WorldWideScience

Sample records for human prefrontal cortical

  1. FOSB proteins in the orbitofrontal and dorsolateral prefrontal cortices of human alcoholics

    OpenAIRE

    Watanabe, Hiroyuki; Henriksson, Richard; Ohnishi, Yoshinori N.; Ohnishi, Yoko H.; Harper, Clive; Sheedy, Donna; Garrick, Therese; Nyberg, Fred; Nestler, Eric J.; Bakalkin, Georgy; Yakovleva, Tatjana

    2009-01-01

    The transcription factor DeltaFosB is accumulated in the addiction circuitry, including the orbitofrontal and medial prefrontal cortices of rodents chronically exposed to ethanol or other drugs of abuse, and has been suggested to play a direct role in addiction maintenance. To address this hypothesis in the context of substance dependence in humans, we compared the immunoreactivities of FOSB proteins in the orbitofrontal and dorsolateral prefrontal cortices (OFC and DLPFC respectively) betwee...

  2. Decreased prefrontal cortical dopamine transmission in alcoholism.

    Science.gov (United States)

    Narendran, Rajesh; Mason, Neale Scott; Paris, Jennifer; Himes, Michael L; Douaihy, Antoine B; Frankle, W Gordon

    2014-08-01

    Basic studies have demonstrated that optimal levels of prefrontal cortical dopamine are critical to various executive functions such as working memory, attention, inhibitory control, and risk/reward decisions, all of which are impaired in addictive disorders such as alcoholism. Based on this and imaging studies of alcoholism that have demonstrated less dopamine in the striatum, the authors hypothesized decreased dopamine transmission in the prefrontal cortex in persons with alcohol dependence. To test this hypothesis, amphetamine and [11C]FLB 457 positron emission tomography were used to measure cortical dopamine transmission in 21 recently abstinent persons with alcohol dependence and 21 matched healthy comparison subjects. [11C]FLB 457 binding potential, specific compared to nondisplaceable uptake (BPND), was measured in subjects with kinetic analysis using the arterial input function both before and after 0.5 mg kg-1 of d-amphetamine. Amphetamine-induced displacement of [11C]FLB 457 binding potential (ΔBPND) was significantly smaller in the cortical regions in the alcohol-dependent group compared with the healthy comparison group. Cortical regions that demonstrated lower dopamine transmission in the alcohol-dependent group included the dorsolateral prefrontal cortex, medial prefrontal cortex, orbital frontal cortex, temporal cortex, and medial temporal lobe. The results of this study, for the first time, unambiguously demonstrate decreased dopamine transmission in the cortex in alcoholism. Further research is necessary to understand the clinical relevance of decreased cortical dopamine as to whether it is related to impaired executive function, relapse, and outcome in alcoholism.

  3. Glutamate concentration in the medial prefrontal cortex predicts resting-state cortical-subcortical functional connectivity in humans.

    Directory of Open Access Journals (Sweden)

    Niall W Duncan

    Full Text Available Communication between cortical and subcortical regions is integral to a wide range of psychological processes and has been implicated in a number of psychiatric conditions. Studies in animals have provided insight into the biochemical and connectivity processes underlying such communication. However, to date no experiments that link these factors in humans in vivo have been carried out. To investigate the role of glutamate in individual differences in communication between the cortex--specifically the medial prefrontal cortex (mPFC--and subcortical regions in humans, a combination of resting-state fMRI, DTI and MRS was performed. The subcortical target regions were the nucleus accumbens (NAc, dorsomedial thalamus (DMT, and periaqueductal grey (PAG. It was found that functional connectivity between the mPFC and each of the NAc and DMT was positively correlated with mPFC glutamate concentrations, whilst functional connectivity between the mPFC and PAG was negatively correlated with glutamate concentration. The correlations involving mPFC glutamate and FC between the mPFC and each of the DMT and PAG were mirrored by correlations with structural connectivity, providing evidence that the glutamatergic relationship may, in part, be due to direct connectivity. These results are in agreement with existing results from animal studies and may have relevance for MDD and schizophrenia.

  4. Mnemonic Encoding and Cortical Organization in Parietal and Prefrontal Cortices.

    Science.gov (United States)

    Masse, Nicolas Y; Hodnefield, Jonathan M; Freedman, David J

    2017-06-21

    Persistent activity within the frontoparietal network is consistently observed during tasks that require working memory. However, the neural circuit mechanisms underlying persistent neuronal encoding within this network remain unresolved. Here, we ask how neural circuits support persistent activity by examining population recordings from posterior parietal (PPC) and prefrontal (PFC) cortices in two male monkeys that performed spatial and motion direction-based tasks that required working memory. While spatially selective persistent activity was observed in both areas, robust selective persistent activity for motion direction was only observed in PFC. Crucially, we find that this difference between mnemonic encoding in PPC and PFC is associated with the presence of functional clustering: PPC and PFC neurons up to ∼700 μm apart preferred similar spatial locations, and PFC neurons up to ∼700 μm apart preferred similar motion directions. In contrast, motion-direction tuning similarity between nearby PPC neurons was much weaker and decayed rapidly beyond ∼200 μm. We also observed a similar association between persistent activity and functional clustering in trained recurrent neural network models embedded with a columnar topology. These results suggest that functional clustering facilitates mnemonic encoding of sensory information. SIGNIFICANCE STATEMENT Working memory refers to our ability to temporarily store and manipulate information. Numerous studies have observed that, during working memory, neurons in higher cortical areas, such as the parietal and prefrontal cortices, mnemonically encode the remembered stimulus. However, several recent studies have failed to observe mnemonic encoding during working memory, raising the question as to why mnemonic encoding is observed during some, but not all, conditions. In this study, we show that mnemonic encoding occurs when a cortical area is organized such that nearby neurons preferentially respond to the same

  5. Major Thought Restructuring: The Roles of Different Prefrontal Cortical Regions.

    Science.gov (United States)

    Seyed-Allaei, Shima; Avanaki, Zahra Nasiri; Bahrami, Bahador; Shallice, Tim

    2017-07-01

    An important question for understanding the neural basis of problem solving is whether the regions of human prefrontal cortices play qualitatively different roles in the major cognitive restructuring required to solve difficult problems. However, investigating this question using neuroimaging faces a major dilemma: either the problems do not require major cognitive restructuring, or if they do, the restructuring typically happens once, rendering repeated measurements of the critical mental process impossible. To circumvent these problems, young adult participants were challenged with a one-dimensional Subtraction (or Nim) problem [Bouton, C. L. Nim, a game with a complete mathematical theory. The Annals of Mathematics, 3, 35-39, 1901] that can be tackled using two possible strategies. One, often used initially, is effortful, slow, and error-prone, whereas the abstract solution, once achieved, is easier, quicker, and more accurate. Behaviorally, success was strongly correlated with sex. Using voxel-based morphometry analysis controlling for sex, we found that participants who found the more abstract strategy (i.e., Solvers) had more gray matter volume in the anterior medial, ventrolateral prefrontal, and parietal cortices compared with those who never switched from the initial effortful strategy (i.e., Explorers). Removing the sex covariate showed higher gray matter volume in Solvers (vs. Explorers) in the right ventrolateral prefrontal and left parietal cortex.

  6. Effects of single-pulse transcranial magnetic stimulation over the prefrontal and posterior parietal cortices during memory-guided saccades in humans.

    Science.gov (United States)

    Müri, R M; Vermersch, A I; Rivaud, S; Gaymard, B; Pierrot-Deseilligny, C

    1996-09-01

    1. We used single-pulse transcranial magnetic stimulation (TMS) to explore the temporal organization of the cortical control of memory-guided saccades in eight humans. The posterior parietal cortex (PPC) or the dorsolateral prefrontal cortex (DPFC), which are both known to be involved in the control of such saccades, were stimulated on the right side at different time intervals after the presentation of a flashed lateral visual target. The memorization delay was 2,000 ms. Single pulses were applied at 160, 260, and 360 ms after the flashed target, during the period of 700 and 1,500 ms, and finally at 2,100 ms, i.e., 100 ms after the extinguishing of the central fixation point. The effects of TMS were evaluated by calculating the percentage of error in amplitude (PEA) and latency of memory-guided saccades. The PEA was determined for the primary saccade (motor aspect) and the final eye position, i.e., after the end saccade (mnemonic aspect). Stimulation over the occipital cortex at the same time intervals served as control experiments. 2. After PPC stimulation, a significant increase in the PEA of the primary saccade and final eye position existed for contralateral saccades, compared with the PEA without stimulation, when stimulation was applied 260 ms after target presentation, but not at other time intervals. There was no significant effect on ipsilateral saccades. Latency was significantly increased bilaterally when stimulation was performed 2,100 ms after target presentation. 3. After prefrontal stimulation, a significant increase in the PEA of the primary saccade and final eye position existed for contralateral saccades, when stimulation was applied between 700 and 1,500 ms after target presentation, but not at other time intervals. There was no significant effect on ipsilateral saccades. Latency was not affected by prefrontal TMS at any stimulation times. 4. Occipital stimulation resulted in no significant effect on the PEA and latency of ipsilateral or

  7. Protein Kinase C Overactivity Impairs Prefrontal Cortical Regulation of Working Memory

    Science.gov (United States)

    Birnbaum, S. G.; Yuan, P. X.; Wang, M.; Vijayraghavan, S.; Bloom, A. K.; Davis, D. J.; Gobeske, K. T.; Sweatt, J. D.; Manji, H. K.; Arnsten, A. F. T.

    2004-10-01

    The prefrontal cortex is a higher brain region that regulates thought, behavior, and emotion using representational knowledge, operations often referred to as working memory. We tested the influence of protein kinase C (PKC) intracellular signaling on prefrontal cortical cognitive function and showed that high levels of PKC activity in prefrontal cortex, as seen for example during stress exposure, markedly impair behavioral and electrophysiological measures of working memory. These data suggest that excessive PKC activation can disrupt prefrontal cortical regulation of behavior and thought, possibly contributing to signs of prefrontal cortical dysfunction such as distractibility, impaired judgment, impulsivity, and thought disorder.

  8. Gustatory Imagery Reveals Functional Connectivity from the Prefrontal to Insular Cortices Traced with Magnetoencephalography

    OpenAIRE

    Masayuki Kobayashi; Tetsuya Sasabe; Yoshihito Shigihara; Masaaki Tanaka; Yasuyoshi Watanabe

    2011-01-01

    Our experience and prejudice concerning food play an important role in modulating gustatory information processing; gustatory memory stored in the central nervous system influences gustatory information arising from the peripheral nervous system. We have elucidated the mechanism of the 'top-down" modulation of taste perception in humans using functional magnetic resonance imaging (fMRI) and demonstrated that gustatory imagery is mediated by the prefrontal (PFC) and insular cortices (IC). Howe...

  9. Exploring prefrontal cortical memory mechanisms with eyeblink conditioning.

    Science.gov (United States)

    Weiss, Craig; Disterhoft, John F

    2011-06-01

    Several studies in nonhuman primates have shown that neurons in the dorsolateral prefrontal cortex have activity that persists throughout the delay period in delayed matching to sample tasks, and age-related changes in the microcolumnar organization of the prefrontal cortex are significantly correlated with age-related declines in cognition. Activity that persists beyond the presentation of a stimulus could mediate working memory processes, and disruption of those processes could account for memory deficits that often accompany the aging process. These potential memory and aging mechanisms are being systematically examined with eyeblink conditioning paradigms in nonprimate mammalian animal models including the rabbit. The trace version of the conditioning paradigm is a particularly good system to explore declarative memory since humans do not acquire trace conditioning if they are unable to become cognitively aware of the association between a conditioning tone and an airpuff to the eye. This conditioning paradigm has been used to show that the hippocampus and cerebellum interact functionally since both conditioned responses and conditioned hippocampal pyramidal neuron activity are abolished following lesions of the cerebellar nuclei and since hippocampal lesions prevent or abolish trace conditioned blinks. However, because there are no direct connections between the hippocampal formation and the cerebellum, and because the hippocampus is not necessary for trace conditioning after a period of consolidation has elapsed, we and others have been examining the prefrontal cortex for its role in forebrain-dependent trace eyeblink conditioning. This review examines some of the literature which suggests that the prefrontal cortex serves to orchestrate a neuronal network that interacts with the cerebellum to mediate adaptively timed conditioned responses.

  10. The cortical connectivity of the prefrontal cortex in the monkey brain.

    Science.gov (United States)

    Yeterian, Edward H; Pandya, Deepak N; Tomaiuolo, Francesco; Petrides, Michael

    2012-01-01

    One dimension of understanding the functions of the prefrontal cortex is knowledge of cortical connectivity. We have surveyed three aspects of prefrontal cortical connections: local projections (within the frontal lobe), the termination patterns of long association (post-Rolandic) projections, and the trajectories of major fiber pathways. The local connections appear to be organized in relation to dorsal (hippocampal origin) and ventral (paleocortical origin) architectonic trends. According to the proposal of a dual origin of the cerebral cortex, cortical areas can be traced as originating from archicortex (hippocampus) on the one hand, and paleocortex, on the other hand, in a stepwise manner (e.g., Sanides, 1969; Pandya and Yeterian, 1985). Prefrontal areas within each trend are connected with less architectonically differentiated areas, and also with more differentiated areas. Such organization may allow for the systematic exchange of information within each architectonic trend. The long connections of the prefrontal cortex with post-Rolandic regions seem to be organized preferentially in relation to dorsal and ventral prefrontal architectonic trends. Prefrontal areas are connected with post-Rolandic auditory, visual and somatosensory association areas, and with multimodal and paralimbic regions. This long connectivity likely works in conjunction with local connections to serve prefrontal cortical functions. The afferent and efferent connections of the prefrontal cortex with post-Rolandic regions are conveyed by specific long association pathways. These pathways as well appear to be organized in relation to dorsal and ventral prefrontal architectonic trends. Finally, although prefrontal areas have preferential connections in relation to dual architectonic trends, it is clear that there are interconnections between and among areas in each trend, which may provide a substrate for the overall integrative function of the prefrontal cortex. Prefrontal corticocortical

  11. Contribution of NMDA receptor hypofunction in prefrontal and cortical excitatory neurons to schizophrenia-like phenotypes.

    Directory of Open Access Journals (Sweden)

    Gregory R Rompala

    Full Text Available Pharmacological and genetic studies support a role for NMDA receptor (NMDAR hypofunction in the etiology of schizophrenia. We have previously demonstrated that NMDAR obligatory subunit 1 (GluN1 deletion in corticolimbic interneurons during early postnatal development is sufficient to confer schizophrenia-like phenotypes in mice. However, the consequence of NMDAR hypofunction in cortical excitatory neurons is not well delineated. Here, we characterize a conditional knockout mouse strain (CtxGluN1 KO mice, in which postnatal GluN1 deletion is largely confined to the excitatory neurons in layer II/III of the medial prefrontal cortex and sensory cortices, as evidenced by the lack of GluN1 mRNA expression in in situ hybridization immunocytochemistry as well as the lack of NMDA currents with in vitro recordings. Mutants were impaired in prepulse inhibition of the auditory startle reflex as well as object-based short-term memory. However, they did not exhibit impairments in additional hallmarks of schizophrenia-like phenotypes (e.g. spatial working memory, social behavior, saccharine preference, novelty and amphetamine-induced hyperlocomotion, and anxiety-related behavior. Furthermore, upon administration of the NMDA receptor antagonist, MK-801, there were no differences in locomotor activity versus controls. The mutant mice also showed negligible levels of reactive oxygen species production following chronic social isolation, and recording of miniature-EPSC/IPSCs from layer II/III excitatory neurons in medial prefrontal cortex suggested no alteration in GABAergic activity. All together, the mutant mice displayed cognitive deficits in the absence of additional behavioral or cellular phenotypes reflecting schizophrenia pathophysiology. Thus, NMDAR hypofunction in prefrontal and cortical excitatory neurons may recapitulate only a cognitive aspect of human schizophrenia symptoms.

  12. Mapping Prefrontal Cortex Functions in Human Infancy

    Science.gov (United States)

    Grossmann, Tobias

    2013-01-01

    It has long been thought that the prefrontal cortex, as the seat of most higher brain functions, is functionally silent during most of infancy. This review highlights recent work concerned with the precise mapping (localization) of brain activation in human infants, providing evidence that prefrontal cortex exhibits functional activation much…

  13. Fear Expression Suppresses Medial Prefrontal Cortical Firing in Rats.

    Directory of Open Access Journals (Sweden)

    Thomas F Giustino

    Full Text Available The medial prefrontal cortex (mPFC plays a crucial role in emotional learning and memory in rodents and humans. While many studies suggest a differential role for the prelimbic (PL and infralimbic (IL subdivisions of mPFC, few have considered the relationship between neural activity in these two brain regions recorded simultaneously in behaving animals. Importantly, how concurrent PL and IL activity relate to conditioned freezing behavior is largely unknown. Here we used single-unit recordings targeting PL and IL in awake, behaving rats during the acquisition and expression of conditioned fear. On Day 1, rats received either signaled or unsignaled footshocks in the recording chamber; an auditory conditioned stimulus (CS preceded signaled footshocks. Twenty-four hours later, animals were returned to the recording chamber (modified to create a novel context where they received 5 CS-alone trials. After fear conditioning, both signaled and unsignaled rats exhibited high levels of post-shock freezing that was associated with an enduring suppression of mPFC spontaneous firing, particularly in the IL of signaled rats. Twenty-four hours later, CS presentation produced differential conditioned freezing in signaled and unsignaled rats: freezing increased in rats that had received signaled shocks, but decreased in animals in the unsignaled condition (i.e., external inhibition. This group difference in CS-evoked freezing was mirrored in the spontaneous firing rate of neurons in both PL and IL. Interestingly, differences in PL and IL firing rate highly correlated with freezing levels. In other words, in the signaled group IL spontaneous rates were suppressed relative to PL, perhaps limiting IL-mediated suppression of fear and allowing PL activity to dominate performance, resulting in high levels of freezing. This was not observed in the unsignaled group, which exhibited low freezing. These data reveal that the activity of mPFC neurons is modulated by both

  14. Prefrontal cortex and sensory cortices during working memory: quantity and quality

    OpenAIRE

    Ku, Yixuan; Bodner, Mark; Zhou, Yong-Di

    2015-01-01

    The activity in sensory cortices and the prefrontal cortex (PFC) throughout the delay interval of working memory (WM) tasks reflect two aspects of WM—quality and quantity, respectively. The delay activity in sensory cortices is fine-tuned to sensory information and forms the neural basis of the precision of WM storage, while the delay activity in the PFC appears to represent behavioral goals and filters out irrelevant distractions, forming the neural basis of the quantity of task-relevant inf...

  15. Central as well as peripheral attentional bottlenecks in dual-task performance activate lateral prefrontal cortices

    Directory of Open Access Journals (Sweden)

    Andre J Szameitat

    2016-03-01

    Full Text Available Human information processing suffers from severe limitations in parallel processing. In particular, when required to respond to two stimuli in rapid succession, processing bottlenecks may appear at central and peripheral stages of task processing. Importantly, it has been suggested that executive functions are needed to resolve the interference arising at such bottlenecks. The aims of the present study were to test whether central attentional limitations (i.e., bottleneck at the decisional response selection stage as well as peripheral limitations (i.e., bottleneck at response initiation both demand executive functions located in the lateral prefrontal cortex. For this, we re-analysed two previous studies, in which a total of 33 participants performed a dual-task according to the paradigm of the psychological refractory period (PRP during fMRI. In one study (N=17, the PRP task consisted of two two-choice response tasks known to suffer from a central bottleneck (CB group. In the other study (N=16, the PRP task consisted of two simple-response tasks known to suffer from a peripheral bottleneck (PB group. Both groups showed considerable dual-task costs in form of slowing of the second response in the dual-task (PRP effect. Imaging results are based on the subtraction of both single-tasks from the dual-task within each group. In the CB group, the bilateral middle frontal gyri and inferior frontal gyri were activated. Higher activation in these areas was associated with lower dual-task costs. In the PB group, the right middle frontal and inferior frontal gyrus were activated. Here, higher activation was associated with higher dual-task costs. In conclusion we suggest that central and peripheral bottlenecks both demand executive functions located in lateral prefrontal cortices. Differences between the CB and PB groups with respect to the exact prefrontal areas activated and the correlational patterns suggest that the executive functions resolving

  16. Food seeking in spite of harmful consequences is under prefrontal cortical noradrenergic control

    Directory of Open Access Journals (Sweden)

    Patrono Enrico

    2010-02-01

    Full Text Available Abstract Background Eating disorders are multifactorial psychiatric disorders. Chronic stressful experiences and caloric restriction are the most powerful triggers of eating disorders in human and animals. Although compulsive behavior is considered to characterize pathological excessive food intake, to our knowledge, no evidence has been reported of continued food seeking/intake despite its possible harmful consequences, an index of compulsive behavior. Brain monoamine transmission is considered to have a key role in vulnerability to eating disorders, and norepinephrine in medial prefrontal cortex has been shown to be critical for food-related motivated behavior. Here, using a new paradigm of conditioned suppression, we investigated whether the ability of a foot-shock-paired conditioned stimulus to suppress chocolate-seeking behavior was reversed by previous exposure to a food restriction experience, thus modeling food seeking in spite of harmful consequences in mice. Moreover, we assessed the effects of selective norepinephrine inactivation in medial prefrontal cortex on conditioned suppression test in stressed and caloric restricted mice. Results While Control (non food deprived animals showed a profound conditioned suppression of chocolate seeking during presentation of conditioned stimulus, previously food restricted animals showed food seeking/intake despite its possible harmful consequences. Moreover, food seeking in spite of harmful consequences was prevented by selective norepinephrine inactivation, thus showing that prefrontal cortical norepinephrine is critical also for maladaptive food-related behavior. Conclusions These findings indicate that adaptive food seeking/intake can be transformed into maladaptive behaviors and point to "top-down" influence on eating disturbances and to new targets for therapy of aberrant eating behaviors.

  17. Cytoarchitectonic and chemoarchitectonic characterization of the prefrontal cortical areas in the mouse

    NARCIS (Netherlands)

    van de Werd, H.J.J.M.; Rajkowska, G.; Evers, P.; Uylings, H.B.M.

    2010-01-01

    This study describes cytoarchitectonic criteria to define the prefrontal cortical areas in the mouse brain (C57BL/6 strain). Currently, well-illustrated mouse brain stereotaxic atlases are available, which, however, do not provide a description of the distinctive cytoarchitectonic characteristics of

  18. Associations between Children's Socioeconomic Status and Prefrontal Cortical Thickness

    Science.gov (United States)

    Lawson, Gwendolyn M.; Duda, Jeffrey T.; Avants, Brian B.; Wu, Jue; Farah, Martha J.

    2013-01-01

    Childhood socioeconomic status (SES) predicts executive function performance and measures of prefrontal cortical function, but little is known about its anatomical correlates. Structural MRI and demographic data from a sample of 283 healthy children from the NIH MRI Study of Normal Brain Development were used to investigate the relationship…

  19. Prefrontal cortex and sensory cortices during working memory: quantity and quality.

    Science.gov (United States)

    Ku, Yixuan; Bodner, Mark; Zhou, Yong-Di

    2015-04-01

    The activity in sensory cortices and the prefrontal cortex (PFC) throughout the delay interval of working memory (WM) tasks reflect two aspects of WM-quality and quantity, respectively. The delay activity in sensory cortices is fine-tuned to sensory information and forms the neural basis of the precision of WM storage, while the delay activity in the PFC appears to represent behavioral goals and filters out irrelevant distractions, forming the neural basis of the quantity of task-relevant information in WM. The PFC and sensory cortices interact through different frequency bands of neuronal oscillation (theta, alpha, and gamma) to fulfill goal-directed behaviors.

  20. Exceptional Evolutionary Expansion of Prefrontal Cortex in Great Apes and Humans.

    Science.gov (United States)

    Smaers, Jeroen B; Gómez-Robles, Aida; Parks, Ashley N; Sherwood, Chet C

    2017-03-06

    One of the enduring questions that has driven neuroscientific enquiry in the last century has been the nature of differences in the prefrontal cortex of humans versus other animals [1]. The prefrontal cortex has drawn particular interest due to its role in a range of evolutionarily specialized cognitive capacities such as language [2], imagination [3], and complex decision making [4]. Both cytoarchitectonic [5] and comparative neuroimaging [6] studies have converged on the conclusion that the proportion of prefrontal cortex in the human brain is greatly increased relative to that of other primates. However, considering the tremendous overall expansion of the neocortex in human evolution, it has proven difficult to ascertain whether this extent of prefrontal enlargement follows general allometric growth patterns, or whether it is exceptional [1]. Species' adherence to a common allometric relationship suggests conservation through phenotypic integration, while species' deviations point toward the occurrence of shifts in genetic and/or developmental mechanisms. Here we investigate prefrontal cortex scaling across anthropoid primates and find that great ape and human prefrontal cortex expansion are non-allometrically derived features of cortical organization. This result aligns with evidence for a developmental heterochronic shift in human prefrontal growth [7, 8], suggesting an association between neurodevelopmental changes and cortical organization on a macroevolutionary scale. The evolutionary origin of non-allometric prefrontal enlargement is estimated to lie at the root of great apes (∼19-15 mya), indicating that selection for changes in executive cognitive functions characterized both great ape and human cortical organization. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. No relative expansion of the number of prefrontal neurons in primate and human evolution.

    Science.gov (United States)

    Gabi, Mariana; Neves, Kleber; Masseron, Carolinne; Ribeiro, Pedro F M; Ventura-Antunes, Lissa; Torres, Laila; Mota, Bruno; Kaas, Jon H; Herculano-Houzel, Suzana

    2016-08-23

    Human evolution is widely thought to have involved a particular expansion of prefrontal cortex. This popular notion has recently been challenged, although controversies remain. Here we show that the prefrontal region of both human and nonhuman primates holds about 8% of cortical neurons, with no clear difference across humans and other primates in the distribution of cortical neurons or white matter cells along the anteroposterior axis. Further, we find that the volumes of human prefrontal gray and white matter match the expected volumes for the number of neurons in the gray matter and for the number of other cells in the white matter compared with other primate species. These results indicate that prefrontal cortical expansion in human evolution happened along the same allometric trajectory as for other primate species, without modification of the distribution of neurons across its surface or of the volume of the underlying white matter. We thus propose that the most distinctive feature of the human prefrontal cortex is its absolute number of neurons, not its relative volume.

  2. Is the prefrontal cortex especially enlarged in the human brain allometric relations and remapping factors.

    Science.gov (United States)

    Passingham, Richard E; Smaers, Jeroen B

    2014-01-01

    There has been no agreement as to whether the prefrontal cortex is especially enlarged in the human brain. To answer this question, we analyzed the only two datasets that provide information on total prefrontal cortex volume based on cytoarchitectonic criteria. One delineated the prefrontal cortex proper on the basis of cytoarchitectonic criteria; the other used a proxy of the prefrontal cortex based on a cytoarchitectonic delineation of the frontal lobe. To investigate whether all cortical association areas, including the prefrontal cortex, are enlarged in the human brain, we scaled the different areas to a common reference, the primary visual cortex. To investigate whether the prefrontal cortex is more enlarged than other association areas, we scaled it relative to its inputs from and outputs to other nonprimary areas. We carried out separate regression analyses using different data samples as a predictive baseline group: data for monkeys alone informs us on whether great apes are different from monkeys; data for all non-human anthropoids, including great apes, informs us on whether humans are different from all other primates. The analyses show that the value for the human prefrontal cortex is greater than expected, and that this is true even when data for the great apes are included in the analysis. They also show that the chimpanzee prefrontal cortex is greater than expected for a monkey with a similar sized cortex. We discuss possible functional consequences.

  3. Regulation of dopamine synthesis and release in striatal and prefrontal cortical brain slices

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, M.E.

    1986-01-01

    Brain slices were used to investigate the role of nerve terminal autoreceptors in modulating dopamine (DA) synthesis and release in striatum and prefrontal cortex. Accumulation of dihydroxyphenylalanine (DOPA) was used as an index of tyrosine hydroxylation in vitro. Nomifensine, a DA uptake blocker, inhibited DOPA synthesis in striatal but not prefrontal slices. This effect was reversed by the DA antagonist sulpiride, suggesting it involved activation of DA receptors by elevated synaptic levels of DA. The autoreceptor-selective agonist EMD-23-448 also inhibited striatal but not prefrontal DOPA synthesis. DOPA synthesis was stimulated in both brain regions by elevated K/sup +/, however only striatal synthesis could be further enhanced by sulpiride. DA release was measured by following the efflux of radioactivity from brain slices prelabeled with (/sup 3/H)-DA. EMD-23-448 and apomorphine inhibited, while sulpiride enhanced, the K/sup +/-evoked overflow of radioactivity from both striatal and prefrontal cortical slices. These findings suggest that striatal DA nerve terminals possess autoreceptors which modulate tyrosine hydroxylation as well as autoreceptors which modulate release. Alternatively, one site may be coupled to both functions through distinct transduction mechanisms. In contrast, autoreceptors on prefrontal cortical terminals appear to regulate DA release but not DA synthesis.

  4. Rat prefrontal cortical neurons selectively code strategy switches.

    Science.gov (United States)

    Rich, Erin L; Shapiro, Matthew

    2009-06-03

    Multiple memory systems are distinguished by different sets of neuronal circuits and operating principles optimized to solve different problems across mammalian species (Tulving and Schacter, 1994). When a rat selects an arm in a plus maze, for example, the choice can be guided by distinct neural systems (White and Wise, 1999) that encode different relationships among perceived stimuli, actions, and reward. Thus, egocentric or stimulus-response associations require striatal circuits, whereas spatial or episodic learning requires hippocampal circuits (Packard et al., 1989). Although these memory systems function in parallel (Packard and McGaugh, 1996), they can also interact competitively or synergistically (Kim and Ragozzino, 2005). The neuronal mechanisms that coordinate these multiple memory systems are not fully known, but converging evidence suggests that the prefrontal cortex (PFC) is central. The PFC is crucial for abstract, rule-guided behavior in primates and for switching rapidly between memory strategies in rats. We now report that rat medial PFC neuronal activity predicts switching between hippocampus- and caudate-dependent memory strategies. Prelimbic (PL) and infralimbic (IL) neuronal activity changed as rats switched memory strategies even as the rats performed identical behaviors but did not change when rats learned new contingencies using the same strategy. PL dynamics anticipated learning performance whereas IL lagged, suggesting that the two regions help initiate and establish new strategies, respectively. These neuronal dynamics suggest that the PFC contributes to the coordination of memory strategies by integrating the predictive relationships among stimuli, actions, and reward.

  5. A Role for Prefrontal Cortical NMDA Receptors in Murine Alcohol-Heightened Aggression.

    Science.gov (United States)

    Newman, Emily L; Terunuma, Miho; Wang, Tiffany; Hewage, Nishani; Bicakci, Matthew B; Moss, Stephen J; DeBold, Joseph F; Miczek, Klaus A

    2017-10-20

    Alcohol is associated with nearly half of all violent crimes committed in the United States; yet, a potential neural basis for this type of pathological aggression remains elusive. Alcohol may act on NMDA receptors (NMDARs) within cortical circuits to impede processing and to promote aggression. Here, male mice were characterized as alcohol-heightened (AHAs) or alcohol non-heightened aggressors (ANAs) during resident-intruder confrontations after self-administering 1.0 g/kg alcohol (6% w/v) or water. Alcohol produced a pathological-like pattern of aggression in AHAs; these mice shifted their bites to more vulnerable locations on the body of a submissive animal, including the anterior back and ventrum after consuming alcohol. In addition, through immunoblotting, we found that AHAs overexpressed the NMDAR GluN2D subunit in the prefrontal cortex (PFC) as compared to ANAs while the two phenotypes expressed similar levels of GluN1, GluN2A and GluN2B. After identifying several behavioral and molecular characteristics that distinguish AHAs from ANAs, we tested additional mice for their aggression following preferential antagonism of GluN2D-containing NMDARs. In these experiments, groups of AHAs and ANAs self-administered 1.0 g/kg alcohol (6% w/v) or water before receiving intraperitoneal (IP) doses of ketamine or memantine, or infusions of memantine directly into the prelimbic (PLmPFC) or infralimbic medial PFC (ILmPFC). Moderate doses of IP ketamine, IP memantine or intra-PLmPFC memantine increased aggression in AHAs, but only in the absence of alcohol. Prior alcohol intake blocked the pro-aggressive effects of ketamine or memantine. In contrast, only memantine, administered systemically or intra-PLmPFC, interacted with prior alcohol intake to escalate aggression in ANAs. Intra-ILmPFC memantine had no effect on aggression in either AHAs or ANAs. In sum, this work illustrates a potential role of GluN2D-containing NMDARs in the PLmPFC in alcohol-heightened aggression

  6. Dissociable effects of prefrontal and anterior temporal cortical lesions on stereotypical gender attitudes.

    Science.gov (United States)

    Gozzi, Marta; Raymont, Vanessa; Solomon, Jeffrey; Koenigs, Michael; Grafman, Jordan

    2009-08-01

    Clinical observations of patients with ventral frontal and anterior temporal cortical lesions reveal marked abnormalities in social attitudes. A previous study in seven patients with ventral prefrontal lesions provided the first direct experimental evidence for abnormalities in social attitudes using a well-established measure of gender stereotypes, the Implicit Association Test (IAT). Here, we were able to test whether these first findings could be reproduced in a larger sample of 154 patients with penetrating head injuries, and to determine the differential effects of ventromedial prefrontal (vmPFC) and ventrolateral prefrontal (vlPFC) cortical lesions on IAT performance. In addition, we investigated the role of the superior anterior temporal lobe (aTL), recently shown to represent conceptual social knowledge. First, we used a linear regression model to identify the role of each of the three regions, while controlling for the extent of damage to other regions. We found that larger lesions in either the vmPFC or the superior aTL were associated with increased stereotypical attitudes, whereas larger lesions in the vlPFC were associated with decreased stereotypical attitudes. Second, in a confirmatory analysis, we grouped patients by lesion location and compared their performance on the IAT with that of healthy volunteers. Compared to controls, patients with lesions in either the vmPFC or the superior aTL showed increased stereotypical attitudes, whereas patients with lesions in the vlPFC showed decreased stereotypical attitudes. The functional contributions of these regions in social attitudes are discussed.

  7. Dorsolateral Prefrontal Contributions to Human Intelligence

    Science.gov (United States)

    Barbey, Aron K.; Colom, Roberto; Grafman, Jordan

    2012-01-01

    Although cognitive neuroscience has made remarkable progress in understanding the involvement of the prefrontal cortex in executive control functions for human intelligence, the necessity of the dorsolateral prefrontal cortex (dlPFC) for key competencies of general intelligence and executive function remains to be well established. Here we studied human brain lesion patients with dlPFC lesions to investigate whether this region is computationally necessary for performance on neuropsychological tests of general intelligence and executive function, administering the Wechsler Adult Intelligence Scale (WAIS) and subtests of the Delis Kaplan Executive Function System (D-KEFS) to three groups: dlPFC lesions (n = 19), non-dlPFC lesions (n = 152), and no brain lesions (n = 55). The key results indicate that: (1) patients with focal dlPFC damage exhibit lower scores, at the latent variable level, than controls in general intelligence (g) and executive function; (2) dlPFC patients demonstrate lower scores than controls in several executive measures; and (3) these latter differences are no longer significant when the pervasive influence of the general factor of intelligence (g) is statistically removed. The observed findings support a central role for the dlPFC in general intelligence and make specific recommendations for the interpretation and application of the WAIS and D-KEFS to the study of high-level cognition in health and disease. PMID:22634247

  8. Social vulnerability and prefrontal cortical function in elderly people: a report from the Canadian Study of Health and Aging.

    Science.gov (United States)

    Andrew, Melissa K; Fisk, John D; Rockwood, Kenneth

    2011-04-01

    Prefrontal cortical lobe function is related to social behavior in humans. We investigated whether performance on tests of prefrontal cortical function was associated with social vulnerability. Associations with non-frontal cognitive function were investigated for comparison. 1216 participants aged 70+ of the Canadian Study of Health and Aging-2 screening examination, who also underwent detailed neuropsychological testing, comprised the study sample. Performance on WAIS-R abstraction, WAIS-R comprehension, Trails B, FAS and category verbal fluency, Block construction, Token Test and Wechsler Memory Scale Information Subset was tested in relation to the participant's level of social vulnerability using regression models adjusted for age, education, sex, frailty, MMSE score, diagnosis of depression, and use of psychoactive medications. Social vulnerability was measured by an index comprising many social problems or "deficits". The most socially vulnerable group had worse performance on FAS verbal fluency, generating 4.1 fewer words (95% CI: 1.8-6.4, psocially vulnerable group; those with intermediate social vulnerability generated 2.6 fewer words (95% CI: 0.4-4.8, p = 0.02). Social vulnerability was also associated, though less strongly, with category verbal fluency. The most socially vulnerable people had impaired performance on the Trails B, taking 37 seconds longer (95% CI: 11-63, p = 0.005). These results were independent of age, education, sex, frailty, MMSE score, depression, and psychoactive medications. Social vulnerability was not associated with performance on WAIS-R abstraction, WAIS-R comprehension, Block Design, Token Test or Wechsler Memory Scale tests. High social vulnerability was associated with impaired performance on verbal fluency and set shifting but not with common sense judgment, abstraction, long-term memory, constructional ability, or language comprehension. The association between social functioning and the cognitive functions subserved by

  9. Reduced Prefrontal Cortical Gray Matter Volume in Young Adults Exposed to Harsh Corporal Punishment

    Science.gov (United States)

    Tomoda, Akemi; Suzuki, Hanako; Rabi, Keren; Sheu, Yi-Shin; Polcari, Ann; Teicher, Martin H.

    2010-01-01

    Objective Harsh corporal punishment (HCP) during childhood is a chronic, developmental stressor associated with depression, aggression and addictive behaviors. Exposure to traumatic stressors, such as sexual abuse, is associated with alteration in brain structure, but nothing is known about the potential neurobiological consequences of HCP. The aim of this study was to investigate whether HCP was associated with discernible alterations in gray matter volume (GMV) using voxel-based morphometry (VBM). Methods 1,455 young adults (18–25 years) were screened to identify 23 with exposure to HCP (minimum 3 years duration, 12 episodes per year, frequently involving objects) and 22 healthy controls. High-resolution T1-weighted MRI datasets were obtained using Siemens 3T trio scanner. Results GMV was reduced by 19.1% in the right medial frontal gyrus (medial prefrontal cortex; MPFC, BA10) (P = 0.037, corrected cluster level), by 14.5% in the left medial frontal gyrus (dorsolateral prefrontal cortex; DLPFC, BA 9) (P = 0.015, uncorrected cluster level) and by 16.9% in the right anterior cingulate gyrus (BA 24) (P effects on trajectories of brain development. However, it is also conceivable that differences in prefrontal cortical development may increase risk of exposure to HCP. PMID:19285558

  10. Serotonin receptor expression in human prefrontal cortex: balancing excitation and inhibition across postnatal development.

    Directory of Open Access Journals (Sweden)

    Evelyn K Lambe

    Full Text Available Serotonin and its receptors (HTRs play critical roles in brain development and in the regulation of cognition, mood, and anxiety. HTRs are highly expressed in human prefrontal cortex and exert control over prefrontal excitability. The serotonin system is a key treatment target for several psychiatric disorders; however, the effectiveness of these drugs varies according to age. Despite strong evidence for developmental changes in prefrontal Htrs of rodents, the developmental regulation of HTR expression in human prefrontal cortex has not been examined. Using postmortem human prefrontal brain tissue from across postnatal life, we investigated the expression of key serotonin receptors with distinct inhibitory (HTR1A, HTR5A and excitatory (HTR2A, HTR2C, HTR4, HTR6 effects on cortical neurons, including two receptors which appear to be expressed to a greater degree in inhibitory interneurons of cerebral cortex (HTR2C, HTR6. We found distinct developmental patterns of expression for each of these six HTRs, with profound changes in expression occurring early in postnatal development and also into adulthood. However, a collective look at these HTRs in terms of their likely neurophysiological effects and major cellular localization leads to a model that suggests developmental changes in expression of these individual HTRs may not perturb an overall balance between inhibitory and excitatory effects. Examining and understanding the healthy balance is critical to appreciate how abnormal expression of an individual HTR may create a window of vulnerability for the emergence of psychiatric illness.

  11. Gustatory imagery reveals functional connectivity from the prefrontal to insular cortices traced with magnetoencephalography.

    Science.gov (United States)

    Kobayashi, Masayuki; Sasabe, Tetsuya; Shigihara, Yoshihito; Tanaka, Masaaki; Watanabe, Yasuyoshi

    2011-01-01

    Our experience and prejudice concerning food play an important role in modulating gustatory information processing; gustatory memory stored in the central nervous system influences gustatory information arising from the peripheral nervous system. We have elucidated the mechanism of the "top-down" modulation of taste perception in humans using functional magnetic resonance imaging (fMRI) and demonstrated that gustatory imagery is mediated by the prefrontal (PFC) and insular cortices (IC). However, the temporal order of activation of these brain regions during gustatory imagery is still an open issue. To explore the source of "top-down" signals during gustatory imagery tasks, we analyzed the temporal activation patterns of activated regions in the cerebral cortex using another non-invasive brain imaging technique, magnetoencephalography (MEG). Gustatory imagery tasks were presented by words (Letter G-V) or pictures (Picture G-V) of foods/beverages, and participants were requested to recall their taste. In the Letter G-V session, 7/9 (77.8%) participants showed activation in the IC with a latency of 401.7±34.7 ms (n = 7) from the onset of word exhibition. In 5/7 (71.4%) participants who exhibited IC activation, the PFC was activated prior to the IC at a latency of 315.2±56.5 ms (n = 5), which was significantly shorter than the latency to the IC activation. In the Picture G-V session, the IC was activated in 6/9 (66.7%) participants, and only 1/9 (11.1%) participants showed activation in the PFC. There was no significant dominance between the right and left IC or PFC during gustatory imagery. These results support those from our previous fMRI study in that the Letter G-V session rather than the Picture G-V session effectively activates the PFC and IC and strengthen the hypothesis that the PFC mediates "top-down" control of retrieving gustatory information from the storage of long-term memories and in turn activates the IC.

  12. Role of prefrontal cortical calcium-independent phospholipase A2 in antinociceptive effect of the norepinephrine reuptake inhibitor antidepresssant maprotiline.

    Science.gov (United States)

    Chew, Wee-Siong; Shalini, Suku-Maran; Torta, Federico; Wenk, Markus R; Stohler, Christian; Yeo, Jin-Fei; Herr, Deron R; Ong, Wei-Yi

    2017-01-06

    The prefrontal cortex is essential for executive functions such as decision-making and planning. There is also accumulating evidence that it is important for the modulation of pain. In this study, we investigated a possible role of prefrontal cortical calcium-independent phospholipase A2 (iPLA2) in antinociception induced by the norepinephrine reuptake inhibitor (NRI) and tetracyclic (tricyclic) antidepressant, maprotiline. Intraperitoneal injections of maprotiline increased iPLA2 mRNA and protein expression in the prefrontal cortex. This treatment also reduced grooming responses to von-Frey hair stimulation of the face after facial carrageenan injection, indicating decreased sensitivity to pain. The antinociceptive effect of maprotiline was abrogated by iPLA2 antisense oligonucleotide injection to the prefrontal cortex, indicating a role of this enzyme in antinociception. In contrast, injection of iPLA2 antisense oligonucleotide to the somatosensory cortex did not reduce the antinociceptive effect of maprotiline. Lipidomic analysis of the prefrontal cortex showed decrease in phosphatidylcholine species, but increase in lysophosphatidylcholine species, indicating increased PLA2 activity, and release of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) after maprotiline treatment. Differences in sphingomyelin/ceramide were also detected. These changes were not observed in maprotiline-treated mice that received iPLA2 antisense oligonucleotide to the prefrontal cortex. Metabolites of DHA and EPA may help to strengthen a known supraspinal antinociceptive pathway from the prefrontal cortex to the periaqueductal gray. Together, results indicate a role of prefrontal cortical iPLA2 and its enzymatic products in the antinociceptive effect of maprotiline. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  13. Deficit in rewarding mechanisms and prefrontal left/right cortical effect in vulnerability for internet addiction.

    Science.gov (United States)

    Balconi, Michela; Finocchiaro, Roberta

    2016-10-01

    The present research explored the cortical correlates of rewarding mechanisms and cortical 'unbalance' effect in internet addiction (IA) vulnerability. Internet Addiction Inventory (IAT) and personality trait (Behavioural Inhibition System, BIS; Behavioural Activation System, BAS) were applied to 28 subjects. Electroencephalographic (EEG, alpha frequency band) and response times (RTs) were registered during a Go-NoGo task execution in response to different online stimuli: gambling videos, videogames or neutral stimuli. Higher-IAT (more than 50 score, with moderate or severe internet addiction) and lower-IAT (internet addiction). Alpha band and RTs were affected by IAT, with significant bias (reduced RTs) for high-IAT in response to gambling videos and videogames; and by BAS, BAS-Reward subscale (BAS-R), since not only higher-IAT, but also BAS and BAS-R values determined an increasing of left prefrontal cortex (PFC) activity (alpha reduction) in response to videogames and gambling stimuli for both Go and NoGo conditions, in addition to decreased RTs for these stimuli categories. The increased PFC responsiveness and the lateralisation (left PFC hemisphere) effect in NoGo condition was explained on the basis of a 'rewarding bias' towards more rewarding cues and a deficit in inhibitory control in higher-IAT and higher-BAS subjects. In contrast lower-IAT and lower-BAS predicted a decreased PFC response and increased RTs for NoGo (inhibitory mechanism). These results may support the significance of personality (BAS) and IAT measures for explaining future internet addiction behaviour based on this observed 'vulnerability'.

  14. Using functional near-infrared spectroscopy (fNIRS) to detect the prefrontal cortical responses to deception under different motivations

    OpenAIRE

    Li, Fang; Zhu, Huilin; Gao, Qianqian; Xu, Guixiong; Li, Xinge; Hu, Ziqiang; He, Sailing

    2015-01-01

    In this study, functional near-infrared spectroscopy (fNIRS) was adopted to investigate the prefrontal cortical responses to deception under different motivations. By using a feigned memory impairment paradigm, 19 healthy adults were asked to deceive under the two different motivations: to obtain rewards and to avoid punishments. Results indicated that when deceiving for obtaining rewards, there was greater neural activation in the right inferior frontal gyrus (IFG) than the control condition...

  15. Glutamate and GABA contributions to medial prefrontal cortical activity to emotion: implications for mood disorders.

    Science.gov (United States)

    Stan, Ana D; Schirda, Claudiu V; Bertocci, Michele A; Bebko, Genna M; Kronhaus, Dina M; Aslam, Haris A; LaBarbara, Eduard J; Tanase, Costin; Lockovich, Jeanette C; Pollock, Myrna H; Stiffler, Richelle S; Phillips, Mary L

    2014-09-30

    The dorsomedial prefrontal cortex (MdPFC) and anterior cingulate cortices (ACC) play a critical role in implicit emotion regulation; however the understanding of the specific neurotransmitters that mediate such role is lacking. In this study, we examined relationships between MdPFC concentrations of two neurotransmitters, glutamate and γ-amino butyric acid (GABA), and BOLD activity in ACC during performance of an implicit facial emotion-processing task. Twenty healthy volunteers, aged 20-35 years, were scanned while performing an implicit facial emotion-processing task, whereby presented facial expressions changed from neutral to one of the four emotions: happy, anger, fear, or sad. Glutamate concentrations were measured before and after the emotion-processing task in right MdPFC using magnetic resonance spectroscopy (MRS). GABA concentrations were measured in bilateral MdPFC after the emotion-processing task. Multiple regression models were run to determine the relative contribution of glutamate and GABA concentration, age, and gender to BOLD signal in ACC to each of the four emotions. Multiple regression analyses revealed a significant negative correlation between MdPFC GABA concentration and BOLD signal in subgenual ACC (pemotion processing in healthy and mood-disordered individuals. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  16. Differential expression of exosomal microRNAs in prefrontal cortices of schizophrenia and bipolar disorder patients.

    Directory of Open Access Journals (Sweden)

    Meredith G Banigan

    Full Text Available Exosomes are cellular secretory vesicles containing microRNAs (miRNAs. Once secreted, exosomes are able to attach to recipient cells and release miRNAs potentially modulating the function of the recipient cell. We hypothesized that exosomal miRNA expression in brains of patients diagnosed with schizophrenia (SZ and bipolar disorder (BD might differ from controls, reflecting either disease-specific or common aberrations in SZ and BD patients. The sources of the analyzed samples included McLean 66 Cohort Collection (Harvard Brain Tissue Resource Center, BrainNet Europe II (BNE, a consortium of 18 brain banks across Europe and Boston Medical Center (BMC. Exosomal miRNAs from frozen postmortem prefrontal cortices with well-preserved RNA were isolated and submitted to profiling by Luminex FLEXMAP 3D microfluidic device. Multiple statistical analyses of microarray data suggested that certain exosomal miRNAs were differentially expressed in SZ and BD subjects in comparison to controls. RT-PCR validation confirmed that two miRNAs, miR-497 in SZ samples and miR-29c in BD samples, have significantly increased expression when compared to control samples. These results warrant future studies to evaluate the potential of exosome-derived miRNAs to serve as biomarkers of SZ and BD.

  17. Medial prefrontal cortical activity reflects dynamic re-evaluation during voluntary persistence.

    Science.gov (United States)

    McGuire, Joseph T; Kable, Joseph W

    2015-05-01

    Deciding how long to keep waiting for future rewards is a nontrivial problem, especially when the timing of rewards is uncertain. We carried out an experiment in which human decision makers waited for rewards in two environments in which reward-timing statistics favored either a greater or lesser degree of behavioral persistence. We found that decision makers adaptively calibrated their level of persistence for each environment. Functional neuroimaging revealed signals that evolved differently during physically identical delays in the two environments, consistent with a dynamic and context-sensitive reappraisal of subjective value. This effect was observed in a region of ventromedial prefrontal cortex that is sensitive to subjective value in other contexts, demonstrating continuity between valuation mechanisms involved in discrete choice and in temporally extended decisions analogous to foraging. Our findings support a model in which voluntary persistence emerges from dynamic cost/benefit evaluation rather than from a control process that overrides valuation mechanisms.

  18. Centrality of prefrontal and motor preparation cortices to Tourette Syndrome revealed by meta-analysis of task-based neuroimaging studies

    Directory of Open Access Journals (Sweden)

    Liliana Polyanska

    2017-01-01

    The dispersed involvement of multiple cortical regions with differences in functional reactivity may account for heterogeneity in the symptomatic expression of TS and its comorbidities. More specifically for tics and tic severity, the findings reinforce previously proposed contributions of premotor and lateral prefrontal cortices to tic expression.

  19. Inducible nitric oxide inhibitors block NMDA antagonist-stimulated motoric behaviors and medial prefrontal cortical glutamate efflux

    Directory of Open Access Journals (Sweden)

    Hadley C Bergstrom

    2015-12-01

    Full Text Available Nitric oxide (NO plays a critical role in the motoric and glutamate releasing action of N-methyl-D-aspartate (NMDA-antagonist stimulants. Earlier studies utilized neuronal nitric oxide synthase inhibitors (nNOS for studying the neurobehavioral effects of noncompetitive NMDA-antagonist stimulants such as dizocilpine (MK-801 and phencyclidine (PCP. This study explores the role of the inducible nitric oxide synthase inhibitors (iNOS aminoguanidine (AG and (--epigallocatechin-3-gallate (EGCG in NMDA-antagonist induced motoric behavior and prefrontal cortical glutamate efflux. Adult male rats were administered a dose range of AG, EGCG or vehicle prior to receiving NMDA antagonists MK-801, PCP or a conventional psychostimulant (cocaine and tested for motoric behavior in an open arena. Glutamate in the medial prefrontal cortex was measured using in vivo microdialysis after a combination of AG or EGCG prior to MK-801. Acute administration of AG or EGCG dose-dependently attenuated the locomotor and ataxic properties of MK-801 and PCP. Both AG and EGCG were unable to block the motoric effects of cocaine, indicating the acute pharmacologic action of AG and EGCG is specific to NMDA antagonism and not generalizable to all stimulant class drugs. AG and EGCG normalized MK-801-stimulated medial prefrontal cortical glutamate efflux. These data demonstrate that AG and EGCG attenuates NMDA antagonist-stimulated motoric behavior and cortical glutamate efflux. Our results suggest that EGCG-like polyphenol nutraceuticals (contained in green tea and chocolate may be clinically useful in protecting against the adverse behavioral dissociative and cortical glutamate stimulating effects of NMDA antagonists. Medications that interfere with NMDA antagonists such as MK-801 and PCP have been proposed as treatments for schizophrenia.

  20. Changes in prefrontal cortical behaviour depend upon familiarity on a bimanual co-ordination task: an fNIRS study.

    Science.gov (United States)

    Leff, Daniel Richard; Elwell, Clare E; Orihuela-Espina, Felipe; Atallah, Louis; Delpy, David T; Darzi, Ara W; Yang, Guang Zhong

    2008-01-15

    To investigate neurocognitive mechanisms associated with task-related expertise development, this paper investigates serial changes in prefrontal activation patterns using functional near infrared spectroscopy (fNIRS). We evaluate cortical function in 62 healthy subjects with varying experience during serial evaluations of a knot-tying task. All tasks were performed bimanually and self paced, with fixed episodes of motor rest for five repetitions. Improvements in technical skill were evaluated using dexterity indices to quantify time, total movements and pathlength required to complete trials. Significant improvements in technical skills were observed in novices between the 2nd and 3rd trials, associated with increasing task familiarity. In trained subjects, minimal fluctuation in task-related oxyhaemoglobin (HbO(2)) and deoxyhaemoglobin (HHb) changes were observed in association with more stable task performance. In contrast, two significant transitions in prefrontal haemodynamic change were observed in novices. Greater task-related increases in HbO(2) and decreases in HHb were identified on the second trial compared to the first. Relative decreases in HbO(2) and increases in HHb change were observed between the third and fourth, and fourth and fifth trials respectively. These data suggest that prefrontal processing across five knot-tying trials is influenced by the level of experience on a task. Modifications in prefrontal activation appear to confer technical performance adaptation in novices.

  1. Dorsal prefrontal cortical serotonin 2A receptor binding indices are differentially related to individual scores on harm avoidance.

    Science.gov (United States)

    Baeken, Chris; Bossuyt, Axel; De Raedt, Rudi

    2014-02-28

    Although the serotonergic system has been implicated in healthy as well as in pathological emotional states, knowledge about its involvement in personality is limited. Earlier research on this topic suggests that post-synaptic 5-HT2A receptors could be involved in particular in frontal cortical areas. In drug-naïve healthy individuals, we examined the relationship between these 5-HT2A receptors and the temperament dimension harm avoidance (HA) using 123I-5-I-R91150 single photon emission computed tomography (SPECT). HA is a personality feature closely related to stress, anxiety and depression proneness, and it is thought to be mediated by the serotonergic system. We focused on the prefrontal cortices as these regions are frequently implicated in cognitive processes related to a variety of affective disorders. We found a positive relationship between dorsal prefrontal cortical (DPFC) 5-HT2A receptor binding indices (BI) and individual HA scores. Further, our results suggest that those individuals with a tendency to worry or to ruminate are particularly prone to display significantly higher 5-HT2A receptor BI in the left DPFC. Although we only examined psychologically healthy individuals, this relationship suggests a possible vulnerability for affective disorders. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  2. The role of prefrontal and parietal cortices in esthetic appreciation of representational and abstract art: a TMS study.

    Science.gov (United States)

    Cattaneo, Zaira; Lega, Carlotta; Gardelli, Chiara; Merabet, Lotfi B; Cela-Conde, Camilo J; Nadal, Marcos

    2014-10-01

    To explain the biological foundations of art appreciation is to explain one of our species' distinctive traits. Previous neuroimaging and electrophysiological studies have pointed to the prefrontal and the parietal cortex as two critical regions mediating esthetic appreciation of visual art. In this study, we applied transcranial magnetic stimulation (TMS) over the left prefrontal cortex and the right posterior parietal cortex while participants were evaluating whether they liked, and by how much, a particular painting. By depolarizing cell membranes in the targeted regions, TMS transiently interferes with the activity of specific cortical areas, which allows clarifying their role in a given task. Our results show that both regions play a fundamental role in mediating esthetic appreciation. Critically though, the effects of TMS varied depending on the type of art considered (i.e. representational vs. abstract) and on participants' a-priori inclination toward one or the other. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Alternative Splicing of AMPA subunits in Prefrontal Cortical Fields of Cynomolgus Monkeys following Chronic Ethanol Self-Administration

    Directory of Open Access Journals (Sweden)

    Glen eAcosta

    2012-01-01

    Full Text Available Functional impairment of the orbital and medial prefrontal cortex underlies deficits in executive control that characterize addictive disorders, including alcohol addiction. Previous studies indicate that alcohol alters glutamate neurotransmission and one substrate of these effects may be through the reconfiguration of the subunits constituting ionotropic glutamate receptor (iGluR complexes. Glutamatergic transmission is integral to cortico-cortical and cortico-subcortical communication and alcohol-induced changes in the abundance of the receptor subunits and/or their splice variants may result in critical functional impairments of prefrontal cortex in alcohol dependence. To this end, the effects of chronic ethanol self-administration on glutamate receptor ionotropic AMPA (GRIA subunit variant and kainate (GRIK subunit mRNA expression were studied in the orbitofrontal cortex (OFC, dorsolateral prefrontal cortex (DLPFC and anterior cingulate cortex (ACC of male cynomolgus monkeys. In DLPFC, total AMPA splice variant expression and total kainate receptor subunit expression were significantly decreased in alcohol drinking monkeys. Expression levels of GRIA3 flip and flop and GRIA4 flop mRNAs in this region were positively correlated with daily ethanol intake and blood ethanol concentrations averaged over the six months prior to necropsy. In OFC, AMPA subunit splice variant expression was reduced in the alcohol treated group. GRIA2 flop mRNA levels in this region were positively correlated with daily ethanol intake and blood ethanol concentrations averaged over the six months prior to necropsy. Results from these studies provide further evidence of transcriptional regulation of iGluR subunits in the primate brain following chronic alcohol self-administration. Additional studies examining the cellular localization of such effects in the framework of primate prefrontal cortical circuitry are warranted.

  4. Functional connectivity changes between parietal and prefrontal cortices in primary insomnia patients: evidence from resting-state fMRI

    Science.gov (United States)

    2014-01-01

    Background Primary insomnia can severely impair daytime function by disrupting attention and working memory and imposes a danger to self and others by increasing the risk of accidents. We speculated that the neurobiological changes impeding working memory in primary insomnia patients would be revealed by resting-state functional MRI (R-fMRI), which estimates the strength of cortical pathways by measuring local and regional correlations in blood oxygen level dependent (BOLD) signs independent of specific task demands. Methods We compared the R-fMRI activity patterns of 15 healthy controls to 15 primary insomnia patients (all 30 participants were right-handed) using a 3.0 T MRI scanner. The SPM8 and REST1.7 software packages were used for preprocessing and analysis. Activity was expressed relative to the superior parietal lobe (SPL, the seed region) to reveal differences in functional connectivity to other cortical regions implicated in spatial working memory. Result In healthy controls, bilateral SPL activity was associated with activity in the posterior cingulate gyrus, precuneus, ventromedial prefrontal cortex, and superior frontal gyrus, indicating functional connectivity between these regions. Strong functional connectivity between the SPL and bilateral pre-motor cortex, bilateral supplementary motor cortex, and left dorsolateral prefrontal cortex was observed in both the control group and the primary insomnia group. However, the strength of several other functional connectivity pathways to the SPL exhibited significant group differences. Compared to healthy controls, connectivity in the primary insomnia group was stronger between the bilateral SPL and the right ventral anterior cingulate cortex, left ventral posterior cingulate cortex, right splenium of the corpus callosum, right pars triangularis (right inferior frontal gyrus/Broca’s area), and right insular lobe, while connectivity was weaker between the SPL and right superior frontal gyrus (dorsolateral

  5. Organization of cortico-cortical pathways supporting memory retrieval across subregions of the left ventrolateral prefrontal cortex.

    Science.gov (United States)

    Barredo, Jennifer; Verstynen, Timothy D; Badre, David

    2016-09-01

    Functional magnetic resonance imaging (fMRI) evidence indicates that different subregions of ventrolateral prefrontal cortex (VLPFC) participate in distinct cortical networks. These networks have been shown to support separable cognitive functions: anterior VLPFC [inferior frontal gyrus (IFG) pars orbitalis] functionally correlates with a ventral fronto-temporal network associated with top-down influences on memory retrieval, while mid-VLPFC (IFG pars triangularis) functionally correlates with a dorsal fronto-parietal network associated with postretrieval control processes. However, it is not known to what extent subregional differences in network affiliation and function are driven by differences in the organization of underlying white matter pathways. We used high-angular-resolution diffusion spectrum imaging and functional connectivity analysis in unanesthetized humans to address whether the organization of white matter connectivity differs between subregions of VLPFC. Our results demonstrate a ventral-dorsal division within IFG. Ventral IFG as a whole connects broadly to lateral temporal cortex. Although several different individual white matter tracts form connections between ventral IFG and lateral temporal cortex, functional connectivity analysis of fMRI data indicates that these are part of the same ventral functional network. By contrast, across subdivisions, dorsal IFG was connected with the midfrontal gyrus and correlated as a separate dorsal functional network. These qualitative differences in white matter organization within larger macroanatomical subregions of VLPFC support prior functional distinctions among these regions observed in task-based and functional connectivity fMRI studies. These results are consistent with the proposal that anatomical connectivity is a crucial determinant of systems-level functional organization of frontal cortex and the brain in general. Copyright © 2016 the American Physiological Society.

  6. Cortical projection to the human red nucleus: complementary results with probabilistic tractography at 3 T

    Energy Technology Data Exchange (ETDEWEB)

    Habas, Christophe; Cabanis, Emmanuel A. [UPMC Paris 6, Service de NeuroImagerie, Hopital des Quinze-Vingts, Paris (France)

    2007-09-15

    In a previous study using streamlined diffusion tensor imaging (DTI) axonal tracking at 1.5 T, we found that the main afferents to the human red nucleus arise from the sensorimotor and prefrontal cortices. However, the spatial resolution of our data was low and our streamlining DTI algorithm was less powerful than the probabilistic tractography algorithm usually used to define connections between low anisotropic cortical or nuclear areas. Therefore, we reassessed and completed our previous results with trajectories computed with a probabilistic algorithm and with a high-field MRI system. Afferents to the red nuclei of five volunteers were studied at 3 T using probabilistic DTI axonal tracking. Trajectories were constantly tracked between the red nucleus and the ipsilateral prefrontal, pericentral, temporal and occipital cortices, and the ipsilateral lentiform and contralateral dentate nuclei. We showed that the dentate nucleus was connected to the mammillary tubercle and, through the contralateral ventral thalamus, to the frontal and prefrontal cortices. The red nucleus receives extensive projections from the cerebral cortex and has dense subcortical connections to the striopallidal system. (orig.)

  7. Anxious/depressed symptoms are linked to right ventromedial prefrontal cortical thickness maturation in healthy children and young adults.

    Science.gov (United States)

    Ducharme, Simon; Albaugh, Matthew D; Hudziak, James J; Botteron, Kelly N; Nguyen, Tuong-Vi; Truong, Catherine; Evans, Alan C; Karama, Sherif

    2014-11-01

    The relationship between anxious/depressed traits and neuromaturation remains largely unstudied. Characterizing this relationship during healthy neurodevelopment is critical to understanding processes associated with the emergence of child/adolescent onset mood/anxiety disorders. In this study, mixed-effects models were used to determine longitudinal cortical thickness correlates of Child Behavior Checklist (CBCL) and Young Adult Self Report Anxious/Depressed scores in healthy children. Analyses included 341 subjects from 4.9 to 22.3 year-old with repeated MRI at up to 3 time points, at 2-year intervals (586 MRI scans). There was a significant "CBCL Anxious/Depressed by Age" interaction on cortical thickness in the right ventromedial prefrontal cortex (vmPFC), including the medial orbito-frontal, gyrus rectus, and subgenual anterior cingulate areas. Anxious/Depressed scores were negatively associated with thickness at younger ages (rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. Dopamine D2-receptor blockade enhances decoding of prefrontal signals in humans.

    Science.gov (United States)

    Kahnt, Thorsten; Weber, Susanna C; Haker, Helene; Robbins, Trevor W; Tobler, Philippe N

    2015-03-04

    The prefrontal cortex houses representations critical for ongoing and future behavior expressed in the form of patterns of neural activity. Dopamine has long been suggested to play a key role in the integrity of such representations, with D2-receptor activation rendering them flexible but weak. However, it is currently unknown whether and how D2-receptor activation affects prefrontal representations in humans. In the current study, we use dopamine receptor-specific pharmacology and multivoxel pattern-based functional magnetic resonance imaging to test the hypothesis that blocking D2-receptor activation enhances prefrontal representations. Human subjects performed a simple reward prediction task after double-blind and placebo controlled administration of the D2-receptor antagonist amisulpride. Using a whole-brain searchlight decoding approach we show that D2-receptor blockade enhances decoding of reward signals in the medial orbitofrontal cortex. Examination of activity patterns suggests that amisulpride increases the separation of activity patterns related to reward versus no reward. Moreover, consistent with the cortical distribution of D2 receptors, post hoc analyses showed enhanced decoding of motor signals in motor cortex, but not of visual signals in visual cortex. These results suggest that D2-receptor blockade enhances content-specific representations in frontal cortex, presumably by a dopamine-mediated increase in pattern separation. These findings are in line with a dual-state model of prefrontal dopamine, and provide new insights into the potential mechanism of action of dopaminergic drugs. Copyright © 2015 the authors 0270-6474/15/354104-08$15.00/0.

  9. Prefrontal cortical network activity: Opposite effects of psychedelic hallucinogens and D1/D5 dopamine receptor activation.

    Science.gov (United States)

    Lambe, E K; Aghajanian, G K

    2007-03-30

    The fine-tuning of network activity provides a modulating influence on how information is processed and interpreted in the brain. Here, we use brain slices of rat prefrontal cortex to study how recurrent network activity is affected by neuromodulators known to alter normal cortical function. We previously determined that glutamate spillover and stimulation of extrasynaptic N-methyl-d-aspartic acid (NMDA) receptors are required to support hallucinogen-induced cortical network activity. Since microdialysis studies suggest that psychedelic hallucinogens and dopamine D1/D5 receptor agonists have opposite effects on extracellular glutamate in prefrontal cortex, we hypothesized that these two families of psychoactive drugs would have opposite effects on cortical network activity. We found that network activity can be enhanced by 2,5-dimethoxy-4-iodoamphetamine (DOI) (a psychedelic hallucinogen that is a partial agonist of 5-HT(2A/2C) receptors) and suppressed by the selective D1/D5 agonist SKF 38393. This suppression could be mimicked by direct activation of adenylyl cyclase with forskolin or by addition of a cAMP analog. These findings are consistent with previous work showing that activation of adenylyl cyclase can upregulate neuronal glutamate transporters, thereby decreasing synaptic spillover of glutamate. Consistent with this hypothesis, a low concentration of the glutamate transporter inhibitor threo-beta-benzoylaspartic acid (TBOA) restored electrically-evoked recurrent activity in the presence of a selective D1/D5 agonist, whereas recurrent activity in the presence of a low level of the GABA(A) antagonist bicuculline was not resistant to suppression by the D1/D5 agonist. The tempering of network UP states by D1/D5 receptor activation may have implications for the proposed use of D1/D5 agonists in the treatment of schizophrenia.

  10. Human ventromedial prefrontal lesions alter incentivisation by reward.

    Science.gov (United States)

    Manohar, Sanjay G; Husain, Masud

    2016-03-01

    Although medial frontal brain regions are implicated in valuation of rewards, evidence from focal lesions to these areas is scant, with many conflicting results regarding motivation and affect, and no human studies specifically examining incentivisation by reward. Here, 19 patients with isolated, focal damage in ventral and medial prefrontal cortex were selected from a database of 453 individuals with subarachnoid haemorrhage. Using a speeded saccadic task based on the oculomotor capture paradigm, we manipulated the maximum reward available on each trial using an auditory incentive cue. Modulation of behaviour by motivation permitted quantification of reward sensitivity. At the group level, medial frontal damage was overall associated with significantly reduced effects of reward on invigorating saccadic velocity and autonomic (pupil) responses compared to age-matched, healthy controls. Crucially, however, some individuals instead showed abnormally strong incentivisation effects for vigour. Increased sensitivity to rewards within the lesion group correlated with damage in subgenual ventromedial prefrontal cortex (vmPFC) areas, which have recently become the target for deep brain stimulation (DBS) in depression. Lesion correlations with clinical apathy suggested that the apathy associated with prefrontal damage is in fact reduced by damage at those coordinates. Reduced reward sensitivity showed a trend to correlate with damage near nucleus accumbens. Lesions did not, on the other hand, influence reward sensitivity of cognitive control, as measured by distractibility. Thus, although medial frontal lesions may generally reduce reward sensitivity, damage to key subregions paradoxically protect from this effect. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Social hierarchies and emotions: cortical prefrontal activity, facial feedback (EMG), and cognitive performance in a dynamic interaction.

    Science.gov (United States)

    Balconi, Michela; Pagani, Silvia

    2015-04-01

    In the present research, we manipulated the perceived superior/inferior status during a competitive cognitive task. In two experiments, we created an explicit and strongly reinforced social hierarchy based on incidental rating on an attentional task. Based on our hypotheses, social rank may influence nonverbal cues (such as facial mimic related to emotional response), cortical lateralized activity in frontal areas (brain oscillations), and cognitive outcomes in response to rank modulation. Thus, the facial mimic (corrugators vs. zygomatic muscle activity), frequency bands (delta, theta, alpha, beta), and real cognitive performance [(error rate (ER); response times (RTs)] were considered. Specifically, a peer-group comparison was enrolled and an improved (experiment 1, N = 29) or decreased (experiment 2, N = 31) performance was artificially manipulated by the experimenter. Results showed a significant improved cognitive performance (decreased ER and RTs), an increased zygomatic activity (positive emotions), and a more prefrontal left-lateralized cortical response in the case of a perceived increased social ranking. On the contrary, a significant decreased cognitive performance (increased ER and RTs), an increased corrugators activity (negative emotions), and a less left-lateralized cortical response were observed as a consequence of a perceived decreased social ranking. Moreover, the correlational values revealed a consistent trend between behavioral (RTs) and EMG and EEG measures for both experiments. The present results suggest that social status not only guides social behavior, but it also influences cognitive processes and subjects' performance.

  12. Developmental trajectory of the endocannabinoid system in human dorsolateral prefrontal cortex

    Directory of Open Access Journals (Sweden)

    Long Leonora E

    2012-07-01

    Full Text Available Abstract Background Endocannabinoids provide control over cortical neurotransmission. We investigated the developmental expression of key genes in the endocannabinoid system across human postnatal life and determined whether they correspond to the development of markers for inhibitory interneurons, which shape cortical development. We used microarray with qPCR validation and in situ hybridisation to quantify mRNA for the central endocannabinoid receptor CB1R, endocannabinoid synthetic enzymes (DAGLα for 2-arachidonylglycerol [2-AG] and NAPE-PLD for anandamide, and inactivating enzymes (MGL and ABHD6 for 2-AG and FAAH for anandamide in human dorsolateral prefrontal cortex (39 days - 49 years. Results CB1R mRNA decreases until adulthood, particularly in layer II, after peaking between neonates and toddlers. DAGLα mRNA expression is lowest in early life and adulthood, peaking between school age and young adulthood. MGL expression declines after peaking in infancy, while ABHD6 increases from neonatal age. NAPE-PLD and FAAH expression increase steadily after infancy, peaking in adulthood. Conclusions Stronger endocannabinoid regulation of presynaptic neurotransmission in both supragranular and infragranular cortical layers as indexed through higher CB1R mRNA may occur within the first few years of human life. After adolescence, higher mRNA levels of the anandamide synthetic and inactivating enzymes NAPE-PLD and FAAH suggest that a late developmental switch may occur where anandamide is more strongly regulated after adolescence than earlier in life. Thus, expression of key genes in the endocannabinoid system changes with maturation of cortical function.

  13. A Developmental Shift from Positive to Negative Connectivity in Human Amygdala-Prefrontal Circuitry

    Science.gov (United States)

    Gee, Dylan G.; Humphreys, Kathryn L.; Flannery, Jessica; Goff, Bonnie; Telzer, Eva H.; Shapiro, Mor; Hare, Todd A.; Bookheimer, Susan Y.; Tottenham, Nim

    2013-01-01

    Recent human imaging and animal studies highlight the importance of frontoamygdala circuitry in the regulation of emotional behavior and its disruption in anxiety-related disorders. While tracing studies have suggested changes in amygdala-cortical connectivity through the adolescent period in rodents, less is known about the reciprocal connections within this circuitry across human development, when these circuits are being fine-tuned and substantial changes in emotional control are observed. The present study examined developmental changes in amygdala-prefrontal circuitry across the ages of 4 to 22 years using task-based functional magnetic resonance imaging (fMRI). Results suggest positive amygdala-prefrontal connectivity in early childhood that switches to negative functional connectivity during the transition to adolescence. Amygdala-mPFC functional connectivity was significantly positive (greater than zero) among participants younger than ten, whereas functional connectivity was significantly negative (less than zero) among participants ten years and older, over and above the effect of amygdala reactivity. The developmental switch in functional connectivity was paralleled by a steady decline in amygdala reactivity. Moreover, the valence switch might explain age-related improvement in task performance and a developmentally normative decline in anxiety. Initial positive connectivity followed by a valence shift to negative connectivity provides a neurobiological basis for regulatory development and may present novel insight into a more general process of developing regulatory connections. PMID:23467374

  14. Prefrontal cortical α2A-adrenoceptors and a possible primate model of attention deficit and hyperactivity disorder.

    Science.gov (United States)

    Ma, Chao-Lin; Sun, Xuan; Luo, Fei; Li, Bao-Ming

    2015-04-01

    Attention deficit and hyperactivity disorder (ADHD), a prevalent syndrome in children worldwide, is characterized by impulsivity, inappropriate inattention, and/or hyperactivity. It seriously afflicts cognitive development in childhood, and may lead to chronic under-achievement, academic failure, problematic peer relationships, and low self-esteem. There are at least three challenges for the treatment of ADHD. First, the neurobiological bases of its symptoms are still not clear. Second, the commonly prescribed medications, most showing short-term therapeutic efficacy but with a high risk of serious side-effects, are mainly based on a dopamine mechanism. Third, more novel and efficient animal models, especially in nonhuman primates, are required to accelerate the development of new medications. In this article, we review research progress in the related fields, focusing on our previous studies showing that blockade of prefrontal cortical α2A-adrenoceptors in monkeys produces almost all the typical behavioral symptoms of ADHD.

