WorldWideScience

Sample records for human prostate cells

  1. Semiquantitative morphology of human prostatic development and regional distribution of prostatic neuroendocrine cells.

    Science.gov (United States)

    Aumüller, G; Leonhardt, M; Renneberg, H; von Rahden, B; Bjartell, A; Abrahamsson, P A

    2001-02-01

    The neuroendocrine cells of the human prostate have been related to proliferative disorders such as prostatic cancer. Their origin, distribution, and development have therefore been studied and discussed in terms of current stem cell concepts in the prostate. Prostatic tissue specimens (n = 20) from human fetuses (n = 8), prepubertal and pubertal children (n = 8) and mature men (n = 4) were studied immunohistochemically using antibodies directed against neuroendocrine, epithelial as well as secretory markers. Semiquantitative computer-assisted evaluation of different epithelial and stromal components based on stereological principles was performed on azan-stained sections representative of all developmental stages. By the end of gestational Week 9, neuroendocrine (NE) cells appear in the epithelium of the urogenital sinus and are subsequently closely associated with the formation of urethral prostatic buds. The fetal and postnatal distribution pattern of NE cells within the gland is characterized by a relatively constant number of cells per gland similar to prostatic smooth muscle cells. Likewise, a density gradient exists with the highest density in the large collicular ducts and almost no NE cells in subcapsular peripheral acini. In peripheral ducts, the distribution is random. Maturation of the NE cells precedes that of the secretory cells by about 10-16 years. A second prostatic stem cell lineage, different from the urogenital sinus (UGS)-lineage is hypothesized originating from immature neuroendocrine cells. Being morphologically indistinguishable from the UGS-derived prostatic secretory cell lineage, it gives rise to neuroendocrine cells. Their presence is apparently important for proliferation regulation of the UGS-derived lineage of the prostate. Copyright 2001 Wiley-Liss, Inc.

  2. Preferential radiosensitization of human prostatic carcinoma cells by mild hyperthermia

    International Nuclear Information System (INIS)

    Ryu, Samuel; Brown, Stephen L.; Kim, Sang-Hie; Khil, Mark S.; Kim, Jae Ho

    1996-01-01

    Purpose: Recent cell culture studies by us and others suggest that some human carcinoma cells are more sensitive to heat than are rodent cells following mild hyperthermia. In studying the cellular mechanism of enhanced thermosensitivity of human tumor cells to hyperthermia, prostatic carcinoma cells of human origin were found to be more sensitive to mild hyperthermia than other human cancer cells. The present study was designed to determine the magnitude of radiosensitization of human prostatic carcinoma cells by mild hyperthermia and to examine whether the thermal radiosensitization is related to the intrinsic thermosensitivity of cancer cells. Methods and Materials: Two human prostatic carcinoma cell lines (DU-145 and PC-3) and other carcinoma cells of human origin, in particular, colon (HT-29), breast (MCF-7), lung (A-549), and brain (U-251) were exposed to temperatures of 40-41 deg. C. Single acute dose rate radiation and fractionated radiation were combined with mild hyperthermia to determine thermal radiosensitization. The end point of the study was the colony-forming ability of single-plated cells. Results: DU-145 and PC-3 cells were found to be exceedingly thermosensitive to 41 deg. C for 24 h, relative to other cancer cell lines. Ninety percent of the prostatic cancer cells were killed by a 24 h heat exposure. Prostatic carcinoma cells exposed to a short duration of heating at 41 deg. C for 2 h resulted in a substantial enhancement of radiation-induced cytotoxicity. The thermal enhancement ratios (TERs) of single acute dose radiation following heat treatment 41 deg. C for 2 h were 2.0 in DU-145 cells and 1.4 in PC-3 cells. The TERs of fractionated irradiation combined with continuous heating at 40 deg. C were similarly in the range of 2.1 to 1.4 in prostate carcinoma cells. No significant radiosensitization was observed in MCF-7 and HT-29 cells under the same conditions. Conclusion: The present data suggest that a significant radiosensitization of

  3. The role of CD133 in normal human prostate stem cells and malignant cancer-initiating cells.

    Science.gov (United States)

    Vander Griend, Donald J; Karthaus, Wouter L; Dalrymple, Susan; Meeker, Alan; DeMarzo, Angelo M; Isaacs, John T

    2008-12-01

    Resolving the specific cell of origin for prostate cancer is critical to define rational targets for therapeutic intervention and requires the isolation and characterization of both normal human prostate stem cells and prostate cancer-initiating cells (CIC). Single epithelial cells from fresh normal human prostate tissue and prostate epithelial cell (PrEC) cultures derived from them were evaluated for the presence of subpopulations expressing stem cell markers and exhibiting stem-like growth characteristics. When epithelial cell suspensions containing cells expressing the stem cell marker CD133+ are inoculated in vivo, regeneration of stratified human prostate glands requires inductive prostate stromal cells. PrEC cultures contain a small subpopulation of CD133+ cells, and fluorescence-activated cell sorting-purified CD133+ PrECs self-renew and regenerate cell populations expressing markers of transit-amplifying cells (DeltaNp63), intermediate cells (prostate stem cell antigen), and neuroendocrine cells (CD56). Using a series of CD133 monoclonal antibodies, attachment and growth of CD133+ PrECs requires surface expression of full-length glycosylated CD133 protein. Within a series of androgen receptor-positive (AR+) human prostate cancer cell lines, CD133+ cells are present at a low frequency, self-renew, express AR, generate phenotypically heterogeneous progeny negative for CD133, and possess an unlimited proliferative capacity, consistent with CD133+ cells being CICs. Unlike normal adult prostate stem cells, prostate CICs are AR+ and do not require functional CD133. This suggests that (a) AR-expressing prostate CICs are derived from a malignantly transformed intermediate cell that acquires "stem-like activity" and not from a malignantly transformed normal stem cell and (b) AR signaling pathways are a therapeutic target for prostate CICs.

  4. Cell-autonomous intracellular androgen receptor signaling drives the growth of human prostate cancer initiating cells.

    Science.gov (United States)

    Vander Griend, Donald J; D'Antonio, Jason; Gurel, Bora; Antony, Lizamma; Demarzo, Angelo M; Isaacs, John T

    2010-01-01

    The lethality of prostate cancer is due to the continuous growth of cancer initiating cells (CICs) which are often stimulated by androgen receptor (AR) signaling. However, the underlying molecular mechanism(s) for such AR-mediated growth stimulation are not fully understood. Such mechanisms may involve cancer cell-dependent induction of tumor stromal cells to produce paracrine growth factors or could involve cancer cell autonomous autocrine and/or intracellular AR signaling pathways. We utilized clinical samples, animal models and a series of AR-positive human prostate cancer cell lines to evaluate AR-mediated growth stimulation of prostate CICs. The present studies document that stromal AR expression is not required for prostate cancer growth, since tumor stroma surrounding AR-positive human prostate cancer metastases (N = 127) are characteristically AR-negative. This lack of a requirement for AR expression in tumor stromal cells is also documented by the fact that human AR-positive prostate cancer cells grow equally well when xenografted in wild-type versus AR-null nude mice. AR-dependent growth stimulation was documented to involve secretion, extracellular binding, and signaling by autocrine growth factors. Orthotopic xenograft animal studies documented that the cellautonomous autocrine growth factors which stimulate prostate CIC growth are not the andromedins secreted by normal prostate stromal cells. Such cell autonomous and extracellular autocrine signaling is necessary but not sufficient for the optimal growth of prostate CICs based upon the response to anti-androgen plus/or minus preconditioned media. AR-induced growth stimulation of human prostate CICs requires AR-dependent intracellular pathways. The identification of such AR-dependent intracellular pathways offers new leads for the development of effective therapies for prostate cancer. (c) 2009 Wiley-Liss, Inc.

  5. N-Myc Drives Neuroendocrine Prostate Cancer Initiated from Human Prostate Epithelial Cells

    Science.gov (United States)

    Lee, John K.; Phillips, John W.; Smith, Bryan A.; Park, Jung Wook; Stoyanova, Tanya; McCaffrey, Erin F.; Baertsch, Robert; Sokolov, Artem; Meyerowitz, Justin G.; Mathis, Colleen; Cheng, Donghui; Stuart, Joshua M.; Shokat, Kevan M.; Gustafson, W. Clay; Huang, Jiaoti; Witte, Owen N.

    2016-01-01

    SUMMARY MYCN amplification and overexpression are common in neuroendocrine prostate cancer (NEPC). However, the impact of aberrant N-Myc expression in prostate tumorigenesis and the cellular origin of NEPC have not been established. We define N-Myc and activated AKT1 as oncogenic components sufficient to transform human prostate epithelial cells to prostate adenocarcinoma and NEPC with phenotypic and molecular features of aggressive, late-stage human disease. We directly show that prostate adenocarcinoma and NEPC can arise from a common epithelial clone. Further, N-Myc is required for tumor maintenance and destabilization of N-Myc through Aurora A kinase inhibition reduces tumor burden. Our findings establish N-Myc as a driver of NEPC and a target for therapeutic intervention. PMID:27050099

  6. Telomerase-immortalized non-malignant human prostate epithelial cells retain the properties of multipotent stem cells

    International Nuclear Information System (INIS)

    Li Hongzhen; Zhou Jianjun; Miki, Jun; Furusato, Bungo; Gu Yongpeng; Srivastava, Shiv; McLeod, David G.; Vogel, Jonathan C.; Rhim, Johng S.

    2008-01-01

    Understanding prostate stem cells may provide insight into the origin of prostate cancer. Primary cells have been cultured from human prostate tissue but they usually survive only 15-20 population doublings before undergoing senescence. We report here that RC-170N/h/clone 7 cells, a clonal cell line from hTERT-immortalized primary non-malignant tissue-derived human prostate epithelial cell line (RC170N/h), retain multipotent stem cell properties. The RC-170N/h/clone 7 cells expressed a human embryonic stem cell marker, Oct-4, and potential prostate epithelial stem cell markers, CD133, integrin α2β1 hi and CD44. The RC-170N/h/clone 7 cells proliferated in KGM and Dulbecco's Modified Eagle Medium with 10% fetal bovine serum and 5 μg/ml insulin (DMEM + 10% FBS + Ins.) medium, and differentiated into epithelial stem cells that expressed epithelial cell markers, including CK5/14, CD44, p63 and cytokeratin 18 (CK18); as well as the mesenchymal cell markers, vimentin, desmin; the neuron and neuroendocrine cell marker, chromogranin A. Furthermore the RC170 N/h/clone 7 cells differentiated into multi tissues when transplanted into the sub-renal capsule and subcutaneously of NOD-SCID mice. The results indicate that RC170N/h/clone 7 cells retain the properties of multipotent stem cells and will be useful as a novel cell model for studying the mechanisms of human prostate stem cell differentiation and transformation

  7. Androgen-Sensitized Apoptosis of HPr-1AR Human Prostate Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Congcong Chen

    Full Text Available Androgen receptor (AR signaling is crucial to the development and homeostasis of the prostate gland, and its dysregulation mediates common prostate pathologies. The mechanisms whereby AR regulates growth suppression and differentiation of luminal epithelial cells in the prostate gland and proliferation of malignant versions of these cells have been investigated in human and rodent adult prostate. However, the cellular stress response of human prostate epithelial cells is not well understood, though it is central to prostate health and pathology. Here, we report that androgen sensitizes HPr-1AR and RWPE-AR human prostate epithelial cells to cell stress agents and apoptotic cell death. Although 5α-dihydrotestosterone (DHT treatment alone did not induce cell death, co-treatment of HPr-1AR cells with DHT and an apoptosis inducer, such as staurosporine (STS, TNFt, or hydrogen peroxide, synergistically increased cell death in comparison to treatment with each apoptosis inducer by itself. We found that the synergy between DHT and apoptosis inducer led to activation of the intrinsic/mitochondrial apoptotic pathway, which is supported by robust cleavage activation of caspase-9 and caspase-3. Further, the dramatic depolarization of the mitochondrial membrane potential that we observed upon co-treatment with DHT and STS is consistent with increased mitochondrial outer membrane permeabilization (MOMP in the pro-apoptotic mechanism. Interestingly, the synergy between DHT and apoptosis inducer was abolished by AR antagonists and inhibitors of transcription and protein synthesis, suggesting that AR mediates pro-apoptotic synergy through transcriptional regulation of MOMP genes. Expression analysis revealed that pro-apoptotic genes (BCL2L11/BIM and AIFM2 were DHT-induced, whereas pro-survival genes (BCL2L1/BCL-XL and MCL1 were DHT-repressed. Hence, we propose that the net effect of these AR-mediated expression changes shifts the balance of BCL2-family proteins

  8. Deep RNA-Seq analysis reveals unexpected features of human prostate basal epithelial cells

    Directory of Open Access Journals (Sweden)

    Dingxiao Zhang

    2016-03-01

    Full Text Available Prostate cancer is the second leading cause of cancer-related deaths among American men [1]. The prostate gland mainly contains basal and luminal cells, which are constructed as a pseudostratified epithelium. Annotation of prostate epithelial transcriptomes provides a foundation for discoveries that can impact disease understanding and treatment. Here, for the first time, we describe a whole-genome transcriptome analysis of human benign prostatic basal and luminal populations by using deep RNA sequencing (GSE67070 [2]. Combined with comprehensive molecular and biological characterizations, we show that the differential gene expression profiles account for their distinct functional phenotypes. Strikingly, in contrast to luminal cells, basal cells preferentially express gene categories associated with stem cells, neural and neuronal development, and RNA processing. Of clinical relevance, the treatment failed castration-resistant and anaplastic prostate cancers molecularly resemble a basal-like phenotype. We also identified genes associated with patient clinical outcome. Therefore, we provide a gene expression resource for understanding human prostate epithelial lineages, and link the cell-type specific gene signatures to subtypes of prostate cancer development. Keywords: Prostate epithelial cells, Basal cells, Luminal cells, RNA-seq

  9. Human prostatic cancer cells, PC3, elaborate mitogenic activity which selectively stimulates human bone cells

    International Nuclear Information System (INIS)

    Perkel, V.S.; Mohan, S.; Herring, S.J.; Baylink, D.J.; Linkhart, T.A.

    1990-01-01

    Prostatic cancer typically produces osteoblastic metastases which are not attended by marrow fibrosis. In the present study we sought to test the hypothesis that prostatic cancer cells produce factor(s) which act selectively on human osteoblasts. Such a paracrine mechanism would explain the observed increase in osteoblasts, unaccompanied by an increase in marrow fibroblasts. To test this hypothesis we investigated the mitogenic activity released by the human prostatic tumor cell line, PC3. PC3 cells have been reported previously to produce mitogenic activity for cells that was relatively specific for rat osteoblasts compared to rat fibroblasts. However, the effects of this activity on human cells has not been examined previously. PC3-conditioned medium (CM) (5-50 micrograms CM protein/ml) stimulated human osteoblast proliferation by 200-950% yet did not stimulate human fibroblast proliferation ([3H]thymidine incorporation). PC3 CM also increased cell numbers in human osteoblast but not fibroblast cell cultures. To determine whether the osteoblast-specific mitogenic activity could be attributed to known bone growth factors, specific assays for these growth factors were performed. PC3 CM contained 10 pg insulin-like growth factor (IGF) I, less than 2 pg IGF II, 54 pg basic fibroblast growth factor, and 16 pg transforming growth factor beta/microgram CM protein. None of these growth factors alone or in combination could account for the observed osteoblast-specific PC3 cell-derived mitogenic activity. Furthermore, when 5 micrograms/ml PC3 CM was tested in combination with maximally effective concentrations of either basic fibroblast growth factor, IGF I, IGF II, or transforming growth factor beta, it produced an additive effect suggesting that PC3 CM stimulates osteoblast proliferation by a mechanism independent of these bone mitogens

  10. Cytokeratin characterization of human prostatic carcinoma and its derived cell lines.

    Science.gov (United States)

    Nagle, R B; Ahmann, F R; McDaniel, K M; Paquin, M L; Clark, V A; Celniker, A

    1987-01-01

    Two murine monoclonal anti-cytokeratin antibodies with defined specificity were shown to distinguish between basal cells and luminal cells in human prostate tissue. Forty-one biopsies or transurethral resection specimens were characterized using these two antibodies. In cases of benign prostatic hyperplasia, focal loss of the basal cell layer was noted in areas of glandular proliferation. Ten cases of adenocarcinoma of the prostate, varying in Gleason's histological grade from 2 to 4, were also studied. In each case the carcinoma was shown to represent the luminal cell phenotype with no evidence of involvement of the basal cell phenotype. An analysis of three established metastatic prostatic carcinoma cell lines (DU-145, PC-3, and LNCaP) using two-dimensional electrophoresis showed that the cytokeratin complement of each cell line was slightly different but retained the phenotype of the luminal cell. It was concluded that during both hyperplasia and neoplastic transformation of the prostate, the luminal cell phenotype is primarily involved and that the basal cell phenotype does not appear to contribute to either intraluminal proliferation or invasive cell populations.

  11. Epidermal growth factor increases LRF/Pokemon expression in human prostate cancer cells.

    Science.gov (United States)

    Aggarwal, Himanshu; Aggarwal, Anshu; Agrawal, Devendra K

    2011-10-01

    Leukemia/lymphoma related factor/POK erythroid myeloid ontogenic factor (LRF/Pokemon) is a member of the POK family of proteins that promotes oncogenesis in several forms of cancer. Recently, we found higher LRF expression in human breast and prostate carcinomas compared to the corresponding normal tissues. The aim of this study was to examine the regulation of LRF expression in human prostate cells. Epidermal growth factor (EGF) and its receptors mediate several tumorigenic cascades that regulate cell differentiation, proliferation, migration and survival of prostate cancer cells. There was significantly higher level of LRF expression in the nucleus of LNCaP and PC-3 cells than RWPE-1 cells. A significant increase in LRF expression was observed with increasing doses of EGF in more aggressive and androgen-sensitive prostate cancer cells suggesting that EGF signaling pathway is critical in upregulating the expression of LRF/Pokemon to promote oncogenesis. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Isolation and functional interrogation of adult human prostate epithelial stem cells at single cell resolution.

    Science.gov (United States)

    Hu, Wen-Yang; Hu, Dan-Ping; Xie, Lishi; Li, Ye; Majumdar, Shyama; Nonn, Larisa; Hu, Hong; Shioda, Toshi; Prins, Gail S

    2017-08-01

    Using primary cultures of normal human prostate epithelial cells, we developed a novel prostasphere-based, label-retention assay that permits identification and isolation of stem cells at a single cell level. Their bona fide stem cell nature was corroborated using in vitro and in vivo regenerative assays and documentation of symmetric/asymmetric division. Robust WNT10B and KRT13 levels without E-cadherin or KRT14 staining distinguished individual stem cells from daughter progenitors in spheroids. Following FACS to isolate label-retaining stem cells from label-free progenitors, RNA-seq identified unique gene signatures for the separate populations which may serve as useful biomarkers. Knockdown of KRT13 or PRAC1 reduced sphere formation and symmetric self-renewal highlighting their role in stem cell maintenance. Pathways analysis identified ribosome biogenesis and membrane estrogen-receptor signaling enriched in stem cells with NF-ĸB signaling enriched in progenitors; activities that were biologically confirmed. Further, bioassays identified heightened autophagy flux and reduced metabolism in stem cells relative to progenitors. These approaches similarly identified stem-like cells from prostate cancer specimens and prostate, breast and colon cancer cell lines suggesting wide applicability. Together, the present studies isolate and identify unique characteristics of normal human prostate stem cells and uncover processes that maintain stem cell homeostasis in the prostate gland. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Isolation and functional interrogation of adult human prostate epithelial stem cells at single cell resolution

    Directory of Open Access Journals (Sweden)

    Wen-Yang Hu

    2017-08-01

    Full Text Available Using primary cultures of normal human prostate epithelial cells, we developed a novel prostasphere-based, label-retention assay that permits identification and isolation of stem cells at a single cell level. Their bona fide stem cell nature was corroborated using in vitro and in vivo regenerative assays and documentation of symmetric/asymmetric division. Robust WNT10B and KRT13 levels without E-cadherin or KRT14 staining distinguished individual stem cells from daughter progenitors in spheroids. Following FACS to isolate label-retaining stem cells from label-free progenitors, RNA-seq identified unique gene signatures for the separate populations which may serve as useful biomarkers. Knockdown of KRT13 or PRAC1 reduced sphere formation and symmetric self-renewal highlighting their role in stem cell maintenance. Pathways analysis identified ribosome biogenesis and membrane estrogen-receptor signaling enriched in stem cells with NF-ĸB signaling enriched in progenitors; activities that were biologically confirmed. Further, bioassays identified heightened autophagy flux and reduced metabolism in stem cells relative to progenitors. These approaches similarly identified stem-like cells from prostate cancer specimens and prostate, breast and colon cancer cell lines suggesting wide applicability. Together, the present studies isolate and identify unique characteristics of normal human prostate stem cells and uncover processes that maintain stem cell homeostasis in the prostate gland.

  14. Exogenous fatty acid binding protein 4 promotes human prostate cancer cell progression.

    Science.gov (United States)

    Uehara, Hisanori; Takahashi, Tetsuyuki; Oha, Mina; Ogawa, Hirohisa; Izumi, Keisuke

    2014-12-01

    Epidemiologic studies have found that obesity is associated with malignant grade and mortality in prostate cancer. Several adipokines have been implicated as putative mediating factors between obesity and prostate cancer. Fatty acid binding protein 4 (FABP4), a member of the cytoplasmic fatty acid binding protein multigene family, was recently identified as a novel adipokine. Although FABP4 is released from adipocytes and mean circulating concentrations of FABP4 are linked with obesity, effects of exogenous FABP4 on prostate cancer progression are unclear. In this study, we examined the effects of exogenous FABP4 on human prostate cancer cell progression. FABP4 treatment promoted serum-induced prostate cancer cell invasion in vitro. Furthermore, oleic acid promoted prostate cancer cell invasion only if FABP4 was present in the medium. These promoting effects were reduced by FABP4 inhibitor, which inhibits FABP4 binding to fatty acids. Immunostaining for FABP4 showed that exogenous FABP4 was taken up into DU145 cells in three-dimensional culture. In mice, treatment with FABP4 inhibitor reduced the subcutaneous growth and lung metastasis of prostate cancer cells. Immunohistochemical analysis showed that the number of apoptotic cells, positive for cleaved caspase-3 and cleaved PARP, was increased in subcutaneous tumors of FABP4 inhibitor-treated mice, as compared with control mice. These results suggest that exogenous FABP4 might promote human prostate cancer cell progression by binding with fatty acids. Additionally, exogenous FABP4 activated the PI3K/Akt pathway, independently of binding to fatty acids. Thus, FABP4 might be a key molecule to understand the mechanisms underlying the obesity-prostate cancer progression link. © 2014 UICC.

  15. Neuroendocrine cells during human prostate development: does neuroendocrine cell density remain constant during fetal as well as postnatal life?

    NARCIS (Netherlands)

    Xue, Y.; van der Laak, J.; Smedts, F.; Schoots, C.; Verhofstad, A.; de la Rosette, J.; Schalken, J.

    2000-01-01

    Knowledge concerning differentiation of neuroendocrine (NE) cells during development of the human prostate is rather fragmentary. Using immunohistochemistry combined with a morphometric method, we investigated the distribution and density of NE cells in the developing human prostate, with special

  16. Studies of rhodamine-123: effect on rat prostate cancer and human prostate cancer cells in vitro.

    Science.gov (United States)

    Arcadi, J A; Narayan, K S; Techy, G; Ng, C P; Saroufeem, R M; Jones, L W

    1995-06-01

    The effect of the lipophilic, cationic dye, Rhodamine-123 (Rh-123), on prostate cancer in rats, and on three tumor cell lines in vitro is reported here. The general toxicity of Rh-123 in mice has been found to be minimal. Lobund-Wistar (L-W) rats with the autochthonous prostate cancer of Pollard were treated for six doses with Rh-123 at a dose of 15 mg/kg subcutaneously every other day. Microscopic examination of the tumors revealed cellular and acinar destruction. The effectiveness of Rh-123 as a cytotoxic agent was tested by clonogenic and viability assays in vitro with three human prostate cancer cell lines. Severe (60-95%) growth inhibition was observed following Rh-123 exposure for 2-5 days at doses as low as 1.6 micrograms/ml in all three prostate cancer cell lines.

  17. Phenotypic characterization of telomerase-immortalized primary non-malignant and malignant tumor-derived human prostate epithelial cell lines

    International Nuclear Information System (INIS)

    Gu Yongpeng; Li Hongzhen; Miki, Jun; Kim, Kee-Hong; Furusato, Bungo; Sesterhenn, Isabell A.; Chu, Wei-Sing; McLeod, David G.; Srivastava, Shiv; Ewing, Charles M.; Isaacs, William B.; Rhim, Johng S.

    2006-01-01

    In vitro human prostate cell culture models are critical for clarifying the mechanism of prostate cancer progression and for testing preventive and therapeutic agents. Cell lines ideal for the study of human primary prostate tumors would be those derived from spontaneously immortalized tumor cells; unfortunately, explanted primary prostate cells survive only short-term in culture, and rarely immortalize spontaneously. Therefore, we recently have generated five immortal human prostate epithelial cell cultures derived from both the benign and malignant tissues of prostate cancer patients with telomerase, a gene that prevents cellular senescence. Examination of these cell lines for their morphologies and proliferative capacities, their abilities to grow in low serum, to respond to androgen stimulation, to grow above the agar layer, to form tumors in SCID mice, suggests that they may serve as valid, useful tools for the elucidation of early events in prostate tumorigenesis. Furthermore, the chromosome alterations observed in these immortalized cell lines expressing aspects of the malignant phenotypes imply that these cell lines accurately recapitulate the genetic composition of primary tumors. These novel in vitro models may offer unique models for the study of prostate carcinogenesis and also provide the means for testing both chemopreventive and chemotherapeutic agents

  18. The regulation of adiponectin receptors in human prostate cancer cell lines

    International Nuclear Information System (INIS)

    Mistry, T.; Digby, J.E.; Chen, J.; Desai, K.M.; Randeva, H.S.

    2006-01-01

    Obesity is a risk factor for prostate cancer, and plasma levels of the adipokine, adiponectin, are low in the former but high in the latter. Adiponectin has been shown to modulate cell proliferation and apoptosis, suggesting that adiponectin and its receptors (Adipo-R1, Adipo-R2) may provide a molecular association between obesity and prostate carcinogenesis. We show for First time, the protein distribution of Adipo-R1 and Adipo-R2 in LNCaP and PC3 cells, and in human prostate tissue. Using real-time RT-PCR we provide novel data demonstrating the differential regulation of Adipo-R1 and Adipo-R2 mRNA expression by testosterone, 5-α dihydrotestosterone, β-estradiol, tumour necrosis factor-α, leptin, and adiponectin in LNCaP and PC3 cells. Our findings suggest that adiponectin and its receptors may contribute to the molecular association between obesity and prostate cancer through a complex interaction with other hormones and cytokines that also play important roles in the pathophysiology of obesity and prostate cancer

  19. Human Prostate Cancer Hallmarks Map

    Science.gov (United States)

    Datta, Dipamoy; Aftabuddin, Md.; Gupta, Dinesh Kumar; Raha, Sanghamitra; Sen, Prosenjit

    2016-01-01

    Human prostate cancer is a complex heterogeneous disease that mainly affects elder male population of the western world with a high rate of mortality. Acquisitions of diverse sets of hallmark capabilities along with an aberrant functioning of androgen receptor signaling are the central driving forces behind prostatic tumorigenesis and its transition into metastatic castration resistant disease. These hallmark capabilities arise due to an intense orchestration of several crucial factors, including deregulation of vital cell physiological processes, inactivation of tumor suppressive activity and disruption of prostate gland specific cellular homeostasis. The molecular complexity and redundancy of oncoproteins signaling in prostate cancer demands for concurrent inhibition of multiple hallmark associated pathways. By an extensive manual curation of the published biomedical literature, we have developed Human Prostate Cancer Hallmarks Map (HPCHM), an onco-functional atlas of human prostate cancer associated signaling and events. It explores molecular architecture of prostate cancer signaling at various levels, namely key protein components, molecular connectivity map, oncogenic signaling pathway map, pathway based functional connectivity map etc. Here, we briefly represent the systems level understanding of the molecular mechanisms associated with prostate tumorigenesis by considering each and individual molecular and cell biological events of this disease process. PMID:27476486

  20. Characterization of adenoviral transduction profile in prostate cancer cells and normal prostate tissue.

    Science.gov (United States)

    Ai, Jianzhong; Tai, Phillip W L; Lu, Yi; Li, Jia; Ma, Hong; Su, Qin; Wei, Qiang; Li, Hong; Gao, Guangping

    2017-09-01

    Prostate diseases are common in males worldwide with high morbidity. Gene therapy is an attractive therapeutic strategy for prostate diseases, however, it is currently underdeveloped. As well known, adeno virus (Ad) is the most widely used gene therapy vector. The aims of this study are to explore transduction efficiency of Ad in prostate cancer cells and normal prostate tissue, thus further providing guidance for future prostate pathophysiological studies and therapeutic development of prostate diseases. We produced Ad expressing enhanced green fluorescence protein (EGFP), and characterized the transduction efficiency of Ad in both human and mouse prostate cancer cell lines in vitro, as well as prostate tumor xenograft, and wild-type mouse prostate tissue in vivo. Ad transduction efficiency was determined by EGFP fluorescence using microscopy and flow cytometry. Cell type-specific transduction was examined by immunofluorescence staining of cell markers. Our data showed that Ad efficiently transduced human and mouse prostate cancer cells in vitro in a dose dependent manner. Following intratumoral and intraprostate injection, Ad could efficiently transduce prostate tumor xenograft and the major prostatic cell types in vivo, respectively. Our findings suggest that Ad can efficiently transduce prostate tumor cells in vitro as well as xenograft and normal prostate tissue in vivo, and further indicate that Ad could be a potentially powerful toolbox for future gene therapy of prostate diseases. © 2017 Wiley Periodicals, Inc.

  1. Curcumin analog WZ35 induced cell death via ROS-dependent ER stress and G2/M cell cycle arrest in human prostate cancer cells

    International Nuclear Information System (INIS)

    Zhang, Xiuhua; Chen, Minxiao; Zou, Peng; Kanchana, Karvannan; Weng, Qiaoyou; Chen, Wenbo; Zhong, Peng; Ji, Jiansong; Zhou, Huiping; He, Langchong; Liang, Guang

    2015-01-01

    Prostate cancer is the most commonly diagnosed malignancy among men. The Discovery of new agents for the treatment of prostate cancer is urgently needed. Compound WZ35, a novel analog of the natural product curcumin, exhibited good anti-prostate cancer activity, with an IC 50 of 2.2 μM in PC-3 cells. However, the underlying mechanism of WZ35 against prostate cancer cells is still unclear. Human prostate cancer PC-3 cells and DU145 cells were treated with WZ35 for further proliferation, apoptosis, cell cycle, and mechanism analyses. NAC and CHOP siRNA were used to validate the role of ROS and ER stress, respectively, in the anti-cancer actions of WZ35. Our results show that WZ35 exhibited much higher cell growth inhibition than curcumin by inducing ER stress-dependent cell apoptosis in human prostate cells. The reduction of CHOP expression by siRNA partially abrogated WZ35-induced cell apoptosis. WZ35 also dose-dependently induced cell cycle arrest in the G2/M phase. Furthermore, we found that WZ35 treatment for 30 min significantly induced reactive oxygen species (ROS) production in PC-3 cells. Co-treatment with the ROS scavenger NAC completely abrogated the induction of WZ35 on cell apoptosis, ER stress activation, and cell cycle arrest, indicating an upstream role of ROS generation in mediating the anti-cancer effect of WZ35. Taken together, this work presents the novel anticancer candidate WZ35 for the treatment of prostate cancer, and importantly, reveals that increased ROS generation might be an effective strategy in human prostate cancer treatment. The online version of this article (doi:10.1186/s12885-015-1851-3) contains supplementary material, which is available to authorized users

  2. Androgen receptor-negative human prostate cancer cells induce osteogenesis in mice through FGF9-mediated mechanisms.

    Science.gov (United States)

    Li, Zhi Gang; Mathew, Paul; Yang, Jun; Starbuck, Michael W; Zurita, Amado J; Liu, Jie; Sikes, Charles; Multani, Asha S; Efstathiou, Eleni; Lopez, Adriana; Wang, Jing; Fanning, Tina V; Prieto, Victor G; Kundra, Vikas; Vazquez, Elba S; Troncoso, Patricia; Raymond, Austin K; Logothetis, Christopher J; Lin, Sue-Hwa; Maity, Sankar; Navone, Nora M

    2008-08-01

    In prostate cancer, androgen blockade strategies are commonly used to treat osteoblastic bone metastases. However, responses to these therapies are typically brief, and the mechanism underlying androgen-independent progression is not clear. Here, we established what we believe to be the first human androgen receptor-negative prostate cancer xenografts whose cells induced an osteoblastic reaction in bone and in the subcutis of immunodeficient mice. Accordingly, these cells grew in castrated as well as intact male mice. We identified FGF9 as being overexpressed in the xenografts relative to other bone-derived prostate cancer cells and discovered that FGF9 induced osteoblast proliferation and new bone formation in a bone organ assay. Mice treated with FGF9-neutralizing antibody developed smaller bone tumors and reduced bone formation. Finally, we found positive FGF9 immunostaining in prostate cancer cells in 24 of 56 primary tumors derived from human organ-confined prostate cancer and in 25 of 25 bone metastasis cases studied. Collectively, these results suggest that FGF9 contributes to prostate cancer-induced new bone formation and may participate in the osteoblastic progression of prostate cancer in bone. Androgen receptor-null cells may contribute to the castration-resistant osteoblastic progression of prostate cancer cells in bone and provide a preclinical model for studying therapies that target these cells.

  3. Hydrogen sulfide mediates the anti-survival effect of sulforaphane on human prostate cancer cells

    International Nuclear Information System (INIS)

    Pei, Yanxi; Wu, Bo; Cao, Qiuhui; Wu, Lingyun; Yang, Guangdong

    2011-01-01

    Hydrogen sulfide (H 2 S) is a novel gasotransmitter that regulates cell proliferation and other cellular functions. Sulforaphane (SFN) is a sulfur-containing compound that exhibits anticancer properties, and young sprouts of broccoli are particularly rich in SFN. There is consistent epidemiological evidence that the consumption of sulfur-containing vegetables, such as garlic and cruciferous vegetables, may help reduce the occurrence of prostate cancer. Here we found that a large amount of H 2 S is released when SFN is added into cell culture medium or mixed with mouse liver homogenates, respectively. Both SFN and NaHS (a H 2 S donor) decreased the viability of PC-3 cells (a human prostate cancer cell line) in a dose-dependent manner, and supplement of methemoglobin or oxidized glutathione (two H 2 S scavengers) reversed SFN-reduced cell viability. We further found both cystathionine gamma-lyase (CSE) and cystathionine beta-synthase are expressed in PC-3 cells and mouse prostate tissues. H 2 S production in prostate tissues from CSE knockout mice was only 20% of that from wild-type mice, suggesting CSE is a major H 2 S-producing enzyme in prostate. CSE overexpression enhanced H 2 S production and inhibited cell viability in PC-3 cells. In addition, both SFN and NaHS activated p38 mitogen-activated protein kinases (MAPK) and c-Jun N-terminal kinase (JNK). Pre-treatment of PC-3 cells with methemoglobin decreased SFN-stimulated MAPK activities. Suppression of both p38 MAPK and JNK reversed H 2 S- or SFN-reduced viability of PC-3 cells. Our results demonstrated that H 2 S mediates the inhibitory effect of SFN on the proliferation of PC-3 cells, which suggests that H 2 S-releasing diet or drug might be beneficial in the treatment of prostate cancer. Highlights: ► A large amount of H 2 S is released from sulforaphane. ► H 2 S mediates the anti-survival effect of sulforaphane on human prostate cancer cells. ► Cystathionine gamma-lyase is a major H 2 S

  4. Met-Independent Hepatocyte Growth Factor-mediated regulation of cell adhesion in human prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Davis Rodney

    2006-07-01

    Full Text Available Abstract Background Prostate cancer cells communicate reciprocally with the stromal cells surrounding them, inside the prostate, and after metastasis, within the bone. Each tissue secretes factors for interpretation by the other. One stromally-derived factor, Hepatocyte Growth Factor (HGF, was found twenty years ago to regulate invasion and growth of carcinoma cells. Working with the LNCaP prostate cancer progression model, we found that these cells could respond to HGF stimulation, even in the absence of Met, the only known HGF receptor. The new HGF binding partner we find on the cell surface may help to clarify conflicts in the past literature about Met expression and HGF response in cancer cells. Methods We searched for Met or any HGF binding partner on the cells of the PC3 and LNCaP prostate cancer cell models, using HGF immobilized on agarose beads. By using mass spectrometry analyses and sequencing we have identified nucleolin protein as a novel HGF binding partner. Antibodies against nucleolin (or HGF were able to ameliorate the stimulatory effects of HGF on met-negative prostate cancer cells. Western blots, RT-PCR, and immunohistochemistry were used to assess nucleolin levels during prostate cancer progression in both LNCaP and PC3 models. Results We have identified HGF as a major signaling component of prostate stromal-conditioned media (SCM and have implicated the protein nucleolin in HGF signal reception by the LNCaP model prostate cancer cells. Antibodies that silence either HGF (in SCM or nucleolin (on the cell surfaces eliminate the adhesion-stimulatory effects of the SCM. Likewise, addition of purified HGF to control media mimics the action of SCM. C4-2, an LNCaP lineage-derived, androgen-independent human prostate cancer cell line, responds to HGF in a concentration-dependent manner by increasing its adhesion and reducing its migration on laminin substratum. These HGF effects are not due to shifts in the expression levels of

  5. Met-Independent Hepatocyte Growth Factor-mediated regulation of cell adhesion in human prostate cancer cells

    International Nuclear Information System (INIS)

    Tate, Amanda; Isotani, Shuji; Bradley, Michael J; Sikes, Robert A; Davis, Rodney; Chung, Leland WK; Edlund, Magnus

    2006-01-01

    Prostate cancer cells communicate reciprocally with the stromal cells surrounding them, inside the prostate, and after metastasis, within the bone. Each tissue secretes factors for interpretation by the other. One stromally-derived factor, Hepatocyte Growth Factor (HGF), was found twenty years ago to regulate invasion and growth of carcinoma cells. Working with the LNCaP prostate cancer progression model, we found that these cells could respond to HGF stimulation, even in the absence of Met, the only known HGF receptor. The new HGF binding partner we find on the cell surface may help to clarify conflicts in the past literature about Met expression and HGF response in cancer cells. We searched for Met or any HGF binding partner on the cells of the PC3 and LNCaP prostate cancer cell models, using HGF immobilized on agarose beads. By using mass spectrometry analyses and sequencing we have identified nucleolin protein as a novel HGF binding partner. Antibodies against nucleolin (or HGF) were able to ameliorate the stimulatory effects of HGF on met-negative prostate cancer cells. Western blots, RT-PCR, and immunohistochemistry were used to assess nucleolin levels during prostate cancer progression in both LNCaP and PC3 models. We have identified HGF as a major signaling component of prostate stromal-conditioned media (SCM) and have implicated the protein nucleolin in HGF signal reception by the LNCaP model prostate cancer cells. Antibodies that silence either HGF (in SCM) or nucleolin (on the cell surfaces) eliminate the adhesion-stimulatory effects of the SCM. Likewise, addition of purified HGF to control media mimics the action of SCM. C4-2, an LNCaP lineage-derived, androgen-independent human prostate cancer cell line, responds to HGF in a concentration-dependent manner by increasing its adhesion and reducing its migration on laminin substratum. These HGF effects are not due to shifts in the expression levels of laminin-binding integrins, nor can they be linked to

  6. Honokiol, a constituent of Magnolia species, inhibits adrenergic contraction of human prostate strips and induces stromal cell death

    Directory of Open Access Journals (Sweden)

    Daniel Herrmann

    2014-09-01

    Conclusions: Honokiol inhibits smooth muscle contraction in the human prostate, and induces cell death in cultured stromal cells. Because prostate smooth muscle tone and prostate growth may cause LUTS, it appears possible that honokiol improves voiding symptoms.

  7. Androgen receptor signaling is required for androgen-sensitive human prostate cancer cell proliferation and survival

    Directory of Open Access Journals (Sweden)

    Day Wanda V

    2005-04-01

    Full Text Available Abstract Background Androgens and androgen receptors (AR regulate normal prostate development and growth. They also are involved in pathological development of prostatic diseases, including benign prostatic hyperplasia (BPH and prostate cancer (PCa. Antiandrogen therapy for PCa, in conjunction with chemical or surgical castration, offers initial positive responses and leads to massive prostate cell death. However, cancer cells later appear as androgen-independent PCa. To investigate the role of AR in prostate cell proliferation and survival, we introduced a vector-based small interfering RNA (siRNA. This siRNA targeted 5'-untranslated region of AR mRNA for extended suppression of AR expression in androgen-sensitive human prostate LNCaP cells. Results The siRNA design successfully suppressed endogenous AR expression, as revealed by western blotting and immunofluorescence staining in LNCaP cells. LNCaP cells did not proliferate in the absence of AR and underwent apoptosis, based on elevated phospho-Histone H2B expression and higher number of apoptotic body as compared to control cells. Conclusion We demonstrated that AR is vital for prostate cell proliferation and survival in this androgen-sensitive prostate cell line. These results further strengthen the hypothesis that AR can be a therapeutic target for treating androgen-sensitive stages of PCa. Unlike antiandorgens, however, siRNA targeting AR provides a direct inactivation of AR function through the suppression of AR protein expression.

  8. Anticancer effect of triterpenes from Ganoderma lucidum in human prostate cancer cells.

    Science.gov (United States)

    Qu, Lijun; Li, Sumei; Zhuo, Yumin; Chen, Jianfan; Qin, Xiaoping; Guo, Guoqing

    2017-12-01

    Ganoderma lucidum , within the Polyporaceae family of Basidiomycota, is a popular traditional remedy medicine used in Asia to promote health and longevity. Compounds extracted from G. lucidum have revealed anticancer, antioxidant and liver protective effects. G. lucidum has been associated with prostate cancer cells. G. lucidum extracts contain numerous bioactive components; however, the exact functional monomer is unknown and the role of triterpenes from G. lucidum (GLT) in prostate cancer remain obscure. The present study investigated the effects of GLT on cell viability, migration, invasion and apoptosis in DU-145 human prostate cancer cells. The results demonstrated that a high dose (2 mg/ml) of GLT inhibits cell viability in a dose- and time-dependent manner by the regulation of matrix metalloproteases. Furthermore, GLT induced apoptosis of DU-145 cells. In general, GLT exerts its effect on cancer cells via numerous mechanisms and may have potential therapeutic use for the prevention and treatment of cancer.

  9. Hydrogen sulfide mediates the anti-survival effect of sulforaphane on human prostate cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Pei, Yanxi [Department of Biology, Lakehead University, Thunder Bay (Canada); College of Life Science, Shanxi University, Taiyuan (China); Wu, Bo [Department of Biology, Lakehead University, Thunder Bay (Canada); Department of Pathophysiology, Harbin Medical University, Harbin (China); Cao, Qiuhui [Department of Biology, Lakehead University, Thunder Bay (Canada); Wu, Lingyun [Department of Pathophysiology, Harbin Medical University, Harbin (China); Department of Pharmacology, University of Saskatchewan, Saskatoon (Canada); Yang, Guangdong, E-mail: gyang@lakeheadu.ca [The School of Kinesiology, Lakehead University, Thunder Bay (Canada)

    2011-12-15

    Hydrogen sulfide (H{sub 2}S) is a novel gasotransmitter that regulates cell proliferation and other cellular functions. Sulforaphane (SFN) is a sulfur-containing compound that exhibits anticancer properties, and young sprouts of broccoli are particularly rich in SFN. There is consistent epidemiological evidence that the consumption of sulfur-containing vegetables, such as garlic and cruciferous vegetables, may help reduce the occurrence of prostate cancer. Here we found that a large amount of H{sub 2}S is released when SFN is added into cell culture medium or mixed with mouse liver homogenates, respectively. Both SFN and NaHS (a H{sub 2}S donor) decreased the viability of PC-3 cells (a human prostate cancer cell line) in a dose-dependent manner, and supplement of methemoglobin or oxidized glutathione (two H{sub 2}S scavengers) reversed SFN-reduced cell viability. We further found both cystathionine gamma-lyase (CSE) and cystathionine beta-synthase are expressed in PC-3 cells and mouse prostate tissues. H{sub 2}S production in prostate tissues from CSE knockout mice was only 20% of that from wild-type mice, suggesting CSE is a major H{sub 2}S-producing enzyme in prostate. CSE overexpression enhanced H{sub 2}S production and inhibited cell viability in PC-3 cells. In addition, both SFN and NaHS activated p38 mitogen-activated protein kinases (MAPK) and c-Jun N-terminal kinase (JNK). Pre-treatment of PC-3 cells with methemoglobin decreased SFN-stimulated MAPK activities. Suppression of both p38 MAPK and JNK reversed H{sub 2}S- or SFN-reduced viability of PC-3 cells. Our results demonstrated that H{sub 2}S mediates the inhibitory effect of SFN on the proliferation of PC-3 cells, which suggests that H{sub 2}S-releasing diet or drug might be beneficial in the treatment of prostate cancer. Highlights: Black-Right-Pointing-Pointer A large amount of H{sub 2}S is released from sulforaphane. Black-Right-Pointing-Pointer H{sub 2}S mediates the anti-survival effect of

  10. Radiosensitization of human prostate cell line LNCAP by [6]- gingerol

    International Nuclear Information System (INIS)

    Silva, Josias Paulino Leal; Bellini, Maria Helena

    2017-01-01

    Full text: Introduction: Prostate cancer is the second most prevalent malignancy and second leading cause of cancer-related deaths among men in the world. Several different diagnostic and therapeutic approaches have been developed in order to decrease the death rates. A number of experimental and clinical studies have showed antiproliferative, pro-apoptotic, anti-metastatic and anti-angiogenic effects of several phytochemicals. [6]-Gingerol (1-[4'-hydroxy-3'-methoxyphenyl]-5-hydroxy-3- decanone), the major pungent principle of ginger, has anti-oxidant, anti-inflammation and antitumor promoting activities. Aim: The purpose of this study was to evaluate the radiosensitizing activity of [6]-Gingerol in the human prostate cancer cells. Methods: The viability was assessed (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) tetrazolium (MTS) assay. The prostate human cells (LNCAP) (2,5×103 cells/well) were seeded into 96-well plates, after 24 hr they were treated with 150 and 300μg/mL of [6]-Gingerol or vehicle alone (0.1% DMSO) in serum containing media. After incubation, MTS solution was added to the plate at a final concentration of 0.5 mg/mL. The cells were incubated for 2 hr in dark at 37. The resulting MTS-products were determined by measuring the absorbance at 490 nm with ELISA reader. In the clonogenic cell survival assay, the cells were divided into two groups: A) control, B) treated with [6]-Gingerol, C) irradiated control and D) treated with [6]-Gingerol and irradiated. The cells were irradiated by 60Co source in the range from 0 to 15 Gy, using the GammaCell 220 - Irradiation Unit of Canadian-Atomic Energy Commision Ltd. (CTR-IPEN). After 10-14 days of culture in normoxia conditions, cell colonies were fixed and stained with methanol 20% and crystal violet 0.5% and counted. Multiple comparisons were assessed by One-way ANOVA followed by Bonferroni´s tests with GraphPad Prism version 6.0 software. p< 0.05 was considered statistically

  11. Radiosensitization of human prostate cell line LNCAP by [6]- gingerol

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Josias Paulino Leal; Bellini, Maria Helena [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil)

    2017-07-01

    Full text: Introduction: Prostate cancer is the second most prevalent malignancy and second leading cause of cancer-related deaths among men in the world. Several different diagnostic and therapeutic approaches have been developed in order to decrease the death rates. A number of experimental and clinical studies have showed antiproliferative, pro-apoptotic, anti-metastatic and anti-angiogenic effects of several phytochemicals. [6]-Gingerol (1-[4'-hydroxy-3'-methoxyphenyl]-5-hydroxy-3- decanone), the major pungent principle of ginger, has anti-oxidant, anti-inflammation and antitumor promoting activities. Aim: The purpose of this study was to evaluate the radiosensitizing activity of [6]-Gingerol in the human prostate cancer cells. Methods: The viability was assessed (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) tetrazolium (MTS) assay. The prostate human cells (LNCAP) (2,5×103 cells/well) were seeded into 96-well plates, after 24 hr they were treated with 150 and 300μg/mL of [6]-Gingerol or vehicle alone (0.1% DMSO) in serum containing media. After incubation, MTS solution was added to the plate at a final concentration of 0.5 mg/mL. The cells were incubated for 2 hr in dark at 37. The resulting MTS-products were determined by measuring the absorbance at 490 nm with ELISA reader. In the clonogenic cell survival assay, the cells were divided into two groups: A) control, B) treated with [6]-Gingerol, C) irradiated control and D) treated with [6]-Gingerol and irradiated. The cells were irradiated by 60Co source in the range from 0 to 15 Gy, using the GammaCell 220 - Irradiation Unit of Canadian-Atomic Energy Commision Ltd. (CTR-IPEN). After 10-14 days of culture in normoxia conditions, cell colonies were fixed and stained with methanol 20% and crystal violet 0.5% and counted. Multiple comparisons were assessed by One-way ANOVA followed by Bonferroni´s tests with GraphPad Prism version 6.0 software. p< 0.05 was considered statistically

  12. Sulphur XANES Analysis of Cultured Human Prostate Cancer Cells

    International Nuclear Information System (INIS)

    Kwiatek, W.M.; Podgorczyk, M.; Paluszkiewicz, Cz.; Balerna, A.; Kisiel, A.

    2008-01-01

    Prostate cancer is one of the most commonly diagnosed cancers in men throughout the world. It is believed that changes to the structure of protein binding sites, altering its metabolism, may play an important role in carcinogenesis. Sulphur, often present in binding sites, can influence such changes through its chemical speciation. Hence there is a need for precise investigation of coordination environment of sulphur. X-ray absorption near edge structure spectroscopy offers such possibility. Cell culture samples offer histologically well defined areas of good homogeneity, suitable for successful and reliable X-ray absorption near edge structure analysis. This paper presents sulphur speciation data collected from three different human prostate cancer cell lines (PC-3, LNCaP and DU-145). Sulphur X-ray absorption near edge structure analysis was performed on K-edge structure. The spectra of cells were compared with those of cancerous tissue and with organic substances as well as inorganic compounds. (authors)

  13. Directed Differentiation of Human Embryonic Stem Cells into Prostate Organoids In Vitro and its Perturbation by Low-Dose Bisphenol A Exposure.

    Directory of Open Access Journals (Sweden)

    Esther L Calderon-Gierszal

    Full Text Available Studies using rodent and adult human prostate stem-progenitor cell models suggest that developmental exposure to the endocrine disruptor Bisphenol-A (BPA can predispose to prostate carcinogenesis with aging. Unknown at present is whether the embryonic human prostate is equally susceptible to BPA during its natural developmental window. To address this unmet need, we herein report the construction of a pioneer in vitro human prostate developmental model to study the effects of BPA. The directed differentiation of human embryonic stem cells (hESC into prostatic organoids in a spatial system was accomplished with precise temporal control of growth factors and steroids. Activin-induced definitive endoderm was driven to prostate specification by combined exposure to WNT10B and FGF10. Matrigel culture for 20-30 days in medium containing R-Spondin-1, Noggin, EGF, retinoic acid and testosterone was sufficient for mature prostate organoid development. Immunofluorescence and gene expression analysis confirmed that organoids exhibited cytodifferentiation and functional properties of the human prostate. Exposure to 1 nM or 10 nM BPA throughout differentiation culture disturbed early morphogenesis in a dose-dependent manner with 1 nM BPA increasing and 10 nM BPA reducing the number of branched structures formed. While differentiation of branched structures to mature organoids seemed largely unaffected by BPA exposure, the stem-like cell population increased, appearing as focal stem cell nests that have not properly entered lineage commitment rather than the rare isolated stem cells found in normally differentiated structures. These findings provide the first direct evidence that low-dose BPA exposure targets hESC and perturbs morphogenesis as the embryonic cells differentiate towards human prostate organoids, suggesting that the developing human prostate may be susceptible to disruption by in utero BPA exposures.

  14. Quantification of Mesenchymal Stem Cells (MSCs) at sites of human prostate cancer.

    Science.gov (United States)

    Brennen, W Nathaniel; Chen, Shuangling; Denmeade, Samuel R; Isaacs, John T

    2013-01-01

    Circulating bone marrow-derived Mesenchymal Stem Cells (BM-MSCs) have an innate tropism for tumor tissue in response to the inflammatory microenvironment present in malignant lesions. The prostate is bombarded by numerous infectious and inflammatory insults over a lifetime. Chronic inflammation is associated with CXCL12, CCL5, and CCL2, which are highly overexpressed in prostate cancer. Among other cell types, these chemoattractant stimuli recruit BM-MSCs to the tumor. MSCs are minimally defined as plastic-adhering cells characterized by the expression of CD90, CD73, and CD105 in the absence of hematopoietic markers, which can differentiate into osteoblasts, chondrocytes, and adipocytes. MSCs are immunoprivileged and have been implicated in tumorigenesis through multiple mechanisms, including promoting proliferation, angiogenesis, and metastasis, in addition to the generation of an immunosuppressive microenvironment. We have demonstrated that MSCs represent 0.01-1.1% of the total cells present in core biopsies from primary human prostatectomies. Importantly, these analyses were performed on samples prior to expansion in tissue culture. MSCs in these prostatectomy samples are FAP-, CD90-, CD73-, and CD105-positive, and CD14-, CD20-, CD34-, CD45-, and HLA-DR-negative. Additionally, like BM-MSCs, these prostate cancer-derived stromal cells (PrCSCs) were shown to differentiate into osteoblasts, adipocytes and chondrocytes. In contrast to primary prostate cancer-derived epithelial cells, fluorescently-labeled PrCSCs and BM-MSCs were both shown to home to CWR22RH prostate cancer xenografts following IV injection. These studies demonstrate that not only are MSCs present in sites of prostate cancer where they may contribute to carcinogenesis, but these cells may also potentially be used to deliver cytotoxic or imaging agents for therapeutic and/or diagnostic purposes.

  15. Biochemical characterization of prostate-specific membrane antigen from canine prostate carcinoma cells.

    Science.gov (United States)

    Wu, Lisa Y; Johnson, Jacqueline M; Simmons, Jessica K; Mendes, Desiree E; Geruntho, Jonathan J; Liu, Tiancheng; Dirksen, Wessel P; Rosol, Thomas J; Davis, William C; Berkman, Clifford E

    2014-05-01

    Prostate-specific membrane antigen (PSMA) remains an important target for diagnostic and therapeutic application for human prostate cancer. Model cell lines have been recently developed to study canine prostate cancer but their PSMA expression and enzymatic activity have not been elucidated. The present study was focused on determining PSMA expression in these model canine cell lines and the use of fluorescent small-molecule enzyme inhibitors to detect canine PSMA expression by flow cytometry. Western blot and RT-PCR were used to determine the transcriptional and translational expression of PSMA on the canine cell lines Leo and Ace-1. An endpoint HPLC-based assay was used to monitor the enzymatic activity of canine PSMA and the potency of enzyme inhibitors. Flow cytometry was used to detect the PSMA expressed on Leo and Ace-1 cells using a fluorescently tagged PSMA enzyme inhibitor. Canine PSMA expression on the Leo cell line was confirmed by Western blot and RT-PCR, the enzyme activity, and flow cytometry. Kinetic parameters Km and Vmax of PSMA enzymatic activity for the synthetic substrate (PABGγG) were determined to be 393 nM and 220 pmol min(-1)  mg protein(-1) , respectively. The inhibitor core 1 and fluorescent inhibitor 2 were found to be potent reversible inhibitors (IC50  = 13.2 and 1.6 nM, respectively) of PSMA expressed on the Leo cell line. Fluorescent labeling of Leo cells demonstrated that the fluorescent PSMA inhibitor 2 can be used for the detection of PSMA-positive canine prostate tumor cells. Expression of PSMA on Ace-1 was low and not detectable by flow cytometry. The results described herein have demonstrated that PSMA is expressed on canine prostate tumor cells and exhibits similar enzymatic characteristics as human PSMA. The findings show that the small molecule enzyme inhibitors currently being studied for use in diagnosis and therapy of human prostate cancer can also be extended to include canine prostate cancer. Importantly

  16. Notch activation is dispensable for D, L-sulforaphane-mediated inhibition of human prostate cancer cell migration.

    Directory of Open Access Journals (Sweden)

    Eun-Ryeong Hahm

    Full Text Available D, L-Sulforaphane (SFN, a synthetic racemic analog of broccoli constituent L-sulforaphane, is a highly promising cancer chemopreventive agent with in vivo efficacy against chemically-induced as well as oncogene-driven cancer in preclinical rodent models. Cancer chemopreventive effect of SFN is characterized by G(2/M phase cell cycle arrest, apoptosis induction, and inhibition of cell migration and invasion. Moreover, SFN inhibits multiple oncogenic signaling pathways often hyperactive in human cancers, including nuclear factor-κB, Akt, signal transducer and activator of transcription 3, and androgen receptor. The present study was designed to determine the role of Notch signaling, which is constitutively active in many human cancers, in anticancer effects of SFN using prostate cancer cells as a model. Exposure of human prostate cancer cells (PC-3, LNCaP, and/or LNCaP-C4-2B to SFN as well as its naturally-occurring thio-, sulfinyl-, and sulfonyl-analogs resulted in cleavage (activation of Notch1, Notch2, and Notch4, which was accompanied by a decrease in levels of full-length Notch forms especially at the 16- and 24-hour time points. The SFN-mediated cleavage of Notch isoforms was associated with its transcriptional activation as evidenced by RBP-Jk-, HES-1A/B- and HEY-1 luciferase reporter assays. Migration of PC-3 and LNCaP cells was decreased significantly by RNA interference of Notch1 and Notch2, but not Notch4. Furthermore, SFN-mediated inhibition of PC-3 and LNCaP cell migration was only marginally affected by knockdown of Notch1 and Notch2. Strikingly, SFN administration to Transgenic Adenocarcinoma of Mouse Prostate transgenic mice failed to increase levels of cleaved Notch1, cleaved Notch2, and HES-1 proteins in vivo in prostatic intraepithelial neoplasia, well-differentiated carcinoma or poorly-differentiated prostate cancer lesions. These results indicate that Notch activation is largely dispensable for SFN-mediated inhibition of cell

  17. JS-K promotes apoptosis by inducing ROS production in human prostate cancer cells.

    Science.gov (United States)

    Qiu, Mingning; Chen, Lieqian; Tan, Guobin; Ke, Longzhi; Zhang, Sai; Chen, Hege; Liu, Jianjun

    2017-03-01

    Reactive oxygen species (ROS) are chemical species that alter redox status, and are responsible for inducing carcinogenesis. The purpose of the present study was to assess the effects of the glutathione S transferase-activated nitric oxide donor prodrug, JS-K, on ROS accumulation and on proliferation and apoptosis in human prostate cancer cells. Cell proliferation and apoptosis, ROS accumulation and the activation of the mitochondrial signaling pathway were measured. The results demonstrated that JS-K may inhibit prostate cancer cell growth in a dose- and time-dependent manner, and induce ROS accumulation and apoptosis in a dose-dependent manner. With increasing concentrations of JS-K, expression of pro-apoptotic proteins increased, but Bcl-2 expression decreased. Additionally, the antioxidant N-acetylcysteine reversed JS-K-induced cell apoptosis; conversely, the pro-oxidant glutathione disulfide exacerbated JS-K-induced apoptosis. In conclusion, the data suggest that JS-K induces prostate cancer cell apoptosis by increasing ROS levels.

  18. Lectin-like oxidized LDL receptor-1 is an enhancer of tumor angiogenesis in human prostate cancer cells.

    Directory of Open Access Journals (Sweden)

    Iván González-Chavarría

    Full Text Available Altered expression and function of lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1 has been associated with several diseases such as endothelial dysfunction, atherosclerosis and obesity. In these pathologies, oxLDL/LOX-1 activates signaling pathways that promote cell proliferation, cell motility and angiogenesis. Recent studies have indicated that olr1 mRNA is over-expressed in stage III and IV of human prostatic adenocarcinomas. However, the function of LOX-1 in prostate cancer angiogenesis remains to be determined. Our aim was to analyze the contribution of oxLDL and LOX-1 to tumor angiogenesis using C4-2 prostate cancer cells. We analyzed the expression of pro-angiogenic molecules and angiogenesis on prostate cancer tumor xenografts, using prostate cancer cell models with overexpression or knockdown of LOX-1 receptor. Our results demonstrate that the activation of LOX-1 using oxLDL increases cell proliferation, and the expression of the pro-angiogenic molecules VEGF, MMP-2, and MMP-9 in a dose-dependent manner. Noticeably, these effects were prevented in the C4-2 prostate cancer model when LOX-1 expression was knocked down. The angiogenic effect of LOX-1 activated with oxLDL was further demonstrated using the aortic ring assay and the xenograft model of tumor growth on chorioallantoic membrane of chicken embryos. Consequently, we propose that LOX-1 activation by oxLDL is an important event that enhances tumor angiogenesis in human prostate cancer cells.

  19. Prostate stromal cells express the progesterone receptor to control cancer cell mobility.

    Science.gov (United States)

    Yu, Yue; Lee, Jennifer Suehyun; Xie, Ning; Li, Estelle; Hurtado-Coll, Antonio; Fazli, Ladan; Cox, Michael; Plymate, Stephen; Gleave, Martin; Dong, Xuesen

    2014-01-01

    Reciprocal interactions between epithelium and stroma play vital roles for prostate cancer development and progression. Enhanced secretions of cytokines and growth factors by cancer associated fibroblasts in prostate tumors create a favorable microenvironment for cancer cells to grow and metastasize. Our previous work showed that the progesterone receptor (PR) was expressed specifically in prostate stromal fibroblasts and smooth muscle cells. However, the expression levels of PR and its impact to tumor microenvironment in prostate tumors are poorly understood. Immunohistochemistry assays are applied to human prostate tissue biopsies. Cell migration, invasion and proliferation assays are performed using human prostate cells. Real-time PCR and ELISA are applied to measure gene expression at molecular levels. Immunohistochemistry assays showed that PR protein levels were decreased in cancer associated stroma when compared with paired normal prostate stroma. Using in vitro prostate stromal cell models, we showed that conditioned media collected from PR positive stromal cells inhibited prostate cancer cell migration and invasion, but had minor suppressive impacts on cancer cell proliferation. PR suppressed the secretion of stromal derived factor-1 (SDF-1) and interlukin-6 (IL-6) by stromal cells independent to PR ligands. Blocking PR expression by siRNA or supplementation of exogenous SDF-1 or IL-6 to conditioned media from PR positive stromal cells counteracted the inhibitory effects of PR to cancer cell migration and invasion. Decreased expression of the PR in cancer associated stroma may contribute to the elevated SDF-1 and IL-6 levels in prostate tumors and enhance prostate tumor progression.

  20. Prostate stromal cells express the progesterone receptor to control cancer cell mobility.

    Directory of Open Access Journals (Sweden)

    Yue Yu

    Full Text Available Reciprocal interactions between epithelium and stroma play vital roles for prostate cancer development and progression. Enhanced secretions of cytokines and growth factors by cancer associated fibroblasts in prostate tumors create a favorable microenvironment for cancer cells to grow and metastasize. Our previous work showed that the progesterone receptor (PR was expressed specifically in prostate stromal fibroblasts and smooth muscle cells. However, the expression levels of PR and its impact to tumor microenvironment in prostate tumors are poorly understood.Immunohistochemistry assays are applied to human prostate tissue biopsies. Cell migration, invasion and proliferation assays are performed using human prostate cells. Real-time PCR and ELISA are applied to measure gene expression at molecular levels.Immunohistochemistry assays showed that PR protein levels were decreased in cancer associated stroma when compared with paired normal prostate stroma. Using in vitro prostate stromal cell models, we showed that conditioned media collected from PR positive stromal cells inhibited prostate cancer cell migration and invasion, but had minor suppressive impacts on cancer cell proliferation. PR suppressed the secretion of stromal derived factor-1 (SDF-1 and interlukin-6 (IL-6 by stromal cells independent to PR ligands. Blocking PR expression by siRNA or supplementation of exogenous SDF-1 or IL-6 to conditioned media from PR positive stromal cells counteracted the inhibitory effects of PR to cancer cell migration and invasion.Decreased expression of the PR in cancer associated stroma may contribute to the elevated SDF-1 and IL-6 levels in prostate tumors and enhance prostate tumor progression.

  1. URG11 Regulates Prostate Cancer Cell Proliferation, Migration, and Invasion

    Directory of Open Access Journals (Sweden)

    Bin Pan

    2018-01-01

    Full Text Available Upregulated gene 11 (URG11, a new gene upregulated by hepatitis B virus X protein, is involved in the development and progression of several tumors, including liver, stomach, lung, and colon cancers. However, the role of URG11 in prostate cancer remains yet to be elucidated. By determined expression in human prostate cancer tissues, URG11 was found significantly upregulated and positively correlated with the severity of prostate cancer, compared with that in benign prostatic hyperplasia tissues. Further, the mRNA and protein levels of URG11 were significantly upregulated in human prostate cancer cell lines (DU145, PC3, and LNCaP, compared with human prostate epithelial cell line (RWPE-1. Moreover, by the application of siRNA against URG11, the proliferation, migration, and invasion of prostate cancer cells were markedly inhibited. Genetic knockdown of URG11 also induced cell cycle arrest at G1/S phase, induced apoptosis, and decreased the expression level of β-catenin in prostate cancer cells. Overexpression of URG11 promoted the expression of β-catenin, the growth, the migration, and invasion ability of prostate cancer cells. Taken together, this study reveals that URG11 is critical for the proliferation, migration, and invasion in prostate cancer cells, providing the evidence of URG11 to be a novel potential therapeutic target of prostate cancer.

  2. Echinophora platyloba DC (Apiaceae crude extract induces apoptosis in human prostate adenocarcinoma cells (PC 3

    Directory of Open Access Journals (Sweden)

    Fatemeh Zare Shahneh

    2014-10-01

    Full Text Available Background: Prostate cancer is the second leading malignancy worldwide and the second prominent cause of cancer-related deaths among men. Therefore, there is a serious necessity for finding advanced alternative therapeutic measures against this lethal malignancy. In this article, we report the cytotoxicity and the mechanism of cell death of the methanolic extract prepared from Echinophora platyloba DC plant against human prostate adenocarcinoma PC 3 cell line and Human Umbilical Vein Endothelial Cells HUVEC cell line. Methods: Cytotoxicity and viability of the methanolic extract were assessed by 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay and dye exclusion assay. Cell death enzyme-linked immunosorbent assay (ELISA was employed to quantify the nucleosome production resulting from nuclear DNA fragmentation during apoptosis and determine whether the mechanism involves induction of apoptosis or necrosis. The cell death was identified as apoptosis using terminal deoxynucleotidyl transferase (TdT-mediated dUTP nick end labeling (TUNEL assay and DNA fragmentation gel electrophoresis. Results: E. platyloba could decrease cell viability in malignant cells in a dose- and time-dependent manner. The IC50 values against PC 3 were determined as 236.136 ± 12.4, 143.400 ± 7.2, and 69.383 ± 1.29 μg/ml after 24, 36, and 48 h, respectively, but there was no significant activity in HUVEC normal cell (IC50 > 800 μg/ml. Morphological characterizations and DNA laddering assay showed that the methanolic extract treated cells displayed marked apoptotic characteristics such as nuclear fragmentation, appearance of apoptotic bodies, and DNA laddering fragment. Increase in an early apoptotic population was observed in a dose-dependent manner. PC 3 cell death elicited by the extract was found to be apoptotic in nature based a clear indication of TUNEL assay and gel electrophoresis DNA fragmentation, which is a hallmark of apoptosis

  3. A basal stem cell signature identifies aggressive prostate cancer phenotypes

    Science.gov (United States)

    Smith, Bryan A.; Sokolov, Artem; Uzunangelov, Vladislav; Baertsch, Robert; Newton, Yulia; Graim, Kiley; Mathis, Colleen; Cheng, Donghui; Stuart, Joshua M.; Witte, Owen N.

    2015-01-01

    Evidence from numerous cancers suggests that increased aggressiveness is accompanied by up-regulation of signaling pathways and acquisition of properties common to stem cells. It is unclear if different subtypes of late-stage cancer vary in stemness properties and whether or not these subtypes are transcriptionally similar to normal tissue stem cells. We report a gene signature specific for human prostate basal cells that is differentially enriched in various phenotypes of late-stage metastatic prostate cancer. We FACS-purified and transcriptionally profiled basal and luminal epithelial populations from the benign and cancerous regions of primary human prostates. High-throughput RNA sequencing showed the basal population to be defined by genes associated with stem cell signaling programs and invasiveness. Application of a 91-gene basal signature to gene expression datasets from patients with organ-confined or hormone-refractory metastatic prostate cancer revealed that metastatic small cell neuroendocrine carcinoma was molecularly more stem-like than either metastatic adenocarcinoma or organ-confined adenocarcinoma. Bioinformatic analysis of the basal cell and two human small cell gene signatures identified a set of E2F target genes common between prostate small cell neuroendocrine carcinoma and primary prostate basal cells. Taken together, our data suggest that aggressive prostate cancer shares a conserved transcriptional program with normal adult prostate basal stem cells. PMID:26460041

  4. Comparison of gamma radiation - induced effects in two human prostate cancer cells

    International Nuclear Information System (INIS)

    Vucic, V.; Adzic, M.; Ruzdijic, S.; Radojcic, M.B. . E-mail address of corresponding author: vesnav@vin.bg.ac.yu; Vucic, V.)

    2005-01-01

    In this study, the effects of gamma radiation on two hormone refractory human prostate cancer cell lines, DU 145 and PC-3, were followed. It was shown that gamma radiation induced significant inhibition of cell proliferation and viability in dose dependent manner. Antiproliferative effects of radiation were similar in both cell lines, and more pronounced than cytotoxic effects. In addition to that, PC-3 cell line was more resistant to radiation -induced cytotoxicity. (author)

  5. The expression of xenobiotic-metabolizing enzymes in human prostate and in prostate epithelial cells (PECs) derived from primary cultures.

    Science.gov (United States)

    Al-Buheissi, S Z; Cole, K J; Hewer, A; Kumar, V; Bryan, R L; Hudson, D L; Patel, H R; Nathan, S; Miller, R A; Phillips, D H

    2006-06-01

    Dietary heterocyclic amines (HCAs) are carcinogenic in rodent prostate requiring activation by enzymes such as cytochrome P450 (CYP) and N-acetyltransferase (NAT). We investigated by Western blotting and immunohistochemistry the expression of CYP1A1, CYP1A2, and NAT1 in human prostate and in prostate epithelial cells (PECs) derived from primary cultures and tested their ability to activate the dietary carcinogen 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) and its N-hydroxy metabolite (N-OH-IQ) to DNA-damaging moieties. Western blotting identified CYP1A1, CYP1A2, and NAT1. Immunohistochemistry localized NAT1 to the cytoplasm of PECs. Inter-individual variation was observed in the expression levels of CYP1A1, 1A2, and NAT1 (11, 75, and 35-fold, respectively). PECs expressed CYP1A1 and NAT1 but not CYP1A2. When incubated with IQ or N-OH-IQ, PECs formed DNA adducts indicating their ability to metabolically activate these compounds. Prostate cells possess the capacity to activate dietary carcinogens. PECs may provide a useful model system to study their role in prostate carcinogenesis.

  6. Effect of radiation combined with hyperthermia on human prostatic carcinoma cell lines in culture

    International Nuclear Information System (INIS)

    Kaver, I.; Ware, J.L.; Wilson, J.D.; Koontz, W.W. Jr.

    1991-01-01

    The effect of radiation combined with heat on three human prostatic carcinoma cell lines growing in vitro was investigated. Cells were exposed to different radiation doses followed by heat treatment at 43 degrees C for one hour. Heat treatment, given ten minutes after radiation, significantly enhanced the radiation response of all the cell lines studied. The combined effect of radiation and heat produced greater cytotoxicity than predicted from the additive effects of the two individual treatment modalities alone. These results indicate that a combined treatment regimen of radiation plus hyperthermia (43 degrees, 1 hr) might be an important tool in maintaining a better local control of prostatic cancer

  7. Defined Conditions for the Isolation and Expansion of Basal Prostate Progenitor Cells of Mouse and Human Origin

    Directory of Open Access Journals (Sweden)

    Thomas Höfner

    2015-03-01

    Full Text Available Methods to isolate and culture primary prostate epithelial stem/progenitor cells (PESCs have proven difficult and ineffective. Here, we present a method to grow and expand both murine and human basal PESCs long term in serum- and feeder-free conditions. The method enriches for adherent mouse basal PESCs with a Lin−SCA-1+CD49f+TROP2high phenotype. Progesterone and sodium selenite are additionally required for the growth of human Lin−CD49f+TROP2high PESCs. The gene-expression profiles of expanded basal PESCs show similarities to ESCs, and NF-kB function is critical for epithelial differentiation of sphere-cultured PESCs. When transplanted in combination with urogenital sinus mesenchyme, expanded mouse and human PESCs generate ectopic prostatic tubules, demonstrating their stem cell activity in vivo. This novel method will facilitate the molecular, genomic, and functional characterization of normal and pathologic prostate glands of mouse and human origin.

