WorldWideScience

Sample records for human powered aircraft

  1. Daedalus Project's Light Eagle - Human powered aircraft

    Science.gov (United States)

    1987-01-01

    The Michelob Light Eagle is seen here in flight over Rogers Dry Lake at the NASA Dryden Flight Research Center, Edwards, California. The Light Eagle and Daedalus human powered aircraft were testbeds for flight research conducted at Dryden between January 1987 and March 1988. These unique aircraft were designed and constructed by a group of students, professors, and alumni of the Massachusetts Institute of Technology within the context of the Daedalus project. The construction of the Light Eagle and Daedalus aircraft was funded primarily by the Anheuser Busch and United Technologies Corporations, respectively, with additional support from the Smithsonian Air and Space Museum, MIT, and a number of other sponsors. To celebrate the Greek myth of Daedalus, the man who constructed wings of wax and feathers to escape King Minos, the Daedalus project began with the goal of designing, building and testing a human-powered aircraft that could fly the mythical distance, 115 km. To achieve this goal, three aircraft were constructed. The Light Eagle was the prototype aircraft, weighing 92 pounds. On January 22, 1987, it set a closed course distance record of 59 km, which still stands. Also in January of 1987, the Light Eagle was powered by Lois McCallin to set the straight distance, the distance around a closed circuit, and the duration world records for the female division in human powered vehicles. Following this success, two more aircraft were built, the Daedalus 87 and Daedalus 88. Each aircraft weighed approximately 69 pounds. The Daedalus 88 aircraft was the ship that flew the 199 km from the Iraklion Air Force Base on Crete in the Mediterranean Sea, to the island of Santorini in 3 hours, 54 minutes. In the process, the aircraft set new records in distance and endurance for a human powered aircraft. The specific areas of flight research conducted at Dryden included characterizing the rigid body and flexible dynamics of the Light Eagle, investigating sensors for an

  2. Flight test results for the Daedalus and Light Eagle human powered aircraft

    Science.gov (United States)

    Sullivan, R. Bryan; Zerweckh, Siegfried H.

    1988-01-01

    The results of the flight test program of the Daedalus and Light Eagle human powered aircraft in the winter of 1987/88 are given. The results from experiments exploring the Light Eagle's rigid body and structural dynamics are presented. The interactions of these dynamics with the autopilot design are investigated. Estimates of the power required to fly the Daedalus aircraft are detailed. The system of sensors, signal conditioning boards, and data acquisition equipment used to record the flight data is also described. In order to investigate the dynamics of the aircraft, flight test maneuvers were developed to yield maximum data quality from the point of view of estimating lateral and longitudinal stability derivatives. From this data, structural flexibility and unsteady aerodynamics have been modeled in an ad hoc manner and are used to augment the equations of motion with flexibility effects. Results of maneuvers that were flown are compared with the predictions from the flexibility model. To extend the ad hoc flexibility model, a fully flexible aeroelastic model has been developed. The model is unusual in the approximate equality of many structural natural frequencies and the importance of unsteady aerodynamic effects. the Gossamer Albatross. It is hypothesized that this inverse ground effect is caused by turbulence in the Earth's boundary layer. The diameters of the largest boundary layer eddies (which represent most of the turbulent kinetic energy) are proportional to altitude; thus, closer to the ground, the energy in the boundary layer becomes concentrated in eddies of smaller and smaller diameter. Eventually the eddies become sufficiently small (approximately 0.5 cm) that they trip the laminar boundary layer on the wing. As a result, a greater percentage of the wing area is covered with turbulent flow. Consequently the aircraft's drag and the pow er required both increase as the aircraft flies closer to the ground. The results of the flight test program are

  3. Aircraft Fuel Cell Power Systems

    Science.gov (United States)

    Needham, Robert

    2004-01-01

    In recent years, fuel cells have been explored for use in aircraft. While the weight and size of fuel cells allows only the smallest of aircraft to use fuel cells for their primary engines, fuel cells have showed promise for use as auxiliary power units (APUs), which power aircraft accessories and serve as an electrical backup in case of an engine failure. Fuel cell MUS are both more efficient and emit fewer pollutants. However, sea-level fuel cells need modifications to be properly used in aircraft applications. At high altitudes, the ambient air has a much lower pressure than at sea level, which makes it much more difficult to get air into the fuel cell to react and produce electricity. Compressors can be used to pressurize the air, but this leads to added weight, volume, and power usage, all of which are undesirable things. Another problem is that fuel cells require hydrogen to create electricity, and ever since the Hindenburg burst into flames, aircraft carrying large quantities of hydrogen have not been in high demand. However, jet fuel is a hydrocarbon, so it is possible to reform it into hydrogen. Since jet fuel is already used to power conventional APUs, it is very convenient to use this to generate the hydrogen for fuel-cell-based APUs. Fuel cells also tend to get large and heavy when used for applications that require a large amount of power. Reducing the size and weight becomes especially beneficial when it comes to fuel cells for aircraft. My goal this summer is to work on several aspects of Aircraft Fuel Cell Power System project. My first goal is to perform checks on a newly built injector rig designed to test different catalysts to determine the best setup for reforming Jet-A fuel into hydrogen. These checks include testing various thermocouples, transmitters, and transducers, as well making sure that the rig was actually built to the design specifications. These checks will help to ensure that the rig will operate properly and give correct results

  4. Stability and control of the Gossamer human powered aircraft by analysis and flight test

    Science.gov (United States)

    Jex, H. R.; Mitchell, D. G.

    1982-01-01

    The slow flight speed, very light wing loading, and neutral stability of the Gossamer Condor and the Gossamer Albatross emphasized apparent-mass aerodynamic effects and unusual modes of motion response. These are analyzed, approximated, and discussed, and the resulting transfer functions and dynamic properties are summarized and compared. To verify these analytical models, flight tests were conducted with and electrically powered Gossamer Albatross II. Sensors were installed and their outputs were telemetered to records on the ground. Frequency sweeps of the various controls were made and the data were reduced to frequency domain measures. Results are given for the response of: pitch rate, airspeed and normal acceleration from canard-elevator deflection; roll rate and yaw rate from canard-rudder tilt; and roll rate and yaw rate from wing warp. The reliable data are compared with the analytical predictions.

  5. Estimation of nuclear power plant aircraft hazards

    International Nuclear Information System (INIS)

    Gottlieb, P.

    1978-01-01

    The standard procedures for estimating aircraft risk to nuclear power plants provide a conservative estimate, which is adequate for most sites, which are not close to airports or heavily traveled air corridors. For those sites which are close to facilities handling large numbers of aircraft movements (airports or corridors), a more precise estimate of aircraft impact frequency can be obtained as a function of aircraft size. In many instances the very large commercial aircraft can be shown to have an acceptably small impact frequency, while the very small general aviation aircraft will not produce sufficiently serious impact to impair the safety-related functions. This paper examines the in between aircraft: primarily twin-engine, used for business, pleasure, and air taxi operations. For this group of aircraft the total impact frequency was found to be approximately once in one million years, the threshold above which further consideration of specific safety-related consequences would be required

  6. Study of aircraft electrical power systems

    Science.gov (United States)

    1972-01-01

    The formulation of a philosophy for devising a reliable, efficient, lightweight, and cost effective electrical power system for advanced, large transport aircraft in the 1980 to 1985 time period is discussed. The determination and recommendation for improvements in subsystems and components are also considered. All aspects of the aircraft electrical power system including generation, conversion, distribution, and utilization equipment were considered. Significant research and technology problem areas associated with the development of future power systems are identified. The design categories involved are: (1) safety-reliability, (2) power type, voltage, frequency, quality, and efficiency, (3) power control, and (4) selection of utilization equipment.

  7. Review of Aircraft Electric Power Systems and Architectures

    DEFF Research Database (Denmark)

    Zhao, Xin; Guerrero, Josep M.; Wu, Xiaohao

    2014-01-01

    In recent years, the electrical power capacity is increasing rapidly in more electric aircraft (MEA), since the conventional mechanical, hydraulic and pneumatic energy systems are partly replaced by electrical power system. As a consequence, capacity and complexity of aircraft electric power...... systems (EPS) will increase dramatically and more advanced aircraft EPSs need to be developed. This paper gives a brief description of the constant frequency (CF) EPS, variable frequency (VF) EPS and advanced high voltage (HV) EPS. Power electronics in the three EPS is overviewed. Keywords: Aircraft Power...... System, More Electric Aircraft, Constant Frequency, Variable Frequency, High Voltage....

  8. Development and experimental characterization of a fuel cell powered aircraft

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, Thomas H.; Moffitt, Blake A.; Mavris, Dimitri N.; Parekh, David E. [Georgia Institute of Technology, Atlanta, GA 30332-0405 (United States)

    2007-09-27

    This paper describes the characteristics and performance of a fuel cell powered unmanned aircraft. The aircraft is novel as it is the largest compressed hydrogen fuel cell powered airplane built to date and is currently the only fuel cell aircraft whose design and test results are in the public domain. The aircraft features a 500 W polymer electrolyte membrane fuel cell with full balance of plant and compressed hydrogen storage incorporated into a custom airframe. Details regarding the design requirements, implementation and control of the aircraft are presented for each major aircraft system. The performances of the aircraft and powerplant are analyzed using data from flights and laboratory tests. The efficiency and component power consumption of the fuel cell propulsion system are measured at a variety of flight conditions. The performance of the aircraft powerplant is compared to other 0.5-1 kW-scale fuel cell powerplants in the literature and means of performance improvement for this aircraft are proposed. This work represents one of the first studies of fuel cell powered aircraft to result in a demonstration aircraft. As such, the results of this study are of practical interest to fuel cell powerplant and aircraft designers. (author)

  9. Aircraft crash upon outer containment of nuclear power plant

    International Nuclear Information System (INIS)

    Abbas, H.; Paul, D.K.; Godbole, P.N.; Nayak, G.C.

    1996-01-01

    In this paper, analysis of an aircraft crash upon an outer containment of a nuclear power plant is presented. The effect of target yielding is considered simultaneously by calculating the reaction time in a time marching scheme. The concrete model employed is capable of predicting the cracking and yielding. The response for different cracking strains and different locations of aircraft strike for different aircraft has been studied. Critical location of aircraft strike for the containment has been investigated. The analytical procedure and the material model used are found to be capable of representing the aircraft impact response of the containment structure. (orig.)

  10. Diagnosing Faults in Electrical Power Systems of Spacecraft and Aircraft

    Data.gov (United States)

    National Aeronautics and Space Administration — Electrical power systems play a critical role in spacecraft and aircraft, and they exhibit a rich variety of failure modes. This paper discusses electrical power...

  11. A hybrid electrical power system for aircraft application.

    Science.gov (United States)

    Lee, C. H.; Chin, C. Y.

    1971-01-01

    Possible improvements to present aircraft electrical power systems for use in future advanced types of aircraft have been investigated. The conventional power system is examined, the characteristics of electric loads are reviewed, and various methods of power generation and distribution are appraised. It is shown that a hybrid system, with variable-frequency generation and high-voltage dc distribution, could overcome some of the limitations of the conventional system.

  12. Rankine-Brayton engine powered solar thermal aircraft

    Science.gov (United States)

    Bennett, Charles L [Livermore, CA

    2009-12-29

    A solar thermal powered aircraft powered by heat energy from the sun. A Rankine-Brayton hybrid cycle heat engine is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller or other mechanism for enabling sustained free flight. The Rankine-Brayton engine has a thermal battery, preferably containing a lithium-hydride and lithium mixture, operably connected to it so that heat is supplied from the thermal battery to a working fluid. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  13. Rankline-Brayton engine powered solar thermal aircraft

    Science.gov (United States)

    Bennett, Charles L [Livermore, CA

    2012-03-13

    A solar thermal powered aircraft powered by heat energy from the sun. A Rankine-Brayton hybrid cycle heat engine is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller or other mechanism for enabling sustained free flight. The Rankine-Brayton engine has a thermal battery, preferably containing a lithium-hydride and lithium mixture, operably connected to it so that heat is supplied from the thermal battery to a working fluid. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  14. Evaluation of all-electric secondary power for transport aircraft

    Science.gov (United States)

    Murray, W. E.; Feiner, L. J.; Flores, R. R.

    1992-01-01

    This report covers a study by Douglas Aircraft Company (DAC) of electrical power systems for advanced transport aircraft based upon an all-electric design concept. The concept would eliminate distributed hydraulic and pneumatic secondary power systems, and feature an expanded secondary electrical power system redesigned to supply power to the loads customarily supplied by hydraulic or pneumatic power. The initial study was based on an advanced 20-kHz electrical power transmission and distribution system, using a system architecture supplied by NASA-Lewis Research Center for twin-engine aircraft with many advanced power conversion concepts. NASA-LeRC later requested DAC to refocus the study on 400-Hz secondary power distribution. Subsequent work was based on a three-engine MD-11 aircraft, selected by DAC as a baseline system design that would provide data for the comparative cost/benefit analysis. The study concluded that the 20-kHz concept produced many expected benefits, and that the all-electric trijet weight savings on hardware redesign would be 2,304 pounds plus a 2.1-percent fuel reduction and resized for a total weight reduction of 11,000 pounds. Cost reductions for a fleet of 800 aircraft in a 15-year production program were estimated at $76.71 million for RDT&E; $2.74 million per aircrat for production; $9.84 million for nonrecurring expenses; $120,000 per aircraft for product support; and $300,000 per aircraft per year for operating and maintenance costs, giving a present value of $1.914 billion saved or a future value of $10.496 billion saved.

  15. Human Powered Centrifuge

    Science.gov (United States)

    Mulenburg, Gerald M. (Inventor); Vernikos, Joan (Inventor)

    1997-01-01

    A human powered centrifuge has independently established turntable angular velocity and human power input. A control system allows excess input power to be stored as electric energy in a battery or dissipated as heat through a resistors. In a mechanical embodiment, the excess power is dissipated in a friction brake.

  16. The Power for Flight: NASA's Contributions to Aircraft Propulsion

    Science.gov (United States)

    Kinney, Jeremy R.

    2017-01-01

    The New York Times announced America's entry into the 'long awaited' Jet Age when a Pan American (Pan Am) World Airways Boeing 707 airliner left New York for Paris on October 26, 1958. Powered by four turbojet engines, the 707 offered speed, more nonstop flights, and a smoother and quieter travel experience compared to newly antiquated propeller airliners. With the Champs-Elysees only 6 hours away, humankind had entered into a new and exciting age in which the shrinking of the world for good was no longer a daydream. Fifty years later, the New York Times declared the second coming of a 'cleaner, leaner' Jet Age. Decades-old concerns over fuel efficiency, noise, and emissions shaped this new age as the aviation industry had the world poised for 'a revolution in jet engines'. Refined turbofans incorporating the latest innovations would ensure that aviation would continue to enable a worldwide transportation network. At the root of many of the advances over the preceding 50 years was the National Aeronautics and Space Administration (NASA). On October 1, 1958, just a few weeks before the flight of that Pan Am 707, NASA came into existence. Tasked with establishing a national space program as part of a Cold War competition between the United States and the Soviet Union, NASA is often remembered in popular memory first for putting the first human beings on the Moon in July 1969, followed by running the successful 30-year Space Shuttle Program and by landing the Rover Curiosity on Mars in August 2012. What many people do not recognize is the crucial role the first 'A' in NASA played in the development of aircraft since the Agency's inception. Innovations shaping the aerodynamic design, efficient operation, and overall safety of aircraft made NASA a vital element of the American aviation industry even though they remained unknown to the public. This is the story of one facet of NASA's many contributions to commercial, military, and general aviation: the development of

  17. Structural analysis of aircraft impact on a nuclear powered ship

    International Nuclear Information System (INIS)

    Dietrich, R.

    1976-01-01

    As part of a general safety analysis, the reliability against structural damage due to an aircraft crash on a nuclear powered ship is evaluated. This structural analysis is an aid in safety design. It is assumed that a Phantom military jet-fighter hits a nuclear powered ship. The total reaction force due to such an aircraft impact on a rigid barrier is specified in the guidelines of the Reaktor-Sicherheitskommission (German Safety Advisory Committee) for pressurized water reactors. This paper investigates the aircraft impact on the collision barrier at the side of the ship. The aircraft impact on top of the reactor hatchway is investigated by another analysis. It appears that the most unfavorable angle of impact is always normal to the surface of the collision barrier. Consequently, only normal impact will be considered here. For the specific case of an aircraft striking a nuclear powered ship, the following two effects are considered: Local penetration and dynamic response of the structure. (Auth.)

  18. A novel control technique for active shunt power filters for aircraft applications

    OpenAIRE

    Lavopa, Elisabetta

    2011-01-01

    The More Electric Aircraft is a technological trend in modern aerospace industry to increasingly use electrical power on board the aircraft in place of mechanical, hydraulic and pneumatic power to drive aircraft subsystems. This brings major changes to the aircraft electrical system, increasing the complexity of the network topology together with stability and power quality issues. Shunt active power filters are a viable solution for power quality enhancement, in order to comply with the stan...

  19. Human Power Empirically Explored

    Energy Technology Data Exchange (ETDEWEB)

    Jansen, A.J.

    2011-01-18

    Harvesting energy from the users' muscular power to convert this into electricity is a relatively unknown way to power consumer products. It nevertheless offers surprising opportunities for product designers; human-powered products function independently from regular power infrastructure, are convenient and can be environmentally and economically beneficial. This work provides insight into the knowledge required to design human-powered energy systems in consumer products from a scientific perspective. It shows the developments of human-powered products from the first introduction of the BayGen Freeplay radio in 1995 till current products and provides an overview and analysis of 211 human-powered products currently on the market. Although human power is generally perceived as beneficial for the environment, this thesis shows that achieving environmental benefit is only feasible when the environmental impact of additional materials in the energy conversion system is well balanced with the energy demands of the products functionality. User testing with existing products showed a preference for speeds in the range of 70 to 190 rpm for crank lengths from 32 to 95 mm. The muscular input power varied from 5 to 21 W. The analysis of twenty graduation projects from the Faculty of Industrial Design Engineering in the field of human-powered products, offers an interesting set of additional practice based design recommendations. The knowledge based approach of human power is very powerful to support the design of human-powered products. There is substantial potential for improvements in the domains energy conversion, ergonomics and environment. This makes that human power, when applied properly, is environmentally and economically competitive over a wider range of applications than thought previously.

  20. Parameterized Flight Mission for Secondary Power Requirement Estimations of Commercial Transport Aircraft

    OpenAIRE

    Lampl, Thomas; Muschkorgel, Sandra; Hornung, Mirko;

    2018-01-01

    The trend towards More-Electric Aircraft (MEA) and the introduction of new system technologies lead to considerable changes at the system level of commercial transport aircraft. Because the number of systems and power requirements are increasing, the consideration and integration of aircraft systems in early aircraft design phases is important. The objective of this contribution is to develop a characteristic flight mission with modelled aircraft systems to estimate the secondary power requir...

  1. Survey of aircraft electrical power systems

    Science.gov (United States)

    Lee, C. H.; Brandner, J. J.

    1972-01-01

    Areas investigated include: (1) load analysis; (2) power distribution, conversion techniques and generation; (3) design criteria and performance capabilities of hydraulic and pneumatic systems; (4) system control and protection methods; (5) component and heat transfer systems cooling; and (6) electrical system reliability.

  2. Fuel-Conservation Guidance System for Powered-Lift Aircraft

    Science.gov (United States)

    Erzberger, Heinz; McLean, John D.

    1981-01-01

    A technique is described for the design of fuel-conservative guidance systems and is applied to a system that was flight tested on board NASA's sugmentor wing jet STOL research aircraft. An important operational feature of the system is its ability to rapidly synthesize fuel-efficient trajectories for a large set of initial aircraft positions, altitudes, and headings. This feature allows the aircraft to be flown efficiently under conditions of changing winds and air traffic control vectors. Rapid synthesis of fuel-efficient trajectories is accomplished in the airborne computer by fast-time trajectory integration using a simplified dynamic performance model of the aircraft. This technique also ensures optimum flap deployment and, for powered-lift STOL aircraft, optimum transition to low-speed flight. Also included in the design is accurate prediction of touchdown time for use in four-dimensional guidance applications. Flight test results have demonstrated that the automatically synthesized trajectories produce significant fuel savings relative to manually flown conventional approaches.

  3. 49 CFR 173.172 - Aircraft hydraulic power unit fuel tank.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Aircraft hydraulic power unit fuel tank. 173.172... Class 1 and Class 7 § 173.172 Aircraft hydraulic power unit fuel tank. Aircraft hydraulic power unit fuel tanks containing a mixture of anhydrous hydrazine and monomethyl hydrazine (M86 fuel) and designed...

  4. Power Requirements Determined for High-Power-Density Electric Motors for Electric Aircraft Propulsion

    Science.gov (United States)

    Johnson, Dexter; Brown, Gerald V.

    2005-01-01

    Future advanced aircraft fueled by hydrogen are being developed to use electric drive systems instead of gas turbine engines for propulsion. Current conventional electric motor power densities cannot match those of today s gas turbine aircraft engines. However, if significant technological advances could be made in high-power-density motor development, the benefits of an electric propulsion system, such as the reduction of harmful emissions, could be realized.

  5. Improvement of Aircraft Crash Effective Areas for Koeberg Nuclear Power Plant

    International Nuclear Information System (INIS)

    Momoti, S.; Dongmo, G.B.; Combrink, Y.

    2017-01-01

    Probabilistic Safety Assessment (PSA): Tool for determining safe functioning of nuclear power plant to meet regulatory requirements; One of the inputs to the PSA are the frequency and consequences of an aircraft crash. Overview: Frequency of Aircraft Crash; Effective Area of an Aircraft Crashing into Koeberg - Aviation Categories, - Shielding of sensitive target buildings; Impact of refining the Effective AreaFrequency of Aircraft Crash

  6. Structural analysis of aircraft impact on a nuclear powered ship

    International Nuclear Information System (INIS)

    Dietrich, R.

    1976-01-01

    The paper investigates the aircraft impact on the collision barrier at the side of the ship. The aircraft impact on top of the reactor hatchway is investigated by another analysis. It appears that the most unfavorable angle of impact is always normal to the surface of the collision barrier. Consequently, only normal impact will be considered here. For the specific case of an aircraft striking a nuclear powered ship, the following two effects are considered: Local penetration and dynamic response of the structuure. The local penetration occurs at points where the engines or other rigid objects hit the structure. It is assumed that the aircraft engine is a rigid body projectile and the side wall of the ship is the target. The applied steel penetration formulae for projectiles were empirically derived for military applications, where both the projectile and the target are unlike those of an impact of an aircraft engine. For this reason it is expedient to calculate the upper and the lower limit values of the penetration depths. The results show that the highest penetration depth is less than the sum of all wall thicknesses of the collision barrier. The solution of the dynamic analysis is obtained by using the finite element method. The results are the eigenmodes, the eigenfrequencies, the displacements of the nodes, and the stresses in the applied plane stress elements. It is shown that the maximum stress which only appears in one element is on the same level as the yield stress of the St. 42 steel. The structural analysis shows that the collision barrier is a sufficient safeguard against the perforation of the engine and against the cracking of the structure as a result of the dynamic response to an aircraft impact. (orig./HP) [de

  7. Aircraft impact on nuclear power plants concrete structures

    International Nuclear Information System (INIS)

    Coombs, R.F.; Barbosa, L.C.B.; Santos, S.H.C.

    1980-01-01

    A summary about the procedures for the analysis of aircraft on concrete structures, aiming to emphasize the aspects related to the nuclear power plants safety, is presented. The impact force is determined by the Riera model. The effect of this impact force on the concrete structures is presented, showing the advantages to use nonlinear behaviour in the concrete submitted to short loads. The simplifications used are shown through a verification example of the nuclear reactor concrete shielding. (E.G.) [pt

  8. AIRCRAFT POWER SUPPLY SYSTEM DESIGN PROCESS AS AN AUTOMATION OBJECT

    Directory of Open Access Journals (Sweden)

    Boris V. Zhmurov

    2018-01-01

    Full Text Available The process of designing aviation electrical power systems (EPS is related to the need to fulfill a number of requirements of normative and technical documents and to conduct a large number of calculations. Experience has shown that it is not possible to obtain reliable initial data on the nature and magnitude of electricity consumption by electricity receivers (end users at the early stages of design. The composition of the electric power receivers and the power consumption of electricity during the design process are repeatedly changed. This leads to the need to repeatedly perform tasks related to the synthesis of primary and secondary systems of generation and calculation.The desire to improve the efficiency of EPS led to the emergence of new standardized types of electrical energy - 270 V DC and 380 V three-phase AC of stable and unstable frequency. It follows that it is possible to implement a rather large number of options for EPS structures, and there may be several secondary EPS or, in general, EPS of a third or higher level.The lack of ready-made aviation energy converters implies the impossibility of using ready-made components, and the development of specific devices should be coordinated with the development of EPS. In this case, one of the results of EPS design will be a set of requirements for the devices and units of the EPS projected.In any case, the design process for EPS aircraft requires a lot of iterations that take into account the change in both the raw data and the constraints on the EPS elements and the design process itself.The traditional approach to the design of EPS aircraft, assuming the knowledge of the designer of dozens of GOSTs (State All-Union standards and OSTs (All-Union standarts regulating the design stages of EPS, as well as the existence of standard EPS structures, from which a specific choice is made, is practically impossible at present. The only way to consciously approach the problem of designing EPS

  9. Human Factors Aspects of Aircraft Accidents

    Science.gov (United States)

    1982-10-01

    invaatiaaamanta traa important« : chainaa da grand entratian avion, revision daa motaura at banca d’aaaala, reviaion daa Equipements nEceaaitant daa...defectueux. Sur le plan des accidents d’apparells militaires, qui sort quelque peu de ma specia- lite, les renseignements disponibles dans la presse ...Undoubtedly, a compelling reason for staying with the aircraft was to try to regain pitch attitude control in view of a large audience of press and

  10. Advanced electrical power system technology for the all electric aircraft

    Science.gov (United States)

    Finke, R. C.; Sundberg, G. R.

    1983-01-01

    The application of advanced electric power system technology to an all electric airplane results in an estimated reduction of the total takeoff gross weight of over 23,000 pounds for a large airplane. This will result in a 5 to 10 percent reduction in direct operating costs (DOC). Critical to this savings is the basic electrical power system component technology. These advanced electrical power components will provide a solid foundation for the materials, devices, circuits, and subsystems needed to satisfy the unique requirements of advanced all electric aircraft power systems. The program for the development of advanced electrical power component technology is described. The program is divided into five generic areas: semiconductor devices (transistors, thyristors, and diodes); conductors (materials and transmission lines); dielectrics; magnetic devices; and load management devices. Examples of progress in each of the five areas are discussed. Bipolar power transistors up to 1000 V at 100 A with a gain of 10 and a 0.5 microsec rise and fall time are presented. A class of semiconductor devices with a possibility of switching up to 100 kV is described. Solid state power controllers for load management at 120 to 1000 V and power levels to 25 kW were developed along with a 25 kW, 20 kHz transformer weighing only 3.2 kg. Previously announced in STAR as N83-24764

  11. Advanced electrical power system technology for the all electric aircraft

    Science.gov (United States)

    Finke, R. C.; Sundberg, G. R.

    1983-01-01

    The application of advanced electric power system technology to an all electric airplane results in an estimated reduction of the total takeoff gross weight of over 23,000 pounds for a large airplane. This will result in a 5 to 10 percent reduction in direct operating costs (DOC). Critical to this savings is the basic electrical power system component technology. These advanced electrical power components will provide a solid foundation for the materials, devices, circuits, and subsystems needed to satisfy the unique requirements of advanced all electric aircraft power systems. The program for the development of advanced electrical power component technology is described. The program is divided into five generic areas: semiconductor devices (transistors, thyristors, and diodes); conductors (materials and transmission lines); dielectrics; magnetic devices; and load management devices. Examples of progress in each of the five areas are discussed. Bipolar power transistors up to 1000 V at 100 A with a gain of 10 and a 0.5 microsec rise and fall time are presented. A class of semiconductor devices with a possibility of switching up to 100 kV is described. Solid state power controllers for load management at 120 to 1000 V and power levels to 25 kW were developed along with a 25 kW, 20 kHz transformer weighing only 3.2 kg.

  12. Sensitivity of nuclear power plant structural response to aircraft impact

    International Nuclear Information System (INIS)

    Buchhardt, F.; Magiera, G.; Matthees, W.; Weber, M.

    1984-01-01

    In this paper a sensitivity study for aircraft impact is performed concerning the excitation of internal components, with particular regard to nonlinear structural material behaviour in the impact area. The nonlinear material values are varied within the bandwidth of suitable material strength, depending on local stiffness pre-calculations. The analyses are then performed on a globally discretized three-dimensional finite element model of a nuclear power plant, using a relatively fine mesh. For specified nodal points results are evaluated by comparing their response spectra. (Author) [pt

  13. Assessment procedure and probability determination methods of aircraft crash events in siting for nuclear power plants

    International Nuclear Information System (INIS)

    Zheng Qiyan; Zhang Lijun; Huang Weiqi; Yin Qingliao

    2010-01-01

    Assessment procedure of aircraft crash events in siting for nuclear power plants, and the methods of probability determination in two different stages of prelimi- nary screening and detailed evaluation are introduced in this paper. Except for general air traffic, airport operations and aircraft in the corridor, the probability of aircraft crash by military operation in the military airspaces is considered here. (authors)

  14. On using PEMFC for Electrical Power Generation on More Electric Aircraft

    OpenAIRE

    Jenica Ileana Corcau; Liviu Dinca

    2012-01-01

    The electrical power systems of aircrafts have made serious progress in recent years because the aircrafts depend more and more on the electricity. There is a trend in the aircraft industry to replace hydraulic and pneumatic systems with electrical systems, achieving more comfort and monitoring features and enlarging the energetic efficiency. Thus, was born the concept More Electric Aircraft. In this paper is analyzed the integration of a fuel cell into the existing elect...

  15. Aircraft Electric/Hybrid-Electric Power and Propulsion Workshop Perspective of the V/STOL Aircraft Systems Tech Committee

    Science.gov (United States)

    Hange, Craig E.

    2016-01-01

    This presentation will be given at the AIAA Electric Hybrid-Electric Power Propulsion Workshop on July 29, 2016. The workshop is being held so the AIAA can determine how it can support the introduction of electric aircraft into the aerospace industry. This presentation will address the needs of the community within the industry that advocates the use of powered-lift as important new technologies for future aircraft and air transportation systems. As the current chairman of the VSTOL Aircraft Systems Technical Committee, I will be presenting generalized descriptions of the past research in developing powered-lift and generalized observations on how electric and hybrid-electric propulsion may provide advances in the powered-lift field.

  16. Effect of power system technology and mission requirements on high altitude long endurance aircraft

    Science.gov (United States)

    Colozza, Anthony J.

    1994-01-01

    An analysis was performed to determine how various power system components and mission requirements affect the sizing of a solar powered long endurance aircraft. The aircraft power system consists of photovoltaic cells and a regenerative fuel cell. Various characteristics of these components, such as PV cell type, PV cell mass, PV cell efficiency, fuel cell efficiency, and fuel cell specific mass, were varied to determine what effect they had on the aircraft sizing for a given mission. Mission parameters, such as time of year, flight altitude, flight latitude, and payload mass and power, were also altered to determine how mission constraints affect the aircraft sizing. An aircraft analysis method which determines the aircraft configuration, aspect ratio, wing area, and total mass, for maximum endurance or minimum required power based on the stated power system and mission parameters is presented. The results indicate that, for the power system, the greatest benefit can be gained by increasing the fuel cell specific energy. Mission requirements also substantially affect the aircraft size. By limiting the time of year the aircraft is required to fly at high northern or southern latitudes, a significant reduction in aircraft size or increase in payload capacity can be achieved.

  17. Minimum power requirement for environmental control of aircraft

    International Nuclear Information System (INIS)

    Ordonez, Juan Carlos; Bejan, Adrian

    2003-01-01

    This paper addresses two basic issues in the thermodynamic optimization of environmental control systems (ECS) for aircraft: realistic limits for the minimal power requirement, and design features that facilitate operation at minimal power consumption. Four models are proposed and optimized. In the first, the ECS operates reversibly, the air stream in the cabin is mixed to one temperature, and the cabin experiences heat transfer with the ambient, across its insulation. The cabin temperature is fixed. In the second model, the fixed cabin temperature is assigned to the internal solid surfaces of the cabin, and a thermal resistance separates these surfaces from the air mixed in the cabin. In the third model, the ECS operates irreversibly, based on the bootstrap air cycle. The fourth model combines the ECS features of the third model with the cabin-environment interaction features of the second model. It is shown that in all models the temperature of the air stream that the ECS delivers to the cabin can be optimized for operation at minimal power. The effect of other design parameters and flying conditions is documented. The optimized air delivery temperature is relatively insensitive to the complexity of the model; for example, it is insensitive to the size of the heat exchanger used in the bootstrap air cycle. This study adds to the view that robustness is a characteristic of optimized complex flow systems, and that thermodynamic optimization results can be used for orientation in the pursuit of more complex and realistic designs

  18. Human systems integration in remotely piloted aircraft operations.

    Science.gov (United States)

    Tvaryanas, Anthony P

    2006-12-01

    The role of humans in remotely piloted aircraft (RPAs) is qualitatively different from manned aviation, lessening the applicability of aerospace medicine human factors knowledge derived from traditional cockpits. Aerospace medicine practitioners should expect to be challenged in addressing RPA crewmember performance. Human systems integration (HSI) provides a model for explaining human performance as a function of the domains of: human factors engineering; personnel; training; manpower; environment, safety, and occupational health (ESOH); habitability; and survivability. RPA crewmember performance is being particularly impacted by issues involving the domains of human factors engineering, personnel, training, manpower, ESOH, and habitability. Specific HSI challenges include: 1) changes in large RPA operator selection and training; 2) human factors engineering deficiencies in current RPA ground control station design and their impact on human error including considerations pertaining to multi-aircraft control; and 3) the combined impact of manpower shortfalls, shiftwork-related fatigue, and degraded crewmember effectiveness. Limited experience and available research makes it difficult to qualitatively or quantitatively predict the collective impact of these issues on RPA crewmember performance. Attending to HSI will be critical for the success of current and future RPA crewmembers. Aerospace medicine practitioners working with RPA crewmembers should gain first-hand knowledge of their task environment while the larger aerospace medicine community needs to address the limited information available on RPA-related aerospace medicine human factors. In the meantime, aeromedical decisions will need to be made based on what is known about other aerospace occupations, realizing this knowledge may have only partial applicability.

  19. Toward a human-centered aircraft automation philosophy

    Science.gov (United States)

    Billings, Charles E.

    1989-01-01

    The evolution of automation in civil aircraft is examined in order to discern trends in the respective roles and functions of automation technology and the humans who operate these aircraft. The effects of advances in automation technology on crew reaction is considered and it appears that, though automation may well have decreased the frequency of certain types of human errors in flight, it may also have enabled new categories of human errors, some perhaps less obvious and therefore more serious than those it has alleviated. It is suggested that automation could be designed to keep the pilot closer to the control of the vehicle, while providing an array of information management and aiding functions designed to provide the pilot with data regarding flight replanning, degraded system operation, and the operational status and limits of the aircraft, its systems, and the physical and operational environment. The automation would serve as the pilot's assistant, providing and calculating data, watching for the unexpected, and keeping track of resources and their rate of expenditure.

  20. 76 FR 48047 - Airworthiness Directives; Diamond Aircraft Industries Powered Sailplanes

    Science.gov (United States)

    2011-08-08

    ... 5 p.m., Monday through Friday, except Federal holidays. For service information identified in this... Service Information Diamond Aircraft Industries GmbH has issued Service Bulletin No. MSB 36-105/1, dated...-105, dated April 21, 2011, as specified in Diamond Aircraft Industries GmbH Service Bulletin No. MSB...

  1. Fuel-conservative guidance system for powered-lift aircraft

    Science.gov (United States)

    Erzberger, H.; Mclean, J. D.

    1979-01-01

    A concept for automatic terminal area guidance, comprising two modes of operation, was developed and evaluated in flight tests. In the predictive mode, fuel efficient approach trajectories are synthesized in fast time. In the tracking mode, the synthesized trajectories are reconstructed and tracked automatically. An energy rate performance model derived from the lift, drag, and propulsion system characteristics of the aircraft is used in the synthesis algorithm. The method optimizes the trajectory for the initial aircraft position and wind and temperature profiles encountered during each landing approach. The design theory and the results of simulations and flight tests using the Augmentor Wing Jet STOL Research Aircraft are described.

  2. Modeling and Simulation of Power Distribution System in More Electric Aircraft

    Directory of Open Access Journals (Sweden)

    Zhangang Yang

    2015-01-01

    Full Text Available The More Electric Aircraft concept is a fast-developing trend in modern aircraft industry. With this new concept, the performance of the aircraft can be further optimized and meanwhile the operating and maintenance cost will be decreased effectively. In order to optimize the power system integrity and have the ability to investigate the performance of the overall system in any possible situations, one accurate simulation model of the aircraft power system will be very helpful and necessary. This paper mainly introduces a method to build a simulation model for the power distribution system, which is based on detailed component models. The power distribution system model consists of power generation unit, transformer rectifier unit, DC-DC converter unit, and DC-AC inverter unit. In order to optimize the performance of the power distribution system and improve the quality of the distributed power, a feedback control network is designed based on the characteristics of the power distribution system. The simulation result indicates that this new simulation model is well designed and it works accurately. Moreover, steady state performance and transient state performance of the model can fulfill the requirements of aircraft power distribution system in the realistic application.

  3. Identifying Human Factors Issues in Aircraft Maintenance Operations

    Science.gov (United States)

    Veinott, Elizabeth S.; Kanki, Barbara G.; Shafto, Michael G. (Technical Monitor)

    1995-01-01

    Maintenance operations incidents submitted to the Aviation Safety Reporting System (ASRS) between 1986-1992 were systematically analyzed in order to identify issues relevant to human factors and crew coordination. This exploratory analysis involved 95 ASRS reports which represented a wide range of maintenance incidents. The reports were coded and analyzed according to the type of error (e.g, wrong part, procedural error, non-procedural error), contributing factors (e.g., individual, within-team, cross-team, procedure, tools), result of the error (e.g., aircraft damage or not) as well as the operational impact (e.g., aircraft flown to destination, air return, delay at gate). The main findings indicate that procedural errors were most common (48.4%) and that individual and team actions contributed to the errors in more than 50% of the cases. As for operational results, most errors were either corrected after landing at the destination (51.6%) or required the flight crew to stop enroute (29.5%). Interactions among these variables are also discussed. This analysis is a first step toward developing a taxonomy of crew coordination problems in maintenance. By understanding what variables are important and how they are interrelated, we may develop intervention strategies that are better tailored to the human factor issues involved.

  4. A novel integrated self-powered brake system for more electric aircraft

    Directory of Open Access Journals (Sweden)

    Yaoxing SHANG

    2018-05-01

    Full Text Available Traditional hydraulic brake systems require a complex system of pipelines between an aircraft engine driven pump (EDP and brake actuators, which increases the weight of the aircraft and may even cause serious vibration and leakage problems. In order to improve the reliability and safety of more electric aircraft (MEA, this paper proposes a new integrated self-powered brake system (ISBS for MEA. It uses a hydraulic pump geared to the main wheel to recover a small part of the kinetic energy of a landing aircraft. The recovered energy then serves as the hydraulic power supply for brake actuators. It does not require additional hydraulic source, thus removing the pipelines between an EDP and brake actuators. In addition, its self-powered characteristic makes it possible to brake as usual even in an emergency situation when the airborne power is lost. This paper introduces the working principle of the ISBS and presents a prototype. The mathematical models of a taxiing aircraft and the ISBS are established. A feedback linearization control algorithm is designed to fulfill the anti-skid control. Simulations are carried out to verify the feasibility of the ISBS, and experiments are conducted on a ground inertia brake test bench. The ISBS presents a good performance and provides a new potential solution in the field of brake systems for MEA. Keywords: Hydraulic, Feedback linearization control, More electric aircraft, Novel brake system, Self-powered

  5. Human Performance Considerations for Remotely Piloted Aircraft Systems (RPAS)

    Science.gov (United States)

    Shively, R. Jay; Hobbs, Alan; Lyall, Beth; Rorie, Conrad

    2015-01-01

    Successful integration of Remotely Piloted Aircraft Systems (RPAS) into civil airspace will not only require solutions to technical challenges, but will also require that the design and operation of RPAS take into account human limitations and capabilities. Human factors can affect overall system performance whenever the system relies on people to interact with another element of the system. Four types of broad interactions can be described. These are (1) interactions between people and hardware, such as controls and displays; (2) human use of procedures and documentation; (3) impact of the task environment, including lighting, noise and monotony; and lastly, (4) interactions between operational personnel, including communication and coordination. In addition to the human factors that have been identified for conventional aviation, RPAS operations introduce a set of unique human challenges. The purpose of document is to raise human factors issues for consideration by workgroups of the ICAO RPAS panel as they work to develop guidance material and additions to ICAO annexes. It is anticipated that the content of this document will be revised and updated as the work of the panel progresses.

  6. Energy management strategy for solar-powered high-altitude long-endurance aircraft

    International Nuclear Information System (INIS)

    Gao, Xian-Zhong; Hou, Zhong-Xi; Guo, Zheng; Liu, Jian-Xia; Chen, Xiao-Qian

    2013-01-01

    Highlights: ► A new Energy Management Strategy (EMS) for high-altitude solar-powered aircraft is purposed. ► The simulations show that the aircraft can always keep the altitude above 16 km with the proposed EMS. ► The proposed EMS is capable to alleviate the power consumed for aircraft during night. ► The main technologies to improve the flight performance of aircraft are analyzed. - Abstract: Development of solar-powered High-Altitude Long-Endurance (HALE) aircraft has a great impact on both military and civil aviation industries since its features in high-altitude and energy source can be considered inexhaustible. Owing to the development constraints of rechargeable batteries, the solar-powered HALE aircraft must take amount of rechargeable batteries to fulfill the energy requirement in night, which greatly limits the operation altitude of aircraft. In order to solve this problem, a new Energy Management Strategy (EMS) is proposed based on the idea that the solar energy can be partly stored in gravitational potential in daytime. The flight path of HALE aircraft is divided into three stages. During the stage 1, the solar energy is stored in both lithium–sulfur battery and gravitational potential. The gravitational potential is released in stage 2 by gravitational gliding and the required power in stage 3 is supplied by lithium–sulfur battery. Correspondingly, the EMS is designed for each stage. The simulation results show that the aircraft can always keep the altitude above 16 km with the proposed EMS, and the power consumed during night can be also alleviated. Comparing with the current EMS, about 23.5% energy is remained in batteries with the proposed EMS during one day–night cycle. The sensitivities of the improvement of crucial technologies to the performance of aircraft are also analyzed. The results show that the enhancement of control and structural system, lithium–sulfur battery, and solar cell are ranked in descending order for the

  7. Analysis of the Hybrid Power System for High-Altitude Unmanned Aircraft

    Directory of Open Access Journals (Sweden)

    Kangwen Sun

    2015-01-01

    Full Text Available The application of single solar array on high-altitude unmanned aircraft will waste energy because of its low conversion efficiency. Furthermore, since its energy utilization is limited, the surface temperature of solar array will rise to 70°C due to the waste solar energy, thus reducing the electrical performance of the solar array. In order to reuse the energy converted into heat by solar array, a hybrid power system is presented in this paper. In the hybrid power system, a new electricity-generating method is adopted to spread the photovoltaic cell on the wing surface and arrange photothermal power in the wing box section. Because the temperature on the back of photovoltaic cell is high, it can be used as the high-temperature heat source. The lower wing surface can be a low-temperature cold source. A high-altitude unmanned aircraft was used to analyze the performances of pure solar-powered aircraft and hybrid powered aircraft. The analysis result showed that the hybrid system could reduce the area of wing by 19% and that high-altitude unmanned aircraft with a 35 m or less wingspan could raise the utilization rate of solar energy per unit area after adopting the hybrid power system.