  15. Selective deficit in no-go performance induced by blockade of prefrontal cortical alpha 2-adrenoceptors in monkeys.

    Science.gov (United States)

    Ma, Chao-Lin; Qi, Xue-Lian; Peng, Ji-Yun; Li, Bao-Ming

    2003-05-23

    Two monkeys (Macaca mulatta) were trained to make a go response (go to touch a computer screen) when a red signal (go signal) was presented or a no-go response (inhibit the screen-touching action) when a green signal (no-go signal) was given. The alpha2-adrenergic antagonist yohimbine was infused locally, bilaterally and continuously for 8 days into the prefrontal cortex (PFC) by using mini-osmotic pump. The no-go but not go performance was selectively impaired during the 8-day administration of yohimbine: the monkeys showed an inability to inhibit the touching response to the no-go signal, indicating that there was a deficit in the inhibitory ability of the animals. Similar infusion of saline into the same cortical area was without effect. The present study provides behavioral pharmacological evidence that alpha2-adrenoceptors in the PFC are involved in the neural mechanisms underlying response inhibition.

  16. Stress-induced alterations in prefrontal cortical dendritic morphology predict selective impairments in perceptual attentional set-shifting.

    Science.gov (United States)

    Liston, Conor; Miller, Melinda M; Goldwater, Deena S; Radley, Jason J; Rocher, Anne B; Hof, Patrick R; Morrison, John H; McEwen, Bruce S

    2006-07-26

    Stressful life events have been implicated clinically in the pathogenesis of mental illness, but the neural substrates that may account for this observation remain poorly understood. Attentional impairments symptomatic of these psychiatric conditions are associated with structural and functional abnormalities in a network of prefrontal cortical structures. Here, we examine whether chronic stress-induced dendritic alterations in the medial prefrontal cortex (mPFC) and orbital frontal cortex (OFC) underlie impairments in the behaviors that they subserve. After 21 d of repeated restraint stress, rats were tested on a perceptual attentional set-shifting task, which yields dissociable measures of reversal learning and attentional set-shifting, functions that are mediated by the OFC and mPFC, respectively. Intracellular iontophoretic injections of Lucifer yellow were performed in a subset of these rats to examine dendritic morphology in layer II/III pyramidal cells of the mPFC and lateral OFC. Chronic stress induced a selective impairment in attentional set-shifting and a corresponding retraction (20%) of apical dendritic arbors in the mPFC. In stressed rats, but not in controls, decreased dendritic arborization in the mPFC predicted impaired attentional set-shifting performance. In contrast, stress was not found to adversely affect reversal learning or dendritic morphology in the lateral OFC. Instead, apical dendritic arborization in the OFC was increased by 43%. This study provides the first direct evidence that dendritic remodeling in the prefrontal cortex may underlie the functional deficits in attentional control that are symptomatic of stress-related mental illnesses.

  17. Paradoxical reversal learning enhancement by stress or prefrontal cortical damage: rescue with BDNF

    OpenAIRE

    Graybeal, Carolyn; Feyder, Michael; Schulman, Emily; Saksida, Lisa M.; Bussey, Timothy J.; Brigman, Jonathan L.; Holmes, Andrew

    2011-01-01

    Stress often has deleterious effects on cognition. We show that moderate stress enhanced late reversal learning in a mouse touchscreen-based choice task. Ventromedial prefrontal cortex (vmPFC) lesions mimicked the effects of stress, while orbitofrontal (OFC) and dorsolateral striatal (DLS) lesions impaired reversal. Stress-facilitation of reversal was prevented by BDNF infusion into the vmPFC. These findings suggest a mechanism in which stress-induced vmPFC dysfunction disinhibits learning by...

  18. Developmental changes in human dopamine neurotransmission: cortical receptors and terminators

    Directory of Open Access Journals (Sweden)

    Rothmond Debora A

    2012-02-01

    Full Text Available Abstract Background Dopamine is integral to cognition, learning and memory, and dysfunctions of the frontal cortical dopamine system have been implicated in several developmental neuropsychiatric disorders. The dorsolateral prefrontal cortex (DLPFC is critical for working memory which does not fully mature until the third decade of life. Few studies have reported on the normal development of the dopamine system in human DLPFC during postnatal life. We assessed pre- and postsynaptic components of the dopamine system including tyrosine hydroxylase, the dopamine receptors (D1, D2 short and D2 long isoforms, D4, D5, catechol-O-methyltransferase, and monoamine oxidase (A and B in the developing human DLPFC (6 weeks -50 years. Results Gene expression was first analysed by microarray and then by quantitative real-time PCR. Protein expression was analysed by western blot. Protein levels for tyrosine hydroxylase peaked during the first year of life (p O-methyltransferase (p = 0.024 were significantly higher in neonates and infants as was catechol-O-methyltransferase protein (32 kDa, p = 0.027. In contrast, dopamine D1 receptor mRNA correlated positively with age (p = 0.002 and dopamine D1 receptor protein expression increased throughout development (p Conclusions We find distinct developmental changes in key components of the dopamine system in DLPFC over postnatal life. Those genes that are highly expressed during the first year of postnatal life may influence and orchestrate the early development of cortical neural circuitry while genes portraying a pattern of increasing expression with age may indicate a role in DLPFC maturation and attainment of adult levels of cognitive function.

  19. Prefrontal Cortical Inactivations Decrease Willingness to Expend Cognitive Effort on a Rodent Cost/Benefit Decision-Making Task

    OpenAIRE

    Hosking, Jay G.; Cocker, Paul J; Winstanley, Catharine A

    2015-01-01

    Personal success often necessitates expending greater effort for greater reward but, equally important, also requires judicious use of our limited cognitive resources (e.g., attention). Previous animal models have shown that the prelimbic (PL) and infralimbic (IL) regions of the prefrontal cortex (PFC) are not involved in (physical) effort-based choice, whereas human studies have demonstrated PFC contributions to (mental) effort. Here, we utilize the rat Cognitive Effort Task (rCET) to probe ...

  20. Increase in Prefrontal Cortical Volume following Cognitive Behavioural Therapy in Patients with Chronic Fatigue Syndrome

    Science.gov (United States)

    de Lange, Floris P.; Koers, Anda; Kalkman, Joke S.; Bleijenberg, Gijs; Hagoort, Peter; van der Meer, Jos W. M.; Toni, Ivan

    2008-01-01

    Chronic fatigue syndrome (CFS) is a disabling disorder, characterized by persistent or relapsing fatigue. Recent studies have detected a decrease in cortical grey matter volume in patients with CFS, but it is unclear whether this cerebral atrophy constitutes a cause or a consequence of the disease. Cognitive behavioural therapy (CBT) is an…

  1. Increase in prefrontal cortical volume following cognitive behavioural therapy in patients with chronic fatigue syndrome

    NARCIS (Netherlands)

    Lange, F.P. de; Koers, A.; Kalkman, J.S.; Bleijenberg, G.; Hagoort, Peter; Meer, J.W.M. van der; Toni, I.

    2008-01-01

    Chronic fatigue syndrome (CFS) is a disabling disorder, characterized by persistent or relapsing fatigue. Recent studies have detected a decrease in cortical grey matter volume in patients with CFS, but it is unclear whether this cerebral atrophy constitutes a cause or a consequence of the disease.

  2. Functional properties of human auditory cortical fields

    Directory of Open Access Journals (Sweden)

    David L Woods

    2010-12-01

    Full Text Available While auditory cortex in non-human primates has been subdivided into multiple functionally-specialized auditory cortical fields (ACFs, the boundaries and functional specialization of human ACFs have not been defined. In the current study, we evaluated whether a widely accepted primate model of auditory cortex could explain regional tuning properties of fMRI activations on the cortical surface to attended and nonattended tones of different frequency, location, and intensity. The limits of auditory cortex were defined by voxels that showed significant activations to nonattended sounds. Three centrally-located fields with mirror-symmetric tonotopic organization were identified and assigned to the three core fields of the primate model while surrounding activations were assigned to belt fields following procedures similar to those used in macaque fMRI studies. The functional properties of core, medial belt, and lateral belt field groups were then analyzed. Field groups were distinguished by tonotopic organization, frequency selectivity, intensity sensitivity, contralaterality, binaural enhancement, attentional modulation, and hemispheric asymmetry. In general, core fields showed greater sensitivity to sound properties than did belt fields, while belt fields showed greater attentional modulation than core fields. Significant distinctions in intensity sensitivity and contralaterality were seen between adjacent core fields A1 and R, while multiple differences in tuning properties were evident at boundaries between adjacent core and belt fields. The reliable differences in functional properties between fields and field groups suggest that the basic primate pattern of auditory cortex organization is preserved in humans. A comparison of the sizes of functionally-defined ACFs in humans and macaques reveals a significant relative expansion in human lateral belt fields implicated in the processing of speech.

  3. Multimodal connectivity mapping of the human left anterior and posterior lateral prefrontal cortex.

    Science.gov (United States)

    Reid, Andrew T; Bzdok, Danilo; Langner, Robert; Fox, Peter T; Laird, Angela R; Amunts, Katrin; Eickhoff, Simon B; Eickhoff, Claudia R

    2016-06-01

    Working memory is essential for many of our distinctly human abilities, including reasoning, problem solving, and planning. Research spanning many decades has helped to refine our understanding of this high-level function as comprising several hierarchically organized components, some which maintain information in the conscious mind, and others which manipulate and reorganize this information in useful ways. In the neocortex, these processes are likely implemented by a distributed frontoparietal network, with more posterior regions serving to maintain volatile information, and more anterior regions subserving the manipulation of this information. Recent meta-analytic findings have identified the anterior lateral prefrontal cortex, in particular, as being generally engaged by working memory tasks, while the posterior lateral prefrontal cortex was more strongly associated with the cognitive load required by these tasks. These findings suggest specific roles for these regions in the cognitive control processes underlying working memory. To further characterize these regions, we applied three distinct seed-based methods for determining cortical connectivity. Specifically, we employed meta-analytic connectivity mapping across task-based fMRI experiments, resting-state BOLD correlations, and VBM-based structural covariance. We found a frontoparietal pattern of convergence which strongly resembled the working memory networks identified in previous research. A contrast between anterior and posterior parts of the lateral prefrontal cortex revealed distinct connectivity patterns consistent with the idea of a hierarchical organization of frontoparietal networks. Moreover, we found a distributed network that was anticorrelated with the anterior seed region, which included most of the default mode network and a subcomponent related to social and emotional processing. These findings fit well with the internal attention model of working memory, in which representation of

  4. Control over stress accelerates extinction of drug seeking via prefrontal cortical activation

    Directory of Open Access Journals (Sweden)

    Michael V. Baratta

    2015-01-01

    Full Text Available Extinction is a form of inhibitory learning viewed as an essential process in suppressing conditioned responses to drug cues, yet there is little information concerning experiential variables that modulate its formation. Coping factors play an instrumental role in determining how adverse life events impact the transition from casual drug use to addiction. Here we provide evidence in rat that prior exposure to controllable stress accelerates the extinction of cocaine-seeking behavior relative to uncontrollable or no stress exposure. Subsequent experimentation using high-speed optogenetic tools determined if the infralimbic region (IL of the ventral medial prefrontal cortex mediates the impact of controllable stress on cocaine-seeking behavior. Photoinhibition of pyramidal neurons in the IL during coping behavior did not interfere with subject's ability to control the stressor, but prevented the later control-induced facilitation of extinction. These results provide strong evidence that the degree of behavioral control over adverse events, rather than adverse events per se, potently modulates the extinction of cocaine-seeking behavior, and that controllable stress engages prefrontal circuitry that primes future extinction learning.

  5. Functional reorganization of a prefrontal cortical network mediating consolidation of trace eyeblink conditioning.

    Science.gov (United States)

    Hattori, Shoai; Yoon, Taejib; Disterhoft, John F; Weiss, Craig

    2014-01-22

    The medial prefrontal cortex (mPFC) has been studied for its role in various cognitive functions, but the roles of its subregions remain unclear. We performed tetrode recordings simultaneously from prelimbic (PL) and rostral (rACC) and caudal (cACC) anterior cingulate subregions of the rabbit mPFC to understand their interactions during learning and tests of remote memory retention for whisker-signaled trace eyeblink conditioning. cACC neurons exhibited an innate response to the conditioning stimulus (CS) that rapidly decreased across sessions, suggesting an attentional role for facilitating CS-US associations. rACC neurons from conditioned rabbits exhibited robust responses to the CS that decreased within each session, possibly evaluating its emotional salience. PL neurons exhibited robust persistent activity during the trace interval during tests of remote memory retention, suggesting its involvement in retrieval and execution of a consolidated response. Mechanistically, conditioning was associated with a greater percentage of persistently responsive neurons than neurons from pseudoconditioned control rabbits, and responses differed significantly between trials with and without conditioned responses. Collectively, these responses reflect a functional reorganization of neural activity within the prefrontal network from an attentional mode to one that orchestrates the retrieval and execution of the learned response.

  6. Localized cortical chronic traumatic encephalopathy pathology after single, severe axonal injury in human brain.

    Science.gov (United States)

    Shively, Sharon B; Edgerton, Sarah L; Iacono, Diego; Purohit, Dushyant P; Qu, Bao-Xi; Haroutunian, Vahram; Davis, Kenneth L; Diaz-Arrastia, Ramon; Perl, Daniel P

    2017-03-01

    Chronic traumatic encephalopathy (CTE) is a neurodegenerative disease associated with repetitive mild impact traumatic brain injury from contact sports. Recently, a consensus panel defined the pathognomonic lesion for CTE as accumulations of abnormally hyperphosphorylated tau (p-tau) in neurons (neurofibrillary tangles), astrocytes and cell processes distributed around small blood vessels at sulcal depths in irregular patterns within the cortex. The pathophysiological mechanism for this lesion is unknown. Moreover, a subset of CTE cases harbors cortical β-amyloid plaques. In this study, we analyzed postmortem brain tissues from five institutionalized patients with schizophrenia and history of surgical leucotomy with subsequent survival of at least another 40 years. Because leucotomy involves severing axons bilaterally in prefrontal cortex, this surgical procedure represents a human model of single traumatic brain injury with severe axonal damage and no external impact. We examined cortical tissues at the leucotomy site and at both prefrontal cortex rostral and frontal cortex caudal to the leucotomy site. For comparison, we analyzed brain tissues at equivalent neuroanatomical sites from non-leucotomized patients with schizophrenia, matched in age and gender. All five leucotomy cases revealed severe white matter damage with dense astrogliosis at the axotomy site and also neurofibrillary tangles and p-tau immunoreactive neurites in the overlying gray matter. Four cases displayed p-tau immunoreactivity in neurons, astrocytes and cell processes encompassing blood vessels at cortical sulcal depths in irregular patterns, similar to CTE. The three cases with apolipoprotein E ε4 haplotype showed scattered β-amyloid plaques in the overlying gray matter, but not the two cases with apolipoprotein E ε3/3 genotype. Brain tissue samples from prefrontal cortex rostral and frontal cortex caudal to the leucotomy site, and all cortical samples from the non-leucotomized patients

  7. Inhibitory modulation of medial prefrontal cortical activation on lateral orbitofrontal cortex-amygdala information flow.

    Science.gov (United States)

    Chang, Chun-Hui; Ho, Ta-Wen

    2017-09-01

    The basolateral complex of the amygdala (BLA) receives input from the lateral orbitofrontal cortex (lOFC) for cue-outcome contingencies and the medial prefrontal cortex (mPFC) for emotion control. Here we examined how the mPFC modulates lOFC-BLA information flow. We found that the majority of BLA neurons responsive to lOFC stimulation were also responsive to mPFC stimulation. Activation of the mPFC exerted an inhibitory modulation of the lOFC-BLA pathway, which was reversed with intra-amygdala blockade of GABAergic receptors. mPFC tetanus potentiated the lOFC-BLA pathway, but did not alter its inhibitory modulatory gating. These results show that the mPFC potently inhibits lOFC drive of the BLA in a GABA-dependent manner, which is informative in understanding the normal and potential pathophysiological state of emotion and contingency associations in regulating behaviour. Several neocortical projections converge onto the basolateral complex of the amygdala (BLA), including the lateral orbitofrontal cortex (lOFC) and the medial prefrontal cortex (mPFC). Lateral orbitofrontal input to the BLA is important for cue-outcome contingencies, while medial prefrontal input is essential for emotion control. In this study, we examined how the mPFC, specifically the infralimbic division of the mPFC, modulates lOFC-BLA information flow, using combined in vivo extracellular single-unit recordings and pharmacological manipulations in anaesthetized rats. We found that the majority (over 95%) of BLA neurons that responded to lOFC stimulation also responded to mPFC stimulation. Compared to basal condition, pharmacological (N-methyl-d-aspartate) or electrical activation of the mPFC exerted an inhibitory modulation of the lOFC-BLA pathway, which was reversed with intra-amygdala blockade of GABAergic receptors with combined GABA A and GABA B antagonists (bicuculline and saclofen). Moreover, mPFC tetanus potentiated the lOFC-BLA pathway, but mPFC tetanus or low-frequency stimulation did

  8. Human cortical bone: the SINUPROS model.

    Science.gov (United States)

    Predoi-Racila, M; Crolet, J M

    2008-01-01

    Several modelizations have been investigated on human cortical bone in our team and we have often observed that the introduction of a new geometrical parameter induces significant perturbations on the numerical values obtained with previous models. We have therefore decided to take into account the totality of all possible parameters in a modelization which is physically and physiologically plausible. In order to do this, we have analyzed the architecture of cortical bone and exhibited all parameters that occur. To determine physical properties at each architectural level, the best adapted tool is without any doubt the mathematical theory of homogenization. All the necessary algorithms have been implemented into SINUPROS software (websites of the Universities). Its main interest is the evaluation of macroscopic physical properties for a given configuration. It can also be used to seek, by successive tests, configurations corresponding to properties experimentally measured. Computation time being too high (10 to 45 minutes according to tested configurations), a fast version based on approximation theory has been developed and thus the obtaining of the results is immediate. The researched configuration being thus obtained, it has then to be validated by the original version.

  9. Chronic stress effects on working memory: association with prefrontal cortical tyrosine hydroxylase.

    Science.gov (United States)

    Lee, Young-A; Goto, Yukiori

    2015-06-01

    Chronic stress causes deficits in cognitive function including working memory, for which transmission of such catecholamines as dopamine and noradrenaline transmission in the prefrontal cortex (PFC) are crucial. Since catecholamine synthesis depends on the rate-limiting enzyme, tyrosine hydroxylase (TH), TH is thought to play an important role in PFC function. In this study, we found that two distinct population existed in Sprague-Dawley rats in terms of working memory capacity, one with higher working memory capacity, and the other with low capacity. This distinction of working memory capacity became apparent after rats were exposed to chronic stress. In addition, such working memory capacity and alterations of working memory function by chronic stress were associated with TH expression in the PFC. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Task Specific versus Generalized Mnemonic Representations in Parietal and Prefrontal Cortices

    Science.gov (United States)

    Sarma, Arup; Masse, Nicolas Y.; Wang, Xiao-Jing; Freedman, David J.

    2016-01-01

    Our ability to learn a wide range of behavioral tasks is essential for responding appropriately to sensory stimuli according to behavioral demands, but the underlying neural mechanism has been rarely examined by neurophysiological recordings in the same subjects across learning. To understand how learning new behavioral tasks impacts underlying neuronal representations, we recorded from posterior parietal cortex (PPC) before and after training on a visual motion categorization task. Here we show that categorization training influenced cognitive encoding in PPC, with a marked enhancement of memory-related delay-period encoding during the categorization task which was absent during a motion discrimination task prior to categorization training. In contrast, the prefrontal cortex (PFC) exhibited strong delay-period encoding during both discrimination and categorization tasks. This reveals a dissociation between PFC’s and PPC’s roles in working memory, with general engagement of PFC across multiple tasks, in contrast with more task-specific mnemonic encoding in PPC. PMID:26595652

  11. Task-specific versus generalized mnemonic representations in parietal and prefrontal cortices.

    Science.gov (United States)

    Sarma, Arup; Masse, Nicolas Y; Wang, Xiao-Jing; Freedman, David J

    2016-01-01

    Our ability to learn a wide range of behavioral tasks is essential for responding appropriately to sensory stimuli according to behavioral demands, but the underlying neural mechanism has been rarely examined by neurophysiological recordings in the same subjects across learning. To understand how learning new behavioral tasks affects neuronal representations, we recorded from posterior parietal cortex (PPC) before and after training on a visual motion categorization task. We found that categorization training influenced cognitive encoding in PPC, with a marked enhancement of memory-related delay-period encoding during the categorization task that was absent during a motion discrimination task before categorization training. In contrast, the prefrontal cortex (PFC) exhibited strong delay-period encoding during both discrimination and categorization tasks. This reveals a dissociation between PFC's and PPC's roles in working memory, with general engagement of PFC across multiple tasks, in contrast with more task-specific mnemonic encoding in PPC.

  12. Excitability of prefrontal cortical pyramidal neurons is modulated by activation of intracellular type-2 cannabinoid receptors.

    Science.gov (United States)

    den Boon, Femke S; Chameau, Pascal; Schaafsma-Zhao, Qiluan; van Aken, Willem; Bari, Monica; Oddi, Sergio; Kruse, Chris G; Maccarrone, Mauro; Wadman, Wytse J; Werkman, Taco R

    2012-02-28

    The endocannabinoid (eCB) system is widely expressed throughout the central nervous system (CNS) and the functionality of type-1 cannabinoid receptors in neurons is well documented. In contrast, there is little knowledge about type-2 cannabinoid receptors (CB(2)Rs) in the CNS. Here, we show that CB(2)Rs are located intracellularly in layer II/III pyramidal cells of the rodent medial prefrontal cortex (mPFC) and that their activation results in IP(3)R-dependent opening of Ca(2+)-activated Cl(-) channels. To investigate the functional role of CB(2)R activation, we induced neuronal firing and observed a CB(2)R-mediated reduction in firing frequency. The description of this unique CB(2)R-mediated signaling pathway, controlling neuronal excitability, broadens our knowledge of the influence of the eCB system on brain function.

  13. NEURAL CORRELATES FOR APATHY: FRONTAL - PREFRONTAL AND PARIETAL CORTICAL - SUBCORTICAL CIRCUITS

    Directory of Open Access Journals (Sweden)

    Rita Moretti

    2016-12-01

    Full Text Available Apathy is an uncertain nosographical entity, which includes reduced motivation, abulia, decreased empathy, and lack of emotional invovlement; it is an important and heavy-burden clinical condition which strongly impacts in every day life events, affects the common daily living abilities, reduced the inner goal directed behavior, and gives the heaviest burden on caregivers. Is a quite common comorbidity of many neurological disease, However, there is no definite consensus on the role of apathy in clinical practice, no definite data on anatomical circuits involved in its development, and no definite instrument to detect it at bedside. As a general observation, the occurrence of apathy is connected to damage of prefrontal cortex (PFC and basal ganglia; emotional affective apathy may be related to the orbitomedial PFC and ventral striatum; cognitive apathy may be associated with dysfunction of lateral PFC and dorsal caudate nuclei; deficit of autoactivation may be due to bilateral lesions of the internal portion of globus pallidus, bilateral paramedian thalamic lesions, or the dorsomedial portion of PFC. On the other hand, apathy severity has been connected to neurofibrillary tangles density in the anterior cingulate gyrus and to grey matter atrophy in the anterior cingulate (ACC and in the left medial frontal cortex, confirmed by functional imaging studies. These neural networks are linked to projects, judjing and planning, execution and selection common actions, and through the basolateral amygdala and nucleus accumbens projects to the frontostriatal and to the dorsolateral prefrontal cortex. Therefore, an alteration of these circuitry caused a lack of insight, a reduction of decision-making strategies and a reduced speedness in action decsion, major resposnible for apathy. Emergent role concerns also the parietal cortex, with its direct action motivation control.We will discuss the importance of these circuits in different pathologies

  14. Neural Correlates for Apathy: Frontal-Prefrontal and Parietal Cortical- Subcortical Circuits

    Science.gov (United States)

    Moretti, Rita; Signori, Riccardo

    2016-01-01

    Apathy is an uncertain nosographical entity, which includes reduced motivation, abulia, decreased empathy, and lack of emotional involvement; it is an important and heavy-burden clinical condition which strongly impacts in everyday life events, affects the common daily living abilities, reduced the inner goal directed behavior, and gives the heaviest burden on caregivers. Is a quite common comorbidity of many neurological disease, However, there is no definite consensus on the role of apathy in clinical practice, no definite data on anatomical circuits involved in its development, and no definite instrument to detect it at bedside. As a general observation, the occurrence of apathy is connected to damage of prefrontal cortex (PFC) and basal ganglia; “emotional affective” apathy may be related to the orbitomedial PFC and ventral striatum; “cognitive apathy” may be associated with dysfunction of lateral PFC and dorsal caudate nuclei; deficit of “autoactivation” may be due to bilateral lesions of the internal portion of globus pallidus, bilateral paramedian thalamic lesions, or the dorsomedial portion of PFC. On the other hand, apathy severity has been connected to neurofibrillary tangles density in the anterior cingulate gyrus and to gray matter atrophy in the anterior cingulate (ACC) and in the left medial frontal cortex, confirmed by functional imaging studies. These neural networks are linked to projects, judjing and planning, execution and selection common actions, and through the basolateral amygdala and nucleus accumbens projects to the frontostriatal and to the dorsolateral prefrontal cortex. Therefore, an alteration of these circuitry caused a lack of insight, a reduction of decision-making strategies, and a reduced speedness in action decision, major responsible for apathy. Emergent role concerns also the parietal cortex, with its direct action motivation control. We will discuss the importance of these circuits in different pathologies

  15. Differential expression of cytoskeletal regulatory factors in the adolescent prefrontal cortex: Implications for cortical development.

    Science.gov (United States)

    Shapiro, Lauren P; Parsons, Ryan G; Koleske, Anthony J; Gourley, Shannon L

    2017-05-01

    The prevalence of depression, anxiety, schizophrenia, and drug and alcohol use disorders peaks during adolescence. Further, up to 50% of "adult" mental health disorders emerge in adolescence. During adolescence, the prefrontal cortex (PFC) undergoes dramatic structural reorganization, in which dendritic spines and synapses are refined, pruned, and stabilized. Understanding the molecular mechanisms that underlie these processes should help to identify factors that influence the development of psychiatric illness. Here we briefly discuss the anatomical connections of the medial and orbital prefrontal cortex (mPFC and OFC, respectively). We then present original findings suggesting that dendritic spines on deep-layer excitatory neurons in the mouse mPFC and OFC prune at different adolescent ages, with later pruning in the OFC. In parallel, we used Western blotting to define levels of several cytoskeletal regulatory proteins during early, mid-, and late adolescence, focusing on tropomyosin-related kinase receptor B (TrkB) and β1-integrin-containing receptors and select signaling partners. We identified regional differences in the levels of several proteins in early and midadolescence that then converged in early adulthood. We also observed age-related differences in TrkB levels, both full-length and truncated isoforms, Rho-kinase 2, and synaptophysin in both PFC subregions. Finally, we identified changes in protein levels in the dorsal and ventral hippocampus that were distinct from those in the PFC. We conclude with a general review of the manner in which TrkB- and β1-integrin-mediated signaling influences neuronal structure in the postnatal brain. Elucidating the role of cytoskeletal regulatory factors throughout adolescence may identify critical mechanisms of PFC development. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  16. Prefrontal cortical parvalbumin and somatostatin expression and cell density increase during adolescence and are modified by BDNF and sex.

    Science.gov (United States)

    Du, X; Serena, K; Hwang, W; Grech, A M; Wu, Y W C; Schroeder, A; Hill, R A

    2018-02-03

    Brain-derived neurotrophic factor (BDNF) is known to play a critical role early in the development of cortical GABAergic interneurons. Recently our laboratory and others have shown protracted development of specific subpopulations of GABAergic interneurons extending into adolescence. BDNF expression also changes significantly across adolescent development. However the role of BDNF in regulating GABAergic changes across adolescence remains unclear. Here, we performed a week-by-week analysis of the protein expression and cell density of three major GABAergic interneurons, parvalbumin (PV), somatostatin (SST) and calretinin (Cal) in the medial prefrontal cortex from prepubescence (week 3) to adulthood (week 12). In order to assess how BDNF and sex might influence the adolescent trajectory of GABAergic interneurons we compared WT as well as BDNF heterozygous (+/-) male and female mice. In both males and females PV expression increases during adolescent development in the mPFC. Compared to wild-types, PV expression was reduced in male but not female BDNF+/- mice throughout adolescent development. This reduction in protein expression corresponded with reduced cell density, specifically within the infralimbic prefrontal cortex. SST expression increased in early adolescent WT females and this upregulation was delayed in BDNF+/-. SST cell density also increased in early adolescent mPFC of WT female mice, with BDNF+/- again showing a reduced pattern of expression. Cal protein expression was also sex-dependently altered across adolescence with WT males showing a steady decline but that of BDNF+/- remaining unaltered. Reduced cell density in on the other hand was observed particularly in male BDNF+/- mice. In females, Cal protein expression and cell density remained largely stable. Our results show that PV, SST and calretinin interneurons are indeed still developing into early adolescence in the mPFC and that BDNF plays a critical, sex-specific role in mediating expression and

  17. Methylphenidate and Atomoxetine-Responsive Prefrontal Cortical Genetic Overlaps in "Impulsive" SHR/NCrl and Wistar Rats.

    Science.gov (United States)

    Dela Peña, Ike; Dela Peña, Irene Joy; de la Peña, June Bryan; Kim, Hee Jin; Shin, Chan Young; Han, Doug Hyun; Kim, Bung-Nyun; Ryu, Jong Hoon; Cheong, Jae Hoon

    2017-09-01

    Impulsivity, the predisposition to act prematurely without foresight, is associated with a number of neuropsychiatric disorders, including attention-deficit/hyperactivity disorder (ADHD). Identifying genetic underpinnings of impulsive behavior may help decipher the complex etiology and neurobiological factors of disorders marked by impulsivity. To identify potential genetic factors of impulsivity, we examined common differentially expressed genes (DEGs) in the prefrontal cortex (PFC) of adolescent SHR/NCrl and Wistar rats, which showed marked decrease in preference for the large but delayed reward, compared with WKY/NCrl rats, in the delay discounting task. Of these DEGs, we examined drug-responsive transcripts whose mRNA levels were altered following treatment (in SHR/NCrl and Wistar rats) with drugs that alleviate impulsivity, namely, the ADHD medications methylphenidate and atomoxetine. Prefrontal cortical genetic overlaps between SHR/NCrl and Wistar rats in comparison with WKY/NCrl included genes associated with transcription (e.g., Btg2, Fos, Nr4a2), synaptic plasticity (e.g., Arc, Homer2), and neuron apoptosis (Grik2, Nmnat1). Treatment with methylphenidate and/or atomoxetine increased choice of the large, delayed reward in SHR/NCrl and Wistar rats and changed, in varying degrees, mRNA levels of Nr4a2, Btg2, and Homer2, genes with previously described roles in neuropsychiatric disorders characterized by impulsivity. While further studies are required, we dissected potential genetic factors that may influence impulsivity by identifying genetic overlaps in the PFC of "impulsive" SHR/NCrl and Wistar rats. Notably, these are also drug-responsive transcripts which may be studied further as biomarkers to predict response to ADHD drugs, and as potential targets for the development of treatments to improve impulsivity.

  18. Relationship between neurotoxic kynurenine metabolites and reductions in right medial prefrontal cortical thickness in major depressive disorder.

    Science.gov (United States)

    Meier, Timothy B; Drevets, Wayne C; Wurfel, Brent E; Ford, Bart N; Morris, Harvey M; Victor, Teresa A; Bodurka, Jerzy; Teague, T Kent; Dantzer, Robert; Savitz, Jonathan

    2016-03-01

    Reductions in gray matter volume of the medial prefrontal cortex (mPFC), especially the rostral and subgenual anterior cingulate cortex (rACC, sgACC) are a widely reported finding in major depressive disorder (MDD). Inflammatory mediators, which are elevated in a subgroup of patients with MDD, activate the kynurenine metabolic pathway and increase production of neuroactive metabolites such as kynurenic acid (KynA), 3-hydroxykynurenine (3HK) and quinolinic acid (QA) which influence neuroplasticity. It is not known whether the alterations in brain structure and function observed in major depressive disorders are due to the direct effect of inflammatory mediators or the effects of neurotoxic kynurenine metabolites. Here, using partial posterior predictive distribution mediation analysis, we tested whether the serum concentrations of kynurenine pathway metabolites mediated reductions in cortical thickness in mPFC regions in MDD. Further, we tested whether any association between C-reactive protein (CRP) and cortical thickness would be mediated by kynurenine pathway metabolites. Seventy-three unmedicated subjects who met DSM-IV-TR criteria for MDD and 91 healthy controls (HC) completed MRI scanning using a pulse sequence optimized for tissue contrast resolution. Automated cortical parcellation was performed using the PALS-B12 Brodmann area atlas as implemented in FreeSurfer in order to compare the cortical thickness and cortical area of six PFC regions: Brodmann areas (BA) 9, 10, 11, 24, 25, and 32. Serum concentrations of kynurenine pathway metabolites were determined by high performance liquid chromatography (HPLC) with tandem mass spectrometry (MS/MS) detection, while high-sensitivity CRP concentration was measured immunoturbidimetrically. Compared with HCs, the MDD group showed a reduction in cortical thickness of the right BA24 (p<0.01) and BA32 (p<0.05) regions and MDD patients with a greater number of depressive episodes displayed thinner cortex in BA32 (p<0

  19. Evidence for cortical structural plasticity in humans after a day of waking and sleep deprivation.

    Science.gov (United States)

    Elvsåshagen, Torbjørn; Zak, Nathalia; Norbom, Linn B; Pedersen, Per Ø; Quraishi, Sophia H; Bjørnerud, Atle; Alnæs, Dag; Doan, Nhat Trung; Malt, Ulrik F; Groote, Inge R; Westlye, Lars T

    2017-08-01

    Sleep is an evolutionarily conserved process required for human health and functioning. Insufficient sleep causes impairments across cognitive domains, and sleep deprivation can have rapid antidepressive effects in mood disorders. However, the neurobiological effects of waking and sleep are not well understood. Recently, animal studies indicated that waking and sleep are associated with substantial cortical structural plasticity. Here, we hypothesized that structural plasticity can be observed after a day of waking and sleep deprivation in the human cerebral cortex. To test this hypothesis, 61 healthy adult males underwent structural magnetic resonance imaging (MRI) at three time points: in the morning after a regular night's sleep, the evening of the same day, and the next morning, either after total sleep deprivation (N=41) or a night of sleep (N=20). We found significantly increased right prefrontal cortical thickness from morning to evening across all participants. In addition, pairwise comparisons in the deprived group between the two morning scans showed significant thinning of mainly bilateral medial parietal cortices after 23h of sleep deprivation, including the precuneus and posterior cingulate cortex. However, there were no significant group (sleep vs. sleep deprived group) by time interactions and we can therefore not rule out that other mechanisms than sleep deprivation per se underlie the bilateral medial parietal cortical thinning observed in the deprived group. Nonetheless, these cortices are thought to subserve wakefulness, are among the brain regions with highest metabolic rate during wake, and are considered some of the most sensitive cortical regions to a variety of insults. Furthermore, greater thinning within the left medial parietal cluster was associated with increased sleepiness after sleep deprivation. Together, these findings add to a growing body of data showing rapid structural plasticity within the human cerebral cortex detectable with

  20. Alterations in visual cortical activation and connectivity with prefrontal cortex during working memory updating in major depressive disorder.

    Science.gov (United States)

    Le, Thang M; Borghi, John A; Kujawa, Autumn J; Klein, Daniel N; Leung, Hoi-Chung

    2017-01-01

    The present study examined the impacts of major depressive disorder (MDD) on visual and prefrontal cortical activity as well as their connectivity during visual working memory updating and related them to the core clinical features of the disorder. Impairment in working memory updating is typically associated with the retention of irrelevant negative information which can lead to persistent depressive mood and abnormal affect. However, performance deficits have been observed in MDD on tasks involving little or no demand on emotion processing, suggesting dysfunctions may also occur at the more basic level of information processing. Yet, it is unclear how various regions in the visual working memory circuit contribute to behavioral changes in MDD. We acquired functional magnetic resonance imaging data from 18 unmedicated participants with MDD and 21 age-matched healthy controls (CTL) while they performed a visual delayed recognition task with neutral faces and scenes as task stimuli. Selective working memory updating was manipulated by inserting a cue in the delay period to indicate which one or both of the two memorized stimuli (a face and a scene) would remain relevant for the recognition test. Our results revealed several key findings. Relative to the CTL group, the MDD group showed weaker postcue activations in visual association areas during selective maintenance of face and scene working memory. Across the MDD subjects, greater rumination and depressive symptoms were associated with more persistent activation and connectivity related to no-longer-relevant task information. Classification of postcue spatial activation patterns of the scene-related areas was also less consistent in the MDD subjects compared to the healthy controls. Such abnormalities appeared to result from a lack of updating effects in postcue functional connectivity between prefrontal and scene-related areas in the MDD group. In sum, disrupted working memory updating in MDD was revealed by

  1. Alterations in visual cortical activation and connectivity with prefrontal cortex during working memory updating in major depressive disorder

    Directory of Open Access Journals (Sweden)

    Thang M. Le

    2017-01-01

    Full Text Available The present study examined the impacts of major depressive disorder (MDD on visual and prefrontal cortical activity as well as their connectivity during visual working memory updating and related them to the core clinical features of the disorder. Impairment in working memory updating is typically associated with the retention of irrelevant negative information which can lead to persistent depressive mood and abnormal affect. However, performance deficits have been observed in MDD on tasks involving little or no demand on emotion processing, suggesting dysfunctions may also occur at the more basic level of information processing. Yet, it is unclear how various regions in the visual working memory circuit contribute to behavioral changes in MDD. We acquired functional magnetic resonance imaging data from 18 unmedicated participants with MDD and 21 age-matched healthy controls (CTL while they performed a visual delayed recognition task with neutral faces and scenes as task stimuli. Selective working memory updating was manipulated by inserting a cue in the delay period to indicate which one or both of the two memorized stimuli (a face and a scene would remain relevant for the recognition test. Our results revealed several key findings. Relative to the CTL group, the MDD group showed weaker postcue activations in visual association areas during selective maintenance of face and scene working memory. Across the MDD subjects, greater rumination and depressive symptoms were associated with more persistent activation and connectivity related to no-longer-relevant task information. Classification of postcue spatial activation patterns of the scene-related areas was also less consistent in the MDD subjects compared to the healthy controls. Such abnormalities appeared to result from a lack of updating effects in postcue functional connectivity between prefrontal and scene-related areas in the MDD group. In sum, disrupted working memory updating in MDD was

  2. Prefrontal cortical and striatal activity to happy and fear faces in bipolar disorder is associated with comorbid substance abuse and eating disorder

    Science.gov (United States)

    Hassel, Stefanie; Almeida, Jorge R.; Frank, Ellen; Versace, Amelia; Nau, Sharon A.; Klein, Crystal R.; Kupfer, David J.; Phillips, Mary L.

    2009-01-01

    Background The spectrum approach was used to examine contributions of comorbid symptom dimensions of substance abuse and eating disorder to abnormal prefrontal-cortical and subcortical-striatal activity to happy and fear faces previously demonstrated in bipolar disorder (BD). Method Fourteen remitted BD-type I and sixteen healthy individuals viewed neutral, mild and intense happy and fear faces in two event-related fMRI experiments. All individuals completed Substance-Use and Eating-Disorder Spectrum measures. Region-of-Interest analyses for bilateral prefrontal and subcortical-striatal regions were performed. Results BD individuals scored significantly higher on these spectrum measures than healthy individuals (p < 0.05), and were distinguished by activity in prefrontal and subcortical-striatal regions. BD relative to healthy individuals showed reduced dorsal prefrontal-cortical activity to all faces. Only BD individuals showed greater subcortical-striatal activity to happy and neutral faces. In BD individuals, negative correlations were shown between substance use severity and right PFC activity to intense happy faces (p < 0.04), and between substance use severity and right caudate nucleus activity to neutral faces (p < 0.03). Positive correlations were shown between eating disorder and right ventral putamen activity to intense happy (p < 0.02) and neutral faces (p < 0.03). Exploratory analyses revealed few significant relationships between illness variables and medication upon neural activity in BD individuals. Limitations Small sample size of predominantly medicated BD individuals. Conclusion This study is the first to report relationships between comorbid symptom dimensions of substance abuse and eating disorder and prefrontal-cortical and subcortical-striatal activity to facial expressions in BD. Our findings suggest that these comorbid features may contribute to observed patterns of functional abnormalities in neural systems underlying mood regulation in BD

  3. Patterns of coupled theta activity in amygdala-hippocampal-prefrontal cortical circuits during fear extinction.

    Directory of Open Access Journals (Sweden)

    Jörg Lesting

    Full Text Available Signals related to fear memory and extinction are processed within brain pathways involving the lateral amygdala (LA for formation of aversive stimulus associations, the CA1 area of the hippocampus for context-dependent modulation of these associations, and the infralimbic region of the medial prefrontal cortex (mPFC for extinction processes. While many studies have addressed the contribution of each of these modules individually, little is known about their interactions and how they function as an integrated system. Here we show, by combining multiple site local field potential (LFP and unit recordings in freely behaving mice in a fear conditioning paradigm, that theta oscillations may provide a means for temporally and functionally connecting these modules. Theta oscillations occurred with high specificity in the CA1-LA-mPFC network. Theta coupling increased between all areas during retrieval of conditioned fear, and declined during extinction learning. During extinction recall, theta coupling partly rebounded in LA-mPFC and CA1-mPFC, and remained at a low level in CA1-LA. Interfering with theta coupling through local electrical microstimulation in CA1-LA affected conditioned fear and extinction recall depending on theta phase. These results support the hypothesis that theta coupling provides a means for inter-areal coordination in conditioned behavioral responsiveness. More specifically, theta oscillations seem to contribute to a population code indicating conditioned stimuli during recall of fear memory before and after extinction.

  4. Morphological and behavioral evidence for impaired prefrontal cortical function in female CB1 receptor deficient mice.

    Science.gov (United States)

    Lee, Tiffany T-Y; Filipski, Sarah B; Hill, Matthew N; McEwen, Bruce S

    2014-09-01

    The medial prefrontal cortex (mPFC) is known to regulate higher order processes like cognitive flexibility. Accumulating behavioral evidence suggests that endocannabinoid (eCB) signaling regulates neuronal architecture within the PFC, as well as certain forms of cognitive flexibility; however, all of these studies have been performed in male rodents and it is currently unknown whether the eCB system performs a similar role in females. To this extent, dendritic morphology of layer II/III neurons in the infra- and prelimbic regions of the mPFC was analyzed and cognitive ability and flexibility in a fixed-platform Morris water maze task was assessed in adult female CB1 receptor knockout (CB1KO) mice. Similar to data generated in male mice, female mice exhibited no difference in acquisition relative to wildtype (WT); however, during reversal learning, CB1KO females spent more time in the original training quadrant and took significantly longer to learn the location of the new platform relative to WT. Within the mPFC, female mice had reduced length and complexity of layer II/III neurons within the prelimbic, but not infralimbic region of the PFC. Taken together, these findings indicate that the role of eCB signaling in cognitive flexibility is independent of sex and disrupted CB1 receptor signaling results in compromised structure and function of the PFC, at least within the prelimbic division. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Coordinated activation of premotor and ventromedial prefrontal cortices during vicarious reward.

    Science.gov (United States)

    Shimada, Sotaro; Matsumoto, Madoka; Takahashi, Hidefumi; Yomogida, Yukihito; Matsumoto, Kenji

    2016-03-01

    The vicarious reward we receive from watching likable others obtaining a positive outcome is a pervasive phenomenon, yet its neural correlates are poorly understood. Here, we conducted a series of functional magnetic resonance imaging experiments to test the hypothesis that the brain areas responsible for action observation and reward processing work in a coordinated fashion during vicarious reward. In the first experiment (manipulation phase), the participant was instructed to cheer for a particular player in a two-player competitive game (Rock-Paper-Scissors). This manipulation made participants feel more unity with that player and resulted in unity-related activation in the premotor area during action observation. In the following main experiment, the participant witnessed the previously cheered-for or non-cheered-for player succeed in a new solitary game (a stopwatch game). The ventromedial prefrontal cortex (vmPFC) was activated when the cheered-for player succeeded in the game but not when the other player did. Interestingly, this vmPFC activation was functionally connected with premotor activation only during the cheered-for player's success. These results suggest that vicarious reward is processed in the vmPFC-premotor network, which is activated specifically by the success of the other person with whom the individual feels unity and closeness. © The Author (2015). Published by Oxford University Press.

  6. Somal size of prefrontal cortical pyramidal neurons in schizophrenia: differential effects across neuronal subpopulations.

    Science.gov (United States)

    Pierri, Joseph N; Volk, Christine L E; Auh, Sungyoung; Sampson, Allan; Lewis, David A

    2003-07-15

    Cognitive dysfunction in schizophrenia may be related to morphologic abnormalities of pyramidal neurons in the dorsal prefrontal cortex (dPFC) and the largest pyramidal neurons in deep layer 3 may be most affected. Immunoreactivity (IR) for the nonphosphorylated epitopes of neurofilament protein (NNFP) identifies a subset of large dPFC deep layer 3 pyramidal neurons. We tested the hypotheses that the average size of NNFP-IR neurons is smaller in schizophrenia and that the decrease in size of these neurons is greater than that observed in the general population of deep layer 3 pyramidal neurons. We estimated the mean somal volume of NNFP-IR neurons in deep layer 3 of 9 in 13 matched pairs of control and schizophrenia subjects and compared the differences in somal size of NNFP-IR neurons to the differences in size of all deep layer 3 pyramidal neurons identified in Nissl-stained material. In subjects with schizophrenia, the somal volume of NNFP-IR neurons was nonsignificantly decreased by 6.6%, whereas that of the Nissl-stained pyramidal neurons was significantly decreased by 14.2%. These results suggest that the NNFP-IR subpopulation of dPFC pyramidal neurons are not preferentially affected in schizophrenia. Thus, a subpopulation of dPFC deep layer 3 pyramidal neurons, other than those identified by NNFP-IR, may be selectively vulnerable in schizophrenia.

  7. Self-esteem Modulates Medial Prefrontal Cortical Responses to Evaluative Social Feedback

    Science.gov (United States)

    Kelley, William M.; Heatherton, Todd F.

    2010-01-01

    Self-esteem is a facet of personality that influences perception of social standing and modulates the salience of social acceptance and rejection. As such, self-esteem may bias neural responses to positive and negative social feedback across individuals. During functional magnetic resonance imaging scanning, participants (n = 42) engaged in a social evaluation task whereby they ostensibly received feedback from peers indicating they were liked or disliked. Results demonstrated that individuals with low self-esteem believed that they received less positive feedback from others and showed enhanced activity to positive versus negative social feedback in the ventral anterior cingulate cortex/medial prefrontal cortex (vACC/mPFC). By contrast, vACC/mPFC activity was insensitive to positive versus negative feedback in individuals with high self-esteem, and these individuals consistently overestimated the amount of positive feedback received from peers. Voxelwise analyses supported these findings; lower self-esteem predicted a linear increase in vACC/mPFC response to positive versus negative social feedback. Taken together, the present findings propose a functional role for the vACC/mPFC in representing the salience of social feedback and shaping perceptions of relative social standing. PMID:20351022

  8. The human cerebral cortex is neither one nor many: neuronal distribution reveals two quantitatively different zones in the gray matter, three in the white matter, and explains local variations in cortical folding

    Science.gov (United States)

    Ribeiro, Pedro F. M.; Ventura-Antunes, Lissa; Gabi, Mariana; Mota, Bruno; Grinberg, Lea T.; Farfel, José M.; Ferretti-Rebustini, Renata E. L.; Leite, Renata E. P.; Filho, Wilson J.; Herculano-Houzel, Suzana

    2013-01-01

    The human prefrontal cortex has been considered different in several aspects and relatively enlarged compared to the rest of the cortical areas. Here we determine whether the white and gray matter of the prefrontal portion of the human cerebral cortex have similar or different cellular compositions relative to the rest of the cortical regions by applying the Isotropic Fractionator to analyze the distribution of neurons along the entire anteroposterior axis of the cortex, and its relationship with the degree of gyrification, number of neurons under the cortical surface, and other parameters. The prefrontal region shares with the remainder of the cerebral cortex (except for occipital cortex) the same relationship between cortical volume and number of neurons. In contrast, both occipital and prefrontal areas vary from other cortical areas in their connectivity through the white matter, with a systematic reduction of cortical connectivity through the white matter and an increase of the mean axon caliber along the anteroposterior axis. These two parameters explain local differences in the distribution of neurons underneath the cortical surface. We also show that local variations in cortical folding are neither a function of local numbers of neurons nor of cortical thickness, but correlate with properties of the white matter, and are best explained by the folding of the white matter surface. Our results suggest that the human cerebral cortex is divided in two zones (occipital and non-occipital) that differ in how neurons are distributed across their gray matter volume and in three zones (prefrontal, occipital, and non-occipital) that differ in how neurons are connected through the white matter. Thus, the human prefrontal cortex has the largest fraction of neuronal connectivity through the white matter and the smallest average axonal caliber in the white matter within the cortex, although its neuronal composition fits the pattern found for other, non-occipital areas. PMID

  9. The human cerebral cortex is neither one nor many: Neuronal distribution reveals two quantitatively different zones in the grey matter, three in the white matter, and explains local variations in cortical folding

    Directory of Open Access Journals (Sweden)

    Pedro F. M. Ribeiro

    2013-09-01

    Full Text Available The human prefrontal cortex has been considered different in several aspects and relatively enlarged compared to the rest of the cortical areas. Here we determine whether the white and gray matter of the prefrontal portion of the human cerebral cortex have similar or different cellular compositions relative to the rest of the cortical regions by applying the Isotropic Fractionator to analyze the distribution of neurons along the entire anteroposterior axis of the cortex, and its relationship with the degree of gyrification, number of neurons under the cortical surface, and other parameters. The prefrontal region shares with the remainder of the cerebral cortex (except for occipital cortex the same relationship between cortical volume and number of neurons. In contrast, both occipital and prefrontal areas vary from other cortical areas in their connectivity through the white matter, with a systematic reduction of cortical connectivity through the white matter and an increase of the mean axon caliber along the anteroposterior axis. These two parameters explain local differences in the distribution of neurons underneath the cortical surface. We also show that local variations in cortical folding are neither a function of local numbers of neurons nor of cortical thickness, but correlate with properties of the white matter, and are best explained by the folding of the white matter surface. Our results suggest that the human cerebral cortex is divided in two zones (occipital and non-occipital that differ in how neurons distributed across their grey matter volume and in three zones (prefrontal, occipital, and non-occipital that differ in how neurons are connected through the white matter. Thus, the human prefrontal cortex has the largest fraction of neuronal connectivity through the white matter and the smallest average axonal caliber in the white matter within the cortex, although its neuronal composition fits the pattern found for other, non

  10. Behavioral and cognitive effects produced by electrical stimulation in the medial prefrontal cortex: an experimental model for high cortical activation.

    Science.gov (United States)

    Penna, A M; Lee, S Y; Scheidegger da Silva, L; Oliveira, R W; de Freitas Gomes, C; Nakamura-PalaciosEM

    1998-11-01

    An electrical stimulation (ES) session with ten 30-second trains of sine-wave stimuli (30-100 microA, 60 Hz) separated by 30-second intervals was conducted daily in rats with electrodes implanted in the left or right or in both sides of the medial prefrontal cortex (PFC; B = + 2 mmA, + or -0.6 unilateral or 1 mmL bilateral, + 2.7 mmV). The unilateral and bilateral ES in the medial PFC produced abnormal behaviors such as circling spying, body stretching and immobility, and did not affect either the acquisition or the performance of delayed tasks in the 8-arm radial maze conducted 8-10 h after the ES session. However, animals that showed convulsions when the bilateral ES was applied in the medial PFC showed significant deficits in spatial learning and in the performance of short-term (5-second delay) and long-term (1-hour delay) working memory. The behavioral and cognitive effects induced by repeated episodic ES in the medial PFC provide an experimental model to study the effects of increased cortical activation on cognitive processes.

  11. In favor of general probability distributions: lateral prefrontal and insular cortices respond to stimulus inherent, but irrelevant differences.

    Science.gov (United States)

    Mestres-Missé, Anna; Trampel, Robert; Turner, Robert; Kotz, Sonja A

    2016-04-01

    A key aspect of optimal behavior is the ability to predict what will come next. To achieve this, we must have a fairly good idea of the probability of occurrence of possible outcomes. This is based both on prior knowledge about a particular or similar situation and on immediately relevant new information. One question that arises is: when considering converging prior probability and external evidence, is the most probable outcome selected or does the brain represent degrees of uncertainty, even highly improbable ones? Using functional magnetic resonance imaging, the current study explored these possibilities by contrasting words that differ in their probability of occurrence, namely, unbalanced ambiguous words and unambiguous words. Unbalanced ambiguous words have a strong frequency-based bias towards one meaning, while unambiguous words have only one meaning. The current results reveal larger activation in lateral prefrontal and insular cortices in response to dominant ambiguous compared to unambiguous words even when prior and contextual information biases one interpretation only. These results suggest a probability distribution, whereby all outcomes and their associated probabilities of occurrence--even if very low--are represented and maintained.

  12. Positively valenced stimuli facilitate creative novel metaphoric processes by enhancing medial prefrontal cortical activation.

    Science.gov (United States)

    Subramaniam, Karuna; Beeman, Mark; Faust, Miriam; Mashal, Nira

    2013-01-01

    A metaphor is a figure of speech in which a subject is symbolic of another unrelated object. In the present study, we examined neural patterns associated with both novel unfamiliar and conventional familiar metaphoric processing, and how these patterns are modulated by affective valence. Prior to fMRI scanning, participants received a list of word pairs (novel unfamiliar metaphors as well as conventional familiar metaphors) and were asked to denote the valence (positive, negative, or neutral) of each word pair. During scanning, participants had to decide whether the word pairs formed meaningful or meaningless expressions. Results indicate that participants were faster and more accurate at deciding that positively valenced metaphors were meaningful compared to neutral metaphors. These behavioral findings were accompanied by increased activation in the medial prefrontal cortex (mPFC), posterior cingulate cortex (PCC), and the right inferior parietal lobe (RIPL). Specifically, positively valenced novel unfamiliar metaphors elicited activation in these brain regions in addition to the left superior temporal gyrus when compared to neutral novel metaphors. We also found that the mPFC and PCC mediated the processing of positively valenced metaphors when compared to negatively valenced metaphors. Positively valenced conventional metaphors, however, elicited different neural signatures when contrasted with either neutral or negatively valenced conventional metaphors. Together, our results indicate that positively valenced stimuli facilitate creative metaphoric processes (specifically novel metaphoric processes) by mediating attention and cognitive control processes required for the access, integration, and selection of semantic associations via modulation of the mPFC. The present study is important for the development of neural accounts of emotion-cognition interactions required for creativity, language, and successful social functioning in general.

  13. The effect of disruption of prefrontal cortical function with transcranial magnetic stimulation on visual working memory

    Directory of Open Access Journals (Sweden)

    Elizabeth S Lorenc

    2015-12-01

    Full Text Available It is proposed that feedback signals from the prefrontal cortex (PFC to extrastriate cortex are essential for goal-directed processing, maintenance, and selection of information in visual working memory (VWM. In a previous study, we found that disruption of PFC function with transcranial magnetic stimulation (TMS in healthy individuals impaired behavioral performance on a face/scene matching task and decreased category-specific tuning in extrastriate cortex as measured with functional magnetic resonance imaging (fMRI. In this study, we investigated the effect of disruption of left inferior frontal gyrus (IFG function on the fidelity of neural representations of two distinct information codes: (1 the stimulus category and (2 the goal-relevance of viewed stimuli. During fMRI scanning, subjects were presented face and scene images in pseudo-random order and instructed to remember either faces or scenes. Within both anatomical and functional regions of interest, a multi-voxel pattern classifier was used to quantitatively assess the fidelity of activity patterns representing stimulus category: whether a face or a scene was presented on each trial, and goal relevance, whether the presented image was task relevant (i.e. a face is relevant in a Remember Faces block, but irrelevant in a Remember Scenes block. We found a reduction in the fidelity of the stimulus category code in visual cortex after left IFG disruption, providing causal evidence that lateral PFC modulates object category codes in visual cortex during VWM. In addition, we found that IFG disruption caused a reduction in the fidelity of the goal relevance code in a distributed set of brain regions. These results suggest that the IFG is involved in determining the task-relevance of visual input and communicating that information to a network of regions involved in further processing during VWM. Finally, we found that participants who exhibited greater fidelity of the goal relevance code in the

  14. Basal Dendritic Morphology of Cortical Pyramidal Neurons in Williams Syndrome: Prefrontal Cortex and Beyond

    Directory of Open Access Journals (Sweden)

    Branka Hrvoj-Mihic

    2017-08-01

    Full Text Available Williams syndrome (WS is a unique neurodevelopmental disorder with a specific behavioral and cognitive profile, which includes hyperaffiliative behavior, poor social judgment, and lack of social inhibition. Here we examined the morphology of basal dendrites on pyramidal neurons in the cortex of two rare adult subjects with WS. Specifically, we examined two areas in the prefrontal cortex (PFC—the frontal pole (Brodmann area 10 and the orbitofrontal cortex (Brodmann area 11—and three areas in the motor, sensory, and visual cortex (BA 4, BA 3-1-2, BA 18. The findings suggest that the morphology of basal dendrites on the pyramidal neurons is altered in the cortex of WS, with differences that were layer-specific, more prominent in PFC areas, and displayed an overall pattern of dendritic organization that differentiates WS from other disorders. In particular, and unlike what was expected based on typically developing brains, basal dendrites in the two PFC areas did not display longer and more branched dendrites compared to motor, sensory and visual areas. Moreover, dendritic branching, dendritic length, and the number of dendritic spines differed little within PFC and between the central executive region (BA 10 and BA 11 that is part of the orbitofrontal region involved into emotional processing. In contrast, the relationship between the degree of neuronal branching in supra- versus infra-granular layers was spared in WS. Although this study utilized tissue held in formalin for a prolonged period of time and the number of neurons available for analysis was limited, our findings indicate that WS cortex, similar to that in other neurodevelopmental disorders such as Down syndrome, Rett syndrome, Fragile X, and idiopathic autism, has altered morphology of basal dendrites on pyramidal neurons, which appears more prominent in selected areas of the PFC. Results were examined from developmental perspectives and discussed in the context of other

  15. Functional organization and visual representations in human ventral lateral prefrontal cortex

    Directory of Open Access Journals (Sweden)

    Annie Wai Yiu Chan

    2013-07-01

    Full Text Available Recent neuroimaging studies in both human and non-human primates have identified face selective activation in the ventral lateral prefrontal cortex even in the absence of working memory demands. Further, research has suggested that this face-selective response is largely driven by the presence of the eyes. However, the nature and origin of visual category responses in the ventral lateral prefrontal cortex remain unclear. Further, in a broader sense, how do these findings relate to our current understandings of lateral prefrontal cortex? What do these findings tell us about the underlying function and organization principles of the ventral lateral prefrontal cortex? What is the future direction for investigating visual representations in this cortex? This review focuses on the function, topography, and circuitry of the ventral lateral prefrontal cortex to enhance our understanding of the evolution and development of this cortex.

  16. Reduced dorsolateral prefrontal cortical hemodynamic response in adult obsessive-compulsive disorder as measured by near-infrared spectroscopy during the verbal fluency task

    Directory of Open Access Journals (Sweden)

    Hirosawa R

    2013-07-01

    left and right dorsolateral prefrontal cortex and frontopolar areas. Results: During the verbal fluency task, significant task-related activation was detected in both the OCD group and the controls. Changes in oxygenated hemoglobin concentration in the right dorsolateral prefrontal cortex were significantly smaller in the OCD group than in the controls, but were not statistically significant after correction for multiple comparisons. Conclusion: Patients with OCD have reduced prefrontal, especially right dorsolateral prefrontal, cortical hemodynamic responses as measured by near-infrared spectroscopy during the verbal fluency task. These results support the hypothesis that the dorsolateral prefrontal cortex plays a role in the pathophysiology of OCD. Keywords: functional neuroimaging, near-infrared spectroscopy, obsessive-compulsive disorder, prefrontal hemodynamic response, verbal fluency task, dorsolateral prefrontal cortex

  17. Reproductive experience does not persistently alter prefrontal cortical-dependent learning but does alter strategy use dependent on estrous phase.

    Science.gov (United States)

    Workman, Joanna L; Crozier, Tamara; Lieblich, Stephanie E; Galea, Liisa A M

    2013-08-01

    Reproductive experiences in females comprise substantial hormonal and experiential changes and can exert long lasting changes in cognitive function, stress physiology, and brain plasticity. The goal of this research was to determine whether prior reproductive experience could alter a prefrontal-cortical dependent form of learning (strategy set shifting) in an operant box. In this study, female Sprague-Dawley rats were mated and mothered once or twice to produce either primiparous or biparous dams, respectively. Age-matched nulliparous controls (reproductively-naïve females with no exposure to pup cues) were also used. Maternal behaviors were also assessed to determine whether these factors would predict cognitive flexibility. For strategy set shifting, rats were trained in a visual-cue discrimination task on the first day and on the following day, were required to switch to a response strategy to obtain a reward. We also investigated a simpler form of behavioral flexibility (reversal learning) in which rats were trained to press a lever on one side of the box the first day, and on the following day, were required to press the opposite lever to obtain a reward. Estrous phase was determined daily after testing. Neither parity nor estrous phase altered total errors or trials to reach criterion in either the set-shifting or reversal-learning tasks, suggesting that PFC-dependent cognitive performance remains largely stable after 1 or 2 reproductive experiences. However, parity and estrous phase interacted to alter the frequency of particular error types, with biparous rats in estrus committing more perseverative but fewer regressive errors during the set-shifting task. This suggests that parity and estrous phase interfere with the ability to disengage from a previously used, but no longer relevant strategy. These data also suggest that parity alters the behavioral sensitivity to ovarian hormones without changing overall performance. Copyright © 2013 Elsevier Inc. All

  18. Clinical and electrophysiological outcomes of deep TMS over the medial prefrontal and anterior cingulate cortices in OCD patients.

    Science.gov (United States)

    Carmi, Lior; Alyagon, Uri; Barnea-Ygael, Noam; Zohar, Joseph; Dar, Reuven; Zangen, Abraham

    Obsessive Compulsive Disorder (OCD) is a chronic and disabling disorder with poor response to pharmacological treatments. Converging evidences suggest that OCD patients suffer from dysfunction of the cortico-striato-thalamo-cortical (CSTC) circuit, including in the medial prefrontal cortex (mPFC) and the anterior cingulate cortex (ACC). To examine whether modulation of mPFC-ACC activity by deep transcranial magnetic stimulation (DTMS) affects OCD symptoms. Treatment resistant OCD participants were treated with either high-frequency (HF; 20 Hz), low-frequency (LF; 1 Hz), or sham DTMS of the mPFC and ACC for five weeks, in a double-blinded manner. All treatments were administered following symptoms provocation, and EEG measurements during a Stroop task were acquired to examine changes in error-related activity. Clinical response to treatment was determined using the Yale-Brown-Obsessive-Compulsive Scale (YBOCS). Interim analysis revealed that YBOCS scores were significantly improved following HF (n = 7), but not LF stimulation (n = 8), compared to sham (n = 8), and thus recruitment for the LF group was terminated. Following completion of the study, the response rate in the HF group (n = 18) was significantly higher than that of the sham group (n = 15) for at least one month following the end of the treatment. Notably, the clinical response in the HF group correlated with increased Error Related Negativity (ERN) in the Stroop task, an electrophysiological component that is attributed to ACC activity. HF DTMS over the mPFC-ACC alleviates OCD symptoms and may be used as a novel therapeutic intervention. Notwithstanding alternative explanations, this may stem from DTMS ability to directly modify ACC activity. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Exon microarray analysis of human dorsolateral prefrontal cortex in alcoholism.

    Science.gov (United States)

    Manzardo, Ann M; Gunewardena, Sumedha; Wang, Kun; Butler, Merlin G

    2014-06-01

    Alcohol abuse is associated with cellular and biochemical disturbances that impact upon protein and nucleic acid synthesis, brain development, function, and behavioral responses. To further characterize the genetic influences in alcoholism and the effects of alcohol consumption on gene expression, we used a highly sensitive exon microarray to examine mRNA expression in human frontal cortex of alcoholics and control males. Messenger RNA was isolated from the dorsolateral prefrontal cortex (dlPFC; Brodmann area 9) of 7 adult alcoholic (6 males, 1 female, mean age 49 years) and 7 matched controls. Affymetrix Human Exon 1.0 ST array was performed according to standard procedures and the results analyzed at the gene level. Microarray findings were validated using quantitative reverse transcription polymerase chain reaction, and the ontology of disturbed genes characterized using Ingenuity Pathway Analysis (IPA). Decreased mRNA expression was observed for genes involved in cellular adhesion (e.g., CTNNA3, ITGA2), transport (e.g., TF, ABCA8), nervous system development (e.g., LRP2, UGT8, GLDN), and signaling (e.g., RASGRP3, LGR5) with influence over lipid and myelin synthesis (e.g., ASPA, ENPP2, KLK6). IPA identified disturbances in network functions associated with neurological disease and development including cellular assembly and organization impacting on psychological disorders. Our data in alcoholism support a reduction in expression of dlPFC mRNA for genes involved with neuronal growth, differentiation, and signaling that targets white matter of the brain. Copyright © 2014 by the Research Society on Alcoholism.

  20. Distribution of Alox15 in the Rat Brain and Its Role in Prefrontal Cortical Resolvin D1 Formation and Spatial Working Memory.

    Science.gov (United States)

    Shalini, Suku-Maran; Ho, Christabel Fung-Yih; Ng, Yee-Kong; Tong, Jie-Xin; Ong, Eng-Shi; Herr, Deron R; Dawe, Gavin S; Ong, Wei-Yi

    2017-02-08

    Docosahexaenoic acid (DHA) is enriched in membrane phospholipids of the central nervous system (CNS) and has a role in aging and neuropsychiatric disorders. DHA is metabolized by the enzyme Alox15 to 17S-hydroxy-DHA, which is then converted to 7S-hydroperoxy,17S-hydroxy-DHA by a 5-lipoxygenase, and thence via epoxy intermediates to the anti-inflammatory molecule, resolvin D1 (RvD1 or 7S,8R,17S-trihydroxy-docosa-Z,9E,11E,13Z,15E,19Z-hexaenoic acid). In this study, we investigated the distribution and function of Alox15 in the CNS. RT-PCR of the CNS showed that the prefrontal cortex exhibits the highest Alox15 mRNA expression level, followed by the parietal association cortex and secondary auditory cortex, olfactory bulb, motor and somatosensory cortices, and the hippocampus. Western blot analysis was consistent with RT-PCR data, in that the prefrontal cortex, cerebral cortex, hippocampus, and olfactory bulb had high Alox15 protein expression. Immunohistochemistry showed moderate staining in the olfactory bulb, cerebral cortex, septum, striatum, cerebellar cortex, cochlear nuclei, spinal trigeminal nucleus, and dorsal horn of the spinal cord. Immuno-electron microscopy showed localization of Alox15 in dendrites, in the prefrontal cortex. Liquid chromatography mass spectrometry analysis showed significant decrease in resolvin D1 levels in the prefrontal cortex after inhibition or antisense knockdown of Alox15. Alox15 inhibition or antisense knockdown in the prefrontal cortex also blocked long-term potentiation of the hippocampo-prefrontal cortex pathway and increased errors in alternation, in the T-maze test. They indicate that Alox15 processing of DHA contributes to production of resolvin D1 and LTP at hippocampo-prefrontal cortical synapses and associated spatial working memory performance. Together, results provide evidence for a key role of anti-inflammatory molecules generated by Alox15 and DHA, such as resolvin D1, in memory. They suggest that neuroinflammatory

  1. Segregation of the human medial prefrontal cortex in social cognition

    Directory of Open Access Journals (Sweden)

    Danilo eBzdok

    2013-05-01

    Full Text Available While the human medial prefrontal cortex (mPFC is widely believed to be a key node of neural networks relevant for socio-emotional processing, its functional subspecialization is still poorly understood. We thus revisited the often assumed differentiation of the mPFC in social cognition along its ventral-dorsal axis. Our neuroinformatic analysis was based on a neuroimaging meta-analysis of perspective-taking that yielded two separate clusters in the ventral and dorsal mPFC, respectively. We determined each seed region’s brain-wide interaction pattern by two complementary measures of functional connectivity: co-activation across a wide range of neuroimaging studies archived in the BrainMap database and correlated signal fluctuations during unconstrained (resting cognition. Furthermore, we characterized the functions associated with these two regions using the BrainMap database. Across methods, the ventral mPFC was more strongly connected with the nucleus accumbens, hippocampus, posterior cingulate cortex, and retrosplenial cortex, while the dorsal mPFC was more strongly connected with the inferior frontal gyrus, temporo-parietal junction, and middle temporal gyrus. Further, the ventral mPFC was selectively associated with action execution, olfaction, and reward related tasks, while the dorsal mPFC was selectively associated with perspective-taking and episodic memory retrieval. The ventral mPFC is therefore predominantly involved in sensory-driven, approach/avoidance-modulating, and evaluation-related processing, whereas the dorsal mPFC is predominantly involved in internally driven, memory-informed, and metacognition-related processing in social cognition.

  2. Cortical inhibition of distinct mechanisms in the dorsolateral prefrontal cortex is related to working memory performance: a TMS-EEG study.

    Science.gov (United States)

    Rogasch, Nigel C; Daskalakis, Zafiris J; Fitzgerald, Paul B

    2015-03-01

    Paired-pulse transcranial magnetic stimulation combined with electroencephalography (TMS-EEG) is a method for studying cortical inhibition from the dorsolateral prefrontal cortex (DLPFC). However, little is known about the mechanisms underlying TMS-evoked cortical potentials (TEPs) from this region, let alone inhibition of these components. The aim of this study was to assess cortical inhibition of distinct TEPs and oscillations in the DLPFC using TMS-EEG and to investigate the relationship of these mechanisms to working memory. 30 healthy volunteers received single and paired (interstimulus interval = 100 msec) TMS to the left DLPFC. Variations in long-interval cortical inhibition (LICI) of different TEP peaks (N40, P60, N100) and different TMS-evoked oscillations (alpha, lower beta, upper beta, gamma) were compared between individuals. Variation in N100 slope following single pulse TMS, another putative marker of inhibition, was also compared with LICI of each measure. Finally, these measures were correlated with performance of a working memory task. LICI resulted in significant suppression of all TEP peaks and TMS-evoked oscillations (all p Variation in N100 slope correlated with LICI of N40 and beta oscillations. In addition, LICI of P60 and N100 were differentially correlated with working memory performance. The results suggest that both the LICI paradigm and N100 following single pulse TMS reflect complementary methods for assessing GABAB-mediated cortical inhibition in the DLPFC. Furthermore, these measures demonstrate the importance of prefrontal GABAB-mediated inhibitory control for working memory performance. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Investigating the Usability and Acute Effects of a Bedside Video Console to Prefrontal Cortical Activity Alterations: A Preclinical Study in Healthy Elderly.

    Science.gov (United States)

    Knols, Ruud H; Swanenburg, Jaap; De Bon, Dino; Gennaro, Federico; Wolf, Martin; Krüger, Bernard; Bettex, Dominique; de Bruin, Eling D

    2017-01-01

    Elderly people at risk of developing cognitive decline; e.g., following surgery, may benefit from structured, challenging, and repetitive cognitive video training. This study assessed usability and acute effects of a newly developed bedside console (COPHYCON). Fifteen healthy elderly individuals performed a one-time 80-min intervention, including cognitive video games aimed at improving awareness and selective attention. Perceived usefulness and perceived ease of use (Technology Acceptance Model) were assessed together with measures of the achieved game level, reaction times, (in-) correct responses during ALERT and SELECT game play. Further, prefrontal cortical involvement of the regional cerebral hemoglobin saturation (rS02%) assessed with functional near infrared spectroscopy (fNIRS) (n = 5) and EEG power (n = 10) was analyzed. All participants completed the study without any adverse events. Perceived usefulness and perceived ease of use (TAM scores range 1-7) of the system varied between 3.9 and 6.3. The game levels reached for awareness varied between 9 and 11 (initial score 8-10), for reaction speed between 439 and 469 ms, and for correct responses between 74.1 and 78.8%. The highest level for the selective attention games was 2 (initial score 1), where reaction speed varied between 439 and 469 ms, correct responses between 96.2 and 98.5%, respectively. The decrease of rS02% in the right prefrontal cortex during gameplay was significantly (p games (p games. EEG recordings of theta power significantly decreased in the averaged ~0.25-0.75 time interval for the left prefrontal cortex sensor across the cognitive game levels between the ALERT 1 and SELECT 1, as well as between SELECT 1 and 2 games. Participants rated the usability of the COPHYCON training positively. Further results indicate that video gaming may be an effective measure to affect prefrontal cortical functioning in elderly. The results warrant a clinical explorative study investigating the

  4. Phineas gauged: decision-making and the human prefrontal cortex

    NARCIS (Netherlands)

    Sanfey, A.G.; Hastie, R.; Colvin, M.K.; Grafman, J.

    2003-01-01

    Poor social judgment and decision-making abilities have often been attributed to people who have suffered injury to the ventromedial prefrontal cortex (VMPFC). However, few laboratory tests of decision-making have been conducted on these patients. The exception to this is the Iowa Gambling Task

  5. Human Auditory Processing: Insights from Cortical Event-related Potentials

    Directory of Open Access Journals (Sweden)

    Alexandra P. Key

    2016-04-01

    Full Text Available Human communication and language skills rely heavily on the ability to detect and process auditory inputs. This paper reviews possible applications of the event-related potential (ERP technique to the study of cortical mechanisms supporting human auditory processing, including speech stimuli. Following a brief introduction to the ERP methodology, the remaining sections focus on demonstrating how ERPs can be used in humans to address research questions related to cortical organization, maturation and plasticity, as well as the effects of sensory deprivation, and multisensory interactions. The review is intended to serve as a primer for researchers interested in using ERPs for the study of the human auditory system.

  6. Stress amplifies sex differences in primate prefrontal profiles of gene expression.

    Science.gov (United States)

    Lee, Alex G; Hagenauer, Megan; Absher, Devin; Morrison, Kathleen E; Bale, Tracy L; Myers, Richard M; Watson, Stanley J; Akil, Huda; Schatzberg, Alan F; Lyons, David M

    2017-11-02

    Stress is a recognized risk factor for mood and anxiety disorders that occur more often in women than men. Prefrontal brain regions mediate stress coping, cognitive control, and emotion. Here, we investigate sex differences and stress effects on prefrontal cortical profiles of gene expression in squirrel monkey adults. Dorsolateral, ventrolateral, and ventromedial prefrontal cortical regions from 18 females and 12 males were collected after stress or no-stress treatment conditions. Gene expression profiles were acquired using HumanHT-12v4.0 Expression BeadChip arrays adapted for squirrel monkeys. Extensive variation between prefrontal cortical regions was discerned in the expression of numerous autosomal and sex chromosome genes. Robust sex differences were also identified across prefrontal cortical regions in the expression of mostly autosomal genes. Genes with increased expression in females compared to males were overrepresented in mitogen-activated protein kinase and neurotrophin signaling pathways. Many fewer genes with increased expression in males compared to females were discerned, and no molecular pathways were identified. Effect sizes for sex differences were greater in stress compared to no-stress conditions for ventromedial and ventrolateral prefrontal cortical regions but not dorsolateral prefrontal cortex. Stress amplifies sex differences in gene expression profiles for prefrontal cortical regions involved in stress coping and emotion regulation. Results suggest molecular targets for new treatments of stress disorders in human mental health.