  8. Molecular Signaling Pathways Mediating Osteoclastogenesis Induced by Prostate Cancer Cells

    International Nuclear Information System (INIS)

    Rafiei, Shahrzad; Komarova, Svetlana V

    2013-01-01

    Advanced prostate cancer commonly metastasizes to bone leading to osteoblastic and osteolytic lesions. Although an osteolytic component governed by activation of bone resorbing osteoclasts is prominent in prostate cancer metastasis, the molecular mechanisms of prostate cancer-induced osteoclastogenesis are not well-understood. We studied the effect of soluble mediators released from human prostate carcinoma cells on osteoclast formation from mouse bone marrow and RAW 264.7 monocytes. Soluble factors released from human prostate carcinoma cells significantly increased viability of naïve bone marrow monocytes, as well as osteoclastogenesis from precursors primed with receptor activator of nuclear factor κ-B ligand (RANKL). The prostate cancer-induced osteoclastogenesis was not mediated by RANKL as it was not inhibited by osteoprotegerin (OPG). However inhibition of TGFβ receptor I (TβRI), or macrophage-colony stimulating factor (MCSF) resulted in attenuation of prostate cancer-induced osteoclastogenesis. We characterized the signaling pathways induced in osteoclast precursors by soluble mediators released from human prostate carcinoma cells. Prostate cancer factors increased basal calcium levels and calcium fluctuations, induced nuclear localization of nuclear factor of activated t-cells (NFAT)c1, and activated prolonged phosphorylation of ERK1/2 in RANKL-primed osteoclast precursors. Inhibition of calcium signaling, NFATc1 activation, and ERK1/2 phosphorylation significantly reduced the ability of prostate cancer mediators to stimulate osteoclastogenesis. This study reveals the molecular mechanisms underlying the direct osteoclastogenic effect of prostate cancer derived factors, which may be beneficial in developing novel osteoclast-targeting therapeutic approaches

  9. Selective expression of myosin IC Isoform A in mouse and human cell lines and mouse prostate cancer tissues.

    Directory of Open Access Journals (Sweden)

    Ivanna Ihnatovych

    Full Text Available Myosin IC is a single headed member of the myosin superfamily. We recently identified a novel isoform and showed that the MYOIC gene in mammalian cells encodes three isoforms (isoforms A, B, and C. Furthermore, we demonstrated that myosin IC isoform A but not isoform B exhibits a tissue specific expression pattern. In this study, we extended our analysis of myosin IC isoform expression patterns by analyzing the protein and mRNA expression in various mammalian cell lines and in various prostate specimens and tumor tissues from the transgenic mouse prostate (TRAMP model by immunoblotting, qRT-PCR, and by indirect immunohistochemical staining of paraffin embedded prostate specimen. Analysis of a panel of mammalian cell lines showed an increased mRNA and protein expression of specifically myosin IC isoform A in a panel of human and mouse prostate cancer cell lines but not in non-cancer prostate or other (non-prostate- cancer cell lines. Furthermore, we demonstrate that myosin IC isoform A expression is significantly increased in TRAMP mouse prostate samples with prostatic intraepithelial neoplasia (PIN lesions and in distant site metastases in lung and liver when compared to matched normal tissues. Our observations demonstrate specific changes in the expression of myosin IC isoform A that are concurrent with the occurrence of prostate cancer in the TRAMP mouse prostate cancer model that closely mimics clinical prostate cancer. These data suggest that elevated levels of myosin IC isoform A may be a potential marker for the detection of prostate cancer.

  10. The role of Cajal cells in chronic prostatitis

    Directory of Open Access Journals (Sweden)

    Ozgur Haki Yuksel

    2016-07-01

    Full Text Available Types of prostatitis can be defined as groups of syndromes in adult men associated with infectious and noninfectious causes characterized frequently by lower abdominal and perineal signs and diverse clinical symptoms and complications. Etiopathogenesis of chronic prostatitis is not well defined. Moreover, its treatment outcomes are not satisfactory. Presence of c-kit positive interstitial cells in human prostate is already known. It has been demonstrated that these cells can be pacemaker cells which trigger spontaneous slow-wave electrical activity in the prostate and can be responsible for the transport of glandular secretion from acinar cells into major and minor prostatic ducts and finally into urethra. In the light of all these data, when presence of a possible inflammatory pathology is thought to involve prostate that secretes and has a reservoir which drains its secretion (for prostate, prostatic urethra, two points are worth mentioning. Impairment of secretion mechanism and collection of secretion within the organ with reflux of the microbial material from its reservoir back into prostate gland. Both of these potential conditions can be explained by ductal neuromuscular mechanism, which induces secretion. We think that in this neuromuscular mechanism interstitial Cajal cells have an important role in chronic prostatitis. Our hypothesis is that curability of prostatitis is correlated with the number of Cajal cells not subjected to apoptosis.

  11. The role of Cajal cells in chronic prostatitis.

    Science.gov (United States)

    Haki Yuksel, Ozgur; Urkmez, Ahmet; Verit, Ayhan

    2016-07-04

    Types of prostatitis can be defined as groups of syndromes in adult men associated with infectious and noninfectious causes characterized frequently by lower abdominal and perineal signs and diverse clinical symptoms and complications. Etiopathogenesis of chronic prostatitis is not well defined. Moreover, its treatment outcomes are not satisfactory. Presence of c-kit positive interstitial cells in human prostate is already known. It has been demonstrated that these cells can be pacemaker cells which trigger spontaneous slow-wave electrical activity in the prostate and can be responsible for the transport of glandular secretion from acinar cells into major and minor prostatic ducts and finally into urethra. In the light of all these data, when presence of a possible inflammatory pathology is thought to involve prostate that secretes and has a reservoir which drains its secretion (for prostate, prostatic urethra), two points are worth mentioning. Impairment of secretion mechanism and collection of secretion within the organ with reflux of the microbial material from its reservoir back into prostate gland. Both of these potential conditions can be explained by ductal neuromuscular mechanism, which induces secretion. We think that in this neuromuscular mechanism interstitial Cajal cells have an important role in chronic prostatitis. Our hypothesis is that curability of prostatitis is correlated with the number of Cajal cells not subjected to apoptosis.

  12. Inflammatory response of a prostate stromal cell line induced by Trichomonas vaginalis.

    Science.gov (United States)

    Im, S J; Han, I H; Kim, J H; Gu, N Y; Seo, M Y; Chung, Y H; Ryu, J S

    2016-04-01

    While Trichomonas vaginalis, a cause of sexually transmitted infection, is known as a surface-dwelling protozoa, trichomonads have been detected in prostatic tissue from benign prostatic hyperplasia and prostatitis by immunoperoxidase assay or PCR. However, the immune response of prostate stromal cells infected with T. vaginalis has not been investigated. Our objective was to investigate whether T. vaginalis could induce an inflammatory response in prostate stromal cells. Incubation of a human prostate stromal myofibroblast cells (WPMY-1) with live T. vaginalis T016 increased expression of the inflammatory chemokines CXCL8 and CCL2. In addition, TLR4, ROS, MAPK and NF-κB expression increased, while inhibitors of TLR4, ROS, MAPKs and NF-κB reduced CXCL8 and CCL2 production. Medium conditioned by incubation of WPMY-1 cells with T. vaginalis stimulated the migration of human neutrophils and monocytes (THP-1 cells). We conclude that T. vaginalis increases CXCL8 and CCL2 production by human prostate stromal cells by activating TLR4, ROS, MAPKs and NF-κB, and this in turn attracts neutrophils and monocytes and leads to an inflammatory response. This study is the first attempt to demonstrate an inflammatory reaction in prostate stromal cells caused by T. vaginalis. © 2016 John Wiley & Sons Ltd.

  13. Protein profile of basal prostate epithelial progenitor cells--stage-specific embryonal antigen 4 expressing cells have enhanced regenerative potential in vivo.

    Science.gov (United States)

    Höfner, Thomas; Klein, Corinna; Eisen, Christian; Rigo-Watermeier, Teresa; Haferkamp, Axel; Sprick, Martin R

    2016-04-01

    The long-term propagation of basal prostate progenitor cells ex vivo has been very difficult in the past. The development of novel methods to expand prostate progenitor cells in vitro allows determining their cell surface phenotype in greater detail. Mouse (Lin(-)Sca-1(+) CD49f(+) Trop2(high)-phenotype) and human (Lin(-) CD49f(+) TROP2(high)) basal prostate progenitor cells were expanded in vitro. Human and mouse cells were screened using 242 anti-human or 176 antimouse monoclonal antibodies recognizing the cell surface protein profile. Quantitative expression was evaluated at the single-cell level using flow cytometry. Differentially expressed cell surface proteins were evaluated in conjunction with the known CD49f(+)/TROP2(high) phenotype of basal prostate progenitor cells and characterized by in vivo sandwich-transplantation experiments using nude mice. The phenotype of basal prostate progenitor cells was determined as CD9(+)/CD24(+)/CD29(+)/CD44(+)/CD47(+)/CD49f(+)/CD104(+)/CD147(+)/CD326(+)/Trop2(high) of mouse as well as human origin. Our analysis revealed several proteins, such as CD13, Syndecan-1 and stage-specific embryonal antigens (SSEAs), as being differentially expressed on murine and human CD49f(+) TROP2(+) basal prostate progenitor cells. Transplantation experiments suggest that CD49f(+) TROP2(high) SSEA-4(high) human prostate basal progenitor cells to be more potent to regenerate prostate tubules in vivo as compared with CD49f(+) TROP2(high) or CD49f(+) TROP2(high) SSEA-4(low) cells. Determination of the cell surface protein profile of functionally defined murine and human basal prostate progenitor cells reveals differentially expressed proteins that may change the potency and regenerative function of epithelial progenitor cells within the prostate. SSEA-4 is a candidate cell surface marker that putatively enables a more accurate identification of the basal PESC lineage. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by

  14. Effects of homeopathic preparations on human prostate cancer growth in cellular and animal models.

    Science.gov (United States)

    MacLaughlin, Brian W; Gutsmuths, Babett; Pretner, Ewald; Jonas, Wayne B; Ives, John; Kulawardane, Don Victor; Amri, Hakima

    2006-12-01

    The use of dietary supplements for various ailments enjoys unprecedented popularity. As part of this trend, Sabal serrulata (saw palmetto) constitutes the complementary treatment of choice with regard to prostate health. In homeopathy, Sabal serrulata is commonly prescribed for prostate problems ranging from benign prostatic hyperplasia to prostate cancer. The authors' work assessed the antiproliferative effects of homeopathic preparations of Sabal serrulata, Thuja occidentalis, and Conium maculatum, in vivo, on nude mouse xenografts, and in vitro, on PC-3 and DU-145 human prostate cancer as well as MDA-MB-231 human breast cancer cell lines. Treatment with Sabal serrulata in vitro resulted in a 33% decrease of PC-3 cell proliferation at 72 hours and a 23% reduction of DU-145 cell proliferation at 24 hours (PConium maculatum did not have any effect on human prostate cancer cell proliferation. In vivo, prostate tumor xenograft size was significantly reduced in Sabal serrulata-treated mice compared to untreated controls (P=.012). No effect was observed on breast tumor growth. Our study clearly demonstrates a biologic response to homeopathic treatment as manifested by cell proliferation and tumor growth. This biologic effect was (i)significantly stronger to Sabal serrulata than to controls and (ii)specific to human prostate cancer. Sabal serrulata should thus be further investigated as a specific homeopathic remedy for prostate pathology.

  15. Bioenergetic and antiapoptotic properties of mitochondria from cultured human prostate cancer cell lines PC-3, DU145 and LNCaP.

    Directory of Open Access Journals (Sweden)

    Alexander Panov

    Full Text Available The purpose of this work was to reveal the metabolic features of mitochondria that might be essential for inhibition of apoptotic potential in prostate cancer cells. We studied mitochondria isolated from normal prostate epithelial cells (PrEC, metastatic prostate cancer cell lines LNCaP, PC-3, DU145; and non-prostate cancer cells - human fibrosarcoma HT1080 cells; and normal human lymphoblastoid cells. PrEC cells contained 2 to 4 times less mitochondria per gram of cells than the three PC cell lines. Respiratory activities of PrEC cell mitochondria were 5-20-fold lower than PC mitochondria, depending on substrates and the metabolic state, due to lower content and lower activity of the respiratory enzyme complexes. Mitochondria from the three metastatic prostate cancer cell lines revealed several features that are distinctive only to these cells: low affinity of Complex I for NADH, 20-30 mV higher electrical membrane potential (ΔΨ. Unprotected with cyclosporine A (CsA the PC-3 mitochondria required 4 times more Ca²⁺ to open the permeability transition pore (mPTP when compared with the PrEC mitochondria, and they did not undergo swelling even in the presence of alamethicin, a large pore forming antibiotic. In the presence of CsA, the PC-3 mitochondria did not open spontaneously the mPTP. We conclude that the low apoptotic potential of the metastatic PC cells may arise from inhibition of the Ca²⁺-dependent permeability transition due to a very high ΔΨ and higher capacity to sequester Ca²⁺. We suggest that due to the high ΔΨ, mitochondrial metabolism of the metastatic prostate cancer cells is predominantly based on utilization of glutamate and glutamine, which may promote development of cachexia.

  16. Proteomic-based identification of multiple pathways underlying n-butylidenephthalide-induced apoptosis in LNCaP human prostate cancer cells.

    Science.gov (United States)

    Pang, Cheng-Yoong; Chiu, Sheng-Chun; Harn, Horng-Jyh; Zhai, Wei-Jun; Lin, Shinn-Zong; Yang, Hsueh-Hui

    2013-09-01

    Although numerous studies have shown the cancer-preventive properties of butylidenephthalide (BP), there is little report of BP affecting human prostate cancer cells. In the present study, proteomic-based approaches were used to elucidate the anticancer mechanism of BP in LNCaP human prostate cancer cells. BP treatment decreased the viability of LNCaP human prostate cancer cells in a concentration- and time-dependent manner, which was correlated with G0/G1 phase cell cycle arrest. Increased cell cycle arrest was associated with a decrease in the level of CCND1, CDK2, and PCNA proteins and an increase in the level of CDKN2A, CDKN1A, and SFN proteins. Proteomic studies revealed that among 48 differentially expressed proteins, 25 proteins were down-regulated and 23 proteins were up-regulated and these proteins fall into one large protein protein interaction network. Among these proteins, FAS, AIFM1, BIK, CYCS, SFN, PPP2R1A, CALR, HSPA5, DDIT3, and ERN1 are apoptosis and endoplasmic reticulum (ER) stress associated proteins. Proteomic data suggested that multiple signaling pathways including FAS-dependent pathway, mitochondrial pathway, and ER stress pathway are involved in the apoptosis induced by BP. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Novel Technology for Cloning Prostate Cancer Cell Markers

    National Research Council Canada - National Science Library

    Bancroft, F

    2002-01-01

    The purpose of the project is to employ probes isolated from the LNCaP series of human prostate cancer cells, to probe human cDNA microarrays, so as to investigate genes differentially expressed among these cell lines...

  18. Co-Targeting Prostate Cancer Epithelium and Bone Stroma by Human Osteonectin-Promoter-Mediated Suicide Gene Therapy Effectively Inhibits Androgen-Independent Prostate Cancer Growth.

    Directory of Open Access Journals (Sweden)

    Shian-Ying Sung

    Full Text Available Stromal-epithelial interaction has been shown to promote local tumor growth and distant metastasis. We sought to create a promising gene therapy approach that co-targets cancer and its supporting stromal cells for combating castration-resistant prostate tumors. Herein, we demonstrated that human osteonectin is overexpressed in the prostate cancer epithelium and tumor stroma in comparison with their normal counterpart. We designed a novel human osteonectin promoter (hON-522E containing positive transcriptional regulatory elements identified in both the promoter and exon 1 region of the human osteonectin gene. In vitro reporter assays revealed that the hON-522E promoter is highly active in androgen receptor negative and metastatic prostate cancer and bone stromal cells compared to androgen receptor-positive prostate cancer cells. Moreover, in vivo prostate-tumor-promoting activity of the hON-522E promoter was confirmed by intravenous administration of an adenoviral vector containing the hON-522E promoter-driven luciferase gene (Ad-522E-Luc into mice bearing orthotopic human prostate tumor xenografts. In addition, an adenoviral vector with the hON-522E-promoter-driven herpes simplex virus thymidine kinase gene (Ad-522E-TK was highly effective against the growth of androgen-independent human prostate cancer PC3M and bone stromal cell line in vitro and in pre-established PC3M tumors in vivo upon addition of the prodrug ganciclovir. Because of the heterogeneity of human prostate tumors, hON-522E promoter-mediated gene therapy has the potential for the treatment of hormone refractory and bone metastatic prostate cancers.

  19. Multipotent Basal Stem Cells, Maintained in Localized Proximal Niches, Support Directed Long-Ranging Epithelial Flows in Human Prostates

    Directory of Open Access Journals (Sweden)

    Mohammad Moad

    2017-08-01

    Full Text Available Sporadic mitochondrial DNA mutations serve as clonal marks providing access to the identity and lineage potential of stem cells within human tissues. By combining quantitative clonal mapping with 3D reconstruction of adult human prostates, we show that multipotent basal stem cells, confined to discrete niches in juxta-urethral ducts, generate bipotent basal progenitors in directed epithelial migration streams. Basal progenitors are then dispersed throughout the entire glandular network, dividing and differentiating to replenish the loss of apoptotic luminal cells. Rare lineage-restricted luminal stem cells, and their progeny, are confined to proximal ducts and provide only minor contribution to epithelial homeostasis. In situ cell capture from clonal maps identified delta homolog 1 (DLK1 enrichment of basal stem cells, which was validated in functional spheroid assays. This study establishes significant insights into niche organization and function of prostate stem and progenitor cells, with implications for disease.

  20. TRP Channels in Human Prostate

    Directory of Open Access Journals (Sweden)

    Carl Van Haute

    2010-01-01

    Full Text Available This review gives an overview of morphological and functional characteristics in the human prostate. It will focus on the current knowledge about transient receptor potential (TRP channels expressed in the human prostate, and their putative role in normal physiology and prostate carcinogenesis. Controversial data regarding the expression pattern and the potential impact of TRP channels in prostate function, and their involvement in prostate cancer and other prostate diseases, will be discussed.

  1. Superoxide dismutase in radioresistant PC-3 human prostate carcinoma cells

    International Nuclear Information System (INIS)

    Prokopovic, J.; Adzic M; Niciforovic, A.; Vucic, V.; Zaric, B.; Radojcic, M. B.

    2006-01-01

    The molecular mechanism of gamma-ionizing radiation (IR) resistance of human prostate cancer cells PC-3 is not known. Since low-LET-IR effects are primarily achieved through generation of reactive oxygen species (ROS), IR-induced expression of ROS-metabolizing antioxidant enzymes, Mn- and CuZn-superoxide dismutase (Mn- and CuZnSOD) and catalase (CAT), and their upstream regulator transcription factor NFκB was followed. Significant elevation of both SODs was found in cells irradiated with 10- and 20 Gy, while CAT and NFκB expression was unchanged. Since, such conditions lead to accumulation of H 2 O 2 , it is concluded that radioresistance of PC-3 cells may emerge from positive feed-forward vicious circle established between H 2 O 2 activation of NFκB and elevated MnSOD activity. (author)

  2. RNAi-mediated knockdown of pituitary tumor-transforming gene-1 (PTTG1) suppresses the proliferation and invasive potential of PC3 human prostate cancer cells

    International Nuclear Information System (INIS)

    Huang, S.Q.; Liao, Q.J.; Wang, X.W.; Xin, D.Q.; Chen, S.X.; Wu, Q.J.; Ye, G.

    2012-01-01

    Pituitary tumor-transforming gene-1 (PTTG1) is a proto-oncogene that promotes tumorigenesis and metastasis in numerous cell types and is overexpressed in a variety of human tumors. We have demonstrated that PTTG1 expression was up-regulated in both human prostate cancer specimens and prostate cancer cell lines. For a more direct assessment of the function of PTTG1 in prostate tumorigenesis, RNAi-mediated knockdown was used to selectively decrease PTTG1 expression in PC3 human prostate tumor cells. After three weeks of selection, colonies stably transfected with PTTG1-targeted RNAi (the knockdown PC3 cell line) or empty vector (the control PC3 cell line) were selected and expanded to investigate the role of PTTG1 expression in PC3 cell growth and invasion. Cell proliferation rate was significantly slower (28%) in the PTTG1 knockdown line after 6 days of growth as indicated by an MTT cell viability assay (P < 0.05). Similarly, a soft agar colony formation assay revealed significantly fewer (66.7%) PTTG1 knockdown PC3 cell colonies than control colonies after three weeks of growth. In addition, PTTG1 knockdown resulted in cell cycle arrest at G1 as indicated by fluorescence-activated cell sorting. The PTTG1 knockdown PC3 cell line also exhibited significantly reduced migration through Matrigel in a transwell assay of invasive potential, and down-regulation of PTTG1 could lead to increased sensitivity of these prostate cancer cells to a commonly used anticancer drug, taxol. Thus, PTTG1 expression is crucial for PC3 cell proliferation and invasion, and could be a promising new target for prostate cancer therapy

  3. Protein Profiling of Isolated Leukocytes, Myofibroblasts, Epithelial, Basal, and Endothelial Cells from Normal, Hyperplastic, Cancerous, and Inflammatory Human Prostate Tissues

    Directory of Open Access Journals (Sweden)

    Zahraa I. Khamis, Kenneth A. Iczkowski, Ziad J. Sahab, Qing-Xiang Amy Sang

    2010-01-01

    Full Text Available In situ neoplastic prostate cells are not lethal unless they become invasive and metastatic. For cells to become invasive, the prostate gland must undergo degradation of the basement membrane and disruption of the basal cell layer underneath the luminal epithelia. Although the roles of proteinases in breaking down the basement membrane have been well-studied, little is known about the factors that induce basal cell layer disruption, degeneration, and its eventual disappearance in invasive cancer. It is hypothesized that microenvironmental factors may affect the degradation of the basal cell layer, which if protected may prevent tumor progression and invasion. In this study, we have revealed differential protein expression patterns between epithelial and stromal cells isolated from different prostate pathologies and identified several important epithelial and stromal proteins that may contribute to inflammation and malignant transformation of human benign prostate tissues to cancerous tissues using matrix-assisted laser desorption ionization time-of-flight mass spectrometry and proteomics methods. Cellular retinoic acid-binding protein 2 was downregulated in basal cells of benign prsotate. Caspase-1 and interleukin-18 receptor 1 were highly expressed in leukocytes of prostate cancer. Proto-oncogene Wnt-3 was downregulated in endothelial cells of prostatitis tissue and tyrosine phosphatase non receptor type 1 was only found in normal and benign endothelial cells. Poly ADP-ribose polymerase 14 was downregulated in myofibroblasts of prostatitis tissue. Interestingly, integrin alpha-6 was upregulated in epithelial cells but not detected in myofibroblasts of prostate cancer. Further validation of these proteins may generate new strategies for the prevention of basal cell layer disruption and subsequent cancer invasion.

  4. Effects of oridonin nanosuspension on cell proliferation and apoptosis of human prostatic carcinoma PC-3 cell line

    Directory of Open Access Journals (Sweden)

    Zhen Zhang

    2010-10-01

    Full Text Available Zhen Zhang, Xiumei Zhang, Wei Xue, Yuna YangYang, Derong Xu, Yunxue Zhao, Haiyan LouSchool of Medicine, Shandong University, Jinan, Republic of ChinaAbstract: This study aims to investigate the inhibitory effects of oridonin nanosuspension on human prostatic carcinoma PC-3 cell line in vitro. The PC-3 cells were incubated with increasing concentrations of oridonin solution and nanosuspensions for 12 hours, 24 hours, and 36 hours. MTT [3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide] assay was performed to measure cellular viability and investigate the effect of oridonin on cell growth of PC-3. Annexin V-FITC/PI staining method was used to determine the effect of oridonin by fluorescence microscope and flow cytometry, respectively. Nanosuspension on early apoptosis of PC-3 cells was also evaluated. Oridonin significantly inhibited the growth of PC-3 cells after 12 hours, 24 hours, and 36 hours of treatment in a dose-dependent manner (P < 0.05. Compared with the same concentration of oridonin solution, oridonin nanosuspension enhanced the inhibition ratio of proliferation. The observation of propidium iodide fluorescence staining confirmed the MTT assay results. The cell proportion of PC-3 at the G2/M phase in the nanosuspension treatment group was upregulated compared with that of the control and oridonin solution groups. Both oridonin solution and nanosuspension promoted the early apoptosis of PC-3 cells. Furthermore, while improving the ratio of early apoptosis, oridonin nanosuspensions also enhanced growth suppression, and induced apoptosis of PC-3 cells. This shows great potential in the treatment of androgen-independent carcinoma of prostate by oridonin nanosuspensions.Keywords: oridonin, nanosuspension, carcinoma of prostate, PC-3 cells, cell cycle, apoptosis

  5. Activated α2-macroglobulin binding to human prostate cancer cells triggers insulin-like responses.

    Science.gov (United States)

    Misra, Uma Kant; Pizzo, Salvatore Vincent

    2015-04-10

    Ligation of cell surface GRP78 by activated α2-macroglobulin (α2M*) promotes cell proliferation and suppresses apoptosis. α2M*-treated human prostate cancer cells exhibit a 2-3-fold increase in glucose uptake and lactate secretion, an effect similar to insulin treatment. In both α2M* and insulin-treated cells, the mRNA levels of SREBP1-c, SREBP2, fatty-acid synthase, acetyl-CoA carboxylase, ATP citrate lyase, and Glut-1 were significantly increased together with their protein levels, except for SREBP2. Pretreatment of cells with α2M* antagonist antibody directed against the carboxyl-terminal domain of GRP78 blocks these α2M*-mediated effects, and silencing GRP78 expression by RNAi inhibits up-regulation of ATP citrate lyase and fatty-acid synthase. α2M* induces a 2-3-fold increase in lipogenesis as determined by 6-[(14)C]glucose or 1-[(14)C]acetate incorporation into free cholesterol, cholesterol esters, triglycerides, free fatty acids, and phosphatidylcholine, which is blocked by inhibitors of fatty-acid synthase, PI 3-kinase, mTORC, or an antibody against the carboxyl-terminal domain of GRP78. We also assessed the incorporation of [(14)CH3]choline into phosphatidylcholine and observed similar effects. Lipogenesis is significantly affected by pretreatment of prostate cancer cells with fatostatin A, which blocks sterol regulatory element-binding protein proteolytic cleavage and activation. This study demonstrates that α2M* functions as a growth factor, leading to proliferation of prostate cancer cells by promoting insulin-like responses. An antibody against the carboxyl-terminal domain of GRP78 may have important applications in prostate cancer therapy. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Chelerythrine induced cell death through ROS-dependent ER stress in human prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Wu S

    2018-05-01

    Full Text Available Songjiang Wu, Yanying Yang, Feiping Li, Lifu Huang, Zihua Han, Guanfu Wang, Hongyuan Yu, Haiping Li Department of Urology, Enze Hospital of Taizhou Enze Medical Center (Group, Taizhou, China Introduction: Prostate cancer is the most common noncutaneous cancer and the second leading cause of cancer-related mortality worldwide and the third in USA in 2017. Chelerythrine (CHE, a naturalbenzo[c]phenanthridine alkaloid, formerly identified as a protein kinase C inhibitor, has also shown anticancer effect through a number of mechanisms. Herein, effect and mechanism of the CHE-induced apoptosis via reactive oxygen species (ROS-mediated endoplasmic reticulum (ER stress in prostate cancer cells were studied for the first time. Methods: In our present study, we investigated whether CHE induced cell viability decrease, colony formation inhibition, and apoptosis in a dose-dependent manner in PC-3 cells. In addition, we showed that CHE increases intracellular ROS and leads to ROS-dependent ER stress and cell apoptosis. Results: Pre-treatment with N-acetyl cysteine, an ROS scavenger, totally reversed the CHE-induced cancer cell apoptosis as well as ER stress activation, suggesting that the ROS generation was responsible for the anticancer effects of CHE. Conclusion: Taken together, our findings support one of the anticancer mechanisms by which CHE increased ROS accumulation in prostate cancer cells, thereby leading to ER stress and caused intrinsic apoptotic signaling. The study reveals that CHE could be a potential candidate for application in the treatment of prostate cancer. Keywords: chelerythrine, reactive oxygen species, endoplasmic reticulum stress, apoptosis, prostate cancer

  7. Hyaluronan in aged collagen matrix increases prostate epithelial cell proliferation

    Science.gov (United States)

    Damodarasamy, Mamatha; Vernon, Robert B.; Chan, Christina K.; Plymate, Stephen R.; Wight, Thomas N.

    2015-01-01

    The extracellular matrix (ECM) of the prostate, which is comprised primarily of collagen, becomes increasingly disorganized with age, a property that may influence the development of hyperplasia and cancer. Collageous ECM extracted from the tails of aged mice exhibits many characteristics of collagen in aged tissues, including the prostate. When polymerized into a 3-dimensional (3D) gel, these collagen extracts can serve as models for the study of specific cell-ECM interactions. In the present study, we examined the behaviors of human prostatic epithelial cell lines representing normal prostate epithelial cells (PEC), benign prostatic hyperplasia (BPH-1), and adenocarcinoma (LNCaP) cultured in contact with 3D gels made from collagen extracts of young and aged mice. We found that proliferation of PEC, BPH-1, and LNCaP cells were all increased by culture on aged collagen gels relative to young collagen gels. In examining age-associated differences in the composition of the collagen extracts, we found that aged and young collagen had a similar amount of several collagen-associated ECM components, but aged collagen had a much greater content of the glycosaminoglycan hyaluronan (HA) than young collagen. The addition of HA (of similar size and concentration to that found in aged collagen extracts) to cells placed in young collagen elicited significantly increased proliferation in BPH-1 cells, but not in PEC or LNCaP cells, relative to controls not exposed to HA. Of note, histochemical analyses of human prostatic tissues showed significantly higher expression of HA in BPH and prostate cancer stroma relative to stroma of normal prostate. Collectively, these results suggest that changes in ECM involving increased levels of HA contribute to the growth of prostatic epithelium with aging. PMID:25124870

  8. Quercetin inhibits angiogenesis through thrombospondin-1 upregulation to antagonize human prostate cancer PC-3 cell growth in vitro and in vivo.

    Science.gov (United States)

    Yang, Feiya; Jiang, Xian; Song, Liming; Wang, Huiping; Mei, Zhu; Xu, Zhiqing; Xing, Nianzeng

    2016-03-01

    The rapid growth, morbidity and mortality of prostate cancer, and the lack of effective treatment have attracted great interests of researchers to find novel cancer therapies aiming to inhibit angiogenesis and tumor growth. Quercetin is a flavonoid compound that widely exists in the nature. Our previous study preliminarily demonstrated that quercetin effectively inhibited human prostate cancer cell xenograft tumor growth by inhibiting angiogenesis. Thrombospondin-1 (TSP-1) is the first reported endogenous anti-angiogenic factor that can inhibit angiogenesis and tumorigenesis. However, the relationship between quercetin inhibiting angiogenesis and TSP-1 upregulation in prostate cancer has not been determined. Thus, we explored the important role of TSP-1 upregulation in reducing angiogenesis and anti-prostate cancer effect of quercetin both in vitro and in vivo for the first time. After the selected doses were used for a certain time, quercetin i) significantly inhibited PC-3 and human umbilical vein endothelial cells (HUVECs) proliferation, migration and invasion in a dose-dependent manner; ⅱ) effectively inhibited prostate cancer PC-3 cell xenograft tumor growth by 37.5% with 75 mg/kg as compared to vehicle control group, more effective than 25 (22.85%) and 50 mg/kg (29.6%); ⅲ) was well tolerated by BALB/c mice and no obvious toxic reactions were observed; ⅳ) greatly reduced angiogenesis and led to higher TSP-1 protein and mRNA expression both in vitro and in vivo in a dose-dependent manner. Therefore, quercetin could increase TSP-1 expression to inhibit angiogenesis resulting in antagonizing prostate cancer PC-3 cell and xenograft tumor growth. The present study can lay a good basis for the subsequent concrete mechanism study and raise the possibility of applying quercetin to clinical for human prostate cancer in the near future.

  9. Snail regulates cell survival and inhibits cellular senescence in human metastatic prostate cancer cell lines.

    Science.gov (United States)

    Emadi Baygi, Modjtaba; Soheili, Zahra Soheila; Schmitz, Ingo; Sameie, Shahram; Schulz, Wolfgang A

    2010-12-01

    The epithelial-mesenchymal transition (EMT) is regarded as an important step in cancer metastasis. Snail, a master regulator of EMT, has been recently proposed to act additionally as a cell survival factor and inducer of motility. We have investigated the function of Snail (SNAI1) in prostate cancer cells by downregulating its expression via short (21-mer) interfering RNA (siRNA) and measuring the consequences on EMT markers, cell viability, death, cell cycle, senescence, attachment, and invasivity. Of eight carcinoma cell lines, the prostate carcinoma cell lines LNCaP and PC-3 showed the highest and moderate expression of SNAI1 mRNA, respectively, as measured by quantitative RT-PCR. Long-term knockdown of Snail induced a severe decline in cell numbers in LNCaP and PC-3 and caspase activity was accordingly enhanced in both cell lines. In addition, suppression of Snail expression induced senescence in LNCaP cells. SNAI1-siRNA-treated cells did not tolerate detachment from the extracellular matrix, probably due to downregulation of integrin α6. Expression of E-cadherin, vimentin, and fibronectin was also affected. Invasiveness of PC-3 cells was not significantly diminished by Snail knockdown. Our data suggest that Snail acts primarily as a survival factor and inhibitor of cellular senescence in prostate cancer cell lines. We therefore propose that Snail can act as early driver of prostate cancer progression.

  10. Comparative effects of DHEA and DHT on gene expression in human LNCaP prostate cancer cells.

    Science.gov (United States)

    Steele, Vernon E; Arnold, Julia T; Lei, Hanh; Izmirlian, Grant; Blackman, Marc R

    2006-01-01

    DHEA is widely used as a dietary supplement in older men. Because DHEA can be converted to androgens or estrogens, such use may promote prostate cancer. In this study, the effects of DHEA were compared with those of DHT using gene expression array profiles in human LNCaP prostate cancer cells. LNCaP cells were exposed to DHEA (300 nM), DHT (300 nM), or vehicle for 48 h, and mRNA expression was measured using Affymetrix HU-95 gene chips. Gene expression values were sorted in ascending order on the p-values corresponding to the extent of differential RNA expression between control and either hormone treatment. S100 calcium binding protein, neurotensin, 24-dehydrocholesterol reductase, and anterior-gradient 2 homologue were the four most differentially expressed genes (p-values all DHT treatment (p DHT were used for pathway analysis. DHT decreased expression of more genes involved in intercellular communication, signal transduction, nucleic acid binding and transport, and in structural components, such as myosin and golgin, than DHEA. These data revealed consistent, measurable changes in gene expression patterns following treatment of LNCaP prostate cancer cells with DHEA and DHT. Understanding the mechanisms of DHEA versus DHT actions in the prostate may help clarify the separate and interactive effects of androgenic and estrogenic actions in prostate cancer progression.

  11. Expression and role of the angiotensin II AT2 receptor in human prostate tissue: in search of a new therapeutic option for prostate cancer.

    Science.gov (United States)

    Guimond, Marie-Odile; Battista, Marie-Claude; Nikjouitavabi, Fatemeh; Carmel, Maude; Barres, Véronique; Doueik, Alexandre A; Fazli, Ladan; Gleave, Martin; Sabbagh, Robert; Gallo-Payet, Nicole

    2013-07-01

    Evidence shows that angiotensin II type 1 receptor (AT1R) blockers may be associated with improved outcome in prostate cancer patients. It has been proposed that part of this effect could be due to angiotensin II type 2 receptor (AT2R) activation, the only active angiotensin II receptor in this situation. This study aimed to characterize the localization and expression of AT2R in prostate tissues and to assess its role on cell morphology and number in prostatic epithelial cells in primary culture. AT2R and its AT2R-interacting protein (ATIP) expression were assessed on non-tumoral and tumoral human prostate using tissue microarray immunohistochemistry, binding assay, and Western blotting. AT2R effect on cell number was measured in primary cultures of epithelial cells from non-tumoral human prostate. AT2R was localized at the level of the acinar epithelial layer and its expression decreased in cancers with a Gleason score 6 or higher. In contrast, ATIP expression increased with cancer progression. Treatment of primary cell cultures from non-tumoral prostate tissues with C21/M024, a selective AT2R agonist, alone or in co-incubation with losartan, an AT1R antagonist, significantly decreased cell number compared to untreated cells. AT2R and ATIP are present in non-tumoral human prostate tissues and differentially regulated according to Gleason score. The decrease in non-tumoral prostate cell number upon selective AT2R stimulation suggests that AT2R may have a protective role against prostate cancer development. Treatment with a selective AT2R agonist could represent a new approach for prostate cancer prevention or for patients on active surveillance. Copyright © 2013 Wiley Periodicals, Inc.

  12. Bioenergetics of Stromal Cells as a Predictor of Aggressive Prostate Cancer

    Science.gov (United States)

    2016-11-01

    complex tissue preparations (human prostate and prostatic adenoma) and rat ventral prostate cells it was reported to exhibit high aerobic glycolysis [19...pyruvate dehydrogenase kinase), 2DG (inhibitor of hexokinase), or metformin (inhibitor of mitochondrial complex I) [41] as a therapeutic approach to... cyanide 4-(trifluoromethoxy) phenylhydrazone; GAPDH, Glyceraldehyde 3-phosphate dehydrogenase; GlyST, Glycolytic stress test; HPV, human papilloma virus

  13. Ezrin mediates c-Myc actions in prostate cancer cell invasion

    DEFF Research Database (Denmark)

    Chuan, Yin Choy; Iglesias Gato, Diego; Fernandez-Perez, L

    2010-01-01

    The forced overexpression of c-Myc in mouse prostate and in normal human prostate epithelial cells results in tumor transformation with an invasive phenotype. How c-Myc regulates cell invasion is poorly understood. In this study, we have investigated the interplay of c-Myc and androgens in the re...

  14. DNA fragmentation and apoptosis induced by safranal in human prostate cancer cell line

    Directory of Open Access Journals (Sweden)

    Saeed Samarghandian

    2013-01-01

    Full Text Available Objectives: Apoptosis, an important mechanism that contributes to cell growth reduction, is reported to be induced by Crocus sativus (Saffron in different cancer types. However, limited effort has been made to correlate these effects to the active ingredients of saffron. The present study was designed to elucidate cytotoxic and apoptosis induction by safranal, the major coloring compound in saffron, in a human prostate cancer cell line (PC-3. Materials and Methods: PC-3 and human fetal lung fibroblast (MRC-5 cells were cultured and exposed to safranal (5, 10, 15, and 20 μg/ml. The 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay was performed to assess cytotoxicity. DNA fragmentation was assessed by gel electrophoresis. Cells were incubated with different concentrations of safranal, and cell morphologic changes and apoptosis were determined by the normal inverted microscope, Annexin V, and propidium iodide, followed by flow cytometric analysis, respectively. Results: MTT assay revealed a remarkable and concentration-dependent cytotoxic effect of safranal on PC-3 cells in comparison with non-malignant cell line. The morphologic alterations of the cells confirmed the MTT results. The IC 50 values against PC-3 cells were found to be 13.0 ΁ 0.07 and 6.4 ΁ 0.09 μg/ml at 48 and 72 h, respectively. Safranal induced an early and late apoptosis in the flow cytometry histogram of treated cells, indicating apoptosis is involved in this toxicity. DNA analysis revealed typical ladders as early as 48 and 72 h after treatment, indicative of apoptosis. Conclusions: Our preclinical study demonstrated a prostate cancer cell line to be highly sensitive to safranal-mediated growth inhibition and apoptotic cell death. Although the molecular mechanisms of safranal action are not clearly understood, it appears to have potential as a therapeutic agent.

  15. p,p'-Dichlorodiphenyltrichloroethane (p,p'-DDT) and p,p'-dichlorodiphenyldichloroethylene (p,p'-DDE) repress prostate specific antigen levels in human prostate cancer cell lines.

    Science.gov (United States)

    Wong, Lilian I L; Labrecque, Mark P; Ibuki, Naokazu; Cox, Michael E; Elliott, John E; Beischlag, Timothy V

    2015-03-25

    Despite stringent restrictions on their use by many countries since the 1970s, the endocrine disrupting chemicals, DDT and DDE are still ubiquitous in the environment. However, little attention has been directed to p,p'-DDT and the anti-androgen, p,p'-DDE on androgen receptor (AR) target gene transcription in human cells. Inhibitors of androgenic activity may have a deleterious clinical outcome in prostate cancer screens and progression, therefore we determined whether environmentally relevant concentrations of p,p'-DDT and p,p'-DDE negatively impact AR-regulated expression of prostate-specific antigen (PSA), and other AR target genes in human LNCaP and VCaP prostate cancer cells. Quantitative real-time PCR and immuno-blotting techniques were used to measure intracellular PSA, PSMA and AR mRNA and protein levels. We have shown for the first time that p,p'-DDT and p,p'-DDE repressed R1881-inducible PSA mRNA and protein levels in a dose-dependent manner. Additionally, we used the fully automated COBAS PSA detection system to determine that extracellular PSA levels were also significantly repressed. These chemicals achieve this by blocking the recruitment of AR to the PSA promoter region at 10 μM, as demonstrated by the chromatin immunoprecipitation (ChIP) in LNCaP cells. Both p,p'-DDT and p,p'-DDE repressed R1881-inducible AR protein accumulation at 10 μM. Thus, we conclude that men who have been exposed to either DDT or DDE may produce a false-negative PSA test when screening for prostate cancer, resulting in an inaccurate clinical diagnosis. More importantly, prolonged exposure to these anti-androgens may mimic androgen ablation therapy in individuals with prostate cancer, thus exacerbating the condition by inadvertently forcing adaptation to this stress early in the disease. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. Prostate-Specific Natural Health Products (Dietary Supplements) Radiosensitize Normal Prostate Cells

    International Nuclear Information System (INIS)

    Hasan, Yasmin; Schoenherr, Diane; Martinez, Alvaro A.; Wilson, George D.; Marples, Brian

    2010-01-01

    Purpose: Prostate-specific health products (dietary supplements) are taken by cancer patients to alleviate the symptoms linked with poor prostate health. However, the effect of these agents on evidence-based radiotherapy practice is poorly understood. The present study aimed to determine whether dietary supplements radiosensitized normal prostate or prostate cancer cell lines. Methods and Materials: Three well-known prostate-specific dietary supplements were purchased from commercial sources available to patients (Trinovin, Provelex, and Prostate Rx). The cells used in the study included normal prostate lines (RWPE-1 and PWR-1E), prostate tumor lines (PC3, DU145, and LNCaP), and a normal nonprostate line (HaCaT). Supplement toxicity was assessed using cell proliferation assays [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide] and cellular radiosensitivity using conventional clonogenic assays (0.5-4Gy). Cell cycle kinetics were assessed using the bromodeoxyuridine/propidium iodide pulse-labeling technique, apoptosis by scoring caspase-3 activation, and DNA repair by assessing γH2AX. Results: The cell growth and radiosensitivity of the malignant PC3, DU145, and LNcaP cells were not affected by any of the dietary prostate supplements (Provelex [2μg/mL], Trinovin [10μg/mL], and Prostate Rx [50 μg/mL]). However, both Trinovin (10μg/mL) and Prostate Rx (6μg/mL) inhibited the growth rate of the normal prostate cell lines. Prostate Rx increased cellular radiosensitivity of RWPE-1 cells through the inhibition of DNA repair. Conclusion: The use of prostate-specific dietary supplements should be discouraged during radiotherapy owing to the preferential radiosensitization of normal prostate cells.

  17. Regulation of cholesterol 25-hydroxylase expression by vitamin D3 metabolites in human prostate stromal cells

    International Nuclear Information System (INIS)

    Wang, J.-H.; Tuohimaa, Pentti

    2006-01-01

    Vitamin D 3 plays an important role in the control of cell proliferation and differentiation. Cholesterol 25-hydroxylase (CH25H) is an enzyme converting cholesterol into 25-hydroxycholesterol. Vitamin D 3 as well as 25-hydroxycholesterol has been shown to inhibit cell growth and induce cell apoptosis. Here we show that 10 nM 1α,25(OH) 2 D 3 and 500 nM 25OHD 3 upregulate CH25H mRNA expression in human primary prostate stromal cells (P29SN). Protein synthesis inhibitor cycloheximide does not block 1α,25(OH) 2 D 3 mediated upregulation of CH25H mRNA. Transcription inhibitor actinomycin D blocks basal level as well as 1α,25(OH) 2 D 3 induced CH25H mRNA expression. 1α,25(OH) 2 D 3 has no effect on CH25H mRNA stability. 25-Hydroxycholesterol significantly decreased the P29SN cell number. A CH25H enzyme inhibitor, desmosterol, increases basal cell number but has no significant effect on vitamin D 3 treated cells. Our data suggest that ch25h could be a vitamin D 3 target gene and may partly mediate anti-proliferative action of vitamin D 3 in human primary prostate stromal cells

  18. Definition of molecular determinants of prostate cancer cell bone extravasation.

    Science.gov (United States)

    Barthel, Steven R; Hays, Danielle L; Yazawa, Erika M; Opperman, Matthew; Walley, Kempland C; Nimrichter, Leonardo; Burdick, Monica M; Gillard, Bryan M; Moser, Michael T; Pantel, Klaus; Foster, Barbara A; Pienta, Kenneth J; Dimitroff, Charles J

    2013-01-15

    Advanced prostate cancer commonly metastasizes to bone, but transit of malignant cells across the bone marrow endothelium (BMEC) remains a poorly understood step in metastasis. Prostate cancer cells roll on E-selectin(+) BMEC through E-selectin ligand-binding interactions under shear flow, and prostate cancer cells exhibit firm adhesion to BMEC via β1, β4, and αVβ3 integrins in static assays. However, whether these discrete prostate cancer cell-BMEC adhesive contacts culminate in cooperative, step-wise transendothelial migration into bone is not known. Here, we describe how metastatic prostate cancer cells breach BMEC monolayers in a step-wise fashion under physiologic hemodynamic flow. Prostate cancer cells tethered and rolled on BMEC and then firmly adhered to and traversed BMEC via sequential dependence on E-selectin ligands and β1 and αVβ3 integrins. Expression analysis in human metastatic prostate cancer tissue revealed that β1 was markedly upregulated compared with expression of other β subunits. Prostate cancer cell breaching was regulated by Rac1 and Rap1 GTPases and, notably, did not require exogenous chemokines as β1, αVβ3, Rac1, and Rap1 were constitutively active. In homing studies, prostate cancer cell trafficking to murine femurs was dependent on E-selectin ligand, β1 integrin, and Rac1. Moreover, eliminating E-selectin ligand-synthesizing α1,3 fucosyltransferases in transgenic adenoma of mouse prostate mice dramatically reduced prostate cancer incidence. These results unify the requirement for E-selectin ligands, α1,3 fucosyltransferases, β1 and αVβ3 integrins, and Rac/Rap1 GTPases in mediating prostate cancer cell homing and entry into bone and offer new insight into the role of α1,3 fucosylation in prostate cancer development.

  19. The integrin α6β4 as a signaling membrane protein for a damage response to ionizing radiation in human prostate cancer cell lines

    International Nuclear Information System (INIS)

    Woo, Charles; Nagle, Ray B.; Stea, Baldassarre; Cress, Anne E.

    1996-01-01

    Purpose/Object: Integrins are cell surface receptors that exist as heterodimers. The integrin α6β4 is a receptor for laminin and is present in normal human prostate tissue. In prostate carcinoma however, there is loss of β4 expression. Prior studies demonstrated that when a low β4 expressing rectal carcinoma cell line was transfected with β4, the cells underwent apoptosis. We investigated the effects that the β4 integrin had on DNA damage responses in a human prostate carcinoma line. Materials and Methods: DU-145 human prostate carcinoma cells previously selected by us for α6β1 expression were transfected with either a full length β4 construct or vector only. Both cell lines were grown simultaneously and maintained in geneticin for selection purposes. Cells were grown on glass coverslips in 60mm tissue culture dishes under optimal growth conditions. Radiation was delivered using a Co-60 machine with a dose rate of 35 Gy/hr. The cells were given 0, 2, 5, and 10 Gy. Three different radiation damage responses were assayed and include micronuclei (MN) formation, cell cycle distribution, and cell survival. 24 hours after irradiation, the cells were fixed and stained with propidium iodide. Micronuclei formation was detected using a Zeiss LSM10 confocal microscope, and the resulting digital images were analyzed using the NIH Image program. The observed MN were detected without the use of cytochalasin B, but were noted to contain nuclear histone and DNA and were morphologically distinct from apoptotic or necrotic bodies. Results: The quantitative analysis of MN formation revealed a radiation dose dependence of MN formation in both the α6β4 and α6β1 expressing cell lines. The presence of MN 24 hours after irradiation was observed at clinically significant doses (2 Gy) with the largest effect occurring at 5 Gy. The α6β4 expressing cells consistently produced approximately two fold more MN as compared to the α6β1 expressing cells at all radiation doses. The

  20. Androgen regulated genes in human prostate xenografts in mice: relation to BPH and prostate cancer.

    Directory of Open Access Journals (Sweden)

    Harold D Love

    2009-12-01

    Full Text Available Benign prostatic hyperplasia (BPH and prostate carcinoma (CaP are linked to aging and the presence of androgens, suggesting that androgen regulated genes play a major role in these common diseases. Androgen regulation of prostate growth and development depends on the presence of intact epithelial-stromal interactions. Further, the prostatic stroma is implicated in BPH. This suggests that epithelial cell lines are inadequate to identify androgen regulated genes that could contribute to BPH and CaP and which could serve as potential clinical biomarkers. In this study, we used a human prostate xenograft model to define a profile of genes regulated in vivo by androgens, with an emphasis on identifying candidate biomarkers. Benign transition zone (TZ human prostate tissue from radical prostatectomies was grafted to the sub-renal capsule site of intact or castrated male immunodeficient mice, followed by the removal or addition of androgens, respectively. Microarray analysis of RNA from these tissues was used to identify genes that were; 1 highly expressed in prostate, 2 had significant expression changes in response to androgens, and, 3 encode extracellular proteins. A total of 95 genes meeting these criteria were selected for analysis and validation of expression in patient prostate tissues using quantitative real-time PCR. Expression levels of these genes were measured in pooled RNAs from human prostate tissues with varying severity of BPH pathologic changes and CaP of varying Gleason score. A number of androgen regulated genes were identified. Additionally, a subset of these genes were over-expressed in RNA from clinical BPH tissues, and the levels of many were found to correlate with disease status. Our results demonstrate the feasibility, and some of the problems, of using a mouse xenograft model to characterize the androgen regulated expression profiles of intact human prostate tissues.

  1. Different Phenotypes in Human Prostate Cancer: α6 or α3 Integrin in Cell-extracellular Adhesion Sites

    Directory of Open Access Journals (Sweden)

    Monika Schmelz

    2002-01-01

    Full Text Available The distribution of α6/α3 integrin in adhesion complexes at the basal membrane in human normal and cancer prostate glands was analyzed in 135 biopsies from 61 patients. The levels of the polarized α6/α3 integrin expression at the basal membrane of prostate tumor glands were determined by quantitative immunohistochemistry. The α6/α3 integrin expression was compared with Gleason sum score, pathological stage, and preoperative serum prostate-specific antigen (PSA. The associations were assessed by statistical methods. Eighty percent of the tumors expressed the α6 or α3 integrin and 20% was integrin-negative. Gleason sum score, but not serum PSA, was associated with the integrin expression. Low Gleason sum score correlated with increased integrin expression, high Gleason sum score with low and negative integrin expression. Three prostate tumor phenotypes were distinguished based on differential integrin expression. Type I coexpressed both α6 and α3 subunits, type II exclusively expressed a6 integrin, and type III expressed α3 integrin only. Fifteen cases were further examined for the codistribution of vinculin, paxillin, and CD 151 on frozen serial sections using confocal laser scanning microscopy. The α6/α3 integrins, CD151, paxillin, and vinculin were present within normal glands. In prostate carcinoma, α6 integrin was colocalized with CD 151, but not with vinculin or paxillin. In tumor phenotype I, the α6 subunit did not colocalize with the α3 subunit indicating the existence of two different adhesion complexes. Human prostate tumors display on their cell surface the α6β1 and/or α3β1 integrins. Three tumor phenotypes associated with two different adhesion complexes were identified, suggesting a reorganization of cell adhesion structures in prostate cancer.

  2. Detection of Lipid-Rich Prostate Circulating Tumour Cells with Coherent Anti-Stokes Raman Scattering Microscopy

    International Nuclear Information System (INIS)

    Mitra, Ranjana; Chao, Olivia; Urasaki, Yasuyo; Goodman, Oscar B; Le, Thuc T

    2012-01-01

    Circulating tumour cells (CTC) are an important indicator of metastasis and associated with a poor prognosis. Detection sensitivity and specificity of CTC in the peripheral blood of metastatic cancer patient remain a technical challenge. Coherent anti-Stokes Raman scattering (CARS) microscopy was employed to examine the lipid content of CTC isolated from the peripheral blood of metastatic prostate cancer patients. CARS microscopy was also employed to evaluate lipid uptake and mobilization kinetics of a metastatic human prostate cancer cell line. One hundred CTC from eight metastatic prostate cancer patients exhibited strong CARS signal which arose from intracellular lipid. In contrast, leukocytes exhibited weak CARS signal which arose mostly from cellular membrane. On average, CARS signal intensity of prostate CTC was 7-fold higher than that of leukocytes (P<0.0000001). When incubated with human plasma, C4-2 metastatic human prostate cancer cells exhibited rapid lipid uptake kinetics and slow lipid mobilization kinetics. Higher expression of lipid transport proteins in C4-2 cells compared to non-transformed RWPE-1 and non-malignant BPH-1 prostate epithelial cells further indicated strong affinity for lipid of metastatic prostate cancer cells. Intracellular lipid could serve as a biomarker for prostate CTC which could be sensitively detected with CARS microscopy in a label-free manner. Strong affinity for lipid by metastatic prostate cancer cells could be used to improve detection sensitivity and therapeutic targeting of prostate CTC

  3. Comparative analysis of gene expression in normal and cancer human prostate cell lines

    Directory of Open Access Journals (Sweden)

    E. E. Rosenberg

    2014-04-01

    Full Text Available Prostate cancer is one of the main causes of mortality in men with malignant tumors. The urgent problem was a search for biomarkers of prostate cancer, which would allow distinguishing between aggressive metastatic and latent tumors. The aim of this work was to search for differentially expressed genes in normal epithelial cells PNT2 and prostate cancer cell lines LNCaP, DU145 and PC3, produced from tumors with different aggressiveness and metas­tatic ability. Such genes might be used to create a panel of prognostic markers for aggressiveness and metastasis. Relative gene expression of 65 cancer-related genes was determined by the quantitative polymerase chain reaction (Q-PCR. Expression of 29 genes was changed in LNCaP cells, 20 genes in DU145 and 16 genes in PC3 cell lines, compared with normal line PNT2. The obtained data make it possible to conclude that the epithelial-mesenchymal cell transition took place, which involved the loss of epithelial markers, reduced cell adhesion and increased migration. We have also found few differentially expressed genes among 3 prostate cancer cell lines. We have found that genes, involved in cell adhesion (CDH1, invasiveness and metastasis (IL8, CXCL2 and cell cycle control (P16, CCNE1 underwent most changes. These genes might be used for diagnosis and prognosis of invasive metastatic prostate tumors.

  4. Activation of β-catenin signaling in androgen receptor-negative prostate cancer cells.

    Science.gov (United States)

    Wan, Xinhai; Liu, Jie; Lu, Jing-Fang; Tzelepi, Vassiliki; Yang, Jun; Starbuck, Michael W; Diao, Lixia; Wang, Jing; Efstathiou, Eleni; Vazquez, Elba S; Troncoso, Patricia; Maity, Sankar N; Navone, Nora M

    2012-02-01

    To study Wnt/β-catenin in castrate-resistant prostate cancer (CRPC) and understand its function independently of the β-catenin-androgen receptor (AR) interaction. We carried out β-catenin immunocytochemical analysis, evaluated TOP-flash reporter activity (a reporter of β-catenin-mediated transcription), and sequenced the β-catenin gene in MDA prostate cancer 118a, MDA prostate cancer 118b, MDA prostate cancer 2b, and PC-3 prostate cancer cells. We knocked down β-catenin in AR-negative MDA prostate cancer 118b cells and carried out comparative gene-array analysis. We also immunohistochemically analyzed β-catenin and AR in 27 bone metastases of human CRPCs. β-Catenin nuclear accumulation and TOP-flash reporter activity were high in MDA prostate cancer 118b but not in MDA prostate cancer 2b or PC-3 cells. MDA prostate cancer 118a and MDA prostate cancer 118b cells carry a mutated β-catenin at codon 32 (D32G). Ten genes were expressed differently (false discovery rate, 0.05) in MDA prostate cancer 118b cells with downregulated β-catenin. One such gene, hyaluronan synthase 2 (HAS2), synthesizes hyaluronan, a core component of the extracellular matrix. We confirmed HAS2 upregulation in PC-3 cells transfected with D32G-mutant β-catenin. Finally, we found nuclear localization of β-catenin in 10 of 27 human tissue specimens; this localization was inversely associated with AR expression (P = 0.056, Fisher's exact test), suggesting that reduced AR expression enables Wnt/β-catenin signaling. We identified a previously unknown downstream target of β-catenin, HAS2, in prostate cancer, and found that high β-catenin nuclear localization and low or no AR expression may define a subpopulation of men with bone metastatic prostate cancer. These findings may guide physicians in managing these patients.

  5. Microenvironment-Programmed Metastatic Prostate Cancer Stem Cells (mPCSCs)

    Science.gov (United States)

    2015-10-01

    with meta- static prostate cancer and serum prostate- specific antigen levels of < 10 ng/mL. BJU Int. 2005; 96:303–307. 59. Davis JN, Wojno KJ...renewal in vivo. As an example, in a recent study, prostate- specific antigen (PSA)-positive (PSAþ) and PSA/lo human prostate cancer cells were...In addition, transgene inser- tion of Cre recombinase under the control of a specific pro - moter may alter the function of the endogenous locus via

  6. Role of Stromal Paracrine Signals in Proliferative Diseases of the Aging Human Prostate

    Directory of Open Access Journals (Sweden)

    Kenichiro Ishii

    2018-04-01

    Full Text Available Androgens are essential for the development, differentiation, growth, and function of the prostate through epithelial–stromal interactions. However, androgen concentrations in the hypertrophic human prostate decrease significantly with age, suggesting an inverse correlation between androgen levels and proliferative diseases of the aging prostate. In elderly males, age- and/or androgen-related stromal remodeling is spontaneously induced, i.e., increased fibroblast and myofibroblast numbers, but decreased smooth muscle cell numbers in the prostatic stroma. These fibroblasts produce not only growth factors, cytokines, and extracellular matrix proteins, but also microRNAs as stromal paracrine signals that stimulate prostate epithelial cell proliferation. Surgical or chemical castration is the standard systemic therapy for patients with advanced prostate cancer. Androgen deprivation therapy induces temporary remission, but the majority of patients eventually progress to castration-resistant prostate cancer, which is associated with a high mortality rate. Androgen deprivation therapy-induced stromal remodeling may be involved in the development and progression of castration-resistant prostate cancer. In the tumor microenvironment, activated fibroblasts stimulating prostate cancer cell proliferation are called carcinoma-associated fibroblasts. In this review, we summarize the role of stromal paracrine signals in proliferative diseases of the aging human prostate and discuss the potential clinical applications of carcinoma-associated fibroblast-derived exosomal microRNAs as promising biomarkers.

  7. Protein kinase Cδ signaling downstream of the EGF receptor mediates migration and invasiveness of prostate cancer cells

    International Nuclear Information System (INIS)

    Kharait, Sourabh; Dhir, Rajiv; Lauffenburger, Douglas; Wells, Alan

    2006-01-01

    Tumor progression to the invasive phenotype occurs secondary to upregulated signaling from growth factor receptors that drive key cellular responses like proliferation, migration, and invasion. We hypothesized that Protein kinase Cδ (PKCδ)-mediated transcellular contractility is required for migration and invasion of prostate tumor cells. Two invasive human prostate cancer cell lines, DU145 cells overexpressing wildtype human EGFR (DU145WT) and PC3 cells, were studied. PKCδ is overexpressed in these cells relative to normal prostate epithelial cells, and is activated downstream of EGFR leading to cell motility via modulation of myosin light chain activity. Abrogation of PKCδ using Rottlerin and specific siRNA significantly decreased migration and invasion of both cell lines in vitro. Both PKCδ and phosphorylated PKCδ protein levels were higher in human prostate cancer tissue relative to normal donor prostate as assessed by Western blotting and immunohistochemistry. Thus, we conclude that PKCδ inhibition can limit migration and invasion of prostate cancer cells

  8. Interaction between tumor cell surface receptor RAGE and proteinase 3 mediates prostate cancer metastasis to bone

    Science.gov (United States)

    Kolonin, Mikhail G.; Sergeeva, Anna; Staquicini, Daniela I.; Smith, Tracey L.; Tarleton, Christy A.; Molldrem, Jeffrey J.; Sidman, Richard L.; Marchiò, Serena; Pasqualini, Renata; Arap, Wadih

    2017-01-01

    Human prostate cancer often metastasizes to bone, but the biological basis for such site-specific tropism remains largely unresolved. Recent work led us to hypothesize that this tropism may reflect pathogenic interactions between RAGE, a cell surface receptor expressed on malignant cells in advanced prostate cancer, and proteinase 3 (PR3), a serine protease present in inflammatory neutrophils and hematopoietic cells within the bone marrow microenvironment. In this study, we establish that RAGE-PR3 interaction mediates homing of prostate cancer cells to the bone marrow. PR3 bound to RAGE on the surface of prostate cancer cells in vitro, inducing tumor cell motility through a non-proteolytic signal transduction cascade involving activation and phosphorylation of ERK1/2 and JNK1. In preclinical models of experimental metastasis, ectopic expression of RAGE on human prostate cancer cells was sufficient to promote bone marrow homing within a short time frame. Our findings demonstrate how RAGE-PR3 interactions between human prostate cancer cells and the bone marrow microenvironment mediate bone metastasis during prostate cancer progression, with potential implications for prognosis and therapeutic intervention. PMID:28428279

  9. Osteoblast-Prostate Cancer Cell Interaction in Prostate Cancer Bone Metastases

    National Research Council Canada - National Science Library

    Navone, Nora

    2001-01-01

    .... This suggests that prostate cancer cells interact with cells from the osteoblastic lineage. To understand the molecular bases of prostatic bone metastases, we established two prostate cancer cell lines, MDA PCa 2a and MDA PCa 2b (1...

  10. Genetic and cellular studies highlight that A Disintegrin and Metalloproteinase 19 is a protective biomarker in human prostate cancer

    International Nuclear Information System (INIS)

    Hoyne, Gerard; Rudnicka, Caroline; Sang, Qing-Xiang; Roycik, Mark; Howarth, Sarah; Leedman, Peter; Schlaich, Markus; Candy, Patrick; Matthews, Vance

    2016-01-01

    Prostate cancer is the second most frequently diagnosed cancer in men worldwide. Current treatments include surgery, androgen ablation and radiation. Introduction of more targeted therapies in prostate cancer, based on a detailed knowledge of the signalling pathways, aims to reduce side effects, leading to better clinical outcomes for the patient. ADAM19 (A Disintegrin And Metalloproteinase 19) is a transmembrane and soluble protein which can regulate cell phenotype through cell adhesion and proteolysis. ADAM19 has been positively associated with numerous diseases, but has not been shown to be a tumor suppressor in the pathogenesis of any human cancers. Our group sought to investigate the role of ADAM19 in human prostate cancer. ADAM19 mRNA and protein levels were assessed in well characterised human prostate cancer cohorts. ADAM19 expression was assessed in normal prostate epithelial cells (RWPE-1) and prostate cancer cells (LNCaP, PC3) using western blotting and immunocytochemistry. Proliferation assays were conducted in LNCaP cells in which ADAM19 was over-expressed. In vitro scratch assays were performed in PC3 cells over-expressing ADAM19. Immunohistochemical studies highlighted that ADAM19 protein levels were elevated in normal prostate tissue compared to prostate cancer biopsies. Results from the clinical cohorts demonstrated that high levels of ADAM19 in microarrays are positively associated with lower stage (p = 0.02591) and reduced relapse (p = 0.00277) of human prostate cancer. In vitro, ADAM19 expression was higher in RWPE-1 cells compared to LNCaP cells. In addition, human ADAM19 over-expression reduced LNCaP cell proliferation and PC3 cell migration. Taken together, our immunohistochemical and microarray results and cellular studies have shown for the first time that ADAM19 is a protective factor for human prostate cancer. Further, this study suggests that upregulation of ADAM19 expression could be of therapeutic potential in human prostate cancer

  11. Tyk2 expression and its signaling enhances the invasiveness of prostate cancer cells

    International Nuclear Information System (INIS)

    Ide, Hisamitsu; Nakagawa, Takashi; Terado, Yuichi; Kamiyama, Yutaka; Muto, Satoru; Horie, Shigeo

    2008-01-01

    Protein tyrosine kinase plays a central role in the proliferation and differentiation of various types of cells. One of these protein kinases, Tyk2, a member of the Jak family kinases, is known to play important roles in receptor signal transduction by interferons, interleukins, growth factors, and other hormones. In the present study, we investigated Tyk2 expression and its role in the growth and invasiveness of human prostate cancer cells. We used a small interfering RNA targeting Tyk2 and an inhibitor of Tyk2, tyrphostin A1, to suppress the expression and signaling of Tyk2 in prostate cancer cells. We detected mRNAs for Jak family kinases in prostate cancer cell lines by RT-PCR and Tyk2 protein in human prostate cancer specimens by immunohistochemistry. Inhibition of Tyk2 signaling resulted in attenuation of the urokinase-type plasminogen activator-enhanced invasiveness of prostate cancer cells in vitro without affecting the cellular growth rate. These results suggest that Tyk2 signaling in prostate cancer cells facilitate invasion of these cells, and interference with this signaling may be a potential therapeutic pathway

  12. Fisetin Enhances Chemotherapeutic Effect of Cabazitaxel against Human Prostate Cancer Cells.

    Science.gov (United States)

    Mukhtar, Eiman; Adhami, Vaqar Mustafa; Siddiqui, Imtiaz Ahmad; Verma, Ajit Kumar; Mukhtar, Hasan

    2016-12-01

    Although treatment of prostate cancer has improved over the past several years, taxanes, such as cabazitaxel, remain the only form of effective chemotherapy that improves survival in patients with metastatic castration-resistant prostate cancer. However, the effectiveness of this class of drugs has been associated with various side effects and drug resistance. We previously reported that fisetin, a hydroxyflavone, is a microtubule-stabilizing agent and inhibits prostate cancer cell proliferation, migration, and invasion and suggested its use as an adjuvant for treatment of prostate and other cancer types. In this study, we investigated the effect of fisetin in combination with cabazitaxel with the objective to achieve maximum therapeutic benefit, reduce dose and toxicity, and minimize or delay the induction of drug resistance and metastasis. Our data show for the first time that a combination of fisetin (20 μmol/L) enhances cabazitaxel (5 nmol/L) and synergistically reduces 22Rν1, PC-3M-luc-6, and C4-2 cell viability and metastatic properties with minimal adverse effects on normal prostate epithelial cells. In addition, the combination of fisetin with cabazitaxel was associated with inhibition of proliferation and enhancement of apoptosis. Furthermore, combination treatment resulted in the inhibition of tumor growth, invasion, and metastasis when assessed in two in vivo xenograft mouse models. These results provide evidence that fisetin may have therapeutic benefit for patients with advanced prostate cancer through enhancing the efficacy of cabazitaxel under both androgen-dependent and androgen-independent conditions. This study underscores the benefit of the combination of fisetin with cabazitaxel for the treatment of advanced and resistant prostate cancer and possibly other cancer types. Mol Cancer Ther; 15(12); 2863-74. ©2016 AACR. ©2016 American Association for Cancer Research.

  13. Radiolabeling of anti-human prostatic specific membrane antigen antibody with 99Tcm and its biodistribution in nude mice bearing human prostate cancer

    International Nuclear Information System (INIS)

    Tu Shaohua; Shen Jiangfan; Tao Rong; Ji Xiaowen; Wang Yancheng

    2012-01-01

    Objective: To study the binding affinity of 99 Tc m labeled anti-human prostatic specific membrane antigen (PSMA) monoclonal antibody (McAb) J591 to prostate cancer cells and the biodistribution of 99 Tc m -J591 in nude mice bearing human prostate cancer. Methods: The McAb J591 was labeled with vTcm by improved Schwarz method and the labeled McAb was purified by Sephadex G-50. The binding affinity of J591 with prostate cancer cells was measured by Flow Cytometry. The nude mice bearing PSMA-positive C4-2 prostate carcinoma xenografts were served as experiment groups, mice with PSMA-negative pc3 tumors served as controls. The biodistribution of 99 Tc m -J591 were carried out in both model nude mice. Results: The radiolabeling efficiency of 99 Tc m -J591 was 78.9±6.2%, and radiochemical purity was more than 90% after purification. The 99 Tc m -J591 showed a good combination with PSMA-positive C4-2 cells and no combination with PSMA-negative PC3 cells in vitro. The biodistribution results showed that 99 Tcm-J591 was accumulated in tumor tissue during the 2-24 hours after injection in experiment groups, and no significant uptake in control group. The uptake of 99 Tcm-J591 in tumor tissue reached a maximum 15.91±5.16 % ID/g in experimental group at 12h post-injection. There was a significant difference compared with controls (P 0.05). Conclusion: The monoclonal antibody J591 exhibits an excellent immuno-reactivity and tumor targeting property, and it may be used in diagnosis and target therapy of prostate cancer. (authors)

  14. The liver X receptor agonist T0901317 acts as androgen receptor antagonist in human prostate cancer cells

    International Nuclear Information System (INIS)

    Chuu, Chih-pin; Chen, Rou-Yu; Hiipakka, Richard A.; Kokontis, John M.; Warner, Karen V.; Xiang, Jialing; Liao, Shutsung

    2007-01-01

    T0901317 is a potent non-steroidal synthetic liver X receptor (LXR) agonist. T0901317 blocked androgenic stimulation of the proliferation of androgen-dependent LNCaP 104-S cells and androgenic suppression of the proliferation of androgen-independent LNCaP 104-R2 cells, inhibited the transcriptional activation of an androgen-dependent reporter gene by androgen, and suppressed gene and protein expression of prostate specific antigen (PSA), a target gene of androgen receptor (AR) without affecting gene and protein expression of AR. T0901317 also inhibited binding of a radiolabeled androgen to AR, but inhibition was much weaker compared to the effect of the antiandrogens, bicalutamide and hydroxyflutamide. The LXR agonist T0901317, therefore, acts as an antiandrogen in human prostate cancer cells

  15. EMMPRIN regulates cytoskeleton reorganization and cell adhesion in prostate cancer.

    Science.gov (United States)

    Zhu, Haining; Zhao, Jun; Zhu, Beibei; Collazo, Joanne; Gal, Jozsef; Shi, Ping; Liu, Li; Ström, Anna-Lena; Lu, Xiaoning; McCann, Richard O; Toborek, Michal; Kyprianou, Natasha

    2012-01-01

    Proteins on cell surface play important roles during cancer progression and metastasis via their ability to mediate cell-to-cell interactions and navigate the communication between cells and the microenvironment. In this study a targeted proteomic analysis was conducted to identify the differential expression of cell surface proteins in human benign (BPH-1) versus malignant (LNCaP and PC-3) prostate epithelial cells. We identified EMMPRIN (extracellular matrix metalloproteinase inducer) as a key candidate and shRNA functional approaches were subsequently applied to determine the role of EMMPRIN in prostate cancer cell adhesion, migration, invasion as well as cytoskeleton organization. EMMPRIN was found to be highly expressed on the surface of prostate cancer cells compared to BPH-1 cells, consistent with a correlation between elevated EMMPRIN and metastasis found in other tumors. No significant changes in cell proliferation, cell cycle progression, or apoptosis were detected in EMMPRIN knockdown cells compared to the scramble controls. Furthermore, EMMPRIN silencing markedly decreased the ability of PC-3 cells to form filopodia, a critical feature of invasive behavior, while it increased expression of cell-cell adhesion and gap junction proteins. Our results suggest that EMMPRIN regulates cell adhesion, invasion, and cytoskeleton reorganization in prostate cancer cells. This study identifies a new function for EMMPRIN as a contributor to prostate cancer cell-cell communication and cytoskeleton changes towards metastatic spread, and suggests its potential value as a marker of prostate cancer progression to metastasis. Copyright © 2011 Wiley Periodicals, Inc.

  16. Prostaglandin E2 and the protein kinase A pathway mediate arachidonic acid induction of c-fos in human prostate cancer cells

    Science.gov (United States)

    Chen, Y.; Hughes-Fulford, M.

    2000-01-01

    Arachidonic acid (AA) is the precursor for prostaglandin E2 (PGE2) synthesis and increases growth of prostate cancer cells. To further elucidate the mechanisms involved in AA-induced prostate cell growth, induction of c-fos expression by AA was investigated in a human prostate cancer cell line, PC-3. c-fos mRNA was induced shortly after addition of AA, along with a remarkable increase in PGE2 production. c-fos expression and PGE2 production induced by AA was blocked by a cyclo-oxygenase inhibitor, flurbiprofen, suggesting that PGE2 mediated c-fos induction. Protein kinase A (PKA) inhibitor H-89 abolished induction of c-fos expression by AA, and partially inhibited PGE2 production. Protein kinase C (PKC) inhibitor GF109203X had no significant effect on c-fos expression or PGE2 production. Expression of prostaglandin (EP) receptors, which mediate signal transduction from PGE2 to the cells, was examined by reverse transcription polymerase chain reaction in several human prostate cell lines. EP4 and EP2, which are coupled to the PKA signalling pathway, were expressed in all cells tested. Expression of EP1, which activates the PKC pathway, was not detected. The current study showed that induction of the immediate early gene c-fos by AA is mediated by PGE2, which activates the PKA pathway via the EP2/4 receptor in the PC-3 cells.

  17. Cholesterol homeostasis in two commonly used human prostate cancer cell-lines, LNCaP and PC-3.

    Directory of Open Access Journals (Sweden)

    James Robert Krycer

    2009-12-01

    Full Text Available Recently, there has been renewed interest in the link between cholesterol and prostate cancer. It has been previously reported that in vitro, prostate cancer cells lack sterol-mediated feedback regulation of the major transcription factor in cholesterol homeostasis, sterol-regulatory element binding protein 2 (SREBP-2. This could explain the accumulation of cholesterol observed in clinical prostate cancers. Consequently, perturbed feedback regulation to increased sterol levels has become a pervasive concept in the prostate cancer setting. Here, we aimed to explore this in greater depth.After altering the cellular cholesterol status in LNCaP and PC-3 prostate cancer cells, we examined SREBP-2 processing, downstream effects on promoter activity and expression of SREBP-2 target genes, and functional activity (low-density lipoprotein uptake, cholesterol synthesis. In doing so, we observed that LNCaP and PC-3 cells were sensitive to increased sterol levels. In contrast, lowering cholesterol levels via statin treatment generated a greater response in LNCaP cells than PC-3 cells. This highlighted an important difference between these cell-lines: basal SREBP-2 activity appeared to be higher in PC-3 cells, reducing sensitivity to decreased cholesterol levels.Thus, prostate cancer cells are sensitive to changing sterol levels in vitro, but the extent of this regulation differs between prostate cancer cell-lines. These results shed new light on the regulation of cholesterol metabolism in two commonly used prostate cancer cell-lines, and emphasize the importance of establishing whether or not cholesterol homeostasis is perturbed in prostate cancer in vivo.

