genes encoded proteins of no known function and annotated as hypothetical proteins. We also attempted further functional analysis of some of the most highly modulated genes by L-cysteine depletion. Conclusions To our surprise, L-cysteine depletion caused only limited changes in the expression of genes involved in sulfur-containing amino acid metabolism and oxidative stress defense. In contrast, we observed significant changes in the expression of several genes encoding iron sulfur flavoproteins, a major facilitator super-family transporter, regulator of nonsense transcripts, NADPH-dependent oxido-reductase, short chain dehydrogenase, acetyltransferases, and various other genes involved in diverse cellular functions. This study represents the first genome-wide analysis of

  20. Global analysis of gene expression in response to L-Cysteine deprivation in the anaerobic protozoan parasite Entamoeba histolytica

    Directory of Open Access Journals (Sweden)

    Jeelani Ghulam

    2011-05-01

    Full Text Available Abstract Background Entamoeba histolytica, an enteric protozoan parasite, causes amebic colitis and extra intestinal abscesses in millions of inhabitants of endemic areas. E. histolytica completely lacks glutathione metabolism but possesses L-cysteine as the principle low molecular weight thiol. L-Cysteine is essential for the structure, stability, and various protein functions, including catalysis, electron transfer, redox regulation, nitrogen fixation, and sensing for regulatory processes. Recently, we demonstrated that in E. histolytica, L-cysteine regulates various metabolic pathways including energy, amino acid, and phospholipid metabolism. Results In this study, employing custom-made Affymetrix microarrays, we performed time course (3, 6, 12, 24, and 48 h gene expression analysis upon L-cysteine deprivation. We identified that out of 9,327 genes represented on the array, 290 genes encoding proteins with functions in metabolism, signalling, DNA/RNA regulation, electron transport, stress response, membrane transport, vesicular trafficking/secretion, and cytoskeleton were differentially expressed (≥3 fold at one or more time points upon L-cysteine deprivation. Approximately 60% of these modulated genes encoded proteins of no known function and annotated as hypothetical proteins. We also attempted further functional analysis of some of the most highly modulated genes by L-cysteine depletion. Conclusions To our surprise, L-cysteine depletion caused only limited changes in the expression of genes involved in sulfur-containing amino acid metabolism and oxidative stress defense. In contrast, we observed significant changes in the expression of several genes encoding iron sulfur flavoproteins, a major facilitator super-family transporter, regulator of nonsense transcripts, NADPH-dependent oxido-reductase, short chain dehydrogenase, acetyltransferases, and various other genes involved in diverse cellular functions. This study represents the first

  1. Recent Advances in Human Protozoan Parasites of Gastrointestinal Tract

    Science.gov (United States)

    1987-02-01

    organism was found in 40% and 50%, respectively. The organism did not seem to be casually involved in the inflammatory periodontal * disease. Entamoeba...and lung, and in Ecuador, B. coli was found to be the cause of bloody-mucoid diarrhea and hepatic abscess . SUMMARY An attempt was made in this report

  2. Evidence for the bacterial origin of genes encoding fermentation enzymes of the amitochondriate protozoan parasite Entamoeba histolytica.

    Science.gov (United States)

    Rosenthal, B; Mai, Z; Caplivski, D; Ghosh, S; de la Vega, H; Graf, T; Samuelson, J

    1997-06-01

    Entamoeba histolytica is an amitochondriate protozoan parasite with numerous bacterium-like fermentation enzymes including the pyruvate:ferredoxin oxidoreductase (POR), ferredoxin (FD), and alcohol dehydrogenase E (ADHE). The goal of this study was to determine whether the genes encoding these cytosolic E. histolytica fermentation enzymes might derive from a bacterium by horizontal transfer, as has previously been suggested for E. histolytica genes encoding heat shock protein 60, nicotinamide nucleotide transhydrogenase, and superoxide dismutase. In this study, the E. histolytica por gene and the adhE gene of a second amitochondriate protozoan parasite, Giardia lamblia, were sequenced, and their phylogenetic positions were estimated in relation to POR, ADHE, and FD cloned from eukaryotic and eubacterial organisms. The E. histolytica por gene encodes a 1,620-amino-acid peptide that contained conserved iron-sulfur- and thiamine pyrophosphate-binding sites. The predicted E. histolytica POR showed fewer positional identities to the POR of G. lamblia (34%) than to the POR of the enterobacterium Klebsiella pneumoniae (49%), the cyanobacterium Anabaena sp. (44%), and the protozoan Trichomonas vaginalis (46%), which targets its POR to anaerobic organelles called hydrogenosomes. Maximum-likelihood, neighbor-joining, and parsimony analyses also suggested as less likely E. histolytica POR sharing more recent common ancestry with G. lamblia POR than with POR of bacteria and the T. vaginalis hydrogenosome. The G. lamblia adhE encodes an 888-amino-acid fusion peptide with an aldehyde dehydrogenase at its amino half and an iron-dependent (class 3) ADH at its carboxy half. The predicted G. lamblia ADHE showed extensive positional identities to ADHE of Escherichia coli (49%), Clostridium acetobutylicum (44%), and E. histolytica (43%) and lesser identities to the class 3 ADH of eubacteria and yeast (19 to 36%). Phylogenetic analyses inferred a closer relationship of the E

  3. Parasites of chimpanzees in Kalinzu Forest Reserve, Uganda, with emphasis on comensal protozoans

    Czech Academy of Sciences Publication Activity Database

    Petrášová, J.; Pomajbíková, K.; Petrželková, Klára Judita; Jirků, M.; Profousová, Ilona; Modrý, David; Hashimoto, C.

    2008-01-01

    Roč. 79, č. 5 (2008), s. 370 ISSN 0015-5713. [Congress of the European Federation for Primatology /2./. 03.09.2007-07.09.2007, Prague] R&D Projects: GA ČR GA524/06/0264 Institutional research plan: CEZ:AV0Z60930519 Keywords : parasites * chimpanzee * Uganda Subject RIV: EG - Zoology

  4. Protozoan and helminth parasite fauna of free-living Croatian wild wolves (Canis lupus) analyzed by scat collection.

    Science.gov (United States)

    Hermosilla, Carlos; Kleinertz, Sonja; Silva, Liliana M R; Hirzmann, Jörg; Huber, Djuro; Kusak, Josip; Taubert, Anja

    2017-01-15

    The European wolf (Canis lupus) is a large carnivore species present in limited areas of Europe with several small populations still being considered as endangered. Wolves can be infected by a wide range of protozoan and metazoan parasites with some of them affecting free-living wolf health condition. On this account, an epidemiological survey was conducted to analyze the actual parasite fauna in Croatian wild wolves. In total, 400 individual faecal samples were collected during field studies on wolf ecology in the years 2002-2011. Parasite stages were identified by the sodium acetate acetic acid formalin (SAF)-technique, carbolfuchsin-stained faecal smears and Giardia/Cryptosporidium coproantigen-ELISAs. A subset of taeniid eggs-positive wolf samples was additionally analyzed by PCR and subsequent sequencing to identify eggs on Echinococcus granulosus/E. multilocularis species level. In total 18 taxa of parasites were here detected. Sarcocystis spp. (19.1%) occurred most frequently in faecal samples, being followed by Capillaria spp. (16%), ancylostomatids (13.1%), Crenosoma vulpis (4.6%), Angiostrongylus vasorum (3.1%), Toxocara canis (2.8%), Hammondia/Neospora spp. (2.6 %), Cystoisospora ohioensis (2.1%), Giardia spp. (2.1%), Cystoisospora canis (1.8%), Cryptosporidium spp. (1.8%), Trichuris vulpis (1.5%), Taenia spp. (1.5%), Diphyllobothrium latum (1.5%), Strongyloides spp. (0.5%), Opisthorchis felineus (0.5%), Toxascaris leonina (0.3%), Mesocestoides litteratus (0.3%) and Alaria alata (0.3%). Some of the here identified parasites represent relevant pathogens for wolves, circulating between these carnivorous definitive hosts and a variety of mammalian intermediate hosts, e. g. Taenia spp. and Sarcocystis spp., while others are considered exclusively pathogenic for canids (e.g. A. vasorum, C. vulpis, T. vulpis, Cystoisospora spp.). This study provides first records on the occurrence of the two relevant anthropozoonotic parasites, Giardia spp. and Cryptosporidium

  5. Trichostatin A effects on gene expression in the protozoan parasite Entamoeba histolytica

    Directory of Open Access Journals (Sweden)

    Singh Upinder

    2007-07-01

    Full Text Available Abstract Background Histone modification regulates chromatin structure and influences gene expression associated with diverse biological functions including cellular differentiation, cancer, maintenance of genome architecture, and pathogen virulence. In Entamoeba, a deep-branching eukaryote, short chain fatty acids (SCFA affect histone acetylation and parasite development. Additionally, a number of active histone modifying enzymes have been identified in the parasite genome. However, the overall extent of gene regulation tied to histone acetylation is not known. Results In order to identify the genome-wide effects of histone acetylation in regulating E. histolytica gene expression, we used whole-genome expression profiling of parasites treated with SCFA and Trichostatin A (TSA. Despite significant changes in histone acetylation patterns, exposure of parasites to SCFA resulted in minimal transcriptional changes (11 out of 9,435 genes transcriptionally regulated. In contrast, exposure to TSA, a more specific inhibitor of histone deacetylases, significantly affected transcription of 163 genes (122 genes upregulated and 41 genes downregulated. Genes modulated by TSA were not regulated by treatment with 5-Azacytidine, an inhibitor of DNA-methyltransferase, indicating that in E. histolytica the crosstalk between DNA methylation and histone modification is not substantial. However, the set of genes regulated by TSA overlapped substantially with genes regulated during parasite development: 73/122 genes upregulated by TSA exposure were upregulated in E. histolytica cysts (p-value = 6 × 10-53 and 15/41 genes downregulated by TSA exposure were downregulated in E. histolytica cysts (p-value = 3 × 10-7. Conclusion This work represents the first genome-wide analysis of histone acetylation and its effects on gene expression in E. histolytica. The data indicate that SCFAs, despite their ability to influence histone acetylation, have minimal effects on gene

  6. Parasite Infection, Carcinogenesis and Human Malignancy.

    Science.gov (United States)

    van Tong, Hoang; Brindley, Paul J; Meyer, Christian G; Velavan, Thirumalaisamy P

    2017-02-01

    Cancer may be induced by many environmental and physiological conditions. Infections with viruses, bacteria and parasites have been recognized for years to be associated with human carcinogenicity. Here we review current concepts of carcinogenicity and its associations with parasitic infections. The helminth diseases schistosomiasis, opisthorchiasis, and clonorchiasis are highly carcinogenic while the protozoan Trypanosoma cruzi, the causing agent of Chagas disease, has a dual role in the development of cancer, including both carcinogenic and anticancer properties. Although malaria per se does not appear to be causative in carcinogenesis, it is strongly associated with the occurrence of endemic Burkitt lymphoma in areas holoendemic for malaria. The initiation of Plasmodium falciparum related endemic Burkitt lymphoma requires additional transforming events induced by the Epstein-Barr virus. Observations suggest that Strongyloides stercoralis may be a relevant co-factor in HTLV-1-related T cell lymphomas. This review provides an overview of the mechanisms of parasitic infection-induced carcinogenicity. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Host-Parasite Interaction: Parasite-Derived and -Induced Proteases That Degrade Human Extracellular Matrix

    Directory of Open Access Journals (Sweden)

    Carolina Piña-Vázquez

    2012-01-01

    Full Text Available Parasitic protozoa are among the most important pathogens worldwide. Diseases such as malaria, leishmaniasis, amoebiasis, giardiasis, trichomoniasis, and trypanosomiasis affect millions of people. Humans are constantly threatened by infections caused by these pathogens. Parasites engage a plethora of surface and secreted molecules to attach to and enter mammalian cells. The secretion of lytic enzymes by parasites into host organs mediates critical interactions because of the invasion and destruction of interstitial tissues, enabling parasite migration to other sites within the hosts. Extracellular matrix is a complex, cross-linked structure that holds cells together in an organized assembly and that forms the basement membrane lining (basal lamina. The extracellular matrix represents a major barrier to parasites. Therefore, the evolution of mechanisms for connective-tissue degradation may be of great importance for parasite survival. Recent advances have been achieved in our understanding of the biochemistry and molecular biology of proteases from parasitic protozoa. The focus of this paper is to discuss the role of protozoan parasitic proteases in the degradation of host ECM proteins and the participation of these molecules as virulence factors. We divide the paper into two sections, extracellular and intracellular protozoa.

  8. A novel soluble immune-type receptor (SITR in teleost fish: carp SITR is involved in the nitric oxide-mediated response to a protozoan parasite.

    Directory of Open Access Journals (Sweden)

    Carla M S Ribeiro

    2011-01-01

    Full Text Available The innate immune system relies upon a wide range of germ-line encoded receptors including a large number of immunoglobulin superfamily (IgSF receptors. Different Ig-like immune receptor families have been reported in mammals, birds, amphibians and fish. Most innate immune receptors of the IgSF are type I transmembrane proteins containing one or more extracellular Ig-like domains and their regulation of effector functions is mediated intracellularly by distinct stimulatory or inhibitory pathways.Carp SITR was found in a substracted cDNA repertoire from carp macrophages, enriched for genes up-regulated in response to the protozoan parasite Trypanoplasma borreli. Carp SITR is a type I protein with two extracellular Ig domains in a unique organisation of a N-proximal V/C2 (or I- type and a C-proximal V-type Ig domain, devoid of a transmembrane domain or any intracytoplasmic signalling motif. The carp SITR C-proximal V-type Ig domain, in particular, has a close sequence similarity and conserved structural characteristics to the mammalian CD300 molecules. By generating an anti-SITR antibody we could show that SITR protein expression was restricted to cells of the myeloid lineage. Carp SITR is abundantly expressed in macrophages and is secreted upon in vitro stimulation with the protozoan parasite T. borreli. Secretion of SITR protein during in vivo T. borreli infection suggests a role for this IgSF receptor in the host response to this protozoan parasite. Overexpression of carp SITR in mouse macrophages and knock-down of SITR protein expression in carp macrophages, using morpholino antisense technology, provided evidence for the involvement of carp SITR in the parasite-induced NO production.We report the structural and functional characterization of a novel soluble immune-type receptor (SITR in a teleost fish and propose a role for carp SITR in the NO-mediated response to a protozoan parasite.

  9. Helminthes and protozoan of farmed pirarucu (Arapaima gigas in eastern Amazon and host-parasite relationship

    Directory of Open Access Journals (Sweden)

    R.G.B. Marinho

    2013-08-01

    Full Text Available The parasitofauna in the giant Amazon basin, pirarucu (Arapaima gigas Schinz, 1822 cultured in fish farms from the state of Amapá, in eastern Amazonia (Brazil was investigated. Of the 100 examined fish, 90.0% were parasitized by Ichthyophthirius multifiliis (Ciliophora, Dawestrema cycloancistrium, Dawestrema cycloancistrioides (Monogenoidea and Polyacanthorhynchus macrorhynchus (Acanthocephala, which had an aggregated distribution pattern. The highest infection rates were caused by I. multifiliis and the lowest by P. macrorhynchus. Infection rates were different for each fish farm, due to different water quality and management characteristics. A negative correlation was found between the intensity of monogenoideans D. cycloancistrium and D. cycloancistrioides and the relative condition factor (Kn, but the welfare of fish was not affected by parasitism. The number of I. multifiliis was positively correlated with the weight and total length of hosts, while the intensity of monogenoideans was negatively correlated with body weight and total length. This study is the first to record the occurrence of P. macrorhynchus in A. gigas farmed in Amazon.

  10. Investigation of sexually transmitted protozoan parasite Tritrichomonas foetus in cattle in Bangladesh

    Directory of Open Access Journals (Sweden)

    MR Islam

    2017-06-01

    prevalence of this important sexually transmitted protozoan disease in cattle. To our best knowledge, this is the first study on the prevalence of bovine tritrichomoniasis in Bangladesh except a single clinical case reported in 1974. This study also indicate that bovine tritrichomoniasis has a minor role related to abortion of cattle in Bangladesh.

  11. A genetic linkage map for the apicomplexan protozoan parasite Eimeria maxima and comparison with Eimeria tenella.

    Science.gov (United States)

    Blake, Damer P; Oakes, Richard; Smith, Adrian L

    2011-02-01

    Eimeria maxima is one of the seven Eimeria spp. that infect the chicken and cause the disease coccidiosis. The well characterised immunogenicity and genetic diversity associated with E. maxima promote its use in genetics-led studies on avian coccidiosis. The development of a genetic map for E. maxima, presented here based upon 647 amplified fragment length polymorphism markers typed from 22 clonal hybrid lines and assembled into 13 major linkage groups, is a major new resource for work with this parasite. Comparison with genetic maps produced for other coccidial parasites indicates relatively high levels of genetic recombination. Conversion of ∼14% of the markers representing the major linkage groups to sequence characterised amplified region markers can provide a scaffold for the assembly of future genomic sequences as well as providing a foundation for more detailed genetic maps. Comparison with the Eimeria tenella genetic map produced 10years ago has revealed a less biased marker distribution, with no more than nine markers mapped within any unresolved heritable unit. Nonetheless, preliminary bioinformatic characterisation of the three largest publicly available genomic E. maxima sequences suggest that the feature-poor/feature-rich structure which has previously been found to define the first sequenced E. tenella chromosome also defines the E. maxima genome. The significance of such a segmented genome and the apparent potential for variation in genetic recombination will be relevant to haplotype stability and the longevity of future anticoccidial strategies based upon multiple loci targeted by novel chemotherapeutic drugs or recombinant subunit vaccines. Copyright © 2010 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  12. Exosome Secretion by the Parasitic Protozoan Leishmania within the Sand Fly Midgut

    Directory of Open Access Journals (Sweden)

    Vanessa Diniz Atayde

    2015-11-01

    Full Text Available Despite several studies describing the secretion of exosomes by Leishmania in vitro, observation of their formation and release in vivo has remained a major challenge. Herein, we show that Leishmania constitutively secretes exosomes within the lumen of the sand fly midgut through a mechanism homologous to the mammalian pathway. Through egestion experiments, we demonstrate that Leishmania exosomes are part of the sand fly inoculum and are co-egested with the parasite during the insect’s bite, possibly influencing the host infectious process. Indeed, co-inoculation of mice footpads with L. major plus midgut-isolated or in-vitro-isolated L. major exosomes resulted in a significant increase in footpad swelling. Notably, co-injections produced exacerbated lesions through overinduction of inflammatory cytokines, in particular IL-17a. Our data indicate that Leishmania exosomes are an integral part of the parasite’s infectious life cycle, and we propose to add these vesicles to the repertoire of virulence factors associated with vector-transmitted infections.

  13. Novel features of a PIWI-like protein homolog in the parasitic protozoan Leishmania.

    Directory of Open Access Journals (Sweden)

    Prasad K Padmanabhan

    Full Text Available In contrast to nearly all eukaryotes, the Old World Leishmania species L. infantum and L. major lack the bona fide RNAi machinery genes. Interestingly, both Leishmania genomes code for an atypical Argonaute-like protein that possesses a PIWI domain but lacks the PAZ domain found in Argonautes from RNAi proficient organisms. Using sub-cellular fractionation and confocal fluorescence microscopy, we show that unlike other eukaryotes, the PIWI-like protein is mainly localized in the single mitochondrion in Leishmania. To predict PIWI function, we generated a knockout mutant for the PIWI gene in both L. infantum (Lin and L. major species by double-targeted gene replacement. Depletion of PIWI has no effect on the viability of insect promastigote forms but leads to an important growth defect of the mammalian amastigote lifestage in vitro and significantly delays disease pathology in mice, consistent with a higher expression of the PIWI transcript in amastigotes. Moreover, amastigotes lacking PIWI display a higher sensitivity to apoptosis inducing agents than wild type parasites, suggesting that PIWI may be a sensor for apoptotic stimuli. Furthermore, a whole-genome DNA microarray analysis revealed that loss of LinPIWI in Leishmania amastigotes affects mostly the expression of specific subsets of developmentally regulated genes. Several transcripts encoding surface and membrane-bound proteins were found downregulated in the LinPIWI((-/- mutant whereas all histone transcripts were upregulated in the null mutant, supporting the possibility that PIWI plays a direct or indirect role in the stability of these transcripts. Although our data suggest that PIWI is not involved in the biogenesis or the stability of small noncoding RNAs, additional studies are required to gain further insights into the role of this protein on RNA regulation and amastigote development in Leishmania.

  14. Functional and phylogenetic evidence of a bacterial origin for the first enzyme in sphingolipid biosynthesis in a phylum of eukaryotic protozoan parasites.

    Science.gov (United States)

    Mina, John G; Thye, Julie K; Alqaisi, Amjed Q I; Bird, Louise E; Dods, Robert H; Grøftehauge, Morten K; Mosely, Jackie A; Pratt, Steven; Shams-Eldin, Hosam; Schwarz, Ralph T; Pohl, Ehmke; Denny, Paul W

    2017-07-21

    Toxoplasma gondii is an obligate, intracellular eukaryotic apicomplexan protozoan parasite that can cause fetal damage and abortion in both animals and humans. Sphingolipids are essential and ubiquitous components of eukaryotic membranes that are both synthesized and scavenged by the Apicomplexa. Here we report the identification, isolation, and analyses of the Toxoplasma serine palmitoyltransferase, an enzyme catalyzing the first and rate-limiting step in sphingolipid biosynthesis: the condensation of serine and palmitoyl-CoA. In all eukaryotes analyzed to date, serine palmitoyltransferase is a highly conserved heterodimeric enzyme complex. However, biochemical and structural analyses demonstrated the apicomplexan orthologue to be a functional, homodimeric serine palmitoyltransferase localized to the endoplasmic reticulum. Furthermore, phylogenetic studies indicated that it was evolutionarily related to the prokaryotic serine palmitoyltransferase, identified in the Sphingomonadaceae as a soluble homodimeric enzyme. Therefore this enzyme, conserved throughout the Apicomplexa, is likely to have been obtained via lateral gene transfer from a prokaryote. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Application of magnetically induced hyperthermia in the model protozoan Crithidia fasciculata as a potential therapy against parasitic infections

    Directory of Open Access Journals (Sweden)

    Grazú V

    2012-10-01

    experiments. Cell viability was analyzed using an MTT colorimetric assay and flow cytometry.Results: MNPs were incorporated into the cells, with no noticeable cytotoxicity. When a TVMF was applied to cells bearing MNPs, massive cell death was induced via a nonapoptotic mechanism. No effects were observed by applying TVMF to control cells not loaded with MNPs. No macroscopic rise in temperature was observed in the extracellular medium during the experiments.Conclusion: As a proof of principle, these data indicate that intracellular hyperthermia is a suitable technology to induce death of protozoan parasites bearing MNPs. These findings expand the possibilities for new therapeutic strategies combating parasitic infection.Keywords: magnetic hyperthermia, magnetic nanoparticles, trypanosomatids, Crithidia fasciculata

  16. Social Parasites

    Science.gov (United States)

    Lopez, Miguel A.; Nguyen, HoangKim T.; Oberholzer, Michael; Hill, Kent L.

    2011-01-01

    Summary of recent advances Protozoan parasites cause tremendous human suffering worldwide, but strategies for therapeutic intervention are limited. Recent studies illustrate that the paradigm of microbes as social organisms can be brought to bear on questions about parasite biology, transmission and pathogenesis. This review discusses recent work demonstrating adaptation of social behaviors by parasitic protozoa that cause African sleeping sickness and malaria. The recognition of social behavior and cell-cell communication as a ubiquitous property of bacteria has transformed our view of microbiology, but protozoan parasites have not generally been considered in this context. Works discussed illustrate the potential for concepts of sociomicrobiology to provide insight into parasite biology and should stimulate new approaches for thinking about parasites and parasite-host interactions. PMID:22020108

  17. Genome and transcriptome studies of the protozoan parasites Trypanosoma cruzi and Giardia intestinalis

    Science.gov (United States)

    Farran, Alexandra J. E.

    Vocal fold (VF) diseases and disorders are difficult to treat surgically or therapeutically. Tissue engineering offers an alternative strategy for the restoration of functional VF. In this work, we have developed tissue engineering methodologies for the functional reconstruction of VF. As a first step, the structure, composition and mechanical properties of native VF tissues have been investigated. In pigs ranging from fetal to 2+ years old, the VF structure and viscoelastic properties were found to be age-dependent. Adult tissues were more organized, displaying a denser lamina propria, and mature elastin fibers compared to fetal tissues, resulting in higher storage moduli. Secondly, biomimetic scaffolds which recaptured the mechanical properties of the native VF were developed. Chemically-defined collagen-hyaluronic acid (HA) composite hydrogels, and elastin-mimetic hybrid polymers (EMHPs) were successfully used as conducive 3D matrices, and 2D elastic scaffolds respectively, to in vitro static culture of fibroblasts. While the collagen-HA hydrogels allowed for in situ cell encapsulation and supported cell attachment and proliferation in 3D, the integrin-binding domain RGDSP was needed for cell proliferation on EMHPs. To emulate in vitro the mechanical environment of the native VF tissue, a dynamic culture system capable of generating vibratory stimulations at human phonation frequencies was successfully created and characterized. Gene expression analysis of fibroblasts subjected to 1 hour vibrations in 2D revealed that the expression of ECM-related genes was altered in response to changes in vibratory frequency and amplitude. Finally, expanding on our previous studies, the dynamic culture system was modified to accommodate for the long-term dynamic culture of cell-laden hydrogels. Human mesenchymal stem cells (hMSCs) encapsulated in a collagen/HA-based hydrogel, cultured in presence of connective tissue growth factor (CTGF), and subjected to high frequency

  18. Human Parasitic Diseases in Bulgaria in Between 2013-2014

    Science.gov (United States)

    Rainova, Iskra; Harizanov, Rumen; Kaftandjiev, Iskren; Tsvetkova, Nina; Mikov, Ognyan; Kaneva, Eleonora

    2018-01-01

    Background: In Bulgaria, more than 20 autochthonous human parasitic infections have been described and some of them are widespread. Over 50 imported protozoan and helminthic infections represent diagnostic and therapeutic challenges and pose epidemiological risks due to the possibility of local transmission. Aims: To establish the distribution of autochthonous and imported parasitic diseases among the population of the country over a 2-year period (2013-2014) and to evaluate their significance in the public health system. Study Design: Cross sectional study. Methods: We used the annual reports by regional health inspectorates and data from the National Reference Laboratory at the National Centre of Infectious and Parasitic Diseases on all individuals infected with parasitic diseases in the country. Prevalence was calculated for parasitic diseases with few or absent clinical manifestations (oligosymptomatic or asymptomatic infections). Incidence per 100.000 was calculated for diseases with an overt clinical picture or those that required hospitalisation and specialised medical interventions (e.g. surgery). Results: During the research period, parasitological studies were conducted on 1441.244 persons, and parasitic infections were diagnosed in 22.039 individuals. Distribution of various parasitic pathogens among the population displayed statistically significant differences in prevalence for some intestinal parasites (enterobiasis 0.81%, giardiasis 0.34% and blastocystosis 0.22%). For certain zoonotic diseases such as cystic echinococcosis (average incidence of 3.99 per 100.000) and trichinellosis (average incidence of 0.8 per 100.000), the incidence exceeds several times the annual incidence recorded in the European Union. Conclusion: Parasitic diseases still pose a substantial problem with social and medical impacts on the residents of our country. Improved efficiency regarding autochthonous and imported parasitic diseases is essential in providing the public

  19. Humanized HLA-DR4 mice fed with the protozoan pathogen of oysters Perkinsus marinus (Dermo do not develop noticeable pathology but elicit systemic immunity.

    Directory of Open Access Journals (Sweden)

    Wathsala Wijayalath

    Full Text Available Perkinsus marinus (Phylum Perkinsozoa is a marine protozoan parasite responsible for "Dermo" disease in oysters, which has caused extensive damage to the shellfish industry and estuarine environment. The infection prevalence has been estimated in some areas to be as high as 100%, often causing death of infected oysters within 1-2 years post-infection. Human consumption of the parasites via infected oysters is thus likely to occur, but to our knowledge the effect of oral consumption of P. marinus has not been investigated in humans or other mammals. To address the question we used humanized mice expressing HLA-DR4 molecules and lacking expression of mouse MHC-class II molecules (DR4.EA(0 in such a way that CD4 T cell responses are solely restricted by the human HLA-DR4 molecule. The DR4.EA(0 mice did not develop diarrhea or any detectable pathology in the gastrointestinal tract or lungs following single or repeated feedings with live P. marinus parasites. Furthermore, lymphocyte populations in the gut associated lymphoid tissue and spleen were unaltered in the parasite-fed mice ruling out local or systemic inflammation. Notably, naïve DR4.EA(0 mice had antibodies (IgM and IgG reacting against P. marinus parasites whereas parasite specific T cell responses were undetectable. Feeding with P. marinus boosted the antibody responses and stimulated specific cellular (IFNγ immunity to the oyster parasite. Our data indicate the ability of P. marinus parasites to induce systemic immunity in DR4.EA(0 mice without causing noticeable pathology, and support rationale grounds for using genetically engineered P. marinus as a new oral vaccine platform to induce systemic immunity against infectious agents.

  20. Detection and prevalence of protozoan parasites in ready-to-eat packaged salads on sale in Italy.

    Science.gov (United States)

    Caradonna, Tiziana; Marangi, Marianna; Del Chierico, Federica; Ferrari, Nicola; Reddel, Sofia; Bracaglia, Giorgia; Normanno, Giovanni; Putignani, Lorenza; Giangaspero, Annunziata

    2017-10-01

    To investigate the prevalence of protozoan contamination by Giardia duodenalis, Cryptosporidium spp., Toxoplasma gondii and Cyclospora cayetanensis, in 'ready to eat' (RTE) salads on sale in Italy, 648 packages were purchased from industrial and local brands. Nine individual packages from each brand were collected per month, pooled and subjected to microscopy and molecular analyses. Microscopic examination of 864 slides detected Cryptosporidium spp. but also Blastocystis hominis and Dientamoeba fragilis. Molecular tools identified G. duodenalis assemblage A, Cryptosporidium parvum and Cryptosporidium ubiquitum, T. gondii Type I and C. cayetanensis. B. hominis and D. fragilis were also molecularly confirmed. The overall prevalence of each protozoan species was 0.6% for G. duodenalis, 0.8% for T. gondii, 0.9% for Cryptosporidium spp., and 1.3% for C. cayetanensis, while prevalence for B. hominis was 0.5% and for D. fragilis 0.2%. Microscopy and/or molecular tools revealed that 4.2% of the samples were contaminated by at least one protozoan species, and 0.6% of samples presented contamination by two protozoan species, with a number of oocysts ranging from 62 to 554 per g of vegetable matter for T. gondii, and 46 to 1.580 for C. cayetanensis. This is Europe's first large-scale study on the presence of protozoans in packaged salads, and shows that RTE sanitation processes do not guarantee a product free from protozoans of fecal origin. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Paleoparasitology: the origin of human parasites

    Directory of Open Access Journals (Sweden)

    Adauto Araujo

    2013-09-01

    Full Text Available Parasitism is composed by three subsystems: the parasite, the host, and the environment. There are no organisms that cannot be parasitized. The relationship between a parasite and its host species most of the time do not result in damage or disease to the host. However, in a parasitic disease the presence of a given parasite is always necessary, at least in a given moment of the infection. Some parasite species that infect humans were inherited from pre-hominids, and were shared with other phylogenetically close host species, but other parasite species were acquired from the environment as humans evolved. Human migration spread inherited parasites throughout the globe. To recover and trace the origin and evolution of infectious diseases, paleoparasitology was created. Paleoparasitology is the study of parasites in ancient material, which provided new information on the evolution, paleoepidemiology, ecology and phylogenetics of infectious diseases.

  2. Geographical distribution of protozoan and metazoan parasites of farmed Nile tilapia Oreochromis niloticus (L.) (Perciformes: Cichlidae) in Yucatán, México.

    Science.gov (United States)

    Paredes-Trujillo, Amelia; Velázquez-Abunader, Iván; Torres-Irineo, Edgar; Romero, David; Vidal-Martínez, Víctor Manuel

    2016-02-03

    In Yucatán State, southern México, as in many other parts of the world where tilapia has been introduced for aquaculture, the deficient application of management measures has led to the establishment of non-native parasites. The aims of this study were to describe the geographical distribution of protozoan and helminth parasites of farmed Nile tilapia Oreochromis niloticus (L.) throughout the Yucatán and to examine the potential statistical associations of the prevalence and mean abundance of these parasites with management and environmental variables. All 29 Nile tilapia farms currently operating in Yucatán were surveyed. Maps were created to describe the geographical location of the parasites infecting Nile tilapia at each farm. We evaluated the statistical associations of management and environmental variables with the mean abundance values of each parasite species using a multivariate redundancy analysis (RDA) and generalized additive models (GAM). We also used Ripley's K to determine whether there were significant clusters of the mean abundance of particular parasite species in specific regions of the Yucatán State. A total of 580 O. niloticus were examined, and 11 species of parasites were recorded. Cichlidogyrus sclerosus was the most frequent and abundant parasite at all 29 farms, whereas Gyrodactylus cichlidarum was found in 26 of the 29 farms. The RDA showed that the most important predictors were the concentration of nitrites and ammonium and the water exchange rate. The GAM showed the significant effect of the tank capacity, no use of quarantine area and no use of prophylactic treatments on the mean abundance of G. cichlidarum. The geographical distribution patterns of the mean abundance of most parasite species exhibited clustering near to the coast of Yucatán. Two groups of farms were distinguished: (i) farms with medium to high technology, where the most frequent and abundant parasite was G. cichlidarum, and (ii) farms with low technology

  3. Rapid, Selection-Free, High-Efficiency Genome Editing in Protozoan Parasites Using CRISPR-Cas9 Ribonucleoproteins

    Directory of Open Access Journals (Sweden)

    Lia Carolina Soares Medeiros

    2017-11-01

    Full Text Available Trypanosomatids (order Kinetoplastida, including the human pathogens Trypanosoma cruzi (agent of Chagas disease, Trypanosoma brucei, (African sleeping sickness, and Leishmania (leishmaniasis, affect millions of people and animals globally. T. cruzi is considered one of the least studied and most poorly understood tropical disease-causing parasites, in part because of the relative lack of facile genetic engineering tools. This situation has improved recently through the application of clustered regularly interspaced short palindromic repeats–CRISPR-associated protein 9 (CRISPR-Cas9 technology, but a number of limitations remain, including the toxicity of continuous Cas9 expression and the long drug marker selection times. In this study, we show that the delivery of ribonucleoprotein (RNP complexes composed of recombinant Cas9 from Staphylococcus aureus (SaCas9, but not from the more routinely used Streptococcus pyogenes Cas9 (SpCas9, and in vitro-transcribed single guide RNAs (sgRNAs results in rapid gene edits in T. cruzi and other kinetoplastids at frequencies approaching 100%. The highly efficient genome editing via SaCas9/sgRNA RNPs was obtained for both reporter and endogenous genes and observed in multiple parasite life cycle stages in various strains of T. cruzi, as well as in T. brucei and Leishmania major. RNP complex delivery was also used to successfully tag proteins at endogenous loci and to assess the biological functions of essential genes. Thus, the use of SaCas9 RNP complexes for gene editing in kinetoplastids provides a simple, rapid, and cloning- and selection-free method to assess gene function in these important human pathogens.

  4. Mitosis in the Human Malaria Parasite Plasmodium falciparum ▿

    OpenAIRE

    Gerald, Noel; Mahajan, Babita; Kumar, Sanjai

    2011-01-01

    Malaria is caused by intraerythrocytic protozoan parasites belonging to Plasmodium spp. (phylum Apicomplexa) that produce significant morbidity and mortality, mostly in developing countries. Plasmodium parasites have a complex life cycle that includes multiple stages in anopheline mosquito vectors and vertebrate hosts. During the life cycle, the parasites undergo several cycles of extreme population growth within a brief span, and this is critical for their continued transmission and a contri...

  5. 13C-NMR reveals glycerol as an unexpected major metabolite of the protozoan parasite Trichomonas vaginalis

    International Nuclear Information System (INIS)

    Chapman, A.; Lloyd, D.; Linstead, D.J.; Williams, J.

    1985-01-01

    13 C-NMR has been used to study the kinetics of the formation of metabolites from [l- 13 C]glucose in intact cells of Trichomonas vaginalis during anaerobic incubation. As well as the expected metabolites lactate and acetate, this technique revealed glycerol as an additional major product, present in amounts equimolar with acetate. The formation of glycerol is readily explained in terms of the need to maintain redox balance. This protozoan now joins the small group of organisms which are known to produce glycerol as a result of normal metabolic activities. (Auth.)

  6. In vitro and in vivo efficacy of drugs against the protozoan parasite Azumiobodo hoyamushi that causes soft tunic syndrome in the edible ascidian Halocynthia roretzi (Drasche).

    Science.gov (United States)

    Park, K H; Zeon, S-R; Lee, J-G; Choi, S-H; Shin, Y K; Park, K-I

    2014-04-01

    It was discovered recently that infection by a protozoan parasite, Azumiobodo hoyamushi, is the most probable cause for soft tunic syndrome in an edible ascidian, Halocynthia roretzi (Drasche). In an attempt to develop measures to eradicate the causative parasite, various drugs were tested for efficacy in vitro and in vivo. Of the 20 antiprotozoal drugs having different action mechanisms, five were found potent (24-h EC50  chloramine-T and benzalkonium chloride. Seven compounds, metronidazole, albendazole, paromomycin, nalidixic acid, sulfamonomethoxine, KMnO4 , potassium monopersulphate and citric acid, exhibited EC50  > 100 mg L(-1) . When ascidians were artificially infected with A. hoyamushi, treated using 40 mg L(-1) formalin, bronopol, ClO2 , or H2 O2 for 1 h and then monitored for 24 h, very low mortality was observed. However, the number of surviving parasite cells in the ascidian tunic tissues was significantly reduced by treating with 40 mg L(-1) formalin or ClO2 for 1 h. The data suggest that we might be able to develop a disinfection measure using a treatment regimen involving commonly available drugs. © 2013 John Wiley & Sons Ltd.

  7. Molecular evidence of the protozoan parasite Marteilia refringens in Crassostrea gigas and Crassostrea corteziensis from the Gulf of California

    Directory of Open Access Journals (Sweden)

    José Manuel Grijalva-Chon

    2015-09-01

    Full Text Available The search for exotic pathogens related to the outbreaks and in surveillance samplings of the Mexican oyster farms, is a recent activity achieved by academic institutions and state committees for Aquatic Animal Health, with remarkable results. In samples of Crassostrea gigas collected through December 2009, January 2010 and November 2010, and of C. corteziensis in September 2011, the protozoan Marteilia refringens was detected for the first time in the Gulf of California. The carrier oysters were from cultures without abnormal mortality rates, whereby, the use of histology, in situ hybridization and transmission electron microscopy studies are necessary to determine if M. refringens has become established in the Gulf of California oyster cultures. Detection of M. refringens is of great concern to the global oyster farming industry.

  8. The Eimeria Transcript DB: an integrated resource for annotated transcripts of protozoan parasites of the genus Eimeria

    Science.gov (United States)

    Rangel, Luiz Thibério; Novaes, Jeniffer; Durham, Alan M.; Madeira, Alda Maria B. N.; Gruber, Arthur

    2013-01-01

    Parasites of the genus Eimeria infect a wide range of vertebrate hosts, including chickens. We have recently reported a comparative analysis of the transcriptomes of Eimeria acervulina, Eimeria maxima and Eimeria tenella, integrating ORESTES data produced by our group and publicly available Expressed Sequence Tags (ESTs). All cDNA reads have been assembled, and the reconstructed transcripts have been submitted to a comprehensive functional annotation pipeline. Additional studies included orthology assignment across apicomplexan parasites and clustering analyses of gene expression profiles among different developmental stages of the parasites. To make all this body of information publicly available, we constructed the Eimeria Transcript Database (EimeriaTDB), a web repository that provides access to sequence data, annotation and comparative analyses. Here, we describe the web interface, available sequence data sets and query tools implemented on the site. The main goal of this work is to offer a public repository of sequence and functional annotation data of reconstructed transcripts of parasites of the genus Eimeria. We believe that EimeriaTDB will represent a valuable and complementary resource for the Eimeria scientific community and for those researchers interested in comparative genomics of apicomplexan parasites. Database URL: http://www.coccidia.icb.usp.br/eimeriatdb/ PMID:23411718

  9. Effect of ionizing and non ionizing radiation on Protozoan and Parasites Ova causing gastroenteritis presents in sewage sludge wastes

    International Nuclear Information System (INIS)

    Shamma, M.; Al-Adawi, M.A.; Sharabi, N.

    2005-06-01

    The efficacy of Adra wastewater treatment plant for removing of parasitic eggs and other pathogens was various as the results of this work showed many eggs detected on and numeration referenced methods were applied for liquid and dried sledges. Helminths eggs viability was determined by aid of methods and techniques which depend on the morphological parameters, studying the motility incubation and applying the vital staining. The protozoa viability was studied by using vital staining, but applying culture techniques on specific composed media did not give any results. The disinfection results for ascaris eggs, protozoa and amoeba oocysts irradiated by 6 KGy of gamma (Co 6 0) which was sufficient to kill all types of such parasites. In conflict the UV radiation was able to motivate the division of the ascaris eggs embryo nations. Also, the viability of the Giardia and Entamoeba oocysts not affected. Therefor the UV technique couldn't be the alternative technology of ionizing radiation. (author)

  10. Gastrointestinal parasites of canids, a latent risk to human health in Tunisia.

    Science.gov (United States)

    Oudni-M'rad, Myriam; Chaâbane-Banaoues, Raja; M'rad, Selim; Trifa, Fatma; Mezhoud, Habib; Babba, Hamouda

    2017-06-05

    Although data on the parasite environmental contamination are crucial to implement strategies for control and treatment, information about zoonotic helminths is very limited in Tunisia. Contamination of areas with canid faeces harboring infective parasite elements represents a relevant health-risk impact for humans. The aim of this study was to assess the environmental contamination with eggs and oocysts of gastrointestinal parasites of dogs and wild canids in Tunisia with special attention to those that can be transmitted to humans. One thousand two hundred and seventy faecal samples from stray dogs and 104 from wild canids (red foxes and golden jackals) were collected from different geographical regions throughout Tunisia. The helminth eggs and protozoan oocysts were concentrated by sucrose flotation and identified by microscopic examination. The most frequently observed parasites in dog samples were Toxocara spp. (27.2%), E. granulosus (25.8%), and Coccidia (13.1%). For wild canid faeces, the most commonly encountered parasites were Toxocara spp. (16.3%) followed by Capillaria spp. (9.6%). The parasite contamination of dog faeces varied significantly from one region to another in function of the climate. To our knowledge, the study highlights for the first time in Tunisia a serious environmental contamination by numerous parasitic stages infective to humans. Efforts should be made to increase the awareness of the contamination risk of such parasites in the environment and implement a targeted educational program.

  11. GLT-1-Dependent Disruption of CNS Glutamate Homeostasis and Neuronal Function by the Protozoan Parasite Toxoplasma gondii.

    Directory of Open Access Journals (Sweden)

    Clément N David

    2016-06-01

    Full Text Available The immune privileged nature of the CNS can make it vulnerable to chronic and latent infections. Little is known about the effects of lifelong brain infections, and thus inflammation, on the neurological health of the host. Toxoplasma gondii is a parasite that can infect any mammalian nucleated cell with average worldwide seroprevalence rates of 30%. Infection by Toxoplasma is characterized by the lifelong presence of parasitic cysts within neurons in the brain, requiring a competent immune system to prevent parasite reactivation and encephalitis. In the immunocompetent individual, Toxoplasma infection is largely asymptomatic, however many recent studies suggest a strong correlation with certain neurodegenerative and psychiatric disorders. Here, we demonstrate a significant reduction in the primary astrocytic glutamate transporter, GLT-1, following infection with Toxoplasma. Using microdialysis of the murine frontal cortex over the course of infection, a significant increase in extracellular concentrations of glutamate is observed. Consistent with glutamate dysregulation, analysis of neurons reveal changes in morphology including a reduction in dendritic spines, VGlut1 and NeuN immunoreactivity. Furthermore, behavioral testing and EEG recordings point to significant changes in neuronal output. Finally, these changes in neuronal connectivity are dependent on infection-induced downregulation of GLT-1 as treatment with the ß-lactam antibiotic ceftriaxone, rescues extracellular glutamate concentrations, neuronal pathology and function. Altogether, these data demonstrate that following an infection with T. gondii, the delicate regulation of glutamate by astrocytes is disrupted and accounts for a range of deficits observed in chronic infection.

  12. Effects of crude extracts of Mucuna pruriens (Fabaceae) and Carica papaya (Caricaceae) against the protozoan fish parasite Ichthyophthirius multifiliis.

    Science.gov (United States)

    Ekanem, A P; Obiekezie, A; Kloas, W; Knopf, K

    2004-03-01

    The ciliate Ichthyophthirius multifiliis is among the most pathogenic parasites of fish maintained in captivity. In the present study, the effects of the crude methanolic extract of leaves of Mucuna pruriens and the petroleum-ether extract of seeds of Carica papaya against I. multifiliis were investigated under in vivo and in vitro conditions. Goldfish (Carassius auratus auratus) infected with the parasites were immersed for 72 h in baths with M. pruriens extract, and for 96 h in baths with C. papaya extract. There was a 90% reduction in numbers of I. multifiliis on fish after treatment in baths of each plant extract at 200 mg l(-1 )compared to untreated controls. Consequently, parasite-induced fish mortality was reduced significantly. A complete interruption of trophont recruitment was achieved by immersion in the M. pruriens extract. In vitro tests led to a 100% mortality of I. multifiliis in 150 mg/l M. pruriens extract, and in 200 mg/l of C. papaya extract after 6 h. Although the active constituents of the medicinal plant extracts are still unknown, we have demonstrated that they have potential for effective control of I. multifiliis.

  13. Effect of ionizing and non ionizing radiation on Protozoan and Parasites Ova causing gastroenteritis presents in sewage sludge wastes

    International Nuclear Information System (INIS)

    Shamma, M.; Al-Adawi, M.A.; Sharabi, N.

    2006-01-01

    Helminths eggs viability was determined by aid of methods and techniques which depend on the morphological parameters, studying the motility incubation and applying the vital staining. The protozoa viability was studied by using many vital staining, but applying culture techniques on specific composed media did not give any results. The disinfection results showed that for ascaris eggs, protozoa and amoeba oocysts irradiated by 6 KGy of gamma (Co 6 0) which was sufficient to kill all types of such parasites. On the contrary, conflict the UV radiation was able to motivate the ascaris eggs embryonations. Also, the viability of the Giardia and Entamoeba oocysts were not affected. In the light of the current experiments, it is possible to conclude that using the UV technique instead of the ionizing radiation for killing the helminths eggs and protozoa is not usable. (Authors)

  14. Non-biting cyclorrhaphan flies (Diptera) as carriers of intestinal human parasites in slum areas of Addis Ababa, Ethiopia.

    Science.gov (United States)

    Getachew, Sisay; Gebre-Michael, Teshome; Erko, Berhanu; Balkew, Meshesha; Medhin, Girmay

    2007-09-01

    A study was conducted to determine the role of non-biting cyclorrhaphan flies as carriers of intestinal parasites in slum areas of Addis Ababa from January 2004 to June 2004. A total of 9550 flies, comprising of at least seven species were collected from four selected sites and examined for human intestinal parasites using the formol-ether concentration method. The dominant fly species was Chrysomya rufifacies (34.9%) followed by Musca domestica (31%), Musca sorbens (20.5.%), Lucina cuprina (6.8%), Sarcophaga sp. (2.8%), Calliphora vicina (2.2%) and Wohlfahrtia sp. (1.8%). Six intestinal helminths (Ascaris lumbricoides, Trichuris trichiura, hookworms, Hymenolepis nana, Taenia spp. and Strongyloides stercoralis) and at least four protozoan parasites (Entamoeba histolytica/dispar, Entamoeba coli, Giardia lamblia and Cryptosporidium sp.) were isolated from both the external and gut contents of the flies. A. lumbricoides and T. trichiura among the helminths and E. histolytica/dispar and E. coli among the protozoans were the dominant parasites detected both on the external and in the gut contents of the flies, but occurring more in the latter. Among the flies, C. rufifacies and M. sorbens were the highest carriers of the helminth and protozoan parasites, respectively. The public health significance of these findings is highlighted.

  15. Protozoan Parasites in Drinking Water: A System Approach for Improved Water, Sanitation and Hygiene in Developing Countries.

    Science.gov (United States)

    Omarova, Alua; Tussupova, Kamshat; Berndtsson, Ronny; Kalishev, Marat; Sharapatova, Kulyash

    2018-03-12

    Improved water, sanitation and hygiene (WASH) are significant in preventing diarrhea morbidity and mortality caused by protozoa in low- and middle-income countries. Due to the intimate and complex relationships between the different WASH components, it is often necessary to improve not just one but all of these components to have sustainable results. The objective of this paper was to review the current state of WASH-related health problems caused by parasitic protozoa by: giving an overview and classification of protozoa and their effect on people's health, discussing different ways to improve accessibility to safe drinking water, sanitation services and personal hygiene behavior; and suggesting an institutional approach to ensure improved WASH. The findings indicate that Giardia and Cryptosporidium are more often identified during waterborne or water-washed outbreaks and they are less sensitive than most of the bacteria and viruses to conventional drinking water and wastewater treatment methods. There are various institutions of control and prevention of water-related diseases caused by protozoa in developed countries. Unfortunately, the developing regions do not have comparable systems. Consequently, the institutional and systems approach to WASH is necessary in these countries.

  16. Protozoan Parasites in Drinking Water: A System Approach for Improved Water, Sanitation and Hygiene in Developing Countries

    Science.gov (United States)

    Tussupova, Kamshat; Berndtsson, Ronny; Sharapatova, Kulyash

    2018-01-01

    Improved water, sanitation and hygiene (WASH) are significant in preventing diarrhea morbidity and mortality caused by protozoa in low- and middle-income countries. Due to the intimate and complex relationships between the different WASH components, it is often necessary to improve not just one but all of these components to have sustainable results. The objective of this paper was to review the current state of WASH-related health problems caused by parasitic protozoa by: giving an overview and classification of protozoa and their effect on people’s health, discussing different ways to improve accessibility to safe drinking water, sanitation services and personal hygiene behavior; and suggesting an institutional approach to ensure improved WASH. The findings indicate that Giardia and Cryptosporidium are more often identified during waterborne or water-washed outbreaks and they are less sensitive than most of the bacteria and viruses to conventional drinking water and wastewater treatment methods. There are various institutions of control and prevention of water-related diseases caused by protozoa in developed countries. Unfortunately, the developing regions do not have comparable systems. Consequently, the institutional and systems approach to WASH is necessary in these countries. PMID:29534511

  17. Protozoan Parasites in Drinking Water: A System Approach for Improved Water, Sanitation and Hygiene in Developing Countries

    Directory of Open Access Journals (Sweden)

    Alua Omarova

    2018-03-01

    Full Text Available Improved water, sanitation and hygiene (WASH are significant in preventing diarrhea morbidity and mortality caused by protozoa in low- and middle-income countries. Due to the intimate and complex relationships between the different WASH components, it is often necessary to improve not just one but all of these components to have sustainable results. The objective of this paper was to review the current state of WASH-related health problems caused by parasitic protozoa by: giving an overview and classification of protozoa and their effect on people’s health, discussing different ways to improve accessibility to safe drinking water, sanitation services and personal hygiene behavior; and suggesting an institutional approach to ensure improved WASH. The findings indicate that Giardia and Cryptosporidium are more often identified during waterborne or water-washed outbreaks and they are less sensitive than most of the bacteria and viruses to conventional drinking water and wastewater treatment methods. There are various institutions of control and prevention of water-related diseases caused by protozoa in developed countries. Unfortunately, the developing regions do not have comparable systems. Consequently, the institutional and systems approach to WASH is necessary in these countries.

  18. Attenuation of a drug-sensitive strain of a turkey protozoan parasite Eimeria meleagrimitis by selection for precocious development.

    Science.gov (United States)

    Rathinam, T; Gadde, U; Chapman, H D

    2016-01-30

    An attenuated line of Eimeria meleagrimitis was established by repeated propagation of the parasite in 9-day old turkey poults and subsequent selection for precocious development. Following 20 passages, the prepatent period decreased from 120 to 104h. A series of experiments were conducted to evaluate the pathogenicity, immunogenicity and fecundity of the newly selected line. Judged by body weight gain, feed consumption and feed efficiency following infection, the attenuated line had appreciably reduced pathogenicity. Immunogenicity of the attenuated line was examined by infecting poults successively with incremental doses of 10(2), 10(3) and 10(4) oocysts at 0, 7, and 14 days of age respectively. No oocysts were detected following challenge with 5×10(2) oocysts, indicating that the attenuated line had retained immunogenicity. Fecundity was assessed by infecting two-week old birds with 5×10(2) oocysts of either parent or attenuated line. Oocyst production from 96 to 240h post-infection showed that the patent period of the attenuated line commenced earlier and was of shorter duration than the parent line. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. New polymorphic microsatellite markers derived from hemocyte cDNA library of Manila clam Ruditapes philippinarum challenged by the protozoan parasite Perkinsus olseni

    Science.gov (United States)

    Kang, Hyun-Sil; Hong, Hyun-Ki; Park, Kyung-Il; Cho, Moonjae; Youn, Seok-Hyun; Choi, Kwang-Sik

    2017-03-01

    Manila clam Ruditapes philippinarum is one of the most important benthic animals in the coastal north Pacific region, where clam populations have been mixed genetically through trade and aquaculture activities. Accordingly, identification of the genetically different clam populations has become one of the most important issues to manage interbreeding of the local and introduced clam populations. To identify genetically different populations of clam populations, we developed 11 expressed sequence tag (EST)-microsatellite loci (i.e., simple sequence repeat, SSR) from 1,128 clam hemocyte cDNA clones challenged by the protozoan parasite Perkinsus olseni. Genotype analysis using the markers developed in this study demonstrated that clams from a tidal flat on the west coast contained 6 to 19 alleles per locus, and a population from Jeju Island had 4 to 20 alleles per locus. The expected heterozygosity of the 2 clam populations ranged from 0.472 to 0.919 for clams from the west coast, and 0.494 to 0.919 for clams from Jeju Island, respectively. Among the 11 loci discovered in this study, 7 loci significantly deviated from the Hardy-Weinberg equilibrium after Bonferroni correction. The 5 loci developed in this study also successfully amplified the SSRs of R. variegatus, a clam species taxonomically very close to R. philippinarum, from Hong Kong and Jeju Island. We believe that the 11 novel polymorphic SSR developed in this study can be utilized successfully in Manila clam genetic diversity analysis, as well as in genetic discrimination of different clam populations.

  20. Development of a Focused Library of Triazole-Linked Privileged-Structure-Based Conjugates Leading to the Discovery of Novel Phenotypic Hits against Protozoan Parasitic Infections.

    Science.gov (United States)

    Uliassi, Elisa; Piazzi, Lorna; Belluti, Federica; Mazzanti, Andrea; Kaiser, Marcel; Brun, Reto; Moraes, Carolina B; Freitas-Junior, Lucio H; Gul, Sheraz; Kuzikov, Maria; Ellinger, Bernhard; Borsari, Chiara; Costi, Maria Paola; Bolognesi, Maria Laura

    2018-04-06

    Protozoan infections caused by Plasmodium, Leishmania, and Trypanosoma spp. contribute significantly to the burden of infectious diseases worldwide, causing severe morbidity and mortality. The inadequacy of available treatments calls for cost- and time-effective drug discovery endeavors. To this end, we envisaged the triazole linkage of privileged structures as an effective drug design strategy to generate a focused library of high-quality compounds. The versatility of this approach was combined with the feasibility of a phenotypic assay, integrated with early ADME-tox profiling. Thus, an 18-membered library was efficiently assembled via Huisgen cycloaddition of phenothiazine, biphenyl, and phenylpiperazine scaffolds. The resulting 18 compounds were then tested against seven parasite strains, and counter-screened for selectivity against two mammalian cell lines. In parallel, hERG and cytochrome P450 (CYP) inhibition, and mitochondrial toxicity were assessed. Remarkably, 10-((1-(3-([1,1'-biphenyl]-3-yloxy)propyl)-1H-1,2,3-triazol-5-yl)methyl)-10H-phenothiazine (7) and 10-(3-(1-(3-([1,1'-biphenyl]-3-yloxy)propyl)-1H-1,2,3-triazol-4-yl)propyl)-10H-phenothiazine (12) showed respective IC 50 values of 1.8 and 1.9 μg mL -1 against T. cruzi, together with optimal selectivity. In particular, compound 7 showed a promising ADME-tox profile. Thus, hit 7 might be progressed as an antichagasic lead. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. G-Quadruplex Identification in the Genome of Protozoan Parasites Points to Naphthalene Diimide Ligands as New Antiparasitic Agents.

    Science.gov (United States)

    Belmonte-Reche, Efres; Martínez-García, Marta; Guédin, Aurore; Zuffo, Michela; Arévalo-Ruiz, Matilde; Doria, Filippo; Campos-Salinas, Jenny; Maynadier, Marjorie; López-Rubio, José Juan; Freccero, Mauro; Mergny, Jean-Louis; Pérez-Victoria, José María; Morales, Juan Carlos

    2018-02-08

    G-quadruplexes (G4) are DNA secondary structures that take part in the regulation of gene expression. Putative G4 forming sequences (PQS) have been reported in mammals, yeast, bacteria, and viruses. Here, we present PQS searches on the genomes of T. brucei, L. major, and P. falciparum. We found telomeric sequences and new PQS motifs. Biophysical experiments showed that EBR1, a 29 nucleotide long highly repeated PQS in T. brucei, forms a stable G4 structure. G4 ligands based on carbohydrate conjugated naphthalene diimides (carb-NDIs) that bind G4's including hTel could bind EBR1 with selectivity versus dsDNA. These ligands showed important antiparasitic activity. IC 50 values were in the nanomolar range against T. brucei with high selectivity against MRC-5 human cells. Confocal microscopy confirmed these ligands localize in the nucleus and kinetoplast of T. brucei suggesting they can reach their potential G4 targets. Cytotoxicity and zebrafish toxicity studies revealed sugar conjugation reduces intrinsic toxicity of NDIs.

  2. Defining the protein interaction network of human malaria parasite Plasmodium falciparum

    KAUST Repository

    Ramaprasad, Abhinay; Pain, Arnab; Ravasi, Timothy

    2012-01-01

    Malaria, caused by the protozoan parasite Plasmodium falciparum, affects around 225. million people yearly and a huge international effort is directed towards combating this grave threat to world health and economic development. Considerable

  3. Perkinsus marinus, a protozoan parasite of the Eastern oyster (Crassostrea virginica): effects of temperature on the uptake and metabolism of fluorescent lipid analogs and lipase activities.

    Science.gov (United States)

    Chu, Fu-Lin E; Soudant, P; Lund, E D

    2003-10-01

    The effects of temperature on the uptake and metabolism of fluorescent labeled palmitic acid (FLC16) and phosphatidylcholine (FLPC) and lipase activities in the oyster protozoan parasite, Perkinsus marinus, meront stage were tested at 10, 18, and 28 degrees C. Temperature significantly affected not only the uptake, assimilation, and metabolism of both FLC16 and FLPC in P. marinus, but also its triacylglycerol (TAG) lipase activities. The incorporation of both FLC16 and FLPC increased with temperature and paralleled the increase in the amount of total fatty acids in P. marinus meront cultures. The incorporation of FLC16 was higher than FLPC at all temperatures. The percentage of FLC16 metabolized to TAG was significantly higher at higher temperatures. Trace amounts of incorporated FLC16 were detected in monoacylglycerol (MAG) and PC at 18 and 28 degrees C. P. marinus meronts metabolized FLPC to TAG, diacylglycerol (DAG), monoacylglycerol (MAG), free fatty acids (FFA), phosphatidylethanolamine (PE), and cardiolipin (CL). The conversion of FLPC to TAG and PE was highest at 28 degrees C. The relative proportions of individual fatty acids and total saturated, monounsaturated and polyunsaturated fatty acids changed with temperatures. While total saturated fatty acids (SAFAs) increased with temperature, total monounsaturated fatty acids (MUFAs) decreased with temperature. Total polyunsaturated fatty acids (PUFAs) increased from 28 to 18 degrees C. The findings of increase of total SAFAs and decrease of total MUFAs with the increase of temperatures and upward shift of total PUFAs from 28 to 18 degrees C suggest that, as in other organisms, P. marinus is capable of adapting to changes in environmental temperatures by modifying its lipid metabolism. Generally, higher lipase activities were noted at higher cultivation temperatures. Both TAG lipase and phospholipase activities were detected in P. marinus cells and their extra cellular products (ECP), but phospholipase

  4. Purification and crystallization of human Cu/Zn superoxide dismutase recombinantly produced in the protozoan Leishmania tarentolae

    International Nuclear Information System (INIS)

    Gazdag, Emerich Mihai; Cirstea, Ion Cristian; Breitling, Reinhard; Lukeš, Julius; Blankenfeldt, Wulf; Alexandrov, Kirill

    2010-01-01

    The structures of two new crystal forms of human Cu/Zn superoxide dismutase produced in the eukaryotic expression host L. tarentolae are reported. The rapid and inexpensive production of high-quality eukaryotic proteins in recombinant form still remains a challenge in structural biology. Here, a protein-expression system based on the protozoan Leishmania tarentolae was used to produce human Cu/Zn superoxide dismutase (SOD1) in recombinant form. Sequential integration of the SOD1 expression cassettes was demonstrated to lead to a linear increase in expression levels to up to 30 mg per litre. Chromatographic purification resulted in 90% pure recombinant protein, with a final yield of 6.5 mg per litre of culture. The protein was crystallized and the structures of two new crystal forms were determined. These results demonstrate the suitability of the L. tarentolae expression system for structural research

  5. Licochalcone A, a novel antiparasitic agent with potent activity against human pathogenic protozoan species of Leishmania

    DEFF Research Database (Denmark)

    Chen, M; Christensen, S B; Blom, J

    1993-01-01

    Licochalcone A, an oxygenated chalcone isolated from the roots of Chinese licorice plant, inhibited the growth of both Leishmania major and Leishmania donovani promastigotes and amastigotes. The structure of the licochalcone A was established by mass and nuclear magnetic resonance spectroscopies...... killing of the parasite. These data show that intracellular Leishmania amastigotes are more susceptible than promastigotes to licochalcone A. Results of studies on the site of action of licochalcone A indicate that the target organelle appears to be the parasite mitochondria. These findings demonstrate...

  6. Prevalence of intestinal parasitic infections among patients ...

    African Journals Online (AJOL)

    Gastrointestinal helminths and protozoan parasites may cause mild, acute and chronic human infections. There is inadequate reliable information on the epidemiology of these parasites among patients attending tertiary hospitals in Tanzania. This retrospective study was conducted using hospital data obtained from the ...

  7. Potential role of beavers (Castor fiber in contamination of water in the Masurian Lake District (north-eastern Poland with protozoan parasites Cryptosporidium spp. and Giardia duodenalis

    Directory of Open Access Journals (Sweden)

    Sroka Jacek

    2015-06-01

    Full Text Available The purpose of this study was to assess the possible influence of beavers on the contamination of lake water with zoonotic parasites Giardia duodenalis and Cryptosporidium spp., with respect to the risk to human health. A total of 79 water samples were taken around the habitats of beavers from 14 localities situated in the recreational Masurian Lake District (north-eastern Poland. Water was sampled in the spring and autumn seasons, at different distances from beavers’ lodges (0-2, 10, 30, and 50 m. The samples were examined for the presence of (oocysts of zoonotic protozoa Giardia duodenalis and Cryptosporidium spp. by direct fluorescence assay (DFA and by nested and real time PCR. By DFA, the presence of Giardia cysts was found in 36 samples (45.6% and the presence of Cryptosporidium oocysts in 26 samples (32.9%. Numbers of Giardia cysts, Cryptosporidium oocysts, and summarised (oocysts of both parasites showed a significant variation depending on locality. The numbers of Giardia cysts significantly decreased with the distance from beavers’ lodges while the numbers of Cryptosporidium oocysts did not show such dependence. The amount of Giardia cysts in samples collected in spring was approximately 3 times higher than in autumn. Conversely, a larger number of Cryptosporidium oocysts were detected in samples collected in autumn than in spring. By PCR, Giardia DNA was found in 38 samples (48.1% whereas DNA of Cryptosporidium was found in only 7 samples (8.9%. Eleven Giardia isolates were subjected to phylogenetic analysis by restriction fragment length polymorphism PCR or sequencing which evidenced their belonging to zoonotic assemblages: A (3 isolates and B (8 isolates. In conclusion, water in the vicinity of beavers’ lodges in the tested region was markedly contaminated with (oocysts of Giardia duodenalis and Cryptosporidium spp., which confirms the potential role of beavers as a reservoir of these parasites and indicates a need for

  8. Functions of myosin motors tailored for parasitism

    DEFF Research Database (Denmark)

    Mueller, Christina; Graindorge, Arnault; Soldati-Favre, Dominique

    2017-01-01

    Myosin motors are one of the largest protein families in eukaryotes that exhibit divergent cellular functions. Their roles in protozoans, a diverse group of anciently diverged, single celled organisms with many prominent members known to be parasitic and to cause diseases in human and livestock......, are largely unknown. In the recent years many different approaches, among them whole genome sequencing, phylogenetic analyses and functional studies have increased our understanding on the distribution, protein architecture and function of unconventional myosin motors in protozoan parasites. In Apicomplexa......, myosins turn out to be highly specialized and to exhibit unique functions tailored to accommodate the lifestyle of these parasites....