  7. Training improves multitasking performance by increasing the speed of information processing in human prefrontal cortex.

    Science.gov (United States)

    Dux, Paul E; Tombu, Michael N; Harrison, Stephenie; Rogers, Baxter P; Tong, Frank; Marois, René

    2009-07-16

    Our ability to multitask is severely limited: task performance deteriorates when we attempt to undertake two or more tasks simultaneously. Remarkably, extensive training can greatly reduce such multitasking costs. While it is not known how training alters the brain to solve the multitasking problem, it likely involves the prefrontal cortex given this brain region's purported role in limiting multitasking performance. Here, we show that the reduction of multitasking interference with training is not achieved by diverting the flow of information processing away from the prefrontal cortex or by segregating prefrontal cells into independent task-specific neuronal ensembles, but rather by increasing the speed of information processing in this brain region, thereby allowing multiple tasks to be processed in rapid succession. These results not only reveal how training leads to efficient multitasking, they also provide a mechanistic account of multitasking limitations, namely the poor speed of information processing in human prefrontal cortex.

  8. Parallel processing of cognitive and physical demands in left and right prefrontal cortices during smartphone use while walking

    National Research Council Canada - National Science Library

    Takeuchi, Naoyuki; Mori, Takayuki; Suzukamo, Yoshimi; Tanaka, Naofumi; Izumi, Shin-Ichi

    2016-01-01

    .... We evaluated prefrontal cortex (PFC) activity in participants playing a smartphone game while walking, in order to elucidate the role of the PFC in the allocation of attention between physical and cognitive demands...

  9. Increase in serotonin 5-HT sub 1A receptors in prefrontal and temporal cortices of brains from patients with chronic schizophrenia

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, Takeshi; Nishino, Naoki; Nakai, Hisao; Tanaka, Chikako (Kobe Univ. School of Medicine (Japan))

    1991-01-01

    Binding studies with ({sup 3}H)8-hydroxy-2-(di-n-propylamino)tetralin (({sup 3}H)8-OH-DPAT), a specific serotonin{sub 1A} (5-HT{sub 1A}) receptor agonist, were done on the autopsied brains from control subjects and from patients with chronic schizophrenia. In the controls, representative Scatchard plots for the specific ({sup 3}H)8-OH-DPAT bindings in the prefrontal cortex and hippocampus revealed a single component of high affinity binding site. The ({sup 3}H)8-OH-DPAT bindings to the prefrontal cortex and hippocampus were potently inhibited by serotonin and 5-HT{sub 1A} agonists, while other neurotransmitters, 5-HT{sub 2} and 5-HT{sub 3} related compounds did not inhibit the binding. The bindings were decreased in the presence of 0.1mM GTP and 0.1mM GppNHp but not in the presence of 0.1mM GMP. In the prefrontal and temporal cortices of schizophrenics, there was a significant increase in the specific ({sup 3}H)8-OH-DPAT binding, by 40% and 60%, respectively, with no change in the hippocampus, amygdala, cingulum, motor cortex, parietal or occipital cortex, as compared to findings in the controls.

  10. Cortical plasticity in Alzheimer's disease in humans and rodents.

    Science.gov (United States)

    Battaglia, Fortunato; Wang, Hoau-Yan; Ghilardi, M Felice; Gashi, Eleonora; Quartarone, Angelo; Friedman, Eitan; Nixon, Ralph A

    2007-12-15

    The aim of this study was to determine whether neocortical long-term potentiation (LTP) is deficient in patients with Alzheimer's disease (AD) and in amyloid precursor protein (APP)/presenilin-1 (PS1) mice, an AD animal model. We then ascertained whether this deficit might be paralleled by functional abnormalities of N-methyl-D-aspartate (NMDAR) glutamate receptors. We studied neocortical LTP-like plasticity in 10 patients with mild-to-moderate AD and 10 age-matched normal controls using paired associative stimulation (PAS). We assessed neocortical (medial prefrontal cortex and primary motor cortex) and hippocampal LTP in brain slices of symptomatic APP/PS1 mice. NMDAR composition and signaling as well as synaptic calcium influx were determined in motor, prefrontal and hippocampal cortices of APP/PS1 mice. Both AD patients and transgenic animals showed a deficit in NMDAR-dependent forms of neocortical plasticity. Biochemical analysis showed impaired NMDAR function in symptomatic APP/PS1 mice. Neocortical plasticity is impaired in both patients with AD and APP/PS1 mice. The results of our biochemical studies point to impaired NMDAR function as the most likely cause for the neocortical plasticity deficit in AD.

  11. Gene expression-based modeling of human cortical synaptic density.

    Science.gov (United States)

    Goyal, Manu S; Raichle, Marcus E

    2013-04-16

    Postnatal cortical synaptic development is characterized by stages of exuberant growth, pruning, and stabilization during adulthood. How gene expression orchestrates these stages of synaptic development is poorly understood. Here we report that synaptic growth-related gene expression alone does not determine cortical synaptic density changes across the human lifespan, but instead, the dynamics of cortical synaptic density can be accurately simulated by a first-order kinetic model of synaptic growth and elimination that incorporates two separate gene expression patterns. Surprisingly, modeling of cortical synaptic density is optimized when genes related to oligodendrocytes are used to determine synaptic elimination rates. Expression of synaptic growth and oligodendrocyte genes varies regionally, resulting in different predictions of synaptic density among cortical regions that concur with previous regional data in humans. Our analysis suggests that modest rates of synaptic growth persist in adulthood, but that this is counterbalanced by increasing rates of synaptic elimination, resulting in stable synaptic number and ongoing synaptic turnover in the human adult cortex. Our approach provides a promising avenue for exploring how complex interactions among genes may contribute to neurobiological phenomena across the human lifespan.

  12. Investigating the Usability and Acute Effects of a Bedside Video Console to Prefrontal Cortical Activity Alterations: A Preclinical Study in Healthy Elderly

    Directory of Open Access Journals (Sweden)

    Ruud H. Knols

    2017-11-01

    Full Text Available Elderly people at risk of developing cognitive decline; e.g., following surgery, may benefit from structured, challenging, and repetitive cognitive video training. This study assessed usability and acute effects of a newly developed bedside console (COPHYCON. Fifteen healthy elderly individuals performed a one-time 80-min intervention, including cognitive video games aimed at improving awareness and selective attention. Perceived usefulness and perceived ease of use (Technology Acceptance Model were assessed together with measures of the achieved game level, reaction times, (in- correct responses during ALERT and SELECT game play. Further, prefrontal cortical involvement of the regional cerebral hemoglobin saturation (rS02% assessed with functional near infrared spectroscopy (fNIRS (n = 5 and EEG power (n = 10 was analyzed. All participants completed the study without any adverse events. Perceived usefulness and perceived ease of use (TAM scores range 1–7 of the system varied between 3.9 and 6.3. The game levels reached for awareness varied between 9 and 11 (initial score 8–10, for reaction speed between 439 and 469 ms, and for correct responses between 74.1 and 78.8%. The highest level for the selective attention games was 2 (initial score 1, where reaction speed varied between 439 and 469 ms, correct responses between 96.2 and 98.5%, respectively. The decrease of rS02% in the right prefrontal cortex during gameplay was significantly (p < 0.001 lower, compared to the left prefrontal cortex. Four participants yielded significant lower rS02% measures after exergaming with the ALERT games (p < 0.000, but not with the SELECT games. EEG recordings of theta power significantly decreased in the averaged ~0.25–0.75 time interval for the left prefrontal cortex sensor across the cognitive game levels between the ALERT 1 and SELECT 1, as well as between SELECT 1 and 2 games. Participants rated the usability of the COPHYCON training positively

  13. Molecular and Neuronal Plasticity Mechanisms in the Amygdala-Prefrontal Cortical Circuit: Implications for Opiate Addiction Memory Formation

    Directory of Open Access Journals (Sweden)

    Laura G Rosen

    2015-11-01

    Full Text Available The persistence of associative memories linked to the rewarding properties of drugs of abuse is a core underlying feature of the addiction process. Opiate class drugs in particular, possess potent euphorigenic effects which, when linked to environmental cues, can produce drug-related ‘trigger’ memories that may persist for lengthy periods of time, even during abstinence, in both humans and other animals. Furthermore, the transitional switch from the drug-naïve, non-dependent state to states of dependence and withdrawal, represents a critical boundary between distinct neuronal and molecular substrates associated with opiate-reward memory formation. Identifying the functional molecular and neuronal mechanisms related to the acquisition, consolidation, recall and extinction phases of opiate-related reward memories is critical for understanding, and potentially reversing, addiction-related memory plasticity characteristic of compulsive drug-seeking behaviors. The mammalian prefrontal cortex (PFC and basolateral nucleus of the amygdala (BLA share important functional and anatomical connections that are involved importantly in the processing of associative memories linked to drug reward. In addition, both regions share interconnections with the mesolimbic pathway’s ventral tegmental area (VTA and nucleus accumbens (NAc and can modulate dopamine (DA transmission and neuronal activity associated with drug-related DAergic signaling dynamics. In this review, we will summarize research from both human and animal modelling studies highlighting the importance of neuronal and molecular plasticity mechanisms within this circuitry during critical phases of opiate addiction-related learning and memory processing. Specifically, we will focus on two molecular signaling pathways known to be involved in both drug-related neuroadaptations and in memory-related plasticity mechanisms; the extracellular-signal-regulated kinase system (ERK and the Ca2+/calmodulin

  14. Cortical layers: Cyto-, myelo-, receptor- and synaptic architecture in human cortical areas.

    Science.gov (United States)

    Palomero-Gallagher, Nicola; Zilles, Karl

    2017-08-12

    Cortical layers have classically been identified by their distinctive and prevailing cell types and sizes, as well as the packing densities of cell bodies or myelinated fibers. The densities of multiple receptors for classical neurotransmitters also vary across the depth of the cortical ribbon, and thus determine the neurochemical properties of cyto- and myeloarchitectonic layers. However, a systematic comparison of the correlations between these histologically definable layers and the laminar distribution of transmitter receptors is currently lacking. We here analyze the densities of 17 different receptors of various transmitter systems in the layers of eight cytoarchitectonically identified, functionally (motor, sensory, multimodal) and hierarchically (primary and secondary sensory, association) distinct areas of the human cerebral cortex. Maxima of receptor densities are found in different layers when comparing different cortical regions, i.e. laminar receptor densities demonstrate differences in receptorarchitecture between isocortical areas, notably between motor and primary sensory cortices, specifically the primary visual and somatosensory cortices, as well as between allocortical and isocortical areas. Moreover, considerable differences are found between cytoarchitectonical and receptor architectonical laminar patterns. Whereas the borders of cyto- and myeloarchitectonic layers are well comparable, the laminar profiles of receptor densities rarely coincide with the histologically defined borders of layers. Instead, highest densities of most receptors are found where the synaptic density is maximal, i.e. in the supragranular layers, particularly in layers II-III. The entorhinal cortex as an example of the allocortex shows a peculiar laminar organization, which largely deviates from that of all the other cortical areas analyzed here. Copyright © 2017. Published by Elsevier Inc.

  15. The Development of the Ventral Prefrontal Cortex and Social Flexibility

    Science.gov (United States)

    Nelson, Eric E.; Guyer, Amanda E.

    2011-01-01

    Over the last several years a number of studies in both humans and animals have suggested that the orbitofrontal and ventrolateral prefrontal cortices play an important role in generating flexible behavior. We suggest that input from these brain regions contribute to three functions involved in generating flexible behavior within social contexts: valuation, inhibition, and rule use. Recent studies have also demonstrated that the prefrontal cortex undergoes a prolonged course of maturation that extends well after puberty. Here, we review evidence that the prolonged development of these prefrontal regions parallels a slowly emerging ability for flexible social behavior. We also speculate on the possibility that sensitive periods for organizing social behavior may be embedded within this developmental time-fame. Finally, we discuss the role of prefrontal cortex in adolescent mood and anxiety disorders, particularly as orbitofrontal and ventrolateral prefrontal cortices are engaged in a social context. PMID:21804907

  16. Intracranial cortical localization of the human K-complex.

    Science.gov (United States)

    Wennberg, Richard

    2010-08-01

    The K-complex was first identified in human sleep EEG more than 70years ago, but the localization of its intracranial generators is an unresolved issue. In this study, K-complexes recorded using simultaneous scalp and intracranial EEG were analyzed to discover the intracranial distribution of the human K-complex. Stereoelectroencephalographic recordings were performed in six patients with medically-refractory epilepsy. Full 10-20 scalp montages were used and intracranial macroelectrodes sampled medial, lateral and basal frontal and temporal cortices, medial and lateral parietal and occipital cortices, as well as the hippocampus and thalamus. Spontaneous K-complexes were visually identified in stage II sleep and averaged off-line. The intracranial K-complex field was maximal over the anterior and superior aspects of the medial and lateral frontal lobe cortices, consistent with the frontal midline scalp EEG maximum. The frontal maximum surface-negative field was volume conducted as an inverted, positive field posteriorly and inferiorly, the polarity reversing laterally above the inferior temporal region and medially above the cingulate cortex. As suggested by the scalp EEG topography, the intracranial distribution of the human K-complex is maximal over the anterior and superior frontal cortices. K-complex generation appears limited to cortical regions above the inferior temporal sulcus laterally, the cingulate sulcus medially and the parietooccipital junction posteriorly. The human K-complex is produced by synchronous cortical activity that appears maximal intracranially over the superior medial and lateral aspects of the frontal lobes. The cingulate cortex and functionally related mesial temporal structures appear uninvolved in human K-complex generation. Copyright 2010 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  17. The dorsal prefrontal and dorsal anterior cingulate cortices exert complementary network signatures during encoding and retrieval in associative memory.

    Science.gov (United States)

    Woodcock, Eric A; White, Richard; Diwadkar, Vaibhav A

    2015-09-01

    Cognitive control includes processes that facilitate execution of effortful cognitive tasks, including associative memory. Regions implicated in cognitive control during associative memory include the dorsal prefrontal (dPFC) and dorsal anterior cingulate cortex (dACC). Here we investigated the relative degrees of network-related interactions originating in the dPFC and dACC during oscillating phases of associative memory: encoding and cued retrieval. Volunteers completed an established object-location associative memory paradigm during fMRI. Psychophysiological interactions modeled modulatory network interactions from the dPFC and dACC during memory encoding and retrieval. Results were evaluated in second level analyses of variance with seed region and memory process as factors. Each seed exerted differentiable modulatory effects during encoding and retrieval. The dACC exhibited greater modulation (than the dPFC) on the fusiform and parahippocampal gyrus during encoding, while the dPFC exhibited greater modulation (than the dACC) on the fusiform, hippocampus, dPFC and basal ganglia. During retrieval, the dPFC exhibited greater modulation (than the dACC) on the parahippocampal gyrus, hippocampus, superior parietal lobule, and dPFC. The most notable finding was a seed by process interaction indicating that the dACC and the dPFC exerted complementary modulatory control on the hippocampus during each of the associative memory processes. These results provide evidence for differentiable, yet complementary, control-related modulation by the dACC and dPFC, while establishing the primacy of dPFC in exerting network control during both associative memory phases. Our approach and findings are relevant for understanding basic processes in human memory and psychiatric disorders that impact associative memory-related networks. Copyright © 2015. Published by Elsevier B.V.

  18. Functional Connectivity of the Cortical Swallowing Network in Humans

    Science.gov (United States)

    Babaei, Arash; Ward, B. Douglas; Siwiec, Robert; Ahmad, Shahryar; Kern, Mark; Nencka, Andrew; Li, Shi-Jiang; Shaker, Reza

    2014-01-01

    Introduction Coherent fluctuations of blood oxygenation level dependent (BOLD) signal have been referred as “functional connectivity” (FC). Our aim was to systematically characterize FC of underlying neural network involved in swallowing, and to evaluate its reproducibility and modulation during rest or task performance. Methods Activated seed regions within known areas of the cortical swallowing network (CSN) were independently identified in 16 healthy volunteers. Subjects swallowed using a paradigm driven protocol, and the data analyzed using an event-related technique. Then, in the same 16 volunteers, resting and active state data were obtained for 540 seconds in three conditions: 1) swallowing task; 2) control visual task; and 3) resting state; all scans were performed twice. Data was preprocessed according to standard FC pipeline. We determined the correlation coefficient values of member regions of the CSN across the three aforementioned conditions and compared between two sessions using linear regression. Average FC matrices across conditions were then compared. Results Swallow activated twenty-two positive BOLD and eighteen negative BOLD regions distributed bilaterally within cingulate, insula, sensorimotor cortex, prefrontal and parietal cortices. We found that: 1) Positive BOLD regions were highly connected to each other during all test conditions while negative BOLD regions were tightly connected amongst themselves; 2) Positive and negative BOLD regions were anti-correlated at rest and during task performance; 3) Across all three test conditions, FC among the regions was reproducible (r > 0.96, p<10-5); and 4) The FC of sensorimotor region to other regions of the CSN increased during swallowing scan. Conclusions 1) Swallow activated cortical substrates maintain a consistent pattern of functional connectivity; 2) FC of sensorimotor region is significantly higher during swallow scan than that observed during a non-swallow visual task or at rest. PMID

  19. Magnetic Field Homogenization of the Human Prefrontal Cortex with a Set of Localized Electrical Coils

    Science.gov (United States)

    Juchem, Christoph; Nixon, Terence W.; McIntyre, Scott; Rothman, Douglas L.; de Graaf, Robin A.

    2011-01-01

    The prefrontal cortex is a common target brain structure in psychiatry and neuroscience due to its role in working memory and cognitive control. Large differences in magnetic susceptibility between the air-filled sinuses and the tissue/bone in the frontal part of the human head cause a strong and highly localized magnetic field focus in the prefrontal cortex. As a result, image distortion and signal dropout are observed in MR imaging. A set of external, electrical coils is presented that provides localized and high amplitude shim fields in the prefrontal cortex with minimum impact on the rest of the brain when combined with regular zero-to-second order spherical harmonics shimming. The experimental realization of the new shim method strongly minimized or even eliminated signal dropout in gradient-echo images acquired at settings typically used in functional magnetic resonance at 4 Tesla. PMID:19918909

  20. Implicit sequence-specific motor learning after sub-cortical stroke is associated with increased prefrontal brain activations: An fMRI study

    Science.gov (United States)

    Meehan, Sean K.; Randhawa, Bubblepreet; Wessel, Brenda; Boyd, Lara A.

    2010-01-01

    Implicit motor learning is preserved after stroke, but how the brain compensates for damage to facilitate learning is unclear. We used a random effects analysis to determine how stroke alters patterns of brain activity during implicit sequence-specific motor learning as compared to general improvements in motor control. Nine healthy participants and 9 individuals with chronic, right focal sub-cortical stroke performed a continuous joystick-based tracking task during an initial fMRI session, over 5 days of practice, and a retention test during a separate fMRI session. Sequence-specific implicit motor learning was differentiated from general improvements in motor control by comparing tracking performance on a novel, repeated tracking sequences during early practice and again at the retention test. Both groups demonstrated implicit sequence-specific motor learning at the retention test, yet substantial differences were apparent. At retention, healthy control participants demonstrated increased BOLD response in left dorsal premotor cortex (BA 6) but decreased BOLD response left dorsolateral prefrontal cortex (DLPFC; BA 9) during repeated sequence tracking. In contrast, at retention individuals with stroke did not show this reduction in DLPFC during repeated tracking. Instead implicit sequence-specific motor learning and general improvements in motor control were associated with increased BOLD response in the left middle frontal gyrus BA 8, regardless of sequence type after stroke. These data emphasize the potential importance of a prefrontal-based attentional network for implicit motor learning after stroke. The present study is the first to highlight the importance of the prefrontal cortex for implicit sequence-specific motor learning after stroke. PMID:20725908

  1. Functional near-infrared spectroscopy-based correlates of prefrontal cortical dynamics during a cognitive-motor executive adaptation task

    Directory of Open Access Journals (Sweden)

    Rodolphe J. Gentili

    2013-07-01

    Full Text Available This study investigated changes in brain hemodynamics, as measured by functional near infrared spectroscopy (fNIR, during performance of a cognitive-motor adaptation task. The adaptation task involved the learning of a novel visuo-motor transformation (a 60 degree counterclockwise screen-cursor rotation, which required inhibition of a pre-potent visuo-motor response. A control group experienced a familiar transformation and thus, did not face any executive challenge. Analysis of the experimental group hemodynamic responses revealed that the performance enhancement was associated with a monotonic reduction in the oxygenation level in the prefrontal cortex. This finding confirms and extends functional magnetic resonance imaging (fMRI and electroencephalography (EEG studies of visuo-motor adaptation and learning. The changes in prefrontal brain activation suggest an initial recruitment of frontal executive functioning to inhibit pre-potent visuo-motor mappings followed by a progressive de-recruitment of the same prefrontal regions. The prefrontal hemodynamic changes observed in the experimental group translated into enhanced motor performance revealed by a reduction in movement time, movement extent, root mean square error and the directional error. These kinematic adaptations are consistent with the acquisition of an internal model of the novel visuo-motor transformation. No comparable change was observed in the control group for either the hemodynamics or for the kinematics. This study 1 extends our understanding of the frontal executive processes from the cognitive to the cognitive-motor domain and 2 suggests that optical brain imaging can be employed to provide hemodynamic based-biomarkers to assess and monitor the level of adaptive cognitive-motor performance.

  2. TNF-α Mediates the Intrinsic and Extrinsic Pathway in Propofol-Induced Neuronal Apoptosis Via PI3K/Akt Signaling Pathway in Rat Prefrontal Cortical Neurons.

    Science.gov (United States)

    Deng, Xiaoyuan; Chen, Bo; Wang, Bin; Zhang, Junfang; Liu, Hongliang

    2017-10-01

    Propofol can cause developing neuronal apoptosis in both in vivo and in vitro studies, and the mechanism is unclear till now. Our previous study has demonstrated that propofol can increase the TNF-α expression in the prefrontal cortex in rat developing brain, the TNF-α antagonist, etanercept, can inhibit propofol-induced neuronal apoptosis, but little is known about how TNF-α mediates that process. This study reveals that propofol at clinically relevant concentrations increases the TNF-α synthesis and release in neurons, and induces neuronal apoptosis; etanercept significantly reduces neuronal apoptosis, the elevation of cleaved caspase-8 and cleaved caspase-9, or the Akt phosphorylation induced by propofol, while the selective PI3K antagonist blocks the neuroprotection of etanercept. Propofol does not change the expression of P2X7 receptor in neurons, and the P2X7 receptor antagonist cannot affect the TNF-α synthesis or release after propofol treatment. These results suggest that propofol can increase the synthesis and release of TNF-α in the primary cultured prefrontal cortical neurons, TNF-α contributes to the intrinsic and extrinsic pathway in propofol-induced neuronal apoptosis via PI3K/Akt signaling pathway, and P2X7R is not involved in the synthesis and release of TNF-α induced by propofol.

  3. Destruction and creation of spatial tuning by disinhibition: GABA(A) blockade of prefrontal cortical neurons engaged by working memory.

    Science.gov (United States)

    Rao, S G; Williams, G V; Goldman-Rakic, P S

    2000-01-01

    Local circuit neurons in the dorsolateral prefrontal cortex (dPFC) of monkeys have been implicated in the cellular basis of working memory. To further elucidate the role of inhibition in spatial tuning, we iontophoresed bicuculline methiodide (BMI) onto functionally characterized neurons in the dPFC of monkeys performing an oculomotor delayed response task. This GABA(A) blockade revealed that both putative interneurons and pyramidal cells possess significant inhibitory tone in the awake, behaving monkey. In addition, BMI application primarily resulted in the loss of previously extant spatial tuning in both cell types through reduction of both isodirectional and cross-directional inhibition. This tuning loss occurred in both the sensorimotor and mnemonic phases of the task, although the delay activity of prefrontal neurons appeared to be particularly affected. Finally, application of BMI also created significant spatial tuning in a sizable minority of units that were untuned in the control condition. Visual field analysis of such tuning suggests that it is likely caused by the unmasking of normally suppressed spatially tuned excitatory input. These findings provide the first direct evidence of directional inhibitory modulation of pyramidal cell and interneuron firing in both the mnemonic and sensorimotor phases of the working memory process, and they implicate a further role for GABAergic interneurons in the construction of spatial tuning in prefrontal cortex.

  4. Positive symptoms and water diffusivity of the prefrontal and temporal cortices in schizophrenia patients: a pilot study.

    Science.gov (United States)

    Park, Jin Young; Park, Hae-Jeong; Kim, Dae-Jin; Kim, Jae-Jin

    2014-10-30

    The development of diffusion tensor imaging (DTI) has provided information about microstructural changes in the brain. Most DTI studies have focused on white matter (WM). Few DTI studies have examined the gray matter (GM) in schizophrenia and, to date, there has been no attempt to identify the relationship between water diffusivity and symptom severity in schizophrenia. The present study aimed to examine microstructural deficits in the dorsal prefrontal cortex (DPFC) and temporal cortex in schizophrenia patients using fractional anisotropy (FA) and water diffusivity. This study also explored the relationship between DTI measurements and psychotic symptoms. Magnetic resonance imaging (MRI) and DTI were used to study 19 schizophrenia patients and 19 healthy controls. Fractional anisotropy, axial diffusivity, radial diffusivity, and regional volumes were measured in the prefrontal cortex and temporal cortex. On DTI measurements, patients showed increased axial and radial diffusivities in the prefrontal cortex and temporal cortex, but they did not demonstrate any difference in fractional anisotropy and regional volumes. Additionally, axial and radial diffusivities were significantly correlated with positive symptom scores in all regions of interest. These results indicate that water diffusivity measurements, including axial and radial diffusivities, can be used to identify microstructural changes in the gray matter in schizophrenia that may be related to symptom severity. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  5. Individual Differences in Human Path Integration Abilities Correlate with Gray Matter Volume in Retrosplenial Cortex, Hippocampus, and Medial Prefrontal Cortex.

    Science.gov (United States)

    Chrastil, Elizabeth R; Sherrill, Katherine R; Aselcioglu, Irem; Hasselmo, Michael E; Stern, Chantal E

    2017-01-01

    Humans differ in their individual navigational abilities. These individual differences may exist in part because successful navigation relies on several disparate abilities, which rely on different brain structures. One such navigational capability is path integration, the updating of position and orientation, in which navigators track distances, directions, and locations in space during movement. Although structural differences related to landmark-based navigation have been examined, gray matter volume related to path integration ability has not yet been tested. Here, we examined individual differences in two path integration paradigms: (1) a location tracking task and (2) a task tracking translational and rotational self-motion. Using voxel-based morphometry, we related differences in performance in these path integration tasks to variation in brain morphology in 26 healthy young adults. Performance in the location tracking task positively correlated with individual differences in gray matter volume in three areas critical for path integration: the hippocampus, the retrosplenial cortex, and the medial prefrontal cortex. These regions are consistent with the path integration system known from computational and animal models and provide novel evidence that morphological variability in retrosplenial and medial prefrontal cortices underlies individual differences in human path integration ability. The results for tracking rotational self-motion-but not translation or location-demonstrated that cerebellum gray matter volume correlated with individual performance. Our findings also suggest that these three aspects of path integration are largely independent. Together, the results of this study provide a link between individual abilities and the functional correlates, computational models, and animal models of path integration.

  6. Automatic detection of a prefrontal cortical response to emotionally rated music using multi-channel near-infrared spectroscopy

    Science.gov (United States)

    Moghimi, Saba; Kushki, Azadeh; Power, Sarah; Guerguerian, Anne Marie; Chau, Tom

    2012-04-01

    Emotional responses can be induced by external sensory stimuli. For severely disabled nonverbal individuals who have no means of communication, the decoding of emotion may offer insight into an individual’s state of mind and his/her response to events taking place in the surrounding environment. Near-infrared spectroscopy (NIRS) provides an opportunity for bed-side monitoring of emotions via measurement of hemodynamic activity in the prefrontal cortex, a brain region known to be involved in emotion processing. In this paper, prefrontal cortex activity of ten able-bodied participants was monitored using NIRS as they listened to 78 music excerpts with different emotional content and a control acoustic stimuli consisting of the Brown noise. The participants rated their emotional state after listening to each excerpt along the dimensions of valence (positive versus negative) and arousal (intense versus neutral). These ratings were used to label the NIRS trial data. Using a linear discriminant analysis-based classifier and a two-dimensional time-domain feature set, trials with positive and negative emotions were discriminated with an average accuracy of 71.94% ± 8.19%. Trials with audible Brown noise representing a neutral response were differentiated from high arousal trials with an average accuracy of 71.93% ± 9.09% using a two-dimensional feature set. In nine out of the ten participants, response to the neutral Brown noise was differentiated from high arousal trials with accuracies exceeding chance level, and positive versus negative emotional differentiation accuracies exceeded the chance level in seven out of the ten participants. These results illustrate that NIRS recordings of the prefrontal cortex during presentation of music with emotional content can be automatically decoded in terms of both valence and arousal encouraging future investigation of NIRS-based emotion detection in individuals with severe disabilities.

  7. Lesion evidence that two distinct regions within prefrontal cortex are critical for n-back performance in humans.

    Science.gov (United States)

    Tsuchida, Ami; Fellows, Lesley K

    2009-12-01

    Although prefrontal cortex is clearly important in executive function, the specific processes carried out by particular regions within human prefrontal cortex remain a matter of debate. A rapidly growing corpus of functional imaging work now implicates various areas within prefrontal cortex in a wide range of "executive" tasks. Loss-of-function studies can help constrain the interpretation of such evidence by testing to what extent particular brain areas are necessary for a given cognitive process. Here we apply a component process analysis to understand prefrontal contributions to the n-back task, a widely used test of working memory, in a cohort of patients with focal prefrontal damage. We investigated letter 2-back task performance in 27 patients with focal damage to various regions within prefrontal cortex, compared to 29 demographically matched control subjects. Both "behavior-defined" approaches, using qualitative lesion analyses and voxel-based lesion-symptom mapping methods, and more conventional "lesion-defined" groupwise comparisons were undertaken to determine the relationships between specific sites of damage within prefrontal cortex and particular aspects of n-back task performance. We confirmed a critical role for left lateral prefrontal cortex in letter 2-back performance. We also identified a critical role for medial prefrontal cortex in this task: Damage to dorsal anterior cingulate cortex and adjacent dorsal fronto-medial cortex led to a pattern of impairment marked by high false alarm rates, distinct from the impairment associated with lateral prefrontal damage. These findings provide converging support for regionally specific models of human prefrontal function.

  8. Hypericum perforatum extract modulates cortical plasticity in humans.

    Science.gov (United States)

    Concerto, Carmen; Boo, Hyunji; Hu, Charles; Sandilya, Priam; Krish, Anita; Chusid, Eileen; Coira, Diego; Aguglia, Eugenio; Battaglia, Fortunato

    2018-01-01

    Hypericum perforatum (HYP) extract is one of the most commonly used complementary alternative medicines (CAMs) for the treatment of mild-to-moderate depression. Non-invasive brain stimulation protocols can be used to investigate the effect of psychoactive substances on the human brain. In this study, we explored the effect of a single dose of HYP extract (WS 5570) intake on corticospinal excitability and plasticity in humans. Twenty-eight healthy subjects were required to intake 900 mg of either HYP extract or placebo. Cortical excitability was assessed using single and paired transcranial magnetic stimulation (TMS). The electrophysiological parameters of motor threshold, recruitment of motor-evoked potentials (MEPs), cortical silent period (CSP), short interval intracortical inhibition (SICI), and intracortical facilitation (ICF) were tested before and 2 and 5 h after the oral intake. Spinal and neuromuscular excitability and peripheral nerve excitability were measured by F response and M-wave. Cortical plasticity was induced using transcranial direct current stimulation (tDCS). Subjects received either HYP extract or placebo before anodal and cathodal tDCS of the primary motor cortex. Plasticity was assessed by MEP amplitudes. HYP extract reversed cathodal tDCS-induced long-term depression (LTD)-like plasticity into facilitation, as compared to placebo. HYP extract did not have a significant effect on anodal tDCS-induced plasticity and TMS measures of motor cortex and spinal/neuromuscular excitability. Our findings suggest that a single oral dose of HYP extract modulates cortical plasticity in healthy subjects and provide new insight into its possible mechanism of action in humans.

  9. I find you more attractive … after (prefrontal cortex) stimulation

    NARCIS (Netherlands)

    Ferrari, C.; Lega, C.; Tamietto, M.; Nadal, M.; Cattaneo, Z.

    2015-01-01

    Facial attractiveness seems to be perceived immediately. Neuroimaging evidence suggests that the appraisal of facial attractiveness is mediated by a network of cortical and subcortical regions, mainly encompassing the reward circuit, but also including prefrontal cortices. The prefrontal cortex is

  10. Dynamic photophysical processes in laser irradiated human cortical skull bone

    Science.gov (United States)

    Mandelis, Andreas; Kwan, Chi-Hang; Matvienko, Anna

    2009-02-01

    Modulated luminescence (LUM) technique was applied to analyze photophysical processes in the cortical layer of human skull bones. The theoretical interpretation of the results was based on the optical excitation and decay rate equations of the fluorophore and on the molecular interaction parameter with the photon field density in the matrix of the bone. Using comparisons of the theory with the frequency response of dental LUM it was concluded that the optically active molecular species (fluorophore) in the bones is hydroxyapatite. An effective relaxation lifetime of skull cortical bone was derived theoretically and was found to depend on the intrinsic fluorophore decay lifetime, on the photon field density, and on the thickness of the bone. The experimentally measured dependencies were in excellent agreement with the theoretical model. The theory was able to yield measurements of the optical scattering coefficient, optical absorption coefficient, and mean coupling coefficient. These results show that the quantitative LUM can be used as a sensitive method to measure optical properties of the active fluorophore in cortical skull bones and the optical-field-induced molecular interaction parameter. When calibrated vs. laser intensity, the modulated luminescence can also be used to measure human skull thickness. These traits can be applied to monitor the bone mineral density (BMD) and, ultimately can be used as potential markers of bone health or disease, such as osteoporosis or bone cancer.

  11. Saccade abnormalities associated with focal cerebral lesions - How cortical and basal ganglia commands shape saccades in humans.

    Science.gov (United States)

    Terao, Yasuo; Fukuda, Hideki; Tokushuge, Shinnichi; Nomura, Yoshiko; Hanajima, Ritsuko; Ugawa, Yoshikazu

    2016-08-01

    To study saccade abnormalities associated with focal cerebral lesions, including the cerebral cortex and basal ganglia (BG). We studied the latency and amplitude of reflexive and voluntary saccades in 37 patients with focal lesions of the frontal and parietal cortices and BG (caudate and putamen), and 51 age-matched controls, along with the ability to inhibit unwanted reflexive saccades. Latencies of reflexive saccades were prolonged in patients with parietal lesions involving the parietal eye field (PEF), whereas their amplitude was decreased with parietal or putaminal lesions. In contrast, latency of voluntary saccades was prolonged and their success rate reduced with frontal lesions including the frontal eye field (FEF) or its outflow tract as well as the dorsolateral/medial prefrontal cortex, and caudate lesions, whereas their amplitude was decreased with parietal lesions. Inhibitory control of reflexive saccades was impaired with frontal, caudate and, less prominently, parietal lesions. PEF is important in triggering reflexive saccades, also determining their amplitude. Whereas FEF and the caudate emit commands for initiating voluntary saccades, their amplitude is mainly determined by PEF. Commands not only from FEF and dorsolateral/medial prefrontal cortex but also from the caudate and PEF serve to inhibit unnecessary reflexive saccades. The findings suggested how cortical and BG commands shape reflexive and voluntary saccades in humans. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  12. Functional organization and visual representations of human ventral lateral prefrontal cortex

    Science.gov (United States)

    Chan, Annie W.-Y.

    2013-01-01

    Recent neuroimaging studies in both human and non-human primates have identified face selective activation in the ventral lateral prefrontal cortex (VLPFC) even in the absence of working memory (WM) demands. Further, research has suggested that this face-selective response is largely driven by the presence of the eyes. However, the nature and origin of visual category responses in the VLPFC remain unclear. In a broader sense, how do these findings relate to our current understandings of lateral prefrontal cortex? What do these findings tell us about the underlying function and organization principles of the VLPFC? What is the future direction for investigating visual representations in this cortex? This review focuses on the function, topography, and circuitry of the VLPFC to enhance our understanding of the evolution and development of this cortex. PMID:23847558

  13. Prefrontal cortical volume loss is associated with stress-related deficits in verbal learning and memory in HIV-infected women.

    Science.gov (United States)

    Rubin, Leah H; Meyer, Vanessa J; J Conant, Rhoda; Sundermann, Erin E; Wu, Minjie; Weber, Kathleen M; Cohen, Mardge H; Little, Deborah M; Maki, Pauline M

    2016-08-01

    Deficits in verbal learning and memory are a prominent feature of neurocognitive function in HIV-infected women, and are associated with high levels of perceived stress. To understand the neurobiological factors contributing to this stress-related memory impairment, we examined the association between stress, verbal memory, and brain volumes in HIV-infected women. Participants included 38 HIV-infected women (Mean age=43.9years) from the Chicago Consortium of the Women's Interagency HIV Study (WIHS). Participants underwent structural magnetic resonance imaging (MRI) and completed standardized measures of verbal learning and memory and stress (Perceived Stress Scale-10; PSS-10). Brain volumes were evaluated in a priori regions of interest, including the medial temporal lobe (MTL) and prefrontal cortex (PFC). Compared to HIV-infected women with lower stress (PSS-10 scores in lower two tertiles), HIV-infected women with higher stress (scores in the top tertile), performed worse on measures of verbal learning and memory and showed smaller volumes bilaterally in the parahippocampal gyrus, superior frontal gyrus, middle frontal gyrus, and inferior frontal gyrus (p'slearning and memory performance. Prefrontal cortical atrophy is associated with stress-related deficits in verbal learning and memory in HIV-infected women. The time course of these volume losses in relation to memory deficits has yet to be elucidated, but the magnitude of the volumetric differences between women with higher versus lower stress suggests a prolonged vulnerability due to chronic stress and/or early life trauma. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Broadband cortical desynchronization underlies the human psychedelic state.

    Science.gov (United States)

    Muthukumaraswamy, Suresh D; Carhart-Harris, Robin L; Moran, Rosalyn J; Brookes, Matthew J; Williams, Tim M; Errtizoe, David; Sessa, Ben; Papadopoulos, Andreas; Bolstridge, Mark; Singh, Krish D; Feilding, Amanda; Friston, Karl J; Nutt, David J

    2013-09-18

    Psychedelic drugs produce profound changes in consciousness, but the underlying neurobiological mechanisms for this remain unclear. Spontaneous and induced oscillatory activity was recorded in healthy human participants with magnetoencephalography after intravenous infusion of psilocybin--prodrug of the nonselective serotonin 2A receptor agonist and classic psychedelic psilocin. Psilocybin reduced spontaneous cortical oscillatory power from 1 to 50 Hz in posterior association cortices, and from 8 to 100 Hz in frontal association cortices. Large decreases in oscillatory power were seen in areas of the default-mode network. Independent component analysis was used to identify a number of resting-state networks, and activity in these was similarly decreased after psilocybin. Psilocybin had no effect on low-level visually induced and motor-induced gamma-band oscillations, suggesting that some basic elements of oscillatory brain activity are relatively preserved during the psychedelic experience. Dynamic causal modeling revealed that posterior cingulate cortex desynchronization can be explained by increased excitability of deep-layer pyramidal neurons, which are known to be rich in 5-HT2A receptors. These findings suggest that the subjective effects of psychedelics result from a desynchronization of ongoing oscillatory rhythms in the cortex, likely triggered by 5-HT2A receptor-mediated excitation of deep pyramidal cells.

  15. Neural mechanisms of economic commitment in the human medial prefrontal cortex.

    Science.gov (United States)

    Tsetsos, Konstantinos; Wyart, Valentin; Shorkey, S Paul; Summerfield, Christopher

    2014-10-21

    Neurobiologists have studied decisions by offering successive, independent choices between goods or gambles. However, choices often have lasting consequences, as when investing in a house or choosing a partner. Here, humans decided whether to commit (by acceptance or rejection) to prospects that provided sustained financial return. BOLD signals in the rostral medial prefrontal cortex (rmPFC) encoded stimulus value only when acceptance or rejection was deferred into the future, suggesting a role in integrating value signals over time. By contrast, the dorsal anterior cingulate cortex (dACC) encoded stimulus value only when participants rejected (or deferred accepting) a prospect. dACC BOLD signals reflected two decision biases-to defer commitments to later, and to weight potential losses more heavily than gains-that (paradoxically) maximised reward in this task. These findings offer fresh insights into the pressures that shape economic decisions, and the computation of value in the medial prefrontal cortex.

  16. Architecture of Explanatory Inference in the Human Prefrontal Cortex

    Directory of Open Access Journals (Sweden)

    Aron eBarbey

    2011-07-01

    Full Text Available Causal reasoning is a ubiquitous feature of human cognition. We continuously seek to understand, at least implicitly and often explicitly, the causal scenarios in which we live, so that we may anticipate what will come next, plan a potential response and envision its outcome, decide among possible courses of action in light of their probable outcomes, make midstream adjustments in our goal-related activities as our situation changes, and so on. A considerable body of research shows that the lateral PFC is crucial for causal reasoning, but also that there are significant differences in the manner in which ventrolateral PFC, dorsolateral PFC, and anterolateral PFC support causal reasoning. We propose, on the basis of research on the evolution, architecture, and functional organization of the lateral PFC, a general framework for understanding its roles in the many and varied sorts of causal reasoning carried out by human beings. Specifically, the ventrolateral PFC supports the generation of basic causal explanations and inferences; dorsolateral PFC supports the evaluation of these scenarios in light of some given normative standard (e.g., of plausibility or correctness in light of real or imagined causal interventions; and anterolateral PFC supports explanation and inference at an even higher level of complexity, coordinating the processes of generation and evaluation with further cognitive processes, and especially with computations of hedonic value and emotional implications of possible behavioral scenarios – considerations that are often critical both for understanding situations causally and for deciding about our own courses of action.

  17. CB1 augments mGluR5 function in medial prefrontal cortical neurons to inhibit amygdala hyperactivity in an arthritis pain model.

    Science.gov (United States)

    Ji, Guangchen; Neugebauer, Volker

    2014-02-01

    The medial prefrontal cortex (mPFC) serves executive control functions and forms direct connections with subcortical areas such as the amygdala. Our previous work showed abnormal inhibition of mPFC pyramidal cells and hyperactivity of amygdala output neurons in an arthritis pain model. To restore mPFC activity and hence control pain-related amygdala hyperactivity this study focused on CB1 and mGluR5 receptors, which are important modulators of cortical functions. Extracellular single-unit recordings of infralimbic mPFC pyramidal cells and of amygdala output neurons in the laterocapsular division of the central nucleus (CeLC) were made in anesthetised adult male rats. mPFC neurons were classified as 'excited' or 'inhibited' based on their response to brief innocuous and noxious test stimuli. After arthritis pain induction, background activity and evoked responses of excited neurons and background activity and inhibition of inhibited neurons decreased. Stereotaxic application of an mGluR5-positive allosteric modulator (N-cyclobutyl-6-((3-fluorophenyl)ethynyl) nicotinamide hydrochloride, VU0360172) into the mPFC increased background and evoked activity of excited, but not inhibited, mPFC neurons under normal conditions but not in arthritis. A selective CB1 receptor agonist (arachidonyl-2-chloroethylamide) alone had no effect but restored the facilitatory effects of VU0360172 in the pain model. Coactivation of CB1 and mGluR5 in the mPFC inhibited the pain-related activity increase of CeLC neurons but had no effect under normal conditions. The data suggest that excited mPFC neurons are inversely linked to amygdala output (CeLC) and that CB1 can increase mGluR5 function in this subset of mPFC neurons to engage cortical control of abnormally enhanced amygdala output in pain. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  18. Trail making test performance in youth varies as a function of anatomical coupling between the prefrontal cortex and distributed cortical regions

    Directory of Open Access Journals (Sweden)

    Nancy Raitano Lee

    2014-07-01

    Full Text Available While researchers have gained a richer understanding of the neural correlates of executive function in adulthood, much less is known about how these abilities are represented in the developing brain and what structural brain networks underlie them. Thus, the current study examined how individual differences in executive function, as measured by the Trail Making Test (TMT, relate to structural covariance in the pediatric brain. The sample included 146 unrelated, typically developing youth (80 females, ages 9-14 years, who completed a structural MRI scan of the brain and the Halstead-Reitan TMT (intermediate form. TMT scores used to index executive function included those that evaluated set-shifting ability: Trails B time (number-letter sequencing and the difference in time between Trails B and A (number sequencing only. Anatomical coupling was measured by examining correlations between mean cortical thickness (MCT across the entire cortical ribbon and individual vertex thickness measured at ~81,000 vertices. To examine how TMT scores related to anatomical coupling strength, linear regression was utilized and the interaction between age-normed TMT scores and both age and sex-normed MCT was used to predict vertex thickness. Results revealed that stronger Trails B scores were associated with greater anatomical coupling between a large swath of prefrontal cortex and the rest of cortex. For the difference between Trails B and A, a network of regions in the frontal, temporal and parietal lobes was found to be more tightly coupled with the rest of cortex in stronger performers. This study is the first to highlight the importance of structural covariance in the prediction of individual differences in executive function skills in youth. Thus, it adds to the growing literature on the neural correlates of childhood executive functions and identifies neuroanatomic coupling as a biological substrate that may contribute to executive function and dysfunction in

  19. Acupuncture-Evoked Response in Somatosensory and Prefrontal Cortices Predicts Immediate Pain Reduction in Carpal Tunnel Syndrome

    Directory of Open Access Journals (Sweden)

    Yumi Maeda

    2013-01-01

    Full Text Available The linkage between brain response to acupuncture and subsequent analgesia remains poorly understood. Our aim was to evaluate this linkage in chronic pain patients with carpal tunnel syndrome (CTS. Brain response to electroacupuncture (EA was evaluated with functional MRI. Subjects were randomized to 3 groups: (1 EA applied at local acupoints on the affected wrist (PC-7 to TW-5, (2 EA at distal acupoints (contralateral ankle, SP-6 to LV-4, and (3 sham EA at nonacupoint locations on the affected wrist. Symptom ratings were evaluated prior to and following the scan. Subjects in the local and distal groups reported reduced pain. Verum EA produced greater reduction of paresthesia compared to sham. Compared to sham EA, local EA produced greater activation in insula and S2 and greater deactivation in ipsilateral S1, while distal EA produced greater activation in S2 and deactivation in posterior cingulate cortex. Brain response to distal EA in prefrontal cortex (PFC and brain response to verum EA in S1, SMA, and PFC were correlated with pain reduction following stimulation. Thus, while greater activation to verum acupuncture in these regions may predict subsequent analgesia, PFC activation may specifically mediate reduced pain when stimulating distal acupoints.

  20. Prefrontal cortical-ventral striatal interactions involved in affective modulation of attentional performance: implications for corticostriatal circuit function.

    Science.gov (United States)

    Christakou, Anastasia; Robbins, Trevor W; Everitt, Barry J

    2004-01-28

    Anatomically segregated systems linking the frontal cortex and the striatum are involved in various aspects of cognitive, affective, and motor processing. In this study, we examined the effects of combined unilateral lesions of the medial prefrontal cortex (mPFC) and the core subregion of the nucleus accumbens (AcbC) in opposite hemispheres (disconnection) on a continuous performance, visual attention test [five-choice serial reaction-time task (5CSRTT)]. The disconnection lesion produced a set of specific changes in performance of the 5CSRTT, resembling changes that followed bilateral AcbC lesions while, in addition, comprising a subset of the behavioral changes after bilateral mPFC lesions previously reported using the same task. Specifically, both mPFC/AcbC disconnection and bilateral AcbC lesions markedly affected aspects of response control related to affective feedback, as indexed by perseverative responding in the 5CSRTT. These effects were comparable, although not identical, to those in animals with either bilateral AcbC or mPFC/AcbC disconnection lesions. The mPFC/AcbC disconnection resulted in a behavioral profile largely distinct from that produced by disconnection of a similar circuit described previously, between the mPFC and the dorsomedial striatum, which were shown to form a functional network underlying aspects of visual attention and attention to action. This distinction provides an insight into the functional specialization of corticostriatal circuits in similar behavioral contexts.

  1. Assessment of mental stress effects on prefrontal cortical activities using canonical correlation analysis: an fNIRS-EEG study

    Science.gov (United States)

    Al-Shargie, Fares; Tang, Tong Boon; Kiguchi, Masashi

    2017-01-01

    This paper presents an investigation about the effects of mental stress on prefrontal cortex (PFC) subregions using simultaneous measurement of functional Near-Infrared Spectroscopy (fNIRS) and Electroencephalography (EEG) signals. The aim is to explore canonical correlation analysis (CCA) technique to study the relationship among the bi-modality signals in mental stress assessment, and how we could fuse the signals for better accuracy in stress detection. Twenty-five male healthy subjects participated in the study while performing mental arithmetic task under control and stress (under time pressure with negative feedback) conditions. The fusion of brain signals acquired by fNIRS-EEG was performed at feature-level using CCA by maximizing the inter-subject covariance across modalities. The CCA result discovered the associations across the modalities and estimated the components responsible for these associations. The experiment results showed that mental stress experienced by this cohort of subjects is subregion specific and localized to the right ventrolateral PFC subregion. These suggest the right ventrolateral PFC as a suitable candidate region to extract biomarkers as performance indicators of neurofeedback training in stress coping. PMID:28663892

  2. Impaired Prefrontal Cortical Function and Disrupted Adaptive Cognitive Control in Methamphetamine Abusers: An fMRI Study

    Science.gov (United States)

    Salo, Ruth; Ursu, Stefan; Buonocore, Michael H.; Leamon, Martin H; Carter, Cameron

    2009-01-01

    Background Methamphetamine (MA) abuse is associated with neurotoxicity to frontostriatal brain regions with concomitant deleterious effects on cognitive processes. Deficits in behavioral control are thought to be one contributing factor to the sustainment of addictive behaviors in chronic MA abuse. Methods In order to examine patterns of behavioral control relevant to addiction, we employed a fast-event related fMRI design to examine trial to trial reaction time (RT) adjustments in 12 chronic MA abusers who met DSM-IV criteria for MA dependence and 16 non-substance abusing controls. A variant of the Stroop task was employed to contrast the groups on error rates, RT Stroop conflict effect and the level of trial-to-trial adjustments seen after incongruent trials. Results The MA abusers exhibited reduced RT adjustments along with reduced activation in the right prefrontal cortex compared to controls on conditions that measured the ability to use exposure to conflict situations (i.e., conflict trials) to regulate behavior. MA abusers did not differ from controls on accuracy rates or within-trial Stroop conflict effects. Conclusions The observed deficits in trial to trial RT adjustments suggest that the ability to adapt a behavioral response based on prior experience may be compromised in MA abusers. Such adjustments are critical to everyday functioning and deficits in modifying behavior based on prior events may reflect a key deficit that contributes to maladaptive drug seeking behavior. PMID:19136097

  3. Minimal impairment in a rat model of duration discrimination following excitotoxic lesions of primary auditory and prefrontal cortices

    Directory of Open Access Journals (Sweden)

    Shraddha S Pai

    2011-09-01

    Full Text Available We present a behavioral paradigm for the study of duration perception in the rat, and report the result of neurotoxic lesions that have the goal of identifying sites that mediate duration perception. Using a two-alternative forced-choice paradigm, rats were either trained to discriminate durations of pure tones (range=[200,500]ms; boundary=316ms; Weber fraction after training=0.24+/-0.04, or were trained to discriminate frequencies of pure tones (range=[8,16]kHz; boundary=11.3kHz; Weber=0.16+/-0.11; the latter task is a control for non-timing-specific aspects of the former. Both groups discriminate the same class of sensory stimuli, use the same motions to indicate decisions, have identical trial structures, and are trained to psychophysical threshold; the tasks are thus matched in a number of sensorimotor and cognitive demands. We made neurotoxic lesions of candidate timing-perception areas in the cerebral cortex of both groups. Following extensive bilateral lesions of the auditory cortex, the performance of the frequency-discrimination group was significantly more impaired than that of the duration-discrimination group. We also found that extensive bilateral lesions of the medial prefrontal cortex resulted in little to no impairment of both groups. The behavioral framework presented here provides an audition-based approach to study the neural mechanisms of time estimation and memory for durations.

  4. Prefrontal cortical responses in children with prenatal alcohol-related neurodevelopmental impairment: A functional near-infrared spectroscopy study.

    Science.gov (United States)

    Kable, Julie A; Coles, Claire D

    2017-11-01

    Disruption in the neural activation of the prefrontal cortex (PFC) in modulating arousal was explored in children with heavy prenatal alcohol exposure (PAE), who have known neurobehavioral impairment. During a task that elicits frustration, functional near-infrared spectroscopy (fNIRS) was used to measure PFC activation, specifically levels of oxygenated (HBO) and deoxygenated (HBR) hemoglobin, in children with PAE (n=18) relative to typically developing Controls (n=12) and a Clinical Contrast group with other neurodevelopmental or behavioral problems (n=14). Children with PAE had less activation during conditions with positive emotional arousal, as indicated by lower levels of HBO in the medial areas of the PFC and higher levels of HBR in all areas of the PFC sampled relative to both other groups. Children in the Control group demonstrated greater differentiation of PFC activity than did children with PAE. Children in the Clinical Contrast group demonstrated the greatest differences in PFC activity between valences of task conditions. Specific patterns of PFC activation differentiated children with PAE from typically developing children and children with other clinical problems. FNIRS assessments of PFC activity provide new insights regarding the mechanisms of commonly seen neurobehavioral dysfunction in children with PAE. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  5. Alcohol and the prefrontal cortex.

    Science.gov (United States)

    Abernathy, Kenneth; Chandler, L Judson; Woodward, John J

    2010-01-01

    The prefrontal cortex occupies the anterior portion of the frontal lobes and is thought to be one of the most complex anatomical and functional structures of the mammalian brain. Its major role is to integrate and interpret inputs from cortical and sub-cortical structures and use this information to develop purposeful responses that reflect both present and future circumstances. This includes both action-oriented sequences involved in obtaining rewards and inhibition of behaviors that pose undue risk or harm to the individual. Given the central role in initiating and regulating these often complex cognitive and behavioral responses, it is no surprise that alcohol has profound effects on the function of the prefrontal cortex. In this chapter, we review the basic anatomy and physiology of the prefrontal cortex and discuss what is known about the actions of alcohol on the function of this brain region. This includes a review of both the human and animal literature including information on the electrophysiological and behavioral effects that follow acute and chronic exposure to alcohol. The chapter concludes with a discussion of unanswered questions and areas needing further investigation. Copyright 2010 Elsevier Inc. All rights reserved.

  6. Dopamine release in human striatum induced by repetitive transcranial magnetic stimulation over dorsolateral prefrontal cortex

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sang Soo; Yoon, Eun Jin; Kim, Yu Kyeong; Lee, Won Woo; Kim, Sang Eun [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2005-07-01

    Animal study suggests that prefrontal cortex plays an important Animal studies suggest that prefrontal cortex plays an important role in the modulation of dopamine (DA) release in subcortical areas. However, little is known about the relationship between DA release and prefrontal activation in human. We investigated whether repetitive transcranial magnetic stimulation (rTMS) over left dorsolateral prefrontal cortex (DLPFC) influences DA release in human striatum with SPECT measurements of striatal binding of [123I)iodobenzamide (IBZM), a DA D2 receptor radioligand that is sensitive to endogenous DA. Five healthy male volunteers (age, 25{+-}2 yr) were studied with brain [123I]IBZM SPECT under three conditions (resting, Sham stimulation, and active rTMS over left DLPFC), while receiving a bolus plus constant infusion of [123I]IBZM DLPFC was defined as a 6 cm anterior and 1cm lateral from the primary motor cortex. rTMS session consisted of three blocks, in each block, 15 trains of 2 see duration were delivered with 10 Hz stimulation frequency, 100% motor threshold, and between-train intervals of 10 sec. Striatal V3', calculated as (striatal - occipital) / occipital activity ratio, was measured under equilibrium condition, at baseline and after sham and active rTMS. Sham stimulation did not affect striatal V3'. rTMS over DLPFC induced reduction of V3' in the ipsilateral and contralateral striatum by 9.7% {+-} 1.3% and 10.6% {+-} 3.2%, respectively, compared with sham procedures (P < 0.01 and P < 0.01, respectively), indicating striatal DA release elicited by rTMS over DLPFC. V3' reduction in the ipsilateral caudate nucleus was greater than that in the contralateral caudate nucleus (9.9% {+-} 4.5% vs. 6.6% {+-} 3.1%, P < 0.05). These data demonstrate DA release in human striatum induced by rTMS over DLPFC, supporting that cortico-striatal fibers originating in prefrontal cortex are involved in local DA release.

  7. Nicotinic α4β2 Cholinergic Receptor Influences on Dorsolateral Prefrontal Cortical Neuronal Firing during a Working Memory Task.

    Science.gov (United States)

    Sun, Yongan; Yang, Yang; Galvin, Veronica C; Yang, Shengtao; Arnsten, Amy F; Wang, Min

    2017-05-24

    The primate dorsolateral prefrontal cortex (dlPFC) subserves top-down regulation of attention and working memory abilities. Depletion studies show that the neuromodulator acetylcholine (ACh) is essential to dlPFC working memory functions, but the receptor and cellular bases for cholinergic actions are just beginning to be understood. The current study found that nicotinic receptors comprised of α4 and β2 subunits (α4β2-nAChR) enhance the task-related firing of delay and fixation cells in the dlPFC of monkeys performing a working memory task. Iontophoresis of α4β2-nAChR agonists increased the neuronal firing and enhanced the spatial tuning of delay cells, neurons that represent visual space in the absence of sensory stimulation. These enhancing effects were reversed by coapplication of a α4β2-nAChR antagonist, consistent with actions at α4β2-nAChR. Delay cell firing was reduced when distractors were presented during the delay epoch, whereas stimulation of α4β2-nAChR protected delay cells from these deleterious effects. Iontophoresis of α4β2-nAChR agonists also enhanced the firing of fixation cells, neurons that increase firing when the monkey initiates a trial, and maintain firing until the trial is completed. These neurons are thought to contribute to sustained attention and top-down motor control and have never before been the subject of pharmacological inquiry. These findings begin to build a picture of the cellular actions underlying the beneficial effects of ACh on attention and working memory. The data may also help to explain why genetic insults to α4 subunits are associated with working memory and attentional deficits and why α4β2-nAChR agonists may have therapeutic potential.SIGNIFICANCE STATEMENT The acetylcholine (ACh) arousal system in the brain is needed for robust attention and working memory functions, but the receptor and cellular bases for its beneficial effects are poorly understood in the newly evolved primate brain. The current

  8. Altered prefrontal cortical MARCKS and PPP1R9A mRNA expression in schizophrenia and bipolar disorder.

    Science.gov (United States)

    Konopaske, Glenn T; Subburaju, Sivan; Coyle, Joseph T; Benes, Francine M

    2015-05-01

    We previously observed dendritic spine loss in the dorsolateral prefrontal cortex (DLPFC) from schizophrenia and bipolar disorder subjects. In the current study, we sought to determine if the mRNA expression of genes known to regulate the actin cytoskeleton and spines correlated with spine loss. Five candidate genes were identified using previously obtained microarray data from the DLPFC from schizophrenia and control subjects. The relative mRNA expression of the genes linked to dendritic spine growth and function, i.e. IGF1R, MARCKS, PPP1R9A, PTPRF, and ARHGEF2, was assessed using quantitative real-time PCR (qRT-PCR) in the DLPFC from a second cohort including schizophrenia, bipolar disorder, and control subjects. Functional pathway analysis was conducted to determine which actin cytoskeleton-regulatory pathways the genes of interest interact with. MARCKS mRNA expression was increased in both schizophrenia and bipolar disorder subjects. PPP1R9A mRNA expression was increased in bipolar disorder subjects. For IGF1R, mRNA expression did not differ significantly among groups; however, it did show a significant, negative correlation with dendrite length. MARCKS and PPP1R9A mRNA expression did not correlate with spine loss, but they interact with NMDA receptor signaling pathways that regulate the actin cytoskeleton and spines. MARCKS and PPP1R9A might contribute to spine loss in schizophrenia and bipolar disorder through their interactions, possibly indirect ones, with NMDA signaling pathways that regulate spine structure and function. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Self-esteem modulates dorsal medial prefrontal cortical response to self-positivity bias in implicit self-relevant processing.

    Science.gov (United States)

    Yang, Juan; Dedovic, Katarina; Guan, Lili; Chen, Yu; Qi, Mingming

    2014-11-01

    Processing self-related material recruits similar neural networks regardless of whether the self-relevance is made explicit or not. However, when considering the neural mechanisms that distinctly underlie cognitive and affective components of self-reflection, it is still unclear whether the same mechanisms are involved when self-reflection is explicit or implicit, and how these mechanisms may be modulated by individual personality traits, such as self-esteem. In the present functional MRI study, 25 participants were exposed to positive and negative words that varied with respect to the degree of self-relevance for each participant; however, the participants were asked to make a judgment about the color of the words. Regions-of-interest analysis showed that medial prefrontal cortex (mPFC) and posterior cingulate cortex were associated with gauging the self-relevance of information. However, no main effect of valence or an interaction effect between self-relevance and valence was observed. Further, positive correlations were observed between levels of self-esteem and response within dorsal mPFC (dmPFC) both in the contrast positive-high in self-relevance trials vs positive-low in self-relevance trials and in the contrast negative-low in self-relevance trials vs positive-low in self-relevance trials. These results suggested that the activation of dmPFC may be particularly associated with the processes of self-positivity bias. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  10. Positively-valenced stimuli facilitate creative novel metaphoric processes by enhancing medial prefrontal cortical (mPFC activation

    Directory of Open Access Journals (Sweden)

    Karuna eSubramaniam

    2013-04-01

    Full Text Available A metaphor is a figure of speech in which a subject is symbolic of another unrelated object. In the present study, we examined neural patterns associated with both novel unfamiliar and conventional familiar metaphoric processing, and how these patterns are modulated by affective valence. Prior to fMRI scanning, participants received a list of word pairs (novel unfamiliar metaphors as well as conventional familiar metaphors and were asked to denote the valence (positive, negative, or neutral of each word pair. During scanning, participants had to decide whether the word pairs formed meaningful or meaningless expressions. Results indicate that participants were faster and more accurate at deciding that positively-valenced metaphors were meaningful compared to neutral metaphors. These behavioral findings were accompanied by increased activation in the medial prefrontal cortex (mPFC, posterior cingulate cortex (PCC, and the right inferior parietal lobe (IPL. Specifically, positively-valenced novel unfamiliar metaphors elicited activation in these brain regions in addition to the left superior temporal gyrus when compared to neutral novel metaphors. We also found that the mPFC and PCC mediated the processing of positively-valenced metaphors when compared to negatively-valenced metaphors. Positively-valenced conventional metaphors, however, elicited different neural signatures when contrasted with either neutral or negatively-valenced conventional metaphors. Together, our results indicate that positively-valenced stimuli facilitate creative metaphoric processes (specifically novel metaphoric processes by mediating attention and cognitive control processes required for the access, integration and selection of semantic associations via modulation of the mPFC. The present study is important for the development of neural accounts of emotion-cognition interactions required for creativity, language and successful social functioning in general.

  11. Interhemispheric interactions between the human primary somatosensory cortices.

    Directory of Open Access Journals (Sweden)

    Patrick Ragert

    Full Text Available In the somatosensory domain it is still unclear at which processing stage information reaches the opposite hemispheres. Due to dense transcallosal connections, the secondary somatosensory cortex (S2 has been proposed to be the key candidate for interhemispheric information transfer. However, recent animal studies showed that the primary somatosensory cortex (S1 might as well account for interhemispheric information transfer. Using paired median nerve somatosensory evoked potential recordings in humans we tested the hypothesis that interhemispheric inhibitory interactions in the somatosensory system occur already in an early cortical processing stage such as S1. Conditioning right S1 by electrical median nerve (MN stimulation of the left MN (CS resulted in a significant reduction of the N20 response in the target (left S1 relative to a test stimulus (TS to the right MN alone when the interstimulus interval between CS and TS was between 20 and 25 ms. No such changes were observed for later cortical components such as the N20/P25, N30, P40 and N60 amplitude. Additionally, the subcortically generated P14 response in left S1 was also not affected. These results document the existence of interhemispheric inhibitory interactions between S1 in human subjects in the critical time interval of 20-25 ms after median nerve stimulation.

  12. Language representation in the human brain: evidence from cortical mapping.

    Science.gov (United States)

    Bhatnagar, S C; Mandybur, G T; Buckingham, H W; Andy, O J

    2000-09-01

    The manner in which the human brain processes grammatical-syntactic and lexical-semantic functions has been extensively debated in neurolinguistics. The discreteness and selectivity of the representation of syntactic-morphological properties in the dominant frontal cortex and the representation of the lexical-semantics in the temporo-parietal cortex have been questioned. Three right-handed adult male neurosurgical patients undergoing left craniotomy for intractable seizures were evaluated using various grammatical and semantic tasks during cortical mapping. The sampling of language tasks consisted of trials with stimulation (experimental) and without stimulation (control) from sites in the dominant fronto-temporo-parietal cortex The sampling of language implicated a larger cortical area devoted to language (syntactic-morphological and lexical-semantic) tasks. Further, a large part of the fronto-parieto-temporal cortex was involved with syntactic-morphological functions. However, only the parieto-temporal sites were implicated with the ordering of lexicon in sentence construction. These observations suggest that the representation of language in the human brain may be columnar or multilayered. Copyright 2000 Academic Press.

  13. Double dissociation of the roles of the left and right prefrontal cortices in anticipatory regulation of action.

    Science.gov (United States)

    Ries, S K; Greenhouse, I; Dronkers, N F; Haaland, K Y; Knight, R T

    2014-10-01

    Recent actions can benefit or disrupt our current actions and the prefrontal cortex (PFC) is thought to play a major role in the regulation of these actions before they occur. The left PFC has been associated with overcoming interference from past events in the context of language production and working memory. The right PFC, and especially the right IFG, has been associated with preparatory inhibition processes. But damage to the right PFC has also been associated with impairment in sustaining actions in motor intentional disorders. Moreover, bilateral dorsolateral PFC has been associated with the ability to maintain task-sets, and improve the performance of current actions based on previous experience. However, potential hemispheric asymmetries in anticipatory regulation of action have not yet been delineated. In the present study, patients with left (n=7) vs. right (n=6) PFC damage due to stroke and 14 aged- and education-matched controls performed a picture naming and a verbal Simon task (participants had to say "right" or "left" depending on the color of the picture while ignoring its position). In both tasks, performance depended on the nature of the preceding trial, but in different ways. In the naming task, performance decreased if previous pictures were from the same rather than from different semantic categories (i.e., semantic interference effect). In the Simon task, performance was better for both compatible (i.e., response matching the position of the stimulus) and incompatible trials when preceded by a trial of the same compatibility (i.e. Gratton effect) relative to sequential trials of different compatibility. Left PFC patients were selectively impaired in picture naming; they had an increased semantic interference effect compared to both right PFC patients and aged-matched controls. Conversely, right PFC patients were selectively impaired in the Simon task compared to controls or left PFC patients; they showed no benefit when sequential trials were

  14. Cortical activity predicts good variation in human motor output.

    Science.gov (United States)

    Babikian, Sarine; Kanso, Eva; Kutch, Jason J

    2017-04-01

    Human movement patterns have been shown to be particularly variable if many combinations of activity in different muscles all achieve the same task goal (i.e., are goal-equivalent). The nervous system appears to automatically vary its output among goal-equivalent combinations of muscle activity to minimize muscle fatigue or distribute tissue loading, but the neural mechanism of this "good" variation is unknown. Here we use a bimanual finger task, electroencephalography (EEG), and machine learning to determine if cortical signals can predict goal-equivalent variation in finger force output. 18 healthy participants applied left and right index finger forces to repeatedly perform a task that involved matching a total (sum of right and left) finger force. As in previous studies, we observed significantly more variability in goal-equivalent muscle activity across task repetitions compared to variability in muscle activity that would not achieve the goal: participants achieved the task in some repetitions with more right finger force and less left finger force (right > left) and in other repetitions with less right finger force and more left finger force (left > right). We found that EEG signals from the 500 milliseconds (ms) prior to each task repetition could make a significant prediction of which repetitions would have right > left and which would have left > right. We also found that cortical maps of sites contributing to the prediction contain both motor and pre-motor representation in the appropriate hemisphere. Thus, goal-equivalent variation in motor output may be implemented at a cortical level.

  15. An anatomical and functional topography of human auditory cortical areas

    Directory of Open Access Journals (Sweden)

    Michelle eMoerel

    2014-07-01

    Full Text Available While advances in magnetic resonance imaging (MRI throughout the last decades have enabled the detailed anatomical and functional inspection of the human brain non-invasively, to date there is no consensus regarding the precise subdivision and topography of the areas forming the human auditory cortex. Here, we propose a topography of the human auditory areas based on insights on the anatomical and functional properties of human auditory areas as revealed by studies of cyto- and myelo-architecture and fMRI investigations at ultra-high magnetic field (7 Tesla. Importantly, we illustrate that - whereas a group-based approach to analyze functional (tonotopic maps is appropriate to highlight the main tonotopic axis - the examination of tonotopic maps at single subject level is required to detail the topography of primary and non-primary areas that may be more variable across subjects. Furthermore, we show that considering multiple maps indicative of anatomical (i.e. myelination as well as of functional properties (e.g. broadness of frequency tuning is helpful in identifying auditory cortical areas in individual human brains. We propose and discuss a topography of areas that is consistent with old and recent anatomical post mortem characterizations of the human auditory cortex and that may serve as a working model for neuroscience studies of auditory functions.

  16. Opiate sensitization induces FosB/ΔFosB expression in prefrontal cortical, striatal and amygdala brain regions.

    Directory of Open Access Journals (Sweden)

    Gary B Kaplan

    Full Text Available Sensitization to the effects of drugs of abuse and associated stimuli contributes to drug craving, compulsive drug use, and relapse in addiction. Repeated opiate exposure produces behavioral sensitization that is hypothesized to result from neural plasticity in specific limbic, striatal and cortical systems. ΔFosB and FosB are members of the Fos family of transcription factors that are implicated in neural plasticity in addiction. This study examined the effects of intermittent morphine treatment, associated with motor sensitization, on FosB/ΔFosB levels using quantitative immunohistochemistry. Motor sensitization was tested in C57BL/6 mice that received six intermittent pre-treatments (on days 1, 3, 5, 8, 10, 12 with either subcutaneous morphine (10 mg/kg or saline followed by a challenge injection of morphine or saline on day 16. Mice receiving repeated morphine injections demonstrated significant increases in locomotor activity on days 8, 10, and 12 of treatment (vs. day 1, consistent with development of locomotor sensitization. A morphine challenge on day 16 significantly increased locomotor activity of saline pre-treated mice and produced even larger increases in motor activity in the morphine pre-treated mice, consistent with the expression of opiate sensitization. Intermittent morphine pre-treatment on these six pre-treatment days produced a significant induction of FosB/ΔFosB, measured on day 16, in multiple brain regions including prelimbic (PL and infralimbic (IL cortex, nucleus accumbens (NAc core, dorsomedial caudate-putamen (CPU, basolateral amygdala (BLA and central nucleus of the amygdala (CNA but not in a motor cortex control region. Opiate induced sensitization may develop via Fos/ΔFosB plasticity in motivational pathways (NAc, motor outputs (CPU, and associative learning (PL, IL, BLA and stress pathways (CNA.

  17. COMT Genetic Reduction Produces Sexually Divergent Effects on Cortical Anatomy and Working Memory in Mice and Humans.

    Science.gov (United States)

    Sannino, Sara; Gozzi, Alessandro; Cerasa, Antonio; Piras, Fabrizio; Scheggia, Diego; Managò, Francesca; Damiano, Mario; Galbusera, Alberto; Erickson, Lucy C; De Pietri Tonelli, Davide; Bifone, Angelo; Tsaftaris, Sotirios A; Caltagirone, Carlo; Weinberger, Daniel R; Spalletta, Gianfranco; Papaleo, Francesco

    2015-09-01

    Genetic variations in catechol-O-methyltransferase (COMT) that modulate cortical dopamine have been associated with pleiotropic behavioral effects in humans and mice. Recent data suggest that some of these effects may vary among sexes. However, the specific brain substrates underlying COMT sexual dimorphisms remain unknown. Here, we report that genetically driven reduction in COMT enzyme activity increased cortical thickness in the prefrontal cortex (PFC) and postero-parieto-temporal cortex of male, but not female adult mice and humans. Dichotomous changes in PFC cytoarchitecture were also observed: reduced COMT increased a measure of neuronal density in males, while reducing it in female mice. Consistent with the neuroanatomical findings, COMT-dependent sex-specific morphological brain changes were paralleled by divergent effects on PFC-dependent working memory in both mice and humans. These findings emphasize a specific sex-gene interaction that can modulate brain morphological substrates with influence on behavioral outcomes in healthy subjects and, potentially, in neuropsychiatric populations. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. Preserved self-awareness following extensive bilateral brain damage to the insula, anterior cingulate, and medial prefrontal cortices

    National Research Council Canada - National Science Library

    Philippi, Carissa L; Feinstein, Justin S; Khalsa, Sahib S; Damasio, Antonio; Tranel, Daniel; Landini, Gregory; Williford, Kenneth; Rudrauf, David

    2012-01-01

    It has been proposed that self-awareness (SA), a multifaceted phenomenon central to human consciousness, depends critically on specific brain regions, namely the insular cortex, the anterior cingulate cortex (ACC...

  19. Preserved Self-Awareness following Extensive Bilateral Brain Damage to the Insula, Anterior Cingulate, and Medial Prefrontal Cortices: e38413

    National Research Council Canada - National Science Library

    Carissa L Philippi; Justin S Feinstein; Sahib S Khalsa; Antonio Damasio; Daniel Tranel; Gregory Landini; Kenneth Williford; David Rudrauf

    2012-01-01

      It has been proposed that self-awareness (SA), a multifaceted phenomenon central to human consciousness, depends critically on specific brain regions, namely the insular cortex, the anterior cingulate cortex (ACC...

  20. Humans mimicking animals: A cortical hierarchy for human vocal communication sounds

    Science.gov (United States)

    Talkington, William J.; Rapuano, Kristina M.; Hitt, Laura; Frum, Chris A.; Lewis, James W.