  8. The design of nuclear power plants in the Federal Republic of Germany as regards aircraft accidents

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    On the basis of investigation results of aircraft crashes for the Federal territory and site assessment data of the Ministry of the Interior, air traffic does not present a notable hazard for a nuclear power plant. As a precautionary measure for reducing the remaining risk, design requirements for LWRs were developed which, independently of existing aircraft types, contain mainly an abstract predetermination of an idealized impact load - time diagramme. (HP) [de

  9. Applying reliability analysis to design electric power systems for More-electric aircraft

    Science.gov (United States)

    Zhang, Baozhu

    The More-Electric Aircraft (MEA) is a type of aircraft that replaces conventional hydraulic and pneumatic systems with electrically powered components. These changes have significantly challenged the aircraft electric power system design. This thesis investigates how reliability analysis can be applied to automatically generate system topologies for the MEA electric power system. We first use a traditional method of reliability block diagrams to analyze the reliability level on different system topologies. We next propose a new methodology in which system topologies, constrained by a set reliability level, are automatically generated. The path-set method is used for analysis. Finally, we interface these sets of system topologies with control synthesis tools to automatically create correct-by-construction control logic for the electric power system.

  10. Application of Powered High Lift Systems to STOL Aircraft Design.

    Science.gov (United States)

    1979-09-01

    century by da Vinci, an English - man named Sir George Cayley first attempted to integrate the features of the helicopter and the airplane. In 1843 his...horizontal flight Jun 1959 WEIGHT: 6500 LBS ENGINES: (1) SNECMA ATAR 101 E.V. Turbojet of 8155 lbs thrust LAYOUT: See Fig. 21 COMMENTS: SNECMA was engaged...34 ATAR VOLANT" test vehicle fitted with an annular wing to permit transition to horizontal flight. The aircraft was controlled from a tilting ejec- tion

  11. Feasibility study for a microwave-powered ozone sniffer aircraft. B.S. Thesis

    Science.gov (United States)

    Botros, David F.; Cody, Charlotte K.; Forden, Noah P.; Helsing, Martin A.; Jutras, Thomas H.; Kim, Dohoon; Labarre, Christopher; Odin, Ethan M.; Sandler, Scott B.

    1990-01-01

    The preliminary design of a high-altitude, remotely-piloted, atmospheric-sampling aircraft powered by microwave energy beamed from ground-based antenna was completed. The vehicle has a gross weight of 6720 pounds and is sized to carry a 1000 pound payload at an altitude of 100,000 feet. The underside of the wing serves as the surface of a rectenna designed to receive microwave energy at a power density of 700 watts per square meter and the wing has a planform area of 3634 square feet to absorb the required power at an optimum Mach number M = 0.44. The aircraft utilizes a horizontal tail and a canard for longitudinal control and to enhance the structural rigidity of the twin fuselage configuration. The wing structure is designed to withstand a gust-induced load factor n = 3 at cruise altitude but the low-wing loading of the aircraft makes it very sensitive to gusts at low altitudes, which may induce load factors in excess of 20. A structural load alleviation system is therefore proposed to limit actual loads to the designed structural limit. Losses will require transmitted power on the order of megawatts to be radiated to the aircraft from the ground station, presenting environmental problems. Since the transmitting antenna would have a diameter of several hundred feet, it would not be readily transportable, so we propose that a single antenna be constructed at a site from which the aircraft is flown. The aircraft would be towed aloft to an initial altitude at which the microwave power would be utilized. The aircraft would climb to cruise altitude in a spiral flight path and orbit the transmitter in a gentle turn.

  12. Application of powered lift and mechanical flap concepts for civil short-haul transport aircraft design

    Science.gov (United States)

    Conlon, J. A.; Bowles, J. V.

    1977-01-01

    The objective of this paper is to determine various design and performance parameters, including wing loading and thrust loading requirements, for powered-lift and mechanical flap conceptual aircraft constrained by field length and community noise impact. Mission block fuel and direct operating costs (DOC) were found for optimum designs. As a baseline, the design and performance parameters were determined for the aircraft using engines without noise suppression. The constraint of the 90 EPNL noise contour being less than 2.6 sq km (1.0 sq mi) in area was then imposed. The results indicate that for both aircraft concepts the design gross weight, DOC, and required mission block fuel decreased with field length. At field lengths less than 1100 m (3600 ft) the powered lift aircraft had lower DOC and block fuel than the mechanical flap aircraft but produced higher unsuppressed noise levels. The noise goal could easily be achieved with nacelle wall treatment only and thus resulted in little or no performance or weight penalty for all studied aircraft.

  13. Engine-propeller power plant aircraft community noise reduction key methods

    Science.gov (United States)

    Moshkov P., A.; Samokhin V., F.; Yakovlev A., A.

    2018-04-01

    Basic methods of aircraft-type flying vehicle engine-propeller power plant noise reduction were considered including single different-structure-and-arrangement propellers and piston engines. On the basis of a semiempirical model the expressions for blade diameter and number effect evaluation upon propeller noise tone components under thrust constancy condition were proposed. Acoustic tests performed at Moscow Aviation institute airfield on the whole qualitatively proved the obtained ratios. As an example of noise and detectability reduction provision a design-and-experimental estimation of propeller diameter effect upon unmanned aircraft audibility boundaries was performed. Future investigation ways were stated to solve a low-noise power plant design problem for light aircraft and unmanned aerial vehicles.

  14. Determination of the probability of an aircraft falling on a nuclear power plant

    International Nuclear Information System (INIS)

    Kostikov, V.A.; Smol'nikov, V.L.; Baranaev, Yu.D.; Viktorov, A.N.; Vladykov, G.M.; Dolgov, V.V.; Shvedenko, I.M.

    1993-01-01

    Significant possible external actions at nuclear power plants are events associated with aviation accidents, in which, for one reason or another, an airplane or a fragment of an airplane can fall on the building and destroy the reactor or important safety systems. Measures for preventing an aircraft from striking a nuclear power plant include flight limitations and siting of airports, and flight corridors are created near nuclear power plants. The reactor itself can be placed in a special strong protective envelope. The specific technical measures are determined, to a significant degree, by the type of accident and the type of aircraft. It is now acknowledged, including in documents published by the IAEA, that assessment of the adequacy of measures for protecting a nuclear power plant from aircraft is most efficiently done by means of a probability analysis. We expound below briefly the methodology and the results obtained by its application to the South Ural nuclear power plant and the Bilibinskaya nuclear heat and electricity station. Falling of an aircraft (jet or helicopter) on a nuclear power plant is an extreme event, whose probability is determined mainly by flight safety measures, the intensity of flights in the region, and the distribution of aviation accidents by type and characteristic consequences. Flight safety is determined by the frequency with which aviation accidents occur per hour of flight and mainly depends on the sophistication of the aviation technology. The intensity of flights near a nuclear power plant is estimated taking into account the administrative and organizational measures for limiting flights and is a characteristic of the region where the power plant is located, as is the distribution of aviation accidents by type

  15. A novel Generalized State-Space Averaging (GSSA) model for advanced aircraft electric power systems

    International Nuclear Information System (INIS)

    Ebrahimi, Hadi; El-Kishky, Hassan

    2015-01-01

    Highlights: • A study model is developed for aircraft electric power systems. • A novel GSSA model is developed for the interconnected power grid. • The system’s dynamics are characterized under various conditions. • The averaged results are compared and verified with the actual model. • The obtained measured values are validated with available aircraft standards. - Abstract: The growing complexity of Advanced Aircraft Electric Power Systems (AAEPS) has made conventional state-space averaging models inadequate for systems analysis and characterization. This paper presents a novel Generalized State-Space Averaging (GSSA) model for the system analysis, control and characterization of AAEPS. The primary objective of this paper is to introduce a mathematically elegant and computationally simple model to copy the AAEPS behavior at the critical nodes of the electric grid. Also, to reduce some or all of the drawbacks (complexity, cost, simulation time…, etc) associated with sensor-based monitoring and computer aided design software simulations popularly used for AAEPS characterization. It is shown in this paper that the GSSA approach overcomes the limitations of the conventional state-space averaging method, which fails to predict the behavior of AC signals in a circuit analysis. Unlike conventional averaging method, the GSSA model presented in this paper includes both DC and AC components. This would capture the key dynamic and steady-state characteristics of the aircraft electric systems. The developed model is then examined for the aircraft system’s visualization and accuracy of computation under different loading scenarios. Through several case studies, the applicability and effectiveness of the GSSA method is verified by comparing to the actual real-time simulation model obtained from Powersim 9 (PSIM9) software environment. The simulations results represent voltage, current and load power at the major nodes of the AAEPS. It has been demonstrated that

  16. Nuclear power in human medicine

    International Nuclear Information System (INIS)

    Kuczera, Bernhard

    2012-01-01

    The public widely associate nuclear power with the megawatt dimensions of nuclear power plants in which nuclear power is released and used for electricity production. While this use of nuclear power for electricity generation is rejected by part of the population adopting the polemic attitude of ''opting out of nuclear,'' the application of nuclear power in medicine is generally accepted. The appreciative, positive term used in this case is nuclear medicine. Both areas, nuclear medicine and environmentally friendly nuclear electricity production, can be traced back to one common origin, i.e. the ''Atoms for Peace'' speech by U.S. President Eisenhower to the U.N. Plenary Assembly on December 8, 1953. The methods of examination and treatment in nuclear medicine are illustrated in a few examples from the perspective of a nuclear engineer. Nuclear medicine is a medical discipline dealing with the use of radionuclides in humans for medical purposes. This is based on 2 principles, namely that the human organism is unable to distinguish among different isotopes in metabolic processes, and the radioactive substances are employed in amounts so small that metabolic processes will not be influenced. As in classical medicine, the application of these principles serves two complementary purposes: diagnosis and therapy. (orig.)

  17. Review on signal-by-wire and power-by-wire actuation for more electric aircraft

    Directory of Open Access Journals (Sweden)

    Jean-Charles MARÉ

    2017-06-01

    Full Text Available The huge and rapid progress in electric drives offers new opportunities to improve the performances of aircraft at all levels: fuel burn, environmental footprint, safety, integration and production, serviceability, and maintainability. Actuation for safety-critical applications like flight-controls, landing gears, and even engines is one of the major consumers of non-propulsive power. Conventional actuation with centralized hydraulic power generation and distribution and control of power by throttling has been well established for decades, but offers a limited potential of evolution. In this context, electric drives become more and more attractive to remove the natural drawbacks of conventional actuation and to offer new opportunities for improving performance. This paper takes the stock, at both the signal and power levels, of the evolution of actuation for safety-critical applications in aerospace. It focuses on the recent advances and the remaining challenges to be taken toward full electrical actuation for commercial and military aircraft, helicopters, and launchers. It logically starts by emphasizing the specificity of safety-critical actuation for aerospace. The following section addresses in details the evolution of aerospace actuation from mechanically-signaled and hydraulically-supplied to all electric, with special emphasis on research and development programs and on solutions entered into service. Finally, the last section reviews the challenges to be taken to generalize the use of all-electric actuators for future aircraft programs.

  18. Human Body Size in Military Aircraft and Personal Equipment

    Science.gov (United States)

    1946-06-01

    Over a given period, more aircraft of a type will be available operationally if some time is invested in the early stages in order to achieve this...elements in the test situation). It immedi- ately became apparent that such familiar bugaboos of fatigue testing as train- ing and variability of subjects

  19. Definition and analytical evaluation of a power management system for tilt-rotor aircraft

    Science.gov (United States)

    Morris, J. J.; Alexander, H. R.

    1978-01-01

    The paper reviews the special design criteria which apply to power management in a tilt-rotor aircraft. These include the need for accurate and fast control of rpm and thrust, while accounting for the dynamic interactions between rotor systems caused by cross-shafting and aircraft lateral/directional response. The power management system is also required to provide acceptable high speed sensitivity to longitudinal turbulence. It is shown that the criteria can best be met using a single governor adjusting the collective pitch by an amount proportional to a combination of the average rpm and the integral of the average rpm of the two rotors. This system is evaluated and compared with other candidate systems in hover and cruise flight.

  20. Aircraft panel with sensorless active sound power reduction capabilities through virtual mechanical impedances

    Science.gov (United States)

    Boulandet, R.; Michau, M.; Micheau, P.; Berry, A.

    2016-01-01

    This paper deals with an active structural acoustic control approach to reduce the transmission of tonal noise in aircraft cabins. The focus is on the practical implementation of the virtual mechanical impedances method by using sensoriactuators instead of conventional control units composed of separate sensors and actuators. The experimental setup includes two sensoriactuators developed from the electrodynamic inertial exciter and distributed over an aircraft trim panel which is subject to a time-harmonic diffuse sound field. The target mechanical impedances are first defined by solving a linear optimization problem from sound power measurements before being applied to the test panel using a complex envelope controller. Measured data are compared to results obtained with sensor-actuator pairs consisting of an accelerometer and an inertial exciter, particularly as regards sound power reduction. It is shown that the two types of control unit provide similar performance, and that here virtual impedance control stands apart from conventional active damping. In particular, it is clear from this study that extra vibrational energy must be provided by the actuators for optimal sound power reduction, mainly due to the high structural damping in the aircraft trim panel. Concluding remarks on the benefits of using these electrodynamic sensoriactuators to control tonal disturbances are also provided.

  1. Artificial Intelligence Based Control Power Optimization on Tailless Aircraft. [ARMD Seedling Fund Phase I

    Science.gov (United States)

    Gern, Frank; Vicroy, Dan D.; Mulani, Sameer B.; Chhabra, Rupanshi; Kapania, Rakesh K.; Schetz, Joseph A.; Brown, Derrell; Princen, Norman H.

    2014-01-01

    Traditional methods of control allocation optimization have shown difficulties in exploiting the full potential of controlling large arrays of control devices on innovative air vehicles. Artificial neutral networks are inspired by biological nervous systems and neurocomputing has successfully been applied to a variety of complex optimization problems. This project investigates the potential of applying neurocomputing to the control allocation optimization problem of Hybrid Wing Body (HWB) aircraft concepts to minimize control power, hinge moments, and actuator forces, while keeping system weights within acceptable limits. The main objective of this project is to develop a proof-of-concept process suitable to demonstrate the potential of using neurocomputing for optimizing actuation power for aircraft featuring multiple independently actuated control surfaces. A Nastran aeroservoelastic finite element model is used to generate a learning database of hinge moment and actuation power characteristics for an array of flight conditions and control surface deflections. An artificial neural network incorporating a genetic algorithm then uses this training data to perform control allocation optimization for the investigated aircraft configuration. The phase I project showed that optimization results for the sum of required hinge moments are improved by more than 12% over the best Nastran solution by using the neural network optimization process.

  2. Assessment of the probability of an aircraft accidentally crashing on a nuclear power station

    International Nuclear Information System (INIS)

    Gravero; Lezer; Lucenet

    1975-01-01

    The probability of an accidental aircraft crash on a power station not situated near a commercial airport is assessed. Three major points in the general analysis of the problem are developed: analysis of accidents as a function of the phase of the flight and in particular during a flight in transit and examin-ation of aircraft crash conditions to determine the angle of impact on the reactor building for example; determination of the apparent surface of buildings allowing for several parameters: geometry of the building and of the aircraft, geography of the site, relative position of the buildings; assessment of air traffic above the region for the year under consideration distinguishing the weight of the aircraft which implies an investigation of the problem for commercial aviation on the one hand (regular or irregular flights, inter-national or internal) and for general aviation on the other hand. The analysis is determined for the years 1980 - 2000 so that ir will be necessary to extrapolate some of the parameters (development of air traffic, safety of transport, etc). (author)

  3. Solar Powered Aircraft, Photovoltaic Array/Battery System Tabletop Demonstration: Design and Operation Manual

    Science.gov (United States)

    Colozza, Anthony J.; Scheiman, David A.; Bailey, Sheila (Technical Monitor)

    2000-01-01

    A system was constructed to demonstrate the power system operation of a solar powered aircraft. The system consists of a photovoltaic (PV) array, a charge controller, a battery, an electric motor and propeller. The system collects energy from the PV array and either utilizes this energy to operate an electric motor or stores it in a rechargeable battery for future use. The system has a control panel which displays the output of the array and battery as well as the total current going to the electric motor. The control panel also has a means for adjusting the output to the motor to control its speed. The entire system is regulated around 12 VDC.

  4. Integrated Modelling of an Unmanned High-Altitude Solar-Powered Aircraft for Control Law Design Analysis

    OpenAIRE

    Klöckner, Andreas; Leitner, Martin; Schlabe, Daniel; Looye, Gertjan

    2013-01-01

    Solar-powered high-altitude unmanned platforms are highly optimized and integrated aircraft. In order to account for the complex, multi-physical interactions between their systems, we propose using integrated simulation models throughout the aircraft’s life cycle. Especially small teams with limited ressources should benefit from this approach. In this paper, we describe our approach to an integrated model of the Electric High-Altitude Solar-Powered Aircraft ELHASPA. It includes aspects of th...

  5. Aircraft crash upon a containment structure of a nuclear power plant

    International Nuclear Information System (INIS)

    Paul, D.K.; Abbas, H.; Godbole, P.N.; Nayak, G.C.

    1993-01-01

    The reinforced concrete outer containment of a Nuclear Power Plant (NPP) is required to be designed to withstand the impact of aircraft and aircrash debris etc. The problem is of strategic significance because the damage caused to the structure by these missiles may lead to the leakage of nuclear radiations. The safety design of NPP against aircraft crash requires the evaluation of crash probability. If the probability is smaller than the allowable value then the aircraft crash is neglected as design basis item. Otherwise adequate measures are taken to bring the released radioactive material within the permissible limit. The aircrafts and their striking velocity to be considered in the design of a structure are decided by the accident analysis. The probabilistic aspect of the problem has not been covered in the present work. The non-affordability of coupled analysis of large problems like aircraft crash on NPP, automobile impact on a structure etc. due to the requirement of excessive amount of manual as well as computer time and storage compels us to switch over to the uncoupled analysis. Moreover, the results of coupled analysis are heavily influenced by the analyst's modelling technique and choice of increment size. It is uncoupling of the missile and the target which converts the impact load to the impulse load. This impulse can be found by taking into consideration only the inertial and stiffness properties of missile and considering the target to be rigid. Though the impulse load so obtained disregards the inertial and stiffness characteristics of the target but its effect can be incorporated by modifying it for the inertial and stiffness properties of target at different time steps as we march in time domain during the analysis of the target

  6. Design Considerations for the Electrical Power Supply of Future Civil Aircraft with Active High-Lift Systems

    Directory of Open Access Journals (Sweden)

    J.-K. Mueller

    2018-01-01

    Full Text Available Active high-lift systems of future civil aircraft allow noise reduction and the use of shorter runways. Powering high-lift systems electrically have a strong impact on the design requirements for the electrical power supply of the aircraft. The active high-lift system of the reference aircraft design considered in this paper consists of a flexible leading-edge device together with a combination of boundary-layer suction and Coanda-jet blowing. Electrically driven compressors distributed along the aircraft wings provide the required mass flow of pressurized air. Their additional loads significantly increase the electric power demand during take-off and landing, which is commonly provided by electric generators attached to the aircraft engines. The focus of the present study is a feasibility assessment of alternative electric power supply concepts to unburden or eliminate the generator coupled to the aircraft engine. For this purpose, two different concepts using either fuel cells or batteries are outlined and evaluated in terms of weight, efficiency, and technology availability. The most promising, but least developed alternative to the engine-powered electric generator is the usage of fuel cells. The advantages are high power density and short refueling time, compared to the battery storage concept.

  7. Attempting to train a digital human model to reproduce human subject reach capabilities in an ejection seat aircraft

    NARCIS (Netherlands)

    Zehner, G.F.; Hudson, J.A.; Oudenhuijzen, A.

    2006-01-01

    From 1997 through 2002, the Air Force Research Lab and TNO Defence, Security and Safety (Business Unit Human Factors) were involved in a series of tests to quantify the accuracy of five Human Modeling Systems (HMSs) in determining accommodation limits of ejection seat aircraft. The results of these

  8. Preliminary Study on Effect of Aviation Fuel in the Safety Evaluation of Nuclear Power Plant Crashed by Aircraft

    International Nuclear Information System (INIS)

    Jin, Byeong Moo; Jeon, Se Jin; Lee, Yun Seok; Kim, Young Jin

    2011-01-01

    As the safety assessments of nuclear power plants for the hypothetical large civil aircraft crash should be made mandatory, studies on large aircraft-nuclear power plant impact analyses and assessments are actively in progress. The large civil aircraft are being operated with a large amount of fuel and the fuel can be assumed to contribute to the impact loads at the impact. The fuel, i.e., the internal liquid can be considered as added masses classically in the evaluation of the impact load. According to the recent experimental research, it has been shown that the impact load of high speed impacting body with internal liquid is much higher than that of the mass-equivalent impacting body. In this study, the impact loads according to the existence of the internal liquid are computed by numerical methods and the safety assessment of nuclear power plant crashed by large civil aircraft are performed as an application

  9. Design of a powered elevator control system. [powered elevator system for modified C-8A aircraft for STOL operation

    Science.gov (United States)

    Glende, W. L. B.

    1974-01-01

    The design, fabrication and flight testing of a powered elevator system for the Augmentor Wing Jet STOL Research Aircraft (AWJSRA or Mod C-8A) are discussed. The system replaces a manual spring tab elevator control system that was unsatisfactory in the STOL flight regime. Pitch control in the AWJSRA is by means of a single elevator control surface. The elevator is used for both maneuver and trim control as the stabilizer is fixed. A fully powered, irreversible flight control system powered by dual hydraulic sources was designed. The existing control columns and single mechanical cable system of the AWJSRA have been retained as has been the basic elevator surface, except that the elevator spring tab is modified into a geared balance tab. The control surface is directly actuated by a dual tandem moving body actuator. Control signals are transmitted from the elevator aft quadrant to the actuator by a linkage system that includes a limited authority series servo actuator.

  10. Human Factors in Accidents Involving Remotely Piloted Aircraft

    Science.gov (United States)

    Merlin, Peter William

    2013-01-01

    This presentation examines human factors that contribute to RPA mishaps and provides analysis of lessons learned. RPA accident data from U.S. military and government agencies were reviewed and analyzed to identify human factors issues. Common contributors to RPA mishaps fell into several major categories: cognitive factors (pilot workload), physiological factors (fatigue and stress), environmental factors (situational awareness), staffing factors (training and crew coordination), and design factors (human machine interface).

  11. Human factors in nuclear power plants

    International Nuclear Information System (INIS)

    Swain, A.D.

    1981-01-01

    This report describes some of the human factors problems in nuclear power plants and the technology that can be employed to reduce those problems. Many of the changes to improve the human factors in existing plants are inexpensive, and the expected gain in human reliability is substantial. The human factors technology is well-established and there are practitioners in most countries that have nuclear power plants. (orig.) [de

  12. Human factors in nuclear power plant operations

    International Nuclear Information System (INIS)

    Swain, A.D.

    1980-08-01

    This report describes some of the human factors problems in nuclear power plants and the technology that can be employed to reduce those problems. Many of the changes to improve the human factors in existing plants are inexpensive, and the expected gain in human reliability is substantial. The human factors technology is well-established and there are practitioners in most countries that have nuclear power plants

  13. Human factors in nuclear power plants

    International Nuclear Information System (INIS)

    Pack, R.W.

    1978-01-01

    The Electric Power Research Institute has started research in human factors in nuclear power plants. One project, completed in March 1977, reviewed human factors problems in operating power plants and produced a report evaluating those problems. A second project developed computer programs for evaluating operator performance on training simulators. A third project is developing and evaluating control-room design approaches. A fourth project is reviewing human factors problems associated with power-plant maintainability and instrumentation and control technician activities. Human factors engineering is an interdisciplinary specialty concerned with influencing the design of equipment systems, facilities, and operational environments to promote safe, efficient, and reliable operator performance. The Electric Power Research Institute (EPRI) has undertaken four projects studying the application of human factors engineering principles to nuclear power plants. (author)

  14. Design, Specification, and Synthesis of Aircraft Electric Power Systems Control Logic

    Science.gov (United States)

    Xu, Huan

    Cyber-physical systems integrate computation, networking, and physical processes. Substantial research challenges exist in the design and verification of such large-scale, distributed sensing, actuation, and control systems. Rapidly improving technology and recent advances in control theory, networked systems, and computer science give us the opportunity to drastically improve our approach to integrated flow of information and cooperative behavior. Current systems rely on text-based specifications and manual design. Using new technology advances, we can create easier, more efficient, and cheaper ways of developing these control systems. This thesis will focus on design considerations for system topologies, ways to formally and automatically specify requirements, and methods to synthesize reactive control protocols, all within the context of an aircraft electric power system as a representative application area. This thesis consists of three complementary parts: synthesis, specification, and design. The first section focuses on the synthesis of central and distributed reactive controllers for an aircraft elec- tric power system. This approach incorporates methodologies from computer science and control. The resulting controllers are correct by construction with respect to system requirements, which are formulated using the specification language of linear temporal logic (LTL). The second section addresses how to formally specify requirements and introduces a domain-specific language for electric power systems. A software tool automatically converts high-level requirements into LTL and synthesizes a controller. The final sections focus on design space exploration. A design methodology is proposed that uses mixed-integer linear programming to obtain candidate topologies, which are then used to synthesize controllers. The discrete-time control logic is then verified in real-time by two methods: hardware and simulation. Finally, the problem of partial observability and

  15. Human factor problem in nuclear power generation

    International Nuclear Information System (INIS)

    Yoshino, Kenji; Fujimoto, Junzo

    1999-01-01

    Since a nuclear power plant accident at Threemile Island in U.S.A. occurred in March, 1979, twenty years have passed. After the accident, the human factor problem became focussed in nuclear power, to succeed its research at present. For direct reason of human error, most of factors at individual level or work operation level are often listed at their center. Then, it is natural that studies on design of a machine or apparatus suitable for various human functions and abilities and on improvement of relationship between 'human being and machine' and 'human being and working environment' are important in future. Here was, as first, described on outlines of the human factor problem in a nuclear power plant developed at a chance of past important accident, and then was described on educational training for its countermeasure. At last, some concrete researching results obtained by human factor research were introduced. (G.K.)

  16. Power Management Strategy by Enhancing the Mission Profile Configuration of Solar-Powered Aircraft

    Directory of Open Access Journals (Sweden)

    Parvathy Rajendran

    2016-01-01

    Full Text Available Solar energy offers solar-powered unmanned aerial vehicle (UAV the possibility of unlimited endurance. Some researchers have developed techniques to achieve perpetual flight by maximizing the power from the sun and by flying in accordance with its azimuth angles. However, flying in a path that follows the sun consumes more energy to sustain level flight. This study optimizes the overall power ratio by adopting the mission profile configuration of optimal solar energy exploitation. Extensive simulation is conducted to optimize and restructure the mission profile phases of UAV and to determine the optimal phase definition of the start, ascent, and descent periods, thereby maximizing the energy from the sun. In addition, a vertical cylindrical flight trajectory instead of maximizing the solar inclination angle has been adopted. This approach improves the net power ratio by 30.84% compared with other techniques. As a result, the battery weight may be massively reduced by 75.23%. In conclusion, the proposed mission profile configuration with the optimal power ratio of the trajectory of the path planning effectively prolongs UAV operation.

  17. Optimal Sizing of a Photovoltaic-Hydrogen Power System for HALE Aircraft by means of Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Victor M. Sanchez

    2015-01-01

    Full Text Available Over the last decade there has been a growing interest in the research of feasibility to use high altitude long endurance (HALE aircrafts in order to provide mobile communications. The use of HALEs for telecommunication networks has the potential to deliver a wide range of communication services (from high-quality voice to high-definition videos, as well as high-data-rate wireless channels cost effectively. One of the main challenges of this technology is to design its power supply system, which must provide the enough energy for long time flights in a reliable way. In this paper a photovoltaic/hydrogen system is proposed as power system for a HALE aircraft due its high power density characteristic. In order to obtain the optimal sizing for photovoltaic/hydrogen system a particle swarm optimizer (PSO is used. As a case study, theoretical design of the photovoltaic/hydrogen power system for three different HALE aircrafts located at 18° latitude is presented. At this latitude, the range of solar radiation intensity was from 310 to 450 Wh/sq·m/day. The results obtained show that the photovoltaic/hydrogen systems calculated by PSO can operate during one year with efficacies ranging between 45.82% and 47.81%. The obtained sizing result ensures that the photovoltaic/hydrogen system supplies adequate energy for HALE aircrafts.

  18. Preliminary evaluation of aircraft impact on a near term nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Frano, R. Lo, E-mail: rosa.lofrano@ing.unipi.it [Department of Mechanical, Nuclear and Production Engineering, University of PISA, L.go L. Lazzarino 2, via Diotisalvi, no. 2-56126 Pisa (Italy); Forasassi, G. [Department of Mechanical, Nuclear and Production Engineering, University of PISA, L.go L. Lazzarino 2, via Diotisalvi, no. 2-56126 Pisa (Italy)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer The effects of military/civilian airplanes crash in a NPP were evaluated. Black-Right-Pointing-Pointer We adequately simulated the global response and safety margin of an SMR reactor. Black-Right-Pointing-Pointer The analyses allowed to represent the progressive failure/damaging processes. Black-Right-Pointing-Pointer The outer containment seemed to suffer some localized penetration and spalling. Black-Right-Pointing-Pointer The results highlighted the plant integrity is ensured despite the impact damages. - Abstract: For the assessment of the safety and durability of a nuclear power plant (NPP), the containment building behaviour shall be evaluated, under various service and extreme conditions, both natural or produced by natural accident or vicious man activities, like September 2001 jet aircraft crashes. The aim of this paper is to preliminary evaluate the effects and consequences of the energy transmitted to the outer containment walls (according to the international safety and design code guidelines, as NRC or IAEA ones) due to a military or civil aircraft impact into a nuclear plant, considered as a 'beyond design basis' event. To perform reliable analysis of such a large-scale structure and determine the structural effects of the propagation of this types of impulsive loads (response of containment structure), a realistic but still feasible numerical model with suitable materials characteristics were used by means of which relevant physical phenomena are reflected. Moreover a sensitivity analysis has also been carried out considering the effects of different containment wall thickness and reinforced/prestressed concrete features. The obtained results were analysed to check the NPP containment strength margins.

  19. Mobile test stand for evaluation of electric power plants for unmanned aircraft

    Directory of Open Access Journals (Sweden)

    Serbezov Vladimir

    2017-01-01

    Full Text Available The absence of accurate performance data is a common problem with most civilian unmanned aerial vehicle (UAV power plant producers. The reasons for this are the small size of most of the manufacturers and the high price of precise wind tunnel testing and computer simulations. To overcome this problem at Dronamics Ltd., with support from the Department of Aeronautics of TU-Sofia, a mobile test stand for evaluation of electric power plants for unmanned aircraft was developed. The stand may be used statically, or may be installed on the roof of an automobile. The measurement system of the stand is based on popular hardware that is used in radio controlled models and in general automation. The verification of the measurement system is performed by comparing static test results with data published by the manufacturer of the tested electric motor. Tests were carried out with 2 different types of propellers and the results were compared with published results for common propellers as well as with results of theoretical studies. The results are satisfactory for practical applications. The use of this type of test stands can be a cheap and effective alternative for research and development start-up companies like Dronamics.

  20. Virginia power's human performance evaluation system (HPES)

    International Nuclear Information System (INIS)

    Patterson, W.E.

    1991-01-01

    This paper reports on the Human Performance Evaluation System (HPES) which was initially developed by the Institute of Nuclear Power Operations (INPO) using the Aviation Safety Reporting System (ASRS) as a guide. After a pilot program involving three utilities ended in 1983, the present day program was instituted. A methodology was developed, for specific application to nuclear power plant employees, to aid trained coordinators/evaluators in determining those factors that exert a negative influence on human behavior in the nuclear power plant environment. HPES is for anyone and everyone on site, from contractors to plant staff to plant management. No one is excluded from participation. Virginia Power's HPES program goal is to identify and correct the root causes of human performance problems. Evaluations are performed on reported real or perceived conditions that may have an adverse influence on members of the nuclear team. A report is provided to management identifying root cause and contributing factors along with recommended corrective actions

  1. Human Factor on Gravelines Nuclear Power Plants

    International Nuclear Information System (INIS)

    Duboc, Gerard

    1998-01-01

    In a first part, the documents describes the commitments by EDF nuclear power plan operations to demands made by the Safety Authority regarding actions in the field of human factors (concerns expressed by the Authority, in-depth analysis, positions on different points raised by the Authority). In a second part, it presents the various actions undertaken in the Gravelines nuclear power station regarding human factors: creation of an 'operator club' (mission and objectives, methods and means, first meetings, tracking file), development of risk analysis strategy, setting up of a human factor engineering mission and example of action in case of a significant event

  2. Human factors in atomic power plant

    International Nuclear Information System (INIS)

    Kawano, Ryutaro

    1997-01-01

    To ensure safety should have priority over all other things in atomic power plants. In Chernobyl accident, however, various human factors including the systems for bulb check after inspection and communication, troubles in the interface between hardwares such as warning speakers and instruments, and their operators, those in education and training for operators and those in the general management of the plant have been pointed out. Therefore, the principles and the practical measures from the aspect of human factors in atomic power plants were discussed here. The word, ''human factor'' was given a definition in terms of the direct cause and the intellectual system. An explanatory model for human factors, model SHEL constructed by The Tokyo Electric Power Co., Ltd., Inc. was presented; the four letter mean software(S), hardware(H), environment(E) and liveware(L). In the plants of the company, systemic measures for human error factors are taken now in all steps not only for design, operation and repairing but also the step for safety culture. Further, the level required for the safety against atomic power is higher in the company than those in other fields. Thus, the central principle in atomic power plants is changing from the previous views that technology is paid greater importance to a view regarding human as most importance. (M.N.)

  3. The equivalence of gravitational potential and rechargeable battery for high-altitude long-endurance solar-powered aircraft on energy storage

    International Nuclear Information System (INIS)

    Gao, Xian-Zhong; Hou, Zhong-Xi; Guo, Zheng; Fan, Rong-Fei; Chen, Xiao-Qian

    2013-01-01

    Highlights: • The scope of this paper is to apply solar energy to achieve the high-altitude long-endurance flight. • The equivalence of gravitational potential and rechargeable battery is discussed. • Four kinds of factors have been discussed to compare the two method of energy storage. • This work can provide some governing principles for the application of solar-powered aircraft. - Abstract: Applying solar energy is one of the most promising methods to achieve the aim of High-altitude Long-endurance (HALE) flight, and solar-powered aircraft is usually taken by the research groups to develop HALE aircraft. However, the crucial factor which constrains the solar-powered aircraft to achieve the aim of HALE is the problem how to fulfill the power requirement under weight constraint of rechargeable batteries. Motivated by the birds store energy from thermal by gaining height, the method of energy stored by gravitational potential for solar-powered aircraft have attracted great attentions in recent years. In order to make the method of energy stored in gravitational potential more practical in solar-powered aircraft, the equivalence of gravitational potential and rechargeable battery for aircraft on energy storage has been analyzed, and four kinds of factors are discussed in this paper: the duration of solar irradiation, the charging rate, the energy density of rechargeable battery and the initial altitude of aircraft. This work can provide some governing principles for the solar-powered aircraft to achieve the unlimited endurance flight, and the endurance performance of solar-powered aircraft may be greatly improved by the application of energy storage using gravitational potential

  4. Lightweight, Efficient Power Converters for Advanced Turboelectric Aircraft Propulsion Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA is investigating advanced turboelectric aircraft propulsion systems that utilize superconducting motors to drive a number of distributed turbofans. In an...

  5. Conversion of Aircraft Dual-flow Turbojet into Peak Power Plant

    Directory of Open Access Journals (Sweden)

    G. A. Shafikov

    2017-01-01

    Full Text Available The paper is aimed at considering the aircraft engine conversion into peak or short-used energy unit, which is relevant for the task of developing the northern regions of the Russian Federation. The three-shaft turbojet engine with a twelve-stage compressor and a four-stage turbine is adopted as an aircraft engine under consideration. The afterburner with a block of jet nozzles is removed from the gas generator module, and a heating chamber is set at the outlet of the by-pass duct to raise electric power of engine and not complicate the construction by the presence of a mixing chamber. In addition, the heating chamber serves to equalize the total pressure and flow temperature in the section before the free turbine and allows the use of a short adapter between the gas generator module and the free turbine, which reduces the loss of total pressure. Then a free turbine and a diffuser with an exhaust device are installed. The output shaft of the power turbine is connected by means of a coupling to an alternating current (a. c. generator or other special load.To find the parameters of the plant, a calculation was made in which the initial data were taken, namely a gas temperature in front of the turbine of 1530 K (the gas temperature in front of the turbine is reduced by 100 K in order to prolong the engine life; therefore, the gas temperature before the turbine was 1630 K; air flow of 364 kg/s; bypass ratio of 1.36 (the ratio of the air flow passing through the bypass duct to the air flow entering the core. As a result, it consumes 0.296 kg / (kWh (fuel-aviation kerosene and a power capacity of 78.5 MW. For the received value of capacity the ТЗФП-80-2У3 a. c. electric generator has been chosen as the load. As a result, the power plant, equipped with a converted engine and electric generator, has an electric power of 77.3 MW and an efficiency of 27.8%.To assess the effect of introduced preheating chamber on the parameters of the gas turbine

  6. Arabian, Asian, western: a cross-cultural comparison of aircraft accidents from human factor perspectives.

    Science.gov (United States)

    Al-Wardi, Yousuf

    2017-09-01

    Rates of aviation accident differ in different regions; and national culture has been implicated as a factor. This invites a discussion about the role of national culture in aviation accidents. This study makes a cross-cultural comparison between Oman, Taiwan and the USA. A cross-cultural comparison was acquired using data from three studies, including this study, by applying the Human Factors Analysis and Classification System (HFACS) framework. The Taiwan study presented 523 mishaps with 1762 occurrences of human error obtained from the Republic of China Air Force. The study from the USA carried out for commercial aviation had 119 accidents with 245 instances of human error. This study carried out in Oman had a total of 40 aircraft accidents with 129 incidences. Variations were found between Oman, Taiwan and the USA at the levels of organisational influence and unsafe supervision. Seven HFACS categories showed significant differences between the three countries (p culture can have an impact on aviation safety. This study revealed that national culture plays a role in aircraft accidents related to human factors that cannot be disregarded.

  7. Human Mars Surface Mission Nuclear Power Considerations

    Science.gov (United States)

    Rucker, Michelle A.

    2018-01-01

    A key decision facing Mars mission designers is how to power a crewed surface field station. Unlike the solar-powered Mars Exploration Rovers (MER) that could retreat to a very low power state during a Martian dust storm, human Mars surface missions are estimated to need at least 15 kilowatts of electrical (kWe) power simply to maintain critical life support and spacecraft functions. 'Hotel' loads alone for a pressurized crew rover approach two kWe; driving requires another five kWe-well beyond what the Curiosity rover’s Radioisotope Power System (RPS) was designed to deliver. Full operation of a four-crew Mars field station is estimated at about 40 kWe. Clearly, a crewed Mars field station will require a substantial and reliable power source, beyond the scale of robotic mission experience. This paper explores the applications for both fission and RPS nuclear options for Mars.

  8. Human Factors and Information Operation for a Nuclear Power Space Vehicle

    International Nuclear Information System (INIS)

    Trujillo, Anna C.; Brown-Van Hoozer, S. Alenka

    2002-01-01

    This paper describes human-interactive systems needed for a crew nuclear-enabled space mission. A synthesis of aircraft engine and nuclear power plant displays, biofeedback of sensory input, virtual control, brain mapping for control process and manipulation, and so forth are becoming viable solutions. These aspects must maintain the crew's situation awareness and performance, which entails a delicate function allocation between crew and automation. (authors)

  9. 78 FR 26241 - Airworthiness Directives; Diamond Aircraft Industries GmbH Powered Gliders

    Science.gov (United States)

    2013-05-06

    ... p.m., Monday through Friday, except Federal holidays. For service information identified in this AD... We reviewed Diamond Aircraft Industries GmbH Mandatory Service Bulletin MSB 36-108, dated February 28... Industries GmbH Mandatory Service Bulletin MSB 36-108 and Diamond Aircraft [[Page 26243

  10. Human factors review of power plant maintainability

    International Nuclear Information System (INIS)

    Seminara, J.L.; Parsons, S.O.; Schmidt, W.J.; Gonzalez, W.R.; Dove, L.E.

    1980-10-01

    Human factors engineering is an interdisciplinary science and technology concerned with shaping the design of machines, facilities, and operational environments to promote safe, efficient, and reliable performance on the part of operators and maintainers of equipment systems. The human factors aspects of five nuclear power plants and four fossil fuel plants were evaluated using such methods as a checklist guided observation system, structured interviews with maintenance personnel, direct observations of maintenance tasks, reviews of procedures, and analyses of maintenance errors or accidents by means of the critical incident technique. The study revealed a wide variety of human factors problem areas, most of which are extensively photodocumented. The study recommends that a more systematic and formal approach be adopted to ensure that future power plants are human engineered to the needs of maintenance personnel

  11. Pilot Critical Incident Reports as a Means to Identify Human Factors of Remotely Piloted Aircraft

    Science.gov (United States)

    Hobbs, Alan; Cardoza, Colleen; Null, Cynthia

    2016-01-01

    It has been estimated that aviation accidents are typically preceded by numerous minor incidents arising from the same causal factors that ultimately produced the accident. Accident databases provide in-depth information on a relatively small number of occurrences, however incident databases have the potential to provide insights into the human factors of Remotely Piloted Aircraft System (RPAS) operations based on a larger volume of less-detailed reports. Currently, there is a lack of incident data dealing with the human factors of unmanned aircraft systems. An exploratory study is being conducted to examine the feasibility of collecting voluntary critical incident reports from RPAS pilots. Twenty-three experienced RPAS pilots volunteered to participate in focus groups in which they described critical incidents from their own experience. Participants were asked to recall (1) incidents that revealed a system flaw, or (2) highlighted a case where the human operator contributed to system resilience or mission success. Participants were asked to only report incidents that could be included in a public document. During each focus group session, a note taker produced a de-identified written record of the incident narratives. At the end of the session, participants reviewed each written incident report, and made edits and corrections as necessary. The incidents were later analyzed to identify contributing factors, with a focus on design issues that either hindered or assisted the pilot during the events. A total of 90 incidents were reported. Human factor issues included the impact of reduced sensory cues, traffic separation in the absence of an out-the-window view, control latencies, vigilance during monotonous and ultra-long endurance flights, control station design considerations, transfer of control between control stations, the management of lost link procedures, and decision-making during emergencies. Pilots participated willingly and enthusiastically in the study

  12. Assessment of the fire resistance of a nuclear power plant subjected to a large commercial aircraft crash

    International Nuclear Information System (INIS)

    Jeon, Se-Jin; Jin, Byeong-Moo; Kim, Young-Jin

    2012-01-01

    Highlights: ► A procedure to assess fire resistance of structure for aircraft crash is proposed. ► Fire scenario of containment and auxiliary building is determined for aircraft crash. ► Heat transfer and thermal stress analyses are performed to obtain section forces. ► Fire endurance time is evaluated by load–moment strength interaction diagram. - Abstract: The safety assessment of infrastructures, such as a nuclear power plant, for the crash of a large commercial aircraft has been performed worldwide after the terrorism that occurred in the U.S. on September 11, 2001. The assessment, however, has mainly focused on the techniques of impact analysis. In this study, a systematic procedure to assess the fire resistance of containment and auxiliary buildings subjected to such an aircraft crash is proposed. The intensity, duration and distribution of the fire are determined based on aircraft crash analyses and characteristics of jet fuel. A three-dimensional detailed finite element model of the containment and auxiliary buildings is established and used for heat transfer and thermal stress analyses, taking into account the material properties at an elevated temperature. Section forces can then be obtained that are based on a nonlinear stress–strain relationship. The fire resistance of the structure is assessed by comparing the fire-induced section forces with the section resistance which is evaluated using the load–moment strength interaction diagram. The study addresses the problem whereby the conventional assessment that only considers the flexural behaviour is less accurate. The assessment results support the general conclusion that the nuclear power plant structures can maintain structural integrity against external fire due to their relatively thick sections. The proposed procedure can be extensively applied to evaluate the fire endurance time of any type of structure subjected to an arbitrary fire.

  13. Optimal Sizing of a Photovoltaic-Hydrogen Power System for HALE Aircraft by means of Particle Swarm Optimization

    OpenAIRE

    Victor M. Sanchez; Romeli Barbosa; J. C. Cruz; F. Chan; J. Hernandez

    2015-01-01

    Over the last decade there has been a growing interest in the research of feasibility to use high altitude long endurance (HALE) aircrafts in order to provide mobile communications. The use of HALEs for telecommunication networks has the potential to deliver a wide range of communication services (from high-quality voice to high-definition videos, as well as high-data-rate wireless channels) cost effectively. One of the main challenges of this technology is to design its power supply system, ...