  18. CdTe QDs-based prostate-specific antigen probe for human prostate cancer cell imaging

    International Nuclear Information System (INIS)

    Dong Wei; Guo Li; Wang Meng; Xu Shukun

    2009-01-01

    L-glutathione (GSH) stabilized CdTe quantum dots (QDs) were directly prepared in aqueous solution. The as-prepared QDs were linked to prostate-specific antigen (PSA) for the direct labeling and linked to immunoglobulin G (IgG) for the indirect labeling of fixed prostate cancer cells. The results indicated that QD-based probes were ideal fluorescent markers with excellent spectral properties and photostability and much better than organic dyes making them very suitable in target detection. Meanwhile, the indirect labeling showed much better specificity than the direct labeling. Furthermore, the prepared CdTe QDs did not show detectable effect on cell growth after having cultured for three days, which suggested that the L-glutathione capped CdTe had scarcely cytotoxicity.

  19. Effect of resveratrol and zinc on intracellular zinc status in normal human prostate epithelial cells

    Science.gov (United States)

    To evaluate the influence of resveratrol on cellular zinc status, normal human prostate epithelial (NHPrE) cells were treated with 6 levels of resveratrol (0, 0.5, 1, 2.5, 5 and 10 microM) and 4 levels of zinc [0, 4, 16, and 32 microM for zinc-deficient (ZD), zinc-normal (ZN), zinc-adequate (ZA), an...

  20. Elevated AKR1C3 expression promotes prostate cancer cell survival and prostate cell-mediated endothelial cell tube formation: implications for prostate cancer progressioan

    International Nuclear Information System (INIS)

    Dozmorov, Mikhail G; Lin, Hsueh-Kung; Azzarello, Joseph T; Wren, Jonathan D; Fung, Kar-Ming; Yang, Qing; Davis, Jeffrey S; Hurst, Robert E; Culkin, Daniel J; Penning, Trevor M

    2010-01-01

    Aldo-keto reductase (AKR) 1C family member 3 (AKR1C3), one of four identified human AKR1C enzymes, catalyzes steroid, prostaglandin, and xenobiotic metabolism. In the prostate, AKR1C3 is up-regulated in localized and advanced prostate adenocarcinoma, and is associated with prostate cancer (PCa) aggressiveness. Here we propose a novel pathological function of AKR1C3 in tumor angiogenesis and its potential role in promoting PCa progression. To recapitulate elevated AKR1C3 expression in cancerous prostate, the human PCa PC-3 cell line was stably transfected with an AKR1C3 expression construct to establish PC3-AKR1C3 transfectants. Microarray and bioinformatics analysis were performed to identify AKR1C3-mediated pathways of activation and their potential biological consequences in PC-3 cells. Western blot analysis, reverse transcription-polymerase chain reaction (RT-PCR), enzyme-linked immunosorbent assay (ELISA), and an in vitro Matrigel angiogenesis assays were applied to validate the pro-angiogenic activity of PC3-AKR1C3 transfectants identified by bioinformatics analysis. Microarray and bioinformatics analysis suggested that overexpression of AKR1C3 in PC-3 cells modulates estrogen and androgen metabolism, activates insulin-like growth factor (IGF)-1 and Akt signaling pathways, as well as promotes tumor angiogenesis and aggressiveness. Levels of IGF-1 receptor (IGF-1R) and Akt activation as well as vascular endothelial growth factor (VEGF) expression and secretion were significantly elevated in PC3-AKR1C3 transfectants in comparison to PC3-mock transfectants. PC3-AKR1C3 transfectants also promoted endothelial cell (EC) tube formation on Matrigel as compared to the AKR1C3-negative parental PC-3 cells and PC3-mock transfectants. Pre-treatment of PC3-AKR1C3 transfectants with a selective IGF-1R kinase inhibitor (AG1024) or a non-selective phosphoinositide 3-kinases (PI3K) inhibitor (LY294002) abolished ability of the cells to promote EC tube formation. Bioinformatics

  1. Senescence-Induced Alterations of Laminin Chain Expression Modulate Tumorigenicity of Prostate Cancer Cells

    Directory of Open Access Journals (Sweden)

    Cynthia C.T. Sprenger

    2008-12-01

    Full Text Available Prostate cancer is an age-associated epithelial cancer, and as such, it contributes significantly to the mortality of the elderly. Senescence is one possible mechanism by which the body defends itself against various epithelial cancers. Senescent cells alter the microenvironment, in part, through changes to the extracellular matrix. Laminins (LMs are extracellular proteins important to both the structure and function of the microenvironment. Overexpression of the senescence-associated gene mac25 in human prostate cancer cells resulted in increased mRNA levels of the LM α4 and β2 chains compared to empty vector control cells. The purpose of this study was to examine the effects of these senescence-induced LM chains on tumorigenicity of prostate cancer cells. We created stable M12 human prostate cancer lines overexpressing either the LM α4 or β2 chain or both chains. Increased expression of either the LM α4 or β2 chain resulted in increased in vitro migration and in vivo tumorigenicity of those cells, whereas high expression of both chains led to decreased in vitro proliferation and in vivo tumorigenicity compared to M12 control cells. This study demonstrates that senescent prostate epithelial cells can alter the microenvironment and that these changes modulate progression of prostate cancer.

  2. Involvement of Bax and Bcl-2 in Induction of Apoptosis by Essential Oils of Three Lebanese Salvia Species in Human Prostate Cancer Cells

    Directory of Open Access Journals (Sweden)

    Alessandra Russo

    2018-01-01

    Full Text Available Prostate cancer is one of the most common forms of cancer in men, and research to find more effective and less toxic drugs has become necessary. In the frame of our ongoing program on traditionally used Salvia species from the Mediterranean Area, here we report the biological activities of Salvia aurea, S. judaica and S. viscosa essential oils against human prostate cancer cells (DU-145. The cell viability was measured by 3(4,5-dimethyl-thiazol-2-yl2,5-diphenyl-tetrazolium bromide (MTT test and lactate dehydrogenase (LDH release was used to quantify necrosis cell death. Genomic DNA, caspase-3 activity, expression of cleaved caspase-9, B-cell lymphoma 2 (Bcl-2 and Bcl-2 associated X (Bax proteins were analyzed in order to study the apoptotic process. The role of reactive oxygen species in cell death was also investigated. We found that the three essential oils, containing caryophyllene oxide as a main constituent, are capable of reducing the growth of human prostate cancer cells, activating an apoptotic process and increasing reactive oxygen species generation. These results suggest it could be profitable to further investigate the effects of these essential oils for their possible use as anticancer agents in prostate cancer, alone or in combination with chemotherapy agents.

  3. Response of Human Prostate Cancer Cells to Mitoxantrone Treatment in Simulated Microgravity Environment

    Science.gov (United States)

    Zhang, Ye; Wu, Honglu

    2012-07-01

    RESPONSE OF HUMAN PROSTATE CANCER CELLS TO MITOXANTRONE TREATMENT IN SIMULATED MICROGRAVITY ENVIRONMENT Ye Zhang1,2, Christopher Edwards3, and Honglu Wu1 1 NASA-Johnson Space Center, Houston, TX 2 Wyle Integrated Science and Engineering Group, Houston, TX 3 Oregon State University, Corvallis, OR This study explores the changes in growth of human prostate cancer cells (LNCaP) and their response to the treatment of an antineoplastic agent, mitoxantrone, under the simulated microgravity condition. In comparison to static 1g, microgravity and simulated microgravity have been shown to alter global gene expression patterns and protein levels in various cultured cell models or animals. However, very little is known about the effect of altered gravity on the responses of cells to the treatment of drugs, especially chemotherapy drugs. To test the hypothesis that zero gravity would result in altered regulations of cells in response to antineoplastic agents, we cultured LNCaP cells in either a High Aspect Ratio Vessel (HARV) bioreactor at the rotating condition to model microgravity in space or in the static condition as control, and treated the cells with mitoxantrone. Cell growth, as well as expressions of oxidative stress related genes, were analyzed after the drug treatment. Compared to static 1g controls, the cells cultured in the simulated microgravity environment did not present significant differences in cell viability, growth rate, or cell cycle distribution. However, after mitoxantrone treatment, a significant proportion of bioreactor cultured cells became apoptotic or was arrested in G2. Several oxidative stress related genes also showed a higher expression level post mitoxantrone treatment. Our results indicate that simulated microgravity may alter the response of LNCaP cells to mitoxantrone treatment. Understanding the mechanisms by which cells respond to drugs differently in an altered gravity environment will be useful for the improvement of cancer treatment on

  4. CDK2 and mTOR are direct molecular targets of isoangustone A in the suppression of human prostate cancer cell growth

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eunjung; Son, Joe Eun; Byun, Sanguine; Lee, Seung Joon; Kim, Yeong A [WCU Biomodulation Major, Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University, Seoul 151-921 (Korea, Republic of); Liu, Kangdong [The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN 55912 (United States); Kim, Jiyoung [WCU Biomodulation Major, Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University, Seoul 151-921 (Korea, Republic of); Lim, Soon Sung; Park, Jung Han Yoon [Department of Food Science and Nutrition, College of Natural Science, Hallym University, Chuncheon, 200-702 (Korea, Republic of); Dong, Zigang [The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN 55912 (United States); Lee, Ki Won, E-mail: kiwon@snu.ac.kr [WCU Biomodulation Major, Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University, Seoul 151-921 (Korea, Republic of); Advanced Institutes of Convergence Technology, Seoul National University, Suwon 443-270 (Korea, Republic of); Lee, Hyong Joo, E-mail: leehyjo@snu.ac.kr [WCU Biomodulation Major, Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University, Seoul 151-921 (Korea, Republic of); Advanced Institutes of Convergence Technology, Seoul National University, Suwon 443-270 (Korea, Republic of)

    2013-10-01

    Licorice extract which is used as a natural sweetener has been shown to possess inhibitory effects against prostate cancer, but the mechanisms responsible are poorly understood. Here, we report a compound, isoangustone A (IAA) in licorice that potently suppresses the growth of aggressive prostate cancer and sought to clarify its mechanism of action. We analyzed its inhibitory effects on the growth of PTEN-deleted human prostate cancer cells, in vitro and in vivo. Administration of IAA significantly attenuated the growth of prostate cancer cell cultures and xenograft tumors. These effects were found to be attributable to inhibition of the G1/S phase cell cycle transition and the accumulation of p27{sup kip1}. The elevated p27{sup kip1} expression levels were concurrent with the decrease of its phosphorylation at threonine 187 through suppression of CDK2 kinase activity and the reduced phosphorylation of Akt at Serine 473 by diminishing the kinase activity of the mammalian target of rapamycin (mTOR). Further analysis using recombinant proteins and immunoprecipitated cell lysates determined that IAA exerts suppressive effects against CDK2 and mTOR kinase activity by direct binding with both proteins. These findings suggested that the licorice compound IAA is a potent molecular inhibitor of CDK2 and mTOR, with strong implications for the treatment of prostate cancer. Thus, licorice-derived extracts with high IAA content warrant further clinical investigation for nutritional sources for prostate cancer patients. - Highlights: • Isoangustone A suppresses growth of PC3 and LNCaP prostate cancer cells. • Administration of isoangustone A inhibits tumor growth in mice. • Treatment of isoangustone A induces cell cycle arrest and accumulation of p27{sup kip1}. • Isoangustone A inhibits CDK2 and mTOR activity. • Isoangustone A directly binds with CDK2 and mTOR complex in prostate cancer cells.

  5. Rad9 Has a Functional Role in Human Prostate Carcinogenesis

    Science.gov (United States)

    Zhu, Aiping; Zhang, Charles Xia; Lieberman, Howard B.

    2013-01-01

    Prostate cancer is currently the most common type of neoplasm found in American men, other than skin cancer, and is the second leading cause of cancer death in males. Because cell cycle checkpoint proteins stabilize the genome, the relationship of one such protein, Rad9, to prostate cancer was investigated. We found that four prostate cancer cell lines (CWR22, DU145, LNCaP, and PC-3), relative to PrEC normal prostate cells, have aberrantly high levels of Rad9 protein. The 3′-end region of intron 2 of Rad9 in DU145 cells is hypermethylated at CpG islands, and treatment with 5′-aza-2′-deoxycytidine restores near-normal levels of methylation and reduces Rad9 protein abundance. Southern blot analyses indicate that PC-3 cells contain an amplified Rad9 copy number. Therefore, we provide evidence that Rad9 levels are high in prostate cancer cells due at least in part to aberrant methylation or gene amplification. The effectiveness of small interfering RNA to lower Rad9 protein levels in CWR22, DU145, and PC-3 cells correlated with reduction of tumorigenicity in nude mice, indicating that Rad9 actively contributes to the disease. Rad9 protein levels were high in 153 of 339 human prostate tumor biopsy samples examined and detectable in only 2 of 52 noncancerous prostate tissues. There was a strong correlation between Rad9 protein abundance and cancer stage. Rad9 protein level can thus provide a biomarker for advanced prostate cancer and is causally related to the disease, suggesting the potential for developing novel diagnostic, prognostic, and therapeutic tools based on detection or manipulation of Rad9 protein abundance. PMID:18316588

  6. A Vitex agnus-castus extract inhibits cell growth and induces apoptosis in prostate epithelial cell lines.

    Science.gov (United States)

    Weisskopf, M; Schaffner, W; Jundt, G; Sulser, T; Wyler, S; Tullberg-Reinert, H

    2005-10-01

    Extracts of Vitex agnus-castus fruits (VACF) are described to have beneficial effects on disorders related to hyperprolactinemia (cycle disorders, premenstrual syndrome). A VACF extract has recently been shown to exhibit antitumor activities in different human cancer cell lines. In the present study, we explored the antiproliferative effects of a VACF extract with a particular focus on apoptosis-inducing and potential cytotoxic effects. Three different human prostate epithelial cell lines (BPH-1, LNCaP, PC-3) representing different disease stages and androgen responsiveness were chosen. The action of VACF on cell viability was assessed using the WST-8-tetrazolium assay. Cell proliferation in cells receiving VACF alone or in combination with a pan-caspase inhibitor (Z-VAD-fmk) was quantified using a Crystal Violet assay. Flow cytometric cell cycle analysis and measurement of DNA fragmentation using an ELISA method were used for studying the induction of apoptosis. Lactate dehydrogenase (LDH) activity was determined as a marker of cytotoxicity. The extract inhibited proliferation of all three cell lines in a concentration-dependent manner with IC (50) values below 10 microg/mL after treatment for 48 h. Cell cycle analysis and DNA fragmentation assays suggest that part of the cells were undergoing apoptosis. The VACF-induced decrease in cell number was partially inhibited by Z-VAD-fmk, indicating a caspase-dependent apoptotic cell death. However, the concentration-dependent LDH activity of VACF treated cells indicated cytotoxic effects as well. These data suggest that VACF contains components that inhibit proliferation and induce apoptosis in human prostate epithelial cell lines. The extract may be useful for the prevention and/or treatment not only of benign prostatic hyperplasia but also of human prostate cancer.

  7. Dissecting the expression of EEF1A1/2 genes in human prostate cancer cells: the potential of EEF1A2 as a hallmark for prostate transformation and progression.

    Science.gov (United States)

    Scaggiante, B; Dapas, B; Bonin, S; Grassi, M; Zennaro, C; Farra, R; Cristiano, L; Siracusano, S; Zanconati, F; Giansante, C; Grassi, G

    2012-01-03

    In prostate adenocarcinoma, the dissection of the expression behaviour of the eukaryotic elongation factors (eEF1A1/2) has not yet fully elucidated. The EEF1A1/A2 expressions were investigated by real-time PCR, western blotting (cytoplasmic and cytoskeletal/nuclear-enriched fractions) and immunofluorescence in the androgen-responsive LNCaP and the non-responsive DU-145 and PC-3 cells, displaying a low, moderate and high aggressive phenotype, respectively. Targeted experiments were also conducted in the androgen-responsive 22Rv1, a cell line marking the progression towards androgen-refractory tumour. The non-tumourigenic prostate PZHPV-7 cell line was the control. Compared with PZHPV-7, cancer cells showed no major variations in EEF1A1 mRNA; eEF1A1 protein increased only in cytoskeletal/nuclear fraction. On the contrary, a significant rise of EEF1A2 mRNA and protein were found, with the highest levels detected in LNCaP. Eukaryotic elongation factor 1A2 immunostaining confirmed the western blotting results. Pilot evaluation in archive prostate tissues showed the presence of EEF1A2 mRNA in near all neoplastic and perineoplastic but not in normal samples or in benign adenoma; in contrast, EEF1A1 mRNA was everywhere detectable. Eukaryotic elongation factor 1A2 switch-on, observed in cultured tumour prostate cells and in human prostate tumour samples, may represent a feature of prostate cancer; in contrast, a minor involvement is assigned to EEF1A1. These observations suggest to consider EEF1A2 as a marker for prostate cell transformation and/or possibly as a hallmark of cancer progression.

  8. Influence of polyphenol extract from evening primrose (Oenothera paradoxa seeds on human prostate and breast cancer cell lines

    Directory of Open Access Journals (Sweden)

    Urszula Lewandowska

    2014-02-01

    Full Text Available There is growing interest in plant polyphenols which exhibit pleiotropic biological activities, including anti-inflammatory, antioxidant, and anticancer effects. The objective of our study was to evaluate the influence of an evening primrose extract (EPE from defatted seeds on viability and invasiveness of three human cell lines: PNT1A (normal prostate cells, DU145 (prostate cancer cells and MDA-MB-231 (breast cancer cells. The results revealed that after 72 h of incubation the tested extract reduced the viability of DU 145 and MDA-MB-231 with IC50 equal to 14.5 μg/mL for both cell lines. In contrast, EPE did not inhibit the viability of normal prostate cells. Furthermore, EPE reduced PNT1A and MDA-MB-231 cell invasiveness; at the concentration of 21.75 μg/mL the suppression of invasion reached 92% and 47%, respectively (versus control. Additionally, zymographic analysis revealed that after 48 h of incubation EPE inhibited metalloproteinase-2 (MMP-2 and metalloproteinase-9 (MMP-9 activities in a dose-dependent manner. For PNT1A the activities of MMP-2 and MMP-9 decreased 4- and 2-fold, respectively, at EPE concentration of 29 μg/mL. In the case of MDA-MB-231 and DU 145 the decrease in MMP-9 activity at EPE concentration of 29 μg/mL was 5.5-fold and almost 1.9-fold, respectively. In conclusion, this study suggests that EPE may exhibit antimigratory, anti-invasive and antimetastatic potential towards prostate and breast cancer cell lines.

  9. Influence of polyphenol extract from evening primrose (Oenothera paradoxa) seeds on human prostate and breast cancer cell lines.

    Science.gov (United States)

    Lewandowska, Urszula; Owczarek, Katarzyna; Szewczyk, Karolina; Podsędek, Anna; Koziołkiewicz, Maria; Hrabec, Elżbieta

    2014-02-03

    There is growing interest in plant polyphenols which exhibit pleiotropic biological activities, including anti-inflammatory, antioxidant, and anticancer effects. The objective of our study was to evaluate the influence of an evening primrose extract (EPE) from defatted seeds on viability and invasiveness of three human cell lines: PNT1A (normal prostate cells), DU145 (prostate cancer cells) and MDA-MB-231 (breast cancer cells). The results revealed that after 72 h of incubation the tested extract reduced the viability of DU 145 and MDA-MB-231 with IC50 equal to 14.5 μg/mL for both cell lines. In contrast, EPE did not inhibit the viability of normal prostate cells. Furthermore, EPE reduced PNT1A and MDA-MB-231 cell invasiveness; at the concentration of 21.75 μg/mL the suppression of invasion reached 92% and 47%, respectively (versus control). Additionally, zymographic analysis revealed that after 48 h of incubation EPE inhibited metalloproteinase-2 (MMP-2) and metalloproteinase-9 (MMP-9) activities in a dose-dependent manner. For PNT1A the activities of MMP-2 and MMP-9 decreased 4- and 2-fold, respectively, at EPE concentration of 29 μg/mL. In the case of MDA-MB-231 and DU 145 the decrease in MMP-9 activity at EPE concentration of 29 μg/mL was 5.5-fold and almost 1.9-fold, respectively. In conclusion, this study suggests that EPE may exhibit antimigratory, anti-invasive and antimetastatic potential towards prostate and breast cancer cell lines.

  10. Advanced research on separating prostate cancer stem cells

    International Nuclear Information System (INIS)

    Hao Yumei; He Xin; Song Naling

    2013-01-01

    Prostate cancer is a common malignant tumor in male urinary system,and may easily develop into the hormone refractory prostate cancer which can hardly be cured. Recent studies had found that the prostate cancer stem cells may be the source of the prostate cancer's occurrence,development, metastasis and recurrence. The therapy targeting the prostate cancer stem cells may be the effective way to cure prostate cancer. But these cells is too low to be detected. The difficulty lies in the low separation efficiency of prostate cancer stem cell, so the effectively separating prostate cancer stem cells occupied the main position for the more in-depth research of prostate cancer stem cells. This paper reviews the research progress and existing problems on the several main separating methods of prostate cancer stem cells, includes the fluorescence activated cells sorting and magnetic activated cells sorting based on prostate cancer stem cell surface markers, the side-population sorting and serum-free medium sphere forming sorting based on prostate cancer stem cell's biology. (authors)

  11. Influence of free fatty acids on glucose uptake in prostate cancer cells

    DEFF Research Database (Denmark)

    Andersen, Kim Francis; Divilov, Vadim; Sevak, Kuntalkumar

    2014-01-01

    The study focuses on the interaction between glucose and free fatty acids (FFA) in malignant human prostate cancer cell lines by an in vitro observation of uptake of fluoro-2-deoxy-d-glucose (FDG) and acetate.......The study focuses on the interaction between glucose and free fatty acids (FFA) in malignant human prostate cancer cell lines by an in vitro observation of uptake of fluoro-2-deoxy-d-glucose (FDG) and acetate....

  12. d -Limonene sensitizes docetaxel-induced cytotoxicity in human prostate cancer cells: Generation of reactive oxygen species and induction of apoptosis

    Directory of Open Access Journals (Sweden)

    Rabi Thangaiyan

    2009-01-01

    Full Text Available Background: Clinical trials have shown that docetaxel combined with other novel agents can improve the survival of androgen-independent prostate cancer patients. d -Limonene, a non-nutrient dietary component, has been found to inhibit various cancer cell growths without toxicity. We sought to characterize whether a non-toxic dose of d -limonene may enhance tumor response to docetaxel in an in vitro model of metastatic prostate cancer. Materials and Methods: Human prostate carcinoma DU-145 and normal prostate epithelial PZ-HPV-7 cells were treated with various concentrations of d -limonene, docetaxel or a combination of both, and cell viability was determined by MTT assay. Intracellular reactive oxygen species (ROS, reduced glutathione (GSH and caspase activity were measured. Apoptosis and apoptosis-related proteins were studied by enzyme-linked immunosorbent assay and Western blotting, respectively. Results: d -Limonene and docetaxel in combination significantly enhanced the cytotoxicity to DU-145 cells than PZ-HPV-7 cells. Exposure of DU-145 cells to a combined d -limonene and docetaxel resulted in higher ROS generation, depletion of GSH, accompanied by increased caspase activity than docetaxel alone. It also triggered a series of effects involving cytochrome c , cleavages of caspase-9, 3 and poly (ADP-ribose polymerase, and a shift in Bad:Bcl-xL ratio in favor of apoptosis. Apoptotic effect was significantly blocked on pretreatment with N -acetylcystein, indicating that antitumor effect is initiated by ROS generation, and caspase cascades contribute to the cell death. Conclusion: Our results show, for the first time, that d -limonene enhanced the antitumor effect of docetaxel against prostate cancer cells without being toxic to normal prostate epithelial cells. The combined beneficial effect could be through the modulation of proteins involved in mitochondrial pathway of apoptosis. d -Limonene could be used as a potent non-toxic agent to

  13. C-C motif ligand 5 promotes migration of prostate cancer cells in the prostate cancer bone metastasis microenvironment.

    Science.gov (United States)

    Urata, Satoko; Izumi, Kouji; Hiratsuka, Kaoru; Maolake, Aerken; Natsagdorj, Ariunbold; Shigehara, Kazuyoshi; Iwamoto, Hiroaki; Kadomoto, Suguru; Makino, Tomoyuki; Naito, Renato; Kadono, Yoshifumi; Lin, Wen-Jye; Wufuer, Guzailinuer; Narimoto, Kazutaka; Mizokami, Atsushi

    2018-03-01

    Chemokines and their receptors have key roles in cancer progression. The present study investigated chemokine activity in the prostate cancer bone metastasis microenvironment. Growth and migration of human prostate cancer cells were assayed in cocultures with bone stromal cells. The migration of LNCaP cells significantly increased when co-cultured with bone stromal cells isolated from prostate cancer bone metastases. Cytokine array analysis of conditioned medium from bone stromal cell cultures identified CCL5 as a concentration-dependent promoter of LNCaP cell migration. The migration of LNCaP cells was suppressed when C-C motif ligand 5 (CCL5) neutralizing antibody was added to cocultures with bone stromal cells. Knockdown of androgen receptor with small interfering RNA increased the migration of LNCaP cells compared with control cells, and CCL5 did not promote the migration of androgen receptor knockdown LNCaP. Elevated CCL5 secretion in bone stromal cells from metastatic lesions induced prostate cancer cell migration by a mechanism consistent with CCL5 activity upstream of androgen receptor signaling. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  14. 3-Bromopyruvate induces rapid human prostate cancer cell death by affecting cell energy metabolism, GSH pool and the glyoxalase system.

    Science.gov (United States)

    Valenti, Daniela; Vacca, Rosa A; de Bari, Lidia

    2015-12-01

    3-bromopyruvate (3-BP) is an anti-tumour drug effective on hepatocellular carcinoma and other tumour cell types, which affects both glycolytic and mitochondrial targets, depleting cellular ATP pool. Here we tested 3-BP on human prostate cancer cells showing, differently from other tumour types, efficient ATP production and functional mitochondrial metabolism. We found that 3-BP rapidly induced cultured androgen-insensitive (PC-3) and androgen-responsive (LNCaP) prostate cancer cell death at low concentrations (IC(50) values of 50 and 70 μM, respectively) with a multimodal mechanism of action. In particular, 3-BP-treated PC-3 cells showed a selective, strong reduction of glyceraldeide 3-phosphate dehydrogenase activity, due to the direct interaction of the drug with the enzyme. Moreover, 3-BP strongly impaired both glutamate/malate- and succinate-dependent mitochondrial respiration, membrane potential generation and ATP synthesis, concomitant with the inhibition of respiratory chain complex I, II and ATP synthase activities. The drastic reduction of cellular ATP levels and depletion of GSH pool, associated with significant increase in cell oxidative stress, were found after 3-BP treatment of PC-3 cells. Interestingly, the activity of both glyoxalase I and II, devoted to the elimination of the cytotoxic methylglyoxal, was strongly inhibited by 3-BP. Both N-acetylcysteine and aminoguanidine, GSH precursor and methylglyoxal scavenger, respectively, prevented 3-BP-induced PC-3 cell death, showing that impaired cell antioxidant and detoxifying capacities are crucial events leading to cell death. The provided information on the multi-target cytotoxic action of 3-BP, finally leading to PC-3 cell necrosis, might be useful for future development of 3-BP as a therapeutic option for prostate cancer treatment.

  15. Artemisinin disrupts androgen responsiveness of human prostate cancer cells by stimulating the 26S proteasome-mediated degradation of the androgen receptor protein.

    Science.gov (United States)

    Steely, Andrea M; Willoughby, Jamin A; Sundar, Shyam N; Aivaliotis, Vasiliki I; Firestone, Gary L

    2017-10-01

    Androgen receptor (AR) expression and activity is highly linked to the development and progression of prostate cancer and is a target of therapeutic strategies for this disease. We investigated whether the antimalarial drug artemisinin, which is a sesquiterpene lactone isolated from the sweet wormwood plant Artemisia annua, could alter AR expression and responsiveness in cultured human prostate cancer cell lines. Artemisinin treatment induced the 26S proteasome-mediated degradation of the receptor protein, without altering AR transcript levels, in androgen-responsive LNCaP prostate cancer cells or PC-3 prostate cancer cells expressing exogenous wild-type AR. Furthermore, artemisinin stimulated AR ubiquitination and AR receptor interactions with the E3 ubiquitin ligase MDM2 in LNCaP cells. The artemisinin-induced loss of AR protein prevented androgen-responsive cell proliferation and ablated total AR transcriptional activity. The serine/threonine protein kinase AKT-1 was shown to be highly associated with artemisinin-induced proteasome-mediated degradation of AR protein. Artemisinin treatment activated AKT-1 enzymatic activity, enhanced receptor association with AKT-1, and induced AR serine phosphorylation. Treatment of LNCaP cells with the PI3-kinase inhibitor LY294002, which inhibits the PI3-kinase-dependent activation of AKT-1, prevented the artemisinin-induced AR degradation. Furthermore, in transfected receptor-negative PC-3 cells, artemisinin failed to stimulate the degradation of an altered receptor protein (S215A/S792A) with mutations in its two consensus AKT-1 serine phosphorylation sites. Taken together, our results indicate that artemisinin induces the degradation of AR protein and disrupts androgen responsiveness of human prostate cancer cells, suggesting that this natural compound represents a new potential therapeutic molecule that selectively targets AR levels.

  16. Progesterone receptor expression during prostate cancer progression suggests a role of this receptor in stromal cell differentiation.

    Science.gov (United States)

    Yu, Yue; Yang, Ou; Fazli, Ladan; Rennie, Paul S; Gleave, Martin E; Dong, Xuesen

    2015-07-01

    The progesterone receptor, like the androgen receptor, belongs to the steroid receptor superfamily. Our previous studies have reported that the PR is expressed specifically in prostate stroma. PR inhibits proliferation of, and regulates cytokine secretion by stromal cells. However, PR protein expression in cancer-associated stroma during prostate cancer progression has not been profiled. Since the phenotypes of prostate stromal cells change dynamically as tumors progress, whether the PR plays a role in regulating stromal cell differentiation needs to be investigated. Immunohistochemistry assays measured PR protein levels on human prostate tissue microarrays containing 367 tissue cores from benign prostate, prostate tumors with different Gleason scores, tumors under various durations of castration therapy, and tumors at the castration-resistant stage. Immunoblotting assays determined whether PR regulated the expression of alpha smooth muscle actin (α-SMA), vimentin, and fibroblast specific protein (FSP) in human prostate stromal cells. PR protein levels decreased in cancer-associated stroma when compared with that in benign prostate stroma. This reduction in PR expression was not correlated with Gleason scores. PR protein levels were elevated by castration therapy, but reduced to pre-castration levels when tumors progressed to the castration-resistant stage. Enhanced PR expression in human prostate stromal cells increased α-SMA, but decreased vimentin and FSP protein levels ligand-independently. These results suggest that PR plays an active role in regulating stromal cell phenotypes during prostate cancer progression. © 2015 Wiley Periodicals, Inc.

  17. A proteome study of secreted prostatic factors affecting osteoblastic activity: galectin-1 is involved in differentiation of human bone marrow stromal cells

    DEFF Research Database (Denmark)

    Andersen, H; Jensen, Ole N; Moiseeva, Elena P

    2003-01-01

    Prostate cancer cells metastasize to bone causing a predominantly osteosclerotic response. It has been shown that cells from the human prostate cancer cell line PC3 secrete factors that influence the behavior of osteoblast-like cells. Some of these factors with mitogenic activity have been found...... to be proteins with molecular weights between 20 and 30 kDa, but the identity of the osteoblastic mitogenic factor or factors produced by prostate cancer cells is still unknown. Therefore, the aim of this study was to characterize the protein profile of conditioned medium (CM) from PC3 cells in the molecular......BMS) cells. Furthermore, we tested whether adhesion of PC3 cells to plastic, laminin, fibronectin, and collagen type I was influenced by lactose, which inhibits galectin-1. Galectin-1 (1000 ng/ml) inhibited the proliferation of hBMS cells up to 70 +/- 12% (treated/control) of control in contrast to PC3 CM...

  18. Senescence-Induced Alterations of Laminin Chain Expression Modulate Tumorigenicity of Prostate Cancer Cells1

    Science.gov (United States)

    Sprenger, Cynthia C T; Drivdahl, Rolf H; Woodke, Lillie B; Eyman, Daniel; Reed, May J; Carter, William G; Plymate, Stephen R

    2008-01-01

    Prostate cancer is an age-associated epithelial cancer, and as such, it contributes significantly to the mortality of the elderly. Senescence is one possible mechanism by which the body defends itself against various epithelial cancers. Senescent cells alter the microenvironment, in part, through changes to the extracellular matrix. Laminins (LMs) are extracellular proteins important to both the structure and function of the microenvironment. Overexpression of the senescence-associated gene mac25 in human prostate cancer cells resulted in increased mRNA levels of the LM α4 and β2 chains compared to empty vector control cells. The purpose of this study was to examine the effects of these senescence-induced LM chains on tumorigenicity of prostate cancer cells. We created stable M12 human prostate cancer lines overexpressing either the LM α4 or β2 chain or both chains. Increased expression of either the LM α4 or β2 chain resulted in increased in vitro migration and in vivo tumorigenicity of those cells, whereas high expression of both chains led to decreased in vitro proliferation and in vivo tumorigenicity compared to M12 control cells. This study demonstrates that senescent prostate epithelial cells can alter the microenvironment and that these changes modulate progression of prostate cancer. PMID:19048114

  19. Testing the variability of PSA expression by different human prostate cancer cell lines by means of a new potentiometric device employing molecularly antibody assembled on graphene surface

    International Nuclear Information System (INIS)

    Rebelo, Tânia S.C.R.; Noronha, João P.; Galésio, Marco; Santos, Hugo; Diniz, Mário; Sales, M. Goreti F.; Fernandes, Maria H.; Costa-Rodrigues, João

    2016-01-01

    Prostate Specific Antigen (PSA) is widely used as a biomarker for prostate cancer. Recently, an electrochemical biosensor for PSA detection by means of molecularly imprinted polymers (MIPs) was developed. This work evaluated the performance and the effectiveness of that PSA biosensor in screening the biomarker PSA in biological media with complex composition, collected from different human prostate cell line cultures. For that, the prostate cancer LNCaP and PC3 cells, and the non-cancerous prostate cell line PNT2 were cultured for 2, 7 and 14 days in either α-MEM or RPMI in the presence of 10% or 30% fetal bovine serum. Human gingival fibroblasts were used as a non-cancerous non-prostatic control. The different culture conditions modulated cellular proliferation and the expression of several prostate markers, including PSA. The electrochemical biosensor was able to specifically detect PSA in the culture media and values obtained were similar to those achieved by a commercial Enzyme-Linked Immunosorbent Assay (ELISA) kit, the most commonly used method for PSA quantification in prostate cancer diagnosis. Thus, the tested biosensor may represent a useful alternative as a diagnostic tool for PSA determination in biological samples. - Highlights: • PSA quantification was performed in prostate cancer cell culture media. • Culture media composition and culture period significantly affect PSA production. • The PSA biosensor detected a wide range of PSA levels in complex media. • A high data correlation was observed between the biosensor and the ELISA analysis.

  20. Testing the variability of PSA expression by different human prostate cancer cell lines by means of a new potentiometric device employing molecularly antibody assembled on graphene surface

    Energy Technology Data Exchange (ETDEWEB)

    Rebelo, Tânia S.C.R. [BioMark-CINTESIS/ISEP, Instituto Superior de Engenharia do Instituto Politécnico do Porto (Portugal); LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica (Portugal); Laboratory for Bone Metabolism and Regeneration, Faculdade de Medicina Dentária, Universidade do Porto, Porto (Portugal); Noronha, João P.; Galésio, Marco; Santos, Hugo; Diniz, Mário [LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica (Portugal); Sales, M. Goreti F. [BioMark-CINTESIS/ISEP, Instituto Superior de Engenharia do Instituto Politécnico do Porto (Portugal); Fernandes, Maria H. [Laboratory for Bone Metabolism and Regeneration, Faculdade de Medicina Dentária, Universidade do Porto, Porto (Portugal); Costa-Rodrigues, João, E-mail: jrodrigues@fmd.up.pt [Laboratory for Bone Metabolism and Regeneration, Faculdade de Medicina Dentária, Universidade do Porto, Porto (Portugal); ESTSP — Escola Superior de Tecnologia da Saúde do Porto, Instituto Politécnico do Porto (Portugal)

    2016-02-01

    Prostate Specific Antigen (PSA) is widely used as a biomarker for prostate cancer. Recently, an electrochemical biosensor for PSA detection by means of molecularly imprinted polymers (MIPs) was developed. This work evaluated the performance and the effectiveness of that PSA biosensor in screening the biomarker PSA in biological media with complex composition, collected from different human prostate cell line cultures. For that, the prostate cancer LNCaP and PC3 cells, and the non-cancerous prostate cell line PNT2 were cultured for 2, 7 and 14 days in either α-MEM or RPMI in the presence of 10% or 30% fetal bovine serum. Human gingival fibroblasts were used as a non-cancerous non-prostatic control. The different culture conditions modulated cellular proliferation and the expression of several prostate markers, including PSA. The electrochemical biosensor was able to specifically detect PSA in the culture media and values obtained were similar to those achieved by a commercial Enzyme-Linked Immunosorbent Assay (ELISA) kit, the most commonly used method for PSA quantification in prostate cancer diagnosis. Thus, the tested biosensor may represent a useful alternative as a diagnostic tool for PSA determination in biological samples. - Highlights: • PSA quantification was performed in prostate cancer cell culture media. • Culture media composition and culture period significantly affect PSA production. • The PSA biosensor detected a wide range of PSA levels in complex media. • A high data correlation was observed between the biosensor and the ELISA analysis.

  1. Proliferation of Prostate Stromal Cell Induced by Benign Prostatic Hyperplasia Epithelial Cell Stimulated With Trichomonas vaginalis via Crosstalk With Mast Cell.

    Science.gov (United States)

    Kim, Jung-Hyun; Kim, Sang-Su; Han, Ik-Hwan; Sim, Seobo; Ahn, Myoung-Hee; Ryu, Jae-Sook

    2016-11-01

    Chronic inflammation has a role in the pathogenesis of benign prostatic hyperplasia (BPH) and prostate cancer. Mast cells have been detected in chronic inflammatory infiltrate of the prostate, and it is possible that the interaction between prostate epithelial cells and Trichomonas vaginalis influences the activity of mast cells in the prostate stroma. Activated mast cells might influence the biological functions of nearby tissues and cells. In this study, we investigated whether mast cells reacted with the culture supernatant of BPH epithelial cells infected with T. vaginalis may induce the proliferation of prostate stromal cells. To measure the proliferation of prostate stromal cells in response to chronic inflammation caused by the infection of BPH-1 cells with T. vaginalis, the CCK-8 assay and wound healing assay were used. ELISAs, quantitative real-time PCR, western blotting and immunofluorescence were used to measure the production and expression of inflammatory cytokine and cytokine receptor. BPH-1 cells incubated with live trichomonads produced increased levels of CCL2, IL-1β, IL-6, and CXCL8, and induced the migration of mast cells and monocytes. When the culture supernatant of BPH-1 cells stimulated with trichomonads (TCM) was added to mast cells, they became activated, as confirmed by release of β-hexosaminidase and CXCL8. Prostate stromal cells incubated with the culture supernatant of mast cells activated with TCM (M-TCM) proliferated and expressed increased levels of CXCL8, CCL2, and the cytokine receptors CXCR1 and CCR2. Blocking the chemokine receptors reduced the proliferation of stromal cells and also decreased the production of CXCL8 and CCL2. Moreover, the expression of FGF2, cyclin D1, and Bcl-2 was increased in the proliferated stromal cells stimulated with M-TCM. Additionally, the M-TCM-treated stromal cells were more invasive than control cells. The inflammatory mediators released by BPH epithelial cells in response to infection by

  2. Targeting Tumor Oct4 to Deplete Prostate Tumor and Metastasis Initiating Cells

    Science.gov (United States)

    2017-12-01

    is associated with androgen receptor (AR). We detected Oct4 protein expression in prostate cancer cells as well as in tumor tissue specimens...unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Identification of genes driving prostate carcinogenesis will lead to new cancer treatment. The human...a pseudogene of embryonic Oct4 (POU5F1). A recent study found that tumor Oct4 found in prostate cancer cells is due to the gene expression of POU5F1B

  3. Isolation and genome-wide expression and methylation characterization of CD31+ cells from normal and malignant human prostate tissue

    Science.gov (United States)

    Luo, Wei; Hu, Qiang; Wang, Dan; Deeb, Kristin K.; Ma, Yingyu; Morrison, Carl D.; Liu, Song; Johnson, Candace S.; Trump, Donald L.

    2013-01-01

    Endothelial cells (ECs) are an important component involved in the angiogenesis. Little is known about the global gene expression and epigenetic regulation in tumor endothelial cells. The identification of gene expression and epigenetic difference between human prostate tumor-derived endothelial cells (TdECs) and those in normal tissues may uncover unique biological features of TdEC and facilitate the discovery of new anti-angiogenic targets. We established a method for isolation of CD31+ endothelial cells from malignant and normal prostate tissues obtained at prostatectomy. TdECs and normal-derived ECs (NdECs) showed >90% enrichment in primary culture and demonstrated microvascular endothelial cell characteristics such as cobblestone morphology in monolayer culture, diI-acetyl-LDL uptake and capillary-tube like formation in Matrigel®. In vitro primary cultures of ECs maintained expression of endothelial markers such as CD31, von Willebrand factor, intercellular adhesion molecule, vascular endothelial growth factor receptor 1, and vascular endothelial growth factor receptor 2. We then conducted a pilot study of transcriptome and methylome analysis of TdECs and matched NdECs from patients with prostate cancer. We observed a wide spectrum of differences in gene expression and methylation patterns in endothelial cells, between malignant and normal prostate tissues. Array-based expression and methylation data were validated by qRT-PCR and bisulfite DNA pyrosequencing. Further analysis of transcriptome and methylome data revealed a number of differentially expressed genes with loci whose methylation change is accompanied by an inverse change in gene expression. Our study demonstrates the feasibility of isolation of ECs from histologically normal prostate and prostate cancer via CD31+ selection. The data, although preliminary, indicates that there exist widespread differences in methylation and transcription between TdECs and NdECs. Interestingly, only a small

  4. Endocrine Disruption and Human Prostate Cancer

    National Research Council Canada - National Science Library

    Risbridger, Gail

    2008-01-01

    .... In order to test the concept that Vinclozolin alters human prostate development and induces disease, we used our model system to study human prostate development and maturation over 8-12 weeks...

  5. The in vitro and in vivo anti-cancer activities of a standardized quassinoids composition from Eurycoma longifolia on LNCaP human prostate cancer cells.

    Directory of Open Access Journals (Sweden)

    Kind Leng Tong

    Full Text Available Quassinoids are a group of diterpenoids found in plants from the Simaroubaceae family. They are also the major bioactive compounds found in Eurycoma longifolia which is commonly used as traditional medicine in South East Asia to treat various ailments including sexual dysfunction and infertility. These uses are attributed to its ability to improve testosterone level in men. Chronic consumption of E. longifolia extracts has been reported to increase testosterone level in men and animal model but its effect on prostate growth remains unknown. Therefore, the present study investigates the effects of a standardized total quassinoids composition (SQ40 containing 40% of the total quassinoids found in E. longifolia on LNCaP human prostate cancer cell line. SQ40 inhibited LNCaP cell growth at IC50 value of 5.97 μg/mL while the IC50 on RWPE-1 human prostate normal cells was 59.26 μg/mL. SQ40 also inhibited 5α-dihydrotestosterone-stimulated growth in LNCaP cells dose-dependently. The inhibitory effect of SQ40 in anchorage-independent growth of LNCaP cells was also demonstrated using soft agar assay. SQ40 suppressed LNCaP cell growth via G0/G1 phase arrest which was accompanied by the down-regulation of CDK4, CDK2, Cyclin D1 and Cyclin D3 and up-regulation of p21Waf1/Cip1 protein levels. SQ40 at higher concentrations or longer treatment duration can cause G2M growth arrest leading to apoptotic cell death as demonstrated by the detection of poly(ADP-ribose polymerase cleavage in LNCaP cells. Moreover, SQ40 also inhibited androgen receptor translocation to nucleus which is important for the transactivation of its target gene, prostate-specific antigen (PSA and resulted in a significant reduction of PSA secretion after the treatment. In addition, intraperitoneal injection of 5 and 10 mg/kg of SQ40 also significantly suppressed the LNCaP tumor growth on mouse xenograft model. Results from the present study suggest that the standardized total quassinoids

  6. Comparative analysis of metastasis variants derived from human prostate carcinoma cells: roles in intravasation of VEGF-mediated angiogenesis and uPA-mediated invasion

    DEFF Research Database (Denmark)

    Conn, Erin M; Bøtkjær, Kenneth Alrø; Kupriyanova, Tatyana A

    2009-01-01

    To analyze the process of tumor cell intravasation, we used the human tumor-chick embryo spontaneous metastasis model to select in vivo high (PC-hi/diss) and low (PC-lo/diss) disseminating variants from the human PC-3 prostate carcinoma cell line. These variants dramatically differed in their int...

  7. Altered CXCR3 isoform expression regulates prostate cancer cell migration and invasion

    Directory of Open Access Journals (Sweden)

    Wu Qian

    2012-01-01

    Full Text Available Abstract Background Carcinoma cells must circumvent the normally suppressive signals to disseminate. While often considered 'stop' signals for adherent cells, CXCR3-binding chemokines have recently been correlated positively with cancer progression though the molecular basis remains unclear. Results Here, we examined the expression and function of two CXCR3 variants in human prostate cancer biopsies and cell lines. Globally, both CXCR3 mRNA and protein were elevated in localized and metastatic human cancer biopsies compared to normal. Additionally, CXCR3A mRNA level was upregulated while CXCR3B mRNA was downregulated in these prostate cancer specimens. In contrast to normal prostate epithelial cells (RWPE-1, CXCR3A was up to half the receptor in the invasive and metastatic DU-145 and PC-3 prostate cancer cells, but not in the localized LNCaP cells. Instead of inhibiting cell migration as in RWPE-1 cells, the CXCR3 ligands CXCL4/PF4 and CXCL10/IP10 promoted cell motility and invasiveness in both DU-145 and PC-3 cells via PLCβ3 and μ-calpain activation. CXCR3-mediated diminution of cell motility in RWPE-1 cells is likely a result of cAMP upregulation and m-calpain inhibition via CXCR3B signal transduction. Interestingly, overexpression of CXCR3B in DU-145 cells decreased cell movement and invasion. Conclusion These data suggest that the aberrant expression of CXCR3A and down-regulation of CXCR3B may switch a progression "stop" to a "go" signal to promote prostate tumor metastasis via stimulating cell migration and invasion.

  8. Prostate Stem Cell Antigen: A Prospective Therapeutic and Diagnostic Target

    Science.gov (United States)

    Raff, Adam B.; Gray, Andrew; Kast, W. Martin

    2009-01-01

    The development of novel clinical tools to combat cancer is an intense field of research and recent efforts have been directed at the identification of proteins that may provide diagnostic, prognostic and/or therapeutic applications due to their restricted expression. To date, a number of protein candidates have emerged as potential clinical tools in the treatment of prostate cancer. Discovered over ten year ago, prostate stem cell antigen (PSCA) is a cell surface antigen that belongs to the Ly-6/Thy-1 family of glycosylphosphatidylinositol-anchored proteins. PSCA is highly overexpressed in human prostate cancer, with limited expression in normal tissues, making it an ideal target for both diagnosis and therapy. Several studies have now clearly correlated the expression of PSCA with relevant clinical benchmarks, such as Gleason score and metastasis, while others have demonstrated the efficacy of PSCA targeting in treatment through various modalities. The purpose of this review is to present the current body of knowledge about PSCA and its potential role in the treatment of human prostate cancer. PMID:18838214

  9. DHT and testosterone, but not DHEA or E2, differentially modulate IGF-I, IGFBP-2, and IGFBP-3 in human prostatic stromal cells.

    Science.gov (United States)

    Le, Hanh; Arnold, Julia T; McFann, Kimberly K; Blackman, Marc R

    2006-05-01

    Prostate cancer is one of the four most common cancers in the United States, affecting one of six men. Increased serum levels of androgens and IGF-I are associated with an augmented risk of prostate cancer. Dihydrotestosterone (DHT) and testosterone (T) stimulate prostate cancer cell growth, development, and function, whereas the effects of DHT and T in prostate stromal cells, and of dehydroepiandrosterone (DHEA) in prostate cancer or stromal cells, are uncertain. We investigated the actions of DHT, T, DHEA, and estradiol (E2) on insulin-like growth factor (IGF)-I, IGF-II, IGF-I receptor (R), IGF-binding protein (IGFBP)-2, IGFBP-3, and IGFBP-5 in primary cultures of human prostatic stromal cells by assessing cell proliferation, mRNA expression, and protein secretion by MTT growth assay, quantitative real-time PCR, and ELISA, respectively. DHT and T each increased IGF-I (7-fold) and decreased IGFBP-3 (2-fold) mRNA expression and protein secretion in a dose- and time-dependent manner and increased IGFBP-2 (2-fold) mRNA in a dose- and time-dependent manner. DHEA and E2 did not significantly alter these measures. Flutamide abolished the DHT-modulated increases in IGF-I and IGFBP-2, suggesting that the influences of DHT and T on these measures were androgen receptor mediated. None of the four steroids significantly affected IGF-IR, IGF-II, or IGFBP-5 mRNA levels or stromal cell proliferation. The effects of DHT on IGF-I, IGFBP-2, and IGFBP-3 were more pronounced in stromal cultures that did not express desmin. These data suggest that DHT and T promote prostate growth partly via modulation of the stromal cell IGF axis, with potential paracrine effects on prostate epithelial cells.

  10. Androgen-independent proliferation of LNCaP prostate cancer cells infected by xenotropic murine leukemia virus-related virus

    International Nuclear Information System (INIS)

    Kakoki, Katsura; Kamiyama, Haruka; Izumida, Mai; Yashima, Yuka; Hayashi, Hideki; Yamamoto, Naoki; Matsuyama, Toshifumi; Igawa, Tsukasa; Sakai, Hideki; Kubo, Yoshinao

    2014-01-01

    Highlights: • XMRV infection induces androgen-independent growth in LNCaP cells. • XMRV infection reduces expression of androgen receptor. • XMRV promotes appearance of androgen blocker-resistant prostate cancer cells. - Abstract: Xenotropic murine leukemia virus-related virus (XMRV) is a novel gammaretrovirus that was originally isolated from human prostate cancer. It is now believed that XMRV is not the etiologic agent of prostate cancer. An analysis of murine leukemia virus (MLV) infection in various human cell lines revealed that prostate cancer cell lines are preferentially infected by XMRV, and this suggested that XMRV infection may confer some sort of growth advantage to prostate cancer cell lines. To examine this hypothesis, androgen-dependent LNCaP cells were infected with XMRV and tested for changes in certain cell growth properties. We found that XMRV-infected LNCaP cells can proliferate in the absence of the androgen dihydrotestosterone. Moreover, androgen receptor expression is significantly reduced in XMRV-infected LNCaP cells. Such alterations were not observed in uninfected and amphotropic MLV-infected LNCaP cells. This finding explains why prostate cancer cell lines are preferentially infected with XMRV

  11. Epigenetic Regulation of Vitamin D 24-Hydroxylase/CYP24A1 in Human Prostate Cancer

    Science.gov (United States)

    Luo, Wei; Karpf, Adam R.; Deeb, Kristin K.; Muindi, Josephia R.; Morrison, Carl D.; Johnson, Candace S.; Trump, Donald L.

    2010-01-01

    Calcitriol, a regulator of calcium homeostasis with antitumor properties, is degraded by the product of the CYP24A1 gene which is downregulated in human prostate cancer by unknown mechanisms. We found that CYP24A1 expression is inversely correlated with promoter DNA methylation in prostate cancer cell lines. Treatment with the DNA methyltransferase inhibitor 5-aza-2′-deoxycytidine (DAC) activates CYP24A1 expression in prostate cancer cells. In vitro methylation of the CYP24A1 promoter represses its promoter activity. Furthermore, inhibition of histone deacetylases by trichostatin A (TSA) enhances the expression of CYP24A1 in prostate cancer cells. ChIP-qPCR reveals that specific histone modifications are associated with the CYP24A1 promoter region. Treatment with TSA increases H3K9ac and H3K4me2 and simultaneously decreases H3K9me2 at the CYP24A1 promoter. ChIP-qPCR assay reveals that treatment with DAC and TSA increases the recruitment of VDR to the CYP24A1 promoter. RT-PCR analysis of paired human prostate samples reveals that CYP24A1 expression is down-regulated in prostate malignant lesions compared to adjacent histologically benign lesions. Bisulfite pyrosequencing shows that CYP24A1 gene is hypermethylated in malignant lesions compared to matched benign lesions. Our findings indicate that repression of CYP24A1 gene expression in human prostate cancer cells is mediated in part by promoter DNA methylation and repressive histone modifications. PMID:20587525

  12. Arctigenin inhibits prostate tumor cell growth in vitro and in vivo

    OpenAIRE

    Piwen Wang; Walter Solorzano; Tanya Diaz; Clara E. Magyar; Susanne M. Henning; Jaydutt V. Vadgama

    2017-01-01

    The low bioavailability of most phytochemicals limits their translation to humans. We investigated whether arctigenin, a novel anti-inflammatory lignan from the seeds of Arctium lappa, has favorable bioavailability/potency against prostate cancer. The anticarcinogenic activity of arctigenin was investigated both in vitro using the androgen-sensitive LNCaP and LAPC-4 human prostate cancer cells and pre-malignant WPE1-NA22 cells, and in vivo using xenograft mouse models. Arctigenin at lower dos...

  13. Recurrent chimeric RNAs enriched in human prostate cancer identified by deep sequencing

    Science.gov (United States)

    Kannan, Kalpana; Wang, Liguo; Wang, Jianghua; Ittmann, Michael M.; Li, Wei; Yen, Laising

    2011-01-01

    Transcription-induced chimeric RNAs, possessing sequences from different genes, are expected to increase the proteomic diversity through chimeric proteins or altered regulation. Despite their importance, few studies have focused on chimeric RNAs especially regarding their presence/roles in human cancers. By deep sequencing the transcriptome of 20 human prostate cancer and 10 matched benign prostate tissues, we obtained 1.3 billion sequence reads, which led to the identification of 2,369 chimeric RNA candidates. Chimeric RNAs occurred in significantly higher frequency in cancer than in matched benign samples. Experimental investigation of a selected 46 set led to the confirmation of 32 chimeric RNAs, of which 27 were highly recurrent and previously undescribed in prostate cancer. Importantly, a subset of these chimeras was present in prostate cancer cell lines, but not detectable in primary human prostate epithelium cells, implying their associations with cancer. These chimeras contain discernable 5′ and 3′ splice sites at the RNA junction, indicating that their formation is mediated by splicing. Their presence is also largely independent of the expression of parental genes, suggesting that other factors are involved in their production and regulation. One chimera, TMEM79-SMG5, is highly differentially expressed in human cancer samples and therefore a potential biomarker. The prevalence of chimeric RNAs may allow the limited number of human genes to encode a substantially larger number of RNAs and proteins, forming an additional layer of cellular complexity. Together, our results suggest that chimeric RNAs are widespread, and increased chimeric RNA events could represent a unique class of molecular alteration in cancer. PMID:21571633

  14. Estrogen receptors in the human male prostatic urethra and prostate in prostatic cancer and benign prostatic hyperplasia

    DEFF Research Database (Denmark)

    Bødker, A; Bruun, J; Balslev, E

    1999-01-01

    Estrogen receptors (ERs) in the prostate and prostatic urethra were examined in 33 men with benign prostatic hyperplasia (BPH) and in 11 with prostate cancer (PC). The Abbot monoclonal ER-ICA assay was used for immunohistochemical investigation. In the BPH group, ERs were revealed in the prostatic...... stroma in eight cases and in the glandular epithelium in one. In four cases ERs were seen in the prostatic stroma and in the glandular epithelium. In the prostatic urethra, ERs were found in 19 cases located in the urothelium, lamina propria and/or periurethral glands. In the PC group, ERs were...... demonstrated in the prostatic stroma and/or prostatic urethra in 6 out of 11 cases. In both BPH and PC patients, immunoreactivity was weak and confined to few cells, indicating low ER content in the prostate as well as in the prostatic urethra. Dextran-coated charcoal (DCC) analysis was used for detection...

  15. Estrogen receptors in the human male prostatic urethra and prostate in prostatic cancer and benign prostatic hyperplasia

    DEFF Research Database (Denmark)

    Bødker, A; Bruun, J; Balslev, E

    1999-01-01

    Estrogen receptors (ERs) in the prostate and prostatic urethra were examined in 33 men with benign prostatic hyperplasia (BPH) and in 11 with prostate cancer (PC). The Abbot monoclonal ER-ICA assay was used for immunohistochemical investigation. In the BPH group, ERs were revealed in the prostatic...... demonstrated in the prostatic stroma and/or prostatic urethra in 6 out of 11 cases. In both BPH and PC patients, immunoreactivity was weak and confined to few cells, indicating low ER content in the prostate as well as in the prostatic urethra. Dextran-coated charcoal (DCC) analysis was used for detection...... and quanticization of cytosolic and nuclear ERs. In the BPH group, ERs were detected once in the prostate and prostatic urethra in the nuclear and cytosol, and additionally in the prostatic urethra in the cytosol fraction in three cases. In all cases, ER content was low, ranging from 10-15 fmol/mg protein. In the PC...

  16. Demonstration of intermediate cells during human prostate epithelial differentiation in situ and in vitro using triple-staining confocal scanning microscopy.

    Science.gov (United States)

    van Leenders, G; Dijkman, H; Hulsbergen-van de Kaa, C; Ruiter, D; Schalken, J

    2000-08-01

    In human prostate epithelium, morphologically basal and luminal cells can be discriminated. The basal cell layer that putatively contains progenitor cells of the secretory epithelium is characterized by the expression of keratins (K) 5 and 14. Luminal cells represent the secretory compartment of the epithelium and express K8 and 18. We developed a technique for the simultaneous analysis of K5, 14, and 18 to identify intermediate cell stages in the prostate epithelium and to study the dynamic aspects of its differentiation in vitro. Nonmalignant prostate tissue and primary epithelial cultures were immunohistochemically characterized using triple staining with antibodies for K5, K14, and K18. Antibodies for K18 and K5 were conjugated directly with fluorochromes Alexa 488 and 546. K14 was visualized indirectly with streptavidin-Cy5. Keratin expression was analyzed by confocal scanning microscopy. The occurrence of exocrine and neuroendocrine differentiation in culture was determined via antibodies to prostate-specific antigen (PSA), chromogranin A, and serotonin. We found that basal cells expressed either K5(++)/14(++)/18+ or K5(++)/18+. The majority of luminal cells expressed K18(++), but colocalization of K5+/18(++) were recognized. Epithelial monolayer cultures predominantly revealed the basal cell phenotype K5(++)/14(++)/18+, whereas intermediate subpopulations expressing K5+/14+/18(++) and K5+/18(++) were also identified. On confluence, differentiation was induced as multicellular gland-like buds, and extensions became evident on top of the monolayer. These structures were composed of K18(++)- and K5+/18(+)-positive cell clusters surrounded by phenotypically basal cells. Few multicellular structures and cells in the monolayer showed exocrine differentiation (PSA+), but expression of chromogranin A and serotonin was absent. We conclude that simultaneous evaluation of keratin expression is useful for analyzing epithelial differentiation in the prostate. During this

  17. Microbeam X-ray fluorescence mapping of Cu and Fe in human prostatic carcinoma cell lines using synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, K.M.J.; Leitao, R.G.; Oliveira-Barros, E.G.; Oliveira, M.A.; Canellas, C.G.L.; Anjos, M.J.; Nasciutti, L.E.; Lopes, R.T., E-mail: kjose@nuclear.ufrj.br, E-mail: marcelin@lin.ufrj.br, E-mail: ricardo@lin.ufrj.br, E-mail: roberta@lin.ufrj.br, E-mail: eligouveab@gmail.com, E-mail: maria_aparecida_ufrj@yahoo.com.br, E-mail: luiz.nasciutti@histo.ufrj.br, E-mail: roberta.leitao@uerj.br, E-mail: marcelin@uerj.br [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Laboratorio de Instrumentacao Nuclear; Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Instituto de Ciencias Biomedicas; Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil). Instituto de Fisica

    2017-11-01

    Cancer is a worldwide public health problem and prostate cancer continues to be one of the most common fatal cancers in men. Copper plays an important role in the aetiology and growth of tumours however, whether intratumoral copper is actually elevated in prostate cancer patients has not been established. Iron, an important trace element, plays a vital function in oxygen metabolism, oxygen uptake, and electron transport in mitochondria, energy metabolism, muscle function, and hematopoiesis. The X-ray microfluorescence technique (μXRF) is a rapid and non-destructive method of elemental analysis that provides useful elemental information about samples without causing damage or requiring extra sample preparations. This study investigated the behavior of cells in spheroids of human prostate cells, tumour cell line (DU145) and normal cell line (RWPE-1), after supplementation with zinc chloride by 24 hours using synchrotron X-ray microfluorescence (μSRXRF). The measurements were performed with a standard geometry of 45 deg of incidence, excited by a white beam using a pixel of 25 μm and a time of 300 ms/pixel at the XRF beamline at the Synchrotron Light National Laboratory (Campinas, Brazil). The results by SRμXRF showed non-uniform Cu and Fe distributions in all the spheroids analyzed. (author)

  18. Microbeam X-ray fluorescence mapping of Cu and Fe in human prostatic carcinoma cell lines using synchrotron radiation

    International Nuclear Information System (INIS)

    Rocha, K.M.J.; Leitao, R.G.; Oliveira-Barros, E.G.; Oliveira, M.A.; Canellas, C.G.L.; Anjos, M.J.; Nasciutti, L.E.; Lopes, R.T.; Universidade Federal do Rio de Janeiro; Universidade do Estado do Rio de Janeiro

    2017-01-01

    Cancer is a worldwide public health problem and prostate cancer continues to be one of the most common fatal cancers in men. Copper plays an important role in the aetiology and growth of tumours however, whether intratumoral copper is actually elevated in prostate cancer patients has not been established. Iron, an important trace element, plays a vital function in oxygen metabolism, oxygen uptake, and electron transport in mitochondria, energy metabolism, muscle function, and hematopoiesis. The X-ray microfluorescence technique (μXRF) is a rapid and non-destructive method of elemental analysis that provides useful elemental information about samples without causing damage or requiring extra sample preparations. This study investigated the behavior of cells in spheroids of human prostate cells, tumour cell line (DU145) and normal cell line (RWPE-1), after supplementation with zinc chloride by 24 hours using synchrotron X-ray microfluorescence (μSRXRF). The measurements were performed with a standard geometry of 45 deg of incidence, excited by a white beam using a pixel of 25 μm and a time of 300 ms/pixel at the XRF beamline at the Synchrotron Light National Laboratory (Campinas, Brazil). The results by SRμXRF showed non-uniform Cu and Fe distributions in all the spheroids analyzed. (author)

  19. Impact of Hypoxia on the Metastatic Potential of Human Prostate Cancer Cells

    International Nuclear Information System (INIS)

    Dai Yao; Bae, Kyungmi; Siemann, Dietmar W.

    2011-01-01

    Purpose: Intratumoral hypoxia is known to be associated with radioresistance and metastasis. The present study examined the effect of acute and chronic hypoxia on the metastatic potential of prostate cancer PC-3, DU145, and LNCaP cells. Methods and Materials: Cell proliferation and clonogenicity were tested by MTT assay and colony formation assay, respectively. 'Wound-healing' and Matrigel-based chamber assays were used to monitor cell motility and invasion. Hypoxia-inducible factor 1 alpha (HIF-1α) expression was tested by Western blot, and HIF-1-target gene expression was detected by real-time polymerase chain reaction. Secretion of matrix metalloproteinases (MMPs) was determined by gelatin zymography. Results: When PC-3 cells were exposed to 1% oxygen (hypoxia) for various periods of time, chronic hypoxia (≥24 h) decreased cell proliferation and induced cell death. In contrast, prostate cancer cells exposed to acute hypoxia (≤6 h) displayed increased motility, clonogenic survival, and invasive capacity. At the molecular level, both hypoxia and anoxia transiently stabilized HIF-1α. Exposure to hypoxia also induced the early expression of MMP-2, an invasiveness-related gene. Treatment with the HIF-1 inhibitor YC-1 attenuated the acute hypoxia-induced migration, invasion, and MMP-2 activity. Conclusions: The length of oxygen deprivation strongly affected the functional behavior of all three prostate cancer cell lines. Acute hypoxia in particular was found to promote a more aggressive metastatic phenotype.

  20. Antiproliferative effect on human prostate cancer cells by a stinging nettle root (Urtica dioica) extract.

    Science.gov (United States)

    Konrad, L; Müller, H H; Lenz, C; Laubinger, H; Aumüller, G; Lichius, J J

    2000-02-01

    In the present study the activity of a 20% methanolic extract of stinging nettle roots (Urtica dioica L., Urticaceae) on the proliferative activity of human prostatic epithelial (LNCaP) and stromal (hPCPs) cells was evaluated using a colorimetric assay. A concentration-dependent and significant (p nettle roots observed both in an in vivo model and in an in vitro system clearly indicates a biologically relevant effect of compounds present in the extract.

  1. Radioimmunoassay for a human prostate specific antigen

    International Nuclear Information System (INIS)

    Machida, T.; Miki, M.; Ohishi, Y.; Kido, A.; Morikawa, J.; Ogawa, Y.

    1983-01-01

    As a marker for prostatic cancer, a prostate-specific antigen was purified from human prostatic tissues. Double antibody radioimmunoassay utilizing immune reaction was developed on the basis of the purified prostatic antigen (PA). Measurement results have revealed that PA radioimmunoassay is much better than prostatic acid phosphatase (PAP) radioimmunoassay in the diagnosis of prostatic cancer

  2. Analysis of the genomic response of human prostate cancer cells to histone deacetylase inhibitors.

    Science.gov (United States)

    Kortenhorst, Madeleine S Q; Wissing, Michel D; Rodríguez, Ronald; Kachhap, Sushant K; Jans, Judith J M; Van der Groep, Petra; Verheul, Henk M W; Gupta, Anuj; Aiyetan, Paul O; van der Wall, Elsken; Carducci, Michael A; Van Diest, Paul J; Marchionni, Luigi

    2013-09-01

    Histone deacetylases (HDACs) have emerged as important targets for cancer treatment. HDAC-inhibitors (HDACis) are well tolerated in patients and have been approved for the treatment of patients with cutaneous T-cell lymphoma (CTCL). To improve the clinical benefit of HDACis in solid tumors, combination strategies with HDACis could be employed. In this study, we applied Analysis of Functional Annotation (AFA) to provide a comprehensive list of genes and pathways affected upon HDACi-treatment in prostate cancer cells. This approach provides an unbiased and objective approach to high throughput data mining. By performing AFA on gene expression data from prostate cancer cell lines DU-145 (an HDACi-sensitive cell line) and PC3 (a relatively HDACi-resistant cell line) treated with HDACis valproic acid or vorinostat, we identified biological processes that are affected by HDACis and are therefore potential treatment targets for combination therapy. Our analysis revealed that HDAC-inhibition resulted among others in upregulation of major histocompatibility complex (MHC) genes and deregulation of the mitotic spindle checkpoint by downregulation of genes involved in mitosis. These findings were confirmed by AFA on publicly available data sets from HDACi-treated prostate cancer cells. In total, we analyzed 375 microarrays with HDACi treated and non-treated (control) prostate cancer cells. All results from this extensive analysis are provided as an online research source (available at the journal's website and at http://luigimarchionni.org/HDACIs.html). By publishing this data, we aim to enhance our understanding of the cellular changes after HDAC-inhibition, and to identify novel potential combination strategies with HDACis for the treatment of prostate cancer patients.

  3. Cholesterol biosynthesis inhibitor RO 48-8071 suppresses growth of hormone-dependent and castration-resistant prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Liang Y

    2016-05-01

    Full Text Available Yayun Liang,1 Benford Mafuvadze,1 Johannes D Aebi,2 Salman M Hyder1 1Dalton Cardiovascular Research Center and Department of Biomedical Sciences, University of Missouri-Columbia, Columbia, MO, USA; 2Medicinal Chemistry, Roche Pharma Research and Early Development (pRED, Roche Innovation Center Basel, F Hoffmann-La Roche Ltd., Basel, Switzerland Abstract: Standard treatment for primary prostate cancer includes systemic exposure to chemotherapeutic drugs that target androgen receptor or antihormone therapy (chemical castration; however, drug-resistant cancer cells generally emerge during treatment, limiting the continued use of systemic chemotherapy. Patients are then treated with more toxic standard therapies. Therefore, there is an urgent need for novel and more effective treatments for prostate cancer. The cholesterol biosynthetic pathway is an attractive therapeutic target for treating endocrine-dependent cancers because cholesterol is an essential structural and functional component of cell membranes as well as the metabolic precursor of endogenous steroid hormones. In this study, we have examined the effects of RO 48-8071 (4'-[6-(allylmethylaminohexyloxy]-4-bromo-2'-fluorobenzophenone fumarate; Roche Pharmaceuticals internal reference: RO0488071 (RO, which is an inhibitor of 2, 3-oxidosqualene cyclase (a key enzyme in the cholesterol biosynthetic pathway, on prostate cancer cells. Exposure of both hormone-dependent and castration-resistant human prostate cancer cells to RO reduced prostate cancer cell viability and induced apoptosis in vitro. RO treatment reduced androgen receptor protein expression in hormone-dependent prostate cancer cells and increased estrogen receptor β (ERβ protein expression in both hormone-dependent and castration-resistant prostate cancer cell lines. Combining RO with an ERβ agonist increased its ability to reduce castration-resistant prostate cancer cell viability. In addition, RO effectively suppressed the

  4. Skip Regulates TGF-β1-Induced Extracellular Matrix Degrading Proteases Expression in Human PC-3 Prostate Cancer Cells

    Directory of Open Access Journals (Sweden)

    Victor Villar

    2013-01-01

    Full Text Available Purpose. To determine whether Ski-interacting protein (SKIP regulates TGF-β1-stimulated expression of urokinase-type plasminogen activator (uPA, matrix metalloproteinase-9 (MMP-9, and uPA Inhibitor (PAI-1 in the androgen-independent human prostate cancer cell model. Materials and Methods. PC-3 prostate cancer cell line was used. The role of SKIP was evaluated using synthetic small interference RNA (siRNA compounds. The expression of uPA, MMP-9, and PAI-1 was evaluated by zymography assays, RT-PCR, and promoter transactivation analysis. Results. In PC-3 cells TGF-β1 treatment stimulated uPA, PAI-1, and MMP-9 expressions. The knockdown of SKIP in PC-3 cells enhanced the basal level of uPA, and TGF-β1 treatment inhibited uPA production. Both PAI-1 and MMP-9 production levels were increased in response to TGF-β1. The ectopic expression of SKIP inhibited both TGF-β1-induced uPA and MMP-9 promoter transactivation, while PAI-1 promoter response to the factor was unaffected. Conclusions. SKIP regulates the expression of uPA, PAI-1, and MMP-9 stimulated by TGF-β1 in PC-3 cells. Thus, SKIP is implicated in the regulation of extracellular matrix degradation and can therefore be suggested as a novel therapeutic target in prostate cancer treatment.

  5. Antiproliferative and apoptotic effect of Morus nigra extract on human prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Ibrahim Turan

    2017-02-01

    Full Text Available Background: Morus nigra L. belongs to the family Moraceae and is frequently used in traditional medicine. Numerous studies have investigated the antiproliferative effects of various extracts of different Morus species, but studies involving the in vitro cytotoxic effect of M. nigra extract are very limited. The purpose of this study was to evaluate the phenolic composition and antioxidant activity of dimethyl sulfoxide extract of M. nigra (DEM and to investigate, for the first time, the probable cytotoxic effect in human prostate adenocarcinoma (PC-3 cells together with the mechanism involved. Methods: Total polyphenolic contents (TPC, ferric reducing antioxidant power (FRAP and phenolic compounds of DEM were evaluated using spectrophotometric procedures and HPLC. The cytotoxic effect of DEM on PC-3 cells was revealed using the MTT assay. Mechanisms involved in the cytotoxic effect of DEM on PC-3 cells were then investigated in terms of apoptosis, mitochondrial membrane potential and cell cycle using flow cytometry, while caspase activity was investigated using luminometric analysis. Results: TPC and FRAP values were 20.7 ± 0.3 mg gallic acid equivalents and 48.8 ± 1.6 mg trolox equivalents per g sample, respectively. Ascorbic acid and chlorogenic acid were the major phenolic compounds detected at HPLC analysis. DEM arrested the cell cycle of PC-3 cells at the G1 phase, induced apoptosis via increased caspase activity and reduced mitochondrial membrane potential. Conclusions: Our results indicate that M. nigra may be a novel candidate for the development of new natural product based therapeutic agents against prostate cancer.

  6. Overexpression of p53 activated by small activating RNA suppresses the growth of human prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Ge Q

    2016-01-01

    Full Text Available Qiangqiang Ge,1,* Chenghe Wang,2,* Yajun Ruan,1,* Zhong Chen,1 Jihong Liu,1 Zhangqun Ye1 1Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 2Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, People’s Republic of China *These authors contributed equally to this work Abstract: Previous research has reported that a particular double-stranded RNA, named dsP53-285, has the capacity to induce expression of the tumor suppressor gene TP53 in chimpanzee cells by targeting its promoter. Usually, it is the wild-type p53 protein, rather than mutants, which exhibits potent cancer-inhibiting effects. In addition, nonhuman primates, such as chimpanzees, share almost identical genome sequences with humans. This prompted us to speculate whether dsP53-285 can trigger wild-type p53 protein expression in human prostate cancer (PCa cells and consequently suppress cell growth. The human PCa cell lines LNCaP and DU145 were transfected with dsP53-285 for 72 hours. Compared with the dsControl and mock transfection groups, expression of both p53 messenger RNA and p53 protein was significantly enhanced after dsP53-285 transfection, and this enhancement was followed by upregulation of p21, which indirectly indicated that dsP53-285 induced wild-type p53 expression. Moreover, overexpression of wild-type p53 mediated by dsP53-285 downregulated the expression of Cyclin D1 and cyclin-dependent kinase 4/6, thereby inducing PCa cell cycle arrest in G0/G1 phase and then inhibiting cell proliferation and clonogenicity. More importantly, dsP53-285 suppressed PCa cells mainly by modulating wild-type p53 expression. In conclusion, our study provides evidence that dsP53-285 can significantly stimulate wild-type p53 expression in the human PCa cell lines LNCaP and DU145 and can exert potent antitumor effects. Keywords: p53, small activating RNA, prostate

  7. Lycopene inhibits IGF-I signal transduction and growth in normal prostate epithelial cells by decreasing DHT-modulated IGF-I production in co-cultured reactive stromal cells.