    2012-01-01

    Numerous species possess cortical regions that are most sensitive to vocalizations produced by their own kind (conspecifics). In humans, the superior temporal sulci (STS) putatively represent homologous voice-sensitive areas of cortex. However, STS regions have recently been reported to represent auditory experience or “expertise” in general rather than showing exclusive sensitivity to human vocalizations per se. Using functional magnetic resonance imaging and a unique non-stereotypical category of complex human non-verbal vocalizations – human-mimicked versions of animal vocalizations – we found a cortical hierarchy in humans optimized for processing meaningful conspecific utterances. This left-lateralized hierarchy originated near primary auditory cortices and progressed into traditional speech-sensitive areas. These results suggest that the cortical regions supporting vocalization perception are initially organized by sensitivity to the human vocal tract in stages prior to the STS. Additionally, these findings have implications for the developmental time course of conspecific vocalization processing in humans as well as its evolutionary origins. PMID:22674283

  1. Auditory Connections and Functions of Prefrontal Cortex

    Directory of Open Access Journals (Sweden)

    Bethany ePlakke

    2014-07-01

    Full Text Available The functional auditory system extends from the ears to the frontal lobes with successively more complex functions occurring as one ascends the hierarchy of the nervous system. Several areas of the frontal lobe receive afferents from both early and late auditory processing regions within the temporal lobe. Afferents from the early part of the cortical auditory system, the auditory belt cortex, which are presumed to carry information regarding auditory features of sounds, project to only a few prefrontal regions and are most dense in the ventrolateral prefrontal cortex (VLPFC. In contrast, projections from the parabelt and the rostral superior temporal gyrus (STG most likely convey more complex information and target a larger, widespread region of the prefrontal cortex. Neuronal responses reflect these anatomical projections as some prefrontal neurons exhibit responses to features in acoustic stimuli, while other neurons display task-related responses. For example, recording studies in non-human primates indicate that VLPFC is responsive to complex sounds including vocalizations and that VLPFC neurons in area 12/47 respond to sounds with similar acoustic morphology. In contrast, neuronal responses during auditory working memory involve a wider region of the prefrontal cortex. In humans, the frontal lobe is involved in auditory detection, discrimination, and working memory. Past research suggests that dorsal and ventral subregions of the prefrontal cortex process different types of information with dorsal cortex processing spatial/visual information and ventral cortex processing non-spatial/auditory information. While this is apparent in the non-human primate and in some neuroimaging studies, most research in humans indicates that specific task conditions, stimuli or previous experience may bias the recruitment of specific prefrontal regions, suggesting a more flexible role for the frontal lobe during auditory cognition.

  2. Auditory connections and functions of prefrontal cortex

    Science.gov (United States)

    Plakke, Bethany; Romanski, Lizabeth M.

    2014-01-01

    The functional auditory system extends from the ears to the frontal lobes with successively more complex functions occurring as one ascends the hierarchy of the nervous system. Several areas of the frontal lobe receive afferents from both early and late auditory processing regions within the temporal lobe. Afferents from the early part of the cortical auditory system, the auditory belt cortex, which are presumed to carry information regarding auditory features of sounds, project to only a few prefrontal regions and are most dense in the ventrolateral prefrontal cortex (VLPFC). In contrast, projections from the parabelt and the rostral superior temporal gyrus (STG) most likely convey more complex information and target a larger, widespread region of the prefrontal cortex. Neuronal responses reflect these anatomical projections as some prefrontal neurons exhibit responses to features in acoustic stimuli, while other neurons display task-related responses. For example, recording studies in non-human primates indicate that VLPFC is responsive to complex sounds including vocalizations and that VLPFC neurons in area 12/47 respond to sounds with similar acoustic morphology. In contrast, neuronal responses during auditory working memory involve a wider region of the prefrontal cortex. In humans, the frontal lobe is involved in auditory detection, discrimination, and working memory. Past research suggests that dorsal and ventral subregions of the prefrontal cortex process different types of information with dorsal cortex processing spatial/visual information and ventral cortex processing non-spatial/auditory information. While this is apparent in the non-human primate and in some neuroimaging studies, most research in humans indicates that specific task conditions, stimuli or previous experience may bias the recruitment of specific prefrontal regions, suggesting a more flexible role for the frontal lobe during auditory cognition. PMID:25100931

  3. Activation of the mouse primary visual cortex by medial prefrontal subregion stimulation is not mediated by cholinergic basalo-cortical projections

    Directory of Open Access Journals (Sweden)

    Hoang Nam eNguyen

    2015-02-01

    Full Text Available The medial prefrontal cortex (mPFC exerts top-down control of primary visual cortex (V1 activity. As there is no direct neuronal projection from mPFC to V1, this functional connection may use an indirect route, i.e., via basalo-cortical cholinergic projections. The cholinergic projections to V1 originate from neurons in the horizontal limb of the diagonal band of Broca (HDB, which receive neuronal projections from the ventral part of the mPFC, composed of prelimbic (PrL and infralimbic cortices (IL. Therefore, the objective of this study was to determine whether electrical stimulation of mice mPFC subregions activate 1 V1 neurons and 2 HDB cholinergic neurons, suggesting that the HDB serves as a relay point in the mPFC-V1 interaction. Neuronal activation was quantified using c-Fos immunocytochemistry or thallium autometallography for each V1 layer using automated particle analysis tools and optical density measurement. Stimulation of IL and PrL induced significantly higher c-Fos expression or thallium labelling in layers II/III and V of V1 in the stimulated hemisphere only. A HDB cholinergic neuron-specific lesion by saporin administration reduced IL-induced c-Fos expression in layers II/III of V1 but not in layer V. However, there was no c-Fos expression or thallium labelling in the HDB neurons, suggesting that this area was not activated by IL stimulation. Stimulation of another mPFC subarea, the anterior cingulate cortex (AC, which is involved in attention and receives input from V1, activated neither V1 nor HDB. The present results indicate that IL and PrL, but not AC, stimulation activates V1 with the minor involvement of the HDB cholinergic projections. These results suggest a functional link between the ventral mPFC and V1, but this function is only marginally supported by HDB cholinergic neurons and may involve other brain regions.

  4. Three cortical stages of colour processing in the human brain.

    Science.gov (United States)

    Zeki, S; Marini, L

    1998-09-01

    We used the technique of functional magnetic resonance imaging to chart the colour pathways in the human brain beyond V4. We asked subjects to view objects that were dressed in natural and unnatural colours as well as their achromatic counterparts and compared the activity produced in the brain by each condition. The results showed that both naturally and unnaturally coloured objects activate a pathway extending from V1 to V4, though not overlapping totally the activity produced by viewing abstract coloured Mondrian scenes. Normally coloured objects activated, in addition, more anterior parts of the fusiform gyrus, the hippocampus and the ventrolateral frontal cortex. Abnormally coloured objects, by contrast, activated the dorsolateral frontal cortex. A study of the cortical covariation produced by these activations revealed that activity in large parts of the occipital lobe covaried with each. These results, considered against the background of previous physiological and clinical studies, allow us to discern three broad cortical stages of colour processing in the human brain. The first is based on V1 and possibly V2 and is concerned mainly with registering the presence and intensity of different wavelengths, and with wavelength differencing. The second stage is based on V4 and is concerned with automatic colour constancy operations, without regard to memory, judgement and learning. The third stage, based on the inferior temporal and frontal cortex, is more concerned with object colours. The results we report, as well as the schema that we suggest, also allow us to reconcile the computational theory of Land, implemented without regard to cognitive factors such as memory and learning, and the cognitive systems of Helmholtz and Hering, which view such factors as critical in the determination of colours.

  5. Lifespan anxiety is reflected in human amygdala cortical connectivity

    Science.gov (United States)

    He, Ye; Xu, Ting; Zhang, Wei

    2016-01-01

    Abstract The amygdala plays a pivotal role in processing anxiety and connects to large‐scale brain networks. However, intrinsic functional connectivity (iFC) between amygdala and these networks has rarely been examined in relation to anxiety, especially across the lifespan. We employed resting‐state functional MRI data from 280 healthy adults (18–83.5 yrs) to elucidate the relationship between anxiety and amygdala iFC with common cortical networks including the visual network, somatomotor network, dorsal attention network, ventral attention network, limbic network, frontoparietal network, and default network. Global and network‐specific iFC were separately computed as mean iFC of amygdala with the entire cerebral cortex and each cortical network. We detected negative correlation between global positive amygdala iFC and trait anxiety. Network‐specific associations between amygdala iFC and anxiety were also detectable. Specifically, the higher iFC strength between the left amygdala and the limbic network predicted lower state anxiety. For the trait anxiety, left amygdala anxiety–connectivity correlation was observed in both somatomotor and dorsal attention networks, whereas the right amygdala anxiety–connectivity correlation was primarily distributed in the frontoparietal and ventral attention networks. Ventral attention network exhibited significant anxiety–gender interactions on its iFC with amygdala. Together with findings from additional vertex‐wise analysis, these data clearly indicated that both low‐level sensory networks and high‐level associative networks could contribute to detectable predictions of anxiety behaviors by their iFC profiles with the amygdala. This set of systems neuroscience findings could lead to novel functional network models on neural correlates of human anxiety and provide targets for novel treatment strategies on anxiety disorders. Hum Brain Mapp 37:1178–1193, 2016. © 2015 The Authors Human Brain Mapping

  6. Association between rostral prefrontal cortical activity and functional outcome in first-episode psychosis: a longitudinal functional near-infrared spectroscopy study.

    Science.gov (United States)

    Koike, Shinsuke; Satomura, Yoshihiro; Kawasaki, Shingo; Nishimura, Yukika; Takano, Yosuke; Iwashiro, Norichika; Kinoshita, Akihide; Nagai, Tatsuya; Natsubori, Tatsunobu; Tada, Mariko; Ichikawa, Eriko; Takizawa, Ryu; Kasai, Kiyoto

    2016-02-01

    Few biomarkers can be used easily and noninvasively to measure clinical condition and future outcome in patients with first-episode psychosis (FEP). To develop such biomarker using multichannel functional near-infrared spectroscopy (fNIRS), cortical function in the prefrontal cortex was longitudinally measured during a verbal fluency task. Sixty-nine fNIRS measurements and 77 clinical assessments were obtained from 31 patients with FEP at baseline, 6-month, and 12-month follow-ups. Sixty measurements were obtained from 30 healthy controls matched for age, sex, and premorbid IQ. We initially tested signal changes for 12 months, and then investigated the relationship between fNIRS signals and clinical assessments. Signal changes from baseline to 12-month follow-up were not evident in any group. Patients with FEP had significant positive correlation coefficients between 6-month fNIRS signals and the 12-month Global Assessment of Functioning (GAF) score in the left middle frontal gyrus (FDR-corrected p=.0016-.0052, r=.65-.59). fNIRS signals at the 12-month follow-up were associated with 12-month GAF score in the bilateral superior and middle frontal gyri (FDR-corrected p=.00085-.018, r=.72-.55), and with the difference between baseline and 12-month GAF scores in the right superior frontal gyrus (FDR-corrected p=.000067-.00012, r=.80-.78). These associations were significant even after controlling for demographic variables. No association between baseline fNIRS signals and later GAF scores was found. fNIRS measurement can potentially be used as a biomarker to aid sequential assessment of neuro-clinical conditions through the early stage of psychosis. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Mu-opioid stimulation in rat prefrontal cortex engages hypothalamic orexin/hypocretin-containing neurons, and reveals dissociable roles of nucleus accumbens and hypothalamus in cortically driven feeding.

    Science.gov (United States)

    Mena, Jesus D; Selleck, Ryan A; Baldo, Brian A

    2013-11-20

    Mu-opioid receptor (μOR) stimulation within ventral medial prefrontal cortex (vmPFC) induces feeding and hyperactivity, resulting possibly from recruitment of glutamate signaling in multiple vmPFC projection targets. We tested this hypothesis by analyzing Fos expression in vmPFC terminal fields after intra-vmPFC μOR stimulation, and by examining of the impact of glutamate receptor blockade in two feeding-related targets of vmPFC, the lateral-perifornical hypothalamic area (LH-PeF) and nucleus accumbens shell (Acb shell), upon behavioral effects elicited by intra-vmPFC μOR stimulation in rats. Intra-vmPFC infusion of the μOR agonist, DAMGO, provoked Fos expression in the dorsomedial sector of tuberal hypothalamus (including the perifornical area) and increased the percentage of Fos-expressing hypocretin/orexin-immunoreactive neurons in these zones. NMDA receptor blockade in the LH-PeF nearly eliminated intra-vmPFC DAMGO-induced food intake without altering DAMGO-induced hyperactivity. In contrast, blocking AMPA-type glutamate receptors within the Acb shell (the feeding-relevant subtype in this structure) antagonized intra-vmPFC DAMGO-induced hyperlocomotion but enhanced food intake. Intra-vmPFC DAMGO also elevated the breakpoint for sucrose-reinforced progressive-ratio responding; this effect was significantly enhanced by concomitant AMPA blockade in the Acb shell. Conversely, intra-Acb shell AMPA stimulation reduced breakpoint and increased nonspecific responding on the inactive lever. These data indicate intra-vmPFC μOR signaling jointly modulates appetitive motivation and generalized motoric activation through functionally dissociable vmPFC projection targets. These findings may shed light on the circuitry underlying disorganized appetitive responses in psychopathology; e.g., binge eating and opiate or alcohol abuse, disorders in which μORs and aberrant cortical activation have been implicated.

  8. Global and regional cortical connectivity maturation index (CCMI) of developmental human brain with quantification of short-range association tracts

    Science.gov (United States)

    Ouyang, Minhui; Jeon, Tina; Mishra, Virendra; Du, Haixiao; Wang, Yu; Peng, Yun; Huang, Hao

    2016-03-01

    From early childhood to adulthood, synaptogenesis and synaptic pruning continuously reshape the structural architecture and neural connection in developmental human brains. Disturbance of the precisely balanced strengthening of certain axons and pruning of others may cause mental disorders such as autism and schizophrenia. To characterize this balance, we proposed a novel measurement based on cortical parcellation and diffusion MRI (dMRI) tractography, a cortical connectivity maturation index (CCMI). To evaluate the spatiotemporal sensitivity of CCMI as a potential biomarker, dMRI and T1 weighted datasets of 21 healthy subjects 2-25 years were acquired. Brain cortex was parcellated into 68 gyral labels using T1 weighted images, then transformed into dMRI space to serve as the seed region of interest for dMRI-based tractography. Cortico-cortical association fibers initiated from each gyrus were categorized into long- and short-range ones, based on the other end of fiber terminating in non-adjacent or adjacent gyri of the seed gyrus, respectively. The regional CCMI was defined as the ratio between number of short-range association tracts and that of all association tracts traced from one of 68 parcellated gyri. The developmental trajectory of the whole brain CCMI follows a quadratic model with initial decreases from 2 to 16 years followed by later increases after 16 years. Regional CCMI is heterogeneous among different cortical gyri with CCMI dropping to the lowest value earlier in primary somatosensory cortex and visual cortex while later in the prefrontal cortex. The proposed CCMI may serve as sensitive biomarker for brain development under normal or pathological conditions.

  9. Temporally Dissociable Contributions of Human Medial Prefrontal Subregions to Reward-Guided Learning.

    Science.gov (United States)

    Hauser, Tobias U; Hunt, Laurence T; Iannaccone, Reto; Walitza, Susanne; Brandeis, Daniel; Brem, Silvia; Dolan, Raymond J

    2015-08-12

    In decision making, dorsal and ventral medial prefrontal cortex show a sensitivity to key decision variables, such as reward prediction errors. It is unclear whether these signals reflect parallel processing of a common synchronous input to both regions, for example from mesocortical dopamine, or separate and consecutive stages in reward processing. These two perspectives make distinct predictions about the relative timing of feedback-related activity in each of these regions, a question we address here. To reconstruct the unique temporal contribution of dorsomedial (dmPFC) and ventromedial prefrontal cortex (vmPFC) to simultaneously measured EEG activity in human subjects, we developed a novel trialwise fMRI-informed EEG analysis that allows dissociating correlated and overlapping sources. We show that vmPFC uniquely contributes a sustained activation profile shortly after outcome presentation, whereas dmPFC contributes a later and more peaked activation pattern. This temporal dissociation is expressed mainly in the alpha band for a vmPFC signal, which contrasts with a theta based dmPFC signal. Thus, our data show reward-related vmPFC and dmPFC responses have distinct time courses and unique spectral profiles, findings that support distinct functional roles in a reward-processing network. Multiple subregions of the medial prefrontal cortex are known to be involved in decision making and learning, and expose similar response patterns in fMRI. Here, we used a novel approach to analyzing simultaneous EEG-fMRI that allows to dissociate the individual time courses of brain regions. We find that vmPFC and dmPFC have distinguishable time courses and time-frequency patterns. Copyright © 2015 Hauser, Hunt et al.

  10. Aging and Fracture of Human Cortical Bone and Tooth Dentin

    Energy Technology Data Exchange (ETDEWEB)

    Ager, Joel; Koester, Kurt J.; Ager III, Joel W.; Ritchie, Robert O.

    2008-05-07

    Mineralized tissues, such as bone and tooth dentin, serve as structural materials in the human body and, as such, have evolved to resist fracture. In assessing their quantitative fracture resistance or toughness, it is important to distinguish between intrinsic toughening mechanisms which function ahead of the crack tip, such as plasticity in metals, and extrinsic mechanisms which function primarily behind the tip, such as crack bridging in ceramics. Bone and dentin derive their resistance to fracture principally from extrinsic toughening mechanisms which have their origins in the hierarchical microstructure of these mineralized tissues. Experimentally, quantification of these toughening mechanisms requires a crack-growth resistance approach, which can be achieved by measuring the crack-driving force, e.g., the stress intensity, as a function of crack extension ("R-curve approach"). Here this methodology is used to study of the effect of aging on the fracture properties of human cortical bone and human dentin in order to discern the microstructural origins of toughness in these materials.

  11. Regulating prefrontal cortex activation

    DEFF Research Database (Denmark)

    Aznar, Susana; Klein, Anders Bue

    2013-01-01

    is highly expressed in the prefrontal cortex areas, playing an important role in modulating cortical activity and neural oscillations (brain waves). This makes it an interesting potential pharmacological target for the treatment of neuropsychiatric modes characterized by lack of inhibitory control...

  12. Object-in-place associative recognition memory depends on glutamate receptor neurotransmission within two defined hippocampal-cortical circuits: a critical role for AMPA and NMDA receptors in the hippocampus, perirhinal, and prefrontal cortices.

    Science.gov (United States)

    Barker, Gareth Robert Issac; Warburton, Elizabeth Clea

    2015-02-01

    Object-in-place associative recognition memory depends on an interaction between the hippocampus (HPC), perirhinal (PRH), and medial prefrontal (mPFC) cortices, yet the contribution of glutamate receptor neurotransmission to these interactions is unknown. NMDA receptors (NMDAR) in the HPC were critical for encoding of object-in-place memory but not for single-item object recognition. Next, a disconnection procedure was used to examine the importance of "concurrent" glutamate neurotransmission in the HPC-mPFC and HPC-PRH. Contralateral unilateral infusions of NBQX (AMPAR antagonist), into the HPC-mPFC, or HPC-PRH, either before acquisition or test, impaired object-in-place performance. Thus, both circuits are necessary for encoding and retrieval. Crossed unilateral AP5 (NMDAR antagonist) infusions into the HPC-mPFC or HPC-PRH impaired encoding, but not retrieval. Specifically crossed HPC-mPFC infusions impaired both short-term (5 min) and longer term (1 h) memory while HPC-PRH infusions impaired longer term memory only. This delay-dependent effect of AP5 in the HPC-PRH on object-in-place memory, accords with its effects in the PRH, on single item object recognition memory, thereby suggesting that a single PRH synaptic plasticity mechanism underpins different recognition memory processes. Further, blocking excitatory neurotransmission in any pair of structures within the networks impaired "both" encoding and retrieval, thus object-in-place memory clearly requires network interdependency across multiple structures. © The Author 2013. Published by Oxford University Press.

  13. Reward feedback stimuli elicit high-beta EEG oscillations in human dorsolateral prefrontal cortex.

    Science.gov (United States)

    HajiHosseini, Azadeh; Hosseini, Azadeh Haji; Holroyd, Clay B

    2015-08-17

    Reward-related feedback stimuli have been observed to elicit a burst of power in the beta frequency range over frontal areas of the human scalp. Recent discussions have suggested possible neural sources for this activity but there is a paucity of empirical evidence on the question. Here we recorded EEG from participants while they navigated a virtual T-maze to find monetary rewards. Consistent with previous studies, we found that the reward feedback stimuli elicited an increase in beta power (20-30 Hz) over a right-frontal area of the scalp. Source analysis indicated that this signal was produced in the right dorsolateral prefrontal cortex (DLPFC). These findings align with previous observations of reward-related beta oscillations in the DLPFC in non-human primates. We speculate that increased power in the beta frequency range following reward receipt reflects the activation of task-related neural assemblies that encode the stimulus-response mapping in working memory.

  14. Dynamic tensile material properties of human pelvic cortical bone.

    Science.gov (United States)

    Kemper, Andrew R; McNally, Craig; Duma, Stefan M

    2008-01-01

    IIn order for finite element models of the human body to predict pelvic injuries accurately, the appropriate material properties must be applied. Therefore, the purpose of this study was to quantify the dynamic material properties of human pelvic cortical bone in tension. In order to accomplish this, a total of 20 tension coupon specimens were obtained from four regions of four human cadaver pelves: anterior ilium wing, posterior ilium wing, superior pubic ramus, and ischium body. For the anterior and posterior regions of the ilium wing, samples were taken in two orientations to investigate any direction dependence. A high-rate servo-hydraulic Material Testing System (MTS) with a custom slack adaptor was used to apply tension loads to failure at a constant loading rate of 0.5 strains/s. The horizontally oriented anterior ilium specimens were found to have a significantly larger ultimate stress (p=0.02), ultimate strain (p>0.01), and modulus (p=0.02) than the vertically oriented anterior ilium specimens. There were no significant differences in ultimate stress (p=0.27), ultimate strain (p=0.85), or modulus (p=0.87) found between horizontally oriented and vertically oriented posterior ilium specimens. However, additional testing should be conducted at specimen orientation 45 degree from the orientations used in the current study to further investigate the effect of specimen orientation on the posterior portion of the ilium wing. There were no significant differences in ultimate stress (p=0.79), ultimate strain (p=0.31), or modulus (p=0.15) found between the superior pubic ramus and ischium body specimens. However, the statistical comparison between superior pubic ramus and ischium body specimens was considered weak due to the limited samples and large variation between subjects.

  15. Affective and cognitive prefrontal cortex projections to the lateral habenula in humans.

    Directory of Open Access Journals (Sweden)

    Karin eVadovičová

    2014-10-01

    Full Text Available Anterior insula (AI and dorsal ACC (dACC are known to process information about pain, loss, adversities, bad, harmful or suboptimal choices and consequences that threaten survival or well-being. Also pregenual ACC (pgACC is linked to loss and pain, being activated by sad thoughts and regrets. Lateral habenula (LHb is stimulated by predicted and received pain, discomfort, aversive outcome, loss. Its chronic stimulation makes us feel worse/low and gradually stops us choosing and moving for the suboptimal or punished choices, by direct and indirect (via rostromedial tegmental nucleus RMTg inhibition of DRN and VTA/SNc. The response selectivity of LHb neurons suggests their cortical input from affective and cognitive evaluative regions that make expectations about bad, unpleasant or suboptimal outcomes. Based on these facts we predicted direct dACC, pgACC and AI projections to LHb, which form part of an adversity processing circuit that learns to avoid bad outcomes by suppressing dopamine and serotonin signal. To test this connectivity we used Diffusion Tensor Imaging (DTI. We found dACC, pgACC, AI and caudolateral OFC projections to LHb. We predicted no corticohabenular projections from the reward processing regions: medial OFC (mOFC and ventral ACC (vACC because both respond most strongly to good, high valued stimuli and outcomes, inducing dopamine and serotonin release. This lack of LHb projections was confirmed for vACC and likely for mOFC. The surprising findings were the corticohabenular projections from the cognitive prefrontal cortex regions, known for flexible reasoning, planning and combining whatever information are relevant for reaching current goals. We propose that the prefrontohabenular projections provide a teaching signal for value-based choice behaviour, to learn to deselect, avoid or inhibit the potentially harmful, low valued or wrong choices, goals, strategies, predictions and ways of doing things, to prevent bad or suboptimal

  16. Human temporal cortical single neuron activity during working memory maintenance.

    Science.gov (United States)

    Zamora, Leona; Corina, David; Ojemann, George

    2016-06-01

    The Working Memory model of human memory, first introduced by Baddeley and Hitch (1974), has been one of the most influential psychological constructs in cognitive psychology and human neuroscience. However the neuronal correlates of core components of this model have yet to be fully elucidated. Here we present data from two studies where human temporal cortical single neuron activity was recorded during tasks differentially affecting the maintenance component of verbal working memory. In Study One we vary the presence or absence of distracting items for the entire period of memory storage. In Study Two we vary the duration of storage so that distractors filled all, or only one-third of the time the memory was stored. Extracellular single neuron recordings were obtained from 36 subjects undergoing awake temporal lobe resections for epilepsy, 25 in Study one, 11 in Study two. Recordings were obtained from a total of 166 lateral temporal cortex neurons during performance of one of these two tasks, 86 study one, 80 study two. Significant changes in activity with distractor manipulation were present in 74 of these neurons (45%), 38 Study one, 36 Study two. In 48 (65%) of those there was increased activity during the period when distracting items were absent, 26 Study One, 22 Study Two. The magnitude of this increase was greater for Study One, 47.6%, than Study Two, 8.1%, paralleling the reduction in memory errors in the absence of distracters, for Study One of 70.3%, Study Two 26.3% These findings establish that human lateral temporal cortex is part of the neural system for working memory, with activity during maintenance of that memory that parallels performance, suggesting it represents active rehearsal. In 31 of these neurons (65%) this activity was an extension of that during working memory encoding that differed significantly from the neural processes recorded during overt and silent language tasks without a recent memory component, 17 Study one, 14 Study two

  17. Human Dorsolateral Prefrontal Cortex Is Not Necessary for Spatial Working Memory.

    Science.gov (United States)

    Mackey, Wayne E; Devinsky, Orrin; Doyle, Werner K; Meager, Michael R; Curtis, Clayton E

    2016-03-09

    A dominant theory, based on electrophysiological and lesion evidence from nonhuman primate studies, posits that the dorsolateral prefrontal cortex (dlPFC) stores and maintains working memory (WM) representations. Yet, neuroimaging studies have consistently failed to translate these results to humans; these studies normally find that neural activity persists in the human precentral sulcus (PCS) during WM delays. Here, we attempt to resolve this discrepancy. To test the degree to which dlPFC is necessary for WM, we compared the performance of patients with dlPFC lesions and neurologically healthy controls on a memory-guided saccade task that was used in the monkey studies to measure spatial WM. We found that dlPFC damage only impairs the accuracy of memory-guided saccades if the damage impacts the PCS; lesions to dorsolateral dlPFC that spare the PCS have no effect on WM. These results identify the necessary subregion of the frontal cortex for WM and specify how this influential animal model of human cognition must be revised. Copyright © 2016 the authors 0270-6474/16/362847-10$15.00/0.

  18. Coordinated Expression of Phosphoinositide Metabolic Genes during Development and Aging of Human Dorsolateral Prefrontal Cortex.

    Directory of Open Access Journals (Sweden)

    Stanley I Rapoport

    Full Text Available Phosphoinositides, lipid-signaling molecules, participate in diverse brain processes within a wide metabolic cascade.Gene transcriptional networks coordinately regulate the phosphoinositide cascade during human brain Development and Aging.We used the public BrainCloud database for human dorsolateral prefrontal cortex to examine age-related expression levels of 49 phosphoinositide metabolic genes during Development (0 to 20+ years and Aging (21+ years.We identified three groups of partially overlapping genes in each of the two intervals, with similar intergroup correlations despite marked phenotypic differences between Aging and Development. In each interval, ITPKB, PLCD1, PIK3R3, ISYNA1, IMPA2, INPPL1, PI4KB, and AKT1 are in Group 1, PIK3CB, PTEN, PIK3CA, and IMPA1 in Group 2, and SACM1L, PI3KR4, INPP5A, SYNJ1, and PLCB1 in Group 3. Ten of the genes change expression nonlinearly during Development, suggesting involvement in rapidly changing neuronal, glial and myelination events. Correlated transcription for some gene pairs likely is facilitated by colocalization on the same chromosome band.Stable coordinated gene transcriptional networks regulate brain phosphoinositide metabolic pathways during human Development and Aging.

  19. Prediction for human intelligence using morphometric characteristics of cortical surface: partial least square analysis.

    Science.gov (United States)

    Yang, J-J; Yoon, U; Yun, H J; Im, K; Choi, Y Y; Lee, K H; Park, H; Hough, M G; Lee, J-M

    2013-08-29

    A number of imaging studies have reported neuroanatomical correlates of human intelligence with various morphological characteristics of the cerebral cortex. However, it is not yet clear whether these morphological properties of the cerebral cortex account for human intelligence. We assumed that the complex structure of the cerebral cortex could be explained effectively considering cortical thickness, surface area, sulcal depth and absolute mean curvature together. In 78 young healthy adults (age range: 17-27, male/female: 39/39), we used the full-scale intelligence quotient (FSIQ) and the cortical measurements calculated in native space from each subject to determine how much combining various cortical measures explained human intelligence. Since each cortical measure is thought to be not independent but highly inter-related, we applied partial least square (PLS) regression, which is one of the most promising multivariate analysis approaches, to overcome multicollinearity among cortical measures. Our results showed that 30% of FSIQ was explained by the first latent variable extracted from PLS regression analysis. Although it is difficult to relate the first derived latent variable with specific anatomy, we found that cortical thickness measures had a substantial impact on the PLS model supporting the most significant factor accounting for FSIQ. Our results presented here strongly suggest that the new predictor combining different morphometric properties of complex cortical structure is well suited for predicting human intelligence. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  20. Human-Specific Histone Methylation Signatures at Transcription Start Sites in Prefrontal Neurons

    Science.gov (United States)

    Cheung, Iris; Bharadwaj, Rahul; Chou, Hsin-Jung; Houston, Isaac B.; Peter, Cyril J.; Mitchell, Amanda C.; Yao, Wei-Dong; Myers, Richard H.; Chen, Jiang-fan; Preuss, Todd M.; Rogaev, Evgeny I.; Jensen, Jeffrey D.; Weng, Zhiping; Akbarian, Schahram

    2012-01-01

    Cognitive abilities and disorders unique to humans are thought to result from adaptively driven changes in brain transcriptomes, but little is known about the role of cis-regulatory changes affecting transcription start sites (TSS). Here, we mapped in human, chimpanzee, and macaque prefrontal cortex the genome-wide distribution of histone H3 trimethylated at lysine 4 (H3K4me3), an epigenetic mark sharply regulated at TSS, and identified 471 sequences with human-specific enrichment or depletion. Among these were 33 loci selectively methylated in neuronal but not non-neuronal chromatin from children and adults, including TSS at DPP10 (2q14.1), CNTN4 and CHL1 (3p26.3), and other neuropsychiatric susceptibility genes. Regulatory sequences at DPP10 and additional loci carried a strong footprint of hominid adaptation, including elevated nucleotide substitution rates and regulatory motifs absent in other primates (including archaic hominins), with evidence for selective pressures during more recent evolution and adaptive fixations in modern populations. Chromosome conformation capture at two neurodevelopmental disease loci, 2q14.1 and 16p11.2, revealed higher order chromatin structures resulting in physical contact of multiple human-specific H3K4me3 peaks spaced 0.5–1 Mb apart, in conjunction with a novel cis-bound antisense RNA linked to Polycomb repressor proteins and downregulated DPP10 expression. Therefore, coordinated epigenetic regulation via newly derived TSS chromatin could play an important role in the emergence of human-specific gene expression networks in brain that contribute to cognitive functions and neurological disease susceptibility in modern day humans. PMID:23185133

  1. Controllability modulates the anticipatory response in the human ventromedial prefrontal cortex

    Directory of Open Access Journals (Sweden)

    Deborah Lucille Kerr

    2012-12-01

    Full Text Available Research has consistently shown that control is critical to psychological functioning, with perceived lack of control considered to play a crucial role in the manifestation of symptoms in psychiatric disorders. In a model of behavioral control based on nonhuman animal work, Maier and colleagues posited that the presence of control activates areas of the ventromedial prefrontal cortex (vmPFC, which in turn inhibit the normative stress response in the dorsal raphe nucleus and amygdala. To test Maier’s model in humans, we investigated the effects of control over potent aversive stimuli by presenting video clips of snakes to 21 snake phobics who were otherwise healthy with no comorbid psychopathologies. Based on prior research documenting that disrupted neural processing during the anticipation of adverse events can be influenced by different forms of cognitive processing such as perceptions of control, analyses focused on the anticipatory activity preceding the videos. We found that phobics exhibited greater vmPFC activity during the anticipation of snake videos when they had control over whether the videos were presented as compared to when they had no control over the presentation of the videos. In addition, observed functional connectivity between the vmPFC and the amygdala is consistent with previous work documenting vmPFC inhibition of the amygdala. Our results provide evidence to support the extension of Maier’s model of behavioral control to include anticipatory function in humans.

  2. Atypical prefrontal cortical responses to joint/non-joint attention in children with autism spectrum disorder (ASD): A functional near-infrared spectroscopy study

    Science.gov (United States)

    Zhu, Huilin; Li, Jun; Fan, Yuebo; Li, Xinge; Huang, Dan; He, Sailing

    2015-01-01

    Autism spectrum disorder (ASD) is a neuro-developmental disorder, characterized by impairments in one’s capacity for joint attention. In this study, functional near-infrared spectroscopy (fNIRS) was applied to study the differences in activation and functional connectivity in the prefrontal cortex between children with autism spectrum disorder (ASD) and typically developing (TD) children. 21 ASD and 20 TD children were recruited to perform joint and non-joint attention tasks. Compared with TD children, children with ASD showed reduced activation and atypical functional connectivity pattern in the prefrontal cortex during joint attention. The atypical development of left prefrontal cortex might play an important role in social cognition defects of children with ASD. PMID:25798296

  3. Lateral Orbitofrontal Cortical Modulation on the Medial Prefrontal Cortex-Amygdala Pathway: Differential Regulation of Intra-Amygdala GABAA and GABAB Receptors.

    Science.gov (United States)

    Chang, Chun-Hui

    2017-07-01

    The basolateral complex of the amygdala receives inputs from neocortical areas, including the medial prefrontal cortex and lateral orbitofrontal cortex. Earlier studies have shown that lateral orbitofrontal cortex activation exerts an inhibitory gating on medial prefrontal cortex-amygdala information flow. Here we examined the individual role of GABAA and GABAB receptors in this process. In vivo extracellular single-unit recordings were done in anesthetized rats. We searched amygdala neurons that fire in response to medial prefrontal cortex activation, tested lateral orbitofrontal cortex gating at different delays (lateral orbitofrontal cortex-medial prefrontal cortex delays: 25, 50, 100, 250, 500, and 1000 milliseconds), and examined differential contribution of GABAA and GABAB receptors with iontophoresis. Relative to baseline, lateral orbitofrontal cortex stimulation exerted an inhibitory modulatory gating on the medial prefrontal cortex-amygdala pathway and was effective up to a long delay of 500 ms (long-delay latencies at 100, 250, and 500 milliseconds). Moreover, blockade of intra-amygdala GABAA receptors with bicuculline abolished the lateral orbitofrontal cortex inhibitory gating at both short- (25 milliseconds) and long-delay (100 milliseconds) intervals, while blockade of GABAB receptors with saclofen reversed the inhibitory gating at long delay (100 milliseconds) only. Among the majority of the neurons examined (8 of 9), inactivation of either GABAA or GABAB receptors during baseline did not change evoked probability per se, suggesting that local feed-forward inhibitory mechanism is pathway specific. Our results suggest that the effect of lateral orbitofrontal cortex inhibitory modulatory gating was effective up to 500 milliseconds and that intra-amygdala GABAA and GABAB receptors differentially modulate the short- and long-delay lateral orbitofrontal cortex inhibitory gating on the medial prefrontal cortex-amygdala pathway.

  4. Improved explanation of human intelligence using cortical features with second order moments and regression.

    Science.gov (United States)

    Park, Hyunjin; Yang, Jin-ju; Seo, Jongbum; Choi, Yu-yong; Lee, Kun-ho; Lee, Jong-min

    2014-04-01

    Cortical features derived from magnetic resonance imaging (MRI) provide important information to account for human intelligence. Cortical thickness, surface area, sulcal depth, and mean curvature were considered to explain human intelligence. One region of interest (ROI) of a cortical structure consisting of thousands of vertices contained thousands of measurements, and typically, one mean value (first order moment), was used to represent a chosen ROI, which led to a potentially significant loss of information. We proposed a technological improvement to account for human intelligence in which a second moment (variance) in addition to the mean value was adopted to represent a chosen ROI, so that the loss of information would be less severe. Two computed moments for the chosen ROIs were analyzed with partial least squares regression (PLSR). Cortical features for 78 adults were measured and analyzed in conjunction with the full-scale intelligence quotient (FSIQ). Our results showed that 45% of the variance of the FSIQ could be explained using the combination of four cortical features using two moments per chosen ROI. Our results showed improvement over using a mean value for each ROI, which explained 37% of the variance of FSIQ using the same set of cortical measurements. Our results suggest that using additional second order moments is potentially better than using mean values of chosen ROIs for regression analysis to account for human intelligence. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. REM sleep, prefrontal theta, and the consolidation of human emotional memory.

    Science.gov (United States)

    Nishida, Masaki; Pearsall, Jori; Buckner, Randy L; Walker, Matthew P

    2009-05-01

    Both emotion and sleep are independently known to modulate declarative memory. Memory can be facilitated by emotion, leading to enhanced consolidation across increasing time delays. Sleep also facilitates offline memory processing, resulting in superior recall the next day. Here we explore whether rapid eye movement (REM) sleep, and aspects of its unique neurophysiology, underlie these convergent influences on memory. Using a nap paradigm, we measured the consolidation of neutral and negative emotional memories, and the association with REM-sleep electrophysiology. Subjects that napped showed a consolidation benefit for emotional but not neutral memories. The No-Nap control group showed no evidence of a consolidation benefit for either memory type. Within the Nap group, the extent of emotional memory facilitation was significantly correlated with the amount of REM sleep and also with right-dominant prefrontal theta power during REM. Together, these data support the role of REM-sleep neurobiology in the consolidation of emotional human memories, findings that have direct translational implications for affective psychiatric and mood disorders.

  6. Measuring prefrontal cortical activity during dual task walking in patients with Parkinson's disease: feasibility of using a new portable fNIRS device

    NARCIS (Netherlands)

    Nieuwhof, F.; Reelick, M.F.; Maidan, I.; Mirelman, A.; Hausdorff, J.M.; Olde Rikkert, M.G.M.; Bloem, B.R.; Muthalib, M.; Claassen, J.A.H.R.

    2016-01-01

    BACKGROUND: Many patients with Parkinson's disease (PD) have difficulties in performing a second task during walking (i.e., dual task walking). Functional near-infrared spectroscopy (fNIRS) is a promising approach to study the presumed contribution of dysfunction within the prefrontal cortex (PFC)

  7. Human-Specific Cortical Synaptic Connections and Their Plasticity: Is That What Makes Us Human?

    Science.gov (United States)

    Lourenço, Joana; Bacci, Alberto

    2017-01-01

    One outstanding difference between Homo sapiens and other mammals is the ability to perform highly complex cognitive tasks and behaviors, such as language, abstract thinking, and cultural diversity. How is this accomplished? According to one prominent theory, cognitive complexity is proportional to the repetition of specific computational modules over a large surface expansion of the cerebral cortex (neocortex). However, the human neocortex was shown to also possess unique features at the cellular and synaptic levels, raising the possibility that expanding the computational module is not the only mechanism underlying complex thinking. In a study published in PLOS Biology, Szegedi and colleagues analyzed a specific cortical circuit from live postoperative human tissue, showing that human-specific, very powerful excitatory connections between principal pyramidal neurons and inhibitory neurons are highly plastic. This suggests that exclusive plasticity of specific microcircuits might be considered among the mechanisms endowing the human neocortex with the ability to perform highly complex cognitive tasks.

  8. Abnormal dopaminergic modulation of striato-cortical networks underlies levodopa-induced dyskinesias in humans

    DEFF Research Database (Denmark)

    Herz, Damian M.; Haagensen, Brian N.; Christensen, Mark S.

    2015-01-01

    Dopaminergic signalling in the striatum contributes to reinforcement of actions and motivational enhancement of motor vigour. Parkinson's disease leads to progressive dopaminergic denervation of the striatum, impairing the function of cortico-basal ganglia networks. While levodopa therapy......-cortical connectivity as a neural signature of levodopa-induced dyskinesias in humans. We argue that excessive striato-cortical connectivity in response to levodopa produces an aberrant reinforcement signal producing an abnormal motor drive that ultimately triggers involuntary movements....

  9. High-expanding cortical regions in human development and evolution are related to higher intellectual abilities.

    Science.gov (United States)

    Fjell, Anders M; Westlye, Lars T; Amlien, Inge; Tamnes, Christian K; Grydeland, Håkon; Engvig, Andreas; Espeseth, Thomas; Reinvang, Ivar; Lundervold, Astri J; Lundervold, Arvid; Walhovd, Kristine B

    2015-01-01

    Cortical surface area has tremendously expanded during human evolution, and similar patterns of cortical expansion have been observed during childhood development. An intriguing hypothesis is that the high-expanding cortical regions also show the strongest correlations with intellectual function in humans. However, we do not know how the regional distribution of correlations between intellectual function and cortical area maps onto expansion in development and evolution. Here, in a sample of 1048 participants, we show that regions in which cortical area correlates with visuospatial reasoning abilities are generally high expanding in both development and evolution. Several regions in the frontal cortex, especially the anterior cingulate, showed high expansion in both development and evolution. The area of these regions was related to intellectual functions in humans. Low-expanding areas were not related to cognitive scores. These findings suggest that cortical regions involved in higher intellectual functions have expanded the most during development and evolution. The radial unit hypothesis provides a common framework for interpretation of the findings in the context of evolution and prenatal development, while additional cellular mechanisms, such as synaptogenesis, gliogenesis, dendritic arborization, and intracortical myelination, likely impact area expansion in later childhood. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. Women with Premenstrual Dysphoria Lack the Seemingly Normal Premenstrual Right-Sided Relative Dominance of 5-HTP-Derived Serotonergic Activity in the Dorsolateral Prefrontal Cortices - A Possible Cause of Disabling Mood Symptoms.

    Directory of Open Access Journals (Sweden)

    Olle Eriksson

    prefrontal cortices was found to strongly correlate to premenstrual irritability. A causal relationship here seems plausible, and the findings give further support to an underlying frontal brain disturbance in hormonally influenced serotonergic activity in women with PMD. Because of the small number of subjects in the study, these results should be considered preliminary, requiring verification in larger studies.

  11. Cortical facilitation of cutaneous reflexes in leg muscles during human gait

    NARCIS (Netherlands)

    Pijnappels, M.; Van Wezel, B. M H; Colombo, Gery; Dietz, V.; Duysens, J.

    1998-01-01

    During human gait, cortical convergence on sural nerve reflex pathways was investigated by means of transcranial magnetic stimulation (TMS) of the cortex in five phases of the step cycle during human walking on a treadmill. Muscular responses to paired electrical and magnetic stimulation were

  12. N-Methyl D-Aspartate Receptor Antagonist Kynurenic Acid affects Human Cortical Development

    Directory of Open Access Journals (Sweden)

    Inseyah Bagasrawala

    2016-09-01

    Full Text Available Kynurenic acid (KYNA, a neuroactive metabolite of tryptophan degradation, acts as an endogenous N-methyl-D-aspartate receptor (NMDAR antagonist. Elevated levels of KYNA have been observed in pregnant women after viral infections and are considered to play a role in neurodevelopmental disorders. However, the consequences of KYNA-induced NMDAR blockade in human cortical development still remain elusive. To study the potential impact of KYNA on human neurodevelopment, we used an in vitro system of multipotent cortical progenitors, i.e., radial glia cells (RGCs, enriched from human cerebral cortex at mid-gestation (16-19 gestational weeks. KYNA treatment significantly decreased RGCs proliferation and survival by antagonizing NMDAR. This alteration resulted in a reduced number of cortical progenitors and neurons while number and activation of astrocytes increased. KYNA treatment reduced differentiation of RGCs into GABAergic neurons, while differentiation into glutamatergic neurons was relatively spared. Furthermore, in mixed cortical cultures KYNA triggered an inflammatory response as evidenced by increased levels of the pro-inflammatory cytokine IL-6. In conclusion, elevated levels of KYNA play a significant role in human RGC fate determination by antagonizing NMDARs and by activating an inflammatory response. The altered cell composition observed in cell culture following exposure to elevated KYNA levels suggests a mechanism for impairment of cortical circuitry formation in the fetal brain after viral infection, as seen in neurodevelopmental disorders such as schizophrenia.

  13. Dissociation in human prefrontal cortex of affective influences on working memory-related activity.

    Science.gov (United States)

    Perlstein, William M; Elbert, Thomas; Stenger, V Andrew

    2002-02-05

    Although neural activity associated with emotion is becoming better understood, the influence of affective parameters on brain activity reflecting cognitive functioning in humans remains poorly characterized. We examined affective influences on working memory (WM) and tested the hypotheses that (i) dorsolateral prefrontal cortex (DLPFC) activity reflecting WM is influenced by the emotion-evoking qualities of task-relevant stimuli, but only when brought "on-line" by task demands, and (ii) DLPFC and orbitofrontal cortex (OFC) activities are inversely related as a function of emotional valence. Participants performed two tasks while event-related functional MRI measured brain activity; one task required active maintenance of stimulus representations in WM, and the other task required target detection responses with no demand for WM. Stimuli were standardized emotional (pleasant and unpleasant) and neutral pictures. Emotional stimuli differentially influenced DPFC and OFC activity during WM; DLPFC was influenced by emotional valence, enhanced by pleasant and reduced by unpleasant, compared to neutral stimuli, only when task conditions required WM. OFC was valence-sensitive during both tasks, greater to arousing than neutral stimuli when WM demand was low and in inverse relationship to DLPFC with high WM demand. Further, DLPFC and OFC activities are inversely related with respect to emotional valence during the WM task. The results are consistent with the hypothesis that the intrinsic valence of task-relevant stimuli maintained in WM modulates DLPFC activity but only when the DLPFC is required for task demands. Findings suggest a conceptualization of DLPFC and its involvement in WM that takes into account a role for affective parameters.

  14. Impairment of social and moral behavior related to early damage in human prefrontal cortex.

    Science.gov (United States)

    Anderson, S W; Bechara, A; Damasio, H; Tranel, D; Damasio, A R

    1999-11-01

    The long-term consequences of early prefrontal cortex lesions occurring before 16 months were investigated in two adults. As is the case when such damage occurs in adulthood, the two early-onset patients had severely impaired social behavior despite normal basic cognitive abilities, and showed insensitivity to future consequences of decisions, defective autonomic responses to punishment contingencies and failure to respond to behavioral interventions. Unlike adult-onset patients, however, the two patients had defective social and moral reasoning, suggesting that the acquisition of complex social conventions and moral rules had been impaired. Thus early-onset prefrontal damage resulted in a syndrome resembling psychopathy.

  15. The impact of NMDA receptor blockade on human working memory-related prefrontal function and connectivity.

    Science.gov (United States)

    Driesen, Naomi R; McCarthy, Gregory; Bhagwagar, Zubin; Bloch, Michael H; Calhoun, Vincent D; D'Souza, Deepak C; Gueorguieva, Ralitza; He, George; Leung, Hoi-Chung; Ramani, Ramachandran; Anticevic, Alan; Suckow, Raymond F; Morgan, Peter T; Krystal, John H

    2013-12-01

    Preclinical research suggests that N-methyl-D-aspartate glutamate receptors (NMDA-Rs) have a crucial role in working memory (WM). In this study, we investigated the role of NMDA-Rs in the brain activation and connectivity that subserve WM. Because of its importance in WM, the lateral prefrontal cortex, particularly the dorsolateral prefrontal cortex and its connections, were the focus of analyses. Healthy participants (n=22) participated in a single functional magnetic resonance imaging session. They received saline and then the NMDA-R antagonist ketamine while performing a spatial WM task. Time-course analysis was used to compare lateral prefrontal activation during saline and ketamine administration. Seed-based functional connectivity analysis was used to compare dorsolateral prefrontal connectivity during the two conditions and global-based connectivity was used to test for laterality in these effects. Ketamine reduced accuracy on the spatial WM task and brain activation during the encoding and early maintenance (EEM) period of task trials. Decrements in task-related activation during EEM were related to performance deficits. Ketamine reduced connectivity in the DPFC network bilaterally, and region-specific reductions in connectivity were related to performance. These results support the hypothesis that NMDA-Rs are critical for WM. The knowledge gained may be helpful in understanding disorders that might involve glutamatergic deficits such as schizophrenia and developing better treatments.

  16. Syllabic discrimination in premature human infants prior to complete formation of cortical layers.

    Science.gov (United States)

    Mahmoudzadeh, Mahdi; Dehaene-Lambertz, Ghislaine; Fournier, Marc; Kongolo, Guy; Goudjil, Sabrina; Dubois, Jessica; Grebe, Reinhard; Wallois, Fabrice

    2013-03-19

    The ontogeny of linguistic functions in the human brain remains elusive. Although some auditory capacities are described before term, whether and how such immature cortical circuits might process speech are unknown. Here we used functional optical imaging to evaluate the cerebral responses to syllables at the earliest age at which cortical responses to external stimuli can be recorded in humans (28- to 32-wk gestational age). At this age, the cortical organization in layers is not completed. Many neurons are still located in the subplate and in the process of migrating to their final location. Nevertheless, we observed several points of similarity with the adult linguistic network. First, whereas syllables elicited larger right than left responses, the posterior temporal region escaped this general pattern, showing faster and more sustained responses over the left than over the right hemisphere. Second, discrimination responses to a change of phoneme (ba vs. ga) and a change of human voice (male vs. female) were already present and involved inferior frontal areas, even in the youngest infants (29-wk gestational age). Third, whereas both types of changes elicited responses in the right frontal region, the left frontal region only reacted to a change of phoneme. These results demonstrate a sophisticated organization of perisylvian areas at the very onset of cortical circuitry, 3 mo before term. They emphasize the influence of innate factors on regions involved in linguistic processing and social communication in humans.

  17. Mapping auditory core, lateral belt, and parabelt cortices in the human superior temporal gyrus

    DEFF Research Database (Denmark)

    Sweet, Robert A; Dorph-Petersen, Karl-Anton; Lewis, David A

    2005-01-01

    The goal of the present study was to determine whether the architectonic criteria used to identify the core, lateral belt, and parabelt auditory cortices in macaque monkeys (Macaca fascicularis) could be used to identify homologous regions in humans (Homo sapiens). Current evidence indicates...

  18. Higher cortical modulation of pain perception in the human brain: Psychological determinant.

    Science.gov (United States)

    Chen, Andrew Cn

    2009-10-01

    Pain perception and its genesis in the human brain have been reviewed recently. In the current article, the reports on pain modulation in the human brain were reviewed from higher cortical regulation, i.e. top-down effect, particularly studied in psychological determinants. Pain modulation can be examined by gene therapy, physical modulation, pharmacological modulation, psychological modulation, and pathophysiological modulation. In psychological modulation, this article examined (a) willed determination, (b) distraction, (c) placebo, (d) hypnosis, (e) meditation, (f) qi-gong, (g) belief, and (h) emotions, respectively, in the brain function for pain modulation. In each, the operational definition, cortical processing, neuroimaging, and pain modulation were systematically deliberated. However, not all studies had featured the brain modulation processing but rather demonstrated potential effects on human pain. In our own studies on the emotional modulation on human pain, we observed that emotions could be induced from music melodies or pictures perception for reduction of tonic human pain, mainly in potentiation of the posterior alpha EEG fields, likely resulted from underneath activities of precuneous in regulation of consciousness, including pain perception. To sum, higher brain functions become the leading edge research in all sciences. How to solve the information bit of thinking and feeling in the brain can be the greatest challenge of human intelligence. Application of higher cortical modulation of human pain and suffering can lead to the progress of social humanity and civilization.

  19. Elastic interactions between single microcrack and single osteon microstructure of human femur cortical bone

    Science.gov (United States)

    Mansor, N. N.; Daud, R.; Basaruddin, K. S.; Mat, F.; Bajuri, Y.; Ariffin, A. K.

    2017-09-01

    Inmultiscale Haversian system of cortical bone fracture, a homogenous bone modeling consideration is limited to only one Young modulus was significant for each cortex without having any constituents in that bone. A two dimension model of human femur cortical bone is presented by considering the anatomical positions of four cortices, e.g anterior, posterior, medial and lateral. The Haversian system is modeled under tensile loading by considering the interstitial matrix, osteon and cement line mechanical properties. The interaction between single microcrack and single osteon is evaluated using linear elastic fracture mechanics theory, and was determined using of stress intensity factor, strain energy release rate, and the critical stress intensity factor and critical strain energy release rate parameter. The results indicate that the medial cortex has the highest SIFs while the lowest was posterior cortex. The Young modulus of material was greatly influence the fracture parameters. More stiff the material, the SIF was reduced.

  20. Cortical interneurons from human pluripotent stem cells: prospects for neurological and psychiatric disease

    Directory of Open Access Journals (Sweden)

    Charles Edward Arber

    2013-03-01

    Full Text Available Cortical interneurons represent 20% of the cells in the cortex. These cells are local inhibitory neurons whose function is to modulate the firing activities of the excitatory projection neurons. Cortical interneuron dysfunction is believed to lead to runaway excitation underlying (or implicated in seizure-based diseases, such as epilepsy, autism and schizophrenia. The complex development of this cell type and the intricacies involved in defining the relative subtypes are being increasingly well defined. This has led to exciting experimental cell therapy in model organisms, whereby fetal-derived interneuron precursors can reverse seizure severity and reduce mortality in adult epileptic rodents. These proof-of-principle studies raise hope for potential interneuron-based transplantation therapies for treating epilepsy. On the other hand, cortical neurons generated from patient iPSCs serve as a valuable tool to explore genetic influences of interneuron development and function. This is a fundamental step in enhancing our understanding of the molecular basis of neuropsychiatric illnesses and the development of targeted treatments. Protocols are currently being developed for inducing cortical interneuron subtypes from mouse and human pluripotent stem cells. This review sets out to summarize the progress made in cortical interneuron development, fetal tissue transplantation and the recent advance in stem cell differentiation towards interneurons.

  1. Extended Production of Cortical Interneurons into the Third Trimester of Human Gestation.

    Science.gov (United States)

    Arshad, Arslan; Vose, Linnea R; Vinukonda, Govindaiah; Hu, Furong; Yoshikawa, Kazuaki; Csiszar, Anna; Brumberg, Joshua C; Ballabh, Praveen

    2016-05-01

    In humans, the developmental origins of interneurons in the third trimester of pregnancy and the timing of completion of interneuron neurogenesis have remained unknown. Here, we show that the total and cycling Nkx2.1(+)and Dlx2(+)interneuron progenitors as well as Sox2(+)precursor cells were higher in density in the medial ganglionic eminence (MGE) compared with the lateral ganglionic eminence and cortical ventricular/subventricular zone (VZ/SVZ) of 16-35 gw subjects. The proliferation of these progenitors reduced as a function of gestational age, almost terminating by 35 gw. Proliferating Dlx2(+)cells were higher in density in the caudal ganglionic eminence (CGE) compared with the MGE, and persisted beyond 35 gw. Consistent with these findings, Sox2, Nkx2.1, Dlx2, and Mash1 protein levels were higher in the ganglionic eminences relative to the cortical VZ/SVZ. The density of gamma-aminobutyric acid-positive (GABA(+)) interneurons was higher in the cortical VZ/SVZ relative to MGE, but Nkx2.1 or Dlx2-expressing GABA(+)cells were more dense in the MGE compared with the cortical VZ/SVZ. The data suggest that the MGE and CGE are the primary source of cortical interneurons. Moreover, their generation continues nearly to the end of pregnancy, which may predispose premature infants to neurobehavioral disorders. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. Cortical Mechanisms of Tongue Sensorimotor Functions in Humans: A Review of the Magnetoencephalography Approach

    Science.gov (United States)

    Maezawa, Hitoshi

    2017-01-01

    The tongue plays important roles in a variety of critical human oral functions, including speech production, swallowing, mastication and respiration. These sophisticated tongue movements are in part finely regulated by cortical entrainment. Many studies have examined sensorimotor processing in the limbs using magnetoencephalography (MEG), which has high spatiotemporal resolution. Such studies have employed multiple methods of analysis, including somatosensory evoked fields (SEFs), movement-related cortical fields (MRCFs), event-related desynchronization/synchronization (ERD/ERS) associated with somatosensory stimulation or movement and cortico-muscular coherence (CMC) during sustained movement. However, the cortical mechanisms underlying the sensorimotor functions of the tongue remain unclear, as contamination artifacts induced by stimulation and/or muscle activity within the orofacial region complicates MEG analysis in the oral region. Recently, several studies have obtained MEG recordings from the tongue region using improved stimulation methods and movement tasks. In the present review, we provide a detailed overview of tongue sensorimotor processing in humans, based on the findings of recent MEG studies. In addition, we review the clinical applications of MEG for sensory disturbances of the tongue caused by damage to the lingual nerve. Increased knowledge of the physiological and pathophysiological mechanisms underlying tongue sensorimotor processing may improve our understanding of the cortical entrainment of human oral functions. PMID:28400725

  3. Mechanistic fracture criteria for the failure of human cortical bone

    Energy Technology Data Exchange (ETDEWEB)

    Nalla, Ravi K.; Kinney, John H.; Ritchie, Robert O.

    2002-12-13

    A mechanistic understanding of fracture in human bone is critical to predicting fracture risk associated with age and disease. Despite extensive work, a mechanistic framework for describing how the underlying microstructure affects the failure mode in bone is lacking.

  4. Mapping human brain networks with cortico-cortical evoked potentials

    National Research Council Canada - National Science Library

    Keller, Corey J; Honey, Christopher J; Mégevand, Pierre; Entz, Laszlo; Ulbert, Istvan; Mehta, Ashesh D

    2014-01-01

    The cerebral cortex forms a sheet of neurons organized into a network of interconnected modules that is highly expanded in humans and presumably enables our most refined sensory and cognitive abilities...

  5. Selective memory retrieval of auditory what and auditory where involves the ventrolateral prefrontal cortex

    Science.gov (United States)

    Kostopoulos, Penelope; Petrides, Michael

    2016-01-01

    There is evidence from the visual, verbal, and tactile memory domains that the midventrolateral prefrontal cortex plays a critical role in the top–down modulation of activity within posterior cortical areas for the selective retrieval of specific aspects of a memorized experience, a functional process often referred to as active controlled retrieval. In the present functional neuroimaging study, we explore the neural bases of active retrieval for auditory nonverbal information, about which almost nothing is known. Human participants were scanned with functional magnetic resonance imaging (fMRI) in a task in which they were presented with short melodies from different locations in a simulated virtual acoustic environment within the scanner and were then instructed to retrieve selectively either the particular melody presented or its location. There were significant activity increases specifically within the midventrolateral prefrontal region during the selective retrieval of nonverbal auditory information. During the selective retrieval of information from auditory memory, the right midventrolateral prefrontal region increased its interaction with the auditory temporal region and the inferior parietal lobule in the right hemisphere. These findings provide evidence that the midventrolateral prefrontal cortical region interacts with specific posterior cortical areas in the human cerebral cortex for the selective retrieval of object and location features of an auditory memory experience. PMID:26831102

  6. Human cortical traveling waves: dynamical properties and correlations with responses.

    Directory of Open Access Journals (Sweden)

    Timothy M Patten

    Full Text Available The spatiotemporal behavior of human EEG oscillations is investigated. Traveling waves in the alpha and theta ranges are found to be common in both prestimulus and poststimulus EEG activity. The dynamical properties of these waves, including their speeds, directions, and durations, are systematically characterized for the first time, and the results show that there are significant changes of prestimulus spontaneous waves in the presence of an external stimulus. Furthermore, the functional relevance of these waves is examined by studying how they are correlated with reaction times on a single trial basis; prestimulus alpha waves traveling in the frontal-to-occipital direction are found to be most correlated to reaction speeds. These findings suggest that propagating waves of brain oscillations might be involved in mediating long-range interactions between widely distributed parts of human cortex.

  7. Human visual cortical responses to specular and matte motion flows

    Directory of Open Access Journals (Sweden)

    Tae-Eui eKam

    2015-10-01

    Full Text Available Determining the compositional properties of surfaces in the environment is an important visual capacity. One such property is specular reflectance, which encompasses the range from matte to shiny surfaces. Visual estimation of specular reflectance can be informed by characteristic motion profiles; a surface with a specular reflectance that is difficult to determine while static can be confidently disambiguated when set in motion. Here, we used fMRI to trace the sensitivity of human visual cortex to such motion cues, both with and without photometric cues to specular reflectance. Participants viewed rotating blob-like objects that were rendered as images (photometric or dots (kinematic with either matte-consistent or shiny-consistent specular reflectance profiles. We were unable to identify any areas in low and mid-level human visual cortex that responded preferentially to surface specular reflectance from motion. However, univariate and multivariate analyses identified several visual areas; V1, V2, V3, V3A/B, and hMT+, capable of differentiating shiny from matte surface flows. These results indicate that the machinery for extracting kinematic cues is present in human visual cortex, but the areas involved in integrating such information with the photometric cues necessary for surface specular reflectance remain unclear.

  8. 24-hour rhythms of DNA methylation and their relation with rhythms of RNA expression in the human dorsolateral prefrontal cortex.

    Science.gov (United States)

    Lim, Andrew S P; Srivastava, Gyan P; Yu, Lei; Chibnik, Lori B; Xu, Jishu; Buchman, Aron S; Schneider, Julie A; Myers, Amanda J; Bennett, David A; De Jager, Philip L

    2014-11-01

    Circadian rhythms modulate the biology of many human tissues, including brain tissues, and are driven by a near 24-hour transcriptional feedback loop. These rhythms are paralleled by 24-hour rhythms of large portions of the transcriptome. The role of dynamic DNA methylation in influencing these rhythms is uncertain. While recent work in Neurospora suggests that dynamic site-specific circadian rhythms of DNA methylation may play a role in modulating the fungal molecular clock, such rhythms and their relationship to RNA expression have not, to our knowledge, been elucidated in mammalian tissues, including human brain tissues. We hypothesized that 24-hour rhythms of DNA methylation exist in the human brain, and play a role in driving 24-hour rhythms of RNA expression. We analyzed DNA methylation levels in post-mortem human dorsolateral prefrontal cortex samples from 738 subjects. We assessed for 24-hour rhythmicity of 420,132 DNA methylation sites throughout the genome by considering methylation levels as a function of clock time of death and parameterizing these data using cosine functions. We determined global statistical significance by permutation. We then related rhythms of DNA methylation with rhythms of RNA expression determined by RNA sequencing. We found evidence of significant 24-hour rhythmicity of DNA methylation. Regions near transcription start sites were enriched for high-amplitude rhythmic DNA methylation sites, which were in turn time locked to 24-hour rhythms of RNA expression of nearby genes, with the nadir of methylation preceding peak transcript expression by 1-3 hours. Weak ante-mortem rest-activity rhythms were associated with lower amplitude DNA methylation rhythms as were older age and the presence of Alzheimer's disease. These findings support the hypothesis that 24-hour rhythms of DNA methylation, particularly near transcription start sites, may play a role in driving 24-hour rhythms of gene expression in the human dorsolateral prefrontal

  9. 24-hour rhythms of DNA methylation and their relation with rhythms of RNA expression in the human dorsolateral prefrontal cortex.

    Directory of Open Access Journals (Sweden)

    Andrew S P Lim

    2014-11-01

    Full Text Available Circadian rhythms modulate the biology of many human tissues, including brain tissues, and are driven by a near 24-hour transcriptional feedback loop. These rhythms are paralleled by 24-hour rhythms of large portions of the transcriptome. The role of dynamic DNA methylation in influencing these rhythms is uncertain. While recent work in Neurospora suggests that dynamic site-specific circadian rhythms of DNA methylation may play a role in modulating the fungal molecular clock, such rhythms and their relationship to RNA expression have not, to our knowledge, been elucidated in mammalian tissues, including human brain tissues. We hypothesized that 24-hour rhythms of DNA methylation exist in the human brain, and play a role in driving 24-hour rhythms of RNA expression. We analyzed DNA methylation levels in post-mortem human dorsolateral prefrontal cortex samples from 738 subjects. We assessed for 24-hour rhythmicity of 420,132 DNA methylation sites throughout the genome by considering methylation levels as a function of clock time of death and parameterizing these data using cosine functions. We determined global statistical significance by permutation. We then related rhythms of DNA methylation with rhythms of RNA expression determined by RNA sequencing. We found evidence of significant 24-hour rhythmicity of DNA methylation. Regions near transcription start sites were enriched for high-amplitude rhythmic DNA methylation sites, which were in turn time locked to 24-hour rhythms of RNA expression of nearby genes, with the nadir of methylation preceding peak transcript expression by 1-3 hours. Weak ante-mortem rest-activity rhythms were associated with lower amplitude DNA methylation rhythms as were older age and the presence of Alzheimer's disease. These findings support the hypothesis that 24-hour rhythms of DNA methylation, particularly near transcription start sites, may play a role in driving 24-hour rhythms of gene expression in the human

  10. Threat-Detection and Attentional Bias to Threat in Women Recovered from Anorexia Nervosa: Neural Alterations in Extrastriate and Medial Prefrontal Cortices.

    Science.gov (United States)

    Bang, Lasse; Rø, Øyvind; Endestad, Tor

    2017-03-01

    Behavioral studies have shown that anorexia nervosa (AN) is associated with attentional bias to general threat cues. The neurobiological underpinnings of attentional bias to threat in AN are unknown. This study investigated the neural responses associated with threat-detection and attentional bias to threat in AN. We measured neural responses to a dot-probe task, involving pairs of angry and neutral face stimuli, in 22 adult women recovered from AN and 21 comparison women. Recovered AN women did not exhibit a behavioral attentional bias to threat. In response to angry faces, recovered women showed significant hypoactivation in the extrastriate cortex. During attentional bias to angry faces, recovered women showed significant hyperactivation in the medial prefrontal cortex. This was because of significant deactivation in comparison women, which was absent in recovered AN women. Women recovered from AN are characterized by altered neural responses to threat cues. Copyright © 2016 John Wiley & Sons, Ltd and Eating Disorders Association. Copyright © 2016 John Wiley & Sons, Ltd and Eating Disorders Association.

  11. Decline of prefrontal cortical-mediated executive functions but attenuated delay discounting in aged Fischer 344 × brown Norway hybrid rats.

    Science.gov (United States)

    Hernandez, Caesar M; Vetere, Lauren M; Orsini, Caitlin A; McQuail, Joseph A; Maurer, Andrew P; Burke, Sara N; Setlow, Barry; Bizon, Jennifer L

    2017-12-01

    Despite the fact that prefrontal cortex (PFC) function declines with age, aged individuals generally show an enhanced ability to delay gratification, as evident by less discounting of delayed rewards in intertemporal choice tasks. The present study was designed to evaluate relationships between 2 aspects of PFC-dependent cognition (working memory and cognitive flexibility) and intertemporal choice in young (6 months) and aged (24 months) Fischer 344 × brown Norway F1 hybrid rats. Rats were also evaluated for motivation to earn rewards using a progressive ratio task. As previously reported, aged rats showed attenuated discounting of delayed rewards, impaired working memory, and impaired cognitive flexibility compared with young. Among aged rats, greater choice of delayed reward was associated with preserved working memory, impaired cognitive flexibility, and less motivation to work for food. These relationships suggest that age-related changes in PFC and incentive motivation contribute to variance in intertemporal choice within the aged population. Cognitive impairments mediated by PFC are unlikely, however, to fully account for the enhanced ability to delay gratification that accompanies aging. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Similar prefrontal cortical activities between general fluid intelligence and visuospatial working memory tasks in preschool children as revealed by optical topography.

    Science.gov (United States)

    Kuwajima, Mariko; Sawaguchi, Toshiyuki

    2010-10-01

    General fluid intelligence (gF) is a major component of intellect in both adults and children. Whereas its neural substrates have been studied relatively thoroughly in adults, those are poorly understood in children, particularly preschoolers. Here, we hypothesized that gF and visuospatial working memory share a common neural system within the lateral prefrontal cortex (LPFC) during the preschool years (4-6 years). At the behavioral level, we found that gF positively and significantly correlated with abilities (especially accuracy) in visuospatial working memory. Optical topography revealed that the LPFC of preschoolers was activated and deactivated during the visuospatial working memory task and the gF task. We found that the spatio-temporal features of neural activity in the LPFC were similar for both the visuospatial working memory task and the gF task. Further, 2 months of training for the visuospatial working memory task significantly increased gF in the preschoolers. These findings suggest that a common neural system in the LPFC is recruited to improve the visuospatial working memory and gF in preschoolers. Efficient recruitment of this neural system may be important for good performance in these functions in preschoolers, and behavioral training using this system would help to increase gF at these ages.

  13. Mapping human cortical areas in vivo based on myelin content as revealed by T1- and T2-weighted MRI.

    Science.gov (United States)

    Glasser, Matthew F; Van Essen, David C

    2011-08-10

    Noninvasively mapping the layout of cortical areas in humans is a continuing challenge for neuroscience. We present a new method of mapping cortical areas based on myelin content as revealed by T1-weighted (T1w) and T2-weighted (T2w) MRI. The method is generalizable across different 3T scanners and pulse sequences. We use the ratio of T1w/T2w image intensities to eliminate the MR-related image intensity bias and enhance the contrast to noise ratio for myelin. Data from each subject were mapped to the cortical surface and aligned across individuals using surface-based registration. The spatial gradient of the group average myelin map provides an observer-independent measure of sharp transitions in myelin content across the surface--i.e., putative cortical areal borders. We found excellent agreement between the gradients of the myelin maps and the gradients of published probabilistic cytoarchitectonically defined cortical areas that were registered to the same surface-based atlas. For other cortical regions, we used published anatomical and functional information to make putative identifications of dozens of cortical areas or candidate areas. In general, primary and early unimodal association cortices are heavily myelinated and higher, multimodal, association cortices are more lightly myelinated, but there are notable exceptions in the literature that are confirmed by our results. The overall pattern in the myelin maps also has important correlations with the developmental onset of subcortical white matter myelination, evolutionary cortical areal expansion in humans compared with macaques, postnatal cortical expansion in humans, and maps of neuronal density in non-human primates.

  14. Negative emotion can enhance human motor cortical plasticity.

    Science.gov (United States)

    Koganemaru, Satoko; Domen, Kazuhisa; Fukuyama, Hidenao; Mima, Tatsuya

    2012-05-01

    Although emotion often primes us for action, its effects on the human motor system are not well understood. The relationship between emotion and motor plasticity also remains unclear, despite the close link between emotion and memory formation. Here, we tested the hypothesis that emotion modulates the plasticity of the human primary motor cortex, using the International Affective Picture System and transcranial magnetic stimulation. Intermittent theta-burst stimulation was applied to the primary motor cortex to produce long-term potentiation-like changes in normal volunteers experimentally. Primary motor cortex plasticity was enhanced and sustained in both excitatory and inhibitory systems only when intermittent theta-burst stimulation was combined with the presentation of pictures that induced negative, but not positive or neutral, emotion. Moreover, negative emotion was found to enhance the inhibitory networks within the primary motor cortex, and to improve motor behavior during the choice reaction-time task. Our findings indicate that negative emotion can increase primary motor cortex plasticity by modulating the intracortical GABAergic system, as well as N-methyl-d-aspartic acid receptor-dependent changes. These findings could help to explain the physiological basis of abnormal motor symptoms in psychogenic movement disorders following emotional events. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  15. Influence of cognitive strategies on the pattern of cortical activation during mental subtraction. A functional imaging study in human subjects.

    Science.gov (United States)

    Burbaud, P; Camus, O; Guehl, D; Bioulac, B; Caillé, J; Allard, M

    2000-06-16

    Functional magnetic resonance imaging (fMRI) at 1.5 T was used to investigate the influence of cognitive strategies on cortical activation during mental calculation. Twenty-nine right-handed subjects performed a serial subtraction of prime numbers. Even though a common corpus of brain areas was activated during this mental calculation, differences appeared between subjects in function of their spontaneous cognitive strategy. In subjects using a so called verbal strategy (n=15), the main activation was located in the whole left dorsolateral frontal cortex with a little activation of the inferior parietal cortex. In subjects using a so called visual strategy (n=14), a bilateral activation in the prefrontal cortex and a high activation in the left inferior parietal cortex were observed. These results demonstrate that numbers are processed through a distributed network of cortical areas, the lateralization of which is clearly influenced by subject strategy.

  16. Developmental changes of prefrontal activation in humans: a near-infrared spectroscopy study of preschool children and adults.

    Directory of Open Access Journals (Sweden)

    Yuki Kawakubo

    Full Text Available Previous morphological studies indicated that development of the human prefrontal cortex (PFC appears to continue into late adolescence. Although functional brain imaging studies have sought to determine the time course of functional development of the PFC, it is unclear whether the developmental change occurs after adolescence to adulthood and when it achieves a peak because of the narrow or discontinuous range in the participant's age. Moreover, previous functional studies have not focused on the anterior frontal region, that is, the frontopolar regions (BA9/10. Thus, the present study investigated the developmental change in frontopolar PFC activation associated with letter fluency task by using near-infrared spectroscopy (NIRS, in subjects from preschool children to adults. We analyzed the relative concentration of hemoglobin (ΔHb in the prefrontal cortex measured during the activation task in 48 typically-developing children and adolescents and 22 healthy adults. Consistent with prior morphological studies, we found developmental change with age in the children/adolescents. Moreover, the average Δoxy-Hb in adult males was significantly larger than that in child/adolescent males, but was not true for females. These data suggested that functional development of the PFC continues into late adolescence. Although the developmental change of the frontopolar PFC was independent of gender from childhood to adolescence, in adulthood a gender difference was shown.

  17. Medial prefrontal cortical estradiol rapidly alters memory system bias in female rats: ultrastructural analysis reveals membrane-associated estrogen receptors as potential mediators.

    Science.gov (United States)

    Almey, Anne; Cannell, Elizabeth; Bertram, Kyla; Filardo, Edward; Milner, Teresa A; Brake, Wayne G

    2014-11-01

    High plasma levels of estradiol (E2) are associated with use of a place memory system over a response memory system. We examined whether infusing estradiol into the medial prefrontal cortex (mPFC) or anterior cingulate cortex (AC) could affect memory system bias in female rats. We also examined the ultrastructural distribution of estrogen receptor (ER)-α, ERβ, and G protein-coupled estrogen receptor 1 (GPER1) in the mPFC of female rats as a mechanism for the behavioral effects of E2 in the mPFC. Each rat was infused bilaterally with either E2 (0.13 μg) or vehicle into the mPFC or AC. The majority of E2 mPFC rats used place memory. In contrast, the majority of mPFC vehicle rats and AC E2 or vehicle rats used response memory. These data show that mPFC E2 rapidly biases females to use place memory. Electron microscopic analysis demonstrated that ERα, ERβ, and GPER1 are localized in the mPFC, almost exclusively at extranuclear sites. This is the first time that GPER1 has been localized to the mPFC of rats and the first time that ERα and ERβ have been described at extranuclear sites in the rat mPFC. The majority of receptors were observed on axons and axon terminals, suggesting that estrogens alter presynaptic transmission in the mPFC. This provides a mechanism via which ERs could rapidly alter transmission in the mPFC to alter PFC-dependent behaviors, such as memory system bias. The discrete nature of immunolabeling for these membrane-associated ERs may explain the discrepancy in previous light microscopy studies.