  14. Human factors in nuclear power plants

    International Nuclear Information System (INIS)

    Hennig, J.; Bohr, E.

    1976-04-01

    This annotated bibliography is a first attempt to give a survey of the kind of literature which is relevant for the ergonomic working conditions in nuclear power plants. Such a survey seems to be useful in view of the fact that the 'factor human being' comes recently more and more to the fore in nuclear power plants. In this context, the necessity is often pointed out to systematically include our knowledge of the performance capacity and limits of human beings when designing the working conditions for the personnel of nuclear power plants. For this reason, the bibliography is so much intended for the ergonomics experts as for the experts of nuclear engineering. (orig./LN) [de

  15. An integrated approach to the probabilistic assessments of aircraft strikes and structural mode of damages to nuclear power plants

    International Nuclear Information System (INIS)

    Godbout, P.; Brais, A.

    1975-01-01

    The possibilities of an aircraft striking a Canadian nuclear power plant in the vicinity of an airport and of inducing structural failure modes have been evaluated. This evaluation, together with other studies, may enhance decisions in the development of general criteria for the siting of reactors near airports. The study made use, for assessment, of the probabilistic approach and made judicious applications of the finite Canadian, French, German, American and English resources that were available. The tools, techniques and methods used for achieving the above, form what may be called an integrated approach. This method of approach requires that the study be made in six consecutive steps as follows: the qualitative evaluation of having an aircraft strike on a site situated near an airport with the use of the logic model technique; the statistical data gathering on aircraft movements and accidents; evaluating the probability distribution and calculating the basic event probabilities; evaluating the probability of an aircraft strike and the application of the sensitivity approach; generating the probability density distribution versus strike impact energy, that is, the evaluation of the energy envelope; and the probabilistic evaluation of structural failure mode inducements

  16. Thermoelectrical generator powered by human body

    Science.gov (United States)

    Almasyova, Zuzana; Vala, David; Slanina, Zdenek; Idzkowski, Adam

    2017-08-01

    This article deals with the possibility of using alternative energy sources for power of biomedical sensors with low power consumption, especially using the Peltier effect sources. Energy for powering of the target device has been used from the available renewable photovoltaic effect. The work is using of "energy harvesting" or "harvest energy" produced by autonomous generator harvesting accumulate energy. It allows to start working from 0.25 V. Measuring chain consists of further circuit which is a digital monitoring device for monitoring a voltage, current and power with I2C bus interface. Using the Peltier effect was first tested in a thermocontainer with water when the water heating occurred on the basis of different temperature differential between the cold and hot side of the Peltier element result in the production of energy. Realized prototype was also experimentally tested on human skin, specifically on the back, both in idle mode and under load.

  17. Experimental simulation of a light aircraft crash on to a nuclear power plant auxiliary building roof

    International Nuclear Information System (INIS)

    Barnes, D.; Barr, P.; Garton, G.; Howe, W.D.; Neilson, A.J.

    1984-08-01

    The experiments described were conducted at a reduced scale with geometric dimensions of prototype structures of one-fifth full size. The target was based on the auxiliary buildings for the proposed Sizewell PWR. Descriptions of the simulated aircraft model and the test panels are given, together with the instrumentation. Details are given of the test programme and the results are summarized and discussed. Comparison is made of the model aircraft tests with an equivalent hard missile impact. (U.K.)

  18. Optimized reinforcement of nuclear power plant structures for aircraft impact forces

    International Nuclear Information System (INIS)

    Zerna, W.; Schnellenbach, G.; Stangenberg, F.

    1976-01-01

    Reactor buildings of nuclear power plants and, to some extent also other buildings of the plant, according to the present safety requirements, have to be able to withstand aircraft impact forces. The building has to withstand this loading only once since afterwards it will be out of use. Accordingly, other criteria for design and the necessary safety measures are valid than in the case of service loads. Large deformations and the development of large cracks due to such loadings are insignificant from a construction point of view for reinforced concrete structures i.e. the stresses can build up to the ultimate load carrying capacity. From the nuclear safety point of view, however, some restrictions are possible in this regard e.g. to obstruct the penetration of fuel through the cracks. Basically all mild steels, with large ducility and without brittle fracture under sudden load increase, are suitable for this purpose. High stresses in the structure would, however, require uneconomical concentrations of mild steel. It is for this reason that the use of high strength steels e.g. St 110/135, has been introduced in Germany for this kind of loading. Through the use of wire strands or cables of high strength steel it is possible to reach a condition of cracks and large deformations due to ultimate loads in zone of point loading. The reinforcement takes on a distinctly curved shape and is able to carry the normal loads and shears through a suspension-structure action. The deformability of the structure for the analysed limit load state can be further increased through a bond-free net. This measure allows a more uniform sketching of the cables or strands over a larger zone. (Auth.)

  19. Human survival depends on nuclear power

    International Nuclear Information System (INIS)

    Gilbertson, J.

    1977-01-01

    Both the Wall Street Journal and the New York Times published feature articles Dec. 1 advertising a report by the U.S. government's General Accounting Office as evidence that the breeder reactor component of this nation's nuclear energy program was properly on its way to the scrap heap. According to the author, these and similar press accounts are intended to further legitimize the widely believed (and totally false) notion that increased plutonium use and nuclear fission generally represent a danger to humanity. Purposefully ignored in such accounts, he says, is the evidence that the elimination of plutonium as a nuclear fuel will mean the demise of the entire U.S. nuclear power industry and ultimately the human race itself. At stake in the short term, in addition to the breeder reactor program, is the well-established use of light water reactors for generating electricity, since these must, within a matter of years, be fueled with plutonium. The attack is also directed at the more advanced, more capital-intensive nuclear fusion technology, since the elimination of fission programs will wipe out the trained cadre force of engineers, scientists, technicians, and skilled workers needed to develop fusion power. The growth of fission power over the next two decades is absolutely necessary for the transition to a full fusion-based economy, according to Mr. Gilbertson. Only nuclear fusion has the inherent capability of transforming industry to the necessary higher mode of production and output, as well as providing a limitless source of usable power in several forms, thus insuring the survival of the human race beyond this century. Fission power and conventional fossil power must be expanded and possibly even exhausted during this transition in order to guarantee the achievement of this goal, he says

  20. Integrated topology for an aircraft electric power distribution system using MATLAB and ILP optimization technique and its implementation

    Science.gov (United States)

    Madhikar, Pratik Ravindra

    The most important and crucial design feature while designing an Aircraft Electric Power Distribution System (EPDS) is reliability. In EPDS, the distribution of power is from top level generators to bottom level loads through various sensors, actuators and rectifiers with the help of AC & DC buses and control switches. As the demands of the consumer is never ending and the safety is utmost important, there is an increase in loads and as a result increase in power management. Therefore, the design of an EPDS should be optimized to have maximum efficiency. This thesis discusses an integrated tool that is based on a Need Based Design method and Fault Tree Analysis (FTA) to achieve the optimum design of an EPDS to provide maximum reliability in terms of continuous connectivity, power management and minimum cost. If an EPDS is formulated as an optimization problem then it can be solved with the help of connectivity, cost and power constraints by using a linear solver to get the desired output of maximum reliability at minimum cost. Furthermore, the thesis also discusses the viability and implementation of the resulted topology on typical large aircraft specifications.

  1. Power law analysis of the human microbiome.

    Science.gov (United States)

    Ma, Zhanshan Sam

    2015-11-01

    Taylor's (1961, Nature, 189:732) power law, a power function (V = am(b) ) describing the scaling relationship between the mean and variance of population abundances of organisms, has been found to govern the population abundance distributions of single species in both space and time in macroecology. It is regarded as one of few generalities in ecology, and its parameter b has been widely applied to characterize spatial aggregation (i.e. heterogeneity) and temporal stability of single-species populations. Here, we test its applicability to bacterial populations in the human microbiome using extensive data sets generated by the US-NIH Human Microbiome Project (HMP). We further propose extending Taylor's power law from the population to the community level, and accordingly introduce four types of power-law extensions (PLEs): type I PLE for community spatial aggregation (heterogeneity), type II PLE for community temporal aggregation (stability), type III PLE for mixed-species population spatial aggregation (heterogeneity) and type IV PLE for mixed-species population temporal aggregation (stability). Our results show that fittings to the four PLEs with HMP data were statistically extremely significant and their parameters are ecologically sound, hence confirming the validity of the power law at both the population and community levels. These findings not only provide a powerful tool to characterize the aggregations of population and community in both time and space, offering important insights into community heterogeneity in space and/or stability in time, but also underscore the three general properties of power laws (scale invariance, no average and universality) and their specific manifestations in our four PLEs. © 2015 John Wiley & Sons Ltd.

  2. Personnel Selection Influences on Remotely Piloted Aircraft Human-System Integration.

    Science.gov (United States)

    Carretta, Thomas R; King, Raymond E

    2015-08-01

    Human-system integration (HSI) is a complex process used to design and develop systems that integrate human capabilities and limitations in an effective and affordable manner. Effective HSI incorporates several domains, including manpower, personnel and training, human factors, environment, safety, occupational health, habitability, survivability, logistics, intelligence, mobility, and command and control. To achieve effective HSI, the relationships among these domains must be considered. Although this integrated approach is well documented, there are many instances where it is not followed. Human factors engineers typically focus on system design with little attention to the skills, abilities, and other characteristics needed by human operators. When problems with fielded systems occur, additional training of personnel is developed and conducted. Personnel selection is seldom considered during the HSI process. Complex systems such as aviation require careful selection of the individuals who will interact with the system. Personnel selection is a two-stage process involving select-in and select-out procedures. Select-in procedures determine which candidates have the aptitude to profit from training and represent the best investment. Select-out procedures focus on medical qualification and determine who should not enter training for medical reasons. The current paper discusses the role of personnel selection in the HSI process in the context of remotely piloted aircraft systems.

  3. The dynamic response of the containment of the Qinshan nuclear power plant to the aircraft impact loading

    International Nuclear Information System (INIS)

    Zuo Jiahong; Han Liangbi; Xia Zufeng

    1991-08-01

    The structural response of the containment of the Qinshan Nuclear Power Plant under the standard-load-function to aircraft impact has been analyzed by using the ADINA code considering an axisymmetric continuum model, which is assumed a mixed-model for the steel-concrete mixture. It consists of 179 four-node isoparametric concrete elements and 118 steel elements. In order to obtain optimum results, the nonlinear behavior of materials and structures, dynamic modes of failure and damage have been considered in the numerical solution. The coordinate system is based on the total Lagrangian formulation. The F.E. system has been solved using an incremental interactions (BFGS method) with 600 steps totally. A discussion of the overall behavior of the containment for the aircraft impact loading, especially the nonlinear behavior of the local impacted area is presented

  4. Investigation of human system interface design in nuclear power plant

    International Nuclear Information System (INIS)

    Feng Yan; Zhang Yunbo; Wang Zhongqiu

    2012-01-01

    The paper introduces the importance of HFE in designing nuclear power plant, and introduces briefly the content and scope of HFE, discusses human system interface design of new built nuclear power plants. This paper also describes human system interface design of foreign nuclear power plant, and describes in detail human system interface design of domestic nuclear power plant. (authors)

  5. A machine-learning approach for damage detection in aircraft structures using self-powered sensor data

    Science.gov (United States)

    Salehi, Hadi; Das, Saptarshi; Chakrabartty, Shantanu; Biswas, Subir; Burgueño, Rigoberto

    2017-04-01

    This study proposes a novel strategy for damage identification in aircraft structures. The strategy was evaluated based on the simulation of the binary data generated from self-powered wireless sensors employing a pulse switching architecture. The energy-aware pulse switching communication protocol uses single pulses instead of multi-bit packets for information delivery resulting in discrete binary data. A system employing this energy-efficient technology requires dealing with time-delayed binary data due to the management of power budgets for sensing and communication. This paper presents an intelligent machine-learning framework based on combination of the low-rank matrix decomposition and pattern recognition (PR) methods. Further, data fusion is employed as part of the machine-learning framework to take into account the effect of data time delay on its interpretation. Simulated time-delayed binary data from self-powered sensors was used to determine damage indicator variables. Performance and accuracy of the damage detection strategy was examined and tested for the case of an aircraft horizontal stabilizer. Damage states were simulated on a finite element model by reducing stiffness in a region of the stabilizer's skin. The proposed strategy shows satisfactory performance to identify the presence and location of the damage, even with noisy and incomplete data. It is concluded that PR is a promising machine-learning algorithm for damage detection for time-delayed binary data from novel self-powered wireless sensors.

  6. The balance between safety and productivity and its relationship with human factors and safety awareness and communication in aircraft manufacturing

    NARCIS (Netherlands)

    Karanikas, N.; Melis, Damien Jose; Kourousis, Kyriakos

    2017-01-01

    Background: This paper presents the findings of a pilot research survey which assessed the degree of balance between safety and productivity, and its relationship with awareness and communication of human factors and safety rules in the aircraft manufacturing environment. Methods: The study was

  7. Aircrafts' taxi noise. Sound power level and directivity frequency band results

    NARCIS (Netherlands)

    Asensio, C.; Pavón, I.; Ruiz, M.; Pagan Munoz, Raul; Recuero, M.

    2009-01-01

    When noise mapping airports, the main noise sources are take offs and landings. But aircrafts' taxi noise can also be important, and should be considered, for instance when there are residential buildings near the airport's terminal. Main prediction tools, like Integrated Noise Model (INM), do not

  8. Human factors in nuclear power plants

    International Nuclear Information System (INIS)

    Bohr, E.; Hennig, J.; Preuss, W.; Thau, G.

    1977-01-01

    This report describes the results of a study on the functions of operating and maintenance personnel in nuclear power plants. Since an effective power plant design must take into systematic account the possibilities and limitations of the human element, the basic aim of the study was to identify what the human operators are required to do and how they achieve it. Information was acquired by direct observation and by interviews as well as by evaluation of written documents (e.g. incident reports, procedures manuals, work regulations) and of working conditions (e.g. equipment and workplace design). A literature search and evaluation carried out within the scope of this study has been published as a separate document. The main part of the report is devoted to discussions and conclusions on selected areas of potential improvements. The topics include control room design, factors of the physical environment including radiation, problems of maintainability, design of written documents, problems in communicating information, design and control of tasks, placement and training. A separate section deals with problems of recording human errors. (orig.) [de

  9. Human factors in nuclear power plant operation

    International Nuclear Information System (INIS)

    Sabri, Z.A.; Husseiny, A.A.

    1980-01-01

    An extensive effort is being devoted to developing a comprehensive human factor program that encompasses establishment of a data base for human error prediction using past operation experience in commercial nuclear power plants. Some of the main results of such an effort are reported including data retrieval and classification systems which have been developed to assist in estimation of operator error rates. Also, statistical methods are developed to relate operator error data to reactor type, age, and specific technical design features. Results reported in this paper are based on an analysis of LER's covering a six-year period for LWR's. Developments presently include a computer data management program, statistical model, and detailed error taxonomy

  10. Human resources in nuclear power program

    International Nuclear Information System (INIS)

    Machi, Sueo

    2008-01-01

    plant or nuclear power plant manufacture. Newly hired graduates or technical personnel working in industry undergo further training. Those working for the NPP manufactures undergo training in designs, manufacturing and construction while those working with the power companies undertake plant operation training using simulator, plant maintenance, safety culture and design specification. A survey of newly hired BS and MS graduates in engineering by power companies for nuclear power sector in Japan showed that 221 graduates were hired in 1997 and the number dropped to 134 in 1999 and maintained this level up to 2001. These engineering graduates majored in electronics, nuclear, chemistry, mechanics and others. Meanwhile, 30% of the engineering graduates hired by 3 major NPP manufactures for their NPP division are nuclear engineers while the other 70% consists of engineers majoring in mechanics, electronics, materials and other majors. The number of staff for NPP division will have to be increased in future to meet increased demand in Japan and overseas. The human resource development for nuclear energy is faced with the dilemma because the young generation is losing interest in science and technology and many experienced nuclear engineers are retiring and there is a decreasing number of new construction of NPPs till 2030. Possible solutions are to improve public perception on nuclear power, ensure effective succession of nuclear knowledge and experience to young engineers and technicians, strengthen R and D on generationIV NPP and Fast Breeder Reactors (FBR), and strengthen nuclear education and training. In support of this human resource development, the Japanese government provided funding of US$3.4 million in 2007. Within the framework of the Forum for Nuclear Cooperation in Asia (FNCA), the Asian Nuclear Training and Education Program (ANTEP) has the following objectives: (1) to train and educate nuclear engineers and scientists and specialists of radiation applications

  11. The balance and harmony of control power for a combat aircraft in tactical maneuvering

    Science.gov (United States)

    Bocvarov, Spiro; Cliff, Eugene M.; Lutze, Frederick H.

    1992-01-01

    An analysis is presented for a family of regular extremal attitude-maneuvers for the High Angle-of-Attack Research Vehicle that has thrust-vectoring capability. Different levels of dynamic coupling are identified in the combat aircraft attitude model, and the characteristic extremal-family motion is explained. It is shown why the extremal-family trajectories develop small sideslip-angles, a highly desirable feature from a practical viewpoint.

  12. Feasibility study for a microwave-powered ozone sniffer aircraft, volume 2

    Science.gov (United States)

    1990-01-01

    Using 3-D design techniques and the Advanced Surface Design Software on the Computervision Designer V-X Interactive Graphics System, the aircraft configuration was created. The canard, tail, vertical tail, and main wing were created on the system using Wing Generator, a Computervision based program introduced in Appendix A.2. The individual components of the plane were created separately and were later individually imported to the master database. An isometric view of the final configuration is presented.

  13. Pulsed high-peak-power and single-frequency fibre laser design for LIDAR aircraft safety application

    Science.gov (United States)

    Liégeois, Flavien; Vercambre, Clément; Hernandez, Yves; Salhi, Mohamed; Giannone, Domenico

    2006-09-01

    Laser wind velocimeters work by monitoring the Doppler shift induced on the backscattered light by aerosols that are present in the air. Recently there has been a growing interest in the scientific community for developing systems operating at wavelengths near 1.5 μm and based on all-fibre lasers configuration. In this paper, we propose a new all-fibre laser source that is suitable for Doppler velocimetry in aircraft safety applications. The all-fibre laser has been specifically conceived for aircraft safety application. Our prototype has a conveniently narrow linewidth (9 kHz) and is modulated and amplified through an all fibre Master Oscillator Power Amplifier (MOPA) configuration. According to the measurements, we performed the final characteristics of the laser consist in a maximum peak power of 2.7 kW and an energy of 27 μJ energy per pulses of 10 ns at 30 kHz repetition rate. The only limiting factor of these performances is the Stimulated Brillouin Scattering.

  14. Developing Large-Scale Bayesian Networks by Composition: Fault Diagnosis of Electrical Power Systems in Aircraft and Spacecraft

    Science.gov (United States)

    Mengshoel, Ole Jakob; Poll, Scott; Kurtoglu, Tolga

    2009-01-01

    In this paper, we investigate the use of Bayesian networks to construct large-scale diagnostic systems. In particular, we consider the development of large-scale Bayesian networks by composition. This compositional approach reflects how (often redundant) subsystems are architected to form systems such as electrical power systems. We develop high-level specifications, Bayesian networks, clique trees, and arithmetic circuits representing 24 different electrical power systems. The largest among these 24 Bayesian networks contains over 1,000 random variables. Another BN represents the real-world electrical power system ADAPT, which is representative of electrical power systems deployed in aerospace vehicles. In addition to demonstrating the scalability of the compositional approach, we briefly report on experimental results from the diagnostic competition DXC, where the ProADAPT team, using techniques discussed here, obtained the highest scores in both Tier 1 (among 9 international competitors) and Tier 2 (among 6 international competitors) of the industrial track. While we consider diagnosis of power systems specifically, we believe this work is relevant to other system health management problems, in particular in dependable systems such as aircraft and spacecraft. (See CASI ID 20100021910 for supplemental data disk.)

  15. Model Specification for Rework of Aircraft Engine, Power Transmission, and Accessory/Auxiliary Ball and Roller Bearings

    Science.gov (United States)

    Zaretsky, Erwin V.; Branzai, Emanuel V.

    2007-01-01

    This document provides a model specification for the rework and/or repair of bearings used in aircraft engines, helicopter main power train transmissions, and auxiliary bearings determined to be critical by virtue of performance, function, or availability. The rolling-element bearings to be processed under the provisions of this model specification may be used bearings removed after service, unused bearings returned from the field, or certain rejected bearings returned for reinspection and salvage. In commercial and military aircraft application, it has been a practice that rolling-element bearings removed at maintenance or overhaul be reworked and returned to service. Depending on the extent of rework and based upon theoretical analysis, representative life factors (LF) for bearings subject to rework ranged from 0.87 to 0.99 the lives of new bearings. Based on bearing endurance data, 92 percent of the bearing sets that would be subject to rework would result in L(sub 10) lives equaling and/or exceeding that predicted for new bearings. The remaining 8 percent of the bearings have the potential to achieve the analytically predicted life of new bearings when one of the rings is replaced at rework. The potential savings from bearing rework varies from 53 to 82 percent of that of new bearings depending on the cost, size, and complexity of the bearing

  16. The Study of Permanent Magnets Synchronous Machine (PMSM of the Autonomous Electric Power Supply System (ASE, compatible with the Concept of a More Electric Aircraft (MEA

    Directory of Open Access Journals (Sweden)

    Setlak Lucjan

    2018-01-01

    Full Text Available Based on the analysis and mathematical models of synchronous electric machines (motor/generator, basing on permanent magnets, presented in this paper, the main importance of alternator AC power sources in the form of starter/generator (for conventional aircraft and in the form of integrated unit starter (motor/AC synchronous generator S/G AC (with respect to advanced aircraft concept in terms of more electric aircraft was highlighted. Additionally, through the analysis and selected simulations of the on-board autonomous power supply system of the modern aircrafts, sources of electrical energy (synchronous motor/generator, integrated unit starter/AC generator were located in board autonomic power system ASE (EPS, PES. Main components of this system are the electro-energetic power system EPS and the energo-electronic power system PES. In addition, the analysis and exemplary simulations of main electricity sources based on mathematical models have contributed to highlighting the main practical applications in accordance with the concept of MEA.

  17. Human factors implications of unmanned aircraft accidents : flight-control problems

    Science.gov (United States)

    2006-04-01

    This research focuses on three types of flight control problems associated with unmanned aircraft systems. The : three flight control problems are: 1) external pilot difficulties with inconsistent mapping of the controls to the : movement of the airc...

  18. Towards an Ultrasonic Guided Wave Procedure for Health Monitoring of Composite Vessels: Application to Hydrogen-Powered Aircraft.

    Science.gov (United States)

    Yaacoubi, Slah; McKeon, Peter; Ke, Weina; Declercq, Nico F; Dahmene, Fethi

    2017-09-19

    This paper presents an overview and description of the approach to be used to investigate the behavior and the defect sensitivity of various ultrasonic guided wave (UGW) modes propagating specifically in composite cylindrical vessels in the framework of the safety of hydrogen energy transportation such as hydrogen-powered aircrafts. These structures which consist of thick and multi-layer composites are envisioned for housing hydrogen gas at high pressures. Due to safety concerns associated with a weakened structure, structural health monitoring techniques are needed. A procedure for optimizing damage detection in these structural types is presented. It is shown that a finite element method can help identify useful experimental parameters including frequency range, excitation type, and receiver placement.

  19. Towards an Ultrasonic Guided Wave Procedure for Health Monitoring of Composite Vessels: Application to Hydrogen-Powered Aircraft

    Directory of Open Access Journals (Sweden)

    Slah Yaacoubi

    2017-09-01

    Full Text Available This paper presents an overview and description of the approach to be used to investigate the behavior and the defect sensitivity of various ultrasonic guided wave (UGW modes propagating specifically in composite cylindrical vessels in the framework of the safety of hydrogen energy transportation such as hydrogen-powered aircrafts. These structures which consist of thick and multi-layer composites are envisioned for housing hydrogen gas at high pressures. Due to safety concerns associated with a weakened structure, structural health monitoring techniques are needed. A procedure for optimizing damage detection in these structural types is presented. It is shown that a finite element method can help identify useful experimental parameters including frequency range, excitation type, and receiver placement.

  20. Analysis and prevention of human failure in nuclear power plants

    International Nuclear Information System (INIS)

    Liu Xinshuan

    2001-01-01

    Based on the performances in Daya Bay Nuclear Power Plant and the common experience from the world nuclear industry, the features and usual kinds of human failures in nuclear power plants are highlighted and the prominent factors on the personal, external and decision problems which might cause the human failures are analyzed. Effective preventive measures have been proposed respectively. Some successful human-failure-prevention practices applied in the Daya Bay Nuclear Power Plant are illustrated specifically

  1. The human factor in the operation of nuclear powered submarines

    International Nuclear Information System (INIS)

    Dambier, M.

    1982-05-01

    The conditions characterizing the operation of nuclear powered submarines are described and the precautionary measures suitable to reduce the incidence of human errors and their consequences are explained

  2. THE FUTURE OF PASSENGER AIR TRANSPORT – VERY LARGE AIRCRAFT AND OUT KEY HUMAN FACTORS AFFECTING THE OPERATION AND SAFETY OF PASSENGER AIR TRANSPORT

    Directory of Open Access Journals (Sweden)

    Petra Skolilova

    2017-12-01

    Full Text Available The article outlines some human factors affecting the operation and safety of passenger air transport given the massive increase in the use of the VLA. Decrease of the impact of the CO2 world emissions is one of the key goals for the new aircraft design. The main wave is going to reduce the burned fuel. Therefore, the eco-efficiency engines combined with reasonable economic operation of the aircraft are very important from an aviation perspective. The prediction for the year 2030 says that about 90% of people, which will use long-haul flights to fly between big cities. So, the A380 was designed exactly for this time period, with a focus on the right capacity, right operating cost and right fuel burn per seat. There is no aircraft today with better fuel burn combined with eco-efficiency per seat, than the A380. The very large aircrafts (VLAs are the future of the commercial passenger aviation. Operating cost versus safety or CO2 emissions versus increasing automation inside the new generation aircraft. Almost 80% of the world aircraft accidents are caused by human error based on wrong action, reaction or final decision of pilots, the catastrophic failures of aircraft systems, or air traffic control errors are not so frequent. So, we are at the beginning of a new age in passenger aviation and the role of the human factor is more important than ever.

  3. Optically powered and interrogated rotary position sensor for aircraft engine control applications

    Science.gov (United States)

    Spillman, W. B.; Crowne, D. H.; Woodward, D. W.

    A throttle level angle (TLA) sensing system is described that utilizes a capacitance based rotary position transducer that is powered and interrogated via light from a single multimode optical fiber. The system incorporates a unique GaAs device that serves as both a power converter and optical data transmitter. Design considerations are discussed, and the fabrication and performance of the sensor system are detailed.

  4. A sample application of nuclear power human resources model

    International Nuclear Information System (INIS)

    Gurgen, A.; Ergun, S.

    2016-01-01

    One of the most important issues for a new comer country initializing the nuclear power plant projects is to have both quantitative and qualitative models for the human resources development. For the quantitative model of human resources development for Turkey, “Nuclear Power Human Resources (NPHR) Model” developed by the Los Alamos National Laboratory was used to determine the number of people that will be required from different professional or occupational fields in the planning of human resources for Akkuyu, Sinop and the third nuclear power plant projects. The number of people required for different professions for the Nuclear Energy Project Implementation Department, the regulatory authority, project companies, construction, nuclear power plants and the academy were calculated. In this study, a sample application of the human resources model is presented. The results of the first tries to calculate the human resources needs of Turkey were obtained. Keywords: Human Resources Development, New Comer Country, NPHR Model

  5. Basic research on human reliability in nuclear power plants

    International Nuclear Information System (INIS)

    Zhang Li; Deng Zhiliang

    1996-10-01

    Human reliability in nuclear power plants is one of key factors in nuclear safety and economic operation. According to cognitive science, behaviour theory and ergonomic and on the bases of human cognitive behaviour characteristics, performance shaping factors, human error mechanisms and organization management, the project systematically studied the human reliability in nuclear power plant systems, established the basic theory and methods for analyzing human factor accidents and suggested feasible approaches and countermeasures for precaution against human factor accidents and improving human reliability. The achievement has been applied in operation departments, management departments and scientific research institutions of nuclear power, and has produced guiding significance and practical value to design, operation and management in nuclear power plants. (11 refs.)

  6. Human reliability analysis of Lingao Nuclear Power Station

    International Nuclear Information System (INIS)

    Zhang Li; Huang Shudong; Yang Hong; He Aiwu; Huang Xiangrui; Zheng Tao; Su Shengbing; Xi Haiying

    2001-01-01

    The necessity of human reliability analysis (HRA) of Lingao Nuclear Power Station are analyzed, and the method and operation procedures of HRA is briefed. One of the human factors events (HFE) is analyzed in detail and some questions of HRA are discussed. The authors present the analytical results of 61 HFEs, and make a brief introduction of HRA contribution to Lingao Nuclear Power Station

  7. Development of human factors engineering guide for nuclear power project

    International Nuclear Information System (INIS)

    Wu Dangshi; Sheng Jufang

    1997-01-01

    'THE PRACTICAL GUIDE FOR APPLICATION OF HUMAN FACTORS ENGINEERING TO NUCLEAR POWER PROJECT (First Draft, in Chinese)', which was developed under a research program sponsored by National Nuclear Safety Administration (NNSA) is described briefly. It is hoped that more conscious, more systematical and more comprehensive application of Human Factors Engineering to the nuclear power projects from the preliminary feasibility studies up to the commercial operation will benefit the safe, efficient and economical operations of nuclear power plants in China

  8. Design and simulation of solar powered aircraft for year-round operation at high altitude; Auslegung und Simulation von hochfliegenden, dauerhaft stationierbaren Solardrohnen

    Energy Technology Data Exchange (ETDEWEB)

    Keidel, B.

    2000-05-18

    An unmanned solar powered aircraft configuration called SOLITAIR has been designed. This aircraft is intended to be used as an high altitude long endurance (HALE) sensor platform for year-round operation at intermediate latitudes up to about {+-}55 . For the design studies leading to this aircraft configuration, a software package has been developed which enables an effective design and a proper simulation of the entire solar aircraft system for various flight missions. The performance analysis and the mission simulation showed, that a configuration with large additional solar panels, that can be tilted in order to follow the sun angle during daytime operation appears to be superior to aircraft configurations with wing-mounted solar cells for the desired operational area. In order to examine the basic flight characteristics of the SOLITAIR configuration a remote controlled demonstration model has been built and test flown. [German] In der vorliegenden Arbeit wurden Moeglichkeiten geschaffen, um Gesamtsystemkonfigura-tionen unbemannter hochfliegender Solarflugzeuge fuer unterschiedliche Anwendungsfaelle auszulegen und die Flugleistungen sowie die Missionsfaehigkeit dieser Konfigurationen aufzuzeigen. Mit den geschaffenen und verifizierten Entwicklungswerkzeugen wurde eine Solarflugzeugkonfiguration entworfen und mittels eines Demonstrationsmodells erprobt. Mit dieser Konfiguration kann eine dauerhafte Stationierbarkeit von ca. 55 suedlicher bis 55 noerdlicher Breite erreicht werden. Dies stellt eine bedeutende Erweiterung des bisher fuer moeglich gehaltenen Nutzungsbereiches solcher Flugzeuge dar.

  9. Evaluation of optimal control type models for the human gunner in an Anti-Aircraft Artillery (AAA) system

    Science.gov (United States)

    Phatak, A. V.; Kessler, K. M.

    1975-01-01

    The selection of the structure of optimal control type models for the human gunner in an anti aircraft artillery system is considered. Several structures within the LQG framework may be formulated. Two basic types are considered: (1) kth derivative controllers; and (2) proportional integral derivative (P-I-D) controllers. It is shown that a suitable criterion for model structure determination can be based on the ensemble statistics of the tracking error. In the case when the ensemble tracking steady state error is zero, it is suggested that a P-I-D controller formulation be used in preference to the kth derivative controller.

  10. Aircraft and Bases Powered by Compact Nuclear Reactors: Solutions to Projecting Power in Highly Contested Environments and Fossil Fuel Dependence

    Science.gov (United States)

    2015-05-01

    decline.20 Since 2008, improvements in fossil fuel extraction techniques, such as fracking in the United States, have delayed the inevitable and probably...higher US production due to fracking and inaction by the Organization of the Petroleum Exporting Countries (OPEC).25 Assuming this relaxation does not... fracking techniques, eventually even the most ingenious extraction techniques will not be enough for supply to keep up with demand, and humans will

  11. HRM, POWER and possible spaces of becoming human

    DEFF Research Database (Denmark)

    Bramming, Pia

    2003-01-01

    What has power to do with Human Resource Management (HRM)? Perusing HRMtextbooksone will find, that power as a concept, only seldom is approached explicitly.When the subject of power is addressed directly, it is primarily as a question ofbargaining power between organisation and labour market...... institutions, the power of aleader or person in terms of the right to execute punishment and the duty to obedienceor empowerment, as a countermove to the effects of bureaucratic workplace routines`... where initiative is stifled and workers become alienated'1. Indirectly one canidentify power as interesting...... through technologies of theself....

  12. Engine-integrated solid oxide fuel cells for efficient electrical power generation on aircraft

    Science.gov (United States)

    Waters, Daniel F.; Cadou, Christopher P.

    2015-06-01

    This work investigates the use of engine-integrated catalytic partial oxidation (CPOx) reactors and solid oxide fuel cells (SOFCs) to reduce fuel burn in vehicles with large electrical loads like sensor-laden unmanned air vehicles. Thermodynamic models of SOFCs, CPOx reactors, and three gas turbine (GT) engine types (turbojet, combined exhaust turbofan, separate exhaust turbofan) are developed and checked against relevant data and source material. Fuel efficiency is increased by 4% and 8% in the 50 kW and 90 kW separate exhaust turbofan systems respectively at only modest cost in specific power (8% and 13% reductions respectively). Similar results are achieved in other engine types. An additional benefit of hybridization is the ability to provide more electric power (factors of 3 or more in some cases) than generator-based systems before encountering turbine inlet temperature limits. A sensitivity analysis shows that the most important parameters affecting the system's performance are operating voltage, percent fuel oxidation, and SOFC assembly air flows. Taken together, this study shows that it is possible to create a GT-SOFC hybrid where the GT mitigates balance of plant losses and the SOFC raises overall system efficiency. The result is a synergistic system with better overall performance than stand-alone components.

  13. Evaluation of a Hydrogen Fuel Cell Powered Blended-Wing-Body Aircraft Concept for Reduced Noise and Emissions

    Science.gov (United States)

    Guynn, Mark D.; Freh, Joshua E.; Olson, Erik D.

    2004-01-01

    This report describes the analytical modeling and evaluation of an unconventional commercial transport aircraft concept designed to address aircraft noise and emission issues. A blended-wing-body configuration with advanced technology hydrogen fuel cell electric propulsion is considered. Predicted noise and emission characteristics are compared to a current technology conventional configuration designed for the same mission. The significant technology issues which have to be addressed to make this concept a viable alternative to current aircraft designs are discussed. This concept is one of the "Quiet Green Transport" aircraft concepts studied as part of NASA's Revolutionary Aerospace Systems Concepts (RASC) Program. The RASC Program was initiated to develop revolutionary concepts that address strategic objectives of the NASA Enterprises, such as reducing aircraft noise and emissions, and to identify advanced technology requirements for the concepts.

  14. Human performance improvement for nuclear power plants

    International Nuclear Information System (INIS)

    2005-01-01

    The IAEA assists NPP operating organizations to improve plant performance through a focus on human performance improvement in areas like organizational and leadership development, senior management decision making, organization and management of HPI programmes including tools needed for effective HPI implementation, safety culture enhancement, knowledge management, personnel selection and staffing, career development, training and development, work design, scheduling and conditions, procedure and other job-aid development and use, effective communications, human performance monitoring, motivation. Many NPP operating organizations in Member States, are not yet achieving the full potential of their NPP technology/equipment regarding safety, operational or economic performance due to human performance weaknesses. The IAEA's HPI (Human Performance Improvement) services provide a means for these organizations to efficiently and effectively learn from international experts and the experiences of others in improving plant performance through human performance improvements. NPP operating organizations can benefit from these services in a number of ways, including requesting a national project, participating in a regional project, or requesting an assist visit. The types of activities provided through these services include assistance in benchmarking practices of successful organizations, providing information exchange and reviews of current practices through assist missions, conducting workshops on focused human performance topics, evaluating current human performance methods, including assistance in implementing self assessment programmes and providing support to safety culture enhancement programmes based on self-assessment

  15. Investigation of high-alpha lateral-directional control power requirements for high-performance aircraft

    Science.gov (United States)

    Foster, John V.; Ross, Holly M.; Ashley, Patrick A.

    1993-01-01

    Designers of the next-generation fighter and attack airplanes are faced with the requirements of good high angle-of-attack maneuverability as well as efficient high speed cruise capability with low radar cross section (RCS) characteristics. As a result, they are challenged with the task of making critical design trades to achieve the desired levels of maneuverability and performance. This task has highlighted the need for comprehensive, flight-validated lateral-directional control power design guidelines for high angles of attack. A joint NASA/U.S. Navy study has been initiated to address this need and to investigate the complex flight dynamics characteristics and controls requirements for high angle-of-attack lateral-directional maneuvering. A multi-year research program is underway which includes groundbased piloted simulation and flight validation. This paper will give a status update of this program that will include a program overview, description of test methodology and preliminary results.

  16. Application of digital human modeling and simulation for vision analysis of pilots in a jet aircraft: a case study.

    Science.gov (United States)

    Karmakar, Sougata; Pal, Madhu Sudan; Majumdar, Deepti; Majumdar, Dhurjati

    2012-01-01

    Ergonomic evaluation of visual demands becomes crucial for the operators/users when rapid decision making is needed under extreme time constraint like navigation task of jet aircraft. Research reported here comprises ergonomic evaluation of pilot's vision in a jet aircraft in virtual environment to demonstrate how vision analysis tools of digital human modeling software can be used effectively for such study. Three (03) dynamic digital pilot models, representative of smallest, average and largest Indian pilot population were generated from anthropometric database and interfaced with digital prototype of the cockpit in Jack software for analysis of vision within and outside the cockpit. Vision analysis tools like view cones, eye view windows, blind spot area, obscuration zone, reflection zone etc. were employed during evaluation of visual fields. Vision analysis tool was also used for studying kinematic changes of pilot's body joints during simulated gazing activity. From present study, it can be concluded that vision analysis tool of digital human modeling software was found very effective in evaluation of position and alignment of different displays and controls in the workstation based upon their priorities within the visual fields and anthropometry of the targeted users, long before the development of its physical prototype.

  17. New method of calculating the power at altitude of aircraft engines equipped with superchargers on the basis of tests made under sea-level conditions

    Science.gov (United States)

    Sarracino, Marcello

    1941-01-01

    The present article deals with what is considered to be a simpler and more accurate method of determining, from the results of bench tests under approved rating conditions, the power at altitude of a supercharged aircraft engine, without application of correction formulas. The method of calculating the characteristics at altitude, of supercharged engines, based on the consumption of air, is a more satisfactory and accurate procedure, especially at low boost pressures.

  18. Exoskeleton Power and Torque Requirements Based on Human Biomechanics

    National Research Council Canada - National Science Library

    Crowell, Harrison

    2002-01-01

    .... In providing design guidance, the authors had two goals. The first goal was to provide estimates of the angles, torques, and powers for the ankles, knees, and hips of an exoskeleton based on data collected from humans...

  19. A Self-Powered Insole for Human Motion Recognition

    Directory of Open Access Journals (Sweden)

    Yingzhou Han

    2016-09-01

    Full Text Available Biomechanical energy harvesting is a feasible solution for powering wearable sensors by directly driving electronics or acting as wearable self-powered sensors. A wearable insole that not only can harvest energy from foot pressure during walking but also can serve as a self-powered human motion recognition sensor is reported. The insole is designed as a sandwich structure consisting of two wavy silica gel film separated by a flexible piezoelectric foil stave, which has higher performance compared with conventional piezoelectric harvesters with cantilever structure. The energy harvesting insole is capable of driving some common electronics by scavenging energy from human walking. Moreover, it can be used to recognize human motion as the waveforms it generates change when people are in different locomotion modes. It is demonstrated that different types of human motion such as walking and running are clearly classified by the insole without any external power source. This work not only expands the applications of piezoelectric energy harvesters for wearable power supplies and self-powered sensors, but also provides possible approaches for wearable self-powered human motion monitoring that is of great importance in many fields such as rehabilitation and sports science.

  20. Solar thermal aircraft

    Science.gov (United States)

    Bennett, Charles L.

    2007-09-18

    A solar thermal powered aircraft powered by heat energy from the sun. A heat engine, such as a Stirling engine, is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller. The heat engine has a thermal battery in thermal contact with it so that heat is supplied from the thermal battery. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  1. Sustainable nuclear power - the human dimension

    International Nuclear Information System (INIS)

    Peddicorda, K.L.; Poston, John W. Sr.; Sayko, Tami Davis; Porter, Jay; Reece, W. Dan; Earl, Beth; Ostroskaya, Natela; Lagoudas, Magdalini; Crenshaw, John; Jump, Will; Fenner, Clarence; Lowery, Kirby; Sieben, Steve; Jones, Larry; Ridge, Douglas; Robertson, Dale; Hyde, Carliss; Kuruvilla, John; Kinnison, Wayne; Harris, Kendall; Aghara, Sukesh; Pezold, Frank; Bird, Bobby; Rice, Bill

    2008-01-01

    The availability of a well-prepared workforce is fundamental to the increased use of nuclear energy. Significant numbers of new employees will be needed not only for the new plants, but to replace retirees at the existing plants. In addition, a wide variety of disciplines and levels of educational backgrounds are needed. The Nuclear Power Institute is a partnership of industry, higher education, secondary and middle schools, state government and civic and community leadership that has come together to meet the challenge of attracting and preparing the nuclear workforce. (authors)

  2. Human Performance at the Perry Nuclear Power Plant

    International Nuclear Information System (INIS)

    Rabe, Alan W.

    1998-01-01

    Provides a description of human performance training for plant workers as implemented at the Perry Nuclear Power Plant. Practical concepts regarding the training are presented as well as a demonstration of some of the training material. Concepts are drawn from INPO, Reason and Deming. The paper encourages the use of site-wide and individual organizational unit training in human performance management techniques. (author)

  3. Research of human factor in nuclear power plants

    International Nuclear Information System (INIS)

    Nopp, I.

    1983-01-01

    The question is discussed of the study of the human factor with regard to the reliability of nuclear power plant operation. The reliability of the human factor is the result of the functional fitness, motivation, working conditions and working regime of personnel. (J.B.)

  4. Sensing power transfer between the human body and the environment

    NARCIS (Netherlands)

    Veltink, Petrus H.; Kortier, H.G.; Schepers, H. Martin

    The power transferred between the human body and the environment at any time and the work performed are important quantities to be estimated when evaluating and optimizing the physical interaction between the human body and the environment in sports, physical labor, and rehabilitation. It is the

  5. Human and behavioral factors contributing to spine-based neurological cockpit injuries in pilots of high-performance aircraft: recommendations for management and prevention

    Science.gov (United States)

    Jones, J. A.; Hart, S. F.; Baskin, D. S.; Effenhauser, R.; Johnson, S. L.; Novas, M. A.; Jennings, R.; Davis, J.

    2000-01-01

    In high-performance aircraft, the need for total environmental awareness coupled with high-g loading (often with abrupt onset) creates a predilection for cervical spine injury while the pilot is performing routine movements within the cockpit. In this study, the prevalence and severity of cervical spine injury are assessed via a modified cross-sectional survey of pilots of multiple aircraft types (T-38 and F-14, F-16, and F/A-18 fighters). Ninety-five surveys were administered, with 58 full responses. Fifty percent of all pilots reported in-flight or immediate post-flight spine-based pain, and 90% of fighter pilots reported at least one event, most commonly (> 90%) occurring during high-g (> 5 g) turns of the aircraft with the head deviated from the anatomical neutral position. Pre-flight stretching was not associated with a statistically significant reduction in neck pain episodes in this evaluation, whereas a regular weight training program in the F/A-18 group approached a significant reduction (mean = 2.492; p < 0.064). Different cockpit ergonomics may vary the predisposition to cervical injury from airframe to airframe. Several strategies for prevention are possible from both an aircraft design and a preventive medicine standpoint. Countermeasure strategies against spine injury in pilots of high-performance aircraft require additional research, so that future aircraft will not be limited by the human in control.