  9. Study of the gastrointestinal parasitic fauna of captive non-human primates (Macaca fascicularis).

    Science.gov (United States)

    Zanzani, Sergio Aurelio; Gazzonis, Alessia Libera; Epis, Sara; Manfredi, Maria Teresa

    2016-01-01

    The aim of this study was to examine helminths and protozoans in cynomolgus macaques (Macaca fascicularis) imported from registered breeding facilities in China and their relation to health risks for non-human primate handlers in biomedical research centers and in breeding facilities. Fresh fecal samples were collected from a total of 443 M. fascicularis and analyzed by copromicroscopical analysis, immunoenzymatic, or molecular assays. As to helminths, whose eggs were shed in 2.03% of the samples, Trichuris and Oesophagostomum were the only two taxa found, with low prevalence and low eggs per gram (EPG) values. Protozoans were more frequently detected (87.40%), with Entamoeba coli (85.19%) and Endolimax nana (79.26%) as the most prevalent species shed. Other parasites found by fecal smear examination were uninucleated-cyst-producing Entamoebas (78.52%), Iodamoeba bütschlii (42.96%), and Chilomastix mesnili (24.44%), while cysts of Balantidium coli (22.2%) were only observed by sedimentation. No coproantigens of Giardia duodenalis, Cryptosporidium spp., and Entamoeba histolytica complex were detected. Blastocystis sp. infection was noticed in 87.63% of macaques by PCR. These cynomolgus monkeys were infected with many subtypes (ST1, ST2, ST3, ST5, and ST7), where the predominant Blastocystis sp. subtypes were ST2 (77.5%), followed by ST1 (63.5%). Data collected confirmed the presence of potentially zoonotic parasites and a high parasite diversity, suggesting the need for appropriate and sensitive techniques to adequately control them and related health risks for handlers of non-human primates in biomedical research centers and in breeding facilities.

  10. Genetic recombination between human and animal parasites creates novel strains of human pathogen.

    Directory of Open Access Journals (Sweden)

    Wendy Gibson

    2015-03-01

    Full Text Available Genetic recombination between pathogens derived from humans and livestock has the potential to create novel pathogen strains, highlighted by the influenza pandemic H1N1/09, which was derived from a re-assortment of swine, avian and human influenza A viruses. Here we investigated whether genetic recombination between subspecies of the protozoan parasite, Trypanosoma brucei, from humans and animals can generate new strains of human pathogen, T. b. rhodesiense (Tbr responsible for sleeping sickness (Human African Trypanosomiasis, HAT in East Africa. The trait of human infectivity in Tbr is conferred by a single gene, SRA, which is potentially transferable to the animal pathogen Tbb by sexual reproduction. We tracked the inheritance of SRA in crosses of Tbr and Tbb set up by co-transmitting genetically-engineered fluorescent parental trypanosome lines through tsetse flies. SRA was readily transferred into new genetic backgrounds by sexual reproduction between Tbr and Tbb, thus creating new strains of the human pathogen, Tbr. There was no evidence of diminished growth or transmissibility of hybrid trypanosomes carrying SRA. Although expression of SRA is critical to survival of Tbr in the human host, we show that the gene exists as a single copy in a representative collection of Tbr strains. SRA was found on one homologue of chromosome IV in the majority of Tbr isolates examined, but some Ugandan Tbr had SRA on both homologues. The mobility of SRA by genetic recombination readily explains the observed genetic variability of Tbr in East Africa. We conclude that new strains of the human pathogen Tbr are being generated continuously by recombination with the much larger pool of animal-infective trypanosomes. Such novel recombinants present a risk for future outbreaks of HAT.

  11. Genetic recombination between human and animal parasites creates novel strains of human pathogen.

    Science.gov (United States)

    Gibson, Wendy; Peacock, Lori; Ferris, Vanessa; Fischer, Katrin; Livingstone, Jennifer; Thomas, James; Bailey, Mick

    2015-03-01

    Genetic recombination between pathogens derived from humans and livestock has the potential to create novel pathogen strains, highlighted by the influenza pandemic H1N1/09, which was derived from a re-assortment of swine, avian and human influenza A viruses. Here we investigated whether genetic recombination between subspecies of the protozoan parasite, Trypanosoma brucei, from humans and animals can generate new strains of human pathogen, T. b. rhodesiense (Tbr) responsible for sleeping sickness (Human African Trypanosomiasis, HAT) in East Africa. The trait of human infectivity in Tbr is conferred by a single gene, SRA, which is potentially transferable to the animal pathogen Tbb by sexual reproduction. We tracked the inheritance of SRA in crosses of Tbr and Tbb set up by co-transmitting genetically-engineered fluorescent parental trypanosome lines through tsetse flies. SRA was readily transferred into new genetic backgrounds by sexual reproduction between Tbr and Tbb, thus creating new strains of the human pathogen, Tbr. There was no evidence of diminished growth or transmissibility of hybrid trypanosomes carrying SRA. Although expression of SRA is critical to survival of Tbr in the human host, we show that the gene exists as a single copy in a representative collection of Tbr strains. SRA was found on one homologue of chromosome IV in the majority of Tbr isolates examined, but some Ugandan Tbr had SRA on both homologues. The mobility of SRA by genetic recombination readily explains the observed genetic variability of Tbr in East Africa. We conclude that new strains of the human pathogen Tbr are being generated continuously by recombination with the much larger pool of animal-infective trypanosomes. Such novel recombinants present a risk for future outbreaks of HAT.

  12. Environmental risk and toxicology of human and veterinary waste pharmaceutical exposure to wild aquatic host-parasite relationships.

    Science.gov (United States)

    Morley, Neil J

    2009-03-01

    Pollution of the aquatic environment by human and veterinary waste pharmaceuticals is an increasing area of concern but little is known about their ecotoxicological effects on wildlife. In particular the interactions between pharmaceuticals and natural stressors of aquatic communities remains to be elucidated. A common natural stressor of freshwater and marine organisms are protozoan and metazoan parasites, which can have significant effects on host physiology and population structure, especially under the influence of many traditional kinds of toxic pollutants. However, little is known about the effects of waste pharmaceuticals to host-parasite dynamics. In order to assess the risk waste pharmaceuticals pose to aquatic wildlife it has been suggested the use of toxicological data derived from mammals during the product development of pharmaceuticals may be useful for predicting toxic effects. An additional similar source of information is the extensive clinical studies undertaken with numerous classes of drugs against parasites of human and veterinary importance. These studies may form the basis of preliminary risk assessments to aquatic populations and their interactions with parasitic diseases in pharmaceutical-exposed habitats. The present article reviews the effects of the most common classes of pharmaceutical medicines to host-parasite relationships and assesses the risk they may pose to wild aquatic organisms. In addition the effects of pharmaceutical mixtures, the importance of sewage treatment, and the risk of developing resistant strains of parasites are also assessed. Copyright © 2008 Elsevier B.V. All rights reserved.

  13. Chlorophyllin as a possible measure against vectors of human parasites and fish parasites

    Directory of Open Access Journals (Sweden)

    Peter Rolf Richter

    2014-06-01

    Full Text Available Water soluble chlorophyll (chlorophyllin exerts pronounced photodynamic activity. Chlorophyllin is a potential remedy against mosquito larvae and aquatic stages in the life cycle of parasites as well as against ectoparasites in fish. In the recent years it was found that mosquito larvae and other pest organisms can be killed by means of photodynamic substances such as different porphyrin derivates (e.g. hematoporphyrin, meso-tri(N-methylpyridyl, meso-mono(N-tetra-decylpyridyl porphyrine, hematoporphyrin IX, or hermatoporphyrin formula (HPF. It was found that incubation of mosquito larvae in chlorophyllin solution and subsequent irradiation results in photodynamic destruction of the larvae. Incorporation of about 8 ng chlorophyllin per larvae was sufficient to induce its death. In fish mass cultivation ichthyophthiriosis is a severe parasitic protozoan disease caused by the ciliate Ichthyophthirius multifiliis. It was found that incubation of infected fishes in chlorophyllin and subsequent illumination reduced the number of trophonts significantly (more than 50 %. The fishes were not impaired. Chlorophyllin and other photodynamic substances may become a possible countermeasure against I. multifiliis and other ectoparasites in aquaculture. The effectiveness of chlorophyllin depends on light attenuation in the water body.

  14. A study on protozoan infections (Giardia, Entamoeba, Isoapora and Cryptosporidium in stray dogs in Ilam province

    Directory of Open Access Journals (Sweden)

    S Kakekhani

    2011-11-01

    Full Text Available Giardia, Entamoeba, Isospora and Cryptosporidium are important protozoan parastites that caused diarrhea in human and animals. In the present study, fecal samples were collected fresh, directly from the rectum of 112 stray dogs in Ilam province. Giardia and Entamoeba were concentrated by using the formalin ether sedimentation method followed by the trichrome and iodine staining technique andCryptosporidium  oocysts  were  concentrated  by  using  the  formalin  ether  sedimentation  method  followed by the modified Ziehl-Neelsen staining technique. Of 112 stray dogs, protozoan infections were detected from feces of 46 dogs (41.07% that Giardia infection was detected from feces of 21 dogs (18.75%, Isospora 17 (15.17%, Cryptosporidium 8 (7.14% and synchronization infection to 2 protozoan in 9 dogs (8.03% and to 3 protozoan in 3 (2.67%. In the present study not observed to Entamoeba. No statistically significant differences in prevalence of protozoan parasites occurred between female (34.21 % and male (55.5 % stray dogs (p>0/05. But statistically significant differences in prevalence occurred between 1≥0 and 0 ≥1 stray dogs (p>0/05. So that stray dogs of Ilam province can cause infection of human water and food sources.

  15. Prevalence and Risk Factors of Human Intestinal Parasites in Roudehen, Tehran Province, Iran.

    Science.gov (United States)

    Hemmati, Nasrin; Razmjou, Elham; Hashemi-Hafshejani, Saeideh; Motevalian, Abbas; Akhlaghi, Lameh; Meamar, Ahmad Reza

    2017-01-01

    Intestinal parasitic infections are among the most common infections and health problems worldwide. Due to the lack of epidemiologic information of such infections, the prevalence of, and the risk factors for, enteric parasites were investigated in residents of Roudehen, Tehran Province, Iran. In this cross-sectional study, 561 triple fecal samples were collected through a two-stage cluster-sampling protocol from Jun to Dec 2014. The samples were examined by formalin-ether concentration, culture, and with molecular methods. The prevalence of enteric parasites was 32.7% (95% CI 27.3-38). Blastocystis sp. was the most common intestinal protozoan (28.4%; 95% CI 23.7-33.0). The formalin-ether concentration and culture methods detected Blastocystis sp., Entamoeba coli , Giardia intestinalis , Dientamoeba fragilis , Iodamoeba butschlii , Entamoeba complex cysts or trophozoite , Chilomastix mesnilii , and Enterobius vermicularis . Single-round PCR assay for Entamoeba complex were identified Entamoeba dispar and E. moshkovskii . E. histolytica was not observed in any specimen. Multivariate analysis showed a significant association of parasites with water source and close animal contact. There was no correlation between infections and gender, age, occupation, education, or travel history. Protozoan infections were more common than helminth infections. This study revealed a high prevalence of enteric protozoan parasite infection among citizens of Rodehen. As most of the species detected are transmitted through a water-resistant cyst, public and individual education on personal hygiene should be considered to reduce transmission of intestinal parasites in the population.

  16. Molecular Detection of Rickettsia amblyommii in Amblyomma americanum Parasitizing Humans

    Science.gov (United States)

    2010-01-01

    Detection of Rickettsia amblyommii in Amblyomma americanum Parasitizing Humans Ju Jiang~ Tamasin Yarina~ Melissa K. Miller,2 Ellen Y. Stromdahl? and...protein B gene (ompB) of Rickettsia amblyommii was employed to assess the threat of R. amblyommii exposure to humans parasitized by Amblyomma americanum...infection of and possibly disease in humans. Key Words: Amblyomma americanum-Lone star ticks-Real-time PCR- Rickettsia amblyommii. Introduction R

  17. First report of the protozoan parasite Perkinsus marinus in South America, infecting mangrove oysters Crassostrea rhizophorae from the Paraíba River (NE, Brazil).

    Science.gov (United States)

    da Silva, Patricia Mirella; Vianna, Rogério Tubino; Guertler, Cristhiane; Ferreira, Liana Pinho; Santana, Lucas Nunes; Fernández-Boo, Sergio; Ramilo, Andrea; Cao, Asunción; Villalba, Antonio

    2013-05-01

    The present work aimed to study the infection by Perkinsus sp. in the mangrove oysters Crassostrea rhizophorae from the estuary of the Paraíba River (Paraíba State, Brazil). Perkinsosis was detected by incubation of oyster gill pieces in Ray's fluid thioglycollate medium. The monthly prevalence values were all above 70%, thus infection was not likely to be a transient event. Perkinsus sp. parasites isolated from eight oysters were propagated in vitro. PCR-RFLP analysis of in vitro cultured cells as well as the sequences of the rDNA ITS region allowed the identification of the in vitro propagated parasites as Perkinsus marinus. Phylogenetic analyses using rDNA ITS region sequences strongly supported the Perkinsus sp. from Paraíba in a monophyletic group with P. marinus. Thus, the results confirmed the species affiliation of Paraíba Perkinsus sp. as P. marinus. This is the first report of P. marinus in Brazil and South America and the first report of P. marinus naturally infecting C. rhizophorae. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Human Parasites in Medieval Europe: Lifestyle, Sanitation and Medical Treatment.

    Science.gov (United States)

    Mitchell, Piers D

    2015-01-01

    Parasites have been infecting humans throughout our evolution. However, not all people suffered with the same species or to the same intensity throughout this time. Our changing way of life has altered the suitability of humans to infection by each type of parasite. This analysis focuses upon the evidence for parasites from archaeological excavations at medieval sites across Europe. Comparison between the patterns of infection in the medieval period allows us to see how changes in sanitation, herding animals, growing and fertilizing crops, the fishing industry, food preparation and migration all affected human susceptibility to different parasites. We go on to explore how ectoparasites may have spread infectious bacterial diseases, and also consider what medieval medical practitioners thought of parasites and how they tried to treat them. While modern research has shown the use of a toilet decreases the risk of contracting certain intestinal parasites, the evidence for past societies presented here suggests that the invention of latrines had no observable beneficial effects upon intestinal health. This may be because toilets were not sufficiently ubiquitous until the last century, or that the use of fresh human faeces for manuring crops still ensured those parasite species were easily able to reinfect the population. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Cell Death of Gamma Interferon-Stimulated Human Fibroblasts upon Toxoplasma gondii Infection Induces Early Parasite Egress and Limits Parasite Replication

    NARCIS (Netherlands)

    Niedelman, Wendy; Sprokholt, Joris K.; Clough, Barbara; Frickel, Eva-Maria; Saeij, Jeroen P. J.

    2013-01-01

    The intracellular protozoan parasite Toxoplasma gondii is a major food-borne illness and opportunistic infection for the immunosuppressed. Resistance to Toxoplasma is dependent on gamma interferon (IFN-γ) activation of both hematopoietic and nonhematopoietic cells. Although IFN-γ-induced innate

  20. Cell death of gamma interferon-stimulated human fibroblasts upon toxoplasma gondii infection induces early parasite egress and limits parasite replication

    NARCIS (Netherlands)

    Niedelman, W.; Sprokholt, J.K.; Clough, B.; Frickel, E.; Saeij, J.P.J.

    2013-01-01

    The intracellular protozoan parasite Toxoplasma gondii is a major food-borne illness and opportunistic infection for the immunosuppressed. Resistance to Toxoplasma is dependent on gamma interferon (IFN-¿) activation of both hematopoietic and nonhematopoietic cells. Although IFN-¿-induced innate

  1. Leukocyte Lysis and Cytokine Induction by the Human Sexually Transmitted Parasite Trichomonas vaginalis.

    Directory of Open Access Journals (Sweden)

    Frances Mercer

    2016-08-01

    Full Text Available Trichomonas vaginalis (Tv is an extracellular protozoan parasite that causes the most common non-viral sexually transmitted infection: trichomoniasis. While acute symptoms in women may include vaginitis, infections are often asymptomatic, but can persist and are associated with medical complications including increased HIV susceptibility, infertility, pre-term labor, and higher incidence of cervical cancer. Heightened inflammation resulting from Tv infection could account for these complications. Effective cellular immune responses to Tv have not been characterized, and re-infection is common, suggesting a dysfunctional adaptive immune response. Using primary human leukocyte components, we have established an in vitro co-culture system to assess the interaction between Tv and the cells of the human immune system. We determined that in vitro, Tv is able to lyse T-cells and B-cells, showing a preference for B-cells. We also found that Tv lysis of lymphocytes was mediated by contact-dependent and soluble factors. Tv lysis of monocytes is far less efficient, and almost entirely contact-dependent. Interestingly, a common symbiont of Tv, Mycoplasma hominis, did not affect cytolytic activity of the parasite, but had a major impact on cytokine responses. M. hominis enabled more diverse inflammatory cytokine secretion in response to Tv and, of the cytokines tested, Tv strains cleared of M. hominis induced only IL-8 secretion from monocytes. The quality of the adaptive immune response to Tv is therefore likely influenced by Tv symbionts, commensals, and concomitant infections, and may be further complicated by direct parasite lysis of effector immune cells.

  2. Leukocyte Lysis and Cytokine Induction by the Human Sexually Transmitted Parasite Trichomonas vaginalis

    Science.gov (United States)

    Mercer, Frances; Diala, Fitz Gerald I.; Chen, Yi-Pei; Molgora, Brenda M.; Ng, Shek Hang; Johnson, Patricia J.

    2016-01-01

    Trichomonas vaginalis (Tv) is an extracellular protozoan parasite that causes the most common non-viral sexually transmitted infection: trichomoniasis. While acute symptoms in women may include vaginitis, infections are often asymptomatic, but can persist and are associated with medical complications including increased HIV susceptibility, infertility, pre-term labor, and higher incidence of cervical cancer. Heightened inflammation resulting from Tv infection could account for these complications. Effective cellular immune responses to Tv have not been characterized, and re-infection is common, suggesting a dysfunctional adaptive immune response. Using primary human leukocyte components, we have established an in vitro co-culture system to assess the interaction between Tv and the cells of the human immune system. We determined that in vitro, Tv is able to lyse T-cells and B-cells, showing a preference for B-cells. We also found that Tv lysis of lymphocytes was mediated by contact-dependent and soluble factors. Tv lysis of monocytes is far less efficient, and almost entirely contact-dependent. Interestingly, a common symbiont of Tv, Mycoplasma hominis, did not affect cytolytic activity of the parasite, but had a major impact on cytokine responses. M. hominis enabled more diverse inflammatory cytokine secretion in response to Tv and, of the cytokines tested, Tv strains cleared of M. hominis induced only IL-8 secretion from monocytes. The quality of the adaptive immune response to Tv is therefore likely influenced by Tv symbionts, commensals, and concomitant infections, and may be further complicated by direct parasite lysis of effector immune cells. PMID:27529696

  3. Seroprevalence rates of antibodies against Leishmania infantum and other protozoan and rickettsial parasites in dogs Soroprevalência de anticorpos contra Leishmania infantum e outras espécies de protozoários e rickettsia em cães

    Directory of Open Access Journals (Sweden)

    Silvana de Cássia Paulan

    2013-03-01

    Full Text Available Canine visceral leishmaniasis (CVL is caused by the protozoan Leishmania infantum, which infects dogs and humans in many regions of Brazil. The present study involved an indirect fluorescent antibody test (IFAT to analyze L. infantum, Ehrlichia spp., Babesia canis, Toxoplasma gondii and Neospora caninum infection rates in serum samples from 93 dogs in a rural settlement in Ilha Solteira, SP, Brazil. The seroprevalence rates of anti-L. infantum, anti-Ehrlichia, anti-B. canis, anti-T. gondii and anti-N. caninum antibodies were 37.6%, 75.3%, 72%, 47.3% and 6.4%, respectively. In addition to IFAT, direct microscopic examination of popliteal lymph node aspirates revealed 26.9% of CVL positive dogs. Serological tests revealed that 17.2% of the dogs were seropositive for a single parasite, 29% for two parasites, 33% for three, 16.1% for four, and 1.1% for five parasites, while 3.2% were seronegative for five parasites. The presence of antibodies against these parasites in serum samples from dogs confirmed their exposure to these parasites in this rural area. Because of the potential zoonotic risk of these diseases, mainly leishmaniasis, ehrlichiosis and toxoplasmosis, special attention should focus on programs for the improvement of diagnostic assays and control measures against these parasites.Leishmaniose Visceral Canina (LVC é causada pelo protozoário Leishmania infantum, podendo infectar cães e humanos em várias regiões do Brasil. O presente estudo teve por objetivo realizar a reação de imunofluorescência indireta (RIFI para analisar os índices de infecção parasitária para L. infantum, Ehrlichia spp., Babesia canis, Toxoplasma gondii e Neospora caninum, em 93 amostras de soro de cães de um assentamento rural no município de Ilha Solteira, SP, Brasil. A taxa de soroprevalência de cães com anticorpos anti-L. infantum, anti-Ehrlichia, anti-B. canis, anti-T. gondii e anti-N. caninum foi de 37,6%, 75,3%, 72%, 47,3% e 6

  4. Evidence that leishmania donovani utilizes a mannose receptor on human mononuclear phagocytes to establish intracellular parasitism

    International Nuclear Information System (INIS)

    Wilson, M.E.; Pearson, R.D.

    1986-01-01

    The pathogenic protozoan Leishmania donovani must gain entrance into mononuclear phagocytes to successfully parasitize man. The parasite's extracellular promastigote stage is ingested by human peripheral blood monocytes or monocyte-derived macrophages in the absence of serum, in a manner characteristic of receptor-mediated endocytosis. Remarkable similarities have been found between the macrophage receptor(s) for promastigotes and a previously characterized eucaryotic receptor system, the mannose/fucose receptor (MFR), that mediates the binding of zymosan particles and mannose- or fucose-terminal glycoconjugates to macrophages. Ingestion of promastigotes by monocyte-derived macrophages was inhibited by several MFR ligands; that is mannan, mannose-BSA and fucose-BSA. In contrast, promastigote ingestion by monocytes was unaffected by MFR ligands. Furthermore, attachment of promastigotes to macrophages, assessed by using cytochalasin D to prevent phagocytosis, was reduced 49.8% by mannan. Reorientation of the MFR to the ventral surface of the cell was achieved by plating macrophages onto mannan-coated coverslips, reducing MFR activity on the exposed cell surface by 94% as assessed by binding of 125 I-mannose-BSA. Under these conditions, ingestion of promastigotes was inhibited by 71.4%. Internalization of the MFR by exposure of macrophages to zymosan before infection with promastigotes resulted in a 62.3% decrease in parasite ingestion. Additionally, NH 4 Cl decreased macrophage ingestion of promastigotes by 38.2%. Subinhibitory concentration of NH 4 Cl (10 mM) and of mannan (0.25 mg/ml) together inhibited parsite ingestion by 76.4%

  5. Risk factors for gastrointestinal parasite infections of dogs living around protected areas of the Atlantic Forest: implications for human and wildlife health

    Directory of Open Access Journals (Sweden)

    N. H. A. Curi

    Full Text Available Abstract Despite the ubiquity of domestic dogs, their role as zoonotic reservoirs and the large number of studies concerning parasites in urban dogs, rural areas in Brazil, especially those at the wildlife-domestic animal-human interface, have received little attention from scientists and public health managers. This paper reports a cross-sectional epidemiological survey of gastrointestinal parasites of rural dogs living in farms around Atlantic Forest fragments. Through standard parasitological methods (flotation and sedimentation, 13 parasite taxa (11 helminths and two protozoans were found in feces samples from dogs. The most prevalent were the nematode Ancylostoma (47% followed by Toxocara (18% and Trichuris (8%. Other less prevalent (<2% parasites found were Capillaria, Ascaridia, Spirocerca, Taeniidae, Acantocephala, Ascaris, Dipylidium caninum, Toxascaris, and the protozoans Cystoisospora and Eimeria. Mixed infections were found in 36% of samples, mostly by Ancylostoma and Toxocara. Previous deworming had no association with infections, meaning that this preventive measure is being incorrectly performed by owners. Regarding risk factors, dogs younger than one year were more likely to be infected with Toxocara, and purebred dogs with Trichuris. The number of cats in the households was positively associated with Trichuris infection, while male dogs and low body scores were associated with mixed infections. The lack of associations with dog free-ranging behavior and access to forest or villages indicates that infections are mostly acquired around the households. The results highlight the risk of zoonotic and wildlife parasite infections from dogs and the need for monitoring and controlling parasites of domestic animals in human-wildlife interface areas.

  6. Targeted mutagenesis in a human-parasitic nematode

    Science.gov (United States)

    Gang, Spencer S.; Castelletto, Michelle L.

    2017-01-01

    Parasitic nematodes infect over 1 billion people worldwide and cause some of the most common neglected tropical diseases. Despite their prevalence, our understanding of the biology of parasitic nematodes has been limited by the lack of tools for genetic intervention. In particular, it has not yet been possible to generate targeted gene disruptions and mutant phenotypes in any parasitic nematode. Here, we report the development of a method for introducing CRISPR-Cas9-mediated gene disruptions in the human-parasitic threadworm Strongyloides stercoralis. We disrupted the S. stercoralis twitchin gene unc-22, resulting in nematodes with severe motility defects. Ss-unc-22 mutations were resolved by homology-directed repair when a repair template was provided. Omission of a repair template resulted in deletions at the target locus. Ss-unc-22 mutations were heritable; we passed Ss-unc-22 mutants through a host and successfully recovered mutant progeny. Using a similar approach, we also disrupted the unc-22 gene of the rat-parasitic nematode Strongyloides ratti. Our results demonstrate the applicability of CRISPR-Cas9 to parasitic nematodes, and thereby enable future studies of gene function in these medically relevant but previously genetically intractable parasites. PMID:29016680

  7. Ancient Human Parasites in Ethnic Chinese Populations.

    Science.gov (United States)

    Yeh, Hui-Yuan; Mitchell, Piers D

    2016-10-01

    Whilst archaeological evidence for many aspects of life in ancient China is well studied, there has been much less interest in ancient infectious diseases, such as intestinal parasites in past Chinese populations. Here, we bring together evidence from mummies, ancient latrines, and pelvic soil from burials, dating from the Neolithic Period to the Qing Dynasty, in order to better understand the health of the past inhabitants of China and the diseases endemic in the region. Seven species of intestinal parasite have been identified, namely roundworm, whipworm, Chinese liver fluke, oriental schistosome, pinworm, Taenia sp. tapeworm, and the intestinal fluke Fasciolopsis buski . It was found that in the past, roundworm, whipworm, and Chinese liver fluke appear to have been much more common than the other species. While roundworm and whipworm remained common into the late 20th century, Chinese liver fluke seems to have undergone a marked decline in its prevalence over time. The iconic transport route known as the Silk Road has been shown to have acted as a vector for the transmission of ancient diseases, highlighted by the discovery of Chinese liver fluke in a 2,000 year-old relay station in northwest China, 1,500 km outside its endemic range.

  8. Human fascioliasis: a parasitic health problem in Dakahlia Governorate, Egypt.

    Science.gov (United States)

    el Shazly, A M; Handousa, A E; Youssef, M E; Rizk, H; Hamouda, M M

    1991-08-01

    Fascioliasis has a cosmopolitan distribution and is prevalent in sheep-raising countries. Now, it is an increasingly important parasite of man in the Mediterranean countries. In Dakahlia G., human fascioliasis has imposed itself as a parasitic health problem. In this paper, 23 human cases were selected to throw some light on the signs, symptoms and diagnosis of the disease. It was concluded that painful hepatomegaly, fever, anaemia and marked eosinophilia are tetrad suggesting fascioliasis in patient who has consumed watercress as green salade. Data concerning treatment and follow up will be published later.

  9. Prevalence and Risk Factors of Human Intestinal Parasites in Roudehen, Tehran Province, Iran

    Directory of Open Access Journals (Sweden)

    Nasrin HEMMATI

    2017-09-01

    Full Text Available Background: Intestinal parasitic infections are among the most common infections and health problems worldwide. Due to the lack of epidemiologic information of such infections, the prevalence of, and the risk factors for, enteric parasites were investigated in residents of Roudehen, Tehran Province, Iran.Methods: In this cross-sectional study, 561 triple fecal samples were collected through a two-stage cluster-sampling protocol from Jun to Dec 2014. The samples were examined by formalin-ether concentration, culture, and with molecular methods.Results: The prevalence of enteric parasites was 32.7% (95% CI 27.3–38. Blastocystis sp. was the most common intestinal protozoan (28.4%; 95% CI 23.7–33.0. The formalin-ether concentration and culture methods detected Blastocystis sp., Entamoeba coli, Giardia intestinalis, Dientamoeba fragilis, Iodamoeba butschlii, Entamoeba complex cysts or trophozoite, Chilomastix mesnilii, and Enterobius vermicularis. Single-round PCR assay for Entamoeba complex were identified Entamoeba dispar and E. moshkovskii. E. histolytica was not observed in any specimen. Multivariate analysis showed a significant association of parasites with water source and close animal contact. There was no correlation between infections and gender, age, occupation, education, or travel history. Protozoan infections were more common than helminth infections.Conclusion: This study revealed a high prevalence of enteric protozoan parasite infection among citizens of Rodehen. As most of the species detected are transmitted through a water-resistant cyst, public and individual education on personal hygiene should be considered to reduce transmission of intestinal parasites in the population. 

  10. Parasites

    Centers for Disease Control (CDC) Podcasts

    2010-05-06

    In this podcast, a listener wants to know what to do if he thinks he has a parasite or parasitic disease.  Created: 5/6/2010 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 5/6/2010.

  11. Two distinct populations of bovine IL-17⁺ T-cells can be induced and WC1⁺IL-17⁺γδ T-cells are effective killers of protozoan parasites.

    Science.gov (United States)

    Peckham, R K; Brill, R; Foster, D S; Bowen, A L; Leigh, J A; Coffey, T J; Flynn, R J

    2014-06-25

    IL-17 has emerged as a key player in the immune system, exhibiting roles in protection from infectious diseases and promoting inflammation in autoimmunity. Initially thought to be CD4 T-cell-derived, the sources of IL-17 are now known to be varied and belong to both the innate and adaptive arms of the immune system. Mechanisms for inducing IL-17 production in lymphoid cells are thought to rely on appropriate antigenic stimulation in the context of TGF-β1, IL-6 and/or IL-1β. Using culture protocols adapted from human studies, we have effectively induced both bovine CD4(+) and WC1(+) γδ T-cells to produce IL-17 termed Th17 and γδ17 cells, respectively. The negative regulatory effect of IFN-γ on mouse and human IL-17 production can be extended to the bovine model, as addition of IFN-γ decreases IL-17 production in both cell types. Furthermore we show that infection with the protozoan Neospora caninum will induce fibroblasts to secrete pro-IL-17 factors thereby inducing a γδ17 phenotype that preferentially kills infected target cells. Our study identifies two T-cell sources of IL-17, and is the first to demonstrate a protective effect of IL-17(+) T-cells in ruminants. Our findings offer further opportunities for future adjuvants or vaccines which could benefit from inducing these responses.

  12. Control of human parasitic diseases: Context and overview.

    Science.gov (United States)

    Molyneux, David H

    2006-01-01

    The control of parasitic diseases of humans has been undertaken since the aetiology and natural history of the infections was recognized and the deleterious effects on human health and well-being appreciated by policy makers, medical practitioners and public health specialists. However, while some parasitic infections such as malaria have proved difficult to control, as defined by a sustained reduction in incidence, others, particularly helminth infections can be effectively controlled. The different approaches to control from diagnosis, to treatment and cure of the clinically sick patient, to control the transmission within the community by preventative chemotherapy and vector control are outlined. The concepts of eradication, elimination and control are defined and examples of success summarized. Overviews of the health policy and financing environment in which programmes to control or eliminate parasitic diseases are positioned and the development of public-private partnerships as vehicles for product development or access to drugs for parasite disease control are discussed. Failure to sustain control of parasites may be due to development of drug resistance or the failure to implement proven strategies as a result of decreased resources within the health system, decentralization of health management through health-sector reform and the lack of financial and human resources in settings where per capita government expenditure on health may be less than $US 5 per year. However, success has been achieved in several large-scale programmes through sustained national government investment and/or committed donor support. It is also widely accepted that the level of investment in drug development for the parasitic diseases of poor populations is an unattractive option for pharmaceutical companies. The development of partnerships to specifically address this need provides some hope that the intractable problems of the treatment regimens for the trypanosomiases and

  13. Parasitic, fungal and prion zoonoses: an expanding universe of candidates for human disease.

    Science.gov (United States)

    Akritidis, N

    2011-03-01

    Zoonotic infections have emerged as a burden for millions of people in recent years, owing to re-emerging or novel pathogens often causing outbreaks in the developing world in the presence of inadequate public health infrastructure. Among zoonotic infections, those caused by parasitic pathogens are the ones that affect millions of humans worldwide, who are also at risk of developing chronic disease. The present review discusses the global effect of protozoan pathogens such as Leishmania sp., Trypanosoma sp., and Toxoplasma sp., as well as helminthic pathogens such as Echinococcus sp., Fasciola sp., and Trichinella sp. The zoonotic aspects of agents that are not essentially zoonotic are also discussed. The review further focuses on the zoonotic dynamics of fungal pathogens and prion diseases as observed in recent years, in an evolving environment in which novel patient target groups have developed for agents that were previously considered to be obscure or of minimal significance. © 2011 The Author. Clinical Microbiology and Infection © 2011 European Society of Clinical Microbiology and Infectious Diseases.

  14. Mobile genetic elements in protozoan parasites

    Indian Academy of Sciences (India)

    Unknown

    thought to aid the transposition of their nonautonomous counterparts .... experiments with gene fusion constructs) and vary in number in ... T. brucei. Since RIME insertion is thought to activate ..... actions to form an aggregate or core particle.

  15. Molecular characterization of intestinal protozoan parasites from ...

    African Journals Online (AJOL)

    Koffi Mathurin

    2014-02-17

    Feb 17, 2014 ... histolytica and C. parvum infection, based on molecular diagnosis, in children .... cytotoxigenic Clostridium difficile ), viruses (Rotavirus,. Noro viruses and ... cost, it gives the true prevalence with respect to its sensi- tivity and ...

  16. Origin of the human malaria parasite Plasmodium falciparum in gorillas.

    Science.gov (United States)

    Liu, Weimin; Li, Yingying; Learn, Gerald H; Rudicell, Rebecca S; Robertson, Joel D; Keele, Brandon F; Ndjango, Jean-Bosco N; Sanz, Crickette M; Morgan, David B; Locatelli, Sabrina; Gonder, Mary K; Kranzusch, Philip J; Walsh, Peter D; Delaporte, Eric; Mpoudi-Ngole, Eitel; Georgiev, Alexander V; Muller, Martin N; Shaw, George M; Peeters, Martine; Sharp, Paul M; Rayner, Julian C; Hahn, Beatrice H

    2010-09-23

    Plasmodium falciparum is the most prevalent and lethal of the malaria parasites infecting humans, yet the origin and evolutionary history of this important pathogen remain controversial. Here we develop a single-genome amplification strategy to identify and characterize Plasmodium spp. DNA sequences in faecal samples from wild-living apes. Among nearly 3,000 specimens collected from field sites throughout central Africa, we found Plasmodium infection in chimpanzees (Pan troglodytes) and western gorillas (Gorilla gorilla), but not in eastern gorillas (Gorilla beringei) or bonobos (Pan paniscus). Ape plasmodial infections were highly prevalent, widely distributed and almost always made up of mixed parasite species. Analysis of more than 1,100 mitochondrial, apicoplast and nuclear gene sequences from chimpanzees and gorillas revealed that 99% grouped within one of six host-specific lineages representing distinct Plasmodium species within the subgenus Laverania. One of these from western gorillas comprised parasites that were nearly identical to P. falciparum. In phylogenetic analyses of full-length mitochondrial sequences, human P. falciparum formed a monophyletic lineage within the gorilla parasite radiation. These findings indicate that P. falciparum is of gorilla origin and not of chimpanzee, bonobo or ancient human origin.

  17. Targeting NAD+ metabolism in the human malaria parasite Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    Jessica K O'Hara

    Full Text Available Nicotinamide adenine dinucleotide (NAD+ is an essential metabolite utilized as a redox cofactor and enzyme substrate in numerous cellular processes. Elevated NAD+ levels have been observed in red blood cells infected with the malaria parasite Plasmodium falciparum, but little is known regarding how the parasite generates NAD+. Here, we employed a mass spectrometry-based metabolomic approach to confirm that P. falciparum lacks the ability to synthesize NAD+ de novo and is reliant on the uptake of exogenous niacin. We characterized several enzymes in the NAD+ pathway and demonstrate cytoplasmic localization for all except the parasite nicotinamidase, which concentrates in the nucleus. One of these enzymes, the P. falciparum nicotinate mononucleotide adenylyltransferase (PfNMNAT, is essential for NAD+ metabolism and is highly diverged from the human homolog, but genetically similar to bacterial NMNATs. Our results demonstrate the enzymatic activity of PfNMNAT in vitro and demonstrate its ability to genetically complement the closely related Escherichia coli NMNAT. Due to the similarity of PfNMNAT to the bacterial enzyme, we tested a panel of previously identified bacterial NMNAT inhibitors and synthesized and screened twenty new derivatives, which demonstrate a range of potency against live parasite culture. These results highlight the importance of the parasite NAD+ metabolic pathway and provide both novel therapeutic targets and promising lead antimalarial compounds.

  18. Enlightening the malaria parasite life cycle: bioluminescent Plasmodium in fundamental and applied research

    OpenAIRE

    Siciliano, Giulia; Alano, Pietro

    2015-01-01

    The unicellular protozoan parasites of the genus Plasmodium impose on human health worldwide the enormous burden of malaria. The possibility to genetically modify several species of malaria parasites represented a major advance in the possibility to elucidate their biology and is now turning laboratory lines of transgenic Plasmodium into precious weapons to fight malaria. Amongst the various genetically modified plasmodia, transgenic parasite lines expressing bioluminescent reporters have bee...

  19. Protozoan parasites of Xiphophorus spp. (Poeciliidae and their relation with water characteristics Parasitos protozoários de Xiphophorus sp. (Poeciliidae e a relação deles com as características da água

    Directory of Open Access Journals (Sweden)

    F. Garcia

    2009-02-01

    Full Text Available This work investigated the relationship between water characteristics and infestation of protozoan parasites, Icthyophthirius multifiliis and Trichodina sp., in swordtails (Xiphophorus helleri and platy (Xiphophorus maculates collected in an ornamental fish farm in São Paulo, Brazil. Fish were monthly collected from ponds and tanks for one year. The prevalence rates in fish from tanks and ponds were, respectively, 34.2% and 22.5% for I. multifiliis, and 13% and 54.2% for Trichodina sp. Increased electric conductivity and pH provoked reduction of I. multifiliis infestation. Low oxygen concentration increased Trichodina sp. infestation. The use of salt to increase the electric conductivity of water was a method to control I. multifiliis. Low dissolved oxygen and the addition of organic fertilizer favored the reproduction of Trichodina sp.Investigou-se a relação entre as características da água e a infestação de protozoários parasitos, Icthyophthirius multifiliis e Trichodina sp., em peixe espada, Xiphophorus helleri e em plati, Xiphophorus maculatus, coletados em uma piscicultura de peixes ornamentais no Estado de São Paulo, Brasil. Os peixes foram coletados mensalmente, durante um ano, dos viveiros e das caixas de estocagem. A prevalência da infestação nos peixes das caixas e dos viveiros foram, respectivamente, 34,2% e 22,5% para I. multifiliis e 13% e 54% para Trichodina sp. A elevada condutividade elétrica e o pH da água reduziram a infestação por I. multifiliis. A baixa concentração de oxigênio resultou em aumento na infestação por Trichodina sp. O uso do sal, para aumentar a condutividade elétrica da água, consistiu em um método de controle de I. multifiliis. A redução do oxigênio dissolvido e a adição de fertilizante orgânico favoreceram a reprodução de Trichodina sp.

  20. Risk factors for gastrointestinal parasite infections of dogs living around protected areas of the Atlantic Forest: implications for human and wildlife health.

    Science.gov (United States)

    Curi, N H A; Paschoal, A M O; Massara, R L; Santos, H A; Guimarães, M P; Passamani, M; Chiarello, A G

    2017-01-01

    Despite the ubiquity of domestic dogs, their role as zoonotic reservoirs and the large number of studies concerning parasites in urban dogs, rural areas in Brazil, especially those at the wildlife-domestic animal-human interface, have received little attention from scientists and public health managers. This paper reports a cross-sectional epidemiological survey of gastrointestinal parasites of rural dogs living in farms around Atlantic Forest fragments. Through standard parasitological methods (flotation and sedimentation), 13 parasite taxa (11 helminths and two protozoans) were found in feces samples from dogs. The most prevalent were the nematode Ancylostoma (47%) followed by Toxocara (18%) and Trichuris (8%). Other less prevalent (dogs younger than one year were more likely to be infected with Toxocara, and purebred dogs with Trichuris. The number of cats in the households was positively associated with Trichuris infection, while male dogs and low body scores were associated with mixed infections. The lack of associations with dog free-ranging behavior and access to forest or villages indicates that infections are mostly acquired around the households. The results highlight the risk of zoonotic and wildlife parasite infections from dogs and the need for monitoring and controlling parasites of domestic animals in human-wildlife interface areas.

  1. Assessment of potential sources of protozoan contamination ...

    African Journals Online (AJOL)

    Occasional screening of food and water quality available to organisms in protected areas could be beneficial to their successful conservation. This is important for areas receiving regular human visitors and exhibiting activities that may be detrimental to ecosystem health. This study determined the intestinal protozoan ...

  2. Mechanisms of cellular invasion by intracellular parasites.

    Science.gov (United States)

    Walker, Dawn M; Oghumu, Steve; Gupta, Gaurav; McGwire, Bradford S; Drew, Mark E; Satoskar, Abhay R

    2014-04-01

    Numerous disease-causing parasites must invade host cells in order to prosper. Collectively, such pathogens are responsible for a staggering amount of human sickness and death throughout the world. Leishmaniasis, Chagas disease, toxoplasmosis, and malaria are neglected diseases and therefore are linked to socio-economical and geographical factors, affecting well-over half the world's population. Such obligate intracellular parasites have co-evolved with humans to establish a complexity of specific molecular parasite-host cell interactions, forming the basis of the parasite's cellular tropism. They make use of such interactions to invade host cells as a means to migrate through various tissues, to evade the host immune system, and to undergo intracellular replication. These cellular migration and invasion events are absolutely essential for the completion of the lifecycles of these parasites and lead to their for disease pathogenesis. This review is an overview of the molecular mechanisms of protozoan parasite invasion of host cells and discussion of therapeutic strategies, which could be developed by targeting these invasion pathways. Specifically, we focus on four species of protozoan parasites Leishmania, Trypanosoma cruzi, Plasmodium, and Toxoplasma, which are responsible for significant morbidity and mortality.

  3. Rickettsia species in human-parasitizing ticks in Greece.

    Science.gov (United States)

    Papa, Anna; Xanthopoulou, Kyriaki; Kotriotsiou, Tzimoula; Papaioakim, Miltiadis; Sotiraki, Smaragda; Chaligiannis, Ilias; Maltezos, Efstratios

    2016-05-01

    Ticks serve as vectors and reservoirs for a variety of bacterial, viral and protozoan pathogens affecting humans and animals. Unusual increased tick aggressiveness was observed in 2008-2009 in northeastern Greece. The aim of the study was to check ticks removed from persons during 2009 for infection with Rickettsia species. A total of 159 ticks were removed from 147 persons who sought medical advice in a hospital. Tick identification was performed morphologically using taxonomic keys. DNA was extracted from each individual tick and a PCR assay targeting the rickettsial outer membrane protein A gene of Rickettsia spp. was applied. Most of the adult ticks (132/153, 86.3%) were Rhipicephalus sanguineus. Rickettsiae were detected in 23 of the 153 (15.0%) adult ticks. Five Rickettsiae species were identified: R. aeschlimannii, R. africae (n=6), R. massilae (4), R. monacensis (1), and Candidatus R. barbariae (1). To our knowledge, this is the first report of R. africae, R. monacensis, and Candidatus R. barbariae in Greece. Several Rickettsia species were identified in ticks removed from humans in Greece, including those that are prevalent in northern and southern latitudes. © The Author 2016. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. The origins of human parasites: Exploring the evidence for endoparasitism throughout human evolution.

    Science.gov (United States)

    Mitchell, Piers D

    2013-09-01

    It is important to determine the origins of human parasites if we are to understand the health of past populations and the effects of parasitism upon human evolution. It also helps us to understand emerging infectious diseases and the modern clinical epidemiology of parasites. This study aims to distinguish those heirloom parasites that have infected humans and their ancestors throughout their evolution in Africa from those recent souvenir species to which humans have only become exposed following contact with animals during their migration across the globe. Ten such heirloom parasites are proposed, which appear to have been spread across the globe. Six further heirlooms are noted to have limited spread due to the constraints of their life cycle. Twelve souvenir parasites of humans are described, along with their animal reservoirs. While the origins of 28 species of endoparasite have been determined, many more species require further assessment once a more systematic analysis of ancient parasites in other regions of Africa has been undertaken. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Food-borne human parasitic pathogens associated with household cockroaches and houseflies in Nigeria

    Directory of Open Access Journals (Sweden)

    Oyetunde T. Oyeyemi

    2016-03-01

    Full Text Available Cockroaches and houseflies pose significant public health threat owning to their ability to mechanically transmit human intestinal parasites and other disease-causing microorganisms. This study aims at assessing the vectoral capacity of cockroaches and houseflies in the transmission of human intestinal parasites. Intestinal parasite external surface contamination of 130 cockroaches and 150 houseflies caught within dwelling places in Ilishan-Remo town, Ogun State, Nigeria was determined. Cockroaches (six parasite species were more contaminated than houseflies (four parasite species. The most prevalent parasites were Trichuris trichiura (74.0% and hookworm (63.0% in houseflies and cockroaches respectively. There were significant differences in the prevalence of hookworm, T. trichiura and Taenia spp. isolated from cockroaches and houseflies (P < 0.05. There is high contamination of human intestinal parasites in cockroaches and houseflies in human dwelling places in the study area, thus they have the ability to transmit these parasites to unkempt food materials.

  6. Heritability of the human infectious reservoir of malaria parasites.

    Directory of Open Access Journals (Sweden)

    Yaye Ramatoulaye Lawaly

    Full Text Available BACKGROUND: Studies on human genetic factors associated with malaria have hitherto concentrated on their role in susceptibility to and protection from disease. In contrast, virtually no attention has been paid to the role of human genetics in eliciting the production of parasite transmission stages, the gametocytes, and thus enhancing the spread of disease. METHODS AND FINDINGS: We analysed four longitudinal family-based cohort studies from Senegal and Thailand followed for 2-8 years and evaluated the relative impact of the human genetic and non-genetic factors on gametocyte production in infections of Plasmodium falciparum or P. vivax. Prevalence and density of gametocyte carriage were evaluated in asymptomatic and symptomatic infections by examination of Giemsa-stained blood smears and/or RT-PCR (for falciparum in one site. A significant human genetic contribution was found to be associated with gametocyte prevalence in asymptomatic P. falciparum infections. By contrast, there was no heritability associated with the production of gametocytes for P. falciparum or P. vivax symptomatic infections. Sickle cell mutation, HbS, was associated with increased gametocyte prevalence but its contribution was small. CONCLUSIONS: The existence of a significant human genetic contribution to gametocyte prevalence in asymptomatic infections suggests that candidate gene and genome wide association approaches may be usefully applied to explore the underlying human genetics. Prospective epidemiological studies will provide an opportunity to generate novel and perhaps more epidemiologically pertinent gametocyte data with which similar analyses can be performed and the role of human genetics in parasite transmission ascertained.

  7. Taming Parasites by Tailoring Them

    Directory of Open Access Journals (Sweden)

    Bingjian Ren

    2017-07-01

    Full Text Available The next-generation gene editing based on CRISPR (clustered regularly interspaced short palindromic repeats has been successfully implemented in a wide range of organisms including some protozoan parasites. However, application of such a versatile game-changing technology in molecular parasitology remains fairly underexplored. Here, we briefly introduce state-of-the-art in human and mouse research and usher new directions to drive the parasitology research in the years to come. In precise, we outline contemporary ways to embolden existing apicomplexan and kinetoplastid parasite models by commissioning front-line gene-tailoring methods, and illustrate how we can break the enduring gridlock of gene manipulation in non-model parasitic protists to tackle intriguing questions that remain long unresolved otherwise. We show how a judicious solicitation of the CRISPR technology can eventually balance out the two facets of pathogen-host interplay.

  8. Nuclear techniques in the study of parasitic infections

    International Nuclear Information System (INIS)

    1982-01-01

    Out of 57 papers published, 47 fall within the INIS subject scope. Seven main topics were covered: resistance to infections with protozoan parasites; resistance to infections with African trypanosomes and helminths of ruminant animals; resistance to infections with filarial parasites and schistosomes; pathology of parasitic infections; epidemiology and diagnosis of parasitic infections; physiology and biochemistry of parasitic organisms; pharmacodynamics of anti-parasitic agents

  9. Anthropogenics: Human influence on global and genetic homogenization of parasite populations

    Science.gov (United States)

    The distribution, abundance, and diversity of life on Earth have been greatly shaped by human activities. This is no truer than in the geographic expansion of parasites; however, measuring the extent to which humans have influenced the dissemination and population structure of parasites has been cha...

  10. Parasites of wild animals as a potential source of hazard to humans.

    Science.gov (United States)

    Gałęcki, Remigiusz; Sokół, Rajmund; Koziatek, Sylwia

    2015-01-01

    The decline in wild animal habitats and the uncontrolled growth of their population make these animals come closer to human settlements. The aim of the study was to identify parasitic infections in wild animals in the selected area, and to specify the hazards they create for humans. In more than 66% of the analysed faecal samples from wild boar, hares, roe deer, deer and fallow deer various developmental forms of parasites were found. These included parasites dangerous for humans: Toxocara canis, Capillaria hepatica, Capillaria bovis, Trichuris suis, Trichuris ovis, Trichuris globulosus, Eimeria spp., and Trichostongylus spp. It is necessary to monitor parasitic diseases in wild animals as they can lead to the spread of parasites creating a hazard to humans, pets and livestock.

  11. Ecology of the gastrointestinal parasites of Colobus vellerosus at Boabeng-Fiema, Ghana: possible anthropozoonotic transmission.

    Science.gov (United States)

    Teichroeb, Julie A; Kutz, Susan J; Parkar, Unaiza; Thompson, R C Andrew; Sicotte, Pascale

    2009-11-01

    Parasite richness and prevalence in wild animals can be used as indicators of population and ecosystem health. In this study, the gastrointestinal parasites of ursine colobus monkeys (Colobus vellerosus) at the Boabeng-Fiema Monkey Sanctuary (BFMS), Ghana, were investigated. BFMS is a sacred grove where monkeys and humans have long lived in relatively peaceful proximity. Fecal samples (n = 109) were collected opportunistically from >27 adult and subadult males in six bisexual groups and one all-male band from July 2004 to August 2005. Using fecal floatation, we detected three protozoans (two Entamoeba sp., Isospora sp.), five nematodes (Ascaris sp., Enterobius sp., Trichuris sp., two strongyle sp.), and one digenean trematode. Using fluorescein labeled antibodies, we detected an additional protozoan (Giardia sp.), and with PCR techniques, we characterized this as G. duodenalis Assemblage B and also identified a protistan (Blastocystis sp., subtype 2). The most prevalent parasite species were G. duodenalis and Trichuris sp. Parasites were more prevalent in the long wet season than the long dry. Parasite prevalence did not vary by age, and average parasite richness did not differ by rank for males whose status remained unchanged. However, males that changed rank tended to show higher average parasite richness when they were lower ranked. Individuals that spent more time near human settlements had a higher prevalence of Isospora sp. that morphologically resembled the human species I. belli. The presence of this parasite and G. duodenalis Assemblage B indicates possible anthropozoonotic and/or zoonotic transmission between humans and colobus monkeys at this site.

  12. Defining the protein interaction network of human malaria parasite Plasmodium falciparum

    KAUST Repository

    Ramaprasad, Abhinay

    2012-02-01

    Malaria, caused by the protozoan parasite Plasmodium falciparum, affects around 225. million people yearly and a huge international effort is directed towards combating this grave threat to world health and economic development. Considerable advances have been made in malaria research triggered by the sequencing of its genome in 2002, followed by several high-throughput studies defining the malaria transcriptome and proteome. A protein-protein interaction (PPI) network seeks to trace the dynamic interactions between proteins, thereby elucidating their local and global functional relationships. Experimentally derived PPI network from high-throughput methods such as yeast two hybrid (Y2H) screens are inherently noisy, but combining these independent datasets by computational methods tends to give a greater accuracy and coverage. This review aims to discuss the computational approaches used till date to construct a malaria protein interaction network and to catalog the functional predictions and biological inferences made from analysis of the PPI network. © 2011 Elsevier Inc.

  13. HOW HUMAN HISTORY HAS INFLUENCED GEOGRAPHY AND GENETICS OF PARASITE POPULATIONS

    Science.gov (United States)

    Human beings have radically altered agricultural landscapes, establishing a limited repertoire of plants and animals over vast expanses. Here, I consider what impact such a history may have had on the distribution and diversity of animal parasite, hypothesizing that certain parasites may have been '...

  14. Anthropogenics: human influence on global and genetic homogenization of parasite populations.

    Science.gov (United States)

    Zarlenga, Dante S; Hoberg, Eric; Rosenthal, Benjamin; Mattiucci, Simonetta; Nascetti, Giuseppe

    2014-12-01

    The distribution, abundance, and diversity of life on Earth have been greatly shaped by human activities. This includes the geographic expansion of parasites; however, measuring the extent to which humans have influenced the dissemination and population structure of parasites has been challenging. In-depth comparisons among parasite populations extending to landscape-level processes affecting disease emergence have remained elusive. New research methods have enhanced our capacity to discern human impact, where the tools of population genetics and molecular epidemiology have begun to shed light on our historical and ongoing influence. Only since the 1990s have parasitologists coupled morphological diagnosis, long considered the basis of surveillance and biodiversity studies, with state-of-the-art tools enabling variation to be examined among, and within, parasite populations. Prior to this time, populations were characterized only by phenotypic attributes such as virulence, infectivity, host range, and geographical location. The advent of genetic/molecular methodologies (multilocus allozyme electrophoresis, polymerase chain reaction-DNA [PCR-DNA] fragments analysis, DNA sequencing, DNA microsatellites, single nucleotide polymorphisms, etc.) have transformed our abilities to reveal variation among, and within, populations at local, regional, landscape, and global scales, and thereby enhanced our understanding of the biosphere. Numerous factors can affect population structure among parasites, e.g., evolutionary and ecological history, mode of reproduction and transmission, host dispersal, and life-cycle complexity. Although such influences can vary considerably among parasite taxa, anthropogenic factors are demonstrably perturbing parasite fauna. Minimal genetic structure among many geographically distinct (isolated) populations is a hallmark of human activity, hastened by geographic introductions, environmental perturbation, and global warming. Accelerating

  15. Recent advances in molecular biology of parasitic viruses.

    Science.gov (United States)

    Banik, Gouri Rani; Stark, Damien; Rashid, Harunor; Ellis, John T

    2014-01-01

    The numerous protozoa that can inhabit the human gastro-intestinal tract are known, yet little is understood of the viruses which infect these protozoa. The discovery, morphologic details, purification methods of virus-like particles, genome and proteome of the parasitic viruses, Entamoeba histolytica, Giardia lamblia, Trichomonas vaginalis, and the Eimeria sp. are described in this review. The protozoan viruses share many common features: most of them are RNA or double-stranded RNA viruses, ranging between 5 and 8 kilobases, and are spherical or icosahedral in shape with an average diameter of 30-40 nm. These viruses may influence the function and pathogenicity of the protozoa which they infect, and may be important to investigate from a clinical perspective. The viruses may be used as specific genetic transfection vectors for the parasites and may represent a research tool. This review provides an overview on recent advances in the field of protozoan viruses.

  16. Endobiont viruses sensed by the human host - beyond conventional antiparasitic therapy.

    Directory of Open Access Journals (Sweden)

    Raina N Fichorova

    Full Text Available Wide-spread protozoan parasites carry endosymbiotic dsRNA viruses with uncharted implications to the human host. Among them, Trichomonas vaginalis, a parasite adapted to the human genitourinary tract, infects globally ∼250 million each year rendering them more susceptible to devastating pregnancy complications (especially preterm birth, HIV infection and HPV-related cancer. While first-line antibiotic treatment (metronidazole commonly kills the protozoan pathogen, it fails to improve reproductive outcome. We show that endosymbiotic Trichomonasvirus, highly prevalent in T. vaginalis clinical isolates, is sensed by the human epithelial cells via Toll-like receptor 3, triggering Interferon Regulating Factor -3, interferon type I and proinflammatory cascades previously implicated in preterm birth and HIV-1 susceptibility. Metronidazole treatment amplified these proinflammatory responses. Thus, a new paradigm targeting the protozoan viruses along with the protozoan host may prevent trichomoniasis-attributable inflammatory sequelae.

  17. Blood parasites of penguins: a critical review.

    Science.gov (United States)

    Vanstreels, Ralph Eric Thijl; Braga, Érika Martins; Catão-Dias, José Luiz

    2016-07-01

    Blood parasites are considered some of the most significant pathogens for the conservation of penguins, due to the considerable morbidity and mortality they have been shown to produce in captive and wild populations of these birds. Parasites known to occur in the blood of penguins include haemosporidian protozoans (Plasmodium, Leucocytozoon, Haemoproteus), piroplamid protozoans (Babesia), kinetoplastid protozoans (Trypanosoma), spirochete bacteria (Borrelia) and nematode microfilariae. This review provides a critical and comprehensive assessment of the current knowledge on these parasites, providing an overview of their biology, host and geographic distribution, epidemiology, pathology and implications for public health and conservation.

  18. Ionizing radiation promotes protozoan reproduction

    International Nuclear Information System (INIS)

    Luckey, T.D.

    1986-01-01

    This experiment was performed to determine whether ionizing radiation is essential for maximum growth rate in a ciliated protozoan. When extraneous ionizing radiation was reduced to 0.15 mrad/day, the reproduction rate of Tetrahymena pyriformis was significantly less (P less than 0.01) than it was at near ambient levels, 0.5 or 1.8 mrad/day. Significantly higher growth rates (P less than 0.01) were obtained when chronic radiation was increased. The data suggest that ionizing radiation is essential for optimum reproduction rate in this organism

  19. Morphological and Molecular Descriptors of the Developmental Cycle of Babesia divergens Parasites in Human Erythrocytes.

    Directory of Open Access Journals (Sweden)

    Ingrid Rossouw

    2015-05-01

    Full Text Available Human babesiosis, especially caused by the cattle derived Babesia divergens parasite, is on the increase, resulting in renewed attentiveness to this potentially life threatening emerging zoonotic disease. The molecular mechanisms underlying the pathophysiology and intra-erythrocytic development of these parasites are poorly understood. This impedes concerted efforts aimed at the discovery of novel anti-babesiacidal agents. By applying sensitive cell biological and molecular functional genomics tools, we describe the intra-erythrocytic development cycle of B. divergens parasites from immature, mono-nucleated ring forms to bi-nucleated paired piriforms and ultimately multi-nucleated tetrads that characterizes zoonotic Babesia spp. This is further correlated for the first time to nuclear content increases during intra-erythrocytic development progression, providing insight into the part of the life cycle that occurs during human infection. High-content temporal evaluation elucidated the contribution of the different stages to life cycle progression. Moreover, molecular descriptors indicate that B. divergens parasites employ physiological adaptation to in vitro cultivation. Additionally, differential expression is observed as the parasite equilibrates its developmental stages during its life cycle. Together, this information provides the first temporal evaluation of the functional transcriptome of B. divergens parasites, information that could be useful in identifying biological processes essential to parasite survival for future anti-babesiacidal discoveries.

  20. [Current situation of human resources of parasitic disease control and prevention organizations in Henan Province].

    Science.gov (United States)

    Ya-Lan, Zhang; Yan-Kun, Zhu; Wei-Qi, Chen; Yan, Deng; Peng, Li

    2018-01-10

    To understand the current status of human resources of parasitic disease control and prevention organizations in Henan Province, so as to provide the reference for promoting the integrative ability of the prevention and control of parasitic diseases in Henan Province. The questionnaires were designed and the method of census was adopted. The information, such as the amounts, majors, education background, technical titles, working years, and turnover in each parasitic disease control and prevention organization was collected by the centers for disease control and prevention (CDCs) at all levels. The data were descriptively analyzed. Totally 179 CDCs were investigated, in which only 19.0% (34/179) had the independent parasitic diseases control institution (department) . There were only 258 full-time staffs working on parasitic disease control and prevention in the whole province, in which only 61.9% (159/258) were health professionals. Those with junior college degree or below in the health professionals accounted for 60.3% (96/159) . Most of them (42.1%) had over 20 years of experience, but 57.9% (92/159) of their technical post titles were at primary level or below. The proportion of the health professionals is low in the parasitic disease control and prevention organizations in Henan Province. The human resource construction for parasitic disease control and prevention at all levels should be strengthened.

  1. Genome sequencing of chimpanzee malaria parasites reveals possible pathways of adaptation to human hosts

    KAUST Repository

    Otto, Thomas D.

    2014-09-09

    Plasmodium falciparum causes most human malaria deaths, having prehistorically evolved from parasites of African Great Apes. Here we explore the genomic basis of P. falciparum adaptation to human hosts by fully sequencing the genome of the closely related chimpanzee parasite species P. reichenowi, and obtaining partial sequence data from a more distantly related chimpanzee parasite (P. gaboni). The close relationship between P. reichenowi and P. falciparum is emphasized by almost complete conservation of genomic synteny, but against this strikingly conserved background we observe major differences at loci involved in erythrocyte invasion. The organization of most virulence-associated multigene families, including the hypervariable var genes, is broadly conserved, but P. falciparum has a smaller subset of rif and stevor genes whose products are expressed on the infected erythrocyte surface. Genome-wide analysis identifies other loci under recent positive selection, but a limited number of changes at the host–parasite interface may have mediated host switching.

  2. The genome of the simian and human malaria parasite Plasmodium knowlesi

    DEFF Research Database (Denmark)

    Pain, A; Böhme, U; Berry, A E

    2008-01-01

    Plasmodium knowlesi is an intracellular malaria parasite whose natural vertebrate host is Macaca fascicularis (the 'kra' monkey); however, it is now increasingly recognized as a significant cause of human malaria, particularly in southeast Asia. Plasmodium knowlesi was the first malaria parasite...... species in which antigenic variation was demonstrated, and it has a close phylogenetic relationship to Plasmodium vivax, the second most important species of human malaria parasite (reviewed in ref. 4). Despite their relatedness, there are important phenotypic differences between them, such as host blood...... cell preference, absence of a dormant liver stage or 'hypnozoite' in P. knowlesi, and length of the asexual cycle (reviewed in ref. 4). Here we present an analysis of the P. knowlesi (H strain, Pk1(A+) clone) nuclear genome sequence. This is the first monkey malaria parasite genome to be described...

  3. Normocyte-binding protein required for human erythrocyte invasion by the zoonotic malaria parasitePlasmodium knowlesi

    KAUST Repository

    Moon, Robert W.; Sharaf, Hazem; Hastings, Claire H.; Ho, Yung Shwen; Nair, Mridul; Rchiad, ‍ Zineb; Knuepfer, Ellen; Ramaprasad, Abhinay; Mohring, Franziska; Amir, Amirah; Yusuf, Noor A.; Hall, Joanna; Almond, Neil; Lau, Yee Ling; Pain, Arnab; Blackman, Michael J.; Holder, Anthony A.

    2016-01-01

    The dominant cause of malaria in Malaysia is now Plasmodium knowlesi, a zoonotic parasite of cynomolgus macaque monkeys found throughout South East Asia. Comparative genomic analysis of parasites adapted to in vitro growth in either cynomolgus or human RBCs identified a genomic deletion that includes the gene encoding normocyte-binding protein Xa (NBPXa) in parasites growing in cynomolgus RBCs but not in human RBCs. Experimental deletion of the NBPXa gene in parasites adapted to growth in human RBCs (which retain the ability to grow in cynomolgus RBCs) restricted them to cynomolgus RBCs, demonstrating that this gene is selectively required for parasite multiplication and growth in human RBCs. NBPXa-null parasites could bind to human RBCs, but invasion of these cells was severely impaired. Therefore, NBPXa is identified as a key mediator of P. knowlesi human infection and may be a target for vaccine development against this emerging pathogen.

  4. Normocyte-binding protein required for human erythrocyte invasion by the zoonotic malaria parasitePlasmodium knowlesi

    KAUST Repository

    Moon, Robert W.

    2016-06-15

    The dominant cause of malaria in Malaysia is now Plasmodium knowlesi, a zoonotic parasite of cynomolgus macaque monkeys found throughout South East Asia. Comparative genomic analysis of parasites adapted to in vitro growth in either cynomolgus or human RBCs identified a genomic deletion that includes the gene encoding normocyte-binding protein Xa (NBPXa) in parasites growing in cynomolgus RBCs but not in human RBCs. Experimental deletion of the NBPXa gene in parasites adapted to growth in human RBCs (which retain the ability to grow in cynomolgus RBCs) restricted them to cynomolgus RBCs, demonstrating that this gene is selectively required for parasite multiplication and growth in human RBCs. NBPXa-null parasites could bind to human RBCs, but invasion of these cells was severely impaired. Therefore, NBPXa is identified as a key mediator of P. knowlesi human infection and may be a target for vaccine development against this emerging pathogen.

  5. Human intestinal parasites in the past: new findings and a review

    Directory of Open Access Journals (Sweden)

    Marcelo Luiz Carvalho Gonçalves

    2003-01-01

    Full Text Available Almost all known human specific parasites have been found in ancient feces. A review of the paleoparasitological helminth and intestinal protozoa findings available in the literature is presented. We also report the new paleoparasitologic findings from the examination performed in samples collected in New and Old World archaeological sites. New finds of ancylostomid, Ascaris lumbricoides, Trichuris trichiura, Enterobius vermicularis, Trichostrongylus spp., Diphyllobothrium latum, Hymenolepis nana and Acantocephalan eggs are reported. According to the findings, it is probable that A. lumbricoides was originally a human parasite. Human ancylostomids, A. lumbricoides and T. trichiura, found in the New World in pre-Columbian times, have not been introduced into the Americas by land via Beringia. These parasites could not supported the cold climate of the region. Nomadic prehistoric humans that have crossed the Bering Land Bridge from Asia to the Americas in the last glaciation, probably during generations, would have lost these parasites, which life cycles need warm temperatures in the soil to be transmitted from host to host. Alternative routes are discussed for human parasite introduction into the Americas.