  18. Cortical Activation Associated with Muscle Synergies of the Human Male Pelvic Floor

    OpenAIRE

    Asavasopon, Skulpan; Rana, Manku; Daniel J. Kirages; Yani, Moheb S.; Fisher, Beth E.; Hwang, Darryl H.; Everett B. Lohman; Berk, Lee S.; Kutch, Jason J.

    2014-01-01

    Human pelvic floor muscles have been shown to operate synergistically with a wide variety of muscles, which has been suggested to be an important contributor to continence and pelvic stability during functional tasks. However, the neural mechanism of pelvic floor muscle synergies remains unknown. Here, we test the hypothesis that activation in motor cortical regions associated with pelvic floor activation are part of the neural substrate for such synergies. We first use electromyographic reco...

  19. Measuring prefrontal cortical activity during dual task walking in patients with Parkinson's disease: feasibility of using a new portable fNIRS device.

    Science.gov (United States)

    Nieuwhof, Freek; Reelick, Miriam F; Maidan, Inbal; Mirelman, Anat; Hausdorff, Jeffrey M; Olde Rikkert, Marcel G M; Bloem, Bastiaan R; Muthalib, Makii; Claassen, Jurgen A H R

    2016-01-01

    Many patients with Parkinson's disease (PD) have difficulties in performing a second task during walking (i.e., dual task walking). Functional near-infrared spectroscopy (fNIRS) is a promising approach to study the presumed contribution of dysfunction within the prefrontal cortex (PFC) to such difficulties. In this pilot study, we examined the feasibility of using a new portable and wireless fNIRS device to measure PFC activity during different dual task walking protocols in PD. Specifically, we tested whether PD patients were able to perform the protocol and whether we were able to measure the typical fNIRS signal of neuronal activity. We included 14 PD patients (age 71.2 ± 5.4 years, Hoehn and Yahr stage II/III). The protocol consisted of five repetitions of three conditions: walking while (i) counting forwards, (ii) serially subtracting, and (iii) reciting digit spans. Ability to complete this protocol, perceived exertion, burden of the fNIRS devices, and concentrations of oxygenated (O2Hb) and deoxygenated (HHb) hemoglobin from the left and right PFC were measured. Two participants were unable to complete the protocol due to fatigue and mobility safety concerns. The remaining 12 participants experienced no burden from the two fNIRS devices and completed the protocol with ease. Bilateral PFC O2Hb concentrations increased during walking while serially subtracting (left PFC 0.46 μmol/L, 95 % confidence interval (CI) 0.12-0.81, right PFC 0.49 μmol/L, 95 % CI 0.14-0.84) and reciting digit spans (left PFC 0.36 μmol/L, 95 % CI 0.03-0.70, right PFC 0.44 μmol/L, 95 % CI 0.09-0.78) when compared to rest. HHb concentrations did not differ between the walking tasks and rest. These findings suggest that a new wireless fNIRS device is a feasible measure of PFC activity in PD during dual task walking. Future studies should reduce the level of noise and inter-individual variability to enable measuring differences in PFC activity between different dual walking

  20. Trace Fear Conditioning Differentially Modulates Intrinsic Excitability of Medial Prefrontal Cortex–Basolateral Complex of Amygdala Projection Neurons in Infralimbic and Prelimbic Cortices

    Science.gov (United States)

    Song, Chenghui; Ehlers, Vanessa L.

    2015-01-01

    Neuronal activity in medial prefrontal cortex (mPFC) is critical for the formation of trace fear memory, yet the cellular mechanisms underlying these memories remain unclear. One possibility involves the modulation of intrinsic excitability within mPFC neurons that project to the basolateral complex of amygdala (BLA). The current study used a combination of retrograde labeling and in vitro whole-cell patch-clamp recordings to examine the effect of trace fear conditioning on the intrinsic excitability of layer 5 mPFC–BLA projection neurons in adult rats. Trace fear conditioning significantly enhanced the intrinsic excitability of regular spiking infralimbic (IL) projection neurons, as evidenced by an increase in the number of action potentials after current injection. These changes were also associated with a reduction in spike threshold and an increase in h current. In contrast, trace fear conditioning reduced the excitability of regular spiking prelimbic (PL) projection neurons, through a learning-related decrease of input resistance. Interestingly, the amount of conditioned freezing was (1) positively correlated with excitability of IL-BLA projection neurons after conditioning and (2) negatively correlated with excitability of PL-BLA projection neurons after extinction. Trace fear conditioning also significantly enhanced the excitability of burst spiking PL-BLA projection neurons. In both regions, conditioning-induced plasticity was learning specific (observed in conditioned but not in pseudoconditioned rats), flexible (reversed by extinction), and transient (lasted conditioning. SIGNIFICANCE STATEMENT Frontal lobe-related function is vital for a variety of important behaviors, some of which decline during aging. This study involves a novel combination of electrophysiological recordings from fluorescently labeled mPFC-to-amygdala projection neurons in rats with acquisition and extinction of trace fear conditioning to determine how specific neurons change during

  1. Dynamics of Electrocorticographic (ECoG) Activity in Human Temporal and Frontal Cortical Areas During Music Listening

    Science.gov (United States)

    2012-04-14

    REPORT Dynamics of electrocorticographic (ECoG) activity in human temporal and frontal cortical areas during music listening 14. ABSTRACT 16. SECURITY...information about the sound intensity of music . ECoG activity in the high gamma band recorded from the posterior part of the superior temporal 1. REPORT...ECoG) activity in human temporal and frontal cortical areas during music listening Report Title ABSTRACT Previous studies demonstrated that brain

  2. Recording human cortical population spikes non-invasively--An EEG tutorial.

    Science.gov (United States)

    Waterstraat, Gunnar; Fedele, Tommaso; Burghoff, Martin; Scheer, Hans-Jürgen; Curio, Gabriel

    2015-07-30

    Non-invasively recorded somatosensory high-frequency oscillations (sHFOs) evoked by electric nerve stimulation are markers of human cortical population spikes. Previously, their analysis was based on massive averaging of EEG responses. Advanced neurotechnology and optimized off-line analysis can enhance the signal-to-noise ratio of sHFOs, eventually enabling single-trial analysis. The rationale for developing dedicated low-noise EEG technology for sHFOs is unfolded. Detailed recording procedures and tailored analysis principles are explained step-by-step. Source codes in Matlab and Python are provided as supplementary material online. Combining synergistic hardware and analysis improvements, evoked sHFOs at around 600 Hz ('σ-bursts') can be studied in single-trials. Additionally, optimized spatial filters increase the signal-to-noise ratio of components at about 1 kHz ('κ-bursts') enabling their detection in non-invasive surface EEG. sHFOs offer a unique possibility to record evoked human cortical population spikes non-invasively. The experimental approaches and algorithms presented here enable also non-specialized EEG laboratories to combine measurements of conventional low-frequency EEG with the analysis of concomitant cortical population spike responses. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Elevated striatal and decreased dorsolateral prefrontal cortical activity in response to emotional stimuli in euthymic bipolar disorder: no associations with psychotropic medication load.

    Science.gov (United States)

    Hassel, Stefanie; Almeida, Jorge Rc; Kerr, Natalie; Nau, Sharon; Ladouceur, Cecile D; Fissell, Kate; Kupfer, David J; Phillips, Mary L

    2008-12-01

    To examine abnormal patterns of frontal cortical-subcortical activity in response to emotional stimuli in euthymic individuals with bipolar disorder type I in order to identify trait-like, pathophysiologic mechanisms of the disorder. We examined potential confounding effects of total psychotropic medication load and illness variables upon neural abnormalities. We analyzed neural activity in 19 euthymic bipolar and 24 healthy individuals to mild and intense happy, fearful and neutral faces. Relative to healthy individuals, bipolar subjects had significantly increased left striatal activity in response to mild happy faces (p response to neutral, mild and intense happy faces, and decreased left DLPFC activity in response to neutral, mild and intense fearful faces (p response to either emotion. In bipolar individuals, there was no significant association between medication load and abnormal activity in these regions, but a negative relationship between age of illness onset and amygdala activity in response to mild fearful faces (p = 0.007). Relative to those without comorbidities, bipolar individuals with comorbidities showed a trend increase in left striatal activity in response to mild happy faces. Abnormally increased striatal activity in response to potentially rewarding stimuli and decreased DLPFC activity in response to other emotionally salient stimuli may underlie mood instabilities in euthymic bipolar individuals, and are more apparent in those with comorbid diagnoses. No relationship between medication load and abnormal neural activity in bipolar individuals suggests that our findings may reflect pathophysiologic mechanisms of the illness rather than medication confounds. Future studies should examine whether this pattern of abnormal neural activity could distinguish bipolar from unipolar depression.

  4. Automated cortical bone segmentation for multirow-detector CT imaging with validation and application to human studies.

    Science.gov (United States)

    Li, Cheng; Jin, Dakai; Chen, Cheng; Letuchy, Elena M; Janz, Kathleen F; Burns, Trudy L; Torner, James C; Levy, Steven M; Saha, Punam K

    2015-08-01

    Cortical bone supports and protects human skeletal functions and plays an important role in determining bone strength and fracture risk. Cortical bone segmentation at a peripheral site using multirow-detector CT (MD-CT) imaging is useful for in vivo assessment of bone strength and fracture risk. Major challenges for the task emerge from limited spatial resolution, low signal-to-noise ratio, presence of cortical pores, and structural complexity over the transition between trabecular and cortical bones. An automated algorithm for cortical bone segmentation at the distal tibia from in vivo MD-CT imaging is presented and its performance and application are examined. The algorithm is completed in two major steps-(1) bone filling, alignment, and region-of-interest computation and (2) segmentation of cortical bone. After the first step, the following sequence of tasks is performed to accomplish cortical bone segmentation-(1) detection of marrow space and possible pores, (2) computation of cortical bone thickness, detection of recession points, and confirmation and filling of true pores, and (3) detection of endosteal boundary and delineation of cortical bone. Effective generalizations of several digital topologic and geometric techniques are introduced and a fully automated algorithm is presented for cortical bone segmentation. An accuracy of 95.1% in terms of volume of agreement with manual outlining of cortical bone was observed in human MD-CT scans, while an accuracy of 88.5% was achieved when compared with manual outlining on postregistered high resolution micro-CT imaging. An intraclass correlation coefficient of 0.98 was obtained in cadaveric repeat scans. A pilot study was conducted to describe gender differences in cortical bone properties. This study involved 51 female and 46 male participants (age: 19-20 yr) from the Iowa Bone Development Study. Results from this pilot study suggest that, on average after adjustment for height and weight differences, males have

  5. Characterization of human cortical gene expression in relation to glucose utilization.

    Science.gov (United States)

    Sterner, Kirstin N; McGowen, Michael R; Chugani, Harry T; Tarca, Adi L; Sherwood, Chet C; Hof, Patrick R; Kuzawa, Christopher W; Boddy, Amy M; Raaum, Ryan L; Weckle, Amy; Lipovich, Leonard; Grossman, Lawrence I; Uddin, Monica; Goodman, Morris; Wildman, Derek E

    2013-01-01

    Human brain development follows a unique pattern characterized by a prolonged period of postnatal growth and reorganization, and a postnatal peak in glucose utilization. The molecular processes underlying these developmental changes are poorly characterized. The objectives of this study were to determine developmental trajectories of gene expression and to examine the evolutionary history of genes differentially expressed as a function of age. We used microarrays to determine age-related patterns of mRNA expression in human cerebral cortical samples ranging from infancy to adulthood. In contrast to previous developmental gene expression studies of human neocortex that relied on postmortem tissue, we measured mRNA expression from the nondiseased margins of surgically resected tissue. We used regression models designed to identify transcripts that followed significant linear or curvilinear functions of age and used population genetics techniques to examine the evolution of these genes. We identified 40 transcripts with significant age-related trajectories in expression. Ten genes have documented roles in nervous system development and energy metabolism, others are novel candidates in brain development. Sixteen transcripts showed similar patterns of expression, characterized by decreasing expression during childhood. Comparative genomic analyses revealed that the regulatory regions of three genes have evidence of adaptive evolution in recent human evolution. These findings provide evidence that a subset of genes expressed in the human cerebral cortex broadly mirror developmental patterns of cortical glucose consumption. Whether there is a causal relationship between gene expression and glucose utilization remains to be determined. Copyright © 2013 Wiley Periodicals, Inc.

  6. Cortically evoked responses of human pallidal neurons recorded during stereotactic neurosurgery.

    Science.gov (United States)

    Nishibayashi, Hiroki; Ogura, Mitsuhiro; Kakishita, Koji; Tanaka, Satoshi; Tachibana, Yoshihisa; Nambu, Atsushi; Kita, Hitoshi; Itakura, Toru

    2011-02-15

    Responses of neurons in the globus pallidus (GP) to cortical stimulation were recorded for the first time in humans. We performed microelectrode recordings of GP neurons in 10 Parkinson's disease (PD) patients and 1 cervical dystonia (CD) patient during surgeries to implant bilateral deep brain stimulation electrodes in the GP. To identify the motor territories in the external (GPe) and internal (GPi) segments of the GP, unitary responses evoked by stimulation of the primary motor cortex were observed by constructing peristimulus time histograms. Neurons in the motor territories of the GPe and GPi responded to cortical stimulation. Response patterns observed in the PD patients were combinations of an early excitation, an inhibition, and a late excitation. In addition, in the CD patient, a long-lasting inhibition was prominent, suggesting increased activity along the cortico-striato-GPe/GPi pathways. The firing rates of GPe and GPi neurons in the CD patient were lower than those in the PD patients. Many GPe and GPi neurons of the PD and CD patients showed burst or oscillatory burst activity. Effective cathodal contacts tended to be located close to the responding neurons. Such unitary responses induced by cortical stimulation may be of use to target motor territories of the GP for stereotactic functional neurosurgery. Future findings utilizing this method may give us new insights into understanding the pathophysiology of movement disorders. Copyright © 2011 Movement Disorder Society.

  7. Common cortical responses evoked by appearance, disappearance and change of the human face

    Directory of Open Access Journals (Sweden)

    Kida Tetsuo

    2009-04-01

    Full Text Available Abstract Background To segregate luminance-related, face-related and non-specific components involved in spatio-temporal dynamics of cortical activations to a face stimulus, we recorded cortical responses to face appearance (Onset, disappearance (Offset, and change (Change using magnetoencephalography. Results Activity in and around the primary visual cortex (V1/V2 showed luminance-dependent behavior. Any of the three events evoked activity in the middle occipital gyrus (MOG at 150 ms and temporo-parietal junction (TPJ at 250 ms after the onset of each event. Onset and Change activated the fusiform gyrus (FG, while Offset did not. This FG activation showed a triphasic waveform, consistent with results of intracranial recordings in humans. Conclusion Analysis employed in this study successfully segregated four different elements involved in the spatio-temporal dynamics of cortical activations in response to a face stimulus. The results show the responses of MOG and TPJ to be associated with non-specific processes, such as the detection of abrupt changes or exogenous attention. Activity in FG corresponds to a face-specific response recorded by intracranial studies, and that in V1/V2 is related to a change in luminance.

  8. How Tough is Human Cortical Bone? In-Situ Measurements on Realistically Short Cracks

    Energy Technology Data Exchange (ETDEWEB)

    Ritchie, Robert O; Koester, K. J.; Ager III, J. W.; Ritchie, R.O.

    2008-05-10

    Bone is more difficult to break than to split. Although this is well known, and many studies exist on the behavior of long cracks in bone, there is a need for data on the orientation-dependent crack-growth resistance behavior of human cortical bone which accurately assesses its toughness at appropriate size-scales. Here we use in-situ mechanical testing in the scanning electron microscope and x-ray computed tomography to examine how physiologically-pertinent short (<600 mu m) cracks propagate in both the transverse and longitudinal orientations in cortical bone, using both crack-deflection/twist mechanics and nonlinear-elastic fracture mechanics to determine crack-resistance curves. We find that after only 500 mu m of cracking, the driving force for crack propagation was more than five times higher in the transverse (breaking) direction than in the longitudinal (splitting) direction due to major crack deflections/twists principally at cement sheathes. Indeed, our results show that the true transverse toughness of cortical bone is far higher than previously reported. However, the toughness in the longitudinal orientation, where cracks tend to follow the cement lines, is quite low at these small crack sizes; it is only when cracks become several millimeters in length that bridging mechanisms can develop leading to the (larger-crack) toughnesses generally quoted for bone.

  9. Methylation of NR3C1 is related to maternal PTSD, parenting stress and maternal medial prefrontal cortical activity in response to child separation among mothers with histories of violence exposure

    Directory of Open Access Journals (Sweden)

    Daniel Scott Schechter

    2015-05-01

    Full Text Available Prior research has shown that mothers with Interpersonal Violence-related Posttraumatic Stress Disorder (IPV-PTSD report greater difficulty in parenting their toddlers. Relative to their frequent early exposure to violence and maltreatment, these mothers display dysregulation of their hypothalamic pituitary adrenal axis (HPA-axis, characterized by hypocortisolism. Considering methylation of the promoter region of the glucocorticoid receptor gene NR3C1 as a marker for HPA-axis functioning, with less methylation likely being associated with less circulating cortisol, the present study tested the hypothesis that the degree of methylation of this gene would be negatively correlated with maternal IPV-PTSD severity and parenting stress, and positively correlated with medial prefrontal cortical (mPFC activity in response to video-stimuli of stressful versus non-stressful mother-child interactions. Following a mental health assessment, 45 mothers and their children (ages 12-42 months participated in a behavioral protocol involving free-play and laboratory stressors such as mother-child separation. Maternal DNA was extracted from saliva. Interactive behavior was rated on the CARE-Index. During subsequent fMRI scanning, mothers were shown films of free-play and separation drawn from this protocol. Maternal PTSD severity and parenting stress were negatively correlated with the mean percentage of methylation of NR3C1. Maternal mPFC activity in response to video-stimuli of mother-child separation versus play correlated positively to NR3C1 methylation, and negatively to maternal IPV-PTSD and parenting stress. Among interactive behavior variables, child cooperativeness in play was positively correlated with NR3C1 methylation. Thus, the present study is the first published report to our knowledge, suggesting convergence of behavioral, epigenetic, and neuroimaging data that form a psychobiological signature of parenting-risk in the context of early life stress

  10. Methylation of NR3C1 is related to maternal PTSD, parenting stress and maternal medial prefrontal cortical activity in response to child separation among mothers with histories of violence exposure

    Science.gov (United States)

    Schechter, Daniel S.; Moser, Dominik A.; Paoloni-Giacobino, Ariane; Stenz, Ludwig; Gex-Fabry, Marianne; Aue, Tatjana; Adouan, Wafae; Cordero, María I.; Suardi, Francesca; Manini, Aurelia; Sancho Rossignol, Ana; Merminod, Gaëlle; Ansermet, Francois; Dayer, Alexandre G.; Rusconi Serpa, Sandra

    2015-01-01

    Prior research has shown that mothers with Interpersonal violence-related posttraumatic stress disorder (IPV-PTSD) report greater difficulty in parenting their toddlers. Relative to their frequent early exposure to violence and maltreatment, these mothers display dysregulation of their hypothalamic pituitary adrenal axis (HPA-axis), characterized by hypocortisolism. Considering methylation of the promoter region of the glucocorticoid receptor gene NR3C1 as a marker for HPA-axis functioning, with less methylation likely being associated with less circulating cortisol, the present study tested the hypothesis that the degree of methylation of this gene would be negatively correlated with maternal IPV-PTSD severity and parenting stress, and positively correlated with medial prefrontal cortical (mPFC) activity in response to video-stimuli of stressful versus non-stressful mother–child interactions. Following a mental health assessment, 45 mothers and their children (ages 12–42 months) participated in a behavioral protocol involving free-play and laboratory stressors such as mother–child separation. Maternal DNA was extracted from saliva. Interactive behavior was rated on the CARE-Index. During subsequent fMRI scanning, mothers were shown films of free-play and separation drawn from this protocol. Maternal PTSD severity and parenting stress were negatively correlated with the mean percentage of methylation of NR3C1. Maternal mPFC activity in response to video-stimuli of mother–child separation versus play correlated positively to NR3C1 methylation, and negatively to maternal IPV-PTSD and parenting stress. Among interactive behavior variables, child cooperativeness in play was positively correlated with NR3C1 methylation. Thus, the present study is the first published report to our knowledge, suggesting convergence of behavioral, epigenetic, and neuroimaging data that form a psychobiological signature of parenting-risk in the context of early life stress and PTSD

  11. Methylation of NR3C1 is related to maternal PTSD, parenting stress and maternal medial prefrontal cortical activity in response to child separation among mothers with histories of violence exposure.

    Science.gov (United States)

    Schechter, Daniel S; Moser, Dominik A; Paoloni-Giacobino, Ariane; Stenz, Ludwig; Gex-Fabry, Marianne; Aue, Tatjana; Adouan, Wafae; Cordero, María I; Suardi, Francesca; Manini, Aurelia; Sancho Rossignol, Ana; Merminod, Gaëlle; Ansermet, Francois; Dayer, Alexandre G; Rusconi Serpa, Sandra

    2015-01-01

    Prior research has shown that mothers with Interpersonal violence-related posttraumatic stress disorder (IPV-PTSD) report greater difficulty in parenting their toddlers. Relative to their frequent early exposure to violence and maltreatment, these mothers display dysregulation of their hypothalamic pituitary adrenal axis (HPA-axis), characterized by hypocortisolism. Considering methylation of the promoter region of the glucocorticoid receptor gene NR3C1 as a marker for HPA-axis functioning, with less methylation likely being associated with less circulating cortisol, the present study tested the hypothesis that the degree of methylation of this gene would be negatively correlated with maternal IPV-PTSD severity and parenting stress, and positively correlated with medial prefrontal cortical (mPFC) activity in response to video-stimuli of stressful versus non-stressful mother-child interactions. Following a mental health assessment, 45 mothers and their children (ages 12-42 months) participated in a behavioral protocol involving free-play and laboratory stressors such as mother-child separation. Maternal DNA was extracted from saliva. Interactive behavior was rated on the CARE-Index. During subsequent fMRI scanning, mothers were shown films of free-play and separation drawn from this protocol. Maternal PTSD severity and parenting stress were negatively correlated with the mean percentage of methylation of NR3C1. Maternal mPFC activity in response to video-stimuli of mother-child separation versus play correlated positively to NR3C1 methylation, and negatively to maternal IPV-PTSD and parenting stress. Among interactive behavior variables, child cooperativeness in play was positively correlated with NR3C1 methylation. Thus, the present study is the first published report to our knowledge, suggesting convergence of behavioral, epigenetic, and neuroimaging data that form a psychobiological signature of parenting-risk in the context of early life stress and PTSD.

  12. Differential prefrontal response to infant facial emotions in mothers compared with non-mothers.

    Science.gov (United States)

    Nishitani, Shota; Doi, Hirokazu; Koyama, Atsuko; Shinohara, Kazuyuki

    2011-06-01

    A considerable body of research has focused on neural responses evoked by emotional facial expressions, but little is known about mother-specific brain responses to infant facial emotions. We used near-infrared spectroscopy to investigate prefrontal activity during discriminating facial expressions of happy, angry, sad, fearful, surprised and neutral of unfamiliar infants and unfamiliar adults by 14 mothers and 14 age-matched females who have never been pregnant (non-mothers). Our results revealed that discriminating infant facial emotions increased the relative oxyHb concentration in mothers' right prefrontal cortex but not in their left prefrontal cortex, compared with each side of the prefrontal cortices of non-mothers. However, there was no difference between mothers and non-mothers in right or left prefrontal cortex activation while viewing adult facial expressions. These results suggest that the right prefrontal cortex is involved in human maternal behavior concerning infant facial emotion discrimination. Crown Copyright © 2011. Published by Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  13. Detection of Human Papillomavirus in Human Focal Cortical Dysplasia Type IIB

    NARCIS (Netherlands)

    Chen, Julie; Tsai, Victoria; Parker, Whitney E.; Aronica, Eleonora; Baybis, Marianna; Crino, Peter B.

    2012-01-01

    Objective: Focal cortical dysplasia type IIB (FCDIIB) is a sporadic developmental malformation of the cerebral cortex highly associated with pediatric epilepsy. Balloon cells (BCs) in FCDIIB exhibit constitutive activation of the mammalian target of rapamycin complex 1 (mTORC1) signaling pathway.

  14. A combined analysis of genome-wide expression profiling of bipolar disorder in human prefrontal cortex.

    Science.gov (United States)

    Wang, Jinglu; Qu, Susu; Wang, Weixiao; Guo, Liyuan; Zhang, Kunlin; Chang, Suhua; Wang, Jing

    2016-11-01

    Numbers of gene expression profiling studies of bipolar disorder have been published. Besides different array chips and tissues, variety of the data processes in different cohorts aggravated the inconsistency of results of these genome-wide gene expression profiling studies. By searching the gene expression databases, we obtained six data sets for prefrontal cortex (PFC) of bipolar disorder with raw data and combinable platforms. We used standardized pre-processing and quality control procedures to analyze each data set separately and then combined them into a large gene expression matrix with 101 bipolar disorder subjects and 106 controls. A standard linear mixed-effects model was used to calculate the differentially expressed genes (DEGs). Multiple levels of sensitivity analyses and cross validation with genetic data were conducted. Functional and network analyses were carried out on basis of the DEGs. In the result, we identified 198 unique differentially expressed genes in the PFC of bipolar disorder and control. Among them, 115 DEGs were robust to at least three leave-one-out tests or different pre-processing methods; 51 DEGs were validated with genetic association signals. Pathway enrichment analysis showed these DEGs were related with regulation of neurological system, cell death and apoptosis, and several basic binding processes. Protein-protein interaction network further identified one key hub gene. We have contributed the most comprehensive integrated analysis of bipolar disorder expression profiling studies in PFC to date. The DEGs, especially those with multiple validations, may denote a common signature of bipolar disorder and contribute to the pathogenesis of disease. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Modeling Neurodegenerative Microenvironment Using Cortical Organoids Derived from Human Stem Cells.

    Science.gov (United States)

    Yan, Yuanwei; Song, Liqing; Bejoy, Julie; Zhao, Jing; Kanekiyo, Takahisa; Bu, Guojun; Zhou, Yi; Li, Yan

    2018-02-27

    Alzheimer's disease (AD) is one of the most common neurodegenerative disorders and causes cognitive impairment and memory deficits of the patients. The mechanism of AD is not well known, due to lack of human brain models. Recently, mini-brain tissues called organoids have been derived from human induced pluripotent stem cells (hiPSCs) for modeling human brain development and neurological diseases. Thus, the objective of this research is to model and characterize neural degeneration microenvironment using three-dimensional (3D) forebrain cortical organoids derived from hiPSCs and study the response to the drug treatment. It is hypothesized that the 3D forebrain organoids derived from hiPSCs with AD-associated genetic background may partially recapitulate the extracellular microenvironment in neural degeneration. To test this hypothesis, AD-patient derived hiPSCs with presenilin-1 mutation were used for cortical organoid generation. AD-related inflammatory responses, matrix remodeling and the responses to DAPT, heparin (completes with heparan sulfate proteoglycans [HSPGs] to bind Aβ42), and heparinase (digests HSPGs) treatments were investigated. The results indicate that the cortical organoids derived from AD-associated hiPSCs exhibit a high level of Aβ42 comparing with healthy control. In addition, the AD-derived organoids result in an elevated gene expression of proinflammatory cytokines interleukin-6 and tumor necrosis factor-α, upregulate syndecan-3, and alter matrix remodeling protein expression. Our study demonstrates the capacity of hiPSC-derived organoids for modeling the changes of extracellular microenvironment and provides a potential approach for AD-related drug screening.

  16. Neural control of computer cursor velocity by decoding motor cortical spiking activity in humans with tetraplegia

    Science.gov (United States)

    Kim, Sung-Phil; Simeral, John D.; Hochberg, Leigh R.; Donoghue, John P.; Black, Michael J.

    2008-12-01

    Computer-mediated connections between human motor cortical neurons and assistive devices promise to improve or restore lost function in people with paralysis. Recently, a pilot clinical study of an intracortical neural interface system demonstrated that a tetraplegic human was able to obtain continuous two-dimensional control of a computer cursor using neural activity recorded from his motor cortex. This control, however, was not sufficiently accurate for reliable use in many common computer control tasks. Here, we studied several central design choices for such a system including the kinematic representation for cursor movement, the decoding method that translates neuronal ensemble spiking activity into a control signal and the cursor control task used during training for optimizing the parameters of the decoding method. In two tetraplegic participants, we found that controlling a cursor's velocity resulted in more accurate closed-loop control than controlling its position directly and that cursor velocity control was achieved more rapidly than position control. Control quality was further improved over conventional linear filters by using a probabilistic method, the Kalman filter, to decode human motor cortical activity. Performance assessment based on standard metrics used for the evaluation of a wide range of pointing devices demonstrated significantly improved cursor control with velocity rather than position decoding. Disclosure. JPD is the Chief Scientific Officer and a director of Cyberkinetics Neurotechnology Systems (CYKN); he holds stock and receives compensation. JDS has been a consultant for CYKN. LRH receives clinical trial support from CYKN.

  17. Tensile material properties of human tibia cortical bone effects of orientation and loading rate.

    Science.gov (United States)

    Kemper, Andrew R; McNally, Craig; Manoogian, Sarah J; Duma, Stefan M

    2008-01-01

    The purpose of this study was to quantify effects of both specimen orientation and loading rate on the tensile material properties for human tibia cortical bone in a controlled study. This study presents 25 human tibia cortical bone coupon tests obtained from the mid-diaphysis of two fresh frozen male human cadavers: 11 axial and 14 lateral. The primary component for the tension coupon testing was a high rate servo-hydraulic Material Testing System (MTS) with a custom slack adaptor. The specimen were loaded at a constant strain rate of approximately 0.05 strains/s, 0.5 strains/s, or 5.0 strains/s. Axial specimens were found to have a significantly larger ultimate stress and ultimate strain compared to lateral specimens for all loading rates, and a significantly larger modulus for low and high loading rates. This finding illustrates the anisentropic behavior of bone over a range of strain rates, which is attributed to the microstructure of the bone and the osteon orientation along the long axis of the bone. With respect to loading rate, both axial and lateral specimens showed significant increases in the modulus and significant decreases in ultimate strain with increased loading rate. Although not significant, axial specimens showed another traditional viscoelastic trend, with ultimate stress increasing with increased loading rate.

  18. Faster scaling of visual neurons in cortical areas relative to subcortical structures in non-human primate brains

    OpenAIRE

    Collins, C. E.; Leitch, D. B.; Wong, P.; Kaas, J. H.; Herculano-Houzel, Suzana

    2012-01-01

    Cortical expansion, both in absolute terms and in relation to subcortical structures, is considered a major trend in mammalian brain evolution with important functional implications, given that cortical computations should add complexity and flexibility to information processing. Here, we investigate the numbers of neurons that compose 4 structures in the visual pathway across 11 non-human primate species to determine the scaling relationships that apply to these structures and among them. We...

  19. The relationship between porosity and specific surface in human cortical bone is subject specific.

    Science.gov (United States)

    Lerebours, C; Thomas, C D L; Clement, J G; Buenzli, P R; Pivonka, P

    2015-03-01

    A characteristic relationship for bone between bone volume fraction (BV/TV) and specific surface (BS/TV) has previously been proposed based on 2D histological measurements. This relationship has been suggested to be bone intrinsic, i.e., to not depend on bone type, bone site and health state. In these studies, only limited data comes from cortical bone. The aim of this paper was to investigate the relationship between BV/TV and BS/TV in human cortical bone using high-resolution micro-CT imaging and the correlations with subject-specific biometric data such as height, weight, age and sex. Images from femoral cortical bone samples of the Melbourne Femur Collection were obtained using synchrotron radiation micro-CT (SPring8, Japan). Sixteen bone samples from thirteen individuals were analysed in order to find bone volume fraction values ranging from 0.20 to 1. Finally, morphological models of the tissue microstructure were developed to help explain the relationship between BV/TV and BS/TV. Our experimental findings indicate that the BV/TV vs BS/TV relationship is subject specific rather than intrinsic. Sex and pore density were statistically correlated with the individual curves. However no correlation was found with body height, weight or age. Experimental cortical data points deviate from interpolating curves previously proposed in the literature. However, these curves are largely based on data points from trabecular bone samples. This finding challenges the universality of the curve: highly porous cortical bone is significantly different to trabecular bone of the same porosity. Finally, our morphological models suggest that changes in BV/TV within the same sample can be explained by an increase in pore area rather than in pore density. This is consistent with the proposed mechanisms of age-related endocortical bone loss. In addition, these morphological models highlight that the relationship between BV/TV and BS/TV is not linear at high BV/TV as suggested in the

  20. Multi-echo EPI of human fear conditioning reveals improved BOLD detection in ventromedial prefrontal cortex.

    Science.gov (United States)

    Fernandez, Brice; Leuchs, Laura; Sämann, Philipp G; Czisch, Michael; Spoormaker, Victor I

    2017-08-01

    Standard T2(*) weighted functional magnetic resonance imaging (fMRI) performed with echo-planar imaging (EPI) suffers from signal loss in the ventromedial prefrontal cortex (vmPFC) due to macroscopic field inhomogeneity. However, this region is of special interest to affective neuroscience and psychiatry. The Multi-echo EPI (MEPI) approach has several advantages over EPI but its performance against EPI in the vmPFC has not yet been examined in a study with sufficient statistical power using a task specifically eliciting activity in this region. We used a fear conditioning task with MEPI to compare the performance of MEPI and EPI in vmPFC and control regions in 32 healthy young subjects. We analyzed activity associated with short (12ms), standard (29ms) and long (46ms) echo times, and a voxel-wise combination of these three echo times. Behavioral data revealed successful differentiation of the conditioned versus safety stimulus; activity in the vmPFC was shown by the contrast "safety stimulus > conditioned stimulus" as in previous research and proved significantly stronger with the combined MEPI than standard single-echo EPI. Then, we aimed to demonstrate that the additional cluster extent (ventral extension) detected in the vmPFC with MEPI reflects activation in a relevant cluster (i.e., not just non-neuronal noise). To do this, we used resting state data from the same subjects to show that the time-course of this region was both connected to bilateral amygdala and the default mode network. Overall, we demonstrate that MEPI (by means of the weighted sum combination approach) outperforms standard EPI in vmPFC; MEPI performs always at least as good as the best echo time for a given brain region but provides all necessary echo times for an optimal BOLD sensitivity for the whole brain. This is relevant for affective neuroscience and psychiatry given the critical role of the vmPFC in emotion regulation. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Adaptive evolution of ASPM, a major determinant of cerebral cortical size in humans.

    Science.gov (United States)

    Evans, Patrick D; Anderson, Jeffrey R; Vallender, Eric J; Gilbert, Sandra L; Malcom, Christine M; Dorus, Steve; Lahn, Bruce T

    2004-03-01

    A prominent trend in the evolution of humans is the progressive enlargement of the cerebral cortex. The ASPM (Abnormal spindle-like microcephaly associated) gene has the potential to play a role in this evolutionary process, because mutations in this gene cause severe reductions in the cerebral cortical size of affected humans. Here, we show that the evolution of ASPM is significantly accelerated in great apes, especially along the ape lineages leading to humans. Additionally, the lineage from the last human/chimpanzee ancestor to humans shows an excess of non-synonymous over synonymous substitutions, which is a signature of positive Darwinian selection. A comparison of polymorphism and divergence using the McDonald-Kreitman test confirms that ASPM has indeed experienced intense positive selection during recent human evolution. This test also reveals that, on average, ASPM fixed one advantageous amino acid change in every 300,000-400,000 years since the human lineage diverged from chimpanzees some 5-6 million years ago. We therefore conclude that ASPM underwent strong adaptive evolution in the descent of Homo sapiens, which is consistent with its putative role in the evolutionary enlargement of the human brain.

  2. Behavioral effects of congenital ventromedial prefrontal cortex malformation

    Directory of Open Access Journals (Sweden)

    Boes Aaron D

    2011-12-01

    Full Text Available Abstract Background A detailed behavioral profile associated with focal congenital malformation of the ventromedial prefrontal cortex (vmPFC has not been reported previously. Here we describe a 14 year-old boy, B.W., with neurological and psychiatric sequelae stemming from focal cortical malformation of the left vmPFC. Case Presentation B.W.'s behavior has been characterized through extensive review Patience of clinical and personal records along with behavioral and neuropsychological testing. A central feature of the behavioral profile is severe antisocial behavior. He is aggressive, manipulative, and callous; features consistent with psychopathy. Other problems include: egocentricity, impulsivity, hyperactivity, lack of empathy, lack of respect for authority, impaired moral judgment, an inability to plan ahead, and poor frustration tolerance. Conclusions The vmPFC has a profound contribution to the development of human prosocial behavior. B.W. demonstrates how a congenital lesion to this cortical region severely disrupts this process.

  3. Dynamical Representation of Dominance Relationships in the Human Rostromedial Prefrontal Cortex

    NARCIS (Netherlands)

    Ligneul, R.V.A.; Obeso, I.; Ruff, C.C.; Dreher, J.C.

    2016-01-01

    Summary Humans and other primates have evolved the ability to represent their status in the group’s social hierarchy, which is essential for avoiding harm and accessing resources. Yet it remains unclear how the human brain learns dominance status and adjusts behavior accordingly during dynamic

  4. Human Evoked Cortical Activity to Signal-to-Noise Ratio and Absolute Signal Level

    Science.gov (United States)

    Billings, Curtis J.; Tremblay, Kelly L.; Stecker, G. Christopher; Tolin, Wendy M.

    2009-01-01

    The purpose of this study was to determine the effect of signal level and signal-to-noise ratio (SNR) on the latency and amplitude of evoked cortical activity to further our understanding of how the human central auditory system encodes signals in noise. Cortical auditory evoked potentials (CAEPs) were recorded from 15 young normal-hearing adults in response to a 1000 Hz tone presented at two tone levels in quiet and while continuous background noise levels were varied in five equivalent SNR steps. These 12 conditions were used to determine the effects of signal level and SNR level on CAEP components P1, N1, P2, and N2. Based on prior signal-in-noise experiments conducted in animals, we hypothesized that SNR, would be a key contributor to human CAEP characteristics. As hypothesized, amplitude increased and latency decreased with increasing SNR; in addition, there was no main effect of tone level across the two signal levels tested (60 and 75 dB SPL). Morphology of the P1-N1-P2 complex was driven primarily by SNR, highlighting the importance of noise when recording CAEPs. Results are discussed in terms of the current interest in recording CAEPs in hearing aid users. PMID:19364526

  5. Hypothesis-driven methods to augment human cognition by optimizing cortical oscillations

    Directory of Open Access Journals (Sweden)

    Jörn M. Horschig

    2014-06-01

    Full Text Available Cortical oscillations have been shown to represent fundamental functions of a working brain, e.g. communication, stimulus binding, error monitoring, and inhibition, and are directly linked to behavior. Recent studies intervening with these oscillations have demonstrated effective modulation of both the oscillations and behavior. In this review, we collect evidence in favor of how hypothesis-driven methods can be used to augment cognition by optimizing cortical oscillations. We elaborate their potential usefulness for three target groups: healthy elderly, patients with attention deficit/hyperactivity disorder, and healthy young adults. We discuss the relevance of neuronal oscillations in each group and show how each of them can benefit from the manipulation of functionally-related oscillations. Further, we describe methods for manipulation of neuronal oscillations including direct brain stimulation as well as indirect task alterations. We also discuss practical considerations about the proposed techniques. In conclusion, we propose that insights from neuroscience should guide techniques to augment human cognition, which in turn can provide a better understanding of how the human brain works.

  6. Hypothesis-driven methods to augment human cognition by optimizing cortical oscillations

    Science.gov (United States)

    Horschig, Jörn M.; Zumer, Johanna M.; Bahramisharif, Ali

    2014-01-01

    Cortical oscillations have been shown to represent fundamental functions of a working brain, e.g., communication, stimulus binding, error monitoring, and inhibition, and are directly linked to behavior. Recent studies intervening with these oscillations have demonstrated effective modulation of both the oscillations and behavior. In this review, we collect evidence in favor of how hypothesis-driven methods can be used to augment cognition by optimizing cortical oscillations. We elaborate their potential usefulness for three target groups: healthy elderly, patients with attention deficit/hyperactivity disorder, and healthy young adults. We discuss the relevance of neuronal oscillations in each group and show how each of them can benefit from the manipulation of functionally-related oscillations. Further, we describe methods for manipulation of neuronal oscillations including direct brain stimulation as well as indirect task alterations. We also discuss practical considerations about the proposed techniques. In conclusion, we propose that insights from neuroscience should guide techniques to augment human cognition, which in turn can provide a better understanding of how the human brain works. PMID:25018706

  7. Representation of illusory and physical rotations in human MST: A cortical site for the pinna illusion.

    Science.gov (United States)

    Pan, Yanxia; Wang, Lijia; Wang, Zhiwei; Xu, Chan; Yu, Wenwen; Spillmann, Lothar; Gu, Yong; Wang, Zheng; Wang, Wei

    2016-06-01

    Visual illusions have fascinated mankind since antiquity, as they provide a unique window to explore the constructive nature of human perception. The Pinna illusion is a striking example of rotation perception in the absence of real physical motion. Upon approaching or receding from the Pinna-Brelstaff figure, the observer experiences vivid illusory counter rotation of the two rings in the figure. Although this phenomenon is well known as an example of integration from local cues to a global percept, the visual areas mediating the illusory rotary perception in the human brain have not yet been identified. In the current study we investigated which cortical area in the human brain initially mediates the Pinna illusion, using psychophysical tests and functional magnetic resonance imaging (fMRI) of visual cortices V1, V2, V3, V3A, V4, and hMT+ of the dorsal and ventral visual pathways. We found that both the Pinna-Brelstaff figure (illusory rotation) and a matched physical rotation control stimulus predominantly activated subarea MST in hMT+ with a similar response intensity. Our results thus provide neural evidence showing that illusory rotation is initiated in human MST rather than MT as if it were physical rotary motion. The findings imply that illusory rotation in the Pinna illusion is mediated by rotation-sensitive neurons that normally encode physical rotation in human MST, both of which may rely on a cascade of similar integrative processes from earlier visual areas. Hum Brain Mapp 37:2097-2113, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. Role of Prefrontal Persistent Activity in Working Memory

    Science.gov (United States)

    Riley, Mitchell R.; Constantinidis, Christos

    2016-01-01

    The prefrontal cortex is activated during working memory, as evidenced by fMRI results in human studies and neurophysiological recordings in animal models. Persistent activity during the delay period of working memory tasks, after the offset of stimuli that subjects are required to remember, has traditionally been thought of as the neural correlate of working memory. In the last few years several findings have cast doubt on the role of this activity. By some accounts, activity in other brain areas, such as the primary visual and posterior parietal cortex, is a better predictor of information maintained in visual working memory and working memory performance; dynamic patterns of activity may convey information without requiring persistent activity at all; and prefrontal neurons may be ill-suited to represent non-spatial information about the features and identity of remembered stimuli. Alternative interpretations about the role of the prefrontal cortex have thus been suggested, such as that it provides a top-down control of information represented in other brain areas, rather than maintaining a working memory trace itself. Here we review evidence for and against the role of prefrontal persistent activity, with a focus on visual neurophysiology. We show that persistent activity predicts behavioral parameters precisely in working memory tasks. We illustrate that prefrontal cortex represents features of stimuli other than their spatial location, and that this information is largely absent from early cortical areas during working memory. We examine memory models not dependent on persistent activity, and conclude that each of those models could mediate only a limited range of memory-dependent behaviors. We review activity decoded from brain areas other than the prefrontal cortex during working memory and demonstrate that these areas alone cannot mediate working memory maintenance, particularly in the presence of distractors. We finally discuss the discrepancy between

  9. Coordinated Gene Expression of Neuroinflammatory and Cell Signaling Markers in Dorsolateral Prefrontal Cortex during Human Brain Development and Aging

    Science.gov (United States)

    Primiani, Christopher T.; Ryan, Veronica H.; Rao, Jagadeesh S.; Cam, Margaret C.; Ahn, Kwangmi; Modi, Hiren R.; Rapoport, Stanley I.

    2014-01-01

    Background Age changes in expression of inflammatory, synaptic, and neurotrophic genes are not well characterized during human brain development and senescence. Knowing these changes may elucidate structural, metabolic, and functional brain processes over the lifespan, as well vulnerability to neurodevelopmental or neurodegenerative diseases. Hypothesis Expression levels of inflammatory, synaptic, and neurotrophic genes in the human brain are coordinated over the lifespan and underlie changes in phenotypic networks or cascades. Methods We used a large-scale microarray dataset from human prefrontal cortex, BrainCloud, to quantify age changes over the lifespan, divided into Development (0 to 21 years, 87 brains) and Aging (22 to 78 years, 144 brains) intervals, in transcription levels of 39 genes. Results Gene expression levels followed different trajectories over the lifespan. Many changes were intercorrelated within three similar groups or clusters of genes during both Development and Aging, despite different roles of the gene products in the two intervals. During Development, changes were related to reported neuronal loss, dendritic growth and pruning, and microglial events; TLR4, IL1R1, NFKB1, MOBP, PLA2G4A, and PTGS2 expression increased in the first years of life, while expression of synaptic genes GAP43 and DBN1 decreased, before reaching plateaus. During Aging, expression was upregulated for potentially pro-inflammatory genes such as NFKB1, TRAF6, TLR4, IL1R1, TSPO, and GFAP, but downregulated for neurotrophic and synaptic integrity genes such as BDNF, NGF, PDGFA, SYN, and DBN1. Conclusions Coordinated changes in gene transcription cascades underlie changes in synaptic, neurotrophic, and inflammatory phenotypic networks during brain Development and Aging. Early postnatal expression changes relate to neuronal, glial, and myelin growth and synaptic pruning events, while late Aging is associated with pro-inflammatory and synaptic loss changes. Thus, comparable

  10. Neural modeling of prefrontal executive function

    Energy Technology Data Exchange (ETDEWEB)

    Levine, D.S. [Univ. of Texas, Arlington, TX (United States)

    1996-12-31

    Brain executive function is based in a distributed system whereby prefrontal cortex is interconnected with other cortical. and subcortical loci. Executive function is divided roughly into three interacting parts: affective guidance of responses; linkage among working memory representations; and forming complex behavioral schemata. Neural network models of each of these parts are reviewed and fit into a preliminary theoretical framework.

  11. Effect of Aging on the Toughness of Human Cortical Bone: Evaluation by R-Curves

    Energy Technology Data Exchange (ETDEWEB)

    Kinney, J

    2004-10-08

    Age-related deterioration of the fracture properties of bone, coupled with increased life expectancy, are responsible for increasing incidence of bone fracture in the elderly, and hence, an understanding of how its fracture properties degrade with age is essential. The present study describes ex vivo fracture experiments to quantitatively assess the effect of aging on the fracture toughness properties of human cortical bone in the longitudinal direction. Because cortical bone exhibits rising crack-growth resistance with crack extension, unlike most previous studies the toughness is evaluated in terms of resistance-curve (R-curve) behavior, measured for bone taken from wide range of age groups (34-99 years). Using this approach, both the ex vivo crack-initiation and crack-growth toughness are determined and are found to deteriorate with age; the initiation toughness decreases some 40% over six decades from 40 to 100 years, while the growth toughness is effectively eliminated over the same age range. The reduction in crack-growth toughness is considered to be associated primarily with a degradation in the degree of extrinsic toughening, in particular involving crack bridging in the wake of the crack.

  12. Assessment of cortical dysfunction in human strabismic amblyopia using magnetoencephalography (MEG)

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, S.J. [Department of Psychology, Royal Holloway, University of London, Egham, Surrey (United Kingdom); Holliday, I.E.; Harding, G.F.A. [Clinical Neurophysiology Unit, Department of Psychology, Aston University, Birmingham (United Kingdom)

    1999-05-01

    The aim of this study was to use the technique of magnetoencephalography (MEG) to determine the effects of strabismic amblyopia on the processing of spatial information within the occipital cortex of humans. We recorded evoked magnetic responses to the onset of a chromatic (red/green) sinusoidal grating of periodicity 0.5-4.0 c deg{sup -1} using a 19-channel SQUID-based neuromagnetometer. Evoked responses were recorded monocularly on six amblyopes and six normally-sighted controls, the stimuli being positioned near the fovea in the lower right visual field of each observer. For comparison, the spatial contrast sensitivity function (CSF) for the detection of chromatic gratings was measured for one amblyope and one control using a two alternate forced-choice psychophysical procedure. We chose red/green sinusoids as our stimuli because they evoke strong magnetic responses from the occipital cortex in adult humans (Fylan, Holliday, Singh, Anderson and Harding. (1997). Neuroimage, 6, 47-57). Magnetic field strength was plotted as a function of stimulus spatial frequency for each eye of each subject. Interocular differences were only evident within the amblyopic group: for stimuli of 1-2 c deg{sup -1}, the evoked responses had significantly longer latencies and reduced amplitudes through the amblyopic eye (P<0.05). Importantly, the extent of the deficit was uncorrelated with either Snellen acuity or contrast sensitivity. Localization of the evoked responses was performed using a single equivalent current dipole model. Source localizations, for both normal and amblyopic subjects, were consistent with neural activity at the occipital pole near the V1/V2 border. We conclude that MEG is sensitive to the deficit in cortical processing associated with human amblyopia, and can be used to make quantitative neurophysiological measurements. The nature of the cortical deficit is discussed. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  13. Divergent cortical generators of MEG and EEG during human sleep spindles suggested by distributed source modeling.

    Science.gov (United States)

    Dehghani, Nima; Cash, Sydney S; Chen, Chih C; Hagler, Donald J; Huang, Mingxiong; Dale, Anders M; Halgren, Eric

    2010-07-07

    Sleep spindles are approximately 1-second bursts of 10-15 Hz activity, occurring during normal stage 2 sleep. In animals, sleep spindles can be synchronous across multiple cortical and thalamic locations, suggesting a distributed stable phase-locked generating system. The high synchrony of spindles across scalp EEG sites suggests that this may also be true in humans. However, prior MEG studies suggest multiple and varying generators. We recorded 306 channels of MEG simultaneously with 60 channels of EEG during naturally occurring spindles of stage 2 sleep in 7 healthy subjects. High-resolution structural MRI was obtained in each subject, to define the shells for a boundary element forward solution and to reconstruct the cortex providing the solution space for a noise-normalized minimum norm source estimation procedure. Integrated across the entire duration of all spindles, sources estimated from EEG and MEG are similar, diffuse and widespread, including all lobes from both hemispheres. However, the locations, phase and amplitude of sources simultaneously estimated from MEG versus EEG are highly distinct during the same spindles. Specifically, the sources estimated from EEG are highly synchronous across the cortex, whereas those from MEG rapidly shift in phase, hemisphere, and the location within the hemisphere. The heterogeneity of MEG sources implies that multiple generators are active during human sleep spindles. If the source modeling is correct, then EEG spindles are generated by a different, diffusely synchronous system. Animal studies have identified two thalamo-cortical systems, core and matrix, that produce focal or diffuse activation and thus could underlie MEG and EEG spindles, respectively. Alternatively, EEG spindles could reflect overlap at the sensors of the same sources as are seen from the MEG. Although our results generally match human intracranial recordings, additional improvements are possible and simultaneous intra- and extra-cranial measures

  14. Divergent cortical generators of MEG and EEG during human sleep spindles suggested by distributed source modeling.

    Directory of Open Access Journals (Sweden)

    Nima Dehghani

    2010-07-01

    Full Text Available Sleep spindles are approximately 1-second bursts of 10-15 Hz activity, occurring during normal stage 2 sleep. In animals, sleep spindles can be synchronous across multiple cortical and thalamic locations, suggesting a distributed stable phase-locked generating system. The high synchrony of spindles across scalp EEG sites suggests that this may also be true in humans. However, prior MEG studies suggest multiple and varying generators.We recorded 306 channels of MEG simultaneously with 60 channels of EEG during naturally occurring spindles of stage 2 sleep in 7 healthy subjects. High-resolution structural MRI was obtained in each subject, to define the shells for a boundary element forward solution and to reconstruct the cortex providing the solution space for a noise-normalized minimum norm source estimation procedure. Integrated across the entire duration of all spindles, sources estimated from EEG and MEG are similar, diffuse and widespread, including all lobes from both hemispheres. However, the locations, phase and amplitude of sources simultaneously estimated from MEG versus EEG are highly distinct during the same spindles. Specifically, the sources estimated from EEG are highly synchronous across the cortex, whereas those from MEG rapidly shift in phase, hemisphere, and the location within the hemisphere.The heterogeneity of MEG sources implies that multiple generators are active during human sleep spindles. If the source modeling is correct, then EEG spindles are generated by a different, diffusely synchronous system. Animal studies have identified two thalamo-cortical systems, core and matrix, that produce focal or diffuse activation and thus could underlie MEG and EEG spindles, respectively. Alternatively, EEG spindles could reflect overlap at the sensors of the same sources as are seen from the MEG. Although our results generally match human intracranial recordings, additional improvements are possible and simultaneous intra- and extra

  15. Precuneus proportions and cortical folding: A morphometric evaluation on a racially diverse human sample.

    Science.gov (United States)

    Bruner, Emiliano; Pereira-Pedro, Ana Sofia; Chen, Xu; Rilling, James K

    2017-05-01

    Recent analyses have suggested that the size and proportions of the precuneus are remarkably variable among adult humans, representing a major source of geometrical difference in midsagittal brain morphology. The same area also represents the main midsagittal brain difference between humans and chimpanzees, being more expanded in our species. Enlargement of the upper parietal surface is a specific feature of Homo sapiens, when compared with other fossil hominids, suggesting the involvement of these cortical areas in recent modern human evolution. Here, we provide a survey on midsagittal brain morphology by investigating whether precuneus size represents the largest component of variance within a larger and racially diverse sample of 265 adult humans. Additionally, we investigate the relationship between precuneus shape variation and folding patterns. Precuneus proportions are confirmed to be a major source of human brain variation even when racial variability is considered. Larger precuneus size is associated with additional precuneal gyri, generally in its anterior district. Spatial variation is most pronounced in the dorsal areas, with no apparent differences between hemispheres, between sexes, or among different racial groups. These dorsal areas integrate somatic and visual information together with the lateral elements of the parietal cortex, representing a crucial node for self-centered mental imagery. The histological basis and functional significance of this intra-specific variation in the upper precuneus remains to be evaluated. Copyright © 2017 Elsevier GmbH. All rights reserved.

  16. Dynamical Representation of Dominance Relationships in the Human Rostromedial Prefrontal Cortex.

    Science.gov (United States)

    Ligneul, Romain; Obeso, Ignacio; Ruff, Christian C; Dreher, Jean-Claude

    2016-12-05

    Humans and other primates have evolved the ability to represent their status in the group's social hierarchy, which is essential for avoiding harm and accessing resources. Yet it remains unclear how the human brain learns dominance status and adjusts behavior accordingly during dynamic social interactions. Here we address this issue with a combination of fMRI and transcranial direct current stimulation (tDCS). In a first fMRI experiment, participants learned an implicit dominance hierarchy while playing a competitive game against three opponents of different skills. Neural activity in the rostromedial PFC (rmPFC) dynamically tracked and updated the dominance status of the opponents, whereas the ventromedial PFC and ventral striatum reacted specifically to competitive victories and defeats. In a second experiment, we applied anodal tDCS over the rmPFC to enhance neural excitability while subjects performed a similar competitive task. The stimulation enhanced the relative weight of victories over defeats in learning social dominance relationships and exacerbated the influence of one's own dominance over competitive strategies. Importantly, these tDCS effects were specific to trials in which subjects learned about dominance relationships, as they were not present for control choices associated with monetary incentives but no competitive feedback. Taken together, our findings elucidate the role of rmPFC computations in dominance learning and unravel a fundamental mechanism that governs the emergence and maintenance of social dominance relationships in humans. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Transcranial direct current stimulation of right dorsolateral prefrontal cortex does not affect model-based or model-free reinforcement learning in humans.

    Directory of Open Access Journals (Sweden)

    Peter Smittenaar

    Full Text Available There is broad consensus that the prefrontal cortex supports goal-directed, model-based decision-making. Consistent with this, we have recently shown that model-based control can be impaired through transcranial magnetic stimulation of right dorsolateral prefrontal cortex in humans. We hypothesized that an enhancement of model-based control might be achieved by anodal transcranial direct current stimulation of the same region. We tested 22 healthy adult human participants in a within-subject, double-blind design in which participants were given Active or Sham stimulation over two sessions. We show Active stimulation had no effect on model-based control or on model-free ('habitual' control compared to Sham stimulation. These null effects are substantiated by a power analysis, which suggests that our study had at least 60% power to detect a true effect, and by a Bayesian model comparison, which favors a model of the data that assumes stimulation had no effect over models that assume stimulation had an effect on behavioral control. Although we cannot entirely exclude more trivial explanations for our null effect, for example related to (faults in our experimental setup, these data suggest that anodal transcranial direct current stimulation over right dorsolateral prefrontal cortex does not improve model-based control, despite existing evidence that transcranial magnetic stimulation can disrupt such control in the same brain region.

  18. Screening of human chromosome 21 genes in the dorsolateral prefrontal cortex of individuals with Down syndrome.

    Science.gov (United States)

    Kong, Xiang-Dong; Liu, Ning; Xu, Xue-Ju; Zhao, Zhen-Hua; Jiang, Miao

    2015-02-01

    The aim of the current study was to identify the genes on human chromosome 21 (HC21) that may serve important functions in the pathogenesis of Down syndrome (DS). The microarray data GSE5390 were obtained from the Gene Expression Omnibus database, which contained 7 DS and 8 healthy normal samples. The data were then normalized and the differentially expressed genes (DEGs) were identified using the LIMMA package and Bonferroni correction. Furthermore, the DEGs underwent clustering and gene ontology analysis. Additionally, the locations of the DEGs on HC21 were confirmed using human genome 19 in the University of California, Santa Cruz Interaction Browser. A total of 25 upregulated and 275 downregulated genes were screened between DS and healthy samples with a false discovery rate of 1. The expression levels of these genes in the two samples were different. In addition, the up‑ and downregulated genes were markedly enriched in organic substance biological processes (P=4.48x10‑10) and cell‑cell signaling (P=0.000227). Furthermore, 17 overexpressed genes were identified on the 21q21‑22 area, including COL6A2, TTC3 and ABCG1. Together, these observations suggest that 17 upregulated genes on HC21 may be involved in the development of DS and provide the basis for understanding this disability.

  19. A novel cortical target to enhance hand motor output in humans with spinal cord injury.

    Science.gov (United States)

    Long, Jinyi; Federico, Paolo; Perez, Monica A

    2017-06-01

    A main goal of rehabilitation strategies in humans with spinal cord injury is to strengthen transmission in spared neural networks. Although neuromodulatory strategies have targeted different sites within the central nervous system to restore motor function following spinal cord injury, the role of cortical targets remain poorly understood. Here, we use 180 pairs of transcranial magnetic stimulation for ∼30 min over the hand representation of the motor cortex at an interstimulus interval mimicking the rhythmicity of descending late indirect (I) waves in corticospinal neurons (4.3 ms; I-wave protocol) or at an interstimulus interval in-between I-waves (3.5 ms; control protocol) on separate days in a randomized order. Late I-waves are thought to arise from trans-synaptic cortical inputs and have a crucial role in the recruitment of spinal motor neurons following spinal cord injury. Motor evoked potentials elicited by transcranial magnetic stimulation, paired-pulse intracortical inhibition, spinal motor neuron excitability (F-waves), index finger abduction force and electromyographic activity as well as a hand dexterity task were measured before and after both protocols in 15 individuals with chronic incomplete cervical spinal cord injury and 17 uninjured participants. We found that motor evoked potentials size increased in spinal cord injury and uninjured participants after the I-wave but not the control protocol for ∼30 to 60 min after the stimulation. Intracortical inhibition decreased and F-wave amplitude and persistence increased after the I-wave but not the control protocol, suggesting that cortical and subcortical networks contributed to changes in corticospinal excitability. Importantly, hand motor output and hand dexterity increased in individuals with spinal cord injury after the I-wave protocol. These results provide the first evidence that late synaptic input to corticospinal neurons may represent a novel therapeutic target for improving motor function

  20. A cortical network model of cognitive and emotional influences in human decision making.

    Science.gov (United States)

    Nazir, Azadeh Hassannejad; Liljenström, Hans

    2015-10-01

    Decision making (DM)(2) is a complex process that appears to involve several brain structures. In particular, amygdala, orbitofrontal cortex (OFC) and lateral prefrontal cortex (LPFC) seem to be essential in human decision making, where both emotional and cognitive aspects are taken into account. In this paper, we present a computational network model representing the neural information processing of DM, from perception to behavior. We model the population dynamics of the three neural structures (amygdala, OFC and LPFC), as well as their interaction. In our model, the neurodynamic activity of amygdala and OFC represents the neural correlates of secondary emotion, while the activity of certain neural populations in OFC alone represents the outcome expectancy of different options. The cognitive/rational aspect of DM is associated with LPFC. Our model is intended to give insights on the emotional and cognitive processes involved in DM under various internal and external contexts. Different options for actions are represented by the oscillatory activity of cell assemblies, which may change due to experience and learning. Knowledge and experience of the outcome of our decisions and actions can eventually result in changes in our neural structures, attitudes and behaviors. Simulation results may have implications for how we make decisions for our individual actions, as well as for societal choices, where we take examples from transport and its impact on CO2 emissions and climate change. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  1. Plasticity in the prefrontal cortex of adult rats

    Science.gov (United States)

    Kolb, Bryan; Gibb, Robbin

    2015-01-01

    We review the plastic changes of the prefrontal cortex of the rat in response to a wide range of experiences including sensory and motor experience, gonadal hormones, psychoactive drugs, learning tasks, stress, social experience, metaplastic experiences, and brain injury. Our focus is on synaptic changes (dendritic morphology and spine density) in pyramidal neurons and the relationship to behavioral changes. The most general conclusion we can reach is that the prefrontal cortex is extremely plastic and that the medial and orbital prefrontal regions frequently respond very differently to the same experience in the same brain and the rules that govern prefrontal plasticity appear to differ for those of other cortical regions. PMID:25691857

  2. Plasticity in the Prefrontal Cortex of Adult Rats

    Directory of Open Access Journals (Sweden)

    Bryan eKolb

    2015-02-01

    Full Text Available We review the plastic changes of the prefrontal cortex of the rat in response to a wide range of experiences including sensory and motor experience, gonadal hormones, psychoactive drugs, learning tasks, stress, social experience, metaplastic experiences, and brain injury. Our focus is on synaptic changes (dendritic morphology and spine density in pyramidal neurons and the relationship to behavioral changes. The most general conclusion we can reach is that the prefrontal cortex is extremely plastic and that the medial and orbital prefrontal regions frequently respond very differently to the same experience in the same brain and the rules that govern prefrontal plasticity appear to differ for those of other cortical regions.

  3. Effect of porosity, tissue density, and mechanical properties on radial sound speed in human cortical bone

    Energy Technology Data Exchange (ETDEWEB)

    Eneh, C. T. M., E-mail: chibuzor.eneh@uef.fi, E-mail: markus.malo@uef.fi, E-mail: janne.karjalainen@boneindex.fi, E-mail: jukka.liukkonen@gmail.com, E-mail: juha.toyras@uef.fi; Töyräs, J., E-mail: chibuzor.eneh@uef.fi, E-mail: markus.malo@uef.fi, E-mail: janne.karjalainen@boneindex.fi, E-mail: jukka.liukkonen@gmail.com, E-mail: juha.toyras@uef.fi; Jurvelin, J. S., E-mail: jukka.jurvelin@uef.fi [Department of Applied Physics, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland and Diagnostic Imaging Center, Kuopio University Hospital, P.O. Box 100, Kuopio FI-70029 (Finland); Malo, M. K. H., E-mail: chibuzor.eneh@uef.fi, E-mail: markus.malo@uef.fi, E-mail: janne.karjalainen@boneindex.fi, E-mail: jukka.liukkonen@gmail.com, E-mail: juha.toyras@uef.fi; Liukkonen, J., E-mail: chibuzor.eneh@uef.fi, E-mail: markus.malo@uef.fi, E-mail: janne.karjalainen@boneindex.fi, E-mail: jukka.liukkonen@gmail.com, E-mail: juha.toyras@uef.fi [Department of Applied Physics, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211 (Finland); Karjalainen, J. P., E-mail: chibuzor.eneh@uef.fi, E-mail: markus.malo@uef.fi, E-mail: janne.karjalainen@boneindex.fi, E-mail: jukka.liukkonen@gmail.com, E-mail: juha.toyras@uef.fi [Bone Index Finland Ltd., P.O. Box 1188, Kuopio FI-70211 (Finland)

    2016-05-15

    Purpose: The purpose of this study was to investigate the effect of simultaneous changes in cortical porosity, tissue mineral density, and elastic properties on radial speed of sound (SOS) in cortical bone. The authors applied quantitative pulse-echo (PE) ultrasound techniques that hold much potential especially for screening of osteoporosis at primary healthcare facilities. Currently, most PE measurements of cortical thickness, a well-known indicator of fracture risk, use a predefined estimate for SOS in bone to calculate thickness. Due to variation of cortical bone porosity, the use of a constant SOS value propagates to an unknown error in cortical thickness assessment by PE ultrasound. Methods: The authors conducted 2.25 and 5.00 MHz focused PE ultrasound time of flight measurements on femoral diaphyses of 18 cadavers in vitro. Cortical porosities of the samples were determined using microcomputed tomography and related to SOS in the samples. Additionally, the effect of cortical bone porosity and mechanical properties of the calcified matrix on SOS was investigated using numerical finite difference time domain simulations. Results: Both experimental measurements and simulations demonstrated significant negative correlation between radial SOS and cortical porosity (R{sup 2} ≥ 0.493, p < 0.01 and R{sup 2} ≥ 0.989, p < 0.01, respectively). When a constant SOS was assumed for cortical bone, the error due to variation of cortical bone porosity (4.9%–16.4%) was about 6% in the cortical thickness assessment in vitro. Conclusions: Use of a predefined, constant value for radial SOS in cortical bone, i.e., neglecting the effect of measured variation in cortical porosity, propagated to an error of 6% in cortical thickness. This error can be critical as characteristic cortical thinning of 1.10% ± 1.06% per yr decreases bending strength of the distal radius and results in increased fragility in postmenopausal women. Provided that the cortical porosity can be estimated

  4. Genetically dependent modulation of serotonergic inactivation in the human prefrontal cortex.

    Science.gov (United States)

    Passamonti, Luca; Cerasa, Antonio; Gioia, Maria Cecilia; Magariello, Angela; Muglia, Maria; Quattrone, Aldo; Fera, Francesco

    2008-04-15

    Previous research suggests that genetic variations regulating serotonergic neurotransmission mediate individual differences in the neural network underlying impulsive and aggressive behaviour. Although with conflicting findings, the monoamine oxidase-A (MAOA) and the serotonin transporter (5HTT) gene polymorphisms have been associated with an increased risk to develop impulsive and aggressive behaviour. Double knock-out mice studies have also demonstrated that MAOA and 5HTT genes strongly interact in the metabolic pathway leading to the serotonergic inactivation; however, their potential interactive effect in human brain remains uninvestigated. We used blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) to assess the independent and interactive effects of both MAOA and 5HTT polymorphisms on the brain activity elicited by a response inhibition task in healthy volunteers. Multivariate analysis demonstrated an individual effect of both MAOA and 5HTT polymorphisms and a strong allele-allele interaction in the anterior cingulate cortex (ACC), a key region implicated in cognitive control and in the pathophysiology of impulsive and aggressive behaviour. These findings suggest that the MAOAx5HTT allelic interaction exerts a significant modulation on the BOLD response associated with response inhibition and contribute to validate haplotype models as useful tools for a better understanding of the neurobiology underlying complex cognitive functions.

  5. Protein profiles in cortical and nuclear regions of aged human donor lenses: A confocal Raman microspectroscopic and imaging study

    NARCIS (Netherlands)

    Vrensen, G.F.J.M.; Otto, Cornelis; Lenferink, Aufrid T.M.; Liszka, B.; Montenegro, G.A.; Barraquer, R.I.; Michael, R.

    2016-01-01

    A combination of Raman spectroscopy, imaging, hierarchical cluster analysis (HCA) and peak ratio analysis was used to analyze protein profiles in the superficial cortex (SC), deep cortex (DC) and nucleus of old human lenses with cortical, nuclear and mixed cataracts. No consistent differences were

  6. Prefrontal, posterior parietal and sensorimotor network activity underlying speed control during walking

    Directory of Open Access Journals (Sweden)

    Thomas C Bulea

    2015-05-01

    Full Text Available Accumulating evidence suggests cortical circuits may contribute to control of human locomotion. Here, noninvasive electroencephalography (EEG recorded from able-bodied volunteers during a novel treadmill walking paradigm was used to assess neural correlates of walking. A systematic processing method, including a recently developed subspace reconstruction algorithm, reduced movement-related EEG artifact prior to independent component analysis and dipole source localization. We quantified cortical activity while participants tracked slow and fast target speeds across two treadmill conditions: an active mode that adjusted belt speed based on user movements and a passive mode reflecting a typical treadmill. Our results reveal frequency specific, multi-focal task related changes in cortical oscillations elicited by active walking. Low γ band power, localized to the prefrontal and posterior parietal cortices, was significantly increased during double support and early swing phases, critical points in the gait cycle since the active controller adjusted speed based on pelvis position and swing foot velocity. These phasic γ band synchronizations provide evidence that prefrontal and posterior parietal networks, previously implicated in visuo-spatial and somotosensory integration, are engaged to enhance lower limb control during gait. Sustained μ and β band desynchronization within sensorimotor cortex, a neural correlate for movement, was observed during walking thereby validating our methods for isolating cortical activity. Our results also demonstrate the utility of EEG recorded during locomotion for probing the multi-regional cortical networks which underpin its execution. For example, the cortical network engagement elicited by the active treadmill suggests that it may enhance neuroplasticity for more effective motor training.

  7. Human cortical responses to slow and fast binaural beats reveal multiple mechanisms of binaural hearing

    National Research Council Canada - National Science Library

    Ross, Bernhard; Miyazaki, Takahiro; Thompson, Jessica; Jamali, Shahab; Fujioka, Takako

    2014-01-01

    .... To examine the neural representations underlying these different perceptions, we recorded neuromagnetic cortical responses while participants listened to binaural beats at a continuously varying rate...

  8. Understanding Human Original Actions Directed at Real-World Goals: The Role of the Lateral Prefrontal Cortex

    Science.gov (United States)

    Sitnikova, Tatiana; Rosen, Bruce R.; Lord, Louis-David; West, W. Caroline

    2014-01-01

    Adaptive, original actions, which can succeed in multiple contextual situations, require understanding of what is relevant to a goal. Recognizing what is relevant may also help in predicting kinematics of observed, original actions. During action observation, comparisons between sensory input and expected action kinematics have been argued critical to accurate goal inference. Experimental studies with laboratory tasks, both in humans and nonhuman primates, demonstrated that the lateral prefrontal cortex (LPFC) can learn, hierarchically organize, and use goal-relevant information. To determine whether this LPFC capacity is generalizable to real-world cognition, we recorded functional magnetic resonance imaging (fMRI) data in the human brain during comprehension of original and usual object-directed actions embedded in video-depictions of real-life behaviors. We hypothesized that LPFC will contribute to forming goal-relevant representations necessary for kinematic predictions of original actions. Additionally, resting-state fMRI was employed to examine functional connectivity between the brain regions delineated in the video fMRI experiment. According to behavioral data, original videos could be understood by identifying elements relevant to real-life goals at different levels of abstraction. Patterns of enhanced activity in four regions in the left LPFC, evoked by original, relative to usual, video scenes, were consistent with previous neuroimaging findings on representing abstract and concrete stimuli dimensions relevant to laboratory goals. In the anterior left LPFC, the activity increased selectively when representations of broad classes of objects and actions, which could achieve the perceived overall behavioral goal, were likely to bias kinematic predictions of original actions. In contrast, in the more posterior regions, the activity increased even when concrete properties of the target object were more likely to bias the kinematic prediction. Functional

  9. Specialized prefrontal auditory fields: organization of primate prefrontal-temporal pathways

    Directory of Open Access Journals (Sweden)

    Maria eMedalla

    2014-04-01

    Full Text Available No other modality is more frequently represented in the prefrontal cortex than the auditory, but the role of auditory information in prefrontal functions is not well understood. Pathways from auditory association cortices reach distinct sites in the lateral, orbital, and medial surfaces of the prefrontal cortex in rhesus monkeys. Among prefrontal areas, frontopolar area 10 has the densest interconnections with auditory association areas, spanning a large antero-posterior extent of the superior temporal gyrus from the temporal pole to auditory parabelt and belt regions. Moreover, auditory pathways make up the largest component of the extrinsic connections of area 10, suggesting a special relationship with the auditory modality. Here we review anatomic evidence showing that frontopolar area 10 is indeed the main frontal auditory field as the major recipient of auditory input in the frontal lobe and chief source of output to auditory cortices. Area 10 is thought to be the functional node for the most complex cognitive tasks of multitasking and keeping track of information for future decisions. These patterns suggest that the auditory association links of area 10 are critical for complex cognition. The first part of this review focuses on the organization of prefrontal-auditory pathways at the level of the system and the synapse, with a particular emphasis on area 10. Then we explore ideas on how the elusive role of area 10 in complex cognition may be related to the specialized relationship with auditory association cortices.

  10. Using human extra-cortical local field potentials to control a switch

    Science.gov (United States)

    Kennedy, Philip; Andreasen, Dinal; Ehirim, Princewill; King, Brandon; Kirby, Todd; Mao, Hui; Moore, Melody

    2004-06-01

    Individuals with profound paralysis and mutism require a communication channel. Traditional assistive technology devices eventually fail, especially in the case of amyotrophic lateral sclerosis (ALS) subjects who gradually become totally locked-in. A direct brain-to-computer interface that provides switch functions can provide a direct communication channel to the external world. Electroencephalographic (EEG) signals recorded from scalp electrodes are significantly degraded due to skull and scalp attenuation and ambient noise. The present system using conductive skull screws allows more reliable access to cortical local field potentials (LFPs) without entering the brain itself. We describe an almost locked-in human subject with ALS who activated a switch using online time domain detection techniques. Frequency domain analysis of his LFP activity demonstrates this to be an alternative method of detecting switch activation intentions. With this brain communicator system it is reasonable to expect that locked-in, but cognitively intact, humans will always be able to communicate. Financial disclosure. Authors PK and DA may derive some financial gain from the sale of this device. A patent has been applied under US and international law: 10/675,703.