  6. The Countermeasures against the Human Errors in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Hee; Kwon, Ki Chun; Lee, Jung Woon; Lee, Hyun; Jang, Tong Il

    2009-10-15

    Due to human error, the failure of nuclear power facilities essential for the prevention of accidents and related research in ergonomics and human factors, including the long term, comprehensive measures are considered technology is urgently required. Past nuclear facilities for the hardware in terms of continuing interest over subsequent definite improvement even have brought, now a nuclear facility to engage in people-related human factors for attention by nuclear facilities, ensuring the safety of its economic and industrial aspects. The point of the improvement is urgently required. The purpose of this research, including nuclear power plants in various nuclear facilities to minimize the possibility of human error by ensuring the safety for human engineering aspects will be implemented in the medium and long term preventive measures is to establish comprehensive.

  7. The Countermeasures against the Human Errors in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Lee, Yong Hee; Kwon, Ki Chun; Lee, Jung Woon; Lee, Hyun; Jang, Tong Il

    2009-10-01

    Due to human error, the failure of nuclear power facilities essential for the prevention of accidents and related research in ergonomics and human factors, including the long term, comprehensive measures are considered technology is urgently required. Past nuclear facilities for the hardware in terms of continuing interest over subsequent definite improvement even have brought, now a nuclear facility to engage in people-related human factors for attention by nuclear facilities, ensuring the safety of its economic and industrial aspects. The point of the improvement is urgently required. The purpose of this research, including nuclear power plants in various nuclear facilities to minimize the possibility of human error by ensuring the safety for human engineering aspects will be implemented in the medium and long term preventive measures is to establish comprehensive

  8. Human factor analysis and preventive countermeasures in nuclear power plant

    International Nuclear Information System (INIS)

    Li Ye

    2010-01-01

    Based on the human error analysis theory and the characteristics of maintenance in a nuclear power plant, human factors of maintenance in NPP are divided into three different areas: human, technology, and organization. Which is defined as individual factors, including psychological factors, physiological characteristics, health status, level of knowledge and interpersonal skills; The technical factors including technology, equipment, tools, working order, etc.; The organizational factors including management, information exchange, education, working environment, team building and leadership management,etc The analysis found that organizational factors can directly or indirectly affect the behavior of staff and technical factors, is the most basic human error factor. Based on this nuclear power plant to reduce human error and measures the response. (authors)

  9. Human factors guidelines for nuclear power plant applications

    International Nuclear Information System (INIS)

    Ketchel, J.

    1993-01-01

    In 1989, Waters et al. reported to the Human Factors Society on developing human factors criteria for a new reactor plant. They correctly indicated that much of the guidance documentation in human factors engineering has derived from MIL-STD-1472 and its antecedents. Guidelines for human-computer interface have sprung primarily from the Smith and Mosier compendium and its source documents. NUREG-0700, which is currently being updated, was developed by the US Nuclear Regulatory Commission (NRC) as a general evaluation guide for inspecting control rooms. In addition, the Electric Power Research Institute, Institute of Nuclear Power Operations, US Department of Energy, the NRC, and others have published a number of specialized documents on a range of subjects. The number of guidelines and standards has grown in the past few years to an impressive number, including those published by international organizations and professional societies. This paper provides an update on current efforts to provide appropriate guidance for the power industry and, perhaps more importantly, offers a perspective on how users should think about using the available materials and what else is needed. The Electric Power Research Institute (EPRI) continues to be one of the principal participants in providing guidance to the utilities. Human factors guidelines is indeed a timely topic, currently of great interest to EPRI's constituents and to designers of new and upgraded nuclear power plants (NPMs) in the Advanced Light Water Reactor and the Instrumentation and Control Upgrade Initiative programs

  10. Investigation of human performance events at French power stations

    International Nuclear Information System (INIS)

    Ghertman, F.; Griffon-Fouco, M.

    1985-01-01

    This paper is concerned with the collection of data on human errors that occur at operating power plants. Three collection methods are used, each relating to a difference level of analysis. (1) Simplified statistical analysis of the causes of human errors: Events which have occurred at operating power plants and which are attributable to human errors are selected. The errors thus identified are analysed briefly and are described by a simplified classification, statistical analysis then being applied to find the principal factors underlying these errors. By way of example, an analysis is given of data on emergency shut-downs involving a human error component that occurred at 900 MW(e) PWR plants during 1982, 1983, 1984. (2) In-depth statistical analysis of the causes of certain human errors: The errors selected are analysed and described by means of a detailed classification. By way of example, the collection and evaluation of data on human errors occurring during periodic tests at a 900 MW(e) power plant over a period of six months are described. (3) In-depth analysis of certain events due to human errors: The events selected are analysed by means of a method which reconstitutes the multicausal aspect of the event and of each human error. By way of example, a description is given of an emergency core cooling required at a 900 MW(e) PWR plant. In conclusion, it is explained how these three methods of collection play complementary roles

  11. Practical Applications of Cosmic Ray Science: Spacecraft, Aircraft, Ground Based Computation and Control Systems and Human Health and Safety

    Science.gov (United States)

    Atwell, William; Koontz, Steve; Normand, Eugene

    2012-01-01

    In this paper we review the discovery of cosmic ray effects on the performance and reliability of microelectronic systems as well as on human health and safety, as well as the development of the engineering and health science tools used to evaluate and mitigate cosmic ray effects in earth surface, atmospheric flight, and space flight environments. Three twentieth century technological developments, 1) high altitude commercial and military aircraft; 2) manned and unmanned spacecraft; and 3) increasingly complex and sensitive solid state micro-electronics systems, have driven an ongoing evolution of basic cosmic ray science into a set of practical engineering tools (e.g. ground based test methods as well as high energy particle transport and reaction codes) needed to design, test, and verify the safety and reliability of modern complex electronic systems as well as effects on human health and safety. The effects of primary cosmic ray particles, and secondary particle showers produced by nuclear reactions with spacecraft materials, can determine the design and verification processes (as well as the total dollar cost) for manned and unmanned spacecraft avionics systems. Similar considerations apply to commercial and military aircraft operating at high latitudes and altitudes near the atmospheric Pfotzer maximum. Even ground based computational and controls systems can be negatively affected by secondary particle showers at the Earth's surface, especially if the net target area of the sensitive electronic system components is large. Accumulation of both primary cosmic ray and secondary cosmic ray induced particle shower radiation dose is an important health and safety consideration for commercial or military air crews operating at high altitude/latitude and is also one of the most important factors presently limiting manned space flight operations beyond low-Earth orbit (LEO).

  12. Intelligent (Autonomous) Power Controller Development for Human Deep Space Exploration

    Science.gov (United States)

    Soeder, James; Raitano, Paul; McNelis, Anne

    2016-01-01

    As NASAs Evolvable Mars Campaign and other exploration initiatives continue to mature they have identified the need for more autonomous operations of the power system. For current human space operations such as the International Space Station, the paradigm is to perform the planning, operation and fault diagnosis from the ground. However, the dual problems of communication lag as well as limited communication bandwidth beyond GEO synchronous orbit, underscore the need to change the operation methodology for human operation in deep space. To address this need, for the past several years the Glenn Research Center has had an effort to develop an autonomous power controller for human deep space vehicles. This presentation discusses the present roadmap for deep space exploration along with a description of conceptual power system architecture for exploration modules. It then contrasts the present ground centric control and management architecture with limited autonomy on-board the spacecraft with an advanced autonomous power control system that features ground based monitoring with a spacecraft mission manager with autonomous control of all core systems, including power. It then presents a functional breakdown of the autonomous power control system and examines its operation in both normal and fault modes. Finally, it discusses progress made in the development of a real-time power system model and how it is being used to evaluate the performance of the controller and well as using it for verification of the overall operation.

  13. Predicting visibility of aircraft.

    Directory of Open Access Journals (Sweden)

    Andrew Watson

    Full Text Available Visual detection of aircraft by human observers is an important element of aviation safety. To assess and ensure safety, it would be useful to be able to be able to predict the visibility, to a human observer, of an aircraft of specified size, shape, distance, and coloration. Examples include assuring safe separation among aircraft and between aircraft and unmanned vehicles, design of airport control towers, and efforts to enhance or suppress the visibility of military and rescue vehicles. We have recently developed a simple metric of pattern visibility, the Spatial Standard Observer (SSO. In this report we examine whether the SSO can predict visibility of simulated aircraft images. We constructed a set of aircraft images from three-dimensional computer graphic models, and measured the luminance contrast threshold for each image from three human observers. The data were well predicted by the SSO. Finally, we show how to use the SSO to predict visibility range for aircraft of arbitrary size, shape, distance, and coloration.

  14. Design and simulation of a fuel cell hybrid emergency power system for a more electric aircraft: Evaluation of energy management schemes

    Science.gov (United States)

    Njoya Motapon, Souleman

    As the aircraft industries are moving toward more electric aircraft (MEA), the electrical peak load seen by the main and emergency generators becomes higher than in conventional aircraft. Consequently, there is a major concern regarding the aircraft emergency system, which consists of a ram air turbine (RAT) or air driven generator (ADG), to fulfill the load demand during critical situations; particularly at low aircraft speed where the output power is very low. A potential solution under study by most aircraft manufacturers is to replace the air turbine by a fuel cell hybrid system, consisting of fuel cell combined with other high power density sources such as supercapacitors or lithium-ion batteries. To ensure the fuel cell hybrid system will be able to meet the load demand, it must be properly designed and an effective energy management strategy must be tested with real situations load profile. This work aims at designing a fuel cell emergency power system of a more electric aircraft and comparing different energy management schemes (EMS); with the goal to ensure the load demand is fully satisfied within the constraints of each energy source. The fuel cell hybrid system considered in this study consists of fuel cell, lithium-ion batteries and supercapacitors, along with associated DC-DC and DC-AC converters. The energy management schemes addressed are state-of-the-art, most commonly used energy management techniques in fuel cell vehicle applications and include: the state machine control strategy, the rule based fuzzy logic strategy, the classical PI control strategy, the frequency decoupling/fuzzy logic control strategy and the equivalent consumption minimization strategy (ECMS). Moreover, a new optimal scheme based on maximizing the instantaneous energy of batteries/supercapacitors, to improve the fuel economy is proposed. An off-line optimization based scheme is also developed to ascertain the validity of the proposed strategy in terms of fuel consumption

  15. Improving human reliability through better nuclear power plant system design: Program for advanced nuclear power studies

    International Nuclear Information System (INIS)

    Golay, M.W.

    1993-01-01

    The project on ''Development of a Theory of the Dependence of Human Reliability upon System Designs as a Means of Improving Nuclear Power Plant Performance'' was been undertaken in order to address the problem of human error in advanced nuclear power plant designs. Lack of a mature theory has retarded progress in reducing likely frequencies of human errors. Work being pursued in this project is to perform a set of experiments involving human subjects who are required to operate, diagnose and respond to changes in computer-simulated systems, relevant to those encountered in nuclear power plants, which are made to differ in complexity in a systematic manner. The computer program used to present the problems to be solved also records the response of the operator as it unfolds

  16. Discussion of "Polybrominated diphenyl ethers in aircraft cabins--a source of human exposure?" by Anna Christiansson et al. [Chemosphere 73(10) (2008) 1654-1660].

    Science.gov (United States)

    Schecter, Arnold; Colacino, Justin; Haffner, Darrah; Patel, Keyur; Opel, Matthias; Päpke, Olaf

    2010-01-01

    This paper presents new data on the levels of polybrominated diphenyl ethers (PBDEs) in American airline workers. This pilot study did not find elevated total PBDEs in the blood of nine flight attendants and one aircraft pilot who have worked in airplanes for at least the past 5 years. These findings are not consistent with the findings of elevated blood levels of PBDEs from the 2008 Christiansson et al. publication "Polybrominated diphenyl ethers in aircraft cabins - A source of human exposure?" We agree that more research needs to be done on larger, more representative samples of airline workers to better characterize exposure of airline workers and other frequent flyers to PBDEs.

  17. Scientific Research Program for Power, Energy, and Thermal Technologies. Task Order 0002: Power, Thermal and Control Technologies and Processes Experimental Research. Subtask: Laboratory Test Set-up to Evaluate Electromechanical Actuation Systems for Aircraft Flight Control

    Science.gov (United States)

    2015-08-01

    hydraulic pumps generated hydraulic pressure which, in turn, powered the actuator which would move the flight control surface to the desired position...aircraft surface controls. Figure 2 - Electro- hydrostatic Actuator and an Electro-mechanical Actuator [7] In order to have a better...as to have a flat surface for the measurement device to measure position. This method was used in order to eliminate any displacement due to slop

  18. A human factors data bank for French nuclear power plants

    International Nuclear Information System (INIS)

    Villemeur, A.; Mosneron-Dupin, F.; Bouissou, M.; Meslin, T.

    1986-01-01

    CONFUCIUS is a computerized data bank developed by Electricite de France to study human factors in nuclear power plants. A detailed and homogeneous grouping of described operation and maintenance errors as well as of performance times is possible with CONFUCIUS. It also incorporates a selection of statistical treatment softwares. Readily usable and modifiable, the system can easily evolve. It allows a wide range of applications (safety analysis, event analysis, training, human factors engineering, probabilistic analysis). Data derived from the analysis of significant events reported in power plants and from the analysis of simulator tests are used as inputs into this data bank

  19. Practical Applications of Cosmic Ray Science: Spacecraft, Aircraft, Ground-Based Computation and Control Systems, and Human Health and Safety

    Science.gov (United States)

    Atwell, William; Koontz, Steve; Normand, Eugene

    2012-01-01

    Three twentieth century technological developments, 1) high altitude commercial and military aircraft; 2) manned and unmanned spacecraft; and 3) increasingly complex and sensitive solid state micro-electronics systems, have driven an ongoing evolution of basic cosmic ray science into a set of practical engineering tools needed to design, test, and verify the safety and reliability of modern complex technological systems. The effects of primary cosmic ray particles and secondary particle showers produced by nuclear reactions with the atmosphere, can determine the design and verification processes (as well as the total dollar cost) for manned and unmanned spacecraft avionics systems. Similar considerations apply to commercial and military aircraft operating at high latitudes and altitudes near the atmospheric Pfotzer maximum. Even ground based computational and controls systems can be negatively affected by secondary particle showers at the Earth s surface, especially if the net target area of the sensitive electronic system components is large. Finally, accumulation of both primary cosmic ray and secondary cosmic ray induced particle shower radiation dose is an important health and safety consideration for commercial or military air crews operating at high altitude/latitude and is also one of the most important factors presently limiting manned space flight operations beyond low-Earth orbit (LEO). In this paper we review the discovery of cosmic ray effects on the performance and reliability of microelectronic systems as well as human health and the development of the engineering and health science tools used to evaluate and mitigate cosmic ray effects in ground-based atmospheric flight, and space flight environments. Ground test methods applied to microelectronic components and systems are used in combinations with radiation transport and reaction codes to predict the performance of microelectronic systems in their operating environments. Similar radiation transport

  20. Research on Human-Error Factors of Civil Aircraft Pilots Based On Grey Relational Analysis

    Directory of Open Access Journals (Sweden)

    Guo Yundong

    2018-01-01

    Full Text Available In consideration of the situation that civil aviation accidents involve many human-error factors and show the features of typical grey systems, an index system of civil aviation accident human-error factors is built using human factor analysis and classification system model. With the data of accidents happened worldwide between 2008 and 2011, the correlation between human-error factors can be analyzed quantitatively using the method of grey relational analysis. Research results show that the order of main factors affecting pilot human-error factors is preconditions for unsafe acts, unsafe supervision, organization and unsafe acts. The factor related most closely with second-level indexes and pilot human-error factors is the physical/mental limitations of pilots, followed by supervisory violations. The relevancy between the first-level indexes and the corresponding second-level indexes and the relevancy between second-level indexes can also be analyzed quantitatively.

  1. Studies on human factors in nuclear power plants

    International Nuclear Information System (INIS)

    Tsukuda, H.; Miyaoka, S.

    1988-01-01

    In order to raise the reliability and safety of nuclear power plants to the highest possible level, improvements to the mechanical system alone are not sufficient. Human factors must be systematically analysed and the causes and mechanisms of human error clarified to allow the development of countermeasures that will reduce error as much as possible. The paper introduces research in two areas, fundamental clarification of human behavioural, physiological and psychological characteristics to aid in the development of preventive measures for reducing error, and studies involving analysis of actual cases of accidents and failures related to man along with development of countermeasures to prevent the recurrence of such cases. The paper especially considers the latter area. The Human Performance Evaluation System (HPES) developed by the Institute of Nuclear Power Operations (INPO) in the USA was applied on a trial basis to 31 recent accidents and failures at Japanese nuclear power plants. The effectiveness of and possible improvement to HPES were considered. Also, cases that were not directly linked to accidents or failures were analysed using a method developed independently in Japan using data collected from a survey of approximately 3,000 power plant personnel. Fundamental research on human behaviour, physiology and psychology are also introduced. (author). 4 figs

  2. Assuring human operator alertness at night in power plants

    International Nuclear Information System (INIS)

    Moore-Ede, M.C.

    1988-01-01

    The human body is not designed for peak alertness and performance at night, nor is it well-equipped to cope with the frequent day-night inversions required by rotating shift work schedules. As a result, the human operator can become the weak link in a complex technological operation such as a nuclear power plant. The high degree of dependence on human operator vigilance, decision-making ability and performance that is required in nuclear power plant operations can conflict with the human sleepiness and error-proneness which naturally occur during the night shift or after extended periods without adequate sleep. An opportunity to address these problems has come from a series of major research advances in basic circadian physiology

  3. The human contribution to nuclear power plant emergencies

    International Nuclear Information System (INIS)

    Reason, J.

    1987-01-01

    The safety of present and future nuclear power plants is considered, with particular reference to the human components of these plants. The approach by the United Kingdom Nuclear Installations Inspectorate is particularly criticised. In particular, objections are made to the use of event and fault tree analyses. The UK NII have also decided that comprehensive quantification of human reliability is not feasible. However, figures presented show that the human contribution to monitored power plant emergencies is high, by far the greatest proportion of root causes of emergencies were attributable to human performance. The origins of, and problems with, 'principle 124' are discussed. Automatic safety systems are also distrusted. Current probabilistic risk assessment and probabilistic safety analysis is seen as an unsatisfactory basis for the setting of safety targets. (UK)

  4. Human factors review of power plant maintainability. Final report

    International Nuclear Information System (INIS)

    Seminara, J.L.; Parsons, S.O.

    1981-02-01

    Human factors engineering is an interdisciplinary science and technology concerned with shaping the design of machines, facilities, and operational environments to promote safe, efficient, and reliable performance on the part of operators and maintainers of equipment systems. The human factors aspects of five nuclear power plants and four fossil fuel plants were evaluated using such methods as a check list guided observation system, structured interviews with maintenance personnel, direct observation of maintenance tasks, reviews of procedures, and analyses of maintenance errors or accidents by means of the critical incident technique. The study revealed a wide variety of human factors problem areas, most of which are extensively photodocumented. The study recommends that a more systematic and formal approach to ensure that future power plants are human engineered to the needs of maintenance personnel

  5. Human factors in the operation of nuclear power plants

    International Nuclear Information System (INIS)

    Swaton, E.; Neboyan, V.; Lederman, L.

    1987-01-01

    In large and complex interactive systems, human error can contribute substantially to system failures. At nuclear power plants, operational experience demonstrates that human error accounts for a considerable proportion of safety-related incidents. However, experience also shows that human intervention can be very effective if there is a thorough understanding of the situation in the plant. Thus, an efficient interface of man and machine is important not only to prevent human errors but also to assist the operator in coping with unforeseen events. Human reliability can be understood as a qualitative as well as a quantitative term. Qualitatively it can be described as the aim for successful human performance of activities necessary for system reliability and availability. Quantitatively, it refers to data on failure rates or error probabilities that can be used, for example, for probabilistic safety assessments

  6. Estimation of directivity and sound power levels emitted by aircrafts during taxiing, for outdoor noise prediction purpose

    NARCIS (Netherlands)

    Asensio, C.; Pavón, I.; Ruiz, M.; Pagan Munoz, Raul; Recuero, M.

    2007-01-01

    Integrated noise model (INM) is the most internationally used software to calculate noise levels near airports. Take off, landing or pass by operations can be modeled by INM, but it does not consider aircrafts taxiing, which, in some cases, can be important to accurately evaluate and reduce

  7. Human performance and reliability studies on nuclear power plant

    International Nuclear Information System (INIS)

    Miyaoka, S.

    1988-01-01

    The TMI accident in USA, the Chernobyl accident in USSR and other major accidents overseas have shown that it is necessary to investigate and research human factor problems related to operation, maintenance and others in order to increase the safety and reliability of nuclear power plants. Although a variety of countermeasures have been devised, the accidents and failures due to human factors still occur. So far, the problems related to human factors have not been fundamantally and systematically investigated. Also the data base related to this problem has not been developed. Therefore, the government and electric utility industry began the research on the prevention of the accidents caused by human errors. The basic research is carried out by the government, and the applied research is done by electric utility industry. The Central Research Institute of Electric Power Industry established the Human Factors Research Center on July 1, 1987. The research program in the Human Factors Research Center is divided into the basic research to clarity fundamental human characteristics, the systematic research to apply this information and the analytical research on human error experience. These research activities are reported. (Kako, I.)

  8. Versatile Electric Propulsion Aircraft Testbed, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — An all-electric aircraft testbed is proposed to provide a dedicated development environment for the rigorous study and advancement of electrically powered aircraft....

  9. Study on the probability of the aircraft crash at the Experimental Power Reactor (RDE) site in Puspiptek Serpong

    International Nuclear Information System (INIS)

    Yarianto Sugeng B S; Siti Alimah; June Mellawati

    2016-01-01

    With regard to RDE site licensing process, probability of aircraft crash at RDE site area of Puspiptek Serpong has been assessed. The objective of the research (assessment) is to determine the probability of occurrence of aircraft crash at the RDE site area. The methodology used in the research consist of secondary and primary data collection, identification of potential hazards sources (airports) in the vicinity of RDE site and mapping of its distribution, initial screening using a value of Screening Distance Value (SDV) and Safety Region of Flight Operations value (KKOP), as well as the calculation of the probability of the aircraft crash in the site area. The study was conducted in December 2015 - June 2016. The results showed that in the vicinity of the RDE site there are seven airports airport, namely Soekarno-Hatta (Soetta), Halim Perdanakusuma, Atang Sendjaja, Budiarto, Pondok Cabe, Rumpin and Pulau Panjang, with distances ranging from 11.72 to 79.64 km. Based on the SDV (small airport is 10 km and a large airport is 16 km), the RDE site is in outside of the airports SDV radius. However, based on KKOP (14.5 km radius), the RDE site is in inside of the two airports KKOP radius (Budiarto and Pondok Cabe). Probability calculations showed that the potential of aircraft crash in the site area of RDE coming from the Budiarto airports is 0.0066 x 10"-"7 events/year and from Pondok Cabe 0.0278 x10"-"7 events/year. The probability value was lower than the criteria based on IAEA report (10"-"7 events/year), so the RDE site categorized safe from the potential of aircraft crash. (author)

  10. Human-factor operating concept for Borssele Nuclear Power Station

    International Nuclear Information System (INIS)

    Wieman, J.L.

    1995-01-01

    The safety level in the operation of a reactor is determined basically by human beings. The Borssele Nuclear Power Station has carried out measures for improving the man-machine interface through training and operating instructions for the shift personnel. The retrofitting of control technology relevant to safety engineering should avoid operating instructions which can cause potential failures. A safety study has shown that the remaining risk following all retrofitting measures remains dependent to the extent of 80% on human factors and that human factors as a whole have a positive effect on reactor safety. (orig.) [de

  11. Evaluation of human error estimation for nuclear power plants

    International Nuclear Information System (INIS)

    Haney, L.N.; Blackman, H.S.

    1987-01-01

    The dominant risk for severe accident occurrence in nuclear power plants (NPPs) is human error. The US Nuclear Regulatory Commission (NRC) sponsored an evaluation of Human Reliability Analysis (HRA) techniques for estimation of human error in NPPs. Twenty HRA techniques identified by a literature search were evaluated with criteria sets designed for that purpose and categorized. Data were collected at a commercial NPP with operators responding in walkthroughs of four severe accident scenarios and full scope simulator runs. Results suggest a need for refinement and validation of the techniques. 19 refs

  12. Experimental investigation of airborne contaminant transport by a human wake moving in a ventilated aircraft cabin

    Science.gov (United States)

    Poussou, Stephane B.

    The air ventilation system in jetliners provides a comfortable and healthy environment for passengers. Unfortunately, the increase in global air traffic has amplified the risks presented by infectious aerosols or noxious material released during flight. Inside the cabin, air typically flows continuously from overhead outlets into sidewall exhausts in a circular pattern that minimizes secondary flow between adjacent seat rows. However, disturbances frequently introduced by individuals walking along an aisle may alter air distribution, and contribute to spreading of contaminants. Numerical simulation of these convoluted transient flow phenomena is difficult and complex, and experimental assessment of contaminant distribution in real cabins often impractical. A fundamental experimental study was undertaken to examine the transport phenomena, to validate computations and to improve air monitoring systems. A finite moving body was modeled in a 10:1 scale simplified aircraft cabin equipped with ventilation, at a Reynolds number (based on body diameter) of the order of 10,000. An experimental facility was designed and constructed to permit measurements of the ventilation and wake velocity fields using particle image velocimetry (PIV). Contaminant migration was imaged using the planar laser induced fluorescence (PLIF) technique. The effect of ventilation was estimated by comparison with a companion baseline study. Results indicate that the evolution of a downwash predominant behind finite bodies of small aspect ratio is profoundly perturbed by the ventilation flow. The reorganization of vortical structures in the near-wake leads to a shorter longitudinal recirculation region. Furthermore, mixing in the wake is modified and contaminant is observed to convect to higher vertical locations corresponding to seated passenger breathing level.

  13. Managing human resources in the nuclear power industry: Lessons learned

    International Nuclear Information System (INIS)

    2003-08-01

    This report is intended for senior and middle level managers in nuclear operating organizations. Its objectives are to facilitate the recognition of priority issues with respect to managing human resources, and to provide pragmatic ideas regarding improvements. The human resource issues addressed in this report, if not managed effectively, can result in significant performance problems at nuclear power plants. About 10 years ago the IAEA initiated an effort to identify such management issues and to find effective practices to deal with them. This information was provided in IAEA Technical Reports Series No. 369, Management for Excellence in Nuclear Power Plant Performance - A Manual (1994). This report builds upon the information in the subject manual. In the past 10 years there have been significant changes in the nuclear power industry resulting primarily from more competitive energy markets and privatization of nuclear power plant operating organizations. In general, the industry has responded positively to these changes, as indicated by IAEA/WANO performance indicators that show both improved operational and safety performance. This report provides examples of approaches to managing human resources that have been effective in responding to these changes. This report was produced through a series of meetings, where meeting participants were asked to share information regarding effective practices in their organizations with respect to managing human resources. The information provided through these meetings was supplemented with good practices in this area identified through IAEA Operational Safety Review Teams (OSARTs) conducted during the past 10 years

  14. Techno-Human Mesh: The Growing Power of Information Technologies.

    Science.gov (United States)

    West, Cynthia K.

    This book examines the intersection of information technologies, power, people, and bodies. It explores how information technologies are on a path of creating efficiency, productivity, profitability, surveillance, and control, and looks at the ways in which human-machine interface technologies, such as wearable computers, biometric technologies,…

  15. Human factors issues in aircraft maintenance and inspection : "information exchange and communications".

    Science.gov (United States)

    1990-11-01

    The Federal Aviation Administration sponsored a 2-day meeting in December 1989 as part of a continuing program to address issues of human factors and personnel performance in aviation maintenance and inspection. This meeting focused on issues of "inf...

  16. Experimental study of power generation utilizing human excreta

    International Nuclear Information System (INIS)

    Mudasar, Roshaan; Kim, Man-Hoe

    2017-01-01

    Highlights: • Power generation from human excreta has been studied under ambient conditions. • Biogas increases with solid wastes and continuous feeding at mesophilic conditions. • Understand the potential of human excreta for domestic power generating systems. • 26.8 kW h power is generated using biogas of 0.35 m 3 /kg from waste of 35 kg. • Continuous feeding produces 0.7 m 3 /kg biogas and generates 60 kW h power. - Abstract: This study presents the energetic performance of the biomass to produce power for micro scale domestic usage. Human excreta are chosen as the subject of the study to investigate their potential to produce biogas under ambient conditions. Furthermore, the research examines the approaches by which biogas production can be enhanced and purified, leading to a high-power generation system. The experimental work focuses on the design and fabrication of a biogas digester with a reverse solar reflector, water scrubbing tower, and a dryer. Anaerobic digestion has been considered as the decomposition method using solar energy which is a heat providing source. Specifically, two types of experiments have been performed, namely, feces to water weight proportion and continuous feeding experiments, each involving a set of six samples. The effect of parameters such as pH, ambient temperature, and biogas upgradation reveals that volume of biogas and power generation can be best obtained when an 8:2 feces to water weight sample is employed and when the feeding is applied every fifth day. In addition, this study discusses the environmental prospects of the biogas technology, which is achieved by using the water purification method to improve the methane percentage to 85% and remove undesired gases. The motivation behind this work is to understand the potential of human excreta for the development of domestic power generating systems. The results obtained reveal that 0.35 m 3 /kg of biogas is produced with 8:2 weight proportion sample, which

  17. Human factor engineering applied to nuclear power plant design

    International Nuclear Information System (INIS)

    Manrique, A.; Valdivia, J.C.; Jimenez, A.

    2001-01-01

    For the design and construction of new nuclear power plants as well as for maintenance and operation of the existing ones new man-machine interface designs and modifications are been produced. For these new designs Human Factor Engineering must be applied the same as for any other traditional engineering discipline. Advantages of implementing adequate Human Factor Engineering techniques in the design of nuclear reactors have become not only a fact recognized by the majority of engineers and operators but also an explicit requirement regulated and mandatory for the new designs of the so called advanced reactors. Additionally, the big saving achieved by a nuclear power plant having an operating methodology which significantly decreases the risk of operating errors makes it necessary and almost vital its implementation. The first step for this is preparing a plan to incorporate all the Human Factor Engineering principles and developing an integral design of the Instrumentation and Control and Man-machine interface systems. (author)

  18. Human factor in the process of nuclear power development

    International Nuclear Information System (INIS)

    Enenkl, V.

    The building up of nuclear power requires the training not only of personnel but of the whole population as well. Professional workers in nuclear power facilities production and personnel operating the equipment of nuclear power plants must be on a high technical and managerial level. The important quality of such personnel is their reliability and responsibility. The human factor influences the level, quality and thereby also the service-life of the machines and equipment and their operation. The improvement of the quality of work in nuclear power production depends on upgrading the scientific and technical level of workers and personnel, their training, in-service education and the raising of the social standing. (B.H.)

  19. Global status of nuclear power and the needed human resources

    International Nuclear Information System (INIS)

    Bernido, Corazon C.

    2009-01-01

    According to projections of the OECD/IEA, the world energy demand will expand by 45% from now until 2030, with coal accounting for more than a third of the overall rise. To reduce greenhouse gases and mitigate climate change, many countries are resorting to renewables and nuclear power. Some statistics about nuclear energy in the global energy mix and about nuclear power plants worldwide, as well as the energy situation in the country are presented. According to sources from the Department of Energy on the Philippine Energy Plan, nuclear power is a long-term energy option and will likely enter the energy mix by 2025. Preparation of the infrastructure for nuclear power has to start ten to fifteen years before the first plant comes online. The needed human resources, the education and training required are present. (Author)

  20. Small Unmanned Aircraft Systems Integration into the National Airspace System Visual-Line-of-Sight Human-in-the-Loop Experiment

    Science.gov (United States)

    Trujillo, Anna C.; Ghatas, Rania W.; Mcadaragh, Raymon; Burdette, Daniel W.; Comstock, James R.; Hempley, Lucas E.; Fan, Hui

    2015-01-01

    As part of the Unmanned Aircraft Systems (UAS) in the National Airspace System (NAS) project, research on integrating small UAS (sUAS) into the NAS was underway by a human-systems integration (HSI) team at the NASA Langley Research Center. Minimal to no research has been conducted on the safe, effective, and efficient manner in which to integrate these aircraft into the NAS. sUAS are defined as aircraft weighing 55 pounds or less. The objective of this human system integration team was to build a UAS Ground Control Station (GCS) and to develop a research test-bed and database that provides data, proof of concept, and human factors guidelines for GCS operations in the NAS. The objectives of this experiment were to evaluate the effectiveness and safety of flying sUAS in Class D and Class G airspace utilizing manual control inputs and voice radio communications between the pilot, mission control, and air traffic control. The design of the experiment included three sets of GCS display configurations, in addition to a hand-held control unit. The three different display configurations were VLOS, VLOS + Primary Flight Display (PFD), and VLOS + PFD + Moving Map (Map). Test subject pilots had better situation awareness of their vehicle position, altitude, airspeed, location over the ground, and mission track using the Map display configuration. This configuration allowed the pilots to complete the mission objectives with less workload, at the expense of having better situation awareness of other aircraft. The subjects were better able to see other aircraft when using the VLOS display configuration. However, their mission performance, as well as their ability to aviate and navigate, was reduced compared to runs that included the PFD and Map displays.

  1. Solar Power System Evaluated for the Human Exploration of Mars

    Science.gov (United States)

    Kerslake, Thomas W.

    2000-01-01

    The electric power system is a crucial element of any mission for the human exploration of the Martian surface. The bulk of the power generated will be delivered to crew life support systems, extravehicular activity suits, robotic vehicles, and predeployed in situ resource utilization (ISRU) equipment. In one mission scenario, before the crew departs for Mars, the ISRU plant operates for 435 days producing liquefied methane and oxygen for ascent-stage propellants and water for crew life support. About 200 days after ISRU production is completed, the crew arrives for a 500-day surface stay. In this scenario, the power system must operate for a total of 1130 days (equivalent to 1100 Martian "sols"), providing 400 MW-hr of energy to the ISRU plant and up to 18 kW of daytime user power. A photovoltaic power-generation system with regenerative fuel cell (RFC) energy storage has been under study at the NASA Glenn Research Center at Lewis Field. The conceptual power system is dominated by the 4000- m2 class photovoltaic array that is deployed orthogonally as four tent structures, each approximately 5 m on a side and 100-m long. The structures are composed of composite members deployed by an articulating mast, an inflatable boom, or rover vehicles, and are subsequently anchored to the ground. Array panels consist of thin polymer membranes with thin-film solar cells. The array is divided into eight independent electrical sections with solar cell strings operating at 600 V. Energy storage is provided by regenerative fuel cells based on hydrogen-oxygen proton exchange membrane technology. Hydrogen and oxygen reactants are stored in gaseous form at 3000 psi, and the water produced is stored at 14.7 psi. The fuel cell operating temperature is maintained by a 40-m2 deployable pumped-fluid loop radiator that uses water as the working fluid. The power management and distribution (PMAD) architecture features eight independent, regulated 600-Vdc channels. Power management and

  2. Unmanned aircraft system bridge inspection demonstration project phase II final report.

    Science.gov (United States)

    2017-06-01

    An Unmanned Aircraft System (UAS) is defined by the Federal Aviation Administration (FAA) as an aircraft operated without the possibility of direct human intervention from within the aircraft. Unmanned aircraft are familiarly referred to as drones, a...

  3. The human performance evaluation system at Virginia Power

    International Nuclear Information System (INIS)

    Smith, R.G. III.

    1989-01-01

    The safe operation of nuclear power plants requires high standards of performance, extensive training, and responsive management. Despite a utility's best efforts, inappropriate human actions do occur. Although such inappropriate actions will occur, it is believed that such actions can be minimized and managed. The Federal Aviation Administration has a successful program administered by the National Aeronautics and Space Administration. This program is called the Aviation Safety Reporting System (ASRS). Established in 1975, it is anonymous and nonpunitive. A trial program for several utilities was developed by the Institute of Nuclear Power Operations which used a concept similar to the ASRS reporting process. Based on valuable lessons learned by Virginia Power during the pilot program, an effort was made in 1986 to formalize the Human Performance Evaluation System (HPES) to establish an ongoing problem-solving system for evaluating human performance. Currently, 34 domestic utilities and 3 international utilities voluntarily participate in the implementation of the HPES. Each participating utility has selected and trained personnel to evaluate events involving human error and provide corrective action recommendations to prevent recurrence. It is believed that the use of the HPES can lead to improved safety and operation availability

  4. Hydrogen Storage for Aircraft Applications Overview

    Science.gov (United States)

    Colozza, Anthony J.; Kohout, Lisa (Technical Monitor)

    2002-01-01

    Advances in fuel cell technology have brought about their consideration as sources of power for aircraft. This power can be utilized to run aircraft systems or even provide propulsion power. One of the key obstacles to utilizing fuel cells on aircraft is the storage of hydrogen. An overview of the potential methods of hydrogen storage was compiled. This overview identifies various methods of hydrogen storage and points out their advantages and disadvantages relative to aircraft applications. Minimizing weight and volume are the key aspects to storing hydrogen within an aircraft. An analysis was performed to show how changes in certain parameters of a given storage system affect its mass and volume.

  5. Human factor engineering applied to nuclear power plant design

    International Nuclear Information System (INIS)

    Manrique, A.; Valdivia, J.C.

    2007-01-01

    Advantages of implementing adequate Human Factor Engineering techniques in the design of nuclear reactors have become not only a fact recognized by the majority of engineers and operators but also an explicit requirement regulated and mandatory for the new designs of the so called advanced reactors. The first step for this is preparing a plan to incorporate all the Human Factor Engineering principles and developing an integral design of the Instrumentation and Control and Man-machine interface systems. Such a plan should state: -) Activities to be performed, and -) Creation of a Human Factor Engineering team adequately qualified. The Human Factor Engineering team is an integral part of the design team and is strongly linked to the engineering organizations but simultaneously has independence to act and is free to evaluate designs and propose changes in order to enhance human behavior. TECNATOM S.A. (a Spanish company) has been a part of the Design and Human Factor Engineering Team and has collaborated in the design of an advanced Nuclear Power Plant, developing methodologies and further implementing those methodologies in the design of the plant systems through the development of the plant systems operational analysis and of the man-machine interface design. The methodologies developed are made up of the following plans: -) Human Factor Engineering implementation in the Man-Machine Interface design; -) Plant System Functional Requirement Analysis; -) Allocation of Functions to man/machine; -) Task Analysis; -) Human-System Interface design; -) Control Room Verification and -) Validation

  6. Factors affecting speed in human-powered vehicles.

    Science.gov (United States)

    White, A P

    1994-10-01

    It is shown how to derive the appropriate cubic equation relating power and the effects of friction, gradient and wind resistance on the speed of a human-powered vehicle (HPV). The effects of gradient and wind resistance are explored for parameters representing a typical racing cyclist. The principal conclusion may be summarized as follows: for optimum performance in a time trial, there should be no wind and the course should be level. Any deviation from these conditions will produce a decrement in performance.

  7. Human Resource Development for Nuclear Power Programme in Uganda

    International Nuclear Information System (INIS)

    Henry, Ovona

    2014-01-01

    Conclusions: Despite the effort by the Government to ensure reliable and available access to electricity which is crucial to the socio – economic development, the use of hydro power, biomass and oil, geothermal and peat alone would not meet the target of the vision 2040. There is need to identifies nuclear energy as a potential option for meeting the energy deficit. Development of nuclear energy for power generation needs decision making, preparation and preparatory work which involve human resource development process, strengthening the legislation and regulatory framework, stakeholders’ involvement and public acceptance campaign

  8. Operational Roles, Aircrew Systems and Human Factors in Future High Performance Aircraft

    Science.gov (United States)

    1980-03-01

    sensory, muscular , and cognitive capacities in responding to all of the mission stresses. To ensure accomplishment of operational missions, the...no more effective than its human operators: in that sense the system is merely an extension of the operator’s sensory, muscular and cognitive...autoriser la. res- -piration on surpres ot A fort Sradient d’une part, assurer un rapport de prossioar. - tant In distension pulnonairo lors d’uno

  9. Human Factors Considerations in New Nuclear Power Plants: Detailed Analysis.

    Energy Technology Data Exchange (ETDEWEB)

    OHara,J.; Higgins, J.; Brown, W.; Fink, R.

    2008-02-14

    This Nuclear Regulatory Commission (NRC) sponsored study has identified human-performance issues in new and advanced nuclear power plants. To identify the issues, current industry developments and trends were evaluated in the areas of reactor technology, instrumentation and control technology, human-system integration technology, and human factors engineering (HFE) methods and tools. The issues were organized into seven high-level HFE topic areas: Role of Personnel and Automation, Staffing and Training, Normal Operations Management, Disturbance and Emergency Management, Maintenance and Change Management, Plant Design and Construction, and HFE Methods and Tools. The issues where then prioritized into four categories using a 'Phenomena Identification and Ranking Table' methodology based on evaluations provided by 14 independent subject matter experts. The subject matter experts were knowledgeable in a variety of disciplines. Vendors, utilities, research organizations and regulators all participated. Twenty issues were categorized into the top priority category. This Brookhaven National Laboratory (BNL) technical report provides the detailed methodology, issue analysis, and results. A summary of the results of this study can be found in NUREG/CR-6947. The research performed for this project has identified a large number of human-performance issues for new control stations and new nuclear power plant designs. The information gathered in this project can serve as input to the development of a long-term strategy and plan for addressing human performance in these areas through regulatory research. Addressing human-performance issues will provide the technical basis from which regulatory review guidance can be developed to meet these challenges. The availability of this review guidance will help set clear expectations for how the NRC staff will evaluate new designs, reduce regulatory uncertainty, and provide a well-defined path to new nuclear power plant

  10. Effects of digital human-machine interface characteristics on human error in nuclear power plants

    International Nuclear Information System (INIS)

    Li Pengcheng; Zhang Li; Dai Licao; Huang Weigang

    2011-01-01

    In order to identify the effects of digital human-machine interface characteristics on human error in nuclear power plants, the new characteristics of digital human-machine interface are identified by comparing with the traditional analog control systems in the aspects of the information display, user interface interaction and management, control systems, alarm systems and procedures system, and the negative effects of digital human-machine interface characteristics on human error are identified by field research and interviewing with operators such as increased cognitive load and workload, mode confusion, loss of situation awareness. As to the adverse effects related above, the corresponding prevention and control measures of human errors are provided to support the prevention and minimization of human errors and the optimization of human-machine interface design. (authors)

  11. Human equation in operating a nuclear-power plant

    International Nuclear Information System (INIS)

    Barrett, R.S.

    1982-01-01

    The accident at Three Mile Island has forced the nuclear industry to acknowledge a badly neglected aspect of nuclear-power-plant safety - the human equation. The industry now appears to recognize the importance of operator selection, training, motivation, and licensing, and the need to design a system from the point of view of communication, information retrieval, record keeping, and human factors psychology. As a result, the relatively small initiatives that were begun a few years ago by the EPRI are now being greatly expanded

  12. Control room design and human engineering in power plants

    International Nuclear Information System (INIS)

    Herbst, L.; Hinz, W.