  6. Membrane-Wrapping Contributions to Malaria Parasite Invasion of the Human Erythrocyte

    Science.gov (United States)

    Dasgupta, Sabyasachi; Auth, Thorsten; Gov, Nir S.; Satchwell, Timothy J.; Hanssen, Eric; Zuccala, Elizabeth S.; Riglar, David T.; Toye, Ashley M.; Betz, Timo; Baum, Jake; Gompper, Gerhard

    2014-01-01

    The blood stage malaria parasite, the merozoite, has a small window of opportunity during which it must successfully target and invade a human erythrocyte. The process of invasion is nonetheless remarkably rapid. To date, mechanistic models of invasion have focused predominantly on the parasite actomyosin motor contribution to the energetics of entry. Here, we have conducted a numerical analysis using dimensions for an archetypal merozoite to predict the respective contributions of the host-parasite interactions to invasion, in particular the role of membrane wrapping. Our theoretical modeling demonstrates that erythrocyte membrane wrapping alone, as a function of merozoite adhesive and shape properties, is sufficient to entirely account for the first key step of the invasion process, that of merozoite reorientation to its apex and tight adhesive linkage between the two cells. Next, parasite-induced reorganization of the erythrocyte cytoskeleton and release of parasite-derived membrane can also account for a considerable energetic portion of actual invasion itself, through membrane wrapping. Thus, contrary to the prevailing dogma, wrapping by the erythrocyte combined with parasite-derived membrane release can markedly reduce the expected contributions of the merozoite actomyosin motor to invasion. We therefore propose that invasion is a balance between parasite and host cell contributions, evolved toward maximal efficient use of biophysical forces between the two cells. PMID:24988340

  7. Parasites and malignancies, a review, with emphasis on digestive cancer induced by Cryptosporidium parvum (Alveolata: Apicomplexa).

    Science.gov (United States)

    Benamrouz, S; Conseil, V; Creusy, C; Calderon, E; Dei-Cas, E; Certad, G

    2012-05-01

    The International Agency for Research on Cancer (IARC) identifies ten infectious agents (viruses, bacteria, parasites) able to induce cancer disease in humans. Among parasites, a carcinogenic role is currently recognized to the digenetic trematodes Schistosoma haematobium, leading to bladder cancer, and to Clonorchis sinensis or Opisthorchis viverrini, which cause cholangiocarcinoma. Furthermore, several reports suspected the potential association of other parasitic infections (due to Protozoan or Metazoan parasites) with the development of neoplastic changes in the host tissues. The present work shortly reviewed available data on the involvement of parasites in neoplastic processes in humans or animals, and especially focused on the carcinogenic power of Cryptosporidium parvum infection. On the whole, infection seems to play a crucial role in the etiology of cancer.

  8. Parasites and malignancies, a review, with emphasis on digestive cancer induced by Cryptosporidium parvum (Alveolata: Apicomplexa

    Directory of Open Access Journals (Sweden)

    Benamrouz S.

    2012-05-01

    Full Text Available The International Agency for Research on Cancer (IARC identifies ten infectious agents (viruses, bacteria, parasites able to induce cancer disease in humans. Among parasites, a carcinogenic role is currently recognized to the digenetic trematodes Schistosoma haematobium, leading to bladder cancer, and to Clonorchis sinensis or Opisthorchis viverrini, which cause cholangiocarcinoma. Furthermore, several reports suspected the potential association of other parasitic infections (due to Protozoan or Metazoan parasites with the development of neoplastic changes in the host tissues. The present work shortly reviewed available data on the involvement of parasites in neoplastic processes in humans or animals, and especially focused on the carcinogenic power of Cryptosporidium parvum infection. On the whole, infection seems to play a crucial role in the etiology of cancer.

  9. A haptoglobin-hemoglobin receptor conveys innate immunity to Trypanosoma brucei in humans

    DEFF Research Database (Denmark)

    Vanhollebeke, Benoit; De Muylder, Géraldine; Nielsen, Marianne J

    2008-01-01

    The protozoan parasite Trypanosoma brucei is lysed by apolipoprotein L-I, a component of human high-density lipoprotein (HDL) particles that are also characterized by the presence of haptoglobin-related protein. We report that this process is mediated by a parasite glycoprotein receptor, which...... binds the haptoglobin-hemoglobin complex with high affinity for the uptake and incorporation of heme into intracellular hemoproteins. In mice, this receptor was required for optimal parasite growth and the resistance of parasites to the oxidative burst by host macrophages. In humans, the trypanosome...... immunity against the parasite....

  10. Dogs, cats, parasites, and humans in Brazil: opening the black box

    Science.gov (United States)

    2014-01-01

    Dogs and cats in Brazil serve as primary hosts for a considerable number of parasites, which may affect their health and wellbeing. These may include endoparasites (e.g., protozoa, cestodes, trematodes, and nematodes) and ectoparasites (i.e., fleas, lice, mites, and ticks). While some dog and cat parasites are highly host-specific (e.g., Aelurostrongylus abstrusus and Felicola subrostratus for cats, and Angiostrongylus vasorum and Trichodectes canis for dogs), others may easily switch to other hosts, including humans. In fact, several dog and cat parasites (e.g., Toxoplasma gondii, Dipylidium caninum, Ancylostoma caninum, Strongyloides stercoralis, and Toxocara canis) are important not only from a veterinary perspective but also from a medical standpoint. In addition, some of them (e.g., Lynxacarus radovskyi on cats and Rangelia vitalii in dogs) are little known to most veterinary practitioners working in Brazil. This article is a compendium on dog and cat parasites in Brazil and a call for a One Health approach towards a better management of some of these parasites, which may potentially affect humans. Practical aspects related to the diagnosis, treatment, and control of parasitic diseases of dogs and cats in Brazil are discussed. PMID:24423244

  11. Prevalence of gastrointestinal parasites in domestic dogs in Tabasco, southeastern Mexico

    Directory of Open Access Journals (Sweden)

    Oswaldo Margarito Torres-Chablé

    Full Text Available Abstract The overall goal of this study was to estimate the prevalence of gastrointestinal (GI parasites in dogs in the city of Villahermosa in Tabasco, Mexico. The study population consisted of 302 owned dogs that had limited access to public areas. A fecal sample was collected from each animal and examined for GI parasites by conventional macroscopic analysis and centrifugal flotation. Fecal samples from 80 (26.5% dogs contained GI parasites. Of these, 58 (19.2% were positive for helminths and 22 (7.3% were positive for protozoan parasites. At least seven parasitic species were identified. The most common parasite was Ancylostoma caninum which was detected in 48 (15.9% dogs. Other parasites detected on multiple occasions were Cystoisospora spp. (n = 19, Toxocara canis (n = 7 and Giardia spp. (n = 3. Three additional parasites, Dipylidium caninum, Trichuris vulpis and Uncinaria spp., were each detected in a single dog. No mixed parasitic infections were identified. In summary, we report a moderately high prevalence of GI parasites in owned dogs in Villahermosa, Tabasco. Several parasitic species identified in this study are recognized zoonotic pathogens which illustrates the important need to routinely monitor and treat dogs that live in close proximity to humans for parasitic infections.

  12. Epithelial sentinels or protozoan parasites?: Studies on isolated rodlet cells on the 100th anniversary of an enigma Centinelas epiteliales o parásitos protozoarios?: Estudios en células rodlet aisladas en el centenario de un enigma

    Directory of Open Access Journals (Sweden)

    OLIVER SCHMACHTENBERG

    2007-03-01

    Full Text Available Rodlet cells are an unusual cell type found exclusively in teleost fishes. Their principal characteristics are a fibrous capsule and arrow or club-like structures pointing towards the apex of the cell, which are called rodlets. Rodlet cells were first described by Thelohan (1892 as undetermined sporozoan fish parasites, and soon after named Rhabdospora thelohani by Laguesse (1895. In 1906, a presently ongoing controversy started, with Plehn's independent characterization of rodlet cells as endogenous glandular cells, and a prompt refutation by Laguesse (1906. Both maintained their position, and during the following century both views continued to coexist with varying popularity, while additional interpretations of rodlet cell function were proposed. Here I present observations of live rodlet cells from the olfactory epithelium of the marine teleost Isacia conceptionis. Rodlet ejection was monitored and the fate of rodlet cells and ejected rodlets was tracked for up to 12 h. While rodlet cells died within a few hours, usually after rodlet expulsion, the rodlets remained stable over the observation period. These results are discussed in the light of the current hypotheses regarding rodlet cell functionLas células "rodlet" son un tipo celular poco usual que se encuentra exclusivamente en peces teleósteos. Sus características principales son tener una cápsula fibrosa y estructuras en forma de lanza que apuntan hacia el ápice de la célula, denominadas "rodlet". Las células "rodlet" fueron descritas por primera vez por Thelohan (1892 como parásitos esporozoarios no determinados de peces, y poco después bautizados por Laguesse (1895 como Rhabdospora thelohani. En 1906, con la caracterización independiente realizada por Plehn de estas células como células glandulares endógenas, y la pronta refutación por Laguesse (1906, comienza una controversia que se ha mantenido hasta hoy. Ambos defendieron su posición, y durante el siglo siguiente

  13. Analysis of a summary network of co-infection in humans reveals that parasites interact most via shared resources

    OpenAIRE

    Griffiths, Emily C; Pedersen, Amy B; Fenton, Andy; Petchey, Owen L

    2014-01-01

    Simultaneous infection by multiple parasite species (viruses, bacteria, helminths, protozoa or fungi) is commonplace. Most reports show co-infected humans to have worse health than those with single infections. However, we have little understanding of how co-infecting parasites interact within human hosts. We used data from over 300 published studies to construct a network that offers the first broad indications of how groups of co-infecting parasites tend to interact. The network had three l...

  14. Human waterborne parasites in zebra mussels ( Dreissena polymorpha) from the Shannon River drainage area, Ireland.

    Science.gov (United States)

    Graczyk, Thaddeus K; Conn, David Bruce; Lucy, Frances; Minchin, Dan; Tamang, Leena; Moura, Lacy N S; DaSilva, Alexandre J

    2004-08-01

    Zebra mussels ( Dreissena polymorpha) from throughout the Shannon River drainage area in Ireland were tested for the anthropozoonotic waterborne parasites Cryptosporidium parvum, Giardia lamblia, Encephalitozoon intestinalis, E. hellem, and Enterocytozoon bieneusi, by the multiplexed combined direct immunofluorescent antibody and fluorescent in situ hybridization method, and PCR. Parasite transmission stages were found at 75% of sites, with the highest mean concentration of 16, nine, and eight C. parvum oocysts, G. lamblia cysts, and Encephalitozoon intestinalis spores/mussel, respectively. On average eight Enterocytozoon bieneusi spores/mussel were recovered at any selected site. Approximately 80% of all parasites were viable and thus capable of initiating human infection. The Shannon River is polluted with serious emerging human waterborne pathogens including C. parvum, against which no therapy exists. Zebra mussels can recover and concentrate environmentally derived pathogens and can be used for the sanitary assessment of water quality.

  15. Everybody needs sphingolipids, right! Mining for new drug targets in protozoan sphingolipid biosynthesis.

    Science.gov (United States)

    Mina, John G M; Denny, P W

    2018-02-01

    Sphingolipids (SLs) are an integral part of all eukaryotic cellular membranes. In addition, they have indispensable functions as signalling molecules controlling a myriad of cellular events. Disruption of either the de novo synthesis or the degradation pathways has been shown to have detrimental effects. The earlier identification of selective inhibitors of fungal SL biosynthesis promised potent broad-spectrum anti-fungal agents, which later encouraged testing some of those agents against protozoan parasites. In this review we focus on the key enzymes of the SL de novo biosynthetic pathway in protozoan parasites of the Apicomplexa and Kinetoplastidae, outlining the divergence and interconnection between host and pathogen metabolism. The druggability of the SL biosynthesis is considered, alongside recent technology advances that will enable the dissection and analyses of this pathway in the parasitic protozoa. The future impact of these advances for the development of new therapeutics for both globally threatening and neglected infectious diseases is potentially profound.

  16. Toxoplasmosis: An Important Protozoan Zoonosis

    Directory of Open Access Journals (Sweden)

    Sonar S. S. and Brahmbhatt M.N.

    Full Text Available Toxoplasmosis is an important infection caused by single celled parasite Toxoplasma gondii which is one of the world's most common parasites. Toxoplasmosis is considered to be the third leading cause of death attributed to food-borne illness in the United States. Most people affected never develop signs and symptoms. But for infants born to infected mothers and for people with compromised immune systems, toxoplasmosis can cause extremely serious complications. Toxoplasmosis was first described in 1908 from a small rodent. The parasite infects almost all worm blooded animals and serological evidence indicates that it is one of the most common of humans’ infections throughout the world. The disease is transmitted mainly by ingestion of infective stage of the parasite, organ transplant as well as blood transfusion in addition to the transplacental transmission which is very common. Toxoplasmosis can be presented in various forms of clinical manifestations depending on the immune status of the patient causing life threatening disease in AIDS patient. Pregnant women, cat owners, veterinarians, abattoir workers, children, cooks, butchers are considered as high risk group. Timely treatment of man and animals with proper antibiotic, hygienic measures, proper disinfection, mass education and vaccination are the measures to curtail the disease. [Veterinary World 2010; 3(9.000: 436-439

  17. Global Distribution, Public Health and Clinical Impact of the Protozoan Pathogen Cryptosporidium

    Directory of Open Access Journals (Sweden)

    Lorenza Putignani

    2010-01-01

    Full Text Available Cryptosporidium spp. are coccidians, oocysts-forming apicomplexan protozoa, which complete their life cycle both in humans and animals, through zoonotic and anthroponotic transmission, causing cryptosporidiosis. The global burden of this disease is still underascertained, due to a conundrum transmission modality, only partially unveiled, and on a plethora of detection systems still inadequate or only partially applied for worldwide surveillance. In children, cryptosporidiosis encumber is even less recorded and often misidentified due to physiological reasons such as early-age unpaired immunological response. Furthermore, malnutrition in underdeveloped countries or clinical underestimation of protozoan etiology in developed countries contribute to the underestimation of the worldwide burden. Principal key indicators of the parasite distribution were associated to environmental (e.g., geographic and temporal clusters, etc. and host determinants of the infection (e.g., age, immunological status, travels, community behaviours. The distribution was geographically mapped to provide an updated picture of the global parasite ecosystems. The present paper aims to provide, by a critical analysis of existing literature, a link between observational epidemiological records and new insights on public health, and diagnostic and clinical impact of cryptosporidiosis.

  18. The prevalence and diversity of intestinal parasitic infections in humans and domestic animals in a rural Cambodian village

    DEFF Research Database (Denmark)

    Schär, Fabian; Inpankaew, Tawin; Traub, Rebecca J.

    2014-01-01

    In Cambodia, intestinal parasitic infections are prevalent in humans and particularly in children. Yet, information on potentially zoonotic parasites in animal reservoir hosts is lacking. In May 2012, faecal samples from 218 humans, 94 dogs and 76 pigs were collected from 67 households in Dong vi...

  19. Visceral leishmaniasis in eastern Sudan: parasite identification in humans and dogs; host-parasite relationships.

    Science.gov (United States)

    Dereure, Jacques; El-Safi, Sayda Hassan; Bucheton, Bruno; Boni, Mickaël; Kheir, Musa Mohamed; Davoust, Bernard; Pratlong, Francine; Feugier, Eric; Lambert, Monique; Dessein, Alain; Dedet, Jean Pierre

    2003-10-01

    In 1996, an epidemic outbreak of visceral leishmaniasis (VL) started in Barbar el Fugara, a village in Gedarif State (eastern Sudan). From 1997 to 2000, regular epidemiological studies were carried out in the human population, as well as in mammals and sand flies. In symptomatic patients, 46/69 lymph node, 6/20 post kala-azar dermal leishmaniasis (PKDL) and 1/4 cutaneous cultures in NNN medium were positive. In 69 dogs, 23/79 lymph node cultures were positive. In other mammals (47 rodents, five donkeys, one mongoose and one monkey) spleen and/or blood cultures were negative. Characterization of isolated strains (by starch gel electrophoresis and isoelectrofocusing) identified three zymodemes of Leishmania donovani, two of L. infantum and two of L. archibaldi complexes from patient samples and three zymodemes of L. donovani, three of L. infantum and two of L. archibaldi complexes from dog samples. Five of them were present in both man and dog. For the first time, a strain from a PKDL case was identified as L. infantum, and a child had the same L. infantum zymodeme in VL and in subsequent PKDL. Blood samples from dogs were studied by immunofluorescent antibody test (IFAT). The seroprevalence in dogs was 72.5%, 74.3% and 42.9% in 1998, 1999 and 2000, respectively. By using CDC miniature light traps 12 745 sand flies were collected and then identified. Phlebotomus papatasi (7%) and P. orientalis (5%) were sympatric, mainly inside homes (85% and 75%, respectively). These results, the relative stability of seroprevalence in dogs and the intradomiciliar presence of P. orientalis, known as a vector of VL in Sudan, suggest several hypotheses: (i) man is responsible for the disease in dogs, (ii) the dog is the reservoir of VL, (iii) the dog is an intermediate host between a possible sylvatic cycle and the anthroponotic cycle. More extensive studies are needed to assess the transmission cycle of VL in this area of Sudan.

  20. Cytometric quantification of singlet oxygen in the human malaria parasite Plasmodium falciparum

    NARCIS (Netherlands)

    Butzloff, Sabine; Groves, Matthew R; Wrenger, Carsten; Müller, Ingrid B

    The malaria parasite Plasmodium falciparum proliferates within human erythrocytes and is thereby exposed to a variety of reactive oxygen species (ROS) such as hydrogen peroxide, hydroxyl radical, superoxide anion, and highly reactive singlet oxygen ((1)O(2)). While most ROS are already well studied

  1. [SWOT Analysis of the National Survey on Current Status of Major Human Parasitic Diseases in China].

    Science.gov (United States)

    ZHU, Hui-hui; ZHOU, Chang-hai; CHEN, Ying-dan; ZANG, Wei; XIAO, Ning; ZHOU, Xiao-nong

    2015-10-01

    The National Survey on Current Status of Major Human Parasitic Diseases in China has been carried out since 2014 under the organization of the National Health and Family Planning Commission of the People's Republic of China. The National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (NIPD, China CDC) provided technical support and was responsible for quality control in this survey. This study used SWOT method to analyze the strengths, weaknesses, opportunities and threats that were encountered by he NIPD, China CDC during the completion of the survey. Accordingly, working strategies were proposed to facilitate the future field work.

  2. The occurrence of haplosporidian parasites, Haplosporidium nelsoni and Haplosporidium sp., in oysters in Ireland

    NARCIS (Netherlands)

    Lynch, S.A.; Villalba, A.; Abollo, E.; Engelsma, M.Y.; Stokes, N.; Culloty, S.C.

    2013-01-01

    The phylum Haplosporidia is a group of obligate protozoan parasites that infect a number of freshwater and marine invertebrates. Haplosporidian parasites have caused significant mortalities in commercially important shellfish species worldwide. In this study, haplosporidia were detected in Pacific

  3. Survey of the parasite Toxoplasma gondii in human consumed ovine meat in Tunis City.

    Directory of Open Access Journals (Sweden)

    Sonia Boughattas

    Full Text Available Toxoplasmosis has been recognized as parasitic zoonosis with the highest human incidence. The human infection by the parasite can lead to severe clinical manifestations in congenital toxoplasmosis and immunocompromised patients. Contamination occurs mainly by foodborne ways especially consumption of raw or undercooked meat. In contrast to other foodborne infections, toxoplasmosis is a chronic infection which would make its economic and social impact much higher than even previously anticipated. Ovine meat was advanced as a major risk factor, so we investigated its parasite survey, under natural conditions. Serological MAT technique and touchdown PCR approaches were used for prevalence determination of the parasite in slaughtered sheep intended to human consumption in Tunis City. The genotyping was carried by SNPs analysis of SAG3 marker. Anti-Toxoplasma antibodies were present in 38.2% of young sheep and in 73.6% of adult sheep. Molecular detection revealed the contamination of 50% of ewes' tissue. Sequencing and SNPs analysis enabled unambiguous typing of meat isolates and revealed the presence of mixed strains as those previously identified from clinical samples in the same area. Our findings conclude that slaughtered sheep are highly infected, suggesting them as a major risk factor of Toxoplasma gondii transmission by meat consumption. Special aware should target consequently this factor when recommendations have to be established by the health care commanders.

  4. The landscape of human genes involved in the immune response to parasitic worms

    Directory of Open Access Journals (Sweden)

    Fumagalli Matteo

    2010-08-01

    Full Text Available Abstract Background More than 2 billion individuals worldwide suffer from helminth infections. The highest parasite burdens occur in children and helminth infection during pregnancy is a risk factor for preterm delivery and reduced birth weight. Therefore, helminth infections can be regarded as a strong selective pressure. Results Here we propose that candidate susceptibility genes for parasitic worm infections can be identified by searching for SNPs that display a strong correlation with the diversity of helminth species/genera transmitted in different geographic areas. By a genome-wide search we identified 3478 variants that correlate with helminth diversity. These SNPs map to 810 distinct human genes including loci involved in regulatory T cell function and in macrophage activation, as well as leukocyte integrins and co-inhibitory molecules. Analysis of functional relationships among these genes identified complex interaction networks centred around Th2 cytokines. Finally, several genes carrying candidate targets for helminth-driven selective pressure also harbour susceptibility alleles for asthma/allergy or are involved in airway hyper-responsiveness, therefore expanding the known parallelism between these conditions and parasitic infections. Conclusions Our data provide a landscape of human genes that modulate susceptibility to helminths and indicate parasitic worms as one of the major selective forces in humans.

  5. Control of the risk of human toxoplasmosis transmitted by meat

    NARCIS (Netherlands)

    Kijlstra, A.; Jongert, E.

    2008-01-01

    One-third of the human world population is infected with the protozoan parasite Toxoplasma gondii. Recent calculations of the disease burden of toxoplasmosis rank this foodborne disease at the same level as salmonellosis or campylobacteriosis. The high disease burden in combination with

  6. Epidemiological review of Toxoplasmosis in humans and animals in Romania

    Science.gov (United States)

    Infections by the protozoan parasite Toxoplasma gondii are widely prevalent in humans and other animals worldwide. However, information from former East European countries, including Romania is sketchy. Unfortunately, in many Eastern European countries, including Romania it has been assumed that T. ...

  7. Strategies of the protozoan parasite Entamoeba histolytica to evade ...

    Indian Academy of Sciences (India)

    Unknown

    the innate immune responses of intestinal epithelial cells ... metabolically active eukaryotic cells and display anti- bacterial activity ..... and TLR4 in inflammatory bowel disease; Infect. Immun. .... which contains a beta2 integrin motif; Mol. Biol.

  8. Strategies of the protozoan parasite Entamoeba histolytica to evade ...

    Indian Academy of Sciences (India)

    Unknown

    and the subsequent migration of the amoeba to the liver where abscesses are formed (Espinosa-Cantellano and. Martinez-Paloma 2000; Stanley 2001). ..... activity of bacterial peroxiredoxins; Nature (London) 407. 211–215. Cario E and Podolsky D K 2000 Differential alteration in intes- tinal epithelial cell expression of ...

  9. Tapeworm Diphyllobothrium dendriticum (Cestoda)-Neglected or Emerging Human Parasite?

    Czech Academy of Sciences Publication Activity Database

    Kuchta, Roman; Brabec, Jan; Kubáčková, P.; Scholz, Tomáš

    2013-01-01

    Roč. 7, č. 12 (2013), e2535 ISSN 1935-2727 R&D Projects: GA ČR GAP506/12/1632 Institutional support: RVO:60077344 Keywords : tapeworm * human disease * cox1 gene Subject RIV: GJ - Animal Vermins ; Diseases, Veterinary Medicine Impact factor: 4.716, year: 2011

  10. Zoonotic gastrointestinal parasite burden of local dogs in Zaria, Northern Nigeria: Implications for human health

    Directory of Open Access Journals (Sweden)

    Christopher I. Ogbaje

    2015-10-01

    Full Text Available Background: Zoonotic gastrointestinal parasites of dogs are of the global problem particularly in the developing countries. Dogs are the most common pet animals worldwide and have been reported to be hosts of many intestinal parasites of zoonotic importance globally. In Nigeria, gastrointestinal helminthes of dogs is currently endemic in 20 of the 36 states. Aim: In general, dogs are the closest animals to humans and for that reason we decided to carry out a survey study to check the incidence of these parasites in dogs and to ascertain the level of environmental contamination in the study area. Materials and Methods: Fecal samples were collected from dog patients presented to small animal clinic of Veterinary Teaching Hospital of Faculty of Veterinary Medicine, Ahmadu Bello University Zaria, dog’s fecal droppings from the streets, and residential Quarters of the University and gastrointestinal tracts (GIT of dogs from dogs slaughtering house at Basawa Barrack, Zaria. Three methods were used in the analysis of the samples; simple flotation, sedimentation, and GIT processing methods within 48 h of collection. Results: Out of 224 samples analyzed 76(33.9% were positive of at least one of the parasites. Of the 101 samples from streets and residential quarters of ABU, Zaria, Isospora spp. 12(11.9% recorded the highest prevalence rate followed by Taenia spp. 6(5.9%, then Toxocara canis, Ancylostoma caninum, and Dipylidium caninum were 5.0%, 4.0%, and 1.0%, respectively. Isospora spp. (19.0% recorded the highest prevalence rate for the 100 samples collected from small animal clinic. Other parasites encountered were T. canis (8.0%, A. caninum (8.0% and Taenia spp. (5.0%. Parasites observed from the 23 gastrointestinal contents from “dog slaughtered houses” were T. canis (17.3%, Isospora spp.(13.1% and A. caninum (4.3. Conclusion: The study revealed that zoonotic gastrointestinal parasites of dogs are endemic in Zaria and the general public in the

  11. Mammalian gastrointestinal parasites in rainforest remnants

    Indian Academy of Sciences (India)

    Here, we studied the gastrointestinal parasites of nonhuman mammalian hosts living in 10 rainforest patches of the Anamalai Tiger Reserve, India. We examined 349 faecal samples of 17 mammalian species and successfully identified 24 gastroin-testinal parasite taxa including 1 protozoan, 2 trematode, 3 cestode and 18 ...

  12. Proteins involved in invasion of human red blood cells by malaria parasites

    Directory of Open Access Journals (Sweden)

    Ewa Jaśkiewicz

    2010-11-01

    Full Text Available Malaria is a disease caused by parasites of Plasmodium species. It is responsible for around 1-2 million deaths annually, mainly children under the age of 5. It occurs mainly in tropical and subtropical areas.Malaria is caused by five Plasmodium species:[i] P. falciparum, P. malariae, P. vivax, P. knowlesi[/i] and [i]P. ovale[/i]. Mosquitoes spread the disease by biting humans. The malaria parasite has two stages of development: the human stage and the mosquito stage. The first stage occurs in the human body and is divided into two phases: the liver phase and the blood phase.The invasion of erythrocytes by [i]Plasmodium[/i] merozoites is a multistep process of specific protein interactions between the parasite and red blood cell. The first step is the reversible merozoite attachment to the erythrocyte followed by its apical reorientation, then formation of an irreversible “tight” junction and finally entry into the red cell in a parasitophorous vacuole.The blood phase is supported by a number of proteins produced by the parasite. The merozoite surface GPI-anchored proteins (MSP-1, 2, 4, 5, 8 and 10 assist in the process of recognition of susceptible erythrocytes, apical membrane antigen (AMA-1 may be directly responsible for apical reorientation of the merozoite and apical proteins which function in tight junction formation. These ligands are members of two families: Duffy binding-like (DBL and reticulocyte binding-like (RBL proteins. In [i]Plasmodium[/i] [i]falciparum[/i] the DBL family includes: EBA-175, EBA-140 (BAEBL, EBA-181 (JESEBL, EBA-165 (PEBL and EBL-1 ligands.To date, no effective antimalarial vaccine has been developed, but there are several studies for this purpose. Therefore, it is crucial to understand the molecular basis of host cells invasion by parasites. Major efforts are focused on developing a multiantigenic and multiepitope vaccine preventing all steps of [i]Plasmodium[/i] invasion.

  13. A decade of intestinal protozoan epidemiology among settled immigrants in Qatar.

    Science.gov (United States)

    Abu-Madi, Marawan A; Behnke, Jerzy M; Boughattas, Sonia; Al-Thani, Asma; Doiphode, Sanjay H

    2016-08-05

    The World Health Organization estimates that about 3.5 billion people worldwide are affected by intestinal parasitic infections. Reports have already emphasized the role of immigrants in outbreaks of parasitic diseases in industrialized countries. With the mass influx of immigrants to Qatar, patent intestinal parasitic infections have been observed. Herein, the prevalence of intestinal protozoan infections was analysed in 29,286 records of subjects referred for stool examination at the Hamad Medical Corporation over the course of a decade (2005 to 2014, inclusive). Overall prevalence of combined protozoan infections was 5.93 % but there were significant temporal trends, age and sex effects and those arising from the region of origin of the subjects. The most common protozoan was Blastocystis hominis (overall prevalence 3.45 %). Giardia duodenalis, Chilomastix mesnili, Entamoeba coli, Entamoeba hartmanni, Endolimax nana, Iodamoeba butschlii, Entamoeba histolytica/dispar, Cryptosporidium sp. and a single case of Isospora were also detected. The prevalence of combined protozoan infections, G. duodenalis and the non-pathogenic amoebae all declined significantly across the decade. That of B. hominis varied between years but showed no directional trend across years and there was no evidence that prevalence of E. histolyitica/dispar changed significantly. Protozoan infections were observed among all regional groups, but prevalence was higher among subjects from the Arabian Peninsula, Africa and Asia compared to those from the Eastern Mediterranean and Qatar. Prevalence was higher among male subjects in all cases, but age-prevalence profiles differed between the taxa. These results offer optimism that prevalence will continue to decline in the years ahead.

  14. Photodynamic therapy in the cattle protozoan Tritrichomonas foetus cultivated on superhydrophilic carbon nanotube

    Energy Technology Data Exchange (ETDEWEB)

    Machado, Susane Moreira [Laboratory of Tissue and Cell Biology, Development and Research Institute (IP and D), Universidade do Vale do Paraíba (UNIVAP), Av. Shishima Hifumi 2911, Urbanova, 12244-000 São José dos Campos, SP (Brazil); Pacheco-Soares, Cristina [Laboratory of Tissue and Cell Biology, Development and Research Institute (IP and D), Universidade do Vale do Paraíba (UNIVAP), Av. Shishima Hifumi 2911, Urbanova, 12244-000 São José dos Campos, SP (Brazil); Laboratory of Dynamics of Cellular Compartments, Development and Research Institute (IP and D), Universidade do Vale do Paraíba (UNIVAP), Av. Shishima Hifumi 2911, Urbanova, 12244-000 São José dos Campos, SP (Brazil); Marciano, Fernanda Roberta; Lobo, Anderson Oliveira [Laboratory of Biomedical Nanotechnology, Development and Research Institute (IP and D), Universidade do Vale do Paraíba (UNIVAP), Av. Shishima Hifumi 2911, Urbanova, 12244-000 São José dos Campos, SP (Brazil); Soares da Silva, Newton, E-mail: nsoares@univap.br [Laboratory of Tissue and Cell Biology, Development and Research Institute (IP and D), Universidade do Vale do Paraíba (UNIVAP), Av. Shishima Hifumi 2911, Urbanova, 12244-000 São José dos Campos, SP (Brazil); Laboratory of Dynamics of Cellular Compartments, Development and Research Institute (IP and D), Universidade do Vale do Paraíba (UNIVAP), Av. Shishima Hifumi 2911, Urbanova, 12244-000 São José dos Campos, SP (Brazil)

    2014-03-01

    Superhydrophilic vertically aligned carbon nanotubes (VACNT-O{sub 2}) were used for the first time as scaffolds for photodynamic therapy (PDT) to induce inhibition of cell division in eukaryotic cells. VACNT-O{sub 2} scaffolds were produced on Ti substrates using plasma enhanced chemical vapor deposition technique and functionalized by oxygen plasma. Scanning electron microscopy (SEM) analysis was performed to characterize the surface changes of the protozoan and interaction with VACNT-O{sub 2}. Characterization of lipid and total protein expression was performed with protozoa that were or not treated with PDT. Quantification of protein was conducted using Qubit fluorometer and separated on a polyacrylamide gel. SEM analysis showed the release of lipid vesicles by protozoa after the PDT. These vesicles were characterized by the PKH26 fluorescent probe. The results demonstrated a greater amount of protein released after PDT than in the control. When analyzing the protein material in polyacrylamide gel, a significant protein expression of approximately 65 kDa was found. A model identified the programmed death of Tritrichomonas foetus after the PDT was also proposed. - Highlights: • VAMWCNT-O{sub 2} used for the first time as scaffolds for study in parasitic protozoan. • VAMWCNT-O{sub 2} films applied to understand spreading mechanisms of parasitic protozoan. • A release of a protein of approximately 65kDa of protozoan was also observed.

  15. Photodynamic therapy in the cattle protozoan Tritrichomonas foetus cultivated on superhydrophilic carbon nanotube

    International Nuclear Information System (INIS)

    Machado, Susane Moreira; Pacheco-Soares, Cristina; Marciano, Fernanda Roberta; Lobo, Anderson Oliveira; Soares da Silva, Newton

    2014-01-01

    Superhydrophilic vertically aligned carbon nanotubes (VACNT-O 2 ) were used for the first time as scaffolds for photodynamic therapy (PDT) to induce inhibition of cell division in eukaryotic cells. VACNT-O 2 scaffolds were produced on Ti substrates using plasma enhanced chemical vapor deposition technique and functionalized by oxygen plasma. Scanning electron microscopy (SEM) analysis was performed to characterize the surface changes of the protozoan and interaction with VACNT-O 2 . Characterization of lipid and total protein expression was performed with protozoa that were or not treated with PDT. Quantification of protein was conducted using Qubit fluorometer and separated on a polyacrylamide gel. SEM analysis showed the release of lipid vesicles by protozoa after the PDT. These vesicles were characterized by the PKH26 fluorescent probe. The results demonstrated a greater amount of protein released after PDT than in the control. When analyzing the protein material in polyacrylamide gel, a significant protein expression of approximately 65 kDa was found. A model identified the programmed death of Tritrichomonas foetus after the PDT was also proposed. - Highlights: • VAMWCNT-O 2 used for the first time as scaffolds for study in parasitic protozoan. • VAMWCNT-O 2 films applied to understand spreading mechanisms of parasitic protozoan. • A release of a protein of approximately 65kDa of protozoan was also observed

  16. Tropical veterinary parasites at Harvard University's Museum of Comparative Zoology.

    Science.gov (United States)

    Conn, David Bruce

    2008-12-01

    Tropical veterinary parasites have been maintained by the Museum of Comparative Zoology (MCZ) at Harvard University since the mid 1800s. Most of these are maintained by the Department of Invertebrate Zoology, but many vectors and intermediate hosts are maintained by the Departments of Entomology and Malacology. The largest collections are of avian and mammalian ticks (Acarina) that are important as both parasites and vectors. Nematodes are second in numbers, followed by cestodes, trematodes, and several minor helminth groups, crustacean parasites of fish, and protozoan parasites of various hosts. The MCZ directed or participated in several major expeditions to tropical areas around the globe in the early 1900s. Many of these expeditions focused on human parasites, but hundreds of veterinary and zoonotic parasites were also collected from these and numerous, smaller, tropical expeditions. Host sources include companion animals, livestock, laboratory species, domestic fowl, reptiles, amphibians, exotics/zoo animals, commercially important fishes, and other wildlife. Specimens are curated, either fixed whole in vials or mounted on slides as whole mounts or histopathological sections. The primary emphasis of MCZ's current work with tropical veterinary parasites is on voucher specimens from epidemiological, experimental, and clinical research.

  17. Epidemiology of infections with intestinal parasites and human immunodeficiency virus (HIV) among sugar-estate residents in Ethiopia

    NARCIS (Netherlands)

    Fontanet, A. L.; Sahlu, T.; Rinke de Wit, T.; Messele, T.; Masho, W.; Woldemichael, T.; Yeneneh, H.; Coutinho, R. A.

    2000-01-01

    Intestinal parasitic infections could play an important role in the progression of infection with human immunodeficiency virus (HIV), by further disturbing the immune system whilst it is already engaged in the fight against HIV. HIV and intestinal parasitic infections were investigated in 1239,

  18. Recognition of Human Erythrocyte Receptors by the Tryptophan-Rich Antigens of Monkey Malaria Parasite Plasmodium knowlesi.

    Directory of Open Access Journals (Sweden)

    Kriti Tyagi

    Full Text Available The monkey malaria parasite Plasmodium knowlesi also infect humans. There is a lack of information on the molecular mechanisms that take place between this simian parasite and its heterologous human host erythrocytes leading to this zoonotic disease. Therefore, we investigated here the binding ability of P. knowlesi tryptophan-rich antigens (PkTRAgs to the human erythrocytes and sharing of the erythrocyte receptors between them as well as with other commonly occurring human malaria parasites.Six PkTRAgs were cloned and expressed in E.coli as well as in mammalian CHO-K1 cell to determine their human erythrocyte binding activity by cell-ELISA, and in-vitro rosetting assay, respectively.Three of six PkTRAgs (PkTRAg38.3, PkTRAg40.1, and PkTRAg67.1 showed binding to human erythrocytes. Two of them (PkTRAg40.1 and PkTRAg38.3 showed cross-competition with each other as well as with the previously described P.vivax tryptophan-rich antigens (PvTRAgs for human erythrocyte receptors. However, the third protein (PkTRAg67.1 utilized the additional but different human erythrocyte receptor(s as it did not cross-compete for erythrocyte binding with either of these two PkTRAgs as well as with any of the PvTRAgs. These three PkTRAgs also inhibited the P.falciparum parasite growth in in-vitro culture, further indicating the sharing of human erythrocyte receptors by these parasite species and the biological significance of this receptor-ligand interaction between heterologous host and simian parasite.Recognition and sharing of human erythrocyte receptor(s by PkTRAgs with human parasite ligands could be part of the strategy adopted by the monkey malaria parasite to establish inside the heterologous human host.

  19. Recognition of Human Erythrocyte Receptors by the Tryptophan-Rich Antigens of Monkey Malaria Parasite Plasmodium knowlesi.

    Science.gov (United States)

    Tyagi, Kriti; Gupta, Deepali; Saini, Ekta; Choudhary, Shilpa; Jamwal, Abhishek; Alam, Mohd Shoeb; Zeeshan, Mohammad; Tyagi, Rupesh K; Sharma, Yagya D

    2015-01-01

    The monkey malaria parasite Plasmodium knowlesi also infect humans. There is a lack of information on the molecular mechanisms that take place between this simian parasite and its heterologous human host erythrocytes leading to this zoonotic disease. Therefore, we investigated here the binding ability of P. knowlesi tryptophan-rich antigens (PkTRAgs) to the human erythrocytes and sharing of the erythrocyte receptors between them as well as with other commonly occurring human malaria parasites. Six PkTRAgs were cloned and expressed in E.coli as well as in mammalian CHO-K1 cell to determine their human erythrocyte binding activity by cell-ELISA, and in-vitro rosetting assay, respectively. Three of six PkTRAgs (PkTRAg38.3, PkTRAg40.1, and PkTRAg67.1) showed binding to human erythrocytes. Two of them (PkTRAg40.1 and PkTRAg38.3) showed cross-competition with each other as well as with the previously described P.vivax tryptophan-rich antigens (PvTRAgs) for human erythrocyte receptors. However, the third protein (PkTRAg67.1) utilized the additional but different human erythrocyte receptor(s) as it did not cross-compete for erythrocyte binding with either of these two PkTRAgs as well as with any of the PvTRAgs. These three PkTRAgs also inhibited the P.falciparum parasite growth in in-vitro culture, further indicating the sharing of human erythrocyte receptors by these parasite species and the biological significance of this receptor-ligand interaction between heterologous host and simian parasite. Recognition and sharing of human erythrocyte receptor(s) by PkTRAgs with human parasite ligands could be part of the strategy adopted by the monkey malaria parasite to establish inside the heterologous human host.

  20. Prevalence of gastrointestinal parasites of rams brought into ...

    African Journals Online (AJOL)

    In an effort to gain a better understanding into the role played by food animals in the epidemiology of gastrointestinal parasites, we assessed the prevalence of gastrointestinal parasites in different breeds of rams brought into Abeokuta during a festive season by ... The only protozoan parasite identified was Eimeria spp.

  1. Prevalence of intestinal parasitic infestation in HIV seropositive and ...

    African Journals Online (AJOL)

    opportunistic parasites such as Cryptosporidium,. Cyclospora and Isospora species. It is also important to note that this report will be the first documentation on HIV/AIDS and intestinal parasites from this center. And it aims to determine the frequency and pattern of intestinal parasitic infestation, including protozoan species ...

  2. Modelling the impact of sanitation, population growth and urbanization on human emissions of Cryptosporidium to surface waters—a case study for Bangladesh and India

    NARCIS (Netherlands)

    Vermeulen, L.C.; Kraker, Dummy; Hofstra, N.; Kroeze, C.; Medema, G.J.

    2015-01-01

    Cryptosporidium is a protozoan parasite that can cause diarrhoea. Human faeces are an important source of Cryptosporidium in surface waters. We present a model to study the impact of sanitation, urbanization and population growth on human emissions of Cryptosporidium to surface waters. We build on a

  3. Modelling the impact of sanitation, population growth and urbanization on human emissions of cryptosporidium to surface waters : A case study for Bangladesh and India

    NARCIS (Netherlands)

    Vermeulen, L.C.; Kraker, J.; Hofstra, N.; Kroeze, C.; Medema, G.

    2015-01-01

    Cryptosporidium is a protozoan parasite that can cause diarrhoea. Human faeces are an important source of Cryptosporidium in surface waters. We present a model to study the impact of sanitation, urbanization and population growth on human emissions of Cryptosporidium to surface waters. We build on a

  4. Human parasitic meningitis caused by Angiostrongylus cantonensis infection in Taiwan.

    Science.gov (United States)

    Tsai, Hung-Chin; Chen, Yao-Shen; Yen, Chuan-Min

    2013-06-01

    The major cause of eosinophilic meningitis in Taiwan is Angiostrongylus cantonensis. Humans are infected by ingesting terrestrial and freshwater snails and slugs. In 1998 and 1999, two outbreaks of eosinophilic meningitis caused by A. cantonensis infection were reported among 17 adult male immigrant Thai laborers who had eaten raw golden apple snails (Pomacea canaliculata). Another outbreak associated with consuming a health drink consisting of raw vegetable juice was reported in 2001. These adult cases differed from reports in the 1970s and 1980s, in which most of the cases were in children. With improvements in public health and education of foreign laborers, there have since been only sporadic cases in Taiwan. Review of clinical research indicates inconsistent association of Magnetic Resonance Imaging (MRI) results with clinical features of eosinophilic meningitis. MRI features were nonspecific but there was an association between the presence of high brain MRI signal intensities and severity of peripheral and cerebrospinal fluid (CSF) eosinophilia. Inflammatory markers have been identified in the CSF of patients with eosinophilic meningitis caused by A. cantonensis infection, and vascular endothelial growth factor (VEGF), hepatocyte growth factor (HGF), and the matrix metalloproteinase system may be associated with blood-brain barrier disruption. Eosinophilic meningitis caused by A. cantonensis infection is not a reportable disease in Taiwan. It is important that a public advisory and education program be developed to reduce future accidental infection.

  5. Clinical Correlates of Diarrhea and Gut Parasites among Human Immunodeficiency Virus Seropositive Patients

    Directory of Open Access Journals (Sweden)

    Elvis Bisong

    2017-09-01

    Full Text Available Cluster differentiation 4 (CD4 count estimation, which is not readily available in most resource poor settings in Nigeria, is an important indexdetermining commencement of antiretroviral therapy (ART. It is imperative for physicians who come in contact with these patients in such settings to recognize other parameters to evaluate these patients. The clinical correlates of diarrhea and gut parasites among human immunodeficiency virus (HIV-seropositive patients attending our special treatment clinic were studied. Three hundred and forty consenting HIV-positive adult subjects were enrolled. Their stool and blood specimens were collected for a period of three months. Stool samples were analyzed for the presence of diarrhea and gut parasites. The patients were clinically evaluated by physical examination for the presence of pallor, dehydration, oral thrush, wasting lymphadenopathy, dermatitis, skin hyperpigmentation, and finger clubbing. Participants with diarrhea represented 14.1% of the population, while 21.5% harbored one or more parasites. In the subjects with diarrhea, 14.6% harbored gut parasites. The presence of diarrhea was associated with a low CD4 count. Clinically, oral thrush, wasting, and rashes were more reliable predictors of low CD4 count levels; whereas, the presence of pallor, dehydration, wasting, and rashes correlated with the presence of diarrhea. HIV patients presenting with pallor, dehydration, wasting, and rashes should be evaluated for the presence of diarrhea. The clinical variables associated with low CD4 count in this study may guide commencing antiretroviral therapy in resource poor settings.

  6. Medicinal Plants: A Source of Anti-Parasitic Secondary Metabolites

    Directory of Open Access Journals (Sweden)

    Michael Wink

    2012-10-01

    Full Text Available This review summarizes human infections caused by endoparasites, including protozoa, nematodes, trematodes, and cestodes, which affect more than 30% of the human population, and medicinal plants of potential use in their treatment. Because vaccinations do not work in most instances and the parasites have sometimes become resistant to the available synthetic therapeutics, it is important to search for alternative sources of anti-parasitic drugs. Plants produce a high diversity of secondary metabolites with interesting biological activities, such as cytotoxic, anti-parasitic and anti-microbial properties. These drugs often interfere with central targets in parasites, such as DNA (intercalation, alkylation, membrane integrity, microtubules and neuronal signal transduction. Plant extracts and isolated secondary metabolites which can inhibit protozoan parasites, such as Plasmodium, Trypanosoma, Leishmania, Trichomonas and intestinal worms are discussed. The identified plants and compounds offer a chance to develop new drugs against parasitic diseases. Most of them need to be tested in more detail, especially in animal models and if successful, in clinical trials.

  7. Molecular detection of intestinal parasites for clinical diagnosis and epidemiology

    NARCIS (Netherlands)

    Hove, Robert Jan ten

    2009-01-01

    The detection of intestinal parasitic infections for routine diagnosis and for epidemiological research still depends mainly on microscopical examination of stool samples for the identification of helminth eggs and protozoan trophozoites and cysts. Because microscopy has several limitations,

  8. PARASITIC INFECTION OF SYNODONTIS BATENSODA (RÜPPELL ...

    African Journals Online (AJOL)

    IYAJI

    2013-05-15

    Trichodinids), two ... Key words: Parasites, protozoan, helminths, nematodes, cestodes, acanthocephalans, Synodontis batensoda,. Rivers Niger-Benue ... including food and feeding habits have been carried out by several ...

  9. Immunity to Visceral Leishmaniasis Using Genetically Defined Live-Attenuated Parasites

    Directory of Open Access Journals (Sweden)

    Angamuthu Selvapandiyan

    2012-01-01

    Full Text Available Leishmaniasis is a protozoan parasitic disease endemic to the tropical and subtropical regions of the world, with three major clinical forms, self-healing cutaneous leishmaniasis (CL, mucocutaneous leishmaniasis (MCL, and visceral leishmaniasis (VL. Drug treatments are expensive and often result in the development of drug resistance. No vaccine is available against leishmaniasis. Subunit Leishmania vaccine immunization in animal models has shown some efficacy but little or none in humans. However, individuals who recover from natural infection are protected from reinfection and develop life-long protection, suggesting that infection may be a prerequisite for immunological memory. Thus, genetically altered live-attenuated parasites with controlled infectivity could achieve such memory. In this paper, we discuss development and characteristics of genetically altered, live-attenuated Leishmania donovani parasites and their possible use as vaccine candidates against VL. In addition, we discuss the challenges and other considerations in the use of live-attenuated parasites.

  10. Hemoglobin is a co-factor of human trypanosome lytic factor

    DEFF Research Database (Denmark)

    Widener, Justin; Nielsen, Marianne Jensby; Shiflett, April

    2007-01-01

    Trypanosome lytic factor (TLF) is a high-density lipoprotein (HDL) subclass providing innate protection to humans against infection by the protozoan parasite Trypanosoma brucei brucei. Two primate-specific plasma proteins, haptoglobin-related protein (Hpr) and apolipoprotein L-1 (ApoL-1), have be...

  11. Dichotomy in the human CD4+ T-cell response to Leishmania parasites

    DEFF Research Database (Denmark)

    Kemp, M; Kurtzhals, J A; Kharazmi, A

    1994-01-01

    Leishmania parasites cause human diseases ranging from self-healing cutaneous ulcers to fatal systemic infections. In addition, many individuals become infected without developing disease. In mice the two subsets of CD4+ T cells, Th1 and Th2, have different effects on the outcome of experimental...... in humans, and that the balance between subsets of parasite-specific T cells may play an important regulatory role in determining the outcome of the infections....

  12. Parasitic Zoonoses in Humans and Their Dogs from a Rural Community of Tropical Mexico

    Directory of Open Access Journals (Sweden)

    Antonio Ortega-Pacheco

    2015-01-01

    Full Text Available A cross-sectional study was made on 89 inhabitants and their dogs from a rural community of Yucatan, Mexico, to determine the serological prevalence of some zoonotic parasitic agents. Samples were taken to monitor the presence and intensity of infection with gastrointestinal parasites in dogs. In humans, the serological prevalence of T. canis, T. gondii, and T. spiralis was 29.2%, 91.0%, and 6.7%, respectively. No associations were found between positive cases and studied variables. From the total of blood samples taken from dogs, 87 (97.6% were seropositive to T. gondii; only 52 viable fecal samples were collected from dogs of which 46.2% had the presence of gastrointestinal parasites with low to moderate intensity; from those, 12% had the presence of T. canis. This study demonstrates the presence of the studied zoonotic agents in the area particularly T. gondii which suggest a common source of infection in dogs and humans and a high number of oocyts present in the environment. Preventive measures must be designed towards good prophylactic practices in domestic and backyard animals (T. canis and T. spiralis. Contaminated sources with T. gondii (food and water should be further investigated in order to design effective control measures.

  13. Transcriptionally Driven DNA Replication Program of the Human Parasite Leishmania major

    Directory of Open Access Journals (Sweden)

    Rodrigo Lombraña

    2016-08-01

    Full Text Available Faithful inheritance of eukaryotic genomes requires the orchestrated activation of multiple DNA replication origins (ORIs. Although origin firing is mechanistically conserved, how origins are specified and selected for activation varies across different model systems. Here, we provide a complete analysis of the nucleosomal landscape and replication program of the human parasite Leishmania major, building on a better evolutionary understanding of replication organization in Eukarya. We found that active transcription is a driving force for the nucleosomal organization of the L. major genome and that both the spatial and the temporal program of DNA replication can be explained as associated to RNA polymerase kinetics. This simple scenario likely provides flexibility and robustness to deal with the environmental changes that impose alterations in the genetic programs during parasitic life cycle stages. Our findings also suggest that coupling replication initiation to transcription elongation could be an ancient solution used by eukaryotic cells for origin maintenance.

  14. The prevalence and diversity of intestinal parasitic infections in humans and domestic animals in a rural Cambodian village.

    Science.gov (United States)

    Schär, Fabian; Inpankaew, Tawin; Traub, Rebecca J; Khieu, Virak; Dalsgaard, Anders; Chimnoi, Wissanuwat; Chhoun, Chamnan; Sok, Daream; Marti, Hanspeter; Muth, Sinuon; Odermatt, Peter

    2014-08-01

    In Cambodia, intestinal parasitic infections are prevalent in humans and particularly in children. Yet, information on potentially zoonotic parasites in animal reservoir hosts is lacking. In May 2012, faecal samples from 218 humans, 94 dogs and 76 pigs were collected from 67 households in Dong village, Preah Vihear province, Cambodia. Faecal samples were examined microscopically using sodium nitrate and zinc sulphate flotation methods, the Baermann method, Koga Agar plate culture, formalin-ether concentration technique and Kato Katz technique. PCR was used to confirm hookworm, Ascaris spp., Giardia spp. and Blastocystis spp. Major gastrointestinal parasitic infections found in humans included hookworms (63.3%), Entamoeba spp. (27.1%) and Strongyloides stercoralis (24.3%). In dogs, hookworm (80.8%), Spirometra spp. (21.3%) and Strongyloides spp. (14.9%) were most commonly detected and in pigs Isospora suis (75.0%), Oesophagostomum spp. (73.7%) and Entamoeba spp. (31.6%) were found. Eleven parasite species were detected in dogs (eight helminths and three protozoa), seven of which have zoonotic potential, including hookworm, Strongyloides spp., Trichuris spp., Toxocara canis, Echinostoma spp., Giardia duodenalis and Entamoeba spp. Five of the parasite species detected in pigs also have zoonotic potential, including Ascaris spp., Trichuris spp., Capillaria spp., Balantidium coli and Entamoeba spp. Further molecular epidemiological studies will aid characterisation of parasite species and genotypes and allow further insight into the potential for zoonotic cross transmission of parasites in this community. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  15. Species-specific escape of Plasmodium sporozoites from oocysts of avian, rodent, and human malarial parasites.

    Science.gov (United States)

    Orfano, Alessandra S; Nacif-Pimenta, Rafael; Duarte, Ana P M; Villegas, Luis M; Rodrigues, Nilton B; Pinto, Luciana C; Campos, Keillen M M; Pinilla, Yudi T; Chaves, Bárbara; Barbosa Guerra, Maria G V; Monteiro, Wuelton M; Smith, Ryan C; Molina-Cruz, Alvaro; Lacerda, Marcus V G; Secundino, Nágila F C; Jacobs-Lorena, Marcelo; Barillas-Mury, Carolina; Pimenta, Paulo F P

    2016-08-02

    Malaria is transmitted when an infected mosquito delivers Plasmodium sporozoites into a vertebrate host. There are many species of Plasmodium and, in general, the infection is host-specific. For example, Plasmodium gallinaceum is an avian parasite, while Plasmodium berghei infects mice. These two parasites have been extensively used as experimental models of malaria transmission. Plasmodium falciparum and Plasmodium vivax are the most important agents of human malaria, a life-threatening disease of global importance. To complete their life cycle, Plasmodium parasites must traverse the mosquito midgut and form an oocyst that will divide continuously. Mature oocysts release thousands of sporozoites into the mosquito haemolymph that must reach the salivary gland to infect a new vertebrate host. The current understanding of the biology of oocyst formation and sporozoite release is mostly based on experimental infections with P. berghei, and the conclusions are generalized to other Plasmodium species that infect humans without further morphological analyses. Here, it is described the microanatomy of sporozoite escape from oocysts of four Plasmodium species: the two laboratory models, P. gallinaceum and P. berghei, and the two main species that cause malaria in humans, P. vivax and P. falciparum. It was found that sporozoites have species-specific mechanisms of escape from the oocyst. The two model species of Plasmodium had a common mechanism, in which the oocyst wall breaks down before sporozoites emerge. In contrast, P. vivax and P. falciparum sporozoites show a dynamic escape mechanism from the oocyst via polarized propulsion. This study demonstrated that Plasmodium species do not share a common mechanism of sporozoite escape, as previously thought, but show complex and species-specific mechanisms. In addition, the knowledge of this phenomenon in human Plasmodium can facilitate transmission-blocking studies and not those ones only based on the murine and avian models.

  16. Bax function in the absence of mitochondria in the primitive protozoan Giardia lamblia.

    Directory of Open Access Journals (Sweden)

    Adrian B Hehl

    Full Text Available Bax-induced permeabilization of the mitochondrial outer membrane and release of cytochrome c are key events in apoptosis. Although Bax can compromise mitochondria in primitive unicellular organisms that lack a classical apoptotic machinery, it is still unclear if Bax alone is sufficient for this, or whether additional mitochondrial components are required. The protozoan parasite Giardia lamblia is one of the earliest branching eukaryotes and harbors highly degenerated mitochondrial remnant organelles (mitosomes that lack a genome. Here we tested whether human Bax expressed in Giardia can be used to ablate mitosomes. We demonstrate that these organelles are neither targeted, nor compromised, by Bax. However, specialized compartments of the regulated secretory pathway are completely ablated by Bax. As a consequence, maturing cyst wall proteins that are sorted into these organelles are released into the cytoplasm, causing a developmental arrest and cell death. Interestingly, this ectopic cargo release is dependent on the carboxy-terminal 22 amino acids of Bax, and can be prevented by the Bax-inhibiting peptide Ku70. A C-terminally truncated Bax variant still localizes to secretory organelles, but is unable to permeabilize these membranes, uncoupling membrane targeting and cargo release. Even though mitosomes are too diverged to be recognized by Bax, off-target membrane permeabilization appears to be conserved and leads to cell death completely independently of mitochondria.

  17. Look what the cat dragged in: do parasites contribute to human cultural diversity?

    Science.gov (United States)

    Lafferty, Kevin D.

    2005-01-01

    If human culture emerges from the modal personality of a population, can global variation in parasitism that affects personality lead to cultural diversity among nations? The answer could help explain why people seem to vary so much from one land to another. Thomas et al. (2005) review how parasites manipulate behaviour, including human behaviour. To quote them, “The rabies virus lives in the brain, affording the virus ample opportunity to directly affect host behaviour. Rabid animals do show changes in behaviour, including increased aggression and biting.” Rabies affects a wide range of mammals and the aggressive biting associated with furious rabies appears to increase transmission. The personality transformation of infected humans can be horrifying, transforming loved ones into thrashing, baying beasts. Not coincidentally, in Europe, past periods of rabies outbreaks correspond to increases in werewolf trials. Although rabies can have a dramatic effect, the present rarity of human rabies cases and the availability of a vaccine, means that the behavioural effects of rabies are primarily an illustrative curiosity.

  18. Parasitic infections of the external eye.

    Science.gov (United States)

    Pahuja, Shivani; Puranik, Charuta; Jelliti, Bechir; Khairallah, Moncef; Sangwan, Virender S

    2013-08-01

    To review the published literature on parasitic infections of external eye. Published articles and case reports on parasitic infections of external eye were reviewed and relevant information was collected. Parasitic infections of the eye are rare. However, being more commonly seen in developing nations, they require active measures for screening, diagnosis, and therapy. Parasites of importance causing external ocular disease are protozoan parasites, such as Leishmania; metazoans, such as nematodes (roundworms), cestodes (tapeworms), and trematodes (flatworms); or ectoparasites, such as Phthirus pubis and Demodex.

  19. The Clp Chaperones and Proteases of the Human Malaria Parasite Plasmodium falciparum

    Energy Technology Data Exchange (ETDEWEB)

    Bakkouri, Majida El; Pow, Andre; Mulichak, Anne; Cheung, Kevin L.Y.; Artz, Jennifer D.; Amani, Mehrnaz; Fell, Stuart; de Koning-Ward, Tania F.; Goodman, C. Dean; McFadden, Geoffrey I.; Ortega, Joaquin; Hui, Raymond; Houry, Walid A. (McMaster U.); (Melbourne); (Toronto); (Deakin); (HWMRI)

    2015-02-09

    The Clp chaperones and proteases play an important role in protein homeostasis in the cell. They are highly conserved across prokaryotes and found also in the mitochondria of eukaryotes and the chloroplasts of plants. They function mainly in the disaggregation, unfolding and degradation of native as well as misfolded proteins. Here, we provide a comprehensive analysis of the Clp chaperones and proteases in the human malaria parasite Plasmodium falciparum. The parasite contains four Clp ATPases, which we term PfClpB1, PfClpB2, PfClpC and PfClpM. One PfClpP, the proteolytic subunit, and one PfClpR, which is an inactive version of the protease, were also identified. Expression of all Clp chaperones and proteases was confirmed in blood-stage parasites. The proteins were localized to the apicoplast, a non-photosynthetic organelle that accommodates several important metabolic pathways in P. falciparum, with the exception of PfClpB2 (also known as Hsp101), which was found in the parasitophorous vacuole. Both PfClpP and PfClpR form mostly homoheptameric rings as observed by size-exclusion chromatography, analytical ultracentrifugation and electron microscopy. The X-ray structure of PfClpP showed the protein as a compacted tetradecamer similar to that observed for Streptococcus pneumoniae and Mycobacterium tuberculosis ClpPs. Our data suggest the presence of a ClpCRP complex in the apicoplast of P. falciparum.

  20. Macrophage and T-cell gene expression in a model of early infection with the protozoan Leishmania chagasi.

    Directory of Open Access Journals (Sweden)

    Nicholas A Ettinger

    2008-06-01

    Full Text Available Visceral leishmaniasis is a potentially fatal infectious disease caused by the protozoan parasite Leishmania infantum/chagasi in the New World, or by L. donovani or L. infantum/chagasi in the Old World. Infection leads to a variety of outcomes ranging from asymptomatic infection to active disease, characterized by fevers, cachexia, hepatosplenomegaly and suppressed immune responses. We reasoned that events occurring during the initial few hours when the parasite encounters cells of the innate and adaptive immune systems are likely to influence the eventual immune response that develops. Therefore, we performed gene expression analysis using Affymetrix U133Plus2 microarray chips to investigate a model of early infection with human monocyte-derived macrophages (MDMs challenged with wild-type L. chagasi parasites, with or without subsequent co-culture with Leishmania-naïve, autologous T-cells. Microarray data generated from total RNA were analyzed with software from the Bioconductor Project and functional clustering and pathway analysis were performed with DAVID and Gene Set Enrichment Analysis (GSEA, respectively. Many transcripts were down-regulated by infection in cultures containing macrophages alone, and the pattern indicated a lack of a classically activated phenotype. By contrast, the addition of autologous Leishmania-naïve T cells to infected macrophages resulted in a pattern of gene expression including many markers of type 1 immune cytokine activation (IFN-gamma, IL-6, IL-1alpha, IL-1beta. There was simultaneous up-regulation of a few markers of immune modulation (IL-10 cytokine accumulation; TGF-beta Signaling Pathway. We suggest that the initial encounter between L. chagasi and cells of the innate and adaptive immune system stimulates primarily type 1 immune cytokine responses, despite a lack of classical macrophage activation. This local microenvironment at the site of parasite inoculation may determine the initial course of immune T

  1. Natural infection of Plasmodium brasilianum in humans: Man and monkey share quartan malaria parasites in the Venezuelan Amazon.

    Science.gov (United States)

    Lalremruata, Albert; Magris, Magda; Vivas-Martínez, Sarai; Koehler, Maike; Esen, Meral; Kempaiah, Prakasha; Jeyaraj, Sankarganesh; Perkins, Douglas Jay; Mordmüller, Benjamin; Metzger, Wolfram G

    2015-09-01

    The quartan malaria parasite Plasmodium malariae is the widest spread and best adapted human malaria parasite. The simian Plasmodium brasilianum causes quartan fever in New World monkeys and resembles P. malariae morphologically. Since the genetics of the two parasites are nearly identical, differing only in a range of mutations expected within a species, it has long been speculated that the two are the same. However, no naturally acquired infection with parasites termed as P. brasilianum has been found in humans until now. We investigated malaria cases from remote Yanomami indigenous communities of the Venezuelan Amazon and analyzed the genes coding for the circumsporozoite protein (CSP) and the small subunit of ribosomes (18S) by species-specific PCR and capillary based-DNA sequencing. Based on 18S rRNA gene sequencing, we identified 12 patients harboring malaria parasites which were 100% identical with P. brasilianum isolated from the monkey, Alouatta seniculus. Translated amino acid sequences of the CS protein gene showed identical immunodominant repeat units between quartan malaria parasites isolated from both humans and monkeys. This study reports, for the first time, naturally acquired infections in humans with parasites termed as P. brasilianum. We conclude that quartan malaria parasites are easily exchanged between humans and monkeys in Latin America. We hypothesize a lack of host specificity in mammalian hosts and consider quartan malaria to be a true anthropozoonosis. Since the name P. brasilianum suggests a malaria species distinct from P. malariae, we propose that P. brasilianum should have a nomenclatorial revision in case further research confirms our findings. The expansive reservoir of mammalian hosts discriminates quartan malaria from other Plasmodium spp. and requires particular research efforts.

  2. Functional expression of parasite drug targets and their human orthologs in yeast.

    Directory of Open Access Journals (Sweden)

    Elizabeth Bilsland

    2011-10-01

    Full Text Available The exacting nutritional requirements and complicated life cycles of parasites mean that they are not always amenable to high-throughput drug screening using automated procedures. Therefore, we have engineered the yeast Saccharomyces cerevisiae to act as a surrogate for expressing anti-parasitic targets from a range of biomedically important pathogens, to facilitate the rapid identification of new therapeutic agents.Using pyrimethamine/dihydrofolate reductase (DHFR as a model parasite drug/drug target system, we explore the potential of engineered yeast strains (expressing DHFR enzymes from Plasmodium falciparum, P. vivax, Homo sapiens, Schistosoma mansoni, Leishmania major, Trypanosoma brucei and T. cruzi to exhibit appropriate differential sensitivity to pyrimethamine. Here, we demonstrate that yeast strains (lacking the major drug efflux pump, Pdr5p expressing yeast ((ScDFR1, human ((HsDHFR, Schistosoma ((SmDHFR, and Trypanosoma ((TbDHFR and (TcDHFR DHFRs are insensitive to pyrimethamine treatment, whereas yeast strains producing Plasmodium ((PfDHFR and (PvDHFR DHFRs are hypersensitive. Reassuringly, yeast strains expressing field-verified, drug-resistant mutants of P. falciparum DHFR ((Pfdhfr(51I,59R,108N are completely insensitive to pyrimethamine, further validating our approach to drug screening. We further show the versatility of the approach by replacing yeast essential genes with other potential drug targets, namely phosphoglycerate kinases (PGKs and N-myristoyl transferases (NMTs.We have generated a number of yeast strains that can be successfully harnessed for the rapid and selective identification of urgently needed anti-parasitic agents.

  3. Prevalence of Intestinal Parasites among Food-handlers in Shiraz, Iran

    Directory of Open Access Journals (Sweden)

    Mohammad Hossein MOTAZEDIAN

    2015-12-01

    Full Text Available Background: Parasitic intestinal infections are still among socioeconomic prob­lems in the world, especially in developing countries like Iran. Food-handlers that directly deal with production and distribution of foods between societies are one of the most important sources to transmit parasitic infections to humans. The aim of this study was to determine the prevalence of intestinal parasitic infections among food-handlers in Shiraz, Iran. Methods: In this cross-sectional study, 1021 feces samples were randomly col­lected from food-handlers in Shiraz, central Iran from August to September 2013. Two different methods, routine direct fecal examination and Formalin –Ethyl ace­tate concentration as a complementary technique, were done to detect parasites.Results: The prevalence of parasitic organisms was 10.4% in the food-handlers. The most species of the protozoan parasites were G. lamblia, E. coli and B. hominis; meanwhile, only one infection by H. nana (0.1% was detected in this group. Mixed infections were observed in 13.2% (n=14/106 of positive cases. The majority of participants were male (57%; however, data analysis showed significant statistical difference in the rate of infection between females 11.9% (n=53/444 and males 9% (n=52/577 (P=0. 024. There was no significant statistical difference in the rate of infection among different educational and occupation groups.Conclusion: Although decreasing of helminthic infections is distinct, but infecting with protozoan parasites is still important in food-handlers. Concentration tech­nique is more useful than direct smear technique, especially for detection parasites in low number. High level of education in our study showed that training courses in this group could be effective in the implementation of control and prevention programs.