  11. Women with Premenstrual Dysphoria Lack the Seemingly Normal Premenstrual Right-Sided Relative Dominance of 5-HTP-Derived Serotonergic Activity in the Dorsolateral Prefrontal Cortices - A Possible Cause of Disabling Mood Symptoms

    DEFF Research Database (Denmark)

    Eriksson, Olle; Wall, Anders; Olsson, Ulf

    2016-01-01

    in the beta-3 position, was performed in the follicular and luteal phases for 12 women with PMD and 8 control women. Brain radioactivity-a proxy for serotonin precursor uptake and synthesis-was measured in 9 regions of interest (ROIs): the right and left sides of the medial prefrontal cortex, dorsolateral...... prefrontal cortex, putamen and caudate nucleus, and the single "whole brain". RESULTS: There were no significant quantitative differences in brain 5-HTP-derived activity between the groups in either of the menstrual phases for any of the 9 ROIs. However, multivariate analysis revealed a significant...... quantitative and qualitative difference between the groups. Asymptomatic control women showed a premenstrual right sided relative increase in dorsolateral prefrontal cortex 5-HTP derived activity, whereas PMD women displayed the opposite (p = 0.0001). Menstrual phase changes in this asymmetry (premenstrual...

  12. Disruption of medial prefrontal synchrony in the subchronic phencyclidine model of schizophrenia in rats.

    Science.gov (United States)

    Young, A M J; Stubbendorff, C; Valencia, M; Gerdjikov, T V

    2015-02-26

    Subchronic treatment with the N-methyl-D-aspartate (NMDA) antagonist phencyclidine (PCP) produces behavioral abnormalities in rodents which are considered a reliable pharmacological model of neurocognitive deficits in schizophrenia. Alterations in prefrontal neuronal firing after acute PCP administration have been observed, however enduring changes in prefrontal activity after subchronic PCP treatment have not been studied. To address this we have recorded cortical oscillations and unit responses in putative cortical pyramidal cells in subchronic PCP-treated rats (2mg/kg twice daily for 7 days) under urethane anesthesia. We found that this regimen reduced theta oscillations in the medial prefrontal cortex. It further produced abnormal cortical synchronization in putative cortical pyramidal cells. These alterations in prefrontal cortex functioning may contribute to cognitive deficits seen in subchronic NMDA antagonist pre-treated animals in prefrontal-dependent tasks. Copyright © 2015. Published by Elsevier Ltd.

  13. Divergent Human Cortical Regions for Processing Distinct Acoustic-Semantic Categories of Natural Sounds: Animal Action Sounds vs. Vocalizations

    Science.gov (United States)

    Webster, Paula J.; Skipper-Kallal, Laura M.; Frum, Chris A.; Still, Hayley N.; Ward, B. Douglas; Lewis, James W.

    2017-01-01

    A major gap in our understanding of natural sound processing is knowledge of where or how in a cortical hierarchy differential processing leads to categorical perception at a semantic level. Here, using functional magnetic resonance imaging (fMRI) we sought to determine if and where cortical pathways in humans might diverge for processing action sounds vs. vocalizations as distinct acoustic-semantic categories of real-world sound when matched for duration and intensity. This was tested by using relatively less semantically complex natural sounds produced by non-conspecific animals rather than humans. Our results revealed a striking double-dissociation of activated networks bilaterally. This included a previously well described pathway preferential for processing vocalization signals directed laterally from functionally defined primary auditory cortices to the anterior superior temporal gyri, and a less well-described pathway preferential for processing animal action sounds directed medially to the posterior insulae. We additionally found that some of these regions and associated cortical networks showed parametric sensitivity to high-order quantifiable acoustic signal attributes and/or to perceptual features of the natural stimuli, such as the degree of perceived recognition or intentional understanding. Overall, these results supported a neurobiological theoretical framework for how the mammalian brain may be fundamentally organized to process acoustically and acoustic-semantically distinct categories of ethologically valid, real-world sounds. PMID:28111538

  14. Dopamine Development in the Mouse Orbital Prefrontal Cortex Is Protracted and Sensitive to Amphetamine in Adolescence.

    Science.gov (United States)

    Hoops, Daniel; Reynolds, Lauren M; Restrepo-Lozano, Jose-Maria; Flores, Cecilia

    2018-01-01

    The prefrontal cortex (PFC) is divided into subregions, including the medial and orbital prefrontal cortices. Dopamine connectivity in the medial PFC (mPFC) continues to be established throughout adolescence as the result of the continuous growth of axons that innervated the nucleus accumbens (NAcc) prior to adolescence. During this period, dopamine axons remain vulnerable to environmental influences, such as drugs used recreationally by humans. The developmental trajectory of the orbital prefrontal dopamine innervation remains almost completely unstudied. Nonetheless, the orbital PFC (oPFC) is critical for some of the most complex functions of the PFC and is disrupted by drugs of abuse, both in adolescent humans and rodents. Here, we use quantitative neuroanatomy, axon-initiated viral-vector recombination, and pharmacology in mice to determine the spatiotemporal development of the dopamine innervation to the oPFC and its vulnerability to amphetamine in adolescence. We find that dopamine innervation to the oPFC also continues to increase during adolescence and that this increase is due to the growth of new dopamine axons to this region. Furthermore, amphetamine in adolescence dramatically reduces the number of presynaptic sites on oPFC dopamine axons. In contrast, dopamine innervation to the piriform cortex is not protracted across adolescence and is not impacted by amphetamine exposure during adolescence, indicating that dopamine development during adolescence is a uniquely prefrontal phenomenon. This renders these fibers, and the PFC in general, particularly vulnerable to environmental risk factors during adolescence, such as recreational drug use.

  15. In Vitro Fracture of Human Cortical Bone: Local Fracture Criteria and Toughening Mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Nalla, R; Stolken, J; Kinney, J; Ritchie, R

    2004-08-18

    A micro-mechanistic understanding of bone fracture that encompasses how cracks interact with the underlying microstructure and defines their local failure mode is lacking, despite extensive research on the response of bone to a variety of factors like aging, loading, and/or disease. Micro-mechanical models for fracture incorporating such local failure criteria have been widely developed for metallic and ceramic materials systems; however, few such deliberations have been undertaken for the fracture of bone. In fact, although the fracture event in mineralized tissues such as bone is commonly believed to be locally strain controlled, until recently there has been little experimental evidence to support this widely held belief. In the present study, a series of in vitro experiments involving a double-notch bend test geometry are performed in order to shed further light on the nature of the local cracking events that precede catastrophic fracture in bone and to define their relationship to the microstructure. Specifically, crack-microstructure interactions are examined to determine the salient toughening mechanisms in human cortical bone and to characterize how these may affect the anisotropy in fracture properties. Based on preliminary micro-mechanical models of these processes, in particular crack deflection and uncracked ligament bridging, the relative importance of these toughening mechanisms is established.

  16. Integration of Motion Responses Underlying Directional Motion Anisotropy in Human Early Visual Cortical Areas

    Science.gov (United States)

    Schellekens, Wouter; Van Wezel, Richard J. A.; Petridou, Natalia; Ramsey, Nick F.; Raemaekers, Mathijs

    2013-01-01

    Recent imaging studies have reported directional motion biases in human visual cortex when perceiving moving random dot patterns. It has been hypothesized that these biases occur as a result of the integration of motion detector activation along the path of motion in visual cortex. In this study we investigate the nature of such motion integration with functional MRI (fMRI) using different motion stimuli. Three types of moving random dot stimuli were presented, showing either coherent motion, motion with spatial decorrelations or motion with temporal decorrelations. The results from the coherent motion stimulus reproduced the centripetal and centrifugal directional motion biases in V1, V2 and V3 as previously reported. The temporally decorrelated motion stimulus resulted in both centripetal and centrifugal biases similar to coherent motion. In contrast, the spatially decorrelated motion stimulus resulted in small directional motion biases that were only present in parts of visual cortex coding for higher eccentricities of the visual field. In combination with previous results, these findings indicate that biased motion responses in early visual cortical areas most likely depend on the spatial integration of a simultaneously activated motion detector chain. PMID:23840711

  17. Spatiotemporal Dynamics of the Cortical Responses Induced by a Prolonged Tactile Stimulation of the Human Fingertips.

    Science.gov (United States)

    Genna, Clara; Oddo, Calogero M; Fanciullacci, Chiara; Chisari, Carmelo; Jörntell, Henrik; Artoni, Fiorenzo; Micera, Silvestro

    2017-07-01

    The sense of touch is fundamental for daily behavior. The aim of this work is to understand the neural network responsible for touch processing during a prolonged tactile stimulation, delivered by means of a mechatronic platform by passively sliding a ridged surface under the subject's fingertip while recording the electroencephalogram (EEG). We then analyzed: (i) the temporal features of the Somatosensory Evoked Potentials and their topographical distribution bilaterally across the cortex; (ii) the associated temporal modulation of the EEG frequency bands. Long-latency SEP were identified with the following physiological sequence P100-N140-P240. P100 and N140 were bilateral potentials with higher amplitude in the contralateral hemisphere and with delayed latency in the ipsilateral side. Moreover, we found a late potential elicited around 200 ms after the stimulation was stopped, which likely encoded the end of tactile input. The analysis of cortical oscillations indicated an initial increase in the power of theta band (4-7 Hz) for 500 ms after the stimulus onset followed a decrease in the power of the alpha band (8-15 Hz) that lasted for the remainder of stimulation. This decrease was prominent in the somatosensory cortex and equally distributed in both contralateral and ipsilateral hemispheres. This study shows that prolonged stimulation of the human fingertip engages the cortex in widespread bilateral processing of tactile information, with different modulations of the theta and alpha bands across time.

  18. Neural speech recognition: continuous phoneme decoding using spatiotemporal representations of human cortical activity

    Science.gov (United States)

    Moses, David A.; Mesgarani, Nima; Leonard, Matthew K.; Chang, Edward F.

    2016-10-01

    Objective. The superior temporal gyrus (STG) and neighboring brain regions play a key role in human language processing. Previous studies have attempted to reconstruct speech information from brain activity in the STG, but few of them incorporate the probabilistic framework and engineering methodology used in modern speech recognition systems. In this work, we describe the initial efforts toward the design of a neural speech recognition (NSR) system that performs continuous phoneme recognition on English stimuli with arbitrary vocabulary sizes using the high gamma band power of local field potentials in the STG and neighboring cortical areas obtained via electrocorticography. Approach. The system implements a Viterbi decoder that incorporates phoneme likelihood estimates from a linear discriminant analysis model and transition probabilities from an n-gram phonemic language model. Grid searches were used in an attempt to determine optimal parameterizations of the feature vectors and Viterbi decoder. Main results. The performance of the system was significantly improved by using spatiotemporal representations of the neural activity (as opposed to purely spatial representations) and by including language modeling and Viterbi decoding in the NSR system. Significance. These results emphasize the importance of modeling the temporal dynamics of neural responses when analyzing their variations with respect to varying stimuli and demonstrate that speech recognition techniques can be successfully leveraged when decoding speech from neural signals. Guided by the results detailed in this work, further development of the NSR system could have applications in the fields of automatic speech recognition and neural prosthetics.

  19. Cortical and brain stem changes in neural activity during static handgrip and postexercise ischemia in humans

    DEFF Research Database (Denmark)

    Sander, Mikael; Macefield, Vaughan G; Henderson, Luke A

    2010-01-01

    Static isometric exercise increases muscle sympathetic nerve activity (MSNA) and mean arterial pressure, both of which can be maintained at the conclusion of the exercise by occlusion of the arterial supply [postexercise ischemia (PEI)]. To identify the cortical and subcortical sites involved...... cortices, with progressive decreases in the perigenual anterior cingulate and midcingulate cortices, were sustained during the period of PEI and thus did not depend on central command. Discrete bilateral activation of the medial and lateral dorsal medulla was also observed during the contraction and PEI...

  20. Cortical and subcortical networks in human secondarily generalized tonic–clonic seizures

    Science.gov (United States)

    Varghese, G. I.; Purcaro, M.J.; Motelow, J.E.; Enev, M.; McNally, K. A.; Levin, A.R.; Hirsch, L. J.; Tikofsky, R.; Zubal, I. G.; Paige, A. L.; Spencer, S. S.

    2009-01-01

    Generalized tonic–clonic seizures are among the most dramatic physiological events in the nervous system. The brain regions involved during partial seizures with secondary generalization have not been thoroughly investigated in humans. We used single photon emission computed tomography (SPECT) to image cerebral blood flow (CBF) changes in 59 secondarily generalized seizures from 53 patients. Images were analysed using statistical parametric mapping to detect cortical and subcortical regions most commonly affected in three different time periods: (i) during the partial seizure phase prior to generalization; (ii) during the generalization period; and (iii) post-ictally. We found that in the pre-generalization period, there were focal CBF increases in the temporal lobe on group analysis, reflecting the most common region of partial seizure onset. During generalization, individual patients had focal CBF increases in variable regions of the cerebral cortex. Group analysis during generalization revealed that the most consistent increase occurred in the superior medial cerebellum, thalamus and basal ganglia. Post-ictally, there was a marked progressive CBF increase in the cerebellum which spread to involve the bilateral lateral cerebellar hemispheres, as well as CBF increases in the midbrain and basal ganglia. CBF decreases were seen in the fronto-parietal association cortex, precuneus and cingulate gyrus during and following seizures, similar to the ‘default mode’ regions reported previously to show decreased activity in seizures and in normal behavioural tasks. Analysis of patient behaviour during and following seizures showed impaired consciousness at the time of SPECT tracer injections. Correlation analysis across patients demonstrated that cerebellar CBF increases were related to increases in the upper brainstem and thalamus, and to decreases in the fronto-parietal association cortex. These results reveal a network of cortical and subcortical structures that

  1. Cortical and subcortical networks in human secondarily generalized tonic-clonic seizures.

    Science.gov (United States)

    Blumenfeld, H; Varghese, G I; Purcaro, M J; Motelow, J E; Enev, M; McNally, K A; Levin, A R; Hirsch, L J; Tikofsky, R; Zubal, I G; Paige, A L; Spencer, S S

    2009-04-01

    Generalized tonic-clonic seizures are among the most dramatic physiological events in the nervous system. The brain regions involved during partial seizures with secondary generalization have not been thoroughly investigated in humans. We used single photon emission computed tomography (SPECT) to image cerebral blood flow (CBF) changes in 59 secondarily generalized seizures from 53 patients. Images were analysed using statistical parametric mapping to detect cortical and subcortical regions most commonly affected in three different time periods: (i) during the partial seizure phase prior to generalization; (ii) during the generalization period; and (iii) post-ictally. We found that in the pre-generalization period, there were focal CBF increases in the temporal lobe on group analysis, reflecting the most common region of partial seizure onset. During generalization, individual patients had focal CBF increases in variable regions of the cerebral cortex. Group analysis during generalization revealed that the most consistent increase occurred in the superior medial cerebellum, thalamus and basal ganglia. Post-ictally, there was a marked progressive CBF increase in the cerebellum which spread to involve the bilateral lateral cerebellar hemispheres, as well as CBF increases in the midbrain and basal ganglia. CBF decreases were seen in the fronto-parietal association cortex, precuneus and cingulate gyrus during and following seizures, similar to the 'default mode' regions reported previously to show decreased activity in seizures and in normal behavioural tasks. Analysis of patient behaviour during and following seizures showed impaired consciousness at the time of SPECT tracer injections. Correlation analysis across patients demonstrated that cerebellar CBF increases were related to increases in the upper brainstem and thalamus, and to decreases in the fronto-parietal association cortex. These results reveal a network of cortical and subcortical structures that are most

  2. Robust Estimation of Group-wise Cortical Correspondence with an Application to Macaque and Human Neuroimaging Studies

    Directory of Open Access Journals (Sweden)

    Ilwoo eLyu

    2015-06-01

    Full Text Available We present a novel group-wise registration method for cortical correspondence for local cortical thickness analysis in human and non-human primate neuroimaging studies. The proposed method is based on our earlier template based registration that estimates a continuous, smooth deformation field via sulcal curve-constrained registration employing spherical harmonic decomposition of the deformation field. This pairwise registration though results in a well-known template selection bias, which we aim to overcome here via a group-wise approach. We propose the use of an unbiased ensemble entropy minimization following the use of the pairwise registration as an initialization. An individual deformation field is then iteratively updated onto the unbiased average. For the optimization, we use metrics specific for cortical correspondence though all of these are straightforwardly extendable to the generic setting: The first focused on optimizing the correspondence of automatically extracted sulcal landmarks and the second on that of sulcal depth property maps. We further propose a robust entropy metric and a hierarchical optimization by employing spherical harmonic basis orthogonality. We also provide the detailed methodological description of both our earlier work and the proposed method with a set of experiments on a population of human and non-human primate subjects. In the experiment, we have shown that our method achieves superior results on consistency through quantitative and visual comparisons as compared to the existing methods.

  3. Glycation of human cortical and cancellous bone captures differences in the formation of Maillard reaction products between glucose and ribose.

    Directory of Open Access Journals (Sweden)

    Grażyna E Sroga

    Full Text Available To better understand some aspects of bone matrix glycation, we used an in vitro glycation approach. Within two weeks, our glycation procedures led to the formation of advanced glycation end products (AGEs at the levels that corresponded to approx. 25-30 years of the natural in vivo glycation. Cortical and cancellous bones from human tibias were glycated in vitro using either glucose (glucosylation or ribose (ribosylation. Both glucosylation and ribosylation led to the formation of higher levels of AGEs and pentosidine (PEN in cancellous than cortical bone dissected from all tested donors (young, middle-age and elderly men and women. More efficient glycation of bone matrix proteins in cancellous bone most likely depended on the higher porosity of this tissue, which facilitated better accessibility of the sugars to the matrix proteins. Notably, glycation of cortical bone from older donors led to much higher AGEs levels as compared to young donors. Such efficient in vitro glycation of older cortical bone could result from aging-related increase in porosity caused by the loss of mineral content. In addition, more pronounced glycation in vivo would be driven by elevated oxidation processes. Interestingly, the levels of PEN formation differed pronouncedly between glucosylation and ribosylation. Ribosylation generated very high levels of PEN (approx. 6- vs. 2.5-fold higher PEN level than in glucosylated samples. Kinetic studies of AGEs and PEN formation in human cortical and cancellous bone matrix confirmed higher accumulation of fluorescent crosslinks for ribosylation. Our results suggest that in vitro glycation of bone using glucose leads to the formation of lower levels of AGEs including PEN, whereas ribosylation appears to support a pathway toward PEN formation. Our studies may help to understand differences in the progression of bone pathologies related to protein glycation by different sugars, and raise awareness for excessive sugar

  4. Relation between the prefrontal cortex and cerebro-cerebellar functions: evidence from the results of stabilometrical indexes.

    Science.gov (United States)

    Hatta, Takeshi; Masui, Tetsuo; Ito, Yasuhiro; Ito, Emi; Hasegawa, Yukiharu; Matsuyama, Yukihiro

    2004-01-01

    The relation between prefrontal cortex and cerebro-cerebellar functions of 50 normal healthy elderly people was examined. The function of the prefrontal cortex was measured by means of a letter fluency test and the Digit Cancellation Test (D-CAT, a test for the assessment of attention). Two indexes of postural tremor measured by the stabilometer were employed for the indication of cerebello-thalamo-cortical circuit functions. The results of groups consisting of participants showing higher or lower scores than the mean of the norm on the stabilometer index measurements were compared with their D-CAT and letter fluency test performances. The results showed that 2 indexes of cerebello-thalamo-cortical circuit functions related to the attention function while the relation to the language function was rather weak. The results of the behavioral measures demonstrated a mutual relation between prefrontal cortex and cerebello-thalamo-cortical circuit functions and strongly suggest the notion that the human brain functions as a system, which includes neocortex, subcortex, and cerebellum.

  5. Cortex, cognition and the cell: new insights into the pyramidal neuron and prefrontal function.

    Science.gov (United States)

    Elston, Guy N

    2003-11-01

    Arguably the most complex cortical functions are seated in human cognition, the how and why of which have been debated for centuries by theologians, philosophers and scientists alike. In his best-selling book, An Astonishing Hypothesis: A Scientific Search for the Soul, Francis Crick refined the view that these qualities are determined solely by cortical cells and circuitry. Put simply, cognition is nothing more, or less, than a biological function. Accepting this to be the case, it should be possible to identify the mechanisms that subserve cognitive processing. Since the pioneering studies of Lorent de Nó and Hebb, and the more recent studies of Fuster, Miller and Goldman-Rakic, to mention but a few, much attention has been focused on the role of persistent neural activity in cognitive processes. Application of modern technologies and modelling techniques has led to new hypotheses about the mechanisms of persistent activity. Here I focus on how regional variations in the pyramidal cell phenotype may determine the complexity of cortical circuitry and, in turn, influence neural activity. Data obtained from thousands of individually injected pyramidal cells in sensory, motor, association and executive cortex reveal marked differences in the numbers of putative excitatory inputs received by these cells. Pyramidal cells in prefrontal cortex have, on average, up to 23 times more dendritic spines than those in the primary visual area. I propose that without these specializations in the structure of pyramidal cells, and the circuits they form, human cognitive processing would not have evolved to its present state. I also present data from both New World and Old World monkeys that show varying degrees of complexity in the pyramidal cell phenotype in their prefrontal cortices, suggesting that cortical circuitry and, thus, cognitive styles are evolving independently in different species.

  6. Neural Priming in Human Frontal Cortex: Multiple Forms of Learning Reduce Demands on the Prefrontal Executive System

    Science.gov (United States)

    Race, Elizabeth A.; Shanker, Shanti; Wagner, Anthony D.

    2009-01-01

    Past experience is hypothesized to reduce computational demands in PFC by providing bottom-up predictive information that informs subsequent stimulus-action mapping. The present fMRI study measured cortical activity reductions ("neural priming"/"repetition suppression") during repeated stimulus classification to investigate the mechanisms through…

  7. Influence of wiring cost on the large-scale architecture of human cortical connectivity.

    Directory of Open Access Journals (Sweden)

    David Samu

    2014-04-01

    Full Text Available In the past two decades some fundamental properties of cortical connectivity have been discovered: small-world structure, pronounced hierarchical and modular organisation, and strong core and rich-club structures. A common assumption when interpreting results of this kind is that the observed structural properties are present to enable the brain's function. However, the brain is also embedded into the limited space of the skull and its wiring has associated developmental and metabolic costs. These basic physical and economic aspects place separate, often conflicting, constraints on the brain's connectivity, which must be characterized in order to understand the true relationship between brain structure and function. To address this challenge, here we ask which, and to what extent, aspects of the structural organisation of the brain are conserved if we preserve specific spatial and topological properties of the brain but otherwise randomise its connectivity. We perform a comparative analysis of a connectivity map of the cortical connectome both on high- and low-resolutions utilising three different types of surrogate networks: spatially unconstrained ('random', connection length preserving ('spatial', and connection length optimised ('reduced' surrogates. We find that unconstrained randomisation markedly diminishes all investigated architectural properties of cortical connectivity. By contrast, spatial and reduced surrogates largely preserve most properties and, interestingly, often more so in the reduced surrogates. Specifically, our results suggest that the cortical network is less tightly integrated than its spatial constraints would allow, but more strongly segregated than its spatial constraints would necessitate. We additionally find that hierarchical organisation and rich-club structure of the cortical connectivity are largely preserved in spatial and reduced surrogates and hence may be partially attributable to cortical wiring constraints

  8. Positive Association of Video Game Playing with Left Frontal Cortical Thickness in Adolescents

    Science.gov (United States)

    Kühn, Simone; Lorenz, Robert; Banaschewski, Tobias; Barker, Gareth J.; Büchel, Christian; Conrod, Patricia J.; Flor, Herta; Garavan, Hugh; Ittermann, Bernd; Loth, Eva; Mann, Karl; Nees, Frauke; Artiges, Eric; Paus, Tomas; Rietschel, Marcella; Smolka, Michael N.; Ströhle, Andreas; Walaszek, Bernadetta; Schumann, Gunter; Heinz, Andreas; Gallinat, Jürgen

    2014-01-01

    Playing video games is a common recreational activity of adolescents. Recent research associated frequent video game playing with improvements in cognitive functions. Improvements in cognition have been related to grey matter changes in prefrontal cortex. However, a fine-grained analysis of human brain structure in relation to video gaming is lacking. In magnetic resonance imaging scans of 152 14-year old adolescents, FreeSurfer was used to estimate cortical thickness. Cortical thickness across the whole cortical surface was correlated with self-reported duration of video gaming (hours per week). A robust positive association between cortical thickness and video gaming duration was observed in left dorsolateral prefrontal cortex (DLPFC) and left frontal eye fields (FEFs). No regions showed cortical thinning in association with video gaming frequency. DLPFC is the core correlate of executive control and strategic planning which in turn are essential cognitive domains for successful video gaming. The FEFs are a key region involved in visuo-motor integration important for programming and execution of eye movements and allocation of visuo-spatial attention, processes engaged extensively in video games. The results may represent the biological basis of previously reported cognitive improvements due to video game play. Whether or not these results represent a-priori characteristics or consequences of video gaming should be studied in future longitudinal investigations. PMID:24633348

  9. Positive association of video game playing with left frontal cortical thickness in adolescents.

    Directory of Open Access Journals (Sweden)

    Simone Kühn

    Full Text Available Playing video games is a common recreational activity of adolescents. Recent research associated frequent video game playing with improvements in cognitive functions. Improvements in cognition have been related to grey matter changes in prefrontal cortex. However, a fine-grained analysis of human brain structure in relation to video gaming is lacking. In magnetic resonance imaging scans of 152 14-year old adolescents, FreeSurfer was used to estimate cortical thickness. Cortical thickness across the whole cortical surface was correlated with self-reported duration of video gaming (hours per week. A robust positive association between cortical thickness and video gaming duration was observed in left dorsolateral prefrontal cortex (DLPFC and left frontal eye fields (FEFs. No regions showed cortical thinning in association with video gaming frequency. DLPFC is the core correlate of executive control and strategic planning which in turn are essential cognitive domains for successful video gaming. The FEFs are a key region involved in visuo-motor integration important for programming and execution of eye movements and allocation of visuo-spatial attention, processes engaged extensively in video games. The results may represent the biological basis of previously reported cognitive improvements due to video game play. Whether or not these results represent a-priori characteristics or consequences of video gaming should be studied in future longitudinal investigations.

  10. Human cortical responses to slow and fast binaural beats reveal multiple mechanisms of binaural hearing.

    Science.gov (United States)

    Ross, Bernhard; Miyazaki, Takahiro; Thompson, Jessica; Jamali, Shahab; Fujioka, Takako

    2014-10-15

    When two tones with slightly different frequencies are presented to both ears, they interact in the central auditory system and induce the sensation of a beating sound. At low difference frequencies, we perceive a single sound, which is moving across the head between the left and right ears. The percept changes to loudness fluctuation, roughness, and pitch with increasing beat rate. To examine the neural representations underlying these different perceptions, we recorded neuromagnetic cortical responses while participants listened to binaural beats at a continuously varying rate between 3 Hz and 60 Hz. Binaural beat responses were analyzed as neuromagnetic oscillations following the trajectory of the stimulus rate. Responses were largest in the 40-Hz gamma range and at low frequencies. Binaural beat responses at 3 Hz showed opposite polarity in the left and right auditory cortices. We suggest that this difference in polarity reflects the opponent neural population code for representing sound location. Binaural beats at any rate induced gamma oscillations. However, the responses were largest at 40-Hz stimulation. We propose that the neuromagnetic gamma oscillations reflect postsynaptic modulation that allows for precise timing of cortical neural firing. Systematic phase differences between bilateral responses suggest that separate sound representations of a sound object exist in the left and right auditory cortices. We conclude that binaural processing at the cortical level occurs with the same temporal acuity as monaural processing whereas the identification of sound location requires further interpretation and is limited by the rate of object representations. Copyright © 2014 the American Physiological Society.

  11. Functional magnetic resonance imaging suggests automatization of the cortical response to inspiratory threshold loading in humans.

    Science.gov (United States)

    Raux, Mathieu; Tyvaert, Louise; Ferreira, Michael; Kindler, Félix; Bardinet, Eric; Karachi, Carine; Morelot-Panzini, Capucine; Gotman, Jean; Pike, G Bruce; Koski, Lisa; Similowski, Thomas

    2013-12-01

    Inspiratory threshold loading (ITL) induces cortical activation. It is sustained over time and is resistant to distraction, suggesting automaticity. We hypothesized that ITL-induced changes in cerebral activation may differ between single-breath ITL and continuous ITL, with differences resembling those observed after cortical automatization of motor tasks. We analyzed the brain blood oxygen level dependent (BOLD) signal of 11 naive healthy volunteers during 5 min of random, single-breath ITL and 5 min of continuous ITL. Single-breath ITL increased BOLD in many areas (premotor cortices, bilateral insula, cerebellum, reticular formation of the lateral mesencephalon) and decreased BOLD in regions co-localizing with the default mode network. Continuous ITL induced signal changes in a limited number of areas (supplementary motor area). These differences are comparable to those observed before and after overlearning of motor tasks. We conclude that the respiratory-related cortical activation observed in response to ITL is likely due to automated, attention-independent mechanisms. Also, ITL activates cortical circuits right from the first breath. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Natural stimuli from three coherent modalities enhance behavioral responses and electrophysiological cortical activity in humans.

    Science.gov (United States)

    Sella, Irit; Reiner, Miriam; Pratt, Hillel

    2014-07-01

    Cues that involve a number of sensory modalities are processed in the brain in an interactive multimodal manner rather than independently for each modality. We studied multimodal integration in a natural, yet fully controlled scene, implemented as an interactive game in an auditory-haptic-visual virtual environment. In this imitation of a natural scene, the targets of perception were ecologically valid uni-, bi- and tri-modal manifestations of a simple event-a ball hitting a wall. Subjects were engaged in the game while their behavioral and early cortical electrophysiological responses were measured. Behavioral results confirmed that tri-modal cues were detected faster and more accurately than bi-modal cues, which, likewise, showed advantages over unimodal responses. Event-Related Potentials (ERPs) were recorded, and the first 200 ms following stimulus onset was analyzed to reveal the latencies of cortical multimodal interactions as estimated by sLORETA. These electrophysiological findings indicated bi-modal as well as tri-modal interactions beginning very early (~30 ms), uniquely for each multimodal combination. The results suggest that early cortical multimodal integration accelerates cortical activity and, in turn, enhances performance measures. This acceleration registers on the scalp as sub-additive cortical activation. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Automatic Segmentation of Human Cortical Layer-Complexes and Architectural Areas Using Ex vivo Diffusion MRI and Its Validation

    NARCIS (Netherlands)

    Bastiani, Matteo; Oros-Peusquens, Ana-Maria; Seehaus, Arne; Brenner, Daniel; Möllenhoff, Klaus; Celik, Avdo; Felder, Jörg; Bratzke, Hansjürgen; Shah, Nadim J; Galuske, Ralf; Goebel, R.; Roebroeck, Alard

    2016-01-01

    Recently, several magnetic resonance imaging contrast mechanisms have been shown to distinguish cortical substructure corresponding to selected cortical layers. Here, we investigate cortical layer and area differentiation by automatized unsupervised clustering of high-resolution diffusion MRI data.

  14. Anthropometric analysis of the human mandibular cortical bone as assessed by cone-beam computed tomography.

    Science.gov (United States)

    Swasty, Denise; Lee, Janice S; Huang, John C; Maki, Koutaro; Gansky, Stuart A; Hatcher, David; Miller, Arthur J

    2009-03-01

    The purpose of this study is to assess cortical thickness, height, and width with cone-beam computed tomography (CBCT), and determine the relationship of these parameters with age. A total of 113 subjects from the University of California at San Francisco Orthodontic Clinic with a CBCT scan were enrolled. Subjects were stratified by age in decades. Thickness of buccal and lingual cortices and mandibular height and width were evaluated in 5 regions (13 sites). A single factorial ANOVA was used to compare the parameters among age groups. P less than or equal to .05 was statistically significant. There were 44 (38.9%) males; 69 females. For all groups, the thickest to the least thick cortical plates were: base of the mandible, lower buccal one third, upper lingual one third, upper buccal one third, and lower lingual one third. In all groups, the mandible increased in height as the midline was approached, and the width of the upper third of the mandible decreased from the second molar to the symphysis whereas the reverse occurred in the lower third. Comparison of the age groups showed that subjects 10 to 19 years old had thinner cortical plates than other age groups (P mandibular height (P mandibular cortical bone is thickest at the base, on the buccal side. Subjects who are 10 to 19 years old have thinner cortical bone and decreased mandibular height compared with all other age groups. The mandible continues to mature through 40 to 49 years of age and then decreases in thickness after this period.

  15. [Prefrontal cortex in memory and attention processes].

    Science.gov (United States)

    Allegri, R F; Harris, P

    The role of the prefrontal cortex still remains poorly understood. Only after 1970, the functions of the frontal lobes have been conceptualized from different points of view (behaviorism, cognitivism). Recently,different parallel circuits connecting discrete cortical and subcortical regions of the frontal lobes have been described. Three of these circuits are the most relevant to understanding of behavior: the dorsolateral prefrontal circuit, that mediates executive behavior; the orbitofrontal prefrontal circuit, mediating social behavior, and the medial frontal circuit, involved in motivation. Damage to the frontal cortex impairs planning, problem solving, reasoning, concept formation, temporal ordering of stimuli, estimation, attention, memory search, maintaining information in working memory, associative learning,certain forms of skilled motor activities, image generation and manipulation of the spatial properties of a stimulus, metacognitive thinking, and social cognition. Several theories have been proposed to explain the functions of the prefrontal cortex. Currently,the most influential cognitive models are: the Norman and Shallice supervisory attentional system, involved in non-routine selection; the Baddeley working memory model with the central executive as a supervisory controlling system, in which impairment leads to a 'dysexecutive syndrome'; and the Grafman's model of managerial knowledge units, stored as macrostructured information in the frontal cortex. The prefrontal cortex is essential for attentional control, manipulation of stored knowledge and modulation of complex actions, cognition, emotion and behavior.

  16. Acute psychological stress reduces working memory-related activity in the dorsolateral prefrontal cortex.

    NARCIS (Netherlands)

    Qin, S.; Hermans, E.J.; Marle, H.J.F. van; Luo, J.; Fernandez, G.S.E.

    2009-01-01

    BACKGROUND: Acute psychological stress impairs higher-order cognitive function such as working memory (WM). Similar impairments are seen in various psychiatric disorders that are associated with higher susceptibility to stress and with prefrontal cortical dysfunctions, suggesting that acute stress

  17. A high density of human communication-associated genes in chromosome 7q31-q36: differential expression in human and non-human primate cortices.

    Science.gov (United States)

    Schneider, E; Jensen, L R; Farcas, R; Kondova, I; Bontrop, R E; Navarro, B; Fuchs, E; Kuss, A W; Haaf, T

    2012-01-01

    The human brain is distinguished by its remarkable size, high energy consumption, and cognitive abilities compared to all other mammals and non-human primates. However, little is known about what has accelerated brain evolution in the human lineage. One possible explanation is that the appearance of advanced communication skills and language has been a driving force of human brain development. The phenotypic adaptations in brain structure and function which occurred on the way to modern humans may be associated with specific molecular signatures in today's human genome and/or transcriptome. Genes that have been linked to language, reading, and/or autism spectrum disorders are prime candidates when searching for genes for human-specific communication abilities. The database and genome-wide expression analyses we present here revealed a clustering of such communication-associated genes (COAG) on human chromosomes X and 7, in particular chromosome 7q31-q36. Compared to the rest of the genome, we found a high number of COAG to be differentially expressed in the cortices of humans and non-human primates (chimpanzee, baboon, and/or marmoset). The role of X-linked genes for the development of human-specific cognitive abilities is well known. We now propose that chromosome 7q31-q36 also represents a hot spot for the evolution of human-specific communication abilities. Selective pressure on the T cell receptor beta locus on chromosome 7q34, which plays a pivotal role in the immune system, could have led to rapid dissemination of positive gene variants in hitchhiking COAG. Copyright © 2012 S. Karger AG, Basel.

  18. Effect of Loading Rate and Orientation on the Compressive Response of Human Cortical Bone

    Science.gov (United States)

    2014-05-01

    primarily animal cortical bone. Tennyson et al. (8) studied specimens from bovine femurs subjected to a range of strain rates from 10 to 450/s and provided a...Biomech. (Bristol, Avon) 2008, 23,1294–1298. 8. Tennyson , R. C.; Ewert, R. Niranjan, V. Dynamic Viscoelastic Response of Bone. Experimental Mechanics

  19. Through Thick and Thin: a Need to Reconcile Contradictory Results on Trajectories in Human Cortical Development.

    Science.gov (United States)

    Walhovd, Kristine B; Fjell, Anders M; Giedd, Jay; Dale, Anders M; Brown, Timothy T

    2017-02-01

    Understanding how brain development normally proceeds is a premise of understanding neurodevelopmental disorders. This has sparked a wealth of magnetic resonance imaging (MRI) studies. Unfortunately, they are in marked disagreement on how the cerebral cortex matures. While cortical thickness increases for the first 8-9 years of life have repeatedly been reported, others find continuous cortical thinning from early childhood, at least from age 3 or 4 years. We review these inconsistencies, and discuss possible reasons, including the use of different scanners, recording parameters and analysis tools, and possible effects of variables such as head motion. When tested on the same subsample, 2 popular thickness estimation methods (CIVET and FreeSurfer) both yielded a continuous thickness decrease from 3 years. Importantly, MRI-derived measures of cortical development are merely our best current approximations, hence the term "apparent cortical thickness" may be preferable. We recommend strategies for reaching consensus in the field, including multimodal neuroimaging to measure phenomena using different techniques, for example, the use of T1/T2 ratio, and data sharing to allow replication across analysis methods. As neurodevelopmental origins of early- and late-onset disease are increasingly recognized, resolving inconsistencies in brain maturation trajectories is important. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. Intra-cortical excitability in healthy human subjects after tongue training

    DEFF Research Database (Denmark)

    Baad-Hansen, Lene; Blicher, Jakob; Lapitskaya, Natallia

    2009-01-01

    Training of specific muscles causes plastic changes in corticomotor pathways which may underlie the effect of various clinical rehabilitation procedures. The paired pulse transcranial magnetic stimulation (ppTMS) technique can be used to assess short interval intra-cortical inhibitory (SICI...

  1. The developing human brain: age-related changes in cortical, subcortical, and cerebellar anatomy.

    Science.gov (United States)

    Sussman, Dafna; Leung, Rachel C; Chakravarty, M Mallar; Lerch, Jason P; Taylor, Margot J

    2016-04-01

    This study is the first to characterize normal development and sex differences across neuroanatomical structures in cortical, subcortical, and cerebellar brain regions in a single large cohort. One hundred and ninety-two magnetic resonance images were examined from 96 typically developing females and 96 age-matched typically developing males from 4 to 18 years of age. Image segmentation of the cortex was conducted with CIVET, while that of the cerebellum, hippocampi, thalamus, and basal ganglia were conducted using the MAGeT algorithm. Cortical thickness analysis revealed that most cortical regions decrease linearly, while surface area increases linearly with age. Volume relative to total cerebrum followed a quadratic trend with age, with only the left supramarginal gyrus showing sexual dimorphism. Hippocampal relative volume increased linearly, while the thalamus, caudate, and putamen decreased linearly, and the cerebellum did not change with age. The relative volumes of several subcortical subregions followed inverted U-shaped trends that peaked at ~12 years of age. Many subcortical structures were found to be larger in females than in males, independently of age, while others showed a sex-by-age interaction. This study provides a comprehensive assessment of cortical, subcortical, and cerebellar growth patterns during normal development, and draws attention to the role of sex on neuroanatomical maturation throughout childhood and adolescence.

  2. Recombinant Human Parathyroid Hormone (1–34) [Teriparatide] Improves Both Cortical and Cancellous Bone Structure

    National Research Council Canada - National Science Library

    Jiang, Yebin; Zhao, Jenny J; Mitlak, Bruce H; Wang, Ouhong; Genant, Harry K; Eriksen, Erik F

    2003-01-01

    ... (rDNA origin) injection [rhPTH(1–34), TPTD] to improve both cancellous and cortical bone in a subset of women enrolled in the Fracture Prevention Trial of postmenopausal women with osteoporosis after a mean treatment time of 19 months...

  3. A nap to recap or how reward regulates hippocampal-prefrontal memory networks during daytime sleep in humans.

    Science.gov (United States)

    Igloi, Kinga; Gaggioni, Giulia; Sterpenich, Virginie; Schwartz, Sophie

    2015-10-16

    Sleep plays a crucial role in the consolidation of newly acquired memories. Yet, how our brain selects the noteworthy information that will be consolidated during sleep remains largely unknown. Here we show that post-learning sleep favors the selectivity of long-term consolidation: when tested three months after initial encoding, the most important (i.e., rewarded, strongly encoded) memories are better retained, and also remembered with higher subjective confidence. Our brain imaging data reveals that the functional interplay between dopaminergic reward regions, the prefrontal cortex and the hippocampus contributes to the integration of rewarded associative memories. We further show that sleep spindles strengthen memory representations based on reward values, suggesting a privileged replay of information yielding positive outcomes. These findings demonstrate that post-learning sleep determines the neural fate of motivationally-relevant memories and promotes a value-based stratification of long-term memory stores.

  4. Cortical sources of Vernier acuity in the human visual system: An EEG-source imaging study.

    Science.gov (United States)

    Hou, Chuan; Kim, Yee-Joon; Verghese, Preeti

    2017-06-01

    Vernier acuity determines the relative position of visual features with a precision better than the sampling resolution of cone receptors in the retina. Because Vernier displacement is thought to be mediated by orientation-tuned mechanisms, Vernier acuity is presumed to be processed in striate visual cortex (V1). However, there is considerable evidence suggesting that Vernier acuity is dependent not only on structures in V1 but also on processing in extrastriate cortical regions. Here we used functional magnetic resonance imaging-informed electroencephalogram source imaging to localize the cortical sources of Vernier acuity in observers with normal vision. We measured suprathreshold and near-threshold responses to Vernier onset/offset stimuli at different stages of the visual cortical hierarchy, including V1, hV4, lateral occipital cortex (LOC), and middle temporal cortex (hMT+). These responses were compared with responses to grating on/off stimuli, as well as to stimuli that control for lateral motion in the Vernier task. Our results show that all visual cortical regions of interest (ROIs) responded to both suprathreshold Vernier and grating stimuli. However, thresholds for Vernier displacement (Vernier acuity) were lowest in V1 and LOC compared with hV4 and hMT+, whereas all visual ROIs had identical thresholds for spatial frequency (grating acuity) and for relative motion. The cortical selectivity of sensitivity to Vernier displacement provides strong evidence that LOC, in addition to V1, is involved in Vernier acuity processing. The robust activation of LOC might be related to the sensitivity to the relative position of features, which is common to Vernier displacement and to some kinds of texture segmentation.

  5. Persistence of cortical sensory processing during absence seizures in human and an animal model: evidence from EEG and intracellular recordings.

    Directory of Open Access Journals (Sweden)

    Mathilde Chipaux

    Full Text Available Absence seizures are caused by brief periods of abnormal synchronized oscillations in the thalamocortical loops, resulting in widespread spike-and-wave discharges (SWDs in the electroencephalogram (EEG. SWDs are concomitant with a complete or partial impairment of consciousness, notably expressed by an interruption of ongoing behaviour together with a lack of conscious perception of external stimuli. It is largely considered that the paroxysmal synchronizations during the epileptic episode transiently render the thalamocortical system incapable of transmitting primary sensory information to the cortex. Here, we examined in young patients and in the Genetic Absence Epilepsy Rats from Strasbourg (GAERS, a well-established genetic model of absence epilepsy, how sensory inputs are processed in the related cortical areas during SWDs. In epileptic patients, visual event-related potentials (ERPs were still present in the occipital EEG when the stimuli were delivered during seizures, with a significant increase in amplitude compared to interictal periods and a decrease in latency compared to that measured from non-epileptic subjects. Using simultaneous in vivo EEG and intracellular recordings from the primary somatosensory cortex of GAERS and non-epileptic rats, we found that ERPs and firing responses of related pyramidal neurons to whisker deflection were not significantly modified during SWDs. However, the intracellular subthreshold synaptic responses in somatosensory cortical neurons during seizures had larger amplitude compared to quiescent situations. These convergent findings from human patients and a rodent genetic model show the persistence of cortical responses to sensory stimulations during SWDs, indicating that the brain can still process external stimuli during absence seizures. They also demonstrate that the disruption of conscious perception during absences is not due to an obliteration of information transfer in the thalamocortical system

  6. Finding prefrontal cortex in the rat.

    Science.gov (United States)

    Leonard, Christiana M

    2016-08-15

    The prefrontal cortex of the rat. I. Cortical projection of the mediodorsal nucleus. II. Efferent connections The cortical projection field of the mediodorsal nucleus of the thalamus (MD) was identified in the rat using the Fink-Heimer silver technique for tracing degenerating fibers. Small stereotaxic lesions confined to MD were followed by terminal degeneration in the dorsal bank of the rhinal sulcus (sulcal cortex) and the medial wall of the hemisphere anterior and dorsal to the genu of the corpus callosum (medial cortex). No degenerating fibers were traced to the convexity of the hemisphere. The cortical formation receiving a projection from MD is of a relatively undifferentiated type which had been previously classified as juxtallocortex. A study of the efferent fiber connections of the rat׳s MD-projection cortex demonstrated some similarities to those of monkey prefrontal cortex. A substantial projection to the pretectal area and deep layers of the superior colliculus originates in medial cortex, a connection previously reported for caudal prefrontal (area 8) cortex in the monkey. Sulcal cortex projects to basal olfactory structures and lateral hypothalamus, as does orbital frontal cortex in the monkey. The rat׳s MD-projection cortex differs from that in the monkey in that it lacks a granular layer and appears to have no prominent direct associations with temporal and juxtahippocampal areas. Furthermore, retrograde degeneration does not appear in the rat thalamus after damage to MD-projection areas, suggesting that the striatum or thalamus receives a proportionally larger share of the MD-projection in this animal than it does in the monkey. Comparative behavioral investigations are in progress to investigate functional differences between granular prefrontal cortex in the primate and the relatively primitive MD-projection cortex in the rat. © 1969. This article is part of a Special Issue entitled SI:50th Anniversary Issue. Copyright © 2016 Elsevier B

  7. Cortical sources of Vernier acuity in the human visual system: An EEG-source imaging study

    OpenAIRE

    Hou, Chuan; Kim, Yee-Joon; Verghese, Preeti

    2017-01-01

    Vernier acuity determines the relative position of visual features with a precision better than the sampling resolution of cone receptors in the retina. Because Vernier displacement is thought to be mediated by orientation-tuned mechanisms, Vernier acuity is presumed to be processed in striate visual cortex (V1). However, there is considerable evidence suggesting that Vernier acuity is dependent not only on structures in V1 but also on processing in extrastriate cortical regions. Here we used...

  8. Cortical excitability is not depressed in movement-modulated stretch response of human thumb flexor.

    Science.gov (United States)

    Wallace, C J; Miles, T S

    2001-08-01

    There is strong evidence that the predominant pathway of the long-latency stretch reflex for flexor pollicis longus crosses the motor cortex. This reflex response is diminished during active thumb movements. We tested the hypothesis that this could be due to a decrease in the excitability of the transcortical component during movement. During isometric, concentric and eccentric thumb movements, transcranial magnetic stimulation (TMS) of the motor cortex was given at a time when the reflex signal was traversing the motor cortex. TMS was also given earlier in separate runs when the signal was traversing the spinal cord under each of the three contractile conditions. The electromyogram was analysed for non-linear summation between stretch responses and the potential evoked by the cortical stimulus. The response to TMS alone was uniform across the three types of contraction, and the lack of cortical involvement in the short-latency reflex was confirmed. The TMS-evoked response summed in a non-linear manner with the long-latency reflex response, confirming that the excitability of the motor cortex was increased as the reflex signal passed through it. The long-latency response was markedly depressed during isotonic compared with isometric contractions. However, the non-linear summation was not greater during the isometric contractions. Thus, the depressed reflex responses during isotonic movements do not stem from reduced motor cortical responsiveness or afferent input to the transcortical pathway, and may instead reflect modulation of cutaneous reflexes during isotonic contractions.

  9. Human brain networks in cognitive decline: a graph theoretical analysis of cortical connectivity from EEG data.

    Science.gov (United States)

    Vecchio, Fabrizio; Miraglia, Francesca; Marra, Camillo; Quaranta, Davide; Vita, Maria Gabriella; Bramanti, Placido; Rossini, Paolo Maria

    2014-01-01

    The aim of this study was to investigate the neuronal network characteristics in physiological and pathological brain aging. A database of 378 participants divided in three groups was analyzed: Alzheimer's disease (AD), mild cognitive impairment (MCI), and normal elderly (Nold) subjects. Through EEG recordings, cortical sources were evaluated by sLORETA software, while graph theory parameters (Characteristic Path Length λ, Clustering coefficient γ, and small-world network σ) were computed to the undirected and weighted networks, obtained by the lagged linear coherence evaluated by eLORETA software. EEG cortical sources from spectral analysis showed significant differences in delta, theta, and alpha 1 bands. Furthermore, the analysis of eLORETA cortical connectivity suggested that for the normalized Characteristic Path Length (λ) the pattern differences between normal cognition and dementia were observed in the theta band (MCI subjects are find similar to healthy subjects), while for the normalized Clustering coefficient (γ) a significant increment was found for AD group in delta, theta, and alpha 1 bands; finally, the small world (σ) parameter presented a significant interaction between AD and MCI groups showing a theta increase in MCI. The fact that AD patients respect the MCI subjects were significantly impaired in theta but not in alpha bands connectivity are in line with the hypothesis of an intermediate status of MCI between normal condition and overt dementia.

  10. Cortical rhythm of No-go processing in humans: an MEG study.

    Science.gov (United States)

    Nakata, Hiroki; Sakamoto, Kiwako; Otsuka, Asuka; Yumoto, Masato; Kakigi, Ryusuke

    2013-02-01

    We investigated the characteristics of cortical rhythmic activity in No-go processing during somatosensory Go/No-go paradigms, by using magnetoencephalography (MEG). Twelve normal subjects performed a warning stimulus (S1) - imperative stimulus (S2) task with Go/No-go paradigms. The recordings were conducted in three conditions. In Condition 1, the Go stimulus was delivered to the second digit, and the No-go stimulus to the fifth digit. The participants responded by pushing a button with their right thumb for the Go stimulus. In Condition 2, the Go and No-go stimuli were reversed. Condition 3 was the resting control. A rebound in amplitude was recorded in the No-go trials for theta, alpha, and beta activity, peaking at 600-900 ms. A suppression of amplitude was recorded in Go and No-go trials for alpha activity, peaking at 300-600 ms, and in Go and No-go trials for beta activity, peaking at 200-300 ms. The cortical rhythmic activity clearly has several dissociated components relating to different motor functions, including response inhibition, execution, and decision-making. The present study revealed the characteristics of cortical rhythmic activity in No-go processing. Copyright © 2012 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  11. Continuous theta burst stimulation over the left dorsolateral prefrontal cortex decreases medium load working memory performance in healthy humans.

    Directory of Open Access Journals (Sweden)

    Nathalie Schicktanz

    Full Text Available The dorsolateral prefrontal cortex (DLPFC plays a key role in working memory. Evidence indicates that transcranial magnetic stimulation (TMS over the DLPFC can interfere with working memory performance. Here we investigated for how long continuous theta-burst stimulation (cTBS over the DLPFC decreases working memory performance and whether the effect of cTBS on performance depends on working memory load. Forty healthy young subjects received either cTBS over the left DLPFC or sham stimulation before performing a 2-, and 3-back working memory letter task. An additional 0-back condition served as a non-memory-related control, measuring general attention. cTBS over the left DLPFC significantly impaired 2-back working memory performance for about 15 min, whereas 3-back and 0-back performances were not significantly affected. Our results indicate that the effect of left DLPFC cTBS on working memory performance lasts for roughly 15 min and depends on working memory load.

  12. Continuous Theta Burst Stimulation over the Left Dorsolateral Prefrontal Cortex Decreases Medium Load Working Memory Performance in Healthy Humans

    Science.gov (United States)

    Schicktanz, Nathalie; Fastenrath, Matthias; Milnik, Annette; Spalek, Klara; Auschra, Bianca; Nyffeler, Thomas; Papassotiropoulos, Andreas; de Quervain, Dominique J.-F.; Schwegler, Kyrill

    2015-01-01

    The dorsolateral prefrontal cortex (DLPFC) plays a key role in working memory. Evidence indicates that transcranial magnetic stimulation (TMS) over the DLPFC can interfere with working memory performance. Here we investigated for how long continuous theta-burst stimulation (cTBS) over the DLPFC decreases working memory performance and whether the effect of cTBS on performance depends on working memory load. Forty healthy young subjects received either cTBS over the left DLPFC or sham stimulation before performing a 2-, and 3-back working memory letter task. An additional 0-back condition served as a non-memory-related control, measuring general attention. cTBS over the left DLPFC significantly impaired 2-back working memory performance for about 15 min, whereas 3-back and 0-back performances were not significantly affected. Our results indicate that the effect of left DLPFC cTBS on working memory performance lasts for roughly 15 min and depends on working memory load. PMID:25781012

  13. The hemodynamic changes in the human prefrontal cortex during the Flanker and Simon tasks: a fNIRS study

    Science.gov (United States)

    Yuan, Zhen; Lin, Xiaohong

    2016-03-01

    Functional near-infrared spectroscopy (fNIRS) is a low-cost, portable and noninvasive functional neuroimaging technique by measuring the change in the concentrations of oxyhemoglobin (HbO) and deoxyhemoglobin (HbR). The aim of present study is to reveal the different brain activity pattern of adult subjects during the completion of flanker and Simon tasks underlying the congruent and incongruent test conditions so as to identify the basic neural mechanism of inhibitory control in executive function. In the study, we utilized fNIRS to explore the hemodynamic changes in the prefrontal cortex and our imaging results suggested that there were notable differences for the hemodynamic responses between the flank and Simon task. A striking difference is that for the flank task, the increase in the HbO concentration during incongruent trials was larger than that during congruent trials for the channels across middle frontal cortex while for the Simon task, the hemodynamic response was stronger for the congruent condition compared to that from the incongruent one. Interestingly, the hemodynamic response exhibited similar task-related activation in the superior frontal cortex for both the congruent and incongruent conditions. Further, independent component analysis showed that different brain activation patterns were identified to accomplish different inhibitory control tasks underlying the congruent and incongruent conditions.

  14. Development of a strain rate dependent material model of human cortical bone for computer-aided reconstruction of injury mechanisms.

    Science.gov (United States)

    Asgharpour, Zahra; Zioupos, Peter; Graw, Matthias; Peldschus, Steffen

    2014-03-01

    Computer-aided methods such as finite-element simulation offer a great potential in the forensic reconstruction of injury mechanisms. Numerous studies have been performed on understanding and analysing the mechanical properties of bone and the mechanism of its fracture. Determination of the mechanical properties of bones is made on the same basis used for other structural materials. The mechanical behaviour of bones is affected by the mechanical properties of the bone material, the geometry, the loading direction and mode and of course the loading rate. Strain rate dependency of mechanical properties of cortical bone has been well demonstrated in literature studies, but as many of these were performed on animal bones and at non-physiological strain rates it is questionable how these will apply in the human situations. High strain-rates dominate in a lot of forensic applications in automotive crashes and assault scenarios. There is an overwhelming need to a model which can describe the complex behaviour of bone at lower strain rates as well as higher ones. Some attempts have been made to model the viscoelastic and viscoplastic properties of the bone at high strain rates using constitutive mathematical models with little demonstrated success. The main objective of the present study is to model the rate dependent behaviour of the bones based on experimental data. An isotropic material model of human cortical bone with strain rate dependency effects is implemented using the LS-DYNA material library. We employed a human finite element model called THUMS (Total Human Model for Safety), developed by Toyota R&D Labs and the Wayne State University, USA. The finite element model of the human femur is extracted from the THUMS model. Different methods have been employed to develop a strain rate dependent material model for the femur bone. Results of one the recent experimental studies on human femur have been employed to obtain the numerical model for cortical femur. A

  15. Prefrontal-Subcortical Pathways Mediating Successful Emotion Regulation

    National Research Council Canada - National Science Library

    Wager, Tor D; Davidson, Matthew L; Hughes, Brent L; Lindquist, Martin A; Ochsner, Kevin N

    2008-01-01

    ... regulation of emotion ( Davidson, 2002; Ochsner and Gross, 2005 ). Numerous fMRI studies have observed increases in activity in the ventrolateral, dorsolateral, and dorsomedial prefrontal cortices (vlPFC, dlPFC, and dmPFC, respectively) when participants are instructed to deploy cognitive strategies that reduce negative emotional experience ( Ochsner...

  16. Trigeminal nerve stimulation modulates brainstem more than cortical excitability in healthy humans.

    Science.gov (United States)

    Mercante, B; Pilurzi, G; Ginatempo, F; Manca, A; Follesa, P; Tolu, E; Deriu, F

    2015-11-01

    Multiple sites in the central nervous system (CNS) have been hypothesized to explain the beneficial effects of transcutaneous trigeminal nerve stimulation (TNS) on several disorders. This work investigated the acute effects of TNS on the excitability of brainstem and intracortical circuits, as well as on sensorimotor integration processes at cortical level in physiological conditions. Brainstem excitability was evaluated in seventeen healthy subjects measuring the R1 and R2 areas of the blink reflex (BR) and its recovery cycle, with cortical excitability and sensorimotor integration assessed by probing short-interval (SICI) and long-interval (LICI) intracortical inhibition, with short-interval (SICF), intracortical facilitation (ICF), short-latency (SAI) and long-latency (LAI) inhibition measuring motor potentials evoked in the first dorsal interosseous muscle by TMS of the contralateral motor cortex. Neurophysiological parameters were assessed, in seventeen healthy subjects, before and after cyclic 20-min TNS delivered bilaterally to the infraorbital nerve. After TNS, the area of the R2 was significantly reduced (p = 0.018). By contrast, R1 area and R2 recovery cycle were unaffected. Similarly, SICI, ICF, LICI, SICF, SAI and LAI appeared unaltered after TNS. These data suggest that, in normal subjects, TNS mainly acts on brainstem polysynaptic circuits mediating the R2 component of the BR and plays a minor role in modifying the activity of higher-level structures involved in the R2 recovery cycle and in modulation of cortical excitability. A further investigation of a chronic TNS-induced effect may disclose a higher potential for TNS in producing measurable after effects on its CNS targets.

  17. Disruption of columnar and laminar cognitive processing in primate prefrontal cortex following cocaine exposure

    Directory of Open Access Journals (Sweden)

    Ioan eOpris

    2015-05-01

    Full Text Available Prefrontal cortical activity in primate brain plays a critical role in cognitive processes involving working memory and the executive control of behavior. Groups of prefrontal cortical neurons within specified cortical layers along cortical minicolumns differentially generate inter- and intra-laminar firing to process relevant information for goal oriented behavior. However, it is not yet understood how cocaine modulates such differential firing in prefrontal cortical layers. Rhesus macaque nonhuman primates (NHPs were trained in a visual delayed match-to-sample (DMS task while the activity of prefrontal cortical neurons (areas 46, 8 and 6 was recorded simultaneously with a custom multielectrode array in cell layers 2/3 and 5. Animals were reinforced with juice for correct responses. The first half of the recording session (control was conducted following saline injection and in the second half of the same session cocaine was administered. Prefrontal neuron activity with respect to inter- and intra-laminar firing in layers 2/3 and 5 was assessed in the DMS task before and after the injection of cocaine. Results showed that firing rates of both pyramidal cells and interneurons increased on Match phase presentation and the Match response in both control and cocaine halves of the session. Differential firing under cocaine vs. control in the Match phase was increased for interneurons but decreased for pyramidal cells. In addition, functional` interactions between prefrontal pyramidal cells in layer 2/3 and 5 decreased while intra-laminar cross-correlations in both layers increased. These neural recordings demonstrate that prefrontal neurons differentially encode and process information within and between cortical cell layers via cortical columns which is disrupted in a differential manner by cocaine administration.

  18. Localized cortical thinning in patients with obstructive sleep apnea syndrome.

    Science.gov (United States)

    Joo, Eun Yeon; Jeon, Seun; Kim, Sung Tae; Lee, Jong-Min; Hong, Seung Bong

    2013-08-01

    To investigate differences in cortical thickness in patients with obstructive sleep apnea (OSA) syndrome and healthy controls. Cortical thickness was measured using a three-dimensional surface-based method that enabled more accurate measurement in deep sulci and localized regional mapping. University hospital. Thirty-eight male patients with severe OSA (mean apnea-hypopnea index > 30/h) and 36 age-matched male healthy controls were enrolled. Cortical thickness was obtained at 81,924 vertices across the entire brain by reconstructing inner and outer cortical surfaces using an automated anatomical pipeline. Group difference in cortical thickness and correlation between patients' data and thickness were analyzed by a general linear model. Localized cortical thinning in patients was found in the orbitorectal gyri, dorsolateral/ventromedial prefrontal regions, pericentral gyri, anterior cingulate, insula, inferior parietal lobule, uncus, and basolateral temporal regions at corrected P memory tests compared to healthy controls. Higher number of respiratory arousals was related to cortical thinning of the anterior cingulate and inferior parietal lobule. A significant correlation was observed between the longer apnea maximum duration and the cortical thinning of the dorsolateral prefrontal regions, pericentral gyri, and insula. Retention scores in visual memory tests were associated with cortical thickness of parahippocampal gyrus and uncus. Brain regions with cortical thinning may provide elucidations for prefrontal cognitive dysfunction, upper airway sensorimotor dysregulation, and cardiovascular disturbances in OSA patients, that experience sleep disruption including sleep fragmentation and oxygen desaturation.

  19. Evidence of major gene control of cortical bone loss in humans.

    Science.gov (United States)

    Karasik, D; Ginsburg, E; Livshits, G; Pavlovsky, O; Kobyliansky, E

    2000-12-01

    Cortical index (CI) is the ratio of the combined cortical thickness to the total diameter of the bone. It serves for the assessment of the geometric properties of bone and for indirect evaluation of bone mass. CI is a useful predictor of osteoporosis. The aim of the present study was to test the hypothesis of major gene control of CI variation in a large sample of pedigrees from Chuvashia, Russia. Complex segregation analysis revealed that the major gene model of CI inheritance is the best fitting and most parsimonious for the present data. Parameters of the genotype-gender specific dependence of CI variation on age were estimated simultaneously with other parameters in the segregation analysis. The results of analysis showed that not only the baseline level of CI but also the age at onset of the involutive bone changes (inflection point) and the rate of the CI decrease with age (slope coefficient) are under control of the same major gene. Non-major gene effects shared by pedigree members (residual familial correlations) were found to be statistically insignificant. Approximately 73% of inter-individual variation in CI was attributable to the effects explicitly included in the model. Copyright 2000 Wiley-Liss, Inc.

  20. Human cortical neural correlates of visual fatigue during binocular depth perception: An fNIRS study.

    Directory of Open Access Journals (Sweden)

    Tingting Cai

    Full Text Available Functional near-infrared spectroscopy (fNIRS was adopted to investigate the cortical neural correlates of visual fatigue during binocular depth perception for different disparities (from 0.1° to 1.5°. By using a slow event-related paradigm, the oxyhaemoglobin (HbO responses to fused binocular stimuli presented by the random-dot stereogram (RDS were recorded over the whole visual dorsal area. To extract from an HbO curve the characteristics that are correlated with subjective experiences of stereopsis and visual fatigue, we proposed a novel method to fit the time-course HbO curve with various response functions which could reflect various processes of binocular depth perception. Our results indicate that the parietal-occipital cortices are spatially correlated with binocular depth perception and that the process of depth perception includes two steps, associated with generating and sustaining stereovision. Visual fatigue is caused mainly by generating stereovision, while the amplitude of the haemodynamic response corresponding to sustaining stereovision is correlated with stereopsis. Combining statistical parameter analysis and the fitted time-course analysis, fNIRS could be a promising method to study visual fatigue and possibly other multi-process neural bases.

  1. Electrophysiological mapping of novel prefrontal - cerebellar pathways.

    Science.gov (United States)

    Watson, Thomas C; Jones, Matthew W; Apps, Richard

    2009-01-01

    Whilst the cerebellum is predominantly considered a sensorimotor control structure, accumulating evidence suggests that it may also subserve non-motor functions during cognition. However, this possibility is not universally accepted, not least because the nature and pattern of links between higher cortical structures and the cerebellum are poorly characterized. We have therefore used in vivo electrophysiological methods in anaesthetized rats to directly investigate connectivity between the medial prefrontal cortex (prelimbic subdivision, PrL) and the cerebellum. Stimulation of deep layers of PrL evoked distinct field potentials in the cerebellar cortex with a mean latency to peak of approximately 35 ms. These responses showed a well-defined topography, and were maximal in lobule VII of the contralateral vermis (a known oculomotor centre); they were not attenuated by local anaesthesia of the overlying M2 motor cortex, though M2 stimulation did evoke field potentials in lobule VII with a shorter latency (approximately 30 ms). Single unit recordings showed that prelimbic cortical stimulation elicits complex spikes in lobule VII Purkinje cells, indicating transmission via a previously undescribed cerebro-olivocerebellar pathway. Our results therefore establish a physiological basis for communication between PrL and the cerebellum. The role(s) of this pathway remain to be resolved, but presumably relate to control of eye movements and/or distributed networks associated with integrated prefrontal cortical functions.

  2. Electrophysiological mapping of novel prefrontal - cerebellar pathways

    Directory of Open Access Journals (Sweden)

    Thomas C Watson

    2009-08-01

    Full Text Available Whilst the cerebellum is predominantly considered a sensorimotor control structure, accumulating evidence suggests that it may also subserve non motor functions during cognition. However, this possibility is not universally accepted, not least because the nature and pattern of links between higher cortical structures and the cerebellum are poorly characterized. We have therefore used in vivo electrophysiological methods in anaesthetized rats to directly investigate connectivity between the medial prefrontal cortex (prelimbic subdivision, PrL and the cerebellum. Stimulation of deep layers of PrL evoked distinct field potentials in the cerebellar cortex with a mean latency to peak of approximately 35ms. These responses showed a well-defined topography, and were maximal in lobule VII of the contralateral vermis (a known oculomotor centre; they were not attenuated by local anesthesia of the overlying M2 motor cortex, though M2 stimulation did evoke field potentials in lobule VII with a shorter latency. Single-unit recordings showed that prelimbic cortical stimulation elicits complex spikes in lobule VII Purkinje cells, indicating transmission via a previously undescribed cerebro-olivocerebellar pathway. Our results therefore establish a physiological basis for communication between PrL and the cerebellum. The role(s of this pathway remain to be resolved, but presumably relate to control of eye movements and/or distributed networks associated with integrated prefrontal cortical functions.

  3. Characterization of a new ultrasound device designed for measuring cortical porosity at the human tibia: A phantom study.

    Science.gov (United States)

    Gräsel, M; Glüer, C-C; Barkmann, R

    2017-04-01

    Quantitative ultrasound (QUS) measurements of trabecular bone are a useful tool for the assessment of osteoporotic fracture risk. However, cortical bone properties (e.g. porosity) have an impact on bone strength as well and thus current research is focused on QUS assessment of cortical bone properties. Simulation studies of ultrasound propagation through cortical bone indicate that anisotropy, calculated from the ratio of the velocities in axial and tangential directions, is correlated with porosity. However, this relationship is affected by error sources, specifically bone surface curvature and variability of probe positioning. With the aim of in vivo estimation of cortical porosity a new ultrasound device was developed, which sequentially measures velocities in 3 different directions (axial=0° and ±37.5°) using the axial transmission method. Measurements on planar porosity phantoms (0-25%) were performed to confirm the results of the afore mentioned simulation studies. Additionally, measurements on cylindrical phantoms without pores (min. radius=34mm for strongest curvature) were performed to estimate the influence of surface curvature on velocity measurements (the tibia bone surface is fairly flat but may show surface curvature in some patients). The velocities in the axial and ±37.5° directions were used to calculate an anisotropy index. The velocities measured on the porosity phantoms showed a decrease by -6.3±0.2m/s and -10.1±0.2m/s per percent increase in porosity in axial and ±37.5° directions, respectively. Surface curvature had an effect on the velocities measured in ±37.5° directions which could be minimized by a correction algorithm resulting in an error of 5m/s. The anisotropy index could be used to estimate porosity with an accuracy error of 1.5%. These results indicate that an estimation of porosity using velocity measurements in different directions might be feasible, even in bones with curved surface. These results obtained on phantom

  4. Attentional set-shifting deficit in Parkinson's disease is associated with prefrontal dysfunction: an FDG-PET study.

    Directory of Open Access Journals (Sweden)

    Yoichi Sawada

    Full Text Available The attentional set-shifting deficit that has been observed in Parkinson's disease (PD has long been considered neuropsychological evidence of the involvement of meso-prefrontal and prefrontal-striatal circuits in cognitive flexibility. However, recent studies have suggested that non-dopaminergic, posterior cortical pathologies may also contribute to this deficit. Although several neuroimaging studies have addressed this issue, the results of these studies were confounded by the use of tasks that required other cognitive processes in addition to set-shifting, such as rule learning and working memory. In this study, we attempted to identify the neural correlates of the attentional set-shifting deficit in PD using a compound letter task and 18F-fluoro-deoxy-glucose (FDG positron emission tomography during rest. Shift cost, which is a measure of attentional set-shifting ability, was significantly correlated with hypometabolism in the right dorsolateral prefrontal cortex, including the putative human frontal eye field. Our results provide direct evidence that dysfunction in the dorsolateral prefrontal cortex makes a primary contribution to the attentional set-shifting deficit that has been observed in PD patients.

  5. Real-time EEG-based brain-computer interface to a virtual avatar enhances cortical involvement in human treadmill walking.

    Science.gov (United States)

    Luu, Trieu Phat; Nakagome, Sho; He, Yongtian; Contreras-Vidal, Jose L

    2017-08-21

    Recent advances in non-invasive brain-computer interface (BCI) technologies have shown the feasibility of neural decoding for both users' gait intent and continuous kinematics. However, the dynamics of cortical involvement in human upright walking with a closed-loop BCI has not been investigated. This study aims to investigate the changes of cortical involvement in human treadmill walking with and without BCI control of a walking avatar. Source localization revealed significant differences in cortical network activity between walking with and without closed-loop BCI control. Our results showed sustained α/µ suppression in the Posterior Parietal Cortex and Inferior Parietal Lobe, indicating increases of cortical involvement during walking with BCI control. We also observed significant increased activity of the Anterior Cingulate Cortex (ACC) in the low frequency band suggesting the presence of a cortical network involved in error monitoring and motor learning. Additionally, the presence of low γ modulations in the ACC and Superior Temporal Gyrus may associate with increases of voluntary control of human gait. This work is a further step toward the development of a novel training paradigm for improving the efficacy of rehabilitation in a top-down approach.

  6. [Cortical blindness].

    Science.gov (United States)

    Chokron, S

    2014-02-01

    Cortical blindness refers to a visual loss induced by a bilateral occipital lesion. The very strong cooperation between psychophysics, cognitive psychology, neurophysiology and neuropsychology these latter twenty years as well as recent progress in cerebral imagery have led to a better understanding of neurovisual deficits, such as cortical blindness. It thus becomes possible now to propose an earlier diagnosis of cortical blindness as well as new perspectives for rehabilitation in children as well as in adults. On the other hand, studying complex neurovisual deficits, such as cortical blindness is a way to infer normal functioning of the visual system. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  7. Synaptogenesis and development of pyramidal neuron dendritic morphology in the chimpanzee neocortex resembles humans

    OpenAIRE

    Bianchi, Serena; Stimpson, Cheryl D.; Duka, Tetyana; Larsen, Michael D.; Janssen, William G. M.; Collins, Zachary; Bauernfeind, Amy L.; Schapiro, Steven J.; Baze, Wallace B.; McArthur, Mark J; Hopkins, William D.; Wildman, Derek E.; Lipovich, Leonard; Kuzawa, Christopher W.; Jacobs, Bob

    2013-01-01

    Neocortical development in humans is characterized by an extended period of synaptic proliferation that peaks in mid-childhood, with subsequent pruning through early adulthood, as well as relatively delayed maturation of neuronal arborization in the prefrontal cortex compared with sensorimotor areas. In macaque monkeys, cortical synaptogenesis peaks during early infancy and developmental changes in synapse density and dendritic spines occur synchronously across cortical regions. Thus, relativ...

  8. Temporary interference over the posterior parietal cortices disrupts thermoregulatory control in humans.

    Directory of Open Access Journals (Sweden)

    Alberto Gallace

    Full Text Available The suggestion has recently been made that certain higher-order cortical areas involved in supporting multisensory representations of the body, and of the space around it, might also play a role in controlling thermoregulatory functions. Here we demonstrate that temporary interference with the function of one of these areas, the posterior parietal cortex, by repetitive transcranial magnetic stimulation, results in a decrease in limb temperature. By contrast, interference with the activity of a sensory-specific area (the primary somatosensory cortex had no effect on temperature. The results of this experiment suggest that associative multisensory brain areas might exert a top-down modulation over basic physiological control. Such a function might be part of a larger neural circuit responsible for maintaining the integrity of the body at both a homeostatic and a psychological level.

  9. Changes in presumed motor cortical activity during fatiguing muscle contraction in humans

    DEFF Research Database (Denmark)

    Seifert, Thomas; Petersen, Nicolas Caesar

    2010-01-01

    failure the suppression had reached 16 +/- 2.1%. In control experiments without fatigue we did not find a similar increase in suppression with increasing levels of ongoing EMG activity. CONCLUSION: Using a form of TMS which reduces cortical output to motor neurones (and disfacilitates them), this study......AIM: Changes in sensory information from active muscles accompany fatiguing exercise and the force-generating capacity deteriorates. The central motor commands therefore must adjust depending on the task performed. Muscle potentials evoked by transcranial magnetic stimulation (TMS) change during...... voluntary contraction) of the elbow flexor muscles we applied TMS over the motor cortex. At an intensity below motor threshold, TMS reduced the ongoing muscle activity in biceps brachii. This reduction appears as a suppression at short latency of the stimulus-triggered average of rectified electromyographic...