    Science.gov (United States)

    Liu, Xunxian; Allen, Jeffrey D; Arnold, Julia T; Blackman, Marc R

    2008-04-01

    Prostate stromal and epithelial cell communication is important in prostate functioning and cancer development. Primary human stromal cells from normal prostate stromal cells (PRSC) maintain a smooth muscle phenotype, whereas those from prostate cancer (6S) display reactive and fibroblastic characteristics. Dihydrotestosterone (DHT) stimulates insulin-like growth factor-I (IGF-I) production by 6S but not PSRC cells. Effects of reactive versus normal stroma on normal human prostate epithelial (NPE or PREC) cells are poorly understood. We co-cultured NPE plus 6S or PRSC cells to compare influences of different stromal cells on normal epithelium. Because NPE and PREC cells lose androgen receptor (AR) expression in culture, DHT effects must be modulated by associated stromal cells. When treated with camptothecin (CM), NPE cells, alone and in stromal co-cultures, displayed a dose-dependent increase in DNA fragmentation. NPE/6S co-cultures exhibited reduced CM-induced cell death with exposure to DHT, whereas NPE/PRSC co-cultures exhibited CM-induced cell death regardless of DHT treatment. DHT blocked CM-induced, IGF-I-mediated, NPE death in co-cultured NPE/6S cells without, but not with, added anti-IGF-I and anti-IGF-R antibodies. Lycopene consumption is inversely related to human prostate cancer risk and inhibits IGF-I and androgen signaling in rat prostate cancer. In this study, lycopene, in dietary concentrations, reversed DHT effects of 6S cells on NPE cell death, decreased 6S cell IGF-I production by reducing AR and beta-catenin nuclear localization and inhibited IGF-I-stimulated NPE and PREC growth, perhaps by attenuating IGF-I's effects on serine phosphorylation of Akt and GSK3beta and tyrosine phosphorylation of GSK3. This study expands the understanding of the preventive mechanisms of lycopene in prostate cancer.

  8. Neural protein gamma-synuclein interacting with androgen receptor promotes human prostate cancer progression

    International Nuclear Information System (INIS)

    Chen, Junyi; Jiao, Li; Xu, Chuanliang; Yu, Yongwei; Zhang, Zhensheng; Chang, Zheng; Deng, Zhen; Sun, Yinghao

    2012-01-01

    Gamma-synuclein (SNCG) has previously been demonstrated to be significantly correlated with metastatic malignancies; however, in-depth investigation of SNCG in prostate cancer is still lacking. In the present study, we evaluated the role of SNCG in prostate cancer progression and explored the underlying mechanisms. First, alteration of SNCG expression in LNCaP cell line to test the ability of SNCG on cellular properties in vitro and vivo whenever exposing with androgen or not. Subsequently, the Dual-luciferase reporter assays were performed to evaluate whether the role of SNCG in LNCaP is through AR signaling. Last, the association between SNCG and prostate cancer progression was assessed immunohistochemically using a series of human prostate tissues. Silencing SNCG by siRNA in LNCaP cells contributes to the inhibition of cellular proliferation, the induction of cell-cycle arrest at the G1 phase, the suppression of cellular migration and invasion in vitro, as well as the decrease of tumor growth in vivo with the notable exception of castrated mice. Subsequently, mechanistic studies indicated that SNCG is a novel androgen receptor (AR) coactivator. It interacts with AR and promotes prostate cancer cellular growth and proliferation by activating AR transcription in an androgen-dependent manner. Finally, immunohistochemical analysis revealed that SNCG was almost undetectable in benign or androgen-independent tissues prostate lesions. The high expression of SNCG is correlated with peripheral and lymph node invasion. Our data suggest that SNCG may serve as a biomarker for predicting human prostate cancer progression and metastasis. It also may become as a novel target for biomedical therapy in advanced prostate cancer

  9. Human adipose-derived mesenchymal stromal cell pigment epithelium-derived factor cytotherapy modifies genetic and epigenetic profiles of prostate cancer cells.

    Science.gov (United States)

    Zolochevska, Olga; Shearer, Joseph; Ellis, Jayne; Fokina, Valentina; Shah, Forum; Gimble, Jeffrey M; Figueiredo, Marxa L

    2014-03-01

    Adipose-derived mesenchymal stromal cells (ASCs) are promising tools for delivery of cytotherapy against cancer. However, ASCs can exert profound effects on biological behavior of tumor cells. Our study aimed to examine the influence of ASCs on gene expression and epigenetic methylation profiles of prostate cancer cells as well as the impact of expressing a therapeutic gene on modifying the interaction between ASCs and prostate cancer cells. ASCs were modified by lentiviral transduction to express either green fluorescent protein as a control or pigment epithelium-derived factor (PEDF) as a therapeutic molecule. PC3 prostate cancer cells were cultured in the presence of ASC culture-conditioned media (CCM), and effects on PC3 or DU145. Ras cells were examined by means of real-time quantitative polymerase chain reaction, EpiTect methyl prostate cancer-focused real-time quantitative polymerase chain reaction arrays, and luciferase reporter assays. ASCs transduced with lentiviral vectors were able to mediate expression of several tumor-inhibitory genes, some of which correlated with epigenetic methylation changes on cocultured PC3 prostate cancer cells. When PC3 cells were cultured with ASC-PEDF CCM, we observed a shift in the balance of gene expression toward tumor inhibition, which suggests that PEDF reduces the potential tumor-promoting activity of unmodified ASCs. These results suggest that ASC-PEDF CCM can promote reprogramming of tumor cells in a paracrine manner. An improved understanding of genetic and epigenetic events in prostate cancer growth in response to PEDF paracrine therapy would enable a more effective use of ASC-PEDF, with the goal of achieving safer yet more potent anti-tumor effects. Copyright © 2014 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  10. Matrix-Dependent Regulation of AKT in Hepsin-Overexpressing PC3 Prostate Cancer Cells

    Directory of Open Access Journals (Sweden)

    Stephanie M Wittig-Blaich

    2011-07-01

    Full Text Available The serine-protease hepsin is one of the most prominently overexpressed genes in human prostate carcinoma. Forced expression of the enzyme in mice prostates is associated with matrix degradation, invasive growth, and prostate cancer progression. Conversely, hepsin overexpression in metastatic prostate cancer cell lines was reported to induce cell cycle arrest and reduction of invasive growth in vitro. We used a system for doxycycline (dox-inducible target gene expression in metastasis-derived PC3 cells to analyze the effects of hepsin in a quantitative manner. Loss of viability and adhesion correlated with hepsin expression levels during anchorage-dependent but not anchorage-independent growth. Full expression of hepsin led to cell death and detachment and was specifically associated with reduced phosphorylation of AKT at Ser473, which was restored by growth on matrix derived from RWPE1 normal prostatic epithelial cells. In the chorioallantoic membrane xenograft model, hepsin overexpression in PC3 cells reduced the viability of tumors but did not suppress invasive growth. The data presented here provide evidence that elevated levels of hepsin interfere with cell adhesion and viability in the background of prostate cancer as well as other tissue types, the details of which depend on the microenvironment provided. Our findings suggest that overexpression of the enzyme in prostate carcinogenesis must be spatially and temporally restricted for the efficient development of tumors and metastases.

  11. Role of IAPs in prostate cancer progression: immunohistochemical study in normal and pathological (benign hyperplastic, prostatic intraepithelial neoplasia and cancer) human prostate

    International Nuclear Information System (INIS)

    Rodríguez-Berriguete, Gonzalo; Paniagua, Ricardo; Royuela, Mar; Fraile, Benito; Bethencourt, Fermín R de; Prieto-Folgado, Angela; Bartolome, Nahikari; Nuñez, Claudia; Prati, Bruna; Martínez-Onsurbe, Pilar; Olmedilla, Gabriel

    2010-01-01

    In this study was investigate IAPs in normal human prostate (NP), benign prostatic hyperplasia (BPH), prostatic intraepithelial neoplasia (PIN) and prostatic carcinoma (PC), and their involvement in apoptosis/proliferation via NF-kB (TNF-α, IL-1) stimulation. Immunohistochemical and Western blot analyses were performed in 10 samples of normal prostates, 35 samples of BPH, 27 samples diagnosis of PIN (with low-grade PIN or high-grade PIN) and 95 samples of PC (with low, medium or high Gleason grades). In NP, cytoplasm of epithelial cells were positive to c-IAP1/2 (80% of samples), c-IAP-2 (60%), ILP (20%), XIAP (20%); negative to NAIP and survivin. In BPH, epithelial cells were immunostained to c-IAP1/2 (57.57%), c-IAP-2 (57.57%), ILP (66.6%), NAIP (60.6%), XIAP (27.27%), survivin (9.1%). Whereas low-grade PIN showed intermediate results between NP and BPH; results in high-grade PIN were similar to those found in PC. In PC, epithelial cells were immunostained to c-IAP1/2, c-IAP-2, ILP, NAIP, XIAP (no Gleason variation) and survivin (increasing with Gleason). IAPs could be involved in prostate disorder (BPH, PIN and PC) development since might be provoke inhibition of apoptosis and subsequently cell proliferation. At the same time, different transduction pathway such as IL-1/NIK/NF-kB or TNF/NF-kB (NIK or p38) also promotes proliferation. Inhibitions of IAPs, IL-1α and TNFα might be a possible target for PC treatment since IAPs are the proteins that inhibited apoptosis (favour proliferation) and IL-1α and TNFα would affect all the transduction pathway involucrate in the activation of transcription factors related to survival or proliferation (NF-kB, Elk-1 or ATF-2)

  12. Red Maca (Lepidium meyenii) did not affect cell viability despite increased androgen receptor and prostate-specific antigen gene expression in the human prostate cancer cell line LNCaP.

    Science.gov (United States)

    Díaz, P; Cardenas, H; Orihuela, P A

    2016-10-01

    We examined whether aqueous extract of Lepidium meyenii (red Maca) could inhibit growth, potentiate apoptotic activity of two anticancer drugs Taxol and 2-methoxyestradiol (2ME) or change mRNA expression for the androgen target genes, androgen receptor (Ar) and prostate-specific antigen (Psa) in the human prostate cancer cell line LNCaP. Red Maca aqueous extract at 0, 10, 20, 40 or 80 μg/ml was added to LNCaP cells, and viability was evaluated by the MTS assay at 24 or 48 hr after treatment. Furthermore, LNCaP cells were treated with 80 μg/ml of red Maca plus Taxol or 2ME 5 μM and viability was assessed 48 hr later. Finally, LNCaP cells were treated with red Maca 0, 20, 40 or 80 μg/ml, and 12 hr later, mRNA level for Ar or Psa was assessed by real-time PCR. Treatment with red Maca did not affect viability of LNCaP cells. Apoptotic activity induced by Taxol and 2ME in LNCaP cells was not altered with red Maca treatment. Relative expression of the mRNA for Ar and Psa increased with red Maca 20 and 40 μg/ml, but not at 80 μg/ml. We conclude that red Maca aqueous extract does not have toxic effects, but stimulates androgen signalling in LNCaP cells. © 2016 Blackwell Verlag GmbH.

  13. From Prostate to Bone: Key Players in Prostate Cancer Bone Metastasis

    International Nuclear Information System (INIS)

    Thobe, Megan N.; Clark, Robert J.; Bainer, Russell O.; Prasad, Sandip M.; Rinker-Schaeffer, Carrie W.

    2011-01-01

    Bone is the most common site for metastasis in human prostate cancer patients. Skeletal metastases are a significant cause of morbidity and mortality and overall greatly affect the quality of life of prostate cancer patients. Despite advances in our understanding of the biology of primary prostate tumors, our knowledge of how and why secondary tumors derived from prostate cancer cells preferentially localize bone remains limited. The physiochemical properties of bone, and signaling molecules including specific chemokines and their receptors, are distinct in nature and function, yet play intricate and significant roles in prostate cancer bone metastasis. Examining the impact of these facets of bone metastasis in vivo remains a significant challenge, as animal models that mimic the natural history and malignant progression clinical prostate cancer are rare. The goals of this article are to discuss (1) characteristics of bone that most likely render it a favorable environment for prostate tumor cell growth, (2) chemokine signaling that is critical in the recruitment and migration of prostate cancer cells to the bone, and (3) current animal models utilized in studying prostate cancer bone metastasis. Further research is necessary to elucidate the mechanisms underlying the extravasation of disseminated prostate cancer cells into the bone and to provide a better understanding of the basis of cancer cell survival within the bone microenvironment. The development of animal models that recapitulate more closely the human clinical scenario of prostate cancer will greatly benefit the generation of better therapies

  14. From Prostate to Bone: Key Players in Prostate Cancer Bone Metastasis

    Energy Technology Data Exchange (ETDEWEB)

    Thobe, Megan N. [Section of Urology, Department of Surgery, The University of Chicago, Chicago, IL 60637 (United States); Clark, Robert J. [Department of Molecular Pathogenesis and Molecular Medicine, The University of Chicago, Chicago, IL 60637 (United States); Bainer, Russell O. [Department of Human Genetics, The University of Chicago, Chicago, IL 60637 (United States); Prasad, Sandip M.; Rinker-Schaeffer, Carrie W., E-mail: crinkers@uchicago.edu [Section of Urology, Department of Surgery, The University of Chicago, Chicago, IL 60637 (United States)

    2011-01-27

    Bone is the most common site for metastasis in human prostate cancer patients. Skeletal metastases are a significant cause of morbidity and mortality and overall greatly affect the quality of life of prostate cancer patients. Despite advances in our understanding of the biology of primary prostate tumors, our knowledge of how and why secondary tumors derived from prostate cancer cells preferentially localize bone remains limited. The physiochemical properties of bone, and signaling molecules including specific chemokines and their receptors, are distinct in nature and function, yet play intricate and significant roles in prostate cancer bone metastasis. Examining the impact of these facets of bone metastasis in vivo remains a significant challenge, as animal models that mimic the natural history and malignant progression clinical prostate cancer are rare. The goals of this article are to discuss (1) characteristics of bone that most likely render it a favorable environment for prostate tumor cell growth, (2) chemokine signaling that is critical in the recruitment and migration of prostate cancer cells to the bone, and (3) current animal models utilized in studying prostate cancer bone metastasis. Further research is necessary to elucidate the mechanisms underlying the extravasation of disseminated prostate cancer cells into the bone and to provide a better understanding of the basis of cancer cell survival within the bone microenvironment. The development of animal models that recapitulate more closely the human clinical scenario of prostate cancer will greatly benefit the generation of better therapies.

  15. Magnolol Affects Cellular Proliferation, Polyamine Biosynthesis and Catabolism-Linked Protein Expression and Associated Cellular Signaling Pathways in Human Prostate Cancer Cells in vitro

    Directory of Open Access Journals (Sweden)

    Brendan T. McKeown

    2015-01-01

    Full Text Available Background: Prostate cancer is the most commonly diagnosed form of cancer in men in Canada and the United States. Both genetic and environmental factors contribute to the development and progression of many cancers, including prostate cancer. Context and purpose of this study: This study investigated the effects of magnolol, a compound found in the roots and bark of the magnolia tree Magnolia officinalis, on cellular proliferation and proliferation-linked activities of PC3 human prostate cancer cells in vitro. Results: PC3 cells exposed to magnolol at a concentration of 80 μM for 6 hours exhibited decreased protein expression of ornithine decarboxylase, a key regulator in polyamine biosynthesis, as well as affecting the expression of other proteins involved in polyamine biosynthesis and catabolism. Furthermore, protein expression of the R2 subunit of ribonucleotide reductase, a key regulatory protein associated with DNA synthesis, was significantly decreased. Finally, the MAPK (mitogen-activated protein kinase, PI3K (phosphatidylinositol 3-kinase, NFκB (nuclear factor of kappa-light-chain-enhancer of activated B cells and AP-1 (activator protein 1 cellular signaling pathways were assayed to determine which, if any, of these pathways magnolol exposure would alter. Protein expressions of p-JNK-1 and c-jun were significantly increased while p-p38, JNK-1/2, PI3Kp85, p-PI3Kp85, p-Akt, NFκBp65, p-IκBα and IκBα protein expressions were significantly decreased. Conclusions: These alterations further support the anti-proliferative effects of magnolol on PC3 human prostate cancer cells in vitro and suggest that magnolol may have potential as a novel anti-prostate cancer agent.

  16. The Expression of MTUS1/ATIP and Its Major Isoforms, ATIP1 and ATIP3, in Human Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Louis, Simon N.S., E-mail: simonnsl@unimelb.edu.au; Chow, Laurie T.C.; Varghayee, Naghmeh; Rezmann, Linda A.; Frauman, Albert G.; Louis, William J. [Clinical Pharmacology and Therapeutics Unit, Department of Medicine, University of Melbourne, Austin Health, Heidelberg 3084, Victoria (Australia)

    2011-10-11

    Angiotensin II (Ang II), the main effector of the renin angiotensin system, acts upon two distinct transmembrane receptors, the Ang II type 1 and the type 2 (AT{sub 2}-) receptor, to induce promotion and inhibition of ERK2 phosphorylation. The AT{sub 2}-receptor, through an interaction with its putative signaling partner MTUS1/ATIP (AT{sub 2}-receptor interacting protein), inhibits the mitogenic effects of EGF in prostate cancer cell lines representing both early and late stage disease. This is the first report on the expression of ATIP in normal and malignant human prostatic biopsies. The expression of ATIP and its major isoforms, ATIP1 and ATIP3, in normal prostatic cells and three prostate cancer cell lines was examined using QPCR and immunohistochemistry. Human biopsies containing benign prostatic hyperplasia (BPH), high grade prostatic intraepithelial neoplasia (HGPIN) and well, moderately and poorly differentiated prostate cancer were also examined. Overall, ATIP1 and ATIP3 mRNA expression was increased in malignant compared to normal tissues and cell lines. ATIP immunostaining was low or absent in both the basal and columnar epithelial cell layers surrounding BPH acini; however, it was observed in high concentration in neoplastic epithelial cells of HGPIN and was clearly evident in cytoplasms of malignant cells in all prostate cancer grades. ATIP immunostaining was also identified in the cytoplasms of LNCaP and PC3 prostate cancer cells. As the AT{sub 2}-receptor/ATIP inhibitory signaling pathway exists in malignant cells in all grades of prostate cancer, enhancement of this pathway may be a therapeutic target even after the development of androgen-independence.

  17. The Expression of MTUS1/ATIP and Its Major Isoforms, ATIP1 and ATIP3, in Human Prostate Cancer

    International Nuclear Information System (INIS)

    Louis, Simon N.S.; Chow, Laurie T.C.; Varghayee, Naghmeh; Rezmann, Linda A.; Frauman, Albert G.; Louis, William J.

    2011-01-01

    Angiotensin II (Ang II), the main effector of the renin angiotensin system, acts upon two distinct transmembrane receptors, the Ang II type 1 and the type 2 (AT 2 -) receptor, to induce promotion and inhibition of ERK2 phosphorylation. The AT 2 -receptor, through an interaction with its putative signaling partner MTUS1/ATIP (AT 2 -receptor interacting protein), inhibits the mitogenic effects of EGF in prostate cancer cell lines representing both early and late stage disease. This is the first report on the expression of ATIP in normal and malignant human prostatic biopsies. The expression of ATIP and its major isoforms, ATIP1 and ATIP3, in normal prostatic cells and three prostate cancer cell lines was examined using QPCR and immunohistochemistry. Human biopsies containing benign prostatic hyperplasia (BPH), high grade prostatic intraepithelial neoplasia (HGPIN) and well, moderately and poorly differentiated prostate cancer were also examined. Overall, ATIP1 and ATIP3 mRNA expression was increased in malignant compared to normal tissues and cell lines. ATIP immunostaining was low or absent in both the basal and columnar epithelial cell layers surrounding BPH acini; however, it was observed in high concentration in neoplastic epithelial cells of HGPIN and was clearly evident in cytoplasms of malignant cells in all prostate cancer grades. ATIP immunostaining was also identified in the cytoplasms of LNCaP and PC3 prostate cancer cells. As the AT 2 -receptor/ATIP inhibitory signaling pathway exists in malignant cells in all grades of prostate cancer, enhancement of this pathway may be a therapeutic target even after the development of androgen-independence

  18. Novel Imidazopyridine Derivatives Possess Anti-Tumor Effect on Human Castration-Resistant Prostate Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Matthew A Ingersoll

    Full Text Available Prostate cancer (PCa is the second leading cause of cancer-related death afflicting United States males. Most treatments to-date for metastatic PCa include androgen-deprivation therapy and second-generation anti-androgens such as abiraterone acetate and enzalutamide. However, a majority of patients eventually develop resistance to these therapies and relapse into the lethal, castration-resistant form of PCa to which no adequate treatment option remains. Hence, there is an immediate need to develop effective therapeutic agents toward this patient population. Imidazopyridines have recently been shown to possess Akt kinase inhibitory activity; thus in this study, we investigated the inhibitory effect of novel imidazopyridine derivatives HIMP, M-MeI, OMP, and EtOP on different human castration-resistant PCa cells. Among these compounds, HIMP and M-MeI were found to possess selective dose- and time-dependent growth inhibition: they reduced castration-resistant PCa cell proliferation and spared benign prostate epithelial cells. Using LNCaP C-81 cells as the model system, these compounds also reduced colony formation as well as cell adhesion and migration, and M-MeI was the most potent in all studies. Further investigation revealed that while HIMP primarily inhibits PCa cell growth via suppression of PI3K/Akt signaling pathway, M-MeI can inhibit both PI3K/Akt and androgen receptor pathways and arrest cell growth in the G2 phase. Thus, our results indicate the novel compound M-MeI to be a promising candidate for castration-resistant PCa therapy, and future studies investigating the mechanism of imidazopyridine inhibition may aid to the development of effective anti-PCa agents.

  19. Novel Imidazopyridine Derivatives Possess Anti-Tumor Effect on Human Castration-Resistant Prostate Cancer Cells.

    Science.gov (United States)

    Ingersoll, Matthew A; Lyons, Anastesia S; Muniyan, Sakthivel; D'Cunha, Napoleon; Robinson, Tashika; Hoelting, Kyle; Dwyer, Jennifer G; Bu, Xiu R; Batra, Surinder K; Lin, Ming-Fong

    2015-01-01

    Prostate cancer (PCa) is the second leading cause of cancer-related death afflicting United States males. Most treatments to-date for metastatic PCa include androgen-deprivation therapy and second-generation anti-androgens such as abiraterone acetate and enzalutamide. However, a majority of patients eventually develop resistance to these therapies and relapse into the lethal, castration-resistant form of PCa to which no adequate treatment option remains. Hence, there is an immediate need to develop effective therapeutic agents toward this patient population. Imidazopyridines have recently been shown to possess Akt kinase inhibitory activity; thus in this study, we investigated the inhibitory effect of novel imidazopyridine derivatives HIMP, M-MeI, OMP, and EtOP on different human castration-resistant PCa cells. Among these compounds, HIMP and M-MeI were found to possess selective dose- and time-dependent growth inhibition: they reduced castration-resistant PCa cell proliferation and spared benign prostate epithelial cells. Using LNCaP C-81 cells as the model system, these compounds also reduced colony formation as well as cell adhesion and migration, and M-MeI was the most potent in all studies. Further investigation revealed that while HIMP primarily inhibits PCa cell growth via suppression of PI3K/Akt signaling pathway, M-MeI can inhibit both PI3K/Akt and androgen receptor pathways and arrest cell growth in the G2 phase. Thus, our results indicate the novel compound M-MeI to be a promising candidate for castration-resistant PCa therapy, and future studies investigating the mechanism of imidazopyridine inhibition may aid to the development of effective anti-PCa agents.

  20. Conditional Expression of Human 15-Lipoxygenase-1 in Mouse Prostate Induces Prostatic Intraepithelial Neoplasia: The FLiMP Mouse Model

    Directory of Open Access Journals (Sweden)

    Uddhav P. Kelavkar

    2006-06-01

    Full Text Available The incidence and mortality of prostate cancer (PCa vary greatly in different geographic regions, for which lifestyle factors, such as dietary fat intake, have been implicated. Human 15-lipoxygenase-1 (h15-LO-1, which metabolizes polyunsaturated fatty acids, is a highly regulated, tissue-specific, lipid-peroxidating enzyme that functions in physiological membrane remodeling and in the pathogenesis of atherosclerosis, inflammation, and carcinogenesis. We have shown that aberrant overexpression of 15-LO-1 occurs in human PCa, particularly high-grade PCa, and in high-grade prostatic intraepithelial neoplasia (HGPIN, and that the murine orthologue is increased in SV40-based genetically engineered mouse (GEM models of PCa, such as LADY and TRansgenic Adenocarcinoma of Mouse Prostate. To further define the role of 15-LO-1 in prostate carcinogenesis, we established a novel GEM model with targeted overexpression of h15-LO-1 in the prostate [human fifteen lipoxygenase-1 in mouse prostate (FLiMP]. We used a Cre- mediated and a loxP-mediated recombination strategy to target h15-LO-1 specifically to the prostate of C57BL/6 mice. Wild-type (wt, FLiMP+/-, and FLiMP+/+ mice aged 7 to 21, 24 to 28, and 35 weeks were characterized by histopathology, immunohistochemistry (IHC, and DNA/RNA and enzyme analyses. Compared to wt mice, h15-LO-1 enzyme activity was increased similarly in both homozygous FLiMP+/+ and hemizygous FLiMP+/- prostates. Dorsolateral and ventral prostates of FLiMP mice showed focal and progressive epithelial hyperplasia with nuclear atypia, indicative of the definition of mouse prostatic intraepithelial neoplasia (mPIN according to the National Cancer Institute. These foci showed increased proliferation by Ki-67 IHC. No progression to invasive PCa was noted up to 35 weeks. By IHC, h15-LO-1 expression was limited to luminal epithelial cells, with increased expression in mPIN foci (similar to human HGPIN. In summary, targeted overexpression of h

  1. MicroRNA-125a-5p regulates cancer cell proliferation and migration through NAIF1 in prostate carcinoma.

    Science.gov (United States)

    Fu, Yi; Cao, Fuhua

    2015-01-01

    We investigated the functional roles of microRNA-125a-5p in regulating human prostate carcinoma. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was conducted to evaluate the gene expression levels of miR-125a-5p in eight prostate cancer cell lines and nine biopsy specimens from patients with prostate cancer. miR-125a-5p was genetically knocked down in prostate cancer cell lines, DU145 and VCaP cells by lentiviral transduction. The effects of miR-125a-5p downregulation on prostate cancer cell proliferation and migration were evaluated by MTT assay and transwell assay, respectively. Direct regulation of miR-125a-5p on its downstream targets, NAIF1, and apoptotic gene caspase-3 were evaluated through dual-luciferase reporter assay, qRT-PCR, and Western blot, respectively. NAIF1 was then ectopically overexpressed in DU145 and VCaP cells to modulate prostate cancer cell proliferation and migration. Finally, the effects of miR-125a-5p downregulation or NAIF1 overexpression on the growth of in vivo prostate cancer xenograft were evaluated. miR-125a-5p was upregulated in prostate cancer cell lines and human prostate carcinomas. Lentivirus induced miR-125a-5p downregulation in DU145 and VCaP cells inhibited prostate cancer cell proliferation or migration. NAIF1 was the direct target of miR-125a-5p, as both gene and protein expression levels of NAIF1, as well as caspase-3 were upregulated by miR-125a-5p. Forced overexpression of NAIF1 had similar antitumor effects as miR-125a-5p downregulation on prostate cancer cell proliferation and migration. In vivo prostate xenograft assay confirmed the tumor-suppressive effect of miR-125a-5p downregulation or NAIF1 overexpression. miR-125a-5p regulates prostate cancer cell proliferation and migration through NAIF1.

  2. Methylation screening of the TGFBI promoter in human lung and prostate cancer by methylation-specific PCR

    International Nuclear Information System (INIS)

    Shah, Jinesh N; Shao, Genze; Hei, Tom K; Zhao, Yongliang

    2008-01-01

    Hypermethylation of the TGFBI promoter has been shown to correlate with decreased expression of this gene in human tumor cell lines. In this study, we optimized a methylation-specific polymerase chain reaction (MSP) method and investigated the methylation status of the TGFBI promoter in human lung and prostate cancer specimens. Methylation-specific primers were designed based on the methylation profiles of the TGFBI promoter in human tumor cell lines, and MSP conditions were optimized for accurate and efficient amplification. Genomic DNA was isolated from lung tumors and prostatectomy tissues of prostate cancer patients, bisulfite-converted, and analyzed by MSP. Among 50 lung cancer samples, 44.0% (22/50) harbored methylated CpG sites in the TGFBI promoter. An analysis correlating gene methylation status with clinicopathological cancer features revealed that dense methylation of the TGFBI promoter was associated with a metastatic phenotype, with 42.9% (6/14) of metastatic lung cancer samples demonstrating dense methylation vs. only 5.6% (2/36) of primary lung cancer samples (p < 0.05). Similar to these lung cancer results, 82.0% (41/50) of prostate cancer samples harbored methylated CpG sites in the TGFBI promoter, and dense methylation of the promoter was present in 38.9% (7/18) of prostate cancer samples with the feature of locoregional invasiveness vs. only 19.4% (6/31) of prostate cancer samples without locoregional invasiveness (p < 0.05). Furthermore, promoter hypermethylation correlated with highly reduced expression of the TGFBI gene in human lung and prostate tumor cell lines. We successfully optimized a MSP method for the precise and efficient screening of TGFBI promoter methylation status. Dense methylation of the TGFBI promoter correlated with the extent of TGFBI gene silencing in tumor cell lines and was related to invasiveness of prostate tumors and metastatic status of lung cancer tumors. Thus, TGFBI promoter methylation can be used as a potential

  3. Aminomethylphosphonic Acid and Methoxyacetic Acid Induce Apoptosis in Prostate Cancer Cells

    Directory of Open Access Journals (Sweden)

    Keshab R. Parajuli

    2015-05-01

    Full Text Available Aminomethylphosphonic acid (AMPA and its parent compound herbicide glyphosate are analogs to glycine, which have been reported to inhibit proliferation and promote apoptosis of cancer cells, but not normal cells. Methoxyacetic acid (MAA is the active metabolite of ester phthalates widely used in industry as gelling, viscosity and stabilizer; its exposure is associated with developmental and reproductive toxicities in both rodents and humans. MAA has been reported to suppress prostate cancer cell growth by inducing growth arrest and apoptosis. However, it is unknown whether AMPA and MAA can inhibit cancer cell growth. In this study, we found that AMPA and MAA inhibited cell growth in prostate cancer cell lines (LNCaP, C4-2B, PC-3 and DU-145 through induction of apoptosis and cell cycle arrest at the G1 phase. Importantly, the AMPA-induced apoptosis was potentiated with the addition of MAA, which was due to downregulation of the anti-apoptotic gene baculoviral inhibitor of apoptosis protein repeat containing 2 (BIRC2, leading to activation of caspases 7 and 3. These results demonstrate that the combination of AMPA and MAA can promote the apoptosis of prostate cancer cells, suggesting that they can be used as potential therapeutic drugs in the treatment of prostate cancer.

  4. Aminomethylphosphonic acid and methoxyacetic acid induce apoptosis in prostate cancer cells.

    Science.gov (United States)

    Parajuli, Keshab R; Zhang, Qiuyang; Liu, Sen; You, Zongbing

    2015-05-22

    Aminomethylphosphonic acid (AMPA) and its parent compound herbicide glyphosate are analogs to glycine, which have been reported to inhibit proliferation and promote apoptosis of cancer cells, but not normal cells. Methoxyacetic acid (MAA) is the active metabolite of ester phthalates widely used in industry as gelling, viscosity and stabilizer; its exposure is associated with developmental and reproductive toxicities in both rodents and humans. MAA has been reported to suppress prostate cancer cell growth by inducing growth arrest and apoptosis. However, it is unknown whether AMPA and MAA can inhibit cancer cell growth. In this study, we found that AMPA and MAA inhibited cell growth in prostate cancer cell lines (LNCaP, C4-2B, PC-3 and DU-145) through induction of apoptosis and cell cycle arrest at the G1 phase. Importantly, the AMPA-induced apoptosis was potentiated with the addition of MAA, which was due to downregulation of the anti-apoptotic gene baculoviral inhibitor of apoptosis protein repeat containing 2 (BIRC2), leading to activation of caspases 7 and 3. These results demonstrate that the combination of AMPA and MAA can promote the apoptosis of prostate cancer cells, suggesting that they can be used as potential therapeutic drugs in the treatment of prostate cancer.

  5. HUMAN PROSTATE CANCER RISK FACTORS

    Science.gov (United States)

    Prostate cancer has the highest prevalence of any non-skin cancer in the human body, with similar likelihood of neoplastic foci found within the prostates of men around the world regardless of diet, occupation, lifestyle, or other factors. Essentially all men with circulating an...

  6. Antiproliferative activity of novel imidazopyridine derivatives on castration-resistant human prostate cancer cells.

    Science.gov (United States)

    Muniyan, Sakthivel; Chou, Yu-Wei; Ingersoll, Matthew A; Devine, Alexus; Morris, Marisha; Odero-Marah, Valerie A; Khan, Shafiq A; Chaney, William G; Bu, Xiu R; Lin, Ming-Fong

    2014-10-10

    Metastatic prostate cancer (mPCa) relapses after a short period of androgen deprivation therapy and becomes the castration-resistant prostate cancer (CR PCa); to which the treatment is limited. Hence, it is imperative to identify novel therapeutic agents towards this patient population. In the present study, antiproliferative activities of novel imidazopyridines were compared. Among three derivatives, PHE, AMD and AMN, examined, AMD showed the highest inhibitory activity on LNCaP C-81 cell proliferation, following dose- and time-dependent manner. Additionally, AMD exhibited significant antiproliferative effect against a panel of PCa cells, but not normal prostate epithelial cells. Further, when compared to AMD, its derivative DME showed higher inhibitory activities on PCa cell proliferation, clonogenic potential and in vitro tumorigenicity. The inhibitory activity was apparently in part due to the induction of apoptosis. Mechanistic studies indicate that AMD and DME treatments inhibited both AR and PI3K/Akt signaling. The results suggest that better understanding of inhibitory mechanisms of AMD and DME could help design novel therapeutic agents for improving the treatment of CR PCa. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  7. SLUG promotes prostate cancer cell migration and invasion via CXCR4/CXCL12 axis.

    Science.gov (United States)

    Uygur, Berna; Wu, Wen-Shu

    2011-11-10

    SLUG is a zinc-finger transcription factor of the Snail/Slug zinc-finger family that plays a role in migration and invasion of tumor cells. Mechanisms by which SLUG promotes migration and invasion in prostate cancers remain elusive. Expression level of CXCR4 and CXCL12 was examined by Western blot, RT-PCR, and qPCR analyses. Forced expression of SLUG was mediated by retroviruses, and SLUG and CXCL12 was downregulated by shRNAs-expressing lentiviruses. Migration and invasion of prostate cancer were measured by scratch-wound assay and invasion assay, respectively. We demonstrated that forced expression of SLUG elevated CXCR4 and CXCL12 expression in human prostate cancer cell lines PC3, DU145, 22RV1, and LNCaP; conversely, reduced expression of SLUG by shRNA downregulated CXCR4 and CXCL12 expression at RNA and protein levels in prostate cancer cells. Furthermore, ectopic expression of SLUG increased MMP9 expression and activity in PC3, 22RV1, and DU-145 cells, and SLUG knockdown by shRNA downregulated MMP9 expression. We showed that CXCL12 is required for SLUG-mediated MMP9 expression in prostate cancer cells. Moreover, we found that migration and invasion of prostate cancer cells was increased by ectopic expression of SLUG and decreased by SLUG knockdown. Notably, knockdown of CXCL12 by shRNA impaired SLUG-mediated migration and invasion in prostate cancer cells. Lastly, our data suggest that CXCL12 and SLUG regulate migration and invasion of prostate cancer cells independent of cell growth. We provide the first compelling evidence that upregulation of autocrine CXCL12 is a major mechanism underlying SLUG-mediated migration and invasion of prostate cancer cells. Our findings suggest that CXCL12 is a therapeutic target for prostate cancer metastasis.

  8. Ghrelin inhibits proliferation and increases T-type Ca2+ channel expression in PC-3 human prostate carcinoma cells

    International Nuclear Information System (INIS)

    Diaz-Lezama, Nundehui; Hernandez-Elvira, Mariana; Sandoval, Alejandro; Monroy, Alma; Felix, Ricardo; Monjaraz, Eduardo

    2010-01-01

    Research highlights: → Ghrelin decreases prostate carcinoma PC-3 cells proliferation. → Ghrelin favors apoptosis in PC-3 cells. → Ghrelin increase in intracellular free Ca 2+ levels in PC-3 cells. → Grelin up-regulates expression of T-type Ca 2+ channels in PC-3 cells. → PC-3 cells express T-channels of the Ca V 3.1 and Ca V 3.2 subtype. -- Abstract: Ghrelin is a multifunctional peptide hormone with roles in growth hormone release, food intake and cell proliferation. With ghrelin now recognized as important in neoplastic processes, the aim of this report is to present findings from a series of in vitro studies evaluating the cellular mechanisms involved in ghrelin regulation of proliferation in the PC-3 human prostate carcinoma cells. The results showed that ghrelin significantly decreased proliferation and induced apoptosis. Consistent with a role in apoptosis, an increase in intracellular free Ca 2+ levels was observed in the ghrelin-treated cells, which was accompanied by up-regulated expression of T-type voltage-gated Ca 2+ channels. Interestingly, T-channel antagonists were able to prevent the effects of ghrelin on cell proliferation. These results suggest that ghrelin inhibits proliferation and may promote apoptosis by regulating T-type Ca 2+ channel expression.

  9. Matrix-Dependent Regulation of AKT in Hepsin-Overexpressing PC3 Prostate Cancer Cells12

    Science.gov (United States)

    Wittig-Blaich, Stephanie M; Kacprzyk, Lukasz A; Eismann, Thorsten; Bewerunge-Hudler, Melanie; Kruse, Petra; Winkler, Eva; Strauss, Wolfgang S L; Hibst, Raimund; Steiner, Rudolf; Schrader, Mark; Mertens, Daniel; Sültmann, Holger; Wittig, Rainer

    2011-01-01

    The serine-protease hepsin is one of the most prominently overexpressed genes in human prostate carcinoma. Forced expression of the enzyme in mice prostates is associated with matrix degradation, invasive growth, and prostate cancer progression. Conversely, hepsin overexpression in metastatic prostate cancer cell lines was reported to induce cell cycle arrest and reduction of invasive growth in vitro. We used a system for doxycycline (dox)-inducible target gene expression in metastasis-derived PC3 cells to analyze the effects of hepsin in a quantitative manner. Loss of viability and adhesion correlated with hepsin expression levels during anchorage-dependent but not anchorage-independent growth. Full expression of hepsin led to cell death and detachment and was specifically associated with reduced phosphorylation of AKT at Ser473, which was restored by growth on matrix derived from RWPE1 normal prostatic epithelial cells. In the chorioallantoic membrane xenograft model, hepsin overexpression in PC3 cells reduced the viability of tumors but did not suppress invasive growth. The data presented here provide evidence that elevated levels of hepsin interfere with cell adhesion and viability in the background of prostate cancer as well as other tissue types, the details of which depend on the microenvironment provided. Our findings suggest that overexpression of the enzyme in prostate carcinogenesis must be spatially and temporally restricted for the efficient development of tumors and metastases. PMID:21750652

  10. BIRC6 protein, an inhibitor of apoptosis: role in survival of human prostate cancer cells.

    Directory of Open Access Journals (Sweden)

    Christopher G Low

    Full Text Available BIRC6 is a member of the Inhibitors of Apoptosis Protein (IAP family which is thought to protect a variety of cancer cells from apoptosis. The main objective of the present study was to investigate whether BIRC6 plays a role in prostate cancer and could be useful as a novel therapeutic target.BIRC6 expression in cell lines was assessed using Western blot analysis and in clinical samples using immunohistochemistry of tissue microarrays. The biological significance of BIRC6 was determined by siRNA-induced reduction of BIRC6 expression in LNCaP cells followed by functional assays.Elevated BIRC6 protein expression was found in prostate cancer cell lines and clinical specimens as distinct from their benign counterparts. Increased BIRC6 expression was associated with Gleason 6-8 cancers and castration resistance. Reduction of BIRC6 expression in LNCaP cells led to a marked reduction in cell proliferation which was associated with an increase in apoptosis and a decrease in autophagosome formation. Doxorubicin-induced apoptosis was found to be coupled to a reduction in BIRC6 protein expression.The data suggest a role for BIRC6 in prostate cancer progression and treatment resistance, and indicate for the first time that the BIRC6 gene and its product are potentially valuable targets for treatment of prostate cancers.

  11. Fisetin, a novel dietary flavonoid, causes apoptosis and cell cycle arrest in human prostate cancer LNCaP cells

    Science.gov (United States)

    Khan, Naghma; Afaq, Farrukh; Syed, Deeba N.; Mukhtar, Hasan

    2008-01-01

    Novel dietary agents for prevention and therapy of prostate cancer (PCa) are desired. The aim of this study was to determine the effect of fisetin, a tetrahydroxyflavone, on inhibition of cell growth and induction of apoptosis in human PCa cells. Treatment of fisetin (10–60 μM, 48 h) was found to result in a decrease in the viability of LNCaP, CWR22Rυ1 and PC-3 cells but had only minimal effects on normal prostate epithelial cells as assessed by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazoliumbromide assay. Treatment of LNCaP cells with fisetin also resulted in G1-phase arrest that was associated with a marked decrease in the protein expression of cyclins D1, D2 and E and their activating partner cyclin-dependent kinases 2, 4 and 6 with concomitant induction of WAF1/p21 and KIP1/p27. Fisetin treatment also resulted in induction of apoptosis, poly (ADP-ribose) polymerase (PARP) cleavage, modulation in the expressions of Bcl-2 family proteins, inhibition of phosphatidyl inositol 3-kinase and phosphorylation of Akt at Ser473 and Thr308. There was also induction of mitochondrial release of cytochrome c into cytosol, downregulation of X-linked inhibitor of apoptosis protein and upregulation of second mitochondria-derived activator of caspase/direct inhibitor of apoptosis-binding protein with low pI on treatment of cells with fisetin. Treatment of cells with fisetin also resulted in significant activation of caspases-3, -8 and -9. Pretreatment of cells with caspase inhibitor (Z-VAD-FMK) blocked fisetin-induced activation of caspases. These data provide the first evidence that fisetin could be developed as an agent against PCa. PMID:18359761

  12. GC-MS-Based Endometabolome Analysis Differentiates Prostate Cancer from Normal Prostate Cells

    Directory of Open Access Journals (Sweden)

    Ana Rita Lima

    2018-03-01

    Full Text Available Prostate cancer (PCa is an important health problem worldwide. Diagnosis and management of PCa is very complex because the detection of serum prostate specific antigen (PSA has several drawbacks. Metabolomics brings promise for cancer biomarker discovery and for better understanding PCa biochemistry. In this study, a gas chromatography–mass spectrometry (GC-MS based metabolomic profiling of PCa cell lines was performed. The cell lines include 22RV1 and LNCaP from PCa with androgen receptor (AR expression, DU145 and PC3 (which lack AR expression, and one normal prostate cell line (PNT2. Regarding the metastatic potential, PC3 is from an adenocarcinoma grade IV with high metastatic potential, DU145 has a moderate metastatic potential, and LNCaP has a low metastatic potential. Using multivariate analysis, alterations in levels of several intracellular metabolites were detected, disclosing the capability of the endometabolome to discriminate all PCa cell lines from the normal prostate cell line. Discriminant metabolites included amino acids, fatty acids, steroids, and sugars. Six stood out for the separation of all the studied PCa cell lines from the normal prostate cell line: ethanolamine, lactic acid, β-Alanine, L-valine, L-leucine, and L-tyrosine.

  13. Cancer Patient T Cells Genetically Targeted to Prostate-Specific Membrane Antigen Specifically Lyse Prostate Cancer Cells and Release Cytokines in Response to Prostate-Specific Membrane Antigen

    Directory of Open Access Journals (Sweden)

    Michael C. Gong

    1999-06-01

    Full Text Available The expression of immunoglobulin-based artificial receptors in normal T lymphocytes provides a means to target lymphocytes to cell surface antigens independently of major histocompatibility complex restriction. Such artificial receptors have been previously shown to confer antigen-specific tumoricidal properties in murine T cells. We constructed a novel ζ chain fusion receptor specific for prostate-specific membrane antigen (PSMA termed Pz-1. PSMA is a cell-surface glycoprotein expressed on prostate cancer cells and the neovascular endothelium of multiple carcinomas. We show that primary T cells harvested from five of five patients with different stages of prostate cancer and transduced with the Pz-1 receptor readily lyse prostate cancer cells. Having established a culture system using fibroblasts that express PSMA, we next show that T cells expressing the Pz-1 receptor release cytokines in response to cell-bound PSMA. Furthermore, we show that the cytokine release is greatly augmented by B7.1-mediated costimulation. Thus, our findings support the feasibility of adoptive cell therapy by using genetically engineered T cells in prostate cancer patients and suggest that both CD4+ and CD8+ T lymphocyte functions can be synergistically targeted against tumor cells.

  14. A Novel Role of Silibinin as a Putative Epigenetic Modulator in Human Prostate Carcinoma

    Directory of Open Access Journals (Sweden)

    Ioannis Anestopoulos

    2016-12-01

    Full Text Available Silibinin, extracted from milk thistle (Silybum marianum L., has exhibited considerable preclinical activity against prostate carcinoma. Its antitumor and chemopreventive activities have been associated with diverse effects on cell cycle, apoptosis, and receptor-dependent mitogenic signaling pathways. Here we hypothesized that silibinin’s pleiotropic effects may reflect its interference with epigenetic mechanisms in human prostate cancer cells. More specifically, we have demonstrated that silibinin reduces gene expression levels of the Polycomb Repressive Complex 2 (PRC2 members Enhancer of Zeste Homolog 2 (EZH2, Suppressor of Zeste Homolog 12 (SUZ12, and Embryonic Ectoderm Development (EED in DU145 and PC3 human prostate cancer cells, as evidenced by Real Time Polymerase Chain Reaction (RT-PCR. Furthermore immunoblot and immunofluorescence analysis revealed that silibinin-mediated reduction of EZH2 levels was accompanied by an increase in trimethylation of histone H3 on lysine (Κ-27 residue (H3K27me3 levels and that such response was, in part, dependent on decreased expression levels of phosphorylated Akt (ser473 (pAkt and phosphorylated EZH2 (ser21 (pEZH2. Additionally silibinin exerted other epigenetic effects involving an increase in total DNA methyltransferase (DNMT activity while it decreased histone deacetylases 1-2 (HDACs1-2 expression levels. We conclude that silibinin induces epigenetic alterations in human prostate cancer cells, suggesting that subsequent disruptions of central processes in chromatin conformation may account for some of its diverse anticancer effects.

  15. Dendritic cell based PSMA immunotherapy for prostate cancer using a CD40-targeted adenovirus vector.

    Directory of Open Access Journals (Sweden)

    Briana Jill Williams

    Full Text Available Human prostate tumor vaccine and gene therapy trials using ex vivo methods to prime dendritic cells (DCs with prostate specific membrane antigen (PSMA have been somewhat successful, but to date the lengthy ex vivo manipulation of DCs has limited the widespread clinical utility of this approach. Our goal was to improve upon cancer vaccination with tumor antigens by delivering PSMA via a CD40-targeted adenovirus vector directly to DCs as an efficient means for activation and antigen presentation to T-cells. To test this approach, we developed a mouse model of prostate cancer by generating clonal derivatives of the mouse RM-1 prostate cancer cell line expressing human PSMA (RM-1-PSMA cells. To maximize antigen presentation in target cells, both MHC class I and TAP protein expression was induced in RM-1 cells by transduction with an Ad vector expressing interferon-gamma (Ad5-IFNγ. Administering DCs infected ex vivo with CD40-targeted Ad5-huPSMA, as well as direct intraperitoneal injection of the vector, resulted in high levels of tumor-specific CTL responses against RM-1-PSMA cells pretreated with Ad5-IFNγ as target cells. CD40 targeting significantly improved the therapeutic antitumor efficacy of Ad5-huPSMA encoding PSMA when combined with Ad5-IFNγ in the RM-1-PSMA model. These results suggest that a CD-targeted adenovirus delivering PSMA may be effective clinically for prostate cancer immunotherapy.

  16. Castration-Resistant Lgr5+ Cells Are Long-Lived Stem Cells Required for Prostatic Regeneration

    Directory of Open Access Journals (Sweden)

    Bu-er Wang

    2015-05-01

    Full Text Available The adult prostate possesses a significant regenerative capacity that is of great interest for understanding adult stem cell biology. We demonstrate that leucine-rich repeat-containing G protein-coupled receptor 5 (Lgr5 is expressed in a rare population of prostate epithelial progenitor cells, and a castration-resistant Lgr5+ population exists in regressed prostate tissue. Genetic lineage tracing revealed that Lgr5+ cells and their progeny are primarily luminal. Lgr5+ castration-resistant cells are long lived and upon regeneration, both luminal Lgr5+ cells and basal Lgr5+ cells expand. Moreover, single Lgr5+ cells can generate multilineage prostatic structures in renal transplantation assays. Additionally, Lgr5+ cell depletion revealed that the regenerative potential of the castrated adult prostate depends on Lgr5+ cells. Together, these data reveal insights into the cellular hierarchy of castration-resistant Lgr5+ cells, indicate a requirement for Lgr5+ cells during prostatic regeneration, and identify an Lgr5+ adult stem cell population in the prostate.

  17. Cyproterone acetate enhances TRAIL-induced androgen-independent prostate cancer cell apoptosis via up-regulation of death receptor 5.

    Science.gov (United States)

    Chen, Linjie; Wolff, Dennis W; Xie, Yan; Lin, Ming-Fong; Tu, Yaping

    2017-03-07

    Virtually all prostate cancer deaths occur due to obtaining the castration-resistant phenotype after prostate cancer cells escaped from apoptosis and/or growth suppression initially induced by androgen receptor blockade. TNF-related apoptosis-inducing ligand (TRAIL) was an attractive cancer therapeutic agent due to its minimal toxicity to normal cells and remarkable apoptotic activity in tumor cells. However, most localized cancers including prostate cancer are resistant to TRAIL-induced apoptosis, thereby creating a therapeutic challenge of inducing TRAIL sensitivity in cancer cells. Herein the effects of cyproterone acetate, an antiandrogen steroid, on the TRAIL-induced apoptosis of androgen receptor-negative prostate cancer cells are reported. Cell apoptosis was assessed by both annexin V/propidium iodide labeling and poly (ADP-ribose) polymerase cleavage assays. Gene and protein expression changes were determined by quantitative real-time PCR and western blot assays. The effect of cyproterone acetate on gene promoter activity was determined by luciferase reporter assay. Cyproterone acetate but not AR antagonist bicalutamide dramatically increased the susceptibility of androgen receptor-negative human prostate cancer PC-3 and DU145 cells to TRAIL-induced apoptosis but no effects on immortalized human prostate stromal PS30 cells and human embryonic kidney HEK293 cells. Further investigation of the TRAIL-induced apoptosis pathway revealed that cyproterone acetate exerted its effect by selectively increasing death receptor 5 (DR5) mRNA and protein expression. Cyproterone acetate treatment also increased DR5 gene promoter activity, which could be abolished by mutation of a consensus binding domain of transcription factor CCAAT-enhancer-binding protein homologous protein (CHOP) in the DR5 gene promoter. Cyproterone acetate increases CHOP expression in a concentration and time-dependent manner and endoplasmic reticulum stress reducer 4-phenylbutyrate could block

  18. Anatomy and Histology of the Human and Murine Prostate.

    Science.gov (United States)

    Ittmann, Michael

    2018-05-01

    The human and murine prostate glands have similar functional roles in the generation of seminal fluid to assist in reproduction. There are significant differences in the anatomy and histology of murine and human prostate and knowledge of the normal anatomy and histology of the murine prostate is essential to interpreting changes in genetically engineered mouse models. In this review, the normal anatomy and histology of both human and mouse prostate will be described. Copyright © 2018 Cold Spring Harbor Laboratory Press; all rights reserved.

  19. Microwave mediated radiosynthesis of [F-18] FLT and its in-vitro study with androgen independent human prostate cancer cell line (PC-3)

    International Nuclear Information System (INIS)

    Ponde, D.E.; Dence, C.S.; Oyama, N.; Welch, M.J.

    2003-01-01

    The aim of this work was to improve the radiosynthesis of [F-18] FLT and to study its usefulness in monitoring change of proliferative activity of prostate cancer cells in the early phase of therapy. Method: Starting with anhydrothymidine, [F-18] FLT was synthesized by microwave mediated nucleophilic displacement by fluoride ion followed by acid hydrolysis in a synthesis time of just 55 minutes, which included Oasis solid phase and HPLC purification. The total radiochemical yield was 10-15% (at EOS), and the radiochemical purity was >99%. An in vitro study was carried out with androgen-independent human prostate cancer cell line PC-3. Two X 10e5 cells were seeded in 6 well plates with Ham's F-12K medium with 2 mM L-glutamine adjusted to contain 1.5 g/L sodium bicarbonate supplemented with 10% heat activated FBS. One day later, PC-3 cells were at 50% confluent, the media was removed and the cells divided into two groups. In one group, cells were suspended in fresh media as above with 10% FBS, whereas in the other group cells were suspended in fresh media as above but without serum. Twenty-four hours later, [F-18] FLT was added to each flask (n=3). The cell-associated uptake of [F-18] FLT at 37 deg C was determined at 0, 1, 3, and 6 h after incubation. [F-18] FLT uptake in PC-3 cells decreased by 55% (from 9% to 4%) after 24h incubation with serum free media, indicating its potential usefulness to monitor cell proliferation in androgen-independent human prostate cancer. Studies to ascertain the uptake-mechanism are in the way. NIH grant HL13851

  20. Sarcosine induces increase in HER2/neu expression in androgen-dependent prostate cancer cells

    DEFF Research Database (Denmark)

    Dahl, Malin; Bouchelouche, Pierre; Kramer-Marek, Gabriela

    2011-01-01

    Increasing evidence suggests that Human epidermal growth factor receptor 2 (HER2/neu) is involved in progression of prostate cancer. Recently, sarcosine was reported to be highly increased during prostate cancer progression, and exogenous sarcosine induces an invasive phenotype in benign prostate...... epithelial cells. The aim of this work was to investigate the effect of sarcosine on HER2/neu expression in prostate cancer cell lines LNCaP (androgen dependent), PC-3 and DU145 (both androgen independent). Relative amounts of HER2/neu and androgen receptor (AR) transcripts were determined using RT...... that sarcosine is involved in the regulation of the oncoprotein HER2/neu. Thus, sarcosine may induce prostate cancer progression by increased HER2/neu expression. However, detailed information on cellular mechanisms remains to be elucidated....

  1. Arctigenin inhibits prostate tumor cell growth in vitro and in vivo

    Science.gov (United States)

    Wang, Piwen; Solorzano, Walter; Diaz, Tanya; Magyar, Clara E.; Henning, Susanne M.; Vadgama, Jaydutt V.

    2017-01-01

    The low bioavailability of most phytochemicals limits their translation to humans. We investigated whether arctigenin, a novel anti-inflammatory lignan from the seeds of Arctium lappa, has favorable bioavailability/potency against prostate cancer. The anticarcinogenic activity of arctigenin was investigated both in vitro using the androgen-sensitive LNCaP and LAPC-4 human prostate cancer cells and pre-malignant WPE1-NA22 cells, and in vivo using xenograft mouse models. Arctigenin at lower doses (< 2μM) significantly inhibited the proliferation of LNCaP and LAPC-4 cells by 30-50% at 48h compared to control, and inhibited WPE1-NA22 cells by 75%, while did not affect normal prostate epithelial cells. Male severe combined immunodeficiency (SCID) mice were implanted subcutaneously with LAPC-4 cells for in vivo studies. In one experiment, the intervention started one week after tumor implantation. Mice received arctigenin at 50mg/kg (LD) or 100mg/kg (HD) b.w. daily or vehicle control by oral gavage. After 6 weeks, tumor growth was inhibited by 50% (LD) and 70% (HD) compared to control. A stronger tumor inhibitory effect was observed in a second experiment where arctigenin intervention started two weeks prior to tumor implantation. Arc was detectable in blood and tumors in Arc groups, with a mean value up to 2.0 μM in blood, and 8.3 nmol/g tissue in tumors. Tumor levels of proliferation marker Ki67, total and nuclear androgen receptor, and growth factors including VEGF, EGF, and FGF-β were significantly decreased by Arc, along with an increase in apoptosis marker of Bax/Bcl-2 ratio. Genes responsive to arctigenin were identified including TIMP3 and ZNF185, and microRNAs including miR-126-5p, and miR-21-5p. This study provides the first in vivo evidence of the strong anticancer activity of arctigenin in prostate cancer. The effective dose of arctigenin in vitro is physiologically achievable in vivo, which provides a high promise in its translation to human application

  2. Dasatinib inhibits both osteoclast activation and prostate cancer PC-3-cell-induced osteoclast formation.

    Science.gov (United States)

    Araujo, John C; Poblenz, Ann; Corn, Paul; Parikh, Nila U; Starbuck, Michael W; Thompson, Jerry T; Lee, Francis; Logothetis, Christopher J; Darnay, Bryant G

    2009-11-01

    Therapies to target prostate cancer bone metastases have only limited effects. New treatments are focused on the interaction between cancer cells, bone marrow cells and the bone matrix. Osteoclasts play an important role in the development of bone tumors caused by prostate cancer. Since Src kinase has been shown to be necessary for osteoclast function, we hypothesized that dasatinib, a Src family kinase inhibitor, would reduce osteoclast activity and prostate cancer (PC-3) cell-induced osteoclast formation. Dasatinib inhibited RANKL-induced osteoclast differentiation of bone marrow-derived monocytes with an EC(50) of 7.5 nM. PC-3 cells, a human prostate cancer cell line, were able to differentiate RAW 264.7 cells, a murine monocytic cell line, into osteoclasts, and dasatinib inhibited this differentiation. In addition, conditioned medium from PC-3 cell cultures was able to differentiate RAW 264.7 cells into osteoclasts and this too, was inhibited by dasatinib. Even the lowest concentration of dasatinib, 1.25 nmol, inhibited osteoclast differentiation by 29%. Moreover, dasatinib inhibited osteoclast activity by 58% as measured by collagen 1 release. We performed in vitro experiments utilizing the Src family kinase inhibitor dasatinib to target osteoclast activation as a means of inhibiting prostate cancer bone metastases. Dasatinib inhibits osteoclast differentiation of mouse primary bone marrow-derived monocytes and PC-3 cell-induced osteoclast differentiation. Dasatinib also inhibits osteoclast degradation activity. Inhibiting osteoclast differentiation and activity may be an effective targeted therapy in patients with prostate cancer bone metastases.

  3. Ghrelin inhibits proliferation and increases T-type Ca{sup 2+} channel expression in PC-3 human prostate carcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Diaz-Lezama, Nundehui; Hernandez-Elvira, Mariana [Laboratory of Neuroendocrinology, Institute of Physiology, Autonomous University of Puebla (BUAP), Puebla (Mexico); Sandoval, Alejandro [School of Medicine FES Iztacala, National Autonomous University of Mexico (UNAM), Tlalnepantla (Mexico); Monroy, Alma; Felix, Ricardo [Department of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav-IPN), Mexico City (Mexico); Monjaraz, Eduardo, E-mail: emguzman@siu.buap.mx [Laboratory of Neuroendocrinology, Institute of Physiology, Autonomous University of Puebla (BUAP), Puebla (Mexico)

    2010-12-03

    Research highlights: {yields} Ghrelin decreases prostate carcinoma PC-3 cells proliferation. {yields} Ghrelin favors apoptosis in PC-3 cells. {yields} Ghrelin increase in intracellular free Ca{sup 2+} levels in PC-3 cells. {yields} Grelin up-regulates expression of T-type Ca{sup 2+} channels in PC-3 cells. {yields} PC-3 cells express T-channels of the Ca{sub V}3.1 and Ca{sub V}3.2 subtype. -- Abstract: Ghrelin is a multifunctional peptide hormone with roles in growth hormone release, food intake and cell proliferation. With ghrelin now recognized as important in neoplastic processes, the aim of this report is to present findings from a series of in vitro studies evaluating the cellular mechanisms involved in ghrelin regulation of proliferation in the PC-3 human prostate carcinoma cells. The results showed that ghrelin significantly decreased proliferation and induced apoptosis. Consistent with a role in apoptosis, an increase in intracellular free Ca{sup 2+} levels was observed in the ghrelin-treated cells, which was accompanied by up-regulated expression of T-type voltage-gated Ca{sup 2+} channels. Interestingly, T-channel antagonists were able to prevent the effects of ghrelin on cell proliferation. These results suggest that ghrelin inhibits proliferation and may promote apoptosis by regulating T-type Ca{sup 2+} channel expression.

  4. Antiproliferative Evaluation of Isofuranodiene on Breast and Prostate Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Michela Buccioni

    2014-01-01

    Full Text Available The anticancer activity of isofuranodiene, extracted from Smyrnium olusatrum, was evaluated in human breast adenocarcinomas MDA-MB 231 and BT 474, and Caucasian prostate adenocarcinoma PC 3 cell lines by MTS assay. MTS assay showed a dose-dependent growth inhibition in the tumor cell lines after isofuranodiene treatment. The best antiproliferative activity of the isofuranodiene was found on PC 3 cells with an IC50 value of 29 μM, which was slightly less than the inhibition against the two breast adenocarcinoma cell lines with IC50 values of 59 and 55 μM on MDA-MB 231 and BT 474, respectively. Hoechst 33258 assay was performed in order to study the growth inhibition mechanism in prostate cancer cell line; the results indicate that isofuranodiene induces apoptosis. Overall, the understudy compound has a good anticancer activity especially towards the PC 3. On the contrary, it is less active on Chinese hamster ovary cells (CHO and human embryonic kidney (HEK 293 appearing as a good candidate as a potential natural anticancer drug with low side effects.

  5. Evaluation of anticancer activity of Cordia dichotoma leaves against a human prostate carcinoma cell line, PC3.

    Science.gov (United States)

    Rahman, Md Azizur; Sahabjada; Akhtar, Juber

    2017-07-01

    Mechanisms of antioxidant and apoptosis induction may be involved in the management of cancer by medicinal plants. Aim of the study was designed to evaluate anticancer activity of the methanolic extract of Cordia dichotoma leaves (MECD) against a human prostate carcinoma cell line, PC3. Flavonoid content was determined by colorimetric principle and antioxidant activity by various in vitro assays. MTT, DCFH-DA and DAPI staining assays were performed for the evaluation of cytotoxicity, analysis of induction of apoptosis and intracellular reactive oxygen species (ROS) activity level by MECD against human prostate carcinoma cell line, PC3. Flavonoid content was found to be 160 mg QE/g extract. IC 50 values for MECD treatment in various assays based on scavenging of 2,2-diphenyl-1-picrylhydrazyl, 2,2-azinobis(3-ethylenebenzothiazoline-6-sulfonic acid), nitric oxide, peroxy radical, superoxide anion, hydroxy radical were found to be 315.5, 38, 476, 523, 197, 82 μg/ml respectively. MECD exposure to PC3 cells significantly increased the cell death (p < 0.001, IC 50  = 74.5 μg/ml), nuclear condensation, apoptosis (p < 0.001) and induced production of ROS (p < 0.001) initiating apoptotic cascade in a dose dependent manner. This study confirms that MECD possesses antioxidant property and can prevent carcinogenesis by reducing oxidative stress. MECD possesses anticancer activity and lead to PC3 cell death via induction of apoptosis mediated through excessive ROS generation. Flavonoids in MECD may be responsible for these activities due to dual antioxidant and pro-oxidant properties.

  6. Effects of gamma-radiation on cell growth, cycle arrest, death, and superoxide dismutase expression by DU 145 human prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Vucic V.

    2006-01-01

    Full Text Available Gamma-irradiation (gamma-IR is extensively used in the treatment of hormone-resistant prostate carcinoma. The objective of the present study was to investigate the effects of 60Co gamma-IR on the growth, cell cycle arrest and cell death of the human prostate cancer cell line DU 145. The viability of DU 145 cells was measured by the Trypan blue exclusion assay and the 3(4,5-dimethylthiazol-2-yl-2,5,diphenyltetrazolium bromide test. Bromodeoxyuridine incorporation was used for the determination of cell proliferation. Cell cycle arrest and cell death were analyzed by flow cytometry. Superoxide dismutase (SOD, specifically CuZnSOD and MnSOD protein expression, after 10 Gy gamma-IR, was determined by Western immunoblotting analysis. gamma-IR treatment had a significant (P < 0.001 antiproliferative and cytotoxic effect on DU 145 cells. Both effects were time and dose dependent. Also, the dose of gamma-IR which inhibited DNA synthesis and cell proliferation by 50% was 9.7 Gy. Furthermore, gamma-IR induced cell cycle arrest in the G2/M phase and the percentage of cells in the G2/M phase was increased from 15% (control to 49% (IR cells, with a nonsignificant induction of apoptosis. Treatment with 10 Gy gamma-IR for 24, 48, and 72 h stimulated CuZnSOD and MnSOD protein expression in a time-dependent manner, approximately by 3- to 3.5-fold. These data suggest that CuZnSOD and MnSOD enzymes may play an important role in the gamma-IR-induced changes in DU 145 cell growth, cell cycle arrest and cell death.

  7. Regulation of DU145 prostate cancer cell growth by Scm-like with four mbt domains 2.

    Science.gov (United States)

    Lee, Kwanghyun; Na, Wonho; Maeng, Je-Heon; Wu, Hongjin; Ju, Bong-Gun

    2013-03-01

    Mammalian SFMBTs have been considered to be polycomb group repressors. However, molecular mechanisms underlying mammalian SFMBTs-mediated gene regulation and their biological function have not been characterized. In the present study, we identified YY1 and methylated histones as interacting proteins of human SFMBT2. We also found that human SFMBT2 binds preferentially to methylated histone H3 and H4 that are associated with transcriptional repression. Using DU145 prostate cancer cells as a model, we showed that SFMBT2 has a transcriptional repression activity on HOXB13 gene expression. In addition, occupancy of SFMBT2 coincided with enrichment of diand tri-methylated H3K9 and H4K20 as well as tri-methylated H3K27 at the HOXB13 gene promoter. When SFMBT2 was depleted by siRNA in DU145 prostate cancer cells, significant up-regulation of HOXB13 gene expression and decreased cell growth were observed. Collectively, our findings indicate that human SFMBT2 may regulate cell growth via epigenetic regulation of HOXB13 gene expression in DU145 prostate cancer cells.

  8. The alkylphospholipid, perifosine, radiosensitizes prostate cancer cells both in vitro and in vivo

    International Nuclear Information System (INIS)

    Gao, Yuanhong; Ittmann, Michael; Thompson, Timothy C; Butler, E Brian; Xu, Bo; Teh, Bin S; Ishiyama, Hiromichi; Sun, Mianen; Brinkman, Kathryn L; Wang, Xiaozhen; Zhu, Julie; Mai, Weiyuan; Huang, Ying; Floryk, Daniel

    2011-01-01

    Perifosine is a membrane-targeted alkylphospholipid developed to inhibit the PI3K/Akt pathway and has been suggested as a favorable candidate for combined use with radiotherapy. In this study, we investigated the effect of the combined treatment of perifosine and radiation (CTPR) on prostate cancer cells in vitro and on prostate cancer xenografts in vivo. Human prostate cancer cell line, CWR22RV1, was treated with perifosine, radiation, or CTPR. Clonogenic survival assays, sulforhodamine B cytotoxity assays and cell density assays were used to assess the effectiveness of each therapy in vitro. Measurements of apoptosis, cell cycle analysis by flow cytometry and Western blots were used to evaluate mechanisms of action in vitro. Tumor growth delay assays were used to evaluate radiation induced tumor responses in vivo. In vitro, CTPR had greater inhibitory effects on prostate cancer cell viability and clonogenic survival than either perifosine or radiation treatment alone. A marked increase in prostate cancer cell apoptosis was noted in CTPR. Phosphorylation of AKT-T308 AKT and S473 were decreased when using perifosine treatment or CTPR. Cleaved caspase 3 was significantly increased in the CTPR group. In vivo, CTPR had greater inhibitory effects on the growth of xenografts when compared with perifosine or radiation treatment alone groups. Perifosine enhances prostate cancer radiosensitivity in vitro and in vivo. These data provide strong support for further development of this combination therapy in clinical studies

  9. Combination of α-Tomatine and Curcumin Inhibits Growth and Induces Apoptosis in Human Prostate Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Huarong Huang

    Full Text Available α-Tomatine is a glycoalkaloid found in tomatoes and curcumin is a major yellow pigment of turmeric. In the present study, the combined effect of these two compounds on prostate cancer cells was studied. Treatment of different prostate cancer cells with curcumin or α-tomatine alone resulted in growth inhibition and apoptosis in a concentration-dependent manner. Combinations of α-tomatine and curcumin synergistically inhibited the growth and induced apoptosis in prostate cancer PC-3 cells. Effects of the α-tomatine and curcumin combination were associated with synergistic inhibition of NF-κB activity and a potent decrease in the expression of its downstream gene Bcl-2 in the cells. Moreover, strong decreases in the levels of phospho-Akt and phosphor-ERK1/2 were found in PC-3 cells treated with α-tomatine and curcumin in combination. In animal experiment, SCID mice with PC-3 xenograft tumors were treated with α-tomatine and curcumin. Combination of α-tomatine and curcumin more potently inhibited the growth of PC-3 tumors than either agent alone. Results from the present study indicate that α-tomatine in combination with curcumin may be an effective strategy for inhibiting the growth of prostate cancer.

  10. Suppression of growth and invasive behavior of human prostate cancer cells by ProstaCaid™: mechanism of activity.

    Science.gov (United States)

    Jiang, Jiahua; Eliaz, Isaac; Sliva, Daniel

    2011-06-01

    Since the use of dietary supplements as alternative treatments or adjuvant therapies in cancer treatment is growing, a scientific verification of their biological activity and the detailed mechanisms of their action are necessary for the acceptance of dietary supplements in conventional cancer treatments. In the present study we have evaluated the anti-cancer effects of dietary supplement ProstaCaid™ (PC) which contains mycelium from medicinal mushrooms (Ganoderma lucidum, Coriolus versicolor, Phellinus linteus), saw palmetto berry, pomegranate, pumpkin seed, green tea [40% epigallocatechin-3-gallate (EGCG)], Japanese knotweed (50% resveratrol), extracts of turmeric root (BCM-95®), grape skin, pygeum bark, sarsaparilla root, Scutellaria barbata, eleuthero root, Job's tears, astragalus root, skullcap, dandelion, coptis root, broccoli, and stinging nettle, with purified vitamin C, vitamin D3, selenium, quercetin, citrus bioflavonoid complex, β sitosterolzinc, lycopene, α lipoic acid, boron, berberine and 3.3'-diinodolymethane (DIM). We show that PC treatment resulted in the inhibition of cell proliferation of the highly invasive human hormone refractory (independent) PC-3 prostate cancer cells in a dose- and time-dependent manner with IC50 56.0, 45.6 and 39.0 µg/ml for 24, 48 and 72 h, respectively. DNA-microarray analysis demonstrated that PC inhibits proliferation through the modulation of expression of CCND1, CDK4, CDKN1A, E2F1, MAPK6 and PCNA genes. In addition, PC also suppresses metastatic behavior of PC-3 by the inhibition of cell adhesion, cell migration and cell invasion, which was associated with the down-regulation of expression of CAV1, IGF2, NR2F1, and PLAU genes and suppressed secretion of the urokinase plasminogen activator (uPA) from PC-3 cells. In conclusion, the dietary supplement PC is a promising natural complex with the potency to inhibit invasive human prostate cancer.

  11. CNPY2 inhibits MYLIP-mediated AR protein degradation in prostate cancer cells.

    Science.gov (United States)

    Ito, Saya; Ueno, Akihisa; Ueda, Takashi; Nakagawa, Hideo; Taniguchi, Hidefumi; Kayukawa, Naruhiro; Fujihara-Iwata, Atsuko; Hongo, Fumiya; Okihara, Koji; Ukimura, Osamu

    2018-04-03

    The androgen receptor (AR) is a ligand-dependent transcription factor that promotes prostate cancer (PC) cell growth through control of target gene expression. This report suggests that Canopy FGF signaling regulator 2 (CNPY2) controls AR protein levels in PC cells. We found that AR was ubiquitinated by an E3 ubiquitin ligase, myosin regulatory light chain interacting protein (MYLIP) and then degraded through the ubiquitin-proteasome pathway. CNPY2 decreased the ubiquitination activity of MYLIP by inhibition of interaction between MYLIP and UBE2D1, an E2 ubiquitin ligase. CNPY2 up-regulated gene expression of AR target genes such as KLK3 gene which encodes the prostate specific antigen (PSA) and promoted cell growth of PC cells. The cell growth inhibition by CNPY2 knockdown was rescued by AR overexpression. Furthermore, positive correlation of expression levels between CNPY2 and AR/AR target genes was observed in tissue samples from human prostate cancer patients. Together, these results suggested that CNPY2 promoted cell growth of PC cells by inhibition of AR protein degradation through MYLIP-mediated AR ubiquitination.

  12. Taxifolin enhances andrographolide-induced mitotic arrest and apoptosis in human prostate cancer cells via spindle assembly checkpoint activation.