  4. DNA typing of ancient parasite eggs from environmental samples identifies human and animal worm infections in Viking-age settlement

    DEFF Research Database (Denmark)

    Søe, Martin Jensen; Fredensborg, Brian Lund; Nejsum, Peter

    Human worm infections have, to a large extent, been eradicated in countries with high sanitary standards by preventing the fecal-oral transmission of infective eggs. It is possible to study parasite infections among past populations by retrieving and analyzing parasite eggs using paleoparasitolog......-age. Further, eggs of the Liver Fluke (Fasciola hepatica), whose primary hosts are cows and sheep, are identified indicating that grazing animals were kept in close proximity of the settlement....

  5. Parasitic contamination of fresh vegetables sold at central markets in Khartoum state, Sudan.

    Science.gov (United States)

    Mohamed, Mona Ali; Siddig, Emmanuel Edwar; Elaagip, Arwa Hassan; Edris, Ali Mahmoud Mohammed; Nasr, Awad Ahmed

    2016-03-11

    relationship was observed between the type of parasite and total prevalence in fresh vegetables (p = 0.000). The study has identified a moderate rate of fresh vegetables contaminated with protozoan and helminthes. Contaminated fresh vegetables in central markets of Khartoum state may play a significant role in transmission of intestinal parasitic infections to humans, and the water used by greengrocers to sprinkle vegetable(s) can be implicated in vegetable contamination.

  6. Systematic analysis of FKBP inducible degradation domain tagging strategies for the human malaria parasite Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    Mauro Ferreira de Azevedo

    Full Text Available Targeted regulation of protein levels is an important tool to gain insights into the role of proteins essential to cell function and development. In recent years, a method based on mutated forms of the human FKBP12 has been established and used to great effect in various cell types to explore protein function. The mutated FKBP protein, referred to as destabilization domain (DD tag when fused with a native protein at the N- or C-terminus targets the protein for proteosomal degradation. Regulated expression is achieved via addition of a compound, Shld-1, that stabilizes the protein and prevents degradation. A limited number of studies have used this system to provide powerful insight into protein function in the human malaria parasite Plasmodium falciparum. In order to better understand the DD inducible system in P. falciparum, we studied the effect of Shld-1 on parasite growth, demonstrating that although development is not impaired, it is delayed, requiring the appropriate controls for phenotype interpretation. We explored the quantified regulation of reporter Green Fluorescent Protein (GFP and luciferase constructs fused to three DD variants in parasite cells either via transient or stable transfection. The regulation obtained with the original FKBP derived DD domain was compared to two triple mutants DD24 and DD29, which had been described to provide better regulation for C-terminal tagging in other cell types. When cloned to the C-terminal of reporter proteins, DD24 provided the strongest regulation allowing reporter activity to be reduced to lower levels than DD and to restore the activity of stabilised proteins to higher levels than DD29. Importantly, DD24 has not previously been applied to regulate proteins in P. falciparum. The possibility of regulating an exported protein was addressed by targeting the Ring-Infected Erythrocyte Surface Antigen (RESA at its C-terminus. The tagged protein demonstrated an important modulation of its

  7. Drug resistance in the sexually transmitted protozoan Trichomonas vaginalis

    Institute of Scientific and Technical Information of China (English)

    REBECCA L DUNNE; LINDA A DUNN; PETER UPCROFT; PETER J O'DONOGHUE; JACQUELINE A UPCROFT

    2003-01-01

    Trichomoniasis is the most common, sexually transmitted infection. It is caused by the flagellated protozoan parasite Trichomonas vaginalis. Symptoms include vaginitis and infections have been associated with preterm delivery, low birth weight and increased infant mortality, as well as predisposing to HIV/AIDS and cervical cancer. Trichomoniasis has the highest prevalence and incidence of any sexually transmitted infection. The 5-nitroimidazole drugs, of which metronidazole is the most prescribed, are the only approved,effective drugs to treat trichomoniasis. Resistance against metronidazole is frequently reported and crossresistance among the family of 5-nitroimidazole drugs is common, leaving no alternative for treatment, with some cases remaining unresolved. The mechanism of metronidazole resistance in T. vaginalis from treatment failures is not well understood, unlike resistance which is developed in the laboratory under increasing metronidazole pressure. In the latter situation, hydrogenosomal function which is involved in activation of the prodrug, metronidazole, is down-regulated. Reversion to sensitivity is incomplete after removal of drug pressure in the highly resistant parasites while clinically resistant strains, so far analysed, maintain their resistance levels in the absence of drug pressure. Although anaerobic resistance has been regarded as a laboratory induced phenomenon, it clearly has been demonstrated in clinical isolates. Pursuit of both approaches will allow dissection of the underlying mechanisms. Many alternative drugs and treatments have been tested in vivo in cases of refractory trichomoniasis, as well as in vitro with some successes including the broad spectrum anti-parasitic drug nitazoxanide. Drug resistance incidence in T. vaginalis appears to be on the increase and improved surveillance of treatment failures is urged.

  8. A novel PCR-based system for the detection of four species of human malaria parasites and Plasmodium knowlesi.

    Directory of Open Access Journals (Sweden)

    Kanako Komaki-Yasuda

    Full Text Available A microscopy-based diagnosis is the gold standard for the detection and identification of malaria parasites in a patient's blood. However, the detection of cases involving a low number of parasites and the differentiation of species sometimes requires a skilled microscopist. Although PCR-based diagnostic methods are already known to be very powerful tools, the time required to apply such methods is still much longer in comparison to traditional microscopic observation. Thus, improvements to PCR systems are sought to facilitate the more rapid and accurate detection of human malaria parasites Plasmodium falciparum, P. vivax, P. ovale, and P. malariae, as well as P. knowlesi, which is a simian malaria parasite that is currently widely distributed in Southeast Asia. A nested PCR that targets the small subunit ribosomal RNA genes of malaria parasites was performed using a "fast PCR enzyme". In the first PCR, universal primers for all parasite species were used. In the second PCR, inner-specific primers, which targeted sequences from P. falciparum, P. vivax, P. ovale, P. malariae, and P. knowlesi, were used. The PCR reaction time was reduced with the use of the "fast PCR enzyme", with only 65 minutes required to perform the first and second PCRs. The specific primers only reacted with the sequences of their targeted parasite species and never cross-reacted with sequences from other species under the defined PCR conditions. The diagnoses of 36 clinical samples that were obtained using this new PCR system were highly consistent with the microscopic diagnoses.

  9. Cockroaches as carriers of human intestinal parasites in two localities in Ethiopia.

    Science.gov (United States)

    Kinfu, Addisu; Erko, Berhanu

    2008-11-01

    A study was undertaken to assess the role of cockroaches as potential carriers of human intestinal parasites in Addis Ababa and Ziway, Ethiopia. A total of 6480 cockroaches were trapped from the two localities from October 2006 to March 2007. All the cockroaches trapped in Addis Ababa (n=2240) and almost 50% (2100/4240) of those trapped in Ziway were identified as Blattella germanica. The rest of the cockroaches trapped in Ziway were identified as Periplaneta brunnea (24.52%), Pycnoscelus surinamensis (16.03%) and Supella longipalpa (9.90%). Microscopic examination of the external body washes of pooled cockroaches and individual gut contents revealed that cockroaches are carriers of Entamoeba coli and Entamoeba histolytica/dispar cysts as well as Enterobius vermicularis, Trichuris trichiura, Taenia spp. and Ascaris lumbricoides ova. Besides their role as a nuisance, the present study further confirms that cockroaches serve as carriers of human intestinal parasites. The possible association of cockroaches with allergic conditions such as asthma is also discussed. Hence, appropriate control measures should be taken particularly to make hotels and residential areas free of cockroaches as they represent a health risk.

  10. Enlightening the malaria parasite life cycle: bioluminescent Plasmodium in fundamental and applied research

    Directory of Open Access Journals (Sweden)

    Giulia eSiciliano

    2015-05-01

    Full Text Available The unicellular protozoan parasites of the genus Plasmodium impose on human health worldwide the enormous burden of malaria. The possibility to genetically modify several species of malaria parasites represented a major advance in the possibility to elucidate their biology and is now turning laboratory lines of transgenic Plasmodium into precious weapons to fight malaria. Amongst the various genetically modified plasmodia, transgenic parasite lines expressing bioluminescent reporters have been essential to unveil mechanisms of parasite gene expression and to develop in vivo imaging approaches in mouse malaria models. Mainly the human malaria parasite Plasmodium falciparum and the rodent parasite Plasmodium berghei have been engineered to express bioluminescent reporters in almost all the developmental stages of the parasite along its complex life cycle between the insect and the vertebrate hosts. Plasmodium lines expressing conventional and improved luciferase reporters are now gaining a central role to develop cell based assays in the much needed search of new antimalarial drugs and to open innovative approaches for both fundamental and applied research in malaria.

  11. Enlightening the malaria parasite life cycle: bioluminescent Plasmodium in fundamental and applied research.

    Science.gov (United States)

    Siciliano, Giulia; Alano, Pietro

    2015-01-01

    The unicellular protozoan parasites of the genus Plasmodium impose on human health worldwide the enormous burden of malaria. The possibility to genetically modify several species of malaria parasites represented a major advance in the possibility to elucidate their biology and is now turning laboratory lines of transgenic Plasmodium into precious weapons to fight malaria. Amongst the various genetically modified plasmodia, transgenic parasite lines expressing bioluminescent reporters have been essential to unveil mechanisms of parasite gene expression and to develop in vivo imaging approaches in mouse malaria models. Mainly the human malaria parasite Plasmodium falciparum and the rodent parasite P. berghei have been engineered to express bioluminescent reporters in almost all the developmental stages of the parasite along its complex life cycle between the insect and the vertebrate hosts. Plasmodium lines expressing conventional and improved luciferase reporters are now gaining a central role to develop cell based assays in the much needed search of new antimalarial drugs and to open innovative approaches for both fundamental and applied research in malaria.

  12. Successful Feeding of Amblyomma coelebs (Acari: Ixodidae) Nymphs on Humans in Brazil: Skin Reactions to Parasitism.

    Science.gov (United States)

    Garcia, Marcos V; Matias, Jaqueline; Aguirre, AndrÉ De A R; Csordas, Barbara G; SzabÓ, Matias P J; Andreotti, Renato

    2015-03-01

    Identifying the tick species that successfully feed on humans would increase knowledge of the epidemiology of several tick-borne diseases. These species salivate into the host, increasing the risk of pathogen transmission. However, there is a lack of data in the literature regarding the ticks that prefer to feed on humans. Herein, we describe the successful feeding of Amblyomma coelebs Neumann nymphs on two of the authors after accidental tick bites occurred during field surveys in two preserved areas of Mato Grosso do Sul, Brazil. One of the host-parasite interactions was closely monitored, and the tick development, gross host skin alterations, and related sensations are presented. © The Author 2015. Published by Oxford University Press on behalf of Entomological Society of America.

  13. Parasites and fungi as risk factors for human and animal health.

    Science.gov (United States)

    Góralska, Katarzyna; Błaszkowska, Joanna

    2015-01-01

    Recent literature data suggests that parasitic and fungal diseases, which pose a threat to both human and animal health, remain a clinical, diagnostic and therapeutic problem. Attention is increasingly paid to the role played by natural microbiota in maintaining homeostasis in humans. A particular emphasis is placed on the possibility of manipulating the human microbiota (permanent, transient, pathogenic) and macrobiota (e.g., Trichuris suis) to support the treatment of selected diseases such as Crohn's disease, obesity, diabetes and cancer. Emphasis is placed on important medical species whose infections not only impair health but can also be life threatening, such as Plasmodium falciparum, Echinococcus multilocularis and Baylisascaris procyonis, which expand into areas which have so far been uninhabited. This article also presents the epidemiology, diagnosis and treatment of opportunistic parasitoses imported from the tropics, which spread across large groups of people through human-to-human transmission (Enterobius vermicularis, Sarcoptes scabiei). It also discusses the problem of environmentally-conditioned parasitoses, particularly their etiological factors associated with food contaminated with invasive forms (Trichinella sp., Toxoplasma gondii). The analysis also concerns the presence of developmental forms of geohelminths (Toxocara sp.) and ectoparasites (ticks), which are vectors of serious human diseases (Lyme borreliosis, anaplasmosis, babesiosis), in the environment. Mycological topics contains rare cases of mycoses environmentally conditioned (CNS aspergillosis) and transmissions of these pathogens in a population of hospitalized individuals, as well as seeking new methods used to treat mycoses.

  14. Genetic characterization of human-pathogenic Cyclospora cayetanensis parasites from three endemic regions at the 18S ribosomal RNA locus.

    Science.gov (United States)

    Sulaiman, Irshad M; Ortega, Ynes; Simpson, Steven; Kerdahi, Khalil

    2014-03-01

    Cyclospora cayetanensis is an apicocomplexan parasite that infects the gastrointestinal tract and causes acute diarrheal disease in humans. In recent years, this human-pathogenic parasite has led to several foodborne outbreaks in the United States and Canada, mostly associated with imported produce. Understanding the biology and epidemiology of C. cayetanensis is difficult because little is known about its origin, possible zoonotic reservoirs, and genetic relationships with other coccidian parasites. Recently, we developed a 70kDa heat shock protein (HSP70) gene based nested PCR protocol for detection of C. cayetanensis parasite and sequenced the PCR products of 16 human isolates from Nepal, Mexico, and Peru. In this study, we have characterized the regions of 18S ribosomal RNA (rRNA) gene of 17 human C. cayetanensis isolates for molecular detection, and also to ascertain the genetic diversity of this parasite. The 18S rRNA primer sets were further tested by PCR amplification followed by nucleotide sequencing of the PCR amplified products of previously characterized C. cayetanensis isolates from three endemic regions at HSP70 locus. Although no genetic polymorphism was observed at the regions of HSP70 locus characterized in our previous study, the data analysis of this study revealed a minor genetic diversity at the 18S rRNA locus among the C. cayetanensis isolates. The 18S rRNA gene-based nested PCR protocol provides a useful genetic marker for the detection of C. cayetanensis parasite and confirms it as a genetically distinct species in genus Cyclospora. The results also supported lack of geographic segregation and existence of genetically homogeneous population for the C. cayetanensis parasites both at the HSP70 as well as at the18S rRNA loci. Published by Elsevier B.V.

  15. Pets and Parasites

    Science.gov (United States)

    ... good news is that this rarely happens. Most pet-to-people diseases can be avoided by following a few ... your doctor Can a parasite cause death in people and pets? Can human disease from a parasite be treated ...

  16. Recurrent wheezing is associated with intestinal protozoan infections in Warao Amerindian children in Venezuela: a cross-sectional survey.

    Science.gov (United States)

    Overeem, Marcella M A; Verhagen, Lilly M; Hermans, Peter W M; del Nogal, Berenice; Sánchez, Adriana Márquez; Acevedo, Natacha Martinez; Murga, Rosalicia Ramirez; Roelfsema, Jeroen; Pinelli, Elena; de Waard, Jacobus H

    2014-05-29

    While in developed countries the prevalence of allergic diseases is rising, inflammatory diseases are relatively uncommon in rural developing areas. High prevalence rates of helminth and protozoan infections are commonly found in children living in rural settings and several studies suggest an inverse association between helminth infections and allergies. No studies investigating the relationship between parasitic infections and atopic diseases in rural children of developing countries under the age of 2 years have been published so far. We performed a cross-sectional survey to investigate the association of helminth and protozoan infections and malnutrition with recurrent wheezing and atopic eczema in Warao Amerindian children in Venezuela. From August to November 2012, 229 children aged 0 to 2 years residing in the Orinoco Delta in Venezuela were enrolled. Data were collected through standardized questionnaires and physical examination, including inspection of the skin and anthropometric measurements. A stool sample was requested from all participants and detection of different parasites was performed using microscopy and real time polymerase chain reaction (PCR). We observed high prevalence rates of atopic eczema and recurrent wheezing, respectively 19% and 23%. The prevalence of helminth infections was 26% and the prevalence of protozoan infections was 59%. Atopic eczema and recurrent wheezing were more frequently observed in stunted compared with non-stunted children in multivariable analysis (OR 4.3, 95% CI 1.3 - 13.6, p = 0.015 and OR 4.5, 95% CI 0.97 - 21.2, p = 0.055). Furthermore, recurrent wheezing was significantly more often observed in children with protozoan infections than in children without protozoan infections (OR 6.7, 95% CI 1.5 - 30.5). High prevalence rates of atopic eczema and recurrent wheezing in Warao Amerindian children under 2 years of age were related to stunting and intestinal protozoan infections respectively. Helminth

  17. Prevalence and Risk Factors for Intestinal Protozoan Infections with Cryptosporidium, Giardia, Blastocystis and Dientamoeba among Schoolchildren in Tripoli, Lebanon.

    Science.gov (United States)

    Osman, Marwan; El Safadi, Dima; Cian, Amandine; Benamrouz, Sadia; Nourrisson, Céline; Poirier, Philippe; Pereira, Bruno; Razakandrainibe, Romy; Pinon, Anthony; Lambert, Céline; Wawrzyniak, Ivan; Dabboussi, Fouad; Delbac, Frederic; Favennec, Loïc; Hamze, Monzer; Viscogliosi, Eric; Certad, Gabriela

    2016-03-01

    Intestinal protozoan infections are confirmed as major causes of diarrhea, particularly in children, and represent a significant, but often neglected, threat to public health. No recent data were available in Lebanon concerning the molecular epidemiology of protozoan infections in children, a vulnerable population at high risk of infection. In order to improve our understanding of the epidemiology of intestinal pathogenic protozoa, a cross-sectional study was conducted in a general pediatric population including both symptomatic and asymptomatic subjects. After obtaining informed consent from the parents or legal guardians, stool samples were collected in January 2013 from 249 children in 2 schools in Tripoli, Lebanon. Information obtained from a standard questionnaire included demographic characteristics, current symptoms, socioeconomic status, source of drinking water, and personal hygiene habits. After fecal examination by both microscopy and molecular tools, the overall prevalence of parasitic infections was recorded as 85%. Blastocystis spp. presented the highest infection rate (63%), followed by Dientamoeba fragilis (60.6%), Giardia duodenalis (28.5%) and Cryptosporidium spp. (10.4%). PCR was also performed to identify species and genotypes of Cryptosporidium, subtypes of Blastocystis, and assemblages of Giardia. Statistical analysis using a logistic regression model showed that contact with family members presenting gastrointestinal disorders was the primary risk factor for transmission of these protozoa. This is the first study performed in Lebanon reporting the prevalence and the clinical and molecular epidemiological data associated with intestinal protozoan infections among schoolchildren in Tripoli. A high prevalence of protozoan parasites was found, with Blastocystis spp. being the most predominant protozoans. Although only 50% of children reported digestive symptoms, asymptomatic infection was observed, and these children may act as unidentified

  18. Genome sequencing of chimpanzee malaria parasites reveals possible pathways of adaptation to human hosts

    KAUST Repository

    Otto, Thomas D.; Rayner, Julian C.; Bö hme, Ulrike; Pain, Arnab; Spottiswoode, Natasha; Sanders, Mandy; Quail, Michael; Ollomo, Benjamin; Renaud, Franç ois; Thomas, Alan W.; Prugnolle, Franck; Conway, David J.; Newbold, Chris; Berriman, Matthew

    2014-01-01

    related chimpanzee parasite species P. reichenowi, and obtaining partial sequence data from a more distantly related chimpanzee parasite (P. gaboni). The close relationship between P. reichenowi and P. falciparum is emphasized by almost complete

  19. Human intestinal parasites in crusader Acre: Evidence for migration with disease in the medieval period.

    Science.gov (United States)

    Mitchell, Piers D; Anastasiou, Evilena; Syon, Danny

    2011-12-01

    The aim of this research is to highlight the role of ancient parasites as evidence for human migration in past populations. The material analysed was soil sediment from the excavation of a medieval cesspool in the city of Acre, in Israel. Archaeological stratigraphy and radiocarbon dating of a fragment of animal bone from the cesspool confirm its use in the 13th century CE, during the crusader period. At that time Acre was located in the Frankish Kingdom of Jerusalem. Soil samples from the cesspool were analysed and eggs of the roundworm (Ascaris lumbricoides) and fish tapeworm (Diphyllobothrium latum) were identified. The fish tapeworm has only been found in the mainland Near East once before, in a latrine of the crusader Order of St. John (Knights Hospitaller). It has been absent in all earlier cesspools, latrines and coprolites so far studied in the region. In contrast to its rarity in the Levant, the fish tapeworm was common in northern Europe during the medieval period. The presence of fish tapeworm eggs in a crusader period cesspool in Acre suggests its use by crusaders or pilgrims from northern Europe who travelled to the Levant carrying these parasites in their intestines. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Proteolytic activity in the adult and larval stages of the human roundworm parasite Angiostrongylus costaricensis

    Directory of Open Access Journals (Sweden)

    Karina Mastropasqua Rebello

    2012-09-01

    Full Text Available Angiostrongylus costaricensis is a nematode that causes abdominal angiostrongyliasis, a widespread human parasitism in Latin America. This study aimed to characterize the protease profiles of different developmental stages of this helminth. First-stage larvae (L1 were obtained from the faeces of infected Sigmodon hispidus rodents and third-stage larvae (L3 were collected from mollusks Biomphalaria glabrata previously infected with L1. Adult worms were recovered from rodent mesenteric arteries. Protein extraction was performed after repeated freeze-thaw cycles followed by maceration of the nematodes in 40 mM Tris base. Proteolysis of gelatin was observed by zymography and found only in the larval stages. In L3, the gelatinolytic activity was effectively inhibited by orthophenanthroline, indicating the involvement of metalloproteases. The mechanistic class of the gelatinases from L1 could not be precisely determined using traditional class-specific inhibitors. Adult worm extracts were able to hydrolyze haemoglobin in solution, although no activity was observed by zymography. This haemoglobinolytic activity was ascribed to aspartic proteases following its effective inhibition by pepstatin, which also inhibited the haemoglobinolytic activity of L1 and L3 extracts. The characterization of protease expression throughout the A. costaricensis life cycle may reveal key factors influencing the process of parasitic infection and thus foster our understanding of the disease pathogenesis.

  1. A New High-Throughput Approach to Genotype Ancient Human Gastrointestinal Parasites.

    Science.gov (United States)

    Côté, Nathalie M L; Daligault, Julien; Pruvost, Mélanie; Bennett, E Andrew; Gorgé, Olivier; Guimaraes, Silvia; Capelli, Nicolas; Le Bailly, Matthieu; Geigl, Eva-Maria; Grange, Thierry

    2016-01-01

    Human gastrointestinal parasites are good indicators for hygienic conditions and health status of past and present individuals and communities. While microscopic analysis of eggs in sediments of archeological sites often allows their taxonomic identification, this method is rarely effective at the species level, and requires both the survival of intact eggs and their proper identification. Genotyping via PCR-based approaches has the potential to achieve a precise species-level taxonomic determination. However, so far it has mostly been applied to individual eggs isolated from archeological samples. To increase the throughput and taxonomic accuracy, as well as reduce costs of genotyping methods, we adapted a PCR-based approach coupled with next-generation sequencing to perform precise taxonomic identification of parasitic helminths directly from archeological sediments. Our study of twenty-five 100 to 7,200 year-old archeological samples proved this to be a powerful, reliable and efficient approach for species determination even in the absence of preserved eggs, either as a stand-alone method or as a complement to microscopic studies.

  2. Autophagy-related Atg8 localizes to the apicoplast of the human malaria parasite Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    Kei Kitamura

    Full Text Available Autophagy is a membrane-mediated degradation process, which is governed by sequential functions of Atg proteins. Although Atg proteins are highly conserved in eukaryotes, protozoa possess only a partial set of Atg proteins. Nonetheless, almost all protozoa have the complete factors belonging to the Atg8 conjugation system, namely, Atg3, Atg4, Atg7, and Atg8. Here, we report the biochemical properties and subcellular localization of the Atg8 protein of the human malaria parasite Plasmodium falciparum (PfAtg8. PfAtg8 is expressed during intra-erythrocytic development and associates with membranes likely as a lipid-conjugated form. Fluorescence microscopy and immunoelectron microscopy show that PfAtg8 localizes to the apicoplast, a four membrane-bound non-photosynthetic plastid. Autophagosome-like structures are not observed in the erythrocytic stages. These data suggest that, although Plasmodium parasites have lost most Atg proteins during evolution, they use the Atg8 conjugation system for the unique organelle, the apicoplast.

  3. Host Mitochondrial Association Evolved in the Human Parasite Toxoplasma gondii via Neofunctionalization of a Gene Duplicate.

    Science.gov (United States)

    Adomako-Ankomah, Yaw; English, Elizabeth D; Danielson, Jeffrey J; Pernas, Lena F; Parker, Michelle L; Boulanger, Martin J; Dubey, Jitender P; Boyle, Jon P

    2016-05-01

    In Toxoplasma gondii, an intracellular parasite of humans and other animals, host mitochondrial association (HMA) is driven by a gene family that encodes multiple mitochondrial association factor 1 (MAF1) proteins. However, the importance of MAF1 gene duplication in the evolution of HMA is not understood, nor is the impact of HMA on parasite biology. Here we used within- and between-species comparative analysis to determine that the MAF1 locus is duplicated in T. gondii and its nearest extant relative Hammondia hammondi, but not another close relative, Neospora caninum Using cross-species complementation, we determined that the MAF1 locus harbors multiple distinct paralogs that differ in their ability to mediate HMA, and that only T. gondii and H. hammondi harbor HMA(+) paralogs. Additionally, we found that exogenous expression of an HMA(+) paralog in T. gondii strains that do not normally exhibit HMA provides a competitive advantage over their wild-type counterparts during a mouse infection. These data indicate that HMA likely evolved by neofunctionalization of a duplicate MAF1 copy in the common ancestor of T. gondii and H. hammondi, and that the neofunctionalized gene duplicate is selectively advantageous. Copyright © 2016 by the Genetics Society of America.

  4. Transcriptionally Driven DNA Replication Program of the Human Parasite Leishmania major.

    Science.gov (United States)

    Lombraña, Rodrigo; Álvarez, Alba; Fernández-Justel, José Miguel; Almeida, Ricardo; Poza-Carrión, César; Gomes, Fábia; Calzada, Arturo; Requena, José María; Gómez, María

    2016-08-09

    Faithful inheritance of eukaryotic genomes requires the orchestrated activation of multiple DNA replication origins (ORIs). Although origin firing is mechanistically conserved, how origins are specified and selected for activation varies across different model systems. Here, we provide a complete analysis of the nucleosomal landscape and replication program of the human parasite Leishmania major, building on a better evolutionary understanding of replication organization in Eukarya. We found that active transcription is a driving force for the nucleosomal organization of the L. major genome and that both the spatial and the temporal program of DNA replication can be explained as associated to RNA polymerase kinetics. This simple scenario likely provides flexibility and robustness to deal with the environmental changes that impose alterations in the genetic programs during parasitic life cycle stages. Our findings also suggest that coupling replication initiation to transcription elongation could be an ancient solution used by eukaryotic cells for origin maintenance. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  5. Natural infection of Plasmodium brasilianum in humans: Man and monkey share quartan malaria parasites in the Venezuelan Amazon

    Directory of Open Access Journals (Sweden)

    Albert Lalremruata

    2015-09-01

    Interpretation: This study reports, for the first time, naturally acquired infections in humans with parasites termed as P. brasilianum. We conclude that quartan malaria parasites are easily exchanged between humans and monkeys in Latin America. We hypothesize a lack of host specificity in mammalian hosts and consider quartan malaria to be a true anthropozoonosis. Since the name P. brasilianum suggests a malaria species distinct from P. malariae, we propose that P. brasilianum should have a nomenclatorial revision in case further research confirms our findings. The expansive reservoir of mammalian hosts discriminates quartan malaria from other Plasmodium spp. and requires particular research efforts.

  6. Intestinal parasites among Yanomâmi indians

    OpenAIRE

    Confalonieri, U. E.; Araújo, A. J.; Ferreira, L. F.

    1989-01-01

    The findings of intestinal helminths and protozoans parasites from the Yanomâmi indians of the Roraima State in Brazil are reported. The fecal samples were collected before these communities started a permanent contact with non-indians. Comments are made on the possible ecological and evolutionary factors responsible for the patterns of parasitism observed.

  7. Zoonotic and Non-Zoonotic Diseases in Relation to Human Personality and Societal Values: Support for the Parasite-Stress Model

    Directory of Open Access Journals (Sweden)

    Randy Thornhill

    2010-04-01

    Full Text Available The parasite-stress model of human sociality proposes that humans' ontogenetic experiences with infectious diseases as well as their evolutionary historical interactions with these diseases exert causal influences on human psychology and social behavior. This model has been supported by cross-national relationships between parasite prevalence and human personality traits, and between parasite prevalence and societal values. Importantly, the parasite-stress model emphasizes the causal role of non-zoonotic parasites (which have the capacity for human-to-human transmission, rather than zoonotic parasites (which do not, but previous studies failed to distinguish between these conceptually distinct categories. The present investigation directly tested the differential predictive effects of zoonotic and non-zoonotic (both human-specific and multihost parasite prevalence on personality traits and societal values. Supporting the parasite-stress model, cross-national differences in personality traits (unrestricted sexuality, extraversion, openness to experiences and in societal values (individualism, collectivism, gender equality, democratization are predicted specifically by non-zoonotic parasite prevalence.

  8. Unique parasite aDNA in moa coprolites from New Zealand suggests mass parasite extinctions followed human-induced megafauna extinctions

    Science.gov (United States)

    Lafferty, Kevin D.; Hopkins, Skylar R.

    2018-01-01

    Having split early from Gondwana, Zealandia (now modern New Zealand) escaped discovery until the late 13th century, and therefore remains an important glimpse into a human-free world. Without humans or other land mammals, diverse and peculiar birds evolved in isolation, including several flightless moa species, the giant pouakai eagle (Harpagornis moorei), the kiwi (Apteryx mantelli), and the kakapo parrot (Strigops habroptila). This unique community has fascinated paleoecologists, who have spent almost two centuries devising new ways to glean information from ancient bird remains. In PNAS, Boast et al. (1) apply one recent technological advance, ancient DNA (aDNA) metabarcoding, to confirm previous discoveries and report new details about moa and kakapo diets, parasites, and niches. Their efforts confirm Zealandia was a lot different before humans arrived.

  9. Parasitic Diseases and Psychiatric Illness

    OpenAIRE

    Weiss, Mitchell Gralnick

    1994-01-01

    Distinguishing parasitic diseases from other infections and tropical medical disorders based on microbiological classification is a matter of convenience. Organic brain syndromes are associated with both protozoan and helminthic infections; side-effects of drugs commonly used to treat parasitoses may impair mood and cause anxiety, agitation or psychosis. Emotional states may in turn affect the experience of medical illness. Psychiatrically significant features of medical illness are determine...

  10. From malaria parasite point of view – Plasmodium falciparum evolution

    Directory of Open Access Journals (Sweden)

    Agata Zerka

    2015-12-01

    Full Text Available Malaria is caused by infection with protozoan parasites belonging to the genus Plasmodium, which have arguably exerted the greatest selection pressure on humans in the history of our species. Besides humans, different Plasmodium parasites infect a wide range of animal hosts, from marine invertebrates to primates. On the other hand, individual Plasmodium species show high host specificity. The extraordinary evolution of Plasmodium probably began when a free-living red algae turned parasitic, and culminated with its ability to thrive inside a human red blood cell. Studies on the African apes generated new data on the evolution of malaria parasites in general and the deadliest human-specific species, Plasmodium falciparum, in particular. Initially, it was hypothesized that P. falciparum descended from the chimpanzee malaria parasite P. reichenowi, after the human and the chimp lineage diverged about 6 million years ago. However, a recently identified new species infecting gorillas, unexpectedly showed similarity to P. falciparum and was therefore named P. praefalciparum. That finding spurred an alternative hypothesis, which proposes that P. falciparum descended from its gorilla rather than chimp counterpart. In addition, the gorilla-to-human host shift may have occurred more recently (about 10 thousand years ago than the theoretical P. falciparum-P. reichenowi split. One of the key aims of the studies on Plasmodium evolution is to elucidate the mechanisms that allow the incessant host shifting and retaining the host specificity, especially in the case of human-specific species. Thorough understanding of these phenomena will be necessary to design effective malaria treatment and prevention strategies.

  11. [Survey and analysis of epidemic status of principal human parasitosis in ecological region of Huaiyang hills of Henan Province in 2015].

    Science.gov (United States)

    Ya-Lan, Zhang; Yan-Kun, Zhu; Wei-Qi, Chen; Yan, Deng; Xi-Meng, Lin; Peng, Li; Hong-Wei, Zhang

    2017-07-24

    To understand the epidemic status of principal human parasitosis in the ecological region of Huaiyang hills of Henan Province. According to the scheme of The 3rd National Survey of Principal Human Parasites made by National Institute of Parasitic Diseases, the survey was performed based on the ecological regions. The stratified cluster sampling was made combined with the economic and geographical conditions. The infections of intestinal helminths and protozoans in permanent residents were respectively detected by Kato-Kats technique and iodine solution. Trichuris trichiura infection was detected by the cellophane swab method in children aged 3 to 6 years. Totally 6 710 residents in 26 survey spots from 9 counties were detected, in which 528 children aged 3 to 6 years were detected for T. trichiura infection. Eleven kinds of parasites were found in this survey, including 5 species of helminthes and 6 species of protozoans. The infection rates of overall parasites, helminthes and protozoans were respectively 1.65%, 1.07% and 0.61%. The infection rate of T. trichiura in the children aged 3 to 6 years was 3.79%. Only 0.10 percent of the infections were co-infection, and all were infected by 2 kinds of parasites. The principal parasites in this district were Ascaris lumbricoides (0.31%), Blastocystis hominis (0.28%) and hookworm (0.27%). The T. trichiura infection rate among children was 3.79% by the cellophane swab method. The infections of protozoans were found in all age groups. In the group aged 9 years and below, the maximum kinds of parasites were found. The infection rates of principal human parasites in Huaiyang hilly ecological region of Henan have decreased sharply, but more efforts still should be paid on the prevention and control of parasitosis in children.

  12. Helminth parasites of cats from the Vientiane Province, Laos, as indicators of the occurrence of causative agents of human parasitoses

    Directory of Open Access Journals (Sweden)

    Scholz T.

    2003-12-01

    Full Text Available A total of 55 domestic cats (Felis calus f. domestico and one wild (Bengal cat (Prionailurus bengalensis from the Vientiane Province, central Laos, were examined for helminth parasites with emphasis given to potential human parasites. The following species were found (parasites infective to man marked with an asterisk: Opisthorchis viverrini*, Haplorchis pumilio*,H. laichui*,H. yokogawai*, Stellantchasmus falcatus* (Digenea; Spirometra sp.*, Dipylidium caninum*, Taenia taeniaeformis (Cestoda; Capillariidae gen. sp., Toxocara canis*, T. cati*, Ancylostoma ceylanicum*, A. tubaeforme, Gnathostoma spinigerum*, Physaloptera preputials (Nematoda; and Oncicola sp. (Acanthocephala. This study demonstrated that examination of cats may provide useful data on the occurrence of helminths which are potential causative agents of human diseases.

  13. Intestinal and external parasites of raccoon dogs (Nyctereutes procyonoides) in western Poland

    Science.gov (United States)

    Osten-Sacken, Natalia; Słodkowicz-Kowalska, Anna; Pacoń, Jarosław; Skrzypczak, Łukasz; Werner, Anna

    Parasites of an invasive species, the raccoon dog (Nyctereutes procyonoides) from western Poland were investigated to clarify poorly known ecological key aspects of the species. The research was conducted in two study areas: the Ujście Warty National Park and the Bogdaniec Forestry District. Intestinal samples were collected from the intestinal tracks of 39 dead animals and 51 faecal samples were collected in all seasons from latrines of raccoon dogs. Macro-parasites, their eggs and protozoan parasites were investigated to assess the taxonomic composition of parasites, the level of infection and the risk of potential transfer of dangerous parasites from raccoon dogs to people and native species. Among parasites potentially dangerous for human and native mammal species, Toxocara canis was found in the intestines and T. canis eggs, Cryptosporidium sp. oocysts and Entamoeba sp. cysts were identified in faecal samples. Sarcoptic mange was observed in the skin of two animals, whereas Diptera larvae (probably from the family Gasterophilidae) were found in the intestines of two other animals. This latter finding is very interesting, because Gasterophilidae are the typical parasites in horses and ungulates, but so far were never found in raccoon dogs.

  14. Monocyte-Derived Signals Activate Human Natural Killer Cells in Response to Leishmania Parasites

    Science.gov (United States)

    Messlinger, Helena; Sebald, Heidi; Heger, Lukas; Dudziak, Diana; Bogdan, Christian; Schleicher, Ulrike

    2018-01-01

    Activated natural killer (NK) cells release interferon (IFN)-γ, which is crucial for the control of intracellular pathogens such as Leishmania. In contrast to experimental murine leishmaniasis, the human NK cell response to Leishmania is still poorly characterized. Here, we investigated the interaction of human blood NK cells with promastigotes of different Leishmania species (Leishmania major, Leishmania mexicana, Leishmania infantum, and Leishmania donovani). When peripheral blood mononuclear cells or purified NK cells and monocytes (all derived from healthy blood donors from Germany without a history of leishmaniasis) were exposed to promastigotes, NK cells showed increased surface expression of the activation marker CD69. The extent of this effect varied depending on the Leishmania species; differences between dermotropic and viscerotropic L. infantum strains were not observed. Upregulation of CD69 required direct contact between monocytes and Leishmania and was partly inhibitable by anti-interleukin (IL)-18. Unexpectedly, IL-18 was undetectable in most of the supernatants (SNs) of monocyte/parasite cocultures. Confocal fluorescence microscopy of non-permeabilized cells revealed that Leishmania-infected monocytes trans-presented IL-18 to NK cells. Native, but not heat-treated SNs of monocyte/Leishmania cocultures also induced CD69 on NK cells, indicating the involvement of a soluble heat-labile factor other than IL-18. A role for the NK cell-activating cytokines IL-1β, IL-2, IL-12, IL-15, IL-21, and IFN-α/β was excluded. The increase of CD69 was not paralleled by NK cell IFN-γ production or enhanced cytotoxicity. However, prior exposure of NK cells to Leishmania parasites synergistically increased their IFN-γ release in response to IL-12, which was dependent on endogenous IL-18. CD1c+ dendritic cells were identified as possible source of Leishmania-induced IL-12. Finally, we observed that direct contact between Leishmania and NK cells reduced the

  15. Monocyte-Derived Signals Activate Human Natural Killer Cells in Response to Leishmania Parasites

    Directory of Open Access Journals (Sweden)

    Helena Messlinger

    2018-01-01

    Full Text Available Activated natural killer (NK cells release interferon (IFN-γ, which is crucial for the control of intracellular pathogens such as Leishmania. In contrast to experimental murine leishmaniasis, the human NK cell response to Leishmania is still poorly characterized. Here, we investigated the interaction of human blood NK cells with promastigotes of different Leishmania species (Leishmania major, Leishmania mexicana, Leishmania infantum, and Leishmania donovani. When peripheral blood mononuclear cells or purified NK cells and monocytes (all derived from healthy blood donors from Germany without a history of leishmaniasis were exposed to promastigotes, NK cells showed increased surface expression of the activation marker CD69. The extent of this effect varied depending on the Leishmania species; differences between dermotropic and viscerotropic L. infantum strains were not observed. Upregulation of CD69 required direct contact between monocytes and Leishmania and was partly inhibitable by anti-interleukin (IL-18. Unexpectedly, IL-18 was undetectable in most of the supernatants (SNs of monocyte/parasite cocultures. Confocal fluorescence microscopy of non-permeabilized cells revealed that Leishmania-infected monocytes trans-presented IL-18 to NK cells. Native, but not heat-treated SNs of monocyte/Leishmania cocultures also induced CD69 on NK cells, indicating the involvement of a soluble heat-labile factor other than IL-18. A role for the NK cell-activating cytokines IL-1β, IL-2, IL-12, IL-15, IL-21, and IFN-α/β was excluded. The increase of CD69 was not paralleled by NK cell IFN-γ production or enhanced cytotoxicity. However, prior exposure of NK cells to Leishmania parasites synergistically increased their IFN-γ release in response to IL-12, which was dependent on endogenous IL-18. CD1c+ dendritic cells were identified as possible source of Leishmania-induced IL-12. Finally, we observed that direct contact between Leishmania and NK cells

  16. Breast-feeding protects infantile diarrhea caused by intestinal protozoan infections.

    Science.gov (United States)

    Abdel-Hafeez, Ekhlas Hamed; Belal, Usama Salah; Abdellatif, Manal Zaki Mohamed; Naoi, Koji; Norose, Kazumi

    2013-10-01

    This study investigated the effect of breast-feeding in protection against protozoan infection in infants with persistent diarrhea. Infants were classified into 2 groups; 161 breast-fed infants and the same number of non-breast-fed infants. Microscopic examinations of stool were done for detection of parasites and measuring the intensity of infection. Moreover, serum levels of IgE and TNF-α were measured by ELISA. Cryptosporidium spp., Entamoeba histolytica/Entamoeba dispar, Giardia lamblia, and Blastocystis sp. were demonstrated in infants with persistent diarrhea. The percentage of protozoan infections was significantly lower in breast-fed infants than that in the non-breast-fed infants. The levels of IgE and TNF-α were significantly lower in the breast-fed group than in the non-breast-fed group. There were significant positive associations between the serum levels of IgE and TNF-α and the intensity of parasite infection in the breast-fed group. It is suggested that breast-feeding has an attenuating effect on the rate and intensity of parasite infection.

  17. Structure of a two-CAP-domain protein from the human hookworm parasite Necator americanus

    Energy Technology Data Exchange (ETDEWEB)

    Asojo, Oluwatoyin A., E-mail: oasojo@unmc.edu [Pathology and Microbiology Department, 986495 Nebraska Medical Center, Omaha, NE 68198-6495 (United States)

    2011-05-01

    The first structure of a two-CAP-domain protein, Na-ASP-1, from the major human hookworm parasite N. americanus refined to a resolution limit of 2.2 Å is presented. Major proteins secreted by the infective larval stage hookworms upon host entry include Ancylostoma secreted proteins (ASPs), which are characterized by one or two CAP (cysteine-rich secretory protein/antigen 5/pathogenesis related-1) domains. The CAP domain has been reported in diverse phylogenetically unrelated proteins, but has no confirmed function. The first structure of a two-CAP-domain protein, Na-ASP-1, from the major human hookworm parasite Necator americanus was refined to a resolution limit of 2.2 Å. The structure was solved by molecular replacement (MR) using Na-ASP-2, a one-CAP-domain ASP, as the search model. The correct MR solution could only be obtained by truncating the polyalanine model of Na-ASP-2 and removing several loops. The structure reveals two CAP domains linked by an extended loop. Overall, the carboxyl-terminal CAP domain is more similar to Na-ASP-2 than to the amino-terminal CAP domain. A large central cavity extends from the amino-terminal CAP domain to the carboxyl-terminal CAP domain, encompassing the putative CAP-binding cavity. The putative CAP-binding cavity is a characteristic cavity in the carboxyl-terminal CAP domain that contains a His and Glu pair. These residues are conserved in all single-CAP-domain proteins, but are absent in the amino-terminal CAP domain. The conserved His residues are oriented such that they appear to be capable of directly coordinating a zinc ion as observed for CAP proteins from reptile venoms. This first structure of a two-CAP-domain ASP can serve as a template for homology modeling of other two-CAP-domain proteins.

  18. Structure of a two-CAP-domain protein from the human hookworm parasite Necator americanus

    International Nuclear Information System (INIS)

    Asojo, Oluwatoyin A.

    2011-01-01

    The first structure of a two-CAP-domain protein, Na-ASP-1, from the major human hookworm parasite N. americanus refined to a resolution limit of 2.2 Å is presented. Major proteins secreted by the infective larval stage hookworms upon host entry include Ancylostoma secreted proteins (ASPs), which are characterized by one or two CAP (cysteine-rich secretory protein/antigen 5/pathogenesis related-1) domains. The CAP domain has been reported in diverse phylogenetically unrelated proteins, but has no confirmed function. The first structure of a two-CAP-domain protein, Na-ASP-1, from the major human hookworm parasite Necator americanus was refined to a resolution limit of 2.2 Å. The structure was solved by molecular replacement (MR) using Na-ASP-2, a one-CAP-domain ASP, as the search model. The correct MR solution could only be obtained by truncating the polyalanine model of Na-ASP-2 and removing several loops. The structure reveals two CAP domains linked by an extended loop. Overall, the carboxyl-terminal CAP domain is more similar to Na-ASP-2 than to the amino-terminal CAP domain. A large central cavity extends from the amino-terminal CAP domain to the carboxyl-terminal CAP domain, encompassing the putative CAP-binding cavity. The putative CAP-binding cavity is a characteristic cavity in the carboxyl-terminal CAP domain that contains a His and Glu pair. These residues are conserved in all single-CAP-domain proteins, but are absent in the amino-terminal CAP domain. The conserved His residues are oriented such that they appear to be capable of directly coordinating a zinc ion as observed for CAP proteins from reptile venoms. This first structure of a two-CAP-domain ASP can serve as a template for homology modeling of other two-CAP-domain proteins

  19. Intestinal Parasitic Infections in Human Immunodeficiency Virus-Infected and Noninfected Persons in a High Human Immunodeficiency Virus Prevalence Region of Cameroon.

    Science.gov (United States)

    Nkenfou, Céline Nguefeu; Tchameni, Sandrine Mboula; Nkenfou, Carine Nguefeu; Djataou, Patrice; Simo, Ulrich Florian; Nkoum, Alexandre Benjamin; Estrin, William

    2017-09-01

    The problem of intestinal parasitic infection in human immunodeficiency virus (HIV)-infected people requires careful consideration in the developing world where poor nutrition is associated with poor hygiene and several coinfecting diseases. Studies have addressed this issue in Cameroon, especially in the low HIV prevalence area. The current study was conducted to determine the prevalence of intestinal parasitosis in people living with HIV (PLHIV) in Adamaoua and to identify associated risk factors. Stool and blood specimens from study participants were screened for intestinal parasites and anti-HIV antibodies, respectively. Of 235 participants, 68 (28.9%) were HIV positive, 38 of them on antiretroviral treatment (ART). The overall prevalence of intestinal parasites was 32.3%. Of 68 PLHIV, 32.3% (22/68) were infected with intestinal parasites, compared with 32.3% (54/167) of the HIV-negative patients. Univariate analysis showed no difference between the prevalence of intestinal parasites among PLHIV and HIV-negative patients ( P = 0.69). ART was not associated with the prevalence of intestinal parasites. Multivariate analysis showed that the quality of water and the personal hygiene were the major risk factors associated to intestinal parasitosis. The level of education was associated with HIV serostatus: the higher the level of education, the lower the risk of being infected with HIV ( P = 0.00). PLHIV and the general population should be screened routinely for intestinal parasites and treated if infected.

  20. Simple and rapid staining for detection of Entamoeba cysts and other protozoans with fluorochromes.

    Science.gov (United States)

    Kawamoto, F; Mizuno, S; Fujioka, H; Kumada, N; Sugiyama, E; Takeuchi, T; Kobayashi, S; Iseki, M; Yamada, M; Matsumoto, Y

    1987-02-01

    Three fluorochromes were applied to stain various parasitic protozoans. By double staining with 4',6-diamidino-2-phenylindole and propidium iodide, differentiation of the nuclei from the cytoplasm can easily be achieved within several seconds. The chromatoid bodies in Entamoeba cysts were stained bright red. Plasmodium yoelii at all stages except late trophozoites and young gametocytes was easily identified. In the oocysts of Cryptosporidium sp., the nuclei and cytoplasm of the sporozoites fluoresced bluish white and red, respectively, whereas the residual body appeared blue or green. The third fluorochrome, Calcofluor white M2R, was suitable for detecting the cysts of Entamoeba spp. and Chilomastix mesnili.

  1. History of the discovery of the malaria parasites and their vectors

    Directory of Open Access Journals (Sweden)

    Cox Francis EG

    2010-02-01

    Full Text Available Abstract Malaria is caused by infection with protozoan parasites belonging to the genus Plasmodium transmitted by female Anopheles species mosquitoes. Our understanding of the malaria parasites begins in 1880 with the discovery of the parasites in the blood of malaria patients by Alphonse Laveran. The sexual stages in the blood were discovered by William MacCallum in birds infected with a related haematozoan, Haemoproteus columbae, in 1897 and the whole of the transmission cycle in culicine mosquitoes and birds infected with Plasmodium relictum was elucidated by Ronald Ross in 1897. In 1898 the Italian malariologists, Giovanni Battista Grassi, Amico Bignami, Giuseppe Bastianelli, Angelo Celli, Camillo Golgi and Ettore Marchiafava demonstrated conclusively that human malaria was also transmitted by mosquitoes, in this case anophelines. The discovery that malaria parasites developed in the liver before entering the blood stream was made by Henry Shortt and Cyril Garnham in 1948 and the final stage in the life cycle, the presence of dormant stages in the liver, was conclusively demonstrated in 1982 by Wojciech Krotoski. This article traces the main events and stresses the importance of comparative studies in that, apart from the initial discovery of parasites in the blood, every subsequent discovery has been based on studies on non-human malaria parasites and related organisms.

  2. Novel molecular mechanism for targeting the parasite Trypanosoma brucei with snake venom toxins

    DEFF Research Database (Denmark)

    Martos Esteban, Andrea; Laustsen, Andreas Hougaard; Carrington, Mark

    Trypanosoma brucei is a parasitic protozoan species capable to infecting insect vectors whose bite further produces African sleeping sickness inhuman beings. During parasites’extracellular lives in the mammalian host, its outer coat, mainly composedof Variable surface glycoproteins (VSGs)[2...

  3. Gastrointestinal parasites of feral cats from Christmas Island.

    Science.gov (United States)

    Adams, P J; Elliot, A D; Algar, D; Brazell, R I

    2008-01-01

    To investigate the gastrointestinal parasites present in feral cats on Christmas Island, with particular interest in the protozoan parasite Toxoplasma gondii. Faecal and serum samples were collected from 28 and 25 cats respectively that were trapped as part of an ongoing eradication program being run on Christmas Island by the Department of Environment and Conservation. Faecal samples were screened microscopically for helminth and protozoan parasites. Serum samples were screened for antibodies to T gondii using a commercial indirect immunofluorescence assay (IFA) and a latex agglutination test (LAT). The most common helminth parasites detected were Toxocara cati (present in 15 of 28 faecal samples), Strongyloides sp (13/28), Aelurostrongylus abstrusus, (7/28), an unidentified capillarid (6/28) and Ancylostoma sp (4/28). Based on serology, T gondii was the most common parasite detected (protozoan or otherwise) with antibodies detected in 24 serum samples by IFA and 23 serum samples by LAT. Cats on Christmas Island harbour many of the helminth and protozoan parasites reported from feral cats elsewhere in Australia. The high seroprevalence of T gondii in these cats indicates a high level of exposure to the parasite in this environment.

  4. Current progress in the development and use of artemether for chemoprophylaxis of major human schistosome parasites.

    Science.gov (United States)

    Utzinger, J; Xiao, S; Keiser, J; Chen, M; Zheng, J; Tanner, M

    2001-12-01

    Human schistosomiasis, a chronic and debilitating parasitic disease of the tropics, is ranked second after malaria in terms of public health importance. At present, there is no vaccine available, and chemotherapy is the cornerstone of schistosomiasis control. Praziquantel is the drug of choice. Oxamniquine has become difficult to obtain and metrifonate has recently been withdrawn from the market. Rapid re-infection following treatment and concern about praziquantel resistance called for the search of novel drugs for prevention and cure of schistosomiasis. Significant progress has been made with artemether, the methyl ether of dihydroartemisinin, already widely used for the treatment of malaria. The present article reviews the literature that led to the development of artemether for chemoprophylaxis in schistosomiasis, and it summarises the experiences so far obtained with its use to control schistosomiasis in different endemic settings. Topics covered include an overview of the global burden of schistosomiasis and approaches for its control; the nature and features of artemisinin and related derivatives, initially discovered as antimalarials, other bioactivities, and their recent discovery of antischistosomal properties; a historic account disclosing the antischistosomal activity of artemether; in vivo assessment of drug susceptibility of different developmental stages of schistosome parasites; artemether-induced pathology evidenced by scanning and transmission electron microscopy; the possible mechanism of action; in vivo studies with combination therapy of artemether and praziquantel; results of randomised controlled clinical trials of oral artemether for the prevention of patent infection and morbidity; and, ultimately the translation of this knowledge into public health action in different endemic settings towards a more integrated approach of schistosomiasis control.

  5. Draft genome of neurotropic nematode parasite Angiostrongylus cantonensis, causative agent of human eosinophilic meningitis.

    Science.gov (United States)

    Yong, Hoi-Sen; Eamsobhana, Praphathip; Lim, Phaik-Eem; Razali, Rozaimi; Aziz, Farhanah Abdul; Rosli, Nurul Shielawati Mohamed; Poole-Johnson, Johan; Anwar, Arif

    2015-08-01

    Angiostrongylus cantonensis is a bursate nematode parasite that causes eosinophilic meningitis (or meningoencephalitis) in humans in many parts of the world. The genomic data from A. cantonensis will form a useful resource for comparative genomic and chemogenomic studies to aid the development of diagnostics and therapeutics. We have sequenced, assembled and annotated the genome of A. cantonensis. The genome size is estimated to be ∼260 Mb, with 17,280 genomic scaffolds, 91X coverage, 81.45% for complete and 93.95% for partial score based on CEGMA analysis of genome completeness. The number of predicted genes of ≥300 bp was 17,482. A total of 7737 predicted protein-coding genes of ≥50 amino acids were identified in the assembled genome. Among the proteins of known function, kinases are the most abundant followed by transferases. The draft genome contains 34 excretory-secretory proteins (ES), a minimum of 44 Nematode Astacin (NAS) metalloproteases, 12 Homeobox (HOX) genes, and 30 neurotransmitters. The assembled genome size (260 Mb) is larger than those of Pristionchus pacificus, Caenorhabditis elegans, Necator americanus, Caenorhabditis briggsae, Trichinella spiralis, Brugia malayi and Loa loa, but smaller than Haemonchus contortus and Ascaris suum. The repeat content (25%) is similar to H. contortus. The GC content (41.17%) is lower compared to P. pacificus (42.7%) and H. contortus (43.1%) but higher compared to C. briggsae (37.69%), A. suum (37.9%) and N. americanus (40.2%) while the scaffold N50 is 42,191. This draft genome will facilitate the understanding of many unresolved issues on the parasite and the disorder it causes. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. A novel PCR-based system for the detection of four species of human malaria parasites and Plasmodium knowlesi

    Science.gov (United States)

    Komaki-Yasuda, Kanako; Vincent, Jeanne Perpétue; Nakatsu, Masami; Kato, Yasuyuki; Ohmagari, Norio

    2018-01-01

    A microscopy-based diagnosis is the gold standard for the detection and identification of malaria parasites in a patient’s blood. However, the detection of cases involving a low number of parasites and the differentiation of species sometimes requires a skilled microscopist. Although PCR-based diagnostic methods are already known to be very powerful tools, the time required to apply such methods is still much longer in comparison to traditional microscopic observation. Thus, improvements to PCR systems are sought to facilitate the more rapid and accurate detection of human malaria parasites Plasmodium falciparum, P. vivax, P. ovale, and P. malariae, as well as P. knowlesi, which is a simian malaria parasite that is currently widely distributed in Southeast Asia. A nested PCR that targets the small subunit ribosomal RNA genes of malaria parasites was performed using a “fast PCR enzyme”. In the first PCR, universal primers for all parasite species were used. In the second PCR, inner-specific primers, which targeted sequences from P. falciparum, P. vivax, P. ovale, P. malariae, and P. knowlesi, were used. The PCR reaction time was reduced with the use of the “fast PCR enzyme”, with only 65 minutes required to perform the first and second PCRs. The specific primers only reacted with the sequences of their targeted parasite species and never cross-reacted with sequences from other species under the defined PCR conditions. The diagnoses of 36 clinical samples that were obtained using this new PCR system were highly consistent with the microscopic diagnoses. PMID:29370297

  7. DNA typing of ancient parasite eggs from environmental samples identifies human and animal worm infections in Viking-age settlement.

    Science.gov (United States)

    Søe, Martin Jensen; Nejsum, Peter; Fredensborg, Brian Lund; Kapel, Christian Moliin Outzen

    2015-02-01

    Ancient parasite eggs were recovered from environmental samples collected at a Viking-age settlement in Viborg, Denmark, dated 1018-1030 A.D. Morphological examination identified Ascaris sp., Trichuris sp., and Fasciola sp. eggs, but size and shape did not allow species identification. By carefully selecting genetic markers, PCR amplification and sequencing of ancient DNA (aDNA) isolates resulted in identification of: the human whipworm, Trichuris trichiura , using SSUrRNA sequence homology; Ascaris sp. with 100% homology to cox1 haplotype 07; and Fasciola hepatica using ITS1 sequence homology. The identification of T. trichiura eggs indicates that human fecal material is present and, hence, that the Ascaris sp. haplotype 07 was most likely a human variant in Viking-age Denmark. The location of the F. hepatica finding suggests that sheep or cattle are the most likely hosts. Further, we sequenced the Ascaris sp. 18S rRNA gene in recent isolates from humans and pigs of global distribution and show that this is not a suited marker for species-specific identification. Finally, we discuss ancient parasitism in Denmark and the implementation of aDNA analysis methods in paleoparasitological studies. We argue that when employing species-specific identification, soil samples offer excellent opportunities for studies of human parasite infections and of human and animal interactions of the past.

  8. Uso del microhábitat por el protozoo parásito Aggregata patagonica Sardella, Ré & Timi, 2000 (Apicomplexa: Aggregatidae en su hospedador definitivo, el pulpo Enteroctopus megalocyathus (Gould, 1852 (Cephalopoda: Octopodidae en el sur de Chile Microhabitat use by the protozoan parasite Aggregata patagonica Sardella, Ré & Timi, 2000 (Apicomplexa: Aggregatidae in his definitive host Enteroctopus megalocyathus (Gould, 1852 (Cephalopoda: Octopodidae in southern Chile

    Directory of Open Access Journals (Sweden)

    CHRISTIAN M. IBÁÑEZ

    2005-09-01

    Full Text Available Los protozoos de la familia Aggregatidae requieren de dos hospedadores para completar su ciclo biológico: un crustáceo y un cefalópodo. En este estudio se busca evidenciar si existe un uso diferencial de microhábitats de las infrapoblaciones de Aggregata patagonica entre dos zonas del tracto digestivo de su hospedador definitivo, el pulpo Enteroctopus megalocyathus. Para ello, se examinaron 40 ejemplares de Ancud y 37 de Quellón, provenientes de las capturas artesanales de la Isla de Chiloé. El tamaño y la densidad de los ooquistes se cuantificaron en el ciego y el intestino del hospedador. Además, se efectuaron observaciones histológicas para determinar cuantitativamente la ocurrencia de los distintos estados de desarrollo del parásito. En Ancud el 80 % de los pulpos estaban parasitados en el ciego y el intestino, mientras que en Quellón era el 100 %. Se determinaron cuatro estados de desarrollo (microgametos, cigotos, esporoquistes inmaduros y maduros. Los ooquistes de A. patagonica fueron más pequeños y abundantes en el ciego, pero la cobertura fue mayor en el intestino. Además, la densidad y cobertura aumenta en pocos meses entre una muestra y otra. Al parecer, A. patagonica no usaría a los dos microhábitats como lugares de preferencia para pasar los diferentes estados de desarrollo, sino más bien, y según las condiciones del microhábitat, en el intestino crecerían más los ooquistes pero en menos cantidad, ocupando una mayor superficie del microhábitat, contrario a lo que ocurre en el ciego. Por esto se sugiere que A. patagonica hace un uso diferencial del microhábitat, mediante dos estrategias distintas de historia de vidaThe protozoan parasites of the family Aggregatidae, require two hosts to complete their life cycle, a crustacean and a cephalopod. This research looks for evidence of differential microhabitat use of Aggregata patagonica infrapopulations between two zones of the digestive tract of his definitive host

  9. A Comparative Study of Four Methods for the Detection of Nematode Eggs and Large Protozoan Cysts in Mandrill Faecal Material.

    Science.gov (United States)

    Pouillevet, Hanae; Dibakou, Serge-Ely; Ngoubangoye, Barthélémy; Poirotte, Clémence; Charpentier, Marie J E

    2017-01-01

    Coproscopical methods like sedimentation and flotation techniques are widely used in the field for studying simian gastrointestinal parasites. Four parasites of known zoonotic potential were studied in a free-ranging, non-provisioned population of mandrills (Mandrillus sphinx): 2 nematodes (Necatoramericanus/Oesophagostomum sp. complex and Strongyloides sp.) and 2 protozoan species (Balantidium coli and Entamoeba coli). Different coproscopical techniques are available but they are rarely compared to evaluate their efficiency to retrieve parasites. In this study 4 different field-friendly methods were compared. A sedimentation method and 3 different McMaster methods (using sugar, salt, and zinc sulphate solutions) were performed on 47 faecal samples collected from different individuals of both sexes and all ages. First, we show that McMaster flotation methods are appropriate to detect and thus quantify large protozoan cysts. Second, zinc sulphate McMaster flotation allows the retrieval of a higher number of parasite taxa compared to the other 3 methods. This method further shows the highest probability to detect each of the studied parasite taxa. Altogether our results show that zinc sulphate McMaster flotation appears to be the best technique to use when studying nematodes and large protozoa. © 2017 S. Karger AG, Basel.

  10. Protozoan Diversity in a productive fishpond of a tropical plateau ...

    African Journals Online (AJOL)

    A survey of the Protozoan species diversity in a productive fishpond of the Jos Plateau, Nigeria was investigated at 7 day interval over a period of 11 months. Samples were collected from water column and sediment. Protozoans were found to compose of the flagellates sarcodines and cilliates. There was a significant ...

  11. Parasites of importance for human health in Nigerian dogs: high prevalence and limited knowledge of pet owners.

    Science.gov (United States)

    Ugbomoiko, Uade Samuel; Ariza, Liana; Heukelbach, Jorg

    2008-12-09

    Dogs are the most common pet animals worldwide. They may harbour a wide range of parasites with zoonotic potential, thus causing a health risk to humans. In Nigeria, epidemiological knowledge on these parasites is limited. In a community-based study, we examined 396 dogs in urban and rural areas of Ilorin (Kwara State, Central Nigeria) for ectoparasites and intestinal helminths. In addition, a questionnaire regarding knowledge and practices was applied to pet owners. Nine ectoparasite species belonging to four taxa and six intestinal helminth species were identified: fleas (Ctenocephalides canis, Pulex irritans, Tunga penetrans), mites (Demodex canis, Otodectes sp., Sarcoptes scabiei var. canis), ticks (Rhipicephalus sanguineus, Ixodes sp.), and lice (Trichodectes canis); and Toxocara canis, Ancylostoma sp., Trichuris vulpis, Dipylidium caninum, Taenidae and Strongyloides sp. Overall prevalence of ectoparasites was 60.4% and of intestinal helminths 68.4%. The occurrence of C. canis, R. sanguineus, T. canis, Ancylostoma sp. and T. vulpis was most common (prevalence 14.4% to 41.7%). Prevalence patterns in helminths were age-dependent, with T. canis showing a decreasing prevalence with age of host, and a reverse trend in other parasite species. Knowledge regarding zoonoses was very limited and the diseases not considered a major health problem. Treatment with antiparasitic drugs was more frequent in urban areas. Parasites of importance for human health were highly prevalent in Nigerian dogs. Interventions should include health education provided to dog owners and the establishment of a program focusing on zoonotic diseases.

  12. Trickle or clumped infection process? An analysis of aggregation in the weights of the parasitic roundworm of humans, Ascaris lumbricoides.

    Science.gov (United States)

    Walker, Martin; Hall, Andrew; Basáñez, María-Gloria

    2010-10-01

    Studying the distribution of parasitic helminth body size across a population of definitive hosts can advance our understanding of parasite population biology. Body size is typically correlated with egg production. Consequently, inequalities in body size have been frequently measured to infer variation in reproductive success (VRS). Body size is also related to parasite age (time since entering the definitive host) and potentially provides valuable information on the mode of acquisition and establishment of immature (larval) parasites within the host: whether parasites tend to establish singly or in aggregates. The mode of acquisition of soil-transmitted helminths has been a theoretical consideration in the parasitological literature but has eluded data-driven investigation. In this paper, we analyse individual Ascaris lumbricoides weight data collected from a cohort of human hosts before and after re-infection following curative treatment, and explore its distribution within and among individuals in the population. Lorenz curves and Gini coefficients indicate that levels of weight inequality (a proxy for VRS) in A.lumbricoides are lower than other published estimates from animal-helminth systems. We explore levels of intra-host weight aggregation using statistical models to estimate the intraclass correlation coefficient (ICC) while adjusting for covariates using a flexible fractional polynomial transformation approach capable of handling non-linear functional relationships. The estimated ICCs indicate that weights are aggregated within hosts both at equilibrium and after re-infection, suggesting that parasites may establish within the host in clumps. The implications of a clumped infection process are discussed in terms of ascariasis transmission dynamics, control and anthelmintic resistance. Copyright © 2010 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  13. Protozoan growth rates on secondary-metabolite-producing Pseudomonas spp. correlate with high-level protozoan taxonomy

    DEFF Research Database (Denmark)

    Pedersen, Annette L.; Winding, Anne; Altenburger, Andreas

    2011-01-01

    Different features can protect bacteria against protozoan grazing, for example large size, rapid movement, and production of secondary metabolites. Most papers dealing with these matters focus on bacteria. Here, we describe protozoan features that affect their ability to grow on secondary-metabol...