  10. Omega-3 fatty acids modify human cortical visual processing--a double-blind, crossover study.

    Directory of Open Access Journals (Sweden)

    Isabelle Bauer

    Full Text Available While cardiovascular and mood benefits of dietary omega-3 fatty acids such as docosahexaenoic acid (DHA and eicosapentaenoic acid (EPA are manifest, direct neurophysiological evidence of their effects on cortical activity is still limited. Hence we chose to examine the effects of two proprietary fish oil products with different EPA:DHA ratios (EPA-rich, high EPA:DHA; DHA-rich on mental processing speed and visual evoked brain activity. We proposed that nonlinear multifocal visual evoked potentials (mfVEP would be sensitive to any alteration of the neural function induced by omega-3 fatty acid supplementation, because the higher order kernel responses directly measure the degree of recovery of the neural system as a function of time following stimulation. Twenty-two healthy participants aged 18-34, with no known neurological or psychiatric disorder and not currently taking any nutritional supplementation, were recruited. A double-blind, crossover design was utilized, including a 30-day washout period, between two 30-day supplementation periods of the EPA-rich and DHA-rich diets (with order of diet randomized. Psychophysical choice reaction times and multi-focal nonlinear visual evoked potential (VEP testing were performed at baseline (No Diet, and after each supplementation period. Following the EPA-rich supplementation, for stimulation at high luminance contrast, a significant reduction in the amplitude of the first slice of the second order VEP kernel response, previously related to activation in the magnocellular pathway, was observed. The correlations between the amplitude changes of short latency second and first order components were significantly different for the two supplementations. Significantly faster choice reaction times were observed psychophysically (compared with baseline performance under the EPA-rich (but not DHA-rich supplementation, while simple reaction times were not affected. The reduced nonlinearities observed under the

  11. Human brain networks in physiological aging: a graph theoretical analysis of cortical connectivity from EEG data.

    Science.gov (United States)

    Vecchio, Fabrizio; Miraglia, Francesca; Bramanti, Placido; Rossini, Paolo Maria

    2014-01-01

    Modern analysis of electroencephalographic (EEG) rhythms provides information on dynamic brain connectivity. To test the hypothesis that aging processes modulate the brain connectivity network, EEG recording was conducted on 113 healthy volunteers. They were divided into three groups in accordance with their ages: 36 Young (15-45 years), 46 Adult (50-70 years), and 31 Elderly (>70 years). To evaluate the stability of the investigated parameters, a subgroup of 10 subjects underwent a second EEG recording two weeks later. Graph theory functions were applied to the undirected and weighted networks obtained by the lagged linear coherence evaluated by eLORETA on cortical sources. EEG frequency bands of interest were: delta (2-4 Hz), theta (4-8 Hz), alpha1 (8-10.5 Hz), alpha2 (10.5-13 Hz), beta1 (13-20 Hz), beta2 (20-30 Hz), and gamma (30-40 Hz). The spectral connectivity analysis of cortical sources showed that the normalized Characteristic Path Length (λ) presented the pattern Young > Adult>Elderly in the higher alpha band. Elderly also showed a greater increase in delta and theta bands than Young. The correlation between age and λ showed that higher ages corresponded to higher λ in delta and theta and lower in the alpha2 band; this pattern reflects the age-related modulation of higher (alpha) and decreased (delta) connectivity. The Normalized Clustering coefficient (γ) and small-world network modeling (σ) showed non-significant age-modulation. Evidence from the present study suggests that graph theory can aid in the analysis of connectivity patterns estimated from EEG and can facilitate the study of the physiological and pathological brain aging features of functional connectivity networks.

  12. Retrosplenial cortical thinning as a possible major contributor for cognitive impairment in HIV patients

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Na-Young [The Catholic University of Korea, Department of Radiology, College of Medicine, Seoul (Korea, Republic of); Hong, Jinwoo; Yoon, Uicheul [Catholic University of Daegu, Department of Biomedical Engineering, College of Health and Medical Science, Gyeongsan-si, Gyeongbuk (Korea, Republic of); Choi, Jun Yong [Yonsei University College of Medicine, Department of Internal Medicine and AIDS Research Institute, Seoul (Korea, Republic of); Lee, Seung-Koo [Yonsei University College of Medicine, Department of Radiology, Seoul (Korea, Republic of); Lim, Soo Mee [Ewha Womans University, School of Medicine, Department of Radiology, Seoul (Korea, Republic of)

    2017-11-15

    To identify brain cortical regions relevant to HIV-associated neurocognitive disorder (HAND) in HIV patients. HIV patients with HAND (n = 10), those with intact cognition (HIV-IC; n = 12), and age-matched, seronegative controls (n = 11) were recruited. All participants were male and underwent 3-dimensional T1-weighted imaging. Both vertex-wise and region of interest (ROI) analyses were performed to analyse cortical thickness. Compared to controls, both HIV-IC and HAND showed decreased cortical thickness mainly in the bilateral primary sensorimotor areas, extending to the prefrontal and parietal cortices. When directly comparing HIV-IC and HAND, HAND showed cortical thinning in the left retrosplenial cortex, left dorsolateral prefrontal cortex, left inferior parietal lobule, bilateral superior medial prefrontal cortices, right temporoparietal junction and left hippocampus, and cortical thickening in the left middle occipital cortex. Left retrosplenial cortical thinning showed significant correlation with slower information processing, declined verbal memory and executive function, and impaired fine motor skills. This study supports previous research suggesting the selective vulnerability of the primary sensorimotor cortices and associations between cortical thinning in the prefrontal and parietal cortices and cognitive impairment in HIV-infected patients. Furthermore, for the first time, we propose retrosplenial cortical thinning as a possible major contributor to HIV-associated cognitive impairment. (orig.)

  13. The role of the medial prefrontal cortex in the conditioning and extinction of fear

    Directory of Open Access Journals (Sweden)

    Thomas Francis Giustino

    2015-11-01

    Full Text Available Once acquired, a fearful memory can persist for a lifetime. Although learned fear can be extinguished, extinction memories are fragile. The resilience of fear memories to extinction may contribute to the maintenance of disorders of fear and anxiety, including post-traumatic stress disorder (PTSD. As such, considerable effort has been placed on understanding the neural circuitry underlying the acquisition, expression, and extinction of emotional memories in rodent models as well as in humans. A triad of brain regions, including the prefrontal cortex, hippocampus, and amygdala, form an essential brain circuit involved in fear conditioning and extinction. Within this circuit, the prefrontal cortex is thought to exert top-down control over subcortical structures to regulate appropriate behavioral responses. Importantly, a division of labor has been proposed in which the prelimbic (PL and infralimbic (IL subdivisions of the medial prefrontal cortex (mPFC regulate the expression and suppression of fear in rodents, respectively. Here we critically review the anatomical and physiological evidence that has led to this proposed dichotomy of function within mPFC. We propose that under some conditions, the PL and IL act in concert, exhibiting similar patterns of neural activity in response to aversive conditioned stimuli and during the expression or inhibition of conditioned fear. This may stem from common synaptic inputs, parallel downstream outputs, or cortico-cortical interactions. Despite this functional covariation, these mPFC subdivisions may still be coding for largely opposing behavioral outcomes, with PL biased towards fear expression and IL towards suppression.

  14. Rostral and caudal prefrontal contribution to creativity: a meta-analysis of functional imaging data

    Science.gov (United States)

    Gonen-Yaacovi, Gil; de Souza, Leonardo Cruz; Levy, Richard; Urbanski, Marika; Josse, Goulven; Volle, Emmanuelle

    2013-01-01

    Creativity is of central importance for human civilization, yet its neurocognitive bases are poorly understood. The aim of the present study was to integrate existing functional imaging data by using the meta-analysis approach. We reviewed 34 functional imaging studies that reported activation foci during tasks assumed to engage creative thinking in healthy adults. A coordinate-based meta-analysis using Activation Likelihood Estimation (ALE) first showed a set of predominantly left-hemispheric regions shared by the various creativity tasks examined. These regions included the caudal lateral prefrontal cortex (PFC), the medial and lateral rostral PFC, and the inferior parietal and posterior temporal cortices. Further analyses showed that tasks involving the combination of remote information (combination tasks) activated more anterior areas of the lateral PFC than tasks involving the free generation of unusual responses (unusual generation tasks), although both types of tasks shared caudal prefrontal areas. In addition, verbal and non-verbal tasks involved the same regions in the left caudal prefrontal, temporal, and parietal areas, but also distinct domain-oriented areas. Taken together, these findings suggest that several frontal and parieto-temporal regions may support cognitive processes shared by diverse creativity tasks, and that some regions may be specialized for distinct types of processes. In particular, the lateral PFC appeared to be organized along a rostro-caudal axis, with rostral regions involved in combining ideas creatively and more posterior regions involved in freely generating novel ideas. PMID:23966927

  15. Selective deficit in personal moral judgment following damage to ventromedial prefrontal cortex.

    Science.gov (United States)

    Ciaramelli, Elisa; Muccioli, Michela; Làdavas, Elisabetta; di Pellegrino, Giuseppe

    2007-06-01

    Recent fMRI evidence has detected increased medial prefrontal activation during contemplation of personal moral dilemmas compared to impersonal ones, which suggests that this cortical region plays a role in personal moral judgment. However, functional imaging results cannot definitively establish that a brain area is necessary for a particular cognitive process. This requires evidence from lesion techniques, such as studies of human patients with focal brain damage. Here, we tested 7 patients with lesions in the ventromedial prefrontal cortex and 12 healthy individuals in personal moral dilemmas, impersonal moral dilemmas and non-moral dilemmas. Compared to normal controls, patients were more willing to judge personal moral violations as acceptable behaviors in personal moral dilemmas, and they did so more quickly. In contrast, their performance in impersonal and non-moral dilemmas was comparable to that of controls. These results indicate that the ventromedial prefrontal cortex is necessary to oppose personal moral violations, possibly by mediating anticipatory, self-focused, emotional reactions that may exert strong influence on moral choice and behavior.

  16. Evidence for inhibitory deficits in the prefrontal cortex in schizophrenia.

    Science.gov (United States)

    Radhu, Natasha; Garcia Dominguez, Luis; Farzan, Faranak; Richter, Margaret A; Semeralul, Mawahib O; Chen, Robert; Fitzgerald, Paul B; Daskalakis, Zafiris J

    2015-02-01

    Abnormal gamma-aminobutyric acid inhibitory neurotransmission is a key pathophysiological mechanism underlying schizophrenia. Transcranial magnetic stimulation can be combined with electroencephalography to index long-interval cortical inhibition, a measure of GABAergic receptor-mediated inhibitory neurotransmission from the frontal and motor cortex. In previous studies we have reported that schizophrenia is associated with inhibitory deficits in the dorsolateral prefrontal cortex compared to healthy subjects and patients with bipolar disorder. The main objective of the current study was to replicate and extend these initial findings by evaluating long-interval cortical inhibition from the dorsolateral prefrontal cortex in patients with schizophrenia compared to patients with obsessive-compulsive disorder. A total of 111 participants were assessed: 38 patients with schizophrenia (average age: 35.71 years, 25 males, 13 females), 27 patients with obsessive-compulsive disorder (average age: 36.15 years, 11 males, 16 females) and 46 healthy subjects (average age: 33.63 years, 23 females, 23 males). Long-interval cortical inhibition was measured from the dorsolateral prefrontal cortex and motor cortex through combined transcranial magnetic stimulation and electroencephalography. In the dorsolateral prefrontal cortex, long-interval cortical inhibition was significantly reduced in patients with schizophrenia compared to healthy subjects (P = 0.004) and not significantly different between patients with obsessive-compulsive disorder and healthy subjects (P = 0.5445). Long-interval cortical inhibition deficits in the dorsolateral prefrontal cortex were also significantly greater in patients with schizophrenia compared to patients with obsessive-compulsive disorder (P = 0.0465). There were no significant differences in long-interval cortical inhibition across all three groups in the motor cortex. These results demonstrate that long-interval cortical inhibition deficits in the

  17. Inactivation of Primate Prefrontal Cortex Impairs Auditory and Audiovisual Working Memory.

    Science.gov (United States)

    Plakke, Bethany; Hwang, Jaewon; Romanski, Lizabeth M

    2015-07-01

    The prefrontal cortex is associated with cognitive functions that include planning, reasoning, decision-making, working memory, and communication. Neurophysiology and neuropsychology studies have established that dorsolateral prefrontal cortex is essential in spatial working memory while the ventral frontal lobe processes language and communication signals. Single-unit recordings in nonhuman primates has shown that ventral prefrontal (VLPFC) neurons integrate face and vocal information and are active during audiovisual working memory. However, whether VLPFC is essential in remembering face and voice information is unknown. We therefore trained nonhuman primates in an audiovisual working memory paradigm using naturalistic face-vocalization movies as memoranda. We inactivated VLPFC, with reversible cortical cooling, and examined performance when faces, vocalizations or both faces and vocalization had to be remembered. We found that VLPFC inactivation impaired subjects' performance in audiovisual and auditory-alone versions of the task. In contrast, VLPFC inactivation did not disrupt visual working memory. Our studies demonstrate the importance of VLPFC in auditory and audiovisual working memory for social stimuli but suggest a different role for VLPFC in unimodal visual processing. The ventral frontal lobe, or inferior frontal gyrus, plays an important role in audiovisual communication in the human brain. Studies with nonhuman primates have found that neurons within ventral prefrontal cortex (VLPFC) encode both faces and vocalizations and that VLPFC is active when animals need to remember these social stimuli. In the present study, we temporarily inactivated VLPFC by cooling the cortex while nonhuman primates performed a working memory task. This impaired the ability of subjects to remember a face and vocalization pair or just the vocalization alone. Our work highlights the importance of the primate VLPFC in the processing of faces and vocalizations in a manner that

  18. Synaptogenesis and development of pyramidal neuron dendritic morphology in the chimpanzee neocortex resembles humans.

    Science.gov (United States)

    Bianchi, Serena; Stimpson, Cheryl D; Duka, Tetyana; Larsen, Michael D; Janssen, William G M; Collins, Zachary; Bauernfeind, Amy L; Schapiro, Steven J; Baze, Wallace B; McArthur, Mark J; Hopkins, William D; Wildman, Derek E; Lipovich, Leonard; Kuzawa, Christopher W; Jacobs, Bob; Hof, Patrick R; Sherwood, Chet C

    2013-06-18

    Neocortical development in humans is characterized by an extended period of synaptic proliferation that peaks in mid-childhood, with subsequent pruning through early adulthood, as well as relatively delayed maturation of neuronal arborization in the prefrontal cortex compared with sensorimotor areas. In macaque monkeys, cortical synaptogenesis peaks during early infancy and developmental changes in synapse density and dendritic spines occur synchronously across cortical regions. Thus, relatively prolonged synapse and neuronal maturation in humans might contribute to enhancement of social learning during development and transmission of cultural practices, including language. However, because macaques, which share a last common ancestor with humans ≈ 25 million years ago, have served as the predominant comparative primate model in neurodevelopmental research, the paucity of data from more closely related great apes leaves unresolved when these evolutionary changes in the timing of cortical development became established in the human lineage. To address this question, we used immunohistochemistry, electron microscopy, and Golgi staining to characterize synaptic density and dendritic morphology of pyramidal neurons in primary somatosensory (area 3b), primary motor (area 4), prestriate visual (area 18), and prefrontal (area 10) cortices of developing chimpanzees (Pan troglodytes). We found that synaptogenesis occurs synchronously across cortical areas, with a peak of synapse density during the juvenile period (3-5 y). Moreover, similar to findings in humans, dendrites of prefrontal pyramidal neurons developed later than sensorimotor areas. These results suggest that evolutionary changes to neocortical development promoting greater neuronal plasticity early in postnatal life preceded the divergence of the human and chimpanzee lineages.

  19. Effects of high-dose gamma irradiation on tensile properties of human cortical bone: Comparison of different radioprotective treatment methods.

    Science.gov (United States)

    Allaveisi, Farzaneh; Mirzaei, Majid

    2016-08-01

    There are growing interests in the radioprotective methods that can reduce the damaging effects of ionizing radiation on sterilized bone allografts. The aim of this study was to investigate the effects of 50kGy (single dose, and fractionated) gamma irradiation, in presence and absence of l-Cysteine (LC) free radical scavenger, on tensile properties of human femoral cortical bone. A total of 48 standard tensile test specimens was prepared from diaphysis of femurs of three male cadavers (age: 52, 52, and 54 years). The specimens were assigned to six groups (n=8) according to different irradiation schemes, i.e.; Control (Non-irradiated), LC-treated control, a single dose of 50kGy (sole irradiation), a single dose of 50kGy in presence of LC, 10 fractions of 5kGy (sole irradiation), and 10 fractions of 5kGy in presence of LC. Uniaxial tensile tests were carried out to evaluate the variations in tensile properties of the specimens. Fractographic analysis was performed to examine the microstructural features of the fracture surfaces. The results of multivariate analysis showed that fractionation of the radiation dose, as well as the LC treatment of the 50kGy irradiated specimens, significantly reduced the radiation-induced impairment of the tensile properties of the specimens (Psterilization on tensile properties of human cortical bone can be substantially reduced by free radical scavenger treatment, dose fractionation, and the combined treatment of these two methods. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. On the effect of x-ray irradiation on the deformation and fracture behavior of human cortical bone

    Energy Technology Data Exchange (ETDEWEB)

    Barth, Holly D.; Launey, Maximilien E.; McDowell, Alastair A.; Ager III, Joel W.; Ritchie, Robert O.

    2010-01-10

    In situ mechanical testing coupled with imaging using high-energy synchrotron x-ray diffraction or tomography imaging is gaining in popularity as a technique to investigate micrometer and even sub-micrometer deformation and fracture mechanisms in mineralized tissues, such as bone and teeth. However, the role of the irradiation in affecting the nature and properties of the tissue is not always taken into account. Accordingly, we examine here the effect of x-ray synchrotron-source irradiation on the mechanistic aspects of deformation and fracture in human cortical bone. Specifically, the strength, ductility and fracture resistance (both work-of-fracture and resistance-curve fracture toughness) of human femoral bone in the transverse (breaking) orientation were evaluated following exposures to 0.05, 70, 210 and 630 kGy irradiation. Our results show that the radiation typically used in tomography imaging can have a major and deleterious impact on the strength, post-yield behavior and fracture toughness of cortical bone, with the severity of the effect progressively increasing with higher doses of radiation. Plasticity was essentially suppressed after as little as 70 kGy of radiation; the fracture toughness was decreased by a factor of five after 210 kGy of radiation. Mechanistically, the irradiation was found to alter the salient toughening mechanisms, manifest by the progressive elimination of the bone's capacity for plastic deformation which restricts the intrinsic toughening from the formation 'plastic zones' around crack-like defects. Deep-ultraviolet Raman spectroscopy indicated that this behavior could be related to degradation in the collagen integrity.

  1. Exploring the neural substrates of attentional control and human intelligence: Diffusion tensor imaging of prefrontal white matter tractography in healthy cognition.

    Science.gov (United States)

    Ohtani, Toshiyuki; Nestor, Paul G; Bouix, Sylvain; Newell, Dominick; Melonakos, Eric D; McCarley, Robert W; Shenton, Martha E; Kubicki, Marek

    2017-01-26

    We combined diffusion tension imaging (DTI) of prefrontal white matter integrity and neuropsychological measures to examine the functional neuroanatomy of human intelligence. Healthy participants completed the Wechsler Adult Intelligence Scale-Third Edition (WAIS-III) along with neuropsychological tests of attention and executive control, as measured by Trail Making Test (TMT) and Wisconsin Card Sorting Test (WCST). Stochastic tractography, considered the most effective DTI method, quantified white matter integrity of the medial orbital frontal cortex (mOFC) and rostral anterior cingulate cortex (rACC) circuitry. Based on prior studies, we hypothesized that posterior mOFC-rACC connections may play a key structural role linking attentional control processes and intelligence. Behavioral results provided strong support for this hypothesis, specifically linking attentional control processes, measured by Trails B and WCST perseverative errors, to intelligent quotient (IQ). Hierarchical regression results indicated left posterior mOFC-rACC fractional anisotropy (FA) and Trails B performance time, but not WCST perseverative errors, each contributed significantly to IQ, accounting for approximately 33.95-51.60% of the variance in IQ scores. These findings suggested that left posterior mOFC-rACC white matter connections may play a key role in supporting the relationship of executive functions of attentional control and general intelligence in healthy cognition. Copyright © 2016. Published by Elsevier Ltd.

  2. An RNA gene expressed during cortical development evolved rapidly in humans

    DEFF Research Database (Denmark)

    Pollard, Katherine S; Salama, Sofie R; Lambert, Nelle

    2006-01-01

    of the human brain. We devised a ranking of regions in the human genome that show significant evolutionary acceleration. Here we report that the most dramatic of these 'human accelerated regions', HAR1, is part of a novel RNA gene (HAR1F) that is expressed specifically in Cajal-Retzius neurons...

  3. [Cortical control in locomotion].

    Science.gov (United States)

    Mori, Futoshi; Nakajima, Katsumi

    2010-11-01

    Although simple in appearance, bipedal (Bp) and even quadrupedal (Qp) locomotion are highly tuned motor behaviors that require coordinated control in the spatial and temporal domains of head, neck, trunk, and limbs. Seamless integration of limb movements and accompanying posture is a crucial determinant for the execution of desired locomotor movements. Recent functional brain imaging studies have shown that multiple cerebral sensorimotor cortices and the cerebellum are highly activated during human BP locomotion, suggesting that humans depend on the cerebrum and cerebellum for the elaboration of Bp locomotion. We have found that a young Japanese monkey, Macaca fuscata, acquires novel Bp walking capability with a long-term locomotor task and physical maturation. This model animal has kinematic features that are common with those of humans. Our imaging study showed that multiple cortical motor related areas are activated during monkey Bp walking, similar to that observed in humans. Furthermore, cortical inactivation studies revealed that each cortical region has an assigned functional role for the elaboration and refinements of its locomotor task. All these results show that selective yet multiple involvement of cortical motor regions are necessary for the elaboration of Bp locomotion in both humans and non-human primate models. Presumably, such multi-faceted recruitment of motor cortices is required to accommodate the limb movement and postural demands for Bp upright standing and walking. To cure locomotor dysfunctions due to CNS impairments, it is necessary to understand the CNS mechanisms involved in fine-tuning of limb movements and accompanying posture. Multi-comparative interdisciplinary studies should be initiated to reveal the CNS mechanisms involved in the control of Bp upright standing and locomotion in humans and non-human primate models.

  4. Bilinearity, rules, and prefrontal cortex

    Directory of Open Access Journals (Sweden)

    Peter Dayan

    2007-11-01

    Full Text Available Humans can be instructed verbally to perform computationally complex cognitive tasks; their performance then improves relatively slowly over the course of practice. Many skills underlie these abilities; in this paper, we focus on the particular question of a uniform architecture for the instantiation of habitual performance and the storage, recall, and execution of simple rules. Our account builds on models of gated working memory, and involves a bilinear architecture for representing conditional input-output maps and for matching rules to the state of the input and working memory. We demonstrate the performance of our model on two paradigmatic tasks used to investigate prefrontal and basal ganglia function.

  5. Individual-specific multi-scale finite element simulation of cortical bone of human proximal femur

    Science.gov (United States)

    Ascenzi, Maria-Grazia; Kawas, Neal P.; Lutz, Andre; Kardas, Dieter; Nackenhorst, Udo; Keyak, Joyce H.

    2013-07-01

    We present an innovative method to perform multi-scale finite element analyses of the cortical component of the femur using the individual's (1) computed tomography scan; and (2) a bone specimen obtained in conjunction with orthopedic surgery. The method enables study of micro-structural characteristics regulating strains and stresses under physiological loading conditions. The analysis of the micro-structural scenarios that cause variation of strain and stress is the first step in understanding the elevated strains and stresses in bone tissue, which are indicative of higher likelihood of micro-crack formation in bone, implicated in consequent remodeling or macroscopic bone fracture. Evidence that micro-structure varies with clinical history and contributes in significant, but poorly understood, ways to bone function, motivates the method's development, as does need for software tools to investigate relationships between macroscopic loading and micro-structure. Three applications - varying region of interest, bone mineral density, and orientation of collagen type I, illustrate the method. We show, in comparison between physiological loading and simple compression of a patient's femur, that strains computed at the multi-scale model's micro-level: (i) differ; and (ii) depend on local collagen-apatite orientation and degree of calcification. Our findings confirm the strain concentration role of osteocyte lacunae, important for mechano-transduction. We hypothesize occurrence of micro-crack formation, leading either to remodeling or macroscopic fracture, when the computed strains exceed the elastic range observed in micro-structural testing.

  6. Characterization of neurons in the cortical white matter in human temporal lobe epilepsy.

    Science.gov (United States)

    Richter, Zsófia; Janszky, József; Sétáló, György; Horváth, Réka; Horváth, Zsolt; Dóczi, Tamás; Seress, László; Ábrahám, Hajnalka

    2016-10-01

    The aim of the present work was to characterize neurons in the archi- and neocortical white matter, and to investigate their distribution in mesial temporal sclerosis. Immunohistochemistry and quantification of neurons were performed on surgically resected tissue sections of patients with therapy-resistant temporal lobe epilepsy. Temporal lobe tissues of patients with tumor but without epilepsy and that from autopsy were used as controls. Neurons were identified with immunohistochemistry using antibodies against NeuN, calcium-binding proteins, transcription factor Tbr1 and neurofilaments. We found significantly higher density of neurons in the archi- and neocortical white matter of patients with temporal lobe epilepsy than in that of controls. Based on their morphology and neurochemical content, both excitatory and inhibitory cells were present among these neurons. A subset of neurons in the white matter was Tbr-1-immunoreactive and these neurons coexpressed NeuN and neurofilament marker SMI311R. No colocalization of Tbr1 was observed with the inhibitory neuronal markers, calcium-binding proteins. We suggest that a large population of white matter neurons comprises remnants of the subplate. Furthermore, we propose that a subset of white matter neurons was arrested during migration, highlighting the role of cortical maldevelopment in epilepsy associated with mesial temporal sclerosis. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  7. Multiple bases of human intelligence revealed by cortical thickness and neural activation.

    Science.gov (United States)

    Choi, Yu Yong; Shamosh, Noah A; Cho, Sun Hee; DeYoung, Colin G; Lee, Min Joo; Lee, Jong-Min; Kim, Sun I; Cho, Zang-Hee; Kim, Kyungjin; Gray, Jeremy R; Lee, Kun Ho

    2008-10-08

    We hypothesized that individual differences in intelligence (Spearman's g) are supported by multiple brain regions, and in particular that fluid (gF) and crystallized (gC) components of intelligence are related to brain function and structure with a distinct profile of association across brain regions. In 225 healthy young adults scanned with structural and functional magnetic resonance imaging sequences, regions of interest (ROIs) were defined on the basis of a correlation between g and either brain structure or brain function. In these ROIs, gC was more strongly related to structure (cortical thickness) than function, whereas gF was more strongly related to function (blood oxygenation level-dependent signal during reasoning) than structure. We further validated this finding by generating a neurometric prediction model of intelligence quotient (IQ) that explained 50% of variance in IQ in an independent sample. The data compel a nuanced view of the neurobiology of intelligence, providing the most persuasive evidence to date for theories emphasizing multiple distributed brain regions differing in function.

  8. The human dorsal premotor cortex facilitates the excitability of ipsilateral primary motor cortex via a short latency cortico-cortical route.

    NARCIS (Netherlands)

    Groppa, S.; Schlaak, B.H.; Munchau, A.; Werner-Petroll, N.; Dunnweber, J.; Baumer, T.; Nuenen, B.F.L. van; Siebner, H.R.

    2012-01-01

    In non-human primates, invasive tracing and electrostimulation studies have identified strong ipsilateral cortico-cortical connections between dorsal premotor- (PMd) and the primary motor cortex (M1(HAND) ). Here, we applied dual-site transcranial magnetic stimulation (dsTMS) to left PMd and

  9. Selective increases of AMPA, NMDA and kainate receptor subunit mRNAs in the hippocampus and orbitofrontal cortex but not in prefrontal cortex of human alcoholics

    Directory of Open Access Journals (Sweden)

    Zhe eJin

    2014-01-01

    Full Text Available Glutamate is the main excitatory transmitter in the human brain. Drugs that affect the glutamatergic signaling will alter neuronal excitability. Ethanol inhibits glutamate receptors. We examined the expression level of glutamate receptor subunit mRNAs in human post-mortem samples from alcoholics and compared the results to brain samples from control subjects. RNA from hippocampal dentate gyrus (HP-DG, orbitofrontal cortex (OFC, and dorso-lateral prefrontal cortex (DL-PFC samples from 21 controls and 19 individuals with chronic alcohol dependence were included in the study. Total RNA was assayed using quantitative RT-PCR. Out of the 16 glutamate receptor subunits, mRNAs encoding two AMPA (2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-ylpropanoic acid receptor subunits GluA2 and GluA3; three kainate receptor subunits GluK2, GluK3 and GluK5 and five NMDA (N-methyl-D-aspartate receptor subunits GluN1, GluN2A, GluN2C, GluN2D and GluN3A were significantly increased in the HP-DG region in alcoholics. In the OFC, mRNA encoding the NMDA receptor subunit GluN3A was increased, whereas in the DL-PFC, no differences in mRNA levels were observed. Our laboratory has previously shown that the expression of genes encoding inhibitory GABA-A receptors is altered in the HP-DG and OFC of alcoholics (Jin et al., 2011. Whether the changes in one neurotransmitter system drives changes in the other or if they change independently is currently not known. The results demonstrate that excessive long-term alcohol consumption is associated with altered expression of genes encoding glutamate receptors in a brain region-specific manner. It is an intriguing possibility that genetic predisposition to alcoholism may contribute to these gene expression changes.

  10. Occlusal load distribution through the cortical and trabecular bone of the human mid-facial skeleton in natural dentition: a three-dimensional finite element study.

    Science.gov (United States)

    Janovic, Aleksa; Saveljic, Igor; Vukicevic, Arso; Nikolic, Dalibor; Rakocevic, Zoran; Jovicic, Gordana; Filipovic, Nenad; Djuric, Marija

    2015-01-01

    Understanding of the occlusal load distribution through the mid-facial skeleton in natural dentition is essential because alterations in magnitude and/or direction of occlusal forces may cause remarkable changes in cortical and trabecular bone structure. Previous analyses by strain gauge technique, photoelastic and, more recently, finite element (FE) methods provided no direct evidence for occlusal load distribution through the cortical and trabecular bone compartments individually. Therefore, we developed an improved three-dimensional FE model of the human skull in order to clarify the distribution of occlusal forces through the cortical and trabecular bone during habitual masticatory activities. Particular focus was placed on the load transfer through the anterior and posterior maxilla. The results were presented in von Mises stress (VMS) and the maximum principal stress, and compared to the reported FE and strain gauge data. Our qualitative stress analysis indicates that occlusal forces distribute through the mid-facial skeleton along five vertical and two horizontal buttresses. We demonstrated that cortical bone has a priority in the transfer of occlusal load in the anterior maxilla, whereas both cortical and trabecular bone in the posterior maxilla are equally involved in performing this task. Observed site dependence of the occlusal load distribution may help clinicians in creating strategies for implantology and orthodontic treatments. Additionally, the magnitude of VMS in our model was significantly lower in comparison to previous FE models composed only of cortical bone. This finding suggests that both cortical and trabecular bone should be modeled whenever stress will be quantitatively analyzed. Copyright © 2014 Elsevier GmbH. All rights reserved.

  11. Adrenergic Pharmacology and Cognition: Focus on the Prefrontal Cortex

    Science.gov (United States)

    Ramos, Brian P.; Arnsten, Amy F.T.

    2007-01-01

    Norepinephrine (NE) has widespread projections throughout brain, and thus is ideally positioned to orchestrate neural functions based on arousal state. For example, NE can increase “signal/noise” ratio in the processing of sensory stimuli, and can enhance long-term memory consolidation in the amygdala and hippocampus through actions at α-1 and β adrenoceptors. Over the last 20 years, NE has also been shown to play a powerful role in regulating the working memory and attention functions of the prefrontal cortex (PFC). Moderate levels of NE released under control conditions strengthen prefrontal cortical functions via actions at post-synaptic α-2A adrenoceptors with high affinity for NE, while high levels of NE release during stress impair PFC cortical functions via α-1 and possibly β-1 receptors with lower affinity for NE. Thus, levels of NE determine whether prefrontal cortical or posterior cortical systems control our behavior and thought. Understanding these receptor mechanisms has led to new, intelligent treatments for neuropsychiatric disorders associated with PFC dysfunction. PMID:17303246

  12. Thinning of the lateral prefrontal cortex during adolescence predicts emotion regulation in females.

    Science.gov (United States)

    Vijayakumar, Nandita; Whittle, Sarah; Yücel, Murat; Dennison, Meg; Simmons, Julian; Allen, Nicholas B

    2014-11-01

    Adolescence is a crucial period for the development of adaptive emotion regulation strategies. Despite the fact that structural maturation of the prefrontal cortex during adolescence is often assumed to underlie the maturation of emotion regulation strategies, no longitudinal studies have directly assessed this relationship. This study examined whether use of cognitive reappraisal strategies during late adolescence was predicted by (i) absolute prefrontal cortical thickness during early adolescence and (ii) structural maturation of the prefrontal cortex between early and mid-adolescence. Ninety-two adolescents underwent baseline and follow-up magnetic resonance imaging scans when they were aged approximately 12 and 16 years, respectively. FreeSurfer software was used to obtain cortical thickness estimates for three prefrontal regions [anterior cingulate cortex; dorsolateral prefrontal cortex (dlPFC); ventrolateral prefrontal cortex (vlPFC)]. The Emotion Regulation Questionnaire was completed when adolescents were aged approximately 19 years. Results showed that greater cortical thinning of the left dlPFC and left vlPFC during adolescence was significantly associated with greater use of cognitive reappraisal in females, though no such relationship was evident in males. Furthermore, baseline left dlPFC thickness predicted cognitive reappraisal at trend level. These findings suggest that cortical maturation may play a role in the development of adaptive emotion regulation strategies during adolescence. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  13. Teasaponin improves leptin sensitivity in the prefrontal cortex of obese mice.

    Science.gov (United States)

    Yu, Yinghua; Wu, Yizhen; Szabo, Alexander; Wang, Sen; Yu, Shijia; Wang, Qing; Huang, Xu-Feng

    2015-12-01

    Obesity impairs cognition, and the leptin-induced increase of brain-derived neurotrophic factor (BDNF) and neurogenesis. Tea consumption improves cognition and increases brain activation in the prefrontal cortex. This study examined whether teasaponin, an active ingredient in tea, could improve memory and central leptin effects on neurogenesis in the prefrontal cortex of obese mice, and in vitro in cultured prefrontal cortical neurons. Teasaponin (10 mg/kg, intraperitoneal) for 21 days improved downstream leptin signaling (JAK2 and STAT3), and leptin's effect on BDNF, in the prefrontal cortex of high-fat diet (HFD) fed mice. Prefrontal cortical neurons were cultured with teasaponin and palmitic acid (the most abundant dietary saturated fatty acid) to examine their effects on neurogenesis and BDNF expression in response to leptin. Palmitic acid decreased leptin's effect on neurite outgrowth, postsynaptic density protein 95, and BDNF expression in cultured cortical neurons, which was reversed by teasaponin. Teasaponin improved the leptin sensitivity of prefrontal cortical neurons in obese mice or when treated by palmitic acid. This in turn increased BDNF expression and neurite growth. Therefore, teasaponin supplementation may be used to prevent obesity-associated neurodegeneration and improve cognitive function. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Distinct vestibular effects on early and late somatosensory cortical processing in humans

    NARCIS (Netherlands)

    Pfeiffer, C.; van Elk, M.; Bernasconi, F.; Blanke, O.

    2016-01-01

    In non-human primates several brain areas contain neurons that respond to both vestibular and somatosensory stimulation. In humans, vestibular stimulation activates several somatosensory brain regions and improves tactile perception. However, less is known about the spatio-temporal dynamics of such

  15. A silent mutation in human alpha-A crystallin gene in patients with age-related nuclear or cortical cataract

    Directory of Open Access Journals (Sweden)

    Bharani K Mynampati

    2017-05-01

    Full Text Available A cataract is a complex multifactorial disease that results from alterations in the cellular architecture, i.e. lens proteins. Genes associated with the development of lens include crystallin genes. Although crystallins are highly conserved proteins among vertebrates, a significant number of polymorphisms exist in human population. In this study, we screened for polymorphisms in crystallin alpha A (CRYAA and alpha B (CRYAB genes in 200 patients over 40 years of age, diagnosed with age-related cataract (ARC; nuclear and cortical cataracts. Genomic DNA was extracted from the peripheral blood. The coding regions of the CRYAA and CRYAB gene were amplified using polymerase chain reaction and subjected to restriction digestion. Restriction fragment length polymorphism (RFLP was performed using known restriction enzymes for CRYAA and CRYAB genes. Denaturing high performance liquid chromatography and direct sequencing were performed to detect sequence variation in CRYAA gene. In silico analysis of secondary CRYAA mRNA structure was performed using CLC RNA Workbench. RFLP analysis did not show any changes in the restriction sites of CRYAA and CRYAB genes. In 6 patients (4 patients with nuclear cataract and 2 with cortical cataract, sequence analysis of the exon 1 in the CRYAA gene showed a silent single nucleotide polymorphism [D2D] (CRYAA: C to T transition. One of the patients with nuclear cataract was homozygous for this allele. The in silico analysis revealed that D2D mutation results in a compact CRYAA mRNA secondary structure, while the wild type CRYAA mRNA has a weak or loose secondary structure. D2D mutation in the CRYAA gene may be an additional risk factor for progression of ARC.

  16. Defining regional variation in the material properties of human rib cortical bone and its effect on fracture prediction.

    Science.gov (United States)

    Stitzel, Joel D; Cormier, Joseph M; Barretta, Joseph T; Kennedy, Eric A; Smith, Eric P; Rath, Amber L; Duma, Stefan M; Matsuoka, Fumio

    2003-01-01

    This paper presents the results of dynamic material tests and computational modeling that elucidate the effects of regional rib mechanical properties on thoracic fracture patterns. First, a total of 80 experiments were performed using small cortical bone samples from 23 separate locations on the rib cages of four cadavers (2 male, 2 female). Each specimen was subjected to dynamic three-point bending resulting in an average strain rate of 5 +/- 1.5 strain/s. Test coupon modeling was used to verify the test setup. Regional variation was defined by location as anterior, lateral, or posterior as well as by rib level 1 through 12. The specimen stiffness and ultimate stress and strain were analyzed by location and rib level. Second, these material properties were incorporated into a human body computational model. The rib cage was partitioned into anterior, lateral, and posterior segments and the material properties were varied by location using an elastic-plastic material model. A total of 12 simulations with a rigid impactor were performed including 2 separate material assumptions, original and modified rib properties for regional variations, 3 separate impactor velocities, and 2 directions, anterior and lateral. The data from the material tests for all subjects indicate a statistically significant increase in the average stiffness and average ultimate stress for the cortical bone specimens located in the lateral (11.9 GPa modulus, 153.5 MPa ultimate stress) portion of the ribs versus the anterior (7.51 GPa, 116.7 MPa) and posterior (10.7 GPa, 127.7 MPa) rib locations. In addition, the stiffness, ultimate stress, and ultimate strain for all subjects are significantly different by rib level with each variable generally increasing with increasing rib number. The results from the computational modeling for both frontal and lateral impacts illustrate that the location and number of rib fractures are altered by the inclusion of rib material properties that vary by region.

  17. Demonstration of a setup for chronic optogenetic stimulation and recording across cortical areas in non-human primates

    Science.gov (United States)

    Yazdan-Shahmorad, Azadeh; Diaz-Botia, Camilo; Hanson, Tim; Ledochowitsch, Peter; Maharabiz, Michel M.; Sabes, Philip N.

    2015-03-01

    Although several studies have shown the feasibility of using optogenetics in non-human primates (NHP), reliable largescale chronic interfaces have not yet been reported for such studies in NHP. Here we introduce a chronic setup that permits repeated, daily optogenetic stimulation and large-scale recording from the same sites in NHP cortex. The setup combines optogenetics with a transparent artificial dura (AD) and high-density micro-electrocorticography (μECoG). To obtain expression across large areas of cortex, we infused AAV5-CamKIIa-C1V1-EYFP viral vector using an infusion technique based on convection-enhanced delivery (CED) in primary somatosensory (S1) and motor (M1) cortices. By epifluorescent imaging through AD we were able to confirm high levels of expression covering about 110 mm2 of S1 and M1. We then incorporated a 192-channel μECoG array spanning 192 mm2 into the AD for simultaneous electrophysiological recording during optical stimulation. The array consists of patterned Pt-Au-Pt metal traces embedded in ~10 μm Parylene-C insulator. The parylene is sufficiently transparent to allow minimally attenuated optical access for optogenetic stimulation. The array was chronically implanted over the opsin-expressing areas in M1 and S1 for over two weeks. Optical stimulation was delivered via a fiber optic placed on the surface of the AD. With this setup, we recorded reliable evoked activity following light stimulation at several locations. Similar responses were recorded across tens of days, however a decline in the light-evoked signal amplitude was observed during this period due to the growth of dural tissue over the array. These results show the feasibility of a chronic interface for combined largescale optogenetic stimulation and cortical recordings across days.

  18. Cortical and hippocampal correlates of deliberation during model-based decisions for rewards in humans.

    Directory of Open Access Journals (Sweden)

    Aaron M Bornstein

    Full Text Available How do we use our memories of the past to guide decisions we've never had to make before? Although extensive work describes how the brain learns to repeat rewarded actions, decisions can also be influenced by associations between stimuli or events not directly involving reward - such as when planning routes using a cognitive map or chess moves using predicted countermoves - and these sorts of associations are critical when deciding among novel options. This process is known as model-based decision making. While the learning of environmental relations that might support model-based decisions is well studied, and separately this sort of information has been inferred to impact decisions, there is little evidence concerning the full cycle by which such associations are acquired and drive choices. Of particular interest is whether decisions are directly supported by the same mnemonic systems characterized for relational learning more generally, or instead rely on other, specialized representations. Here, building on our previous work, which isolated dual representations underlying sequential predictive learning, we directly demonstrate that one such representation, encoded by the hippocampal memory system and adjacent cortical structures, supports goal-directed decisions. Using interleaved learning and decision tasks, we monitor predictive learning directly and also trace its influence on decisions for reward. We quantitatively compare the learning processes underlying multiple behavioral and fMRI observables using computational model fits. Across both tasks, a quantitatively consistent learning process explains reaction times, choices, and both expectation- and surprise-related neural activity. The same hippocampal and ventral stream regions engaged in anticipating stimuli during learning are also engaged in proportion to the difficulty of decisions. These results support a role for predictive associations learned by the hippocampal memory system to

  19. Individual-specific multi-scale finite element simulation of cortical bone of human proximal femur

    Energy Technology Data Exchange (ETDEWEB)

    Ascenzi, Maria-Grazia, E-mail: mgascenzi@mednet.ucla.edu [UCLA/Orthopaedic Hospital, Department of Orthopaedic Surgery, Rehabilitation Bldg, Room 22-69, 1000 Veteran Avenue, University of California, Los Angeles, CA 90095 (United States); Kawas, Neal P., E-mail: nealkawas@ucla.edu [UCLA/Orthopaedic Hospital, Department of Orthopaedic Surgery, Rehabilitation Bldg, Room 22-69, 1000 Veteran Avenue, University of California, Los Angeles, CA 90095 (United States); Lutz, Andre, E-mail: andre.lutz@hotmail.de [Institute of Biomechanics and Numerical Mechanics, Leibniz University Hannover, 30167 Hannover (Germany); Kardas, Dieter, E-mail: kardas@ibnm.uni-hannover.de [ContiTech Vibration Control, Jaedekamp 30 None, 30419 Hannover (Germany); Nackenhorst, Udo, E-mail: nackenhorst@ibnm.uni-hannover.de [Institute of Biomechanics and Numerical Mechanics, Leibniz University Hannover, 30167 Hannover (Germany); Keyak, Joyce H., E-mail: jhkeyak@uci.edu [Department of Radiological Sciences, Medical Sciences I, Bldg 811, Room B140, University of California, Irvine, CA 92697-5000 (United States)

    2013-07-01

    We present an innovative method to perform multi-scale finite element analyses of the cortical component of the femur using the individual’s (1) computed tomography scan; and (2) a bone specimen obtained in conjunction with orthopedic surgery. The method enables study of micro-structural characteristics regulating strains and stresses under physiological loading conditions. The analysis of the micro-structural scenarios that cause variation of strain and stress is the first step in understanding the elevated strains and stresses in bone tissue, which are indicative of higher likelihood of micro-crack formation in bone, implicated in consequent remodeling or macroscopic bone fracture. Evidence that micro-structure varies with clinical history and contributes in significant, but poorly understood, ways to bone function, motivates the method’s development, as does need for software tools to investigate relationships between macroscopic loading and micro-structure. Three applications – varying region of interest, bone mineral density, and orientation of collagen type I, illustrate the method. We show, in comparison between physiological loading and simple compression of a patient’s femur, that strains computed at the multi-scale model’s micro-level: (i) differ; and (ii) depend on local collagen-apatite orientation and degree of calcification. Our findings confirm the strain concentration role of osteocyte lacunae, important for mechano-transduction. We hypothesize occurrence of micro-crack formation, leading either to remodeling or macroscopic fracture, when the computed strains exceed the elastic range observed in micro-structural testing.

  20. Genetically determined measures of striatal D2 signaling predict prefrontal activity during working memory performance.

    Directory of Open Access Journals (Sweden)

    Alessandro Bertolino

    2010-02-01

    Full Text Available Variation of the gene coding for D2 receptors (DRD2 has been associated with risk for schizophrenia and with working memory deficits. A functional intronic SNP (rs1076560 predicts relative expression of the two D2 receptors isoforms, D2S (mainly pre-synaptic and D2L (mainly post-synaptic. However, the effect of functional genetic variation of DRD2 on striatal dopamine D2 signaling and on its correlation with prefrontal activity during working memory in humans is not known.Thirty-seven healthy subjects were genotyped for rs1076560 (G>T and underwent SPECT with [123I]IBZM (which binds primarily to post-synaptic D2 receptors and with [123I]FP-CIT (which binds to pre-synaptic dopamine transporters, whose activity and density is also regulated by pre-synaptic D2 receptors, as well as BOLD fMRI during N-Back working memory.Subjects carrying the T allele (previously associated with reduced D2S expression had striatal reductions of [123I]IBZM and of [123I]FP-CIT binding. DRD2 genotype also differentially predicted the correlation between striatal dopamine D2 signaling (as identified with factor analysis of the two radiotracers and activity of the prefrontal cortex during working memory as measured with BOLD fMRI, which was positive in GG subjects and negative in GT.Our results demonstrate that this functional SNP within DRD2 predicts striatal binding of the two radiotracers to dopamine transporters and D2 receptors as well as the correlation between striatal D2 signaling with prefrontal cortex activity during performance of a working memory task. These data are consistent with the possibility that the balance of excitatory/inhibitory modulation of striatal neurons may also affect striatal outputs in relationship with prefrontal activity during working memory performance within the cortico-striatal-thalamic-cortical pathway.

  1. Alpha-beta and gamma rhythms subserve feedback and feedforward influences among human visual cortical areas

    Science.gov (United States)

    Michalareas, Georgios; Vezoli, Julien; van Pelt, Stan; Schoffelen, Jan-Mathijs; Kennedy, Henry; Fries, Pascal

    2016-01-01

    Primate visual cortex is hierarchically organized. Bottom-up and top-down influences are exerted through distinct frequency channels, as was recently revealed in macaques by correlating inter-areal influences with laminar anatomical projection patterns. Because this anatomical data cannot be obtained in human subjects, we selected seven homologous macaque and human visual areas, and correlated the macaque laminar projection patterns to human inter-areal directed influences as measured with magnetoencephalography. We show that influences along feedforward projections predominate in the gamma band, whereas influences along feedback projections predominate in the alpha-beta band. Rhythmic inter-areal influences constrain a functional hierarchy of the seven homologous human visual areas that is in close agreement with the respective macaque anatomical hierarchy. Rhythmic influences allow an extension of the hierarchy to 26 human visual areas including uniquely human brain areas. Hierarchical levels of ventral and dorsal stream visual areas are differentially affected by inter-areal influences in the alpha-beta band. PMID:26777277

  2. The human dorsal premotor cortex facilitates the excitability of ipsilateral primary motor cortex via a short latency cortico-cortical route

    DEFF Research Database (Denmark)

    Groppa, Sergiu; Schlaak, Boris H; Münchau, Alexander

    2012-01-01

    In non-human primates, invasive tracing and electrostimulation studies have identified strong ipsilateral cortico-cortical connections between dorsal premotor- (PMd) and the primary motor cortex (M1(HAND) ). Here, we applied dual-site transcranial magnetic stimulation (dsTMS) to left PMd and M1(H...... corticospinal volleys. This paradigm opens up new possibilities to study context-dependent intrahemispheric PMd-to-M1(HAND) interactions in the intact human brain....

  3. Frequency characteristics of human muscle and cortical responses evoked by noisy Achilles tendon vibration.

    Science.gov (United States)

    Mildren, Robyn L; Peters, Ryan M; Hill, Aimee J; Blouin, Jean-Sébastien; Carpenter, Mark G; Inglis, J Timothy

    2017-05-01

    Noisy stimuli, along with linear systems analysis, have proven to be effective for mapping functional neural connections. We explored the use of noisy (10-115 Hz) Achilles tendon vibration to examine somatosensory reflexes in the triceps surae muscles in standing healthy young adults ( n = 8). We also examined the association between noisy vibration and electrical activity recorded over the sensorimotor cortex using electroencephalography. We applied 2 min of vibration and recorded ongoing muscle activity of the soleus and gastrocnemii using surface electromyography (EMG). Vibration amplitude was varied to characterize reflex scaling and to examine how different stimulus levels affected postural sway. Muscle activity from the soleus and gastrocnemii was significantly correlated with the tendon vibration across a broad frequency range (~10-80 Hz), with a peak located at ~40 Hz. Vibration-EMG coherence positively scaled with stimulus amplitude in all three muscles, with soleus displaying the strongest coupling and steepest scaling. EMG responses lagged the vibration by ~38 ms, a delay that paralleled observed response latencies to tendon taps. Vibration-evoked cortical oscillations were observed at frequencies ~40-70 Hz (peak ~54 Hz) in most subjects, a finding in line with previous reports of sensory-evoked γ-band oscillations. Further examination of the method revealed 1 ) accurate reflex estimates could be obtained with vibration; 2 ) responses did not habituate over 2 min of exposure; and importantly, 3 ) noisy vibration had a minimal influence on standing balance. Our findings suggest noisy tendon vibration is an effective novel approach to characterize somatosensory reflexes during standing. NEW & NOTEWORTHY We applied noisy (10-115 Hz) vibration to the Achilles tendon to examine the frequency characteristics of lower limb somatosensory reflexes during standing. Ongoing muscle activity was coherent with the noisy vibration (peak coherence ~40 Hz), and

  4. Hypothermic Preconditioning Reverses Tau Ontogenesis in Human Cortical Neurons and is Mimicked by Protein Phosphatase 2A Inhibition

    Directory of Open Access Journals (Sweden)

    Nina M. Rzechorzek

    2016-01-01

    Full Text Available Hypothermia is potently neuroprotective, but the molecular basis of this effect remains obscure. Changes in neuronal tau protein are of interest, since tau becomes hyperphosphorylated in injury-resistant, hypothermic brains. Noting inter-species differences in tau isoforms, we have used functional cortical neurons differentiated from human pluripotent stem cells (hCNs to interrogate tau modulation during hypothermic preconditioning at clinically-relevant temperatures. Key tau developmental transitions (phosphorylation status and splicing shift are recapitulated during hCN differentiation and subsequently reversed by mild (32 °C to moderate (28 °C cooling — conditions which reduce oxidative and excitotoxic stress-mediated injury in hCNs. Blocking a major tau kinase decreases hCN tau phosphorylation and abrogates hypothermic neuroprotection, whilst inhibition of protein phosphatase 2A mimics cooling-induced tau hyperphosphorylation and protects normothermic hCNs from oxidative stress. These findings indicate a possible role for phospho-tau in hypothermic preconditioning, and suggest that cooling drives human tau towards an earlier ontogenic phenotype whilst increasing neuronal resilience to common neurotoxic insults. This work provides a critical step forward in understanding how we might exploit the neuroprotective benefits of cooling without cooling patients.

  5. Polarity-specific cortical effects of transcranial direct current stimulation in primary somatosensory cortex of healthy humans

    Directory of Open Access Journals (Sweden)

    Robert eRehmann

    2016-05-01

    Full Text Available Transcranial direct current stimulation (tDCS is a noninvasive stimulation method that has been shown to modulate the excitability of the motor and visual cortices in human subjects in a polarity dependent manner in previous studies. The aim of our study was to investigate whether anodal and cathodal tDCS can also be used to modulate the excitability of the human primary somatosensory cortex (S1. We measured paired-pulse suppression (PPS of somatosensory evoked potentials in 36 right-handed volunteers before and after anodal, cathodal or sham stimulation over the right non-dominant S1. Paired-pulse stimulation of the median nerve was performed at the dominant and non-dominant hand. After anodal tDCS, PPS was reduced in the ipsilateral S1 compared to sham stimulation, indicating an excitatory effect of anodal tDCS. In contrast, PPS in the stimulated left hemisphere was increased after cathodal tDCS, indicating an inhibitory effect of cathodal tDCS. Sham stimulation induced no pre-post differences. Thus, tDCS can be used to modulate the excitability of S1 in polarity-dependent manner, which can be assessed by paired-pulse suppression. An interesting topic for further studies could be the investigation of direct correlations between sensory changes and excitability changes induced by tDCS.

  6. High thickness histological sections as alternative to study the three-dimensional microscopic human sub-cortical neuroanatomy.

    Science.gov (United States)

    Alho, Eduardo Joaquim Lopes; Alho, Ana Tereza Di Lorenzo; Grinberg, Lea; Amaro, Edson; Dos Santos, Gláucia Aparecida Bento; da Silva, Rafael Emídio; Neves, Ricardo Caires; Alegro, Maryana; Coelho, Daniel Boari; Teixeira, Manoel Jacobsen; Fonoff, Erich Talamoni; Heinsen, Helmut

    2017-11-01

    Stereotaxy is based on the precise image-guided spatial localization of targets within the human brain. Even with the recent advances in MRI technology, histological examination renders different (and complementary) information of the nervous tissue. Although several maps have been selected as a basis for correlating imaging results with the anatomical locations of sub-cortical structures, technical limitations interfere in a point-to-point correlation between imaging and anatomy due to the lack of precise correction for post-mortem tissue deformations caused by tissue fixation and processing. We present an alternative method to parcellate human brain cytoarchitectural regions, minimizing deformations caused by post-mortem and tissue-processing artifacts and enhancing segmentation by means of modified high thickness histological techniques and registration with MRI of the same specimen and into MNI space (ICBM152). A three-dimensional (3D) histological atlas of the human thalamus, basal ganglia, and basal forebrain cholinergic system is displayed. Structure's segmentations were performed in high-resolution dark-field and light-field microscopy. Bidimensional non-linear registration of the histological slices was followed by 3D registration with in situ MRI of the same subject. Manual and automated registration procedures were adopted and compared. To evaluate the quality of the registration procedures, Dice similarity coefficient and normalized weighted spectral distance were calculated and the results indicate good overlap between registered volumes and a small shape difference between them in both manual and automated registration methods. High thickness high-resolution histological slices in combination with registration to in situ MRI of the same subject provide an effective alternative method to study nuclear boundaries in the human brain, enhancing segmentation and demanding less resources and time for tissue processing than traditional methods.

  7. Neuromodulation of Prefrontal Cortex in Non-Human Primates by Dopaminergic Receptors during Rule-Guided Flexible Behavior and Cognitive Control

    Science.gov (United States)

    Vijayraghavan, Susheel; Major, Alex J.; Everling, Stefan

    2017-01-01

    The prefrontal cortex (PFC) is indispensable for several higher-order cognitive and executive capacities of primates, including representation of salient stimuli in working memory (WM), maintenance of cognitive task set, inhibition of inappropriate responses and rule-guided flexible behavior. PFC networks are subject to robust neuromodulation from ascending catecholaminergic systems. Disruption of these systems in PFC has been implicated in cognitive deficits associated with several neuropsychiatric disorders. Over the past four decades, a considerable body of work has examined the influence of dopamine on macaque PFC activity representing spatial WM. There has also been burgeoning interest in neuromodulation of PFC circuits involved in other cognitive functions of PFC, including representation of rules to guide flexible behavior. Here, we review recent neuropharmacological investigations conducted in our laboratory and others of the role of PFC dopamine receptors in regulating rule-guided behavior in non-human primates. Employing iontophoresis, we examined the effects of local manipulation of dopaminergic subtypes on neuronal activity during performance of rule-guided pro- and antisaccades, an experimental paradigm sensitive to PFC integrity, wherein deficits in performance are reliably observed in many neuropsychiatric disorders. We found dissociable effects of dopamine receptors on neuronal activity for rule representation and oculomotor responses and discuss these findings in the context of prior studies that have examined the role of dopamine in spatial delayed response tasks, attention, target selection, abstract rules, visuomotor learning and reward. The findings we describe here highlight the common features, as well as heterogeneity and context dependence of dopaminergic neuromodulation in regulating the efficacy of cognitive functions of PFC in health and disease. PMID:29259545

  8. EEG-guided transcranial magnetic stimulation reveals rapid shifts in motor cortical excitability during the human sleep slow oscillation

    DEFF Research Database (Denmark)

    Bergmann, Til O; Mölle, Matthias; Schmidt, Marlit A

    2012-01-01

    Evoked cortical responses do not follow a rigid input-output function but are dynamically shaped by intrinsic neural properties at the time of stimulation. Recent research has emphasized the role of oscillatory activity in determining cortical excitability. Here we employed EEG-guided transcranial...

  9. The evolution of the brain, the human nature of cortical circuits and intellectual creativity

    Directory of Open Access Journals (Sweden)

    Javier eDeFelipe

    2011-05-01

    Full Text Available The tremendous expansion and the differentiation of the neocortex constitute two major events in the evolution of the mammalian brain. The increase in size and complexity of our brains opened the way to a spectacular development of cognitive and mental skills. This expansion during evolution facilitated the addition of archetypical microcircuits, which increased the complexity of the human brain and contributed to its uniqueness. However, fundamental differences even exist between distinct mammalian species. Here, we shall discuss the issue of our humanity from a neurobiological and historical perspective.

  10. Systematic variation of population receptive field properties across cortical depth in human visual cortex

    NARCIS (Netherlands)

    Fracasso, Alessio; Petridou, N; Dumoulin, Serge O

    2016-01-01

    Receptive fields (RFs) in visual cortex are organized in antagonistic, center-surround, configurations. RF properties change systematically across eccentricity and between visual field maps. However, it is unknown how center-surround configurations are organized in human visual cortex across lamina.

  11. Integration of motion responses underlying directional motion anisotropy in human early visual cortical areas

    NARCIS (Netherlands)

    Schellekens, W.; van Wezel, Richard Jack Anton; Petridou, N.; Ramsey, N.F.; Raemaekers, M.

    2013-01-01

    Recent imaging studies have reported directional motion biases in human visual cortex when perceiving moving random dot patterns. It has been hypothesized that these biases occur as a result of the integration of motion detector activation along the path of motion in visual cortex. In this study we

  12. Startle stimuli exert opposite effects on human cortical and spinal motor system excitability in leg muscles

    DEFF Research Database (Denmark)

    Ilic, T V; Pötter-Nerger, M; Holler, I

    2011-01-01

    Increased excitability of the spinal motor system has been observed after loud and unexpected acoustic stimuli (AS) preceding H-reflexes. The paradigm has been proposed as an electrophysiological marker of reticulospinal tract activity in humans. The brainstem reticular formation also maintains...

  13. Renal cortical and medullary blood flow responses to altered NO-availability in humans

    DEFF Research Database (Denmark)

    Damkjaer, Mads; Vafaee, Manoucher; Møller, Michael Lehd

    2010-01-01

    The objective was to quantify regional renal blood flow in humans. In nine young volunteers on a controlled diet, the lower abdomen was CT-scanned and regional renal blood flow determined by positron emission tomography (PET) scanning using H(2)(15)O as tracer. Measurements were performed at base...

  14. Transcriptomic analysis of purified human cortical microglia reveals age-associated changes

    NARCIS (Netherlands)

    Galatro, Thais F; Holtman, Inge R; Lerario, Antonio M; Vainchtein, Ilia D; Brouwer, Nieske; Sola, Paula R; Veras, Mariana M; Pereira, Tulio F; Leite, Renata E P; Möller, Thomas; Wes, Paul D; Sogayar, Mari C; Laman, Jon D; den Dunnen, Wilfred; Pasqualucci, Carlos A; Oba-Shinjo, Sueli M; Boddeke, Erik W G M; Marie, Suely K N; Eggen, Bart J L

    Microglia are essential for CNS homeostasis and innate neuroimmune function, and play important roles in neurodegeneration and brain aging. Here we present gene expression profiles of purified microglia isolated at autopsy from the parietal cortex of 39 human subjects with intact cognition. Overall,

  15. Interactions between the nucleus accumbens and auditory cortices predict music reward value

    National Research Council Canada - National Science Library

    Salimpoor, Valorie N; van den Bosch, Iris; Kovacevic, Natasa; McIntosh, Anthony Randal; Dagher, Alain; Zatorre, Robert J

    2013-01-01

    ... unheard music in an auction paradigm. Importantly, the auditory cortices, amygdala, and ventromedial prefrontal regions showed increased activity during listening conditions requiring valuation, but did not predict reward value...

  16. Levodopa reinstates connectivity from prefrontal to premotor cortex during externally paced movement in Parkinson's disease

    DEFF Research Database (Denmark)

    Herz, Damian M; Siebner, Hartwig R; Hulme, Oliver J

    2014-01-01

    to examine oscillatory coupling between prefrontal and premotor areas during respectively low and high levels of dopamine. In 10 patients and 12 control participants multiple source beamformer analysis yielded task-related activation of a contralateral cortical network comprising prefrontal cortex (PFC......), lateral premotor cortex (lPM), supplementary motor area (SMA) and primary motor cortex (M1). Dynamic causal modelling was used to characterize task-related oscillatory coupling between prefrontal and premotor cortical areas. Healthy participants showed task-induced coupling from PFC to SMA, which......Dopamine deficiency affects functional integration of activity in distributed neural regions. It has been suggested that lack of dopamine induces disruption of neural interactions between prefrontal and premotor areas, which might underlie impairment of motor control observed in patients...

  17. Specialization in the left prefrontal cortex for sentence comprehension.

    Science.gov (United States)

    Hashimoto, Ryuichiro; Sakai, Kuniyoshi L

    2002-08-01

    Using functional magnetic resonance imaging (fMRI), we examined cortical activation under syntactic decision tasks and a short-term memory task for sentences, focusing on essential properties of syntactic processing. By comparing activation in these tasks with a short-term memory task for word lists, we found that two regions in the left prefrontal cortex showed selective activation for syntactic processing: the dorsal prefrontal cortex (DPFC) and the inferior frontal gyrus (IFG). Moreover, the left DPFC showed more prominent activation under the short-term memory task for sentences than that for word lists, which cannot be explained by general cognitive factors such as task difficulty and verbal short-term memory. These results support the proposal of specialized systems for sentence comprehension in the left prefrontal cortex.

  18. Disinhibition of the mediodorsal thalamus induces Fos-like immunoreactivity in both pyramidal and GABA-containing neurons in the medial prefrontal cortex of rats, but does not affect prefrontal extracellular GABA levels

    NARCIS (Netherlands)

    Bubser, M; Brabander, J.M; Timmerman, W; Feenstra, M.G P; Erdtsieck-Ernste, E.B H W; Rinkens, A; van Uum, J.F M; Westerink, B.H.C.

    1998-01-01

    Stimulation of the mediodorsal and midline thalamic nuclei excites cortical neurons and induces c-fos expression in the prefrontal cortex. Data in the literature data suggest that pyramidal neurons are the most likely cellular targets. In order to determine whether cortical interneurons are also

  19. Directed cortical information flow during human object recognition: analyzing induced EEG gamma-band responses in brain's source space.

    Directory of Open Access Journals (Sweden)

    Gernot G Supp

    Full Text Available The increase of induced gamma-band responses (iGBRs; oscillations >30 Hz elicited by familiar (meaningful objects is well established in electroencephalogram (EEG research. This frequency-specific change at distinct locations is thought to indicate the dynamic formation of local neuronal assemblies during the activation of cortical object representations. As analytically power increase is just a property of a single location, phase-synchrony was introduced to investigate the formation of large-scale networks between spatially distant brain sites. However, classical phase-synchrony reveals symmetric, pair-wise correlations and is not suited to uncover the directionality of interactions. Here, we investigated the neural mechanism of visual object processing by means of directional coupling analysis going beyond recording sites, but rather assessing the directionality of oscillatory interactions between brain areas directly. This study is the first to identify the directionality of oscillatory brain interactions in source space during human object recognition and suggests that familiar, but not unfamiliar, objects engage widespread reciprocal information flow. Directionality of cortical information-flow was calculated based upon an established Granger-Causality coupling-measure (partial-directed coherence; PDC using autoregressive modeling. To enable comparison with previous coupling studies lacking directional information, phase-locking analysis was applied, using wavelet-based signal decompositions. Both, autoregressive modeling and wavelet analysis, revealed an augmentation of iGBRs during the presentation of familiar objects relative to unfamiliar controls, which was localized to inferior-temporal, superior-parietal and frontal brain areas by means of distributed source reconstruction. The multivariate analysis of PDC evaluated each possible direction of brain interaction and revealed widespread reciprocal information-transfer during familiar

  20. The Role of the Prefrontal Cortex in Action Perception.

    Science.gov (United States)

    Raos, Vassilis; Savaki, Helen E

    2017-10-01

    In an attempt to shed light on the role of the prefrontal cortex in action perception, we used the quantitative 14C-deoxyglucose method to reveal the effects elicited by reaching-to-grasp in the light or in the dark and by observation of the same action executed by an external agent. We analyzed the cortical areas in the principal sulcus, the superior and inferior lateral prefrontal convexities and the orbitofrontal cortex of monkeys. We found that execution in the light and observation activated in common most of the lateral prefrontal and orbitofrontal cortical areas, with the exception of 9/46-dorsal activated exclusively for observation and 9/46-ventral, 11 and 13 activated only for execution. Execution in the dark implicated only the ventral bank of the principal sulcus and its adjacent inferior convexity along with areas 47/12-dorsal and 13, whereas execution in the light activated both banks of the principal sulcus and both superior and inferior convexities along with areas 10 and 11. Our results demonstrate that the prefrontal cortex integrates information in the service of both action generation and action perception, and are discussed in relation to its contribution in movement suppression during action observation and in attribution of action to the correct agent. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. Cortical Structural Abnormalities in Deficit Versus Nondeficit Schizophrenia

    Science.gov (United States)

    Fischer, Bernard A.; Keller, William R.; Arango, Celso; Pearlson, Godfrey; McMahon, Robert P.; Meyer, Walter A.; Francis, Alan; Kirkpatrick, Brian; Carpenter, William T.; Buchanan, Robert W.

    2012-01-01

    Objective To examine the structural integrity of the dorsolateral prefrontal-basal ganglia-thalamocortical circuit in people with the deficit form of schizophrenia. Method A three-dimensional structural MRI sequence was used to conduct morphometric assessments of cortical and subcortical regions in deficit and nondeficit outpatients with schizophrenia and healthy controls. Results The superior prefrontal and superior and middle temporal gyral gray matter volumes were significantly smaller in the deficit versus the nondeficit group and normal control groups. There were no significant group differences in examined subcortical structures. Conclusion People with deficit schizophrenia are characterized by selective reductions in the prefrontal and temporal cortex. PMID:22336954

  2. Spaced Noninvasive Brain Stimulation: Prospects for Inducing Long-Lasting Human Cortical Plasticity.

    Science.gov (United States)

    Goldsworthy, Mitchell R; Pitcher, Julia B; Ridding, Michael C

    2015-09-01

    Neuroplasticity is critical for learning, memory, and recovery of lost function following neurological damage. Noninvasive brain stimulation (NIBS) techniques can induce neuroplastic changes in the human cortex that are behaviorally relevant, raising the exciting possibility that these techniques might be therapeutically beneficial for neurorehabilitation following brain injury. However, the short duration and instability of induced effects currently limits their usefulness. To date, trials investigating the therapeutic value of neuroplasticity-inducing NIBS have used either single or multiple treatment sessions, typically repeated once-daily for 1 to 2 weeks. Although multiple stimulation sessions are presumed to have cumulative effects on neuroplasticity induction, there is little direct scientific evidence to support this "once-daily" approach. In animal models, the repeated application of stimulation protocols spaced using relatively short intervals (typically of the order of minutes) induces long-lasting and stable changes in synaptic efficacy. Likewise, learning through spaced repetition facilitates the establishment of long-term memory. In both cases, the spacing interval is critical in determining the outcome. Emerging evidence in healthy human populations suggests that the within-session spacing of NIBS protocols may be an effective approach for significantly prolonging the duration of induced neuroplastic changes. Similar to findings in the animal and learning literature, the interval at which spaced NIBS is applied seems to be a critical factor influencing the neuroplastic response. In this Point of View article, we propose that to truly exploit the therapeutic opportunities provided by NIBS, future clinical trials should consider the optimal spacing interval for repeated applications. © The Author(s) 2014.

  3. Time-frequency analysis of chemosensory event-related potentials to characterize the cortical representation of odors in humans.

    Directory of Open Access Journals (Sweden)

    Caroline Huart

    Full Text Available BACKGROUND: The recording of olfactory and trigeminal chemosensory event-related potentials (ERPs has been proposed as an objective and non-invasive technique to study the cortical processing of odors in humans. Until now, the responses have been characterized mainly using across-trial averaging in the time domain. Unfortunately, chemosensory ERPs, in particular, olfactory ERPs, exhibit a relatively low signal-to-noise ratio. Hence, although the technique is increasingly used in basic research as well as in clinical practice to evaluate people suffering from olfactory disorders, its current clinical relevance remains very limited. Here, we used a time-frequency analysis based on the wavelet transform to reveal EEG responses that are not strictly phase-locked to onset of the chemosensory stimulus. We hypothesized that this approach would significantly enhance the signal-to-noise ratio of the EEG responses to chemosensory stimulation because, as compared to conventional time-domain averaging, (1 it is less sensitive to temporal jitter and (2 it can reveal non phase-locked EEG responses such as event-related synchronization and desynchronization. METHODOLOGY/PRINCIPAL FINDINGS: EEG responses to selective trigeminal and olfactory stimulation were recorded in 11 normosmic subjects. A Morlet wavelet was used to characterize the elicited responses in the time-frequency domain. We found that this approach markedly improved the signal-to-noise ratio of the obtained EEG responses, in particular, following olfactory stimulation. Furthermore, the approach allowed characterizing non phase-locked components that could not be identified using conventional time-domain averaging. CONCLUSION/SIGNIFICANCE: By providing a more robust and complete view of how odors are represented in the human brain, our approach could constitute the basis for a robust tool to study olfaction, both for basic research and clinicians.

  4. Influence of short-term fixation with mixed formalin or ethanol solution on the mechanical properties of human cortical bone

    Directory of Open Access Journals (Sweden)

    Mick E.

    2015-09-01

    Full Text Available Bone specimens obtained for biomechanical experiments are fresh-frozen for storage to slow down tissue degradation and autolysis in long-term storage. Alternatively, due to infectious risks related to the fresh tissues, fixative agents are commonly used. However, fixatives will likely change the mechanical properties of bone. Existing studies on this issue gave controversial results that are hardly comparable due to a variety of measurement approaches. For this reason, the influence of ethanol and a formalin-based fixative agent was evaluated on the mechanical properties of human cortical bone specimens by means of four-point-bending tests. 127 prismatic specimens with rectangular cross sections (2.5 x 2.5 x 20 mm3 were obtained from different regions of two fresh human femora (medial, lateral, dorsal, ventral. Specimens were either fixed in ethanol or in a mixed formalin solution or frozen following a given scheme. After two weeks of storage the samples were re-hydrated in isotonic saline and subsequently tested mechanically. The elastic bending modulus and ultimate bending strength were computed considering the actual dimensions of each specific specimen. For statistical analysis a one-way-ANOVA and an LSD post-hoc-test were performed. For ultimate bending strength no significant differences due to formalin or ethanol fixation, as compared to unfixed-fresh bone specimens could be found. And only for few cases significant differences in elastic bending modulus were observed when the two bones were evaluated separately. Since more differences of significant level due to the anatomical region of the samples were determined, the original location seems to have more influence on the evaluated mechanical properties than the method of (chemical fixation. Consequently, ethanol and the mixed formalin solution can be recommended as a fixation agent for samples in biomechanical testing, if these samples are rinsed in isotonic saline prior to static

  5. Music-induced cortical plasticity and lateral inhibition in the human auditory cortex as foundations for tonal tinnitus treatment

    Directory of Open Access Journals (Sweden)

    Christo ePantev

    2012-06-01

    Full Text Available Over the past 15 years, we have studied plasticity in the human auditory cortex by means of magnetoencephalography (MEG. Two main topics nurtured our curiosity: the effects of musical training on plasticity in the auditory system, and the effects of lateral inhibition. One of our plasticity studies found that listening to notched music for three hours inhibited the neuronal activity in the auditory cortex that corresponded to the center-frequency of the notch, suggesting suppression of neural activity by lateral inhibition. Crucially, the overall effects of lateral inhibition on human auditory cortical activity were stronger than the habituation effects. Based on these results we developed a novel treatment strategy for tonal tinnitus - tailor-made notched music training (TMNMT. By notching the music energy spectrum around the individual tinnitus frequency, we intended to attract lateral inhibition to auditory neurons involved in tinnitus perception. So far, the training strategy has been evaluated in two studies. The results of the initial long-term controlled study (12 months supported the validity of the treatment concept: subjective tinnitus loudness and annoyance were significantly reduced after TMNMT but not when notching spared the tinnitus frequencies. Correspondingly, tinnitus-related auditory evoked fields (AEFs were significantly reduced after training. The subsequent short-term (5 days training study indicated that training was more effective in the case of tinnitus frequencies ≤ 8 kHz compared to tinnitus frequencies > 8 kHz, and that training should be employed over a long-term in order to induce more persistent effects. Further development and evaluation of TMNMT therapy are planned. A goal is to transfer this novel, completely non-invasive, and low-cost treatment approach for tonal tinnitus into routine clinical practice.

  6. Cortical oscillations in auditory perception and speech: evidence for two temporal windows in human auditory cortex

    Directory of Open Access Journals (Sweden)

    Huan eLuo

    2012-05-01

    Full Text Available Natural sounds, including vocal communication sounds, contain critical information at multiple time scales. Two essential temporal modulation rates in speech have been argued to be in the low gamma band (~20-80 ms duration information and the theta band (~150-300 ms, corresponding to segmental and syllabic modulation rates, respectively. On one hypothesis, auditory cortex implements temporal integration using time constants closely related to these values. The neural correlates of a proposed dual temporal window mechanism in human auditory cortex remain poorly understood. We recorded MEG responses from participants listening to non-speech auditory stimuli with different temporal structures, created by concatenating frequency-modulated segments of varied segment durations. We show that these non-speech stimuli with temporal structure matching speech-relevant scales (~25 ms and ~200 ms elicit reliable phase tracking in the corresponding associated oscillatory frequencies (low gamma and theta bands. In contrast, stimuli with non-matching temporal structure do not. Furthermore, the topography of theta band phase tracking shows rightward lateralization while gamma band phase tracking occurs bilaterally. The results support the hypothesis that there exists multi-time resolution processing in cortex on discontinuous scales and provide evidence for an asymmetric organization of temporal analysis (asymmetrical sampling in time, AST. The data argue for a macroscopic-level neural mechanism underlying multi-time resolution processing: the sliding and resetting of intrinsic temporal windows on privileged time scales.