    Directory of Open Access Journals (Sweden)

    Zhong Rong Zhang

    Full Text Available Andrographolide (Andro suppresses proliferation and triggers apoptosis in many types of cancer cells. Taxifolin (Taxi has been proposed to prevent cancer development similar to other dietary flavonoids. In the present study, the cytotoxic and apoptotic effects of the addition of Andro alone and Andro and Taxi together on human prostate carcinoma DU145 cells were assessed. Andro inhibited prostate cancer cell proliferation by mitotic arrest and activation of the intrinsic apoptotic pathway. Although the effect of Taxi alone on DU145 cell proliferation was not significant, the combined use of Taxi with Andro significantly potentiated the anti-proliferative effect of increased mitotic arrest and apoptosis by enhancing the cleavage of poly(ADP-ribose polymerase, and caspases-7 and -9. Andro together with Taxi enhanced microtubule polymerization in vitro, and they induced the formation of twisted and elongated spindles in the cancer cells, thus leading to mitotic arrest. In addition, we showed that depletion of MAD2, a component in the spindle assembly checkpoint (SAC, alleviated the mitotic block induced by the two compounds, suggesting that they trigger mitotic arrest by SAC activation. This study suggests that the anti-cancer activity of Andro can be significantly enhanced in combination with Taxi by disrupting microtubule dynamics and activating the SAC.

  13. Taxifolin Enhances Andrographolide-Induced Mitotic Arrest and Apoptosis in Human Prostate Cancer Cells via Spindle Assembly Checkpoint Activation

    Science.gov (United States)

    Wong, Matthew Man-Kin; Chiu, Sung-Kay; Cheung, Hon-Yeung

    2013-01-01

    Andrographolide (Andro) suppresses proliferation and triggers apoptosis in many types of cancer cells. Taxifolin (Taxi) has been proposed to prevent cancer development similar to other dietary flavonoids. In the present study, the cytotoxic and apoptotic effects of the addition of Andro alone and Andro and Taxi together on human prostate carcinoma DU145 cells were assessed. Andro inhibited prostate cancer cell proliferation by mitotic arrest and activation of the intrinsic apoptotic pathway. Although the effect of Taxi alone on DU145 cell proliferation was not significant, the combined use of Taxi with Andro significantly potentiated the anti-proliferative effect of increased mitotic arrest and apoptosis by enhancing the cleavage of poly(ADP-ribose) polymerase, and caspases-7 and -9. Andro together with Taxi enhanced microtubule polymerization in vitro, and they induced the formation of twisted and elongated spindles in the cancer cells, thus leading to mitotic arrest. In addition, we showed that depletion of MAD2, a component in the spindle assembly checkpoint (SAC), alleviated the mitotic block induced by the two compounds, suggesting that they trigger mitotic arrest by SAC activation. This study suggests that the anti-cancer activity of Andro can be significantly enhanced in combination with Taxi by disrupting microtubule dynamics and activating the SAC. PMID:23382917

  14. Amyloid precursor protein regulates migration and metalloproteinase gene expression in prostate cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Miyazaki, Toshiaki; Ikeda, Kazuhiro; Horie-Inoue, Kuniko [Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama 350-1241 (Japan); Inoue, Satoshi, E-mail: INOUE-GER@h.u-tokyo.ac.jp [Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama 350-1241 (Japan); Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655 (Japan); Department of Anti-Aging Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655 (Japan)

    2014-09-26

    Highlights: • APP knockdown reduced proliferation and migration of prostate cancer cells. • APP knockdown reduced expression of metalloproteinase and EMT-related genes. • APP overexpression promoted LNCaP cell migration. • APP overexpression increased expression of metalloproteinase and EMT-related genes. - Abstract: Amyloid precursor protein (APP) is a type I transmembrane protein, and one of its processed forms, β-amyloid, is considered to play a central role in the development of Alzheimer’s disease. We previously showed that APP is a primary androgen-responsive gene in prostate cancer and that its increased expression is correlated with poor prognosis for patients with prostate cancer. APP has also been implicated in several human malignancies. Nevertheless, the mechanism underlying the pro-proliferative effects of APP on cancers is still not well-understood. In the present study, we explored a pathophysiological role for APP in prostate cancer cells using siRNA targeting APP (siAPP). The proliferation and migration of LNCaP and DU145 prostate cancer cells were significantly suppressed by siAPP. Differentially expressed genes in siAPP-treated cells compared to control siRNA-treated cells were identified by microarray analysis. Notably, several metalloproteinase genes, such as ADAM10 and ADAM17, and epithelial–mesenchymal transition (EMT)-related genes, such as VIM, and SNAI2, were downregulated in siAPP-treated cells as compared to control cells. The expression of these genes was upregulated in LNCaP cells stably expressing APP when compared with control cells. APP-overexpressing LNCaP cells exhibited enhanced migration in comparison to control cells. These results suggest that APP may contribute to the proliferation and migration of prostate cancer cells by modulating the expression of metalloproteinase and EMT-related genes.

  15. Ganoderma lucidum suppresses angiogenesis through the inhibition of secretion of VEGF and TGF-β1 from prostate cancer cells

    International Nuclear Information System (INIS)

    Stanley, Gwenaelle; Harvey, Kevin; Slivova, Veronika; Jiang Jiahua; Sliva, Daniel

    2005-01-01

    Ganoderma lucidum (G. lucidum) is a popular medicinal mushroom that has been used as a home remedy for the general promotion of health and longevity in East Asia. The dried powder of G. lucidum, which was recommended as a cancer chemotherapy agent in traditional Chinese medicine, is currently popularly used worldwide in the form of dietary supplements. We have previously demonstrated that G. lucidum induces apoptosis, inhibits cell proliferation, and suppresses cell migration of highly invasive human prostate cancer cells PC-3. However, the molecular mechanism(s) responsible for the inhibitory effects of G. lucidum on the prostate cancer cells has not been fully elucidated. In the present study, we examined the effect of G. lucidum on angiogenesis related to prostate cancer. We found that G. lucidum inhibits the early event in angiogenesis, capillary morphogenesis of the human aortic endothelial cells. These effects are caused by the inhibition of constitutively active AP-1 in prostate cancer cells, resulting in the down-regulation of secretion of VEGF and TGF-β1 from PC-3 cells. Thus, G. lucidum modulates the phosphorylation of Erk1/2 and Akt kinases in PC-3 cells, which in turn inhibits the activity of AP-1. In summary, our results suggest that G. lucidum inhibits prostate cancer-dependent angiogenesis by modulating MAPK and Akt signaling and could have potential therapeutic use for the treatment of prostate cancer

  16. A comparative study of recombinant and native frutalin binding to human prostate tissues

    Directory of Open Access Journals (Sweden)

    Domingues Lucília

    2009-09-01

    Full Text Available Abstract Background Numerous studies indicate that cancer cells present an aberrant glycosylation pattern that can be detected by lectin histochemistry. Lectins have shown the ability to recognise these modifications in several carcinomas, namely in the prostate carcinoma, one of the most lethal diseases in man. Thus, the aim of this work was to investigate if the α-D-galactose-binding plant lectin frutalin is able to detect such changes in the referred carcinoma. Frutalin was obtained from different sources namely, its natural source (plant origin and a recombinant source (Pichia expression system. Finally, the results obtained with the two lectins were compared and their potential use as prostate tumour biomarkers was discussed. Results The binding of recombinant and native frutalin to specific glycoconjugates expressed in human prostate tissues was assessed by using an immuhistochemical technique. A total of 20 cases of prostate carcinoma and 25 cases of benign prostate hyperplasia were studied. Lectins bound directly to the tissues and anti-frutalin polyclonal antibody was used as the bridge to react with the complex biotinilated anti-rabbit IgG plus streptavidin-conjugated peroxidase. DAB was used as visual indicator to specifically localise the binding of the lectins to the tissues. Both lectins bound to the cells cytoplasm of the prostate carcinoma glands. The binding intensity of native frutalin was stronger in the neoplasic cells than in hyperplasic cells; however no significant statistical correlation could be found (P = 0.051. On the other hand, recombinant frutalin bound exclusively to the neoplasic cells and a significant positive statistical correlation was obtained (P Conclusion Native and recombinant frutalin yielded different binding responses in the prostate tissues due to their differences in carbohydrate-binding affinities. Also, this study shows that both lectins may be used as histochemical biomarkers for the prostate

  17. Dasatinib inhibits both osteoclast activation and prostate cancer PC-3 cell-induced osteoclast formation

    Science.gov (United States)

    Araujo, John C.; Poblenz, Ann; Corn, Paul G.; Parikh, Nila U.; Starbuck, Michael W.; Thompson, Jerry T.; Lee, Francis; Logothetis, Christopher J.; Darnay, Bryant G.

    2013-01-01

    Purpose Therapies to target prostate cancer bone metastases have only limited effects. New treatments are focused on the interaction between cancer cells, bone marrow cells and the bone matrix. Osteoclasts play an important role in the development of bone tumors caused by prostate cancer. Since Src kinase has been shown to be necessary for osteoclast function, we hypothesized that dasatinib, a Src family kinase inhibitor, would reduce osteoclast activity and prostate cancer (PC-3) cell-induced osteoclast formation. Results Dasatinib inhibited RANKL-induced osteoclast differentiation of bone marrow-derived monocytes with an EC50 of 7.5 nM. PC-3 cells, a human prostate cancer cell line, were able to differentiate RAW 264.7 cells, a murine monocytic cell line, into osteoclasts and dasatinib inhibited this differentiation. In addition, conditioned medium from PC-3 cell cultures was able to differentiate RAW 264.7 cells into osteoclasts and this too, was inhibited by dasatinib. Even the lowest concentration of dasatinib, 1.25 nmol, inhibited osteoclast differentiation by 29%. Moreover, dasatinib inhibited osteoclast activity by 58% as measured by collagen 1 release. Experimental design We performed in vitro experiments utilizing the Src family kinase inhibitor dasatinib to target osteoclast activation as a means of inhibiting prostate cancer bone metastases. Conclusion Dasatinib inhibits osteoclast differentiation of mouse primary bone marrow-derived monocytes and PC-3 cell-induced osteoclast differentiation. Dasatinib also inhibits osteoclast degradation activity. Inhibiting osteoclast differentiation and activity may be an effective targeted therapy in patients with prostate cancer bone metastases. PMID:19855158

  18. Androgen Receptor Expression in Epithelial and Stromal Cells of Prostatic Carcinoma and Benign Prostatic Hyperplasia.

    Science.gov (United States)

    Filipovski, Vanja; Kubelka-Sabit, Katerina; Jasar, Dzengis; Janevska, Vesna

    2017-08-15

    Prostatic carcinoma (PCa) derives from prostatic epithelial cells. However stromal microenvironment, associated with malignant epithelium, also plays a role in prostatic carcinogenesis. Alterations in prostatic stromal cells contribute to the loss of growth control in epithelial cells that lead to progression of PCa. To analyse the differences between Androgen Receptor (AR) expression in both epithelial and stromal cells in PCa and the surrounding benign prostatic hyperplasia (BPH) and to compare the results with tumour grade. Samples from 70 cases of radical prostatectomy specimens were used. The expression and intensity of the signal for AR was analysed in the epithelial and stromal cells of PCa and BPH, and the data was quantified using histological score (H-score). AR showed significantly lower expression in both epithelial and stromal cells of PCa compared to BPH. In PCa a significant positive correlation of AR expression was found between stromal and epithelial cells of PCa. AR expression showed a correlation between the stromal cells of PCa and tumour grade. AR expression is reduced in epithelial and stromal cells of PCa. Expression of AR in stromal cells of PCa significantly correlates with tumour grade.

  19. hZip2 and hZip3 zinc transporters are down regulated in human prostate adenocarcinomatous glands

    Directory of Open Access Journals (Sweden)

    Franklin Renty B

    2007-06-01

    Full Text Available Abstract Background The normal human prostate glandular epithelium has the unique function of accumulating high levels of zinc. In prostate cancer this capability is lost as an early event in the development of the malignant cells. The mechanism and factors responsible for the ability of the normal epithelial cells to accumulate zinc and the loss of this capability in the malignant cells need to be identified. We previously reported that Zip1 is an important zinc uptake transporter in prostate cells and is down regulated in the malignant cells in situ along with the depletion of zinc levels. In this report we investigated the expression of two other Zip family zinc transporters, Zip2 and Zip3 in malignant versus nonmalignant (normal and BPH glands. Zip2 and Zip3 relative protein levels were determined by immunohistochemistry analysis of human prostate tissue sections. Results Normal and BPH glandular epithelium consistently exhibited the strong presence of both Zip 2 and Zip3; whereas both transporters consistently were essentially non-detectable in the malignant glands. This represents the first report of the expression of Zip3 in human prostate tissue; and more importantly, reveals that ZiP2 and Zip3 are down regulated in malignant cells in situ as we also had demonstrated for Zip1. Zip2 and Zip3 transporter proteins were localized predominantly at the apical cell membrane, which is in contrast to the Zip1 localization at the basolateral membrane. Zip2 and Zip3 seemingly are associated with the re-uptake of zinc from prostatic fluid. Conclusion These results coupled with previous reports implicate Zip2 and Zip3 along with Zip1 as important zinc uptake transporters involved in the unique ability of prostate cells to accumulate high cellular zinc levels. Zip1 is important for the extraction of zinc from circulation as the primary source of cellular zinc. Zip 2 and Zip3 appear to be important for retention of the zinc in the cellular compartment

  20. Antiproliferative effect of a polysaccharide fraction of a 20% methanolic extract of stinging nettle roots upon epithelial cells of the human prostate (LNCaP).

    Science.gov (United States)

    Lichius, J J; Lenz, C; Lindemann, P; Müller, H H; Aumüller, G; Konrad, L

    1999-10-01

    In Germany, plant extracts are often used in the treatment of early stages of benign prostate hyperplasia (BPH). The effects of different concentrations of the polysaccharide fraction of the 20% methanolic extract of stinging nettle roots (POLY-M) on the cellular proliferation of lymph node carcinoma of the prostate (LNCaP) cells were determined by measurement of the genomic DNA content of the samples. All concentrations of POLY-M showed an inhibitory effect on the growth of the LNCaP cells during 7 days except the two lowest concentrations. The reduced proliferation of POLY-M treated LNCaP cells was significantly (p < 0.05) different from the untreated control. The inhibition was time- and concentration-dependent with the maximum suppression (50%) on day 6 and at concentrations of 1.0E-9 and 1.0E-11 mg/ml. No cytotoxic effect of POLY-M on cell proliferation was observed. The in vitro results show for the first time an antiproliferative effect of Urtica compounds on human prostatic epithelium and confirm our previous in vivo findings.

  1. Overexpression of HepaCAM inhibits cell viability and motility through suppressing nucleus translocation of androgen receptor and ERK signaling in prostate cancer.

    Science.gov (United States)

    Song, Xuedong; Wang, Yin; Du, Hongfei; Fan, Yanru; Yang, Xue; Wang, Xiaorong; Wu, Xiaohou; Luo, Chunli

    2014-07-01

    HepaCAM is suppressed in a variety of human cancers, and involved in cell adhesion, growth, migration, invasion, and survival. However, the expression and function of HepaCAM in prostate cancer are still unknown. HepaCAM expression has been detected by RT-PCR, Western blotting and immunohistochemistry staining in prostate cell lines RWPE-1, LNCap, DU145, PC3, and in 75 human prostate tissue specimens, respectively. Meanwhile, the cell proliferation ability was detected by WST-8 assay. The role of HepaCAM in prostate cancer cell migration and invasion was examined by wound healing and transwell assay. And flow cytometry was used to observe the apoptosis of prostate cancer cells. Then we detected changes of Androgen Receptor translocation and ERK signaling using immunofluorescence staining and western blot after overexpression of HepaCAM. The HepaCAM expression was significantly down-regulated in prostate cancer tissues and undetected in prostate cancer cells. However, the low HepaCAM expression was not statistically associated with clinicopathological characteristics of prostate cancer. Overexpression of HepaCAM in prostate cancer cells decreased the cell proliferation, migration and invasion, and induced the cell apoptosis. Meanwhile, HepaCAM prevented the androgen receptor translocation from the cytoplasm to the nucleus and down-regulated the MAPK/ERK signaling. Our results suggested that HepaCAM acted as a tumor suppressor in prostate cancer. HepaCAM inhibited cell viability and motility which might be through suppressing the nuclear translocation of Androgen Receptor and down-regulating the ERK signaling. Therefore, it was indicated that HepaCAM may be a potential therapeutic target for prostate cancer. © 2014 Wiley Periodicals, Inc.

  2. Phthalates Deregulate Cell Proliferation, but Not Neuroendocrine Transdifferentiation, in Human LNCaP Prostate Cancer Cell Model

    Czech Academy of Sciences Publication Activity Database

    Hrubá, Eva; Pernicová, Zuzana; Palková, L.; Souček, Karel; Vondráček, Jan; Machala, M.

    2014-01-01

    Roč. 60, č. 2014 (2014), s. 56-61 ISSN 0015-5500 R&D Projects: GA MŠk(CZ) EE2.3.30.0030; GA MŠk(CZ) ED1.100/02/0123 Institutional support: RVO:68081707 Keywords : phthalates * prostate cancer cells * cell cycle modulation Subject RIV: BO - Biophysics Impact factor: 1.000, year: 2014

  3. The PPARγ ligand ciglitazone regulates androgen receptor activation differently in androgen-dependent versus androgen-independent human prostate cancer cells

    International Nuclear Information System (INIS)

    Moss, Patrice E.; Lyles, Besstina E.; Stewart, LaMonica V.

    2010-01-01

    The androgen receptor (AR) regulates growth and progression of androgen-dependent as well as androgen-independent prostate cancer cells. Peroxisome proliferator-activated receptor gamma (PPARγ) agonists have been reported to reduce AR activation in androgen-dependent LNCaP prostate cancer cells. To determine whether PPARγ ligands are equally effective at inhibiting AR activity in androgen-independent prostate cancer, we examined the effect of the PPARγ ligands ciglitazone and rosiglitazone on C4-2 cells, an androgen- independent derivative of the LNCaP cell line. Luciferase-based reporter assays and Western blot analysis demonstrated that PPARγ ligand reduced dihydrotestosterone (DHT)-induced increases in AR activity in LNCaP cells. However, in C4-2 cells, these compounds increased DHT-induced AR driven luciferase activity. In addition, ciglitazone did not significantly alter DHT-mediated increases in prostate specific antigen (PSA) protein or mRNA levels within C4-2 cells. siRNA-based experiments demonstrated that the ciglitazone-induced regulation of AR activity observed in C4-2 cells was dependent on the presence of PPARγ. Furthermore, overexpression of the AR corepressor cyclin D1 inhibited the ability of ciglitazone to induce AR luciferase activity in C4-2 cells. Thus, our data suggest that both PPARγ and cyclin D1 levels influence the ability of ciglitazone to differentially regulate AR signaling in androgen-independent C4-2 prostate cancer cells.

  4. Structure-activity relationship studies of 1,7-diheteroarylhepta-1,4,6-trien-3-ones with two different terminal rings in prostate epithelial cell models.

    Science.gov (United States)

    Wang, Rubing; Zhang, Xiaojie; Chen, Chengsheng; Chen, Guanglin; Sarabia, Cristian; Zhang, Qiang; Zheng, Shilong; Wang, Guangdi; Chen, Qiao-Hong

    2017-06-16

    To systematically investigate the structure-activity relationships of 1,7-diheteroarylhepta-1,4,6-trien-3-ones in three human prostate cancer cell models and one human prostate non-neoplastic epithelial cell model, thirty five 1,7-diarylhepta-1,4,6-trien-3-ones with different terminal heteroaromatic rings have been designed for evaluation of their anti-proliferative potency in vitro. These target compounds have been successfully synthesized through two sequential Horner-Wadsworth-Emmons reactions starting from the appropriate aldehydes and tetraethyl (2-oxopropane-1,3-diyl)bis(phosphonate). Their anti-proliferative potency against PC-3, DU-145 and LNCaP human prostate cancer cell lines can be significantly enhanced by the manipulation of the terminal heteroaromatic rings, further demonstrating the utility of 1,7-diarylhepta-1,4,6-trien-3-one as a potential scaffold for the development of anti-prostate cancer agents. The optimal analog 40 is 82-, 67-, and 39-fold more potent than curcumin toward the three prostate cancer cell lines, respectively. The experimental data also reveal that the trienones with two different terminal aromatic rings possess greater potency toward three prostate cancer cell lines, but also have greater capability of suppressing the proliferation of PWR-1E benign human prostate epithelial cells, as compared to the corresponding counterparts with two identical terminal rings and curcumin. The terminal aromatic rings also affect the cell apoptosis perturbation. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  5. Inflammatory Responses in a Benign Prostatic Hyperplasia Epithelial Cell Line (BPH-1) Infected with Trichomonas vaginalis.

    Science.gov (United States)

    Kim, Sang-Su; Kim, Jung-Hyun; Han, Ik-Hwan; Ahn, Myoung-Hee; Ryu, Jae-Sook

    2016-04-01

    Trichomonas vaginalis causes the most prevalent sexually transmitted infection worldwide. Trichomonads have been detected in prostatic tissues from prostatitis, benign prostatic hyperplasia (BPH), and prostate cancer. Chronic prostatic inflammation is known as a risk factor for prostate enlargement, benign prostatic hyperplasia symptoms, and acute urinary retention. Our aim was to investigate whether T. vaginalis could induce inflammatory responses in cells of a benign prostatic hyperplasia epithelial cell line (BPH-1). When BPH-1 cells were infected with T. vaginalis, the protein and mRNA of inflammatory cytokines, such as CXCL8, CCL2, IL-1β, and IL-6, were increased. The activities of TLR4, ROS, MAPK, JAK2/STAT3, and NF-κB were also increased, whereas inhibitors of ROS, MAPK, PI3K, NF-κB, and anti-TLR4 antibody decreased the production of the 4 cytokines although the extent of inhibition differed. However, a JAK2 inhibitor inhibited only IL-6 production. Culture supernatants of the BPH-1 cells that had been incubated with live T. vaginalis (trichomonad-conditioned medium, TCM) contained the 4 cytokines and induced the migration of human monocytes (THP-1 cells) and mast cells (HMC-1 cells). TCM conditioned by BPH-1 cells pretreated with NF-κB inhibitor showed decreased levels of cytokines and induced less migration. Therefore, it is suggested that these cytokines are involved in migration of inflammatory cells. These results suggest that T. vaginalis infection of BPH patients may cause inflammation, which may induce lower urinary tract symptoms (LUTS).

  6. Inhibition of the DHT-induced PSA secretion by Verbascum xanthophoeniceum and Serenoa repens extracts in human LNCaP prostate epithelial cells.

    Science.gov (United States)

    Marcoccia, D; Georgiev, M I; Alipieva, K I; Lorenzetti, S

    2014-08-08

    Verbascum xanthophoeniceum is a mullein plant, typical of Balkan region and some parts of Turkey, traditionally used as phytotherapeutic agent due to its anti-inflammatory properties. It is rich in phenylethanoid and iridoid metabolites whose anti-inflammatory properties are under characterization. The role of Verbascum xanthophoeniceum crude methanolic extract and its isolated phenylethanoid glycoside verbascoside have been evaluated, in comparison to a saw palmetto extract, on a human in vitro model of androgen-regulated prostate epithelium, the LNCaP cell line. Cytotoxicity and DHT-induced free and total PSA secretion have been thoroughly studied. We have found that similar to saw palmetto, Verbascum xanthophoeniceum extract and its isolated phenylethanoid glycoside verbascoside have no cytotoxicity in human LNCaP prostate epithelial cells, whereas an inhibitory effect on the DHT-induced free and total PSA secretion, a recognized anti-androgen like activity, has been shown in case of both Verbascum xanthophoeniceum extract and pure verbascoside. Furthermore, in the absence of the endogenous androgen DHT, an androgen-like activity in Verbascum xanthophoeniceum is detectable as it is for saw palmetto, suggesting that a mixed androgen-antiandrogen activity is present. For the first time, Serenoa repens and Verbascum xanthophoeniceum extracts have shown an absence of cytotoxicity and an inhibitory effect on DHT-induced PSA secretion in an in vitro model of human prostate epithelium, whereas the phenylethanoid glycoside verbascoside appeared to explain only part of the Verbascum xanthophoeniceum inhibitory activity on PSA secretion. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  7. Induction of apoptosis in prostate cancer cells by pachymic acid from Poria cocos

    International Nuclear Information System (INIS)

    Gapter, Leslie; Wang, Zaisen; Glinski, Jan; Ng, Ka-yun

    2005-01-01

    Pachymic acid (PA) is a natural triterpenoid known to inhibit the phospholipase A2 (PLA 2 ) family of arachidonic acid (AA)-producing enzymes. PLA 2 is elevated in prostatic adenocarcinoma and conversion of AA to prostaglandins leads to AKT pro-survival activity. In this study, we investigated the effect of PA on the growth of human prostate cancer cells. PA significantly reduced cell proliferation and induced apoptosis in a dose- and time-dependent fashion, with androgen-insensitive DU145 prostate cancer cells showing greater growth inhibition relative to androgen-responsive LNCaP. Despite elevated protein expression of the cell cycle inhibitor, p21, apoptosis occurred in the absence of cell cycle arrest. PA-treatment decreased Bad phosphorylation, increased Bcl-2 phosphorylation, and activated caspases-9 and -3, suggesting that PA initiated apoptosis through mitochondria dysfunction. PA-treatment also decreased the expression and activation of proteins within the AKT signal pathway. We speculate that PA influenced apoptosis by reducing prostaglandin synthesis and AKT activity

  8. Androgen receptor or estrogen receptor-beta blockade alters DHEA-, DHT-, and E(2)-induced proliferation and PSA production in human prostate cancer cells.

    Science.gov (United States)

    Arnold, Julia T; Liu, Xunxian; Allen, Jeffrey D; Le, Hanh; McFann, Kimberly K; Blackman, Marc R

    2007-08-01

    Dehydroepiandrosterone (DHEA) is an endogenous steroid that is metabolized to androgens and/or estrogens in the human prostate. DHEA levels decline with age, and use of DHEA supplements to retard the aging process is of unproved effectiveness and safety. LNCaP and LAPC-4 prostate cancer cells were used to determine whether DHEA-modulated proliferation and prostate specific antigen (PSA) production were mediated via the androgen receptor (AR) and/or ERbeta. Cells were treated with DHEA, DHT, or E(2) and antagonists to AR (Casodex-bicalutamide) or ER (ICI 182,780) or siRNA to the respective receptors. Proliferation was assessed by MTT assay and PSA mRNA and protein secretion were measured by quantitative real-time PCR and ELISA. Associations of AR and ERbeta were analyzed by co-immunoprecipitation studies and fluorescent confocal microscopy. DHEA-, T-, and E(2)-induced proliferation of LNCaP cells was blunted by Casodex but not by ICI treatment. In LNCaP cells, Casodex and ICI suppressed hormone-induced PSA production. In LAPC-4 cells, DHT-stimulated PSA mRNA was inhibited by Casodex and ICI, and the minimal stimulation by DHEA was inhibited by ICI. Use of siRNAs confirmed involvement of AR and ERbeta in hormone-induced PSA production while AR-ERbeta co-association was suggested by immunoprecipitation and nuclear co-localization. These findings support involvement of both AR and ERbeta in mediating DHEA-, DHT-, and E(2)-induced PSA expression in prostate cancer cells. (c) 2007 Wiley-Liss, Inc.

  9. High susceptibility of metastatic cells derived from human prostate and colon cancer cells to TRAIL and sensitization of TRAIL-insensitive primary cells to TRAIL by 4,5-dimethoxy-2-nitrobenzaldehyde

    Directory of Open Access Journals (Sweden)

    Lee Jae-Won

    2011-04-01

    Full Text Available Abstract Background Tumor recurrence and metastasis develop as a result of tumors' acquisition of anti-apoptotic mechanisms and therefore, it is necessary to develop novel effective therapeutics against metastatic cancers. In this study, we showed the differential TRAIL responsiveness of human prostate adenocarcinoma PC3 and human colon carcinoma KM12 cells and their respective highly metastatic PC3-MM2 and KM12L4A sublines and investigated the mechanism underlying high susceptibility of human metastatic cancer cells to TRAIL. Results PC3-MM2 and KM12L4A cells with high level of c-Myc and DNA-PKcs were more susceptible to TRAIL than their poorly metastatic primary PC3 and KM12 cells, which was associated with down-regulation of c-FLIPL/S and Mcl-1 and up-regulation of the TRAIL receptor DR5 but not DR4 in both metastatic cells. Moreover, high susceptibility of these metastatic cells to TRAIL was resulted from TRAIL-induced potent activation of caspase-8, -9, and -3 in comparison with their primary cells, which led to cleavage and down-regulation of DNA-PKcs. Knockdown of c-Myc gene in TRAIL-treated PC3-MM2 cells prevented the increase of DR5 cell surface expression, caspase activation and DNA-PKcs cleavage and attenuated the apoptotic effects of TRAIL. Moreover, the suppression of DNA-PKcs level with siRNA in the cells induced the up-regulation of DR5 and active caspase-8, -9, and -3. We also found that 4,5-dimethoxy-2-nitrobenzaldehyde (DMNB, a specific inhibitor of DNA-PK, potentiated TRAIL-induced cytotoxicity and apoptosis in relatively TRAIL-insensitive PC3 and KM12 cells and therefore functioned as a TRAIL sensitizer. Conclusion This study showed the positive relationship between c-Myc expression in highly metastatic human prostate and colon cancer cells and susceptibility to TRAIL-induced apoptosis and therefore indicated that TRAIL might be used as an effective therapeutic modality for advanced metastatic cancers overexpressing c-Myc and

  10. Withanolides from Aeroponically Grown Physalis peruviana and Their Selective Cytotoxicity to Prostate Cancer and Renal Carcinoma Cells.

    Science.gov (United States)

    Xu, Ya-Ming; Wijeratne, E M Kithsiri; Babyak, Ashley L; Marks, Hanna R; Brooks, Alan D; Tewary, Poonam; Xuan, Li-Jiang; Wang, Wen-Qiong; Sayers, Thomas J; Gunatilaka, A A Leslie

    2017-07-28

    Investigation of aeroponically grown Physalis peruviana resulted in the isolation of 11 new withanolides, including perulactones I-L (1-4), 17-deoxy-23β-hydroxywithanolide E (5), 23β-hydroxywithanolide E (6), 4-deoxyphyperunolide A (7), 7β-hydroxywithanolide F (8), 7β-hydroxy-17-epi-withanolide K (9), 24,25-dihydro-23β,28-dihydroxywithanolide G (10), and 24,25-dihydrowithanolide E (11), together with 14 known withanolides (12-25). The structures of 1-11 were elucidated by the analysis of their spectroscopic data, and 12-25 were identified by comparison of their spectroscopic data with those reported. All withanolides were evaluated for their cytotoxic activity against a panel of tumor cell lines including LNCaP (androgen-sensitive human prostate adenocarcinoma), 22Rv1 (androgen-resistant human prostate adenocarcinoma), ACHN (human renal adenocarcinoma), M14 (human melanoma), SK-MEL-28 (human melanoma), and normal human foreskin fibroblast cells. Of these, the 17β-hydroxywithanolides (17-BHWs) 6, 8, 9, 11-13, 15, and 19-22 showed selective cytotoxic activity against the two prostate cancer cell lines LNCaP and 22Rv1, whereas 13 and 20 exhibited selective toxicity for the ACHN renal carcinoma cell line. These cytotoxicity data provide additional structure-activity relationship information for the 17-BHWs.

  11. Linking γ-aminobutyric acid A receptor to epidermal growth factor receptor pathways activation in human prostate cancer.

    Science.gov (United States)

    Wu, Weijuan; Yang, Qing; Fung, Kar-Ming; Humphreys, Mitchell R; Brame, Lacy S; Cao, Amy; Fang, Yu-Ting; Shih, Pin-Tsen; Kropp, Bradley P; Lin, Hsueh-Kung

    2014-03-05

    Neuroendocrine (NE) differentiation has been attributed to the progression of castration-resistant prostate cancer (CRPC). Growth factor pathways including the epidermal growth factor receptor (EGFR) signaling have been implicated in the development of NE features and progression to a castration-resistant phenotype. However, upstream molecules that regulate the growth factor pathway remain largely unknown. Using androgen-insensitive bone metastasis PC-3 cells and androgen-sensitive lymph node metastasis LNCaP cells derived from human prostate cancer (PCa) patients, we demonstrated that γ-aminobutyric acid A receptor (GABA(A)R) ligand (GABA) and agonist (isoguvacine) stimulate cell proliferation, enhance EGF family members expression, and activate EGFR and a downstream signaling molecule, Src, in both PC-3 and LNCaP cells. Inclusion of a GABA(A)R antagonist, picrotoxin, or an EGFR tyrosine kinase inhibitor, Gefitinib (ZD1839 or Iressa), blocked isoguvacine and GABA-stimulated cell growth, trans-phospohorylation of EGFR, and tyrosyl phosphorylation of Src in both PCa cell lines. Spatial distributions of GABAAR α₁ and phosphorylated Src (Tyr416) were studied in human prostate tissues by immunohistochemistry. In contrast to extremely low or absence of GABA(A)R α₁-positive immunoreactivity in normal prostate epithelium, elevated GABA(A)R α₁ immunoreactivity was detected in prostate carcinomatous glands. Similarly, immunoreactivity of phospho-Src (Tyr416) was specifically localized and limited to the nucleoli of all invasive prostate carcinoma cells, but negative in normal tissues. Strong GABAAR α₁ immunoreactivity was spatially adjacent to the neoplastic glands where strong phospho-Src (Tyr416)-positive immunoreactivity was demonstrated, but not in adjacent to normal glands. These results suggest that the GABA signaling is linked to the EGFR pathway and may work through autocrine or paracine mechanism to promote CRPC progression. Copyright © 2013 Elsevier

  12. Advanced generation anti-prostate specific membrane antigen designer T cells for prostate cancer immunotherapy.

    Science.gov (United States)

    Ma, Qiangzhong; Gomes, Erica M; Lo, Agnes Shuk-Yee; Junghans, Richard P

    2014-02-01

    Adoptive immunotherapy by infusion of designer T cells (dTc) engineered with chimeric antigen receptors (CARs) for tumoricidal activity represents a potentially highly specific modality for the treatment of cancer. In this study, 2nd generation (gen) anti-prostate specific membrane antigen (PSMA) dTc were developed for improving the efficacy of previously developed 1st gen dTc for prostate cancer immunotherapy. The 1st gen dTc are modified with chimeric immunoglobulin-T cell receptor (IgTCR) while the 2nd gen dTc are engineered with an immunoglobulin-CD28-T cell receptor (IgCD28TCR), which incorporates a CD28 costimulatory signal for optimal T cell activation. A 2nd gen anti-PSMA IgCD28TCR CAR was constructed by inserting the CD28 signal domain into the 1st gen CAR. 1st and 2nd gen anti-PSMA dTc were created by transducing human T cells with anti-PSMA CARs and their antitumor efficacy was compared for specific activation on PSMA-expressing tumor contact, cytotoxicity against PSMA-expressing tumor cells in vitro, and suppression of tumor growth in an animal model. The 2nd gen dTc can be optimally activated to secrete larger amounts of cytokines such as IL2 and IFNγ than 1st gen and to proliferate more vigorously on PSMA-expressing tumor contact. More importantly, the 2nd gen dTc preserve the PSMA-specific cytotoxicity in vitro and suppress tumor growth in animal models with significant higher potency. Our results demonstrate that 2nd gen anti-PSMA designer T cells exhibit superior antitumor functions versus 1st gen, providing a rationale for advancing this improved agent toward clinical application in prostate cancer immunotherapy. © 2013 Wiley Periodicals, Inc.

  13. Immunotherapy: Shifting the Balance of Cell-Mediated Immunity and Suppression in Human Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Tucker, Jo A.; Jochems, Caroline [Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States); Gulley, James L. [Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States); Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States); Schlom, Jeffrey, E-mail: js141c@nih.gov; Tsang, Kwong Y. [Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States)

    2012-12-11

    Active immunotherapy is dependent on the ability of the immune system to recognize and respond to tumors. Despite overwhelming evidence to support a cell-mediated immune response to prostate cancer, it is insufficient to eradicate the disease. This is likely due to a high level of suppression at the tumor site from a variety of sources, including immunosuppressive cells. Immune cells entering the tumor microenvironment may be inhibited directly by the tumor, stromal cells or other immune cells that have been induced to adopt a suppressive phenotype. The resurgence of interest in immunotherapy following the approval of sipuleucel-T and ipilimumab by the Food and Drug Administration has brought about new strategies for overcoming tumor-mediated suppression and bolstering anti-tumor responses. Improved understanding of the immune response to prostate cancer can lead to new combination therapies, such as the use of vaccine with small molecule and checkpoint inhibitors or other immunotherapies.

  14. Immunotherapy: Shifting the Balance of Cell-Mediated Immunity and Suppression in Human Prostate Cancer

    International Nuclear Information System (INIS)

    Tucker, Jo A.; Jochems, Caroline; Gulley, James L.; Schlom, Jeffrey; Tsang, Kwong Y.

    2012-01-01

    Active immunotherapy is dependent on the ability of the immune system to recognize and respond to tumors. Despite overwhelming evidence to support a cell-mediated immune response to prostate cancer, it is insufficient to eradicate the disease. This is likely due to a high level of suppression at the tumor site from a variety of sources, including immunosuppressive cells. Immune cells entering the tumor microenvironment may be inhibited directly by the tumor, stromal cells or other immune cells that have been induced to adopt a suppressive phenotype. The resurgence of interest in immunotherapy following the approval of sipuleucel-T and ipilimumab by the Food and Drug Administration has brought about new strategies for overcoming tumor-mediated suppression and bolstering anti-tumor responses. Improved understanding of the immune response to prostate cancer can lead to new combination therapies, such as the use of vaccine with small molecule and checkpoint inhibitors or other immunotherapies

  15. Urtica dioica dichloromethane extract induce apoptosis from intrinsic pathway on human prostate cancer cells (PC3).

    Science.gov (United States)

    Mohammadi, A; Mansoori, B; Aghapour, M; Baradaran, B

    2016-03-31

    Prostate cancer is considered as the major cause of death among men around the world. There are a number of medicinal plants triggering apoptosis response in cancer cells, thus have a therapeutic potential. Therefore, further studies to characterize beneficial properties of these plants in order to introduce novel anti-cancer drugs are the interest of recent researches on the alternative medicine. On the other hand, due to traditional uses and availability of Urtica dioica extract, we decided to evaluate the efficacy of this medicinal herb on pc3 prostate cancer cell line. In the present study the cytotoxic effects of Urtica dioica extract were assessed by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay and trypan blue viability dye. Then, DNA fragmentation and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay were exploited to measure cell death and apoptosis stage. The expression levels of caspase 3, caspase 9 and Bcl-2 genes were quantified by Real-Time PCR. Finally, Cell cycle was analyzed by flow cytometry. MTT assay showed that dichloromethanolic extract of Urtica dioica significantly inhibited the cell growth. According to the DNA fragmentation and TUNEL assay results, the herbal extract was able to induce apoptosis in prostate cancer cells. Our findings also demonstrated that the plant extract substantially increases the caspase 3 and 9 mRNA expression, while decreases Bcl-2. Cell cycle arrest was occurred in G2 stage, due to the results of flow cytometry. These results indicate that dichloromethanolic extract of Urtica dioica can successfully induce apoptosis in PC3 cells. Therefore, it could be used as a novel therapeutic candidate for prostate tumor treatment.

  16. Teriflunomide (Leflunomide Promotes Cytostatic, Antioxidant, and Apoptotic Effects in Transformed Prostate Epithelial Cells: Evidence Supporting a Role for Teriflunomide in Prostate Cancer Chemoprevention

    Directory of Open Access Journals (Sweden)

    Numsen Hail, Jr

    2010-06-01

    Full Text Available Teriflunomide (TFN is an inhibitor of de novo pyrimidine synthesis and the active metabolite of leflunomide. Leflunomide is prescribed to patients worldwide as an immunomodulatory and anti-inflammatory disease-modifying prodrug. Leflunomide inhibited the growth of human prostate cancer xenographs in mice, and leflunomide or TFN promoted cytostasis and/or apoptosis in cultured cells. These findings suggest that TFN could be useful in prostate cancer chemoprevention. We investigated the possible mechanistic aspects of this tenet by characterizing the effects of TFN using premalignant PWR-1E and malignant DU-145 human prostate epithelial cells. TFN promoted a dose- and time-dependent cytostasis or apoptosis induction in these cells. The cytostatic effects of TFN, which were reversible but not by the presence of excess uridine in the culture medium, included diminished cellular uridine levels, an inhibition in oxygen consumption, a suppression of reactive oxygen species (ROS generation, S-phase cell cycle arrest, and a conspicuous reduction in the size and number of the nucleoli in the nuclei of these cells. Conversely, TFN's apoptogenic effects were characteristic of catastrophic mitochondrial disruption (i.e., a dissipation of mitochondrial inner transmembrane potential, enhanced ROS production, mitochondrial cytochrome c release, and cytoplasmic vacuolization and followed by DNA fragmentation. The respiration-deficient derivatives of the DU-145 cells, which are also uridine auxotrophs, were markedly resistant to the cytostatic and apoptotic effects of TFN, implicating de novo pyrimidine synthesis and mitochondrial bioenergetics as the primary targets for TFN in the respiration competent cells. These mechanistic findings advocate a role for TFN and mitochondrial bioenergetics in prostate cancer chemoprevention.

  17. Inhibition of microRNA-500 has anti-cancer effect through its conditional downstream target of TFPI in human prostate cancer.

    Science.gov (United States)

    Cai, Bing; Chen, Wei; Pan, Yue; Chen, Hongde; Zhang, Yirong; Weng, Zhiliang; Li, Yeping

    2017-07-01

    We investigated the prognostic potential and regulatory mechanism of microRNA-500 (miR-500), and human gene of tissue factor pathway inhibitor (TFPI) in prostate cancer. MiR-500 expression was assessed by qRT-PCR in prostate cancer cell lines and primary tumors. Cancer patients' clinicopathological factors and overall survival were analyzed according to endogenous miR-500 level. MiR-500 was downregulated in DU145 and VCaP cells. Its effect on prostate cancer proliferation, invasion in vitro, and tumorigenicity in vivo, were probed. Possible downstream target of miR-500, TFPI was assessed by luciferase assay and qRT-PCR in prostate cancer cells. In miR-500-downregulated DU145 and VCaP cells, TFPI was silenced to see whether it was directly involved in the regulation of miR-500 in prostate cancer. TFPI alone was either upregulated or downregulated in DU145 and VCaP cells. Their effect on prostate cancer development was further evaluated. MiR-500 is upregulated in both prostate cancer cells and primary tumors. In prostate cancer patients, high miR-500 expression is associated with poor prognosis and overall survival. In DU145 and VCaP cells, miR-500 downregulation inhibited cancer proliferation, invasion in vitro, and explant growth in vivo. TFPI was verified to be associated with miR-500 in prostate cancer. Downregulation of TFPI reversed anti-cancer effects of miR-500 downregulation in prostate cancer cells. However, neither TFPI upregulation nor downregulation alone had any functional impact on prostate cancer development. MiR-500 may be a potential biomarker and molecular target in prostate cancer. TFPI may conditionally regulate prostate cancer in miR-500-downregualted prostate cancer cells. © 2017 Wiley Periodicals, Inc.

  18. Designed modulation of sex steroid signaling inhibits telomerase activity and proliferation of human prostate cancer cells

    International Nuclear Information System (INIS)

    Verma, Vikas; Sharma, Vikas; Singh, Vishal; Sharma, Siddharth; Bishnoi, Ajay Kumar; Chandra, Vishal; Maikhuri, J.P.; Dwivedi, Anila; Kumar, Atul; Gupta, Gopal

    2014-01-01

    The predominant estrogen-receptor (ER)-β signaling in normal prostate is countered by increased ER-α signaling in prostate cancer (CaP), which in association with androgen-receptor (AR) signaling results in pathogenesis of the disease. However CaP treatments mostly target AR signaling which is initially effective but eventually leads to androgen resistance, hence simultaneous targeting of ERs has been proposed. A novel series of molecules were designed with multiple sex-steroid receptor modulating capabilities by coalescing the pharmacophores of known anti-CaP molecules that act via modulation of ER(α/β) and/or AR, viz. 3,3′diindolylmethane (DIM), mifepristone, toremifene, tamoxifen and raloxifene. N,N-diethyl-4-((2-(4-methoxyphenyl)-1H-indol-3-yl)methyl) aniline (DIMA) was identified as the most promising structure of this new series. DIMA increased annexin-V labelling, cell-cycle arrest and caspase-3 activity, and decreased expression of AR and prostate specific antigen in LNCaP cells, in vitro. Concurrently, DIMA increased ER-β, p21 and p27 protein levels in LNCaP cells and exhibited ∼ 5 times more selective binding for ER-β than ER-α, in comparison to raloxifene. DIMA exhibited a dose-dependent ER-β agonism and ER-α antagonism in classical gene reporter assay and decreased hTERT (catalytic subunit of telomerase) transcript levels in LNCaP at 3.0 μM (P < 0.05). DIMA also dose-dependently decreased telomerase enzyme activity in prostate cancer cells. It is thus concluded that DIMA acts as a multi-steroid receptor modulator and effectively inhibits proliferation of prostate cancer cells through ER-β mediated telomerase inhibition, by countering actions of ER-α and AR. Its unique molecular design can serve as a lead structure for generation of potent agents against endocrine malignancies like the CaP

  19. Designed modulation of sex steroid signaling inhibits telomerase activity and proliferation of human prostate cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Vikas; Sharma, Vikas; Singh, Vishal [Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226 031 (India); Sharma, Siddharth; Bishnoi, Ajay Kumar [Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow 226 031 (India); Chandra, Vishal; Maikhuri, J.P.; Dwivedi, Anila [Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226 031 (India); Kumar, Atul [Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow 226 031 (India); Gupta, Gopal, E-mail: g_gupta@cdri.res.in [Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226 031 (India)

    2014-10-15

    The predominant estrogen-receptor (ER)-β signaling in normal prostate is countered by increased ER-α signaling in prostate cancer (CaP), which in association with androgen-receptor (AR) signaling results in pathogenesis of the disease. However CaP treatments mostly target AR signaling which is initially effective but eventually leads to androgen resistance, hence simultaneous targeting of ERs has been proposed. A novel series of molecules were designed with multiple sex-steroid receptor modulating capabilities by coalescing the pharmacophores of known anti-CaP molecules that act via modulation of ER(α/β) and/or AR, viz. 3,3′diindolylmethane (DIM), mifepristone, toremifene, tamoxifen and raloxifene. N,N-diethyl-4-((2-(4-methoxyphenyl)-1H-indol-3-yl)methyl) aniline (DIMA) was identified as the most promising structure of this new series. DIMA increased annexin-V labelling, cell-cycle arrest and caspase-3 activity, and decreased expression of AR and prostate specific antigen in LNCaP cells, in vitro. Concurrently, DIMA increased ER-β, p21 and p27 protein levels in LNCaP cells and exhibited ∼ 5 times more selective binding for ER-β than ER-α, in comparison to raloxifene. DIMA exhibited a dose-dependent ER-β agonism and ER-α antagonism in classical gene reporter assay and decreased hTERT (catalytic subunit of telomerase) transcript levels in LNCaP at 3.0 μM (P < 0.05). DIMA also dose-dependently decreased telomerase enzyme activity in prostate cancer cells. It is thus concluded that DIMA acts as a multi-steroid receptor modulator and effectively inhibits proliferation of prostate cancer cells through ER-β mediated telomerase inhibition, by countering actions of ER-α and AR. Its unique molecular design can serve as a lead structure for generation of potent agents against endocrine malignancies like the CaP.

  20. Experimental investigation of the cytotoxicity of medium-borne signals in human prostate cancer cell line

    International Nuclear Information System (INIS)

    Sjostedt, Svetlana; Bezak, Eva

    2012-01-01

    Introduction. Evidence exists that exposure of non-irradiated cells to Irradiated Cell Conditioned Medium (ICCM) can cause effects similar to those resulting from direct radiation damage. This study attempts to validate the stochastic model, relating absorbed dose to the emission and processing of cell death signals by non-irradiated cells, in vitro in PC3 human prostate cancer cell line. Methods. The recipient cell survival was measured after exposure of cells to ICMM derived from donor cells: a) exposed to radiation doses from 2 Gy to 8 Gy and b) of concentrations varying from 2 x 10 2 to 6 x 10 6 irradiated with 2 Gy. Results. Exposure to ICCM, irradiated with doses between 2-8 Gy, resulted in a significant (p 2 cells was significantly higher (p < 0.5) compared to the rest of donor cell concentrations, indicating that the toxicity of ICCM depends on the cellular concentration of donor cells. Non-linear regression data fitting provided reasonable agreement with the microdosimetric model for the induction of cell killing through medium-borne signals. Conclusion. For the given cell line and given experimental conditions, significant decreases in cell survival were observed in non-irradiated cells exposed to ICCM derived from donor cells of various concentrations and irradiated with different doses

  1. Human prostate supports more efficient replication of HIV-1 R5 than X4 strains ex vivo

    Directory of Open Access Journals (Sweden)

    Denis Hélène

    2008-12-01

    Full Text Available Abstract Background In order to determine whether human prostate can be productively infected by HIV-1 strains with different tropism, and thus represent a potential source of HIV in semen, an organotypic culture of prostate from men undergoing prostatic adenomectomy for benign prostate hypertrophy (BPH was developed. The presence of potential HIV target cells in prostate tissues was investigated using immunohistochemistry. The infection of prostate explants following exposures with HIV-1 R5, R5X4 and X4 strains was analyzed through the measure of RT activity in culture supernatants, the quantification of HIV DNA in the explants and the detection of HIV RNA+ cells in situ. Results The overall prostate characteristics were retained for 21/2 weeks in culture. Numerous potential HIV-1 target cells were detected in the prostate stroma. Whilst HIV-1 R5SF162 strain consistently productively infected prostatic T lymphocytes and macrophages, the prototypic X4IIIB strain and a primary R5X4 strain showed less efficient replication in this organ. Conclusion The BPH prostate is a site of HIV-1 R5 replication that could contribute virus to semen. A limited spreading of HIV-1 X4 and R5X4 in this organ could participate to the preferential sexual transmission of HIV-1 R5 strains.

  2. Investigating the role of caveolin-2 in prostate cancer cell line

    Directory of Open Access Journals (Sweden)

    Jin-Yih Low

    2017-02-01

    Full Text Available Prostate cancer is a worldwide problem. While the role of caveolin-1 has been extensively studied, little is known about the role of caveolin-2 (CAV2 in prostate cancer. Up-regulation of CAV2 in androgen independent PC3 cells compared to normal prostate cell line and androgen dependent prostate cancer cell lines has been observed. Recent studies suggest that up-regulation of CAV2 plays an important role in androgen independent prostate cancer. This study investigates whether CAV2 is important in mediating the aggressive phenotypes seen in androgen independent prostate cancer cells. The androgen independent prostate cancer cell line, PC3 was used that has been shown to express CAV2, and CAV2 knock down was performed using siRNA system. Changes to cell number, migration and invasion were assessed after knocking down CAV2. Our results showed that down-regulating CAV2 resulted in reduced cell numbers, migration and invasion in PC3 cells. This preliminary study suggests that CAV2 may act to promote malignant behavior in an androgen independent prostate cancer cell line. Further studies are required to fully elucidate the role of CAV2 in androgen independent prostate cancer.

  3. The superoxide scavenger TEMPOL induces urokinase receptor (uPAR expression in human prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Francis Joseph

    2006-06-01

    Full Text Available Abstract There is little understanding of the effect that reactive oxygen metabolites have on cellular behavior during the processes of invasion and metastasis. These oxygen metabolites could interact with a number of targets modulating their function such as enzymes involved in basement membrane dissolution, adhesion molecules involved in motility or receptors involved in proliferation. We investigated the effect of increased scavenging of superoxide anions on the expression of the urokinase receptor (uPAR in PC-3M human prostate cancer cells. Urokinase receptor is a GPI-linked cell surface molecule which mediates multiple functions including adhesion, proliferation and pericellular proteolysis. Addition of the superoxide scavenger 4-hydroxy-2,2,6,6-tetramethylpiperidinyloxy (TEMPOL to PC-3M cultures stimulated expression of uPAR protein peaking between 48 and 72 hours. Cell surface expression of the uPAR was also increased. Surprisingly, uPAR transcript levels increased only slightly and this mild increase did not coincide with the striking degree of protein increase. This disparity indicates that the TEMPOL effect on uPAR occurs through a post-transcriptional mechanism. TEMPOL presence in PC-3M cultures reduced intracellular superoxide-type species by 75% as assayed by NBT dye conversion; however this reduction significantly diminished within hours following TEMPOL removal. The time gap between TEMPOL treatment and peak uPAR protein expression suggests that reduction of reactive oxygen metabolites in prostate cancer cells initiates a multistep pathway which requires several hours to culminate in uPAR induction. These findings reveal a novel pathway for uPAR regulation involving reactive oxygens such as superoxide anion.

  4. Trichostatin A (TSA) sensitizes the human prostatic cancer cell line DU145 to death receptor ligands treatment.

    Science.gov (United States)

    Taghiyev, Agshin F; Guseva, Natalya V; Sturm, Mary T; Rokhlin, Oskar W; Cohen, Michael B

    2005-04-01

    The human prostatic carcinoma cell line DU145 has previously been found to be resistant to treatment with TNF-family ligands. However, TRAIL, TNF-alpha and anti-Fas antibodies (Ab) treatment in combination with the histone deacetylase inhibitor Trichostatin A (TSA) converted the phenotype of DU145 from resistant to sensitive. TSA induced 15% cell death but simultaneous treatment with TRAIL, TNF-alpha and anti-Fas Ab resulted in 55%, 70% and 40% cell death, respectively. Simultaneous treatment did not increase the level of TSA-induced histone acetylation, but induced the release of acetylated histones from chromatin into the cytosol. This release was caspase dependent since it was abrogated by Z-VAD-fmk. In addition, treatment with TSA induced caspase-9 activation and resulted in the release of cytochrome c and Smac/DIABLO from mitochondria. To further investigate the role of caspase-9 in TSA-mediated apoptosis we used two different approaches: (1) cells were pretreated with the caspase-9 inhibitor Z-LEHD-fmk, and (2) cells were transfected with a dominant-negative form of caspase-9. Both approaches gave similar results: cells became resistant to treatment with TSA. These data indicate that TSA mediates its effect via the mitochondrial pathway. This was confirmed by examining DU145 overexpressing Bcl-2. These transfectants were resistant to TSA treatment. Taken together, our data shows that only simultaneous treatment with TNF-family ligands and TSA in DU145 resulted in caspase activity sufficient to induce apoptosis. The combination of TSA and TNF-family ligands could potentially be the basis for the treatment of prostate cancer.

  5. MicroRNA-1297 inhibits prostate cancer cell proliferation and invasion by targeting the AEG-1/Wnt signaling pathway

    International Nuclear Information System (INIS)

    Liang, Xuan; Li, Hecheng; Fu, Delai; Chong, Tie; Wang, Ziming; Li, Zhaolun

    2016-01-01

    MicroRNAs (miRNAs) have been known to be implicated in tumorigenic programs. miR-1297 has been reported to be dysregulated and involved in cancer progression in many types of human cancers. However, the expression level and the role of miR-1297 in prostate cancer remain unclear. Herein, we aimed to investigate the potential role and molecular mechanism of miR-1297 in prostate cancer progression. We found that miR-1297 was significantly downregulated in human prostate cancer specimens as well as in several prostate cancer cell lines. In addition, functional experiments demonstrated that overexpression of miR-1297 remarkably inhibited prostate cancer cell proliferation and invasion whereas miR-1297 suppression significantly promoted prostate cancer cell proliferation and invasion. Bioinformatics analysis showed that the Astrocyte elevated gene-1 (AEG-1), a well-known oncogene, is a predicted target of miR-1297. Dual-luciferase reporter assay showed that miR-1297 was able to directly target the 3’-untranslated region of AEG-1. In addition, RT-qPCR and Western blot analysis showed that miR-1297 regulated the mRNA and protein expression levels of AEG-1. We also showed that miR-1297 was able to regulate the Wnt signaling pathway. Moreover, rescue assays indicated that AEG-1 contributed to miR-1297-endowed effects on cell proliferation and invasion as well as Wnt signaling pathway. Taken together, these findings suggest that miR-1297 inhibits prostate cancer proliferation and invasion by targeting AEG-1, thereby providing novel insight into understanding the pathogenesis of prostate cancer. Thus, miR-1297 may be a novel potential therapeutic candidate to treat prostate cancer. - Highlights: • miR-1297 is decreased in prostate cancer. • miR-1297 inhibits prostate cancer cell proliferation and invasion. • miR-1297 targets and inhibits AEG-1. • miR-1297 regulates AEG-1/Wnt signaling pathway.

  6. Whole-Genome Sequence of the Metastatic PC3 and LNCaP Human Prostate Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Inge Seim

    2017-06-01

    Full Text Available The bone metastasis-derived PC3 and the lymph node metastasis-derived LNCaP prostate cancer cell lines are widely studied, having been described in thousands of publications over the last four decades. Here, we report short-read whole-genome sequencing (WGS and de novo assembly of PC3 (ATCC CRL-1435 and LNCaP (clone FGC; ATCC CRL-1740 at ∼70 × coverage. A known homozygous mutation in TP53 and homozygous loss of PTEN were robustly identified in the PC3 cell line, whereas the LNCaP cell line exhibited a larger number of putative inactivating somatic point and indel mutations (and in particular a loss of stop codon events. This study also provides preliminary evidence that loss of one or both copies of the tumor suppressor Capicua (CIC contributes to primary tumor relapse and metastatic progression, potentially offering a treatment target for castration-resistant prostate cancer (CRPC. Our work provides a resource for genetic, genomic, and biological studies employing two commonly-used prostate cancer cell lines.

  7. Whole-Genome Sequence of the Metastatic PC3 and LNCaP Human Prostate Cancer Cell Lines.

    Science.gov (United States)

    Seim, Inge; Jeffery, Penny L; Thomas, Patrick B; Nelson, Colleen C; Chopin, Lisa K

    2017-06-07

    The bone metastasis-derived PC3 and the lymph node metastasis-derived LNCaP prostate cancer cell lines are widely studied, having been described in thousands of publications over the last four decades. Here, we report short-read whole-genome sequencing (WGS) and de novo assembly of PC3 (ATCC CRL-1435) and LNCaP (clone FGC; ATCC CRL-1740) at ∼70 × coverage. A known homozygous mutation in TP53 and homozygous loss of PTEN were robustly identified in the PC3 cell line, whereas the LNCaP cell line exhibited a larger number of putative inactivating somatic point and indel mutations (and in particular a loss of stop codon events). This study also provides preliminary evidence that loss of one or both copies of the tumor suppressor Capicua ( CIC ) contributes to primary tumor relapse and metastatic progression, potentially offering a treatment target for castration-resistant prostate cancer (CRPC). Our work provides a resource for genetic, genomic, and biological studies employing two commonly-used prostate cancer cell lines. Copyright © 2017 Seim et al.

  8. Corn silk maysin induces apoptotic cell death in PC-3 prostate cancer cells via mitochondria-dependent pathway.

    Science.gov (United States)

    Lee, Jisun; Lee, Seul; Kim, Sun-Lim; Choi, Ji Won; Seo, Jeong Yeon; Choi, Doo Jin; Park, Yong Il

    2014-12-05

    Despite recent advances in prostate cancer diagnostics and therapeutics, the overall survival rate still remains low. This study was aimed to assess potential anti-cancer activity of maysin, a major flavonoid of corn silk (CS, Zea mays L.), in androgen-independent human prostate cancer cells (PC-3). Maysin was isolated from CS of Kwangpyeongok, a Korean hybrid corn, via methanol extraction and preparative C18 reverse phase column chromatography. Maysin cytotoxicity was determined by either monitoring cell viability in various cancer cell lines by MTT assay or morphological changes. Apoptotic cell death was assessed by annexin V-FITC/PI double staining, depolarization of mitochondrial membrane potential (MMP), expression levels of Bcl-2 and pro-caspase-3 and by terminal transferase mediated dUTP-fluorescein nick end labeling (TUNEL) staining. Underlying mechanism in maysin-induced apoptosis of PC-3 cells was explored by evaluating its effects on Akt and ERK pathway. Maysin dose-dependently reduced the PC-3 cell viability, with an 87% reduction at 200 μg/ml. Maysin treatment significantly induced apoptotic cell death, DNA fragmentation, depolarization of MMP, and reduction in Bcl-2 and pro-caspase-3 expression levels. Maysin also significantly attenuated phosphorylation of Akt and ERK. A combined treatment with maysin and other known anti-cancer agents, including 5-FU, etoposide, cisplatin, or camptothecin, synergistically enhanced PC-3 cell death. These results suggested for the first time that maysin inhibits the PC-3 cancer cell growth via stimulation of mitochondria-dependent apoptotic cell death and may have a strong therapeutic potential for the treatment of either chemo-resistant or androgen-independent human prostate cancer. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Selective modulation of endoplasmic reticulum stress markers in prostate cancer cells by a standardized mangosteen fruit extract.

    Directory of Open Access Journals (Sweden)

    Gongbo Li

    Full Text Available The increased proliferation of cancer cells is directly dependent on the increased activity of the endoplasmic reticulum (ER machinery which is responsible for protein folding, assembly, and transport. In fact, it is so critical that perturbations in the endoplasmic reticulum can lead to apoptosis. This carefully regulated organelle represents a unique target of cancer cells while sparing healthy cells. In this study, a standardized mangosteen fruit extract (MFE was evaluated for modulating ER stress proteins in prostate cancer. Two human prostate cancer cell lines, 22Rv1 and LNCaP, and prostate epithelial cells (PrECs procured from two patients undergoing radical prostatectomy were treated with MFE. Flow cytometry, MTT, BrdU and Western blot were used to evaluate cell apoptosis, viability, proliferation and ER stress. Next, we evaluated MFE for microsomal stability and anti-cancer activity in nude mice. MFE induced apoptosis, decreased viability and proliferation in prostate cancer cells. MFE increased the expression of ER stress proteins. Interestingly, MFE selectively promotes ER stress in prostate cancer cells while sparing PrECs. MFE suppressed tumor growth in a xenograft tumor model without obvious toxicity. Mangosteen fruit extract selectively promotes endoplasmic reticulum stress in cancer cells while sparing non-tumorigenic prostate epithelial cells. Furthermore, in an in vivo setting mangosteen fruit extract significantly reduces xenograft tumor formation.

  10. Selective modulation of endoplasmic reticulum stress markers in prostate cancer cells by a standardized mangosteen fruit extract.

    Science.gov (United States)

    Li, Gongbo; Petiwala, Sakina M; Pierce, Dana R; Nonn, Larisa; Johnson, Jeremy J

    2013-01-01

    The increased proliferation of cancer cells is directly dependent on the increased activity of the endoplasmic reticulum (ER) machinery which is responsible for protein folding, assembly, and transport. In fact, it is so critical that perturbations in the endoplasmic reticulum can lead to apoptosis. This carefully regulated organelle represents a unique target of cancer cells while sparing healthy cells. In this study, a standardized mangosteen fruit extract (MFE) was evaluated for modulating ER stress proteins in prostate cancer. Two human prostate cancer cell lines, 22Rv1 and LNCaP, and prostate epithelial cells (PrECs) procured from two patients undergoing radical prostatectomy were treated with MFE. Flow cytometry, MTT, BrdU and Western blot were used to evaluate cell apoptosis, viability, proliferation and ER stress. Next, we evaluated MFE for microsomal stability and anti-cancer activity in nude mice. MFE induced apoptosis, decreased viability and proliferation in prostate cancer cells. MFE increased the expression of ER stress proteins. Interestingly, MFE selectively promotes ER stress in prostate cancer cells while sparing PrECs. MFE suppressed tumor growth in a xenograft tumor model without obvious toxicity. Mangosteen fruit extract selectively promotes endoplasmic reticulum stress in cancer cells while sparing non-tumorigenic prostate epithelial cells. Furthermore, in an in vivo setting mangosteen fruit extract significantly reduces xenograft tumor formation.

  11. Prazosin Displays Anticancer Activity against Human Prostate Cancers: Targeting DNA, Cell Cycle

    Directory of Open Access Journals (Sweden)

    Ssu-Chia Lin

    2007-10-01

    Full Text Available Quinazoline-based α1,-adrenoceptor antagonists, in particular doxazosin, terazosin, are suggested to display antineoplastic activity against prostate cancers. However, there are few studies elucidating the effect of prazosin. In this study, prazosin displayed antiproliferative activity superior to that of other α1-blockers, including doxazosin, terazosin, tamsulosin, phentolamine. Prazosin induced G2 checkpoint arrest, subsequent apoptosis in prostate cancer PC-3, DU-145, LNCaP cells. In p53-null PC-3 cells, prazosin induced an increase in DNA str, breaks, ATM/ATR checkpoint pathways, leading to the activation of downstream signaling cascades, including Cdc25c phosphorylation at Ser216, nuclear export of Cdc25c, cyclin-dependent kinase (Cdk 1 phosphorylation at Tyr15. The data, together with sustained elevated cyclin A levels (other than cyclin B1 levels, suggested that Cdki activity was inactivated by prazosin. Moreover, prazosin triggered mitochondria-mediated, caspaseexecuted apoptotic pathways in PC-3 cells. The oral administration of prazosin significantly reduced tumor mass in PC-3-derived cancer xenografts in nude mice. In summary, we suggest that prazosin is a potential antitumor agent that induces cell apoptosis through the induction of DNA damage stress, leading to Cdki inactivation, G2 checkpoint arrest. Subsequently, mitochondriamediated caspase cascades are triggered to induce apoptosis in PC-3 cells.

  12. beta-TrCP inhibition reduces prostate cancer cell growth via upregulation of the aryl hydrocarbon receptor.

    Directory of Open Access Journals (Sweden)

    Udi Gluschnaider

    2010-02-01

    Full Text Available Prostate cancer is a common and heterogeneous disease, where androgen receptor (AR signaling plays a pivotal role in development and progression. The initial treatment for advanced prostate cancer is suppression of androgen signaling. Later on, essentially all patients develop an androgen independent stage which does not respond to anti hormonal treatment. Thus, alternative strategies targeting novel molecular mechanisms are required. beta-TrCP is an E3 ligase that targets various substrates essential for many aspects of tumorigenesis.Here we show that beta-TrCP depletion suppresses prostate cancer and identify a relevant growth control mechanism. shRNA targeted against beta-TrCP reduced prostate cancer cell growth and cooperated with androgen ablation in vitro and in vivo. We found that beta-TrCP inhibition leads to upregulation of the aryl hydrocarbon receptor (AhR mediating the therapeutic effect. This phenomenon could be ligand independent, as the AhR ligand 2,3,7,8-Tetrachlorodibenzo-p-Dioxin (TCDD did not alter prostate cancer cell growth. We detected high AhR expression and activation in basal cells and atrophic epithelial cells of human cancer bearing prostates. AhR expression and activation is also significantly higher in tumor cells compared to benign glandular epithelium.Together these observations suggest that AhR activation may be a cancer counteracting mechanism in the prostate. We maintain that combining beta-TrCP inhibition with androgen ablation could benefit advanced prostate cancer patients.

  13. Chemoresistance in prostate cancer cells is regulated by miRNAs and Hedgehog pathway.

    Directory of Open Access Journals (Sweden)

    Saurabh Singh

    Full Text Available Many prostate cancers relapse due to the generation of chemoresistance rendering first-line treatment drugs like paclitaxel (PTX ineffective. The present study aims to determine the role of miRNAs and Hedgehog (Hh pathway in chemoresistant prostate cancer and to evaluate the combination therapy using Hh inhibitor cyclopamine (CYA. Studies were conducted on PTX resistant DU145-TXR and PC3-TXR cell lines and clinical prostate tissues. Drug sensitivity and apoptosis assays showed significantly improved cytotoxicity with combination of PTX and CYA. To distinguish the presence of cancer stem cell like side populations (SP, Hoechst 33342 flow cytometry method was used. PTX resistant DU145 and PC3 cells, as well as human prostate cancer tissue possess a distinct SP fraction. Nearly 75% of the SP cells are in the G0/G1 phase compared to 62% for non-SP cells and have higher expression of stem cell markers as well. SP cell fraction was increased following PTX monotherapy and treatment with CYA or CYA plus PTX effectively reduced their numbers suggesting the effectiveness of combination therapy. SP fraction cells were allowed to differentiate and reanalyzed by Hoechst staining and gene expression analysis. Post differentiation, SP cells constitute 15.8% of total viable cells which decreases to 0.6% on treatment with CYA. The expression levels of P-gp efflux protein were also significantly decreased on treatment with PTX and CYA combination. MicroRNA profiling of DU145-TXR and PC3-TXR cells and prostate cancer tissue from the patients showed decreased expression of tumor suppressor miRNAs such as miR34a and miR200c. Treatment with PTX and CYA combination restored the expression of miR200c and 34a, confirming their role in modulating chemoresistance. We have shown that supplementing mitotic stabilizer drugs such as PTX with Hh-inhibitor CYA can reverse PTX chemoresistance and eliminate SP fraction in androgen independent, metastatic prostate cancer cell

  14. Ursodeoxycholic Acid Induces Death Receptor-mediated Apoptosis in Prostate Cancer Cells

    Science.gov (United States)

    Lee, Won Sup; Jung, Ji Hyun; Panchanathan, Radha; Yun, Jeong Won; Kim, Dong Hoon; Kim, Hye Jung; Kim, Gon Sup; Ryu, Chung Ho; Shin, Sung Chul; Hong, Soon Chan; Choi, Yung Hyun; Jung, Jin-Myung

    2017-01-01

    Background Bile acids have anti-cancer properties in a certain types of cancers. We determined anticancer activity and its underlying molecular mechanism of ursodeoxycholic acid (UDCA) in human DU145 prostate cancer cells. Methods Cell viability was measured with an MTT assay. UDCA-induced apoptosis was determined with flow cytometric analysis. The expression levels of apoptosis-related signaling proteins were examined with Western blotting. Results UDCA treatment significantly inhibited cell growth of DU145 in a dose-dependent manner. It induced cellular shrinkage and cytoplasmic blebs and accumulated the cells with sub-G1 DNA contents. Moreover, UDCA activated caspase 8, suggesting that UDCA-induced apoptosis is associated with extrinsic pathway. Consistent to this finding, UDCA increased the expressions of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor, death receptor 4 (DR4) and death receptor 5 (DR5), and TRAIL augmented the UDCA-induced cell death in DU145 cells. In addition, UDCA also increased the expressions of Bax and cytochrome c and decreased the expression of Bcl-xL in DU145 cells. This finding suggests that UDCA-induced apoptosis may be involved in intrinsic pathway. Conclusions UDCA induces apoptosis via extrinsic pathway as well as intrinsic pathway in DU145 prostate cancer cells. UDCA may be a promising anti-cancer agent against prostate cancer. PMID:28382282

  15. PCOTH, a novel gene overexpressed in prostate cancers, promotes prostate cancer cell growth through phosphorylation of oncoprotein TAF-Ibeta/SET.

    Science.gov (United States)

    Anazawa, Yoshio; Nakagawa, Hidewaki; Furihara, Mutsuo; Ashida, Shingo; Tamura, Kenji; Yoshioka, Hiroki; Shuin, Taro; Fujioka, Tomoaki; Katagiri, Toyomasa; Nakamura, Yusuke

    2005-06-01

    Through genome-wide cDNA microarray analysis coupled with microdissection of prostate cancer cells, we identified a novel gene, prostate collagen triple helix (PCOTH), showing overexpression in prostate cancer cells and its precursor cells, prostatic intraepithelial neoplasia (PIN). Immunohistochemical analysis using polyclonal anti-PCOTH antibody confirmed elevated expression of PCOTH, a 100-amino-acid protein containing collagen triple-helix repeats, in prostate cancer cells and PINs. Knocking down PCOTH expression by small interfering RNA (siRNA) resulted in drastic attenuation of prostate cancer cell growth, and concordantly, LNCaP derivative cells that were designed to constitutively express exogenous PCOTH showed higher growth rate than LNCaP cells transfected with mock vector, suggesting the growth-promoting effect of PCOTH on prostate cancer cell. To investigate the biological mechanisms of this growth-promoting effect, we applied two-dimensional differential gel electrophoresis (2D-DIGE) to analyze the phospho-protein fractions in LNCaP cells transfected with PCOTH. We found that the phosphorylation level of oncoprotein TAF-Ibeta/SET was significantly elevated in LNCaP cells transfected with PCOTH than control LNCaP cells, and these findings were confirmed by Western blotting and in-gel kinase assay. Furthermore, knockdown of endogenous TAF-Ibeta expression by siRNA also attenuated viability of prostate cancer cells as well. These findings suggest that PCOTH is involved in growth and survival of prostate cancer cells thorough, in parts, the TAF-Ibeta pathway, and that this molecule should be a promising target for development of new therapeutic strategies for prostate cancers.

  16. The effect of LHRH antagonist cetrorelix in crossover conditioned media from epithelial (BPH-1) and stromal (WPMY-1) prostate cells.

    Science.gov (United States)

    Siejka, A; Schally, A V; Barabutis, N

    2014-01-01

    Stromal cells strictly modulate the differentiation of the normal prostate epithelium. In benign prostatic hyperplasia (BPH) tissue, the ratio of stromal to epithelial cells reaches a 5:1 ratio. In this study, we evaluated the effects of crossover conditioned media (CM) of stromal and epithelial prostate cells before and after treatment with LHRH antagonist Cetrorelix. WPMY-1 human prostate stromal cells and BPH-1 human benign prostatic hyperplasia cells were cultured in vitro and the effects of crossover conditioned media (CM) from those cells were studied. We evaluated the effect of Cetrorelix on the expression of PCNA and p53 in those cells. We then studied the effect of Cetrorelix on BPH-1 cells cultured with the CM from WPMY-1 cells, as well as the mechanisms which govern these interactions. CM from WPMY-1 cells strongly stimulated the proliferation of BPH-1 cells in a dose dependent manner, while CM from BPH-1 cells only slightly increased the proliferation of WPMY-1 cells. Cetrorelix inhibited the proliferation of both cell lines and the expression of PCNA, while the expression of p53 was increased. Cetrorelix also inhibited the proliferation of BPH-1 cells stimulated with the CM from WPMY-1 cells. In the crossover experiment, conditioned media from WPMY-1 and BPH-1 cells increased the expression of phosphorylated ERK1/2 and STAT3. Our results support previous observations on the bidirectional stromal-epithelial interactions in prostate gland and shed more light on the mechanistic action of those effects. Our study strongly supports the hypothesis that LHRH antagonists may be beneficial for BPH prevention and treatment. © Georg Thieme Verlag KG Stuttgart · New York.