  14. Estudo da ocorrência de enteroparasitas em hortaliças comercializadas na região metropolitana de São Paulo - SP, Brasil: II - Pesquisa de protozoários intestinais Study of the occurrence of intestinal parasites os vegetables comercially traded in the metropolitan area of S.Paulo, SP - Brazil: II - Research into protozoan cysts

    Directory of Open Access Journals (Sweden)

    Carlos Augusto Fernandes de Oliveira

    1992-10-01

    Full Text Available Foram analisadas hortaliças "in natura", comercializadas na Região Metropolitana de São Paulo, SP-Brasil, visando à pesquisa e à identificação de cistos de protozoários de interesse médico. As hortaliças, constituídas de 50 amostras de cada variedade, consistiram em: alface (Lactuca sativa, variedades lisa e crespa, escarola (Chichorium sp e agrião (Nasturtium officinale. Os resultados evidenciaram elevados percentuais de contaminação em todas as variedades de hortaliças analisadas, porém as freqüências de protozoários foram maiores no agrião. As amostras de alfaces apresentaram os menores percentuais de contaminação, enquanto que a escarola apresentou valores geralmente situados entre o agrião e as alfaces. Observou-se uma grande variedade de protozoários, cujas freqüências de ocorrência na população residente na Região Metropolitana de São Paulo são igualmente elevadas. Os mais freqüentes foram Entamoeba sp (com 4 e 8 núcleos e Giardia sp. Foram também isolados cistos de Iodamoeba sp, Endolimax sp e Chilomastix sp. Os elevados níveis de contaminação fecal encontrados nas amostras analisadas apontam para a importância dos alimentos na transmissão de protozoários intestinais.Vegetables in natura , commercially traded in the metropolitan area of S.Paulo, Brazil, were analised by means of the appropriate methodology with a view to discovering and identifying protozoan cysts of medical interest. The vegetables under study consisted of 50 samples of each of the variaties listed bel ow: lettuce (Lactuca sativa - oily leaves and crisphead varieties, endive (Chicorium sp and water-cress (Nasturtium officinale. Results showed high rates of contamination in all the varieties of vegetable analysed. However, the water-cress was the one which presented the highest frequencies of enteroparasites. Both the oily leafes and crisphead varieties of lettuce presented the lowest rates of contamination, whereas endive

  15. Crystallization and preliminary X-ray analysis of Na-SAA-2 from the human hookworm parasite Necator americanus

    International Nuclear Information System (INIS)

    Asojo, Oluwatoyin A.; Goud, Gaddam N.; Zhan, Bin; Ordonez, Katherine; Sedlacek, Meghan; Homma, Kohei; Deumic, Vehid; Gupta, Richi; Brelsford, Jill; Price, Merelyn K.; Ngamelue, Michelle N.; Hotez, Peter J.

    2010-01-01

    The purification, crystallization and preliminary X-ray diffraction analysis of a surface-associated antigen from the major human hookworm N. americanus is presented. Human hookworms are among the most pathogenic soil-transmitted helminths. These parasitic nematodes have co-evolved with the host and are able to maintain a high worm burden for decades without killing the human host. However, it is possible to develop vaccines against laboratory-challenge hookworm infections using either irradiated third-state infective larvae (L3) or enzymes from the adult parasites. In an effort to control hookworm infection globally, the Human Hookworm Vaccine Initiative, a product-development partnership with the Sabin Vaccine Institute to develop new control tools including vaccines, has identified a battery of protein antigens, including surface-associated antigens (SAAs) from L3. SAA proteins are characterized by a 13 kDa conserved domain of unknown function. SAA proteins are found on the surface of infective L3 stages (and some adult stages) of different nematode parasites, suggesting that they may play important roles in these organisms. The atomic structures and function of SAA proteins remain undetermined and in an effort to remedy this situation recombinant Na-SAA-2 from the most prevalent human hookworm parasite Necator americanus has been expressed, purified and crystallized. Useful X-ray data have been collected to 2.3 Å resolution from a crystal that belonged to the monoclinic space group C2 with unit-cell parameters a = 73.88, b = 35.58, c = 42.75 Å, β = 116.1°

  16. The Echinococcus canadensis (G7) genome: a key knowledge of parasitic platyhelminth human diseases.

    Science.gov (United States)

    Maldonado, Lucas L; Assis, Juliana; Araújo, Flávio M Gomes; Salim, Anna C M; Macchiaroli, Natalia; Cucher, Marcela; Camicia, Federico; Fox, Adolfo; Rosenzvit, Mara; Oliveira, Guilherme; Kamenetzky, Laura

    2017-02-27

    The parasite Echinococcus canadensis (G7) (phylum Platyhelminthes, class Cestoda) is one of the causative agents of echinococcosis. Echinococcosis is a worldwide chronic zoonosis affecting humans as well as domestic and wild mammals, which has been reported as a prioritized neglected disease by the World Health Organisation. No genomic data, comparative genomic analyses or efficient therapeutic and diagnostic tools are available for this severe disease. The information presented in this study will help to understand the peculiar biological characters and to design species-specific control tools. We sequenced, assembled and annotated the 115-Mb genome of E. canadensis (G7). Comparative genomic analyses using whole genome data of three Echinococcus species not only confirmed the status of E. canadensis (G7) as a separate species but also demonstrated a high nucleotide sequences divergence in relation to E. granulosus (G1). The E. canadensis (G7) genome contains 11,449 genes with a core set of 881 orthologs shared among five cestode species. Comparative genomics revealed that there are more single nucleotide polymorphisms (SNPs) between E. canadensis (G7) and E. granulosus (G1) than between E. canadensis (G7) and E. multilocularis. This result was unexpected since E. canadensis (G7) and E. granulosus (G1) were considered to belong to the species complex E. granulosus sensu lato. We described SNPs in known drug targets and metabolism genes in the E. canadensis (G7) genome. Regarding gene regulation, we analysed three particular features: CpG island distribution along the three Echinococcus genomes, DNA methylation system and small RNA pathway. The results suggest the occurrence of yet unknown gene regulation mechanisms in Echinococcus. This is the first work that addresses Echinococcus comparative genomics. The resources presented here will promote the study of mechanisms of parasite development as well as new tools for drug discovery. The availability of a high

  17. The origin and dispersion of human parasitic diseases in the old world (Africa, Europe and Madagascar).

    Science.gov (United States)

    Nozais, Jean-Pierre

    2003-01-01

    The ancestors of present-day man (Homo sapiens sapiens) appeared in East Africa some three and a half million years ago (Australopithecs), and then migrated to Europe, Asia, and later to the Americas, thus beginning the differentiation process. The passage from nomadic to sedentary life took place in the Middle East in around 8000 BC. Wars, spontaneous migrations and forced migrations (slave trade) led to enormous mixtures of populations in Europe and Africa and favoured the spread of numerous parasitic diseases with specific strains according to geographic area. The three human plasmodia (Plasmodium falciparum, P. vivax, and P. malariae) were imported from Africa into the Mediterranean region with the first human migrations, but it was the Neolithic revolution (sedentarisation, irrigation, population increase) which brought about actual foci for malaria. The reservoir for Leishmania infantum and L. donovani--the dog--has been domesticated for thousands of years. Wild rodents as reservoirs of L. major have also long been in contact with man and probably were imported from tropical Africa across the Sahara. L. tropica, by contrast, followed the migrations of man, its only reservoir. L. infantum and L. donovani spread with man and his dogs from West Africa. Likewise, for thousands of years, the dog has played an important role in the spread and the endemic character of hydatidosis through sheep (in Europe and North Africa) and dromadary (in the Sahara and North Africa). Schistosoma haematobium and S. mansoni have existed since prehistoric times in populations living in or passing through the Sahara. These populations then transported them to countries of Northern Africa where the specific, intermediary hosts were already present. Madagascar was inhabited by populations of Indonesian origin who imported lymphatic filariosis across the Indian Ocean (possibly of African origin since the Indonesian sailors had spent time on the African coast before reaching Madagascar

  18. The origin and dispersion of human parasitic diseases in the Old World (Africa, Europe and Madagascar

    Directory of Open Access Journals (Sweden)

    Jean-Pierre Nozais

    2003-01-01

    Full Text Available The ancestors of present-day man (Homo sapiens sapiens appeared in East Africa some three and a half million years ago (Australopithecs, and then migrated to Europe, Asia, and later to the Americas, thus beginning the differentiation process. The passage from nomadic to sedentary life took place in the Middle East in around 8000 BC. Wars, spontaneous migrations and forced migrations (slave trade led to enormous mixtures of populations in Europe and Africa and favoured the spread of numerous parasitic diseases with specific strains according to geographic area. The three human plasmodia (Plasmodium falciparum, P. vivax, and P. malariae were imported from Africa into the Mediterranean region with the first human migrations, but it was the Neolithic revolution (sedentarisation, irrigation, population increase which brought about actual foci for malaria. The reservoir for Leishmania infantum and L. donovani - the dog - has been domesticated for thousands of years. Wild rodents as reservoirs of L. major have also long been in contact with man and probably were imported from tropical Africa across the Sahara. L. tropica, by contrast, followed the migrations of man, its only reservoir. L. infantum and L. donovani spread with man and his dogs from West Africa. Likewise, for thousands of years, the dog has played an important role in the spread and the endemic character of hydatidosis through sheep (in Europe and North Africa and dromadary (in the Sahara and North Africa. Schistosoma haematobium and S. mansoni have existed since prehistoric times in populations living in or passing through the Sahara. These populations then transported them to countries of Northern Africa where the specific, intermediary hosts were already present. Madagascar was inhabited by populations of Indonesian origin who imported lymphatic filariosis across the Indian Ocean (possibly of African origin since the Indonesian sailors had spent time on the African coast before

  19. Trickle or clumped infection process? A stochastic model for the infection process of the parasitic roundworm of humans, Ascaris lumbricoides.

    Science.gov (United States)

    Walker, Martin; Hall, Andrew; Basáñez, María-Gloria

    2010-10-01

    The importance of the mode of acquisition of infectious stages of directly-transmitted parasitic helminths has been acknowledged in population dynamics models; hosts may acquire eggs/larvae singly in a "trickle" type manner or in "clumps". Such models have shown that the mode of acquisition influences the distribution and dynamics of parasite loads, the stability of host-parasite systems and the rate of emergence of anthelmintic resistance, yet very few field studies have allowed these questions to be explored with empirical data. We have analysed individual worm weight data for the parasitic roundworm of humans, Ascaris lumbricoides, collected from a three-round chemo-expulsion study in Dhaka, Bangladesh, with the aim of discerning whether a trickle or a clumped infection process predominates. We found that hosts tend to harbour female worms of a similar weight, indicative of a clumped infection process, but acknowledged that unmeasured host heterogeneities (random effects) could not be completely excluded as a cause. Here, we complement our previous statistical analyses using a stochastic infection model to simulate sizes of individual A. lumbricoides infecting a population of humans. We use the intraclass correlation coefficient (ICC) as a quantitative measure of similarity among simulated worm sizes and explore the behaviour of this statistic under assumptions corresponding to trickle or clumped infections and unmeasured host heterogeneities. We confirm that both mechanisms are capable of generating aggregates of similar-sized worms, but that the particular pattern of ICCs described pre- and post-anthelmintic treatment in the data is more consistent with aggregation generated by clumped infections than by host heterogeneities alone. This provides support to the notion that worms may be acquired in clumps. We discuss our results in terms of the population biology of A. lumbricoides and highlight the significance of our modelling approach for the study of the

  20. Foodborne parasites from wildlife

    DEFF Research Database (Denmark)

    Kapel, Christian Moliin Outzen; Fredensborg, Brian Lund

    2015-01-01

    The majority of wild foods consumed by humans are sourced from intensively managed or semi-farmed populations. Management practices inevitably affect wildlife density and habitat characteristics, which are key elements in the transmission of parasites. We consider the risk of transmission...... of foodborne parasites to humans from wildlife maintained under natural or semi-natural conditions. A deeper understanding will be useful in counteracting foodborne parasites arising from the growing industry of novel and exotic foods....

  1. Human presence increases parasitic load in endangered lion-tailed macaques (Macaca silenus in its fragmented rainforest habitats in Southern India.

    Directory of Open Access Journals (Sweden)

    Shaik Hussain

    Full Text Available BACKGROUND: Understanding changes in the host-parasite relationship due to habitat fragmentation is necessary for better management and conservation of endangered species in fragmented landscapes. Pathogens and parasites can pose severe threat to species in restricted environments such as forest fragments where there is increased contact of wildlife with human and livestock populations. Environmental stress and reduced nutritional level in forest fragments can influence parasite infection and intensity on the native species. In this study, we examine the impact of habitat fragmentation on the prevalence of gastrointestinal parasites in lion-tailed macaques in a fragmented rainforest in Western Ghats. METHODS: The prevalence of different gastrointestinal parasites was estimated from 91 fecal samples collected from 9 lion-tailed macaque groups in nine forest fragments. The parasites were identified up to genus level on the basis of the morphology and coloration of the egg, larva and cyst. The covariates included forest fragment area, group size and the presence/absence of human settlements and livestock in proximity. We used a linear regression model to identify the covariates that significantly influenced the prevalence of different parasite taxa. RESULTS: Nine gastrointestinal parasite taxa were detected in lion-tailed macaque groups. The groups near human settlements had greater prevalence and number of taxa, and these variables also had significant positive correlations with group size. We found that these parameters were also greater in groups near human settlements after controlling for group size. Livestock were present in all five fragments that had human settlements in proximity. CONCLUSION: The present study suggests that high prevalence and species richness of gastrointestinal parasites in lion-tailed macaque groups are directly related to habitat fragmentation, high anthropogenic activities and high host density. The parasite load

  2. SURVEY OF HOUSE RAT INTESTINAL PARASITES FROM SURABAYA DISTRICT, EAST JAVA, INDONESIA THAT CAN CAUSE OPPORTUNISTIC INFECTIONS IN HUMANS.

    Science.gov (United States)

    Prasetyo, R H

    2016-03-01

    The purpose of this study was to investigate the prevalence of house rat zoonotic intestinal parasites from Surabaya District, East Java, Indonesia that have the potential to cause opportunistic infection in humans. House rat fecal samples were collected from an area of Surabaya District with a dense rat population during May 2015. Intestinal parasites were detected microscopically using direct smear of feces stained with Lugol's iodine and modified Ziehl-Neelsen stains. The fecal samples were also cultured for Strongyloides stercoralis. Ninety-eight house rat fecal samples were examined. The potential opportunistic infection parasite densities found in those samples were Strongyloides stercoralis in 53%, Hymenolepis nana in 42%, Cryptosporidium spp in 33%, and Blastocystis spp in 6%. This is the first report of this kind in Surabaya District. Measures need to be taken to control the house rat population in the study area to reduce the risk of the public health problem. Keywords: zoonotic intestinal parasites, opportunistic infection, house rat, densely populated area, Indonesia

  3. [A national survey on current status of the important parasitic diseases in human population].

    Science.gov (United States)

    2005-10-30

    In order to understand the current status and trends of the important parasitic diseases in human population, to evaluate the effect of control activities in the past decade and provide scientific base for further developing control strategies, a national survey was carried out in the country (Taiwan, Hongkong and Macau not included) from June, 2001 to 2004 under the sponsorship of the Ministry of Health. The sample sizes of the nationwide survey and of the survey in each province (autonomous region and municipality, P/A/M) were determined following a calculating formula based on an estimation of the sample size of random sampling to the rate of population. A procedure of stratified cluster random sampling was conducted in each province based on geographical location and economical condition with three strata: county/city, township/town, and spot, each spot covered a sample of 500 people. Parasitological examinations were conducted for the infections of soil-transmitted nematodes, Taenia spp, and Clonorchis sinensis, including Kato-Katz thick smear method, scotch cellulose adhesive tape technique and test tube-filter paper culture (for larvae). At the same time, another sampled investigation for Clonorchis sinensis infection was carried out in the known endemic areas in 27 provinces. Serological tests combined with questionnaire and/or clinical diagnosis were applied for hydatid disease, cysticercosis, paragonimiasis, trichinosis, and toxoplasmosis. A total sampled population of 356 629 from the 31 P/A/M was examined by parasitological methods and 26 species of helminth were recorded. Among these helminth, human infections of Metorchis orientalis and Echinostoma aegypti were detected in Fujian Province which seemed to be the first report in the world, and Haplorchis taichui infection in Guangxi Region was the first human infection record in the country. The overall prevalence of helminth infections was 21.74%. The prevalence of soil-transmitted nematodes was 19

  4. Human behavior and opportunities for parasite transmission in communities surrounding long-tailed macaque populations in Bali, Indonesia.

    Science.gov (United States)

    Lane-DeGraaf, Kelly E; Putra, I G A Arta; Wandia, I Nengah; Rompis, Aida; Hollocher, Hope; Fuentes, Agustin

    2014-02-01

    Spatial overlap and shared resources between humans and wildlife can exacerbate parasite transmission dynamics. In Bali, Indonesia, an agricultural-religious temple system provides sanctuaries for long-tailed macaques (Macaca fascicularis), concentrating them in areas in close proximity to humans. In this study, we interviewed individuals in communities surrounding 13 macaque populations about their willingness to participate in behaviors that would put them at risk of exposure to gastrointestinal parasites to understand if age, education level, or occupation are significant determinants of exposure behaviors. These exposure risk behaviors and attitudes include fear of macaques, direct contact with macaques, owning pet macaques, hunting and eating macaques, and overlapping water uses. We find that willingness to participate in exposure risk behaviors are correlated with an individual's occupation, age, and/or education level. We also found that because the actual risk of infection varies across populations, activities such as direct macaque contact and pet ownership, could be putting individuals at real risk in certain contexts. Thus, we show that human demographics and social structure can influence willingness to participate in behaviors putting them at increased risk for exposure to parasites. © 2013 Wiley Periodicals, Inc.

  5. Human-induced eutrophication maintains high parasite prevalence in breeding threespine stickleback populations.

    Science.gov (United States)

    Budria, Alexandre; Candolin, Ulrika

    2015-04-01

    Anthropogenic activities are having profound impacts on species interactions, with further consequences for populations and communities. We investigated the influence that anthropogenic eutrophication has on the prevalence of the parasitic tapeworm Schistocephalus solidus in threespine stickleback Gasterosteus aculeatus populations. We caught stickleback from four areas along the coast of Finland, and within each area from one undisturbed and one eutrophied habitat. We found the prevalence of the parasite to be lower in the eutrophied habitats at the start of the breeding season, probably because of fewer piscivorous birds that transmit the parasite. However, while the prevalence of the parasite declined across the season in the undisturbed habitat, it did less so in eutrophied habitats. We discuss different processes that could be behind the differences, such as lower predation rate on infected fish, higher food availability and less dispersal in eutrophied habitats. We found no effect of eutrophication on the proportion of infected stickleback that entered reproductive condition. Together with earlier findings, this suggests that eutrophication increases the proportion of infected stickleback that reproduce. This could promote the evolution of less parasite resistant populations, with potential consequences for the viability of the interacting parties of the host-parasite system.

  6. High malnutrition rate in Venezuelan Yanomami compared to Warao Amerindians and Creoles: significant associations with intestinal parasites and anemia

    NARCIS (Netherlands)

    Verhagen, L.M.; Incani, R.N.; Franco, C.R.; Ugarte, A.; Cadenas, Y.; Ruiz, C.I. Sierra; Hermans, P.W.M.; Hoek, D. van der; Ponce, M.; Waard, J.H. de; Pinelli, E.

    2013-01-01

    BACKGROUND: Children in rural areas experience the interrelated problems of poor growth, anemia and parasitic infections. We investigated the prevalence of and associations between intestinal helminth and protozoan infections, malnutrition and anemia in school-age Venezuelan children. METHODS: This

  7. Molecular characterisation of protist parasites in human-habituated mountain gorillas (Gorilla beringei beringei), humans and livestock, from Bwindi impenetrable National Park, Uganda.

    Science.gov (United States)

    Nolan, Matthew J; Unger, Melisa; Yeap, Yuen-Ting; Rogers, Emma; Millet, Ilary; Harman, Kimberley; Fox, Mark; Kalema-Zikusoka, Gladys; Blake, Damer P

    2017-07-18

    Over 60 % of human emerging infectious diseases are zoonotic, and there is growing evidence of the zooanthroponotic transmission of diseases from humans to livestock and wildlife species, with major implications for public health, economics, and conservation. Zooanthroponoses are of relevance to critically endangered species; amongst these is the mountain gorilla (Gorilla beringei beringei) of Uganda. Here, we assess the occurrence of Cryptosporidium, Cyclospora, Giardia, and Entamoeba infecting mountain gorillas in the Bwindi Impenetrable National Park (BINP), Uganda, using molecular methods. We also assess the occurrence of these parasites in humans and livestock species living in overlapping/adjacent geographical regions. Diagnostic PCR detected Cryptosporidium parvum in one sample from a mountain gorilla (IIdA23G2) and one from a goat (based on SSU). Cryptosporidium was not detected in humans or cattle. Cyclospora was not detected in any of the samples analysed. Giardia was identified in three human and two cattle samples, which were linked to assemblage A, B and E of G. duodenalis. Sequences defined as belonging to the genus Entamoeba were identified in all host groups. Of the 86 sequence types characterised, one, seven and two have been recorded previously to represent genotypes of Cryptosporidium, Giardia, and Entamoeba, respectively, from humans, other mammals, and water sources globally. This study provides a snapshot of the occurrence and genetic make-up of selected protists in mammals in and around BINP. The genetic analyses indicated that 54.6% of the 203 samples analysed contained parasites that matched species, genotypes, or genetic assemblages found globally. Seventy-six new sequence records were identified here for the first time. As nothing is known about the zoonotic/zooanthroponotic potential of the corresponding parasites, future work should focus on wider epidemiological investigations together with continued surveillance of all parasites in

  8. Host Diet Affects the Morphology of Monarch Butterfly Parasites.

    Science.gov (United States)

    Hoang, Kevin; Tao, Leiling; Hunter, Mark D; de Roode, Jacobus C

    2017-06-01

    Understanding host-parasite interactions is essential for ecological research, wildlife conservation, and health management. While most studies focus on numerical traits of parasite groups, such as changes in parasite load, less focus is placed on the traits of individual parasites such as parasite size and shape (parasite morphology). Parasite morphology has significant effects on parasite fitness such as initial colonization of hosts, avoidance of host immune defenses, and the availability of resources for parasite replication. As such, understanding factors that affect parasite morphology is important in predicting the consequences of host-parasite interactions. Here, we studied how host diet affected the spore morphology of a protozoan parasite ( Ophryocystis elektroscirrha ), a specialist parasite of the monarch butterfly ( Danaus plexippus ). We found that different host plant species (milkweeds; Asclepias spp.) significantly affected parasite spore size. Previous studies have found that cardenolides, secondary chemicals in host plants of monarchs, can reduce parasite loads and increase the lifespan of infected butterflies. Adding to this benefit of high cardenolide milkweeds, we found that infected monarchs reared on milkweeds of higher cardenolide concentrations yielded smaller parasites, a potentially hidden characteristic of cardenolides that may have important implications for monarch-parasite interactions.

  9. Lysophosphatidylcholine Regulates Sexual Stage Differentiation in the Human Malaria Parasite Plasmodium falciparum.

    Science.gov (United States)

    Brancucci, Nicolas M B; Gerdt, Joseph P; Wang, ChengQi; De Niz, Mariana; Philip, Nisha; Adapa, Swamy R; Zhang, Min; Hitz, Eva; Niederwieser, Igor; Boltryk, Sylwia D; Laffitte, Marie-Claude; Clark, Martha A; Grüring, Christof; Ravel, Deepali; Blancke Soares, Alexandra; Demas, Allison; Bopp, Selina; Rubio-Ruiz, Belén; Conejo-Garcia, Ana; Wirth, Dyann F; Gendaszewska-Darmach, Edyta; Duraisingh, Manoj T; Adams, John H; Voss, Till S; Waters, Andrew P; Jiang, Rays H Y; Clardy, Jon; Marti, Matthias

    2017-12-14

    Transmission represents a population bottleneck in the Plasmodium life cycle and a key intervention target of ongoing efforts to eradicate malaria. Sexual differentiation is essential for this process, as only sexual parasites, called gametocytes, are infective to the mosquito vector. Gametocyte production rates vary depending on environmental conditions, but external stimuli remain obscure. Here, we show that the host-derived lipid lysophosphatidylcholine (LysoPC) controls P. falciparum cell fate by repressing parasite sexual differentiation. We demonstrate that exogenous LysoPC drives biosynthesis of the essential membrane component phosphatidylcholine. LysoPC restriction induces a compensatory response, linking parasite metabolism to the activation of sexual-stage-specific transcription and gametocyte formation. Our results reveal that malaria parasites can sense and process host-derived physiological signals to regulate differentiation. These data close a critical knowledge gap in parasite biology and introduce a major component of the sexual differentiation pathway in Plasmodium that may provide new approaches for blocking malaria transmission. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  10. Methodology and application of flow cytometry for investigation of human malaria parasites.

    Science.gov (United States)

    Grimberg, Brian T

    2011-03-31

    Historically, examinations of the inhibition of malaria parasite growth/invasion, whether using drugs or antibodies, have relied on the use of microscopy or radioactive hypoxanthine uptake. These are considered gold standards for measuring the effectiveness of antimalarial treatments, however, these methods have well known shortcomings. With the advent of flow cytometry coupled with the use of fluorescent DNA stains allowed for increased speed, reproducibility, and qualitative estimates of the effectiveness of antibodies and drugs to limit malaria parasite growth which addresses the challenges of traditional techniques. Because materials and machines available to research facilities are so varied, different methods have been developed to investigate malaria parasites by flow cytometry. This review is intended to serve as a reference guide for advanced users and importantly, as a primer for new users, to support expanded use and improvements to malaria flow cytometry, particularly in endemic countries. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Parasites of importance for human health in Nigerian dogs: high prevalence and limited knowledge of pet owners

    Directory of Open Access Journals (Sweden)

    Heukelbach Jorg

    2008-12-01

    Full Text Available Abstract Background Dogs are the most common pet animals worldwide. They may harbour a wide range of parasites with zoonotic potential, thus causing a health risk to humans. In Nigeria, epidemiological knowledge on these parasites is limited. Methods In a community-based study, we examined 396 dogs in urban and rural areas of Ilorin (Kwara State, Central Nigeria for ectoparasites and intestinal helminths. In addition, a questionnaire regarding knowledge and practices was applied to pet owners. Results Nine ectoparasite species belonging to four taxa and six intestinal helminth species were identified: fleas (Ctenocephalides canis, Pulex irritans, Tunga penetrans, mites (Demodex canis, Otodectes sp., Sarcoptes scabiei var. canis, ticks (Rhipicephalus sanguineus, Ixodes sp., and lice (Trichodectes canis; and Toxocara canis, Ancylostoma sp., Trichuris vulpis, Dipylidium caninum, Taenidae and Strongyloides sp. Overall prevalence of ectoparasites was 60.4% and of intestinal helminths 68.4%. The occurrence of C. canis, R. sanguineus, T. canis, Ancylostoma sp. and T. vulpis was most common (prevalence 14.4% to 41.7%. Prevalence patterns in helminths were age-dependent, with T. canis showing a decreasing prevalence with age of host, and a reverse trend in other parasite species. Knowledge regarding zoonoses was very limited and the diseases not considered a major health problem. Treatment with antiparasitic drugs was more frequent in urban areas. Conclusion Parasites of importance for human health were highly prevalent in Nigerian dogs. Interventions should include health education provided to dog owners and the establishment of a program focusing on zoonotic diseases.

  12. Reconstructing Colonization Dynamics of the Human Parasite Schistosoma mansoni following Anthropogenic Environmental Changes in Northwest Senegal

    Science.gov (United States)

    Van den Broeck, Frederik; Maes, Gregory E.; Larmuseau, Maarten H. D.; Rollinson, David; Sy, Ibrahima; Faye, Djibril; Volckaert, Filip A. M.; Polman, Katja; Huyse, Tine

    2015-01-01

    Background Anthropogenic environmental changes may lead to ecosystem destabilization and the unintentional colonization of new habitats by parasite populations. A remarkable example is the outbreak of intestinal schistosomiasis in Northwest Senegal following the construction of two dams in the ‘80s. While many studies have investigated the epidemiological, immunological and geographical patterns of Schistosoma mansoni infections in this region, little is known about its colonization history. Methodology/Principal Findings Parasites were collected at several time points after the disease outbreak and genotyped using a 420 bp fragment of the mitochondrial cytochrome c oxidase subunit 1 gene (cox1) and nine nuclear DNA microsatellite markers. Phylogeographic and population genetic analyses revealed the presence of (i) many genetically different haplotypes at the non-recombining mitochondrial marker and (ii) one homogenous S. mansoni genetic group at the recombining microsatellite markers. These results suggest that the S. mansoni population in Northwest Senegal was triggered by intraspecific hybridization (i.e. admixture) between parasites that were introduced from different regions. This would comply with the extensive immigration of infected seasonal agricultural workers from neighboring regions in Senegal, Mauritania and Mali. The spatial and temporal stability of the established S. mansoni population suggests a swift local adaptation of the parasite to the local intermediate snail host Biomphalaria pfeifferi at the onset of the epidemic. Conclusions/Significance Our results show that S. mansoni parasites are very successful in colonizing new areas without significant loss of genetic diversity. Maintaining high levels of diversity guarantees the adaptive potential of these parasites to cope with selective pressures such as drug treatment, which might complicate efforts to control the disease. PMID:26275049

  13. Zoonotic intestinal protozoan of the wild boars, Sus scrofa, in Persian Gulf’s coastal area (Bushehr province, Southwestern Iran

    Directory of Open Access Journals (Sweden)

    Kambiz Yaghoobi

    2016-10-01

    Full Text Available Aim: Wild boars, Sus scrofa, are potential reservoirs of many zoonotic diseases, and there are a possibility of transmission of the zoonotic diseases from these animals to humans and also domestic animals. This study aimed to evaluate the protozoan contamination of wild boars in the Persian Gulf’s coastal area (Bushehr Province, southwestern Iran. Materials and Methods: A total of 25 crossbred boars were collected during a course of vertebrate pest control in Bushehr province, in 2013. Samples were collected from the gastrointestinal tracts of each boar in 5% formalin, Bouin’s solution, sodium acetate-acetic acid-formalin, and polyvinyl alcohol fixatives. Fixed stool smears examined by trichrome and Ziehl–Neelsen staining. Results: Each of the 25 wild boars was infected with at least one of the intestinal protozoans. The rate of contamination with intestinal protozoan was 64% for Balantidium coli, 76% for Iodamoeba sp., 52% for Entamoeba polecki, 44% for Blastocystis sp. and 8% for Chilomastix sp. No intestinal coccidian was detected in studied boars when the stool samples were evaluated by Ziehl–Neelsen staining method. Conclusion: Findings of this study demonstrated that wild boars in the Persian Gulf coastal area are contaminated by many protozoans, including zoonotic protozoan, which poses a potential risk to locals as well as the domestic animals of the area.

  14. Zoonotic intestinal protozoan of the wild boars, Sus scrofa, in Persian Gulf's coastal area (Bushehr province), Southwestern Iran.

    Science.gov (United States)

    Yaghoobi, Kambiz; Sarkari, Bahador; Mansouri, Majid; Motazedian, Mohammad Hossein

    2016-10-01

    Wild boars, Sus scrofa , are potential reservoirs of many zoonotic diseases, and there are a possibility of transmission of the zoonotic diseases from these animals to humans and also domestic animals. This study aimed to evaluate the protozoan contamination of wild boars in the Persian Gulf's coastal area (Bushehr Province), southwestern Iran. A total of 25 crossbred boars were collected during a course of vertebrate pest control in Bushehr province, in 2013. Samples were collected from the gastrointestinal tracts of each boar in 5% formalin, Bouin's solution, sodium acetate-acetic acid-formalin, and polyvinyl alcohol fixatives. Fixed stool smears examined by trichrome and Ziehl-Neelsen staining. Each of the 25 wild boars was infected with at least one of the intestinal protozoans. The rate of contamination with intestinal protozoan was 64% for Balantidium coli , 76% for Iodamoeba sp., 52% for Entamoeba polecki , 44% for Blastocystis sp. and 8% for Chilomastix sp. No intestinal coccidian was detected in studied boars when the stool samples were evaluated by Ziehl-Neelsen staining method. Findings of this study demonstrated that wild boars in the Persian Gulf coastal area are contaminated by many protozoans, including zoonotic protozoan, which poses a potential risk to locals as well as the domestic animals of the area.

  15. Parasites, Plants, and People.

    Science.gov (United States)

    Johnson, Marion; Moore, Tony

    2016-06-01

    Anthelminthic resistance is acknowledged worldwide and is a major problem in Aotearoa New Zealand, thus alternative parasite management strategies are imperative. One Health is an initiative linking animal, human, and environmental health. Parasites, plants, and people illustrate the possibilities of providing diverse diets for stock thereby lowering parasite burdens, improving the cultural wellbeing of a local community, and protecting the environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Identification of Zoonotic Parasites isolated from Stray Dogs in Bojnurd County Located in North-East of Iran

    Directory of Open Access Journals (Sweden)

    Kourosh Arzamani

    2016-10-01

    Full Text Available Dog can represent as an important source of zoonotic disease and important health problem for human. They can carry dangerous parasitic diseases such as hydatidosis, toxocariasis and Coenurus cerebralis to humans and animals. This study was performed in order to determine the prevalence and intensity of zoonotic parasites among stray dogs from Bojnurd, the capital city of North Khorasan province in North West of Iran. During a program performing by Bojnurd municipal on the slow killing of stray dogs, 32 dogs from Jun 2013 till March 2015 were selected. At necropsy their alimentary canals were removed and to identify the species of helminthes, the nematodes were cleared in lactophenol and cestodes were stained using carmine acid. Intestinal protozoan parasites were detected with parasitological methods. 28 (87.5% of 32 stray dogs infected at least with one helminth. Seven species of cestodes were isolated from examined dogs and three species of nematode were detected. Giardia sp. and Cryptosporidium sp. detected from fecal samples. This is the first study of the prevalence of intestinal zoonotic parasites in dogs in this area. It seems control of bearing stray dogs can help human health and reduction economic losses caused by stray dog’s zoonotic parasites.

  17. Protein export marks the early phase of gametocytogenesis of the human malaria parasite Plasmodium falciparum.

    NARCIS (Netherlands)

    Silvestrini, F.; Lasonder, E.; Olivieri, A.; Camarda, G.; Schaijk, B.C.L. van; Sanchez, M.; Younis Younis, S.; Sauerwein, R.W.; Alano, P.

    2010-01-01

    Despite over a century of study of malaria parasites, parts of the Plasmodium falciparum life cycle remain virtually unknown. One of these is the early gametocyte stage, a round shaped cell morphologically similar to an asexual trophozoite in which major cellular transformations ensure subsequent

  18. Visible-light-responsive ZnCuO nanoparticles: benign photodynamic killers of infectious protozoans.

    Science.gov (United States)

    Nadhman, Akhtar; Nazir, Samina; Khan, Malik Ihsanullah; Ayub, Attiya; Muhammad, Bakhtiar; Khan, Momin; Shams, Dilawar Farhan; Yasinzai, Masoom

    2015-01-01

    Human beings suffer from several infectious agents such as viruses, bacteria, and protozoans. Recently, there has been a great interest in developing biocompatible nanostructures to deal with infectious agents. This study investigated benign ZnCuO nanostructures that were visible-light-responsive due to the resident copper in the lattice. The nanostructures were synthesized through a size-controlled hot-injection process, which was adaptable to the surface ligation processes. The nanostructures were then characterized through transmission electron microscopy, X-ray diffraction, diffused reflectance spectroscopy, Rutherford backscattering, and photoluminescence analysis to measure crystallite nature, size, luminescence, composition, and band-gap analyses. Antiprotozoal efficiency of the current nanoparticles revealed the photodynamic killing of Leishmania protozoan, thus acting as efficient metal-based photosensitizers. The crystalline nanoparticles showed good biocompatibility when tested for macrophage toxicity and in hemolysis assays. The study opens a wide avenue for using toxic material in resident nontoxic forms as an effective antiprotozoal treatment.

  19. Factors Associated with High Prevalence of Intestinal Protozoan Infections among Patients in Sana'a City, Yemen

    Science.gov (United States)

    Alyousefi, Naelah A.; Mahdy, Mohammed A. K.; Mahmud, Rohela; Lim, Yvonne A. L.

    2011-01-01

    Background Intestinal protozoan diseases in Yemen are a significant health problem with prevalence ranging from 18% to 27%. The present study is a cross-sectional study aimed at determining the factors associated with the high prevalence of intestinal protozoan infections among patients seeking health care in Sana'a City, the capital of Yemen. Methodology/Principal Findings Stool samples were collected from 503 patients aged between 1 and 80 years old; 219 were males and 284 females. Biodata were collected via pretested standard questionnaire. Faecal samples were processed and examined for (oo)cysts or ova using a wet mount preparation after formal-ether concentration technique. Cryptosporidium oocysts were detected using the Ziehl-Neelsen staining technique. The overall prevalence of intestinal protozoan infections was 30.9%. Infection rates of Giardia duodenalis, Entamoeba histolytica/dispar and Cryptosporidium were 17.7%, 17.1% and 1%, respectively. Other parasites detected included Ascaris lumbricoides (2.4%), Schistosoma mansoni (0.3%), Hymenolepis nana (1.4%) and Enterobius vermicularis (0.4%). Multivariate analysis using forward stepwise logistic regression based on intestinal protozoan infections showed that contact with animals (OR = 1.748, 95% CI = 1.168–2.617) and taking bath less than twice a week (OR = 1.820, 95% CI = 1.192–2.779) were significant risk factors of protozoan infections. Conclusions/Significance This present study indicated that intestinal protozoan infections are still a public health problem in Yemen, with Giardia and Entamoeba infections being most common. Statistical analysis indicated that low personal hygiene and contact with animals were important predictors for intestinal protozoan infections. As highlighted in this study, in order to effectively reduce these infections, a multi-sectoral effort is needed. Preventive measures should include good hygienic practices, good animal husbandry practices, heightened

  20. [Antagonistic interactions between saprotrophic fungi and geohelminths. 2. Saprotrophic fungi in biocontrol of parasitic geohelminths of humans and animals].

    Science.gov (United States)

    Jaborowska-Jarmoluk, Magdalena; Mazurkiewicz-Zapałowicz, Kinga; Kołodziejczyk, Lidia

    2009-01-01

    The soils ecosystem plays an important role in the epidemiology of geohelminth diseases of humans and animals. Soil contamination with ova of the parasitic geohelminths represents a global public health-hazard issue. Biological agents have been thought to control the infective forms of parasites present in the soil. Biocontrol of geohelminths represents an alternative to pesticides (i.e., nematicides), which are not efficient in killing infective nematode forms and, additionally, result in the environment pollution and long-term disturbances in the soil ecosystem homeostasis. The degree of the inhibiting effect of soil saprotrophic fungi on geohelminth embryonic development varies and depends on the species. A number of fungi cause various morphological disorders in the embryos of developing parasitic nematodes, but also have an ovicidal effect. Although the nature of the antagonism between fungi and other living organisms has not been fully explained, it is certain that mycotoxins and fungal enzymes constitute its important components. Considering the studies carried out so far, the antagonistic effect of mold fungi against the infective stages of geohelminths can be fully recommended as a real control factor, especially as these saprotrophs represent a natural factor within the soil environment, that is of particular biochemical activity.

  1. Expression of senescent antigen on erythrocytes infected with a knobby variant of the human malaria parasite Plasmodium falciparum

    International Nuclear Information System (INIS)

    Winograd, E.; Greenan, J.R.T.; Sherman, I.W.

    1987-01-01

    Erythrocytes infected with a knobby variant of Plasmodium falciparum selectively bind IgG autoantibodies in normal human serum. Quantification of membrane-bound IgG, by use of 125 I-labeled protein A, revealed that erythrocytes infected with the knobby variant bound 30 times more protein A than did noninfected erythrocytes; infection with a knobless variant resulted in less than a 2-fold difference compared with noninfected erythrocytes. IgG binding to knobby erythrocytes appeared to be related to parasite development, since binding of 125 I-labeled protein A to cells bearing young trophozoites (less than 20 hr after parasite invasion) was similar to binding to uninfected erythrocytes. By immunoelectron microscopy, the membrane-bound IgG on erythrocytes infected with the knobby variant was found to be preferentially associated with the protuberances (knobs) of the plasma membrane. The removal of aged or senescent erythrocytes from the peripheral circulation is reported to involve the binding of specific antibodies to an antigen (senescent antigen) related to the major erythrocyte membrane protein band 3. Since affinity-purified autoantibodies against band 3 specifically bound to the plasma membrane of erythrocytes infected with the knobby variant of P. falciparum, it is clear that the malaria parasite induces expression of senescent antigen

  2. Prevalence of gastrointestinal parasites in young camels in Bahrain

    Directory of Open Access Journals (Sweden)

    M. I. Abubakr

    2000-03-01

    Full Text Available The prevalence of gastrointestinal parasites in young camels in Bahrain is reported for the first time. Six genera of parasites were found. The nematodes observed were Haemonchus contortus (36.47%, Nematodirus spathiger (30.59% and Trichuris sp. (10.6%; the only cestode recorded was Moniezia expansa (2.4%. The incidence of Eimeria dromedarii was 20%. Single, double, triple and quadruple parasitic infestation occurred in 41.2, 33.5, 19.4 and 5.9% of the infected animals, respectively. Balantidium coli, a protozoan parasite, was occasionally seen in young camels suffering from diarrhea at the time of sampling.

  3. Fecal Occult Blood Test and Gastrointestinal Parasitic Infection

    Directory of Open Access Journals (Sweden)

    Majed H. Wakid

    2010-01-01

    Full Text Available Stool specimens of 1238 workers in western region of Saudi Arabia were examined for infection with intestinal parasites and for fecal occult blood (FOB to investigate the possibility that enteroparasites correlate to occult intestinal bleeding. Direct smears and formal ether techniques were used for detection of diagnostic stages of intestinal parasites. A commercially available guaiac test was used to detect fecal occult blood. 47.01% of the workers were infected with intestinal parasites including eight helminthes species and eight protozoan species. The results provided no significant evidence (P-value=0.143 that intestinal parasitic infection is in association with positive guaiac FOB test.

  4. DNA typing of ancient parasite eggs from environmental samples identifies human and animal worm infections in viking-age settlement

    DEFF Research Database (Denmark)

    Søe, Martin Jensen; Nejsum, Peter; Fredensborg, Brian Lund

    2015-01-01

    Ancient parasite eggs were recovered from environmental samples collected at a Viking-age settlement in Viborg, Denmark, dated 1018-1030 A.D. Morphological examination identified Ascaris sp., Trichuris sp., and Fasciola sp. eggs, but size and shape did not allow species identification. By carefully...... selecting genetic markers, PCR amplification and sequencing of ancient DNA (aDNA) isolates resulted in identification of: the human whipworm, Trichuris trichiura, using SSUrRNA sequence homology; Ascaris sp. with 100% homology to cox1 haplotype 07; and Fasciola hepatica using ITS1 sequence homology...

  5. Foodborne intestinal protozoan infection and associated factors among patients with watery diarrhea in Northern Ethiopia; a cross-sectional study.

    Science.gov (United States)

    Berhe, Birhane; Bugssa, Gessessew; Bayisa, Sena; Alemu, Megbaru

    2018-03-02

    Intestinal protozoa are parasites transmitted by consumption of contaminated water and food and mainly affect children and elder people and cause considerable health problems. They are the leading causes of outpatient morbidity due to diarrhea in the developing countries. So, assessing water and food source of diarrheal patients and identifying the main associated factors for transmission of protozoan parasitic infections help for effective control measures of protozoan infections. Hence, the current study was aimed at determining the prevalence of foodborne intestinal protozoa infections and associated factors among diarrheic patients in North Ethiopia. A health facility based cross-sectional study was conducted among 223 patients with watery diarrhea in four selected government health facilities in North Ethiopia from November 2016-June 2017. A structured questionnaire was used to collect data on socio-demography of study participants and factors associated with foodborne protozoa infections. The diarrheic stool samples were collected, transported, and processed using direct wet mount, formal-ether concentration and modified ZiehlNeelson staining methods. The data were analyzed using SPSS version 21 and descriptive statistics, bi-variate, and multivariate logistic regressions were computed. P-value parasite infection .

  6. A global comparison of the human and T. brucei degradomes gives insights about possible parasite drug targets.

    Directory of Open Access Journals (Sweden)

    Susan T Mashiyama

    Full Text Available We performed a genome-level computational study of sequence and structure similarity, the latter using crystal structures and models, of the proteases of Homo sapiens and the human parasite Trypanosoma brucei. Using sequence and structure similarity networks to summarize the results, we constructed global views that show visually the relative abundance and variety of proteases in the degradome landscapes of these two species, and provide insights into evolutionary relationships between proteases. The results also indicate how broadly these sequence sets are covered by three-dimensional structures. These views facilitate cross-species comparisons and offer clues for drug design from knowledge about the sequences and structures of potential drug targets and their homologs. Two protease groups ("M32" and "C51" that are very different in sequence from human proteases are examined in structural detail, illustrating the application of this global approach in mining new pathogen genomes for potential drug targets. Based on our analyses, a human ACE2 inhibitor was selected for experimental testing on one of these parasite proteases, TbM32, and was shown to inhibit it. These sequence and structure data, along with interactive versions of the protein similarity networks generated in this study, are available at http://babbittlab.ucsf.edu/resources.html.

  7. A global comparison of the human and T. brucei degradomes gives insights about possible parasite drug targets.

    Science.gov (United States)

    Mashiyama, Susan T; Koupparis, Kyriacos; Caffrey, Conor R; McKerrow, James H; Babbitt, Patricia C

    2012-01-01

    We performed a genome-level computational study of sequence and structure similarity, the latter using crystal structures and models, of the proteases of Homo sapiens and the human parasite Trypanosoma brucei. Using sequence and structure similarity networks to summarize the results, we constructed global views that show visually the relative abundance and variety of proteases in the degradome landscapes of these two species, and provide insights into evolutionary relationships between proteases. The results also indicate how broadly these sequence sets are covered by three-dimensional structures. These views facilitate cross-species comparisons and offer clues for drug design from knowledge about the sequences and structures of potential drug targets and their homologs. Two protease groups ("M32" and "C51") that are very different in sequence from human proteases are examined in structural detail, illustrating the application of this global approach in mining new pathogen genomes for potential drug targets. Based on our analyses, a human ACE2 inhibitor was selected for experimental testing on one of these parasite proteases, TbM32, and was shown to inhibit it. These sequence and structure data, along with interactive versions of the protein similarity networks generated in this study, are available at http://babbittlab.ucsf.edu/resources.html.

  8. Novel amidines and analogues as promising agents against intracellular parasites: a systematic review.

    Science.gov (United States)

    Soeiro, M N C; Werbovetz, K; Boykin, D W; Wilson, W D; Wang, M Z; Hemphill, A

    2013-07-01

    Parasitic protozoa comprise diverse aetiological agents responsible for important diseases in humans and animals including sleeping sickness, Chagas disease, leishmaniasis, malaria, toxoplasmosis and others. They are major causes of mortality and morbidity in tropical and subtropical countries, and are also responsible for important economic losses. However, up to now, for most of these parasitic diseases, effective vaccines are lacking and the approved chemotherapeutic compounds present high toxicity, increasing resistance, limited efficacy and require long periods of treatment. Many of these parasitic illnesses predominantly affect low-income populations of developing countries for which new pharmaceutical alternatives are urgently needed. Thus, very low research funding is available. Amidine-containing compounds such as pentamidine are DNA minor groove binders with a broad spectrum of activities against human and veterinary pathogens. Due to their promising microbicidal activity but their rather poor bioavailability and high toxicity, many analogues and derivatives, including pro-drugs, have been synthesized and screened in vitro and in vivo in order to improve their selectivity and pharmacological properties. This review summarizes the knowledge on amidines and analogues with respect to their synthesis, pharmacological profile, mechanistic and biological effects upon a range of intracellular protozoan parasites. The bulk of these data may contribute to the future design and structure optimization of new aromatic dicationic compounds as novel antiparasitic drug candidates.

  9. Study on gastro intestinal parasite of cattle at Horoguduru Animal ...

    African Journals Online (AJOL)

    Cross sectional study was conducted to determine the prevalence of gastro intestinal parasite and protozoan emeria, to determine the common risk factor and to identify the commonly existing ... Carpological examination was done at Wollega University Shambu campus animal science and, food and nutrition department.

  10. Crystallization and preliminary crystallographic studies of a cysteine protease inhibitor from the human nematode parasite Ascaris lumbricoides

    International Nuclear Information System (INIS)

    Liu, Sanling; Dong, Jianmei; Mei, Guoqiang; Liu, Guiyun; Xu, Wei; Su, Zhong; Liu, Jinsong

    2011-01-01

    A recombinant cysteine protease inhibitor from the human nematode parasite A. lumbricoides has been overexpressed in E. coli, purified and crystallized. Diffraction data were collected to 2.1 Å resolution. The cysteine protease inhibitor from Ascaris lumbricoides, a roundworm that lives in the human intestine, may be involved in the suppression of human immune responses. Here, the molecular cloning, protein expression and purification, preliminary crystallization and crystallographic characterization of the cysteine protease inhibitor from A. lumbricoides are reported. The rod-shaped crystal belonged to space group C2, with unit-cell parameters a = 99.40, b = 37.52, c = 62.92 Å, β = 118.26°. The crystal diffracted to 2.1 Å resolution and contained two molecules in the asymmetric unit

  11. Helminth allergens, parasite-specific IgE and its protective role in human immunity

    Directory of Open Access Journals (Sweden)

    Colin Matthew Fitzsimmons

    2014-02-01

    Full Text Available The Th2 immune response, culminating in eosinophilia and IgE production, is not only characteristic of allergy but also of infection by parasitic worms (helminths. Anti-parasite IgE has been associated with immunity against a range of helminth infections and many believe that IgE and its receptors evolved to help counter metazoan parasites. Allergens (IgE-antigens are present in only a small minority of protein families and known IgE targets in helminths belong to these same families (e.g. EF-hand proteins, tropomyosin, and PR-1 proteins.During some helminth infection, especially with the well adapted hookworm, the Th2 response is moderated by parasite-expressed molecules. This has been associated with reduced allergy in helminth endemic areas and worm infection or products have been proposed as treatments for allergic conditions. However some infections (especially Ascaris are associated with increased allergy and this has been linked to cross-reactivity between worm proteins (e.g., tropomyosins and highly similar molecules in dust mites and insects. The overlap between allergy and helminth infection is best illustrated in Anisakis simplex, a nematode that when consumed in under-cooked fish can be both an infective helminth and a food allergen. Nearly 20 molecular allergens have been isolated from this species, including tropomyosin (Ani s3 and the EF-hand protein, Ani s troponin.In this review, we highlight aspects of the biology and biochemistry of helminths that may have influenced the evolution of the IgE response. We compare dominant IgE antigens in worms with clinically important environmental allergens and suggest that arrays of such molecules will provide important information on anti-worm immunity as well as allergy.

  12. Does Magnetic Field Affect Malaria Parasite Replication in Human Red Blood Cells?

    Science.gov (United States)

    Chanturiya, Alexandr N.; Glushakova, Svetlana; Yin, Dan; Zimmerberg, Joshua

    2004-01-01

    Digestion of red blood cell (RBC) hemoglobin by the malaria parasite results in the formation of paramagnetic hemazoin crystals inside the parasite body. A number of reports suggest that magnetic field interaction with hamazoin crystals significantly reduces the number of infected cells in culture, and thus magnetic field can be used to combat malaria. We studies the effects of magnetic filed on the Plasmodium falciparum asexual life cycle inside RBCs under various experimental conditions. No effect was found during prolonged exposure of infected RBCs to constant magnetic fields up to 6000 Gauss. Infected RBCs were also exposed, under temperature-controlled conditions, to oscillating magnetic fields with frequencies in the range of 500-20000 kHz, and field strength 30-600 Gauss. This exposure often changed the proportion of different parasite stages in treated culture compared to controls. However, no significant effect on parasitemia was observed in treated cultures. This result indicates that the magnetic field effect on Plasmodium falciparum is negligible, or that hypothetical negative and positive effects on different stages within one 48-hour compensate each other.

  13. Human parasites in the Roman World: health consequences of conquering an empire.

    Science.gov (United States)

    Mitchell, Piers D

    2017-01-01

    The archaeological evidence for parasites in the Roman era is presented in order to demonstrate the species present at that time, and highlight the health consequences for people living under Roman rule. Despite their large multi-seat public latrines with washing facilities, sewer systems, sanitation legislation, fountains and piped drinking water from aqueducts, we see the widespread presence of whipworm (Trichuris trichiura), roundworm (Ascaris lumbricoides) and Entamoeba histolytica that causes dysentery. This would suggest that the public sanitation measures were insufficient to protect the population from parasites spread by fecal contamination. Ectoparasites such as fleas, head lice, body lice, pubic lice and bed bugs were also present, and delousing combs have been found. The evidence fails to demonstrate that the Roman culture of regular bathing in the public baths reduced the prevalence of these parasites. Fish tapeworm was noted to be widely present, and was more common than in Bronze and Iron Age Europe. It is possible that the Roman enthusiasm for fermented, uncooked fish sauce (garum) may have facilitated the spread of this helminth. Roman medical practitioners such as Galen were aware of intestinal worms, explaining their existence and planning treatment using the humoural theory of the period.

  14. Genome-wide diversity and differentiation in New World populations of the human malaria parasite Plasmodium vivax.

    Directory of Open Access Journals (Sweden)

    Thais C de Oliveira

    2017-07-01

    Full Text Available The Americas were the last continent colonized by humans carrying malaria parasites. Plasmodium falciparum from the New World shows very little genetic diversity and greater linkage disequilibrium, compared with its African counterparts, and is clearly subdivided into local, highly divergent populations. However, limited available data have revealed extensive genetic diversity in American populations of another major human malaria parasite, P. vivax.We used an improved sample preparation strategy and next-generation sequencing to characterize 9 high-quality P. vivax genome sequences from northwestern Brazil. These new data were compared with publicly available sequences from recently sampled clinical P. vivax isolates from Brazil (BRA, total n = 11 sequences, Peru (PER, n = 23, Colombia (COL, n = 31, and Mexico (MEX, n = 19.We found that New World populations of P. vivax are as diverse (nucleotide diversity π between 5.2 × 10-4 and 6.2 × 10-4 as P. vivax populations from Southeast Asia, where malaria transmission is substantially more intense. They display several non-synonymous nucleotide substitutions (some of them previously undescribed in genes known or suspected to be involved in antimalarial drug resistance, such as dhfr, dhps, mdr1, mrp1, and mrp-2, but not in the chloroquine resistance transporter ortholog (crt-o gene. Moreover, P. vivax in the Americas is much less geographically substructured than local P. falciparum populations, with relatively little between-population genome-wide differentiation (pairwise FST values ranging between 0.025 and 0.092. Finally, P. vivax populations show a rapid decline in linkage disequilibrium with increasing distance between pairs of polymorphic sites, consistent with very frequent outcrossing. We hypothesize that the high diversity of present-day P. vivax lineages in the Americas originated from successive migratory waves and subsequent admixture between parasite lineages from geographically

  15. Genome-wide diversity and differentiation in New World populations of the human malaria parasite Plasmodium vivax.

    Science.gov (United States)

    de Oliveira, Thais C; Rodrigues, Priscila T; Menezes, Maria José; Gonçalves-Lopes, Raquel M; Bastos, Melissa S; Lima, Nathália F; Barbosa, Susana; Gerber, Alexandra L; Loss de Morais, Guilherme; Berná, Luisa; Phelan, Jody; Robello, Carlos; de Vasconcelos, Ana Tereza R; Alves, João Marcelo P; Ferreira, Marcelo U

    2017-07-01

    The Americas were the last continent colonized by humans carrying malaria parasites. Plasmodium falciparum from the New World shows very little genetic diversity and greater linkage disequilibrium, compared with its African counterparts, and is clearly subdivided into local, highly divergent populations. However, limited available data have revealed extensive genetic diversity in American populations of another major human malaria parasite, P. vivax. We used an improved sample preparation strategy and next-generation sequencing to characterize 9 high-quality P. vivax genome sequences from northwestern Brazil. These new data were compared with publicly available sequences from recently sampled clinical P. vivax isolates from Brazil (BRA, total n = 11 sequences), Peru (PER, n = 23), Colombia (COL, n = 31), and Mexico (MEX, n = 19). We found that New World populations of P. vivax are as diverse (nucleotide diversity π between 5.2 × 10-4 and 6.2 × 10-4) as P. vivax populations from Southeast Asia, where malaria transmission is substantially more intense. They display several non-synonymous nucleotide substitutions (some of them previously undescribed) in genes known or suspected to be involved in antimalarial drug resistance, such as dhfr, dhps, mdr1, mrp1, and mrp-2, but not in the chloroquine resistance transporter ortholog (crt-o) gene. Moreover, P. vivax in the Americas is much less geographically substructured than local P. falciparum populations, with relatively little between-population genome-wide differentiation (pairwise FST values ranging between 0.025 and 0.092). Finally, P. vivax populations show a rapid decline in linkage disequilibrium with increasing distance between pairs of polymorphic sites, consistent with very frequent outcrossing. We hypothesize that the high diversity of present-day P. vivax lineages in the Americas originated from successive migratory waves and subsequent admixture between parasite lineages from geographically diverse sites

  16. Genome-wide diversity and differentiation in New World populations of the human malaria parasite Plasmodium vivax

    Science.gov (United States)

    de Oliveira, Thais C.; Rodrigues, Priscila T.; Menezes, Maria José; Gonçalves-Lopes, Raquel M.; Bastos, Melissa S.; Lima, Nathália F.; Barbosa, Susana; Gerber, Alexandra L.; Loss de Morais, Guilherme; Berná, Luisa; Phelan, Jody; Robello, Carlos; de Vasconcelos, Ana Tereza R.

    2017-01-01

    Background The Americas were the last continent colonized by humans carrying malaria parasites. Plasmodium falciparum from the New World shows very little genetic diversity and greater linkage disequilibrium, compared with its African counterparts, and is clearly subdivided into local, highly divergent populations. However, limited available data have revealed extensive genetic diversity in American populations of another major human malaria parasite, P. vivax. Methods We used an improved sample preparation strategy and next-generation sequencing to characterize 9 high-quality P. vivax genome sequences from northwestern Brazil. These new data were compared with publicly available sequences from recently sampled clinical P. vivax isolates from Brazil (BRA, total n = 11 sequences), Peru (PER, n = 23), Colombia (COL, n = 31), and Mexico (MEX, n = 19). Principal findings/Conclusions We found that New World populations of P. vivax are as diverse (nucleotide diversity π between 5.2 × 10−4 and 6.2 × 10−4) as P. vivax populations from Southeast Asia, where malaria transmission is substantially more intense. They display several non-synonymous nucleotide substitutions (some of them previously undescribed) in genes known or suspected to be involved in antimalarial drug resistance, such as dhfr, dhps, mdr1, mrp1, and mrp-2, but not in the chloroquine resistance transporter ortholog (crt-o) gene. Moreover, P. vivax in the Americas is much less geographically substructured than local P. falciparum populations, with relatively little between-population genome-wide differentiation (pairwise FST values ranging between 0.025 and 0.092). Finally, P. vivax populations show a rapid decline in linkage disequilibrium with increasing distance between pairs of polymorphic sites, consistent with very frequent outcrossing. We hypothesize that the high diversity of present-day P. vivax lineages in the Americas originated from successive migratory waves and subsequent admixture between

  17. In-depth comparative analysis of malaria parasite genomes reveals protein-coding genes linked to human disease in Plasmodium falciparum genome.

    Science.gov (United States)

    Liu, Xuewu; Wang, Yuanyuan; Liang, Jiao; Wang, Luojun; Qin, Na; Zhao, Ya; Zhao, Gang

    2018-05-02

    Plasmodium falciparum is the most virulent malaria parasite capable of parasitizing human erythrocytes. The identification of genes related to this capability can enhance our understanding of the molecular mechanisms underlying human malaria and lead to the development of new therapeutic strategies for malaria control. With the availability of several malaria parasite genome sequences, performing computational analysis is now a practical strategy to identify genes contributing to this disease. Here, we developed and used a virtual genome method to assign 33,314 genes from three human malaria parasites, namely, P. falciparum, P. knowlesi and P. vivax, and three rodent malaria parasites, namely, P. berghei, P. chabaudi and P. yoelii, to 4605 clusters. Each cluster consisted of genes whose protein sequences were significantly similar and was considered as a virtual gene. Comparing the enriched values of all clusters in human malaria parasites with those in rodent malaria parasites revealed 115 P. falciparum genes putatively responsible for parasitizing human erythrocytes. These genes are mainly located in the chromosome internal regions and participate in many biological processes, including membrane protein trafficking and thiamine biosynthesis. Meanwhile, 289 P. berghei genes were included in the rodent parasite-enriched clusters. Most are located in subtelomeric regions and encode erythrocyte surface proteins. Comparing cluster values in P. falciparum with those in P. vivax and P. knowlesi revealed 493 candidate genes linked to virulence. Some of them encode proteins present on the erythrocyte surface and participate in cytoadhesion, virulence factor trafficking, or erythrocyte invasion, but many genes with unknown function were also identified. Cerebral malaria is characterized by accumulation of infected erythrocytes at trophozoite stage in brain microvascular. To discover cerebral malaria-related genes, fast Fourier transformation (FFT) was introduced to extract

  18. Current Perspectives of Telomerase Structure and Function in Eukaryotes with Emerging Views on Telomerase in Human Parasites.

    Science.gov (United States)

    Dey, Abhishek; Chakrabarti, Kausik

    2018-01-24

    Replicative capacity of a cell is strongly correlated with telomere length regulation. Aberrant lengthening or reduction in the length of telomeres can lead to health anomalies, such as cancer or premature aging. Telomerase is a master regulator for maintaining replicative potential in most eukaryotic cells. It does so by controlling telomere length at chromosome ends. Akin to cancer cells, most single-cell eukaryotic pathogens are highly proliferative and require persistent telomerase activity to maintain constant length of telomere and propagation within their host. Although telomerase is key to unlimited cellular proliferation in both cases, not much was known about the role of telomerase in human parasites (malaria, Trypanosoma , etc.) until recently. Since telomerase regulation is mediated via its own structural components, interactions with catalytic reverse transcriptase and several factors that can recruit and assemble telomerase to telomeres in a cell cycle-dependent manner, we compare and discuss here recent findings in telomerase biology in cancer, aging and parasitic diseases to give a broader perspective of telomerase function in human diseases.

  19. A novel progesterone receptor membrane component (PGRMC) in the human and swine parasite Taenia solium: implications to the host-parasite relationship.

    Science.gov (United States)

    Aguilar-Díaz, Hugo; Nava-Castro, Karen E; Escobedo, Galileo; Domínguez-Ramírez, Lenin; García-Varela, Martín; Del Río-Araiza, Víctor H; Palacios-Arreola, Margarita I; Morales-Montor, Jorge

    2018-03-09

    We have previously reported that progesterone (P 4 ) has a direct in vitro effect on the scolex evagination and growth of Taenia solium cysticerci. Here, we explored the hypothesis that the P 4 direct effect on T. solium might be mediated by a novel steroid-binding parasite protein. By way of using immunofluorescent confocal microscopy, flow cytometry analysis, double-dimension electrophoresis analysis, and sequencing the corresponding protein spot, we detected a novel PGRMC in T. solium. Molecular modeling studies accompanied by computer docking using the sequenced protein, together with phylogenetic analysis and sequence alignment clearly demonstrated that T. solium PGRMC is from parasite origin. Our results show that P 4 in vitro increases parasite evagination and scolex size. Using immunofluorescent confocal microscopy, we detected that parasite cells showed expression of a P 4 -binding like protein exclusively located at the cysticercus subtegumental tissue. Presence of the P 4 -binding protein in cyst cells was also confirmed by flow cytometry. Double-dimension electrophoresis analysis, followed by sequencing the corresponding protein spot, revealed a protein that was previously reported in the T. solium genome belonging to a membrane-associated progesterone receptor component (PGRMC). Molecular modeling studies accompanied by computer docking using the sequenced protein showed that PGRMC is potentially able to bind steroid hormones such as progesterone, estradiol, testosterone and dihydrodrotestosterone with different affinities. Phylogenetic analysis and sequence alignment clearly demonstrated that T. solium PGRMC is related to a steroid-binding protein of Echinoccocus granulosus, both of them being nested within a cluster including similar proteins present in platyhelminths such as Schistocephalus solidus and Schistosoma haematobium. Progesterone may directly act upon T. solium cysticerci probably by binding to PGRMC. This research has implications in the

  20. Experimental evolution of protozoan traits in response to interspecific competition.

    Science.gov (United States)

    terHorst, C P

    2011-01-01

    Decades of experiments have demonstrated the ecological effect of competition, but experimental evidence for competitive effects on trait evolution is rare. I measured the evolution of six protozoan traits in response to competitors from the inquiline community of pitcher plants. Replicate populations of Colpoda, a ciliated protozoan, were allowed to evolve in response to intra- and interspecific competition for 20 days (approximately 100 generations), before traits were measured in two common garden environments. Populations that evolved with interspecific competition had smaller cell sizes, produced fewer cysts and had higher population growth rates relative to populations grown in monoculture. The presence of interspecific competitors led to differential lineage sorting, most likely by increasing the strength of selection. These results are the first to demonstrate protozoan evolution in response to competition and may have implications for species coexistence in this system. © 2010 The Author. Journal of Evolutionary Biology © 2010 European Society For Evolutionary Biology.

  1. Probability of Transmission of Malaria from Mosquito to Human Is Regulated by Mosquito Parasite Density in Naïve and Vaccinated Hosts.

    Directory of Open Access Journals (Sweden)

    Thomas S Churcher

    2017-01-01

    Full Text Available Over a century since Ronald Ross discovered that malaria is caused by the bite of an infectious mosquito it is still unclear how the number of parasites injected influences disease transmission. Currently it is assumed that all mosquitoes with salivary gland sporozoites are equally infectious irrespective of the number of parasites they harbour, though this has never been rigorously tested. Here we analyse >1000 experimental infections of humans and mice and demonstrate a dose-dependency for probability of infection and the length of the host pre-patent period. Mosquitoes with a higher numbers of sporozoites in their salivary glands following blood-feeding are more likely to have caused infection (and have done so quicker than mosquitoes with fewer parasites. A similar dose response for the probability of infection was seen for humans given a pre-erythrocytic vaccine candidate targeting circumsporozoite protein (CSP, and in mice with and without transfusion of anti-CSP antibodies. These interventions prevented infection more efficiently from bites made by mosquitoes with fewer parasites. The importance of parasite number has widespread implications across malariology, ranging from our basic understanding of the parasite, how vaccines are evaluated and the way in which transmission should be measured in the field. It also provides direct evidence for why the only registered malaria vaccine RTS,S was partially effective in recent clinical trials.