    1981-01-01

    Automation reduces the human work load. Employment of functional areas permits optimization of operational sequences. Computer based information processing makes it possible to output information in accordance with operating requirements. Design based on human engineering principles assures the quality of the interaction between the operator and the equipment. The degree to which these conceptional features play a role in design of power plant control rooms depends on the unit rating, the mode of operation and on the requirements respecting safety and availability of the plant. (orig./RW)

  13. Advanced Nuclear Power Concepts for Human Exploration Missions

    International Nuclear Information System (INIS)

    Robert L. Cataldo; Lee S. Mason

    2000-01-01

    The design reference mission for the National Aeronautics and Space Administration's (NASA's) human mission to Mars supports a philosophy of living off the land in order to reduce crew risk, launch mass, and life-cycle costs associated with logistics resupply to a Mars base. Life-support materials, oxygen, water, and buffer gases, and the crew's ascent-stage propellant would not be brought from Earth but rather manufactured from the Mars atmosphere. The propellants would be made over ∼2 yr, the time between Mars mission launch window opportunities. The production of propellants is very power intensive and depends on type, amount, and time to produce the propellants. Closed-loop life support and food production are also power intensive. With the base having several habitats, a greenhouse, and propellant production capability, total power levels reach well over 125 kW(electric). The most mass-efficient means of satisfying these requirements is through the use of nuclear power. Studies have been performed to identify a potential system concept, described in this paper, using a mobile cart to transport the power system away from the Mars lander and provide adequate separation between the reactor and crew. The studies included an assessment of reactor and power conversion technology options, selection of system and component redundancy, determination of optimum separation distance, and system performance sensitivity to some key operating parameters

  14. A compact human-powered energy harvesting system

    International Nuclear Information System (INIS)

    Rao, Yuan; McEachern, Kelly M; Arnold, David P

    2013-01-01

    This paper presents a fully functional, self-sufficient body-worn energy harvesting system for passively capturing energy from human motion, with the long-term vision of supplying power to portable, wearable, or even implanted electronic devices. The system requires no external power supplies and can bootstrap from zero-state-of-charge to generate electrical energy from walking, jogging and cycling; convert the induced ac voltage to a dc voltage; and then boost and regulate the dc voltage to charge a Li-ion-polymer battery. Tested under normal human activities (walking, jogging, cycling) when worn on different parts of the body, the 70 cm 3 system is shown to charge a 3.7 V rechargeable battery at charge rates ranging from 33 μW to 234 μW

  15. Human resource issues related to an expanding nuclear power programme

    International Nuclear Information System (INIS)

    2006-05-01

    The IAEA Technical Working Group on Training and Qualification of Nuclear Power Plant Personnel recommended that the IAEA develop guidelines on human resource management (including staffing) and training/education programmes for new nuclear power plant (NPP) designs. This recommendation was made in recognition that these future NPPs may have significantly different needs in this area compared to operating plants, and if so, NPP operating organizations should integrate these needs into their planning for future NPP projects. This report is primarily intended for use by NPP operating organizations that already have units in operation and that are considering adding to their fleet. Therefore, the addition of both new and current designs are addressed in this report. However, it should also be of value to those organizations that are considering the initial implementation of nuclear power, as well as decision makers in government, and in other nuclear industry organizations

  16. Transferring aviation human factors technology to the nuclear power industry

    International Nuclear Information System (INIS)

    Montemerlo, M.D.

    1981-01-01

    The purpose of this paper is to demonstrate the availability of aviation safety technology and research on problems which are sufficiently similar to those faced by the nuclear power industry that an agressive effort to adapt and transfer that technology and research is warranted. Because of time and space constraints, the scope of this paper is reduced from a discussion of all of aviation safety technology to the human factors of air carrier safety. This area was selected not only because of similarities in the human factors challenges shared by both industries (e.g. selection, training, evaluation, certification, etc.) but because experience in aviation has clearly demonstrated that human error contributes to a substantially greater proportion of accidents and incidents than does equipment failure. The Congress of the United States has placed a great deal of emphasis on investigating and solving human factors problems in aviation. A number of recent examples of this interest and of the resulting actions are described. The opinions of prominent aviation organizations as to the human factors problems most in need of research are presented, along with indications of where technology transfer to the nuclear power industry may be viable. The areas covered include: fatigue, crew size, information transfer, resource management, safety data-bases, the role of automation, voice and data recording systems, crew distractions, the management of safety regulatory agencies, equipment recertification, team training, crew work-load, behavioural factors, human factors of equipment design, medical problems, toxicological factors, the use of simulators for training and certification, determining the causes of human errors, the politics of systems improvement, and importance of both safety and public perception of safety if the industry is to be viable. (author)

  17. Simulation of Thrust-Vectored Aircraft Maneuvers on a Human Centrifuge: Model Validation and Design for the Dynamic Environment Simulator

    National Research Council Canada - National Science Library

    van

    1998-01-01

    .... The F-22 will be the first production thrust vectored aircraft in aviation history. Because of its pitch axis thrust vector control, the F-22 can pitch at high rates of angular velocity as it flies...

  18. Development of human resources for Indian nuclear power programme

    International Nuclear Information System (INIS)

    Grover, R.B.; Puri, R.R.

    2013-01-01

    The continuing research and development on nuclear technology by research establishments in the country and maturing of Indian industry have brought the nuclear energy programme in India to a stage where it is poised to take a quantum leap forward. The vision of expansion of nuclear power also requires a well-structured specialized human resource development programme. This paper discusses the requirements of the human resource development programme for nuclear energy, the challenges in the way of its realization, its national and international status and traces the history of nuclear education in the country. It brings out the linkage of human resource development programme with the nuclear energy programme in the country. It also describes the initiatives by the university system in the area of nuclear education and support provided by the Department of Atomic Energy to the university system by way of extra-mural funding and by providing access to research facilities. (author)

  19. Control room design and human engineering in power plants

    International Nuclear Information System (INIS)

    Herbst, L.; Hinz, W.

    1982-01-01

    The concept for modern plant control rooms is primary influenced by: The automation of protection, binary control and closed loop control functions; organization employing functional areas; computer based information processing; human engineered design. Automation reduces the human work load. Employment of functional areas permits optimization of operational sequences. Computer based information processing makes it possible to output information in accordance with operating requirements. Design based on human engineering principles assures the quality of the interaction between the operator and the equipment. The degree to which these conceptional features play a role in design of power plant control rooms depends on the unit rating, the mode of operation and on the requirements respecting safety and availability of the plant. (orig.)

  20. Human-machine interaction in nuclear power plants

    International Nuclear Information System (INIS)

    Yoshikawa, Hidekazu

    2005-01-01

    Advanced nuclear power plants are generally large complex systems automated by computers. Whenever a rate plant emergency occurs the plant operators must cope with the emergency under severe mental stress without committing any fatal errors. Furthermore, the operators must train to improve and maintain their ability to cope with every conceivable situation, though it is almost impossible to be fully prepared for an infinite variety of situations. In view of the limited capability of operators in emergency situations, there has been a new approach to preventing the human error caused by improper human-machine interaction. The new approach has been triggered by the introduction of advanced information systems that help operators recognize and counteract plant emergencies. In this paper, the adverse effect of automation in human-machine systems is explained. The discussion then focuses on how to configure a joint human-machine system for ideal human-machine interaction. Finally, there is a new proposal on how to organize technologies that recognize the different states of such a joint human-machine system

  1. Small Transport Aircraft Technology /STAT/ Propulsion Study

    Science.gov (United States)

    Heldenbrand, R. W.; Baerst, C. F.; Rowse, J. H.

    1980-01-01

    The NASA Small Transport Aircraft Technology (STAT) Propulsion Study was established to identify technology requirements and define the research and development required for new commuter aircraft. Interim results of the studies defined mission and design characteristics for 30- and 50-passenger aircraft. Sensitivities were defined that relate changes in engine specific fuel consumption (SFC), weight, and cost (including maintenance) to changes in the aircraft direct operating cost (DOC), takeoff gross weight, and empty weight. A comparison of performance and economic characteristics is presented between aircraft powered by 1980 production engines and those powered by a 1990 advanced technology baseline engine.

  2. Human error: An essential problem of nuclear power plants

    International Nuclear Information System (INIS)

    Smidt, D.

    1981-01-01

    The author first defines the part played by man in the nuclear power plant and then deals in more detail with the structure of his valse behavior in tactical and strategic repect. The dicussion of tactical errors and their avoidance is follwed by a report on the actual state of plant technology and possible improvements. Subsequently a study of the strategic errors including the conclusion to be drawn until now (joint between plant and man, personal selection and education) is made. If the joints between man and machine are designed according and physiological strenghts and weaknesses of man are fully realized and taken into account human errors not be essential problem in nuclear power plant. (GL) [de

  3. Pre-stimulus thalamic theta power predicts human memory formation.

    Science.gov (United States)

    Sweeney-Reed, Catherine M; Zaehle, Tino; Voges, Jürgen; Schmitt, Friedhelm C; Buentjen, Lars; Kopitzki, Klaus; Richardson-Klavehn, Alan; Hinrichs, Hermann; Heinze, Hans-Jochen; Knight, Robert T; Rugg, Michael D

    2016-09-01

    Pre-stimulus theta (4-8Hz) power in the hippocampus and neocortex predicts whether a memory for a subsequent event will be formed. Anatomical studies reveal thalamus-hippocampal connectivity, and lesion, neuroimaging, and electrophysiological studies show that memory processing involves the dorsomedial (DMTN) and anterior thalamic nuclei (ATN). The small size and deep location of these nuclei have limited real-time study of their activity, however, and it is unknown whether pre-stimulus theta power predictive of successful memory formation is also found in these subcortical structures. We recorded human electrophysiological data from the DMTN and ATN of 7 patients receiving deep brain stimulation for refractory epilepsy. We found that greater pre-stimulus theta power in the right DMTN was associated with successful memory encoding, predicting both behavioral outcome and post-stimulus correlates of successful memory formation. In particular, significant correlations were observed between right DMTN theta power and both frontal theta and right ATN gamma (32-50Hz) phase alignment, and frontal-ATN theta-gamma cross-frequency coupling. We draw the following primary conclusions. Our results provide direct electrophysiological evidence in humans of a role for the DMTN as well as the ATN in memory formation. Furthermore, prediction of subsequent memory performance by pre-stimulus thalamic oscillations provides evidence that post-stimulus differences in thalamic activity that index successful and unsuccessful encoding reflect brain processes specifically underpinning memory formation. Finally, the findings broaden the understanding of brain states that facilitate memory encoding to include subcortical as well as cortical structures. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Amphibious Aircraft

    Data.gov (United States)

    National Aeronautics and Space Administration — A brief self composed research article on Amphibious Aircrafts discussing their use, origin and modern day applications along with their advantages and disadvantages...

  5. Proposal and Development of a High Voltage Variable Frequency Alternating Current Power System for Hybrid Electric Aircraft

    Science.gov (United States)

    Sadey, David J.; Taylor, Linda M.; Beach, Raymond F.

    2017-01-01

    The development of ultra-efficient commercial vehicles and the transition to low-carbon emission propulsion are seen as strategic thrust paths within NASA Aeronautics. A critical enabler to these paths comes in the form of hybrid electric propulsion systems. For megawatt-class systems, the best power system topology for these hybrid electric propulsion systems is debatable. Current proposals within NASA and the Aero community suggest using a combination of alternating current (AC) and direct current (DC) for power generation, transmission, and distribution. This paper proposes an alternative to the current thought model through the use of a primarily high voltage AC power system, supported by the Convergent Aeronautics Solutions (CAS) Project. This system relies heavily on the use of doubly-fed induction machines (DFIMs), which provide high power densities, minimal power conversion, and variable speed operation. The paper presents background on the activity along with the system architecture, development status, and preliminary results.

  6. Aircraft gas turbines

    Energy Technology Data Exchange (ETDEWEB)

    Arai, M [Kawasaki Heavy Industries Ltd., Kobe (Japan)

    1995-03-01

    Recently the international relationship has been playing an important role in the research, development and production of the aircraft gas turbine. The YSX, which is supposed to be the 100-seat class commercial aircraft, has been planned by Japan Aircraft Development (JADC) as an international cooperative project. Recently many western aeroengine companies have offered the collaboration of small turbofan engines which would be installed on YSX to Japanese aeroengine companies (IHI, KHI and MHI). The YSX is powered by 16,000-20,000 1bs thrust class engines. As for medium turbofan engine (V2500), the V 2500 family of 22,000 to 30,000 1bs thrust has been developed since 1983 through international collaboration by seven aeroengine companies in five nations. In this paper, the recent Japan`s activities of the research, development and production with viewing the world-wide movement, are described. 6 figs.

  7. Hazards from aircraft

    International Nuclear Information System (INIS)

    Grund, J.E.; Hornyik, K.

    1975-01-01

    The siting of nuclear power plants has created innumerable environmental concerns. Among the effects of the ''man-made environment'' one of increasing importance in recent nuclear plant siting hazards analysis has been the concern about aircraft hazards to the nuclear plant. These hazards are of concern because of the possibility that an aircraft may have a malfunction and crash either near the plant or directly into it. Such a crash could be postulated to result, because of missile and/or fire effects, in radioactive releases which would endanger the public health and safety. The majority of studies related to hazards from air traffic have been concerned with the determination of the probability associated with an aircraft striking vulnerable portions of a given plant. Other studies have focused on the structural response to such a strike. This work focuses on the problem of strike probability. 13 references

  8. Identification of Aircraft Hazards

    Energy Technology Data Exchange (ETDEWEB)

    K. Ashley

    2006-12-08

    Aircraft hazards were determined to be potentially applicable to a repository at Yucca Mountain in ''Monitored Geological Repository External Events Hazards Screening Analysis'' (BSC 2005 [DIRS 174235], Section 6.4.1). That determination was conservatively based upon limited knowledge of flight data in the area of concern and upon crash data for aircraft of the type flying near Yucca Mountain. The purpose of this report is to identify specific aircraft hazards that may be applicable to a monitored geologic repository (MGR) at Yucca Mountain, using NUREG-0800, ''Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants'' (NRC 1987 [DIRS 103124], Section 3.5.1.6), as guidance for the inclusion or exclusion of identified aircraft hazards. The intended use of this report is to provide inputs for further screening and analysis of identified aircraft hazards based upon the criteria that apply to Category 1 and Category 2 event sequence analyses as defined in 10 CFR 63.2 [DIRS 176544] (Section 4). The scope of this report includes the evaluation of military, private, and commercial use of airspace in the 100-mile regional setting of the repository at Yucca Mountain with the potential for reducing the regional setting to a more manageable size after consideration of applicable screening criteria (Section 7).

  9. IDENTIFICATION OF AIRCRAFT HAZARDS

    International Nuclear Information System (INIS)

    K.L. Ashley

    2005-01-01

    Aircraft hazards were determined to be potentially applicable to a repository at Yucca Mountain in the ''Monitored Geological Repository External Events Hazards Screening Analysis'' (BSC 2004, Section 6.4.1). That determination was conservatively based on limited knowledge of flight data in the area of concern and on crash data for aircraft of the type flying near Yucca Mountain. The purpose of this report is to identify specific aircraft hazards that may be applicable to a Monitored Geologic Repository (MGR) at Yucca Mountain using NUREG-0800, ''Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants'' (NRC 1987, Section 3.5.1.6), as guidance for the inclusion or exclusion of identified aircraft hazards. NUREG-0800 is being used here as a reference because some of the same considerations apply. The intended use of this report is to provide inputs for further screening and analysis of the identified aircraft hazards based on the criteria that apply to Category 1 and 2 event sequence analyses as defined in 10 CFR 63.2 (see Section 4). The scope of this technical report includes the evaluation of military, private, and commercial use of airspace in the 100-mile regional setting of the MGR at Yucca Mountain with the potential for reducing the regional setting to a more manageable size after consideration of applicable screening criteria (see Section 7)

  10. Identification of Aircraft Hazards

    International Nuclear Information System (INIS)

    K. Ashley

    2006-01-01

    Aircraft hazards were determined to be potentially applicable to a repository at Yucca Mountain in ''Monitored Geological Repository External Events Hazards Screening Analysis'' (BSC 2005 [DIRS 174235], Section 6.4.1). That determination was conservatively based upon limited knowledge of flight data in the area of concern and upon crash data for aircraft of the type flying near Yucca Mountain. The purpose of this report is to identify specific aircraft hazards that may be applicable to a monitored geologic repository (MGR) at Yucca Mountain, using NUREG-0800, ''Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants'' (NRC 1987 [DIRS 103124], Section 3.5.1.6), as guidance for the inclusion or exclusion of identified aircraft hazards. The intended use of this report is to provide inputs for further screening and analysis of identified aircraft hazards based upon the criteria that apply to Category 1 and Category 2 event sequence analyses as defined in 10 CFR 63.2 [DIRS 176544] (Section 4). The scope of this report includes the evaluation of military, private, and commercial use of airspace in the 100-mile regional setting of the repository at Yucca Mountain with the potential for reducing the regional setting to a more manageable size after consideration of applicable screening criteria (Section 7)

  11. Developing Large-Scale Bayesian Networks by Composition: Fault Diagnosis of Electrical Power Systems in Aircraft and Spacecraft

    Science.gov (United States)

    Mengshoel, Ole Jakob; Poll, Scott; Kurtoglu, Tolga

    2009-01-01

    This CD contains files that support the talk (see CASI ID 20100021404). There are 24 models that relate to the ADAPT system and 1 Excel worksheet. In the paper an investigation into the use of Bayesian networks to construct large-scale diagnostic systems is described. The high-level specifications, Bayesian networks, clique trees, and arithmetic circuits representing 24 different electrical power systems are described in the talk. The data in the CD are the models of the 24 different power systems.

  12. Thin-film Hybrid Coating for Ice Mitigation on Aircraft, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Current aircraft utilize electro-thermal/mechanical protection systems to actively remove ice from vital aircraft surfaces. These systems have high power...

  13. Human rights for women: battles of culture and power.

    Science.gov (United States)

    Poulsen, K

    1995-06-01

    In Africa, nongovernmental organizations (NGOs) focussing on human rights have mushroomed during the past 10-15 years, and, with several of these organizations run by and for women, it is possible to find free legal aid for women in almost every capital city. The collapse of the extended family and, thus, the framework for customary law has meant that women are faced with problems of maintenance and widows with problems of inheritance. Customary law and the protection it afforded women and children has also been weakened by a poverty-driven shift in urban areas from a focus on community support to a focus on individual survival. The vacuum left by this change in legal and social structure is being filled by the human rights NGOs. Paradoxically, in the face of such change, a static, communal, and neutral concept of "culture" was held out by African state representatives at the 1993 UN Conference on Human Rights to justify their opposition to the acceptance of the crosscultural legitimacy of human rights, especially for women. While these arguments were being aired at the Conference, African NGOs were vigorously using examples of the marginalization of women to promote the opposite view. The most important aspect of these conflicting views is which group has the most power and resources to voice its interpretation of the situation. With most African countries governed by a dual system of laws, customary law and common or civil law (left over from colonialism), human rights groups are working to instill human rights principles into common law through the ratification of international conventions. Thus, persons in need could be viewed not as victims but as individuals entitled to enforceable and universal rights. Misuse of the term "culture" can marginalize women even as it is being promoted as a protective device for women. A more useful view of culture is as something which transcends traditional boundaries and locates people and institutions in the global community

  14. 78 FR 4092 - Airworthiness Directives; Cessna Aircraft Company Airplanes

    Science.gov (United States)

    2013-01-18

    ... aircraft's hydraulic power pack wiring for incorrect installation, and if needed, correct the installation... hydraulic power pack wiring for incorrect installation, and if needed, correct the installation. Since...

  15. Industry Through Reinforcement of Institution and Human Power Resource

    Directory of Open Access Journals (Sweden)

    S Nur

    2000-05-01

    Full Text Available The failure of small scale animal farm industry development was indicated by the decreasing of animal farm number and the high price of their product. This failure has an effect into increasing of unemployment, decreasing of animal protein available and animal population because of the high rate of animal slaughtering and the high cost need to buy animal from other countries. This report was aimed to know the strategy on developing of stand alone small scale animal farm. This study based on literature study, panel discussion and interview. The result showed that the development of human power resource was the factor to decide the first priority in developing stand alone small scale animal farm. In the past the government policy always stussed in provision of capital for animal husbandry bussines developing, so it has never been the main priority. (Animal Production 2(2: 60-68 (2000   Key words : developing and reinforcement

  16. Human Resources Requirements for New Nuclear Power Programs

    International Nuclear Information System (INIS)

    Goodnight, Charles T.

    2014-01-01

    Summary: Planning to Meet HR Requirements for New Nuclear Power Programs Must Begin Early. Many years of preparation are required before the “Right Number of the Right People” … will be … “In the Right Place at the Right Time”. • Seven key steps which must be taken include: 1) Identify detailed Human Resources requirements, based on the selected site and reactor design; 2) Conduct an assessment of national capacity to develop and/or provide those resources; 3) Conduct a Gap Analysis to determine what additional steps will be needed to fill any capacity shortfalls; 4) Develop initial and recurring recruiting and training plans; 5) Begin recruiting and training; 6) Review and adjust as personnel move and/or leave; 7) Ensure adequate relationships are in place for sources of future recruiting

  17. Organizational change and human expertise in nuclear power plants

    International Nuclear Information System (INIS)

    Masson, M.; Malaisc, N.

    1992-01-01

    Reliability and safety are two very important goals, which depend on technical and organizational factors, but also on human expertise. How to ensure a safe functioning of a nuclear power plant in a changing context, and what might be the role and aspects of training and transfer of knowledge? These are the questions we shall deal with in this paper, on the basis of two field studies. The two field studies stress the needs for setting up case based training, which best ensure the acquisition of know-how. Furthermore, as shown by the second one, gaining expertise involves developing large repertoires of highly skilled, semi-routinized activities. Supporting expert operators not only should tackle problem solving activities but should thus also include the prevention of routine errors, which go along with skill acquisition. (author)

  18. Low power cw-laser signatures on human skin

    International Nuclear Information System (INIS)

    Lihachev, A; Lesinsh, J; Jakovels, D; Spigulis, J

    2011-01-01

    Impact of cw laser radiation on autofluorescence features of human skin is studied. Two methods of autofluorescence detection are applied: the spectral method with the use of a fibreoptic probe and spectrometer for determining the autofluorescence recovery kinetics at a fixed skin area of ∼12 mm 2 , and the multispectral visualisation method with the use of a multispectral imaging camera for visualising long-term autofluorescence changes in a skin area of ∼4 cm 2 . The autofluorescence recovery kinetics after preliminary laser irradiation is determined. Skin autofluorescence images with visible long-term changes - 'signatures' of low power laser treatment are acquired. (application of lasers and laser-optical methods in life sciences)

  19. Aircraft Carriers

    DEFF Research Database (Denmark)

    Nødskov, Kim; Kværnø, Ole

    as their purchases of aircraft carrier systems, makes it more than likely that the country is preparing such an acquisition. China has territorial disputes in the South China Sea over the Spratly Islands and is also worried about the security of its sea lines of communications, by which China transports the majority......, submarines, aircraft and helicopters, is not likely to be fully operational and war-capable until 2020, given the fact that China is starting from a clean sheet of paper. The United States of America (USA), the United Kingdom (UK), Russia and India are currently building or have made decisions to build new...

  20. The Relationship between Human Operators' Psycho-physiological Condition and Human Errors in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Kim, Arryum; Jang, Inseok; Kang, Hyungook; Seong, Poonghyun

    2013-01-01

    The safe operation of nuclear power plants (NPPs) is substantially dependent on the performance of the human operators who operate the systems. In this environment, human errors caused by inappropriate performance of operator have been considered to be critical since it may lead serious problems in the safety-critical plants. In order to provide meaningful insights to prevent human errors and enhance the human performance, operators' physiological conditions such as stress and workload have been investigated. Physiological measurements were considered as reliable tools to assess the stress and workload. T. Q. Tran et al. and J. B. Brooking et al pointed out that operators' workload can be assessed using eye tracking, galvanic skin response, electroencephalograms (EEGs), heart rate, respiration and other measurements. The purpose of this study is to investigate the effect of the human operators' tense level and knowledge level to the number of human errors. For this study, the experiments were conducted in the mimic of the main control rooms (MCR) in NPP. It utilized the compact nuclear simulator (CNS) which is modeled based on the three loop Pressurized Water Reactor, 993MWe, Kori unit 3 and 4 in Korea and the subjects were asked to follow the tasks described in the emergency operating procedures (EOP). During the simulation, three kinds of physiological measurement were utilized; Electrocardiogram (ECG), EEG and nose temperature. Also, subjects were divided into three groups based on their knowledge of the plant operation. The result shows that subjects who are tense make fewer errors. In addition, subjects who are in higher knowledge level tend to be tense and make fewer errors. For the ECG data, subjects who make fewer human errors tend to be located in higher tense level area of high SNS activity and low PSNS activity. The results of EEG data are also similar to ECG result. Beta power ratio of subjects who make fewer errors was higher. Since beta power ratio is

  1. Products of Ozone-initiated Chemistry during 4-hour Exposures of Human Subjects in a Simulated Aircraft Cabin

    DEFF Research Database (Denmark)

    Weschler, Charles J.; Wisthaler, Armin; Tamás, Gyöngyi

    2006-01-01

    Proton-transfer-reaction mass spectrometry (PTR-MS) was used to examine organic compounds in the air of a simulated aircraft cabin under four conditions: low ozone, low air exchange rate; low ozone, high air exchange rate; high ozone, low air exchange rate; high ozone, high air exchange rate....... The results showed large differences in the chemical composition of the cabin air between the low and high ozone conditions. These differences were more pronounced at the low air exchange condition....

  2. The Challenges and Countermeasures of Human Resources on Nuclear Power in the 21st Century

    International Nuclear Information System (INIS)

    Zheng Mingguang; Ye Cheng; Han Xu

    2011-01-01

    The paper addresses the situations of nuclear power development and nuclear industry human resources and points out that the development and supply of human resources are becoming the big challenges in the effective and sustainable development of nuclear power. At the same time, the paper analyzes the root causes of human resources shortage and recommends several countermeasures to confront human resources problems. At last, the paper introduces what SNPTC and SNERDI do to overcome the human resources problem and give conclusions. (author)

  3. Aircraft cybernetics

    Science.gov (United States)

    1977-01-01

    The use of computers for aircraft control, flight simulation, and inertial navigation is explored. The man-machine relation problem in aviation is addressed. Simple and self-adapting autopilots are described and the assets and liabilities of digital navigation techniques are assessed.

  4. Investigation of radionuclide distribution using aircraft for surrounding environmental survey from Fukushima Dai-ichi Nuclear Power Plant

    International Nuclear Information System (INIS)

    Torii, Tatsuo; Sanada, Yukihisa; Shikaze, Yoshiaki; Takahashi, Masaki; Ishida, Mutsushi; Nishizawa, Yukiyasu; Urabe, Yoshimi; Sugita, Takeshi; Kondo, Atsuya

    2012-12-01

    We carried out aerial radiation monitoring (ARM) of all Japan area in order to investigate the influence of the radio cesium which was emitted into the atmosphere by disaster of the Fukushima Dai-ichi nuclear power plant of Tokyo Electric Power Co., Inc. AMS can measure a gamma ray quickly by flight from 300 m height above the ground. Moreover, ARM has an advantage which can grasp self-possessed quantity distribution of an air dose rate and radioactive cesium in f ield , and is visually intelligible. Although there were apparatus and the technique of ARM in our country, sufficient preparations for wide area monitoring were not made. Therefore, it fixed based on the method of the U.S. Department of Energy (DOE) about the method of the conversion to all radiation dose, and the conversion method to radiocesium deposition and the method of mapping. It is possible to discriminate from a background (cosmic-ray, self-contamination and natural nuclides) at the time of western-part-of-Japan measurement by improving of the method in parallel to data acquisition. By this monitoring, it was able to check about the distribution situation of the air dose rate of the Japanese whole region, or the radioactive cesium deposition. Here, the measurement technique and a result are described. (author)

  5. Turboelectric Aircraft Drive Key Performance Parameters and Functional Requirements

    Science.gov (United States)

    Jansen, Ralph H.; Brown, Gerald V.; Felder, James L.; Duffy, Kirsten P.

    2016-01-01

    The purpose of this paper is to propose specific power and efficiency as the key performance parameters for a turboelectric aircraft power system and investigate their impact on the overall aircraft. Key functional requirements are identified that impact the power system design. Breguet range equations for a base aircraft and a turboelectric aircraft are found. The benefits and costs that may result from the turboelectric system are enumerated. A break-even analysis is conducted to find the minimum allowable electric drive specific power and efficiency that can preserve the range, initial weight, operating empty weight, and payload weight of the base aircraft.

  6. Digitizing Patterns of Power - Cartographic Communication for Digital Humanities

    Science.gov (United States)

    Kriz, Karel; Pucher, Alexander; Breier, Markus

    2018-05-01

    The representation of space in medieval texts, the appropriation of land and the subsequent installation of new structures of power are central research topics of the project "Digitizing Patterns of Power" (DPP). The project focuses on three regional case studies: the Eastern Alps and the Morava-Thaya region, the historical region of Macedonia, and historical Southern Armenia. DPP is a multidisciplinary project, conducted by the Austrian Academy of Sciences the Institute for Medieval Research (IMAFO) in cooperation with the University of Vienna, Department of Geography and Regional Research. It is part of an initiative to promote digital humanities research in Austria. DPP brings together expertise from historical and archaeological research as well as cartography and geocommunication to explore medieval geographies. The communication of space, time and spatial interconnectivity is an essential aspect of DPP. By incorporating digital cartographic expertise, relevant facts can be depicted in a more effective visual form. Optimal cartographic visualization of base data as well as the historical and archaeological information in an interactive map-based online platform are important features. However, the multidisciplinary of the project presents the participants with various challenges. The different involved disciplines, among them cartography, archaeology and history each have their own approaches to relevant aspects of geography and geocommunication. This paper treats geocommunication characteristics and approaches to interactive mapping in a historical and archaeological context within a multidisciplinary project environment. The fundamental challenges of cartographic communication within DPP will be presented. Furthermore, recent results on the communication of historical topographic, as well as uncertain thematic content will be demonstrated.

  7. Thirst for Power: Energy, Water and Human Survival

    Science.gov (United States)

    Webber, M.

    2016-12-01

    Energy, food and water are precious resources, and they are interconnected. The energy sector uses a lot of water, the food sector uses a lot of energy and water, the water sector uses a lot of energy, and as a nation we are contemplating a biofuels policy that uses food for energy. The thermoelectric power sector alone is the largest user of water in the U.S., withdrawing 200 billion gallons daily for powerplant cooling. Conversely, the water sector is responsible for over twelve percent of national energy consumption for moving, pumping, treating, and heating water. The food system uses over ten percent of national energy consumption. This interdependence means that droughts can cause energy shortages, and power outages can bring the water system to a halt, while energy and water challenges pose constraints to our food system. It also means that water efficiency is a pathway to energy efficiency and vice versa. This talk will give a big-picture overview of global food, energy and water trends to describe how they interact, what conflicts are looming, and how they can work together. This talk will include the vulnerabilities and cross-cutting solutions such as efficient markets and smart technologies that embed more information about resource management. It will include discussion of how population growth, economic growth, climate change, and short-sighted policies are likely to make things worse. Yet, more integrated planning with long-term sustainability in mind along with cultural shifts, advanced technologies, and better design can avert such a daunting future. Combining anecdotes and personal stories with insights into the latest science of energy and water, this talk will identify a hopeful path toward wise, long-range water-energy decisions and a more reliable and abundant future for humanity.

  8. Modular Electric Propulsion Test Bed Aircraft, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — An all electric aircraft test bed is proposed to provide a dedicated development environment for the rigorous study and advancement of electrically powered aircraft....

  9. Human factors estimation methods in nuclear power plant

    International Nuclear Information System (INIS)

    Takano, Kenichi; Yoshino, Kenji; Nagasaka, Akihiko; Ishii, Keichiro; Nakasa, Hiroyasu

    1985-01-01

    To improve the operational and maintenance work reliability, it is neccessary for workers to maintain his performance always at high level, that leads to decreasing mistaken judgements and operations. This paper inuolves the development and evaluation of ''Multi-Purpose Physiological Information Measurement system'' to estimate human performance and conditions with a highly fixed quantity. The following itemes is mentioned : (1) Most suitable physiological informations are selected to measure worker' performance in nuclear power plant with none-disturbance, ambulatory, continual, and multi channel measurement. (2) Relatively important physiological informations are measured with the real-time monitoring functions. (electrocardiogram, respirometric functions and EMG (electromyogram) pulse rete). (3) It is made to optimize the measurement condition and analysing methods in the use of a noise-cut function and a D.C. drift cutting method. (4) As a example, it is clear that, when the different weight is loaded to the arm and make it strech-bend motion, the EMG signal is measured and analysed by this system, the analysed EMG pulse rate and maximum amplitude is related to the arm loaded weight. (author)

  10. Human Factors Engineering Incorporated into the Carolina Power and Light company's nuclear power plant control panel modifications

    International Nuclear Information System (INIS)

    Beith, D.M.; Shoemaker, E.M.; Horn, K.; Boush, D.

    1988-01-01

    Maintaining human factors conventions/practices that were established during the Detailed Control Design Review (DCRDR), is difficult if Human Factors Engineering (HFE) is not incorporated into the plant modification process. This paper presents the approach used at Carolina Power and Light's nuclear power plants that has successfully incorporated human factors engineering into their plant modification process. An HFE Design Guide or HFE Specification was developed which is used by the design engineers or plant engineering support groups in the preparation of plant modifications

  11. Cycle Counting Methods of the Aircraft Engine

    Science.gov (United States)

    Fedorchenko, Dmitrii G.; Novikov, Dmitrii K.

    2016-01-01

    The concept of condition-based gas turbine-powered aircraft operation is realized all over the world, which implementation requires knowledge of the end-of-life information related to components of aircraft engines in service. This research proposes an algorithm for estimating the equivalent cyclical running hours. This article provides analysis…

  12. Wind power effects on human interests. A synthesis report; Vindkraftens paaverkan paa maenniskors intressen. En syntesrapport

    Energy Technology Data Exchange (ETDEWEB)

    Bengtsson Ryberg, Johanna [Naturvaardsverket, Stockholm (Sweden); Bluhm, Goesta [Karolinska institutet, Miljoemedicin, Stockholm (Sweden); Bolin, Karl [KTH, Kungliga Tekniska Hoegskolan, Stockholm (Sweden)] [and others

    2012-05-15

    The aim of the project Wind power Effects on Human Interests is to describe, analyse and value research on how wind power may affect human interests, and to present: 'what we can say based on what we know today'. The report addresses managers, officials, wind power projectors and also the general public. Research on how wind power may affect health, economy and businesses, and the landscape is analyzed. The process of gaining approval for wind power connected to above mentioned interests is also studied and valued.

  13. Status of human factors research program in Central Research Institute of Electric Power Industry

    International Nuclear Information System (INIS)

    Kabetani, Tetsuji

    1989-01-01

    The Human Factors Research Center was established within CRIEPI on July 1, 1987 as its research efforts to reduce human error during operation and maintenance at Japanese nuclear power plants. The Research Program has seven subjects, composed of the original subjects that include the human behavior monitoring method, and the subjects requested by the Federation of Electric Power Companies that include the establishment of techniques of analysing and evaluating information on human error. Some results of the activity are applied in nuclear power plants. We plan to obtain good results to apply to plants, and to improve the results already obtained. (author)

  14. Discussion on verification criterion and method of human factors engineering for nuclear power plant controller

    International Nuclear Information System (INIS)

    Yang Hualong; Liu Yanzi; Jia Ming; Huang Weijun

    2014-01-01

    In order to prevent or reduce human error and ensure the safe operation of nuclear power plants, control device should be verified from the perspective of human factors engineering (HFE). The domestic and international human factors engineering guidelines about nuclear power plant controller were considered, the verification criterion and method of human factors engineering for nuclear power plant controller were discussed and the application examples were provided for reference in this paper. The results show that the appropriate verification criterion and method should be selected to ensure the objectivity and accuracy of the conclusion. (authors)

  15. Anatomy of event and human performance management in nuclear power plants

    International Nuclear Information System (INIS)

    Wang Jinhua

    2014-01-01

    This article analyzes the occurrence mechanism of events in nuclear power plants, and explains the four factors of human errors and the relations among them, then probes into the occurrence mechanism and characteristics of human errors in nuclear power plants. Moreover, the article clarifies that the principle of human performance training in nuclear power plants is all-member training, and that the implementation approach is to develop different human performance tools for different staff categories as workers, knowledge workers and supervisors, which are categorized based on characteristics of work of different staff. (author)

  16. Structural design for aircraft impact loading

    International Nuclear Information System (INIS)

    Schmidt, R.; Heckhausen, H.; Chen, C.; Rieck, P.J.; Lemons, G.W.

    1977-01-01

    The Soft Shell-Hardcore approach to nuclear power plant auxiliary structure design was developed to attenuate the crash effects of impacting aircraft. This report is an initial investigation into defining the important structural features involved that would allow the Soft Shell-Hardcore design to successfully sustain the postulated aircraft impact. Also specified for purposes of this study are aircraft impact locations and the type and velocity of impacting aircraft. The purpose of this initial investigation is to determine the feasibility of the two 0.5 m thick walls of the Soft Shell with the simplest possible mathematical model

  17. Power, trust, and Science of Unitary Human Beings influence political leadership: a celebration of Barrett's power theory.

    Science.gov (United States)

    Wright, Barbara W

    2010-01-01

    The importance of nurses' participation in health policy leadership is discussed within the context of Rogers' science of unitary human beings, Barrett's power theory, and one nurse-politician's experience. Nurses have a major role to play in resolving public policy issues that influence the health of people. A brief review of the history of nurses in the political arena is presented. Research related to power and trust is reviewed. Suggested strategies for success in political situations are offered.

  18. Energy Harvesting from Upper-Limb Pulling Motions for Miniaturized Human-Powered Generators.

    Science.gov (United States)

    Yeo, Jeongjin; Ryu, Mun-ho; Yang, Yoonseok

    2015-07-03

    The human-powered self-generator provides the best solution for individuals who need an instantaneous power supply for travel, outdoor, and emergency use, since it is less dependent on weather conditions and occupies less space than other renewable power supplies. However, many commercial portable self-generators that employ hand-cranking are not used as much as expected in daily lives although they have enough output capacity due to their intensive workload. This study proposes a portable human-powered generator which is designed to obtain mechanical energy from an upper limb pulling motion for improved human motion economy as well as efficient human-mechanical power transfer. A coreless axial-flux permanent magnet machine (APMM) and a flywheel magnet rotor were used in conjunction with a one-way clutched power transmission system in order to obtain effective power from the pulling motion. The developed prototype showed an average energy conversion efficiency of 30.98% and an average output power of 0.32 W with a maximum of 1.89 W. Its small form factor (50 mm × 32 mm × 43.5 mm, 0.05 kg) and the substantial electricity produced verify the effectiveness of the proposed method in the utilization of human power. It is expected that the developed generator could provide a mobile power supply.

  19. Energy Harvesting from Upper-Limb Pulling Motions for Miniaturized Human-Powered Generators

    Directory of Open Access Journals (Sweden)

    Jeongjin Yeo

    2015-07-01

    Full Text Available The human-powered self-generator provides the best solution for individuals who need an instantaneous power supply for travel, outdoor, and emergency use, since it is less dependent on weather conditions and occupies less space than other renewable power supplies. However, many commercial portable self-generators that employ hand-cranking are not used as much as expected in daily lives although they have enough output capacity due to their intensive workload. This study proposes a portable human-powered generator which is designed to obtain mechanical energy from an upper limb pulling motion for improved human motion economy as well as efficient human-mechanical power transfer. A coreless axial-flux permanent magnet machine (APMM and a flywheel magnet rotor were used in conjunction with a one-way clutched power transmission system in order to obtain effective power from the pulling motion. The developed prototype showed an average energy conversion efficiency of 30.98% and an average output power of 0.32 W with a maximum of 1.89 W. Its small form factor (50 mm × 32 mm × 43.5 mm, 0.05 kg and the substantial electricity produced verify the effectiveness of the proposed method in the utilization of human power. It is expected that the developed generator could provide a mobile power supply.

  20. Development of human factors evaluation techniques for nuclear power plants

    International Nuclear Information System (INIS)

    Oh, I.S.; Lee, Y.H.; Lee, J.W.; Sim, B.S.

    1999-01-01

    This paper describes development of an operator task simulation analyzer and human factors evaluation techniques performed recently at Korea Atomic Energy Research Institute. The first is the SACOM (Simulation Analyzer with a Cognitive Operator Model) for the assessment of task performance by simulating control room operation. The latter has two objectives: to establish a human factors experiment facility, the Integrated Test Facility (ITF), and to establish techniques for human factors experiments. (author)

  1. A regulatory perspective on human factors in nuclear power

    International Nuclear Information System (INIS)

    Whitfield, D.

    1987-01-01

    This paper sets out the approaches being taken by the United Kingdom Nuclear Installations Inspectorate (NII) to monitoring the application of human factors principles and practice in the UK industry. The role of NII is outlined, the development of human factors concerns is reviewed, the assessment of the Sizewell 'B' safety case is presented as a particular example, and pertinent future developments in the human factors discipline are proposed. (author)

  2. Human resource development for the new nuclear power plant unit in Armenia

    International Nuclear Information System (INIS)

    Gevorgyan, A.; Galstyan, A.; Donovan, M.

    2008-01-01

    This paper presents a discussion of a study to define the programs for development of the human resource infrastructure needed for a new nuclear power plant unit in the Republic of Armenia. While Armenia has a workforce experienced in operation and regulation of a nuclear power plant (NPP), a significant portion of the current Armenia Nuclear Power Plant (ANPP) workforce is approaching retirement age and will not be available for the new plant. The Government of Armenia is performing a human resource infrastructure study in cooperation with the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO), sponsored by the JAEA. The study of Human Resource Development for Armenia uses the INPRO methodology for assessment of human resources. The results of this study will provide the basis for decisions on human resource development programs for nuclear power in Armenia and provide a model for countries with the limited resources that are working to develop nuclear energy in the future. (authors)

  3. Speaking Truth to Power: Women's Rights as Human Rights

    Science.gov (United States)

    Crocco, Margaret Smith

    2007-01-01

    The author considers the treatment of women's rights as human rights in the social studies curriculum. She discusses the role of the United Nations in promoting women's rights since the adoption of the Universal Declaration of Human Rights in 1948. She also reviews the treatment of women's rights within social studies curriculum today through a…

  4. 36 CFR 327.4 - Aircraft.

    Science.gov (United States)

    2010-07-01

    ..., helicopters, ultra-light aircraft, motorized hang gliders, hot air balloons, any non-powered flight devices or..., material or equipment by parachute, balloon, helicopter or other means onto or from project lands or waters...

  5. 77 FR 55770 - Airworthiness Directives; Cessna Aircraft Company Airplanes

    Science.gov (United States)

    2012-09-11

    ... aircraft's hydraulic power pack wiring for incorrect installation, and if needed, correct the installation... this AD, whichever occurs first, inspect the hydraulic power pack wiring for correct installation...) Correct the Installation of the Hydraulic Power Pack Wiring (1) Single engine aircraft: If you find...

  6. Pathfinder-Plus aircraft in flight

    Science.gov (United States)

    1998-01-01

    The Pathfinder-Plus solar-powered aircraft is shown taking off from a runway, then flying at low altitude over the ocean. The vehicle, which looks like a flying ruler, operates at low airspeed. Among the missions proposed for a solar-powered aircraft are communications relay, atmospheric studies, pipeline monitoring and gas leak detection, environmental monitoring using thermal and radar images, and disaster relief and monitoring.

  7. Human learning: Power laws or multiple characteristic time scales?

    Directory of Open Access Journals (Sweden)

    Gottfried Mayer-Kress

    2006-09-01

    Full Text Available The central proposal of A. Newell and Rosenbloom (1981 was that the power law is the ubiquitous law of learning. This proposition is discussed in the context of the key factors that led to the acceptance of the power law as the function of learning. We then outline the principles of an epigenetic landscape framework for considering the role of the characteristic time scales of learning and an approach to system identification of the processes of performance dynamics. In this view, the change of performance over time is the product of a superposition of characteristic exponential time scales that reflect the influence of different processes. This theoretical approach can reproduce the traditional power law of practice – within the experimental resolution of performance data sets - but we hypothesize that this function may prove to be a special and perhaps idealized case of learning.

  8. Unmanned Aircraft Systems Human-in-the-Loop Controller and Pilot Acceptability Study: Collision Avoidance, Self-Separation, and Alerting Times (CASSAT)

    Science.gov (United States)

    Comstock, James R., Jr.; Ghatas, Rania W.; Vincent, Michael J.; Consiglio, Maria C.; Munoz, Cesar; Chamberlain, James P.; Volk, Paul; Arthur, Keith E.

    2016-01-01

    The Federal Aviation Administration (FAA) has been mandated by the Congressional funding bill of 2012 to open the National Airspace System (NAS) to Unmanned Aircraft Systems (UAS). With the growing use of unmanned systems, NASA has established a multi-center "UAS Integration in the NAS" Project, in collaboration with the FAA and industry, and is guiding its research efforts to look at and examine crucial safety concerns regarding the integration of UAS into the NAS. Key research efforts are addressing requirements for detect-and-avoid (DAA), self-separation (SS), and collision avoidance (CA) technologies. In one of a series of human-in-the-loop experiments, NASA Langley Research Center set up a study known as Collision Avoidance, Self-Separation, and Alerting Times (CASSAT). The first phase assessed active air traffic controller interactions with DAA systems and the second phase examined reactions to the DAA system and displays by UAS Pilots at a simulated ground control station (GCS). Analyses of the test results from Phase I and Phase II are presented in this paper. Results from the CASSAT study and previous human-in-the-loop experiments will play a crucial role in the FAA's establishment of rules, regulations, and procedures to safely, efficiently, and effectively integrate UAS into the NAS.