  17. Effect of propofol on androgen receptor activity in prostate cancer cells.

    Science.gov (United States)

    Tatsumi, Kenichiro; Hirotsu, Akiko; Daijo, Hiroki; Matsuyama, Tomonori; Terada, Naoki; Tanaka, Tomoharu

    2017-08-15

    Androgen receptor is a nuclear receptor and transcription factor activated by androgenic hormones. Androgen receptor activity plays a pivotal role in the development and progression of prostate cancer. Although accumulating evidence suggests that general anesthetics, including opioids, affect cancer cell growth and impact patient prognosis, the effect of those drugs on androgen receptor in prostate cancer is not clear. The purpose of this study was to investigate the effect of the general anesthetic propofol on androgen receptor activity in prostate cancer cells. An androgen-dependent human prostate cancer cell line (LNCaP) was stimulated with dihydrotestosterone (DHT) and exposed to propofol. The induction of androgen receptor target genes was investigated using real-time reverse transcription polymerase chain reaction, and androgen receptor protein levels and localization patterns were analyzed using immunoblotting and immunofluorescence assays. The effect of propofol on the proliferation of LNCaP cells was analyzed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays. Propofol significantly inhibited DHT-induced expression of androgen receptor target genes in a dose- and time-dependent manner, and immunoblotting and immunofluorescence assays indicated that propofol suppressed nuclear levels of androgen receptor proteins. Exposure to propofol for 24h suppressed the proliferation of LNCaP cells, whereas 4h of exposure did not exert significant effects. Together, our results indicate that propofol suppresses nuclear androgen receptor protein levels, and inhibits androgen receptor transcriptional activity and proliferation in LNCaP cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Prostate stromal cell telomere shortening is associated with risk of prostate cancer in the placebo arm of the Prostate Cancer Prevention Trial.

    Science.gov (United States)

    Heaphy, Christopher M; Gaonkar, Gaurav; Peskoe, Sarah B; Joshu, Corinne E; De Marzo, Angelo M; Lucia, M Scott; Goodman, Phyllis J; Lippman, Scott M; Thompson, Ian M; Platz, Elizabeth A; Meeker, Alan K

    2015-08-01

    Telomeres are repetitive nucleoproteins that help maintain chromosomal stability by inhibiting exonucleolytic degradation, prohibiting inappropriate homologous recombination, and preventing chromosomal fusions by suppressing double-strand break signals. We recently observed that men treated for clinically localized prostate cancer with shorter telomeres in their cancer-associated stromal cells, in combination with greater variation in cancer cell telomere lengths, were significantly more likely to progress to distant metastases, and die from their disease. Here, we hypothesized that shorter stromal cell telomere length would be associated with prostate cancer risk at time of biopsy. Telomere-specific fluorescence in situ hybridization (FISH) analysis was performed in normal-appearing stromal, basal epithelial, and luminal epithelial cells in biopsies from men randomized to the placebo arm of the Prostate Cancer Prevention Trial. Prostate cancer cases (N = 32) were either detected on a biopsy performed for cause or at the end of the study per trial protocol, and controls (N = 50), defined as negative for cancer on an end-of-study biopsy performed per trial protocol (e.g., irrespective of indication), were sampled. Logistic regression was used to estimate the association between mean telomere length of the particular cell populations, cell-to-cell telomere length variability, and risk of prostate cancer. Men with short stromal cell telomere lengths (below median) had 2.66 (95% CI 1.04-3.06; P = 0.04) times the odds of prostate cancer compared with men who had longer lengths (at or above median). Conversely, we did not observe statistically significant associations for short telomere lengths in normal-appearing basal (OR = 2.15, 95% CI 0.86-5.39; P= 0 .10) or luminal (OR = 1.15, 95% CI 0.47-2.80; P = 0.77) cells. These findings suggest that telomere shortening in normal stromal cells is associated with prostate cancer risk. It is essential

  19. Carbon ion irradiation of the human prostate cancer cell line PC3: A whole genome microarray study

    Science.gov (United States)

    SUETENS, ANNELIES; MOREELS, MARJAN; QUINTENS, ROEL; CHIRIOTTI, SABINA; TABURY, KEVIN; MICHAUX, ARLETTE; GRÉGOIRE, VINCENT; BAATOUT, SARAH

    2014-01-01

    Hadrontherapy is a form of external radiation therapy, which uses beams of charged particles such as carbon ions. Compared to conventional radiotherapy with photons, the main advantage of carbon ion therapy is the precise dose localization along with an increased biological effectiveness. The first results obtained from prostate cancer patients treated with carbon ion therapy showed good local tumor control and survival rates. In view of this advanced treatment modality we investigated the effects of irradiation with different beam qualities on gene expression changes in the PC3 prostate adenocarcinoma cell line. For this purpose, PC3 cells were irradiated with various doses (0.0, 0.5 and 2.0 Gy) of carbon ions (LET=33.7 keV/μm) at the beam of the Grand Accélérateur National d’Ions Lourds (Caen, France). Comparative experiments with X-rays were performed at the Belgian Nuclear Research Centre. Genome-wide gene expression was analyzed using microarrays. Our results show a downregulation in many genes involved in cell cycle and cell organization processes after 2.0 Gy irradiation. This effect was more pronounced after carbon ion irradiation compared with X-rays. Furthermore, we found a significant downregulation of many genes related to cell motility. Several of these changes were confirmed using qPCR. In addition, recurrence-free survival analysis of prostate cancer patients based on one of these motility genes (FN1) revealed that patients with low expression levels had a prolonged recurrence-free survival time, indicating that this gene may be a potential prognostic biomarker for prostate cancer. Understanding how different radiation qualities affect the cellular behavior of prostate cancer cells is important to improve the clinical outcome of cancer radiation therapy. PMID:24504141

  20. Regulation of androgen receptor transactivity and mTOR-S6 kinase pathway by Rheb in prostate cancer cell proliferation.

    Science.gov (United States)

    Kobayashi, Takashi; Shimizu, Yosuke; Terada, Naoki; Yamasaki, Toshinari; Nakamura, Eijiro; Toda, Yoshinobu; Nishiyama, Hiroyuki; Kamoto, Toshiyuki; Ogawa, Osamu; Inoue, Takahiro

    2010-06-01

    Ras homolog-enriched in brain (Rheb), a small GTP-binding protein, is associated with prostate carcinogenesis through activating mammalian target of rapamycin (mTOR) signaling pathway. This study aimed to elucidate whether Rheb promotes proliferation of prostate cancer cells and can act as a potent therapeutic target in prostate cancer. Prostate cancer cell lines and human prostatic tissues were examined for the expression of Rheb. The effects of forced expression or knockdown of Rheb on cell proliferation were also examined. Semi-quantitative and quantitative RT-PCR were performed to evaluate mRNA expression. Western blotting was used to examine protein expression. Cell count and WST-1 assay were used to measure cell proliferation. Fluorescence-activated cell sorting was used to assess the cell cycle. Rheb mRNA and protein expression was higher in more aggressive, androgen-independent prostate cancer cell lines PC3, DU145, and C4-2, compared with the less aggressive LNCaP. Rheb expression was higher in cancer tissues than in benign prostatic epithelia. Forced expression of Rheb in LNCaP cells accelerated proliferation without enhancing androgen receptor transactivity. Attenuation of Rheb expression or treatment with the mTOR inhibitor rapamycin decreased proliferation of PC3 and DU145 cells, with a decrease in the activated form of p70S6 kinase, one of the main targets of mTOR. Rheb potentiates proliferation of prostate cancer cells and inhibition of Rheb or mTOR can lead to suppressed proliferation of aggressive prostate cancer cell lines in vitro. Rheb and the mTOR pathway are therefore probable targets for suppressing prostate cancer.

  1. Oligoadenylate synthetase 1 (OAS1 expression in human breast and prostate cancer cases, and its regulation by sex steroid hormones

    Directory of Open Access Journals (Sweden)

    Cláudio Jorge Maia

    2016-06-01

    Full Text Available Oligoadenylate synthetase 1 (OAS1 is an interferon-induced protein characterised by its capacity to catalyse the synthesis of 2ʹ-5ʹ-linked oligomers of adenosine from adenosine triphosphate (2-5A. The 2-5A binds to a latent Ribonuclease L (RNase L, which subsequently dimerises into its active form and may play an important role in the control of cell growth, differentiation and apoptosis. Previously, our research group identified OAS1 as a differentially-expressed gene in breast and prostate cancer cell lines when compared to normal cells. This study evaluates: i the expression of OAS1 in human breast and prostate cancer specimens; and ii the effect of sex steroid hormones in regulating the expression of OAS1 in breast (MCF-7 and prostate (LNCaP cancer cell lines. The obtained results showed that OAS1 expression was down-regulated in human infiltrative ductal carcinoma of breast, adenocarcinoma of prostate, and benign prostate hyperplasia, both at mRNA and protein level. In addition, OAS1 expression was negatively correlated with the progression of breast and prostate cancer. With regards to the regulation of OAS1 gene, it was demonstrated that 17β-estradiol (E2 down-regulates OAS1 gene in MCF-7 cell lines, an effect that seems to be dependent on the activation of oestrogen receptor (ER. On the other hand, 5α-dihydrotestosterone (DHT treatment showed no effect on the expression of OAS1 in LNCaP cell lines. The lower levels of OAS1 in breast and prostate cancer cases indicated that the OAS1/RNaseL apoptotic pathway may be compromised in breast and prostate tumours. Moreover, the present findings suggested that this effect may be enhanced by oestrogen in ER-positive breast cancers.

  2. PSA-selective activation of cytotoxic human serine proteases within the tumor microenvironment as a therapeutic strategy to target prostate cancer.

    Science.gov (United States)

    Rogers, Oliver C; Anthony, Lizamma; Rosen, D Marc; Brennen, W Nathaniel; Denmeade, Samuel R

    2018-04-27

    Prostate cancer is the most diagnosed malignancy and the second leading cause of cancer-related death in American men. While localized therapy is highly curative, treatments for metastatic prostate cancer are largely palliative. Thus, new innovative therapies are needed to target metastatic tumors. Prostate-Specific Antigen (PSA) is a chymotrypsin-like protease with a unique substrate specificity that is secreted by both normal and malignant prostate epithelial cells. Previous studies demonstrated the presence of high levels (μM-mM) of enzymatically active PSA is present in the extracellular fluid of the prostate cancer microenvironment. Because of this, PSA is an attractive target for a protease activated pro-toxin therapeutic strategy. Because prostate cancers typically grow very slowly, a strategy employing a proliferation-independent cytotoxic payload is preferred. Recently, it was shown that the human protease Granzyme B (GZMB), at low micromolar concentrations in the extracellular space, can cleave an array of extracellular matrix (ECM) proteins thus perturbing cell growth, signaling, motility, and integrity. It is also well established that other human proteases such as trypsin can induce similar effects. Because both enzymes require N-terminal proteolytic activation, we propose to convert these proteins into PSA-activated cytotoxins. In this study, we examine the enzymatic and cell targeting parameters of these PSA-activated cytotoxic serine proteases. These pro-enzymes were activated robustly by PSA and induced ECM damage that led to the death of prostate cancer cells in vitro thus supporting the potential use of this strategy as means to target metastatic prostate cancers.

  3. Hydrodynamic cavitation kills prostate cells and ablates benign prostatic hyperplasia tissue.

    Science.gov (United States)

    Itah, Zeynep; Oral, Ozlem; Perk, Osman Yavuz; Sesen, Muhsincan; Demir, Ebru; Erbil, Secil; Dogan-Ekici, A Isin; Ekici, Sinan; Kosar, Ali; Gozuacik, Devrim

    2013-11-01

    Hydrodynamic cavitation is a physical phenomenon characterized by vaporization and bubble formation in liquids under low local pressures, and their implosion following their release to a higher pressure environment. Collapse of the bubbles releases high energy and may cause damage to exposed surfaces. We recently designed a set-up to exploit the destructive nature of hydrodynamic cavitation for biomedical purposes. We have previously shown that hydrodynamic cavitation could kill leukemia cells and erode kidney stones. In this study, we analyzed the effects of cavitation on prostate cells and benign prostatic hyperplasia (BPH) tissue. We showed that hydrodynamic cavitation could kill prostate cells in a pressure- and time-dependent manner. Cavitation did not lead to programmed cell death, i.e. classical apoptosis or autophagy activation. Following the application of cavitation, we observed no prominent DNA damage and cells did not arrest in the cell cycle. Hence, we concluded that cavitation forces directly damaged the cells, leading to their pulverization. Upon application to BPH tissues from patients, cavitation could lead to a significant level of tissue destruction. Therefore similar to ultrasonic cavitation, we propose that hydrodynamic cavitation has the potential to be exploited and developed as an approach for the ablation of aberrant pathological tissues, including BPH.

  4. Human seminal proteinase and prostate-specific antigen are the ...

    Indian Academy of Sciences (India)

    https://www.ias.ac.in/article/fulltext/jbsc/033/02/0195-0207. Keywords. Kallikrein; prostate cancer biomarker; proteinase activity; seminal plasma; tumour proliferation and metastasis; therapeutic target. Abstract. Human seminal proteinase and prostate-specific antigen (PSA) were each isolated from human seminal fluid and ...

  5. Circulating Tumor Cells in Prostate Cancer

    International Nuclear Information System (INIS)

    Hu, Brian; Rochefort, Holly; Goldkorn, Amir

    2013-01-01

    Circulating tumor cells (CTCs) can provide a non-invasive, repeatable snapshot of an individual patient’s tumor. In prostate cancer, CTC enumeration has been extensively studied and validated as a prognostic tool and has received FDA clearance for use in monitoring advanced disease. More recently, CTC analysis has been shifting from enumeration to more sophisticated molecular characterization of captured cells, which serve as a “liquid biopsy” of the tumor, reflecting molecular changes in an individual’s malignancy over time. Here we will review the main CTC studies in advanced and localized prostate cancer, highlighting the important gains as well as the challenges posed by various approaches, and their implications for advancing prostate cancer management

  6. Dihydrotestosterone (DHT) modulates the ability of NSAIDs to induce apoptosis of prostate cancer cells.

    Science.gov (United States)

    Andrews, Peter; Krygier, Scott; Djakiew, Daniel

    2002-03-01

    Recent evidence indicates that nonsteroidal antiinflammatory drugs (NSAIDs) are effective in the treatment and prevention of prostate cancer. In the study reported here, we investigated the ability of the steroid hormone dihydrotestosterone (DHT) to modulate NSAID-induced apoptosis of prostate cancer cells. Using in vitro models of androgen-sensitive and androgen-insensitive human prostate cancer cells, we evaluated the ability of a specific cyclooxygenase-2 inhibitor (NS-398) and a nonspecific cyclooxygenase inhibitor (indomethacin) to induce apoptosis in the presence of various concentrations of DHT. Apoptosis was quantified using the TUNEL method and verified by electron microscopy. We found that increasing concentrations of DHT significantly enhanced the ability of NS-398 and indomethacin to induce apoptosis of androgen-sensitive LNCaP cells. The ability of NSAIDs to induce apoptosis of androgen-insensitive PC-3 cells, however, was not affected by the presence of DHT. Higher levels of DHT in the incubation medium both before as well as following exposure to NSAIDs enhanced apoptosis of LNCaP cells. Another steroid hormone that interacts with the androgen receptor in LNCaP cells (progesterone) also promoted apoptosis of these cells. Increasing concentrations of DHT caused LNCaP cells to shift from the S and G(2)/M to the G(0)/G(1) stages of the cell cycle. These observations support the use of DHT in combination with NSAIDs in the treatment of prostate cancer, and indicate that DHT is an important issue to address in clinical trials of NSAIDs since androgen ablation is a common treatment for prostate cancer.

  7. α-Solanine Inhibits Invasion of Human Prostate Cancer Cell by Suppressing Epithelial-Mesenchymal Transition and MMPs Expression

    Directory of Open Access Journals (Sweden)

    Kun-Hung Shen

    2014-08-01

    Full Text Available α-Solanine, a naturally occurring steroidal glycoalkaloid found in nightshade (Solanum nigrum Linn., was found to inhibit proliferation and induce apoptosis of tumor cells. However, the mechanism involved in suppression of cancer cell metastasis by α-solanine remains unclear. This study investigates the suppression mechanism of α-solanine on motility of the human prostate cancer cell PC-3. Results show that α-solanine reduces the viability of PC-3 cells. When treated with non-toxic doses of α-solanine, cell invasion is markedly suppressed by α-solanine. α-Solanine also significantly elevates epithelial marker E-cadherin expression, while it concomitantly decreases mesenchymal marker vimentin expression, suggesting it suppresses epithelial-mesenchymal transition (EMT. α-Solanine reduces the mRNA level of matrix metalloproteinase-2 (MMP-2, MMP-9 and extracellular inducer of matrix metalloproteinase (EMMPRIN, but increases the expression of reversion-inducing cysteine-rich protein with kazal motifs (RECK, and tissue inhibitor of metalloproteinase-1 (TIMP-1 and TIMP-2. Immunoblotting assays indicate α-solanine is effective in suppressing the phosphorylation of phosphatidylinositide-3 kinase (PI3K, Akt and ERK. Moreover, α-solanine downregulates oncogenic microRNA-21 (miR-21 and upregulates tumor suppressor miR-138 expression. Taken together, the results suggest that inhibition of PC-3 cell invasion by α-solanine may be, at least in part, through blocking EMT and MMPs expression. α-Solanine also reduces ERK and PI3K/Akt signaling pathways and regulates expression of miR-21 and miR-138. These findings suggest an attractive therapeutic potential of α-solanine for suppressing invasion of prostate cancer cell.

  8. The PPAR{gamma} ligand ciglitazone regulates androgen receptor activation differently in androgen-dependent versus androgen-independent human prostate cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Moss, Patrice E.; Lyles, Besstina E.; Stewart, LaMonica V., E-mail: lstewart@mmc.edu

    2010-12-10

    The androgen receptor (AR) regulates growth and progression of androgen-dependent as well as androgen-independent prostate cancer cells. Peroxisome proliferator-activated receptor gamma (PPAR{gamma}) agonists have been reported to reduce AR activation in androgen-dependent LNCaP prostate cancer cells. To determine whether PPAR{gamma} ligands are equally effective at inhibiting AR activity in androgen-independent prostate cancer, we examined the effect of the PPAR{gamma} ligands ciglitazone and rosiglitazone on C4-2 cells, an androgen- independent derivative of the LNCaP cell line. Luciferase-based reporter assays and Western blot analysis demonstrated that PPAR{gamma} ligand reduced dihydrotestosterone (DHT)-induced increases in AR activity in LNCaP cells. However, in C4-2 cells, these compounds increased DHT-induced AR driven luciferase activity. In addition, ciglitazone did not significantly alter DHT-mediated increases in prostate specific antigen (PSA) protein or mRNA levels within C4-2 cells. siRNA-based experiments demonstrated that the ciglitazone-induced regulation of AR activity observed in C4-2 cells was dependent on the presence of PPAR{gamma}. Furthermore, overexpression of the AR corepressor cyclin D1 inhibited the ability of ciglitazone to induce AR luciferase activity in C4-2 cells. Thus, our data suggest that both PPAR{gamma} and cyclin D1 levels influence the ability of ciglitazone to differentially regulate AR signaling in androgen-independent C4-2 prostate cancer cells.

  9. Organoid culture systems for prostate epithelial and cancer tissue

    NARCIS (Netherlands)

    Drost, Jarno; Karthaus, Wouter R; Gao, Dong; Driehuis, Else; Sawyers, Charles L; Chen, Yu; Clevers, Hans

    This protocol describes a strategy for the generation of 3D prostate organoid cultures from healthy mouse and human prostate cells (either bulk or FACS-sorted single luminal and basal cells), metastatic prostate cancer lesions and circulating tumor cells. Organoids derived from healthy material

  10. Radioimmunoassay for prostatic acid phosphatase in human serum. Methodologic aspects

    Energy Technology Data Exchange (ETDEWEB)

    Pradalier, N; Canal, P; Pujol, A; Fregevu, Y [Groupe de Recherches du Centre Claudius-Regaud, Toulouse (France); Soula, G [Faculte des Sciences Pharmaceutiques, Toulouse (France)

    1982-01-01

    We propose a double antibody radioimmunoassay for human prostatic acid phosphatase (PAP) in serum for diagnosis and management of prostatic adenocarcinoma under treatment. The antigen is purified from human prostatic fluid by a gel-filtration on Sephadex G 100 followed by affinity chromatography on Con A Sepharose. A specific antibody is raised in rabbits and purified by immunoadsorption with a female serum. The described technique offers both radioisotopic sensibility and immunologic specificity. Physiological values determined in the serum of 125 healthy males are below 2 ng/ml. No significative differences are observed with age. The proposed technique also shows significant differences between values evaluated for benign prostatic hyperplasia and prostatic adenocarcinoma.

  11. Pyruvate dehydrogenase expression is negatively associated with cell stemness and worse clinical outcome in prostate cancers

    Science.gov (United States)

    Zhong, Yali; Li, Xiaoli; Ji, Yasai; Li, Xiaoran; Li, Yaqing; Yu, Dandan; Yuan, Yuan; Liu, Jian; Li, Huixiang; Zhang, Mingzhi; Ji, Zhenyu; Fan, Dandan; Wen, Jianguo; Goscinski, Mariusz Adam; Yuan, Long; Hao, Bin; Nesland, Jahn M; Suo, Zhenhe

    2017-01-01

    Cells generate adenosine-5′-triphosphate (ATP), the major currency for energy-consuming reactions, through mitochondrial oxidative phosphorylation (OXPHOS) and glycolysis. One of the remarkable features of cancer cells is aerobic glycolysis, also known as the “Warburg Effect”, in which cancer cells rely preferentially on glycolysis instead of mitochondrial OXPHOS as the main energy source even in the presence of high oxygen tension. One of the main players in controlling OXPHOS is the mitochondrial gatekeeperpyruvate dehydrogenase complex (PDHc) and its major subunit is E1α (PDHA1). To further analyze the function of PDHA1 in cancer cells, it was knock out (KO) in the human prostate cancer cell line LnCap and a stable KO cell line was established. We demonstrated that PDHA1 gene KO significantly decreased mitochondrial OXPHOS and promoted anaerobic glycolysis, accompanied with higher stemness phenotype including resistance to chemotherapy, enhanced migration ability and increased expression of cancer stem cell markers. We also examined PDHA1 protein expression in prostate cancer tissues by immunohistochemistry and observed that reduced PDHA1 protein expression in clinical prostate carcinomas was significantly correlated with poor prognosis. Collectively, our results show that negative PDHA1 gene expressionis associated with significantly higher cell stemness in prostate cancer cells and reduced protein expression of this gene is associated with shorter clinical outcome in prostate cancers. PMID:28076853

  12. Synergistic Effects of NDRG2 Overexpression and Radiotherapy on Cell Death of Human Prostate LNCaP Cells.

    Science.gov (United States)

    Alizadeh Zarei, M; Takhshid, M A; Behzad Behbahani, A; Hosseini, S Y; Okhovat, M A; Rafiee Dehbidi, Gh R; Mosleh Shirazi, M A

    2017-09-01

    Radiation therapy is among the most conventional cancer therapeutic modalities with effective local tumor control. However, due to the development of radio-resistance, tumor recurrence and metastasis often occur following radiation therapy. In recent years, combination of radiotherapy and gene therapy has been suggested to overcome this problem. The aim of the current study was to explore the potential synergistic effects of N-Myc Downstream-Regulated Gene 2 (NDRG2) overexpression, a newly identified candidate tumor suppressor gene, with radiotherapy against proliferation of prostate LNCaP cell line. In this study, LNCaP cells were exposed to X-ray radiation in the presence or absence of NDRG2 overexpression using plasmid PSES- pAdenoVator-PSA-NDRG2-IRES-GFP. The effects of NDRG2 overexpression, X-ray radiation or combination of both on the cell proliferation and apoptosis of LNCaP cells were then analyzed using MTT assay and flow cytometery, respectively. Results of MTT assay showed that NDRG2 overexpression and X-ray radiation had a synergistic effect against proliferation of LNCaP cells. Moreover, NDRG2 overexpression increased apoptotic effect of X-ray radiation in LNCaP cells synergistically. Our findings suggested that NDRG2 overexpression in combination with radiotherapy may be an effective therapeutic option against prostate cancer.

  13. The many ways to make a luminal cell and a prostate cancer cell

    OpenAIRE

    Strand, Douglas W; Goldstein, Andrew S

    2015-01-01

    Research in the area of stem/progenitor cells has led to the identification of multiple stem-like cell populations implicated in prostate homeostasis and cancer initiation. Given that there are multiple cells that can regenerate prostatic tissue and give rise to prostate cancer, our focus should shift to defining the signaling mechanisms that drive differentiation and progenitor self-renewal. In this article, we will review the literature, present the evidence and raise important unanswered q...

  14. The reverse transcription inhibitor abacavir shows anticancer activity in prostate cancer cell lines.

    Directory of Open Access Journals (Sweden)

    Francesca Carlini

    Full Text Available BACKGROUND: Transposable Elements (TEs comprise nearly 45% of the entire genome and are part of sophisticated regulatory network systems that control developmental processes in normal and pathological conditions. The retroviral/retrotransposon gene machinery consists mainly of Long Interspersed Nuclear Elements (LINEs-1 and Human Endogenous Retroviruses (HERVs that code for their own endogenous reverse transcriptase (RT. Interestingly, RT is typically expressed at high levels in cancer cells. Recent studies report that RT inhibition by non-nucleoside reverse transcriptase inhibitors (NNRTIs induces growth arrest and cell differentiation in vitro and antagonizes growth of human tumors in animal model. In the present study we analyze the anticancer activity of Abacavir (ABC, a nucleoside reverse transcription inhibitor (NRTI, on PC3 and LNCaP prostate cancer cell lines. PRINCIPAL FINDINGS: ABC significantly reduces cell growth, migration and invasion processes, considerably slows S phase progression, induces senescence and cell death in prostate cancer cells. Consistent with these observations, microarray analysis on PC3 cells shows that ABC induces specific and dose-dependent changes in gene expression, involving multiple cellular pathways. Notably, by quantitative Real-Time PCR we found that LINE-1 ORF1 and ORF2 mRNA levels were significantly up-regulated by ABC treatment. CONCLUSIONS: Our results demonstrate the potential of ABC as anticancer agent able to induce antiproliferative activity and trigger senescence in prostate cancer cells. Noteworthy, we show that ABC elicits up-regulation of LINE-1 expression, suggesting the involvement of these elements in the observed cellular modifications.

  15. Proliferative activity and branching morphogenesis in the human prostate: a closer look at pre- and postnatal prostate growth

    NARCIS (Netherlands)

    Xue, Y.; Sonke, G.; Schoots, C.; Schalken, J.; Verhofstad, A.; de la Rosette, J.; Smedts, F.

    2001-01-01

    To gain further insight into the molecular cell biologic features of prostate development, we investigated the proliferative activity of prostate epithelial and stromal cells and their topographic relationship with neuroendocrine (NE) cell distribution and regional heterogeneity. Consecutive

  16. Proliferative activity and branching morphogenesis in the human prostate: a closer look at pre- and postnatal prostate growth.

    NARCIS (Netherlands)

    Xue, Y.; Sonke, G.S.; Schoots, C.; Schalken, J.A.; Verhofstad, A.A.J.; Rosette, J.J.M.H.C. de la; Smedts, F.

    2001-01-01

    BACKGROUND: To gain further insight into the molecular cell biologic features of prostate development, we investigated the proliferative activity of prostate epithelial and stromal cells and their topographic relationship with neuroendocrine (NE) cell distribution and regional heterogeneity.

  17. Ginger Phytochemicals Inhibit Cell Growth and Modulate Drug Resistance Factors in Docetaxel Resistant Prostate Cancer Cell.

    Science.gov (United States)

    Liu, Chi-Ming; Kao, Chiu-Li; Tseng, Yu-Ting; Lo, Yi-Ching; Chen, Chung-Yi

    2017-09-05

    Ginger has many bioactive compounds with pharmacological activities. However, few studies are known about these bioactive compounds activity in chemoresistant cells. The aim of the present study was to investigate the anticancer properties of ginger phytochemicals in docetaxel-resistant human prostate cancer cells in vitro. In this study, we isolated 6-gingerol, 10-gingerol, 4-shogaol, 6-shogaol, 10-shogaol, and 6-dehydrogingerdione from ginger. Further, the antiproliferation activity of these compounds was examined in docetaxel-resistant (PC3R) and sensitive (PC3) human prostate cancer cell lines. 6-gingerol, 10-gingerol, 6-shogaol, and 10-shogaol at the concentration of 100 μM significantly inhibited the proliferation in PC3R but 6-gingerol, 6-shogaol, and 10-shogaol displayed similar activity in PC3. The protein expression of multidrug resistance associated protein 1 (MRP1) and glutathione-S-transferase (GSTπ) is higher in PC3R than in PC3. In summary, we isolated the bioactive compounds from ginger. Our results showed that 6-gingerol, 10-gingerol, 6-shogaol, and 10-shogaol inhibit the proliferation of PC3R cells through the downregulation of MRP1 and GSTπ protein expression.

  18. Suppression of DHT-induced paracrine stimulation of endothelial cell growth by estrogens via prostate cancer cells.

    Science.gov (United States)

    Wen, Juan; Zhao, Yuan; Li, Jinghe; Weng, Chunyan; Cai, Jingjing; Yang, Kan; Yuan, Hong; Imperato-McGinley, Julianne; Zhu, Yuan-Shan

    2013-07-01

    Androgen modulation of angiogenesis in prostate cancer may be not directly mediated by androgen receptor (AR) as AR is not detected in the prostatic endothelial cells. We examined the paracrine stimulation of cell proliferation by prostate tumor cells and its modulation by androgen and estrogens in a murine endothelial cell line (MEC) that does not express AR. Tumor cell conditioned media (TCM) collected from LAPC-4 or LNCaP prostatic tumor cells produced a time- and concentration-dependent induction of cell growth in MECs, which was parallel to the VEGF concentration in the TCM. This TCM-induced cell growth in MECs was enhanced by the treatment of prostatic tumor cells with dihydrotestosterone (DHT). Both the TCM-stimulation and DHT-enhancement effects in MECs were completely blocked by SU5416, a specific VEGF receptor antagonist. Co-administration of 17α-estradiol or 17β-estradiol with DHT in prostatic tumor cells completely inhibited the DHT-enhancement effect while treatment with DHT, 17α-estradiol or 17β-estradiol did not produce any significant direct effect in MECs. Moreover, administration of 17α-estradiol or 17β-estradiol in xenograft animals with LAPC-4 or LNCaP prostate tumor significantly decreased the microvessel number in the tumor tissues. Our study indicated that prostate tumor cells regulate endothelial cell growth through a paracrine mechanism, which is mainly mediated by VEGF; and DHT is able to modulate endothelial cell growth via tumor cells, which is inhibited by 17α-estradiol and 17β-estradiol. Thus, both17α-estradiol and 17β-estradiol are potential agents for anti-angiogenesis therapy in androgen-responsive prostate cancer. Copyright © 2013 Wiley Periodicals, Inc.

  19. Estimation of transition doses for human glioblastoma, neuroblastoma and prostate cell lines using the linear-quadratic formalism

    Directory of Open Access Journals (Sweden)

    John Akudugu

    2015-09-01

    Full Text Available Purpose: The introduction of stereotactic radiotherapy has raised concerns regarding the use of the linear-quadratic (LQ model for predicting radiation response for large fractional doses. To partly address this issue, a transition dose D* below which the LQ model retains its predictive strength has been proposed. Estimates of D* which depends on the a, β, and D0 parameters are much lower than fractional doses typically encountered in stereotactic radiotherapy. D0, often referred to as the final slope of the cell survival curve, is thought to be constant. In vitro cell survival curves generally extend over the first few logs of cell killing, where D0-values derived from the multi-target formalism may be overestimated and can lead to low transition doses. Methods:  D0-values were calculated from first principles for each decade of cell killing, using experimentally-determined a and β parameters for 17 human glioblastoma, neuroblastoma, and prostate cell lines, and corresponding transition doses were derived.Results: D0 was found to decrease exponentially with cell killing. Using D0-values at cell surviving fractions of the order of 10-10 yielded transition doses ~3-fold higher than those obtained from D0-values obtained from conventional approaches. D* was found to increase from 7.84 ± 0.56, 8.91 ± 1.20, and 6.55 ± 0.91 Gy to 26.84 ± 2.83, 23.95 ± 2.03, and 22.49 ± 2.31 Gy for the glioblastoma, neuroblastoma, and prostate cell lines, respectively. Conclusion: These findings suggest that the linear-quadratic formalism might be valid for estimating the effect of stereotactic radiotherapy with fractional doses in excess of 20 Gy.

  20. Gene expression profiling associated with angiotensin II type 2 receptor-induced apoptosis in human prostate cancer cells.

    Directory of Open Access Journals (Sweden)

    Nana Pei

    Full Text Available Increased expression of angiotensin II type 2 receptor (AT2R induces apoptosis in numerous tumor cell lines, with either Angiotensin II-dependent or Angiotensin II-independent regulation, but its molecular mechanism remains poorly understood. Here, we used PCR Array analysis to determine the gene and microRNA expression profiles in human prostate cancer cell lines transduced with AT2R recombinant adenovirus. Our results demonstrated that AT2R over expression leads to up-regulation of 6 apoptosis-related genes (TRAIL-R2, BAG3, BNIPI, HRK, Gadd45a, TP53BP2, 2 cytokine genes (IL6 and IL8 and 1 microRNA, and down-regulation of 1 apoptosis-related gene TNFSF10 and 2 cytokine genes (BMP6, BMP7 in transduced DU145 cells. HRK was identified as an up-regulated gene in AT2R-transduced PC-3 cells by real-time RT-PCR. Next, we utilized siRNAs to silence the up-regulated genes to further determine their roles on AT2R overexpression mediated apoptosis. The results showed downregulation of Gadd45a reduced the apoptotic effect by ∼30% in DU145 cells, downregulation of HRK reduced AT2R-mediated apoptosis by more than 50% in PC-3 cells, while downregulation of TRAIL-R2 enhanced AT2R-mediated apoptosis more than 4 times in DU145 cells. We also found that the effects on AT2R-mediated apoptosis caused by downregulation of Gadd45a, TRAIL-R2 and HRK were independent in activation of p38 MAPK, p44/42 MAPK and p53. Taken together, our results demonstrated that TRAIL-R2, Gadd45a and HRK may be novel target genes for further study of the mechanism of AT2R-mediated apoptosis in prostate cancer cells.

  1. Hypoxia inducible factor-1α-dependent epithelial to mesenchymal transition under hypoxic conditions in prostate cancer cells.

    Science.gov (United States)

    Li, Mingchuan; Wang, Yong Xing; Luo, Yong; Zhao, Jiahui; Li, Qing; Zhang, Jiao; Jiang, Yongguang

    2016-07-01

    Prostate cancer is the most commonly diagnosed cancer in men and the second leading cause of cancer death. Hypoxia is an environmental stimulus that plays an important role in the development and cancer progression especially for solid tumors. The key regulator under hypoxic conditions is stabilized hypoxia-inducible factor (HIF)-1α. In the present study, immune-fluorescent staining, siRNAs, qRT-PC, immunoblotting, cell migration and invasion assays were carried out to test typical epithelial to mesenchymal transition under hypoxia and the key regulators of this process in PC3, a human prostate cancer cell line. Our data demonstrated that hypoxia induces diverse molecular, phenotypic and functional changes in prostate cancer cells that are consistent with EMT. We also showed that a cell signal factor such as HIF-1α, which might be stabilized under hypoxic environment, is involved in EMT and cancer cell invasive potency. The induced hypoxia could be blocked by HIF-1α gene silencing and reoxygenation of EMT in prostate cancer cells, hypoxia partially reversed accompanied by a process of mesenchymal-epithelial reverting transition (MErT). EMT might be induced by activation of HIF-1α-dependent cell signaling in hypoxic prostate cancer cells.

  2. File list: DNS.Prs.10.AllAg.Prostate_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Prs.10.AllAg.Prostate_cancer_cells hg19 DNase-seq Prostate Prostate cancer cell...s http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Prs.10.AllAg.Prostate_cancer_cells.bed ...

  3. File list: DNS.Prs.05.AllAg.Prostate_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Prs.05.AllAg.Prostate_cancer_cells hg19 DNase-seq Prostate Prostate cancer cell...s http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Prs.05.AllAg.Prostate_cancer_cells.bed ...

  4. File list: DNS.Prs.20.AllAg.Prostate_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Prs.20.AllAg.Prostate_cancer_cells hg19 DNase-seq Prostate Prostate cancer cell...s http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Prs.20.AllAg.Prostate_cancer_cells.bed ...

  5. Expression and localization of GLUT1 and GLUT12 in prostate carcinoma.

    Science.gov (United States)

    Chandler, Jenalle D; Williams, Elizabeth D; Slavin, John L; Best, James D; Rogers, Suzanne

    2003-04-15

    Increased glucose consumption is a characteristic of malignant cells and in prostate carcinoma is associated with the proliferation of both androgen-dependent and independent cells. Transport of polar glucose across the nonpolar membrane relies on glucose transporter proteins, known as GLUTs. Increased expression of GLUT1 is a characteristic of many malignant cells. The authors characterized and cloned the cDNA for a novel glucose transporter, GLUT12, which was identified initially in malignant breast epithelial cells. To the authors' knowledge, there have been no reports on the expression of glucose transporters in the human prostate or human prostate carcinoma cells. The authors evaluated GLUT1 and GLUT12 expression in human prostate carcinoma cells. Reverse transcription-polymerase chain reaction was performed on total RNA extracted from cultured prostate carcinoma cells LNCaP, C4, C4-2, and C4-2B using primers to amplify GLUT1, GLUT12, or the housekeeping gene, 36B4. Total protein extracted from prostate carcinoma cell lines was assessed for GLUT12 protein by Western blot analysis. Cultured cell monolayers were incubated with antibodies to GLUT1 or GLUT12 and a peripheral Golgi protein, Golgi 58K, for detection by immunofluorescent confocal microscopy. Sections of benign prostatic hyperplasia and human prostate carcinoma were stained for immunohistochemical detection of GLUT1 and GLUT12. GLUT1 and GLUT12 mRNA and protein were detected in all cell lines evaluated. Immunofluorescence staining demonstrated both GLUT1 and GLUT12 on the plasma membrane and in the cytoplasm in all cultured prostate carcinoma cell lines, with GLUT1 but not GLUT12 appearing to colocalize with the Golgi. Immunohistochemical staining of benign prostatic hyperplasia indicated expression of GLUT1 but not GLUT12. Malignant tissue stained for GLUT12 but was negative for GLUT1. GLUT1 and GLUT12 are expressed in human prostate carcinoma cells. One possible rationale for the GLUT1 Golgi

  6. Overexpression of 15-lipoxygenase-1 in PC-3 human prostate cancer cells increases tumorigenesis.

    Science.gov (United States)

    Kelavkar, U P; Nixon, J B; Cohen, C; Dillehay, D; Eling, T E; Badr, K F

    2001-11-01

    The effect of overexpression of 15-lipoxygenase-1 (15-LO-1) was studied in the human prostate cancer cell line, PC-3. Stable PC-3 cell lines were generated by transfection with 15-LO-1-sense (15-LOS), 15-LO-1-antisense (15-LOAS) or vector (Zeo) and selection with Zeocin. After characterization by RT-PCR, western and HPLC, a PC3-15LOS clone was selected that possessed 10-fold 15-LO-1 enzyme activity compared with parental PC-3 cells. The PC3-15LOAS clone displayed little or no 15-LO-1 activity. These PC-3 cell lines were characterized for properties of tumorigenesis. The proliferation rates of the cell lines were as follows: PC3-15LOS > PC-3 = PC3-Zeo > PC3-15LOAS. Addition of a specific 15-LO-1 inhibitor, PD146176, caused a dose-dependent inhibition of proliferation in vitro. Overexpression of 15-LO-1 also caused [(3)H]thymidine incorporation to increase by 4.0-fold (P < 0.01). Compared with parental and PC-3-Zeo cells, PC3-15LOS enhanced whereas PC3-15LOAS reduced the ability of PC-3 cells to grow in an anchorage-independent manner, as assessed by colony formation in soft agar. These data suggested a pro-tumorigenic role for 15-LO-1 in PC-3 cells in vitro. Therefore, to clarify the role of 15-LO-1 in vivo, the effect of 15-LO-1 expression on the growth of tumors in nude mice was investigated. The PC-3 cell lines were inoculated subcutaneously into athymic nude mice. The frequency of tumor formation was increased and the sizes of the tumors formed were much larger in the PC3-15LOS compared with PC3-15LOAS, parental PC-3 and PC-3-Zeo cells. Immunohistochemistry for 15-LO-1 confirmed expression throughout the duration of the experiment. The expression of factor VIII, an angiogenesis marker, in tumor sections was increased in tumors derived from PC3-15LOS cells and decreased in those from PC3-15LOAS cells compared with tumors from parental or Zeo cells. These data further supported the evaluation by ELISA of vascular endothelial growth factor (VEGF) secretion by PC-3

  7. Prostate Cancer Cells Express More Androgen Receptor (AR) Following Androgen Deprivation, Improving Recognition by AR-Specific T Cells.

    Science.gov (United States)

    Olson, Brian M; Gamat, Melissa; Seliski, Joseph; Sawicki, Thomas; Jeffery, Justin; Ellis, Leigh; Drake, Charles G; Weichert, Jamey; McNeel, Douglas G

    2017-12-01

    Androgen deprivation is the primary therapy for recurrent prostate cancer, and agents targeting the androgen receptor (AR) pathway continue to be developed. Because androgen-deprivation therapy (ADT) has immmunostimulatory effects as well as direct antitumor effects, AR-targeted therapies have been combined with other anticancer therapies, including immunotherapies. Here, we sought to study whether an antigen-specific mechanism of resistance to ADT (overexpression of the AR) may result in enhanced AR-specific T-cell immune recognition, and whether this might be strategically combined with an antitumor vaccine targeting the AR. Androgen deprivation increased AR expression in human and murine prostate tumor cells in vitro and in vivo The increased expression persisted over time. Increased AR expression was associated with recognition and cytolytic activity by AR-specific T cells. Furthermore, ADT combined with vaccination, specifically a DNA vaccine encoding the ligand-binding domain of the AR, led to improved antitumor responses as measured by tumor volumes and delays in the emergence of castrate-resistant prostate tumors in two murine prostate cancer models (Myc-CaP and prostate-specific PTEN-deficient mice). Together, these data suggest that ADT combined with AR-directed immunotherapy targets a major mechanism of resistance, overexpression of the AR. This combination may be more effective than ADT combined with other immunotherapeutic approaches. Cancer Immunol Res; 5(12); 1074-85. ©2017 AACR . ©2017 American Association for Cancer Research.

  8. [Over-expression of miR-151a-3p inhibits proliferation and migration of PC-3 prostate cancer cells].

    Science.gov (United States)

    Zhang, Yi; Hao, Tongtong; Zhang, Han; Wei, Pengtao; Li, Xiaohui

    2018-03-01

    Objective To observe the effect of microRNA-151a-3p (miR-151a-3p) up-regulation on the proliferation and migration of prostate cancer cells and explore the possible molecular mechanism. Methods The expression of miR-151a-3p in PC-3M, C4-2B, 22RV1, DU-145, PC-3, LNCap human prostate cancer cells and RWPE-1 human normal prostate epithelial cells was detected by real-time fluorescence quantitative PCR. PC-3 cells with the lowest expression of miR-151a-3p were used for subsequent experiments. Bioinformatics and dual-luciferase reporter assay were performed to predict and test potential target genes of miR-151a-3p. The miR-151a-3p mimics or negative control microRNAs (miR-NCs) were transfected into PC-3 cells. Real-time fluorescence quantitative PCR was used to detect the expression of miR-151a-3p and potential target gene mRNA. The protein expressions of target genes and downstream signaling pathway proteins were analyzed by Western blotting. The proliferation of PC-3 cells was examined by MTT assay, and the migration of PC-3 cells was detected by Transwell TM assay. Results The expression level of miR-151a-3p in the prostate cancer cells was significantly lower than that in RWPE-1 normal human prostate epithelial cells. PC-3 cells had the lowest expression level of miR-151a-3p. The bioinformatics and dual-luciferase reporter assay showed that NEK2 was the potential target gene for miR-151a-3p. After transfection with miR-151a-3p mimics, the expression of miR-151a-3p in PC-3 cells significantly increased and the expression of NEK2 mRNA significantly decreased. The protein expressions of PI3K-AKT-mTOR signaling pathway were also reduced. Up-regulation of miR-151a-3p significantly inhibited the proliferation and migration of PC-3 cells. Conclusion The expression of miR-151a-3p is reduced in prostate cancer cells. Up-regulation of miR-151a-3p can inhibit the proliferation and migration of P-3 in prostate cancer by decreasing the expression of NEK2 and PI3K

  9. DEPDC1 promotes cell proliferation and tumor growth via activation of E2F signaling in prostate cancer.

    Science.gov (United States)

    Huang, Lin; Chen, Keng; Cai, Zhao-Peng; Chen, Fu-Chao; Shen, Hui-Yong; Zhao, Wei-Hua; Yang, Song-Jie; Chen, Xu-Biao; Tang, Guo-Xue; Lin, Xi

    2017-08-26

    DEP domain containing 1 (DEPDC1) is recently reported to be overexpressed in several types of human cancer; however the role of DEPDC1 in prostate cancer remains to be investigated. Herein, we identified that the DEPDC1 mRNA and protein expression levels were dramatically increased in prostate cancer tissues and cell lines. Overexpression of DEPDC1 promoted, but depletion of DEPDC1 inhibited cell proliferation by regulating the G1-S phase cell cycle transition. Importantly, we found that DEPDC1 was essential for the tumor growth and formation of bone metastases of prostate cancer cells in vivo. Finally, we demonstrated that DEPDC1 interacted with E2F1 and increased its transcriptional activity, leading to hyper-activation of E2F signaling in prostate cancer cells. Our findings reveal an oncogenic role of DEPDC1 in prostate cancer progression via activation of E2F signaling, and suggest DEPDC1 might be a potential therapeutic target against the disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Radioimmunoassay for prostatic acid phosphatase in human serum. Methodologic aspects

    International Nuclear Information System (INIS)

    Pradalier, N.; Canal, P.; Pujol, A.; Fregevu, Y.; Soula, G.

    1982-01-01

    We propose a double antibody radioimmunoassay for human prostatic acid phosphatase (PAP) in serum for diagnosis and management of prostatic adenocarcinoma under treatment. The antigen is purified from human prostatic fluid by a gel-filtration on Sephadex G 100 followed by affinity chromatography on Con A Sepharose. A specific antibody is raised in rabbits and purified by immunoadsorption with a female serum. The described technique offers both radioisotopic sensibility and immunologic specificity. Physiological values determined in the serum of 125 healthy males are below 2 ng/ml. No significative differences are observed with age. The proposed technique also shows significant differences between values evaluated for benign prostatic hyperplasia and prostatic adenocarcinoma [fr

  11. XMRV Discovery and Prostate Cancer-Related Research

    Directory of Open Access Journals (Sweden)

    David E. Kang

    2011-01-01

    Full Text Available Xenotropic murine leukemia virus-related virus (XMRV was first reported in 2006 in a study of human prostate cancer patients with genetic variants of the antiviral enzyme, RNase L. Subsequent investigations in North America, Europe, Asia, and Africa have either observed or failed to detect XMRV in patients (prostate cancer, chronic fatigue syndrome-myalgic encephalomyelitis (CFS-ME, and immunosuppressed with respiratory tract infections or normal, healthy, control individuals. The principal confounding factors are the near ubiquitous presence of mouse-derived reagents, antibodies and cells, and often XMRV itself, in laboratories. XMRV infects and replicates well in many human cell lines, but especially in certain prostate cancer cell lines. XMRV also traffics to prostate in a nonhuman primate model of infection. Here, we will review the discovery of XMRV and then focus on prostate cancer-related research involving this intriguing virus.

  12. Trichomonas vaginalis homolog of macrophage migration inhibitory factor induces prostate cell growth, invasiveness, and inflammatory responses.

    Science.gov (United States)

    Twu, Olivia; Dessí, Daniele; Vu, Anh; Mercer, Frances; Stevens, Grant C; de Miguel, Natalia; Rappelli, Paola; Cocco, Anna Rita; Clubb, Robert T; Fiori, Pier Luigi; Johnson, Patricia J

    2014-06-03

    The human-infective parasite Trichomonas vaginalis causes the most prevalent nonviral sexually transmitted infection worldwide. Infections in men may result in colonization of the prostate and are correlated with increased risk of aggressive prostate cancer. We have found that T. vaginalis secretes a protein, T. vaginalis macrophage migration inhibitory factor (TvMIF), that is 47% similar to human macrophage migration inhibitory factor (HuMIF), a proinflammatory cytokine. Because HuMIF is reported to be elevated in prostate cancer and inflammation plays an important role in the initiation and progression of cancers, we have explored a role for TvMIF in prostate cancer. Here, we show that TvMIF has tautomerase activity, inhibits macrophage migration, and is proinflammatory. We also demonstrate that TvMIF binds the human CD74 MIF receptor with high affinity, comparable to that of HuMIF, which triggers activation of ERK, Akt, and Bcl-2-associated death promoter phosphorylation at a physiologically relevant concentration (1 ng/mL, 80 pM). TvMIF increases the in vitro growth and invasion through Matrigel of benign and prostate cancer cells. Sera from patients infected with T. vaginalis are reactive to TvMIF, especially in males. The presence of anti-TvMIF antibodies indicates that TvMIF is released by the parasite and elicits host immune responses during infection. Together, these data indicate that chronic T. vaginalis infections may result in TvMIF-driven inflammation and cell proliferation, thus triggering pathways that contribute to the promotion and progression of prostate cancer.

  13. mRNA-Seq of single prostate cancer circulating tumor cells reveals recapitulation of gene expression and pathways found in prostate cancer.

    Science.gov (United States)

    Cann, Gordon M; Gulzar, Zulfiqar G; Cooper, Samantha; Li, Robin; Luo, Shujun; Tat, Mai; Stuart, Sarah; Schroth, Gary; Srinivas, Sandhya; Ronaghi, Mostafa; Brooks, James D; Talasaz, Amirali H

    2012-01-01

    Circulating tumor cells (CTC) mediate metastatic spread of many solid tumors and enumeration of CTCs is currently used as a prognostic indicator of survival in metastatic prostate cancer patients. Some evidence suggests that it is possible to derive additional information about tumors from expression analysis of CTCs, but the technical difficulty of isolating and analyzing individual CTCs has limited progress in this area. To assess the ability of a new generation of MagSweeper to isolate intact CTCs for downstream analysis, we performed mRNA-Seq on single CTCs isolated from the blood of patients with metastatic prostate cancer and on single prostate cancer cell line LNCaP cells spiked into the blood of healthy donors. We found that the MagSweeper effectively isolated CTCs with a capture efficiency that matched the CellSearch platform. However, unlike CellSearch, the MagSweeper facilitates isolation of individual live CTCs without contaminating leukocytes. Importantly, mRNA-Seq analysis showed that the MagSweeper isolation process did not have a discernible impact on the transcriptional profile of single LNCaPs isolated from spiked human blood, suggesting that any perturbations caused by the MagSweeper process on the transcriptional signature of isolated cells are modest. Although the RNA from patient CTCs showed signs of significant degradation, consistent with reports of short half-lives and apoptosis amongst CTCs, transcriptional signatures of prostate tissue and of cancer were readily detectable with single CTC mRNA-Seq. These results demonstrate that the MagSweeper provides access to intact CTCs and that these CTCs can potentially supply clinically relevant information.

  14. Aminomethylphosphonic acid inhibits growth and metastasis of human prostate cancer in an orthotopic xenograft mouse model.

    Science.gov (United States)

    Parajuli, Keshab Raj; Zhang, Qiuyang; Liu, Sen; You, Zongbing

    2016-03-01

    Aminomethylphosphonic acid (AMPA) has been shown to inhibit prostate cancer cell growth in vitro. The purpose of the present study was to determine if AMPA could inhibit growth and metastasis of prostate cancer in vivo. Human prostate cancer PC-3-LacZ-luciferase cells were implanted into the ventral lateral lobes of the prostate in 39 athymic Nu/Nu nude male mice. Seven days later, mice were randomized into the control group (n = 14, treated intraperitoneally with phosphate buffered saline), low dose group (n = 10, treated intraperitoneally with AMPA at 400 mg/kg body weight/day), and high dose group (n = 15, treated intraperitoneally with AMPA at 800 mg/kg body weight/day). Tumor growth and metastasis were examined every 4-7 days by bioluminescence imaging of live mice. We found that AMPA treatment significantly inhibited growth and metastasis of orthotopic xenograft prostate tumors and prolonged the survival time of the mice. AMPA treatment decreased expression of BIRC2 and activated caspase 3, leading to increased apoptosis in the prostate tumors. AMPA treatment decreased expression of cyclin D1. AMPA treatment also reduced angiogenesis in the prostate tumors. Taken together, these results demonstrate that AMPA can inhibit prostate cancer growth and metastasis, suggesting that AMPA may be developed into a therapeutic agent for the treatment of prostate cancer.

  15. ROS-mediated apoptotic cell death in prostate cancer LNCaP cells induced by biosurfactant stabilized CdS quantum dots.

    Science.gov (United States)

    Singh, Braj R; Singh, Brahma N; Khan, W; Singh, H B; Naqvi, A H

    2012-08-01

    Cadmium sulfide (CdS) quantum dots (QDs) have raised great attention because of their superior optical properties and wide utilization in biological and biomedical studies. However, little is known about the cell death mechanisms of CdS QDs in human cancer cells. This study was designed to investigate the possible mechanisms of apoptosis induced by biosurfactant stabilized CdS QDs (denoted as "bsCdS QDs") in human prostate cancer LNCaP cells. It was also noteworthy that apoptosis correlated with reactive oxygen species (ROS) production, mitochondrial damage, oxidative stress and chromatin condensation in a dose- and time-dependent manner. Results also showed involvement of caspases, Bcl-2 family proteins, heat shock protein 70, and a cell-cycle checkpoint protein p53 in apoptosis induction by bsCdS QDs in LNCaP cells. Moreover, pro-apoptotic protein Bax was upregulated and the anti-apoptotic proteins, survivin and NF-κB were downregulated in bsCdS QDs exposed cells. Protection of N-acetyl cysteine (NAC) against ROS clearly suggested the implication of ROS in hyper-activation of apoptosis and cell death. It is encouraging to conclude that biologically stabilized CdS QDs bear the potential of its applications in biomedicine, such as tumor therapy specifically by inducing caspase-dependent apoptotic cell death of human prostate cancer LNCaP cells. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  16. Establishment of a novel immortalized human prostatic epithelial cell line stably expressing androgen receptor and its application for the functional screening of androgen receptor modulators

    International Nuclear Information System (INIS)

    Yu, Shan; Wang, Ming-Wei; Yao, Xiaoqiang; Chan, F.L.

    2009-01-01

    In this study, we developed a human prostatic epithelial cell line BPH-1-AR stably expressing AR by lentiviral transduction. Characterization by immunoblot and RT-PCR showed that AR was stably expressed in all representative BPH-1-AR clones. Androgen treatment induced a secretory differentiation phenotype in BPH-1-AR cells but suppressed their cell proliferation. Treatments with AR agonists induced transactivation of a transfected PSA-gene promoter reporter in BPH-1-AR cells, whereas this transactivation was suppressed by an AR antagonist flutamide, indicating that the transduced AR in BPH-1-AR cells was functional. Finally, we utilized BPH-1-AR cells to evaluate the androgenic activities and growth effects of five newly developed non-steroidal compounds. Results showed that these compounds showed androgenic activities and growth-inhibitory effects on BPH-1-AR cells. Our results showed that BPH-1-AR cell line would be a valuable in vitro model for the study of androgen-regulated processes in prostatic epithelial cells and identification of compounds with AR-modulating activities.

  17. [Overexpression of miR-519d-3p inhibits the proliferation of DU-145 prostate cancer cells by reducing TRAF4].

    Science.gov (United States)

    Li, Xiaohui; Han, Xingtao; Yang, Jinhui; Sun, Jiantao; Wei, Pengtao

    2018-01-01

    Objective To observe the effect of microRNA-519d-3p (miR-519d-3p) on the proliferation of prostate cancer cells and explore the possible molecular mechanism. Methods The expression level of miR-519d-3p in PC-3, DU-145, 22RV1, PC-3M, LNCaP human prostate cancer cells and RWPE-1 human normal prostate epithelial cells was detected by real-time quantitative PCR. miR-519d-3p mimics or negative control microRNAs (miR-NC) was transfected into the prostate cancer cells with the lowest level of miR-519d-3p expression. Transfection efficiency was examined. The effect of miR-519d-3p on the cell cycle of prostate cancer was detected by flow cytometry. MTT assay and plate clone formation assay were used to detect its effect on the proliferation of prostate cancer cells. Bioinformatics software was used to predict and dual luciferase reporter assay was used to validate the target gene of miR-519d-3p. Real-time quantitative PCR was used to detect the expression of miR-519d-3p target gene. Western blot analysis was used to detect the expression of target gene protein and downstream protein. Results The expression of miR-519d-3p in normal prostate epithelial cells was significantly higher than that in prostate cancer cells, and the lowest was found in DU-145 cells. After transfected with miR-519d-3p mimics, the expression level of miR-519d-3p in DU-145 cells increased significantly. Bioinformatics prediction and dual luciferase reporter gene confirmed that tumor necrosis factor receptor associated factor 4 (TRAF4) was the target gene of miR-519d-3p. Overexpression of miR-519d-3p significantly reduced the expression of TRAF4 gene and its downstream TGF-β signaling pathway proteins in the prostate cancer cells. Conclusion The expression of miR-519d-3p is down-regulated in prostate cancer cells. Overexpression of miR-519d-3p can inhibit the proliferation of prostate cancer cells. The possible mechanism is that miR-519d-3p inhibits the expression of TRAF4.

  18. Amino acid containing thapsigargin analogues deplete androgen receptor protein via synthesis inhibition and induce the death of prostate cancer cells

    DEFF Research Database (Denmark)

    Griend, Donald J Vander; Antony, Lizamma; Dalrymple, Susan L

    2009-01-01

    There are quantitative and/or qualitative mechanisms allowing androgen receptor (AR) growth signaling in androgen ablation refractory prostate cancer cells. Regardless of the mechanism, agents that deplete AR protein expression prevent such AR growth signaling. Thapsigargin (TG) is a highly cell......-penetrant sequiterpene-lactone that once inside cells inhibits (IC(50), approximately 10 nmol/L) critically important housekeeping SERCA 2b calcium pumps in the endoplasmic reticulum. Using a series of five genetically diverse androgen ablation refractory human prostate cancer lines (LNCaP, LAPC-4, VCaP, MDA-PCa-2b......-specific proteases, such as prostate-specific antigen and prostate-specific membrane antigen, or cancer-specific proteases, such as fibroblast activation protein, so that toxicity of these prodrugs is selectively targeted to metastatic sites of prostate cancer. Based on these results, these prodrugs are undergoing...

  19. Efficacy of c-Met inhibitor for advanced prostate cancer

    International Nuclear Information System (INIS)

    Tu, William H; Zhu, Chunfang; Clark, Curtis; Christensen, James G; Sun, Zijie

    2010-01-01

    Aberrant expression of HGF/SF and its receptor, c-Met, often correlates with advanced prostate cancer. Our previous study showed that expression of c-Met in prostate cancer cells was increased after attenuation of androgen receptor (AR) signalling. This suggested that current androgen ablation therapy for prostate cancer activates c-Met expression and may contribute to development of more aggressive, castration resistant prostate cancer (CRPC). Therefore, we directly assessed the efficacy of c-Met inhibition during androgen ablation on the growth and progression of prostate cancer. We tested two c-Met small molecule inhibitors, PHA-665752 and PF-2341066, for anti-proliferative activity by MTS assay and cell proliferation assay on human prostate cancer cell lines with different levels of androgen sensitivity. We also used renal subcapsular and castrated orthotopic xenograft mouse models to assess the effect of the inhibitors on prostate tumor formation and progression. We demonstrated a dose-dependent inhibitory effect of PHA-665752 and PF-2341066 on the proliferation of human prostate cancer cells and the phosphorylation of c-Met. The effect on cell proliferation was stronger in androgen insensitive cells. The c-Met inhibitor, PF-2341066, significantly reduced growth of prostate tumor cells in the renal subcapsular mouse model and the castrated orthotopic mouse model. The effect on cell proliferation was greater following castration. The c-Met inhibitors demonstrated anti-proliferative efficacy when combined with androgen ablation therapy for advanced prostate cancer

  20. Antigen specific T-cell responses against tumor antigens are controlled by regulatory T cells in patients with prostate cancer.

    Science.gov (United States)

    Hadaschik, Boris; Su, Yun; Huter, Eva; Ge, Yingzi; Hohenfellner, Markus; Beckhove, Philipp

    2012-04-01

    Immunotherapy is a promising approach in an effort to control castration resistant prostate cancer. We characterized tumor antigen reactive T cells in patients with prostate cancer and analyzed the suppression of antitumor responses by regulatory T cells. Peripheral blood samples were collected from 57 patients with histologically confirmed prostate cancer, 8 patients with benign prostatic hyperplasia and 16 healthy donors. Peripheral blood mononuclear cells were isolated and antigen specific interferon-γ secretion of isolated T cells was analyzed by enzyme-linked immunospot assay. T cells were functionally characterized and T-cell responses before and after regulatory T-cell depletion were compared. As test tumor antigens, a panel of 11 long synthetic peptides derived from a total of 8 tumor antigens was used, including prostate specific antigen and prostatic acid phosphatase. In patients with prostate cancer we noted a 74.5% effector T-cell response rate compared with only 25% in patients with benign prostatic hyperplasia and 31% in healthy donors. In most patients 2 or 3 tumor antigens were recognized. Comparing various disease stages there was a clear increase in the immune response against prostate specific antigens from intermediate to high risk tumors and castration resistant disease. Regulatory T-cell depletion led to a significant boost in effector T-cell responses against prostate specific antigen and prostatic acid phosphatase. Tumor specific effector T cells were detected in most patients with prostate cancer, especially those with castration resistant prostate cancer. Since effector T-cell responses against prostate specific antigens strongly increased after regulatory T-cell depletion, our results indicate that immunotherapy efficacy could be enhanced by decreasing regulatory T cells. Copyright © 2012 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  1. Pathogenetic Influences of Human Herpesvirus 8 (HHV-8) in Prostate Cancer Progression

    Science.gov (United States)

    2012-05-25

    Science 1974;186:1213-1215. 11. Wilson JD, Griffin JE, Leshin M, George FW. Role of gonadal hormones in development of the sexual phenotypes. Hum Genet... Cantor A, Muro-Cacho C, Livingston S, Karras J, Pow-Sang J, Jove R. Constitutive activation of Stat3 in human prostate tumors and cell lines: direct

  2. The many ways to make a luminal cell and a prostate cancer cell.

    Science.gov (United States)

    Strand, Douglas W; Goldstein, Andrew S

    2015-12-01

    Research in the area of stem/progenitor cells has led to the identification of multiple stem-like cell populations implicated in prostate homeostasis and cancer initiation. Given that there are multiple cells that can regenerate prostatic tissue and give rise to prostate cancer, our focus should shift to defining the signaling mechanisms that drive differentiation and progenitor self-renewal. In this article, we will review the literature, present the evidence and raise important unanswered questions that will help guide the field forward in dissecting critical mechanisms regulating stem-cell differentiation and tumor initiation. © 2015 Society for Endocrinology.

  3. File list: Unc.Prs.50.AllAg.Prostate_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Prs.50.AllAg.Prostate_cancer_cells hg19 Unclassified Prostate Prostate cancer c...ells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Prs.50.AllAg.Prostate_cancer_cells.bed ...

  4. Histologic evaluation of human benign prostatic hyperplasia treated by dutasteride: a study by xenograft model with improved severe combined immunodeficient mice.

    Science.gov (United States)

    Tsujimura, Akira; Fukuhara, Shinichiro; Soda, Tetsuji; Takezawa, Kentaro; Kiuchi, Hiroshi; Takao, Tetsuya; Miyagawa, Yasushi; Nonomura, Norio; Adachi, Shigeki; Tokita, Yoriko; Nomura, Taisei

    2015-01-01

    To evaluate histologic change in human prostate samples treated with dutasteride and to elucidate direct effects of dutasteride on human prostate tissue, the present study was conducted by using a xenograft model with improved severe combined immunodeficient (super-SCID) mice, although it is well known that dutasteride reduces prostate volume. After establishment of a xenograft model of human benign prostatic hyperplasia in morphology and function, samples implanted into super-SCID mice with and without dutasteride were evaluated pathohistologically at 2 and 6 months after initiation of dutasteride administration. The proliferative index evaluated by Ki-67 staining was significantly lower in the dutasteride group than the control at 2 and 6 months after administration. Apoptotic index evaluated by the terminal transferase TdT-mediated dUTP-biotin nick end labeling staining was higher in the dutasteride group than the control at 2 and 6 months after administration. Quick scores in the dutasteride group for staining of both cyclooxygenase-2 (Cox-2) and Ras homolog gene family, member A (RhoA) were significantly lower than those in the control group at 2 and 6 months after administration. Dutasteride inhibits cell proliferation and induces apoptosis of prostatic cells, causing a reduced prostate volume. Furthermore, decreased expression of Cox-2 and RhoA within benign prostatic hyperplasia tissue by dutasteride may induce an early effect on improvement of lower urinary tract symptoms, probably by attenuating inflammation reaction of the prostate and decreasing intraurethral pressure, other than the mechanism of reduced prostate volume. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Membrane-Type 1 Matrix Metal loproteinase Is Regulated by Sp1 through the Differential Activation of AKT, JNK, and ERK Pathways in Human Prostate Tumor Cells

    Directory of Open Access Journals (Sweden)

    Isis C. Sroka

    2007-05-01

    Full Text Available We and other investigators have previously shown that membrane-type 1 matrix metalloproteinase (MT1-MMP is overexpressed in invasive prostate cancer cells. However, the mechanism for this expression is not known. Here, we show that MT1-MMP is minimally expressed in nonmalignant primary prostate cells, moderately expressed in DU-145 cells, and highly expressed in invasive PC-3 and PC-3N cells. Using human MT1-MMP promoter reporter plasmids and mobility shift assays, we show that Spi regulates MT1-MMP expression in DU-145, PC-3, and PC-3N cells and in PC3-N cells using chromatin immunoprecipitation analysis and silencing RNA. Investigation of signaling pathway showed that DU-145 cells express constitutively phosphorylated extracellular stress-regulated kinase (ERK, whereas PC-3 and PC-3N cells express constitutively phosphorylated AKT/PKB and c-Jun NH2 terminal kinase (JNK. We show that MT1-MMP and Spi levels are decreased in PC-3 and PC-3N cells when phosphatidylinositol-3 kinase and JNK are inhibited, and that MT1-MMP levels are decreased in DU-145 cells when MEK is inhibited. Transient transfection of PC-3 and PC-3N cells with a dominant-negative JNK or p85, and of DU-145 cells with a dominant negative ERK, reduces MT1-MMP promoter activity. These results indicate differential signaling control of Spi-mediated transcriptional regulation of MT1-MMP in prostate cancer cell lines.

  6. 15,16-Dihydrotanshinone I, a Compound of Salvia miltiorrhiza Bunge, Induces Apoptosis through Inducing Endoplasmic Reticular Stress in Human Prostate Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    Mao-Te Chuang

    2011-01-01

    Full Text Available 5,16-dihydrotanshinone I (DHTS is extracted from Salvia miltiorrhiza Bunge (tanshen root and was found to be the most effective compound of tanshen extracts against breast cancer cells in our previous studies. However, whether DHTS can induce apoptosis through an endoplasmic reticular (ER stress pathway was examined herein. In this study, we found that DHTS significantly inhibited the proliferation of human prostate DU145 carcinoma cells and induced apoptosis. DHTS was able to induce ER stress as evidenced by the upregulation of glucose regulation protein 78 (GRP78/Bip and CAAT/enhancer binding protein homologous protein/growth arrest- and DNA damage-inducible gene 153 (CHOP/GADD153, as well as increases in phosphorylated eukaryotic initiation factor 2α (eIF2α, c-jun N-terminal kinase (JNK, and X-box-binding protein 1 (XBP1 mRNA splicing forms. DHTS treatment also caused significant accumulation of polyubiquitinated proteins and hypoxia-inducible factor (HIF-1α, indicating that DHTS might be a proteasome inhibitor that is known to induce ER stress or enhance apoptosis caused by the classic ER stress-dependent mechanism. Moreover, DHTS-induced apoptosis was reversed by salubrinal, an ER stress inhibitor. Results suggest that DHTS can induce apoptosis of prostate carcinoma cells via induction of ER stress and/or inhibition of proteasome activity, and may have therapeutic potential for prostate cancer patients.

  7. File list: Pol.Prs.10.AllAg.Prostate_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Prs.10.AllAg.Prostate_cancer_cells hg19 RNA polymerase Prostate Prostate cancer... cells SRX022582 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Prs.10.AllAg.Prostate_cancer_cells.bed ...

  8. File list: Pol.Prs.05.AllAg.Prostate_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Prs.05.AllAg.Prostate_cancer_cells hg19 RNA polymerase Prostate Prostate cancer... cells SRX022582 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Prs.05.AllAg.Prostate_cancer_cells.bed ...

  9. IκBα mediates prostate cancer cell death induced by combinatorial targeting of the androgen receptor

    International Nuclear Information System (INIS)

    Carter, Sarah Louise; Centenera, Margaret Mary; Tilley, Wayne Desmond; Selth, Luke Ashton; Butler, Lisa Maree

    2016-01-01

    Combining different clinical agents to target multiple pathways in prostate cancer cells, including androgen receptor (AR) signaling, is potentially an effective strategy to improve outcomes for men with metastatic disease. We have previously demonstrated that sub-effective concentrations of an AR antagonist, bicalutamide, and the histone deacetylase inhibitor, vorinostat, act synergistically when combined to cause death of AR-dependent prostate cancer cells. In this study, expression profiling of human prostate cancer cells treated with bicalutamide or vorinostat, alone or in combination, was employed to determine the molecular mechanisms underlying this synergistic action. Cell viability assays and quantitative real time PCR were used to validate identified candidate genes. A substantial proportion of the genes modulated by the combination of bicalutamide and vorinostat were androgen regulated. Independent pathway analysis identified further pathways and genes, most notably NFKBIA (encoding IκBα, an inhibitor of NF-κB and p53 signaling), as targets of this combinatorial treatment. Depletion of IκBα by siRNA knockdown enhanced apoptosis of prostate cancer cells, while ectopic overexpression of IκBα markedly suppressed cell death induced by the combination of bicalutamide and vorinostat. These findings implicate IκBα as a key mediator of the apoptotic action of this combinatorial AR targeting strategy and a promising new therapeutic target for prostate cancer. The online version of this article (doi:10.1186/s12885-016-2188-2) contains supplementary material, which is available to authorized users

  10. Nucleoporin 62 and Ca(2+)/calmodulin dependent kinase kinase 2 regulate androgen receptor activity in castrate resistant prostate cancer cells.

    Science.gov (United States)

    Karacosta, Loukia G; Kuroski, Laura A; Hofmann, Wilma A; Azabdaftari, Gissou; Mastri, Michalis; Gocher, Angela M; Dai, Shuhang; Hoste, Allen J; Edelman, Arthur M

    2016-02-15

    Re-activation of the transcriptional activity of the androgen receptor (AR) is an important factor mediating progression from androgen-responsive to castrate-resistant prostate cancer (CRPC). However, the mechanisms regulating AR activity in CRPC remain incompletely understood. Ca(2+) /calmodulin-dependent kinase kinase (CaMKK) 2 was previously shown to regulate AR activity in androgen-responsive prostate cancer cells. Our objective was to further explore the basis of this regulation in CRPC cells. The abundance of CaMKK2 in nuclear fractions of androgen-responsive prostate cancer and CRPC, cells were determined by subcellular fractionation and Western blotting. CaMKK2 association with nuclear pore complexes (NPCs) and nucleoporins (Nups) including Nup62, were imaged by structured illumination and super-resolution fluorescence microscopy and co-immunoprecipitation, respectively. The abundance and subcellular localization of CaMKK2 and Nup62 in human clinical specimens of prostate cancer was visualized by immunohistochemistry. The role of Nups in the growth and viability of CRPC cells was assessed by RNA interference and cell counting. The involvement of CaMKK2 and Nup62 in regulating AR transcriptional activity was addressed by RNA interference, chromatin immunoprecipitation, androgen response element reporter assay, and Western blotting. CaMKK2 was expressed at higher levels in the nuclear fraction of CPRC C4-2 cells, than in that of androgen-responsive LNCaP cells. In C4-2 cells, CaMKK2 associated with NPCs of the nuclear envelope and physically interacted with Nup62. CaMKK2 and Nup62 demonstrated pronounced, and similar increases in both expression and perinuclear/nuclear localization in human clinical specimens of advanced prostate cancer relative to normal prostate. Knockdown of Nup62, but not of Nups, 98 or 88, reduced growth and viability of C4-2 cells. Knockdown of Nup62 produced a greater reduction of the growth and viability of C4-2 cells than of non

  11. Arctigenin inhibits prostate tumor cell growth in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Piwen Wang

    2017-06-01

    Full Text Available The low bioavailability of most phytochemicals limits their translation to humans. We investigated whether arctigenin, a novel anti-inflammatory lignan from the seeds of Arctium lappa, has favorable bioavailability/potency against prostate cancer. The anticarcinogenic activity of arctigenin was investigated both in vitro using the androgen-sensitive LNCaP and LAPC-4 human prostate cancer cells and pre-malignant WPE1-NA22 cells, and in vivo using xenograft mouse models. Arctigenin at lower doses (<2 μM significantly inhibited the proliferation of LNCaP and LAPC-4 cells by 30–50% at 48 h compared to control, and inhibited WPE1-NA22 cells by 75%, while did not affect normal prostate epithelial cells. Male severe combined immunodeficiency (SCID mice were implanted subcutaneously with LAPC-4 cells for in vivo studies. In one experiment, the intervention started one week after tumor implantation. Mice received arctigenin at 50 mg/kg (LD or 100 mg/kg (HD b.w. daily or vehicle control by oral gavage. After 6 weeks, tumor growth was inhibited by 50% (LD and 70% (HD compared to control. A stronger tumor inhibitory effect was observed in a second experiment where arctigenin intervention started two weeks prior to tumor implantation. Arc was detectable in blood and tumors in Arc groups, with a mean value up to 2.0 μM in blood, and 8.3 nmol/g tissue in tumors. Tumor levels of proliferation marker Ki67, total and nuclear androgen receptor, and growth factors including VEGF, EGF, and FGF-β were significantly decreased by Arc, along with an increase in apoptosis marker of Bax/Bcl-2 ratio. Genes responsive to arctigenin were identified including TIMP3 and ZNF185, and microRNAs including miR-126-5p, and miR-21-5p. This study provides the first in vivo evidence of the strong anticancer activity of arctigenin in prostate cancer. The effective dose of arctigenin in vitro is physiologically achievable in vivo, which provides a high promise in its

  12. SU-E-J-95: Predicting Treatment Outcomes for Prostate Cancer: Irradiation Responses of Prostate Cancer Stem Cells

    International Nuclear Information System (INIS)

    Wang, K

    2014-01-01

    Purpose: Most prostate cancers are slow-growing diseases but normally require much higher doses (80Gy) with conventional fractionation radiotherapy, comparing to other more aggressive cancers. This study is to disclose the radiobiological basis of this discrepancy by proposing the concept of prostate cancer stem cells (CSCs) and examining their specific irradiation responses. Methods: There are overwhelming evidences that CSC may keep their stemness, e.g. the competency of cell differentiation, in hypoxic microenvironments and hence become radiation resistive, though the probability is tiny for aggressiveness cancers. Tumor hypoxia used to be considered as an independent reason for poor treatment outcomes, and recent evidences showed that even prostate cancers were also hypoxic though they are very slow-growing. In addition, to achieve comparable outcomes to other much more aggressive cancers, much higher doses (rather than lower doses) are always needed for prostate cancers, regardless of its non-aggressiveness. All these abnormal facts can only be possibly interpreted by the irradiation responses characteristics of prostate CSCs. Results: Both normal cancer cells (NCCs) and CSCs exiting in tumors, in which NCCs are mainly for symptoms whereas killing all CSCs achieves disease-free. Since prostate cancers are slow-growing, the hypoxia in prostate cancers cannot possibly from NCCs, thus it is caused by hypoxic CSCs. However, single hypoxic cell cannot be imaged due to limitation of imaging techniques, unless a large group of hypoxic cells exist together, thus most of CSCs in prostate cancers are virtually hypoxic, i.e. not in working mode because CSCs in proliferating mode have to be normoxic, and this explains why prostate cancers are unaggressive. Conclusion: The fractional dose in conventional radiotherapy (∼2Gy) could only kill NCCs and CSCs in proliferating modes, whereas most CSCs survived fractional treatments since they were hypoxic, thus to eliminate all

  13. Prostate-specific membrane antigen-directed nanoparticle targeting for extreme nearfield ablation of prostate cancer cells.