  2. Asexual populations of the human malaria parasite, Plasmodium falciparum, use a two-step genomic strategy to acquire accurate, beneficial DNA amplifications.

    Directory of Open Access Journals (Sweden)

    Jennifer L Guler

    Full Text Available Malaria drug resistance contributes to up to a million annual deaths. Judicious deployment of new antimalarials and vaccines could benefit from an understanding of early molecular events that promote the evolution of parasites. Continuous in vitro challenge of Plasmodium falciparum parasites with a novel dihydroorotate dehydrogenase (DHODH inhibitor reproducibly selected for resistant parasites. Genome-wide analysis of independently-derived resistant clones revealed a two-step strategy to evolutionary success. Some haploid blood-stage parasites first survive antimalarial pressure through fortuitous DNA duplications that always included the DHODH gene. Independently-selected parasites had different sized amplification units but they were always flanked by distant A/T tracks. Higher level amplification and resistance was attained using a second, more efficient and more accurate, mechanism for head-to-tail expansion of the founder unit. This second homology-based process could faithfully tune DNA copy numbers in either direction, always retaining the unique DNA amplification sequence from the original A/T-mediated duplication for that parasite line. Pseudo-polyploidy at relevant genomic loci sets the stage for gaining additional mutations at the locus of interest. Overall, we reveal a population-based genomic strategy for mutagenesis that operates in human stages of P. falciparum to efficiently yield resistance-causing genetic changes at the correct locus in a successful parasite. Importantly, these founding events arise with precision; no other new amplifications are seen in the resistant haploid blood stage parasite. This minimizes the need for meiotic genetic cleansing that can only occur in sexual stage development of the parasite in mosquitoes.

  3. Dog-walking behaviours affect gastrointestinal parasitism in park-attending dogs.

    Science.gov (United States)

    Smith, Anya F; Semeniuk, Christina A D; Kutz, Susan J; Massolo, Alessandro

    2014-09-04

    In urban parks, dogs, wildlife and humans can be sympatric, introducing the potential for inter- and intra-specific transmission of pathogens among hosts. This study was conducted to determine the prevalence of zoonotic and non-zoonotic gastrointestinal parasites in dogs in Calgary city parks, and assess if dog-walking behaviour, park management, history of veterinary care, and dog demographics were associated with parasitism in dogs From June to September 2010, 645 questionnaires were administered to dog owners in nine city parks to determine behavioural and demographic factors, and corresponding feces from 355 dogs were collected. Dog feces were analyzed for helminth and some protozoan species using a modified sugar flotation technique and microscopic examination, a subsample was analyzed for Giardia spp. and Cryptosporidium spp. using a direct immunofluorescence assay. Descriptive and multivariate statistics were conducted to determine associations among behaviours, demographics, and parasite prevalence and infection intensities Parasite prevalence was 50.2%. Giardia spp. (24.7%), Cryptosporidium spp. (14.7%), and Cystoisospora spp. (16.8%) were the most prevalent parasites. Helminth prevalence was low (4.1%). Presence of Giardia spp. was more likely in intact and young dogs; and infection with any parasite and Giardia spp. intensity were both positively associated with dogs visiting multiple parks coupled with a high frequency of park use and off-leash activity, and with being intact and young. Cryptosporidium spp. intensity was associated with being intact and young, and having visited the veterinarian within the previous year Our results indicate a higher overall prevalence of protozoa in dogs than previously found in Calgary. The zoonotic potential of some parasites found in park-attending dogs may be of interest for public health. These results are relevant for informing park managers, the public health sector, and veterinarians.

  4. Parasites: Water

    Science.gov (United States)

    ... Consultations, and General Public. Contact Us Parasites Home Water Language: English Español (Spanish) Recommend on Facebook Tweet Share Compartir Parasites can live in natural water sources. When outdoors, treat your water before drinking ...

  5. The Plasmodium PHIST and RESA-Like Protein Families of Human and Rodent Malaria Parasites

    Science.gov (United States)

    Moreira, Cristina K.; Naissant, Bernina; Coppi, Alida; Bennett, Brandy L.; Aime, Elena; Franke-Fayard, Blandine; Janse, Chris J.; Coppens, Isabelle; Sinnis, Photini; Templeton, Thomas J.

    2016-01-01

    The phist gene family has members identified across the Plasmodium genus, defined by the presence of a domain of roughly 150 amino acids having conserved aromatic residues and an all alpha-helical structure. The family is highly amplified in P. falciparum, with 65 predicted genes in the genome of the 3D7 isolate. In contrast, in the rodent malaria parasite P. berghei 3 genes are identified, one of which is an apparent pseudogene. Transcripts of the P. berghei phist genes are predominant in schizonts, whereas in P. falciparum transcript profiles span different asexual blood stages and gametocytes. We pursued targeted disruption of P. berghei phist genes in order to characterize a simplistic model for the expanded phist gene repertoire in P. falciparum. Unsuccessful attempts to disrupt P. berghei PBANKA_114540 suggest that this phist gene is essential, while knockout of phist PBANKA_122900 shows an apparent normal progression and non-essential function throughout the life cycle. Epitope-tagging of P. falciparum and P. berghei phist genes confirmed protein export to the erythrocyte cytoplasm and localization with a punctate pattern. Three P. berghei PEXEL/HT-positive exported proteins exhibit at least partial co-localization, in support of a common vesicular compartment in the cytoplasm of erythrocytes infected with rodent malaria parasites. PMID:27022937

  6. Assessing the burden of intestinal parasites affecting newly arrived immigrants in Qatar.

    Science.gov (United States)

    Abu-Madi, Marawan A; Behnke, Jerzy M; Ismail, Ahmed; Boughattas, Sonia

    2016-12-01

    In the last decades, the enormous influx of immigrants to industrialized countries has led to outbreaks of parasitic diseases, with enteric infections being amongst the most frequently encountered. In its strategy to control such infection, Qatar has established the Pre-Employment Certificate (PEC) program which requires medical inspection before arrival in Qatar and which is mandatory for immigrant workers travelling to the country. To assess the reliability of the PEC, we conducted a survey of intestinal parasites, based on examination of stool samples provided by immigrant workers (n = 2,486) recently arrived in Qatar. Overall prevalence of helminths was 7.0% and that of protozoa was 11.7%. Prevalence of combined helminths was highest among the western Asians and the highest prevalence of combined protozoan parasites was among workers from North to Saharan Africa. Analysis of temporal changes showed an increasing trend of protozoan infections over the investigated 3 years. A major contribution to this temporal change in prevalence came from Blastocystis hominis as well as from other protozoan species: Giardia duodenalis and Endolimax nana. Analysis of the temporal trend in species richness of the protozoan species showed a significant increase in the mean number of species harboured per subject across this period. The increase of protozoan infections over recent years raises some concerns. It suggests that screening protocols for applicants for visas/work permits needs to be revised giving more careful attention to the intestinal protozoan infections that potential immigrants may harbor.

  7. Identification of a RAC/AKT-like gene in Leishmania parasites as a putative therapeutic target in leishmaniasis.

    Science.gov (United States)

    Varela-M, Rubén E; Ochoa, Rodrigo; Muskus, Carlos E; Muro, Antonio; Mollinedo, Faustino

    2017-10-10

    Leishmaniasis is one of the world's most neglected diseases caused by at least 20 different species of the protozoan parasite Leishmania. Although new drugs have become recently available, current therapy for leishmaniasis is still unsatisfactory. A subgroup of serine/threonine protein kinases named as related to A and C protein kinases (RAC), or protein kinase B (PKB)/AKT, has been identified in several organisms including Trypanosoma cruzi parasites. PKB/AKT plays a critical role in mammalian cell signaling promoting cell survival and is a major drug target in cancer therapy. However, the role of protozoan parasitic PKB/AKT remains to be elucidated. We have found that anti-human AKT antibodies recognized a protein of about 57 kDa in Leishmania spp. parasites. Anti-human phospho-AKT(Thr308) antibodies identified a protein in extracts from Leishmania spp. that was upregulated following parasite exposure to stressful conditions, such as nutrient deprivation or heat shock. Incubation of AKT inhibitor X with Leishmania spp. promastigotes under stressful conditions or with Leishmania-infected macrophages led to parasite cell death. We have identified and cloned a novel gene from Leishmania donovani named Ld-RAC/AKT-like gene, encoding a 510-amino acid protein of approximately 57.6 kDa that shows a 26.5% identity with mammalian AKT1. Ld-RAC/AKT-like protein contains major mammalian PKB/AKT hallmarks, including the typical pleckstrin, protein kinase and AGC kinase domains. Unlike mammalian AKT that contains key phosphorylation sites at Thr308 and Ser473 in the activation loop and hydrophobic motif, respectively, Ld-RAC/AKT-like protein has a Thr residue in both motifs. By domain sequence comparison, we classified AKT proteins from different origins in four major subcategories that included different parasites. Our data suggest that Ld-RAC/AKT-like protein represents a Leishmania orthologue of mammalian AKT involved in parasite stress response and survival, and

  8. The conserved clag multigene family of malaria parasites: essential roles in host-pathogen interaction.

    Science.gov (United States)

    Gupta, Ankit; Thiruvengadam, Girija; Desai, Sanjay A

    2015-01-01

    The clag multigene family is strictly conserved in malaria parasites, but absent from neighboring genera of protozoan parasites. Early research pointed to roles in merozoite invasion and infected cell cytoadherence, but more recent studies have implicated channel-mediated uptake of ions and nutrients from host plasma. Here, we review the current understanding of this gene family, which appears to be central to host-parasite interactions and an important therapeutic target. Published by Elsevier Ltd.

  9. Crystallization and preliminary crystallographic analysis of orotidine 5′-monophosphate decarboxylase from the human malaria parasite Plasmodium falciparum

    International Nuclear Information System (INIS)

    Krungkrai, Sudaratana R.; Tokuoka, Keiji; Kusakari, Yukiko; Inoue, Tsuyoshi; Adachi, Hiroaki; Matsumura, Hiroyoshi; Takano, Kazufumi; Murakami, Satoshi; Mori, Yusuke; Kai, Yasushi; Krungkrai, Jerapan; Horii, Toshihiro

    2006-01-01

    Orotidine 5′-monophosphate decarboxylase of human malaria parasite P. falciparum was crystallized by the seeding method in a hanging drop using PEG 3000 as a precipitant. A complete set of diffraction data from a native crystal was collected to 2.7 Å resolution at 100 K using synchrotron radiation. Orotidine 5′-monophosphate (OMP) decarboxylase (OMPDC; EC 4.1.1.23) catalyzes the final step in the de novo synthesis of uridine 5′-monophosphate (UMP) and defects in the enzyme are lethal in the malaria parasite Plasmodium falciparum. Active recombinant P. falciparum OMPDC (PfOMPDC) was crystallized by the seeding method in a hanging drop using PEG 3000 as a precipitant. A complete set of diffraction data from a native crystal was collected to 2.7 Å resolution at 100 K using synchrotron radiation at the Swiss Light Source. The crystal exhibits trigonal symmetry (space group R3), with hexagonal unit-cell parameters a = b = 201.81, c = 44.03 Å. With a dimer in the asymmetric unit, the solvent content is 46% (V M = 2.3 Å 3 Da −1 )

  10. Prevalence of zoonotic intestinal parasites in household and stray dogs in rural areas of Hamadan, Western Iran.

    Science.gov (United States)

    Sardarian, K; Maghsood, A H; Ghiasian, S A; Zahirnia, A H

    2015-06-01

    Zoonotic parasitic infections are a major global public and veterinary health problem and widespread among dogs. The objective of this study was to assess the prevalence of intestinal parasites in stray and household dogs in the rural areas of Hamadan district. During 2012, 1,500 fresh fecal samples from 243 household and 1,257 stray dogs were examined by using direct wet mount, simple zinc sulfate flotation, and Lugol's solution staining. Of 1,500 dogs, 20.4% were positive for intestinal parasites. Helminthes eggs were more frequently found in fecal samples than protozoan cysts or trophozoites (15.9% vs. 4.5%, respectively). Toxocara canis was the most frequently detected parasite, with a prevalence of 6.3%, followed by Taenia/Echinococcus spp. (2.9%), Isospora spp. (2.7%), and Toxascaris leonina (2.6%). Helminthes and protozoa were significantly more prevalent in household dogs than in stray dogs (Pparasites indicated that people residing in this area are at risk of exposure to these potentially hazardous zoonotic pathogens. Mass education of the general population is highly recommended to increase awareness of the potential for horizontal transmission of these parasitic infections from dogs to humans.

  11. Host-seeking behaviors of mosquitoes experimentally infected with sympatric field isolates of the human malaria parasite Plasmodium falciparum: no evidence for host manipulation

    Directory of Open Access Journals (Sweden)

    Amélie eVantaux

    2015-08-01

    Full Text Available Previous studies have shown that Plasmodium parasites can manipulate mosquito feeding behaviours such as motivation and avidity to feed on vertebrate hosts, in ways that increase the probability of parasite transmission. These studies, however, have been mainly carried out on non-natural and/or laboratory based model systems and hence may not reflect what occurs in the field. We now need to move closer to the natural setting, if we are to fully capture the ecological and evolutionary consequences of these parasite-induced behavioral changes. As part of this effort, we conducted a series of experiments to investigate the long and short-range behavioural responses to human stimuli in the mosquito Anopheles coluzzii during different stages of infection with sympatric field isolates of the human malaria parasite Plasmodium falciparum in Burkina Faso. First, we used a dual-port olfactometer designed to take advantage of the whole body odor to gauge mosquito long-range host-seeking behaviors. Second, we used a locomotor activity monitor system to assess mosquito short-range behaviors. Compared to control uninfected mosquitoes, P. falciparum infection had no significant effect neither on long-range nor on short-range behaviors both at the immature and mature stages. This study, using a natural mosquito-malaria parasite association, indicates that manipulation of vector behavior may not be a general phenomenon. We speculate that the observed contrasting phenotypes with model systems might result from coevolution of the human parasite and its natural vector. Future experiments, using other sympatric malaria mosquito populations or species are required to test this hypothesis. In conclusion, our results highlight the importance of following up discoveries in laboratory model systems with studies on natural parasite–mosquito interactions to accurately predict the epidemiological, ecological and evolutionary consequences of parasite manipulation of vector

  12. Intestinal protozoan and helminthic diarrheal infections in children ...

    African Journals Online (AJOL)

    Intestinal protozoan and helminthic diarrheal infections in children under five years old in Agasha, Benue State, north-central Nigeria. ... creation particularly on proper hand washing with soap or ash and water for children and their parents/care-givers. Keywords: diarrhea, protozoa, helminthes, hygiene and hand hygiene.

  13. Phytoplankton/protozoan dynamics in the Nyara Estuary, a small ...

    African Journals Online (AJOL)

    Phytoplankton/protozoan dynamics in the Nyara Estuary, a small temporarily open system in the Eastern Cape (South Africa) ... freshwater inflow, the Nyara is best described as a predominantly low nutrient, low phytoplankton biomass, stratified system, dominated by the microbial food-web and possibly fed by detritus.

  14. Off the hook - how bacteria survive protozoan grazing

    DEFF Research Database (Denmark)

    Matz, Carsten; Kjelleberg, S.

    2005-01-01

    Bacterial growth and survival in numerous environments are constrained by the action of bacteria-consuming protozoa. Recent findings suggest that bacterial adaptations against protozoan predation might have a significant role in bacterial persistence and diversification. We argue that selective p...... for microbial ecology and evolution at the interface of prokaryotes and eukaryotes....

  15. Vitamin B6-Dependent Enzymes in the Human Malaria Parasite Plasmodium falciparum: A Druggable Target?

    Directory of Open Access Journals (Sweden)

    Thales Kronenberger

    2014-01-01

    Full Text Available Malaria is a deadly infectious disease which affects millions of people each year in tropical regions. There is no effective vaccine available and the treatment is based on drugs which are currently facing an emergence of drug resistance and in this sense the search for new drug targets is indispensable. It is well established that vitamin biosynthetic pathways, such as the vitamin B6 de novo synthesis present in Plasmodium, are excellent drug targets. The active form of vitamin B6, pyridoxal 5-phosphate, is, besides its antioxidative properties, a cofactor for a variety of essential enzymes present in the malaria parasite which includes the ornithine decarboxylase (ODC, synthesis of polyamines, the aspartate aminotransferase (AspAT, involved in the protein biosynthesis, and the serine hydroxymethyltransferase (SHMT, a key enzyme within the folate metabolism.

  16. Investigation of gastrointestinal parasites of dairy cattle around Taiwan.

    Science.gov (United States)

    Huang, Chiu-Chen; Wang, Lian-Chen; Pan, Chien-Hung; Yang, Cheng-Hsiung; Lai, Cheng-Hung

    2014-02-01

    Parasitic nematodes are one of the most important causes of production losses in most cattle-producing countries of the world. The aim of the present study is to make a through estimate of helminth and protozoan infection prevalence in dairy cattle around Taiwan. Coprological techniques, including direct fecal smear, simple flotation, and simple sedimentation, were used to detect gastrointestinal helminths and protozoan in dairy cattle. A total of 1259 rectal fecal samples were collected from Holstein dairy cattle at 94 farms in 13 counties in Taiwan. The overall prevalence of gastrointestinal parasitic infection was 86.9%. The infection rates of protozoa, nematodes, trematodes, and cestodes were 81.3%, 7.9%, 1.6%, and 0.6%, respectively. Among all parasites, Buxtonella sulcata (61.7%) was the most predominant one, followed with Cryptosporidium spp. (32.6%) and Eimeria spp. (11.8%). There were significant differences in the prevalence of protozoa and nematodes between different age groups and distributional area groups. The present study demonstrated that gastrointestinal parasitic infections occur frequently in dairy cattle around Taiwan, especially protozoan infections. The results indicated that a superior management system and regular anthelmintic treatment should be used for the control of parasitic infections in dairy cattle farms. Copyright © 2012. Published by Elsevier B.V.

  17. Sirtuins of parasitic protozoa: In search of function(s)

    Science.gov (United States)

    Religa, Agnieszka A.; Waters, Andrew P.

    2012-01-01

    The SIR2 family of NAD+-dependent protein deacetylases, collectively called sirtuins, has been of central interest due to their proposed roles in life-span regulation and ageing. Sirtuins are one group of environment sensors of a cell interpreting external information and orchestrating internal responses at the sub-cellular level, through participation in gene regulation mechanisms. Remarkably conserved across all kingdoms of life SIR2 proteins in several protozoan parasites appear to have both conserved and intriguing unique functions. This review summarises our current knowledge of the members of the sirtuin families in Apicomplexa, including Plasmodium, and other protozoan parasites such as Trypanosoma and Leishmania. The wide diversity of processes regulated by SIR2 proteins makes them targets worthy of exploitation in anti-parasitic therapies. PMID:22906508

  18. Parasitic Nematode Interactions with Mammals and Plants

    NARCIS (Netherlands)

    Jasmer, D.P.; Goverse, A.; Smant, G.

    2003-01-01

    Parasitic nematodes that infect humans, animals, and plants cause serious diseases that are deleterious to human health and agricultural productivity. Chemical and biological control methods have reduced the impact of these parasites. However, surviving environmental stages lead to persistent

  19. Everyday and Exotic Foodborne Parasites

    Directory of Open Access Journals (Sweden)

    Marilyn B Lee

    2000-01-01

    Full Text Available Everyday foodborne parasites, which are endemic in Canada, include the protozoans Entamoeba histolytica, Giardia lamblia and Cryptosporidium parvum. However, these parasites are most frequently acquired through unfiltered drinking water, homosexual activity or close personal contact such as in daycare centres and occasionally via a food vehicle. It is likely that many foodborne outbreaks from these protozoa go undetected. Transmission of helminth infections, such as tapeworms, is rare in Canada because of effective sewage treatment. However, a common foodborne parasite of significance is Toxoplasma gondii. Although infection can be acquired from accidental ingestion of oocysts from cat feces, infection can also result from consumption of tissue cysts in undercooked meat, such as pork or lamb. Congenital transmission poses an immense financial burden, costing Canada an estimated $240 million annually. Also of concern is toxoplasmosis in AIDS patients, which may lead to toxoplasmosis encephalitis, the second most common AIDS-related opportunistic infection of the central nervous system. Exotic parasites (ie, those acquired from abroad or from imported food are of growing concern because more Canadians are travelling and the number of Canada?s trading partners is increasing. Since 1996, over 3000 cases of Cyclospora infection reported in the United States and Canada were epidemiologically associated with importation of Guatemalan raspberries. Unlike toxoplasmosis, where strategies for control largely rest with individual practices, control of cyclosporiasis rests with government policy, which should prohibit the importation of foods at high risk.

  20. Role of parasites in cancer.

    Science.gov (United States)

    Mandong, B M; Ngbea, J A; Raymond, Vhriterhire

    2013-01-01

    In areas of parasitic endemicity, the occurrence of cancer that is not frequent may be linked with parasitic infection. Epidemiological correlates between some parasitic infections and cancer is strong, suggesting a strong aetiological association. The common parasites associated with human cancers are schistosomiasis, malaria, liver flukes (Clonorchis sinenses, Opistorchis viverrini). To review the pathology, literature and methods of diagnosis. Literature review from peer reviewed Journals cited in PubMed and local journals. Parasites may serve as promoters of cancer in endemic areas of infection.

  1. Glycomic Analysis of Life Stages of the Human Parasite Schistosoma mansoni Reveals Developmental Expression Profiles of Functional and Antigenic Glycan Motifs

    NARCIS (Netherlands)

    Smit, C.H.; van Diepen, A.; Nguyen, D.L.; Wuhrer, M.; Hoffmann, K.F.; Deelder, A.M.; Hokke, C.H.

    2015-01-01

    Glycans present on glycoproteins and glycolipids of the major human parasite Schistosoma mansoni induce innate as well as adaptive immune responses in the host. To be able to study the molecular characteristics of schistosome infections it is therefore required to determine the expression profiles

  2. Parasites and other infectious agents in marine finfish and shellfish species posing a hazard to human health (ToR b)

    DEFF Research Database (Denmark)

    Alfjorden, A.; Podolska, M.; Karaseva, T.

    2015-01-01

    Several parasites and other infectious agents frequently reported by the WGPDMO in the annual update of disease trends (ICES WGPDMO reports 1999–2015) have the potential to be harmful to human health if ingested in unprocessed or inadequate-ly/partly processed seafood. These include, but are not ...

  3. Echinococcosis and other parasitic infections in domestic dogs from urban areas of an Argentinean Patagonian city

    Directory of Open Access Journals (Sweden)

    Verónica Flores

    2017-12-01

    Full Text Available In urban populations of South America, dogs with free access to public areas represent a public health concern. The primary consequence of roaming dogs on human health is the transmission of infectious and parasitic diseases mainly through feces contamination. The main diseases likely to be transmitted are hydatidosis or echinococcosis, larva migrans, and giardiasis. In Argentina, hydatidosis ranks among the most prevalent zoonosis. Although it is considered a rural disease, the circulation of this parasite in urban areas has been documented. The aim of this work was to survey intestinal parasites in canine feces from two low-income urban neighborhoods of Bariloche city, Argentina, and to assess their seasonal variation. During 2016, 188 fresh dog feces were collected from sidewalks in 40 randomly selected blocks from the neighborhoods. Each sample was processed by Sheater flotation and tested for a coproantigen (CAg by ELISA. The percentage of parasitized feces was 65.3% (95% CI: 55.9%-73.8%. Eleven parasite species were found, 3 protozoan, 3 cestodes, and 5 nematodes. Echinococcus sp. was present in 9.3% of the samples (95% CI: 4.7%-16.1%. Canine echinococcosis rates resulted similar to rates found previously in other neighborhoods of the city. The life cycle of Echinococcus sp. is sustained in urban areas by the entry of parasitized livestock, domiciliary slaughtering, and inadequate deposition of offal. The risk of Echinococcus sp. transmission to people in these neighborhoods is very high, due to high density of free-roaming dogs and high percentages of infected feces, similar to percentages observed in rural areas.

  4. Imaging of parasitic diseases

    International Nuclear Information System (INIS)

    Haddad, Maurice C.

    2008-01-01

    This book provides an overview of the imaging findings of parasitic diseases using modern imaging equipment. The chapters consist of short descriptions of causative pathogens, epidemiology, modes of transmission, pathology, clinical manifestations, laboratory tests, and imaging findings, with illustrative examples of parasitic diseases that can affect various systems of the human body. Tables summarizing key diagnostic features and clinical data pertinent to diagnosis are also included. This book is intended for radiologists worldwide. (orig.)

  5. Imaging of parasitic diseases

    Energy Technology Data Exchange (ETDEWEB)

    Haddad, Maurice C. [American Univ. of Beirut Medical Center (Lebanon). Dept. of Diagnostic Radiology; Abd El Bagi, Mohamed E. [Riyadh Military Hospital (Saudi Arabia). Radiology and Imaging Dept. 920W; Tamraz, Jean C. (eds.) [CHU Hotel-Dieu de France, Beirut (Lebanon)

    2008-07-01

    This book provides an overview of the imaging findings of parasitic diseases using modern imaging equipment. The chapters consist of short descriptions of causative pathogens, epidemiology, modes of transmission, pathology, clinical manifestations, laboratory tests, and imaging findings, with illustrative examples of parasitic diseases that can affect various systems of the human body. Tables summarizing key diagnostic features and clinical data pertinent to diagnosis are also included. This book is intended for radiologists worldwide. (orig.)

  6. Pathoecology of Chiribaya parasitism

    Directory of Open Access Journals (Sweden)

    Martinson Elizabeth

    2003-01-01

    Full Text Available The excavations of Chiribaya culture sites in the Osmore drainage of southern Peru focused on the recovery of information about prehistoric disease, including parasitism. The archaeologists excavated human, dog, guinea pig, and llama mummies. These mummies were analyzed for internal and external parasites. The results of the analysis and reconstruction of prehistoric life from the excavations allows us to interpret the pathoecology of the Chiribaya culture.

  7. The magnitude and risk factors of intestinal parasitic infection in relation to Human Immunodeficiency Virus infection and immune status, at ALERT Hospital, Addis Ababa, Ethiopia.

    Science.gov (United States)

    Taye, Biruhalem; Desta, Kassu; Ejigu, Selamawit; Dori, Geme Urge

    2014-06-01

    Human Immunodeficiency Virus (HIV) and intestinal parasitic infections are among the main health problems in developing countries like Ethiopia. Particularly, co-infections of these diseases would worsen the progression of HIV to Acquired Immunodeficiency Syndrome (AIDS). The purpose of this study was to determine the magnitude and risk factors for intestinal parasites in relation to HIV infection and immune status. The study was conducted in (1) HIV positive on antiretroviral therapy (ART) and (2) ART naïve HIV positive patients, and (3) HIV-negative individuals, at All African Leprosy and Tuberculosis (TB) Eradication and Rehabilitation Training Center (ALERT) hospital in Addis Ababa, Ethiopia. Study participants were interviewed using structured questionnaires to obtain socio-demographic characteristics and assess risk factors associated with intestinal parasitic infection. Intestinal parasites were identified from fecal samples by direct wet mount, formol ether concentration, and modified Ziehl-Neelsen staining techniques. The immune status was assessed by measuring whole blood CD4 T-cell count. The overall magnitude of intestinal parasite was 35.08%. This proportion was different among study groups with 39.2% (69/176), 38.83% (40/103) and 27.14% (38/140) in ART naïve HIV positives patients, in HIV negatives, and in HIV positive on ART patients respectively. HIV positive patients on ART had significantly lower magnitude of intestinal parasitic infection compared to HIV negative individuals. Intestinal helminths were significantly lower in HIV positive on ART and ART naïve patients than HIV negatives. Low monthly income, and being married, divorced or widowed were among the socio-demographic characteristics associated with intestinal parasitic infection. No association was observed between the magnitude of intestinal parasites and CD4 T-cell count. However, Cryptosporidium parvum, and Isospora belli were exclusively identified in individuals with CD4 T

  8. Occurrence and host specificity of a neogregarine protozoan in four milkweed butterfly hosts (Danaus spp.).

    Science.gov (United States)

    Barriga, Paola A; Sternberg, Eleanore D; Lefèvre, Thierry; de Roode, Jacobus C; Altizer, Sonia

    2016-10-01

    Throughout their global range, wild monarch butterflies (Danaus plexippus) are infected with the protozoan Ophryocystis elektroscirrha (OE). In monarchs, OE infection reduces pupal eclosion, adult lifespan, adult body size and flight ability. Infection of other butterfly hosts with OE is rare or unknown, and the only previously published records of OE infection were on monarch and queen butterflies (D. gilippus). Here we explored the occurrence and specificity of OE and OE-like parasites in four Danaus butterfly species. We surveyed wild D. eresimus (soldier), D. gilippus (queen), D. petilia (lesser wanderer), and D. plexippus (monarch) from five countries to determine the presence of infection. We conducted five cross-infection experiments, on monarchs and queen butterflies and their OE and OE-like parasites, to determine infection probability and the impact of infection on their hosts. Our field survey showed that OE-like parasites were present in D. gilippus, D. petilia, and D. plexippus, but were absent in D. eresimus. Infection probability varied geographically such that D. gilippus and D. plexippus populations in Puerto Rico and Trinidad were not infected or had low prevalence of infection, whereas D. plexippus from S. Florida and Australia had high prevalence. Cross-infection experiments showed evidence for host specificity, in that OE strains from monarchs were more effective at infecting monarchs than queens, and monarchs were less likely to be infected by OE-like strains from queens and lesser wanderers relative to their own natal strains. Our study showed that queens are less susceptible to OE and OE-like infection than monarchs, and that the reduction in adult lifespan following infection is more severe in monarchs than in queens. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. A coprological survey of intestinal parasites of wild lions (Panthera leo) in the Serengeti and the Ngorongoro Crater, Tanzania, east Africa.

    Science.gov (United States)

    Müller-Graf, C D

    1995-10-01

    Fecal examination on 112 and a subset of 58 wild lions (Panthera leo) in the Serengeti National Park and the Ngorongoro Crater, Tanzania, East Africa revealed eggs, larvae, and protozoan cysts of 15 parasite taxa. The most prevalent were Spirometra sp. (63% prevalence), Taeniidae (58%), Ancylostoma sp. (56%), and a coccidian (53%). Three parasites were considered spurious. Of the hosts, 97.3% were infected with at least 1 species of parasite. Individual parasite taxa were aggregated among hosts.

  10. Bovine Tick-borne Protozoan Diseases: Emerging Threats

    OpenAIRE

    El-Ashker MR

    2013-01-01

    Tick-borne protozoan diseases, Theileriosis and Babesiosis, are major health and management problems of cattle, small ruminants and buffaloes in Africa, Asia and Latin America. Recently, tickborne diseases were ranked high in terms of their impact on poor farming communities in developing countries. Whereas the global economic importance of ticks is particularly high for livestock, there is also a relevant impact on public health in the northern hemisphere.

  11. A European network for food-borne parasites (Euro-FBP: meeting report on ‘Analytical methods for food-borne parasites in human and veterinary diagnostics and in food matrices’

    Directory of Open Access Journals (Sweden)

    Christian Klotz

    2017-11-01

    Full Text Available Abstract Food-borne parasites (FBPs are a neglected topic in food safety, partly due to a lack of awareness of their importance for public health, especially as symptoms tend not to develop immediately after exposure. In addition, methodological difficulties with both diagnosis in infected patients and detection in food matrices result in under-detection and therefore the potential for underestimation of their burden on our societies. This, in consequence, leads to lower prioritization for basic research, e.g. for development new and more advanced detection methods for different food matrices and diagnostic samples, and thus a vicious circle of neglect and lack of progress is propagated. The COST Action FA1408, A European Network for Foodborne Parasites (Euro-FBP aims to combat the impact of FBP on public health by facilitating the multidisciplinary cooperation and partnership between groups of researchers and between researchers and stakeholders. The COST Action TD1302, the European Network for cysticercosis/taeniosis, CYSTINET, has a specific focus on Taenia solium and T. saginata, two neglected FBPs, and aims to advance knowledge and understanding of these zoonotic disease complexes via collaborations in a multidisciplinary scientific network. This report summarizes the results of a meeting within the Euro-FBP consortium entitled ‘Analytical methods for food-borne parasites in human and veterinary diagnostics and in food matrices’ and of the joined Euro-FBP and CYSTINET meeting.

  12. Fish parasites

    DEFF Research Database (Denmark)

    This book contains 22 chapters on some of the most important parasitic diseases in wild and farmed fish. International experts give updated reviews and provide solutions to the problems......This book contains 22 chapters on some of the most important parasitic diseases in wild and farmed fish. International experts give updated reviews and provide solutions to the problems...

  13. Parasitic diseases

    International Nuclear Information System (INIS)

    Rozenshtraukh, L.S.

    1983-01-01

    Foundations of roentgenological semiotics of parasitic diseases of lungs, w hich are of the greatest practical value, are presented. Roentgenological pictu res of the following parasitic diseases: hydatid and alveolar echinococcosis, pa ragonimiasis, toxoplasmosis, ascariasis, amebiasis, bilharziasis (Schistosomias is) of lungs, are considered

  14. Hygiene pests as vectors for parasitic and bacterial diseases in humans

    Science.gov (United States)

    Cholewiński, Marcin; Derda, Monika; Hadaś, Edward

    Diseases transmitted by hygiene pests remain a very serious problem in spite of fast developments in science and medicine. The present study focuses on pests carrying germs that pose a threat to human health and life. The quick pace of life, the need to satisfy human needs and mass production of food sometimes result in flagrant sanitary, hygienic and epidemiological deficiencies. These irregularities are conducive to hygiene pests, which, when not held in check by proper control measures, may act more efficiently and quickly.

  15. Biochemical analysis of leishmanial and human GDP-Mannose Pyrophosphorylases and selection of inhibitors as new leads.

    Science.gov (United States)

    Mao, Wei; Daligaux, Pierre; Lazar, Noureddine; Ha-Duong, Tâp; Cavé, Christian; van Tilbeurgh, Herman; Loiseau, Philippe M; Pomel, Sébastien

    2017-04-07

    Leishmaniases are an ensemble of diseases caused by the protozoan parasite of the genus Leishmania. Current antileishmanial treatments are limited and present main issues of toxicity and drug resistance emergence. Therefore, the generation of new inhibitors specifically directed against a leishmanial target is an attractive strategy to expand the chemotherapeutic arsenal. GDP-Mannose Pyrophosphorylase (GDP-MP) is a prominent therapeutic target involved in host-parasite recognition which has been described to be essential for parasite survival. In this work, we produced and purified GDP-MPs from L. mexicana (LmGDP-MP), L. donovani (LdGDP-MP), and human (hGDP-MP), and compared their enzymatic properties. From a rationale design of 100 potential inhibitors, four compounds were identified having a promising and specific inhibitory effect on parasite GDP-MP and antileishmanial activities, one of them exhibits a competitive inhibition on LdGDP-MP and belongs to the 2-substituted quinoline series.

  16. Associations between common intestinal parasites and bacteria in humans as revealed by qPCR

    DEFF Research Database (Denmark)

    O'Brien Andersen, L.; Karim, A. B.; Roager, Henrik Munch

    2016-01-01

    Several studies have shown associations between groups of intestinal bacterial or specific ratios between bacterial groups and various disease traits. Meanwhile, little is known about interactions and associations between eukaryotic and prokaryotic microorganisms in the human gut. In this work, we...

  17. The human malaria parasite Pfs47 gene mediates evasion of the mosquito immune system

    NARCIS (Netherlands)

    Molina-Cruz, A.; Garver, L.S.; Alabaster, A.; Bangiolo, L.; Haile, A.; Winikor, J.; Ortega, C.; Schaijk, B.C.L. van; Sauerwein, R.W.; Taylor-Salmon, E.; Barillas-Mury, C.

    2013-01-01

    Plasmodium falciparum transmission by Anopheles gambiae mosquitoes is remarkably efficient, resulting in a very high prevalence of human malaria infection in sub-Saharan Africa. A combination of genetic mapping, linkage group selection, and functional genomics was used to identify Pfs47 as a P.

  18. Polyamine uptake by the intraerythrocytic malaria parasite, Plasmodium falciparum.

    Science.gov (United States)

    Niemand, J; Louw, A I; Birkholtz, L; Kirk, K

    2012-09-01

    Polyamines and the enzymes involved in their biosynthesis are present at high levels in rapidly proliferating cells, including cancer cells and protozoan parasites. Inhibition of polyamine biosynthesis in asexual blood-stage malaria parasites causes cytostatic arrest of parasite development under in vitro conditions, but does not cure infections in vivo. This may be due to replenishment of the parasite's intracellular polyamine pool via salvage of exogenous polyamines from the host. However, the mechanism(s) of polyamine uptake by the intraerythrocytic parasite are not well understood. In this study, the uptake of the polyamines, putrescine and spermidine, into Plasmodium falciparum parasites functionally isolated from their host erythrocyte was investigated using radioisotope flux techniques. Both putrescine and spermidine were taken up into isolated parasites via a temperature-dependent process that showed cross-competition between different polyamines. There was also some inhibition of polyamine uptake by basic amino acids. Inhibition of polyamine biosynthesis led to an increase in the total amount of putrescine and spermidine taken up from the extracellular medium. The uptake of putrescine and spermidine by isolated parasites was independent of extracellular Na(+) but increased with increasing external pH. Uptake also showed a marked dependence on the parasite's membrane potential, decreasing with membrane depolarization and increasing with membrane hyperpolarization. The data are consistent with polyamines being taken up into the parasite via an electrogenic uptake process, energised by the parasite's inwardly negative membrane potential. Copyright © 2012 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  19. Use of Phage Antibodies to Distinguish Closely Related Species of Protozoan Parasites

    Directory of Open Access Journals (Sweden)

    Timothy Paget

    2000-01-01

    Full Text Available Acanthamoeba are typically identified in the laboratory using culture and microscopic observation. In this paper we describe the isolation and specificity of antibody fragments that can be used for the identification of Acanthamoeba. A phage library expressing a large repertoire (approx. 5×109 of antibody fragments was used to generate two libraries one enriched for bacteriophage that exhibit genus specific binding and the other containing bacteriophage that bind specifically to pathogenic Acanthamoeba. Individual clones were isolated on the basis of binding by ELISA, and then flowcytometry and immunofluorescence were used for further characterisation. Four monoclonal antibodies were isolated, specific for Acanthamoeba at the generic level with clone HPPG6 exhibiting the highest level of binding. Furthermore clone HPPG55 was specific for pathogenic species of Acanthamoeba.

  20. Detection of human filarial parasite Brugia malayi in dogs by histochemical staining and molecular techniques.

    Science.gov (United States)

    Ambily, V R; Pillai, Usha Narayana; Arun, R; Pramod, S; Jayakumar, K M

    2011-09-27

    Human filariasis caused by Brugia malayi is still a public health problem in many countries of Asia including India, Indonesia, Malaysia and Thailand. The World Health Organization (WHO) has targeted to eliminate filariasis by the year 2020 by Mass annual single dose Diethylcarbamazine Administration (MDA). Results of the MDA programme after the first phase was less satisfactory than expected. Malayan filariasis caused by B. malayi is endemic in the south of Thailand where domestic cat serves as the major reservoir host. There is no report about the occurrence of B. malayi in dogs. The present work was carried out to find out the incidence of microfilariasis in dogs and also to detect the presence of human filarial infection in dogs, if any. One hundred dogs above 6 months of age presented to the veterinary college Hospital, Mannuthy, Kerala, with clinical signs suggestive of microfilariasis - fever, anorexia, conjunctivitis, limb and scrotal oedema - were screened for microfilariae by wet film examination. Positive cases were subjected to Giemsa staining, histochemical staining and molecular techniques. Results of the study showed that 80% of dogs had microfilariasis; out of which 20% had sheathed microfilaria. Giemsa and histochemical staining character, PCR and sequencing confirmed it as B. malayi. High prevalence of B. malayi in dogs in this study emphasized the possible role of dogs in transmission of human filariasis. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Effect of Clinoptilolite and Sepiolite Nanoclays on Human and Parasitic Highly Phagocytic Cells

    Directory of Open Access Journals (Sweden)

    Yanis Toledano-Magaña

    2015-01-01

    Full Text Available Nanoclays have potential applications in biomedicine raising the need to evaluate their toxicity in in vitro models as a first approach to its biocompatibility. In this study, in vitro toxicity of clinoptilolite and sepiolite nanoclays (NC was analyzed in highly phagocytic cultures of amoebas and human and mice macrophages. While amebic viability was significantly affected only by sepiolite NC at concentrations higher than 0.1 mg/mL, the effect on macrophage cultures was dependent on the origin of the cells. Macrophages derived from human peripheral blood monocytes were less affected in viability (25% decrease at 48 h, followed by the RAW 264.7 cell line (40%, and finally, macrophages derived from mice bone marrow monocytes (98%. Moreover, the cell line and mice macrophages die mainly by necrosis, whereas human macrophages exhibit increased apoptosis. Cytokine expression analysis in media of sepiolite NC treated cultures showed a proinflammatory profile (INFγ, IL-1α, IL-8, and IL-6, in contrast with clinoptilolite NC that induced lees cytokines with concomitant production of IL-10. The results show that sepiolite NC is more toxic to amoebas and macrophages than clinoptilolite NC, mostly in a time and dose-dependent manner. However, the effect of sepiolite NC was comparable with talc powder suggesting that both NC have low cytotoxicity in vitro.

  2. Parasites of two coexisting invasive sailfin catfishes (Siluriformes: Loricariidae in a tropical region of Mexico

    Directory of Open Access Journals (Sweden)

    María Amparo Rodríguez-Santiago

    Full Text Available ABSTRACT Currently many species of Amazon sailfin catfishes (Loricariidae have been introduced to wild environments outside their native range. There is, however, little knowledge about their role as vectors of parasites that can infect native fish or even humans through its consumption. The aim of the present study was to determine the parasitic fauna of the invasive sailfin catfish species Pterygoplichthys pardalis (leopard pleco and P. disjunctivus (vermiculated pleco from freshwater systems in the southeast of Mexico. Four ectoparasite species were found in P. pardalis (1 protozoan: Ichthyophthirius multifiliis ; 2 monogeneans: Urocleidoides vaginoclastrum and Heteropriapulus heterotylus ; 1 digenean: Clinostomum sp., and only one in Heteropriapulus disjunctivus (H. heterotylus . No endoparasites were found. Ichthyophthirius multifiliis , U. vaginoclaustrum and Clinostomum sp. , were considered as rare species (prevalence <5% since they were found in a single individual of P. pardalis . H. heterotylus was the only species shared among both host species and it occurs throughout the year. This monogenean species represents 96% of total parasites recorded in P. pardalis and 100% in P. disjunctivus. Monthly values of prevalence, intensity and abundance of H. heterotylus in both host species showed important intra-annual variations, but not differ significantly between both hosts.

  3. An investigation of parasitic infections and review of molecular characterization of the intestinal protozoa in nonhuman primates in China from 2009 to 2015.

    Science.gov (United States)

    Li, Junqiang; Dong, Haiju; Wang, Rongjun; Yu, Fuchang; Wu, Yayun; Chang, Yankai; Wang, Chenrong; Qi, Meng; Zhang, Longxian

    2017-04-01

    Parasites are a well-known threat to nonhuman primate (NHP) populations, and potentially cause zoonotic diseases in humans. In this study, the basic data was provided of the parasites in NHPs and the molecular characterization of the Enterocytozoon bieneusi , Giardia duodenalis , Cryptosporidium spp., and Entamoeba spp. were reviewed, which were found in these samples. A total of 3349 fecal samples were collected from 34 species reared at 17 districts in zoos, farms, free-range, or research laboratories, and examined microscopically. Eleven genera of intestinal parasites were detected: five genera of protozoans ( Isospora spp., Entamoeba spp., Giardia sp., Cryptosporidium spp., and Cyclospora spp.) and six genera of helminths ( Trichuris spp., Strongyloides spp., Ascaris spp., Physaloptera spp., Ancylostoma spp., and Enterobius spp.). The overall sample prevalence of parasitic infection was 54.1% (1811/3349). Entamoeba spp. was the most prevalent (36.4%, 1218/3349). The infection rate was the highest in free-range animals (73.0%, 670/918) (P Entamoeba spp., Trichuris spp., and Strongyloides spp.. Molecular characterization was reviewed of Enterocytozoon bieneusi , Giardia duodenalis , Cryptosporidium spp., and Entamoeba spp., as these are zoonotic species or genotypes. This parasitological data for NHPs in China, provides important information for veterinarians and public health authorities for the elimination of such parasites and monitor the potential transmission of zoonotic infections from NHPs.

  4. An investigation of parasitic infections and review of molecular characterization of the intestinal protozoa in nonhuman primates in China from 2009 to 2015

    Directory of Open Access Journals (Sweden)

    Junqiang Li

    2017-04-01

    Full Text Available Parasites are a well-known threat to nonhuman primate (NHP populations, and potentially cause zoonotic diseases in humans. In this study, the basic data was provided of the parasites in NHPs and the molecular characterization of the Enterocytozoon bieneusi, Giardia duodenalis, Cryptosporidium spp., and Entamoeba spp. were reviewed, which were found in these samples. A total of 3349 fecal samples were collected from 34 species reared at 17 districts in zoos, farms, free-range, or research laboratories, and examined microscopically. Eleven genera of intestinal parasites were detected: five genera of protozoans (Isospora spp., Entamoeba spp., Giardia sp., Cryptosporidium spp., and Cyclospora spp. and six genera of helminths (Trichuris spp., Strongyloides spp., Ascaris spp., Physaloptera spp., Ancylostoma spp., and Enterobius spp.. The overall sample prevalence of parasitic infection was 54.1% (1811/3349. Entamoeba spp. was the most prevalent (36.4%, 1218/3349. The infection rate was the highest in free-range animals (73.0%, 670/918 (P < 0.01 and Guangxi Zhuang autonomous region (64.8%, 566/873. Mixed infections were mostly detected for Entamoeba spp., Trichuris spp., and Strongyloides spp.. Molecular characterization was reviewed of Enterocytozoon bieneusi, Giardia duodenalis, Cryptosporidium spp., and Entamoeba spp., as these are zoonotic species or genotypes. This parasitological data for NHPs in China, provides important information for veterinarians and public health authorities for the elimination of such parasites and monitor the potential transmission of zoonotic infections from NHPs.

  5. The role of wild canids and felids in spreading parasites to dogs and cats in Europe. Part II: Helminths and arthropods.

    Science.gov (United States)

    Otranto, Domenico; Cantacessi, Cinzia; Dantas-Torres, Filipe; Brianti, Emanuele; Pfeffer, Martin; Genchi, Claudio; Guberti, Vittorio; Capelli, Gioia; Deplazes, Peter

    2015-09-30

    Over the last few decades, ecological factors, combined with everchanging landscapes mainly linked to human activities (e.g. encroachment and tourism) have contributed to modifications in the transmission of parasitic diseases from domestic to wildlife carnivores and vice versa. In the first of this two-part review article, we have provided an account of diseases caused by protozoan parasites characterised by a two-way transmission route between domestic and wild carnivore species. In this second and final part, we focus our attention on parasitic diseases caused by helminth and arthropod parasites shared between domestic and wild canids and felids in Europe. While a complete understanding of the biology, ecology and epidemiology of these parasites is particularly challenging to achieve, especially given the complexity of the environments in which these diseases perpetuate, advancements in current knowledge of transmission routes is crucial to provide policy-makers with clear indications on strategies to reduce the impact of these diseases on changing ecosystems. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Ecological host fitting of Trypanosoma cruzi TcI in Bolivia: mosaic population structure, hybridization and a role for humans in Andean parasite dispersal.

    Science.gov (United States)

    Messenger, Louisa A; Garcia, Lineth; Vanhove, Mathieu; Huaranca, Carlos; Bustamante, Marinely; Torrico, Marycruz; Torrico, Faustino; Miles, Michael A; Llewellyn, Martin S

    2015-05-01

    An improved understanding of how a parasite species exploits its genetic repertoire to colonize novel hosts and environmental niches is crucial to establish the epidemiological risk associated with emergent pathogenic genotypes. Trypanosoma cruzi, a genetically heterogeneous, multi-host zoonosis, provides an ideal system to examine the sylvatic diversification of parasitic protozoa. In Bolivia, T. cruzi I, the oldest and most widespread genetic lineage, is pervasive across a range of ecological clines. High-resolution nuclear (26 loci) and mitochondrial (10 loci) genotyping of 199 contemporaneous sylvatic TcI clones was undertaken to provide insights into the biogeographical basis of T. cruzi evolution. Three distinct sylvatic parasite transmission cycles were identified: one highland population among terrestrial rodent and triatomine species, composed of genetically homogenous strains (Ar = 2.95; PA/L = 0.61; DAS = 0.151), and two highly diverse, parasite assemblages circulating among predominantly arboreal mammals and vectors in the lowlands (Ar = 3.40 and 3.93; PA/L = 1.12 and 0.60; DAS = 0.425 and 0.311, respectively). Very limited gene flow between neighbouring terrestrial highland and arboreal lowland areas (distance ~220 km; FST = 0.42 and 0.35) but strong connectivity between ecologically similar but geographically disparate terrestrial highland ecotopes (distance >465 km; FST = 0.016-0.084) strongly supports ecological host fitting as the predominant mechanism of parasite diversification. Dissimilar heterozygosity estimates (excess in highlands, deficit in lowlands) and mitochondrial introgression among lowland strains may indicate fundamental differences in mating strategies between populations. Finally, accelerated parasite dissemination between densely populated, highland areas, compared to uninhabited lowland foci, likely reflects passive, long-range anthroponotic dispersal. The impact of humans on the risk of epizootic Chagas disease transmission in

  7. Identification of human intestinal parasites affecting an asymptomatic peri-urban Argentinian population using multi-parallel quantitative real-time polymerase chain reaction.

    Science.gov (United States)

    Cimino, Rubén O; Jeun, Rebecca; Juarez, Marisa; Cajal, Pamela S; Vargas, Paola; Echazú, Adriana; Bryan, Patricia E; Nasser, Julio; Krolewiecki, Alejandro; Mejia, Rojelio

    2015-07-17

    In resource-limited countries, stool microscopy is the diagnostic test of choice for intestinal parasites (soil-transmitted helminths and/or intestinal protozoa). However, sensitivity and specificity is low. Improved diagnosis of intestinal parasites is especially important for accurate measurements of prevalence and intensity of infections in endemic areas. The study was carried out in Orán, Argentina. A total of 99 stool samples from a local surveillance campaign were analyzed by concentration microscopy and McMaster egg counting technique compared to the analysis by multi-parallel quantitative real-time polymerase chain reaction (qPCR). This study compared the performance of qPCR assay and stool microscopy for 8 common intestinal parasites that infect humans including the helminths Ascaris lumbricoides, Ancylostoma duodenale, Necator americanus, Strongyloides stercoralis, Trichuris trichiura, and the protozoa Giardia lamblia, Cryptosporidium parvum/hominis, and Entamoeba histolytica, and investigated the prevalence of polyparasitism in an endemic area. qPCR showed higher detection rates for all parasites as compared to stool microscopy except T. trichiura. Species-specific primers and probes were able to distinguish between A. duodenale (19.1%) and N. americanus (36.4%) infections. There were 48.6% of subjects co-infected with both hookworms, and a significant increase in hookworm DNA for A. duodenale versus N. americanus (119.6 fg/μL: 0.63 fg/μL, P parasites in an endemic area that has improved diagnostic accuracy compared to stool microscopy. This first time use of multi-parallel qPCR in Argentina has demonstrated the high prevalence of intestinal parasites in a peri-urban area. These results will contribute to more accurate epidemiological survey, refined treatment strategies on a public scale, and better health outcomes in endemic settings.

  8. Cryo-EM structures of the 80S ribosomes from human parasites Trichomonas vaginalis and Toxoplasma gondii

    Institute of Scientific and Technical Information of China (English)

    Zhifei Li; Qiang Guo; Lvqin Zheng; Yongsheng Ji; Yi-Ting Xie; De-Hua Lai; Zhao-Rong Lun; Xun Suo; Ning Gao

    2017-01-01

    As an indispensable molecular machine universal in all living organisms,the ribosome has been selected by evolution to be the natural target of many antibiotics and small-molecule inhibitors.High-resolution structures of pathogen ribosomes are crucial for understanding the general and unique aspects of translation control in disease-causing microbes.With cryo-electron microscopy technique,we have determined structures of the cytosolic ribosomes from two human parasites,Trichomonas vaginalis and Toxoplasma gondii,at resolution of 3.2-3.4,(A).Although the ribosomal proteins from both pathogens are typical members of eukaryotic families,with a co-evolution pattern between certain species-specific insertions/extensions and neighboring ribosomal RNA (rRNA) expansion segments,the sizes of their rRNAs are sharply different.Very interestingly,rRNAs of T.vaginalis are in size comparable to prokaryotic counterparts,with nearly all the eukaryote-specific rRNA expansion segments missing.These structures facilitate the dissection of evolution path for ribosomal proteins and RNAs,and may aid in design of novel translation inhibitors.

  9. Encapsulation of metalloporphyrins improves their capacity to block the viability of the human malaria parasite Plasmodium falciparum.

    Science.gov (United States)

    Alves, Eduardo; Iglesias, Bernardo A; Deda, Daiana K; Budu, Alexandre; Matias, Tiago A; Bueno, Vânia B; Maluf, Fernando V; Guido, Rafael V C; Oliva, Glaucius; Catalani, Luiz H; Araki, Koiti; Garcia, Celia R S

    2015-02-01

    Several synthetic metallated protoporphyrins (M-PPIX) were tested for their ability to block the cell cycle of the lethal human malaria parasite Plasmodium falciparum. After encapsulating the porphyrin derivatives in micro- and nanocapsules of marine atelocollagen, their effects on cultures of red blood cells infected (RBC) with P. falciparum were verified. RBCs infected with synchronized P. falciparum incubated for 48 h showed a toxic effect over a micromolar range. Strikingly, the IC50 of encapsulated metalloporphyrins reached nanomolar concentrations, where Zn-PPIX showed the best antimalarial effect, with an IC50=330 nM. This value is an 80-fold increase in the antimalarial activity compared to the antimalarial effect of non-encapsulated Zn-PPIX. These findings reveal that the incubation of P. falciparum infected-RBCs with 20 μM Zn-PPIX reduced the size of hemozoin crystal by 34%, whereas a 28% reduction was noticed with chloroquine, confirming the importance of heme detoxification pathway in drug therapy. In this study, synthetic metalloporphyrins were tested as therapeutics that target Plasmodium falciparum. The IC50 of encapsulated metalloporphyrins was found to be in the nanomolar concentration range, with encapsulated Zn-PPIX showing an 80-fold increase in its antimalarial activity compared to the non-encapsulated form. Copyright © 2015. Published by Elsevier Inc.

  10. Prevalence of Parasitic Contamination

    Science.gov (United States)

    Ismail, Yazan

    2016-01-01

    One of the main ways in transmitting parasites to humans is through consuming contaminated raw vegetables. The aim of this study was to evaluate the prevalence of parasitological contamination (helminthes eggs, Giardia and Entamoeba histolytica cysts) of salad vegetables sold at supermarkets and street vendors in Amman and Baqa’a – Jordan. A total of 133 samples of salad vegetables were collected and examined for the prevalence of parasites. It was found that 29% of the samples were contaminated with different parasites. Of the 30 lettuce, 33 tomato, 42 parsley and 28 cucumber samples examined the prevalence of Ascaris spp. eggs was 43%, 15%, 21% and 4%; Toxocara spp. eggs was 30%, 0%, 0% and 4%; Giardia spp. cysts was 23%, 6%, 0% and 0%; Taenia/Echinococcus eggs was 20%, 0%, 5% and 0%; Fasciola hepatica eggs was 13%, 3%, 2% and 0%; and E. histolytica cysts was 10%, 6%, 0% and 0%, respectively. There was no significant difference in the prevalence of parasite in salad vegetables either between supermarkets and street vendors, or between Amman and Baqa’a, Ascaris spp. was found to be the highest prevalent parasite in salad vegetables from supermarkets and street vendors and from Amman and Baqa’a. Our results pointed out that, the parasitic contamination of salad vegetables found in our study might be caused by irrigating crops with faecal contaminated water. We concluded that salad vegetables sold in Amman and Baqa’a may cause a health risk to consumers.

  11. Modulation of Dendritic Cell Responses by Parasites: A Common Strategy to Survive

    Directory of Open Access Journals (Sweden)

    César A. Terrazas

    2010-01-01

    Full Text Available Parasitic infections are one of the most important causes of morbidity and mortality in our planet and the immune responses triggered by these organisms are critical to determine their outcome. Dendritic cells are key elements for the development of immunity against parasites; they control the responses required to eliminate these pathogens while maintaining host homeostasis. However, there is evidence showing that parasites can influence and regulate dendritic cell function in order to promote a more permissive environment for their survival. In this review we will focus on the strategies protozoan and helminth parasites have developed to interfere with dendritic cell activities as well as in the possible mechanisms involved.

  12. A subset of group A-like var genes encodes the malaria parasite ligands for binding to human brain endothelial cells

    DEFF Research Database (Denmark)

    Claessens, Antoine; Adams, Yvonne; Ghumra, Ashfaq

    2012-01-01

    Cerebral malaria is the most deadly manifestation of infection with Plasmodium falciparum. The pathology of cerebral malaria is characterized by the accumulation of infected erythrocytes (IEs) in the microvasculature of the brain caused by parasite adhesins on the surface of IEs binding to human...... receptors on microvascular endothelial cells. The parasite and host molecules involved in this interaction are unknown. We selected three P. falciparum strains (HB3, 3D7, and IT/FCR3) for binding to a human brain endothelial cell line (HBEC-5i). The whole transcriptome of isogenic pairs of selected.......029) but not by antibodies from controls with uncomplicated malaria (Mann-Whitney test, P = 0.58). This work describes a binding phenotype for virulence-associated group A P. falciparum erythrocyte membrane protein 1 variants and identifies targets for interventions to treat or prevent cerebral malaria....

  13. Occurrence of health-compromising protozoan and helminth infections in tortoises kept as pet animals in Germany.

    Science.gov (United States)

    Hallinger, Malek J; Taubert, Anja; Hermosilla, Carlos; Mutschmann, Frank

    2018-06-18

    Exotic reptiles such as tortoises, have become increasingly common domestic pets worldwide and are known to host different gastrointestinal parasites. Some of these parasites bear zoonotic potential. In the present survey, we parasitologically examined tortoise faecal samples (n = 1005) from 19 different species held as pets in private German households and German zoological gardens. Saline faecal smears were used to generate prevalence data for potentially health-compromising gastrointestinal parasites. In addition, we performed complete parasitological dissections of dead tortoises (n = 49) to estimate endoparasite burdens precisely. Analysed tortoise faecal samples contained a broad spectrum of endoparasites. We detected ten taxa of endoparasites; oxyurid nematodes (e.g. Tachygonetria spp.) were the most prevalent parasites in faecal samples (43.18%), followed by ascarids (Angusticaecum spp.) (0.01%), Hexamita spp. (0.007%), Balantidium spp. (0.007%), trichomonads (0.004%), Strongyloides spp. (0.003%), Entamoeba spp. (0.005%), Hartmanella spp. (0.001%), Blastocystis spp. (0.002%), heterakids (0.001%) and Trimitus spp. (0.001%). Additionally, we investigated dead tortoise individuals (n = 49; of 10 different species) for aetiological diagnosis and estimation of endoparasite burden. Of these individuals, 38 (77.6%) were infected with parasites and 14 (28.6%) of them died most probably due to severe parasitic infection. Oxyurid infections correlated positively with calcium deficiency and metabolic bone disease (MBD) as well as nephrosis/nephritis, mainly occurring in juvenile tortoises (< 5 years of age). The saline faecal smear technique proved to be efficient in detecting different metazoan and protozoan parasite stages in tortoise faeces. The prevalence of oxyurid infections was particularly high. In combination with pathological findings in clinical oxyuridosis obtained from necropsied animals, our findings call for further, detailed investigations on

  14. Sirtuins of parasitic protozoa: In search of function(s)

    OpenAIRE

    Religa, Agnieszka A.; Waters, Andrew P.

    2012-01-01

    The SIR2 family of NAD+-dependent protein deacetylases, collectively called sirtuins, has been of central interest due to their proposed roles in life-span regulation and ageing. Sirtuins are one group of environment sensors of a cell interpreting external information and orchestrating internal responses at the sub-cellular level, through participation in gene regulation mechanisms. Remarkably conserved across all kingdoms of life SIR2 proteins in several protozoan parasites appear to have bo...

  15. Survey of protozoan, helminth and viral infections in shrimp Litopenaeus setiferus and prawn Macrobrachium acanthurus native to the Jamapa River region, Mexico.

    Science.gov (United States)

    Domínguez-Machín, Magda E; Hernández-Vergara, Martha P; Jiménez-García, Isabel; Simá-Alvarez, Raúl; Rodríguez-Canul, Rossanna

    2011-09-09

    We surveyed protozoan and metazoan parasites as well as white spot syndrome virus (WSSV) and infectious hypodermal hematopoietic necrosis virus (IHHNV) in white shrimp Litopenaeus setiferus and the palaemonid prawn Macrobrachium acanthurus native to the lower Jamapa River region of Veracruz, Mexico. The presence of parasites and the infection parameters were evaluated in 113 palaemonid prawns collected during the northwind (n = 45), rainy (n = 38) and dry seasons (n = 30) between October 2007 and July 2008, and in 91 shrimp collected in the rainy season between May and June 2008. In L. setiferus, ciliates of the subclass Apostomatia (Ascophrys sp.) were evident in gills, and third-stage larvae of the nematode Physocephalus sexalatus were evident in the stomach. Cestodes of the genus Prochristianella were evident in the hepatopancreas, while some gregarines of the genus Nematopsis, as well as unidentified larval cestodes, were observed in the intestine. Histology identified Ascophrys sp. in association with gill necrosis and tissue melanization. Slight inflammation was observed in intestinal epithelium near cestode larvae. In M. acanthurus, epibionts of the protozoans Epistylis sp., Acineta sp. and Lagenophrys sp. were observed under uropods, periopods and pleopods. An unidentified ciliate of the Apostomatia was also found in the gills, and Nematopsis was identified in the intestine. No histopathology was observed in association with these parasites. Moreover, neither WSSV nor IHHNV were detected by the polymerase chain reaction (PCR) in any of the L. setiferus or M. acanthurus analysed.

  16. Repetitive elements in parasitic protozoa

    Directory of Open Access Journals (Sweden)

    Clayton Christine

    2010-05-01

    Full Text Available Abstract A recent paper published in BMC Genomics suggests that retrotransposition may be active in the human gut parasite Entamoeba histolytica. This adds to our knowledge of the various types of repetitive elements in parasitic protists and the potential influence of such elements on pathogenicity. See research article http://www.biomedcentral.com/1471-2164/11/321

  17. Optimising Controlled Human Malaria Infection Studies Using Cryopreserved P. falciparum Parasites Administered by Needle and Syringe.

    Directory of Open Access Journals (Sweden)

    Susanne H Sheehy

    Full Text Available Controlled human malaria infection (CHMI studies have become a routine tool to evaluate efficacy of candidate anti-malarial drugs and vaccines. To date, CHMI trials have mostly been conducted using the bite of infected mosquitoes, restricting the number of trial sites that can perform CHMI studies. Aseptic, cryopreserved P. falciparum sporozoites (PfSPZ Challenge provide a potentially more accurate, reproducible and practical alternative, allowing a known number of sporozoites to be administered simply by injection.We sought to assess the infectivity of PfSPZ Challenge administered in different dosing regimens to malaria-naive healthy adults (n = 18. Six participants received 2,500 sporozoites intradermally (ID, six received 2,500 sporozoites intramuscularly (IM and six received 25,000 sporozoites IM.Five out of six participants receiving 2,500 sporozoites ID, 3/6 participants receiving 2,500 sporozoites IM and 6/6 participants receiving 25,000 sporozoites IM were successfully infected. The median time to diagnosis was 13.2, 17.8 and 12.7 days for 2,500 sporozoites ID, 2,500 sporozoites IM and 25,000 sporozoites IM respectively (Kaplan Meier method; p = 0.024 log rank test.2,500 sporozoites ID and 25,000 sporozoites IM have similar infectivities. Given the dose response in infectivity seen with IM administration, further work should evaluate increasing doses of PfSPZ Challenge IM to identify a dosing regimen that reliably infects 100% of participants.ClinicalTrials.gov NCT01465048.

  18. Multiple Zoonotic Parasites Identified in Dog Feces Collected in Ponte de Lima, Portugal — A Potential Threat to Human Health

    Science.gov (United States)

    Letra Mateus, Teresa; Castro, António; Niza Ribeiro, João; Vieira-Pinto, Madalena

    2014-01-01

    Dogs play many roles and their presence within people’s houses has increased. In rural settings dog faeces are not removed from the streets, representing an environmental pollution factor. Our aim was to evaluate the occurrence of environmental contamination with zoonotic intestinal parasites of three groups of dogs in Ponte de Lima, Portugal, with a particular emphasis on Echinococcus granulosus. We collected 592 dog faecal samples from the environment, farm and hunting dogs. Qualitative flotation coprological analysis was performed and the frequency in the positive samples ranged between 57.44% and 81.19% in different groups. We isolated up to four different parasites in one sample and detected seven intestinal parasitic species, genera or families overall. Ancylostomatidae was the most prevalent parasite, followed by Trichuris spp., Toxocara spp., Isospora spp., Dipylidium caninum, Taeniidae and Toxascaris leonina. Taeniidae eggs were analyzed with the PCR technique and revealed not to be from Echinococcus. The parasite prevalence and the diversity of zoonotic parasites found were high, which calls for a greater awareness of the problem among the population, especially hunters. Promoting research at the local level is important to plan control strategies. Health education should be developed with regard to farmers and hunters, and a closer collaboration between researchers, practitioners and public health authorities is needed. PMID:25257358

  19. Multiple Zoonotic Parasites Identified in Dog Feces Collected in Ponte de Lima, Portugal—A Potential Threat to Human Health

    Directory of Open Access Journals (Sweden)

    Teresa Letra Mateus

    2014-09-01

    Full Text Available Dogs play many roles and their presence within people’s houses has increased. In rural settings dog faeces are not removed from the streets, representing an environmental pollution factor. Our aim was to evaluate the occurrence of environmental contamination with zoonotic intestinal parasites of three groups of dogs in Ponte de Lima, Portugal, with a particular emphasis on Echinococcus granulosus. We collected 592 dog faecal samples from the environment, farm and hunting dogs. Qualitative flotation coprological analysis was performed and the frequency in the positive samples ranged between 57.44% and 81.19% in different groups. We isolated up to four different parasites in one sample and detected seven intestinal parasitic species, genera or families overall. Ancylostomatidae was the most prevalent parasite, followed by Trichuris spp., Toxocara spp., Isospora spp., Dipylidium caninum, Taeniidae and Toxascaris leonina. Taeniidae eggs were analyzed with the PCR technique and revealed not to be from Echinococcus. The parasite prevalence and the diversity of zoonotic parasites found were high, which calls for a greater awareness of the problem among the population, especially hunters. Promoting research at the local level is important to plan control strategies. Health education should be developed with regard to farmers and hunters, and a closer collaboration between researchers, practitioners and public health authorities is needed.