  7. Changes of cortical excitability as markers of antidepressant response in bipolar depression: preliminary data obtained by combining transcranial magnetic stimulation (TMS) and electroencephalography (EEG).

    Science.gov (United States)

    Canali, Paola; Sferrazza Papa, Giovanna; Casali, Adenauer G; Schiena, Giandomenico; Fecchio, Matteo; Pigorini, Andrea; Smeraldi, Enrico; Colombo, Cristina; Benedetti, Francesco

    2014-12-01

    It is still unclear which biological changes are needed to recover from a major depressive episode. Current perspectives focus on cortical synaptic neuroplasticity. Measures of cortical responses evoked by transcranial magnetic stimulation (TMS) change with sleep homeostasic pressure in humans and approximate measures of synaptic strength in animal models. Using repeated total sleep deprivation as a model of antidepressant treatment, we aimed to correlate recovery from depression with these measures of cortical excitability. We recorded electroencephalographic responses to TMS in the prefrontal cortex of 21 depressed inpatients with bipolar disorder treated with repeated sleep deprivation combined with light therapy. We performed seven TMS/electroencephalography sessions during one week and calculated three measures of cortical excitability. Cortical excitability progressively increased during the antidepressant treatment and as a function of time awake. Higher values differentiated responders from non-responders at baseline and during and after treatment on all measures. Changes in measures of cortical excitability parallel and predict antidepressant response to combined sleep deprivation and light therapy. Data suggest that promoting cortical plasticity in bipolar depression could be a major effect of successful antidepressant treatments, and that patients not responding could suffer a persistent impairment in their neuroplasticity mechanisms. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Behavioral effects of chronically elevated corticosterone in subregions of the medial prefrontal cortex.

    Science.gov (United States)

    Croteau, Joshua D; Schulkin, Jay; Shepard, Jack D

    2017-01-01

    The medial prefrontal cortex is a key mediator of behavioral aspects of the defense response. Since chronic exposure to elevated glucocorticoids alters the dendritic structure of neurons in the medial prefrontal cortex, such exposure may alter behavioral responses to danger as well. We examined the effects of chronically elevated corticosterone in discrete regions of the medial prefrontal cortex on exploration of the elevated plus-maze. Chronically elevated corticosterone in the prelimbic or infralimbic cortices reduced open arm exploration. This effect was specific to the ventral regions of the medial prefrontal cortex as corticosterone had no effect on plus-maze exploration when administered into the anterior cingulate cortex. Taken together, these findings demonstrate clear regional differences for the effects of corticosterone in the medial prefrontal cortex. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Impairment in Delayed Non-Matching to Sample Following Lesions of Dorsal Prefrontal Cortex

    OpenAIRE

    Moore, Tara L.; Schettler, Stephen P.; Killiany, Ronald J.; Rosene, Douglas L.; Moss, Mark B.

    2012-01-01

    The prefrontal cortex has been identified as essential for executive function, as well as for aspects of rule learning and recognition memory. As part of our studies to assess prefrontal cortical function in the monkey, we evaluated the effects of damage to the dorsal prefrontal cortex (DPFC) on the Category Set Shifting Task (CSST), a test of abstraction and set-shifting, and on the Delayed Non Matching-to-Sample (DNMS) task, a benchmark test of rule learning and recognition memory. The DPFC...

  10. Hippocampo-cortical coupling mediates memory consolidation during sleep.

    Science.gov (United States)

    Maingret, Nicolas; Girardeau, Gabrielle; Todorova, Ralitsa; Goutierre, Marie; Zugaro, Michaël

    2016-07-01

    Memory consolidation is thought to involve a hippocampo-cortical dialog during sleep to stabilize labile memory traces for long-term storage. However, direct evidence supporting this hypothesis is lacking. We dynamically manipulated the temporal coordination between the two structures during sleep following training on a spatial memory task specifically designed to trigger encoding, but not memory consolidation. Reinforcing the endogenous coordination between hippocampal sharp wave-ripples, cortical delta waves and spindles by timed electrical stimulation resulted in a reorganization of prefrontal cortical networks, along with subsequent increased prefrontal responsivity to the task and high recall performance on the next day, contrary to control rats, which performed at chance levels. Our results provide, to the best of our knowledge, the first direct evidence for a causal role of a hippocampo-cortical dialog during sleep in memory consolidation, and indicate that the underlying mechanism involves a fine-tuned coordination between sharp wave-ripples, delta waves and spindles.

  11. Quantitative Live Imaging of Human Embryonic Stem Cell Derived Neural Rosettes Reveals Structure-Function Dynamics Coupled to Cortical Development.

    Science.gov (United States)

    Ziv, Omer; Zaritsky, Assaf; Yaffe, Yakey; Mutukula, Naresh; Edri, Reuven; Elkabetz, Yechiel

    2015-10-01

    Neural stem cells (NSCs) are progenitor cells for brain development, where cellular spatial composition (cytoarchitecture) and dynamics are hypothesized to be linked to critical NSC capabilities. However, understanding cytoarchitectural dynamics of this process has been limited by the difficulty to quantitatively image brain development in vivo. Here, we study NSC dynamics within Neural Rosettes--highly organized multicellular structures derived from human pluripotent stem cells. Neural rosettes contain NSCs with strong epithelial polarity and are expected to perform apical-basal interkinetic nuclear migration (INM)--a hallmark of cortical radial glial cell development. We developed a quantitative live imaging framework to characterize INM dynamics within rosettes. We first show that the tendency of cells to follow the INM orientation--a phenomenon we referred to as radial organization, is associated with rosette size, presumably via mechanical constraints of the confining structure. Second, early forming rosettes, which are abundant with founder NSCs and correspond to the early proliferative developing cortex, show fast motions and enhanced radial organization. In contrast, later derived rosettes, which are characterized by reduced NSC capacity and elevated numbers of differentiated neurons, and thus correspond to neurogenesis mode in the developing cortex, exhibit slower motions and decreased radial organization. Third, later derived rosettes are characterized by temporal instability in INM measures, in agreement with progressive loss in rosette integrity at later developmental stages. Finally, molecular perturbations of INM by inhibition of actin or non-muscle myosin-II (NMII) reduced INM measures. Our framework enables quantification of cytoarchitecture NSC dynamics and may have implications in functional molecular studies, drug screening, and iPS cell-based platforms for disease modeling.

  12. Age-related changes in the plasticity and toughness of human cortical bone at multiple length-scales

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, Elizabeth A.; Schaible, Eric; Bale, Hrishikesh; Barth, Holly D.; Tang, Simon Y.; Reichert, Peter; Busse, Bjoern; Alliston, Tamara; Ager III, Joel W.; Ritchie, Robert O.

    2011-08-10

    The structure of human cortical bone evolves over multiple length-scales from its basic constituents of collagen and hydroxyapatite at the nanoscale to osteonal structures at nearmillimeter dimensions, which all provide the basis for its mechanical properties. To resist fracture, bone’s toughness is derived intrinsically through plasticity (e.g., fibrillar sliding) at structural-scales typically below a micron and extrinsically (i.e., during crack growth) through mechanisms (e.g., crack deflection/bridging) generated at larger structural-scales. Biological factors such as aging lead to a markedly increased fracture risk, which is often associated with an age-related loss in bone mass (bone quantity). However, we find that age-related structural changes can significantly degrade the fracture resistance (bone quality) over multiple lengthscales. Using in situ small-/wide-angle x-ray scattering/diffraction to characterize sub-micron structural changes and synchrotron x-ray computed tomography and in situ fracture-toughness measurements in the scanning electron microscope to characterize effects at micron-scales, we show how these age-related structural changes at differing size-scales degrade both the intrinsic and extrinsic toughness of bone. Specifically, we attribute the loss in toughness to increased non-enzymatic collagen cross-linking which suppresses plasticity at nanoscale dimensions and to an increased osteonal density which limits the potency of crack-bridging mechanisms at micron-scales. The link between these processes is that the increased stiffness of the cross-linked collagen requires energy to be absorbed by “plastic” deformation at higher structural levels, which occurs by the process of microcracking.

  13. Characterization of the effects of x-ray irradiation on the hierarchical structure and mechanical properties of human cortical bone

    Energy Technology Data Exchange (ETDEWEB)

    Barth, Holly; Zimmermann, Elizabeth; Schaible, Eric; Tang, Simon; Alliston, Tamara; Ritchie, Robert

    2011-08-19

    Bone comprises a complex structure of primarily collagen, hydroxyapatite and water, where each hierarchical structural level contributes to its strength, ductility and toughness. These properties, however, are degraded by irradiation, arising from medical therapy or bone-allograft sterilization. We provide here a mechanistic framework for how irradiation affects the nature and properties of human cortical bone over a range of characteristic (nano to macro) length-scales, following x-­ray exposures up to 630 kGy. Macroscopically, bone strength, ductility and fracture resistance are seen to be progressively degraded with increasing irradiation levels. At the micron-­scale, fracture properties, evaluated using in-situ scanning electron microscopy and synchrotron x-ray computed micro-tomography, provide mechanistic information on how cracks interact with the bone-matrix structure. At sub-micron scales, strength properties are evaluated with in-situ tensile tests in the synchrotron using small-/wide-angle x-ray scattering/diffraction, where strains are simultaneously measured in the macroscopic tissue, collagen fibrils and mineral. Compared to healthy bone, results show that the fibrillar strain is decreased by ~40% following 70 kGy exposures, consistent with significant stiffening and degradation of the collagen. We attribute the irradiation-­induced deterioration in mechanical properties to mechanisms at multiple length-scales, including changes in crack paths at micron-­scales, loss of plasticity from suppressed fibrillar sliding at sub-­micron scales, and the loss and damage of collagen at the nano-­scales, the latter being assessed using Raman and Fourier-Transform-Infrared spectroscopy and a fluorometric assay.

  14. Characteristics of sensori-motor interaction in the primary and secondary somatosensory cortices in humans: a magnetoencephalography study.

    Science.gov (United States)

    Wasaka, T; Kida, T; Nakata, H; Akatsuka, K; Kakigi, R

    2007-10-26

    We studied sensori-motor interaction in the primary (SI) and secondary somatosensory cortex (SII) using magnetoencephalography. Since SII in both hemispheres was activated following unilateral stimulation, we analyzed SIIc (contralateral to stimulation) as well as SIIi (ipsilateral to stimulation). Four tasks were performed in human subjects in which a voluntary thumb movement of the left or right hand was combined with electrical stimulation applied to the index finger of the left or right hand: L(M)-L(S) (movement of the left thumb triggered stimulation to the left finger), L(M)-R(S) (movement of the left thumb triggered electrical stimulation to the right finger), R(M)-R(S) (movement of the right thumb triggered electrical stimulation to the right finger), and R(M)-L(S) (movement of the right thumb triggered electrical stimulation to the left finger). Stimulation to the index finger only (S condition) was also recorded. In SI, the amplitude of N20m and P35m was significantly attenuated in the R(M)-R(S) and L(M)-L(S) tasks compared with the S condition, but that for other tasks showed no change, corresponding to a conventional gating phenomenon. In SII, the R(M)-L(S) task significantly enhanced the amplitude of SIIc but reduced that of SIIi compared with the S condition. The L(M)-L(S) and R(M)-R(S) tasks caused a significant enhancement only in SIIi. The L(M)-R(S) task enhanced the amplitude only in SIIc. The laterality index showed that SII modulation with voluntary movement was more dominant in the hemisphere ipsilateral to movement but was not affected by the side of stimulation. These results provided the characteristics of activities in somatosensory cortices, a simple inhibition in SI but complicated changes in SII depending on the side of movement and stimulation, which may indicate the higher cognitive processing in SII.

  15. Quantitative Live Imaging of Human Embryonic Stem Cell Derived Neural Rosettes Reveals Structure-Function Dynamics Coupled to Cortical Development.

    Directory of Open Access Journals (Sweden)

    Omer Ziv

    2015-10-01

    Full Text Available Neural stem cells (NSCs are progenitor cells for brain development, where cellular spatial composition (cytoarchitecture and dynamics are hypothesized to be linked to critical NSC capabilities. However, understanding cytoarchitectural dynamics of this process has been limited by the difficulty to quantitatively image brain development in vivo. Here, we study NSC dynamics within Neural Rosettes--highly organized multicellular structures derived from human pluripotent stem cells. Neural rosettes contain NSCs with strong epithelial polarity and are expected to perform apical-basal interkinetic nuclear migration (INM--a hallmark of cortical radial glial cell development. We developed a quantitative live imaging framework to characterize INM dynamics within rosettes. We first show that the tendency of cells to follow the INM orientation--a phenomenon we referred to as radial organization, is associated with rosette size, presumably via mechanical constraints of the confining structure. Second, early forming rosettes, which are abundant with founder NSCs and correspond to the early proliferative developing cortex, show fast motions and enhanced radial organization. In contrast, later derived rosettes, which are characterized by reduced NSC capacity and elevated numbers of differentiated neurons, and thus correspond to neurogenesis mode in the developing cortex, exhibit slower motions and decreased radial organization. Third, later derived rosettes are characterized by temporal instability in INM measures, in agreement with progressive loss in rosette integrity at later developmental stages. Finally, molecular perturbations of INM by inhibition of actin or non-muscle myosin-II (NMII reduced INM measures. Our framework enables quantification of cytoarchitecture NSC dynamics and may have implications in functional molecular studies, drug screening, and iPS cell-based platforms for disease modeling.

  16. Tensile material properties of human rib cortical bone under quasi-static and dynamic failure loading and influence of the bone microstucture on failure characteristics

    CERN Document Server

    Subit, Damien; Valazquez-Ameijide, Juan; Arregui-Dalmases, Carlos; Crandall, Jeff

    2011-01-01

    Finite element models of the thorax are under development to assist vehicle safety researchers with the design of countermeasures such as advanced restrain systems. Computational models have become more refined with increasing geometrical complexity as element size decreases. These finite element models can now capture small geometrical features with an attempt to predict fracture. However, the bone material properties currently available, and in particular the rate sensitivity, have been mainly determined from compression tests or tests on long bones. There is a need for a new set of material properties for the human rib cortical bone. With this objective, a new clamping technique was developed to test small bone coupons under tensile loading. Ten coupons were harvested from the cortical shell of the sixth and seventh left ribs from three cadavers. The coupons were tested to fracture under quasi-static (target strain rate of 0.07 %/s) and dynamic loading (target strain rate of 170 %/s). Prior to testing, eac...

  17. The Role of Non-Rapid Eye Movement Slow-Wave Activity in Prefrontal Metabolism across Young and Middle Age Adults

    OpenAIRE

    Wilckens, K.A.; Aizenstein, H J; Nofzinger, E.A.; James, J. A.; Hasler, B.P.; Rosario-Rivera, B.L.; Franzen, P; Germain, A.; Hall, M. H.; Kupfer, D.J.; Price, J C.; Siegle, G.J.; Buysse, D. J.

    2016-01-01

    Electroencephalographic slow-wave activity (0.5���4 Hz) during non rapid-eye-movement (NREM) sleep is a marker for cortical reorganization, particularly within the prefrontal cortex. Greater slow-wave activity during sleep may promote greater waking prefrontal metabolic rate, and in turn, executive function. However, this process may be affected by age. Here we examined whether greater NREM slow-wave activity was associated with higher prefrontal metabolism during wakefulness and whether this...

  18. Using an Artificial Neural Bypass to Restore Cortical Control of Rhythmic Movements in a Human with Quadriplegia

    Science.gov (United States)

    Sharma, Gaurav; Friedenberg, David A.; Annetta, Nicholas; Glenn, Bradley; Bockbrader, Marcie; Majstorovic, Connor; Domas, Stephanie; Mysiw, W. Jerry; Rezai, Ali; Bouton, Chad

    2016-09-01

    Neuroprosthetic technology has been used to restore cortical control of discrete (non-rhythmic) hand movements in a paralyzed person. However, cortical control of rhythmic movements which originate in the brain but are coordinated by Central Pattern Generator (CPG) neural networks in the spinal cord has not been demonstrated previously. Here we show a demonstration of an artificial neural bypass technology that decodes cortical activity and emulates spinal cord CPG function allowing volitional rhythmic hand movement. The technology uses a combination of signals recorded from the brain, machine-learning algorithms to decode the signals, a numerical model of CPG network, and a neuromuscular electrical stimulation system to evoke rhythmic movements. Using the neural bypass, a quadriplegic participant was able to initiate, sustain, and switch between rhythmic and discrete finger movements, using his thoughts alone. These results have implications in advancing neuroprosthetic technology to restore complex movements in people living with paralysis.

  19. Music-induced cortical plasticity and lateral inhibition in the human auditory cortex as foundations for tonal tinnitus treatment

    Science.gov (United States)

    Pantev, Christo; Okamoto, Hidehiko; Teismann, Henning

    2012-01-01

    Over the past 15 years, we have studied plasticity in the human auditory cortex by means of magnetoencephalography (MEG). Two main topics nurtured our curiosity: the effects of musical training on plasticity in the auditory system, and the effects of lateral inhibition. One of our plasticity studies found that listening to notched music for 3 h inhibited the neuronal activity in the auditory cortex that corresponded to the center-frequency of the notch, suggesting suppression of neural activity by lateral inhibition. Subsequent research on this topic found that suppression was notably dependent upon the notch width employed, that the lower notch-edge induced stronger attenuation of neural activity than the higher notch-edge, and that auditory focused attention strengthened the inhibitory networks. Crucially, the overall effects of lateral inhibition on human auditory cortical activity were stronger than the habituation effects. Based on these results we developed a novel treatment strategy for tonal tinnitus—tailor-made notched music training (TMNMT). By notching the music energy spectrum around the individual tinnitus frequency, we intended to attract lateral inhibition to auditory neurons involved in tinnitus perception. So far, the training strategy has been evaluated in two studies. The results of the initial long-term controlled study (12 months) supported the validity of the treatment concept: subjective tinnitus loudness and annoyance were significantly reduced after TMNMT but not when notching spared the tinnitus frequencies. Correspondingly, tinnitus-related auditory evoked fields (AEFs) were significantly reduced after training. The subsequent short-term (5 days) training study indicated that training was more effective in the case of tinnitus frequencies ≤ 8 kHz compared to tinnitus frequencies >8 kHz, and that training should be employed over a long-term in order to induce more persistent effects. Further development and evaluation of TMNMT therapy

  20. Decreased cortical response to verbal working memory following sleep deprivation.

    Science.gov (United States)

    Mu, Qiwen; Nahas, Ziad; Johnson, Kevin A; Yamanaka, Kaori; Mishory, Alexander; Koola, Jejo; Hill, Sarah; Horner, Michael D; Bohning, Daryl E; George, Mark S

    2005-01-01

    To investigate the cerebral hemodynamic response to verbal working memory following sleep deprivation. Subjects were scheduled for 3 functional magnetic resonance imaging scanning visits: an initial screening day (screening state), after a normal night of sleep (rested state), and after 30 hours of sleep deprivation (sleep-deprivation state). Subjects performed the Sternberg working memory task alternated with a control task during an approximate 13-minute functional magnetic resonance imaging scan. Inpatient General Clinical Research Center and outpatient functional magnetic resonance imaging center. Results from 33 men (mean age, 28.6 +/- 6.6 years) were included in the final analyses. None. Subjects performed the same Sternberg working memory task at the 3 states within the magnetic resonance imaging scanner. Neuroimaging data revealed that, in the screening and rested states, the brain regions activated by the Sternberg working memory task were found in the left dorsolateral prefrontal cortex, Broca's area, supplementary motor area, right ventrolateral prefrontal cortex, and the bilateral posterior parietal cortexes. After 30 hours of sleep deprivation, the activations in these brain regions significantly decreased, especially in the bilateral posterior parietal cortices. Task performance also decreased. A repeated-measures analysis of variance revealed that subjects at the screening and rested states had similar activation patterns, with each having significantly more activation than during the sleep-deprivation state. These results suggest that human sleep-deprivation deficits are not caused solely or even predominantly by prefrontal cortex dysfunction and that the paretal cortex, in particular, and other brain regions involved in verbal working memory exhibit significant sleep-deprivation vulnerability.

  1. Cortical network dynamics with time delays reveals functional connectivity in the resting brain.

    NARCIS (Netherlands)

    Ghosh, A.; Rho, Y.; McIntosh, A.R.; Kotter, R.; Jirsa, V.K.

    2008-01-01

    In absence of all goal-directed behavior, a characteristic network of cortical regions involving prefrontal and cingulate cortices consistently shows temporally coherent fluctuations. The origin of these fluctuations is unknown, but has been hypothesized to be of stochastic nature. In the present

  2. Cortical depth dependence of the BOLD initial dip and poststimulus undershoot in human visual cortex at 7 Tesla

    NARCIS (Netherlands)

    Siero, JCW; Hendrikse, J; Hoogduin, Hans; Petridou, N; Luijten, Peter; Donahue, Manus J.

    PurposeOwing to variability in vascular dynamics across cerebral cortex, blood-oxygenation-level-dependent (BOLD) spatial and temporal characteristics should vary as a function of cortical-depth. Here, the positive response, initial dip (ID), and post-stimulus undershoot (PSU) of the BOLD response

  3. An efficient and accurate new method for locating the F3 position for prefrontal TMS applications.

    Science.gov (United States)

    Beam, William; Borckardt, Jeffrey J; Reeves, Scott T; George, Mark S

    2009-01-01

    The International 10-20 system is a method for standardized placement of electroencephalogram (EEG) electrodes. The 10-20 system correlates external skull locations with the underlying cortical areas. This system accounts for variability in patient skull size by using certain percentages of the circumference and distances between four basic anatomical landmarks. This 10-20 system has recently been used in transcranial magnetic stimulation (TMS) research for locating specific cortical areas. In the treatment of depression (and some types of pain), the desired placement of the TMS coil is often above the left dorsalateral prefrontal cortex (DLPFC) which corresponds to the F3 location given by the 10-20 system. However, for an administrator with little experience with the 10-20 system, the numerous measurements and calculations can be excessively time-consuming. Additionally, with more measurements comes more opportunity for human error. For this reason we have developed a new, simpler and faster way to find the F3 position using only three skull measurements. In this paper, we describe and illustrate the application of the new F3 location system, provide the formulas used in the calculation of the F3 position, and summarize data from 10 healthy adults. After using both the International 10-20 system and this new method, it appears that the new method is sufficiently accurate; however, future investigations may be warranted to conduct more in dept analyses of the method's utility and potential limitations. This system requires less time and training to find the optimal position for prefrontal coil placement and it saves considerable time compared to the 10-20 EEG system.

  4. Different Mode of Afferents Determines the Frequency Range of High Frequency Activities in the Human Brain: Direct Electrocorticographic Comparison between Peripheral Nerve and Direct Cortical Stimulation.

    Directory of Open Access Journals (Sweden)

    Katsuya Kobayashi

    Full Text Available Physiological high frequency activities (HFA are related to various brain functions. Factors, however, regulating its frequency have not been well elucidated in humans. To validate the hypothesis that different propagation modes (thalamo-cortical vs. cortico-coritcal projections, or different terminal layers (layer IV vs. layer II/III affect its frequency, we, in the primary somatosensory cortex (SI, compared HFAs induced by median nerve stimulation with those induced by electrical stimulation of the cortex connecting to SI. We employed 6 patients who underwent chronic subdural electrode implantation for presurgical evaluation. We evaluated the HFA power values in reference to the baseline overriding N20 (earliest cortical response and N80 (late response of somatosensory evoked potentials (HFA(SEP(N20 and HFA(SEP(N80 and compared those overriding N1 and N2 (first and second responses of cortico-cortical evoked potentials (HFA(CCEP(N1 and HFA(CCEP(N2. HFA(SEP(N20 showed the power peak in the frequency above 200 Hz, while HFA(CCEP(N1 had its power peak in the frequency below 200 Hz. Different propagation modes and/or different terminal layers seemed to determine HFA frequency. Since HFA(CCEP(N1 and HFA induced during various brain functions share a similar broadband profile of the power spectrum, cortico-coritcal horizontal propagation seems to represent common mode of neural transmission for processing these functions.

  5. Spontaneous Decoding of the Timing and Content of Human Object Perception from Cortical Surface Recordings Reveals Complementary Information in the Event-Related Potential and Broadband Spectral Change.

    Directory of Open Access Journals (Sweden)

    Kai J Miller

    2016-01-01

    Full Text Available The link between object perception and neural activity in visual cortical areas is a problem of fundamental importance in neuroscience. Here we show that electrical potentials from the ventral temporal cortical surface in humans contain sufficient information for spontaneous and near-instantaneous identification of a subject's perceptual state. Electrocorticographic (ECoG arrays were placed on the subtemporal cortical surface of seven epilepsy patients. Grayscale images of faces and houses were displayed rapidly in random sequence. We developed a template projection approach to decode the continuous ECoG data stream spontaneously, predicting the occurrence, timing and type of visual stimulus. In this setting, we evaluated the independent and joint use of two well-studied features of brain signals, broadband changes in the frequency power spectrum of the potential and deflections in the raw potential trace (event-related potential; ERP. Our ability to predict both the timing of stimulus onset and the type of image was best when we used a combination of both the broadband response and ERP, suggesting that they capture different and complementary aspects of the subject's perceptual state. Specifically, we were able to predict the timing and type of 96% of all stimuli, with less than 5% false positive rate and a ~20ms error in timing.

  6. Norepinephrine versus dopamine and their interaction in modulating synaptic function in the prefrontal cortex.

    Science.gov (United States)

    Xing, Bo; Li, Yan-Chun; Gao, Wen-Jun

    2016-06-15

    Among the neuromodulators that regulate prefrontal cortical circuit function, the catecholamine transmitters norepinephrine (NE) and dopamine (DA) stand out as powerful players in working memory and attention. Perturbation of either NE or DA signaling is implicated in the pathogenesis of several neuropsychiatric disorders, including attention deficit hyperactivity disorder (ADHD), post-traumatic stress disorder (PTSD), schizophrenia, and drug addiction. Although the precise mechanisms employed by NE and DA to cooperatively control prefrontal functions are not fully understood, emerging research indicates that both transmitters regulate electrical and biochemical aspects of neuronal function by modulating convergent ionic and synaptic signaling in the prefrontal cortex (PFC). This review summarizes previous studies that investigated the effects of both NE and DA on excitatory and inhibitory transmissions in the prefrontal cortical circuitry. Specifically, we focus on the functional interaction between NE and DA in prefrontal cortical local circuitry, synaptic integration, signaling pathways, and receptor properties. Although it is clear that both NE and DA innervate the PFC extensively and modulate synaptic function by activating distinctly different receptor subtypes and signaling pathways, it remains unclear how these two systems coordinate their actions to optimize PFC function for appropriate behavior. Throughout this review, we provide perspectives and highlight several critical topics for future studies. This article is part of a Special Issue entitled SI: Noradrenergic System. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Interactive Effects of Dehydroepiandrosterone and Testosterone on Cortical Thickness during Early Brain Development

    Science.gov (United States)

    Nguyen, Tuong-Vi; McCracken, James T.; Ducharme, Simon; Cropp, Brett F.; Botteron, Kelly N.; Evans, Alan C.

    2013-01-01

    Humans and the great apes are the only species demonstrated to exhibit adrenarche, a key endocrine event associated with prepubertal increases in the adrenal production of androgens, most significantly dehydroepiandrosterone (DHEA) and to a certain degree testosterone. Adrenarche also coincides with the emergence of the prosocial and neurobehavioral skills of middle childhood and may therefore represent a human-specific stage of development. Both DHEA and testosterone have been reported in animal and in vitro studies to enhance neuronal survival and programmed cell death depending on the timing, dose, and hormonal context involved, and to potentially compete for the same signaling pathways. Yet no extant brain-hormone studies have examined the interaction between DHEA- and testosterone-related cortical maturation in humans. Here, we used linear mixed models to examine changes in cortical thickness associated with salivary DHEA and testosterone levels in a longitudinal sample of developmentally healthy children and adolescents 4–22 years old. DHEA levels were associated with increases in cortical thickness of the left dorsolateral prefrontal cortex, right temporoparietal junction, right premotor and right entorhinal cortex between the ages of 4–13 years, a period marked by the androgenic changes of adrenarche. There was also an interaction between DHEA and testosterone on cortical thickness of the right cingulate cortex and occipital pole that was most significant in prepubertal subjects. DHEA and testosterone appear to interact and modulate the complex process of cortical maturation during middle childhood, consistent with evidence at the molecular level of fast/nongenomic and slow/genomic or conversion-based mechanisms underlying androgen-related brain development. PMID:23804104

  8. Efficiency of the Prefrontal Cortex during Working Memory in Attention-Deficit/Hyperactivity Disorder

    Science.gov (United States)

    Sheridan, Margaret A.; Hinshaw, Stephen; D'Esposito, Mark

    2007-01-01

    Objective: Previous research has demonstrated that during task conditions requiring an increase in inhibitory function or working memory, children and adults with attention-deficit/hyperactivity disorder (ADHD) exhibit greater and more varied prefrontal cortical(PFC) activation compared to age-matched control participants. This pattern may reflect…

  9. Decrease of Prefrontal-Posterior EEG Coherence: Loose Control during Social-Emotional Stimulation

    Science.gov (United States)

    Reiser, Eva M.; Schulter, Gunter; Weiss, Elisabeth M.; Fink, Andreas; Rominger, Christian; Papousek, Ilona

    2012-01-01

    In two experiments we aimed to investigate if individual differences in state-dependent decreases or increases of EEG coherence between prefrontal and posterior cortical regions may be indicative of a mechanism modulating the impact social-emotional information has on an individual. Two independent samples were exposed to an emotional stimulation…

  10. Stimulant Medication and Prefrontal Functional Connectivity during Working Memory in ADHD: A Preliminary Report

    Science.gov (United States)

    Sheridan, Margaret A.; Hinshaw, Stephen; D'Esposito, Mark

    2010-01-01

    Objective: Recent theoretical and empirical work suggests that while unmedicated, children with ADHD have a deficit in subcortical processing that leads to greater and more varied prefrontal cortical (PFC) activation, compared to (a) age-matched control participants and (b) their own brain activity while on stimulant medication. This pattern has…

  11. The role of prefrontal cortex in psychopathy

    Science.gov (United States)

    Koenigs, Michael

    2014-01-01

    Psychopathy is a personality disorder characterized by remorseless and impulsive antisocial behavior. Given the significant societal costs of the recidivistic criminal activity associated with the disorder, there is a pressing need for more effective treatment strategies, and hence, a better understanding of the psychobiological mechanisms underlying the disorder. The prefrontal cortex (PFC) is likely to play an important role in psychopathy. In particular, the ventromedial and anterior cingulate sectors of PFC are theorized to mediate a number of social and affective decision-making functions that appear to be disrupted in psychopathy. This article provides a critical summary of human neuroimaging data implicating prefrontal dysfunction in psychopathy. A growing body of evidence associates psychopathy with structural and functional abnormalities in ventromedial PFC and anterior cingulate cortex. Although this burgeoning field still faces a number of methodological challenges and outstanding questions that will need to be resolved by future studies, the research to date has established a link between psychopathy and PFC. PMID:22752782

  12. Capacity-speed relationships in prefrontal cortex.

    Directory of Open Access Journals (Sweden)

    Vivek Prabhakaran

    Full Text Available Working memory (WM capacity and WM processing speed are simple cognitive measures that underlie human performance in complex processes such as reasoning and language comprehension. These cognitive measures have shown to be interrelated in behavioral studies, yet the neural mechanism behind this interdependence has not been elucidated. We have carried out two functional MRI studies to separately identify brain regions involved in capacity and speed. Experiment 1, using a block-design WM verbal task, identified increased WM capacity with increased activity in right prefrontal regions, and Experiment 2, using a single-trial WM verbal task, identified increased WM processing speed with increased activity in similar regions. Our results suggest that right prefrontal areas may be a common region interlinking these two cognitive measures. Moreover, an overlap analysis with regions associated with binding or chunking suggest that this strategic memory consolidation process may be the mechanism interlinking WM capacity and WM speed.

  13. Neonatal mouse cortical but not isogenic human astrocyte feeder layers enhance the functional maturation of induced pluripotent stem cell-derived neurons in culture.

    Science.gov (United States)

    Lischka, Fritz W; Efthymiou, Anastasia; Zhou, Qiong; Nieves, Michael D; McCormack, Nikki M; Wilkerson, Matthew D; Sukumar, Gauthaman; Dalgard, Clifton L; Doughty, Martin L

    2018-04-01

    Human induced pluripotent stem (iPS) cell-derived neurons and astrocytes are attractive cellular tools for nervous system disease modeling and drug screening. Optimal utilization of these tools requires differentiation protocols that efficiently generate functional cell phenotypes in vitro. As nervous system function is dependent on networked neuronal activity involving both neuronal and astrocytic synaptic functions, we examined astrocyte effects on the functional maturation of neurons from human iPS cell-derived neural stem cells (NSCs). We first demonstrate human iPS cell-derived NSCs can be rapidly differentiated in culture to either neurons or astrocytes with characteristic cellular, molecular and physiological features. Although differentiated neurons were capable of firing multiple action potentials (APs), few cells developed spontaneous electrical activity in culture. We show spontaneous electrical activity was significantly increased by neuronal differentiation of human NSCs on feeder layers of neonatal mouse cortical astrocytes. In contrast, co-culture on feeder layers of isogenic human iPS cell-derived astrocytes had no positive effect on spontaneous neuronal activity. Spontaneous electrical activity was dependent on glutamate receptor-channel function and occurred without changes in I Na , I K , V m , and AP properties of iPS cell-derived neurons. These data demonstrate co-culture with neonatal mouse cortical astrocytes but not human isogenic iPS cell-derived astrocytes stimulates glutamatergic synaptic transmission between iPS cell-derived neurons in culture. We present RNA-sequencing data for an immature, fetal-like status of our human iPS cell-derived astrocytes as one possible explanation for their failure to enhance synaptic activity in our co-culture system. © 2017 Wiley Periodicals, Inc.

  14. Differential longitudinal changes in cortical thickness, surface area and volume across the adult life span: regions of accelerating and decelerating change.

    Science.gov (United States)

    Storsve, Andreas B; Fjell, Anders M; Tamnes, Christian K; Westlye, Lars T; Overbye, Knut; Aasland, Hilde W; Walhovd, Kristine B

    2014-06-18

    Human cortical thickness and surface area are genetically independent, emerge through different neurobiological events during development, and are sensitive to different clinical conditions. However, the relationship between changes in the two over time is unknown. Additionally, longitudinal studies have almost invariably been restricted to older adults, precluding the delineation of adult life span trajectories of change in cortical structure. In this longitudinal study, we investigated changes in cortical thickness, surface area, and volume after an average interval of 3.6 years in 207 well screened healthy adults aged 23-87 years. We hypothesized that the relationships among metrics are dynamic across the life span, that the primary contributor to cortical volume reductions in aging is cortical thinning, and that magnitude of change varies with age and region. Changes over time were seen in cortical area (mean annual percentage change [APC], -0.19), thickness (APC, -0.35), and volume (APC, -0.51) in most regions. Volume changes were primarily explained by changes in thickness rather than area. A negative relationship between change in thickness and surface area was found across several regions, where more thinning was associated with less decrease in area, and vice versa. Accelerating changes with increasing age was seen in temporal and occipital cortices. In contrast, decelerating changes were seen in prefrontal and anterior cingulate cortices. In conclusion, a dynamic relationship between cortical thickness and surface area changes exists throughout the adult life span. The mixture of accelerating and decelerating changes further demonstrates the importance of studying these metrics across the entire adult life span. Copyright © 2014 the authors 0270-6474/14/348488-11$15.00/0.

  15. Modeling neurodevelopment and cortical dysfunction in SPG11-linked hereditary spastic paraplegia using human induced pluripotent stem cells

    OpenAIRE

    Mishra, Himanshu Kumar

    2016-01-01

    Hereditary spastic paraplegias (HSPs) are a heterogeneous group of inherited motor neuron diseases characterized by progressive spasticity and weakness of the lower limbs. Mutations in the Spastic Paraplegia Gene11 (SPG11), encoding spatacsin, cause the most frequent form of autosomal recessive HSP. SPG11 patients are clinically distinguishable from most other HSPs, by severe cortical atrophy and presence of a thin corpus callosum (TCC), associated with cognitive deficits. Partly due to l...

  16. Synchronization of Isolated Downstates (K-Complexes) May Be Caused by Cortically-Induced Disruption of Thalamic Spindling

    Science.gov (United States)

    Mak-McCully, Rachel A.; Deiss, Stephen R.; Rosen, Burke Q.; Jung, Ki-Young; Sejnowski, Terrence J.; Bastuji, Hélène; Rey, Marc

    2014-01-01

    Sleep spindles and K-complexes (KCs) define stage 2 NREM sleep (N2) in humans. We recently showed that KCs are isolated downstates characterized by widespread cortical silence. We demonstrate here that KCs can be quasi-synchronous across scalp EEG and across much of the cortex using electrocorticography (ECOG) and localized transcortical recordings (bipolar SEEG). We examine the mechanism of synchronous KC production by creating the first conductance based thalamocortical network model of N2 sleep to generate both spontaneous spindles and KCs. Spontaneous KCs are only observed when the model includes diffuse projections from restricted prefrontal areas to the thalamic reticular nucleus (RE), consistent with recent anatomical findings in rhesus monkeys. Modeled KCs begin with a spontaneous focal depolarization of the prefrontal neurons, followed by depolarization of the RE. Surprisingly, the RE depolarization leads to decreased firing due to disrupted spindling, which in turn is due to depolarization-induced inactivation of the low-threshold Ca2+ current (IT). Further, although the RE inhibits thalamocortical (TC) neurons, decreased RE firing causes decreased TC cell firing, again because of disrupted spindling. The resulting abrupt removal of excitatory input to cortical pyramidal neurons then leads to the downstate. Empirically, KCs may also be evoked by sensory stimuli while maintaining sleep. We reproduce this phenomenon in the model by depolarization of either the RE or the widely-projecting prefrontal neurons. Again, disruption of thalamic spindling plays a key role. Higher levels of RE stimulation also cause downstates, but by directly inhibiting the TC neurons. SEEG recordings from the thalamus and cortex in a single patient demonstrated the model prediction that thalamic spindling significantly decreases before KC onset. In conclusion, we show empirically that KCs can be widespread quasi-synchronous cortical downstates, and demonstrate with the first model

  17. Age- and gender-related regional variations of human brain cortical thickness, complexity, and gradient in the third decade.

    Science.gov (United States)

    Creze, Maud; Versheure, Leslie; Besson, Pierre; Sauvage, Chloe; Leclerc, Xavier; Jissendi-Tchofo, Patrice

    2014-06-01

    Brain functional and cytoarchitectural maturation continue until adulthood, but little is known about the evolution of the regional pattern of cortical thickness (CT), complexity (CC), and intensity or gradient (CG) in young adults. We attempted to detect global and regional age- and gender-related variations of brain CT, CC, and CG, in 28 healthy young adults (19-33 years) using a three-dimensional T1 -weighted magnetic resonance imaging sequence and surface-based methods. Whole brain interindividual variations of CT and CG were similar to that in the literature. As a new finding, age- and gender-related variations significantly affected brain complexity (P middle temporal cortices (age), and the fronto-orbital cortex (gender), all in the right hemisphere. Regions of interest analyses showed age and gender significant interaction (P middle temporal-entorrhinal cortices bilaterally, as well as left inferior parietal. In addition, we found significant inverse correlations between CT and CC and between CT and CG over the whole brain and markedly in precentral and occipital areas. Our findings differ in details from previous reports and may correlate with late brain maturation and learning plasticity in young adults' brain in the third decade. Copyright © 2013 Wiley Periodicals, Inc.

  18. Preschool anxiety disorders predict different patterns of amygdala-prefrontal connectivity at school-age.

    Science.gov (United States)

    Carpenter, Kimberly L H; Angold, Adrian; Chen, Nan-Kuei; Copeland, William E; Gaur, Pooja; Pelphrey, Kevin; Song, Allen W; Egger, Helen L

    2015-01-01

    In this prospective, longitudinal study of young children, we examined whether a history of preschool generalized anxiety, separation anxiety, and/or social phobia is associated with amygdala-prefrontal dysregulation at school-age. As an exploratory analysis, we investigated whether distinct anxiety disorders differ in the patterns of this amygdala-prefrontal dysregulation. Participants were children taking part in a 5-year study of early childhood brain development and anxiety disorders. Preschool symptoms of generalized anxiety, separation anxiety, and social phobia were assessed with the Preschool Age Psychiatric Assessment (PAPA) in the first wave of the study when the children were between 2 and 5 years old. The PAPA was repeated at age 6. We conducted functional MRIs when the children were 5.5 to 9.5 year old to assess neural responses to viewing of angry and fearful faces. A history of preschool social phobia predicted less school-age functional connectivity between the amygdala and the ventral prefrontal cortices to angry faces. Preschool generalized anxiety predicted less functional connectivity between the amygdala and dorsal prefrontal cortices in response to fearful faces. Finally, a history of preschool separation anxiety predicted less school-age functional connectivity between the amygdala and the ventral prefrontal cortices to angry faces and greater school-age functional connectivity between the amygdala and dorsal prefrontal cortices to angry faces. Our results suggest that there are enduring neurobiological effects associated with a history of preschool anxiety, which occur over-and-above the effect of subsequent emotional symptoms. Our results also provide preliminary evidence for the neurobiological differentiation of specific preschool anxiety disorders.

  19. Preschool anxiety disorders predict different patterns of amygdala-prefrontal connectivity at school-age.

    Directory of Open Access Journals (Sweden)

    Kimberly L H Carpenter

    Full Text Available In this prospective, longitudinal study of young children, we examined whether a history of preschool generalized anxiety, separation anxiety, and/or social phobia is associated with amygdala-prefrontal dysregulation at school-age. As an exploratory analysis, we investigated whether distinct anxiety disorders differ in the patterns of this amygdala-prefrontal dysregulation.Participants were children taking part in a 5-year study of early childhood brain development and anxiety disorders. Preschool symptoms of generalized anxiety, separation anxiety, and social phobia were assessed with the Preschool Age Psychiatric Assessment (PAPA in the first wave of the study when the children were between 2 and 5 years old. The PAPA was repeated at age 6. We conducted functional MRIs when the children were 5.5 to 9.5 year old to assess neural responses to viewing of angry and fearful faces.A history of preschool social phobia predicted less school-age functional connectivity between the amygdala and the ventral prefrontal cortices to angry faces. Preschool generalized anxiety predicted less functional connectivity between the amygdala and dorsal prefrontal cortices in response to fearful faces. Finally, a history of preschool separation anxiety predicted less school-age functional connectivity between the amygdala and the ventral prefrontal cortices to angry faces and greater school-age functional connectivity between the amygdala and dorsal prefrontal cortices to angry faces.Our results suggest that there are enduring neurobiological effects associated with a history of preschool anxiety, which occur over-and-above the effect of subsequent emotional symptoms. Our results also provide preliminary evidence for the neurobiological differentiation of specific preschool anxiety disorders.

  20. Preschool Anxiety Disorders Predict Different Patterns of Amygdala-Prefrontal Connectivity at School-Age

    Science.gov (United States)

    Carpenter, Kimberly L. H.; Angold, Adrian; Chen, Nan-Kuei; Copeland, William E.; Gaur, Pooja; Pelphrey, Kevin; Song, Allen W.; Egger, Helen L.

    2015-01-01

    Objective In this prospective, longitudinal study of young children, we examined whether a history of preschool generalized anxiety, separation anxiety, and/or social phobia is associated with amygdala-prefrontal dysregulation at school-age. As an exploratory analysis, we investigated whether distinct anxiety disorders differ in the patterns of this amygdala-prefrontal dysregulation. Methods Participants were children taking part in a 5-year study of early childhood brain development and anxiety disorders. Preschool symptoms of generalized anxiety, separation anxiety, and social phobia were assessed with the Preschool Age Psychiatric Assessment (PAPA) in the first wave of the study when the children were between 2 and 5 years old. The PAPA was repeated at age 6. We conducted functional MRIs when the children were 5.5 to 9.5 year old to assess neural responses to viewing of angry and fearful faces. Results A history of preschool social phobia predicted less school-age functional connectivity between the amygdala and the ventral prefrontal cortices to angry faces. Preschool generalized anxiety predicted less functional connectivity between the amygdala and dorsal prefrontal cortices in response to fearful faces. Finally, a history of preschool separation anxiety predicted less school-age functional connectivity between the amygdala and the ventral prefrontal cortices to angry faces and greater school-age functional connectivity between the amygdala and dorsal prefrontal cortices to angry faces. Conclusions Our results suggest that there are enduring neurobiological effects associated with a history of preschool anxiety, which occur over-and-above the effect of subsequent emotional symptoms. Our results also provide preliminary evidence for the neurobiological differentiation of specific preschool anxiety disorders. PMID:25625285

  1. Connecting to create: expertise in musical improvisation is associated with increased functional connectivity between premotor and prefrontal areas.

    Science.gov (United States)

    Pinho, Ana Luísa; de Manzano, Örjan; Fransson, Peter; Eriksson, Helene; Ullén, Fredrik

    2014-04-30

    Musicians have been used extensively to study neural correlates of long-term practice, but no studies have investigated the specific effects of training musical creativity. Here, we used human functional MRI to measure brain activity during improvisation in a sample of 39 professional pianists with varying backgrounds in classical and jazz piano playing. We found total hours of improvisation experience to be negatively associated with activity in frontoparietal executive cortical areas. In contrast, improvisation training was positively associated with functional connectivity of the bilateral dorsolateral prefrontal cortices, dorsal premotor cortices, and presupplementary areas. The effects were significant when controlling for hours of classical piano practice and age. These results indicate that even neural mechanisms involved in creative behaviors, which require a flexible online generation of novel and meaningful output, can be automated by training. Second, improvisational musical training can influence functional brain properties at a network level. We show that the greater functional connectivity seen in experienced improvisers may reflect a more efficient exchange of information within associative networks of importance for musical creativity.

  2. Electrophysiological Mapping of Novel Prefrontal – Cerebellar Pathways

    Science.gov (United States)

    Watson, Thomas C.; Jones, Matthew W.; Apps, Richard

    2009-01-01

    Whilst the cerebellum is predominantly considered a sensorimotor control structure, accumulating evidence suggests that it may also subserve non-motor functions during cognition. However, this possibility is not universally accepted, not least because the nature and pattern of links between higher cortical structures and the cerebellum are poorly characterized. We have therefore used in vivo electrophysiological methods in anaesthetized rats to directly investigate connectivity between the medial prefrontal cortex (prelimbic subdivision, PrL) and the cerebellum. Stimulation of deep layers of PrL evoked distinct field potentials in the cerebellar cortex with a mean latency to peak of approximately 35 ms. These responses showed a well-defined topography, and were maximal in lobule VII of the contralateral vermis (a known oculomotor centre); they were not attenuated by local anaesthesia of the overlying M2 motor cortex, though M2 stimulation did evoke field potentials in lobule VII with a shorter latency (approximately 30 ms). Single unit recordings showed that prelimbic cortical stimulation elicits complex spikes in lobule VII Purkinje cells, indicating transmission via a previously undescribed cerebro-olivocerebellar pathway. Our results therefore establish a physiological basis for communication between PrL and the cerebellum. The role(s) of this pathway remain to be resolved, but presumably relate to control of eye movements and/or distributed networks associated with integrated prefrontal cortical functions. PMID:19738932

  3. Cortical Visual Impairment

    Science.gov (United States)

    ... Frequently Asked Questions Español Condiciones Chinese Conditions Cortical Visual Impairment En Español Read in Chinese What is cortical visual impairment? Cortical visual impairment (CVI) is a decreased ...

  4. Basal ganglia impairments in autism spectrum disorder are related to abnormal signal gating to prefrontal cortex.

    Science.gov (United States)

    Prat, Chantel S; Stocco, Andrea; Neuhaus, Emily; Kleinhans, Natalia M

    2016-10-01

    Research on the biological basis of autism spectrum disorder has yielded a list of brain abnormalities that are arguably as diverse as the set of behavioral symptoms that characterize the disorder. Among these are patterns of abnormal cortical connectivity and abnormal basal ganglia development. In attempts to integrate the existing literature, the current paper tests the hypothesis that impairments in the basal ganglia's function to flexibly select and route task-relevant neural signals to the prefrontal cortex underpins patterns of abnormal synchronization between the prefrontal cortex and other cortical processing centers observed in individuals with autism spectrum disorder (ASD). We tested this hypothesis using a Dynamic Causal Modeling analysis of neuroimaging data collected from 16 individuals with ASD (mean age=25.3 years; 6 female) and 17 age- and IQ-matched neurotypical controls (mean age=25.6, 6 female), who performed a Go/No-Go test of executive functioning. Consistent with the hypothesis tested, a random-effects Bayesian model selection procedure determined that a model of network connectivity in which basal ganglia activation modulated connectivity between the prefrontal cortex and other key cortical processing centers best fit the data of both neurotypicals and individuals with ASD. Follow-up analyses suggested that the largest group differences were observed for modulation of connectivity between prefrontal cortex and the sensory input region in the occipital lobe [t(31)=2.03, p=0.025]. Specifically, basal ganglia activation was associated with a small decrease in synchronization between the occipital region and prefrontal cortical regions in controls; however, in individuals with ASD, basal ganglia activation resulted in increased synchronization between the occipital region and the prefrontal cortex. We propose that this increased synchronization may reflect a failure in basal ganglia signal gating mechanisms, resulting in a non-selective copying

  5. Focal Cortical Thickness Correlates of Exceptional Memory Training in Vedic Priests

    Directory of Open Access Journals (Sweden)

    Giridhar Padmanabhan Kalamangalam

    2014-10-01

    Full Text Available The capacity for semantic memory – the ability to acquire and store knowledge of the world - is highly developed in the human brain. In particular, semantic memory assimilated through an auditory route may be a uniquely human capacity. One method of obtaining neurobiological insight into auditory semantic memory mechanisms is through the study of experts. In this work, we study a group of Hindu Vedic priests, whose religious training requires the memorization of vast tracts of scriptural texts through an oral tradition, recalled spontaneously during a lifetime of subsequent spiritual practice. We demonstrate focal increases of cortical thickness in the dominant prefrontal lobe and non-dominant temporal lobe in Vedic priests, in comparison to a group of matched controls. The findings are relevant to current hypotheses regarding cognitive processes underlying storage and recall of long-term declarative memory.

  6. Attention to Multiple Objects Facilitates Their Integration in Prefrontal and Parietal Cortex.

    Science.gov (United States)

    Kim, Yee-Joon; Tsai, Jeffrey J; Ojemann, Jeffrey; Verghese, Preeti

    2017-05-10

    Selective attention is known to interact with perceptual organization. In visual scenes, individual objects that are distinct and discriminable may occur on their own, or in groups such as a stack of books. The main objective of this study is to probe the neural interaction that occurs between individual objects when attention is directed toward one or more objects. Here we record steady-state visual evoked potentials via electrocorticography to directly assess the responses to individual stimuli and to their interaction. When human participants attend to two adjacent stimuli, prefrontal and parietal cortex shows a selective enhancement of only the neural interaction between stimuli, but not the responses to individual stimuli. When only one stimulus is attended, the neural response to that stimulus is selectively enhanced in prefrontal and parietal cortex. In contrast, early visual areas generally manifest responses to individual stimuli and to their interaction regardless of attentional task, although a subset of the responses is modulated similarly to prefrontal and parietal cortex. Thus, the neural representation of the visual scene as one progresses up the cortical hierarchy becomes more highly task-specific and represents either individual stimuli or their interaction, depending on the behavioral goal. Attention to multiple objects facilitates an integration of objects akin to perceptual grouping. SIGNIFICANCE STATEMENT Individual objects in a visual scene are seen as distinct entities or as parts of a whole. Here we examine how attention to multiple objects affects their neural representation. Previous studies measured single-cell or fMRI responses and obtained only aggregate measures that combined the activity to individual stimuli as well as their potential interaction. Here, we directly measure electrocorticographic steady-state responses corresponding to individual objects and to their interaction using a frequency-tagging technique. Attention to two

  7. Raman spectral markers of collagen denaturation and hydration in human cortical bone tissue are affected by radiation sterilization and high cycle fatigue damage.

    Science.gov (United States)

    Flanagan, Christopher D; Unal, Mustafa; Akkus, Ozan; Rimnac, Clare M

    2017-11-01

    Thermal denaturation and monotonic mechanical damage alter the organic and water-related compartments of cortical bone. These changes can be detected using Raman spectroscopy. However, less is known regarding Raman sensitivity to detect the effects of cyclic fatigue damage and allograft sterilization doses of gamma radiation. To determine if Raman spectroscopic biomarkers of collagen denaturation and hydration are sensitive to the effects of (a) high cycle fatigue damage and (b) 25kGy irradiation. Unirradiated and gamma-radiation sterilized human cortical bone specimens previously tested in vitro under high-cycle (> 100,000 cycles) fatigue conditions at 15MPa, 25MPa, 35MPa, 45MPa, and 55MPa cyclic stress levels were studied. Cortical bone Raman spectral profiles from wavenumber ranges of 800-1750cm-1 and 2700-3800cm-1 were obtained and compared from: a) non-fatigue vs fatigue fracture sites and b) radiated vs. unirradiated states. Raman biomarker ratios 1670/1640 and 3220/2949, which reflect collagen denaturation and organic matrix (mainly collagen)-bound water, respectively, were assessed. One- and two-way ANOVA analyses were utilized to identify differences between groups along with interaction effects between cyclic fatigue and radiation-induced damage. Cyclic fatigue damage resulted in increases in collagen denaturation (1670/1640: 1.517 ± 0.043 vs 1.579 ± 0.021, p denaturation (r = 0.514, p denaturation was sensitive to cyclic fatigue damage but not 25kGy irradiation. Collagen denaturation was correlated with organic matrix-bound water, suggesting that denaturation of collagen to gelatinous form may expose more binding sites to water by unwinding the triple alpha chains. This research may eventually be useful to help identify allograft quality and more appropriately match donors to recipients. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Diffusion tensor studies dissociated two fronto-temporal pathways in the human memory system.

    Science.gov (United States)

    Takahashi, Emi; Ohki, Kenichi; Kim, Dae-Shik

    2007-01-15

    Recent functional neuroimaging studies have shown that multiple cortical areas are involved in memory encoding and retrieval. However, the underlying anatomical connections among these memory-related areas in humans remain elusive due to methodological limitations. Diffusion tensor imaging (DTI) is a technique based on detecting the diffusion of water molecules from magnetic resonance images. DTI allows non-invasive mapping of anatomical connections and gives a comprehensive picture of connectivity throughout the entire brain. By combining functional magnetic resonance imaging (fMRI) and DTI, we show that memory-related areas in the left dorsolateral prefrontal cortex (DLPFC) and the left ventrolateral prefrontal cortex (VLPFC) each connect with memory-related areas in the left temporal cortex. This result suggests there are two pathways between prefrontal cortex and temporal cortex related to the human memory system.

  9. Biomechanical and Computed Tomography Analysis of Adjustable Femoral Cortical Fixation Devices for Anterior Cruciate Ligament Reconstruction in a Cadaveric Human Knee Model.

    Science.gov (United States)

    Born, Trevor R; Biercevicz, Alison M; Koruprolu, Sarath C; Paller, David; Spenciner, Dave; Fadale, Paul D

    2016-02-01

    To evaluate and compare two adjustable femoral cortical suspensory fixation devices used for anterior cruciate ligament reconstruction through a novel, direct computed tomography (CT) analysis metric and biomechanical laxity testing in a matched cadaveric human knee study. Anterior cruciate ligament reconstructions with bovine tendon grafts were performed using two adjustable femoral cortical suspensory fixation devices (RigidLoop Adjustable [DePuy Synthes Mitek, Raynham, MA] and TightRope [Arthrex, Naples, FL]) in 12 knees (6 matched pairs). A mechanical testing series was used to determine each knee's laxity in the intact condition. After reconstruction, each specimen was again tested for laxity and also imaged with CT. The laxity testing and CT imaging were then repeated after 1,000 cycles of anteroposterior loading on each knee to compare changes in laxity for the two fixation devices and to visualize changes in button-to-graft distance migration through a three-dimensional CT imaging method. No significant differences were found between the two fixation groups' laxity measures after reconstruction (all P values ≥ .620) or after cycling (all P values ≥ .211) at any flexion angle. In addition, no significant differences were found between the two groups regarding button-to-graft distance migration (P = .773; mean, 0.61 ± 0.6 mm [95% confidence interval, -0.1 to 1.3 mm] in RigidLoop Adjustable group and 0.53 ± 0.6 mm [95% confidence interval, -0.1 to 1.2 mm] in TightRope group). There were no significant differences between the two femoral cortical suspensory adjustable-loop devices regarding laxity outcomes or loop displacement as measured by button-to-graft distance migration. Use of either of the adjustable-loop cortical suspensory devices in our analysis would appear to produce similar, acceptable laxity outcomes and minimal effects in terms of device-related loop displacement. Copyright © 2016 Arthroscopy Association of North America. Published by

  10. Plastic Changes in Human Motor Cortical Output Induced by Random but not Closed-Loop Peripheral Stimulation: the Curse of Causality.

    Science.gov (United States)

    Brown, Kenneth I; Williams, Elizabeth R; de Carvalho, Felipe; Baker, Stuart N

    2016-01-01

    Previous work showed that repetitive peripheral nerve stimulation can induce plastic changes in motor cortical output. Triggering electrical stimulation of central structures from natural activity can also generate plasticity. In this study, we tested whether triggering peripheral nerve stimulation from muscle activity would likewise induce changes in motor output. We developed a wearable electronic device capable of recording electromyogram (EMG) and delivering electrical stimulation under closed-loop control. This allowed paired stimuli to be delivered over longer periods than standard laboratory-based protocols. We tested this device in healthy human volunteers. Motor cortical output in relaxed thenar muscles was first assessed via the recruitment curve of responses to contralateral transcranial magnetic stimulation. The wearable device was then configured to record thenar EMG and stimulate the median nerve at the wrist (intensity around motor threshold, rate ~0.66 Hz). Subjects carried out normal daily activities for 4-7 h, before returning to the laboratory for repeated recruitment curve assessment. Four stimulation protocols were tested (9-14 subjects each): No Stim, no stimuli delivered; Activity, stimuli triggered by EMG activity above threshold; Saved, stimuli timed according to a previous Activity session in the same subject; Rest, stimuli given when EMG was silent. As expected, No Stim did not modify the recruitment curve. Activity and Rest conditions produced no significant effects across subjects, although there were changes in some individuals. Saved produced a significant and substantial increase, with average responses 2.14 times larger at 30% stimulator intensity above threshold. We argue that unavoidable delays in the closed loop feedback, due mainly to central and peripheral conduction times, mean that stimuli in the Activity paradigm arrived too late after cortical activation to generate consistent plastic changes. By contrast, stimuli delivered

  11. Recording human electrocorticographic (ECoG) signals for neuroscientific research and real-time functional cortical mapping.

    Science.gov (United States)

    Hill, N Jeremy; Gupta, Disha; Brunner, Peter; Gunduz, Aysegul; Adamo, Matthew A; Ritaccio, Anthony; Schalk, Gerwin

    2012-06-26

    Neuroimaging studies of human cognitive, sensory, and motor processes are usually based on noninvasive techniques such as electroencephalography (EEG), magnetoencephalography or functional magnetic-resonance imaging. These techniques have either inherently low temporal or low spatial resolution, and suffer from low signal-to-noise ratio and/or poor high-frequency sensitivity. Thus, they are suboptimal for exploring the short-lived spatio-temporal dynamics of many of the underlying brain processes. In contrast, the invasive technique of electrocorticography (ECoG) provides brain signals that have an exceptionally high signal-to-noise ratio, less susceptibility to artifacts than EEG, and a high spatial and temporal resolution (i.e., communication and control. Nevertheless, human ECoG data are often hard to obtain because of the risks and limitations of the invasive procedures involved, and the need to record within the constraints of clinical settings. Still, clinical monitoring to localize epileptic foci offers a unique and valuable opportunity to collect human ECoG data. We describe our methods for collecting recording ECoG, and demonstrate how to use these signals for important real-time applications such as clinical mapping and brain-computer interfacing. Our example uses the BCI2000 software platform and the SIGFRIED method, an application for real-time mapping of brain functions. This procedure yields information that clinicians can subsequently use to guide the complex and laborious process of functional mapping by electrical stimulation. PREREQUISITES AND PLANNING: Patients with drug-resistant partial epilepsy may be candidates for resective surgery of an epileptic focus to minimize the frequency of seizures. Prior to resection, the patients undergo monitoring using subdural electrodes for two purposes: first, to localize the epileptic focus, and second, to identify nearby critical brain areas (i.e., eloquent cortex) where resection could result in long

  12. Dopaminergic modulation of cortical function in patients with Parkinson's disease.

    Science.gov (United States)

    Mattay, Venkata S; Tessitore, Alessandro; Callicott, Joseph H; Bertolino, Alessandro; Goldberg, Terry E; Chase, Thomas N; Hyde, Thomas M; Weinberger, Daniel R

    2002-02-01

    Patients with idiopathic Parkinson's disease suffer not only from classic motor symptoms, but from deficits in cognitive function, primarily those subserved by the prefrontal cortex as well. The aim of the current study was to investigate the modulatory effects of dopaminergic therapy on neural systems subserving working memory and motor function in patients with Parkinson's disease. Ten patients with stage I and II Parkinson's disease were studied with functional magnetic resonance imaging, during a relatively hypodopaminergic state (ie, 12 hours after a last dose of dopamimetic treatment), and again during a dopamine-replete state. Functional magnetic resonance imaging was performed under three conditions: a working memory task, a cued sensorimotor task and rest. Consistent with prior data, the cortical motor regions activated during the motor task showed greater activation during the dopamine-replete state; however, the cortical regions subserving working memory displayed greater activation during the hypodopaminergic state. Interestingly, the increase in cortical activation during the working memory task in the hypodopaminergic state positively correlated with errors in task performance, and the increased activation in the cortical motor regions during the dopamine-replete state was positively correlated with improvement in motor function. These results support evidence from basic research that dopamine modulates cortical networks subserving working memory and motor function via two distinct mechanisms: nigrostriatal projections facilitate motor function indirectly via thalamic projections to motor cortices, whereas the mesocortical dopaminergic system facilitates working memory function via direct inputs to prefrontal cortex. The results are also consistent with evidence that the hypodopaminergic state is associated with decreased efficiency of prefrontal cortical information processing and that dopaminergic therapy improves the physiological efficiency of

  13. Human Auditory and Adjacent Nonauditory Cerebral Cortices Are Hypermetabolic in Tinnitus as Measured by Functional Near-Infrared Spectroscopy (fNIRS).

    Science.gov (United States)

    Issa, Mohamad; Bisconti, Silvia; Kovelman, Ioulia; Kileny, Paul; Basura, Gregory J

    2016-01-01

    Tinnitus is the phantom perception of sound in the absence of an acoustic stimulus. To date, the purported neural correlates of tinnitus from animal models have not been adequately characterized with translational technology in the human brain. The aim of the present study was to measure changes in oxy-hemoglobin concentration from regions of interest (ROI; auditory cortex) and non-ROI (adjacent nonauditory cortices) during auditory stimulation and silence in participants with subjective tinnitus appreciated equally in both ears and in nontinnitus controls using functional near-infrared spectroscopy (fNIRS). Control and tinnitus participants with normal/near-normal hearing were tested during a passive auditory task. Hemodynamic activity was monitored over ROI and non-ROI under episodic periods of auditory stimulation with 750 or 8000 Hz tones, broadband noise, and silence. During periods of silence, tinnitus participants maintained increased hemodynamic responses in ROI, while a significant deactivation was seen in controls. Interestingly, non-ROI activity was also increased in the tinnitus group as compared to controls during silence. The present results demonstrate that both auditory and select nonauditory cortices have elevated hemodynamic activity in participants with tinnitus in the absence of an external auditory stimulus, a finding that may reflect basic science neural correlates of tinnitus that ultimately contribute to phantom sound perception.

  14. Human Auditory and Adjacent Nonauditory Cerebral Cortices Are Hypermetabolic in Tinnitus as Measured by Functional Near-Infrared Spectroscopy (fNIRS

    Directory of Open Access Journals (Sweden)

    Mohamad Issa

    2016-01-01

    Full Text Available Tinnitus is the phantom perception of sound in the absence of an acoustic stimulus. To date, the purported neural correlates of tinnitus from animal models have not been adequately characterized with translational technology in the human brain. The aim of the present study was to measure changes in oxy-hemoglobin concentration from regions of interest (ROI; auditory cortex and non-ROI (adjacent nonauditory cortices during auditory stimulation and silence in participants with subjective tinnitus appreciated equally in both ears and in nontinnitus controls using functional near-infrared spectroscopy (fNIRS. Control and tinnitus participants with normal/near-normal hearing were tested during a passive auditory task. Hemodynamic activity was monitored over ROI and non-ROI under episodic periods of auditory stimulation with 750 or 8000 Hz tones, broadband noise, and silence. During periods of silence, tinnitus participants maintained increased hemodynamic responses in ROI, while a significant deactivation was seen in controls. Interestingly, non-ROI activity was also increased in the tinnitus group as compared to controls during silence. The present results demonstrate that both auditory and select nonauditory cortices have elevated hemodynamic activity in participants with tinnitus in the absence of an external auditory stimulus, a finding that may reflect basic science neural correlates of tinnitus that ultimately contribute to phantom sound perception.

  15. Prefrontal cortex, hippocampus, and basolateral amygdala plasticity in a rat model of autism spectrum.

    Science.gov (United States)

    Sosa-Díaz, Nuvia; Bringas, Maria Elena; Atzori, Marco; Flores, Gonzalo

    2014-10-01

    We aimed to investigate the effect of prenatal administration of valproic acid (VPA) (500 mg/kg) at embryonic day 12.5 on the anatomical properties of the prefrontal cortex, hippocampus, and basolateral amygdala, at three different ages: immediately after weaning (postnatal day 21 [PD21]), prepubertal (PD35), and postpubertal (PD70) ages in a rat model of autistic spectrum disorder. Quantitative analysis of the thickness of the prefrontal cortex revealed a reduced size at all study ages in the cingulate 1 area of the prefrontal cortex and CA1 of the dorsal hippocampus in prenatally exposed animals compared to controls. At the level of the basolateral amygdala, a reduction in the size was observed at PD35 and PD70 in the VPA group. In addition, a reduced thickness was observed in the prelimbic region of the prefrontal cortex in VPA animals at PD35. Interestingly, no differences in cortical thickness were observed between control and VPA animals in the infralimbic region of the prefrontal at any age. Our results suggest that prenatal exposure to VPA differentially alters cortical limbic regions anatomical parameters, with implication in the autistic spectrum disorder. © 2014 Wiley Periodicals, Inc.

  16. Subthalamic Nucleus Deep Brain Stimulation Alters Prefrontal Correlates of Emotion Induction.

    Science.gov (United States)

    Bick, Sarah K B; Folley, Bradley S; Mayer, Jutta S; Park, Sohee; Charles, P David; Camalier, Corrie R; Pallavaram, Srivatsan; Konrad, Peter E; Neimat, Joseph S

    2017-04-01

    Deep brain stimulation (DBS) of the subthalamic nucleus (STN) improves motor symptoms in advanced Parkinson's disease. STN DBS may also affect emotion, possibly by impacting a parallel limbic cortico-striatal circuit. The objective of this study was to investigate changes in prefrontal cortical activity related to DBS during an emotion induction task. We used near infrared spectroscopy to monitor prefrontal cortex hemodynamic changes during an emotion induction task. Seven DBS patients were tested sequentially in the stimulation-on and stimulation-off states while on dopaminergic medication. Patients watched a series of positive, negative, and neutral videos. The general linear model was used to compare prefrontal oxygenated hemoglobin concentration between DBS states. Deep brain stimulation was correlated with prefrontal oxygenated hemoglobin changes relative to the stimulation off state in response to both positive and negative videos. These changes were specific to emotional stimuli and were not seen during neutral stimuli. These results suggest that STN stimulation influences the prefrontal cortical representation of positive and negative emotion induction. © 2016 International Neuromodulation Society.

  17. Prefrontal Cortex Activation Upon a Demanding Virtual Hand-Controlled Task: A New Frontier for Neuroergonomics.

    Science.gov (United States)

    Carrieri, Marika; Petracca, Andrea; Lancia, Stefania; Basso Moro, Sara; Brigadoi, Sabrina; Spezialetti, Matteo; Ferrari, Marco; Placidi, Giuseppe; Quaresima, Valentina

    2016-01-01

    Functional near-infrared spectroscopy (fNIRS) is a non-invasive vascular-based functional neuroimaging technology that can assess, simultaneously from multiple cortical areas, concentration changes in oxygenated-deoxygenated hemoglobin at the level of the cortical microcirculation blood vessels. fNIRS, with its high degree of ecological validity and its very limited requirement of physical constraints to subjects, could represent a valid tool for monitoring cortical responses in the research field of neuroergonomics. In virtual reality (VR) real situations can be replicated with greater control than those obtainable in the real world. Therefore, VR is the ideal setting where studies about neuroergonomics applications can be performed. The aim of the present study was to investigate, by a 20-channel fNIRS system, the dorsolateral/ventrolateral prefrontal cortex (DLPFC/VLPFC) in subjects while performing a demanding VR hand-controlled task (HCT). Considering the complexity of the HCT, its execution should require the attentional resources allocation and the integration of different executive functions. The HCT simulates the interaction with a real, remotely-driven, system operating in a critical environment. The hand movements were captured by a high spatial and temporal resolution 3-dimensional (3D) hand-sensing device, the LEAP motion controller, a gesture-based control interface that could be used in VR for tele-operated applications. Fifteen University students were asked to guide, with their right hand/forearm, a virtual ball (VB) over a virtual route (VROU) reproducing a 42 m narrow road including some critical points. The subjects tried to travel as long as possible without making VB fall. The distance traveled by the guided VB was 70.2 ± 37.2 m. The less skilled subjects failed several times in guiding the VB over the VROU. Nevertheless, a bilateral VLPFC activation, in response to the HCT execution, was observed in all the subjects. No correlation was found

  18. Prefrontal cortex activation upon a demanding virtual hand-controlled task: a new frontier for neuroergonomics

    Directory of Open Access Journals (Sweden)

    Marika eCarrieri

    2016-02-01

    Full Text Available Functional near-infrared spectroscopy (fNIRS is a non-invasive vascular-based functional neuroimaging technology that can assess, simultaneously from multiple cortical areas, concentration changes in oxygenated-deoxygenated hemoglobin at the level of the cortical microcirculation blood vessels. fNIRS, with its high degree of ecological validity and its very limited requirement of physical constraints to subjects, could represent a valid tool for monitoring cortical responses in the research field of neuroergonomics. In virtual reality (VR real situations can be replicated with greater control than those obtainable in the real world. Therefore, VR is the ideal setting where studies about neuroergonomics applications can be performed. The aim of the present study was to investigate, by a 20-channel fNIRS system, the dorsolateral/ventrolateral prefrontal cortex (DLPFC/VLPFC in subjects while performing a demanding VR hand-controlled task (HCT. Considering the complexity of the HCT, its execution should require the attentional resources allocation and the integration of different executive functions. The HCT simulates the interaction with a real, remotely-driven, system operating in a critical environment. The hand movements were captured by a high spatial and temporal resolution 3D hand-sensing device, the LEAP motion controller, a gesture-based control interface that could be used in VR for tele-operated applications. Fifteen University students were asked to guide, with their right hand/forearm, a virtual ball (VB over a virtual route (VROU reproducing a 42-m narrow road including some critical points. The subjects tried to travel as long as possible without making VB fall. The distance traveled by the guided VB was 70.2±37.2 m. The less skilled subjects failed several times in guiding the VB over the VROU. Nevertheless, a bilateral VLPFC activation, in response to the HCT execution, was observed in all the subjects. No correlation was found

  19. Impaired verbal memory in Parkinson disease: relationship to prefrontal dysfunction and somatosensory discrimination

    Directory of Open Access Journals (Sweden)

    Weniger Dorothea

    2009-12-01

    Full Text Available Abstract Objective To study the neurocognitive profile and its relationship to prefrontal dysfunction in non-demented Parkinson's disease (PD with deficient haptic perception. Methods Twelve right-handed patients with PD and 12 healthy control subjects underwent thorough neuropsychological testing including Rey complex figure, Rey auditory verbal and figural learning test, figural and verbal fluency, and Stroop test. Test scores reflecting significant differences between patients and healthy subjects were correlated with the individual expression coefficients of one principal component, obtained in a principal component analysis of an oxygen-15-labeled water PET study exploring somatosensory discrimination that differentiated between the two groups and involved prefrontal cortices. Results We found significantly decreased total scores for the verbal learning trials and verbal delayed free recall in PD patients compared with normal volunteers. Further analysis of these parameters using Spearman's ranking correlation showed a significantly negative correlation of deficient verbal recall with expression coefficients of the principal component whose image showed a subcortical-cortical network, including right dorsolateral-prefrontal cortex, in PD patients. Conclusion PD patients with disrupted right dorsolateral prefrontal cortex function and associated diminished somatosensory discrimination are impaired also in verbal memory functions. A negative correlation between delayed verbal free recall and PET activation in a network including the prefrontal cortices suggests that verbal cues and accordingly declarative memory processes may be operative in PD during activities that demand sustained attention such as somatosensory discrimination. Verbal cues may be compensatory in nature and help to non-specifically enhance focused attention in the presence of a functionally disrupted prefrontal cortex.

  20. Impaired verbal memory in Parkinson disease: relationship to prefrontal dysfunction and somatosensory discrimination.

    Science.gov (United States)

    Bohlhalter, Stephan; Abela, Eugenio; Weniger, Dorothea; Weder, Bruno

    2009-12-15

    To study the neurocognitive profile and its relationship to prefrontal dysfunction in non-demented Parkinson's disease (PD) with deficient haptic perception. Twelve right-handed patients with PD and 12 healthy control subjects underwent thorough neuropsychological testing including Rey complex figure, Rey auditory verbal and figural learning test, figural and verbal fluency, and Stroop test. Test scores reflecting significant differences between patients and healthy subjects were correlated with the individual expression coefficients of one principal component, obtained in a principal component analysis of an oxygen-15-labeled water PET study exploring somatosensory discrimination that differentiated between the two groups and involved prefrontal cortices. We found significantly decreased total scores for the verbal learning trials and verbal delayed free recall in PD patients compared with normal volunteers. Further analysis of these parameters using Spearman's ranking correlation showed a significantly negative correlation of deficient verbal recall with expression coefficients of the principal component whose image showed a subcortical-cortical network, including right dorsolateral-prefrontal cortex, in PD patients. PD patients with disrupted right dorsolateral prefrontal cortex function and associated diminished somatosensory discrimination are impaired also in verbal memory functions. A negative correlation between delayed verbal free recall and PET activation in a network including the prefrontal cortices suggests that verbal cues and accordingly declarative memory processes may be operative in PD during activities that demand sustained attention such as somatosensory discrimination. Verbal cues may be compensatory in nature and help to non-specifically enhance focused attention in the presence of a functionally disrupted prefrontal cortex.