    Science.gov (United States)

    Lee, Seung S; Roche, Philip Jr; Giannopoulos, Paresa N; Mitmaker, Elliot J; Tamilia, Michael; Paliouras, Miltiadis; Trifiro, Mark A

    2017-03-01

    Almost all biological therapeutic interventions cannot overcome neoplastic heterogeneity. Physical ablation therapy is immune to tumor heterogeneity, but nearby tissue damage is the limiting factor in delivering lethal doses. Multi-walled carbon nanotubes offer a number of unique properties: chemical stability, photonic properties including efficient light absorption, thermal conductivity, and extensive surface area availability for covalent chemical ligation. When combined together with a targeting moiety such as an antibody or small molecule, one can deliver highly localized temperature increases and cause extensive cellular damage. We have functionalized multi-walled carbon nanotubes by conjugating an antibody against prostate-specific membrane antigen. In our in vitro studies using prostate-specific membrane antigen-positive LNCaP prostate cancer cells, we have effectively demonstrated cell ablation of >80% with a single 30-s exposure to a 2.7-W, 532-nm laser for the first time without bulk heating. We also confirmed the specificity and selectivity of prostate-specific membrane antigen targeting by assessing prostate-specific membrane antigen-null PC3 cell lines under the same conditions (<10% cell ablation). This suggests that we can achieve an extreme nearfield cell ablation effect, thus restricting potential tissue damage when transferred to in vivo clinical applications. Developing this new platform will introduce novel approaches toward current therapeutic modalities and will usher in a new age of effective cancer treatment squarely addressing tumoral heterogeneity.

  14. A receptor tyrosine kinase, UFO/Axl, and other genes isolated by a modified differential display PCR are overexpressed in metastatic prostatic carcinoma cell line DU145.

    Science.gov (United States)

    Jacob, A N; Kalapurakal, J; Davidson, W R; Kandpal, G; Dunson, N; Prashar, Y; Kandpal, R P

    1999-01-01

    We have used a modified differential display PCR protocol for isolating 3' restriction fragments of cDNAs specifically expressed or overexpressed in metastatic prostate carcinoma cell line DU145. Several cDNA fragments were identified that matched to milk fat globule protein, UFO/Axl, a receptor tyrosine kinase, human homologue of a Xenopus maternal transcript, laminin and laminin receptor, human carcinoma-associated antigen, and some expressed sequence tags. The transcript for milk fat globule protein, a marker protein shown to be overexpressed in breast tumors, was elevated in DU145 cells. The expression of UFO/Axl, a receptor tyrosine kinase, was considerably higher in DU145 cells as compared to normal prostate cells and prostatic carcinoma cell line PC-3. The overexpression of UFO oncogene in DU145 cells is discussed in the context of prostate cancer metastasis.

  15. Prostate cancer cells induce osteoblastic differentiation via semaphorin 3A.

    Science.gov (United States)

    Liu, Fuzhou; Shen, Weiwei; Qiu, Hao; Hu, Xu; Zhang, Chao; Chu, Tongwei

    2015-03-01

    Prostate cancer metastasis to bone is the second most commonly diagnosed malignant disease among men worldwide. Such metastatic disease is characterized by the presence of osteoblastic bone lesions, and is associated with high rates of mortality. However, the various mechanisms involved in prostate cancer-induced osteoblastic differentiation have not been fully explored. Semaphorin 3A (Sema 3A) is a newly identified regulator of bone metabolism which stimulates differentiation of pre-osteoblastic cells under physiological conditions. We investigated in this study whether prostate cancer cells can mediate osteoblastic activity through Sema 3A. We cultured osteoprogenitor MC3T3-E1 cells in prostate cancer-conditioned medium, and analyzed levels of Sema 3A protein in diverse prostate cancer cell lines to identify cell lines in which Sema 3A production showed a positive correlation with osteo-stimulation. C4-2 cells were stably transfected with Sema 3A short hairpin RNA to further determine whether Sema 3A contributes to the ability of C4-2 cells to induce osteoblastic differentiation. Down-regulation of Sema 3A expression decreased indicators of C4-2 CM-induced osteoblastic differentiation, including alkaline phosphatase production and mineralization. Additionally, silencing or neutralizing Sema 3A in C4-2 cells resulted in diminished β-catenin expression in osteogenitor MC3T3-E1 cells. Our results suggest that prostate cancer-induced osteoblastic differentiation is at least partially mediated by Sema 3A, and may be regulated by the β-catenin signalling pathway. Sema 3A may represent a novel target for treatment of prostate cancer-induced osteoblastic lesions. © 2014 Wiley Periodicals, Inc.

  16. File list: Oth.Prs.05.AllAg.Prostate_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Prs.05.AllAg.Prostate_cancer_cells hg19 TFs and others Prostate Prostate cancer... cells SRX022577,SRX022578 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Prs.05.AllAg.Prostate_cancer_cells.bed ...

  17. File list: Oth.Prs.10.AllAg.Prostate_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Prs.10.AllAg.Prostate_cancer_cells hg19 TFs and others Prostate Prostate cancer... cells SRX022578,SRX022577 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Prs.10.AllAg.Prostate_cancer_cells.bed ...

  18. File list: Oth.Prs.20.AllAg.Prostate_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Prs.20.AllAg.Prostate_cancer_cells hg19 TFs and others Prostate Prostate cancer... cells SRX022578,SRX022577 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Prs.20.AllAg.Prostate_cancer_cells.bed ...

  19. File list: His.Prs.20.AllAg.Prostate_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Prs.20.AllAg.Prostate_cancer_cells hg19 Histone Prostate Prostate cancer cells ...SRX022579,SRX022581,SRX022580 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Prs.20.AllAg.Prostate_cancer_cells.bed ...

  20. Gene Delivery for Metastatic Prostate Cancer Cells

    National Research Council Canada - National Science Library

    Pang, Shen

    2001-01-01

    .... Enhanced by the bystander effect, the specific expression of the DTA gene causes significant cell death in prostate cancer cell cultures, with very low background cell eradication in control cell lines...

  1. Influence of the neural microenvironment on prostate cancer.

    Science.gov (United States)

    Coarfa, Christian; Florentin, Diego; Putluri, NagiReddy; Ding, Yi; Au, Jason; He, Dandan; Ragheb, Ahmed; Frolov, Anna; Michailidis, George; Lee, MinJae; Kadmon, Dov; Miles, Brian; Smith, Christopher; Ittmann, Michael; Rowley, David; Sreekumar, Arun; Creighton, Chad J; Ayala, Gustavo

    2018-02-01

    Nerves are key factors in prostate cancer (PCa), but the functional role of innervation in prostate cancer is poorly understood. PCa induced neurogenesis and perineural invasion (PNI), are associated with aggressive disease. We denervated rodent prostates chemically and physically, before orthotopically implanting cancer cells. We also performed a human neoadjuvant clinical trial using botulinum toxin type A (Botox) and saline in the same patient, before prostatectomy. Bilateral denervation resulted in reduced tumor incidence and size in mice. Botox treatment in humans resulted in increased apoptosis of cancer cells in the Botox treated side. A similar denervation gene array profile was identified in tumors arising in denervated rodent prostates, in spinal cord injury patients and in the Botox treated side of patients. Denervation induced exhibited a signature gene profile, indicating translation and bioenergetic shutdown. Nerves also regulate basic cellular functions of non-neoplastic epithelial cells. Nerves play a role in the homeostasis of normal epithelial tissues and are involved in prostate cancer tumor survival. This study confirms that interactions between human cancer and nerves are essential to disease progression. This work may make a major impact in general cancer treatment strategies, as nerve/cancer interactions are likely important in other cancers as well. Targeting the neural microenvironment may represent a therapeutic approach for the treatment of human prostate cancer. © 2017 The Authors. The Prostate Published by Wiley Periodicals, Inc.

  2. Cellular and molecular biology of the prostate: stem cell biology.

    NARCIS (Netherlands)

    Schalken, J.A.; Leenders, G.J.L.H. van

    2003-01-01

    The normal prostate shows a high degree of cellular organization. The basal layer is populated by prostate epithelial stem cells and a population of transiently proliferating/amplifying (TP/A) cells intermediate to the stem cells and fully differentiated cells. The luminal layer is composed of fully

  3. mRNA-Seq of single prostate cancer circulating tumor cells reveals recapitulation of gene expression and pathways found in prostate cancer.

    Directory of Open Access Journals (Sweden)

    Gordon M Cann

    Full Text Available Circulating tumor cells (CTC mediate metastatic spread of many solid tumors and enumeration of CTCs is currently used as a prognostic indicator of survival in metastatic prostate cancer patients. Some evidence suggests that it is possible to derive additional information about tumors from expression analysis of CTCs, but the technical difficulty of isolating and analyzing individual CTCs has limited progress in this area. To assess the ability of a new generation of MagSweeper to isolate intact CTCs for downstream analysis, we performed mRNA-Seq on single CTCs isolated from the blood of patients with metastatic prostate cancer and on single prostate cancer cell line LNCaP cells spiked into the blood of healthy donors. We found that the MagSweeper effectively isolated CTCs with a capture efficiency that matched the CellSearch platform. However, unlike CellSearch, the MagSweeper facilitates isolation of individual live CTCs without contaminating leukocytes. Importantly, mRNA-Seq analysis showed that the MagSweeper isolation process did not have a discernible impact on the transcriptional profile of single LNCaPs isolated from spiked human blood, suggesting that any perturbations caused by the MagSweeper process on the transcriptional signature of isolated cells are modest. Although the RNA from patient CTCs showed signs of significant degradation, consistent with reports of short half-lives and apoptosis amongst CTCs, transcriptional signatures of prostate tissue and of cancer were readily detectable with single CTC mRNA-Seq. These results demonstrate that the MagSweeper provides access to intact CTCs and that these CTCs can potentially supply clinically relevant information.

  4. Targeting Stromal Recruitment by Prostate Cancer Cells

    Science.gov (United States)

    2006-03-01

    Ensinger, C., Tumer , Z., Tommerup, N. et al.: Hedgehog signaling in small-cell lung cancer : frequent in vivo but a rare event in vitro. Lung Cancer , 52...W81XWH-04-1-0157 TITLE: Targeting Stromal Recruitment by Prostate Cancer Cells PRINCIPAL INVESTIGATOR: Jingxian Zhang, Ph.D...DATES COVERED (From - To) 15 Feb 2004 – 14 Feb 2006 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Targeting Stromal Recruitment by Prostate Cancer

  5. Expression of the Gastrin-Releasing Peptide Receptor, the Prostate Stem Cell Antigen and the Prostate-Specific Membrane Antigen in Lymph Node and Bone Metastases of Prostate Cancer

    NARCIS (Netherlands)

    Ananias, Hildo J. K.; van den Heuvel, Marius C.; Helfrich, Wijnand; de Jong, Igle J.

    2009-01-01

    OBJECTIVE. Cell membrane antigens like the gastrin-releasing peptide receptor (GRPR), the prostate stem cell antigen (PSCA), and the prostate-specific membrane antigen (PSMA), expressed in prostate cancer, are attractive targets for new therapeutic and diagnostic applications. Therefore, we

  6. Regulation of Prostate Development and Benign Prostatic Hyperplasia by Autocrine Cholinergic Signaling via Maintaining the Epithelial Progenitor Cells in Proliferating Status.

    Science.gov (United States)

    Wang, Naitao; Dong, Bai-Jun; Quan, Yizhou; Chen, Qianqian; Chu, Mingliang; Xu, Jin; Xue, Wei; Huang, Yi-Ran; Yang, Ru; Gao, Wei-Qiang

    2016-05-10

    Regulation of prostate epithelial progenitor cells is important in prostate development and prostate diseases. Our previous study demonstrated a function of autocrine cholinergic signaling (ACS) in promoting prostate cancer growth and castration resistance. However, whether or not such ACS also plays a role in prostate development is unknown. Here, we report that ACS promoted the proliferation and inhibited the differentiation of prostate epithelial progenitor cells in organotypic cultures. These results were confirmed by ex vivo lineage tracing assays and in vivo renal capsule recombination assays. Moreover, we found that M3 cholinergic receptor (CHRM3) was upregulated in a large subset of benign prostatic hyperplasia (BPH) tissues compared with normal tissues. Activation of CHRM3 also promoted the proliferation of BPH cells. Together, our findings identify a role of ACS in maintaining prostate epithelial progenitor cells in the proliferating state, and blockade of ACS may have clinical implications for the management of BPH. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Regulation of Prostate Development and Benign Prostatic Hyperplasia by Autocrine Cholinergic Signaling via Maintaining the Epithelial Progenitor Cells in Proliferating Status

    Directory of Open Access Journals (Sweden)

    Naitao Wang

    2016-05-01

    Full Text Available Regulation of prostate epithelial progenitor cells is important in prostate development and prostate diseases. Our previous study demonstrated a function of autocrine cholinergic signaling (ACS in promoting prostate cancer growth and castration resistance. However, whether or not such ACS also plays a role in prostate development is unknown. Here, we report that ACS promoted the proliferation and inhibited the differentiation of prostate epithelial progenitor cells in organotypic cultures. These results were confirmed by ex vivo lineage tracing assays and in vivo renal capsule recombination assays. Moreover, we found that M3 cholinergic receptor (CHRM3 was upregulated in a large subset of benign prostatic hyperplasia (BPH tissues compared with normal tissues. Activation of CHRM3 also promoted the proliferation of BPH cells. Together, our findings identify a role of ACS in maintaining prostate epithelial progenitor cells in the proliferating state, and blockade of ACS may have clinical implications for the management of BPH.

  8. [Bushen Huoxue Fang promotes the apoptosis of epithelial cells in the prostatic ductal system of rats with benign prostatic hyperplasia].

    Science.gov (United States)

    Sun, Jie; Li, Qiu-Fen; Tian, Dai-Zhi; Jiang, Shao-Bo; Wu, Xian-De; Qiu, Shun-An; Ren, Xiao-Gang; Li, Yu-Bing

    2014-09-01

    To investigate the effects of Bushen Huoxue Fang (BSHX) on the apoptosis of epithelial cells in the prostatic ductal system of rats with benign prostatic hyperplasia (BPH) and its possible action mechanism. One hundred 3- month-old male Wistar rats were randomly divided into four groups of equal number (control, castrated, BPH model, and BSHX). BPH models were made by subcutaneous injection of testosterone following castration; the rats in the BSHX group were treated intragastrically with BSHX at 2.34 g/ml after modeling, while those in the other two groups with equal volume of saline, all for 37 days. On the 38th day, all the rats were sacrificed and their prostates harvested for detection of the distribution of TGF-beta1 and alpha-actin and the count of positive cells in the prostatic ductal system by immunohistochemical staining. The apoptosis rate of epithelial cells in the prostatic ductal system was determined by TUNEL assay. The expression of TGF-beta1 was significantly increased in the rats of the BSHX group as compared with the BPH models in both the proximal prostatic duct ([15.28 +/- 4.30]% vs [36.42 +/- 8.10]%, P epithelial cells in the proximal prostatic duct ([39.42 +/- 9.20]% vs [3.86 +/- 1.34]%, P epithelial cells in the prostatic ductal system was significantly higher in the BSHX-treated rats than in the BPH models (P epithelial cells, and thus effectively inhibit benign prostatic hyperplasia.

  9. The cancer-promoting gene fatty acid-binding protein 5 (FABP5) is epigenetically regulated during human prostate carcinogenesis.

    Science.gov (United States)

    Kawaguchi, Koichiro; Kinameri, Ayumi; Suzuki, Shunsuke; Senga, Shogo; Ke, Youqiang; Fujii, Hiroshi

    2016-02-15

    FABPs (fatty-acid-binding proteins) are a family of low-molecular-mass intracellular lipid-binding proteins consisting of ten isoforms. FABPs are involved in binding and storing hydrophobic ligands such as long-chain fatty acids, as well as transporting these ligands to the appropriate compartments in the cell. FABP5 is overexpressed in multiple types of tumours. Furthermore, up-regulation of FABP5 is strongly associated with poor survival in triple-negative breast cancer. However, the mechanisms underlying the specific up-regulation of the FABP5 gene in these cancers remain poorly characterized. In the present study, we determined that FABP5 has a typical CpG island around its promoter region. The DNA methylation status of the CpG island in the FABP5 promoter of benign prostate cells (PNT2), prostate cancer cells (PC-3, DU-145, 22Rv1 and LNCaP) and human normal or tumour tissue was assessed by bisulfite sequencing analysis, and then confirmed by COBRA (combined bisulfite restriction analysis) and qAMP (quantitative analysis of DNA methylation using real-time PCR). These results demonstrated that overexpression of FABP5 in prostate cancer cells can be attributed to hypomethylation of the CpG island in its promoter region, along with up-regulation of the direct trans-acting factors Sp1 (specificity protein 1) and c-Myc. Together, these mechanisms result in the transcriptional activation of FABP5 expression during human prostate carcinogenesis. Importantly, silencing of Sp1, c-Myc or FABP5 expression led to a significant decrease in cell proliferation, indicating that up-regulation of FABP5 expression by Sp1 and c-Myc is critical for the proliferation of prostate cancer cells. © 2016 Authors; published by Portland Press Limited.

  10. Current Stem Cell Biomarkers and Their Functional Mechanisms in Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Kaile Zhang

    2016-07-01

    Full Text Available Currently there is little effective treatment available for castration resistant prostate cancer, which is responsible for the majority of prostate cancer related deaths. Emerging evidence suggested that cancer stem cells might play an important role in resistance to traditional cancer therapies, and the studies of cancer stem cells (including specific isolation and targeting on those cells might benefit the discovery of novel treatment of prostate cancer, especially castration resistant disease. In this review, we summarized major biomarkers for prostate cancer stem cells, as well as their functional mechanisms and potential application in clinical diagnosis and treatment of patients.

  11. Effects of a human plasma membrane-associated sialidase siRNA on prostate cancer invasion

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaojie [Department of Pathophysiology, Prostate Diseases Prevention and Treatment Research Centre, Norman Bethune Medical School, Jilin University, Changchun (China); Taizhou Polytechnic College, Taizhou (China); Zhang, Ling; Shao, Yueting; Liang, Zuowen; Shao, Chen; Wang, Bo; Guo, Baofeng; Li, Na; Zhao, Xuejian [Department of Pathophysiology, Prostate Diseases Prevention and Treatment Research Centre, Norman Bethune Medical School, Jilin University, Changchun (China); Li, Yang, E-mail: lyang@jlu.edu.cn [Department of Pathophysiology, Prostate Diseases Prevention and Treatment Research Centre, Norman Bethune Medical School, Jilin University, Changchun (China); Xu, Deqi [Laboratory of Enteric and Sexually Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD (United States)

    2011-12-16

    Highlights: Black-Right-Pointing-Pointer Neu3 is as one of the sialidases and regulates cell surface functions. Black-Right-Pointing-Pointer A Neu3-specific siRNA inhibited prostrate cancer cell invasion and migration. Black-Right-Pointing-Pointer The Neu3-specific siRNA inhibited prostate cancer metastasis in mice. Black-Right-Pointing-Pointer Targeting Neu3 may have utility for gene-based therapy of human cancer metastasis. -- Abstract: Human plasma membrane-associated sialidase (Neu3) is one of several sialidases that hydrolyze sialic acids in the terminal position of the carbohydrate groups of glycolipids and glycoproteins. Neu3 is mainly localized in plasma membranes and plays crucial roles in the regulation of cell surface functions. In this study, we investigated the effects and molecular mechanisms of Neu3 on cell invasion and migration in vivo and in vitro. Initially, we found that the levels of Neu3 expression were higher in prostate cancer tissues and cell lines than in normal prostate tissues based on RT-PCR and Western blotting analyses. We then applied a Neu3 siRNA approach to block Neu3 signaling using PC-3M cells as model cells. Transwell invasion assays and wound assays showed significantly decreased invasion and migration potential in the Neu3 siRNA-transfected cells. RT-PCR and Western blotting analyses revealed that Neu3 knockdown decreased the expressions of the matrix metalloproteinases MMP-2 and MMP-9. In vivo, mice injected with PC-3M cell tumors were evaluated by SPECT/CT to determine the presence of bone metastases. Mice treated with attenuated Salmonella carrying the Neu3 siRNA developed fewer bone metastases than mice treated with attenuated Salmonella carrying a control Scramble siRNA, attenuated Salmonella alone or PBS. The results for bone metastasis detection by pathology were consistent with the data obtained by SPECT/CT. Tumor blocks were evaluated by histochemical, RT-PCR and Western blotting analyses. The results revealed

  12. A Paracrine Role for IL6 in Prostate Cancer Patients: Lack of Production by Primary or Metastatic Tumor Cells

    Science.gov (United States)

    Yu, Shu-Han; Zheng, Qizhi; Esopi, David; Macgregor-Das, Anne; Luo, Jun; Antonarakis, Emmanuel S.; Drake, Charles G.; Vessella, Robert; Morrissey, Colm; De Marzo, Angelo M.; Sfanos, Karen S.

    2015-01-01

    Correlative human studies suggest that the pleiotropic cytokine interleukin-6 (IL6) contributes to the development and/or progression of prostate cancer. However, the source of IL6 production in the prostate microenvironment in patients has yet to be determined. The cellular origin of IL6 in primary and metastatic prostate cancer was examined in formalin-fixed, paraffin-embedded (FFPE) tissues using a highly sensitive and specific chromogenic in situ hybridization (CISH) assay that underwent extensive analytical validation. Quantitative RT-PCR (q-RT-PCR) showed that benign prostate tissues often had higher expression of IL6 mRNA than matched tumor specimens. CISH analysis further indicated that both primary and metastatic prostate adenocarcinoma cells do not express IL6 mRNA. IL6 expression was highly heterogeneous across specimens and was nearly exclusively restricted to the prostate stromal compartment – including endothelial cells and macrophages among other cell types. The number of IL6-expressing cells correlated positively with the presence of acute inflammation. In metastatic disease, tumor cells were negative in all lesions examined and IL6 expression was restricted to endothelial cells within the vasculature of bone metastases. Finally, IL6 was not detected in any cells in soft tissue metastases. These data suggest that, in prostate cancer patients, paracrine rather than autocrine IL6 production is likely associated with any role for the cytokine in disease progression. PMID:26048576

  13. Studies on the Cytotoxic Activities of Punica granatum L. var. spinosa (Apple Punice) Extract on Prostate Cell Line by Induction of Apoptosis.

    Science.gov (United States)

    Sineh Sepehr, Koushan; Baradaran, Behzad; Mazandarani, Masoumeh; Khori, Vahid; Shahneh, Fatemeh Zare

    2012-01-01

    The Punica granatum L. var. granatum (pomegranate) has been demonstrated to exert antitumor effects on various types of cancer cells. The present study aimed to evaluate the medicinal herbs Punica granatum L. var. spinosa (apple punice) that are native to Iran. This study was determined to test the possible cytotoxic activity and induction of apoptosis on human prostate cell lines. The effect of ethanol extracts of the herbs on the inhibition of cell proliferation was assessed by MTT colorimetric assay. PC3 cell lines treated with the extracts were analyzed for the induction of apoptosis by cell death detection (ELISA) and TUNEL assay. Dye exclusion analysis was performed for viability rate. Our results demonstrated that the Punica granatum L. var. spinosa extract dose dependently suppressed the proliferation of PC3 cells (IC(50)= 250.21 μg/mL) when compared with a chemotherapeutic anticancer drug (Toxol) (Vesper Pharmaceuticals) with increased nucleosome production from apoptotic cells. The Punica granatum L. var. spinosa extract attenuated the human prostate cell proliferation in vitro possibly by inducing apoptosis. The Punica granatum L. var. spinosa is likely to be valuable for the treatment of some forms of human prostate cell line.

  14. File list: ALL.Prs.05.AllAg.Prostate_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Prs.05.AllAg.Prostate_cancer_cells hg19 All antigens Prostate Prostate cancer c...ells SRX022582,SRX022577,SRX022578,SRX022581,SRX022579,SRX022580 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Prs.05.AllAg.Prostate_cancer_cells.bed ...

  15. File list: ALL.Prs.50.AllAg.Prostate_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Prs.50.AllAg.Prostate_cancer_cells hg19 All antigens Prostate Prostate cancer c...ells SRX022579,SRX022582,SRX022581,SRX022577,SRX022580,SRX022578 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Prs.50.AllAg.Prostate_cancer_cells.bed ...

  16. Cannabinoid Receptors: A Novel Target for Treating Prostate Cancer

    National Research Council Canada - National Science Library

    Mukhtar, Hasan; Afaq, Farrukh; Sarfaraz, Sami

    2006-01-01

    Recently we have shown that expression levels of both cannabinoid receptors CB and CB12 are higher in human prostate cancer cells than in normal prostate epithelial cells and treatment of LNCaP cells with WIN-55,212-2...

  17. Osteoblast-secreted collagen upregulates paracrine Sonic hedgehog signaling by prostate cancer cells and enhances osteoblast differentiation

    Directory of Open Access Journals (Sweden)

    Zunich Samantha M

    2012-07-01

    Full Text Available Abstract Background Induction of osteoblast differentiation by paracrine Sonic hedgehog (Shh signaling may be a mechanism through which Shh-expressing prostate cancer cells initiate changes in the bone microenvironment and promote metastases. A hallmark of osteoblast differentiation is the formation of matrix whose predominant protein is type 1 collagen. We investigated the formation of a collagen matrix by osteoblasts cultured with prostate cancer cells, and its effects on interactions between prostate cancer cells and osteoblasts. Results In the presence of exogenous ascorbic acid (AA, a co-factor in collagen synthesis, mouse MC3T3 pre-osteoblasts in mixed cultures with human LNCaP prostate cancer cells or LNCaP cells modified to overexpress Shh (LNShh cells formed collagen matrix with distinct fibril ultrastructural characteristics. AA increased the activity of alkaline phosphatase and the expression of the alkaline phosphatase gene Akp2, markers of osteoblast differentiation, in MC3T3 pre-osteoblasts cultured with LNCaP or LNShh cells. However, the AA-stimulated increase in Akp2 expression in MC3T3 pre-osteoblasts cultured with LNShh cells far exceeded the levels observed in MC3T3 cells cultured with either LNCaP cells with AA or LNShh cells without AA. Therefore, AA and Shh exert a synergistic effect on osteoblast differentiation. We determined whether the effect of AA on LNShh cell-induced osteoblast differentiation was mediated by Shh signaling. AA increased the expression of Gli1 and Ptc1, target genes of the Shh pathway, in MC3T3 pre-osteoblasts cultured with LNShh cells to at least twice their levels without AA. The ability of AA to upregulate Shh signaling and enhance alkaline phosphatase activity was blocked in MC3T3 cells that expressed a dominant negative form of the transcription factor GLI1. The AA-stimulated increase in Shh signaling and Shh-induced osteoblast differentiation was also inhibited by the specific collagen synthesis

  18. Circulating Prostate Cells Found in Men with Benign Prostate Disease Are P504S Negative: Clinical Implications

    Directory of Open Access Journals (Sweden)

    Nigel P. Murray

    2013-01-01

    Full Text Available Introduction. Developments in immunological and quantitative real-time PCR-based analysis have enabled the detection, enumeration, and characterization of circulating tumor cells (CTCs. It is assumed that the detection of CTCs is associated with cancer, based on the finding that CTCs can be detected in all major cancer and not in healthy subjects or those with benign disease. Methods and Patients. Consecutive men, with suspicion of prostate cancer, had blood samples taken before prostate biopsy; mononuclear cells were obtained using differential gel centrifugation and CPCs detecting using anti-PSA immunocytochemistry. Positive samples underwent further classification with anti-P504S. Results. 329 men underwent prostate biopsy; of these men 83 underwent a second biopsy and 44 a third one. Of those with a biopsy negative for cancer, 19/226 (8.4% had CPCs PSA (+ P504S (− detected at first biopsy, 6/74 (8.1% at second biopsy, and 5/33 (15.2% at third biopsy. Men with cancer-positive biopsies did not have PSA (+ P504S (− CPCs detected. These benign cells were associated with chronic prostatitis. Conclusions. Patients with chronic prostatitis may have circulating prostate cells detected in blood, which do not express the enzyme P504S and should be thought of as benign in nature.

  19. Muscarinic receptor subtype mRNA expression in the human prostate: association with age, pathological diagnosis, prostate size, or potentially interfering medications?

    NARCIS (Netherlands)

    Witte, Lambertus P. W.; Teitsma, Christine A.; de La Rosette, Jean J. M. C. H.; Michel, Martin C.

    2014-01-01

    As the prostate abundantly expresses muscarinic receptors and antagonists for such receptors are increasingly used in the treatment of men with voiding function and large prostates, we have explored an association of the mRNA expression of human M1, M2, M3, M4, and M5 receptors in human prostate

  20. Mitigation of arsenic-induced acquired cancer phenotype in prostate cancer stem cells by miR-143 restoration

    Energy Technology Data Exchange (ETDEWEB)

    Ngalame, Ntube N.O., E-mail: ngalamenn@niehs.nih.gov; Makia, Ngome L., E-mail: makianl@niehs.nih.gov; Waalkes, Michael P., E-mail: waalkes@niehs.nih.gov; Tokar, Erik J., E-mail: tokare@mail.nih.gov

    2016-12-01

    Inorganic arsenic, an environmental contaminant and a human carcinogen is associated with prostate cancer. Emerging evidence suggests that cancer stem cells (CSCs) are the driving force of carcinogenesis. Chronic arsenic exposure malignantly transforms the human normal prostate stem/progenitor cell (SC) line, WPE-stem to arsenic-cancer SCs (As-CSCs), through unknown mechanisms. MicroRNAs (miRNAs) are small, non-coding RNAs that negatively regulate gene expression at the posttranscriptional level. In prior work, miR-143 was markedly downregulated in As-CSCs, suggesting a role in arsenic-induced malignant transformation. In the present study, we investigated whether loss of miR-143 expression is important in arsenic-induced transformation of prostate SCs. Restoration of miR-143 in As-CSCs was achieved by lentivirus-mediated miR-143 overexpression. Cells were assessed bi-weekly for up to 30 weeks to examine mitigation of cancer phenotype. Secreted matrix metalloproteinase (MMP) activity was increased by arsenic-induced malignant transformation, but miR-143 restoration decreased secreted MMP-2 and MMP-9 enzyme activities compared with scramble controls. Increased cell proliferation and apoptotic resistance, two hallmarks of cancer, were decreased upon miR-143 restoration. Increased apoptosis was associated with decreased BCL2 and BCL-XL expression. miR-143 restoration dysregulated the expression of SC/CSC self-renewal genes including NOTCH-1, BMI-1, OCT4 and ABCG2. The anticancer effects of miR-143 overexpression appeared to be mediated by targeting and inhibiting LIMK1 protein, and the phosphorylation of cofilin, a LIMK1 substrate. These findings clearly show that miR-143 restoration mitigated multiple cancer characteristics in the As-CSCs, suggesting a potential role in arsenic-induced transformation of prostate SCs. Thus, miR-143 is a potential biomarker and therapeutic target for arsenic-induced prostate cancer. - Highlights: • Chronic arsenic exposure

  1. Mitigation of arsenic-induced acquired cancer phenotype in prostate cancer stem cells by miR-143 restoration

    International Nuclear Information System (INIS)

    Ngalame, Ntube N.O.; Makia, Ngome L.; Waalkes, Michael P.; Tokar, Erik J.

    2016-01-01

    Inorganic arsenic, an environmental contaminant and a human carcinogen is associated with prostate cancer. Emerging evidence suggests that cancer stem cells (CSCs) are the driving force of carcinogenesis. Chronic arsenic exposure malignantly transforms the human normal prostate stem/progenitor cell (SC) line, WPE-stem to arsenic-cancer SCs (As-CSCs), through unknown mechanisms. MicroRNAs (miRNAs) are small, non-coding RNAs that negatively regulate gene expression at the posttranscriptional level. In prior work, miR-143 was markedly downregulated in As-CSCs, suggesting a role in arsenic-induced malignant transformation. In the present study, we investigated whether loss of miR-143 expression is important in arsenic-induced transformation of prostate SCs. Restoration of miR-143 in As-CSCs was achieved by lentivirus-mediated miR-143 overexpression. Cells were assessed bi-weekly for up to 30 weeks to examine mitigation of cancer phenotype. Secreted matrix metalloproteinase (MMP) activity was increased by arsenic-induced malignant transformation, but miR-143 restoration decreased secreted MMP-2 and MMP-9 enzyme activities compared with scramble controls. Increased cell proliferation and apoptotic resistance, two hallmarks of cancer, were decreased upon miR-143 restoration. Increased apoptosis was associated with decreased BCL2 and BCL-XL expression. miR-143 restoration dysregulated the expression of SC/CSC self-renewal genes including NOTCH-1, BMI-1, OCT4 and ABCG2. The anticancer effects of miR-143 overexpression appeared to be mediated by targeting and inhibiting LIMK1 protein, and the phosphorylation of cofilin, a LIMK1 substrate. These findings clearly show that miR-143 restoration mitigated multiple cancer characteristics in the As-CSCs, suggesting a potential role in arsenic-induced transformation of prostate SCs. Thus, miR-143 is a potential biomarker and therapeutic target for arsenic-induced prostate cancer. - Highlights: • Chronic arsenic exposure

  2. Lipido-sterolic extract of Serenoa repens (LSESr, Permixon) treatment affects human prostate cancer cell membrane organization.

    Science.gov (United States)

    Petrangeli, E; Lenti, L; Buchetti, B; Chinzari, P; Sale, P; Salvatori, L; Ravenna, L; Lococo, E; Morgante, E; Russo, A; Frati, L; Di Silverio, F; Russo, M A

    2009-04-01

    The molecular mechanism by which the lipido-sterolic extract of Serenoa repens (LSESr, Permixon) affects prostate cells remains to be fully elucidated. In androgen-independent PC3 prostate cancer cells, the LSESr-induced effects on proliferation and apoptosis were evaluated by counting cells and using a FACScan cytofluorimeter. PC3 cells were stained with JC-1 dye to detect mitochondrial membrane potential. Cell membrane lipid composition was evaluated by thin layer chromatography and gas chromatographic analysis. Akt phosphorylation was analyzed by Western blotting and cellular ultrastructure through electron microscopy. LSESr (12.5 and 25 microg/ml) administration exerted a biphasic action by both inhibiting proliferation and stimulating apoptosis. After 1 h, it caused a marked reduction in the mitochondrial potential, decreased cholesterol content and modified phospholipid composition. A decrease in phosphatidylinositol-4,5-bisphosphate (PIP2) level was coupled with reduced Akt phosphorylation. After 24 h, all of these effects were restored to pre-treatment conditions; however, the saturated (SFA)/unsaturated fatty acid (UFA) ratio increased, mainly due to a significant decrease in omega 6 content. The reduction in cholesterol content could be responsible for both membrane raft disruption and redistribution of signaling complexes, allowing for a decrease of PIP2 levels, reduction of Akt phosphorylation and apoptosis induction. The decrease in omega 6 content appears to be responsible for the prolonged and more consistent increase in the apoptosis rate and inhibition of proliferation observed after 2-3 days of LSESr treatment. In conclusion, LSESr administration results in complex changes in cell membrane organization and fluidity of prostate cancer cells that have progressed to hormone-independent status. (c) 2008 Wiley-Liss, Inc.

  3. The Bony Side of Endothelial Cells in Prostate Cancer.

    Science.gov (United States)

    Peng, Jia; Kang, Yibin

    2017-06-05

    Prostate cancer bone metastases are primarily osteoblastic, but the source of bone-forming cells in these lesions remains poorly defined. In this issue of Developmental Cell, Lin et al. (2017) demonstrate that tumor-associated endothelial cells can give rise to osteoblasts in prostate cancer through endothelial-to-osteoblast (EC-to-OSB) conversion. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Unique Approaches to Androgen Effects on Prostate Cancer

    National Research Council Canada - National Science Library

    Rosner, W; Kahn, S. M

    2007-01-01

    Sex hormone-binding globulin (SHBG) is a plasma protein that binds andrngens and it acts as a transducer of androgen signaling at the plasma membrane of prostate cancer cells The human prostate cancer cell line LNCaP in addition...

  5. Abhydrolase domain containing 2, an androgen target gene, promotes prostate cancer cell proliferation and migration.

    Science.gov (United States)

    Obinata, Daisuke; Takada, Shogo; Takayama, Ken-ichi; Urano, Tomohiko; Ito, Akiko; Ashikari, Daisaku; Fujiwara, Kyoko; Yamada, Yuta; Murata, Taro; Kumagai, Jinpei; Fujimura, Tetsuya; Ikeda, Kazuhiro; Horie-Inoue, Kuniko; Homma, Yukio; Takahashi, Satoru; Inoue, Satoshi

    2016-04-01

    The androgen receptor (AR) plays a key role in the development of prostate cancer. AR signalling mediates the expression of androgen-responsive genes, which are involved in prostate cancer development and progression. Our previous chromatin immunoprecipitation study showed that the region of abhydrolase domain containing 2 (ABHD2) includes a functional androgen receptor binding site. In this study, we demonstrated that ABHD2 is a novel androgen-responsive gene that is overexpressed in human prostate cancer tissues. The expression levels of ABHD2 in androgen-sensitive cells were evaluated by quantitative reverse transcription polymerase chain reaction and western-blot analyses. LNCaP and VCaP cells with ABHD2 overexpression or short interfering RNA (siRNA) knockdown were used for functional analyses. ABHD2 expression was examined in clinical samples of prostate cancer by immunohistochemistry. We showed that ABHD2 expression is increased by androgen in LNCaP and VCaP cells. This androgen-induced ABHD2 expression was diminished by bicalutamide. While stable expression of ABHD2 affected the enhancement of LNCaP cell proliferation and migration, siRNA-mediated ABHD2 knockdown suppressed cell proliferation and migration. In addition, the siRNA treatment significantly repressed the tumour growth derived from LNCaP cells in athymic mice. Immunohistochemical analysis of ABHD2 expression in tumour specimens showed a positive correlation of ABHD2 immunoreactivity with high Gleason score and pathological N stage. Moreover, patients with high immunoreactivity of ABHD2 showed low cancer-specific survival rates and a resistance to docetaxel-based chemotherapy. ABHD2 is a novel androgen-regulated gene that can promote prostate cancer growth and resistance to chemotherapy, and is a novel target for diagnosis and treatment of prostate cancer. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. File list: InP.Prs.50.AllAg.Prostate_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Prs.50.AllAg.Prostate_cancer_cells hg19 Input control Prostate Prostate cancer ...cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Prs.50.AllAg.Prostate_cancer_cells.bed ...

  7. File list: NoD.Prs.05.AllAg.Prostate_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Prs.05.AllAg.Prostate_cancer_cells hg19 No description Prostate Prostate cancer... cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Prs.05.AllAg.Prostate_cancer_cells.bed ...

  8. File list: InP.Prs.10.AllAg.Prostate_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Prs.10.AllAg.Prostate_cancer_cells hg19 Input control Prostate Prostate cancer ...cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Prs.10.AllAg.Prostate_cancer_cells.bed ...

  9. The calcimimetic R-568 induces apoptotic cell death in prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Cheng Guangming

    2009-07-01

    Full Text Available Abstract Background Increased serum level of parathyroid hormone (PTH was found in metastatic prostate cancers. Calcimimetic R-568 was reported to reduce PTH expression, to suppress cell proliferation and to induce apoptosis in parathyroid cells. In this study, we investigated the effect of R-568 on cellular survival of prostate cancer cells. Methods Prostate cancer cell lines LNCaP and PC-3 were used in this study. Cellular survival was determined with MTT, trypan blue exclusion and fluorescent Live/Death assays. Western blot assay was utilized to assess apoptotic events induced by R-568 treatment. JC-1 staining was used to evaluate mitochondrial membrane potential. Results In cultured prostate cancer LNCaP and PC-3 cells, R-568 treatment significantly reduced cellular survival in a dose- and time-dependent manner. R-568-induced cell death was an apoptotic event, as evidenced by caspase-3 processing and PARP cleavage, as well as JC-1 color change in mitochondria. Knocking down calcium sensing receptor (CaSR significantly reduced R-568-induced cytotoxicity. Enforced expression of Bcl-xL gene abolished R-568-induced cell death, while loss of Bcl-xL expression led to increased cell death in R-568-treated LNCaP cells,. Conclusion Taken together, our data demonstrated that calcimimetic R-568 triggers an intrinsic mitochondria-related apoptotic pathway, which is dependent on the CaSR and is modulated by Bcl-xL anti-apoptotic pathway.

  10. Prostate cancer cell lines under hypoxia exhibit greater stem-like properties.

    Directory of Open Access Journals (Sweden)

    Yuanyuan Ma

    Full Text Available Hypoxia is an important environmental change in many cancers. Hypoxic niches can be occupied by cancer stem/progenitor-like cells that are associated with tumor progression and resistance to radiotherapy and chemotherapy. However, it has not yet been fully elucidated how hypoxia influences the stem-like properties of prostate cancer cells. In this report, we investigated the effects of hypoxia on human prostate cancer cell lines, PC-3 and DU145. In comparison to normoxia (20% O(2, 7% O(2 induced higher expressions of HIF-1α and HIF-2α, which were associated with upregulation of Oct3/4 and Nanog; 1% O(2 induced even greater levels of these factors. The upregulated NANOG mRNA expression in hypoxia was confirmed to be predominantly retrogene NANOGP8. Similar growth rates were observed for cells cultivated under hypoxic and normoxic conditions for 48 hours; however, the colony formation assay revealed that 48 hours of hypoxic pretreatment resulted in the formation of more colonies. Treatment with 1% O(2 also extended the G(0/G(1 stage, resulting in more side population cells, and induced CD44 and ABCG2 expressions. Hypoxia also increased the number of cells positive for ABCG2 expression, which were predominantly found to be CD44(bright cells. Correspondingly, the sorted CD44(bright cells expressed higher levels of ABCG2, Oct3/4, and Nanog than CD44(dim cells, and hypoxic pretreatment significantly increased the expressions of these factors. CD44(bright cells under normoxia formed significantly more colonies and spheres compared with the CD44(dim cells, and hypoxic pretreatment even increased this effect. Our data indicate that prostate cancer cells under hypoxia possess greater stem-like properties.

  11. Response of Human Prostate Cancer Cells to Mitoxantrone Treatment in Simulated Microgravity Environment

    Science.gov (United States)

    Zhang, Ye; Edwards, Christopher; Wu, Honglu

    2011-01-01

    This study explores the changes in growth of human prostate cancer cells (LNCaP) and their response to the treatment of antineoplastic agent, mitoxantrone, under the simulated microgravity condition. In comparison to static 1g, microgravity and simulated microgravity have been shown to alter global gene expression patterns and protein levels in various cultured cell models or animals. However, very little is known about the effect of altered gravity on the responses of cells to drugs, especially chemotherapy drugs. To test the hypothesis that zero gravity would result in altered regulation of cells in response to antineoplastic agents, we cultured LNCaP cells for 96 hr either in a High Aspect Ratio Vessel (HARV) bioreactor at the rotating condition to model microgravity in space or in the static condition as a control. 24 hr after the culture started, mitoxantrone was introduced to the cells at a final concentration of 1 M. The mitoxantrone treatment lasted 72 hr and then the cells were collected for various measurements. Compared to static 1g controls, the cells cultured in the simulated microgravity environment did not show significant differences in cell viability, growth rate, or cell cycle distribution. However, in response to mitoxantrone (1uM), a significant proportion of bioreactor cultured cells (30%) was arrested at G2 phase and a significant number of these cells were apoptotic in comparison to their static controls. The expressions of 84 oxidative stress related genes were analyzed using Qiagen PCR array to identify the possible mechanism underlying the altered responses of bioreactor culture cells to mitoxantrone. Nine out of 84 genes showed higher expression at four hour post mitoxantrone treatment in cells cultured at rotating condition compared to those at static. Taken together, the results reported here indicate that simulated microgravity may alter the responses of LNCaP cells to mitoxantrone treatment. The alteration of oxidative stress pathways

  12. Therapeutic Role of Bmi-1 Inhibitors in Eliminating Prostate Tumor Stem Cells

    Science.gov (United States)

    2013-10-01

    methotrexate were from the Cancer Institute of New Jersey pharmacy . Both collagen I, IV and laminin were purchased from BD Biosciences, and athymicnu/nu mice...forming cells from human prostate [31]. We elected to use a strategy of combin- ing phenotypic and time-of-adherence assays to iso - late TICs from PCa

  13. Epigenetic repression of regulator of G-protein signaling 2 promotes androgen-independent prostate cancer cell growth.

    Science.gov (United States)

    Wolff, Dennis W; Xie, Yan; Deng, Caishu; Gatalica, Zoran; Yang, Mingjie; Wang, Bo; Wang, Jincheng; Lin, Ming-Fong; Abel, Peter W; Tu, Yaping

    2012-04-01

    G-protein-coupled receptor (GPCR)-stimulated androgen-independent activation of androgen receptor (AR) contributes to acquisition of a hormone-refractory phenotype by prostate cancer. We previously reported that regulator of G-protein signaling (RGS) 2, an inhibitor of GPCRs, inhibits androgen-independent AR activation (Cao et al., Oncogene 2006;25:3719-34). Here, we show reduced RGS2 protein expression in human prostate cancer specimens compared to adjacent normal or hyperplastic tissue. Methylation-specific PCR analysis and bisulfite sequencing indicated that methylation of the CpG island in the RGS2 gene promoter correlated with RGS2 downregulation in prostate cancer. In vitro methylation of this promoter suppressed reporter gene expression in transient transfection studies, whereas reversal of this promoter methylation with 5-aza-2'-deoxycytidine (5-Aza-dC) induced RGS2 reexpression in androgen-independent prostate cancer cells and inhibited their growth under androgen-deficient conditions. Interestingly, the inhibitory effect of 5-Aza-dC was significantly reduced by an RGS2-targeted short hairpin RNA, indicating that reexpressed RGS2 contributed to this growth inhibition. Restoration of RGS2 levels by ectopic expression in androgen-independent prostate cancer cells suppressed growth of xenografts in castrated mice. Thus, RGS2 promoter hypermethylation represses its expression and unmasks a latent pathway for AR transactivation in prostate cancer cells. Targeting this reversible process may provide a new strategy for suppressing prostate cancer progression by reestablishing its androgen sensitivity. Copyright © 2011 UICC.

  14. Re-epithelialization resulted from prostate basal cells in canine prostatic urethra may represent the ideal healing method after two-micron laser resection of the prostate

    Directory of Open Access Journals (Sweden)

    Ying Cao

    2015-01-01

    Full Text Available The purpose of this study is to characterize the re-epithelialization of wound healing in canine prostatic urethra and to evaluate the effect of this re-epithelialization way after two-micron laser resection of the prostate (TmLRP. TmLRP and partial bladder neck mucosa were performed in 15 healthy adult male crossbred canines. Wound specimens were harvested at 3 days, and 1, 2, 3, and 4 weeks after operation, respectively. The histopathologic characteristics were observed by hematoxylin and eosin staining. The expression of cytokeratin 14 (CK14, CK5, CK18, synaptophysin (Syn, chromogranin A (CgA, uroplakin, transforming growth factor-β1 (TGF-β1 , and TGF-β type II receptor in prostatic urethra wound were examined by immunohistochemistry and real-time polymerase chain reaction, respectively. Van Gieson staining was performed to determine the expression of collagen fibers in prostatic urethra and bladder neck would. The results showed that the re-epithelialization of the prostatic urethra resulted from the mobilization of proliferating epithelial cells from residual prostate tissue under the wound. The proliferating cells expressed CK14, CK5, but not CK18, Syn, and CgA and re-epithelialize expressed uroplakin since 3 weeks. There were enhanced TGF-β1 and TGF-β type II receptor expression in proliferating cells and regenerated cells, which correlated with specific phases of re-epithelialization. Compared with the re-epithelialization of the bladder neck, re-epithelialization of canine prostatic urethra was faster, and the expression of collagen fibers was relatively low. In conclusion, re-epithelialization in canine prostatic urethra resulted from prostate basal cells after TmLRP and this re-epithelialization way may represent the ideal healing method from anatomic repair to functional recovery after injury.

  15. The investigation of minoxidil-induced [Ca2+]i rises and non-Ca2+-triggered cell death in PC3 human prostate cancer cells.

    Science.gov (United States)

    Chen, I-Shu; Chou, Chiang-Ting; Liu, Yuan-Yuarn; Yu, Chia-Cheng; Liang, Wei-Zhe; Kuo, Chun-Chi; Shieh, Pochuen; Kuo, Daih-Huang; Chen, Fu-An; Jan, Chung-Ren

    2017-02-01

    Minoxidil is clinically used to prevent hair loss. However, its effect on Ca 2+ homeostasis in prostate cancer cells is unclear. This study explored the effect of minoxidil on cytosolic-free Ca 2+ levels ([Ca 2+ ] i ) and cell viability in PC3 human prostate cancer cells. Minoxidil at concentrations between 200 and 800 μM evoked [Ca 2+ ] i rises in a concentration-dependent manner. This Ca 2+ signal was inhibited by 60% by removal of extracellular Ca 2+ . Minoxidil-induced Ca 2+ influx was confirmed by Mn 2+ -induced quench of fura-2 fluorescence. Pre-treatment with the protein kinase C (PKC) inhibitor GF109203X, PKC activator phorbol 12-myristate 13 acetate (PMA), nifedipine and SKF96365 inhibited minoxidil-induced Ca 2+ signal in Ca 2+ containing medium by 60%. Treatment with the endoplasmic reticulum Ca 2+ pump inhibitor 2,5-ditert-butylhydroquinone (BHQ) in Ca 2+ -free medium abolished minoxidil-induced [Ca 2+ ] i rises. Conversely, treatment with minoxidil abolished BHQ-induced [Ca 2+ ] i rises. Inhibition of phospholipase C (PLC) with U73122 abolished minoxidil-evoked [Ca 2+ ] i rises. Overnight treatment with minoxidil killed cells at concentrations of 200-600 μM in a concentration-dependent fashion. Chelation of cytosolic Ca 2+ with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid/AM (BAPTA/AM) did not prevent minoxidil's cytotoxicity. Together, in PC3 cells, minoxidil induced [Ca 2+ ] i rises that involved Ca 2+ entry through PKC-regulated store-operated Ca 2+ channels and PLC-dependent Ca 2+ release from the endoplasmic reticulum. Minoxidil-induced cytotoxicity in a Ca 2+ -independent manner.

  16. The diet as a cause of human prostate cancer.

    Science.gov (United States)

    Nelson, William G; Demarzo, Angelo M; Yegnasubramanian, Srinivasan

    2014-01-01

    Asymptomatic prostate inflammation and prostate cancer have reached epidemic proportions among men in the developed world. Animal model studies implicate dietary carcinogens, such as the heterocyclic amines from over-cooked meats and sex steroid hormones, particularly estrogens, as candidate etiologies for prostate cancer. Each acts by causing epithelial cell damage, triggering an inflammatory response that can evolve into a chronic or recurrent condition. This milieu appears to spawn proliferative inflammatory atrophy (PIA) lesions, a type of focal atrophy that represents the earliest of prostate cancer precursor lesions. Rare PIA lesions contain cells which exhibit high c-Myc expression, shortened telomere segments, and epigenetic silencing of genes such as GSTP1, encoding the π-class glutathione S-transferase, all characteristic of prostatic intraepithelial neoplasia (PIN) and prostate cancer. Subsequent genetic changes, such as the gene translocations/deletions that generate fusion transcripts between androgen-regulated genes (such as TMPRSS2) and genes encoding ETS family transcription factors (such as ERG1), arise in PIN lesions and may promote invasiveness characteristic of prostatic adenocarcinoma cells. Lethal prostate cancers contain markedly corrupted genomes and epigenomes. Epigenetic silencing, which seems to arise in response to the inflamed microenvironment generated by dietary carcinogens and/or estrogens as part of an epigenetic "catastrophe" affecting hundreds of genes, persists to drive clonal evolution through metastatic dissemination. The cause of the initial epigenetic "catastrophe" has not been determined but likely involves defective chromatin structure maintenance by over-exuberant DNA methylation or histone modification. With dietary carcinogens and estrogens driving pro-carcinogenic inflammation in the developed world, it is tempting to speculate that dietary components associated with decreased prostate cancer risk, such as intake of

  17. Neuroendocrine differentiation in prostate cancer – a review

    Directory of Open Access Journals (Sweden)

    R. Popescu

    2015-12-01

    Full Text Available Objectives: This review aims to provide practicing clinicians with the most recent knowledge of the biological nature of prostate cancer especially the information regarding neuroendocrine differentiation. Methods: Review of the literature using PubMed search and scientific journal publications. Results: Much progress has been made towards an understanding of the development and progression of prostate cancer. The prostate is a male accessory sex gland which produces a fraction of seminal fluid. The normal human prostate is composed of a stromal compartment (which contains: nerves, fibroblast, smooth muscle cells, macrophages surrounding glandular acins – epithelial cells. Neuroendocrine cells are one of the epithelial populations in the normal prostate and are believed to provide trophic signals trough the secretion of neuropeptides that diffuse and influence surrounding epithelial cells. Prostate cancer is the most frequently diagnosed malignancy in men. In prostate cancer, neuroendocrine cells can stimulate growth of surrounding prostate adenocarcinoma cells (proliferation of neighboring cancer cells in a paracrine manner by secretion of neuroendocrine products. Neuroendocrine prostate cancer is an aggressive variant of prostate cancer that commonly arises in later stages of castration resistant prostate cancer. The detection of neuroendocrine prostate cancer has clinical implications. These patients are often treated with platinum chemotherapy rather than with androgen receptor targeted therapies. Conclusion: This review shows the need to improve our knowledge regarding diagnostic and treatment methods of the Prostate Cancer, especially cancer cells with neuroendocrine phenotype.

  18. Arctigenin inhibits prostate tumor cell growth in vitro and in vivo.

    Science.gov (United States)

    Wang, Piwen; Solorzano, Walter; Diaz, Tanya; Magyar, Clara E; Henning, Susanne M; Vadgama, Jaydutt V

    2017-06-01

    The low bioavailability of most phytochemicals limits their translation to humans. We investigated whether arctigenin, a novel anti-inflammatory lignan from the seeds of Arctium lappa , has favorable bioavailability/potency against prostate cancer. The anticarcinogenic activity of arctigenin was investigated both in vitro using the androgen-sensitive LNCaP and LAPC-4 human prostate cancer cells and pre-malignant WPE1-NA22 cells, and in vivo using xenograft mouse models. Arctigenin at lower doses (arctigenin at 50mg/kg (LD) or 100mg/kg (HD) b.w. daily or vehicle control by oral gavage. After 6 weeks, tumor growth was inhibited by 50% (LD) and 70% (HD) compared to control. A stronger tumor inhibitory effect was observed in a second experiment where arctigenin intervention started two weeks prior to tumor implantation. Arc was detectable in blood and tumors in Arc groups, with a mean value up to 2.0 μM in blood, and 8.3 nmol/g tissue in tumors. Tumor levels of proliferation marker Ki67, total and nuclear androgen receptor, and growth factors including VEGF, EGF, and FGF-β were significantly decreased by Arc, along with an increase in apoptosis marker of Bax/Bcl-2 ratio. Genes responsive to arctigenin were identified including TIMP3 and ZNF185, and microRNAs including miR-126-5p, and miR-21-5p. This study provides the first in vivo evidence of the strong anticancer activity of arctigenin in prostate cancer. The effective dose of arctigenin in vitro is physiologically achievable in vivo , which provides a high promise in its translation to human application.

  19. CXCL5 Promotes Prostate Cancer Progression

    Directory of Open Access Journals (Sweden)

    Lesa A Begley

    2008-03-01

    Full Text Available CXCL5 is a proangiogenic CXC-type chemokine that is an inflammatory mediator and a powerful attractant for granulocytic immune cells. Unlike many other chemokines, CXCL5 is secreted by both immune (neutrophil, monocyte, and macrophage and nonimmune (epithelial, endothelial, and fibroblastic cell types. The current study was intended to determine which of these cell types express CXCL5 in normal and malignant human prostatic tissues, whether expression levels correlated with malignancy and whether CXCL5 stimulated biologic effects consistent with a benign or malignant prostate epithelial phenotype. The results of these studies show that CXCL5 protein expression levels are concordant with prostate tumor progression, are highly associated with inflammatory infiltrate, and are frequently detected in the lumens of both benign and malignant prostate glands. Exogenous administration of CXCL5 stimulates cellular proliferation and gene transcription in both nontransformed and transformed prostate epithelial cells and induces highly aggressive prostate cancer cells to invade through synthetic basement membrane in vitro. These findings suggest that the inflammatory mediator, CXCL5, may play multiple roles in the etiology of both benign and malignant proliferative diseases in the prostate.

  20. Sulforaphane modulates telomerase activity via epigenetic regulation in prostate cancer cell lines.

    Science.gov (United States)

    Abbas, Ata; Hall, J Adam; Patterson, William L; Ho, Emily; Hsu, Anna; Al-Mulla, Fahd; Georgel, Philippe T

    2016-02-01

    Epidemiologic studies have revealed that diets rich in sulforaphane (SFN), an isothiocyanate present in cruciferous vegetables, are associated with a marked decrease in prostate cancer incidence. The chemo-preventive role of SFN is associated with its histone de-acetylase inhibitor activity. However, the effect of SFN on chromatin composition and dynamic folding, especially in relation to HDAC inhibitor activity, remains poorly understood. In this study, we found that SFN can inhibit the expression and activity of human telomerase reverse transcriptase (hTERT), the catalytic subunit of telomerase, in 2 prostate cancer cell lines. This decrease in gene expression is correlated with SFN-induced changes in chromatin structure and composition. The SFN-mediated changes in levels of histone post-translational modifications, more specifically acetylation of histone H3 lysine 18 and di-methylation of histone H3 lysine 4, 2 modifications linked with high risk of prostate cancer recurrence, were associated with regulatory elements within the hTERT promoter region. Chromatin condensation may also play a role in SFN-mediated hTERT repression, since expression and recruitment of MeCP2, a known chromatin compactor, were altered in SFN treated prostate cancer cells. Chromatin immuno-precipitation (ChIP) of MeCP2 showed enrichment over regions of the hTERT promoter with increased nucleosome density. These combined results strongly support a role for SFN in the mediation of epigenetic events leading to the repression of hTERT in prostate cancer cells. This ability of SFN to modify chromatin composition and structure associated with target gene expression provides a new model by which dietary phytochemicals may exert their chemoprevention activity.

  1. The adaptive immune system promotes initiation of prostate carcinogenesis in a human c-Myc transgenic mouse model.

    Science.gov (United States)

    Melis, Monique H M; Nevedomskaya, Ekaterina; van Burgsteden, Johan; Cioni, Bianca; van Zeeburg, Hester J T; Song, Ji-Ying; Zevenhoven, John; Hawinkels, Lukas J A C; de Visser, Karin E; Bergman, Andries M

    2017-11-07

    Increasing evidence from epidemiological and pathological studies suggests a role of the immune system in the initiation and progression of multiple cancers, including prostate cancer. Reports on the contribution of the adaptive immune system are contradictive, since both suppression and acceleration of disease development have been reported. This study addresses the functional role of lymphocytes in prostate cancer development using a genetically engineered mouse model (GEMM) of human c-Myc driven prostate cancer (Hi-Myc mice) combined with B and T cell deficiency (RAG1 -/- mice). From a pre-cancerous stage on, Hi-Myc mice showed higher accumulation of immune cells in their prostates then wild-type mice, of which macrophages were the most abundant. The onset of invasive adenocarcinoma was delayed in Hi-MycRAG1 -/- compared to Hi-Myc mice and associated with decreased infiltration of leukocytes into the prostate. In addition, lower levels of the cytokines CXCL2, CCL5 and TGF-β1 were detected in Hi-MycRAG1 -/- compared to Hi-Myc mouse prostates. These results from a GEMM of prostate cancer provide new insights into the promoting role of the adaptive immune system in prostate cancer development. Our findings indicate that the endogenous adaptive immune system does not protect against de novo prostate carcinogenesis in Hi-Myc transgenic mice, but rather accelerates the formation of invasive adenocarcinomas. This may have implications for the development of novel treatment strategies.

  2. Bone stroma-derived cells change coregulators recruitment to androgen receptor and decrease cell proliferation in androgen-sensitive and castration-resistant prostate cancer cells

    International Nuclear Information System (INIS)

    Villagran, Marcelo A.; Gutierrez-Castro, Francisco A.; Pantoja, Diego F.; Alarcon, Jose C.; Fariña, Macarena A.; Amigo, Romina F.; Muñoz-Godoy, Natalia A.; Pinilla, Mabel G.; Peña, Eduardo A.; Gonzalez-Chavarria, Ivan; Toledo, Jorge R.; Rivas, Coralia I.; Vera, Juan C.; McNerney, Eileen M.; Onate, Sergio A.

    2015-01-01

    Prostate cancer (CaP) bone metastasis is an early event that remains inactive until later-stage progression. Reduced levels of circulating androgens, due to andropause or androgen deprivation therapies, alter androgen receptor (AR) coactivator expression. Coactivators shift the balance towards enhanced AR-mediated gene transcription that promotes progression to androgen-resistance. Disruptions in coregulators may represent a molecular switch that reactivates latent bone metastasis. Changes in AR-mediated transcription in androgen-sensitive LNCaP and androgen-resistant C4-2 cells were analyzed for AR coregulator recruitment in co-culture with Saos-2 and THP-1. The Saos-2 cell line derived from human osteosarcoma and THP-1 cell line representing human monocytes were used to display osteoblast and osteoclast activity. Increased AR activity in androgen-resistant C4-2 was due to increased AR expression and SRC1/TIF2 recruitment and decreased SMRT/NCoR expression. AR activity in both cell types was decreased over 90% when co-cultured with Saos-2 or THP-1 due to dissociation of AR from the SRC1/TIF2 and SMRT/NCoR coregulators complex, in a ligand-dependent and cell-type specific manner. In the absence of androgens, Saos-2 decreased while THP-1 increased proliferation of LNCaP cells. In contrast, both Saos-2 and THP-1 decreased proliferation of C4-2 in absence and presence of androgens. Global changes in gene expression from both CaP cell lines identified potential cell cycle and androgen regulated genes as mechanisms for changes in cell proliferation and AR-mediated transactivation in the context of bone marrow stroma cells. - Highlights: • Decreased corepressor expression change AR in androgen-resistance prostate cancer. • Bone stroma-derived cells change AR coregulator recruitment in prostate cancer. • Bone stroma cells change cell proliferation in androgen-resistant cancer cells. • Global gene expression in CaP cells is modified by bone stroma cells in co

  3. Bone stroma-derived cells change coregulators recruitment to androgen receptor and decrease cell proliferation in androgen-sensitive and castration-resistant prostate cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Villagran, Marcelo A.; Gutierrez-Castro, Francisco A.; Pantoja, Diego F.; Alarcon, Jose C.; Fariña, Macarena A.; Amigo, Romina F.; Muñoz-Godoy, Natalia A. [Molecular Endocrinology and Oncology Laboratory, University of Concepcion, Concepcion (Chile); Pinilla, Mabel G. [Department of Medical Specialties, School of Medicine, University of Concepcion, Concepcion (Chile); Peña, Eduardo A.; Gonzalez-Chavarria, Ivan; Toledo, Jorge R.; Rivas, Coralia I.; Vera, Juan C. [Department of Physiopathology, School of Biological Sciences, University of Concepcion, Concepcion (Chile); McNerney, Eileen M. [Molecular Endocrinology and Oncology Laboratory, University of Concepcion, Concepcion (Chile); Onate, Sergio A., E-mail: sergio.onate@udec.cl [Molecular Endocrinology and Oncology Laboratory, University of Concepcion, Concepcion (Chile); Department of Medical Specialties, School of Medicine, University of Concepcion, Concepcion (Chile); Department of Urology, State University of New York at Buffalo, NY (United States)

    2015-11-27

    Prostate cancer (CaP) bone metastasis is an early event that remains inactive until later-stage progression. Reduced levels of circulating androgens, due to andropause or androgen deprivation therapies, alter androgen receptor (AR) coactivator expression. Coactivators shift the balance towards enhanced AR-mediated gene transcription that promotes progression to androgen-resistance. Disruptions in coregulators may represent a molecular switch that reactivates latent bone metastasis. Changes in AR-mediated transcription in androgen-sensitive LNCaP and androgen-resistant C4-2 cells were analyzed for AR coregulator recruitment in co-culture with Saos-2 and THP-1. The Saos-2 cell line derived from human osteosarcoma and THP-1 cell line representing human monocytes were used to display osteoblast and osteoclast activity. Increased AR activity in androgen-resistant C4-2 was due to increased AR expression and SRC1/TIF2 recruitment and decreased SMRT/NCoR expression. AR activity in both cell types was decreased over 90% when co-cultured with Saos-2 or THP-1 due to dissociation of AR from the SRC1/TIF2 and SMRT/NCoR coregulators complex, in a ligand-dependent and cell-type specific manner. In the absence of androgens, Saos-2 decreased while THP-1 increased proliferation of LNCaP cells. In contrast, both Saos-2 and THP-1 decreased proliferation of C4-2 in absence and presence of androgens. Global changes in gene expression from both CaP cell lines identified potential cell cycle and androgen regulated genes as mechanisms for changes in cell proliferation and AR-mediated transactivation in the context of bone marrow stroma cells. - Highlights: • Decreased corepressor expression change AR in androgen-resistance prostate cancer. • Bone stroma-derived cells change AR coregulator recruitment in prostate cancer. • Bone stroma cells change cell proliferation in androgen-resistant cancer cells. • Global gene expression in CaP cells is modified by bone stroma cells in co

  4. Antimetastatic Effects of a Novel Telomerase Inhibitor, GRN163L, on Human Prostate Cancer

    Science.gov (United States)

    2010-05-01

    Human Papilloma Virus Type 18 (HPV-18) DNA. PZ-HPV-7 cells are generally considered as non-tumorigenic in subcutaneous xenograft animal models...6481. [39] H.J. Sommerfeld, A.K. Meeker, M.A. Piatyszek, G.S. Bova, J.W. Shay, D.S. Coffey, Telomerase activity: a prevalent marker of malignant human ...6:192–8. 31. Sommerfeld HJ, Meeker AK, Piatyszek MA, Bova GS, Shay JW, Coffey DS. Telomerase activity: a prevalent marker of malignant human prostate

  5. TRPV2 mediates adrenomedullin stimulation of prostate and urothelial cancer cell adhesion, migration and invasion.

    Directory of Open Access Journals (Sweden)

    Agathe Oulidi

    Full Text Available Adrenomedullin (AM is a 52-amino acid peptide initially isolated from human pheochromocytoma. AM is expressed in a variety of malignant tissues and cancer cell lines and was shown to be a mitogenic factor capable of stimulating growth of several cancer cell types. In addition, AM is a survival factor for certain cancer cells. Some data suggest that AM might be involved in the progression cancer metastasis via angiogenesis and cell migration and invasion control. The Transient Receptor Potential channel TRPV2 is known to promote in prostate cancer cell migration and invasive phenotype and is correlated with the stage and grade of bladder cancer. In this work we show that AM induces prostate and urothelial cancer cell migration and invasion through TRPV2 translocation to plasma membrane and the subsequent increase in resting calcium level.

  6. Estrogen receptors in the human male bladder, prostatic urethra, and prostate. An immunohistochemical and biochemical study

    DEFF Research Database (Denmark)

    Bødker, A; Balslev, E; Juul, B R

    1995-01-01

    The distribution and quantity of estrogen receptors (ERs) in the human male bladder, prostatic urethra and the prostate were studied in eight males with recurrent papillomas of the bladder or monosymptomatic hematuria (median age 61 years), 14 men undergoing transurethral resection due to benign...

  7. Ghrelin O-acyltransferase (GOAT) is expressed in prostate cancer tissues and cell lines and expression is differentially regulated in vitro by ghrelin

    Science.gov (United States)

    2013-01-01

    Background Ghrelin is a 28 amino acid peptide hormone that is expressed in the stomach and a range of peripheral tissues, where it frequently acts as an autocrine/paracrine growth factor. Ghrelin is modified by a unique acylation required for it to activate its cognate receptor, the growth hormone secretagogue receptor (GHSR), which mediates many of the actions of ghrelin. Recently, the enzyme responsible for adding the fatty acid residue (octanoyl/acyl group) to the third amino acid of ghrelin, GOAT (ghrelin O-acyltransferase), was identified. Methods We used cell culture, quantitative real-time reverse transcription (RT)-PCR and immunohistochemistry to demonstrate the expression of GOAT in prostate cancer cell lines and tissues from patients. Real-time RT-PCR was used to demonstrate the expression of prohormone convertase (PC)1/3, PC2 and furin in prostate cancer cell lines. Prostate-derived cell lines were treated with ghrelin and desacyl ghrelin and the effect on GOAT expression was measured using quantitative RT-PCR. Results We have demonstrated that GOAT mRNA and protein are expressed in the normal prostate and human prostate cancer tissue samples. The RWPE-1 and RWPE-2 normal prostate-derived cell lines and the LNCaP, DU145, and PC3 prostate cancer cell lines express GOAT and at least one other enzyme that is necessary to produce mature, acylated ghrelin from proghrelin (PC1/3, PC2 or furin). Finally, ghrelin, but not desacyl ghrelin (unacylated ghrelin), can directly regulate the expression of GOAT in the RWPE-1 normal prostate derived cell line and the PC3 prostate cancer cell line. Ghrelin treatment (100nM) for 6 hours significantly decreased GOAT mRNA expression two-fold (P ghrelin did not regulate GOAT expression in the DU145 and LNCaP prostate cancer cell lines. Conclusions This study demonstrates that GOAT is expressed in prostate cancer specimens and cell lines. Ghrelin regulates GOAT expression, however, this is likely to be cell-type specific

  8. Cannabinoid Receptors: A Novel Target for Therapy of Prostate Cancer

    National Research Council Canada - National Science Library

    Mukhtar, Hasan; Afaq, Farrukh; Sarfaraz, Sami

    2005-01-01

    .... Here we show that expression levels of both cannabinoid receptors CB(sub 1) and CB(sub 2) are significantly higher in CA-HPV-10 and other human prostate cells LNCaP, DUI45, PC3, and CWR22RV1 than in human prostate epithelial and PZ-HPV-7 cells...

  9. Combined Effects of Nonylphenol and Bisphenol A on the Human Prostate Epithelial Cell Line RWPE-1

    Directory of Open Access Journals (Sweden)

    Weidong Gan

    2015-04-01

    Full Text Available The xenoestrogens nonylphenol (NP and bisphenol A (BPA are regarded as endocrine disrupting chemicals (EDCs which have widespread occurrence in our daily life. In the present study, the purpose was to analyze the combined effects of NP and BPA on the human prostate epithelial cell line RWPE-1 using two mathematical models based on the Loewe additivity (LA theory and the Bliss independence (BI theory. RWPE-1 cells were treated with NP (0.01–100 µM and BPA (1–5000 µM in either a single or a combined format. A cell viability assay and lactate dehydrogenase (LDH leakage rate assay were employed as endpoints. As predicted by the two models and based on the cell viability assay, significant synergism between NP and BPA were observed. However, based on the LDH assay, the trends were reversed. Given that environmental contaminants are frequently encountered simultaneously, these data indicated that there were potential interactions between NP and BPA, and the combined effects of the chemical mixture might be stronger than the additive values of individual chemicals combined, which should be taken into consideration for the risk assessment of EDCs.

  10. S6Ks isoforms contribute to viability, migration, docetaxel resistance and tumor formation of prostate cancer cells

    International Nuclear Information System (INIS)

    Amaral, Camila L.; Freitas, Lidia B.; Tamura, Rodrigo E.; Tavares, Mariana R.; Pavan, Isadora C. B.; Bajgelman, Marcio C.; Simabuco, Fernando M.