  20. The Leishmania nicotinamidase is essential for NAD(+) production and parasite proliferation

    OpenAIRE

    Gazanion, Elodie; Garcia, Deborah; Silvestre, R.; Gérard, C.; Guichou, J. F.; Labesse, G.; Seveno, Martial; Cordeiro-Da-Silva, A.; Ouaissi, A.; Sereno, Denis; Vergnes, Baptiste

    2011-01-01

    NAD(+) is a central cofactor that plays important roles in cellular metabolism and energy production in all living cells. Genomics-based reconstruction of NAD(+) metabolism revealed that Leishmania protozoan parasites are NAD(+) auxotrophs. Consequently, these parasites require assimilating NAD(+) precursors (nicotinamide, nicotinic acid, nicotinamide riboside) from their host environment to synthesize NAD(+) by a salvage pathway. Nicotinamidase is a key enzyme of this salvage pathway that ca...

  1. Biodiversity and systematics of apicomplexan parasites infecting South African leopard and hinged tortoises

    OpenAIRE

    2010-01-01

    M.Sc. Research into blood protozoans (haematozoans) infecting African tortoises is scanty with only a few records published, many during the early part of the last century. Little research had been done on the blood parasites of tortoises examined in this study namely, Kinixys lobatsiana, K. belliana belliana, K. natalensis, Geochelone pardalis pardalis, G. pardalis babcocki and Chersina angulata. The study therefore aimed to: 1) examine apicomplexan haematozoan parasites infecting several...

  2. Characterization of surface proteins and exosomes and their role in host:pathogen and parasite:parasite interactions

    OpenAIRE

    Twu, Olivia

    2014-01-01

    Trichomonas vaginalis, an extracellular protozoan parasite, is the causative agent of the most common, non-viral sexually transmitted infection. Infection is often asymptomatic, but is associated with long-term effects such as premature labor, low-birth weight babies, cervical cancer, prostate cancer, and increased risk of HIV infection. In spite of its prevalence and medical importance, the pathogenesis of T. vaginalis is poorly understood. It is known that adherence to epithelial cells is v...

  3. Fishing drives declines in fish parasite diversity and has variable effects on parasite abundance.

    Science.gov (United States)

    Wood, Chelsea L; Sandin, Stuart A; Zgliczynski, Brian; Guerra, Ana Sofía; Micheli, Fiorenza

    2014-07-01

    Despite the ubiquity and ecological importance of parasites, relatively few studies have assessed their response to anthropogenic environmental change. Heuristic models have predicted both increases and decreases in parasite abundance in response to human disturbance, with empirical support for both. However, most studies focus on one or a few selected parasite species. Here, we assess the abundance of parasites of seven species of coral reef fishes collected from three fished and three unfished islands of the Line Islands archipelago in the central equatorial Pacific. Because we chose fish hosts that spanned different trophic levels, taxonomic groups, and body sizes, we were able to compare parasite responses across a broad cross section of the total parasite community in the presence and absence of fishing, a major human impact on marine ecosystems. We found that overall parasite species richness was substantially depressed on fished islands, but that the response of parasite abundance varied among parasite taxa: directly transmitted parasites were significantly more abundant on fished than on unfished islands, while the reverse was true for trophically transmitted parasites. This probably arises because trophically transmitted parasites require multiple host species, some of which are the top predators most sensitive to fishing impacts. The increase in directly transmitted parasites appeared to be due to fishing-driven compensatory increases in the abundance of their hosts. Together, these results provide support for the predictions of both heuristic models, and indicate that the direction of fishing's impact on parasite abundance is mediated by parasite traits, notably parasite transmission strategies.

  4. Similarities and differences between helminth parasites and cancer cell lines in shaping human monocytes: Insights into parallel mechanisms of immune evasion.

    Directory of Open Access Journals (Sweden)

    Prakash Babu Narasimhan

    2018-04-01

    Full Text Available A number of features at the host-parasite interface are reminiscent of those that are also observed at the host-tumor interface. Both cancer cells and parasites establish a tissue microenvironment that allows for immune evasion and may reflect functional alterations of various innate cells. Here, we investigated how the phenotype and function of human monocytes is altered by exposure to cancer cell lines and if these functional and phenotypic alterations parallel those induced by exposure to helminth parasites. Thus, human monocytes were exposed to three different cancer cell lines (breast, ovarian, or glioblastoma or to live microfilariae (mf of Brugia malayi-a causative agent of lymphatic filariasis. After 2 days of co-culture, monocytes exposed to cancer cell lines showed markedly upregulated expression of M1-associated (TNF-α, IL-1β, M2-associated (CCL13, CD206, Mreg-associated (IL-10, TGF-β, and angiogenesis associated (MMP9, VEGF genes. Similar to cancer cell lines, but less dramatically, mf altered the mRNA expression of IL-1β, CCL13, TGM2 and MMP9. When surface expression of the inhibitory ligands PDL1 and PDL2 was assessed, monocytes exposed to both cancer cell lines and to live mf significantly upregulated PDL1 and PDL2 expression. In contrast to exposure to mf, exposure to cancer cell lines increased the phagocytic ability of monocytes and reduced their ability to induce T cell proliferation and to expand Granzyme A+ CD8+ T cells. Our data suggest that despite the fact that helminth parasites and cancer cell lines are extraordinarily disparate, they share the ability to alter the phenotype of human monocytes.

  5. Similarities and differences between helminth parasites and cancer cell lines in shaping human monocytes: Insights into parallel mechanisms of immune evasion.

    Science.gov (United States)

    Narasimhan, Prakash Babu; Akabas, Leor; Tariq, Sameha; Huda, Naureen; Bennuru, Sasisekhar; Sabzevari, Helen; Hofmeister, Robert; Nutman, Thomas B; Tolouei Semnani, Roshanak

    2018-04-01

    A number of features at the host-parasite interface are reminiscent of those that are also observed at the host-tumor interface. Both cancer cells and parasites establish a tissue microenvironment that allows for immune evasion and may reflect functional alterations of various innate cells. Here, we investigated how the phenotype and function of human monocytes is altered by exposure to cancer cell lines and if these functional and phenotypic alterations parallel those induced by exposure to helminth parasites. Thus, human monocytes were exposed to three different cancer cell lines (breast, ovarian, or glioblastoma) or to live microfilariae (mf) of Brugia malayi-a causative agent of lymphatic filariasis. After 2 days of co-culture, monocytes exposed to cancer cell lines showed markedly upregulated expression of M1-associated (TNF-α, IL-1β), M2-associated (CCL13, CD206), Mreg-associated (IL-10, TGF-β), and angiogenesis associated (MMP9, VEGF) genes. Similar to cancer cell lines, but less dramatically, mf altered the mRNA expression of IL-1β, CCL13, TGM2 and MMP9. When surface expression of the inhibitory ligands PDL1 and PDL2 was assessed, monocytes exposed to both cancer cell lines and to live mf significantly upregulated PDL1 and PDL2 expression. In contrast to exposure to mf, exposure to cancer cell lines increased the phagocytic ability of monocytes and reduced their ability to induce T cell proliferation and to expand Granzyme A+ CD8+ T cells. Our data suggest that despite the fact that helminth parasites and cancer cell lines are extraordinarily disparate, they share the ability to alter the phenotype of human monocytes.

  6. The transcriptome of Trichuris suis--first molecular insights into a parasite with curative properties for key immune diseases of humans.

    Directory of Open Access Journals (Sweden)

    Cinzia Cantacessi

    Full Text Available Iatrogenic infection of humans with Trichuris suis (a parasitic nematode of swine is being evaluated or promoted as a biological, curative treatment of immune diseases, such as inflammatory bowel disease (IBD and ulcerative colitis, in humans. Although it is understood that short-term T. suis infection in people with such diseases usually induces a modified Th2-immune response, nothing is known about the molecules in the parasite that induce this response.As a first step toward filling the gaps in our knowledge of the molecular biology of T. suis, we characterised the transcriptome of the adult stage of this nematode employing next-generation sequencing and bioinformatic techniques. A total of ∼65,000,000 reads were generated and assembled into ∼20,000 contiguous sequences ( = contigs; ∼17,000 peptides were predicted and classified based on homology searches, protein motifs and gene ontology and biological pathway mapping.These analyses provided interesting insights into a number of molecular groups, particularly predicted excreted/secreted molecules (n = 1,288, likely to be involved in the parasite-host interactions, and also various molecules (n = 120 linked to chemokine, T-cell receptor and TGF-β signalling as well as leukocyte transendothelial migration and natural killer cell-mediated cytotoxicity, which are likely to be immuno-regulatory or -modulatory in the infected host. This information provides a conceptual framework within which to test the immunobiological basis for the curative effect of T. suis infection in humans against some immune diseases. Importantly, the T. suis transcriptome characterised herein provides a curated resource for detailed studies of the immuno-molecular biology of this parasite, and will underpin future genomic and proteomic explorations.

  7. Comparative Genomics and Systems Biology of Malaria Parasites Plasmodium

    Science.gov (United States)

    Cai, Hong; Zhou, Zhan; Gu, Jianying; Wang, Yufeng

    2013-01-01

    Malaria is a serious infectious disease that causes over one million deaths yearly. It is caused by a group of protozoan parasites in the genus Plasmodium. No effective vaccine is currently available and the elevated levels of resistance to drugs in use underscore the pressing need for novel antimalarial targets. In this review, we survey omics centered developments in Plasmodium biology, which have set the stage for a quantum leap in our understanding of the fundamental processes of the parasite life cycle and mechanisms of drug resistance and immune evasion. PMID:24298232

  8. Genome sequencing of the lizard parasite Leishmania tarentolae reveals loss of genes associated to the intracellular stage of human pathogenic species

    Science.gov (United States)

    Raymond, Frédéric; Boisvert, Sébastien; Roy, Gaétan; Ritt, Jean-François; Légaré, Danielle; Isnard, Amandine; Stanke, Mario; Olivier, Martin; Tremblay, Michel J.; Papadopoulou, Barbara; Ouellette, Marc; Corbeil, Jacques

    2012-01-01

    The Leishmania tarentolae Parrot-TarII strain genome sequence was resolved to an average 16-fold mean coverage by next-generation DNA sequencing technologies. This is the first non-pathogenic to humans kinetoplastid protozoan genome to be described thus providing an opportunity for comparison with the completed genomes of pathogenic Leishmania species. A high synteny was observed between all sequenced Leishmania species. A limited number of chromosomal regions diverged between L. tarentolae and L. infantum, while remaining syntenic to L. major. Globally, >90% of the L. tarentolae gene content was shared with the other Leishmania species. We identified 95 predicted coding sequences unique to L. tarentolae and 250 genes that were absent from L. tarentolae. Interestingly, many of the latter genes were expressed in the intracellular amastigote stage of pathogenic species. In addition, genes coding for products involved in antioxidant defence or participating in vesicular-mediated protein transport were underrepresented in L. tarentolae. In contrast to other Leishmania genomes, two gene families were expanded in L. tarentolae, namely the zinc metallo-peptidase surface glycoprotein GP63 and the promastigote surface antigen PSA31C. Overall, L. tarentolae's gene content appears better adapted to the promastigote insect stage rather than the amastigote mammalian stage. PMID:21998295

  9. The role of small heat shock proteins in parasites.

    Science.gov (United States)

    Pérez-Morales, Deyanira; Espinoza, Bertha

    2015-09-01

    The natural life cycle of many protozoan and helminth parasites involves exposure to several hostile environmental conditions. Under these circumstances, the parasites arouse a cellular stress response that involves the expression of heat shock proteins (HSPs). Small HSPs (sHSPs) constitute one of the main families of HSPs. The sHSPs are very divergent at the sequence level, but their secondary and tertiary structures are conserved and some of its members are related to α-crystallin from vertebrates. They are involved in a variety of cellular processes. As other HSPs, the sHSPs act as molecular chaperones; however, they have shown other activities apparently not related to chaperone action. In this review, the diverse activities of sHSPs in the major genera of protozoan and helminth parasites are described. These include stress response, development, and immune response, among others. In addition, an analysis comparing the sequences of sHSPs from some parasites using a distance analysis is presented. Because many parasites face hostile conditions through its life cycles the study of HSPs, including sHSPs, is fundamental.

  10. Melatonin-Induced Temporal Up-Regulation of Gene Expression Related to Ubiquitin/Proteasome System (UPS in the Human Malaria Parasite Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Fernanda C. Koyama

    2014-12-01

    Full Text Available There is an increasing understanding that melatonin and the ubiquitin/ proteasome system (UPS interact to regulate multiple cellular functions. Post-translational modifications such as ubiquitination are important modulators of signaling processes, cell cycle and many other cellular functions. Previously, we reported a melatonin-induced upregulation of gene expression related to ubiquitin/proteasome system (UPS in Plasmodium falciparum, the human malaria parasite, and that P. falciparum protein kinase 7 influences this process. This implies a role of melatonin, an indolamine, in modulating intraerythrocytic development of the parasite. In this report we demonstrate by qPCR analysis, that melatonin induces gene upregulation in nine out of fourteen genes of the UPS, consisting of the same set of genes previously reported, between 4 to 5 h after melatonin treatment. We demonstrate that melatonin causes a temporally controlled gene expression of UPS members.

  11. Internal parasites of reptiles.

    Science.gov (United States)

    Raś-Noryńska, Małgorzata; Sokół, Rajmund

    2015-01-01

    Nowadays a growing number of exotic reptiles are kept as pets. The aim of this study was to determine the species of parasites found in reptile patients of veterinary practices in Poland. Fecal samples obtained from 76 lizards, 15 turtles and 10 snakes were examined by flotation method and direct smear stained with Lugol's iodine. In 63 samples (62.4%) the presence of parasite eggs and oocysts was revealed. Oocysts of Isospora spp. (from 33% to 100% of the samples, depending on the reptilian species) and Oxyurids eggs (10% to 75%) were predominant. In addition, isolated Eimeria spp. oocysts and Giardia intestinalis cysts were found, as well as Strongylus spp. and Hymenolepis spp. eggs. Pet reptiles are often infected with parasites, some of which are potentially dangerous to humans. A routine parasitological examination should be done in such animals.

  12. Gastrointestinal helminth parasites of pet and stray dogs as a potential risk for human health in Bahir Dar town, north-western Ethiopia

    Directory of Open Access Journals (Sweden)

    Tadiwos Abere

    Full Text Available Aim: A cross-sectional study was carried out from November 2011 to April 2012 to determine the prevalence and species of gastrointestinal (GI helminth parasites in pet and stray dogs as a potential risk for human health in Bahir Dar town, northwestern Ethiopia. Materials and Methods: A total of 384 and 46 faecal samples were collected from pet and stray dogs, respectively and xamined by using standard coprologic techniques. Results: The overall prevalence of GI helminth infection in pet and stray dogs was 75.26 and 84.78%, respectively. The detected parasites with their frequencies in pet dogs were Ancylostoma caninum (78.89%, Toxocara canis (39.79%, Dipylidium caninum (29.75%, Strongyloides stercoralis (29.06%, Taeniidae (23.87% and Trichuris vulpis (7.95%. Stray dogs were found more likely to be polyparasitized and presented higher prevalence of A. caninum, T. canis, S. stercoralis, Trichuris vulpis and Taeniidae (P < 0.05 than domiciled ones. Diphyllobothrium latum was detected only in 10.25% of stray dogs. Toxocara canis and A. caninum (P < 0.05 were detected more frequently in dogs with less than 6 months of age (P <0.05 than old age dogs. The sex or breed groups didn't significantly affect the prevalence of parasites. A significant variation was recorded (P < 0.05 between different feeding systems where higher prevalence was observed in uncontrolled feeding group (82.18% compared to controlled feeding (32.08%. Conclusion: Different gastrointestinal parasites in pet and stray dogs were identified in the study area that can potentially infect humans and cause serious public-health problems. Thus, concerted efforts should therefore be made to educate dog owners to embrace modern dog disease control programs and measures have to be taken on stray dogs. [Vet World 2013; 6(7.000: 388-392

  13. Prevalence of gastrointestinal parasites of stray dogs impounded by the Society for the Prevention of Cruelty to Animals (SPCA), Durban and Coast, South Africa.

    Science.gov (United States)

    Mukaratirwa, S; Singh, V P

    2010-06-01

    Coprological examination was used to determine the prevalence and intensity of gastrointestinal parasites of stray dogs impounded by the Society for the Prevention of Cruelty to Animals (SPCA), Durban and Coast, South Africa. Helminth and protozoan parasites were found in faeces of 240 dogs with an overall prevalence of 82.5% (helminth parasites 93.1% and protozoan parasites 6.9%). The following parasites and their prevalences were detected; Ancylostoma sp. (53.8%), Trichuris vulpis (7.9%), Spirocerca lupi (5.4%), Toxocara canis (7.9%), Toxascaris leonina (0.4%) Giardia intestinalis (5.6%) and Isospora sp. (1.3%). Dogs harbouring a single parasite species were more common (41.7%) than those harbouring 2 (15%) or multiple (2.1%) species. Ancylostoma sp., Toxocara canis and Giardia intestinalis have zoonotic potential and were detected in 66.7% of the samples.

  14. Prevalence of gastrointestinal parasites of stray dogs impounded by the Society for the Prevention of Cruelty to Animals (SPCA, Durban and Coast, South Africa : short communication

    Directory of Open Access Journals (Sweden)

    S. Mukaratirwa

    2010-05-01

    Full Text Available Coprological examination was used to determine the prevalence and intensity of gastrointestinal parasites of stray dogs impounded by the Society for the Prevention of Cruelty to Animals (SPCA, Durban and Coast, South Africa. Helminth and protozoan parasites were found in faeces of 240 dogs with an overall prevalence of 82.5% (helminth parasites 93.1% and protozoan parasites 6.9 %. The following parasites and their prevalences were detected; Ancylostoma sp. (53.8 %, Trichuris vulpis (7.9 %, Spirocerca lupi (5.4 %, Toxocara canis (7.9 %, Toxascaris leonina (0.4 % Giardia intestinalis (5.6 % and Isospora sp. (1.3 %. Dogs harbouring a single parasite species were more common (41.7 % than those harbouring 2 (15 % or multiple (2.1 % species. Ancylostoma sp., Toxocara canis and Giardia intestinalis have zoonotic potential and were detected in 66.7 % of the samples.

  15. [Parasites and cancer: is there a causal link?

    Science.gov (United States)

    Cheeseman, Kevin; Certad, Gabriela; Weitzman, Jonathan B

    2016-10-01

    Over 20 % of cancers have infectious origins, including well-known examples of microbes such as viruses (HPV, EBV) and bacteria (H. pylori). The contribution of intracellular eukaryotic parasites to cancer etiology is largely unexplored. Epidemiological and clinical reports indicate that eukaryotic protozoan, such as intracellular apicomplexan that cause diseases of medical or economic importance, can be linked to various cancers: Theileria and Cryptosporidium induce host cell transformation while Plasmodium was linked epidemiologically to the "African lymphoma belt" over fifty years ago. These intracellular eukaryotic parasites hijack cellular pathways to manipulate the host cell epigenome, cellular machinery, signaling pathways and epigenetic programs and marks, such as methylation and acetylation, for their own benefit. In doing so, they tinker with the same pathways as those deregulated during cancer onset. Here we discuss how epidemiological evidence linking eukaryotic intracellular parasites to cancer onset are further strengthened by recent mechanistic studies in three apicomplexan parasites. © 2016 médecine/sciences – Inserm.

  16. Prevalence of gastrointestinal parasites in captive non-human primates of twenty-four zoological gardens in China.

    Science.gov (United States)

    Li, Mei; Zhao, Bo; Li, Bo; Wang, Qiang; Niu, Lili; Deng, Jiabo; Gu, Xiaobin; Peng, Xuerong; Wang, Tao; Yang, Guangyou

    2015-06-01

    Captive primates are susceptible to gastrointestinal (GIT) parasitic infections, which are often zoonotic and can contribute to morbidity and mortality. Fecal samples were examined by the means of direct smear, fecal flotation, fecal sedimentation, and fecal cultures. Of 26.51% (317/1196) of the captive primates were diagnosed gastrointestinal parasitic infections. Trichuris spp. were the most predominant in the primates, while Entamoeba spp. were the most prevalent in Old World monkeys (P primates and the safety of animal keepers and visitors. © 2015 The Authors. Journal of Medical Primatology Published by John Wiley & Sons Ltd.

  17. Parasitic Apologies

    Science.gov (United States)

    Galatolo, Renata; Ursi, Biagio; Bongelli, Ramona

    2016-01-01

    The action of apologizing can be accomplished as the main business of the interaction or incidentally while participants are doing something else. We refer to these apologies as "parasitic apologies," because they are produced "en passant" (Schegloff, 2007), and focus our analysis on this type of apology occurring at the…

  18. Crystallization and preliminary X-ray analysis of Na-ASP-1, a multi-domain pathogenesis-related-1 protein from the human hookworm parasite Necator americanus

    International Nuclear Information System (INIS)

    Asojo, Oluwatoyin A.; Loukas, Alex; Inan, Mehmet; Barent, Rick; Huang, Jicai; Plantz, Brad; Swanson, Amber; Gouthro, Mark; Meagher, Michael M.; Hotez, Peter J.

    2005-01-01

    In order to clarify the structural basis of the pathogenesis-related-1 domain, Na-ASP-1, the first multi-domain ASP from the human hookworm parasite N. americanus, has been crystallized. 2.2 Å resolution data have been collected from a crystal belonging to the monoclinic space group P2 1 . Human hookworm infection is a major cause of anemia and malnutrition in the developing world. In an effort to control hookworm infection, the Human Hookworm Vaccine Initiative has identified candidate vaccine antigens from the infective larval stage (L3) of the parasite, including a family of pathogenesis-related-1 (PR-1) proteins known as the ancylostoma-secreted proteins (ASPs). The functions of the ASPs are unknown. In addition, it is unclear why some ASPs have one while others have multiple PR-1 domains. There are no known structures of a multi-domain ASP and in an effort to remedy this situation, recombinant Na-ASP-1 has been expressed, purified and crystallized. Na-ASP-1 is a 406-amino-acid multi-domain ASP from the prevalent human hookworm parasite Necator americanus. Useful X-ray data to 2.2 Å have been collected from a crystal that belongs to the monoclinic space group P2 1 with unit-cell parameters a = 67.7, b = 74.27, c = 84.60 Å, β = 112.12°. An initial molecular-replacement solution has been obtained with one monomer in the asymmetric unit

  19. Crystallization and preliminary X-ray analysis of Na-ASP-1, a multi-domain pathogenesis-related-1 protein from the human hookworm parasite Necator americanus

    Energy Technology Data Exchange (ETDEWEB)

    Asojo, Oluwatoyin A., E-mail: oasojo@unmc.edu [Eppley Institute for Research in Cancer and Allied Diseases, 987696 Nebraska Medical Center, Omaha, NE 68198-7696 (United States); Loukas, Alex [Department of Microbiology and Tropical Medicine, The George Washington University Medical Center, Washington DC 20037 (United States); Division of Infectious Diseases and Immunology, Queensland Institute of Medical Research, Brisbane, QLD 4006 (Australia); Inan, Mehmet; Barent, Rick; Huang, Jicai; Plantz, Brad; Swanson, Amber; Gouthro, Mark; Meagher, Michael M. [Department of Chemical Engineering, The University of Nebraska-Lincoln, Lincoln, NE 68588-0643 (United States); Hotez, Peter J. [Department of Microbiology and Tropical Medicine, The George Washington University Medical Center, Washington DC 20037 (United States); Eppley Institute for Research in Cancer and Allied Diseases, 987696 Nebraska Medical Center, Omaha, NE 68198-7696 (United States)

    2005-04-01

    In order to clarify the structural basis of the pathogenesis-related-1 domain, Na-ASP-1, the first multi-domain ASP from the human hookworm parasite N. americanus, has been crystallized. 2.2 Å resolution data have been collected from a crystal belonging to the monoclinic space group P2{sub 1}. Human hookworm infection is a major cause of anemia and malnutrition in the developing world. In an effort to control hookworm infection, the Human Hookworm Vaccine Initiative has identified candidate vaccine antigens from the infective larval stage (L3) of the parasite, including a family of pathogenesis-related-1 (PR-1) proteins known as the ancylostoma-secreted proteins (ASPs). The functions of the ASPs are unknown. In addition, it is unclear why some ASPs have one while others have multiple PR-1 domains. There are no known structures of a multi-domain ASP and in an effort to remedy this situation, recombinant Na-ASP-1 has been expressed, purified and crystallized. Na-ASP-1 is a 406-amino-acid multi-domain ASP from the prevalent human hookworm parasite Necator americanus. Useful X-ray data to 2.2 Å have been collected from a crystal that belongs to the monoclinic space group P2{sub 1} with unit-cell parameters a = 67.7, b = 74.27, c = 84.60 Å, β = 112.12°. An initial molecular-replacement solution has been obtained with one monomer in the asymmetric unit.

  20. Protozoan predation in soil slurries compromises determination of contaminant mineralization potential

    International Nuclear Information System (INIS)

    Badawi, Nora; Johnsen, Anders R.; Brandt, Kristian K.; Sørensen, Jan; Aamand, Jens

    2012-01-01

    Soil suspensions (slurries) are commonly used to estimate the potential of soil microbial communities to mineralize organic contaminants. The preparation of soil slurries disrupts soil structure, however, potentially affecting both the bacterial populations and their protozoan predators. We studied the importance of this “slurry effect” on mineralization of the herbicide 2-methyl-4-chlorophenoxyacetic acid (MCPA, 14 C-labelled), focussing on the effects of protozoan predation. Mineralization of MCPA was studied in “intact” soil and soil slurries differing in soil:water ratio, both in the presence and absence of the protozoan activity inhibitor cycloheximide. Protozoan predation inhibited mineralization in dense slurry of subsoil (soil:water ratio 1:3), but only in the most dilute slurry of topsoil (soil:water ratio 1:100). Our results demonstrate that protozoan predation in soil slurries may compromise quantification of contaminant mineralization potential, especially when the initial density of degrader bacteria is low and their growth is controlled by predation during the incubation period. - Highlights: ► We studied the protozoan impact on MCPA mineralization in soil slurries. ► Cycloheximide was used as protozoan inhibitor. ► Protozoa inhibited MCPA mineralization in dilute topsoil slurry and subsoil slurry. ► Mineralization potentials may be underestimated when using soil slurries. - Protozoan predation may strongly bias the quantification of mineralization potential when performed in soil slurries, especially when the initial density of degrader bacteria is low such as in subsoil or very dilute topsoil slurries.

  1. Lundep, a sand fly salivary endonuclease increases Leishmania parasite survival in neutrophils and inhibits XIIa contact activation in human plasma.

    Directory of Open Access Journals (Sweden)

    Andrezza C Chagas

    2014-02-01

    Full Text Available Neutrophils are the host's first line of defense against infections, and their extracellular traps (NET were recently shown to kill Leishmania parasites. Here we report a NET-destroying molecule (Lundep from the salivary glands of Lutzomyia longipalpis. Previous analysis of the sialotranscriptome of Lu. longipalpis showed the potential presence of an endonuclease. Indeed, not only was the cloned cDNA (Lundep shown to encode a highly active ss- and dsDNAse, but also the same activity was demonstrated to be secreted by salivary glands of female Lu. longipalpis. Lundep hydrolyzes both ss- and dsDNA with little sequence specificity with a calculated DNase activity of 300000 Kunitz units per mg of protein. Disruption of PMA (phorbol 12 myristate 13 acetate- or parasite-induced NETs by treatment with recombinant Lundep or salivary gland homogenates increases parasite survival in neutrophils. Furthermore, co-injection of recombinant Lundep with metacyclic promastigotes significantly exacerbates Leishmania infection in mice when compared with PBS alone or inactive (mutagenized Lundep. We hypothesize that Lundep helps the parasite to establish an infection by allowing it to escape from the leishmanicidal activity of NETs early after inoculation. Lundep may also assist blood meal intake by lowering the local viscosity caused by the release of host DNA and as an anticoagulant by inhibiting the intrinsic pathway of coagulation.

  2. Gastrointestinal parasite infections and self-medication in wild chimpanzees surviving in degraded forest fragments within an agricultural landscape mosaic in Uganda.

    Directory of Open Access Journals (Sweden)

    Matthew R McLennan

    Full Text Available Monitoring health in wild great apes is integral to their conservation and is especially important where they share habitats with humans, given the potential for zoonotic pathogen exchange. We studied the intestinal parasites of wild chimpanzees (Pan troglodytes schweinfurthii inhabiting degraded forest fragments amid farmland and villages in Bulindi, Uganda. We first identified protozoan and helminth parasites infecting this population. Sixteen taxa were demonstrated microscopically (9 protozoa, 5 nematodes, 1 cestode, and 1 trematode. DNA sequence analysis enabled more precise identification of larval nematodes (e.g. Oesophagostomum stephanostomum, O. bifurcum, Strongyloides fuelleborni, Necator sp. Type II and tapeworm proglottids (genus Bertiella. To better understand the ecology of infections, we used multidimensional scaling analysis to reveal general patterns of association among parasites, climate, and whole leaf swallowing-a prevalent self-medicative behaviour at Bulindi linked to control of nodular worms (Oesophagostomum spp.. Prevalence of parasites varied with climate in diverse ways. For example, Oesophagostomum sp. was detected in faeces at higher frequencies with increasing rainfall but was most clearly associated with periods of low temperature. Certain parasites occurred together within chimpanzee hosts more or less frequently than expected by chance. For example, the commensal ciliate Troglodytella abrassarti was negatively associated with Balantidium coli and Oesophagostomum sp., possibly because the latter taxa make the large intestine less suitable for T. abrassarti. Whole leaves in faeces showed independent associations with the prevalence of Oesophagostomum sp., Strongyloides sp., and hookworm by microscopic examination, and with egestion of adult O. stephanostomum by macroscopic inspection. All parasites identified to species or genus have been reported in wild chimpanzees inhabiting less-disturbed environments than

  3. Giardia intestinalis and other zoonotic parasites: prevalence in adult dogs from the southern part of Mexico City.

    Science.gov (United States)

    Ponce-Macotela, Martha; Peralta-Abarca, Gustavo E; Martínez-Gordillo, Mario N

    2005-07-15

    The protozoan Giardia intestinalis is a mammalian-infecting parasite. It produces diarrhoea and malabsorption in its hosts. There is growing evidence that dogs could be reservoirs and play an important role in transmission. In Mexico, there are few data on the frequency of G. intestinalis. Therefore, we studied the small intestine of stray dogs, euthanazed at the "Culhuacan" Control Canine Centre, towards the end of 1997 and during the summer of 1998. We microscopically analysed intestinal contents and mucus samples taken every 3cm. During the cold season (winter), parasites were not found in 38/100 dogs, in contrast to 8/100 through the warm season. We found that 42/100 in winter and 51/100 in summer harboured G. intestinalis. To our knowledge, these G. intestinalis frequencies are the highest found in adult dogs worldwide. The results showed a rise in Ancylostoma spp. from 23/100 to 67/100 during the cold and warm seasons. Toxocara canis frequencies varied between 12/100 and 18/100, respectively. The data suggest that the probability of infection is higher during the hottest months compared to the coldest months of the year. Both puppies and adult dogs are highly infected. Dogs are reservoirs for zoonotic parasites; for this reason, it is imperative for humans to avoid fecal contamination in streets, public gardens and parks.

  4. The common parasite Toxoplasma gondii induces prostatic inflammation and microglandular hyperplasia in a mouse model.

    Science.gov (United States)

    Colinot, Darrelle L; Garbuz, Tamila; Bosland, Maarten C; Wang, Liang; Rice, Susan E; Sullivan, William J; Arrizabalaga, Gustavo; Jerde, Travis J

    2017-07-01

    Inflammation is the most prevalent and widespread histological finding in the human prostate, and associates with the development and progression of benign prostatic hyperplasia and prostate cancer. Several factors have been hypothesized to cause inflammation, yet the role each may play in the etiology of prostatic inflammation remains unclear. This study examined the possibility that the common protozoan parasite Toxoplasma gondii induces prostatic inflammation and reactive hyperplasia in a mouse model. Male mice were infected systemically with T. gondii parasites and prostatic inflammation was scored based on severity and focality of infiltrating leukocytes and epithelial hyperplasia. We characterized inflammatory cells with flow cytometry and the resulting epithelial proliferation with bromodeoxyuridine (BrdU) incorporation. We found that T. gondii infects the mouse prostate within the first 14 days of infection and can establish parasite cysts that persist for at least 60 days. T. gondii infection induces a substantial and chronic inflammatory reaction in the mouse prostate characterized by monocytic and lymphocytic inflammatory infiltrate. T. gondii-induced inflammation results in reactive hyperplasia, involving basal and luminal epithelial proliferation, and the exhibition of proliferative inflammatory microglandular hyperplasia in inflamed mouse prostates. This study identifies the common parasite T. gondii as a new trigger of prostatic inflammation, which we used to develop a novel mouse model of prostatic inflammation. This is the first report that T. gondii chronically encysts and induces chronic inflammation within the prostate of any species. Furthermore, T. gondii-induced prostatic inflammation persists and progresses without genetic manipulation in mice, offering a powerful new mouse model for the study of chronic prostatic inflammation and microglandular hyperplasia. © 2017 Wiley Periodicals, Inc.

  5. Robust inducible Cre recombinase activity in the human malaria parasite Plasmodium falciparum enables efficient gene deletion within a single asexual erythrocytic growth cycle.

    Science.gov (United States)

    Collins, Christine R; Das, Sujaan; Wong, Eleanor H; Andenmatten, Nicole; Stallmach, Robert; Hackett, Fiona; Herman, Jean-Paul; Müller, Sylke; Meissner, Markus; Blackman, Michael J

    2013-05-01

    Asexual blood stages of the malaria parasite, which cause all the pathology associated with malaria, can readily be genetically modified by homologous recombination, enabling the functional study of parasite genes that are not essential in this part of the life cycle. However, no widely applicable method for conditional mutagenesis of essential asexual blood-stage malarial genes is available, hindering their functional analysis. We report the application of the DiCre conditional recombinase system to Plasmodium falciparum, the causative agent of the most dangerous form of malaria. We show that DiCre can be used to obtain rapid, highly regulated site-specific recombination in P. falciparum, capable of excising loxP-flanked sequences from a genomic locus with close to 100% efficiency within the time-span of a single erythrocytic growth cycle. DiCre-mediated deletion of the SERA5 3' UTR failed to reduce expression of the gene due to the existence of alternative cryptic polyadenylation sites within the modified locus. However, we successfully used the system to recycle the most widely used drug resistance marker for P. falciparum, human dihydrofolate reductase, in the process producing constitutively DiCre-expressing P. falciparum clones that have broad utility for the functional analysis of essential asexual blood-stage parasite genes. © 2013 John Wiley & Sons Ltd.

  6. Visible-light-responsive ZnCuO nanoparticles: benign photodynamic killers of infectious protozoans

    Directory of Open Access Journals (Sweden)

    Nadhman A

    2015-11-01

    Full Text Available Akhtar Nadhman,1,2 Samina Nazir,2 Malik Ihsanullah Khan,1 Attiya Ayub,2,3 Bakhtiar Muhammad,3 Momin Khan,1 Dilawar Farhan Shams,4 Masoom Yasinzai1,5 1Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan; 2Nanosciences and Catalysis Division, National Centre for Physics, Quaid-i-Azam University Campus, Islamabad, Pakistan; 3Department of Chemistry, Hazara University, Dhodial, Pakistan; 4Department of Environmental Sciences, Abdul Wali Khan University Mardan, Mardan, Pakistan; 5Center of Interdisciplinary Research, International Islamic University, Islamabad, Pakistan Abstract: Human beings suffer from several infectious agents such as viruses, bacteria, and protozoans. Recently, there has been a great interest in developing biocompatible nanostructures to deal with infectious agents. This study investigated benign ZnCuO nanostructures that were visible-light-responsive due to the resident copper in the lattice. The nanostructures were synthesized through a size-controlled hot-injection process, which was adaptable to the surface ligation processes. The nanostructures were then characterized through transmission electron microscopy, X-ray diffraction, diffused reflectance spectroscopy, Rutherford backscattering, and photoluminescence analysis to measure crystallite nature, size, luminescence, composition, and band-gap analyses. Antiprotozoal efficiency of the current nanoparticles revealed the photodynamic killing of Leishmania protozoan, thus acting as efficient metal-based photosensitizers. The crystalline nanoparticles showed good biocompatibility when tested for macrophage toxicity and in hemolysis assays. The study opens a wide avenue for using toxic material in resident nontoxic forms as an effective antiprotozoal treatment. Keywords: zinc oxide, nanoparticles, doping, photodynamic therapy, Leishmania

  7. Translational Rodent Models for Research on Parasitic Protozoa-A Review of Confounders and Possibilities.

    Science.gov (United States)

    Ehret, Totta; Torelli, Francesca; Klotz, Christian; Pedersen, Amy B; Seeber, Frank

    2017-01-01

    Rodents, in particular Mus musculus , have a long and invaluable history as models for human diseases in biomedical research, although their translational value has been challenged in a number of cases. We provide some examples in which rodents have been suboptimal as models for human biology and discuss confounders which influence experiments and may explain some of the misleading results. Infections of rodents with protozoan parasites are no exception in requiring close consideration upon model choice. We focus on the significant differences between inbred, outbred and wild animals, and the importance of factors such as microbiota, which are gaining attention as crucial variables in infection experiments. Frequently, mouse or rat models are chosen for convenience, e.g., availability in the institution rather than on an unbiased evaluation of whether they provide the answer to a given question. Apart from a general discussion on translational success or failure, we provide examples where infections with single-celled parasites in a chosen lab rodent gave contradictory or misleading results, and when possible discuss the reason for this. We present emerging alternatives to traditional rodent models, such as humanized mice and organoid primary cell cultures. So-called recombinant inbred strains such as the Collaborative Cross collection are also a potential solution for certain challenges. In addition, we emphasize the advantages of using wild rodents for certain immunological, ecological, and/or behavioral questions. The experimental challenges (e.g., availability of species-specific reagents) that come with the use of such non-model systems are also discussed. Our intention is to foster critical judgment of both traditional and newly available translational rodent models for research on parasitic protozoa that can complement the existing mouse and rat models.

  8. Translational Rodent Models for Research on Parasitic Protozoa—A Review of Confounders and Possibilities

    Directory of Open Access Journals (Sweden)

    Totta Ehret

    2017-06-01

    Full Text Available Rodents, in particular Mus musculus, have a long and invaluable history as models for human diseases in biomedical research, although their translational value has been challenged in a number of cases. We provide some examples in which rodents have been suboptimal as models for human biology and discuss confounders which influence experiments and may explain some of the misleading results. Infections of rodents with protozoan parasites are no exception in requiring close consideration upon model choice. We focus on the significant differences between inbred, outbred and wild animals, and the importance of factors such as microbiota, which are gaining attention as crucial variables in infection experiments. Frequently, mouse or rat models are chosen for convenience, e.g., availability in the institution rather than on an unbiased evaluation of whether they provide the answer to a given question. Apart from a general discussion on translational success or failure, we provide examples where infections with single-celled parasites in a chosen lab rodent gave contradictory or misleading results, and when possible discuss the reason for this. We present emerging alternatives to traditional rodent models, such as humanized mice and organoid primary cell cultures. So-called recombinant inbred strains such as the Collaborative Cross collection are also a potential solution for certain challenges. In addition, we emphasize the advantages of using wild rodents for certain immunological, ecological, and/or behavioral questions. The experimental challenges (e.g., availability of species-specific reagents that come with the use of such non-model systems are also discussed. Our intention is to foster critical judgment of both traditional and newly available translational rodent models for research on parasitic protozoa that can complement the existing mouse and rat models.

  9. Parasites infecting the cultured oyster Crassostrea gasar (Adanson, 1757) in Northeast Brazil.

    Science.gov (United States)

    Queiroga, Fernando Ramos; Vianna, Rogério Tubino; Vieira, Cairé Barreto; Farias, Natanael Dantas; Da Silva, Patricia Mirella

    2015-05-01

    The oyster Crassostrea gasar is a species widely used as food and a source of income for the local population of the estuaries of Northeast Brazil. Perkinsus marinus and Perkinsus olseni are deleterious parasites for oyster farming and were recently detected in Brazil. In this study, a histopathologic survey of the oyster C. gasar cultured in the estuary of the River Mamanguape (Paraíba State) was performed. Adult oysters were collected in December 2011 and March, May, August and October 2012 and processed for histology and Perkinsus sp. identification by molecular analyses. Histopathological analysis revealed the presence of parasitic organisms including viral gametocytic hypertrophy, prokaryote-like colonies, protozoans (Perkinsus sp. and Nematopsis sp.) and metazoans (Tylocephalum sp. and cestodes). Other commensal organisms were also detected (the protozoan Ancistrocoma sp. and the turbellarian Urastoma sp.). The protozoan parasite Perkinsus sp. had the highest overall prevalence among the symbiotic organisms studied (48.9%), followed by Nematopsis sp. (36.3%). The other organisms were only sporadically observed. Only the protozoan Perkinsus sp. caused alterations in the oysters' infected organs. Molecular analyses confirmed the presence of P. marinus, P. olseni and Perkinsus beihaiensis infecting the oyster C. gasar. This is the first report of P. beihaiensis in this oyster species.

  10. Gastrointestinal and blood parasite determination in the guanaco (Lama guanicoe) under semi-captivity conditions.

    Science.gov (United States)

    Correa, Loreto; Zapata, Beatriz; Soto-Gamboa, Mauricio

    2012-01-01

    The breeding of wild animals for commercial purposes is becoming more frequent nowadays. This situation has led to an increase in contact rates between wild and domestic animals, with subsequent reciprocal transmission of parasites. In this study, we characterized the gastrointestinal and blood parasites of a group of 15 semi-captive guanacos (Lama guanicoe). We characterized gastrointestinal parasites by analyzing fecal samples through the sedimentation-flotation technique and hemoparasites by using blood smears stained with Giemsa. We found several gastrointestinal parasites including Nematoda and protozoans. The most frequently found parasites were Nematodirus sp. and Eimeria sp. In contrast with previous studies, neither Cestoda nor Fasciola were found. The only hemoparasite detected was Mycoplasma haemolamae, a parasite already described in llamas and alpacas. We conclude that the most frequent gastrointestinal parasites of semi-captive guanacos were nematodes and protozoans. Also, the hemoparasite M. haemolamae seems to be prevalent among captive populations of South American camelids. Finally, captive guanacos share several parasites with the traditional livestock. Therefore, keeping captive or semi-captive guanacos without an adequate sanitary protocol might have adverse consequences to adjacent traditional cattle farming and/or for wild animals.

  11. Frequency of Intestinal Parasites in Patients With Gastrointestinal Disorders, in Different Parts of Iran During 2012-2013

    Directory of Open Access Journals (Sweden)

    Nozhat Zebardast

    2015-02-01

    Full Text Available Background: Intestinal parasites of humans are one of the most important health problems worldwide, especially those located in tropical and subtropical areas. Objectives: The aim of this study was to determine the frequency of intestinal parasites in patients with gastrointestinal disorders, in different parts of Iran. Patients and Methods: A total of 1520 stool samples were collected from patients with gastrointestinal disorders. The stool specimens were examined by direct wet mount, formalin-ether concentration and a modified version of the Ziehl-Neelsen staining technique. Amoeba-positive samples were cultured for further differentiation of Entamoeba histolytica, E. dispar, E. moshkovskii. DNA-based methods were used to differentiate these amoebas and to detect Cryptosporidium- positive samples. Statistical analysis was carried out by SPSS ver. 16. Results: Out of the 1520 individuals studied, 153 (10.06% were infected at least with one intestinal parasite. 781 (51.4% of patients were male and 738 (48.6% were female. The prevalence of protozoan parasites 148 (9.7% was significantly higher than helminth parasites 5 (0.3% (P < 0.001. The frequency of intestinal parasites was as follows: Blastocystis sp., 72 (4.73%; Giardia intestinalis, 35 (2.30%; Entamoeba coli 21 (1.38%; Endolimax nana 10 (0.92%; Cryptosporidium spp., 1 (0.06%; Entamoeba dispar, 1 (0.06%; Dientamoeba fragilis, 1 (0.06%; Hymenolepis nana, 3 (0.19%; Dicrocoelium dendriticum, 2 (0.13%. In five (0.32% of the positive samples, co-infections with two parasites were found. G. intestinalis was more prevalent in male 22/35 (62.86% than female 13/35 (37.14% as well as in 0-9 years old group. In one sample Heterodera ova contained larva were seen. Conclusions: Blastocystis and G. intestinalis were the predominant intestinal parasites detected in patient with gastrointestinal disorders. The results indicated that the intestinal parasites, particularly helminth infections have been

  12. Amastin Knockdown in Leishmania braziliensis Affects Parasite-Macrophage Interaction and Results in Impaired Viability of Intracellular Amastigotes.

    Directory of Open Access Journals (Sweden)

    Rita Marcia Cardoso de Paiva

    2015-12-01

    Full Text Available Leishmaniasis, a human parasitic disease with manifestations ranging from cutaneous ulcerations to fatal visceral infection, is caused by several Leishmania species. These protozoan parasites replicate as extracellular, flagellated promastigotes in the gut of a sandfly vector and as amastigotes inside the parasitophorous vacuole of vertebrate host macrophages. Amastins are surface glycoproteins encoded by large gene families present in the genomes of several trypanosomatids and highly expressed in the intracellular amastigote stages of Trypanosoma cruzi and Leishmania spp. Here, we showed that the genome of L. braziliensis contains 52 amastin genes belonging to all four previously described amastin subfamilies and that the expression of members of all subfamilies is upregulated in L. braziliensis amastigotes. Although primary sequence alignments showed no homology to any known protein sequence, homology searches based on secondary structure predictions indicate that amastins are related to claudins, a group of proteins that are components of eukaryotic tight junction complexes. By knocking-down the expression of δ-amastins in L. braziliensis, their essential role during infection became evident. δ-amastin knockdown parasites showed impaired growth after in vitro infection of mouse macrophages and completely failed to produce infection when inoculated in BALB/c mice, an attenuated phenotype that was reverted by the re-expression of an RNAi-resistant amastin gene. Further highlighting their essential role in host-parasite interactions, electron microscopy analyses of macrophages infected with amastin knockdown parasites showed significant alterations in the tight contact that is normally observed between the surface of wild type amastigotes and the membrane of the parasitophorous vacuole.

  13. Activation of a Neospora caninum EGFR-Like Kinase Facilitates Intracellular Parasite Proliferation

    Directory of Open Access Journals (Sweden)

    Xiaoxia Jin

    2017-10-01

    Full Text Available The Apicomplexan parasite Neospora caninum, an obligate intracellular protozoan, causes serious diseases in a number of mammalian species, especially in cattle. Infection with N. caninum is associated with abortions in both dairy and beef cattle worldwide which have a major economic impact on the cattle industry. However, the mechanism by which N. caninum proliferates within host cells is poorly understood. Epidermal growth factor receptor (EGFR is a protein kinase ubiquitously expressed, present on cell surfaces in numerous species, which has been confirmed to be essential in signal transduction involved in cell growth, proliferation, survival, and many other intracellular processes. However, the presence of EGFR in N. caninum and its role in N. caninum proliferation remain unclear. In the present study, we identified a putative EGFR-like kinase in N. caninum, which could be activated in tachyzoites by infection or treatment with rNcMIC3 [containing four epidermal growth factor (EGF domains] or human EGF. Blockade of EGFR-like in tachyzoites by AG1478 significantly reduced parasite proliferation in host cells. Our data suggested that the activation of tachyzoite EGFR-like might facilitate the intracellular proliferation of N. caninum.

  14. Monitoring for the Presence of Parasitic Protozoa and Free-living Amoebae in Drinking Water Plants

    Directory of Open Access Journals (Sweden)

    Amany Saad Amer.

    2012-07-01

    Full Text Available Contamination of drinking water by microorganisms represents a major human health hazard in many parts of the world. The main objective of drinking water treatment is to provide microbiologically safe drinking water. The conventional drinking water treatment and disinfection has proved to be one of the major public health advances in modern times. A number of processes; namely water treatment, disinfection and changes influence the quality of drinking water delivered to the customer’s tap during transport of treated water via the distribution system. At least 325 water-associated outbreaks of parasitic protozoan disease have reported. In this study, drinking water from treatment plants evaluated for the presence of parasitic protozoa. Water samples collected from two main points: (a outlet of the water treatment plants (b distribution system at different distances from the water treatment plants. Protozoa were concentrated from each water sample by adsorption and accumulation on the nitrocellulose membrane filters (0.45 μm pore size and detected by conventional staining methods.

  15. Visual genome-wide RNAi screening to identify human host factors required for Trypanosoma cruzi infection

    CSIR Research Space (South Africa)

    Genovesio, A

    2011-05-01

    Full Text Available The protozoan parasite Trypanosoma cruzi is the etiologic agent of Chagas disease, a neglected tropical infection that affects millions of people in the Americas. Current chemotherapy relies on only two drugs that have limited efficacy...

  16. The dynamics of neutrophils in zebrafish (Danio rerio) during infection with the parasite Ichthyophthirius multifiliis

    DEFF Research Database (Denmark)

    Jørgensen, Louise von Gersdorff

    2016-01-01

    Ichthyophthirius multifiliis is a ciliated protozoan parasite infecting the skin and gills of freshwater fish. Neutrophils are attracted to the infection sites, as a part of the innate immune response. In this study a transgenic line of zebrafish (Tg(MPO:GFP)i114) with GFP-tagged neutrophils was ...... the infection. Neutrophils interacted directly with the parasites with pseudopod formation projecting towards the pathogen. These results indicate a strong innate immune response immediately following infection and/or a subsequent immune evasion by the parasite....

  17. Metabolic Cooperation of Glucose and Glutamine Is Essential for the Lytic Cycle of Obligate Intracellular Parasite Toxoplasma gondii*

    OpenAIRE

    Nitzsche, Richard; Zagoriy, Vyacheslav; Lucius, Richard; Gupta, Nishith

    2015-01-01

    Toxoplasma gondii is a widespread protozoan parasite infecting nearly all warm-blooded organisms. Asexual reproduction of the parasite within its host cells is achieved by consecutive lytic cycles, which necessitates biogenesis of significant energy and biomass. Here we show that glucose and glutamine are the two major physiologically important nutrients used for the synthesis of macromolecules (ATP, nucleic acid, proteins, and lipids) in T. gondii, and either of them is sufficient to ensure ...

  18. The Prevalence of Helminth Eggs and Protozoan Oocysts on ...

    African Journals Online (AJOL)

    The presence of helminths eggs on vegetables is of public health significance, considering the fact that communities are at risk of infection. Thus, the need to determine the prevalence of intestinal parasites in leafy vegetables sold in markets in Abuja, Nigeria. A total of 150 leafy vegetable samples including cabbage ...

  19. High malnutrition rate in Venezuelan Yanomami compared to Warao Amerindians and Creoles: significant associations with intestinal parasites and anemia

    NARCIS (Netherlands)

    Verhagen, L.M.; Incani, R.N.; Franco, C.R.; Ugarte, A.; Cadenas, Y.; Sierra Ruiz, C.I.; Hermans, P.W.; Hoek, D.; Campos Ponce, M.; de Waard, J.H.; Pinelli, E.

    2013-01-01

    Background:Children in rural areas experience the interrelated problems of poor growth, anemia and parasitic infections. We investigated the prevalence of and associations between intestinal helminth and protozoan infections, malnutrition and anemia in school-age Venezuelan children.Methods:This

  20. Toxoplasma gondii infection in humans in China

    Directory of Open Access Journals (Sweden)

    He Shenyi

    2011-08-01

    Full Text Available Abstract Toxoplasmosis is a zoonotic infection of humans and animals, caused by the opportunistic protozoan Toxoplasma gondii, a parasite belonging to the phylum Apicomplexa. Infection in pregnant women may lead to abortion, stillbirth or other serious consequences in newborns. Infection in immunocompromised patients can be fatal if not treated. On average, one third of people are chronically infected worldwide. Although very limited information from China has been published in the English journals, T. gondii infection is actually a significant human health problem in China. In the present article, we reviewed the clinical features, transmission, prevalence of T. gondii infection in humans in China, and summarized genetic characterizations of reported T. gondii isolates. Educating the public about the risks associated with unhealthy food and life style habits, tracking serological examinations to special populations, and measures to strengthen food and occupational safety are discussed.

  1. Intestinal Parasitic Infections and Environmental Water Contamination in a Rural Village of Northern Lao PDR.

    Science.gov (United States)

    Ribas, Alexis; Jollivet, Chloé; Morand, Serge; Thongmalayvong, Boupha; Somphavong, Silaphet; Siew, Chern-Chiang; Ting, Pei-Jun; Suputtamongkol, Saipin; Saensombath, Viengsaene; Sanguankiat, Surapol; Tan, Boon-Huan; Paboriboune, Phimpha; Akkhavong, Kongsap; Chaisiri, Kittipong

    2017-10-01

    A field survey studying intestinal parasites in humans and microbial pathogen contamination at environment was performed in a Laotian rural village to identify potential risks for disease outbreaks. A parasitological investigation was conducted in Ban Lak Sip village, Luang Prabang, Lao PDR involving fecal samples from 305 inhabitants as well as water samples taken from 3 sites of the local stream. Water analysis indicated the presence of several enteric pathogens, i.e., Aeromonas spp., Vibrio spp., E. coli H7, E. coli O157: H7, verocytotoxin-producing E. coli (VTEC), Shigella spp., and enteric adenovirus. The level of microbial pathogens contamination was associated with human activity, with greater levels of contamination found at the downstream site compared to the site at the village and upstream, respectively. Regarding intestinal parasites, the prevalence of helminth and protozoan infections were 68.9% and 27.2%, respectively. Eight helminth taxa were identified in fecal samples, i.e., 2 tapeworm species (Taenia sp. and Hymenolepis diminuta), 1 trematode (Opisthorchis sp.), and 5 nematodes (Ascaris lumbricoides, Trichuris trichiura, Strongyloides stercoralis, trichostrongylids, and hookworms). Six species of intestinal protists were identified, i.e., Blastocystis hominis, Cyclospora spp., Endolimax nana, Entamoeba histolytica/E. dispar, Entamoeba coli, and Giardia lamblia. Questionnaires and interviews were also conducted to determine risk factors of infection. These analyses together with a prevailing infection level suggested that most of villagers were exposed to parasites in a similar degree due to limited socio-economic differences and sharing of similar practices. Limited access to effective public health facilities is also a significant contributing factor.

  2. SAM domain-dependent activity of PfTKL3, an essential tyrosine kinase-like kinase of the human malaria parasite Plasmodium falciparum.

    Science.gov (United States)

    Abdi, Abdirahman; Eschenlauer, Sylvain; Reininger, Luc; Doerig, Christian

    2010-10-01

    Over the last decade, several protein kinases inhibitors have reached the market for cancer chemotherapy. The kinomes of pathogens represent potentially attractive targets in infectious diseases. The functions of the majority of protein kinases of Plasmodium falciparum, the parasitic protist responsible for the most virulent form of human malaria, remain unknown. Here we present a thorough characterisation of PfTKL3 (PF13_0258), an enzyme that belongs to the tyrosine kinase-like kinase (TKL) group. We demonstrate by reverse genetics that PfTKL3 is essential for asexual parasite proliferation in human erythrocytes. PfTKL3 is expressed in both asexual and gametocytes stages, and in the latter the protein co-localises with cytoskeleton microtubules. Recombinant PfTKL3 displays in vitro autophosphorylation activity and is able to phosphorylate exogenous substrates, and both activities are dramatically dependent on the presence of an N-terminal "sterile alpha-motif" domain. This study identifies PfTKL3 as a validated drug target amenable to high-throughput screening.

  3. The Pathogenesis of Human Cervical Epithelium Cells Induced by Interacting with Trichomonas vaginalis

    Science.gov (United States)

    Lin, Wei-Chen; Chang, Wei-Ting; Chang, Tsuey-Yu; Shin, Jyh-Wei

    2015-01-01

    Background Trichomonas vaginalis is a protozoan parasite that occurs in the urogenital-vaginal tract and is the primary causative agent of trichomoniasis, a common sexually transmitted disease in humans. The aggregation of this protozoan tends to destroy epithelial cells and induce pathogenesis. Principal Findings This study cultured T. vaginalis and human cervical epithelial cells (Z172) under the same conditions in the experiments. Following co-culturing for ten hours, the protozoans became attached to Z172, such that the cells presented a round shape and underwent shrinkage. Time-lapse recording and flow cytometry on interacted Z172 revealed that 70% had been disrupted, 18% presented a necrosis-like morphology and 8% showed signs of apoptosis. Gene expression profiling revealed in the seven inflammatory Z172 genes as well as in T. vaginalis genes that code for adhesion proteins 65 and 65-1. Significance These results suggest that cytopathogenic effects progress while Z172 is in contact with T. vaginalis, and the resulting morphological changes can be categorized as disruption. PMID:25901354

  4. Rapid biotransformation of arsenic by a model protozoan Tetrahymena thermophila

    Energy Technology Data Exchange (ETDEWEB)

    Yin Xixiang [Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); State Key Lab of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085 (China); Zhang Yongyu; Yang Jun [Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Zhu Yongguan, E-mail: ygzhu@rcees.ac.cn [Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); State Key Lab of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085 (China)

    2011-04-15

    Arsenic biomethylation and biovolatilization are thought to be two important metabolic pathways in aquatic and soil environments. Tetrahymena thermophila is a genus of free-living ciliated protozoan that is widely distributed in freshwater environments around the world. In this study, we studied arsenic accumulation, speciation, efflux, methylation and volatilization in this unicellular eukaryote exposed to various concentrations of arsenate. Our results show that T. thermophila accumulated 187 mg.kg{sup -1} dry weight of arsenic when exposed to 40 {mu}M for 48 h, with MMAs(V) (monomethylarsenate) and DMAs(V) (dimethylarsenate) as the dominant species, accounting for 66% of the total arsenic. Meanwhile, arsenate, arsenite, MMAs(V) and DMAs(V) were detected in the culture medium; the last three were released by the cells. The production of volatile arsenic increased with increasing external As(V) concentrations and exposure time. To our knowledge, this is the first study on arsenic metabolism, particularly biomethylation and biovolatilization, in protozoa. - Tetrahymena thermophila can rapidly methylate arsenic, and produce volatile arsenicals.

  5. Effect of the Silica Content of Diatoms on Protozoan Grazing

    Directory of Open Access Journals (Sweden)

    Shuwen Zhang

    2017-06-01

    Full Text Available This study examined the effect that silica content in diatom cells has on the behavior of protists. The diatoms Thalassiosira weissflogii and T. pseudonana were cultured in high or low light conditions to achieve low and high silica contents, respectively. These cells were then fed to a heterotrophic dinoflagellate Noctiluca scintillans and a ciliate Euplotes sp. in single and mixed diet experiments. Our results showed that in general, N. scintillans and Euplotes sp. both preferentially ingested the diatoms with a low silica content rather than those with a high silica content. However, Euplotes sp. seemed to be less influenced by the silica content than was N. scintillans. In the latter case, the clearance and ingestion rate of the low silica diatoms were significantly higher, both in the short (6-h and long (1-d duration grazing experiments. Our results also showed that N. scintillans required more time to digest the high silica-containing cells. As the high silica diatoms are harder to digest, this might explain why N. scintillans exhibits a strong preference for the low silica prey. Thus, the presence of high silica diatoms might limit the ability of the dinoflagellate to feed. Our findings suggest that the silica content of diatoms affects their palatability and digestibility and, consequently, the grazing activity and selectivity of protozoan grazers.

  6. Investigating the evolution of apoptosis in malaria parasites: the importance of ecology

    Directory of Open Access Journals (Sweden)

    Pollitt Laura C

    2010-11-01

    Full Text Available Abstract Apoptosis is a precisely regulated process of cell death which occurs widely in multicellular organisms and is essential for normal development and immune defences. In recent years, interest has grown in the occurrence of apoptosis in unicellular organisms. In particular, as apoptosis has been reported in a wide range of species, including protozoan malaria parasites and trypanosomes, it may provide a novel target for intervention. However, it is important to understand when and why parasites employ an apoptosis strategy before the likely long- and short-term success of such an intervention can be evaluated. The occurrence of apoptosis in unicellular parasites provides a challenge for evolutionary theory to explain as organisms are expected to have evolved to maximise their own proliferation, not death. One possible explanation is that protozoan parasites undergo apoptosis in order to gain a group benefit from controlling their density as this prevents premature vector mortality. However, experimental manipulations to examine the ultimate causes behind apoptosis in parasites are lacking. In this review, we focus on malaria parasites to outline how an evolutionary framework can help make predictions about the ecological circumstances under which apoptosis could evolve. We then highlight the ecological considerations that should be taken into account when designing evolutionary experiments involving markers of cell death, and we call for collaboration between researchers in different fields to identify and develop appropriate markers in reference to parasite ecology and to resolve debates on terminology.

  7. Malaria parasite carbonic anhydrase: inhibition of aromatic/heterocyclic sulfonamides and its therapeutic potential

    Science.gov (United States)

    Krungkrai, Sudaratana R; Krungkrai, Jerapan

    2011-01-01

    Plasmodium falciparum (P. falciparum) is responsible for the majority of life-threatening cases of human malaria, causing 1.5-2.7 million annual deaths. The global emergence of drug-resistant malaria parasites necessitates identification and characterization of novel drug targets and their potential inhibitors. We identified the carbonic anhydrase (CA) genes in P. falciparum. The pfCA gene encodes anα-carbonic anhydrase, a Zn2+-metalloenzme, possessing catalytic properties distinct from that of the human host CA enzyme. The amino acid sequence of the pfCA enzyme is different from the analogous protozoan and human enzymes. A library of aromatic/heterocyclic sulfonamides possessing a large diversity of scaffolds were found to be very good inhibitors for the malarial enzyme at moderate-low micromolar and submicromolar inhibitions. The structure of the groups substituting the aromatic-ureido- or aromatic-azomethine fragment of the molecule and the length of the parent sulfonamide were critical parameters for the inhibitory properties of the sulfonamides. One derivative, that is, 4- (3, 4-dichlorophenylureido)thioureido-benzenesulfonamide (compound 10) was the most effective in vitro Plasmodium falciparum CA inhibitor, and was also the most effective antimalarial compound on the in vitro P. falciparum growth inhibition. The compound 10 was also effective in vivo antimalarial agent in mice infected with Plasmodium berghei, an animal model of drug testing for human malaria infection. It is therefore concluded that the sulphonamide inhibitors targeting the parasite CA may have potential for the development of novel therapies against human malaria. PMID:23569766

  8. Galactolipids from Bauhinia racemosa as a new class of antifilarial agents against human lymphatic filarial parasite, Brugia malayi.

    Science.gov (United States)

    Sashidhara, Koneni V; Singh, Suriya P; Misra, Sweta; Gupta, Jyoti; Misra-Bhattacharya, Shailja

    2012-04-01

    Bioassay guided fractionation of ethanolic extract of the leaves of Bauhinia racemosa led to the isolation of galactolipid and catechin class of the compounds (1-7) from the most active n-butanol fraction (F4). Among the active galactolipids, 1 emerged as the lead molecule which was active on both forms of lymphatic filarial parasite, Brugia malayi. It was found to be better than the standard drug ivermectin and diethylcarbamazine (DEC) in terms of dose and efficacy. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  9. Selective Inhibitors of Protozoan Protein N-myristoyltransferases as Starting Points for Tropical Disease Medicinal Chemistry Programs

    Science.gov (United States)

    Bell, Andrew S.; Mills, James E.; Williams, Gareth P.; Brannigan, James A.; Wilkinson, Anthony J.; Parkinson, Tanya; Leatherbarrow, Robin J.; Tate, Edward W.; Holder, Anthony A.; Smith, Deborah F.

    2012-01-01

    Inhibition of N-myristoyltransferase has been validated pre-clinically as a target for the treatment of fungal and trypanosome infections, using species-specific inhibitors. In order to identify inhibitors of protozoan NMTs, we chose to screen a diverse subset of the Pfizer corporate collection against Plasmodium falciparum and Leishmania donovani NMTs. Primary screening hits against either enzyme were tested for selectivity over both human NMT isoforms (Hs1 and Hs2) and for broad-spectrum anti-protozoan activity against the NMT from Trypanosoma brucei. Analysis of the screening results has shown that structure-activity relationships (SAR) for Leishmania NMT are divergent from all other NMTs tested, a finding not predicted by sequence similarity calculations, resulting in the identification of four novel series of Leishmania-selective NMT inhibitors. We found a strong overlap between the SARs for Plasmodium NMT and both human NMTs, suggesting that achieving an appropriate selectivity profile will be more challenging. However, we did discover two novel series with selectivity for Plasmodium NMT over the other NMT orthologues in this study, and an additional two structurally distinct series with selectivity over Leishmania NMT. We believe that release of results from this study into the public domain will accelerate the discovery of NMT inhibitors to treat malaria and leishmaniasis. Our screening initiative is another example of how a tripartite partnership involving pharmaceutical industries, academic institutions and governmental/non-governmental organisations such as Medical Research Council and Wellcome Trust can stimulate research for neglected diseases. PMID:22545171

  10. In vitro ovicidal and cestocidal effects of toxins from Bacillus thuringiensis on the canine and human parasite Dipylidium caninum.