  9. Power-law relaxation in human violent conflicts

    Science.gov (United States)

    Picoli, Sergio; Antonio, Fernando J.; Itami, Andreia S.; Mendes, Renio S.

    2017-08-01

    We study relaxation patterns of violent conflicts after bursts of activity. Data were obtained from available catalogs on the conflicts in Iraq, Afghanistan and Northern Ireland. We find several examples in each catalog for which the observed relaxation curves can be well described by an asymptotic power-law decay (the analog of the Omori's law in geophysics). The power-law exponents are robust, nearly independent of the conflict. We also discuss the exogenous or endogenous nature of the shocks. Our results suggest that violent conflicts share with earthquakes and other natural and social phenomena a common feature in the dynamics of aftershocks.

  10. Design for aircraft impact

    International Nuclear Information System (INIS)

    Kar, A.K.

    1978-01-01

    Aircraft impact against nuclear power plant structures leads to both local and overall effects on the structure. Among the local effects, backface spalling is most important. The overall effects of impact on structural stability are commonly evaluated in terms of the adequacy of the structure in flexure and shear. Empirical formulas are presented for the determination of local effects of aircraft impact on nuclear power plant facilities. The formulas lead to easy and reasonable estimates of the thickness required to prevent backface spalling. The impactive load depends upon the collapse load of the fuselage, its collapse mechanism, mass distribution and the impact velocity. A simplified method is given for evaluating the design load. The time history, obtained by the proposed method, closely resembles those obtained by more rigorous methods. Procedures for obtaining shear and flexural strengths of concrete walls or roofs, subjected to impact, are provided. The span-to-depth ratio is considered. Recommendations are made on the available ductility ratio and structural behavior. (Author)

  11. Estimation and harvesting of human heat power for wearable electronic devices

    International Nuclear Information System (INIS)

    Dziurdzia, P; Brzozowski, I; Bratek, P; Gelmuda, W; Kos, A

    2016-01-01

    The paper deals with the issue of self-powered wearable electronic devices that are capable of harvesting free available energy dissipated by the user in the form of human heat. The free energy source is intended to be used as a secondary power source supporting primary battery in a sensor bracelet. The main scope of the article is a presentation of the concept for a measuring setup used to quantitative estimation of heat power sources in different locations over the human body area. The crucial role in the measurements of the human heat plays a thermoelectric module working in the open circuit mode. The results obtained during practical tests are confronted with the requirements of the dedicated thermoelectric generator. A prototype design of a human warmth energy harvester with an ultra-low power DC-DC converter based on the LTC3108 circuit is analysed

  12. A system engineer's Perspective on Human Errors For a more Effective Management of Human Factors in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Lee, Yong-Hee; Jang, Tong-Il; Lee, Soo-Kil

    2007-01-01

    The management of human factors in nuclear power plants (NPPs) has become one of the burden factors during their operating period after the design and construction period. Almost every study on the major accidents emphasizes the prominent importance of the human errors. Regardless of the regulatory requirements such as Periodic Safety Review, the management of human factors would be a main issue to reduce the human errors and to enhance the performance of plants. However, it is not easy to find out a more effective perspective on human errors to establish the engineering implementation plan for preventing them. This paper describes a system engineer's perspectives on human errors and discusses its application to the recent study on the human error events in Korean NPPs

  13. Fettered aircraft for using wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Hoeppner, H.; Horvath, E.; Ulrich, S.

    1980-08-28

    The invention concerns an aircraft tethered by cables, whose balloon-shaped central body produces static and aerodynamic upthrust and which carries turbines, which are used to convert wind energy and to drive the aircraft. The purpose of the invention is to provide an aircraft, which will keep wind energy plant at the optimum height. A new type of aircraft is used to solve the problem, which, according to the invention, combines static upthrust, the production of aerodynamic upthrust, wind energy conversion, energy transport and forward drive in a technically integrated aircraft. If the use of windpower is interrupted, then if necessary the drive together with a remote control system provides controlled free flight of the aircraft. One variant of the object of the invention consists of a central, balloon-shaped body for upthrust, in which there are wind turbines driving electrical generators. According to the invention the motors required to start the wind turbines are of such dimensions that they will drive the turbines in free flight of the aircraft and thus provide forward drive of the aircraft. A power generating unit, consisting of an internal combustion engine and the starter motors switched over to generator operation is used to provide house service supplies for control and regulation of the aircraft.

  14. Human Powered PiezoelectricBatteries to Supply Power to Wearable Electronic Devices.

    OpenAIRE

    Gonzalez, Jose' Luis; Rubio, Antonio; Moll, Francesc

    2002-01-01

    Consumer electronic equipments are becoming small, portable devices that provide users with a wide range of functionality, from communication to music playing. The battery technology and the power consumption of the device limit the size, weight and autonomous lifetime. One promising alternative to batteries (and fuel cells, that must be refueled as well) is to use the parasitic energy dissipated in the movement of the wearer of the device to power it. We analyze in this work the current stat...

  15. Building the Leviathan--Voluntary centralisation of punishment power sustains cooperation in humans.

    Science.gov (United States)

    Gross, Jörg; Méder, Zsombor Z; Okamoto-Barth, Sanae; Riedl, Arno

    2016-02-18

    The prevalence of cooperation among humans is puzzling because cooperators can be exploited by free riders. Peer punishment has been suggested as a solution to this puzzle, but cumulating evidence questions its robustness in sustaining cooperation. Amongst others, punishment fails when it is not powerful enough, or when it elicits counter-punishment. Existing research, however, has ignored that the distribution of punishment power can be the result of social interactions. We introduce a novel experiment in which individuals can transfer punishment power to others. We find that while decentralised peer punishment fails to overcome free riding, the voluntary transfer of punishment power enables groups to sustain cooperation. This is achieved by non-punishing cooperators empowering those who are willing to punish in the interest of the group. Our results show how voluntary power centralisation can efficiently sustain cooperation, which could explain why hierarchical power structures are widespread among animals and humans.

  16. Building the Leviathan – Voluntary centralisation of punishment power sustains cooperation in humans

    Science.gov (United States)

    Gross, Jörg; Méder, Zsombor Z.; Okamoto-Barth, Sanae; Riedl, Arno

    2016-01-01

    The prevalence of cooperation among humans is puzzling because cooperators can be exploited by free riders. Peer punishment has been suggested as a solution to this puzzle, but cumulating evidence questions its robustness in sustaining cooperation. Amongst others, punishment fails when it is not powerful enough, or when it elicits counter-punishment. Existing research, however, has ignored that the distribution of punishment power can be the result of social interactions. We introduce a novel experiment in which individuals can transfer punishment power to others. We find that while decentralised peer punishment fails to overcome free riding, the voluntary transfer of punishment power enables groups to sustain cooperation. This is achieved by non-punishing cooperators empowering those who are willing to punish in the interest of the group. Our results show how voluntary power centralisation can efficiently sustain cooperation, which could explain why hierarchical power structures are widespread among animals and humans. PMID:26888519

  17. Kilowatt-Class Fission Power Systems for Science and Human Precursor Missions

    Science.gov (United States)

    Mason, Lee S.; Gibson, Marc Andrew; Poston, Dave

    2013-01-01

    Nuclear power provides an enabling capability for NASA missions that might otherwise be constrained by power availability, mission duration, or operational robustness. NASA and the Department of Energy (DOE) are developing fission power technology to serve a wide range of future space uses. Advantages include lower mass, longer life, and greater mission flexibility than competing power system options. Kilowatt-class fission systems, designated "Kilopower," were conceived to address the need for systems to fill the gap above the current 100-W-class radioisotope power systems being developed for science missions and below the typical 100-k We-class reactor power systems being developed for human exploration missions. This paper reviews the current fission technology project and examines some Kilopower concepts that could be used to support future science missions or human precursors.

  18. Incidents at nuclear power plants caused by the human factor

    International Nuclear Information System (INIS)

    Mashin, V. A.

    2012-01-01

    Psychological analysis of the causes of incorrect actions by personnel is discussed as presented in the report “Methodological guidelines for analyzing the causes of incidents in the operation of nuclear power plants.” The types of incorrect actions and classification of the root causes of errors by personnel are analyzed. Recommendations are made for improvements in the psychological analysis of causes of incorrect actions by personnel.

  19. An analysis of human maintenance failures of a nuclear power plant

    International Nuclear Information System (INIS)

    Pyy, P.

    2000-01-01

    In the report, a study of faults caused by maintenance activities is presented. The objective of the study was to draw conclusions on the unplanned effects of maintenance on nuclear power plant safety and system availability. More than 4400 maintenance history reports from the years 1992-1994 of Olkiluoto BWR nuclear power plant (NPP) were analysed together with the maintenance personnel. The human action induced faults were classified, e.g., according to their multiplicity and effects. This paper presents and discusses the results of a statistical analysis of the data. Instrumentation and electrical components appeared to be especially prone to human failures. Many human failures were found in safety related systems. Several failures also remained latent from outages to power operation. However, the safety significance of failures was generally small. Modifications were an important source of multiple human failures. Plant maintenance data is a good source of human reliability data and it should be used more in the future. (orig.)

  20. Statistical analysis of human maintenance failures of a nuclear power plant

    International Nuclear Information System (INIS)

    Pyy, P.

    2000-01-01

    In this paper, a statistical study of faults caused by maintenance activities is presented. The objective of the study was to draw conclusions on the unplanned effects of maintenance on nuclear power plant safety and system availability. More than 4400 maintenance history reports from the years 1992-1994 of Olkiluoto BWR nuclear power plant (NPP) were analysed together with the maintenance personnel. The human action induced faults were classified, e.g., according to their multiplicity and effects. This paper presents and discusses the results of a statistical analysis of the data. Instrumentation and electrical components are especially prone to human failures. Many human failures were found in safety related systems. Similarly, several failures remained latent from outages to power operation. The safety significance was generally small. Modifications are an important source of multiple human failures. Plant maintenance data is a good source of human reliability data and it should be used more, in future. (orig.)

  1. Support of protective work of human error in a nuclear power plant

    International Nuclear Information System (INIS)

    Yoshizawa, Yuriko

    1999-01-01

    The nuclear power plant human factor group of the Tokyo Electric Power Co., Ltd. supports various protective work of human error conducted at the nuclear power plant. Its main researching theme are studies on human factor on operation of a nuclear power plant, and on recovery and common basic study on human factor. In addition, on a base of the obtained informations, assistance to protective work of human error conducted at the nuclear power plant as well as development for its actual use was also promoted. Especially, for actions sharing some dangerous informations, various assistances such as a proposal on actual example analytical method to effectively understand a dangerous information not facially but faithfully, construction of a data base to conveniently share such dangerous information, and practice on non-accident business survey for a hint of effective promotion of the protection work, were promoted. Here were introduced on assistance and investigation for effective sharing of the dangerous informations for various actions on protection of human error mainly conducted in nuclear power plant. (G.K.)

  2. Critical Review on Power in Organization: Empowerment in Human Resource Development

    Science.gov (United States)

    Jo, Sung Jun; Park, Sunyoung

    2016-01-01

    Purpose: This paper aims to analyze current practices, discuss empowerment from the theoretical perspectives on power in organizations and suggest an empowerment model based on the type of organizational culture and the role of human resource development (HRD). Design/methodology/approach: By reviewing the classic viewpoint of power, Lukes'…

  3. Human Factors Evaluation of Advanced Electric Power Grid Visualization Tools

    Energy Technology Data Exchange (ETDEWEB)

    Greitzer, Frank L.; Dauenhauer, Peter M.; Wierks, Tamara G.; Podmore, Robin

    2009-04-01

    This report describes initial human factors evaluation of four visualization tools (Graphical Contingency Analysis, Force Directed Graphs, Phasor State Estimator and Mode Meter/ Mode Shapes) developed by PNNL, and proposed test plans that may be implemented to evaluate their utility in scenario-based experiments.

  4. Model of aircraft noise adaptation

    Science.gov (United States)

    Dempsey, T. K.; Coates, G. D.; Cawthorn, J. M.

    1977-01-01

    Development of an aircraft noise adaptation model, which would account for much of the variability in the responses of subjects participating in human response to noise experiments, was studied. A description of the model development is presented. The principal concept of the model, was the determination of an aircraft adaptation level which represents an annoyance calibration for each individual. Results showed a direct correlation between noise level of the stimuli and annoyance reactions. Attitude-personality variables were found to account for varying annoyance judgements.

  5. Derivation of main drivers affecting the possibility of human errors during low power and shutdown operation

    International Nuclear Information System (INIS)

    Kim, Ar Ryum; Seong, Poong Hyun; Park, Jin Kyun; Kim, Jae Whan

    2016-01-01

    In order to estimate the possibility of human error and identify its nature, human reliability analysis (HRA) methods have been implemented. For this, various HRA methods have been developed so far: techniques for human error rate prediction (THERP), cause based decision tree (CBDT), the cognitive reliability and error analysis method (CREAM) and so on. Most HRA methods have been developed with a focus on full power operation of NPPs even though human performance may more largely affect the safety of the system during low power and shutdown (LPSD) operation than it would when the system is in full power operation. In this regard, it is necessary to conduct a research for developing HRA method to be used in LPSD operation. For the first step of the study, main drivers which affect the possibility of human error have been developed. Drivers which are commonly called as performance shaping factors (PSFs) are aspects of the human's individual characteristics, environment, organization, or task that specifically decrements or improves human performance, thus respectively increasing or decreasing the likelihood of human errors. In order to estimate the possibility of human error and identify its nature, human reliability analysis (HRA) methods have been implemented. For this, various HRA methods have been developed so far: techniques for human error rate prediction (THERP), cause based decision tree (CBDT), the cognitive reliability and error analysis method (CREAM) and so on. Most HRA methods have been developed with a focus on full power operation of NPPs even though human performance may more largely affect the safety of the system during low power and shutdown (LPSD) operation than it would when the system is in full power operation. In this regard, it is necessary to conduct a research for developing HRA method to be used in LPSD operation. For the first step of the study, main drivers which affect the possibility of human error have been developed. Drivers which

  6. Derivation of main drivers affecting the possibility of human errors during low power and shutdown operation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ar Ryum; Seong, Poong Hyun [KAIST, Daejeon (Korea, Republic of); Park, Jin Kyun; Kim, Jae Whan [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    In order to estimate the possibility of human error and identify its nature, human reliability analysis (HRA) methods have been implemented. For this, various HRA methods have been developed so far: techniques for human error rate prediction (THERP), cause based decision tree (CBDT), the cognitive reliability and error analysis method (CREAM) and so on. Most HRA methods have been developed with a focus on full power operation of NPPs even though human performance may more largely affect the safety of the system during low power and shutdown (LPSD) operation than it would when the system is in full power operation. In this regard, it is necessary to conduct a research for developing HRA method to be used in LPSD operation. For the first step of the study, main drivers which affect the possibility of human error have been developed. Drivers which are commonly called as performance shaping factors (PSFs) are aspects of the human's individual characteristics, environment, organization, or task that specifically decrements or improves human performance, thus respectively increasing or decreasing the likelihood of human errors. In order to estimate the possibility of human error and identify its nature, human reliability analysis (HRA) methods have been implemented. For this, various HRA methods have been developed so far: techniques for human error rate prediction (THERP), cause based decision tree (CBDT), the cognitive reliability and error analysis method (CREAM) and so on. Most HRA methods have been developed with a focus on full power operation of NPPs even though human performance may more largely affect the safety of the system during low power and shutdown (LPSD) operation than it would when the system is in full power operation. In this regard, it is necessary to conduct a research for developing HRA method to be used in LPSD operation. For the first step of the study, main drivers which affect the possibility of human error have been developed. Drivers

  7. Human Resources Development for Rooppur Nuclear Power Programme in Bangladesh

    International Nuclear Information System (INIS)

    Hossain, Md. Kabir

    2014-01-01

    Conclusions: • Bangladesh faces a huge challenge in implementing the Rooppur NPP and its total nuclear power; • A preliminary assessment has been chalked out a plan to find out methods that can be applied to find out our gaps and then fill them up; • Bangladesh seeks cooperation from the Russian Federation in the form assistance package like National training courses, Seminar/Workshop, Expert Mission/Review and other form of bilateral arrangements in establishing infrastructure for “Rooppur NPP” building;

  8. Human Factors Engineering Review Model for advanced nuclear power reactors

    International Nuclear Information System (INIS)

    O'Hara, J.; Higgins, J.; Goodman, C.; Galletti, G.: Eckenrode, R.

    1993-01-01

    One of the major issues to emerge from the initial design reviews under the certification process was that detailed human-systems interface (HSI) design information was not available for staff review. To address the lack of design detail issue. The Nuclear Regulatory Commission (NRC) is performing the design certification reviews based on a design process plan which describes the human factors engineering (HFE) program elements that are necessary and sufficient to develop an acceptable detailed design specification. Since the review of a design process is unprecedented in the nuclear industry. The criteria for review are not addressed by current regulations or guidance documents and. therefore, had to be developed. Thus, an HFE Program Review Model was developed. This paper will describe the model's rationale, scope, objectives, development, general characteristics. and application

  9. Human networks in the European electric power industry

    International Nuclear Information System (INIS)

    Barjot, Dominique; Kurgan-van Hentenryk, Ginette

    2004-01-01

    Behind electrical systems, we should not forget the human networks. The European case is interesting for that matter. There were major players involved, from the pioneers up to the conceivers of national and international systems. More particularly, the engineers should be considered for their technical as well as organizational performance. Attitudes must also be stressed: in Europe, electricity has constantly been developed with both nationalist and internationalist considerations, as shown by the passage from Unternehmergeschaeft to Bankgeschaeft after 1918. Neither should we forget the role played by institutions in the formation of networks: schools, holdings, cartels, and also those frontier zones formed by small countries like Belgium and Switzerland. The human networks, finally, left long term results such as: interconnection, inter-firm cooperation, technocracy, and the growing intervention of the State

  10. Disrupting Power/Entrenching Sovereignty: The Paradox of Human Rights Education

    Science.gov (United States)

    Ahmed, A. Kayum

    2017-01-01

    While human rights education (HRE) provides the tools for emancipation, it remains susceptible to appropriation by authoritarian regimes who seek to entrench state power. Classification scholars who typologize approaches to HRE fail to acknowledge that state entities could employ human rights discourse to reinforce state sovereignty. Consequently,…

  11. Human factors estimation method in nuclear power plants

    International Nuclear Information System (INIS)

    Takano, Kenichi; Yoshino, Kenji; Nagasaka, Akihiko

    1987-01-01

    It is need for improving a NPS reliability to prevent human-errors of operators in a control room. Especially, the time error or omission error may be often caused by a exceed of the mental work load. Therefore, in order to decrease such kinds of human errors, not only the planning of an equipment and a console is well considered about proper level of mental work load but also the exceeded mental work load must be let down by trainning etc. This paper present measurement techniques of the mental work load by physiological informations and the relation between the error rate and mental work load on the basis of the experiment by various modeled tasks. Following results are obtained. (1) TSF, the indicator of the mental work load, is well correlated to the subsidary task reaction time. Therefore it is able to estimate the TSF by subsidary tasks if the task was loaded instanteniously with main task. (2) The relation between the TSF and GSR pulses rate has a 0.81 correlation factor except the case of a parallel processing task. Because we can evaluate the mental work load by the measurement of the GSR pulses rate if the task was processed by a single channel. But if uses GSR, the atomospheric condition is kept constant and the arousal level must be at the well stage. (3) The human error is greatly increase when the TSF exceed above 60 %, that values are almost agreed to the tolerance limit of the TTS methods. (author)

  12. A Low Power, Parallel Wearable Multi-Sensor System for Human Activity Evaluation.

    Science.gov (United States)

    Li, Yuecheng; Jia, Wenyan; Yu, Tianjian; Luan, Bo; Mao, Zhi-Hong; Zhang, Hong; Sun, Mingui

    2015-04-01

    In this paper, the design of a low power heterogeneous wearable multi-sensor system, built with Zynq System-on-Chip (SoC), for human activity evaluation is presented. The powerful data processing capability and flexibility of this SoC represent significant improvements over our previous ARM based system designs. The new system captures and compresses multiple color images and sensor data simultaneously. Several strategies are adopted to minimize power consumption. Our wearable system provides a new tool for the evaluation of human activity, including diet, physical activity and lifestyle.

  13. Human computer interactions in next-generation of aircraft smart navigation management systems: task analysis and architecture under an agent-oriented methodological approach.

    Science.gov (United States)

    Canino-Rodríguez, José M; García-Herrero, Jesús; Besada-Portas, Juan; Ravelo-García, Antonio G; Travieso-González, Carlos; Alonso-Hernández, Jesús B

    2015-03-04

    The limited efficiency of current air traffic systems will require a next-generation of Smart Air Traffic System (SATS) that relies on current technological advances. This challenge means a transition toward a new navigation and air-traffic procedures paradigm, where pilots and air traffic controllers perform and coordinate their activities according to new roles and technological supports. The design of new Human-Computer Interactions (HCI) for performing these activities is a key element of SATS. However efforts for developing such tools need to be inspired on a parallel characterization of hypothetical air traffic scenarios compatible with current ones. This paper is focused on airborne HCI into SATS where cockpit inputs came from aircraft navigation systems, surrounding traffic situation, controllers' indications, etc. So the HCI is intended to enhance situation awareness and decision-making through pilot cockpit. This work approach considers SATS as a system distributed on a large-scale with uncertainty in a dynamic environment. Therefore, a multi-agent systems based approach is well suited for modeling such an environment. We demonstrate that current methodologies for designing multi-agent systems are a useful tool to characterize HCI. We specifically illustrate how the selected methodological approach provides enough guidelines to obtain a cockpit HCI design that complies with future SATS specifications.

  14. Human Computer Interactions in Next-Generation of Aircraft Smart Navigation Management Systems: Task Analysis and Architecture under an Agent-Oriented Methodological Approach

    Science.gov (United States)

    Canino-Rodríguez, José M.; García-Herrero, Jesús; Besada-Portas, Juan; Ravelo-García, Antonio G.; Travieso-González, Carlos; Alonso-Hernández, Jesús B.

    2015-01-01

    The limited efficiency of current air traffic systems will require a next-generation of Smart Air Traffic System (SATS) that relies on current technological advances. This challenge means a transition toward a new navigation and air-traffic procedures paradigm, where pilots and air traffic controllers perform and coordinate their activities according to new roles and technological supports. The design of new Human-Computer Interactions (HCI) for performing these activities is a key element of SATS. However efforts for developing such tools need to be inspired on a parallel characterization of hypothetical air traffic scenarios compatible with current ones. This paper is focused on airborne HCI into SATS where cockpit inputs came from aircraft navigation systems, surrounding traffic situation, controllers’ indications, etc. So the HCI is intended to enhance situation awareness and decision-making through pilot cockpit. This work approach considers SATS as a system distributed on a large-scale with uncertainty in a dynamic environment. Therefore, a multi-agent systems based approach is well suited for modeling such an environment. We demonstrate that current methodologies for designing multi-agent systems are a useful tool to characterize HCI. We specifically illustrate how the selected methodological approach provides enough guidelines to obtain a cockpit HCI design that complies with future SATS specifications. PMID:25746092

  15. Human Computer Interactions in Next-Generation of Aircraft Smart Navigation Management Systems: Task Analysis and Architecture under an Agent-Oriented Methodological Approach

    Directory of Open Access Journals (Sweden)

    José M. Canino-Rodríguez

    2015-03-01

    Full Text Available The limited efficiency of current air traffic systems will require a next-generation of Smart Air Traffic System (SATS that relies on current technological advances. This challenge means a transition toward a new navigation and air-traffic procedures paradigm, where pilots and air traffic controllers perform and coordinate their activities according to new roles and technological supports. The design of new Human-Computer Interactions (HCI for performing these activities is a key element of SATS. However efforts for developing such tools need to be inspired on a parallel characterization of hypothetical air traffic scenarios compatible with current ones. This paper is focused on airborne HCI into SATS where cockpit inputs came from aircraft navigation systems, surrounding traffic situation, controllers’ indications, etc. So the HCI is intended to enhance situation awareness and decision-making through pilot cockpit. This work approach considers SATS as a system distributed on a large-scale with uncertainty in a dynamic environment. Therefore, a multi-agent systems based approach is well suited for modeling such an environment. We demonstrate that current methodologies for designing multi-agent systems are a useful tool to characterize HCI. We specifically illustrate how the selected methodological approach provides enough guidelines to obtain a cockpit HCI design that complies with future SATS specifications.

  16. Human Reliability analysis for digitized nuclear power plants: Case study on the LingAo II nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Yan Hua; Zhang, Li [Institute of Human Factors Engineering AND Safety Management, Hunan Institute of Technology, Hengyang (China); Dai, Cao; Li, Peng Cheng; Qing, Tao [Human Factors Institute, University of South China, Hengyang (China)

    2017-03-15

    The main control room (MCR) in advanced nuclear power plants (NPPs) has changed from analog to digital control system (DCS). Operation and control have become more automated, centralized, and accurate due to the digitalization of NPPs, which has improved the efficiency and security of the system. New issues associated with human reliability inevitably arise due to the adoption of new accident procedures and digitalization of main control rooms in NPPs. The LingAo II NPP is the first digital NPP in China to apply the state-oriented procedure. In order to address issues related to human reliability analysis for DCS and DCS + state-oriented procedure, the Hunan Institute of Technology conducted a research project based on a cooperative agreement with the LingDong Nuclear Power Co. Ltd. This paper is a brief introduction to the project.

  17. Human Reliability Analysis for Digitized Nuclear Power Plants: Case Study on the LingAo II Nuclear Power Plant

    Directory of Open Access Journals (Sweden)

    Yanhua Zou

    2017-03-01

    Full Text Available The main control room (MCR in advanced nuclear power plants (NPPs has changed from analog to digital control system (DCS. Operation and control have become more automated, centralized, and accurate due to the digitalization of NPPs, which has improved the efficiency and security of the system. New issues associated with human reliability inevitably arise due to the adoption of new accident procedures and digitalization of main control rooms in NPPs. The LingAo II NPP is the first digital NPP in China to apply the state-oriented procedure. In order to address issues related to human reliability analysis for DCS and DCS + state-oriented procedure, the Hunan Institute of Technology conducted a research project based on a cooperative agreement with the LingDong Nuclear Power Co. Ltd. This paper is a brief introduction to the project.

  18. Analysis the Human and Environmental Consequences of Power Pplants Using Combined Delphi and AHP Method

    International Nuclear Information System (INIS)

    Jozi, S. A.; Saffarian, Sh.; Shafiee, M.; Akbari, A.

    2016-01-01

    Power plants, due to the nature of their processes and activities and also by producing the effluents, emitting the air pollutants and hazardous wastes, have the potential to cause negative human and environmental consequences. Given the importance of the issue, for determining the most important consequences of Abadan Gas Power Plant and also their impact on the human and natural environment, as a case study, a questionnaire was developed with Delphi method. This questionnaire was distributed within the environmentalists and experts of power plant. The human and environmental consequences of Power Plant were analyzed by Multiple Criteria Decision-Making methods including AHP and eigenvector technique. For this purpose, with applying of AHP method, the hierarchical structure of the human and environmental consequences of Abadan Gas Power Plant was constructed and then the decision making matrix was formed. The pair wise matrices were formed separately for criteria pair wise comparisons with respect to severity and occurrence probability of indoor and outdoor environment of power plant .With entering the data in EXPERT CHOICE software, criteria weights were computed with applying the eigenvector method. Then the final weights of consequences in terms of severity and occurrence probability of risk were computed. The results from the compution of Abadan Gas Power Plant consequences indicate that in human consequences, shallow wounds with a .105 weight and in environmental consequences, air pollution by weighing 0.66 are the most important consequences of power plant. Finally, the most important executable strategies and actions for mitigation of negative human and environmental consequences were presented.

  19. The role of automation and humans in nuclear power plants

    International Nuclear Information System (INIS)

    1992-10-01

    The document is the result of a series of advisory and consultants meetings held within the framework of the International Working Group on Nuclear Power Plant Control and Instrumentation in 1989-1990. It provides a basis for assigning functions to men and machines and for achieving a desirable balance. It should be particularly useful to designers of of new systems, where a large number of assignment decisions will have to be identified, taken and documented. In addition, the methodology can be used by utilities for plant modifications and upgrades. The document may also be employed for examining existing assignments in a system since the principles on which the document is based are generally applicable. The document may be useful to those who develop requirement specifications for automation, to technology designers who design automated machines, and to researchers who intend to further refine the function assignment methodology. Refs, figs and tabs

  20. Propulsion controlled aircraft computer

    Science.gov (United States)

    Cogan, Bruce R. (Inventor)

    2010-01-01

    A low-cost, easily retrofit Propulsion Controlled Aircraft (PCA) system for use on a wide range of commercial and military aircraft consists of an propulsion controlled aircraft computer that reads in aircraft data including aircraft state, pilot commands and other related data, calculates aircraft throttle position for a given maneuver commanded by the pilot, and then displays both current and calculated throttle position on a cockpit display to show the pilot where to move throttles to achieve the commanded maneuver, or is automatically sent digitally to command the engines directly.

  1. Analysis on nuclear power plant control room system design and improvement based on human factor engineering

    International Nuclear Information System (INIS)

    Gao Feng; Liu Yanzi; Sun Yongbin

    2014-01-01

    The design of nuclear power plant control room system is a process of improvement with the implementation of human factor engineering theory and guidance. The method of implementation human factor engineering principles into the nuclear power plant control room system design and improvement was discussed in this paper. It is recommended that comprehensive address should be done from control room system function, human machine interface, digital procedure, control room layout and environment design based on the human factor engineering theory and experience. The main issues which should be paid more attention during the control room system design and improvement also were addressed in this paper, and then advices and notices for the design and improvement of the nuclear power plant control room system were afforded. (authors)

  2. Analysis of Human Errors in Japanese Nuclear Power Plants using JHPES/JAESS

    International Nuclear Information System (INIS)

    Kojima, Mitsuhiro; Mimura, Masahiro; Yamaguchi, Osamu

    1998-01-01

    CRIEPI (Central Research Institute for Electric Power Industries) / HFC (Human Factors research Center) developed J-HPES (Japanese version of Human Performance Enhancement System) based on the HPES which was originally developed by INPO to analyze events resulted from human errors. J-HPES was systematized into a computer program named JAESS (J-HPES Analysis and Evaluation Support System) and both systems were distributed to all Japanese electric power companies to analyze events by themselves. CRIEPI / HFC also analyzed the incidents in Japanese nuclear power plants (NPPs) which were officially reported and identified as human error related with J-HPES / JAESS. These incidents have numbered up to 188 cases over the last 30 years. An outline of this analysis is given, and some preliminary findings are shown. (authors)

  3. Basic Safety Considerations for Nuclear Power Plant Dealing with External Human Induced Events

    Energy Technology Data Exchange (ETDEWEB)

    Salem, W., E-mail: wafaasalem21@yahoo.com [Nuclear and Radiological Regulatory Authority (Egypt)

    2014-10-15

    Facilities and human activities in the region in which a nuclear power plant is located may under some conditions affect its safety. The potential sources of human induced events external to the plant should be identified and the severity of the possible resulting hazard phenomena should be evaluated to derive the appropriate design bases for the plant. They should also be monitored and periodically assessed over the lifetime of the plant to ensure that consistency with the design assumptions is maintained. External human induced events that could affect safety should be investigated in the site evaluation stage for every nuclear power plant site. The region is required to be examined for facilities and human activities that have the potential, under certain conditions, to endanger the nuclear power plant over its entire lifetime. Each relevant potential source is required to be identified and assessed to determine the potential interactions with personnel and plant items important to safety. (author)

  4. Practical Applications of Cosmic Ray Science: Spacecraft, Aircraft, Ground-Based Computation and Control Systems, Exploration, and Human Health and Safety

    Science.gov (United States)

    Koontz, Steve

    2015-01-01

    In this presentation a review of galactic cosmic ray (GCR) effects on microelectronic systems and human health and safety is given. The methods used to evaluate and mitigate unwanted cosmic ray effects in ground-based, atmospheric flight, and space flight environments are also reviewed. However not all GCR effects are undesirable. We will also briefly review how observation and analysis of GCR interactions with planetary atmospheres and surfaces and reveal important compositional and geophysical data on earth and elsewhere. About 1000 GCR particles enter every square meter of Earth’s upper atmosphere every second, roughly the same number striking every square meter of the International Space Station (ISS) and every other low- Earth orbit spacecraft. GCR particles are high energy ionized atomic nuclei (90% protons, 9% alpha particles, 1% heavier nuclei) traveling very close to the speed of light. The GCR particle flux is even higher in interplanetary space because the geomagnetic field provides some limited magnetic shielding. Collisions of GCR particles with atomic nuclei in planetary atmospheres and/or regolith as well as spacecraft materials produce nuclear reactions and energetic/highly penetrating secondary particle showers. Three twentieth century technology developments have driven an ongoing evolution of basic cosmic ray science into a set of practical engineering tools needed to design, test, and verify the safety and reliability of modern complex technological systems and assess effects on human health and safety effects. The key technology developments are: 1) high altitude commercial and military aircraft; 2) manned and unmanned spacecraft; and 3) increasingly complex and sensitive solid state micro-electronics systems. Space and geophysical exploration needs drove the development of the instruments and analytical tools needed to recover compositional and structural data from GCR induced nuclear reactions and secondary particle showers. Finally, the

  5. Database on aircraft accidents

    International Nuclear Information System (INIS)

    Nishio, Masahide; Koriyama, Tamio

    2013-11-01

    The Reactor Safety Subcommittee in the Nuclear Safety and Preservation Committee published 'The criteria on assessment of probability of aircraft crash into light water reactor facilities' as the standard method for evaluating probability of aircraft crash into nuclear reactor facilities in July 2002. In response to this issue, Japan Nuclear Energy Safety Organization has been collecting open information on aircraft accidents of commercial airplanes, self-defense force (SDF) airplanes and US force airplanes every year since 2003, sorting out them and developing the database of aircraft accidents for the latest 20 years to evaluate probability of aircraft crash into nuclear reactor facilities. In this report the database was revised by adding aircraft accidents in 2011 to the existing database and deleting aircraft accidents in 1991 from it, resulting in development of the revised 2012 database for the latest 20 years from 1992 to 2011. Furthermore, the flight information on commercial aircrafts was also collected to develop the flight database for the latest 20 years from 1992 to 2011 to evaluate probability of aircraft crash into reactor facilities. The method for developing the database of aircraft accidents to evaluate probability of aircraft crash into reactor facilities is based on the report 'The criteria on assessment of probability of aircraft crash into light water reactor facilities' described above. The 2012 revised database for the latest 20 years from 1992 to 2011 shows the followings. The trend of the 2012 database changes little as compared to the last year's report. (1) The data of commercial aircraft accidents is based on 'Aircraft accident investigation reports of Japan transport safety board' of Ministry of Land, Infrastructure, Transport and Tourism. The number of commercial aircraft accidents is 4 for large fixed-wing aircraft, 58 for small fixed-wing aircraft, 5 for large bladed aircraft and 99 for small bladed aircraft. The relevant accidents

  6. The power of love on the human brain.

    Science.gov (United States)

    Bianchi-Demicheli, Francesco; Grafton, Scott T; Ortigue, Stephanie

    2006-01-01

    Romantic love has been the source for some of the greatest achievements of mankind throughout the ages. The recent localization of romantic love within subcortico-cortical reward, motivation and emotion systems in the human brain has suggested that love is a goal-directed drive with predictable facilitation effects on cognitive behavior, rather than a pure emotion. Here we show that the subliminal exposure of a beloved's name (romantic prime) during a lexical decision task dramatically improves performance in women in love (Experiment 1), as the subliminal presentation of a passion's descriptive noun does (Experiment 2). The parallel between love and passion allows us to interpret these facilitation effects as corresponding to cognitive top-down processes within a motivation-enhanced neural network.

  7. Thirst for Power: Energy, Water and Human Survival

    Science.gov (United States)

    Grubert, E.; Webber, M.

    2017-12-01

    Although it is widely understood that energy and water are the world's two most critical resources, their vital interconnections and vulnerabilities are less often recognized. This talk offers a holistic way of thinking about energy and water—a big picture approach that reveals the interdependence of the two resources, identifies the seriousness of the challenges, and lays out an optimistic approach with an array of solutions to ensure the continuing sustainability of both. The talk discusses how current population growth, economic growth, climate change, and short-sighted policies are likely to make things worse. Yet, more integrated planning with long-term sustainability in mind can avert such a daunting future. Combining anecdotes and personal stories with insights into the latest science of energy and water, the talk identifies a hopeful path toward wise long-range water-energy decisions and a more reliable and abundant future for humanity.

  8. Database on aircraft accidents

    International Nuclear Information System (INIS)

    Nishio, Masahide; Koriyama, Tamio

    2012-09-01

    The Reactor Safety Subcommittee in the Nuclear Safety and Preservation Committee published the report 'The criteria on assessment of probability of aircraft crash into light water reactor facilities' as the standard method for evaluating probability of aircraft crash into nuclear reactor facilities in July 2002. In response to the report, Japan Nuclear Energy Safety Organization has been collecting open information on aircraft accidents of commercial airplanes, self-defense force (SDF) airplanes and US force airplanes every year since 2003, sorting out them and developing the database of aircraft accidents for latest 20 years to evaluate probability of aircraft crash into nuclear reactor facilities. This year, the database was revised by adding aircraft accidents in 2010 to the existing database and deleting aircraft accidents in 1991 from it, resulting in development of the revised 2011 database for latest 20 years from 1991 to 2010. Furthermore, the flight information on commercial aircrafts was also collected to develop the flight database for latest 20 years from 1991 to 2010 to evaluate probability of aircraft crash into reactor facilities. The method for developing the database of aircraft accidents to evaluate probability of aircraft crash into reactor facilities is based on the report 'The criteria on assessment of probability of aircraft crash into light water reactor facilities' described above. The 2011 revised database for latest 20 years from 1991 to 2010 shows the followings. The trend of the 2011 database changes little as compared to the last year's one. (1) The data of commercial aircraft accidents is based on 'Aircraft accident investigation reports of Japan transport safety board' of Ministry of Land, Infrastructure, Transport and Tourism. 4 large fixed-wing aircraft accidents, 58 small fixed-wing aircraft accidents, 5 large bladed aircraft accidents and 114 small bladed aircraft accidents occurred. The relevant accidents for evaluating

  9. An Empirical Study on Human Performance according to the Physical Environment (Potential Human Error Hazard) in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Kim, Ar Ryum; Jang, In Seok; Seong, Proong Hyun

    2014-01-01

    The management of the physical environment for safety is more effective than a nuclear industry. Despite the physical environment such as lighting, noise satisfy with management standards, it can be background factors may cause human error and affect human performance. Because the consequence of extremely human error and human performance is high according to the physical environment, requirement standard could be covered with specific criteria. Particularly, in order to avoid human errors caused by an extremely low or rapidly-changing intensity illumination and masking effect such as power disconnection, plans for better visual environment and better function performances should be made as a careful study on efficient ways to manage and continue the better conditions is conducted

  10. Computerized aids and human factors in nuclear power plant operation

    International Nuclear Information System (INIS)

    Bastl, W.

    1988-01-01

    When guiding a complex process and associated intermeshed systems in a nuclear power plant, a primary issue consists of the call for excellent information. Technically speaking, today's centralized control rooms are at the end of a development phase which has been governed by the introduction of remote information and remote control systems. But by centralization, an information overload problem arose, and it has been solved by dividing panels according to systems, operational phases and specific tasks. In addition, the overview and relationship of systems have been visualized by mimic diagrams. It is attempted to make transparent the technical back-ground of the processes and systems to be controlled, thus to provide the necessary basis for understanding the problems of operators. Practical examples are used for the purpose. The information dilemma, the systems for high level information, automation and information, plant safety and information, and the problem of where to go from here are described. Computerized operator aids must be discussed along assistance in information and assistance in automatic control. (Kako, I.)

  11. The need and direction of a human factors research program for the nuclear power industry

    International Nuclear Information System (INIS)

    Blackman, H.S.; Meyer, O.R.; Nelson, W.R.

    1986-01-01

    It is axiomatic that the need for a human factors program in the nuclear power industry must be based upon an examination of the process of nuclear energy production and the role that the human plays in this process. It has been pointed out by others that a large number of incidents in technology based industries can be attributed to human error, thereby demonstrating the need to understand the human in interacting with complex processes. But an emphasis upon human ''error'' is a negative approach and can be non-productive, particularly when the ''correct'' human action has not been clearly defined prior to the incident. Some industries have expended great resources in a positive attempt to maximize the performance of the human in critical roles, e.g., the man-in-space program, the commercial airlines industry, deep-sea exploration. Central to this issue of human factors in nuclear power is the question of the role that the human plays in reducing the risk of the total system. If, as in other areas of application, the nuclear industry can make substantial improvements in the performance of humans, one needs to know how much risk is really reduced

  12. Thermal Management System for Superconducting Aircraft, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Aircraft powered by hydrogen power plants or gas turbines driving electric generators connected to distributed electric motors for propulsion have the potential to...

  13. A development of the Human Factors Assessment Guide for the Study of Erroneous Human Behaviors in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Oh, Yeon Ju; Lee, Yong Hee; Jang, Tong Il; Kim, Sa Kil

    2014-01-01

    The aim of this paper is to describe a human factors assessment guide for the study of the erroneous characteristic of operators in nuclear power plants (NPPs). We think there are still remaining the human factors issues such as an uneasy emotion, fatigue and stress, varying mental workload situation by digital environment, and various new type of unsafe response to digital interface for better decisions, although introducing an advanced main control room. These human factors issues may not be resolved through the current human reliability assessment which evaluates the total probability of a human error occurring throughout the completion of a specific task. This paper provides an assessment guide for the human factors issues a set of experimental methodology, and presents an assessment case of measurement and analysis especially from neuro physiology approach. It would be the most objective psycho-physiological research technique on human performance for a qualitative analysis considering the safety aspects. This paper can be trial to experimental assessment of erroneous behaviors and their influencing factors, and it can be used as an index for recognition and a method to apply human factors engineering V and V, which is required as a mandatory element of human factor engineering program plan for a NPP design

  14. A development of the Human Factors Assessment Guide for the Study of Erroneous Human Behaviors in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Yeon Ju; Lee, Yong Hee; Jang, Tong Il; Kim, Sa Kil [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-08-15

    The aim of this paper is to describe a human factors assessment guide for the study of the erroneous characteristic of operators in nuclear power plants (NPPs). We think there are still remaining the human factors issues such as an uneasy emotion, fatigue and stress, varying mental workload situation by digital environment, and various new type of unsafe response to digital interface for better decisions, although introducing an advanced main control room. These human factors issues may not be resolved through the current human reliability assessment which evaluates the total probability of a human error occurring throughout the completion of a specific task. This paper provides an assessment guide for the human factors issues a set of experimental methodology, and presents an assessment case of measurement and analysis especially from neuro physiology approach. It would be the most objective psycho-physiological research technique on human performance for a qualitative analysis considering the safety aspects. This paper can be trial to experimental assessment of erroneous behaviors and their influencing factors, and it can be used as an index for recognition and a method to apply human factors engineering V and V, which is required as a mandatory element of human factor engineering program plan for a NPP design.

  15. Final report on effects of environmental radiation of Kori nuclear power plant on human population

    International Nuclear Information System (INIS)

    Kim, Y.J.; Kim, J.B.; Chung, K.H.; Lee, K.S.; Kim, S.R.; Yang, S.Y.

    1980-01-01

    In order to clarify and protect the effects of environmental radiation according to the operation of Kori nuclear power plant on the human population, the base line survey for the human monitoring, human life habits, expected individual exposure dose, frequencies of chromosomal aberration, gene frequencies and karyotypes in amphibia, fauna, and radiation sensitivities in microorganisms which have been living around the power plant site were carried out. Kilchonri population which took for the human monitoring lie within a 2 km distance from the power plant site. Human monitoring, house and food characteristics, individual experience of x-ray exposures, human chromosome analysis and fauna were surveyed and expressed in numerical tables. Chromosome number obtained from the amphibia which were collected around the power plant area was as follows: Kaloula borealis 2N=30, Rana amurensis 2N=26, Rana dybouskii 2N=24, Rana rugosa 2N=26, Rana nigromaculata 2N=26, Rana plancyi 2N=26, Bombina orientalis 2N=24, Hyla arborea 2N=24, Bufo stejnegeri 2N=22, Bufo bufo 2N=22. (author)

  16. Improving human reliability through better nuclear power plant system design. Progress report

    International Nuclear Information System (INIS)

    Golay, M.W.