    2016-01-01

    The S6 Kinase (S6K) proteins are some of the main downstream effectors of the mammalian Target Of Rapamycin (mTOR) and act as key regulators of protein synthesis and cell growth. S6K is overexpressed in a variety of human tumors and is correlated to poor prognosis in prostate cancer. Due to the current urgency to identify factors involved in prostate cancer progression, we aimed to reveal the cellular functions of three S6K isoforms–p70-S6K1, p85-S6K1 and p54-S6K2–in prostate cancer, as well as their potential as therapeutic targets. In this study we performed S6K knockdown and overexpression and investigated its role in prostate cancer cell proliferation, colony formation, viability, migration and resistance to docetaxel treatment. In addition, we measured tumor growth in Nude mice injected with PC3 cells overexpressing S6K isoforms and tested the efficacy of a new available S6K1 inhibitor in vitro. S6Ks overexpression enhanced PC3-luc cell line viability, migration, resistance to docetaxel and tumor formation in Nude mice. Only S6K2 knockdown rendered prostate cancer cells more sensitive to docetaxel. S6K1 inhibitor PF-4708671 was particularly effective for reducing migration and proliferation of PC3 cell line. These findings demonstrate that S6Ks play an important role in prostate cancer progression, enhancing cell viability, migration and chemotherapy resistance, and place both S6K1 and S6K2 as a potential targets in advanced prostate cancer. We also provide evidence that S6K1 inhibitor PF-4708671 may be considered as a potential drug for prostate cancer treatment. The online version of this article (doi:10.1186/s12885-016-2629-y) contains supplementary material, which is available to authorized users

  11. Chemical biology drug sensitivity screen identifies sunitinib as synergistic agent with disulfiram in prostate cancer cells.

    Directory of Open Access Journals (Sweden)

    Kirsi Ketola

    Full Text Available Current treatment options for castration- and treatment-resistant prostate cancer are limited and novel approaches are desperately needed. Our recent results from a systematic chemical biology sensitivity screen covering most known drugs and drug-like molecules indicated that aldehyde dehydrogenase inhibitor disulfiram is one of the most potent cancer-specific inhibitors of prostate cancer cell growth, including TMPRSS2-ERG fusion positive cancers. However, the results revealed that disulfiram alone does not block tumor growth in vivo nor induce apoptosis in vitro, indicating that combinatorial approaches may be required to enhance the anti-neoplastic effects.In this study, we utilized a chemical biology drug sensitivity screen to explore disulfiram mechanistic details and to identify compounds potentiating the effect of disulfiram in TMPRSS2-ERG fusion positive prostate cancer cells. In total, 3357 compounds including current chemotherapeutic agents as well as drug-like small molecular compounds were screened alone and in combination with disulfiram. Interestingly, the results indicated that androgenic and antioxidative compounds antagonized disulfiram effect whereas inhibitors of receptor tyrosine kinase, proteasome, topoisomerase II, glucosylceramide synthase or cell cycle were among compounds sensitizing prostate cancer cells to disulfiram. The combination of disulfiram and an antiangiogenic agent sunitinib was studied in more detail, since both are already in clinical use in humans. Disulfiram-sunitinib combination induced apoptosis and reduced androgen receptor protein expression more than either of the compounds alone. Moreover, combinatorial exposure reduced metastatic characteristics such as cell migration and 3D cell invasion as well as induced epithelial differentiation shown as elevated E-cadherin expression.Taken together, our results propose novel combinatorial approaches to inhibit prostate cancer cell growth. Disulfiram

  12. The Isolation and Characterization of Human Prostate Cancer Stem Cells

    Science.gov (United States)

    2015-05-01

    migration as a result of PSA screening, the vast majority of prostate cancers in prostatectomy specimens today are often of low grade and stage and...epithelial interactions—I. Induction of prostatic phenotype in urothelium of testicular feminized (Tfm/y) mice. J Steroid Biochem. 1981; 14(12):1317–1324

  13. Cannabinoid Receptors: A Novel Target for Therapy for Prostate Cancer

    National Research Council Canada - National Science Library

    Mukhtar, Hasan; Afaq, Farrukh; Sarfaraz, Sami

    2008-01-01

    We have shown that the expression levels of both cannabinoid receptors CB1 and CB2 are higher in human prostate cancer cells than in normal prostate epithelial cells and treatment of LNCaP cells with WIN-55,212-2 (WIN...

  14. Cannabinoid Receptors: A Novel Target for Therapy of Prostate Cancer

    National Research Council Canada - National Science Library

    Mukhtar, Hasan; Afaq, Farrukh; Sarfaraz, Sami

    2007-01-01

    .... We have shown that the expression levels of both cannabinoid receptors CB1 and CB2 are higher in human prostate cancer cells than in normal prostate epithelial cells and treatment of LNCaP cells with WIN-55,212-2 (WIN...

  15. Targeted radiotherapy potentiates the cytotoxicity of a novel anti-human DR5 monoclonal antibody and the adenovirus encoding soluble TRAIL in prostate cancer

    International Nuclear Information System (INIS)

    Arafat, W.; Arafat, W.; Zhou, T.; Naoum, G.E.; Buchsbaum, D.J.

    2015-01-01

    TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) induces a death signal following binding to death receptors (DR4, DR5). We have developed a novel anti-human DR-5 monoclonal antibody (TRA-8) and adenoviral encoding TRAIL (Ad/TRAIL). Herein, we are testing the combined effect of radiotherapy and TRA-8 or Ad TRAIL in prostate cancer cells. Human prostate cancer cell lines LnCap, PC-3 and DU145 were used in this study. Cells were treated either with TRA-8 alone or Ad/TRAIL, radiation alone, or a combination of each at different doses and intervals. Cell survival using the MTS assay and colony forming assay were used to determine radiosensitization. Immunohistochemistry was used to detect bax and bcl-2. Real-time PCR was performed on mRNA of treated prostate cancer cell lines. Finally, a murine model of subcutaneous prostate cancer was used to evaluate the in vivo effect. Cell survival assays detected by MTS assay showed that prostate cell lines treated with a combination of radiation and TRA-8 showed significantly lower survival than cells treated with either radiation or TRA-8 alone. Colony forming assay and cell proliferation assays showed increased killing after combination treatment with TRA-8 or Ad/TRAIL and radiation, than either single agent alone. Mechanistic studies showed that the killing effect was due to induction of apoptosis mostly by increased expression of bax in TRA-8 or Ad/TRAIL treated cells. Additionally, RT-PCR showed an increased copy number of bax in most cells treated with TRA-8 and radiation. It is concluded that radiation and TRA-8 or Ad/ TRAIL produced a synergistic effect in refractory prostrate cancer.

  16. Splicing Factor Prp8 Interacts With NES(AR) and Regulates Androgen Receptor in Prostate Cancer Cells.

    Science.gov (United States)

    Wang, Dan; Nguyen, Minh M; Masoodi, Khalid Z; Singh, Prabhpreet; Jing, Yifeng; O'Malley, Katherine; Dar, Javid A; Dhir, Rajiv; Wang, Zhou

    2015-12-01

    Androgen receptor (AR) plays a pivotal role in the development of primary as well as advanced castration-resistant prostate cancer. Previous work in our lab identified a novel nuclear export signal (NES) (NES(AR)) in AR ligand-binding domain essential for AR nucleocytoplasmic trafficking. By characterizing the localization of green fluorescence protein (GFP)-tagged NES(AR), we designed and executed a yeast mutagenesis screen and isolated 7 yeast mutants that failed to display the NES(AR) export function. One of those mutants was identified as the splicing factor pre-mRNA processing factor 8 (Prp8). We further showed that Prp8 could regulate NES(AR) function using short hairpin RNA knockdown of Prp8 coupled with a rapamycin export assay in mammalian cells and knockdown of Prp8 could induce nuclear accumulation of GFP-tagged AR in PC3 cells. Prp8 expression was decreased in castration-resistant LuCaP35 xenograft tumors as compared with androgen-sensitive xenografts. Laser capture microdissection and quantitative PCR showed Prp8 mRNA levels were decreased in human prostate cancer specimens with high Gleason scores. In prostate cancer cells, coimmunoprecipitation and deletion mutagenesis revealed a physical interaction between Prp8 and AR mainly mediated by NES(AR). Luciferase assay with prostate specific antigen promoter-driven reporter demonstrated that Prp8 regulated AR transcription activity in prostate cancer cells. Interestingly, Prp8 knockdown also increased polyubiquitination of endogenous AR. This may be 1 possible mechanism by which it modulates AR activity. These results show that Prp8 is a novel AR cofactor that interacts with NES(AR) and regulates AR function in prostate cancer cells.

  17. Preclinical evaluation of sunitinib, a multi-tyrosine kinase inhibitor, as a radiosensitizer for human prostate cancer

    International Nuclear Information System (INIS)

    Brooks, Colin; Sheu, Tommy; Bridges, Kathleen; Mason, Kathy; Kuban, Deborah; Mathew, Paul; Meyn, Raymond

    2012-01-01

    Many prostate cancers demonstrate an increased expression of growth factor receptors such as vascular endothelial growth factor receptor (VEGFR) and platelet derived growth factor receptor (PDGFR) which have been correlated with increased resistance to radiotherapy and poor prognosis in other tumors. Therefore, response to radiation could potentially be improved by using inhibitors of these abnormally activated pathways. We have investigated the radiosensitizing effects of sunitinib, a potent, multi-tyrosine kinase inhibitor of the VEGFR and PDGFR receptors, on human prostate cancer cells. The radiosensitizing effects of sunitinib were assessed on human prostate cancer cell lines DU145, PC3 and LNCaP by clonogenic assay. Sunitinib’s ability to inhibit the activities of its key targets was determined by immunoblot analysis. The radiosensitizing effects of sunitinib in vivo were tested on human tumor xenografts growing in nude mice where response was assessed by tumor growth delay. Clonogenic survival curve assays for both DU145 and PC3 cells showed that the surviving fraction at 2 Gy was reduced from 0.70 and 0.52 in controls to 0.44 and 0.38, respectively, by a 24 hr pretreatment with 100 nM sunitinib. LNCaP cells were not radiosensitized by sunitinib. Dose dependent decreases in VEGFR and PDGFR activation were also observed following sunitinib in both DU145 and PC3 cells. We assessed the ability of sunitinib to radiosensitize PC3 xenograft tumors growing in the hind limb of nude mice. Sunitinib given concurrently with radiation did not prolong tumor growth delay. However, when animals were treated with sunitinib commencing the day after fractionated radiation was complete, tumor growth delay was enhanced compared to radiation alone. We conclude, based on the in vivo results, that sunitinib and radiation do not interact directly to radiosensitize the PC3 tumor cells in vivo as they did in vitro. The fact that tumor growth delay was enhanced when sunitinib was

  18. Simultaneous targeting of prostate stem cell antigen and prostate-specific membrane antigen improves the killing of prostate cancer cells using a novel modular T cell-retargeting system.

    Science.gov (United States)

    Arndt, Claudia; Feldmann, Anja; Koristka, Stefanie; Cartellieri, Marc; Dimmel, Maria; Ehninger, Armin; Ehninger, Gerhard; Bachmann, Michael

    2014-09-01

    Recently, we described a novel modular platform technology in which T cell-recruitment and tumor-targeting domains of conventional bispecific antibodies are split to independent components, a universal effector module (EM) and replaceable monospecific/monovalent target modules (TMs) that form highly efficient T cell-retargeting complexes. Theoretically, our unique strategy should allow us to simultaneously retarget T cells to different tumor antigens by combining the EM with two or more different monovalent/monospecific TMs or even with bivalent/bispecific TMs, thereby overcoming limitations of a monospecific treatment such as the selection of target-negative tumor escape variants. In order to advance our recently introduced prostate stem cell antigen (PSCA)-specific modular system for a dual-targeting of prostate cancer cells, two additional TMs were constructed: a monovalent/monospecific TM directed against the prostate-specific membrane antigen (PSMA) and a bivalent/bispecific TM (bsTM) with specificity for PSMA and PSCA. The functionality of the novel dual-targeting strategies was analyzed by performing T cell activation and chromium release assays. Similar to the PSCA-specific modular system, the novel PSMA-specific modular system mediates an efficient target-dependent and -specific tumor cell lysis at low E:T ratios and picomolar Ab concentrations. Moreover, by combination of the EM with either the bispecific TM directed to PSMA and PSCA or both monospecifc TMs directed to either PSCA or PSMA, dual-specific targeting complexes were formed which allowed us to kill potential escape variants expressing only one or the other target antigen. Overall, the novel modular system represents a promising tool for multiple tumor targeting. © 2014 Wiley Periodicals, Inc.

  19. Investigation of the expression of the EphB4 receptor tyrosine kinase in prostate carcinoma

    International Nuclear Information System (INIS)

    Lee, Yen-Ching; Perren, Janeanne R; Douglas, Evelyn L; Raynor, Michael P; Bartley, Maria A; Bardy, Peter G; Stephenson, Sally-Anne

    2005-01-01

    The EphB4 receptor tyrosine kinase has been reported as increased in tumours originating from several different tissues and its expression in a prostate cancer xenograft model has been reported. RT-PCR, western blotting and immunohistochemical techniques were used to examine EphB4 expression and protein levels in human prostate cancer cell lines LNCaP, DU145 and PC3. Immunohistochemistry was also used to examine localisation of EphB4 in tissue samples from 15 patients with prostate carcinomas. All three prostate cancer cell lines expressed the EphB4 gene and protein. EphB4 immunoreactivity in vivo was significantly greater in human prostate cancers as compared with matched normal prostate epithelium and there appeared to be a trend towards increased expression with higher grade disease. EphB4 is expressed in prostate cancer cell lines with increased expression in human prostate cancers when compared with matched normal tissue. EphB4 may therefore be a useful anti-prostate cancer target

  20. BMI-1 targeting interferes with patient-derived tumor-initiating cell survival and tumor growth in prostate cancer

    Science.gov (United States)

    Yusuff, Shamila; Davis, Stephani; Flaherty, Kathleen; Huselid, Eric; Patrizii, Michele; Jones, Daniel; Cao, Liangxian; Sydorenko, Nadiya; Moon, Young-Choon; Zhong, Hua; Medina, Daniel J.; Kerrigan, John; Stein, Mark N.; Kim, Isaac Y.; Davis, Thomas W.; DiPaola, Robert S.; Bertino, Joseph R.; Sabaawy, Hatem E.

    2016-01-01

    Purpose Current prostate cancer (PCa) management calls for identifying novel and more effective therapies. Self-renewing tumor-initiating cells (TICs) hold intrinsic therapy-resistance and account for tumor relapse and progression. As BMI-1 regulates stem cell self-renewal, impairing BMI-1 function for TICs-tailored therapies appears to be a promising approach. Experimental design We have previously developed a combined immunophenotypic and time-of-adherence assay to identify CD49bhiCD29hiCD44hi cells as human prostate TICs. We utilized this assay with patient derived prostate cancer cells and xenograft models to characterize the effects of pharmacological inhibitors of BMI-1. Results We demonstrate that in cell lines and patient-derived TICs, BMI-1 expression is upregulated and associated with stem cell-like traits. From a screened library, we identified a number of post-transcriptional small molecules that target BMI-1 in prostate TICs. Pharmacological inhibition of BMI-1 in patient-derived cells significantly decreased colony formation in vitro and attenuated tumor initiation in vivo, thereby functionally diminishing the frequency of TICs, particularly in cells resistant to proliferation- and androgen receptor (AR)-directed therapies, without toxic effects on normal tissues. Conclusions Our data offer a paradigm for targeting TICs and support the development of BMI-1-targeting therapy for a more effective PCa treatment. PMID:27307599

  1. The retinoblastoma protein regulates hypoxia-inducible genetic programs, tumor cell invasiveness and neuroendocrine differentiation in prostate cancer cells

    Science.gov (United States)

    Labrecque, Mark P.; Takhar, Mandeep K.; Nason, Rebecca; Santacruz, Stephanie; Tam, Kevin J.; Massah, Shabnam; Haegert, Anne; Bell, Robert H.; Altamirano-Dimas, Manuel; Collins, Colin C.; Lee, Frank J.S.; Prefontaine, Gratien G.; Cox, Michael E.; Beischlag, Timothy V.

    2016-01-01

    Loss of tumor suppressor proteins, such as the retinoblastoma protein (Rb), results in tumor progression and metastasis. Metastasis is facilitated by low oxygen availability within the tumor that is detected by hypoxia inducible factors (HIFs). The HIF1 complex, HIF1α and dimerization partner the aryl hydrocarbon receptor nuclear translocator (ARNT), is the master regulator of the hypoxic response. Previously, we demonstrated that Rb represses the transcriptional response to hypoxia by virtue of its association with HIF1. In this report, we further characterized the role Rb plays in mediating hypoxia-regulated genetic programs by stably ablating Rb expression with retrovirally-introduced short hairpin RNA in LNCaP and 22Rv1 human prostate cancer cells. DNA microarray analysis revealed that loss of Rb in conjunction with hypoxia leads to aberrant expression of hypoxia-regulated genetic programs that increase cell invasion and promote neuroendocrine differentiation. For the first time, we have established a direct link between hypoxic tumor environments, Rb inactivation and progression to late stage metastatic neuroendocrine prostate cancer. Understanding the molecular pathways responsible for progression of benign prostate tumors to metastasized and lethal forms will aid in the development of more effective prostate cancer therapies. PMID:27015368

  2. Sortilin regulates progranulin action in castration-resistant prostate cancer cells.

    Science.gov (United States)

    Tanimoto, Ryuta; Morcavallo, Alaide; Terracciano, Mario; Xu, Shi-Qiong; Stefanello, Manuela; Buraschi, Simone; Lu, Kuojung G; Bagley, Demetrius H; Gomella, Leonard G; Scotlandi, Katia; Belfiore, Antonino; Iozzo, Renato V; Morrione, Andrea

    2015-01-01

    The growth factor progranulin is as an important regulator of transformation in several cellular systems. We have previously demonstrated that progranulin acts as an autocrine growth factor and stimulates motility, proliferation, and anchorage-independent growth of castration-resistant prostate cancer cells, supporting the hypothesis that progranulin may play a critical role in prostate cancer progression. However, the mechanisms regulating progranulin action in castration-resistant prostate cancer cells have not been characterized. Sortilin, a single-pass type I transmembrane protein of the vacuolar protein sorting 10 family, binds progranulin in neurons and negatively regulates progranulin signaling by mediating progranulin targeting for lysosomal degradation. However, whether sortilin is expressed in prostate cancer cells and plays any role in regulating progranulin action has not been established. Here, we show that sortilin is expressed at very low levels in castration-resistant PC3 and DU145 cells. Significantly, enhancing sortilin expression in PC3 and DU145 cells severely diminishes progranulin levels and inhibits motility, invasion, proliferation, and anchorage-independent growth. In addition, sortilin overexpression negatively modulates Akt (protein kinase B, PKB) stability. These results are recapitulated by depleting endogenous progranulin in PC3 and DU145 cells. On the contrary, targeting sortilin by short hairpin RNA approaches enhances progranulin levels and promotes motility, invasion, and anchorage-independent growth. We dissected the mechanisms of sortilin action and demonstrated that sortilin promotes progranulin endocytosis through a clathrin-dependent pathway, sorting into early endosomes and subsequent lysosomal degradation. Collectively, these results point out a critical role for sortilin in regulating progranulin action in castration-resistant prostate cancer cells, suggesting that sortilin loss may contribute to prostate cancer progression.

  3. The study of the androgen receptor profile and changes of level of serum testosterone in human prostatic cancer

    Energy Technology Data Exchange (ETDEWEB)

    Zhining, Gui; Xiaoke, Hu; Hanping, Lu; Wei, Fan; Naiyun, Wu; Jinhui, Gao [Zhongshan University of Medical Sciences, Guangzhou, GD (China); Hua, Mei; Jinyun, Zeng [First Affiliated Hospital of Zhongshan Univ. of Medical Sciences, Guangzhou, GD (China)

    1993-11-01

    The androgen receptors in biopsy specimens of 22 cases of human prostatic cancer (PC) were studied by radioligand binding assay. The cytoplasmic androgen receptor (AcR) and nuclear androgen receptor (AnR) densities were 305.70 +- 461.68 and 363.04 +- 391.44 pmol/g protein respectively, both were significantly higher than those of 36 benign prostatic hypertrophy (BPH) and 9 normal prostate (NP). Among the prostatic cancers, the AnR/AcR ratios were significantly different between metastatic and primary cancers. This result suggested that there might be migration of AR from nucleus to cytosol in the process of metastasis. The serum testosterone studied by RIA method are significantly lower than that of BPH and NP. Thawmounted autoradiography demonstrated that AR were mainly located in epithelial cells of the glandular tissue of prostate.

  4. Paucity of PD-L1 expression in prostate cancer: innate and adaptive immune resistance.

    Science.gov (United States)

    Martin, A M; Nirschl, T R; Nirschl, C J; Francica, B J; Kochel, C M; van Bokhoven, A; Meeker, A K; Lucia, M S; Anders, R A; DeMarzo, A M; Drake, C G

    2015-12-01

    Primary prostate cancers are infiltrated with programmed death-1 (PD-1) expressing CD8+ T-cells. However, in early clinical trials, men with metastatic castrate-resistant prostate cancer did not respond to PD-1 blockade as a monotherapy. One explanation for this unresponsiveness could be that prostate tumors generally do not express programmed death ligand-1 (PD-L1), the primary ligand for PD-1. However, lack of PD-L1 expression in prostate cancer would be surprising, given that phosphatase and tensin homolog (PTEN) loss is relatively common in prostate cancer and several studies have shown that PTEN loss correlates with PD-L1 upregulation--constituting a mechanism of innate immune resistance. This study tested whether prostate cancer cells were capable of expressing PD-L1, and whether the rare PD-L1 expression that occurs in human specimens correlates with PTEN loss. Human prostate cancer cell lines were evaluated for PD-L1 expression and loss of PTEN by flow cytometry and western blotting, respectively. Immunohistochemical (IHC) staining for PTEN was correlated with PD-L1 IHC using a series of resected human prostate cancer samples. In vitro, many prostate cancer cell lines upregulated PD-L1 expression in response to inflammatory cytokines, consistent with adaptive immune resistance. In these cell lines, no association between PTEN loss and PD-L1 expression was apparent. In primary prostate tumors, PD-L1 expression was rare, and was not associated with PTEN loss. These studies show that some prostate cancer cell lines are capable of expressing PD-L1. However, in human prostate cancer, PTEN loss is not associated with PD-L1 expression, arguing against innate immune resistance as a mechanism that mitigates antitumor immune responses in this disease.

  5. Targeting MEK5 Enhances Radiosensitivity of Human Prostate Cancer and Impairs Tumor-Associated Angiogenesis

    Science.gov (United States)

    2016-09-01

    analysis of tumor necrosis factor - alpha resistant human breast cancer cells reveals a MEK5/Erk5-mediated epithelial-mesenchymal transition phenotype...AWARD NUMBER: W81XWH-15-1-0296 TITLE: Targeting MEK5 Enhances Radiosensitivity of Human Prostate Cancer and Impairs Tumor - Associated...Cancer and Impairs Tumor -Associated Angiogenesis 5b. GRANT NUMBER W81XWH-15-1-0296 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER

  6. Trading in your spindles for blebs: the amoeboid tumor cell phenotype in prostate cancer

    Directory of Open Access Journals (Sweden)

    Samantha Morley

    2014-08-01

    Full Text Available Prostate cancer (PCa remains a principal cause of mortality in developed countries. Because no clinical interventions overcome resistance to androgen ablation therapy, management of castration resistance and metastatic disease remains largely untreatable. Metastasis is a multistep process in which tumor cells lose cell-cell contacts, egress from the primary tumor, intravasate, survive shear stress within the vasculature and extravasate into tissues to colonize ectopic sites. Tumor cells reestablish migratory behaviors employed during nonneoplastic processes such as embryonic development, leukocyte trafficking and wound healing. While mesenchymal motility is an established paradigm of dissemination, an alternate, 'amoeboid' phenotype is increasingly appreciated as relevant to human cancer. Here we discuss characteristics and pathways underlying the phenotype, and highlight our findings that the cytoskeletal regulator DIAPH3 governs the mesenchymal-amoeboid transition. We also describe our identification of a new class of tumor-derived microvesicles, large oncosomes, produced by amoeboid cells and with potential clinical utility in prostate and other cancers.

  7. TRPM8 ion channels differentially modulate proliferation and cell cycle distribution of normal and cancer prostate cells.

    Directory of Open Access Journals (Sweden)

    María Ll Valero

    Full Text Available Overexpression of the cation-permeable channel TRPM8 in prostate cancers might represent a novel opportunity for their treatment. Inhibitors of TRPM8 reduce the growth of prostate cancer cells. We have used two recently described and highly specific blockers, AMTB and JNJ41876666, and RNAi to determine the relevance of TRPM8 expression in the proliferation of non-tumor and tumor cells. Inhibition of the expression or function of the channel reduces proliferation rates and proliferative fraction in all tumor cells tested, but not of non-tumor prostate cells. We observed no consistent acceleration of growth after stimulation of the channel with menthol or icilin, indicating that basal TRPM8 expression is enough to sustain growth of prostate cancer cells.

  8. TRPM8 ion channels differentially modulate proliferation and cell cycle distribution of normal and cancer prostate cells.

    Science.gov (United States)

    Valero, María Ll; Mello de Queiroz, Fernanda; Stühmer, Walter; Viana, Félix; Pardo, Luis A

    2012-01-01

    Overexpression of the cation-permeable channel TRPM8 in prostate cancers might represent a novel opportunity for their treatment. Inhibitors of TRPM8 reduce the growth of prostate cancer cells. We have used two recently described and highly specific blockers, AMTB and JNJ41876666, and RNAi to determine the relevance of TRPM8 expression in the proliferation of non-tumor and tumor cells. Inhibition of the expression or function of the channel reduces proliferation rates and proliferative fraction in all tumor cells tested, but not of non-tumor prostate cells. We observed no consistent acceleration of growth after stimulation of the channel with menthol or icilin, indicating that basal TRPM8 expression is enough to sustain growth of prostate cancer cells.

  9. Simvastatin inhibits the proliferation of human prostate cancer PC-3 cells via down-regulation of the insulin-like growth factor 1 receptor

    International Nuclear Information System (INIS)

    Sekine, Yoshitaka; Furuya, Yosuke; Nishii, Masahiro; Koike, Hidekazu; Matsui, Hiroshi; Suzuki, Kazuhiro

    2008-01-01

    Recently, statins have been being studied for their proapoptic and antimetastatic effects. However, the exact mechanisms of their anticancer action are still unclear. Dolichyl phosphate is a nonsterol isoprenoid derivative in the mevalonate pathway that affects the expression of the Insulin-like growth factor 1 receptor (IGF-1R). IGF-1R activation is required for prostate cell proliferation; therefore, IGF-1R inhibitory agents may be of preventive and/or therapeutic value. In this study, the effects of simvastatin on IGF-1R signaling in prostate cancer PC-3 cells were examined. Simvastatin suppressed proliferation and induced apoptosis of PC-3, and the expression of IGF-1R was suppressed by simvastatin. Knockdown of IGF-1R by siRNA led to inhibition of proliferation of PC-3. Simvastatin also inhibited IGF-1-induced activation of both ERK and Akt signaling and IGF-1-induced PC-3 cell proliferation. Our results suggest statins are potent inhibitors of the IGF-1/IGF-1R system in prostate cancer cells and may be beneficial in prostate cancer treatment

  10. The therapeutic effects of docosahexaenoic acid on oestrogen/androgen-induced benign prostatic hyperplasia in rats

    International Nuclear Information System (INIS)

    Wang, Chao; Luo, Fei; Zhou, Ying; Du, Xiaoling; Shi, Jiandang; Zhao, Xiaoling; Xu, Yong; Zhu, Yan; Hong, Wei; Zhang, Ju

    2016-01-01

    Benign prostatic hyperplasia (BPH) is one of the major disorders of the urinary system in elderly men. Docosahexaenoic acid (DHA) is the main component of n-3 polyunsaturated fatty acids (n-3 PUFAs) and has nerve protective, anti-inflammatory and tumour-growth inhibitory effects. Here, the therapeutic potential of DHA in treating BPH was investigated. Seal oil effectively prevented the development of prostatic hyperplasia induced by oestradiol/testosterone in a rat model by suppressing the increase of the prostatic index (PI), reducing the thickness of the peri-glandular smooth muscle layer, inhibiting the proliferation of both prostate epithelial and stromal cells, and downregulating the expression of androgen receptor (AR) and oestrogen receptor α (ERα). An in vitro study showed that DHA inhibited the growth of the human prostate stromal cell line WPMY-1 and the epithelial cell line RWPE-1 in a dose- and time-dependent manner. In both cell lines, the DHA arrested the cell cycle in the G2/M phase. In addition, DHA also reduced the expression of ERα and AR in the WPMY-1 and RWPE-1 cells. These results indicate that DHA inhibits the multiplication of prostate stromal and epithelial cells through a mechanism that may involve cell cycle arrest and the downregulation of ERα and AR expression. - Highlights: • Seal oil prevents oestradiol/testosterone (E2/T)-induced BPH in castrated rats. • Seal oil downregulates the expression of oestrogen receptor α(ERα) and androgen receptor (AR) in rat BPH tissues. • DHA inhibits the growth of human prostate stromal and epithelial cells in vitro. • DHA arrests human prostate stromal and epithelial cells in the G2/M phase and downregulates the expression of cyclin B1. • DHA inhibits the expression of ERα and AR in human prostate stromal and epithelial cells.

  11. The therapeutic effects of docosahexaenoic acid on oestrogen/androgen-induced benign prostatic hyperplasia in rats

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chao [Department of Biochemistry and Molecular Biology, College of Life Sciences, Bioactive Materials Key Lab of Ministry of Education, Nankai University, Tianjin 300071 (China); Luo, Fei [Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211 (China); Zhou, Ying; Du, Xiaoling; Shi, Jiandang; Zhao, Xiaoling [Department of Biochemistry and Molecular Biology, College of Life Sciences, Bioactive Materials Key Lab of Ministry of Education, Nankai University, Tianjin 300071 (China); Xu, Yong [Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211 (China); Zhu, Yan [Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193 (China); Hong, Wei, E-mail: hongwei@tijmu.edu.cn [Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070 (China); Zhang, Ju, E-mail: zhangju@nankai.edu.cn [Department of Biochemistry and Molecular Biology, College of Life Sciences, Bioactive Materials Key Lab of Ministry of Education, Nankai University, Tianjin 300071 (China)

    2016-07-15

    Benign prostatic hyperplasia (BPH) is one of the major disorders of the urinary system in elderly men. Docosahexaenoic acid (DHA) is the main component of n-3 polyunsaturated fatty acids (n-3 PUFAs) and has nerve protective, anti-inflammatory and tumour-growth inhibitory effects. Here, the therapeutic potential of DHA in treating BPH was investigated. Seal oil effectively prevented the development of prostatic hyperplasia induced by oestradiol/testosterone in a rat model by suppressing the increase of the prostatic index (PI), reducing the thickness of the peri-glandular smooth muscle layer, inhibiting the proliferation of both prostate epithelial and stromal cells, and downregulating the expression of androgen receptor (AR) and oestrogen receptor α (ERα). An in vitro study showed that DHA inhibited the growth of the human prostate stromal cell line WPMY-1 and the epithelial cell line RWPE-1 in a dose- and time-dependent manner. In both cell lines, the DHA arrested the cell cycle in the G2/M phase. In addition, DHA also reduced the expression of ERα and AR in the WPMY-1 and RWPE-1 cells. These results indicate that DHA inhibits the multiplication of prostate stromal and epithelial cells through a mechanism that may involve cell cycle arrest and the downregulation of ERα and AR expression. - Highlights: • Seal oil prevents oestradiol/testosterone (E2/T)-induced BPH in castrated rats. • Seal oil downregulates the expression of oestrogen receptor α(ERα) and androgen receptor (AR) in rat BPH tissues. • DHA inhibits the growth of human prostate stromal and epithelial cells in vitro. • DHA arrests human prostate stromal and epithelial cells in the G2/M phase and downregulates the expression of cyclin B1. • DHA inhibits the expression of ERα and AR in human prostate stromal and epithelial cells.

  12. TNFα-mediated loss of β-catenin/E-cadherin association and subsequent increase in cell migration is partially restored by NKX3.1 expression in prostate cells.

    Directory of Open Access Journals (Sweden)

    Bilge Debelec-Butuner

    Full Text Available Inflammation-induced carcinogenesis is associated with increased proliferation and migration/invasion of various types of tumor cells. In this study, altered β-catenin signaling upon TNFα exposure, and relation to loss of function of the tumor suppressor NKX3.1 was examined in prostate cancer cells. We used an in vitro prostate inflammation model to demonstrate altered sub-cellular localization of β-catenin following increased phosphorylation of Akt(S473 and GSK3β(S9. Consistently, we observed that subsequent increase in β-catenin transactivation enhanced c-myc, cyclin D1 and MMP2 expressions. Consequently, it was also observed that the β-catenin-E-cadherin association at the plasma membrane was disrupted during acute cytokine exposure. Additionally, it was demonstrated that disrupting cell-cell interactions led to increased migration of LNCaP cells in real-time migration assay. Nevertheless, ectopic expression of NKX3.1, which is degraded upon proinflammatory cytokine exposure in inflammation, was found to induce the degradation of β-catenin by inhibiting Akt(S473 phosphorylation, therefore, partially rescued the disrupted β-catenin-E-cadherin interaction as well as the cell migration in LNCaP cells upon cytokine exposure. As, the disrupted localization of β-catenin at the cell membrane as well as increased Akt(S308 priming phosphorylation was observed in human prostate tissues with prostatic inflammatory atrophy (PIA, high-grade prostatic intraepithelial neoplasia (H-PIN and carcinoma lesions correlated with loss of NKX3.1 expression. Thus, the data indicate that the β-catenin signaling; consequently sub-cellular localization is deregulated in inflammation, associates with prostatic atrophy and PIN pathology.

  13. Pifithrin-μ, an inhibitor of heat-shock protein 70, can increase the antitumor effects of hyperthermia against human prostate cancer cells.

    Directory of Open Access Journals (Sweden)

    Kazumasa Sekihara

    Full Text Available Hyperthermia (HT improves the efficacy of anti-cancer radiotherapy and chemotherapy. However, HT also inevitably evokes stress responses and increases the expression of heat-shock proteins (HSPs in cancer cells. Among the HSPs, HSP70 is known as a pro-survival protein. In this study, we investigated the sensitizing effect of pifithrin (PFT-μ, a small molecule inhibitor of HSP70, when three human prostate cancer cell lines (LNCaP, PC-3, and DU-145 were treated with HT (43°C for 2 h. All cell lines constitutively expressed HSP70, and HT further increased its expression in LNCaP and DU-145. Knockdown of HSP70 with RNA interference decreased the viability and colony-forming ability of cancer cells. PFT-μ decreased the viabilities of all cell lines at one-tenth the dose of Quercetin, a well-known HSP inhibitor. The combination therapy with suboptimal doses of PFT-μ and HT decreased the viability of cancer cells most effectively when PFT-μ was added immediately before HT, and this combination effect was abolished by pre-knockdown of HSP70, suggesting that the effect was mediated via HSP70 inhibition. The combination therapy induced cell death, partially caspase-dependent, and decreased proliferating cancer cells, with decreased expression of c-Myc and cyclin D1 and increased expression of p21(WAF1/Cip, indicating arrest of cell growth. Additionally, the combination therapy significantly decreased the colony-forming ability of cancer cells compared to therapy with either alone. Furthermore, in a xenograft mouse model, the combination therapy significantly inhibited PC-3 tumor growth. These findings suggest that PFT-μ can effectively enhance HT-induced antitumor effects via HSP70 inhibition by inducing cell death and arrest of cell growth, and that PFT-μ is a promising agent for use in combination with HT to treat prostate cancer.

  14. Synthesis of curcumin-functionalized gold nanoparticles and cytotoxicity studies in human prostate cancer cell line

    Science.gov (United States)

    Nambiar, Shruti; Osei, Ernest; Fleck, Andre; Darko, Johnson; Mutsaers, Anthony J.; Wettig, Shawn

    2018-03-01

    Gold nanoparticles synthesized using plant extracts with medicinal properties have gained traction in recent years, especially for their use in various biomedical applications. Colloidal stability of these nanoparticles in different environments is critical to retain the expected therapeutic/diagnostic efficacy and toxicological outcome. Any change in the colloidal stability leads to dramatic changes in the physico-chemical properties of the nanoparticles such as size and surface charge, which in turn may alter the biological activity of the particles. Such changes are imminent in physiologically-relevant environment wherein interactions with different biomolecules, such as serum proteins, may modify the overall properties of the nanoparticles. In this regard, we synthesized 15 nm sized gold nanoparticles using curcumin, a plant extract from turmeric root, to evaluate cytotoxicity, uptake, and localization in human prostate cancer cells using cell-culture medium supplemented with or without fetal bovine serum (FBS). The results indicate a dramatic difference in the cytotoxicity and uptake between cells treated with curcumin-functionalized gold nanoparticles (cur-AuNPs) in cell-culture medium with and without serum. The addition of FBS to the medium not only increased the stability of the nanoparticles but also enhanced the biocompatibility (i.e. minimal cytotoxicity for a wide range of cur-AuNP concentrations). We conclude that the presence of serum proteins significantly impact the therapeutic potential of cur-AuNPs.

  15. Formulation of the bivalent prostate cancer vaccine with surgifoam elicits antigen-specific effector T cells in PSA-transgenic mice.

    Science.gov (United States)

    Karan, Dev

    2017-10-13

    We previously developed and characterized an adenoviral-based prostate cancer vaccine for simultaneous targeting of prostate-specific antigen (PSA) and prostate stem cell antigen (PSCA). We also demonstrated that immunization of mice with the bivalent vaccine (Ad 5 -PSA+PSCA) inhibited the growth of established prostate tumors. However, there are multiple challenges hindering the success of immunological therapies in the clinic. One of the prime concerns has been to overcome the immunological tolerance and maintenance of long-term effector T cells. In this study, we further characterized the use of the bivalent vaccine (Ad 5 -PSA+PSCA) in a transgenic mouse model expressing human PSA in the mouse prostate. We demonstrated the expression of PSA analyzed at the mRNA level (by RT-PCR) and protein level (by immunohistochemistry) in the prostate lobes harvested from the PSA-transgenic (PSA-Tg) mice. We established that the administration of the bivalent vaccine in surgifoam to the PSA-Tg mice induces strong PSA-specific effector CD8 + T cells as measured by IFN-γ secretion and in vitro cytotoxic T-cell assay. Furthermore, the use of surgifoam with Ad 5 -PSA+PSCA vaccine allows multiple boosting vaccinations with a significant increase in antigen-specific CD8 + T cells. These observations suggest that the formulation of the bivalent prostate cancer vaccine (Ad 5 -PSA+PSCA) with surgifoam bypasses the neutralizing antibody response, thus allowing multiple boosting. This formulation is also helpful for inducing an antigen-specific immune response in the presence of self-antigen, and maintains long-term effector CD8 + T cells. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  16. Adipose-derived stromal cells inhibit prostate cancer cell proliferation inducing apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Takahara, Kiyoshi [Department of Urology, Faculty of Medicine, Osaka Medical College, Osaka (Japan); Ii, Masaaki, E-mail: masaii@art.osaka-med.ac.jp [Department of Pharmacology, Faculty of Medicine, Osaka Medical College, Osaka (Japan); Inamoto, Teruo; Komura, Kazumasa; Ibuki, Naokazu; Minami, Koichiro; Uehara, Hirofumi; Hirano, Hajime; Nomi, Hayahito; Kiyama, Satoshi [Department of Urology, Faculty of Medicine, Osaka Medical College, Osaka (Japan); Asahi, Michio [Department of Pharmacology, Faculty of Medicine, Osaka Medical College, Osaka (Japan); Azuma, Haruhito [Department of Urology, Faculty of Medicine, Osaka Medical College, Osaka (Japan)

    2014-04-18

    Highlights: • AdSC transplantation exhibits inhibitory effect on tumor progressions of PCa cells. • AdSC-induced PCa cell apoptosis may occur via the TGF-β signaling pathway. • High expression of the TGF-β1 gene in AdSCs. - Abstract: Mesenchymal stem cells (MSCs) have generated a great deal of interest in the field of regenerative medicine. Adipose-derived stromal cells (AdSCs) are known to exhibit extensive proliferation potential and can undergo multilineage differentiation, sharing similar characteristics to bone marrow-derived MSCs. However, as the effect of AdSCs on tumor growth has not been studied sufficiently, we assessed the degree to which AdSCs affect the proliferation of prostate cancer (PCa) cell. Human AdSCs exerted an inhibitory effect on the proliferation of androgen-responsive (LNCaP) and androgen-nonresponsive (PC3) human PCa cells, while normal human dermal fibroblasts (NHDFs) did not, and in fact promoted PCa cell proliferation to a degree. Moreover, AdSCs induced apoptosis of LNCaP cells and PC3 cells, activating the caspase3/7 signaling pathway. cDNA microarray analysis suggested that AdSC-induced apoptosis in both LNCaP and PC3 cells was related to the TGF-β signaling pathway. Consistent with our in vitro observations, local transplantation of AdSCs delayed the growth of tumors derived from both LNCaP- and PC3-xenografts in immunodeficient mice. This is the first preclinical study to have directly demonstrated that AdSC-induced PCa cell apoptosis may occur via the TGF-β signaling pathway, irrespective of androgen-responsiveness. Since autologous AdSCs can be easily isolated from adipose tissue without any ethical concerns, we suggest that therapy with these cells could be a novel approach for patients with PCa.

  17. Adipose-derived stromal cells inhibit prostate cancer cell proliferation inducing apoptosis

    International Nuclear Information System (INIS)

    Takahara, Kiyoshi; Ii, Masaaki; Inamoto, Teruo; Komura, Kazumasa; Ibuki, Naokazu; Minami, Koichiro; Uehara, Hirofumi; Hirano, Hajime; Nomi, Hayahito; Kiyama, Satoshi; Asahi, Michio; Azuma, Haruhito

    2014-01-01

    Highlights: • AdSC transplantation exhibits inhibitory effect on tumor progressions of PCa cells. • AdSC-induced PCa cell apoptosis may occur via the TGF-β signaling pathway. • High expression of the TGF-β1 gene in AdSCs. - Abstract: Mesenchymal stem cells (MSCs) have generated a great deal of interest in the field of regenerative medicine. Adipose-derived stromal cells (AdSCs) are known to exhibit extensive proliferation potential and can undergo multilineage differentiation, sharing similar characteristics to bone marrow-derived MSCs. However, as the effect of AdSCs on tumor growth has not been studied sufficiently, we assessed the degree to which AdSCs affect the proliferation of prostate cancer (PCa) cell. Human AdSCs exerted an inhibitory effect on the proliferation of androgen-responsive (LNCaP) and androgen-nonresponsive (PC3) human PCa cells, while normal human dermal fibroblasts (NHDFs) did not, and in fact promoted PCa cell proliferation to a degree. Moreover, AdSCs induced apoptosis of LNCaP cells and PC3 cells, activating the caspase3/7 signaling pathway. cDNA microarray analysis suggested that AdSC-induced apoptosis in both LNCaP and PC3 cells was related to the TGF-β signaling pathway. Consistent with our in vitro observations, local transplantation of AdSCs delayed the growth of tumors derived from both LNCaP- and PC3-xenografts in immunodeficient mice. This is the first preclinical study to have directly demonstrated that AdSC-induced PCa cell apoptosis may occur via the TGF-β signaling pathway, irrespective of androgen-responsiveness. Since autologous AdSCs can be easily isolated from adipose tissue without any ethical concerns, we suggest that therapy with these cells could be a novel approach for patients with PCa

  18. The human cyclin B1 protein modulates sensitivity of DNA mismatch repair deficient prostate cancer cell lines to alkylating agents.

    Science.gov (United States)

    Rasmussen, L J; Rasmussen, M; Lützen, A; Bisgaard, H C; Singh, K K

    2000-05-25

    DNA damage caused by alkylating agents results in a G2 checkpoint arrest. DNA mismatch repair (MMR) deficient cells are resistant to killing by alkylating agents and are unable to arrest the cell cycle in G2 phase after alkylation damage. We investigated the response of two MMR-deficient prostate cancer cell lines DU145 and LNCaP to the alkylating agent MNNG. Our studies reveal that DU145 cancer cells are more sensitive to killing by MNNG than LNCaP. Investigation of the underlying reasons for lower resistance revealed that the DU145 cells contain low endogenous levels of cyclin B1. We provide direct evidence that the endogenous level of cyclin B1 modulates the sensitivity of MMR-deficient prostate cancer cells to alkylating agents.

  19. Growth delay of human bladder cancer cells by Prostate Stem Cell Antigen downregulation is associated with activation of immune signaling pathways

    Directory of Open Access Journals (Sweden)

    Nicosia Alfredo

    2010-04-01

    Full Text Available Abstract Background Prostate stem cell antigen (PSCA is a glycosylphosphatidylinositol (GPI anchored protein expressed not only in prostate but also in pancreas and bladder cancer as shown by immunohistochemistry and mRNA analysis. It has been targeted by monoclonal antibodies in preclinical animal models and more recently in a clinical trial in prostate cancer patients. The biological role played in tumor growth is presently unknown. In this report we have characterized the contribution of PSCA expression to tumor growth. Methods A bladder cell line was engineered to express a doxycycline (dox regulated shRNA against PSCA. To shed light on the PSCA biological role in tumor growth, microarray analysis was carried out as a function of PSCA expression. Expression of gene set of interest was further analyzed by qPCR Results Down regulation of the PSCA expression was associated with reduced cell proliferation in vitro and in vivo. Mice bearing subcutaneous tumors showed a reduced tumor growth upon treatment with dox, which effectively induced shRNA against PSCA as revealed by GFP expression. Pathway analysis of deregulated genes suggests a statistical significant association between PSCA downregulation and activation of genes downstream of the IFNα/β receptor. Conclusions These experiments established for the first time a correlation between the level of PSCA expression and tumor growth and suggest a role of PSCA in counteracting the natural immune response.

  20. Growth delay of human bladder cancer cells by Prostate Stem Cell Antigen downregulation is associated with activation of immune signaling pathways

    International Nuclear Information System (INIS)

    Marra, Emanuele; Ciliberto, Gennaro; Palombo, Fabio; Uva, Paolo; Viti, Valentina; Simonelli, Valeria; Dogliotti, Eugenia; De Rinaldis, Emanuele; Lahm, Armin; La Monica, Nicola; Nicosia, Alfredo

    2010-01-01

    Prostate stem cell antigen (PSCA) is a glycosylphosphatidylinositol (GPI) anchored protein expressed not only in prostate but also in pancreas and bladder cancer as shown by immunohistochemistry and mRNA analysis. It has been targeted by monoclonal antibodies in preclinical animal models and more recently in a clinical trial in prostate cancer patients. The biological role played in tumor growth is presently unknown. In this report we have characterized the contribution of PSCA expression to tumor growth. A bladder cell line was engineered to express a doxycycline (dox) regulated shRNA against PSCA. To shed light on the PSCA biological role in tumor growth, microarray analysis was carried out as a function of PSCA expression. Expression of gene set of interest was further analyzed by qPCR Down regulation of the PSCA expression was associated with reduced cell proliferation in vitro and in vivo. Mice bearing subcutaneous tumors showed a reduced tumor growth upon treatment with dox, which effectively induced shRNA against PSCA as revealed by GFP expression. Pathway analysis of deregulated genes suggests a statistical significant association between PSCA downregulation and activation of genes downstream of the IFNα/β receptor. These experiments established for the first time a correlation between the level of PSCA expression and tumor growth and suggest a role of PSCA in counteracting the natural immune response

  1. Regulation of DNA synthesis and the cell cycle in human prostate cancer cells and lymphocytes by ovine uterine serpin

    Directory of Open Access Journals (Sweden)

    Hansen Peter J

    2008-01-01

    Full Text Available Abstract Background Uterine serpins are members of the serine proteinase inhibitor superfamily. Like some other serpins, these proteins do not appear to be functional proteinase inhibitors. The most studied member of the group, ovine uterine serpin (OvUS, inhibits proliferation of several cell types including activated lymphocytes, bovine preimplantation embryos, and cell lines for lymphoma, canine primary osteosarcoma and human prostate cancer (PC-3 cells. The goal for the present study was to evaluate the mechanism by which OvUS inhibits cell proliferation. In particular, it was tested whether inhibition of DNA synthesis in PC-3 cells involves cytotoxic actions of OvUS or the induction of apoptosis. The effect of OvUS in the production of the autocrine and angiogenic cytokine interleukin (IL-8 by PC-3 cells was also determined. Finally, it was tested whether OvUS blocks specific steps in the cell cycle using both PC-3 cells and lymphocytes. Results Recombinant OvUS blocked proliferation of PC-3 cells at concentrations as low as 8 μg/ml as determined by measurements of [3H]thymidine incorporation or ATP content per well. Treatment of PC-3 cells with OvUS did not cause cytotoxicity or apoptosis or alter interleukin-8 secretion into medium. Results from flow cytometry experiments showed that OvUS blocked the entry of PC-3 cells into S phase and the exit from G2/M phase. In addition, OvUS blocked entry of lymphocytes into S phase following activation of proliferation with phytohemagglutinin. Conclusion Results indicate that OvUS acts to block cell proliferation through disruption of the cell cycle dynamics rather than induction of cytotoxicity or apoptosis. The finding that OvUS can regulate cell proliferation makes this one of only a few serpins that function to inhibit cell growth.

  2. A Smac-mimetic sensitizes prostate cancer cells to TRAIL-induced apoptosis via modulating both IAPs and NF-kappaB

    International Nuclear Information System (INIS)

    Dai, Yao; Liu, Meilan; Tang, Wenhua; Li, Yongming; Lian, Jiqin; Lawrence, Theodore S; Xu, Liang

    2009-01-01

    Although tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising agent for human cancer therapy, prostate cancer still remains resistant to TRAIL. Both X-linked inhibitor of apoptosis (XIAP) and nuclear factor-kappaB function as key negative regulators of TRAIL signaling. In this study, we evaluated the effect of SH122, a small molecule mimetic of the second mitochondria-derived activator of caspases (Smac), on TRAIL-induced apoptosis in prostate cancer cells. The potential of Smac-mimetics to bind XIAP or cIAP-1 was examined by pull-down assay. Cytotoxicity of TRAIL and/or Smac-mimetics was determined by a standard cell growth assay. Silencing of XIAP or cIAP-1 was achieved by transient transfection of short hairpin RNA. Apoptosis was detected by Annexin V-PI staining followed by flow cytometry and by Western Blot analysis of caspases, PARP and Bid. NF-kappaB activation was determined by subcellular fractionation, real time RT-PCR and reporter assay. SH122, but not its inactive analog, binds to XIAP and cIAP-1. SH122 significantly sensitized prostate cancer cells to TRAIL-mediated cell death. Moreover, SH122 enhanced TRAIL-induced apoptosis via both the death receptor and the mitochondrial pathway. Knockdown of both XIAP and cIAP-1 sensitized cellular response to TRAIL. XIAP-knockdown attenuated sensitivity of SH122 to TRAIL-induced cytotoxicity, confirming that XIAP is an important target for IAP-inhibitor-mediated TRAIL sensitization. SH122 also suppressed TRAIL-induced NF-kappaB activation by preventing cytosolic IkappaB-alpha degradation and RelA nuclear translocation, as well as by suppressing NF-kappaB target gene expression. These results demonstrate that SH122 sensitizes human prostate cancer cells to TRAIL-induced apoptosis by mimicking Smac and blocking both IAPs and NF-kappaB. Modulating IAPs may represent a promising approach to overcoming TRAIL-resistance in human prostate cancer with constitutively active NF-kappaB signaling

  3. Genistein cooperates with the histone deacetylase inhibitor vorinostat to induce cell death in prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Phillip Cornel J

    2012-04-01

    Full Text Available Abstract Background Among American men, prostate cancer is the most common, non-cutaneous malignancy that accounted for an estimated 241,000 new cases and 34,000 deaths in 2011. Previous studies have suggested that Wnt pathway inhibitory genes are silenced by CpG hypermethylation, and other studies have suggested that genistein can demethylate hypermethylated DNA. Genistein is a soy isoflavone with diverse effects on cellular proliferation, survival, and gene expression that suggest it could be a potential therapeutic agent for prostate cancer. We undertook the present study to investigate the effects of genistein on the epigenome of prostate cancer cells and to discover novel combination approaches of other compounds with genistein that might be of translational utility. Here, we have investigated the effects of genistein on several prostate cancer cell lines, including the ARCaP-E/ARCaP-M model of the epithelial to mesenchymal transition (EMT, to analyze effects on their epigenetic state. In addition, we investigated the effects of combined treatment of genistein with the histone deacetylase inhibitor vorinostat on survival in prostate cancer cells. Methods Using whole genome expression profiling and whole genome methylation profiling, we have determined the genome-wide differences in genetic and epigenetic responses to genistein in prostate cancer cells before and after undergoing the EMT. Also, cells were treated with genistein, vorinostat, and combination treatment, where cell death and cell proliferation was determined. Results Contrary to earlier reports, genistein did not have an effect on CpG methylation at 20 μM, but it did affect histone H3K9 acetylation and induced increased expression of histone acetyltransferase 1 (HAT1. In addition, genistein also had differential effects on survival and cooperated with the histone deacteylase inhibitor vorinostat to induce cell death and inhibit proliferation. Conclusion Our results suggest that

  4. No Evidence of XMRV or MuLV Sequences in Prostate Cancer, Diffuse Large B-Cell Lymphoma, or the UK Blood Donor Population

    Directory of Open Access Journals (Sweden)

    Mark James Robinson

    2011-01-01

    Full Text Available Xenotropic murine leukaemia virus-related virus (XMRV is a recently described retrovirus which has been claimed to infect humans and cause associated pathology. Initially identified in the US in patients with prostate cancer and subsequently in patients with chronic fatigue syndrome, doubt now exists that XMRV is a human pathogen. We studied the prevalence of genetic sequences of XMRV and related MuLV sequences in human prostate cancer, from B cell lymphoma patients and from UK blood donors. Nucleic acid was extracted from fresh prostate tissue biopsies, formalin-fixed paraffin-embedded (FFPE prostate tissue and FFPE B-cell lymphoma. The presence of XMRV-specific LTR or MuLV generic gag-like sequences was investigated by nested PCR. To control for mouse DNA contamination, a PCR that detected intracisternal A-type particle (IAP sequences was included. In addition, DNA and RNA were extracted from whole blood taken from UK blood donors and screened for XMRV sequences by real-time PCR. XMRV or MuLV-like sequences were not amplified from tissue samples. Occasionally MuLV gag and XMRV-LTR sequences were amplified from Indian prostate cancer samples, but were always detected in conjunction with contaminating murine genomic DNA. We found no evidence of XMRV or MuLV infection in the UK blood donors.

  5. Optimization of Invasion-Specific Effects of Betulin Derivatives on Prostate Cancer Cells through Lead Development.

    Directory of Open Access Journals (Sweden)

    Ville Härmä

    Full Text Available The anti-invasive and anti-proliferative effects of betulins and abietane derivatives was systematically tested using an organotypic model system of advanced, castration-resistant prostate cancers. A preliminary screen of the initial set of 93 compounds was performed in two-dimensional (2D growth conditions using non-transformed prostate epithelial cells (EP156T, an androgen-sensitive prostate cancer cell line (LNCaP, and the castration-resistant, highly invasive cell line PC-3. The 25 most promising compounds were all betulin derivatives. These were selected for a focused secondary screen in three-dimensional (3D growth conditions, with the goal to identify the most effective and specific anti-invasive compounds. Additional sensitivity and cytotoxicity tests were then performed using an extended cell line panel. The effects of these compounds on cell cycle progression, mitosis, proliferation and unspecific cytotoxicity, versus their ability to specifically interfere with cell motility and tumor cell invasion was addressed. To identify potential mechanisms of action and likely compound targets, multiplex profiling of compound effects on a panel of 43 human protein kinases was performed. These target de-convolution studies, combined with the phenotypic analyses of multicellular organoids in 3D models, revealed specific inhibition of AKT signaling linked to effects on the organization of the actin cytoskeleton as the most likely driver of altered cell morphology and motility.

  6. Frequent Loss of Cystatin E/M Expression Implicated in the Progression of Prostate Cancer

    OpenAIRE

    Pulukuri, Sai Murali Krishna; Gorantla, Bharathi; Knost, James A.; Rao, Jasti S.

    2009-01-01

    Cystatin E/M (CST6) is a natural inhibitor of lysosomal cysteine proteases. Recent studies have shown that experimental manipulation of CST6 expression alters the metastatic behavior of human breast cancer cells. However, the association of CST6 with prostate cancer invasion and progression is remains unclear. Here, we show that CST6 is robustly expressed in normal human prostate epithelium while its expression is downregulated in metastatic prostate cell lines and prostate tumor tissues. Tre...

  7. Development of a new in vivo kit for detection of prostate specific antigen in human serum using immunoradiometric assay method

    International Nuclear Information System (INIS)

    Babaei, M. H.; Behradkia, P.; Shafii, M.; Movla, M.; Forutan, H.; Najafi, R.

    2006-01-01

    Prostate is a leading site for the cancer incidence, accounted for 31.0% of new cancer cases in men. Prostate-specific antigen is widely used in the detection and monitoring of the prostate cancer. Currently, immunoassay is used to detect Prostate-specific antigen in human serum. This technique is based on the interaction between antibody and antigen. The varied immunoassay formats and equipment to run the assays allow the users to measure the analytes rapidly, with the flexibility to run a small or a large number of samples. Among different immunoassay methods, immunoradiometric assay is a more sensitive and valuable detection approach. This study has been made in 4 parts: (1) purification of Prostate-specific antigen from seminal fluid; (2) preparation of hybridoma cells which secrete monoclonal antibody (mAb) against Prostate-specific antigen , (3) selection of pair monoclonal antibody among those antibodies, and finally (4) design of an immunoradiometric assay kit and it's quality control . The results of this study were: (1) obtaining a huge amount of Prostate-specific antigen as semi-purified and purified, that is a valuable material for preparation of standard kits; (2) preparation of 8 kinds of monoclonal antibodies; (3) finding 4 pairs of monoclonal antibodies which react with different epitopes on Prostate-specific antigen molecule; and (4) preparation of immunoradiometric assay kit for measuring Prostate-specific antigen concentration in human serum

  8. Cell viability and PSA secretion assays in LNCaP cells: a tiered in vitro approach to screen chemicals with a prostate-mediated effect on male reproduction within the ReProTect project.

    Science.gov (United States)

    Lorenzetti, Stefano; Marcoccia, Daniele; Narciso, Laura; Mantovani, Alberto

    2010-08-01

    Prostate function is critical for male fertility; nevertheless, prostate was so far overlooked in reproductive toxicity assays. Within the EU project ReProTect, the human prostate cell line LNCaP was utilized to identify molecules targeting prostate function by the integrated assessment of cell viability (MTS assay) and prostate-specific antigen (PSA) secretion as specific marker; a training set - five (anti)androgenic chemicals - and a ReProTect feasibility set - ten chemicals - were used. Several compounds reduced PSA only at cytotoxic concentrations. Androgens (DHT, MT) markedly increased PSA as did the herbicide glufosinate ammonium, not known as androgen agonist. Anti-androgens (2OH-flutamide, linuron, vinclozolin, di-n-butyl phthalate) also increased PSA, but the effect of magnitude was much lower than for androgens. The ER-binder bisphenol A reduced PSA, while increasing cell viability. At this stage, the approach can identify chemicals able to interfere with prostate function: further refinements may allow to include prostate effects in reproductive toxicity in vitro testing. Copyright 2010 Elsevier Inc. All rights reserved.

  9. Effective photodynamic therapy in drug-resistant prostate cancer cells utilizing a non-viral antitumor vector (a secondary publication).

    Science.gov (United States)

    Yamauchi, Masaya; Honda, Norihiro; Hazama, Hisanao; Tachikawa, Shoji; Nakamura, Hiroyuki; Kaneda, Yasufumi; Awazu, Kunio

    2016-03-31

    There is an urgent need to develop an efficient strategy for the treatment of drug-resistant prostate cancer. Photodynamic therapy (PDT), in which low incident levels of laser energy are used to activate a photosensitizer taken up by tumor cells, is expected as a novel therapy for the treatment of prostate cancer because of the minimal invasive nature of PDT. The present study was designed to assess the efficacy of a novel vector approach combined with a conventional porphyrin-based photosensitizer. Our group focused on a non-viral vector (hemagglutinating virus of Japan envelope; HVJ-E) combined with protoporphyrin IX (PpIX) lipid, termed the porphyrus envelope (PE). It has been previously confirmed that HVJ-E has drug-delivering properties and can induce cancer-specific cell death. The PE (HVJ-E contained in PpIX lipid) was developed as a novel photosensitizer. In this study, the antitumor and PDT efficacy of the PE against hormone-antagonistic human prostate cancer cells (PC-3) were evaluated. Our results demonstrated that, under specific circumstances, PDT using the PE was very effective against PC-3 cells. A novel therapy for drug-resistant prostate cancer based on this vector approach is eagerly anticipated.

  10. Dutasteride and enzalutamide synergistically suppress prostate tumor cell proliferation

    NARCIS (Netherlands)

    Hamid, A.R.; Verhaegh, G.W.C.T.; Smit, F.P.; RIjt-van de Westerlo, C.; Armandari, I.; Brandt, A.; Sweep, F.C.; Sedelaar, J.P.M.; Schalken, J.A.

    2015-01-01

    PURPOSE: Dihydrotestosterone is the main active androgen in the prostate and it has a role in prostate cancer progression. After androgen deprivation therapy androgen receptor signaling is still active in tumor cells. Persistent intratumor steroidogenesis and androgen receptor changes are

  11. Naringenin modulates the metastasis of human prostate cancer cells by down regulating the matrix metalloproteinases -2/-9 via ROS/ERK1/2 pathways

    Directory of Open Access Journals (Sweden)

    Er-Jiang Lin

    2014-08-01

    Full Text Available Metastasis is a multifactorial condition that complicates cancer treatment options and widens the target of treatment. Matrix mettalopriteinases (MMPs of the extracellular matrix (ECM are involved in metastasis, thus they present as potential targets in halting cancer metastasis. The study was undertaken to investigate the influence of naringenin, a naturally occurring flavonoid on the metastasis of human prostate cancer cells (PC-3 and DU145. Naringenin was observed to be effective in reducing the viability and migratory percentage of PC-3 and DU145 cells. Naringenin significantly reduced the expression and activities of the chief MMPs (MMP-2 and MMP-9 as assessed by western blotting, real-time PCR and gelatin zymography analysis. The influence of naringenin on extracellular signal-regulated kinase (ERK -ERK1/2 was analysed by western blotting. The results indicated that naringenin was able to effectively inhibit ERK1/2. Naringenin exposure also significantly suppressed the levels of reactive oxygen species (ROS. Naringenin thus stands as an effective chemotherapeutic agent for prostate cancer treatment that could be further explored.

  12. Production of prostate-specific antigen by a breast cancer cell line, Sk-Br-3

    International Nuclear Information System (INIS)

    Kamali Sarvestani, E.; Ghaderi, A.

    2002-01-01

    Prostate-specific antigen is a 33-KDa serine protease that is produced predominantly by prostate epithelium. However, it has been shown that about 30-40% of female breast tumors produce prostate-specific antigen and its production is associated with the presence of estrogen and progesterone receptors. We have now developed a new tissue culture system to study prostate-specific antigen production in breast cancer and its association with prognostic factors such as progesterone receptor and c-erbB-2. For this purpose we investigated the ability of prostate-specific antigen production in five different cell lines, including two breast cancer cell lines, Sk-Br-3 and MDA-MB-453. The prostate-specific antigen in tissue culture supernatant and cytoplasm of the Sk-Br-3 cell line was detected by western blotting and immunoperoxidase, respectively. Furthermore, we found lower expression of c-erbB-2 in Sk-Br-3 than non-prostate-specific antigen producer breast cancer cell line, MDA-MB-453. Progesterone receptor was expressed by both prostate-specific antigen-positive and -negative cell lines and only the intensity of staining and the number of positive cells in Sk-Br-3 population was higher than MDA-MB-453. According to our findings prostate-specific antigen can be considered as a good prognostic factor in breast cancer and we suggest that these two cell lines are a good in vitro model to study the relationship of different breast cancer prognostic factors and their regulations

  13. The Contributions of 8P Loss and 8Q Gain to the Malignant Phenotype in Human Prostate Tumors

    National Research Council Canada - National Science Library

    Kant, Rajiv

    2002-01-01

    .... In order to overcome this limitation, the Nl5C6 epithelial and the Nl fibroblastic cell lines were developed through immortalization of explanted human prostate tissue with the HPV and E6 and E7 proteins...

  14. Perioperative Search for Circulating Tumor Cells in Patients Undergoing Prostate Brachytherapy for Clinically Nonmetastatic Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Hideyasu Tsumura

    2017-01-01

    Full Text Available Despite the absence of local prostate cancer recurrence, some patients develop distant metastases after prostate brachytherapy. We evaluate whether prostate brachytherapy procedures have a potential risk for hematogenous spillage of prostate cancer cells. Fifty-nine patients who were undergoing high-dose-rate (HDR or low-dose-rate (LDR brachytherapy participated in this prospective study. Thirty patients with high-risk or locally advanced cancer were treated with HDR brachytherapy after neoadjuvant androgen deprivation therapy (ADT. Twenty-nine patients with clinically localized cancer were treated with LDR brachytherapy without neoadjuvant ADT. Samples of peripheral blood were drawn in the operating room before insertion of needles (preoperative and again immediately after the surgical manipulation (intraoperative. Blood samples of 7.5 mL were analyzed for circulating tumor cells (CTCs using the CellSearch System. While no preoperative samples showed CTCs (0%, they were detected in intraoperative samples in 7 of the 59 patients (11.8%; preoperative vs. intraoperative, p = 0.012. Positive CTC status did not correlate with perioperative variables, including prostate-specific antigen (PSA at diagnosis, use of neoadjuvant ADT, type of brachytherapy, Gleason score, and biopsy positive core rate. We detected CTCs from samples immediately after the surgical manipulation. Further study is needed to evaluate whether those CTCs actually can survive and proliferate at distant sites.

  15. Vaccines with dendritic cells in prostate cancer patients

    International Nuclear Information System (INIS)

    Kvalheim, G.

    2004-01-01

    It has been shown that autologous D Cs pulsed with peptides specific for prostate specific Ag (PSA) or prostate-specific membrane Ag are capable of stimulating potent CT L in vitro. However there is evidence to believe that multiple tumour derived antigens would be more potent to elicit anti-tumour responses. Based on these observations a Phase I/II clinical trial in has been initiated. Autologous monocyte-derived dendritic cells (DC s) were transfected with mRNA from three prostate cancer cell lines (DU145, LNCaP and P C-3) and used for vaccination. Twenty patients have been enrolled and 19 have finished vaccination. Each patient received at least four weekly injections. Of them, 10 patients were vaccinated intranodally under ultrasonic guidance and 9 others received the vaccine intradermally. Safety and feasibility were evaluated. No evidence of toxicity and adverse events was observed. Immune response was measured as DTH and by vitro immunoassays including ELISPOT, T cell proliferation test and cytotoxicity test in pre- and post-vaccination peripheral blood samples. Twelve patients developed a specific immune response to tumour cells. Ten patients showed a significant decrease in log slope PSA. Patients with lower PSA tend to give a better response. The early clinical outcome was significantly related to immune responses (p<0.05). We conclude that the strategy of vaccinating with mRNA transfected D Cs functions to elicit cellular immune responses specific for antigens associated with prostate cancer cells and such responses may result in a clinical benefit for the patients

  16. Plumbagin Nanoparticles Induce Dose and pH Dependent Toxicity on Prostate Cancer Cells.

    Science.gov (United States)

    Nair, Harikrishnan A; Snima, K S; Kamath, Ravindranath C; Nair, Shantikumar V; Lakshmanan, Vinoth-Kumar

    2015-01-01

    Stable nano-formulation of Plumbagin nanoparticles from Plumbago zeylanica root extract was explored as a potential natural drug against prostate cancer. Size and morphology analysis by DLS, SEM and AFM revealed the average size of nanoparticles prepared was 100±50nm. In vitro cytotoxicity showed concentration and time dependent toxicity on prostate cancer cells. However, plumbagin crude extract found to be highly toxic to normal cells when compared to plumbagin nanoformulation, thus confirming nano plumbagin cytocompatibility with normal cells and dose dependent toxicity to prostate cells. In vitro hemolysis assay confirmed the blood biocompatibility of the plumbagin nanoparticles. In wound healing assay, plumbagin nanoparticles provided clues that it might play an important role in the anti-migration of prostate cancer cells. DNA fragmentation revealed that partial apoptosis induction by plumbagin nanoparticles could be expected as a potent anti-cancer effect towards prostate cancer.

  17. Interlink between cholesterol & cell cycle in prostate carcinoma

    Directory of Open Access Journals (Sweden)

    Govind Singh

    2017-01-01

    Interpretation & conclusions: The present findings along with increased expression of cell cycle protein cyclin E in the cell nucleus of the tumour tissue suggested the possibility of an intriguing role of cholesterol in the mechanism of cell cycle process of prostate cell proliferation.

  18. Targeting multiple pro-apoptotic signaling pathways with curcumin in prostate cancer cells.

    Directory of Open Access Journals (Sweden)

    Mariela Rivera

    Full Text Available Curcumin, an extract from the turmeric rhizome (Curcuma longa, is known to exhibit anti-inflammatory, antioxidant, chemopreventive and antitumoral activities against aggressive and recurrent cancers. Accumulative data indicate that curcumin may induce cancer cell death. However, the detailed mechanism underlying its pro-apoptotic and anti-cancer effects remains to be elucidated. In the present study, we examined the signaling pathways triggered by curcumin, specifically, the exact molecular mechanisms of curcumin-induced apoptosis in highly metastatic human prostate cancer cells. The effect of curcumin was evaluated using for the first time in prostate cancer, a gel-free shotgun quantitative proteomic analysis coupled with Tandem Mass Tag isobaric labeling-based-signaling networks. Results were confirmed at the gene expression level by qRT-PCR and at the protein expression level by western blot and flow cytometry. Our findings revealed that curcumin induced an Endoplasmic Reticulum stress-mediated apoptosis in PC3. The mechanisms by which curcumin promoted cell death in these cells were associated with cell cycle arrest, increased reactive oxygen species, autophagy and the Unfolded Protein Response. Furthermore, the upregulation of ER stress was measured using key indicators of ER stress: Glucose-Regulated Protein 78, Inositol-Requiring Enzyme 1 alpha, Protein Disulfide isomerase and Calreticulin. Chronic ER stress induction was concomitant with the upregulation of pro-apoptotic markers (caspases 3,9,12 and Poly (ADP-ribose polymerase. The downregulated proteins include anti-apoptotic and anti-tumor markers, supporting their curcumin-induced pro-apoptotic role in prostate cancer cells. Taken together, these data suggest that curcumin may serve as a promising anticancer agent by inducing a chronic ER stress mediated cell death and activation of cell cycle arrest, UPR, autophagy and oxidative stress responses.

  19. Targeting multiple pro-apoptotic signaling pathways with curcumin in prostate cancer cells

    Science.gov (United States)

    Rivera, Mariela; Ramos, Yanilda; Rodríguez-Valentín, Madeline; López-Acevedo, Sheila; Cubano, Luis A.; Zou, Jin; Zhang, Qiang; Wang, Guangdi

    2017-01-01

    Curcumin, an extract from the turmeric rhizome (Curcuma longa), is known to exhibit anti-inflammatory, antioxidant, chemopreventive and antitumoral activities against aggressive and recurrent cancers. Accumulative data indicate that curcumin may induce cancer cell death. However, the detailed mechanism underlying its pro-apoptotic and anti-cancer effects remains to be elucidated. In the present study, we examined the signaling pathways triggered by curcumin, specifically, the exact molecular mechanisms of curcumin-induced apoptosis in highly metastatic human prostate cancer cells. The effect of curcumin was evaluated using for the first time in prostate cancer, a gel-free shotgun quantitative proteomic analysis coupled with Tandem Mass Tag isobaric labeling-based-signaling networks. Results were confirmed at the gene expression level by qRT-PCR and at the protein expression level by western blot and flow cytometry. Our findings revealed that curcumin induced an Endoplasmic Reticulum stress-mediated apoptosis in PC3. The mechanisms by which curcumin promoted cell death in these cells were associated with cell cycle arrest, increased reactive oxygen species, autophagy and the Unfolded Protein Response. Furthermore, the upregulation of ER stress was measured using key indicators of ER stress: Glucose-Regulated Protein 78, Inositol-Requiring Enzyme 1 alpha, Protein Disulfide isomerase and Calreticulin. Chronic ER stress induction was concomitant with the upregulation of pro-apoptotic markers (caspases 3,9,12) and Poly (ADP-ribose) polymerase. The downregulated proteins include anti-apoptotic and anti-tumor markers, supporting their curcumin-induced pro-apoptotic role in prostate cancer cells. Taken together, these data suggest that curcumin may serve as a promising anticancer agent by inducing a chronic ER stress mediated cell death and activation of cell cycle arrest, UPR, autophagy and oxidative stress responses. PMID:28628644

  20. Myofibroblast androgen receptor expression determines cell survival in co-cultures of myofibroblasts and prostate cancer cells in vitro.

    Science.gov (United States)

    Palethorpe, Helen M; Leach, Damien A; Need, Eleanor F; Drew, Paul A; Smith, Eric

    2018-04-10

    Fibroblasts express androgen receptor (AR) in the normal prostate and during prostate cancer development. We have reported that loss of AR expression in prostate cancer-associated fibroblasts is a poor prognostic indicator. Here we report outcomes of direct and indirect co-cultures of immortalised AR-positive (PShTert-AR) or AR-negative (PShTert) myofibroblasts with prostate cancer cells. In the initial co-cultures the AR-negative PC3 cell line was used so AR expression and signalling were restricted to the myofibroblasts. In both direct and indirect co-culture with PShTert-AR myofibroblasts, paracrine signalling to the PC3 cells slowed proliferation and induced apoptosis. In contrast, PC3 cells proliferated with PShTert myofibroblasts irrespective of the co-culture method. In direct co-culture PC3 cells induced apoptosis in and destroyed PShTerts by direct signalling. Similar results were seen in direct co-cultures with AR-negative DU145 and AR-positive LNCaP and C4-2B prostate cancer cell lines. The AR ligand 5α-dihydrotesto