    Science.gov (United States)

    Peña, Guadalupe; Aguilar Jiménez, Fortino Agustín; Hallal-Calleros, Claudia; Morales-Montor, Jorge; Hernández-Velázquez, Víctor Manuel; Flores-Pérez, Fernando Iván

    2013-01-01

    Bacillus thuringiensis is a gram-positive soil-dwelling bacterium that is commonly used as a biological pesticide. This bacterium may also be used for biological control of helminth parasites in domestic animals. In this study, we evaluated the possible ovicidal and cestocidal effects of a total protein extract of B. thuringiensis native strains on the zoonotic cestode parasite of dogs, Dipylidium caninum (D. caninum). Dose and time response curves were determined by coincubating B. thuringiensis proteins at concentration ranging from 100 to 1000 μ g/mL along with 4000 egg capsules of D. caninum. Egg viability was evaluated using the trypan blue exclusion test. The lethal concentration of toxins on eggs was 600 μ g/ml, and the best incubation time to produce this effect was 3 h. In the adult stage, the motility and the thickness of the tegument were used as indicators of damage. The motility was inhibited by 100% after 8 hours of culture compared to the control group, while the thickness of the cestode was reduced by 34%. Conclusively, proteins of the strain GP526 of B. thuringiensis directly act upon D. caninum showing ovicidal and cestocidal effects. Thus, B. thuringiensis is proposed as a potential biological control agent against this zoonosis.

  11. In Vitro Ovicidal and Cestocidal Effects of Toxins from Bacillus thuringiensis on the Canine and Human Parasite Dipylidium caninum

    Directory of Open Access Journals (Sweden)

    Guadalupe Peña

    2013-01-01

    Full Text Available Bacillus thuringiensis is a gram-positive soil-dwelling bacterium that is commonly used as a biological pesticide. This bacterium may also be used for biological control of helminth parasites in domestic animals. In this study, we evaluated the possible ovicidal and cestocidal effects of a total protein extract of B. thuringiensis native strains on the zoonotic cestode parasite of dogs, Dipylidium caninum (D. caninum. Dose and time response curves were determined by coincubating B. thuringiensis proteins at concentration ranging from 100 to 1000 μg/mL along with 4000 egg capsules of D. caninum. Egg viability was evaluated using the trypan blue exclusion test. The lethal concentration of toxins on eggs was 600 μg/ml, and the best incubation time to produce this effect was 3 h. In the adult stage, the motility and the thickness of the tegument were used as indicators of damage. The motility was inhibited by 100% after 8 hours of culture compared to the control group, while the thickness of the cestode was reduced by 34%. Conclusively, proteins of the strain GP526 of B. thuringiensis directly act upon D. caninum showing ovicidal and cestocidal effects. Thus, B. thuringiensis is proposed as a potential biological control agent against this zoonosis.

  12. Retention and loss of RNA interference pathways in trypanosomatid protozoans.

    Directory of Open Access Journals (Sweden)

    Lon-Fye Lye

    2010-10-01

    Full Text Available RNA interference (RNAi pathways are widespread in metaozoans but the genes required show variable occurrence or activity in eukaryotic microbes, including many pathogens. While some Leishmania lack RNAi activity and Argonaute or Dicer genes, we show that Leishmania braziliensis and other species within the Leishmania subgenus Viannia elaborate active RNAi machinery. Strong attenuation of expression from a variety of reporter and endogenous genes was seen. As expected, RNAi knockdowns of the sole Argonaute gene implicated this protein in RNAi. The potential for functional genetics was established by testing RNAi knockdown lines lacking the paraflagellar rod, a key component of the parasite flagellum. This sets the stage for the systematic manipulation of gene expression through RNAi in these predominantly diploid asexual organisms, and may also allow selective RNAi-based chemotherapy. Functional evolutionary surveys of RNAi genes established that RNAi activity was lost after the separation of the Leishmania subgenus Viannia from the remaining Leishmania species, a divergence associated with profound changes in the parasite infectious cycle and virulence. The genus Leishmania therefore offers an accessible system for testing hypothesis about forces that may select for the loss of RNAi during evolution, such as invasion by viruses, changes in genome plasticity mediated by transposable elements and gene amplification (including those mediating drug resistance, and/or alterations in parasite virulence.

  13. 15-30, 2016 15 Prevalence of diarrhea causing protozoan infections

    African Journals Online (AJOL)

    protozoal infection was recorded and therefore public health education about diarrhea causing protozoans and ..... individuals serve as unidentified carriers and may .... Web GIS for tourism devel- ... CSA [Ethiopia] and ICF International; 2012.

  14. Synergistic Interactions within a Multispecies Biofilm Enhance Individual Species Protection against Grazing by a Pelagic Protozoan

    DEFF Research Database (Denmark)

    Raghupathi, Prem Krishnan; Liu, Wenzheng; Sabbe, Koen

    2018-01-01

    of a multispecies bacterial biofilm subject to grazing by a pelagic protozoan predator were investigated. To this end, a mono and multispecies biofilms of four bacterial soil isolates, namely Xanthomonas retroflexus, Stenotrophomonas rhizophila, Microbacterium oxydans and Paenibacillus amylolyticus, were...

  15. Factors related to occurrence and distribution of selected bacterial and protozoan pathogens in Pennsylvania streams

    Science.gov (United States)

    Duris, Joseph W.; Reif, Andrew G.; Donna A. Crouse,; Isaacs, Natasha M.

    2013-01-01

    The occurrence and distribution of fecal indicator bacteria (FIB) and bacterial and protozoan pathogens are controlled by diverse factors. To investigate these factors in Pennsylvania streams, 217 samples were collected quarterly from a 27-station water-quality monitoring network from July 2007 through August 2009. Samples were analyzed for concentrations of Escherichia coli (EC) and enterococci (ENT) indicator bacteria, concentrations of Cryptosporidium oocysts and Giardia cysts, and the presence of four genes related to pathogenic types of EC (eaeA, stx2, stx1, rfbO157) plus three microbial source tracking (MST) gene markers that are also associated with pathogenic ENT and EC (esp, LTIIa, STII). Water samples were concurrently analyzed for basic water chemistry, physical measures of water quality, nutrients, metals, and a suite of 79 organic compounds that included hormones, pharmaceuticals, and antibiotics. For each sample location, stream discharge was measured by using standardized methods at the time of sample collection, and ancillary sample site information, such as land use and geological characteristics, was compiled. Samples exceeding recreational water quality criteria were more likely to contain all measured pathogen genes but notCryptosporidium or Giardia (oo)cysts. FIB and Giardia density and frequency of eaeA gene occurrence were significantly related to season. When discharge at a sampling location was high (>75th percentile of daily mean discharge), there were greater densities of FIB and Giardia, and the stx2, rfbO157, STII, and esp genes were found more frequently than at other discharge conditions. Giardia occurrence was likely related to nonpoint sources, which are highly influential during seasonal overland transport resulting from snowmelt and elevated precipitation in late winter and spring in Pennsylvania. When MST markers of human, swine, or bovine origin were present, samples more frequently carried the eaeA, stx2

  16. Getting to the guts of the matter: the status and potential of 'omics' research of parasitic protists of the human gastrointestinal system.

    Science.gov (United States)

    Jex, Aaron R; Koehler, Anson V; Ansell, Brendan R; Baker, Louise; Karunajeewa, Harin; Gasser, Robin B

    2013-11-01

    Parasitic protists are a major cause of diarrhoeal illnesses in humans globally. Collectively, enteric pathogens exceed all other forms of infectious disease, in terms of their estimated global prevalence and socioeconomic impact. They have a disproportionately high impact on children in impoverished communities, leading to acute (diarrhoea, vomiting, dehydration and death) and chronic disease (malabsorption, malnutrition, physical and cognitive stunting and predisposition to chronic, non-communicable disease) consequences. However, historically, investment in research and disease control measures has been disproportionately poor, leading to their current classification as neglected pathogens. A sound understanding of their biology is essential in underpinning detection, treatment and control efforts. One major tool in rapidly improving our knowledge of these parasites is the use of biological systems, including 'omic' technologies. In recent years, these tools have shown significant success when applied to enteric protists. This review summarises much of this knowledge and highlights the significant remaining knowledge gaps. A major focus of the present review was to provide a perspective on a way forward to address these gaps using advanced biotechnologies. Copyright © 2013 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  17. Genetic characterization of the partial mitochondrial cytochrome oxidase c subunit I (cox 1) gene of the zoonotic parasitic nematode, Ancylostoma ceylanicum from humans, dogs and cats.

    Science.gov (United States)

    Ngui, Romano; Mahdy, Mohammed A K; Chua, Kek Heng; Traub, Rebecca; Lim, Yvonne A L

    2013-10-01

    Ancylostoma ceylanicum is the only zoonotic hookworm species that is able to produce patent infections in humans with the majority of cases reported in South East Asia. Over the past few years, there have been an increasing number of studies investigating the prevalence of this parasitic zoonosis using molecular diagnostic tools and a single genetic locus as marker for species identification. As there can be limitations in using a single genetic locus for epidemiological studies and genetic discrimination, the complementary use of a more variable locus will provide additional evidence to support the zoonotic exchange of hookworm species between humans and animals. In the present study, the cytochrome c oxidase subunit 1 (cox 1) sequence of A. ceylanicum from positive human and animal fecal samples were determined and compared with published reference sequences. Phylogenetic analysis demonstrated that isolates of A. ceylanicum were divided into two clusters, one consisting 3 human isolates and the other comprising 19 isolates of human and animal origin from different geographical locations within Malaysia. The two groups of A. ceylanicum could be distinguished from one another through five fixed nucleotide differences at locations 891, 966, 1008, 1077 and 1083. The detection of genetically distinct groups and considerable level of genetic variation within the cox 1 sequence of A. ceylanicum might suggest potential haplotype-linked differences in zoonotic, epidemiological and pathobiological characteristics, a hypothesis that still needs further investigation. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Parasitic diseases of lungs

    International Nuclear Information System (INIS)

    Rozenshtraukh, L.C.; Rybakova, N.I.; Vinner, M.G.

    1987-01-01

    Roentgenologic semiotics of the main parasitic diseases of lungs is described: echinococcosis, paragonimiasis, cysticercosis, toxoplasmosis, ascariasis, amebiosis and some rarely met parasitic diseases

  19. Are adequate methods available to detect protist parasites on fresh produce?

    Science.gov (United States)

    Human parasitic protists such as Cryptosporidium, Giardia and microsporidia contaminate a variety of fresh produce worldwide. Existing detection methods lack sensitivity and specificity for most foodborne parasites. Furthermore, detection has been problematic because these parasites adhere tenacious...

  20. Genome content analysis yields new insights into the relationship between the human malaria parasite Plasmodium falciparum and its anopheline vectors.

    Science.gov (United States)

    Oppenheim, Sara J; Rosenfeld, Jeffrey A; DeSalle, Rob

    2017-02-27

    The persistent and growing gap between the availability of sequenced genomes and the ability to assign functions to sequenced genes led us to explore ways to maximize the information content of automated annotation for studies of anopheline mosquitos. Specifically, we use genome content analysis of a large number of previously sequenced anopheline mosquitos to follow the loss and gain of protein families over the evolutionary history of this group. The importance of this endeavor lies in the potential for comparative genomic studies between Anopheles and closely related non-vector species to reveal ancestral genome content dynamics involved in vector competence. In addition, comparisons within Anopheles could identify genome content changes responsible for variation in the vectorial capacity of this family of important parasite vectors. The competence and capacity of P. falciparum vectors do not appear to be phylogenetically constrained within the Anophelinae. Instead, using ancestral reconstruction methods, we suggest that a previously unexamined component of vector biology, anopheline nucleotide metabolism, may contribute to the unique status of anophelines as P. falciparum vectors. While the fitness effects of nucleotide co-option by P. falciparum parasites on their anopheline hosts are not yet known, our results suggest that anopheline genome content may be responding to selection pressure from P. falciparum. Whether this response is defensive, in an attempt to redress improper nucleotide balance resulting from P. falciparum infection, or perhaps symbiotic, resulting from an as-yet-unknown mutualism between anophelines and P. falciparum, is an open question that deserves further study. Clearly, there is a wealth of functional information to be gained from detailed manual genome annotation, yet the rapid increase in the number of available sequences means that most researchers will not have the time or resources to manually annotate all the sequence data they

  1. Viruses of parasites as actors in the parasite-host relationship: A "ménage à trois".

    Science.gov (United States)

    Gómez-Arreaza, Amaranta; Haenni, Anne-Lise; Dunia, Irene; Avilán, Luisana

    2017-02-01

    The complex parasite-host relationship involves multiple mechanisms. Moreover, parasites infected by viruses modify this relationship adding more complexity to the system that now comprises three partners. Viruses infecting parasites were described several decades ago. However, until recently little was known about the viruses involved and their impact on the resulting disease caused to the hosts. To clarify this situation, we have concentrated on parasitic diseases caused to humans and on how virus-infected parasites could alter the symptoms inflicted on the human host. It is clear that the effect caused to the human host depends on the virus and on the parasite it has infected. Consequently, the review is divided as follows: Viruses with a possible effect on the virulence of the parasite. This section reviews pertinent articles showing that infection of parasites by viruses might increase the detrimental effect of the tandem virus-parasite on the human host (hypervirulence) or decrease virulence of the parasite (hypovirulence). Parasites as vectors affecting the transmission of viruses. In some cases, the virus-infected parasite might facilitate the transfer of the virus to the human host. Parasites harboring viruses with unidentified effects on their host. In spite of recently renewed interest in parasites in connection with their viruses, there still remains a number of cases in which the effect of the virus of a given parasite on the human host remains ambiguous. The triangular relationship between the virus, the parasite and the host, and the modulation of the pathogenicity and virulence of the parasites by viruses should be taken into account in the rationale of fighting against parasites. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Tratamento anaeróbio de esgoto e sua eficiência na redução da viabilidade de ovos de helmintos Helminth eggs and protozoan cysts in sludge obtained by anaerobic digestion process

    Directory of Open Access Journals (Sweden)

    Rosangela C. Paulino

    2001-10-01

    Full Text Available O presente trabalho tem como objetivo determinar a prevalência e a viabilidade de ovos e larvas de helmintos e cistos de protozoários presentes em biossólido e em esgoto submetido ao tratamento anaeróbio em estações de tratamento de esgoto onde são empregados reatores anaeróbios de lodo fluidizado (RALF, na região metropolitana de Curitiba, Paraná. Os parasitos presentes no esgoto e no lodo foram helmintos: Ascaris sp (85%, Toxocara sp (5,5%, Trichuris sp (4,5%, Hymenolepis diminuta (3,7%, H. nana (1% e Taenia sp (0,4%, Protozoários: Isospora sp, Entamoeba coli, Entamoeba histolytica, Giardia lamblia, Endolimax nana. Houve diferença significativa quanto ao número de ovos viáveis de helmintos presentes no material de quatro estações estudadas. A redução da viabilidade dos ovos de helmintos variou de 59,7 a 93%. No tratamento biológico baseado na digestão anaeróbia a eficácia depende do tempo e da temperatura. Novos tratamentos higienizantes são necessários para a utilização do lodo produzido por digestão anaeróbia na reciclagem em agricultura ou para outros objetivos visando reduzir o risco para saúde humana e animal.This study evaluates the prevalence and viability of helminth eggs and protozoan cysts in sludge obtained by anaerobic treatment in four treatment stations in Curitiba, Parana State, Brazil. The parasites observed were helminths: Ascaris sp (85%, Toxocara sp (5.5%, Trichuris sp (4.5%, Hymenolepis diminuta (3.7%, H. nana (1% and Taenia sp (0.4%, protozoan: Isospora sp, Entamoeba coli, Entamoeba histolytica, Giardia lamblia, Endolimax nana. In biological treatment based on the anaerobic digestion the effectiveness depends on the duration and temperature. The treatment showed efficiency for pathogen reduction of between 59.7 to 93%. However, the number of helminth eggs found in treatment stations was still high and new higher performance treatment is necessary for land application or for other objectives

  3. The Plasmodium bottleneck: malaria parasite losses in the mosquito vector

    Science.gov (United States)

    Smith, Ryan C; Vega-Rodríguez, Joel; Jacobs-Lorena, Marcelo

    2014-01-01

    Nearly one million people are killed every year by the malaria parasite Plasmodium. Although the disease-causing forms of the parasite exist only in the human blood, mosquitoes of the genus Anopheles are the obligate vector for transmission. Here, we review the parasite life cycle in the vector and highlight the human and mosquito contributions that limit malaria parasite development in the mosquito host. We address parasite killing in its mosquito host and bottlenecks in parasite numbers that might guide intervention strategies to prevent transmission. PMID:25185005

  4. The Plasmodium bottleneck: malaria parasite losses in the mosquito vector

    Directory of Open Access Journals (Sweden)

    Ryan C Smith

    2014-08-01

    Full Text Available Nearly one million people are killed every year by the malaria parasite Plasmodium. Although the disease-causing forms of the parasite exist only in the human blood, mosquitoes of the genus Anopheles are the obligate vector for transmission. Here, we review the parasite life cycle in the vector and highlight the human and mosquito contributions that limit malaria parasite development in the mosquito host. We address parasite killing in its mosquito host and bottlenecks in parasite numbers that might guide intervention strategies to prevent transmission.

  5. Intestinal parasites and genotyping of Giardia duodenalis in children: first report of genotype B in isolates from human clinical samples in Mexico

    Directory of Open Access Journals (Sweden)

    Julio César Torres-Romero

    2014-06-01

    Full Text Available Giardia duodenalis is one of the most prevalent enteroparasites in children. This parasite produces several clinical manifestations. The aim of this study was to determine the prevalence of genotypes of G. duodenalis causing infection in a region of southeastern Mexico. G. duodenalis cysts were isolated (33/429 from stool samples of children and molecular genotyping was performed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP analysis, targeting the triosephosphate isomerase ( tpi and glutamate dehydrogenase ( gdh genes. The tpi gene was amplified in all of the cyst samples, either for assemblage A (27 samples or assemblage B (6 samples. RFLP analysis classified the 27 tpi -A amplicons in assemblage A, subgenotype I. Samples classified as assemblage B were further analysed using PCR-RFLP of the gdh gene and identified as assemblage B, subgenotype III. To our knowledge, this is the first report of assemblage B of G. duodenalis in human clinical samples from Mexico.

  6. Parasites and cancers: parasite antigens as possible targets for cancer immunotherapy.

    Science.gov (United States)

    Darani, Hossein Yousofi; Yousefi, Morteza

    2012-12-01

    An adverse relationship between some parasite infections and cancer in the human population has been reported by different research groups. Anticancer activity of some parasites such as Trypanosoma cruzi, Toxoplasma gondii, Toxocara canis, Acantamoeba castellani and Plasmodium yoelii has been shown in experimental animals. Moreover, it has been shown that cancer-associated mucin-type O-glycan compositions are made by parasites, therefore cancers and parasites have common antigens. In this report anticancer activities of some parasites have been reviewed and the possible mechanisms of these actions have also been discussed.

  7. Epidemiology and geographical distribution of enteric protozoan infections in Sydney, Australia

    Directory of Open Access Journals (Sweden)

    Stephanie Fletcher

    2014-07-01

    Full Text Available Background. Enteric protozoa are associated with diarrhoeal illnesses in humans; however there are no recent studies on their epidemiology and geographical distribution in Australia. This study describes the epidemiology of enteric protozoa in the state of New South Wales and incorporates spatial analysis to describe their distribution. Design and methods. Laboratory and clinical records from four public hospitals in Sydney for 910 patients, who tested positive for enteric protozoa over the period January 2007-December 2010, were identified, examined and analysed. We selected 580 cases which had residence post code data available, enabling us to examine the geographic distribution of patients, and reviewed the clinical data of 252 patients to examine possible links between protozoa, demographic and clinical features. Results. Frequently detected protozoa were Blastocystis spp. (57%, Giardia intestinalis (27% and Dientamoeba fragilis (12%. The age distribution showed that the prevalence of protozoa decreased with age up to 24 years but increasing with age from 25 years onwards. The geographic provenance of the patients indicates that the majority of cases of Blastocystis (53.1% are clustered in and around the Sydney City Business District, while pockets of giardiasis were identified in regional/rural areas. The distribution of cases suggests higher risk of protozoan infection may exist for some communities. Conclusions. These findings provide useful information for policy makers to design and tailor interventions to target high risk communities. Follow-up investigation into the risk factors for giardiasis in regional/rural area is needed.

  8. Chagas Parasite Detection in Blood Images Using AdaBoost

    Directory of Open Access Journals (Sweden)

    Víctor Uc-Cetina

    2015-01-01

    Full Text Available The Chagas disease is a potentially life-threatening illness caused by the protozoan parasite, Trypanosoma cruzi. Visual detection of such parasite through microscopic inspection is a tedious and time-consuming task. In this paper, we provide an AdaBoost learning solution to the task of Chagas parasite detection in blood images. We give details of the algorithm and our experimental setup. With this method, we get 100% and 93.25% of sensitivity and specificity, respectively. A ROC comparison with the method most commonly used for the detection of malaria parasites based on support vector machines (SVM is also provided. Our experimental work shows mainly two things: (1 Chagas parasites can be detected automatically using machine learning methods with high accuracy and (2 AdaBoost + SVM provides better overall detection performance than AdaBoost or SVMs alone. Such results are the best ones known so far for the problem of automatic detection of Chagas parasites through the use of machine learning, computer vision, and image processing methods.

  9. Targeting essential pathways in trypanosomatids gives insights into protozoan mechanisms of cell death

    Directory of Open Access Journals (Sweden)

    Fasel Nicolas

    2010-11-01

    Full Text Available Abstract Apoptosis is a normal component of the development and health of multicellular organisms. However, apoptosis is now considered a prerogative of unicellular organisms, including the trypanosomatids of the genera Trypanosoma spp. and Leishmania spp., causative agents of some of the most important neglected human diseases. Trypanosomatids show typical hallmarks of apoptosis, although they lack some of the key molecules contributing to this process in metazoans, like caspase genes, Bcl-2 family genes and the TNF-related family of receptors. Despite the lack of these molecules, trypanosomatids appear to have the basic machinery to commit suicide. The components of the apoptotic execution machinery of these parasites are slowly coming into light, by targeting essential processes and pathways with different apoptogenic agents and inhibitors. This review will be confined to the events known to drive trypanosomatid parasites to apoptosis.

  10. Circulating CD14brightCD16+ 'intermediate' monocytes exhibit enhanced parasite pattern recognition in human helminth infection.

    Directory of Open Access Journals (Sweden)

    Joseph D Turner

    2014-04-01

    Full Text Available Circulating monocyte sub-sets have recently emerged as mediators of divergent immune functions during infectious disease but their role in helminth infection has not been investigated. In this study we evaluated whether 'classical' (CD14brightCD16-, 'intermediate' (CD14brightCD16+, and 'non-classical' (CD14dimCD16+ monocyte sub-sets from peripheral blood mononuclear cells varied in both abundance and ability to bind antigenic material amongst individuals living in a region of Northern Senegal which is co-endemic for Schistosoma mansoni and S. haematobium. Monocyte recognition of excretory/secretory (E/S products released by skin-invasive cercariae, or eggs, of S. mansoni was assessed by flow cytometry and compared between S. mansoni mono-infected, S. mansoni and S. haematobium co-infected, and uninfected participants. Each of the three monocyte sub-sets in the different infection groups bound schistosome E/S material. However, 'intermediate' CD14brightCD16+ monocytes had a significantly enhanced ability to bind cercarial and egg E/S. Moreover, this elevation of ligand binding was particularly evident in co-infected participants. This is the first demonstration of modulated parasite pattern recognition in CD14brightCD16+ intermediate monocytes during helminth infection, which may have functional consequences for the ability of infected individuals to respond immunologically to infection.

  11. Sporozoite Route of Infection Influences In Vitro var Gene Transcription of Plasmodium falciparum Parasites From Controlled Human Infections.

    Science.gov (United States)

    Dimonte, Sandra; Bruske, Ellen I; Hass, Johanna; Supan, Christian; Salazar, Carmen L; Held, Jana; Tschan, Serena; Esen, Meral; Flötenmeyer, Matthias; Koch, Iris; Berger, Jürgen; Bachmann, Anna; Sim, Betty K L; Hoffman, Stephen L; Kremsner, Peter G; Mordmüller, Benjamin; Frank, Matthias

    2016-09-15

    Antigenic variation in Plasmodium falciparum is mediated by the multicopy var gene family. Each parasite possesses about 60 var genes, and switching between active var loci results in antigenic variation. In the current study, the effect of mosquito and host passage on in vitro var gene transcription was investigated. Thirty malaria-naive individuals were inoculated by intradermal or intravenous injection with cryopreserved, isogenic NF54 P. falciparum sporozoites (PfSPZ) generated from 1 premosquito culture. Microscopic parasitemia developed in 22 individuals, and 21 in vitro cultures were established. The var gene transcript levels were determined in early and late postpatient cultures and in the premosquito culture. At the early time point, all cultures preferentially transcribed 8 subtelomeric var genes. Intradermal infections had higher var gene transcript levels than intravenous infections and a significantly longer intrahost replication time (P = .03). At the late time point, 9 subtelomeric and 8 central var genes were transcribed at the same levels in almost all cultures. Premosquito and late postpatient cultures transcribed the same subtelomeric and central var genes, except for var2csa  The duration of intrahost replication influences in vitro var gene transcript patterns. Differences between premosquito and postpatient cultures decrease with prolonged in vitro growth. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  12. Epidemiological review of toxoplasmosis in humans and animals in Romania.

    Science.gov (United States)

    Dubey, J P; Hotea, I; Olariu, T R; Jones, J L; Dărăbuş, G

    2014-03-01

    Infections by the protozoan parasite Toxoplasma gondii are widely prevalent in humans and other animals worldwide. However, information from eastern European countries is sketchy. In many eastern European countries, including Romania, it has been assumed that chronic T. gondii infection is a common cause of infertility and abortion. For this reason, many women in Romania with these problems were needlessly tested for T. gondii infection. Most papers on toxoplasmosis in Romania were published in Romanian in local journals and often not available to scientists in other countries. Currently, the rate of congenital infection in Romania is largely unknown. In addition, there is little information on genetic characteristics of T. gondii or prevalence in animals and humans in Romania. In the present paper we review prevalence, clinical spectrum and epidemiology of T. gondii in humans and animals in Romania. This knowledge should be useful to biologists, public health workers, veterinarians and physicians.

  13. Rodent malaria parasites : genome organization & comparative genomics

    NARCIS (Netherlands)

    Kooij, Taco W.A.

    2006-01-01

    The aim of the studies described in this thesis was to investigate the genome organization of rodent malaria parasites (RMPs) and compare the organization and gene content of the genomes of RMPs and the human malaria parasite P. falciparum. The release of the complete genome sequence of P.

  14. Nonobese Diabetic (NOD Mice Lack a Protective B-Cell Response against the “Nonlethal” Plasmodium yoelii 17XNL Malaria Protozoan

    Directory of Open Access Journals (Sweden)

    Mirian Mendoza

    2016-01-01

    Full Text Available Background. Plasmodium yoelii 17XNL is a nonlethal malaria strain in mice of different genetic backgrounds including the C57BL/6 mice (I-Ab/I-Enull used in this study as a control strain. We have compared the trends of blood stage infection with the nonlethal murine strain of P. yoelii 17XNL malaria protozoan in immunocompetent Nonobese Diabetic (NOD mice prone to type 1 diabetes (T1D and C57BL/6 mice (control mice that are not prone to T1D and self-cure the P. yoelii 17XNL infection. Prediabetic NOD mice could not mount a protective antibody response to the P. yoelii 17XNL-infected red blood cells (iRBCs, and they all succumbed shortly after infection. Our data suggest that the lack of anti-P. yoelii 17XNL-iRBCs protective antibodies in NOD mice is a result of parasite-induced, Foxp3+ T regulatory (Treg cells able to suppress the parasite-specific antibody secretion. Conclusions. The NOD mouse model may help in identifying new mechanisms of B-cell evasion by malaria parasites. It may also serve as a more accurate tool for testing antimalaria therapeutics due to the lack of interference with a preexistent self-curing mechanism present in other mouse strains.

  15. Microbicidal effect of the lactoferrin peptides Lactoferricin17-30, Lactoferrampin265-284, and Lactoferrin chimera on the parasite Entamoeba histolytica

    NARCIS (Netherlands)

    López-Soto, F.; León-Sicairos, N.; Nazmi, K.; Bolscher, J.G.; de la Garza, M.

    2010-01-01

    Entamoeba histolytica is a parasitic protozoan that produces amoebiasis, an intestinal disease characterized by ulcerative colitis and dysentery. In some cases, trophozoites can travel to the liver leading to hepatic abscesses and death. Recently, lactoferrin and lactoferricin B have been shown to

  16. LIBP-Pred: web server for lipid binding proteins using structural network parameters; PDB mining of human cancer biomarkers and drug targets in parasites and bacteria.

    Science.gov (United States)

    González-Díaz, Humberto; Munteanu, Cristian R; Postelnicu, Lucian; Prado-Prado, Francisco; Gestal, Marcos; Pazos, Alejandro

    2012-03-01

    Lipid-Binding Proteins (LIBPs) or Fatty Acid-Binding Proteins (FABPs) play an important role in many diseases such as different types of cancer, kidney injury, atherosclerosis, diabetes, intestinal ischemia and parasitic infections. Thus, the computational methods that can predict LIBPs based on 3D structure parameters became a goal of major importance for drug-target discovery, vaccine design and biomarker selection. In addition, the Protein Data Bank (PDB) contains 3000+ protein 3D structures with unknown function. This list, as well as new experimental outcomes in proteomics research, is a very interesting source to discover relevant proteins, including LIBPs. However, to the best of our knowledge, there are no general models to predict new LIBPs based on 3D structures. We developed new Quantitative Structure-Activity Relationship (QSAR) models based on 3D electrostatic parameters of 1801 different proteins, including 801 LIBPs. We calculated these electrostatic parameters with the MARCH-INSIDE software and they correspond to the entire protein or to specific protein regions named core, inner, middle, and surface. We used these parameters as inputs to develop a simple Linear Discriminant Analysis (LDA) classifier to discriminate 3D structure of LIBPs from other proteins. We implemented this predictor in the web server named LIBP-Pred, freely available at , along with other important web servers of the Bio-AIMS portal. The users can carry out an automatic retrieval of protein structures from PDB or upload their custom protein structural models from their disk created with LOMETS server. We demonstrated the PDB mining option performing a predictive study of 2000+ proteins with unknown function. Interesting results regarding the discovery of new Cancer Biomarkers in humans or drug targets in parasites have been discussed here in this sense.

  17. The activities of current antimalarial drugs on the life cycle stages of Plasmodium: a comparative study with human and rodent parasites.

    Science.gov (United States)

    Delves, Michael; Plouffe, David; Scheurer, Christian; Meister, Stephan; Wittlin, Sergio; Winzeler, Elizabeth A; Sinden, Robert E; Leroy, Didier

    2012-02-01

    Malaria remains a disease of devastating global impact, killing more than 800,000 people every year-the vast majority being children under the age of 5. While effective therapies are available, if malaria is to be eradicated a broader range of small molecule therapeutics that are able to target the liver and the transmissible sexual stages are required. These new medicines are needed both to meet the challenge of malaria eradication and to circumvent resistance. Little is known about the wider stage-specific activities of current antimalarials that were primarily designed to alleviate symptoms of malaria in the blood stage. To overcome this critical gap, we developed assays to measure activity of antimalarials against all life stages of malaria parasites, using a diverse set of human and nonhuman parasite species, including male gamete production (exflagellation) in Plasmodium falciparum, ookinete development in P. berghei, oocyst development in P. berghei and P. falciparum, and the liver stage of P. yoelii. We then compared 50 current and experimental antimalarials in these assays. We show that endoperoxides such as OZ439, a stable synthetic molecule currently in clinical phase IIa trials, are strong inhibitors of gametocyte maturation/gamete formation and impact sporogony; lumefantrine impairs development in the vector; and NPC-1161B, a new 8-aminoquinoline, inhibits sporogony. These data enable objective comparisons of the strengths and weaknesses of each chemical class at targeting each stage of the lifecycle. Noting that the activities of many compounds lie within achievable blood concentrations, these results offer an invaluable guide to decisions regarding which drugs to combine in the next-generation of antimalarial drugs. This study might reveal the potential of life-cycle-wide analyses of drugs for other pathogens with complex life cycles.

  18. The Activities of Current Antimalarial Drugs on the Life Cycle Stages of Plasmodium: A Comparative Study with Human and Rodent Parasites

    Science.gov (United States)

    Delves, Michael; Plouffe, David; Scheurer, Christian; Meister, Stephan; Wittlin, Sergio; Winzeler, Elizabeth A.; Sinden, Robert E.; Leroy, Didier

    2012-01-01

    Background Malaria remains a disease of devastating global impact, killing more than 800,000 people every year—the vast majority being children under the age of 5. While effective therapies are available, if malaria is to be eradicated a broader range of small molecule therapeutics that are able to target the liver and the transmissible sexual stages are required. These new medicines are needed both to meet the challenge of malaria eradication and to circumvent resistance. Methods and Findings Little is known about the wider stage-specific activities of current antimalarials that were primarily designed to alleviate symptoms of malaria in the blood stage. To overcome this critical gap, we developed assays to measure activity of antimalarials against all life stages of malaria parasites, using a diverse set of human and nonhuman parasite species, including male gamete production (exflagellation) in Plasmodium falciparum, ookinete development in P. berghei, oocyst development in P. berghei and P. falciparum, and the liver stage of P. yoelii. We then compared 50 current and experimental antimalarials in these assays. We show that endoperoxides such as OZ439, a stable synthetic molecule currently in clinical phase IIa trials, are strong inhibitors of gametocyte maturation/gamete formation and impact sporogony; lumefantrine impairs development in the vector; and NPC-1161B, a new 8-aminoquinoline, inhibits sporogony. Conclusions These data enable objective comparisons of the strengths and weaknesses of each chemical class at targeting each stage of the lifecycle. Noting that the activities of many compounds lie within achievable blood concentrations, these results offer an invaluable guide to decisions regarding which drugs to combine in the next-generation of antimalarial drugs. This study might reveal the potential of life-cycle–wide analyses of drugs for other pathogens with complex life cycles. Please see later in the article for the Editors' Summary PMID

  19. Deep Insight into the Phosphatomes of Parasitic Protozoa and a Web Resource ProtozPhosDB.

    Science.gov (United States)

    Anwar, Tamanna; Gourinath, Samudrala

    2016-01-01

    Phosphorylation dynamically regulates the function of proteins by maintaining a balance between protein kinase and phosphatase activity. A comprehensive understanding of the role phosphatases in cellular signaling is lacking in case of protozoans of medical and veterinary importance worldwide. The drugs used to treat protozoal diseases have many undesired effects and the development of resistance, highlights the need for new effective and safer antiprotozoal agents. In the present study we have analyzed phosphatomes of 15 protozoans of medical significance. We identified ~2000 phosphatases, out of which 21% are uncharacterized proteins. A significant positive correlation between phosphatome and proteome size was observed except for E. histolytica, having highest density of phosphatases irrespective of its proteome size. A difference in the number of phosphatases among different genera shows the variation in the signaling pathways they are involved in. The phosphatome of parasites is dominated by ser/thr phosphatases contrary to the vertebrate host dominated by tyrosine phosphatases. Phosphatases were widely distributed throughout the cell suggesting physiological adaptation of the parasite to regulate its host. 20% to 45% phosphatome of different protozoa consists of ectophosphatases, i.e. crucial for the survival of parasites. A database and a webserver "ProtozPhosDB" can be used to explore the phosphatomes of protozoans of medical significance.

  20. Molecular Characterization of Leishmania Parasites in Giemsa-Stained Slides from Cases of Human Cutaneous and Visceral Leishmaniasis, Eastern Algeria.

    Science.gov (United States)

    Beldi, Nadia; Mansouri, Roukaya; Bettaieb, Jihene; Yaacoub, Alia; Souguir Omrani, Hejer; Saadi Ben Aoun, Yusr; Saadni, Farida; Guizani, Ikram; Guerbouj, Souheila

    2017-06-01

    In Algeria, visceral leishmaniasis (VL) is due to Leishmania (L.) infantum, while three cutaneous forms (CL) are caused by Leishmania major, Leishmania tropica and Leishmania infantum. In this study, the use of Giemsa-stained slides was evaluated with two PCR techniques, in Eastern Algeria. A total of 136 samples corresponding to 100 CL smears (skin scrapings) and 36 VL slides (bone marrow aspirates) collected from 2008 to 2014 were tested. Upon DNA extraction, two PCRs were used to amplify the ribosomal Internal Transcribed Spacer 1 (ITS1) and mini-exon genes. Amplified products were digested (PCR-RFLP) and profiles analyzed for Leishmania species identification. A statistical analysis was also performed. ITS1-PCR was found significantly more sensitive than mini-exon-PCR (77.95% positives vs. 67.65%; p = 0.001). Comparison of PCR positivity showed statistically significant differences between old and recently prepared slides suggesting a better use of recent slides in PCR analyses. For species identification, PCR-restriction fragment length polymorphism (RFLP) results of ITS1 and mini-exon were concordant. L. infantum was identified from VL cases and L. infantum, L. major, and L. tropica from CL ones. According to geographical origin, L. infantum was found in North-Eastern provinces, while L. major was distributed from the North to the Center-East of Algeria. Interestingly, two L. tropica samples were identified in Annaba, located far North-East Algeria. Distribution of leishmaniasis in Eastern parts of Algeria, besides finding of L. tropica in the far North, is in this study described for the first time using molecular tools, thus confirming the usefulness of slides for PCR identification of Leishmania parasites in retrospective epidemiological investigations.

  1. Protozoan Predation of Escherichia coli O157:H7 Is Unaffected by the Carriage of Shiga Toxin-Encoding Bacteriophages.

    Directory of Open Access Journals (Sweden)

    Carrie E Schmidt

    Full Text Available Escherichia coli O157:H7 is a food-borne bacterium that causes hemorrhagic diarrhea and hemolytic uremic syndrome in humans. While cattle are a known source of E. coli O157:H7 exposure resulting in human infection, environmental reservoirs may also be important sources of infection for both cattle and humans. Bacteriophage-encoded Shiga toxins (Stx carried by E. coli O157:H7 may provide a selective advantage for survival of these bacteria in the environment, possibly through their toxic effects on grazing protozoa. To determine Stx effects on protozoan grazing, we co-cultured Paramecium caudatum, a common ciliate protozoon in cattle water sources, with multiple strains of Shiga-toxigenic E. coli O157:H7 and non-Shiga toxigenic cattle commensal E. coli. Over three days at ambient laboratory temperature, P. caudatum consistently reduced both E. coli O157:H7 and non-Shiga toxigenic E. coli populations by 1-3 log cfu. Furthermore, a wild-type strain of Shiga-toxigenic E. coli O157:H7 (EDL933 and isogenic mutants lacking the A subunit of Stx 2a, the entire Stx 2a-encoding bacteriophage, and/or the entire Stx 1-encoding bacteriophage were grazed with similar efficacy by both P. caudatum and Tetrahymena pyriformis (another ciliate protozoon. Therefore, our data provided no evidence of a protective effect of either Stx or the products of other bacteriophage genes on protozoan predation of E. coli. Further research is necessary to determine if the grazing activity of naturally-occurring protozoa in cattle water troughs can serve to decrease cattle exposure to E. coli O157:H7 and other Shiga-toxigenic E. coli.

  2. Intestinal Parasites of the Grasscutter

    African Journals Online (AJOL)

    User

    excretions of carrier cane rats (Oboegbulem. & Okoronkwo, 1990). The possibility of transmission of parasites of the grasscutter to humans cannot be overlooked. This is more so as some people do not only cherish grasscutter meat but also use the content of the gut both for medicinal purposes and for food (pers. comm.).

  3. The role of parasites and pathogens in influencing generalised anxiety and predation-related fear in the mammalian central nervous system.

    Science.gov (United States)

    Kaushik, Maya; Lamberton, Poppy H L; Webster, Joanne P

    2012-08-01

    Behavioural and neurophysiological traits and responses associated with anxiety and predation-related fear have been well documented in rodent models. Certain parasites and pathogens which rely on predation for transmission appear able to manipulate these, often innate, traits to increase the likelihood of their life-cycle being completed. This can occur through a range of mechanisms, such as alteration of hormonal and neurotransmitter communication and/or direct interference with the neurons and brain regions that mediate behavioural expression. Whilst some post-infection behavioural changes may reflect 'general sickness' or a pathological by-product of infection, others may have a specific adaptive advantage to the parasite and be indicative of active manipulation of host behaviour. Here we review the key mechanisms by which anxiety and predation-related fears are controlled in mammals, before exploring evidence for how some infectious agents may manipulate these mechanisms. The protozoan Toxoplasma gondii, the causative agent of toxoplasmosis, is focused on as a prime example. Selective pressures appear to have allowed this parasite to evolve strategies to alter the behaviour in its natural intermediate rodent host. Latent infection has also been associated with a range of altered behavioural profiles, from subtle to severe, in other secondary host species including humans. In addition to enhancing our knowledge of the evolution of parasite manipulation in general, to further our understanding of how and when these potential changes to human host behaviour occur, and how we may prevent or manage them, it is imperative to elucidate the associated mechanisms involved. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. High-throughput genotyping assay for the large-scale genetic characterization of Cryptosporidium parasites from human and bovine samples.

    Science.gov (United States)

    Abal-Fabeiro, J L; Maside, X; Llovo, J; Bello, X; Torres, M; Treviño, M; Moldes, L; Muñoz, A; Carracedo, A; Bartolomé, C

    2014-04-01

    The epidemiological study of human cryptosporidiosis requires the characterization of species and subtypes involved in human disease in large sample collections. Molecular genotyping is costly and time-consuming, making the implementation of low-cost, highly efficient technologies increasingly necessary. Here, we designed a protocol based on MALDI-TOF mass spectrometry for the high-throughput genotyping of a panel of 55 single nucleotide variants (SNVs) selected as markers for the identification of common gp60 subtypes of four Cryptosporidium species that infect humans. The method was applied to a panel of 608 human and 63 bovine isolates and the results were compared with control samples typed by Sanger sequencing. The method allowed the identification of species in 610 specimens (90·9%) and gp60 subtype in 605 (90·2%). It displayed excellent performance, with sensitivity and specificity values of 87·3 and 98·0%, respectively. Up to nine genotypes from four different Cryptosporidium species (C. hominis, C. parvum, C. meleagridis and C. felis) were detected in humans; the most common ones were C. hominis subtype Ib, and C. parvum IIa (61·3 and 28·3%, respectively). 96·5% of the bovine samples were typed as IIa. The method performs as well as the widely used Sanger sequencing and is more cost-effective and less time consuming.

  5. Plasmodium falciparum Adhesins Play an Essential Role in Signalling and Activation of Invasion into Human Erythrocytes.

    Directory of Open Access Journals (Sweden)

    Wai-Hong Tham

    2015-12-01

    Full Text Available The most severe form of malaria in humans is caused by the protozoan parasite Plasmodium falciparum. The invasive form of malaria parasites is termed a merozoite and it employs an array of parasite proteins that bind to the host cell to mediate invasion. In Plasmodium falciparum, the erythrocyte binding-like (EBL and reticulocyte binding-like (Rh protein families are responsible for binding to specific erythrocyte receptors for invasion and mediating signalling events that initiate active entry of the malaria parasite. Here we have addressed the role of the cytoplasmic tails of these proteins in activating merozoite invasion after receptor engagement. We show that the cytoplasmic domains of these type 1 membrane proteins are phosphorylated in vitro. Depletion of PfCK2, a kinase implicated to phosphorylate these cytoplasmic tails, blocks P. falciparum invasion of red blood cells. We identify the crucial residues within the PfRh4 cytoplasmic domain that are required for successful parasite invasion. Live cell imaging of merozoites from these transgenic mutants show they attach but do not penetrate erythrocytes implying the PfRh4 cytoplasmic tail conveys signals important for the successful completion of the invasion process.

  6. Prevalence of parasites in soil samples in Tehran public places ...

    African Journals Online (AJOL)

    Results of our findings provide evidence that soil may play an important role in transmission of zoonotic parasite diseases to human. In addition, control of high population of animals such as stray dogs and cats is necessary to reduce the distribution of parasites. Key words: Prevalence, parasites, flotation method, Tehran.

  7. Intestinal parasites among young children in the interior of Guyana.

    Science.gov (United States)

    Lindo, J F; Validum, L; Ager, A L; Campa, A; Cuadrado, R R; Cummings, R; Palmer, C J

    2002-03-01

    Intestinal parasites contribute greatly to morbidity in developing countries. While there have been several studies of the problem in the Caribbean, including the implementation of control programmes, this has not been done for Guyana. The aim of this study was to determine the prevalence of intestinal parasites among young children in a town located in the interior of Guyana. Eighty-five children under the age of 12 years were studied prospectively for intestinal parasites in Mahdia, Guyana. Stool samples were transported in formalin to the Department of Microbiology, The University of the West Indies, Jamaica, for analysis using the formalin-ether concentration and Ziehl-Neelsen techniques. Data on age and gender of the children were recorded on field data sheets. At least one intestinal parasite was detected in 43.5% (37/85) of the children studied and multiple parasitic infections were recorded in 21.2% (18/85). The most common intestinal helminth parasite was hookworm (28.2%; 24/85), followed by Ascaris lumbricoides (18.8%; 16/85) and then Trichuris trichuria (14.1%; 12/85). Among the protozoan infections Giardia lamblia was detected in 10.5% (9/85) of the study population while Entamoeba histolytica appeared rarely. All stool samples were negative for Cryptosporidium and other intestinal Coccidia. There was no predilection for gender with any of the parasites. The pattern of distribution of worms in this area of Guyana was unlike that seen in other studies. Hookworm infection was the most common among the children and a large proportion had multiple infections. The study established the occurrence and prevalence of a number of intestinal parasites in the population of Guyana. This sets the stage for the design and implementation of more detailed epidemiological studies.

  8. Intestinal parasites in children and soil from Turbaco, Colombia and associated risk factors.

    Science.gov (United States)

    Villafañe-Ferrer, Lucy M; Pinilla-Pérez, Mavianis

    2016-02-01

    Objective To determine the frequency of intestinal parasites in children and soil from Turbaco- Colombia and associated risks factors. Methods Analytical study in which 390 children between 2 and 12 years old from 10 neighborhoods of Turbaco were included, whose legal representatives gave informed consent. Three serial samples of feces and 10 soil samples were processed. Risk factors were determined through an interview. Physicochemical and structural characteristics of soils were also evaluated. Results Parasites were found in 30.5 % of children. 162 parasites were observed; the most frequent protozoan was Endolimax nana (30.3 %) and in terms of helminthes, the most frequent was Ascaris lumbricoides (4.9 %). No statistical association between age or sex and intestinal parasites (p>0.05) or between risk factors and intestinal parasites (p>0.05) was found. Low frequencies of intestinal parasites were encountered in soil samples, being more common Entamoeba spp., Giardia spp., and Ascaris lumbricoides. Neighborhoods of Turbaco had sandy dry soil with low content of ions, low conductivity and low organic matter. Conclusion This study showed a low frequency of intestinal parasites in feces and soils. Despite this, pathogenic parasites were found which can affect the health of the population. Besides this, a high percentage of intestinal parasites that are transmitted through feces were detected indicating fecal contamination and low level of hygiene.

  9. Secondary Defense Chemicals in Milkweed Reduce Parasite Infection in Monarch Butterflies, Danaus plexippus.

    Science.gov (United States)

    Gowler, Camden D; Leon, Kristoffer E; Hunter, Mark D; de Roode, Jacobus C

    2015-06-01

    In tri-trophic systems, herbivores may benefit from their host plants in fighting parasitic infections. Plants can provide parasite resistance in two contrasting ways: either directly, by interfering with the parasite, or indirectly, by increasing herbivore immunity or health. In monarch butterflies, the larval diet of milkweed strongly influences the fitness of a common protozoan parasite. Toxic secondary plant chemicals known as cardenolides correlate strongly with parasite resistance of the host, with greater cardenolide concentrations in the larval diet leading to lower parasite growth. However, milkweed cardenolides may covary with other indices of plant quality including nutrients, and a direct experimental link between cardenolides and parasite performance has not been established. To determine if the anti-parasitic activity of milkweeds is indeed due to secondary chemicals, as opposed to nutrition, we supplemented the diet of infected and uninfected monarch larvae with milkweed latex, which contains cardenolides but no nutrients. Across three experiments, increased dietary cardenolide concentrations reduced parasite growth in infected monarchs, which consequently had longer lifespans. However, uninfected monarchs showed no differences in lifespan across treatments, confirming that cardenolide-containing latex does not increase general health. Our results suggest that cardenolides are a driving force behind plant-derived resistance in this system.

  10. The role of extracellular vesicles in parasite-host interaction

    Directory of Open Access Journals (Sweden)

    Justyna Gatkowska

    2016-09-01

    Full Text Available Extracellular vesicles (EVs, initially considered cell debris, were soon proved to be an essential tool of intercellular communication enabling the exchange of information without direct contact of the cells. At present EVs are the subject of extensive research due to their universal presence in single- and multi-cell organisms, regardless of their systematic position, and their substantial role in cell-to-cell communication. EVs seem to be released by both prokaryotic and eukaryotic cells under natural (in vivo and laboratory (in vitro conditions. Even purified fractions of isolated EVs comprise various membrane-derived structures. However, EVs can be classified into general groups based primarily on their size and origin. EVs may carry various materials, and ongoing research investigations give new insight into their potenti participation in critical biological processes, e.g. carcinogenesis. This paper presents current knowledge on the EVs’ involvement in host–parasite interactions including the invasion process, the maintenance of the parasite infection and modulation of the host immune response to parasite antigenic stimulation, as well as perspectives of the potential use of EVs as immunoprophylactic and diagnostic tools for controlling parasite infections. The most numerous literature data concern protozoan parasites, especially those of the greatest medical and social importance worldwide. However, available information about the EVs’ contribution to helminth invasion has also been included.

  11. The origin of malarial parasites in orangutans.

    Directory of Open Access Journals (Sweden)

    M Andreína Pacheco

    Full Text Available BACKGROUND: Recent findings of Plasmodium in African apes have changed our perspectives on the evolution of malarial parasites in hominids. However, phylogenetic analyses of primate malarias are still missing information from Southeast Asian apes. In this study, we report molecular data for a malaria parasite lineage found in orangutans. METHODOLOGY/PRINCIPAL FINDINGS: We screened twenty-four blood samples from Pongo pygmaeus (Kalimantan, Indonesia for Plasmodium parasites by PCR. For all the malaria positive orangutan samples, parasite mitochondrial genomes (mtDNA and two antigens: merozoite surface protein 1 42 kDa (MSP-1(42 and circumsporozoite protein gene (CSP were amplified, cloned, and sequenced. Fifteen orangutans tested positive and yielded 5 distinct mitochondrial haplotypes not previously found. The haplotypes detected exhibited low genetic divergence among them, indicating that they belong to one species. We report phylogenetic analyses using mitochondrial genomes, MSP-1(42 and CSP. We found that the orangutan malaria parasite lineage was part of a monophyletic group that includes all the known non-human primate malaria parasites found in Southeast Asia; specifically, it shares a recent common ancestor with P. inui (a macaque parasite and P. hylobati (a gibbon parasite suggesting that this lineage originated as a result of a host switch. The genetic diversity of MSP-1(42 in orangutans seems to be under negative selection. This result is similar to previous findings in non-human primate malarias closely related to P. vivax. As has been previously observed in the other Plasmodium species found in non-human primates, the CSP shows high polymorphism in the number of repeats. However, it has clearly distinctive motifs from those previously found in other malarial parasites. CONCLUSION: The evidence available from Asian apes indicates that these parasites originated independently from those found in Africa, likely as the result of host

  12. Differential attractiveness of humans to the African malaria vector Anopheles gambiae Giles : effects of host characteristics and parasite infection

    NARCIS (Netherlands)

    Mukabana, W.R.

    2002-01-01

    The results of a series of studies designed to understand the principal factors that determine the differential attractiveness of humans to the malaria vector Anopheles

  13. Parasites and chronic renal failure

    OpenAIRE

    Mohammadi Manesh, Reza; Hosseini Safa, Ahmad; Sharafi, Seyedeh Maryam; Jafari, Rasool; Bahadoran, Mehran; Yousefi, Morteza; Nasri, Hamid; Yousofi Darani, Hossein

    2014-01-01

    Suppression of the human immune system results in an increase in susceptibility to infection by various infectious agents. Conditions such as AIDS, organ transplantation and chronic renal insufficiency (CRI) are the most important cause of insufficient immune response against infections. Long term renal disorders result in uremia, which can suppress human immune system. Parasitic infections are one of the most important factors indicating the public health problems of the societies. These inf...

  14. Mechanisms of host seeking by parasitic nematodes.

    Science.gov (United States)

    Gang, Spencer S; Hallem, Elissa A

    2016-07-01

    The phylum Nematoda comprises a diverse group of roundworms that includes parasites of vertebrates, invertebrates, and plants. Human-parasitic nematodes infect more than one billion people worldwide and cause some of the most common neglected tropical diseases, particularly in low-resource countries [1]. Parasitic nematodes of livestock and crops result in billions of dollars in losses each year [1]. Many nematode infections are treatable with low-cost anthelmintic drugs, but repeated infections are common in endemic areas and drug resistance is a growing concern with increasing therapeutic and agricultural administration [1]. Many parasitic nematodes have an environmental infective larval stage that engages in host seeking, a process whereby the infective larvae use sensory cues to search for hosts. Host seeking is a complex behavior that involves multiple sensory modalities, including olfaction, gustation, thermosensation, and humidity sensation. As the initial step of the parasite-host interaction, host seeking could be a powerful target for preventative intervention. However, host-seeking behavior remains poorly understood. Here we review what is currently known about the host-seeking behaviors of different parasitic nematodes, including insect-parasitic nematodes, mammalian-parasitic nematodes, and plant-parasitic nematodes. We also discuss the neural bases of these behaviors. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Glyoxalase diversity in parasitic protists.

    Science.gov (United States)

    Deponte, Marcel

    2014-04-01

    Our current knowledge of the isomerase glyoxalase I and the thioesterase glyoxalase II is based on a variety of prokaryotic and eukaryotic (model) systems with an emphasis on human glyoxalases. During the last decade, important insights on glyoxalase catalysis and structure-function relationships have also been obtained from parasitic protists. These organisms, including kinetoplastid and apicomplexan parasites, are particularly interesting, both because of their relevance as pathogens and because of their phylogenetic diversity and host-parasite co-evolution which has led to specialized organellar and metabolic adaptations. Accordingly, the glyoxalase repertoire and properties vary significantly among parasitic protists of different major eukaryotic lineages (and even between closely related organisms). For example, several protists have an insular or non-canonical glyoxalase. Furthermore, the structures and the substrate specificities of glyoxalases display drastic variations. The aim of the present review is to highlight such differences as well as similarities between the glyoxalases of parasitic protists and to emphasize the power of comparative studies for gaining insights into fundamental principles and alternative glyoxalase functions.

  16. Epidemiology of human fascioliasis and intestinal parasitosis among schoolchildren in Lake Tana Basin, northwest Ethiopia.

    Science.gov (United States)

    Fentie, Tsegaw; Erqou, Sebhat; Gedefaw, Molla; Desta, Almaw

    2013-08-01

    Parasitic diseases are the second most frequent cause of outpatient morbidity in Ethiopia. A cross-sectional study was conducted in Lake Tana Basin, northwest Ethiopia, from November 2007 to February 2008, to assess the magnitude and associated risk factors for parasitic diseases, including human fascioliasis. We examined 520 stool samples from randomly selected schoolchildren in six schools by microscopy. Rapid sedimentation and Kato-Katz techniques were used to detect and count Fasciola and Schistosoma eggs. The formol-ether concentration method was used for the identification of other helminth eggs, larvae and cysts of protozoan parasites. The overall prevalence of intestinal parasitic infections was 71.3% (95% CI 67.3-75.1%). Hookworm was the predominant intestinal parasite (23.5%, 95% CI 19.8-27.1%), followed by Ascaris lumbricoides (18.5%, 95% CI 15.2-21.9%) and Schistosoma mansoni (16.7%, 95% CI 13.5-19.9%). One hundred and sixty-three (31.4%) children had multiple parasitic infections. The most relevant finding was a prevalence of Fasciola spp. of 3.3% in an area where only sporadic cases have been reported previously. The risk of Fasciola spp. infection was significantly associated with raw vegetable consumption, use of unsafe drinking water sources, irrigation practices and sheep and/or cattle ownership. Irrigation practices, male gender, raw vegetable consumption and use of unsafe drinking water sources were risk factors for S. mansoni infection. A high prevalence of parasitic infections among children in the region was found, including a relatively high prevalence of Fasciola spp. infection. Epidemiological studies on the magnitude of parasitic infections in different regions will enable high-risk communities to be identified and allow for planning of appropriate interventions.

  17. Prevalence of Toxoplasma gondii antibodies and intestinal parasites in stray cats from Nigde, Turkey

    Directory of Open Access Journals (Sweden)

    Bengi Dündar

    2010-01-01

    Full Text Available The prevalence of antibodies to Toxoplasma gondii was investigated by the Sabin-Feldman Dye test (SFDT in 72 stray cats from Nigde, Turkey. A total of 55 (76.4% of the analysed sera had antibodies to T. gondii. The seropositivity of T. gondii was 77.1% in male and 75.7% in female cats (P>0.05. Faeces of these cats were also examined by zinc sulphate flotation method for the presence of parasite oocysts and eggs of other parasites. Two protozoan parasites were identified as Isospora spp. (12.5% and Eimeria spp. (4.1% in cats. Toxoplasma gondii oocysts were not found in any faecal samples analysed. Two parasitic helminth species were observed: Toxocara cati (15.2% and Toxascaris leonina (20.8%. These common ascarids were recorded for the first time in cats from Nigde.

  18. Diversity and distribution of parasites from potentially cultured freshwater fish in Nakhon Si Thammarat

    Directory of Open Access Journals (Sweden)

    Supamattaya, K.

    2005-02-01

    Full Text Available Twenty-one species from 16 genera of potentially cultured freshwater fish were examined for external and internal parasites. Ten individuals of each fish species were sampled from various places in Nakhon Si Thammarat. Eight groups, 72 species were identified and the majority was external (52 spp.. The parasites found were ciliated protozoan (2 spp., myxozoan (2 spp., monogenean (44 spp., digenean (7 spp., cestode (6 spp., nematode (6 spp., acanthocephalan (2 spp. and crustacean (3 spp.. Monogenean was regarded as a major group of parasites with 44 species. Dactylogyrus (Monogenea had the highest number of species (12 spp., whereas Trichodina pediculus (Ciliophora was the most widely distributed species observed from at least 7 fish species (7 families. Most of the parasites (72 % found in this study were specific to their host species.

  19. Parasites of the mink frog (rana septentrionalis) from Minnesota, U.S.A.

    Science.gov (United States)

    Schotthoefer, Anna M.; Bolek, M.G.; Cole, Rebecca A.; Beasley, Val R.

    2009-01-01

    Twenty-two mink frogs, Rana septentrionalis, collected from two locations in Minnesota, United States, were examined for helminth and protozoan blood parasites in July 1999. A total of 16 parasite taxa were recovered including 5 larval digenean trematodes, 7 adult digenean trematodes, 3 nematodes, and I Trypanosorna species. Infracommunities were dominated by the digeneans in terms of richness and abundance. In particular, echinostomatid metacercariae in the kidneys of frogs were the most common parasites found, infecting 100% of the frogs and consisting of about 90% of all helminth individuals recovered. Gorgodera amplicava, Gorgoderina multilohata, Haernaroloechus pan'iplexus, Haernatoloechus breviplexus, Cosnwcercoides dukae, and Oswaldocruzia pipiens represent new host records. The survey presented here represents the second known helminth survey of mink frogs conducted in North America. A summary of metazoan parasites reported from mink frogs is included.

  20. Update on pathology of ocular parasitic disease.

    Science.gov (United States)

    Das, Dipankar; Ramachandra, Varsha; Islam, Saidul; Bhattacharjee, Harsha; Biswas, Jyotirmay; Koul, Akanksha; Deka, Panna; Deka, Apurba

    2016-11-01

    Parasites are a group of eukaryotic organisms that may be free-living or form a symbiotic or parasitic relationship with the hosts. Consisting of over 800,000 recognized species, parasites may be unicellular (Protozoa) or multicellular (helminths and arthropods). The association of parasites with human population started long before the emergence of civilization. Parasitic zoonotic diseases are prevalent worldwide including India. Appropriate epidemiological data are lacking on existing zoonotic parasitic diseases, and newer diseases are emerging in our scenario. Systemic diseases such as cysticercosis, paragonimiasis, hydatidosis, and toxoplasmosis are fairly common. Acquired Toxoplasma infections are rising in immune-deficient individuals. Amongst the ocular parasitic diseases, various protozoas such as Cystoidea, trematodes, tissue flagellates, sporozoas etc. affect humans in general and eyes in particular, in different parts of the world. These zoonoses seem to be a real health related problem globally. Recent intensification of research throughout the world has led to specialization in biological fields, creating a conducive situation for researchers interested in this subject. The basics of parasitology lie in morphology, pathology, and with recent updates in molecular parasitology, the scope has extended further. The current review is to address the recent update in ophthalmic parasites with special reference to pathology and give a glimpse of further research in this field.

  1. Parasitic nematode interactions with mammals and plants.

    Science.gov (United States)

    Jasmer, Douglas P; Goverse, Aska; Smant, Geert

    2003-01-01

    Parasitic nematodes that infect humans, animals, and plants cause serious diseases that are deleterious to human health and agricultural productivity. Chemical and biological control methods have reduced the impact of these parasites. However, surviving environmental stages lead to persistent reinfection of host species. In addition, development of resistance to nematicides and anthelmintics by these parasites and reduced availability of some nematicides, for environmental protection, pose significant obstacles for current and future prospects of effective parasite control. Due to marked differences in host species, research on animal and plant parasitic nematodes often proceeds independently. Despite the differences between animals and plants, basic cellular properties are shared among these host organisms. Some common properties may be important for mechanisms [homologous or convergent (homoplastic)] by which nematodes successfully infect these diverse hosts or by which animal and plant hosts resist infections by these pathogens. Here we compare host/parasite interactions between plant parasitic nematodes (PPN) and animal parasitic nematodes, with an emphasis on mammalian hosts (MPN). Similarities and differences are considered in the context of progress on molecular dissection of these interactions. A comprehensive coverage is not possible in the space allotted. Instead, an illustrative approach is used to establish examples that, it is hoped, exemplify the value of the comparative approach.

  2. Update on pathology of ocular parasitic disease

    Directory of Open Access Journals (Sweden)

    Dipankar Das

    2016-01-01

    Full Text Available Parasites are a group of eukaryotic organisms that may be free-living or form a symbiotic or parasitic relationship with the hosts. Consisting of over 800,000 recognized species, parasites may be unicellular (Protozoa or multicellular (helminths and arthropods. The association of parasites with human population started long before the emergence of civilization. Parasitic zoonotic diseases are prevalent worldwide including India. Appropriate epidemiological data are lacking on existing zoonotic parasitic diseases, and newer diseases are emerging in our scenario. Systemic diseases such as cysticercosis, paragonimiasis, hydatidosis, and toxoplasmosis are fairly common. Acquired Toxoplasma infections are rising in immune-deficient individuals. Amongst the ocular parasitic diseases, various protozoas such as Cystoidea, trematodes, tissue flagellates, sporozoas etc. affect humans in general and eyes in particular, in different parts of the world. These zoonoses seem to be a real health related problem globally. Recent intensification of research throughout the world has led to specialization in biological fields, creating a conducive situation for researchers interested in this subject. The basics of parasitology lie in morphology, pathology, and with recent updates in molecular parasitology, the scope has extended further. The current review is to address the recent update in ophthalmic parasites with special reference to pathology and give a glimpse of further research in this field.

  3. Molecular evidence for bacterial and protozoan pathogens in hard ticks from Romania.

    Science.gov (United States)

    Ionita, Mariana; Mitrea, Ioan Liviu; Pfister, Kurt; Hamel, Dietmar; Silaghi, Cornelia

    2013-09-01

    The aim of the present study was to provide a preliminary insight into the diversity of tick-borne pathogens circulating at the domestic host-tick interface in Romania. For this, feeding and questing ticks were analyzed by real-time polymerase chain reaction (PCR) for the presence of Anaplasma phagocytophilum, Anaplasma platys, Ehrlichia canis, Borrelia burgdorferi sensu latu, and by PCR and subsequent sequencing for Rickettsia spp., Babesia spp. and Theileria spp. A total of 382 ticks, encompassing 5 species from 4 genera, were collected in April-July 2010 from different areas of Romania; of them, 40 were questing ticks and the remainder was collected from naturally infested cattle, sheep, goats, horses or dogs. Tick species analyzed included Ixodes ricinus, Dermacentor marginatus, Hyalomma marginatum, Rhipicephalus bursa, and Rhipicephalus sanguineus. Four rickettsiae of the spotted fever group of zoonotic concern were identified for the first time in Romania: Rickettsia monacensis and Rickettsia helvetica in I. ricinus, and Rickettsia slovaca and Rickettsia raoultii in D. marginatus. Other zoonotic pathogens such as A. phagocytophilum, Borrelia afzelii, and Babesia microti were found in I. ricinus. Pathogens of veterinary importance were also identified, including Theileria equi in H. marginatum, Babesia occultans in D. marginatus and H. marginatum, Theileria orientalis/sergenti/buffeli-group in I. ricinus and in H. marginatum and E. canis in R. sanguineus. These findings show a wide distribution of very diverse bacterial and protozoan pathogens at the domestic host-tick interface in Romania, with the potential of causing both animal and human diseases. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Women and Parasitic Diseases

    Science.gov (United States)

    ... Consultations, and General Public. Contact Us Parasites Home Women Recommend on Facebook Tweet Share Compartir Infection with ... of parasites can lead to unique consequences for women. Some examples are given below. Infection with Toxoplasma ...

  5. Immunity to parasitic infection

    National Research Council Canada - National Science Library

    Lamb, Tracey J

    2012-01-01

    ... may be manipulated to develop therapeutic interventions against parasitic infection. For easy reference, the most commonly studied parasites are examined in individual chapters written by investigators at the forefront of their field...

  6. Immunity to parasitic infection

    National Research Council Canada - National Science Library

    Lamb, Tracey J

    2012-01-01

    .... Often endemic in developing countries many parasitic diseases are neglected in terms of research funding and much remains to be understood about parasites and the interactions they have with the immune system...

  7. G-Quadruplex Identification in the Genome of Protozoan Parasites Points to Naphthalene Diimide Ligands as New Antiparasitic Agents

    Czech Academy of Sciences Publication Activity Database

    Belmonte-Reche, E.; Martínez-García, M.; Guédin, A.; Zuffo, M.; Arevalo-Ruiz, M.; Doria, F.; Campos-Salinas, J.; Maynadier, M.; Lopez-Rubio, J.J.; Freccero, M.; Mergny, Jean-Louis; Maria Perez-Victoria, J.; Carlos Moral