    1995-01-01

    The project on open-quotes Development of a Theory of the Dependence of Human Reliability upon System Designs as a Means of Improving Nuclear Power Plant Performanceclose quotes has been undertaken in order to address the important problem of human error in advanced nuclear power plant designs. Most of the creativity in formulating such concepts has focused upon improving the mechanical reliability of safety related plant systems. However, the lack of a mature theory has retarded similar progress in reducing the likely frequencies of human errors. The main design mechanism used to address this class of concerns has been to reduce or eliminate the human role in plant operations and accident response. The plan of work being pursued in this project is to perform a set of experiments involving human subject who are required to operate, diagnose and respond to changes in computer-simulated systems, relevant to those encountered in nuclear power plants. In the tests the systems are made to differ in complexity in a systematic manner. The computer program used to present the problems to be solved also records the response of the operator as it unfolds. Ultimately this computer is also to be used in compiling the results of the project. The work of this project is focused upon nuclear power plant applications. However, the persuasiveness of human errors in using all sorts of electromechanical machines gives it a much greater potential importance. Because of this we are attempting to pursue our work in a fashion permitting broad generalizations

  17. Human engineering considerations in the design of New Virginia Power Radwaste facilities

    International Nuclear Information System (INIS)

    Bankley, A.V.; Morris, L.L.; Lippard, D.W.

    1988-01-01

    Human engineering principles were considered by Virginia Power in the recent design of new radwaste facilities (NRFs) for both the Surry and North Anna power stations. Virginia Power recognized that the rigorous application of human engineering principles to the NRF design was essential to the ultimate success or failure of the facilities. Success of the NRF should not only be measured in the volume of radwaste processed but also by other factors such as (a) availability and maintainability of preferred equipment, (b) as-low-as-reasonably-achievable considerations, (c) actual release rates versus achievable release rates, and (d) flexibility to deal with varying circumstances. Each of these success criteria would suffer as the result of operator/human inefficiencies or error. Therefore, human engineering should be applied to the maximum practical extent to minimize such inefficiencies or errors. No method is ever going to ensure a perfectly human-engineered facility design. Virginia Power believes, however, that significant strides have been made in efforts to design and construct a successful radwaste processing facility, a facility where operating success rests with the ability of the human operators to perform their jobs in an efficient and reliable fashion

  18. Improving human reliability through better nuclear power plant system design. Final report

    International Nuclear Information System (INIS)

    Golay, Michael W.

    1998-01-01

    Increasing task complexity is claimed to be responsible for causing human operating errors, while a significant number of system failures are due to operating errors. An experimental study reported here was conducted to isolate varying task complexity as an important factor affecting human performance quality. Earlier work concerning problems of nuclear power plants has shown that human capability declined when dealing with increasing system complexity. The goal of this study was to investigate further the relationship between human operator performance quality and the complexity of tasks served to human operators. This was done by using a simple, interactive, dynamic and generalizable computer model to simulate the behavior of a human-operated dynamic fluid system. Twenty-two human subjects participated

  19. The human factor data management system of Daya Bay Nuclear Power Station

    International Nuclear Information System (INIS)

    Zhang Li; Zhang Ning; Guo Jianbing; Huang Weigang; Zhu Minhong; Wang Jin

    1999-12-01

    The collection, analysis and quantification of human factor data are very important parts of human reliability analysis and probabilistic risk assessment. Therefore various human databases have been created. But a human data management system with the functions of data collection, classification, analysis, computation and forecast is scarcely seen at home and abroad. So the authors have developed the human data management system of Daya Bay Nuclear Power Station. The system includes three modules and four databases. The authors firstly set forth some basic problems on the human factor data, which are concerned during the development of the system. Then the structure and function of the system are described. In view of the important role of human factor databases in the system, the authors also discuss the structure problems of the data in the databases in detail

  20. Development of a Pilot Program for Human Factors Management in Operating Nuclear Power plants

    International Nuclear Information System (INIS)

    Lee, Jung-Woon; Lee, Yong-Hee; Jang, Tong-Il; Kim, Dae-Ho

    2007-01-01

    The human factors of operating NPPs have been reviewed as a part of Periodic Safety Reviews (PSRs). This human factors PSR covers a wide range of human factors including control room man-machine interfaces (MMIs), procedures, working conditions, qualification, training, information requirements and workload. Korea Atomic Energy Research Institute (KAERI) has performed human factors PSRs from the first PSR for Kori 1. It was determined in 2005 that for a Continuous Operation of the Korean NPPs an enhanced PSR should be performed and issues raised from the PSRs should be resolved. From the results of the PSR for Kori 1, several safety enhancement issues related to human factors were raised. KAERI is working on a resolution of some of the human factors issues for the Korea Hydro and Nuclear Power Co. (KHNP). As a part of the resolution, we are developing a human factors management program (HFMP) for Kori 1. This paper introduces the status of our development of HFMP

  1. Analysis of human performance problems at the Swedish nuclear power plants

    International Nuclear Information System (INIS)

    Bento, J.P.

    1988-01-01

    The last five years of operation of all Swedish nuclear power plants have been studied with respect to human performance problems by analysing all scrams and licensee event reports (LERs). Thus, the study covers 165 scrams and 1318 LERs. As general results, 39% of the scrams and 27% of the LERs, as an average for the years 1983-1987, are caused by human performance problems. Among the items studied, emphasis has been put on the analysis of the causal categories involved in human performance problems resulting in plant events. The most significant causal categories appear to be Work organization, Procedures not followed, Work place ergonomics and Human variability

  2. Human factors review of nuclear power plant control room design. Final report

    International Nuclear Information System (INIS)

    Seminara, J.L.; Gonzalez, W.R.; Parsons, S.O.

    1976-11-01

    The human factors aspects of five representative nuclear power plant control rooms were evaluated using such methods as a checklist guided observation system, structured interviews with operators and trainers, direct observations of operator behavior, task analyses and procedure evaluation, and historical error analyses. The human factors aspects of design practices are illustrated, and many improvements in current practices are suggested. The study recommends that a detailed set of applicable human factors standards be developed to stimulate a uniform and systematic concern for human factors in design considerations

  3. Procedure for conducting a human-reliability analysis for nuclear power plants. Final report

    International Nuclear Information System (INIS)

    Bell, B.J.; Swain, A.D.

    1983-05-01

    This document describes in detail a procedure to be followed in conducting a human reliability analysis as part of a probabilistic risk assessment when such an analysis is performed according to the methods described in NUREG/CR-1278, Handbook for Human Reliability Analysis with Emphasis on Nuclear Power Plant Applications. An overview of the procedure describing the major elements of a human reliability analysis is presented along with a detailed description of each element and an example of an actual analysis. An appendix consists of some sample human reliability analysis problems for further study

  4. External human induced events in site evaluation for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2004-01-01

    The purpose of the present Safety Guide is to provide recommendations and guidance for the examination of the region considered for site evaluation for a plant in order to identity hazardous phenomena associated with human induced events initiated by sources external to the plant. In some cases it also presents preliminary guidance for deriving values of relevant parameters for the design basis. This Safety Guide is also applicable for periodic site evaluation and site evaluation following a major human induced event, and for the design and operation of the site's environmental monitoring system. Site evaluation includes site characterization. Consideration of external events that could lead to a degradation of the safety features of the plant and cause a release of radioactive material from the plant and/or affect the dispersion of such material in the environment. And consideration of population issues and access issues significant to safety (such as the feasibility of evacuation, the population distribution and the location of resources). The process of site evaluation continues throughout the lifetime of the facility, from siting to design, construction, operation and decommissioning. The external human induced events considered in this Safety Guide are all of accidental origin. Considerations relating to the physical protection of the plant against wilful actions by third parties are outside its scope. However, the methods described herein may also have some application for the purposes of such physical protection. The present Safety Guide may also be used for events that may originate within the boundaries of the site, but from sources which are not directly involved in the operational states of the nuclear power plant units, such as fuel depots or areas for the storage of hazardous materials for the construction of other facilities at the same site. Special consideration should be given to the hazardous material handled during the construction, operation and

  5. Aircraft gas turbine engine vibration diagnostics

    OpenAIRE

    Stanislav Fábry; Marek Češkovič

    2017-01-01

    In the Czech and Slovak aviation are in service elderly aircrafts, usually produced in former Soviet Union. Their power units can be operated in more efficient way, in case of using additional diagnostic methods that allow evaluating their health. Vibration diagnostics is one of the methods indicating changes of rotational machine dynamics. Ground tests of aircraft gas turbine engines allow vibration recording and analysis. Results contribute to airworthiness evaluation and making corrections...

  6. Advanced Airborne Defensive Laser for Incorporation on Strike Fighter Aircraft

    Science.gov (United States)

    2017-09-01

    Systems within the Pod The Cyclops pod contains several systems working together to perform the high - level functions. The status of these systems must be...by the aircraft is limited, and Cyclops power requirements are high . commercial off-the-shelf (COTS) Ram Air Turbines are available and are...Supply Subsystem The Cyclops pod must generate its own power due to lack of available power from the aircraft; therefore, the Power supply has high

  7. Genetic variability in the human cannabinoid receptor 1 is associated with resting state EEG theta power in humans.

    Science.gov (United States)

    Heitland, I; Kenemans, J L; Böcker, K B E; Baas, J M P

    2014-11-01

    It has long been postulated that exogenous cannabinoids have a profound effect on human cognitive functioning. These cannabinoid effects are thought to depend, at least in parts, on alterations of phase-locking of local field potential neuronal firing. The latter can be measured as activity in the theta frequency band (4-7Hz) by electroencephalogram. Theta oscillations are supposed to serve as a mechanism in neural representations of behaviorally relevant information. However, it remains unknown whether variability in endogenous cannabinoid activity is involved in theta rhythms and therefore, may serve as an individual differences index of human cognitive functioning. To clarify this issue, we recorded resting state EEG activity in 164 healthy human subjects and extracted EEG power across frequency bands (δ, θ, α, and β). To assess variability in the endocannabinoid system, two genetic polymorphisms (rs1049353, rs2180619) within the cannabinoid receptor 1 (CB1) were determined in all participants. As expected, we observed significant effects of rs1049353 on EEG power in the theta band at frontal, central and parietal electrode regions. Crucially, these effects were specific for the theta band, with no effects on activity in the other frequency bands. Rs2180619 showed no significant associations with theta power after Bonferroni correction. Taken together, we provide novel evidence in humans showing that genetic variability in the cannabinoid receptor 1 is associated with resting state EEG power in the theta frequency band. This extends prior findings of exogenous cannabinoid effects on theta power to the endogenous cannabinoid system. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Hybrid instrument applied to human reliability study in event of loss of external electric power in a nuclear power plant

    International Nuclear Information System (INIS)

    Martins, Eduardo Ferraz

    2015-01-01

    The study projects in highly complex installations involves robust modeling, supported by conceptual and mathematical tools, to carry out systematic research and structured the different risk scenarios that can lead to unwanted events from occurring equipment failures or human errors. In the context of classical modeling, the Probabilistic Safety Analysis (PSA) seeks to provide qualitative and quantitative information about the project particularity and their operational facilities, including the identification of factors or scenarios that contribute to the risk and consequent comparison options for increasing safety. In this context, the aim of the thesis is to develop a hybrid instrument (CPP-HI) innovative, from the integrated modeling techniques of Failure Mode and Effect Analysis (FMEA), concepts of Human Reliability Analysis and Probabilistic Composition of Preferences (PCP). In support of modeling and validation of the CPP-HI, a simulation was performed on a triggering event 'Loss of External Electric Power' - PEEE, in a Nuclear Power plant. The results were simulated in a virtual environment (sensitivity analysis) and are robust to the study of Human Reliability Analysis (HRA) in the context of the PSA. (author)

  9. Human reliability in non-destructive inspections of nuclear power plant components: modeling and analysis

    International Nuclear Information System (INIS)

    Vasconcelos, Vanderley de; Soares, Wellington Antonio; Marques, Raíssa Oliveira; Silva Júnior, Silvério Ferreira da; Raso, Amanda Laureano

    2017-01-01

    Non-destructive inspection (NDI) is one of the key elements in ensuring quality of engineering systems and their safe use. NDI is a very complex task, during which the inspectors have to rely on their sensory, perceptual, cognitive, and motor skills. It requires high vigilance once it is often carried out on large components, over a long period of time, and in hostile environments and restriction of workplace. A successful NDI requires careful planning, choice of appropriate NDI methods and inspection procedures, as well as qualified and trained inspection personnel. A failure of NDI to detect critical defects in safety-related components of nuclear power plants, for instance, may lead to catastrophic consequences for workers, public and environment. Therefore, ensuring that NDI methods are reliable and capable of detecting all critical defects is of utmost importance. Despite increased use of automation in NDI, human inspectors, and thus human factors, still play an important role in NDI reliability. Human reliability is the probability of humans conducting specific tasks with satisfactory performance. Many techniques are suitable for modeling and analyzing human reliability in NDI of nuclear power plant components. Among these can be highlighted Failure Modes and Effects Analysis (FMEA) and THERP (Technique for Human Error Rate Prediction). The application of these techniques is illustrated in an example of qualitative and quantitative studies to improve typical NDI of pipe segments of a core cooling system of a nuclear power plant, through acting on human factors issues. (author)

  10. Human reliability in non-destructive inspections of nuclear power plant components: modeling and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Vasconcelos, Vanderley de; Soares, Wellington Antonio; Marques, Raíssa Oliveira; Silva Júnior, Silvério Ferreira da; Raso, Amanda Laureano, E-mail: vasconv@cdtn.br, E-mail: soaresw@cdtn.br, E-mail: raissaomarques@gmail.com, E-mail: silvasf@cdtn.br, E-mail: amandaraso@hotmail.com [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-07-01

    Non-destructive inspection (NDI) is one of the key elements in ensuring quality of engineering systems and their safe use. NDI is a very complex task, during which the inspectors have to rely on their sensory, perceptual, cognitive, and motor skills. It requires high vigilance once it is often carried out on large components, over a long period of time, and in hostile environments and restriction of workplace. A successful NDI requires careful planning, choice of appropriate NDI methods and inspection procedures, as well as qualified and trained inspection personnel. A failure of NDI to detect critical defects in safety-related components of nuclear power plants, for instance, may lead to catastrophic consequences for workers, public and environment. Therefore, ensuring that NDI methods are reliable and capable of detecting all critical defects is of utmost importance. Despite increased use of automation in NDI, human inspectors, and thus human factors, still play an important role in NDI reliability. Human reliability is the probability of humans conducting specific tasks with satisfactory performance. Many techniques are suitable for modeling and analyzing human reliability in NDI of nuclear power plant components. Among these can be highlighted Failure Modes and Effects Analysis (FMEA) and THERP (Technique for Human Error Rate Prediction). The application of these techniques is illustrated in an example of qualitative and quantitative studies to improve typical NDI of pipe segments of a core cooling system of a nuclear power plant, through acting on human factors issues. (author)

  11. The Challenge and Countermeasure of Human Resources on Nuclear Power for China in the 21st Century

    International Nuclear Information System (INIS)

    Zheng Mingguang

    2011-01-01

    The paper addresses the situations of nuclear power development and nuclear industry human resources and points out that the development and supply of human resources are becoming the big challenges in the effective and sustainable development of nuclear power. At the same time, the paper analyzes the root causes of human resources shortage and recommends several countermeasures to confront human resources problems. At last, the paper introduces what SNPTC and SNERDI do to overcome the human resources problem and give conclusions. (author)

  12. Human factors in maintenance: Development and research in Swedish nuclear power plants

    International Nuclear Information System (INIS)

    Salo, I.; Svensson, Ola

    2001-11-01

    The present report investigated previously completed, ongoing, and planned research and development projects focusing human factors and maintenance work carried out at Swedish nuclear power plants and SKI. In addition, needs for future research and development works were also investigated. Participants from all nuclear power plants and SKI were included in the study. Participants responded to a set of questions in an interview. The interviews also generated a list of future research and development projects

  13. Design of Photovoltaic Power System for a Precursor Mission for Human Exploration of Mars

    Science.gov (United States)

    Mcnatt, Jeremiah; Landis, Geoffrey; Fincannon, James

    2016-01-01

    This project analyzed the viability of a photovoltaic power source for technology demonstration mission to demonstrate Mars in-situ resource utilization (ISRU) to produce propellant for a future human mission, based on technology available within the next ten years. For this assessment, we performed a power-system design study for a scaled ISRU demonstrator lander on the Mars surface based on existing solar array technologies.

  14. Human factors in maintenance: development and research in Swedish nuclear power plants

    International Nuclear Information System (INIS)

    Salo, I.; Svenson, O.

    2001-11-01

    The report investigated previously completed, ongoing, and planned research and development projects focusing human factors and maintenance work carried out at Swedish nuclear power plants and SKI. In addition, needs for future research and development works were also investigated. Participants from all nuclear power plants and SKI were included in the study. Participants responded to a set of questions in an interview. The interviews also generated a list of future research and development projects. (au)

  15. Human factors in maintenance: Development and research in Swedish nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Salo, I. [Lund Univ. (Sweden). Dept. of Psychology; Svensson, Ola [Stockholm Univ. (Sweden). Dept. of Psychology

    2001-11-01

    The present report investigated previously completed, ongoing, and planned research and development projects focusing human factors and maintenance work carried out at Swedish nuclear power plants and SKI. In addition, needs for future research and development works were also investigated. Participants from all nuclear power plants and SKI were included in the study. Participants responded to a set of questions in an interview. The interviews also generated a list of future research and development projects.

  16. Human factors research in Central Research Institute of Electric Power Industry creation of safety culture

    International Nuclear Information System (INIS)

    Horie, Yasuo

    2002-01-01

    To prevent accident of nuclear power plant, Human Factors Center was built in the Central Research Institute of Electric Power Industry in July 1987. It developed an evaluation method of human error cases and an application method of human factors information. Now it continues analysis and application of human factors information, development of training/work support tools and research/experiment of human behavior. Japan-Human Performance Evaluation System (J-HPES) was developed as an analytical system for analysis and evaluation of human factors related to the trouble and for using the result as the common property by storage the analytical results. J-HPES has a standard procedure consisted of collecting and analyzing data and proposing the countermeasures. The analytical results are arranged by 4 kinds of charts by putting into the form of a diagram. Moreover, it tries to find the causes with indirect and potential causes. Two kinds of materials, Caution Report and Human Factors Precept by means of Illustrations, are published. People can gain access to HFC database by URL http://criepi.denken.or.jp/CRIEPI/HFC/DB. To prevent these accidents, creation of human factors culture has been required. Five kinds of teaching materials and the training method are developed. (S.Y.)

  17. Human DNA quantification and sample quality assessment: Developmental validation of the PowerQuant(®) system.

    Science.gov (United States)

    Ewing, Margaret M; Thompson, Jonelle M; McLaren, Robert S; Purpero, Vincent M; Thomas, Kelli J; Dobrowski, Patricia A; DeGroot, Gretchen A; Romsos, Erica L; Storts, Douglas R

    2016-07-01

    Quantification of the total amount of human DNA isolated from a forensic evidence item is crucial for DNA normalization prior to short tandem repeat (STR) DNA analysis and a federal quality assurance standard requirement. Previous commercial quantification methods determine the total human DNA and total human male DNA concentrations, but provide limited information about the condition of the DNA sample. The PowerQuant(®) System includes targets for quantification of total human and total human male DNA as well as targets for evaluating whether the human DNA is degraded and/or PCR inhibitors are present in the sample. A developmental validation of the PowerQuant(®) System was completed, following SWGDAM Validation Guidelines, to evaluate the assay's specificity, sensitivity, precision and accuracy, as well as the ability to detect degraded DNA or PCR inhibitors. In addition to the total human DNA and total human male DNA concentrations in a sample, data from the degradation target and internal PCR control (IPC) provide a forensic DNA analyst meaningful information about the quality of the isolated human DNA and the presence of PCR inhibitors in the sample that can be used to determine the most effective workflow and assist downstream interpretation. Copyright © 2016 The Author(s). Published by Elsevier Ireland Ltd.. All rights reserved.

  18. An improvement of the applicability of human factors guidelines for coping with human factors issues in nuclear power plants

    International Nuclear Information System (INIS)

    Lee, Y. H.; Lee, J. Y.

    2003-01-01

    Human factors have been well known as one of the key factors to the system effectiveness as well as the efficiency and safety of nuclear power plants(NPPs). Human factors engineering(HFE) are included in periodic safety review(PSR) on the existing NPPs and the formal safety assessment for the new ones. However, HFE for NPPs is still neither popular in practice nor concrete in methodology. Especially, the human factors guidelines, which are the most frequent form of human factors engineering in practice, reveal the limitations in their applications. We discuss the limitations and their casual factors found in human factors guidelines in order to lesson the workload of HFE practitioners and to improve the applicability of human factors guidelines. According to the purposes and the phases of HFE for NPPs, more selective items and specified criteria should be prepared carefully in the human factors guidelines for the each HFE applications in practice. These finding on the human factors guidelines can be transferred to the other HFE application field, such as military, aviation, telecommunication, HCI, and product safety

  19. Generation of electrical power under human skin by subdermal solar cell arrays for implantable bioelectronic devices.

    Science.gov (United States)

    Song, Kwangsun; Han, Jung Hyun; Yang, Hyung Chae; Nam, Kwang Il; Lee, Jongho

    2017-06-15

    Medical electronic implants can significantly improve people's health and quality of life. These implants are typically powered by batteries, which usually have a finite lifetime and therefore must be replaced periodically using surgical procedures. Recently, subdermal solar cells that can generate electricity by absorbing light transmitted through skin have been proposed as a sustainable electricity source to power medical electronic implants in bodies. However, the results to date have been obtained with animal models. To apply the technology to human beings, electrical performance should be characterized using human skin covering the subdermal solar cells. In this paper, we present electrical performance results (up to 9.05mW/cm 2 ) of the implantable solar cell array under 59 human skin samples isolated from 10 cadavers. The results indicate that the power densities depend on the thickness and tone of the human skin, e.g., higher power was generated under thinner and brighter skin. The generated power density is high enough to operate currently available medical electronic implants such as pacemakers that require tens of microwatt. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Sensitivity analysis and multidisciplinary optimization for aircraft design: Recent advances and results

    Science.gov (United States)

    Sobieszczanski-Sobieski, Jaroslaw

    1988-01-01

    Optimization by decomposition, complex system sensitivity analysis, and a rapid growth of disciplinary sensitivity analysis are some of the recent developments that hold promise of a quantum jump in the support engineers receive from computers in the quantitative aspects of design. Review of the salient points of these techniques is given and illustrated by examples from aircraft design as a process that combines the best of human intellect and computer power to manipulate data.

  1. Research on cognitive reliability model for main control room considering human factors in nuclear power plants

    International Nuclear Information System (INIS)

    Jiang Jianjun; Zhang Li; Wang Yiqun; Zhang Kun; Peng Yuyuan; Zhou Cheng

    2012-01-01

    Facing the shortcomings of the traditional cognitive factors and cognitive model, this paper presents a Bayesian networks cognitive reliability model by taking the main control room as a reference background and human factors as the key points. The model mainly analyzes the cognitive reliability affected by the human factors, and for the cognitive node and influence factors corresponding to cognitive node, a series of methods and function formulas to compute the node cognitive reliability is proposed. The model and corresponding methods can be applied to the evaluation of cognitive process for the nuclear power plant operators and have a certain significance for the prevention of safety accidents in nuclear power plants. (authors)

  2. What do human rights bring to discussions of power and politics in health policy and systems?

    Science.gov (United States)

    Forman, Lisa

    2017-12-13

    Scholarly interrogations of power and politics are not endemic to the disciplines primarily tasked with exploring health policy and planning in the domestic or global domains. Scholars in these domains have come late to investigating power, prompted in part by the growing focus in domestic and global health research on the intersections between governance, globalization and health inequities. Recent prominent reports in this area increasingly point to human rights as important norms capable of responding in part to power differentials that sustain and exacerbate health inequities. Yet human rights law is not traditionally incorporated into health policy scholarship or education, despite offering important normative and strategic frameworks for public and global health, with distinctive contributions in relation to identifying and challenging certain forms of power disparity. This paper overviews two of these reports and how they see power functioning to sustain health inequities. It then turns to investigate what human rights and the right to health in particular may offer in addressing and challenging power in the health policy context.

  3. Evapotranspiration Power Law in Self-Organized and Human-Managed Ecosystems

    Science.gov (United States)

    Zeng, R.; Cai, X.

    2017-12-01

    Natural systems display a profound degree of self-organization, often apparent even to the untrained eye. However, in this age of increased coupling among human and natural systems, it is unclear to what degree natural organization principles continue to govern human-managed landscapes. Here we present an emerging characteristic of terrestrial evapotranspiration (ET), one of the key components of the water cycle and energy budget, adhered to by both naturally organized and intensively managed landscapes. We find that ET variance and ET mean for ecosystems throughout the world with diverse climate conditions, vegetation structures, and land covers and land uses organize themselves according to a specific power law curve. From multi-source observations, the ET power law curve stands true through varying spatial scales, from field to region. Moreover, a phenomenon of similar ecosystems gravitating toward particular segments of the power law curve, suggests that the feature of self-optimization of ecosystems establishes the ET power law together with climatic conditions. Perhaps surprisingly, we find that landscapes persistently follow the power law curve even upon human-induced transition from rain-fed to irrigated agriculture in the American High Plains and from wetland to agricultural land in American Midwest. As such, the ET power law can be an informative tool for predicting consequences of anthropogenic disturbances to the hydrologic cycle and understanding constraints to sustainable land use.

  4. Effects of environmental radiation of Kori nuclear power plant on the human population

    International Nuclear Information System (INIS)

    Kim, Y.J.

    1979-01-01

    In order to clarify and protect the effects of environmental radiation according to the operation of Kori nuclear power plant on human population, the base line survey for the human monitoring, the fauna of land nocturnal insects, and the karyotypes of amphibian species which have been living around the power plant site were carried out. ''Kilchunri'' population which took for the human monitoring lie within a 2km distance from power plant site. Human monitoring, house and food characteristics, individual experience of X-ray exposures, human chromosome analysis and fauna of nocturnal land insects were surveyed and expressed in numerical tables. Chromosome number obtained from the amphibia which were collected around the power plant area was as follows; Kaloula borealis 2N=30, Rana amurensis 2N=26, Rana dybouskii 2N=24, Rana rugosa 2N=26, Rana migromaculata 2N=26, Rana plancyi 2N=26, Bombina orientalis 2N=24, Hyla arborea 2N=24, Bufo stejnegeri 2N=22, and Bufo bufo 2N=22. (author)

  5. Research and development on the human factors technologies for nuclear power plants in Korea

    International Nuclear Information System (INIS)

    Sim, B.S.; Lee, J.W.; Cheon, S.W.

    1996-01-01

    This paper introduces our research project on the development of human factors technologies for nuclear power plants in Korea. The project is divided into two sub-projects. The first sub-project is the development of human factors experimental evaluation techniques, which aims to develop the techniques for experimental design, experimental measurement and data collection/analysis, and to construct an integrated test facility (ITF) suitable for the experimental evaluation of man-machine interfaces (MMIs) at an advanced control room. The second is the development of human behavior analysis techniques, which has two research areas: one is the development of a task simulation analyzer and the other is human error case studies for nuclear power plants. (author)

  6. Science Based Human Reliability Analysis: Using Digital Nuclear Power Plant Simulators for Human Reliability Research

    Science.gov (United States)

    Shirley, Rachel Elizabeth

    Nuclear power plant (NPP) simulators are proliferating in academic research institutions and national laboratories in response to the availability of affordable, digital simulator platforms. Accompanying the new research facilities is a renewed interest in using data collected in NPP simulators for Human Reliability Analysis (HRA) research. An experiment conducted in The Ohio State University (OSU) NPP Simulator Facility develops data collection methods and analytical tools to improve use of simulator data in HRA. In the pilot experiment, student operators respond to design basis accidents in the OSU NPP Simulator Facility. Thirty-three undergraduate and graduate engineering students participated in the research. Following each accident scenario, student operators completed a survey about perceived simulator biases and watched a video of the scenario. During the video, they periodically recorded their perceived strength of significant Performance Shaping Factors (PSFs) such as Stress. This dissertation reviews three aspects of simulator-based research using the data collected in the OSU NPP Simulator Facility: First, a qualitative comparison of student operator performance to computer simulations of expected operator performance generated by the Information Decision Action Crew (IDAC) HRA method. Areas of comparison include procedure steps, timing of operator actions, and PSFs. Second, development of a quantitative model of the simulator bias introduced by the simulator environment. Two types of bias are defined: Environmental Bias and Motivational Bias. This research examines Motivational Bias--that is, the effect of the simulator environment on an operator's motivations, goals, and priorities. A bias causal map is introduced to model motivational bias interactions in the OSU experiment. Data collected in the OSU NPP Simulator Facility are analyzed using Structural Equation Modeling (SEM). Data include crew characteristics, operator surveys, and time to recognize

  7. An energy harvesting system for passively generating power from human activities

    International Nuclear Information System (INIS)

    Rao, Yuan; Cheng, Shuo; Arnold, David P

    2013-01-01

    This paper presents a complete, self-contained energy harvesting system composed of a magnetic energy harvester, an input-powered interface circuit and a rechargeable battery. The system converts motion from daily human activities such as walking, jogging, and cycling into usable electrical energy. By using an input-powered interface circuit, the system requires no external power supplies and features zero standby power when the input motion is too small for successful energy reclamation. When attached to a person's ankle during walking, the 100 cm 3 system prototype is shown to charge a 3.7 V, 65 mAh lithium-ion polymer battery at an average power of 300 µW. The design and testing of the system under other operating conditions are presented herein. (paper)

  8. Proceedings of the international topical meeting on advances in human factors in nuclear power systems

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    This book presents the papers given at a conference on the human factors engineering of nuclear power plants. Topics considered at the conference included human modeling, artificial intelligence, expert systems, robotics and teleoperations, organizational issues, innovative applications, testing and evaluation, training systems technology, a modeling framework for crew decisions during reactor accident sequences, intelligent operator support systems, control algorithms for robot navigation, and personnel management

  9. Human errors in test and maintenance of nuclear power plants. Nordic project work

    International Nuclear Information System (INIS)

    Andersson, H.; Liwaang, B.

    1985-08-01

    The present report is a summary of the NKA/LIT-1 project performed for the period 1981-1985. The report summarizes work on human error influence in test and calibration activities in nuclear power plants, reviews problems regarding optimization of the test intervals, organization of test and maintenance activities, and the analysis of human error contribution to the overall risk in test and mainenace tasks. (author)

  10. Human error as a source of disturbances in Swedish nuclear power plants

    International Nuclear Information System (INIS)

    Sokolowski, E.

    1985-01-01

    Events involving human errors at the Swedish nuclear power plants are registered and periodically analyzed. The philosophy behind the scheme for data collection and analysis is discussed. Human errors cause about 10% of the disturbances registered. Only a small part of these errors are committed by operators in the control room. These and other findings differ from those in other countries. Possible reasons are put forward

  11. Summary of project to develop handbook of human reliability analysis for nuclear power plant operations

    International Nuclear Information System (INIS)

    Swain, A.D.

    1978-01-01

    For the past two years Alan Swain and Henry E. Guttmann, of the Statistics, Computing, and Human Factors Division, Sandia Laboratories, have been developing a handbook to aid qualified persons to evaluate the effect of human error on the availability of engineered safety systems and features in nuclear power plants. The handbook includes a mathematical model, procedures, derived human failure data, and principles of human behavior and ergonomics. The handbook is expanding the human error analyses which were presented in WASH--1400. The work, under the sponsorship of Probabilistic Analysis Staff, NRC Office of Nuclear Regulatory Research (Dr. M.C. Cullingford, NRC Program Manager), is about half completed. An outline of the handbook contents is given in copies of vugraphs (attached), followed by copies of human performance model abstractors (also attached). A first draft of the handbook is scheduled for NRC review by July 1, 1979

  12. Human factor analysis and preventive countermeasures of maintenance in nuclear power plant

    International Nuclear Information System (INIS)

    Zhang Li; Hu Chao

    2008-01-01

    Based on the human error analysis theory and the characteristics of maintenance in a nuclear power plant, human factors of maintenance in NPP are divided into three different areas: human, technology, and organization, in which human refers to the individual factors, mainly including psychological quality, physiological characteristic, state of health, knowledge, skill level, and interpersonal relationship. Technology includes the maintenance technology, maintenance strategy, maintenance tool, maintenance interface, maintenance regulation, and work environment. Organization includes task arrangement, information communication, training, personnel external environment, team construction, and leadership. The analysis also reveals that the organization factors, which can indirectly influence personnel performance, are the primary initiators of human error. Based on these, some countermeasures are brought forward in order to reduce human errors. (authors)

  13. Small transport aircraft technology

    Science.gov (United States)

    Williams, L. J.

    1983-01-01

    Information on commuter airline trends and aircraft developments is provided to upgrade the preliminary findings of a NASA-formed small transport aircraft technology (STAT) team, established to determine whether the agency's research and development programs could help commuter aircraft manufacturers solve technical problems related to passenger acceptance and use of 19- to 50-passenger aircraft. The results and conclusions of the full set of completed STAT studies are presented. These studies were performed by five airplane manufacturers, five engine manufacturers, and two propeller manufacturers. Those portions of NASA's overall aeronautics research and development programs which are applicable to commuter aircraft design are summarized. Areas of technology that might beneficially be expanded or initiated to aid the US commuter aircraft manufacturers in the evolution of improved aircraft for the market are suggested.

  14. A Human Reliability Analysis of Post- Accident Human Errors in the Low Power and Shutdown PSA of KSNP

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Daeil; Kim, J. H.; Jang, S. C

    2007-03-15

    Korea Atomic Energy Research Institute, using the ANS low power and shutdown (LPSD) probabilistic risk assessment (PRA) Standard, evaluated the LPSD PSA model of the KSNP, Yonggwang Units 5 and 6, and identified the items to be improved. The evaluation results of human reliability analysis (HRA) of the post-accident human errors in the LPSD PSA model for the KSNP showed that 10 items among 19 items of supporting requirements for those in the ANS PRA Standard were identified as them to be improved. Thus, we newly carried out a HRA for post-accident human errors in the LPSD PSA model for the KSNP. Following tasks are the improvements in the HRA of post-accident human errors of the LPSD PSA model for the KSNP compared with the previous one: Interviews with operators in the interpretation of the procedure, modeling of operator actions, and the quantification results of human errors, site visit. Applications of limiting value to the combined post-accident human errors. Documentation of information of all the input and bases for the detailed quantifications and the dependency analysis using the quantification sheets The assessment results for the new HRA results of post-accident human errors using the ANS LPSD PRA Standard show that above 80% items of its supporting requirements for post-accident human errors were graded as its Category II. The number of the re-estimated human errors using the LPSD Korea Standard HRA method is 385. Among them, the number of individual post-accident human errors is 253. The number of dependent post-accident human errors is 135. The quantification results of the LPSD PSA model for the KSNP with new HEPs show that core damage frequency (CDF) is increased by 5.1% compared with the previous baseline CDF It is expected that this study results will be greatly helpful to improve the PSA quality for the domestic nuclear power plants because they have sufficient PSA quality to meet the Category II of Supporting Requirements for the post

  15. A Human Reliability Analysis of Post- Accident Human Errors in the Low Power and Shutdown PSA of KSNP

    International Nuclear Information System (INIS)

    Kang, Daeil; Kim, J. H.; Jang, S. C.

    2007-03-01

    Korea Atomic Energy Research Institute, using the ANS low power and shutdown (LPSD) probabilistic risk assessment (PRA) Standard, evaluated the LPSD PSA model of the KSNP, Yonggwang Units 5 and 6, and identified the items to be improved. The evaluation results of human reliability analysis (HRA) of the post-accident human errors in the LPSD PSA model for the KSNP showed that 10 items among 19 items of supporting requirements for those in the ANS PRA Standard were identified as them to be improved. Thus, we newly carried out a HRA for post-accident human errors in the LPSD PSA model for the KSNP. Following tasks are the improvements in the HRA of post-accident human errors of the LPSD PSA model for the KSNP compared with the previous one: Interviews with operators in the interpretation of the procedure, modeling of operator actions, and the quantification results of human errors, site visit. Applications of limiting value to the combined post-accident human errors. Documentation of information of all the input and bases for the detailed quantifications and the dependency analysis using the quantification sheets The assessment results for the new HRA results of post-accident human errors using the ANS LPSD PRA Standard show that above 80% items of its supporting requirements for post-accident human errors were graded as its Category II. The number of the re-estimated human errors using the LPSD Korea Standard HRA method is 385. Among them, the number of individual post-accident human errors is 253. The number of dependent post-accident human errors is 135. The quantification results of the LPSD PSA model for the KSNP with new HEPs show that core damage frequency (CDF) is increased by 5.1% compared with the previous baseline CDF It is expected that this study results will be greatly helpful to improve the PSA quality for the domestic nuclear power plants because they have sufficient PSA quality to meet the Category II of Supporting Requirements for the post

  16. Human-Machine interface for off normal and emergency situations in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Kee Choon [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-01-01

    Many nuclear power plants (NPPs) have reported that a high percentage of all major failures in the plants are caused by human errors. Therefore, there has been much focus on elimination of human errors, enhancement of human performance, and general improvement of human machine interface (HMI). Both the utility management and the regulators are demanding improvement in this area. The International Atomic Energy Agency (IAEA) Specialists' Meeting on 'Human-Machine Interface for Off Normal and Emergency Situations in Nuclear Power Plants' was co-organized by the Korea Atomic Energy Research Institute (KAERI) and the Korea Power Engineering Company, INC (KOPEC), and took place in Taejeon, Republic of Korea, 1999 October 26-28. Fifty eight participants, representing nine member countries reviewed recent developments and discussed directions for future efforts in the Human-Machine Interface for Off Normal and Emergency Situations in NPPs. Twenty papers were presented, covering a wide spectrum of technical and scientific subjects including recent experience and benefits from Operational Experience with HMI, Development of HMI System, Licensing Issues for HMI and Future Development and Trends. (Author)

  17. Human-Machine interface for off normal and emergency situations in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Kee Choon [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-01-01

    Many nuclear power plants (NPPs) have reported that a high percentage of all major failures in the plants are caused by human errors. Therefore, there has been much focus on elimination of human errors, enhancement of human performance, and general improvement of human machine interface (HMI). Both the utility management and the regulators are demanding improvement in this area. The International Atomic Energy Agency (IAEA) Specialists' Meeting on 'Human-Machine Interface for Off Normal and Emergency Situations in Nuclear Power Plants' was co-organized by the Korea Atomic Energy Research Institute (KAERI) and the Korea Power Engineering Company, INC (KOPEC), and took place in Taejeon, Republic of Korea, 1999 October 26-28. Fifty eight participants, representing nine member countries reviewed recent developments and discussed directions for future efforts in the Human-Machine Interface for Off Normal and Emergency Situations in NPPs. Twenty papers were presented, covering a wide spectrum of technical and scientific subjects including recent experience and benefits from Operational Experience with HMI, Development of HMI System, Licensing Issues for HMI and Future Development and Trends. (Author)

  18. Human Resource Managements as a part of the Human Factors Management Program(HFMP) for Nuclear Power Plants

    International Nuclear Information System (INIS)

    Kim, DaeHo; Lee, YongHee; Lee, JungWoon; Kim, Younggab

    2007-01-01

    Programs for the effective implementation and management of human factor issues in nuclear power plants (NPPs) should contain technical criteria, an establishment of a job process, and activities for job improvements and be a system through which human factors can be managed in an integrated way. Human factors to be managed should include those related to an operation of plants as well as those related to a plant design as mentioned in NUREG-0800(2004), NUREG- 0711(2004), and NUREG-0700(2002). Human factor items to be managed for an operation of plants are listed in the PSR (Periodic Safety Review) items defined in the Enforcement of Regulation of the Atomic Energy Act. They are procedures, a work management system including a shift work management, a qualification management of plant personnel, training, a work amount assessment, a MMI (Man Machine Interface), and the use of experience. Among these factors, factors related to a human resource management include work management systems and the status of a work management including shift work, a qualification management ensuring qualified workers on duty at all times, and the systems for and the status of training and education. This paper addresses the scope of a human resource management, guidelines and procedures to be developed for a human resource management, and considerations critical in the development of guidelines and procedures

  19. Collection and classification of human error and human reliability data from Indian nuclear power plants for use in PSA

    International Nuclear Information System (INIS)

    Subramaniam, K.; Saraf, R.K.; Sanyasi Rao, V.V.S.; Venkat Raj, V.; Venkatraman, R.

    2000-01-01

    Complex systems such as NPPs involve a large number of Human Interactions (HIs) in every phase of plant operations. Human Reliability Analysis (HRA) in the context of a PSA, attempts to model the HIs and evaluate/predict their impact on safety and reliability using human error/human reliability data. A large number of HRA techniques have been developed for modelling and integrating HIs into PSA but there is a significant lack of HAR data. In the face of insufficient data, human reliability analysts have had to resort to expert judgement methods in order to extend the insufficient data sets. In this situation, the generation of data from plant operating experience assumes importance. The development of a HRA data bank for Indian nuclear power plants was therefore initiated as part of the programme of work on HRA. Later, with the establishment of the coordinated research programme (CRP) on collection of human reliability data and use in PSA by IAEA in 1994-95, the development was carried out under the aegis of the IAEA research contract No. 8239/RB. The work described in this report covers the activities of development of a data taxonomy and a human error reporting form (HERF) based on it, data structuring, review and analysis of plant event reports, collection of data on human errors, analysis of the data and calculation of human error probabilities (HEPs). Analysis of plant operating experience does yield a good amount of qualitative data but obtaining quantitative data on human reliability in the form of HEPs is seen to be more difficult. The difficulties have been highlighted and some ways to bring about improvements in the data situation have been discussed. The implementation of a data system for HRA is described and useful features that can be incorporated in future systems are also discussed. (author)

  20. The Relationship between Human Operators' Psycho-physiological Condition and Human Errors in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Arryum; Jang, Inseok; Kang, Hyungook; Seong, Poonghyun [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2013-05-15

    The safe operation of nuclear power plants (NPPs) is substantially dependent on the performance of the human operators who operate the systems. In this environment, human errors caused by inappropriate performance of operator have been considered to be critical since it may lead serious problems in the safety-critical plants. In order to provide meaningful insights to prevent human errors and enhance the human performance, operators' physiological conditions such as stress and workload have been investigated. Physiological measurements were considered as reliable tools to assess the stress and workload. T. Q. Tran et al. and J. B. Brooking et al pointed out that operators' workload can be assessed using eye tracking, galvanic skin response, electroencephalograms (EEGs), heart rate, respiration and other measurements. The purpose of this study is to investigate the effect of the human operators' tense level and knowledge level to the number of human errors. For this study, the experiments were conducted in the mimic of the main control rooms (MCR) in NPP. It utilized the compact nuclear simulator (CNS) which is modeled based on the three loop Pressurized Water Reactor, 993MWe, Kori unit 3 and 4 in Korea and the subjects were asked to follow the tasks described in the emergency operating procedures (EOP). During the simulation, three kinds of physiological measurement were utilized; Electrocardiogram (ECG), EEG and nose temperature. Also, subjects were divided into three groups based on their knowledge of the plant operation. The result shows that subjects who are tense make fewer errors. In addition, subjects who are in higher knowledge level tend to be tense and make fewer errors. For the ECG data, subjects who make fewer human errors tend to be located in higher tense level area of high SNS activity and low PSNS activity. The results of EEG data are also similar to ECG result. Beta power ratio of subjects who make fewer errors was higher. Since beta

  1. Thermal design of linear induction and synchronous motor for electromagnetic launch of civil aircraft

    OpenAIRE

    Bertola, Luca; Cox, Tom; Wheeler, Patrick; Garvey, Seamus D.; Morvan, Herve

    2017-01-01

    The engine size of modern passenger transport aircraft is principally determined by take-off conditions, since initial acceleration requires maximum engine power. An elec¬tromagnetic launch (EML) system could provide some or all of the energy required at takeoff so that the aircraft engine power requirement and fuel consumption may be significantly reduced. So far, EML for aircraft has been adopted only for military applications to replace steam catapults on the deck of aircraft carriers. Thi...

  2. Potential Applications for Radioisotope Power Systems in Support of Human Exploration Missions

    Science.gov (United States)

    Cataldo, Robert L.; Colozza, Anthony J.; Schmitz, Paul C.

    2013-01-01

    Radioisotope power systems (RPS) for space applications have powered over 27 U.S. space systems, starting with Transit 4A and 4B in 1961, and more recently with the successful landing of the Mars Science Laboratory rover Curiosity in August 2012. RPS enable missions with destinations far from the Sun with faint solar flux, on planetary surfaces with dense or dusty atmospheres, and at places with long eclipse periods where solar array sizes and energy storage mass become impractical. RPS could also provide an enabling capability in support of human exploration activities. It is envisioned that with the higher power needs of most human mission concepts, a high efficiency thermal-to-electric technology would be required such as the Advanced Stirling Radioisotope generator (ASRG). The ASRG should be capable of a four-fold improvement in efficiency over traditional thermoelectric RPS. While it may be impractical to use RPS as a main power source, many other applications could be considered, such as crewed pressurized rovers, in-situ resource production of propellants, back-up habitat power, drilling, any mobile or remote activity from the main base habitat, etc. This paper will identify potential applications and provide concepts that could be a practical extension of the current ASRG design in providing for robust and flexible use of RPS on human exploration missions.

  3. Study on human physiological parameters for monitoring of mental works in the nuclear power plant

    International Nuclear Information System (INIS)

    Takano, Ken-ichi; Yoshino, Kenji; Ishii, Keiichiro; Nakasa, Hiroyasu; Shigeta, Sadayoshi.

    1982-01-01

    To prevent outbreaks of the wrong operation and judgement in the nuclear power plant, human conditions of body and mind should be taken into consideration particularly for the mental works such as inspection and monitoring. To estimate human conditions quantitatively by the measurement of human physiological parameters, this paper presents the following experimental results. (1) Physiological parameters are estimated from both sides of biological meanings and the applicability to field works. (2) Time variation of the parameters is investigated in mental simulation tests in order to select a good indicator of mental fatigue. (3) Correlation analysis between mental fatigue indexes and physiological parameters shows that the heart rate is a best indicator. (author)

  4. The application of human error prevention tool in Tianwan nuclear power station

    International Nuclear Information System (INIS)

    Qiao Zhiguo

    2013-01-01

    This paper mainly discusses the application and popularization of human error prevention tool in Tianwan nuclear power station, including the study on project implementation background, main contents and innovation, performance management, innovation practice and development, and performance of innovation application. (authors)

  5. Force sensor for measuring power transfer between the human body and the environment

    NARCIS (Netherlands)

    Brookhuis, Robert Anton; Lammerink, Theodorus S.J.; Wiegerink, Remco J.; de Boer, Meint J.; Elwenspoek, Michael Curt

    2011-01-01

    A force sensor with capacitive readout is designed and realized for the measurement of mechanical power transfer. The ultimate aim is to integrate this in a glove that determines the complete mechanical interaction between the human hand and the environment. The sensor measures the normal force and

  6. Human power output during repeated sprint cycle exercise: the influence of thermal stress

    NARCIS (Netherlands)

    Ball, D.; Burrows, C.; Sargeant, A.J.

    1999-01-01

    Thermal stress is known to impair endurance capacity during moderate prolonged exercise. However, there is relatively little available information concerning the effects of thermal stress on the performance of high-intensity short-duration exercise. The present experiment examined human power output

  7. Bicycle Design : A different approach to improving on the world human powered speed records

    NARCIS (Netherlands)

    Epema, H.K.; Van den Brand, S.; Gregoor, W.; Kooijman, J.D.G.; Pereboom, H.P.; Wielemaker, D.C.; Van der Zweep, C.J.

    2012-01-01

    The current International Human Powered Vehicle Association world records for faired bicycles stand at 133.284km/h for the 200m flying start speed record and 91.562 km for the hour record. Traditionally the recumbent bicycles that have been developed for breaking one of either of these records have

  8. Aircraft Carrier Exposure Testing of Aircraft Materials

    National Research Council Canada - National Science Library

    Lee, Eui

    2004-01-01

    .... Test and control specimens were affixed on exposure racks and installed on aircraft carriers to compare adhesive bonding primers for aluminum and to determine the static property behavior of various...

  9. Investigations on human error hazards in recent unintended trip events of Korean nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sa Kil; Jang, Tong Il; Lee, Yong Hee; Shin, Kwang Hyeon [KAERI, Daejeon (Korea, Republic of)

    2012-10-15

    According to the Operational Performance Information System (OPIS) which has been operated to improve the public understanding by the KINS (Korea Institute of Nuclear Safety), unintended trip events by mainly human errors counted up to 38 cases (18.7%) from 2000 to 2011. Although the Nuclear Power Plant (NPP) industry in Korea has been making efforts to reduce the human errors which have largely contributed to trip events, the human error rate might keep increasing. Interestingly, digital based I and C systems is the one of the reduction factors of unintended reactor trips. Human errors, however, have occurred due to the digital based I and C systems because those systems require new or changed behaviors to the NPP operators. Therefore, it is necessary that the investigations of human errors consider a new methodology to find not only tangible behavior but also intangible behavior such as organizational behaviors. In this study we investigated human errors to find latent factors such as decisions and conditions in the all of the unintended reactor trip events during last dozen years. To find them, we applied the HFACS (Human Factors Analysis and Classification System) which is a commonly utilized tool for investigating human contributions to aviation accidents under a widespread evaluation scheme. The objective of this study is to find latent factors behind of human errors in nuclear reactor trip events. Therefore, a method to investigate unintended trip events by human errors and the results will be discussed in more detail.

  10. Investigations on human error hazards in recent unintended trip events of Korean nuclear power plants

    International Nuclear Information System (INIS)

    Kim, Sa Kil; Jang, Tong Il; Lee, Yong Hee; Shin, Kwang Hyeon

    2012-01-01

    According to the Operational Performance Information System (OPIS) which has been operated to improve the public understanding by the KINS (Korea Institute of Nuclear Safety), unintended trip events by mainly human errors counted up to 38 cases (18.7%) from 2000 to 2011. Although the Nuclear Power Plant (NPP) industry in Korea has been making efforts to reduce the human errors which have largely contributed to trip events, the human error rate might keep increasing. Interestingly, digital based I and C systems is the one of the reduction factors of unintended reactor trips. Human errors, however, have occurred due to the digital based I and C systems because those systems require new or changed behaviors to the NPP operators. Therefore, it is necessary that the investigations of human errors consider a new methodology to find not only tangible behavior but also intangible behavior such as organizational behaviors. In this study we investigated human errors to find latent factors such as decisions and conditions in the all of the unintended reactor trip events during last dozen years. To find them, we applied the HFACS (Human Factors Analysis and Classification System) which is a commonly utilized tool for investigating human contributions to aviation accidents under a widespread evaluation scheme. The objective of this study is to find latent factors behind of human errors in nuclear reactor trip events. Therefore, a method to investigate unintended trip events by human errors and the results will be discussed in more detail

  11. Human factors review of electric power dispatch control centers. Volume 4. Operator information needs. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Miller, R.J.; Najaf-Zadeh, K.; Darlington, H.T.; McNair, H.D.; Seidenstein, S.; Williams, A.R.

    1982-10-01

    Human factors is a systems-oriented interdisciplinary specialty concerned with the design of systems, equipment, facilities and the operational environment. An important aspect leading to the design requirements is the determination of the information requirements for electric power dispatch control centers. There are significant differences between the system operator's actions during normal and degraded states of power system operation, and power system restoration. This project evaluated the information the operator requires for normal power system and control system operations and investigates the changes of information required by the operator as the power system and/or the control system degrades from a normal operating state. The Phase II study, published in two volumes, defines power system states and control system conditions to which operator information content can be related. This volume presents detailed data concerning operator information needs that identify the needs for and the uses of power system information by a system operator in conditions ranging from normal through degraded operation. The study defines power system states and control system conditions to which operator information content can be related, and it identifies the requisite information as consistent with current industry practice so as to aid control system designers. Training requirements are also included for planning entry-level and follow-on training for operators.

  12. Developmental changes of BOLD signal correlations with global human EEG power and synchronization during working memory.

    Directory of Open Access Journals (Sweden)

    Lars Michels

    Full Text Available In humans, theta band (5-7 Hz power typically increases when performing cognitively demanding working memory (WM tasks, and simultaneous EEG-fMRI recordings have revealed an inverse relationship between theta power and the BOLD (blood oxygen level dependent signal in the default mode network during WM. However, synchronization also plays a fundamental role in cognitive processing, and the level of theta and higher frequency band synchronization is modulated during WM. Yet, little is known about the link between BOLD, EEG power, and EEG synchronization during WM, and how these measures develop with human brain maturation or relate to behavioral changes. We examined EEG-BOLD signal correlations from 18 young adults and 15 school-aged children for age-dependent effects during a load-modulated Sternberg WM task. Frontal load (in-dependent EEG theta power was significantly enhanced in children compared to adults, while adults showed stronger fMRI load effects. Children demonstrated a stronger negative correlation between global theta power and the BOLD signal in the default mode network relative to adults. Therefore, we conclude that theta power mediates the suppression of a task-irrelevant network. We further conclude that children suppress this network even more than adults, probably from an increased level of task-preparedness to compensate for not fully mature cognitive functions, reflected in lower response accuracy and increased reaction time. In contrast to power, correlations between instantaneous theta global field synchronization and the BOLD signal were exclusively positive in both age groups but only significant in adults in the frontal-parietal and posterior cingulate cortices. Furthermore, theta synchronization was weaker in children and was--in contrast to EEG power--positively correlated with response accuracy in both age groups. In summary we conclude that theta EEG-BOLD signal correlations differ between spectral power and

  13. Power Harvesting from Human Serum in Buckypaper-Based Enzymatic Biofuel Cell

    Energy Technology Data Exchange (ETDEWEB)

    Güven, Güray, E-mail: gguven@ginerinc.com [Giner, Inc., Newton, MA (United States); Şahin, Samet [Pennsylvania State University College of Medicine, Hershey, PA (United States); Güven, Arcan [Chemical Engineering and Advanced Materials, Merz Court, Newcastle University, Newcastle upon Tyne (United Kingdom); Yu, Eileen H., E-mail: gguven@ginerinc.com [Pennsylvania State University College of Medicine, Hershey, PA (United States)

    2016-02-16

    The requirement for a miniature, high density, long life, and rechargeable power source is common to a vast majority of microsystems, including the implantable devices for medical applications. A model biofuel cell system operating in human serum has been studied for future applications of biomedical and implantable medical devices. Anodic and cathodic electrodes were made of carbon nanotube-buckypaper modified with PQQ-dependent glucose dehydrogenase and laccase, respectively. Modified electrodes were characterized electrochemically and assembled in a biofuel cell setup. Power density of 16.12 μW cm{sup −2} was achieved in human serum for lower than physiological glucose concentrations. Increasing the glucose concentration and biofuel cell temperature caused an increase in power output leading up to 49.16 μW cm{sup −2}.

  14. Recommendations to the NRC on human engineering guidelines for nuclear power plant maintainability

    Energy Technology Data Exchange (ETDEWEB)

    Badalamente, R.V.; Fecht, B.A.; Blahnik, D.E.; Eklund, J.D.; Hartley, C.S.

    1986-03-01

    This document contains human engineering guidelines which can enhance the maintainability of nuclear power plants. The guidelines have been derived from general human engineering design principles, criteria, and data. The guidelines may be applied to existing plants as well as to plants under construction. They apply to nuclear power plant systems, equipment and facilities, as well as to maintenance tools and equipment. The guidelines are grouped into seven categories: accessibility and workspace, physical environment, loads and forces, maintenance facilities, maintenance tools and equipment, operating equipment design, and information needs. Each chapter of the document details specific maintainability problems encountered at nuclear power plants, the safety impact of these problems, and the specific maintainability design guidelines whose application can serve to avoid these problems in new or existing plants.

  15. Recommendations to the NRC on human engineering guidelines for nuclear power plant maintainability

    International Nuclear Information System (INIS)

    Badalamente, R.V.; Fecht, B.A.; Blahnik, D.E.; Eklund, J.D.; Hartley, C.S.

    1986-03-01

    This document contains human engineering guidelines which can enhance the maintainability of nuclear power plants. The guidelines have been derived from general human engineering design principles, criteria, and data. The guidelines may be applied to existing plants as well as to plants under construction. They apply to nuclear power plant systems, equipment and facilities, as well as to maintenance tools and equipment. The guidelines are grouped into seven categories: accessibility and workspace, physical environment, loads and forces, maintenance facilities, maintenance tools and equipment, operating equipment design, and information needs. Each chapter of the document details specific maintainability problems encountered at nuclear power plants, the safety impact of these problems, and the specific maintainability design guidelines whose application can serve to avoid these problems in new or existing plants

  16. Quantitative evaluation of the impact of human reliability in risk assessment for nuclear power plants

    International Nuclear Information System (INIS)

    Samanta, P.K.

    1981-01-01

    The role of human beings in the safe operation of a nuclear power plant has been a matter of concern. This study describes methods for the quantitative description of that role and its impact on the risk from nuclear power plants. The impact of human errors was calculated by observing the changes in risk parameters, such as core melt probability, release category probabilities, accident sequence probabilities and system unavailabilities due to changes in the contribution to unavailablity of human errors, within the framework of risk assessment methodology. It was found that for operational pressurized water reactors the opportunity for reduction in core melt probability by reducing the human error rates without simultaneous reduction of hardware failures is limited, but that core melt probability would significantly increase as human error rates increased. More importantly, most of the dominant accident sequences showed a significant increase in their probabilities with an increase in human error rates. Release categories resulting in high consequences showed a much larger sensitivity to human errors than categories resulting in low consequences. A combination of structural importance and reliability importance measure was used to describe the importance of individual errors

  17. A stochastic dynamic model for human error analysis in nuclear power plants

    Science.gov (United States)

    Delgado-Loperena, Dharma

    Nuclear disasters like Three Mile Island and Chernobyl indicate that human performance is a critical safety issue, sending a clear message about the need to include environmental press and competence aspects in research. This investigation was undertaken to serve as a roadmap for studying human behavior through the formulation of a general solution equation. The theoretical model integrates models from two heretofore-disassociated disciplines (behavior specialists and technical specialists), that historically have independently studied the nature of error and human behavior; including concepts derived from fractal and chaos theory; and suggests re-evaluation of base theory regarding human error. The results of this research were based on comprehensive analysis of patterns of error, with the omnipresent underlying structure of chaotic systems. The study of patterns lead to a dynamic formulation, serving for any other formula used to study human error consequences. The search for literature regarding error yielded insight for the need to include concepts rooted in chaos theory and strange attractors---heretofore unconsidered by mainstream researchers who investigated human error in nuclear power plants or those who employed the ecological model in their work. The study of patterns obtained from the rupture of a steam generator tube (SGTR) event simulation, provided a direct application to aspects of control room operations in nuclear power plant operations. In doing so, the conceptual foundation based in the understanding of the patterns of human error analysis can be gleaned, resulting in reduced and prevent undesirable events.

  18. Overview of Intelligent Power Controller Development for Human Deep Space Exploration

    Science.gov (United States)

    Soeder, James F.; Dever, Timothy P.; McNelis, Anne M.; Beach, Raymond F.; Trase, Larry M.; May, Ryan D.

    2014-01-01

    Intelligent or autonomous control of an entire spacecraft is a major technology that must be developed to enable NASA to meet its human exploration goals. NASA's current long term human space platform, the International Space Station, is in low Earth orbit with almost continuous communication with the ground based mission control. This permits the near real-time control by the ground of all of the core systems including power. As NASA moves beyond low Earth orbit, the issues of communication time-lag and lack of communication bandwidth beyond geosynchronous orbit does not permit this type of operation. This paper presents the work currently ongoing at NASA to develop an architecture for an autonomous power control system as well as the effort to assemble that controller into the framework of the vehicle mission manager and other subsystem controllers to enable autonomous control of the complete spacecraft. Due to the common problems faced in both space power systems and terrestrial power system, the potential for spin-off applications of this technology for use in micro-grids located at the edge or user end of terrestrial power grids for peak power accommodation and reliability are described.

  19. Human Resource Development for Introducing and Expanding Nuclear Power Programmes. Summary of an International Conference

    International Nuclear Information System (INIS)

    2012-01-01

    Currently, the world is witnessing a resurgence of interest in nuclear power. More than fifty Member States, with support from the IAEA, are considering the introduction of nuclear power, and human resource development is one of the crucial areas in terms of requests for support. The need for human resources in the nuclear sector is not only experienced by countries embarking on new nuclear power programmes, but also by countries with existing programmes that are considering expansion, as many current professionals are approaching retirement age and the number of newly trained staff is generally not sufficient to meet the potential demand. The IAEA conference on Human Resource Development for Introducing and Expanding Nuclear Power Programmes was held from 14 to 18 March 2010 in Abu Dhabi, hosted by the Government of the United Arab Emirates. This conference was organized to address work force issues faced by countries which are embarking on new nuclear power programmes, expanding current programmes or planning to supply nuclear technology to other countries. The situation is different for each country; some need to develop their own local expertise, while others need to scale up existing educational and training programmes to increase the number of professionals. The purpose of this conference was to bring together Member States to help formulate country specific policies on human resource development, education, training and knowledge management to help support each country's nuclear power programme. In addition, the IAEA can facilitate better use of other educational opportunities, including research reactors and development of training facilities. These proceedings highlight the key findings and recommendations of the meeting and the conclusions of the chairperson. All papers presented and discussed during the meeting are included on the attached CD-ROM. To access the papers, click on 'Index' on the CD-ROM.

  20. Human Resource Development for Introducing and Expanding Nuclear Power Programmes. Summary of an International Conference

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-10-15

    Currently, the world is witnessing a resurgence of interest in nuclear power. More than fifty Member States, with support from the IAEA, are considering the introduction of nuclear power, and human resource development is one of the crucial areas in terms of requests for support. The need for human resources in the nuclear sector is not only experienced by countries embarking on new nuclear power programmes, but also by countries with existing programmes that are considering expansion, as many current professionals are approaching retirement age and the number of newly trained staff is generally not sufficient to meet the potential demand. The IAEA conference on Human Resource Development for Introducing and Expanding Nuclear Power Programmes was held from 14 to 18 March 2010 in Abu Dhabi, hosted by the Government of the United Arab Emirates. This conference was organized to address work force issues faced by countries which are embarking on new nuclear power programmes, expanding current programmes or planning to supply nuclear technology to other countries. The situation is different for each country; some need to develop their own local expertise, while others need to scale up existing educational and training programmes to increase the number of professionals. The purpose of this conference was to bring together Member States to help formulate country specific policies on human resource development, education, training and knowledge management to help support each country's nuclear power programme. In addition, the IAEA can facilitate better use of other educational opportunities, including research reactors and development of training facilities. These proceedings highlight the key findings and recommendations of the meeting and the conclusions of the chairperson. All papers presented and discussed during the meeting are included on the attached CD-ROM. To access the papers, click on 'Index' on the CD-ROM.

  1. Optimal design methods for a digital human-computer interface based on human reliability in a nuclear power plant

    International Nuclear Information System (INIS)

    Jiang, Jianjun; Zhang, Li; Xie, Tian; Wu, Daqing; Li, Min; Wang, Yiqun; Peng, Yuyuan; Peng, Jie; Zhang, Mengjia; Li, Peiyao; Ma, Congmin; Wu, Xing

    2017-01-01

    Highlights: • A complete optimization process is established for digital human-computer interfaces of Npps. • A quick convergence search method is proposed. • The authors propose an affinity error probability mapping function to test human reliability. - Abstract: This is the second in a series of papers describing the optimal design method for a digital human-computer interface of nuclear power plant (Npp) from three different points based on human reliability. The purpose of this series is to explore different optimization methods from varying perspectives. This present paper mainly discusses the optimal design method for quantity of components of the same factor. In monitoring process, quantity of components has brought heavy burden to operators, thus, human errors are easily triggered. To solve the problem, the authors propose an optimization process, a quick convergence search method and an affinity error probability mapping function. Two balanceable parameter values of the affinity error probability function are obtained by experiments. The experimental results show that the affinity error probability mapping function about human-computer interface has very good sensitivity and stability, and that quick convergence search method for fuzzy segments divided by component quantity has better performance than general algorithm.

  2. Human factors review of nuclear power plant control room design. Summary report

    International Nuclear Information System (INIS)

    Seminara, J.L.; Gonzalez, W.R.; Parsons, S.O.

    1976-11-01

    Human factors engineering is an interdisciplinary specialty concerned with influencing the design of equipment systems, facilities, and operational environments to promote safe, efficient, and reliable operator performance. The human factors aspects of five representative nuclear power plant control rooms were evaluated using such methods as a checklist-guided observation system, structured interviews with operators and trainers, direct observations of operator behavior, task analyses and procedure evaluation, and historical error analyses. The human factors aspects of design practices are illustrated, and many improvements in current practices are suggested. The study recommends that a detailed set of applicable human factors standards be developed to stimulate a uniform and systematic concern for human factors in design considerations

  3. Human actions in the pre-operational probabilistic safety analysis of Juragua Nuclear Power Plant

    International Nuclear Information System (INIS)

    Ferro, R.

    1995-01-01

    Human error is one of the main contributors to the biggest industrial disasters that the world has suffered in the last years. Safety probabilistic analysis techniques allow to consider, in the some study, the contribution of a facility's mechanical and human components safety, this guaranteeing a move integral assessment of these two factors although the PSA study of Juragua Nuclear Power Plant is carried out at a preoperational stage which causes important information limitations fos assessment of human reliability some considerations and suppositions in order to conduct treatment of human actions this stage were adopted. The present work describes the projected targets, approach applied and results obtained from the lakes of human reliability of this study

  4. Handbook of human-reliability analysis with emphasis on nuclear power plant applications. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Swain, A D; Guttmann, H E

    1983-08-01

    The primary purpose of the Handbook is to present methods, models, and estimated human error probabilities (HEPs) to enable qualified analysts to make quantitative or qualitative assessments of occurrences of human errors in nuclear power plants (NPPs) that affect the availability or operational reliability of engineered safety features and components. The Handbook is intended to provide much of the modeling and information necessary for the performance of human reliability analysis (HRA) as a part of probabilistic risk assessment (PRA) of NPPs. Although not a design guide, a second purpose of the Handbook is to enable the user to recognize error-likely equipment design, plant policies and practices, written procedures, and other human factors problems so that improvements can be considered. The Handbook provides the methodology to identify and quantify the potential for human error in NPP tasks.

  5. Handbook of human-reliability analysis with emphasis on nuclear power plant applications. Final report

    International Nuclear Information System (INIS)

    Swain, A.D.; Guttmann, H.E.

    1983-08-01

    The primary purpose of the Handbook is to present methods, models, and estimated human error probabilities (HEPs) to enable qualified analysts to make quantitative or qualitative assessments of occurrences of human errors in nuclear power plants (NPPs) that affect the availability or operational reliability of engineered safety features and components. The Handbook is intended to provide much of the modeling and information necessary for the performance of human reliability analysis (HRA) as a part of probabilistic risk assessment (PRA) of NPPs. Although not a design guide, a second purpose of the Handbook is to enable the user to recognize error-likely equipment design, plant policies and practices, written procedures, and other human factors problems so that improvements can be considered. The Handbook provides the methodology to identify and quantify the potential for human error in NPP tasks

  6. Relationship of human values and energy beliefs to nuclear power attitude

    International Nuclear Information System (INIS)

    Rankin, W.L.; Nealey, S.M.

    1978-11-01

    This executive summary highlights the major findings of a nuclear power mail-out survey administered to a random sample of Washington residents, a random sample of nuclear neighbors from the region around the Hanford Reservation, and a random sample of Washington environmentalists. The purpose of the research was twofold. First, it investigated the relationship of human values to one's attitude about the continued development of nuclear power. Second, it investigated the relationship of general energy beliefs and beliefs about specific nuclear power issues to one's attitude about the continued development of nuclear power. The findings are presented in summary form by posing and answering questions of policy relevance to the Department of Energy

  7. A quantitative impact analysis of sensor failures on human operator's decision making in nuclear power plants

    International Nuclear Information System (INIS)

    Seong, Poong Hyun

    2004-01-01

    In emergency or accident situations in nuclear power plants, human operators take important roles in generating appropriate control signals to mitigate accident situation. In human reliability analysis (HRA) in the framework of probabilistic safety assessment (PSA), the failure probabilities of such appropriate actions are estimated and used for the safety analysis of nuclear power plants. Even though understanding the status of the plant is basically the process of information seeking and processing by human operators, it seems that conventional HRA methods such as THERP, HCR, and ASEP does not pay a lot of attention to the possibilities of providing wrong information to human operators. In this paper, a quantitative impact analysis of providing wrong information to human operators due to instrument faults or sensor failures is performed. The quantitative impact analysis is performed based on a quantitative situation assessment model. By comparing the situation in which there are sensor failures and the situation in which there are not sensor failures, the impact of sensor failures can be evaluated quantitatively. It is concluded that the impact of sensor failures are quite significant at the initial stages, but the impact is gradually reduced as human operators make more and more observations. Even though the impact analysis is highly dependent on the situation assessment model, it is expected that the conclusions made based on other situation assessment models with be consistent with the conclusion made in this paper. (author)

  8. Solar-powered Gossamer Penguin in flight

    Science.gov (United States)

    1979-01-01

    Gossamer Penguin in flight above Rogers Dry Lakebed at Edwards, California, showing the solar panel perpendicular to the wing and facing the sun. Background The first flight of a solar-powered aircraft took place on November 4, 1974, when the remotely controlled Sunrise II, designed by Robert J. Boucher of AstroFlight, Inc., flew following a launch from a catapult. Following this event, AeroVironment, Inc. (founded in 1971 by the ultra-light airplane innovator--Dr. Paul MacCready) took on a more ambitious project to design a human-piloted, solar-powered aircraft. The firm initially took the human-powered Gossamer Albatross II and scaled it down to three-quarters of its previous size for solar-powered flight with a human pilot controlling it. This was more easily done because in early 1980 the Gossamer Albatross had participated in a flight research program at NASA Dryden in a program conducted jointly by the Langley and Dryden research centers. Some of the flights were conducted using a small electric motor for power. Gossamer Penguin The scaled-down aircraft was designated the Gossamer Penguin. It had a 71-foot wingspan compared with the 96-foot span of the Gossamer Albatross. Weighing only 68 pounds without a pilot, it had a low power requirement and thus was an excellent test bed for solar power. AstroFlight, Inc., of Venice, Calif., provided the power plant for the Gossamer Penguin, an Astro-40 electric motor. Robert Boucher, designer of the Sunrise II, served as a key consultant for both this aircraft and the Solar Challenger. The power source for the initial flights of the Gossamer Penguin consisted of 28 nickel-cadmium batteries, replaced for the solar-powered flights by a panel of 3,920 solar cells capable of producing 541 Watts of power. The battery-powered flights took place at Shafter Airport near Bakersfield, Calif. Dr. Paul MacCready's son Marshall, who was 13 years old and weighed roughly 80 pounds, served as the initial pilot for these flights to

  9. Power shifts track serial position and modulate encoding in human episodic memory.

    Science.gov (United States)

    Serruya, Mijail D; Sederberg, Per B; Kahana, Michael J

    2014-02-01

    The first events in a series exert a powerful influence on cognition and behavior in both humans and animals. This is known as the law of primacy. Here, we analyze the neural correlates of primacy in humans by analyzing electrocorticographic recordings in 84 neurosurgical patients as they studied and subsequently recalled lists of common words. We found that spectral power in the gamma frequency band (28-100 Hz) was elevated at the start of the list and gradually subsided, whereas lower frequency (2-8 Hz) delta and theta band power exhibited the opposite trend. This gradual shift in the power spectrum was found across a widespread network of brain regions. The degree to which the subsequent memory effect was modulated by list (serial) position was most pronounced in medial temporal lobe structures. These results suggest that globally increased gamma and decreased delta-theta spectral powers reflect a brain state that predisposes medial temporal lobe structures to enhance the encoding and maintenance of early list items.

  10. SAR in human head model due to resonant wireless power transfer system.

    Science.gov (United States)

    Zhang, Chao; Liu, Guoqiang; Li, Yanhong; Song, Xianjin

    2016-04-29

    Efficient mid-range wireless power transfer between transmitter and the receiver has been achieved based on the magnetic resonant coupling method. The influence of electromagnetic field on the human body due to resonant wireless power transfer system (RWPT) should be taken into account during the design process of the system. To analyze the transfer performance of the RWPT system and the change rules of the specific absorption rate (SAR) in the human head model due to the RWPT system. The circuit-field coupling method for a RWPT system with consideration of the displacement current was presented. The relationship between the spiral coil parameters and transfer performance was studied. The SAR in the human head model was calculated under two different exposure conditions. A system with output power higher than 10 W at 0.2 m distance operating at a frequency of approximately 1 MHz was designed. The FEM simulation results show the peak SAR value is below the safety limit which appeared when the human head model is in front of the transmitter. The simulation results agreed well with the experimental results, which verified the validity of the analysis and design.

  11. Explaining the power-law distribution of human mobility through transportation modality decomposition

    Science.gov (United States)

    Zhao, Kai; Musolesi, Mirco; Hui, Pan; Rao, Weixiong; Tarkoma, Sasu

    2015-03-01

    Human mobility has been empirically observed to exhibit Lévy flight characteristics and behaviour with power-law distributed jump size. The fundamental mechanisms behind this behaviour has not yet been fully explained. In this paper, we propose to explain the Lévy walk behaviour observed in human mobility patterns by decomposing them into different classes according to the different transportation modes, such as Walk/Run, Bike, Train/Subway or Car/Taxi/Bus. Our analysis is based on two real-life GPS datasets containing approximately 10 and 20 million GPS samples with transportation mode information. We show that human mobility can be modelled as a mixture of different transportation modes, and that these single movement patterns can be approximated by a lognormal distribution rather than a power-law distribution. Then, we demonstrate that the mixture of the decomposed lognormal flight distributions associated with each modality is a power-law distribution, providing an explanation to the emergence of Lévy Walk patterns that characterize human mobility patterns.

  12. Personalized keystroke dynamics for self-powered human--machine interfacing.

    Science.gov (United States)

    Chen, Jun; Zhu, Guang; Yang, Jin; Jing, Qingshen; Bai, Peng; Yang, Weiqing; Qi, Xuewei; Su, Yuanjie; Wang, Zhong Lin

    2015-01-27

    The computer keyboard is one of the most common, reliable, accessible, and effective tools used for human--machine interfacing and information exchange. Although keyboards have been used for hundreds of years for advancing human civilization, studying human behavior by keystroke dynamics using smart keyboards remains a great challenge. Here we report a self-powered, non-mechanical-punching keyboard enabled by contact electrification between human fingers and keys, which converts mechanical stimuli applied to the keyboard into local electronic signals without applying an external power. The intelligent keyboard (IKB) can not only sensitively trigger a wireless alarm system once gentle finger tapping occurs but also trace and record typed content by detecting both the dynamic time intervals between and during the inputting of letters and the force used for each typing action. Such features hold promise for its use as a smart security system that can realize detection, alert, recording, and identification. Moreover, the IKB is able to identify personal characteristics from different individuals, assisted by the behavioral biometric of keystroke dynamics. Furthermore, the IKB can effectively harness typing motions for electricity to charge commercial electronics at arbitrary typing speeds greater than 100 characters per min. Given the above features, the IKB can be potentially applied not only to self-powered electronics but also to artificial intelligence, cyber security, and computer or network access control.

  13. Risk management and nuclear human resources management in construction nuclear power plants in the Gulf Countries

    International Nuclear Information System (INIS)

    Saeed Hakami; Salim Almarmary

    2009-01-01

    The countries of the Gulf region have the capacity to rapidly expand their economic growth and gross domestic product (GDP). Also, one may observe that their growth rate is very high. To match this, they need a mix of energy sources for this economic growth. Nuclear power plants can have a significant role as a source of energy in the Gulf countries. Although, some of the Gulf countries signed contracts to construct nuclear power plants, they still require high a level of education as well as sufficient and adequate human resources in order to solve complex issues which may happen at nuclear power plants. The objective of this paper is to identify the complex issues that may arise at a nuclear site. Then the paper goes on to discuss how to evaluate these issues. Finally, the paper studies how to manage and control such complex issues in the work place. The advantage of highly educated people as well as sufficient and adequate human resource can increasingly protect and save human health and the natural environment from issues relating to the use of nuclear energy. There are vast theories, strategies and tools that have discussed in regards to human resources management in the nuclear industries. However, this paper chiefly provides a new risk management methodology. This methodology helps to highlight the risk factors and their consequences at nuclear sites. This paper is intended to decrease risks; to protect human health in the work place at nuclear power plants and save the environment within and beyond national borders and for future generations. It aims to increase safety from the use of nuclear energy, particularly in the Gulf countries.(Author)

  14. The human factors of CRT displays for nuclear power plant control

    International Nuclear Information System (INIS)

    Danchak, M.M.

    1984-01-01

    This chapter attempts to show how the Cathode Ray Tube (CRT) can be used to effectively present information to the operator rather than just data. The capabilities of the human as a sensing and information processing subsystem are discussed with CRT displays in mind. The display system is described in terms of its hardware and functioning. The interface between the two is examined by providing substantive guidelines for the effective design of CRT displays for nuclear power plant control. Alphanumeric displays, graphic displays, and representational displays are treated. The design of CRT displays for nuclear power plant control requires an extensive knowledge of cognitive psychology, computer display systems and the process being controlled

  15. Transforming from Economic Power to Soft Power: Challenges for Managing Education for Migrant Workers' Children and Human Capital in Chinese Cities

    Science.gov (United States)

    Mok, Ka Ho; Wong, Yu Cheung; Guo, Yu

    2011-01-01

    In July 2010, the State Council of the People's Republic of China published an "Outline for National Educational Development" with a strong conviction to transform China from an economic power into a country of "soft power" and "strength in human resources". In order to realize such a policy goal, the Chinese…

  16. Evaluation of Human Resource Needs for a New Nuclear Power Plant: Armenian Case Study

    International Nuclear Information System (INIS)

    2011-05-01

    Rising expectations of an increased role for nuclear power in providing energy for future national and global sustainable development have become a reality in many Member States of the IAEA. Over the last several years, dozens of Member States have announced plans to embark on or expand nuclear power programmes. Reflecting on these developments, the IAEA has adjusted its priorities to focus more on the nuclear power programmes of newcomers. Specifically, the IAEA has produced publications providing guidance on the development of a national infrastructure for nuclear power (IAEA Nuclear Energy Series No. NG-G-3.1) and on managing human resources in the field of nuclear energy (IAEA Nuclear Energy Series No. NG-G-2.1). Additionally, assistance to eligible Member States through new technical cooperation (TC) projects has been increased, including direct support through on-site assist visits. In 2007-2008, the IAEA carried out a TC project titled 'Feasibility study of nuclear energy development in Armenia: Evaluation of human resource needs in conjunction with new NPP build' (ARM-005). The project analysed the human resource demands required to support work at all stages of the life cycle of a new power unit planned for Armenia. This included drafting proposals for the means, conditions and requirements for development of human resource capabilities needed to carry out the work. This report is intended to complement the previous IAEA publications by providing an in-depth technical consideration into this critical area of human resource development. The report summarizes major findings of the TC project and details the tasks linked to management of the human resources that will be required by a country planning to build a new NPP. Additional guidance on the development of a national nuclear infrastructure can be found in the IAEA publication 'Milestones in the Development of a National Infrastructure for Nuclear Power', IAEA Nuclear Energy Series No. NG-G-3.1. The

  17. Overview of human performance improvement initiatives in Nuclear Power Plants (NPPs )

    International Nuclear Information System (INIS)

    Sharma, Ashok Kumar

    2006-01-01

    Nuclear Power Plants (NPPs) are very complex systems. Diverse, multiple and redundant technological systems are used for effective control and safety of the NPPs. The increased numbers of such systems require increased operator attention. Additionally, the control stations (man-machine interfaces) are to be kept manageable in size. This sometimes reduces the scope for truly ergonomic design. These limitations, coupled with the shortcomings of human nature, led to unintended human performance problems and errors resulting into poor plant performance worldwide. Some organisational weaknesses, managerial decisions and latent errors also aided and abetted human errors. In view of this, a need was felt for development of performance culture at all levels in NPP organisations. Towards this end, ready-to-use performance improvement tools were developed and used for individual performers, supervisors and managers in the NPPs. This paper describes the experiences of the global nuclear electricity generating industry towards human performance improvement and error reduction. (author)

  18. Review of Methods Related to Assessing Human Performance in Nuclear Power Plant Control Room Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Katya L Le Blanc; Ronald L Boring; David I Gertman

    2001-11-01

    With the increased use of digital systems in Nuclear Power Plant (NPP) control rooms comes a need to thoroughly understand the human performance issues associated with digital systems. A common way to evaluate human performance is to test operators and crews in NPP control room simulators. However, it is often challenging to characterize human performance in meaningful ways when measuring performance in NPP control room simulations. A review of the literature in NPP simulator studies reveals a variety of ways to measure human performance in NPP control room simulations including direct observation, automated computer logging, recordings from physiological equipment, self-report techniques, protocol analysis and structured debriefs, and application of model-based evaluation. These methods and the particular measures used are summarized and evaluated.

  19. Trend and pattern analysis of human performance problems at the swedish nuclear power plants

    International Nuclear Information System (INIS)

    Bento, J.P.

    1990-01-01

    The last six years of operation of all Swedish nuclear power plants have been studied with respect to human performance problems by analysing all scrams and licensee event reports (LERs). The present paper is an updated version of a previous report to which the analysis results of the year 1988's events have been added. The study covers 197 scrams and 1759 LERs. As general results, 38% of the scrams and 27% of the LERs, as an average for the years 1983-1988, are caused by human performance problems. Among the items studied, emphasis has been put on the analysis of the causal categories involved in human performance problems resulting in plant events. The most significant causal categories appear to be Work organization, Work place ergonomics, Procedures not followed, Training and Human variability. The trend and pattern of the dominating causal categories are discussed

  20. Potential human factors research relating to modern technology in nuclear power plants

    International Nuclear Information System (INIS)

    Ketchel, J.; Fink, R.; Hanes, L.; Williges, R.; Williges, B.

    1994-01-01

    This paper discusses proposed human factors research to address advanced human-machine interface technology in nuclear power plants. It relates to a current EPRI project to identify a prioritized list of specific research issues that could be assessed to improve control room and other user interface areas. The project seeks to bridge the gap between the functional requirements of advanced design initiatives and the human factors research needed to support them. It seeks to identify potential benefits to be expected, as well as potential problems that might be introduced by advanced technology. It provides an organized approach to identifying human factors research needs, information already available, and measures of performance and effectiveness that might be used to assess the value of potential improvements. Those parts of the proposed plan that are subsequently approved by EPRI management and by the utility advisory committee will provide a basis for recommending research priorities

  1. Human Exposure to Electromagnetic Fields from Parallel Wireless Power Transfer Systems.

    Science.gov (United States)

    Wen, Feng; Huang, Xueliang

    2017-02-08

    The scenario of multiple wireless power transfer (WPT) systems working closely, synchronously or asynchronously with phase difference often occurs in power supply for household appliances and electric vehicles in parking lots. Magnetic field leakage from the WPT systems is also varied due to unpredictable asynchronous working conditions. In this study, the magnetic field leakage from parallel WPT systems working with phase difference is predicted, and the induced electric field and specific absorption rate (SAR) in a human body standing in the vicinity are also evaluated. Computational results are compared with the restrictions prescribed in the regulations established to limit human exposure to time-varying electromagnetic fields (EMFs). The results show that the middle region between the two WPT coils is safer for the two WPT systems working in-phase, and the peripheral regions are safer around the WPT systems working anti-phase. Thin metallic plates larger than the WPT coils can shield the magnetic field leakage well, while smaller ones may worsen the situation. The orientation of the human body will influence the maximum magnitude of induced electric field and its distribution within the human body. The induced electric field centralizes in the trunk, groin, and genitals with only one exception: when the human body is standing right at the middle of the two WPT coils working in-phase, the induced electric field focuses on lower limbs. The SAR value in the lungs always seems to be greater than in other organs, while the value in the liver is minimal. Human exposure to EMFs meets the guidelines of the International Committee on Non-Ionizing Radiation Protection (ICNIRP), specifically reference levels with respect to magnetic field and basic restrictions on induced electric fields and SAR, as the charging power is lower than 3.1 kW and 55.5 kW, respectively. These results are positive with respect to the safe applications of parallel WPT systems working

  2. Human Exposure to Electromagnetic Fields from Parallel Wireless Power Transfer Systems

    Science.gov (United States)

    Wen, Feng; Huang, Xueliang

    2017-01-01

    The scenario of multiple wireless power transfer (WPT) systems working closely, synchronously or asynchronously with phase difference often occurs in power supply for household appliances and electric vehicles in parking lots. Magnetic field leakage from the WPT systems is also varied due to unpredictable asynchronous working conditions. In this study, the magnetic field leakage from parallel WPT systems working with phase difference is predicted, and the induced electric field and specific absorption rate (SAR) in a human body standing in the vicinity are also evaluated. Computational results are compared with the restrictions prescribed in the regulations established to limit human exposure to time-varying electromagnetic fields (EMFs). The results show that the middle region between the two WPT coils is safer for the two WPT systems working in-phase, and the peripheral regions are safer around the WPT systems working anti-phase. Thin metallic plates larger than the WPT coils can shield the magnetic field leakage well, while smaller ones may worsen the situation. The orientation of the human body will influence the maximum magnitude of induced electric field and its distribution within the human body. The induced electric field centralizes in the trunk, groin, and genitals with only one exception: when the human body is standing right at the middle of the two WPT coils working in-phase, the induced electric field focuses on lower limbs. The SAR value in the lungs always seems to be greater than in other organs, while the value in the liver is minimal. Human exposure to EMFs meets the guidelines of the International Committee on Non-Ionizing Radiation Protection (ICNIRP), specifically reference levels with respect to magnetic field and basic restrictions on induced electric fields and SAR, as the charging power is lower than 3.1 kW and 55.5 kW, respectively. These results are positive with respect to the safe applications of parallel WPT systems working

  3. Human Exposure to Electromagnetic Fields from Parallel Wireless Power Transfer Systems

    Directory of Open Access Journals (Sweden)

    Feng Wen

    2017-02-01

    Full Text Available The scenario of multiple wireless power transfer (WPT systems working closely, synchronously or asynchronously with phase difference often occurs in power supply for household appliances and electric vehicles in parking lots. Magnetic field leakage from the WPT systems is also varied due to unpredictable asynchronous working conditions. In this study, the magnetic field leakage from parallel WPT systems working with phase difference is predicted, and the induced electric field and specific absorption rate (SAR in a human body standing in the vicinity are also evaluated. Computational results are compared with the restrictions prescribed in the regulations established to limit human exposure to time-varying electromagnetic fields (EMFs. The results show that the middle region between the two WPT coils is safer for the two WPT systems working in-phase, and the peripheral regions are safer around the WPT systems working anti-phase. Thin metallic plates larger than the WPT coils can shield the magnetic field leakage well, while smaller ones may worsen the situation. The orientation of the human body will influence the maximum magnitude of induced electric field and its distribution within the human body. The induced electric field centralizes in the trunk, groin, and genitals with only one exception: when the human body is standing right at the middle of the two WPT coils working in-phase, the induced electric field focuses on lower limbs. The SAR value in the lungs always seems to be greater than in other organs, while the value in the liver is minimal. Human exposure to EMFs meets the guidelines of the International Committee on Non-Ionizing Radiation Protection (ICNIRP, specifically reference levels with respect to magnetic field and basic restrictions on induced electric fields and SAR, as the charging power is lower than 3.1 kW and 55.5 kW, respectively. These results are positive with respect to the safe applications of parallel WPT systems

  4. Human performance tools in nuclear power plants. Introduction, implementation and experiences; Human Performance Tools in Kernkraftwerken. Einfuehrung, Umsetzung und Erfahrungen

    Energy Technology Data Exchange (ETDEWEB)

    Dexheimer, Kai; Bassing, Gerd [Dexcon Consulting GmbH, Neuhausen (Switzerland); Kreuzer, Peter [E.ON Kernkraft GmbH, Essenbach (Germany). Kernkraftwerk Isar

    2015-06-01

    The basis of safe nuclear power plant operation (NPP) and a strong safety culture is the professional application of Human Performance Optimisation Tools (HPO). HPO trainings have been carried out by German NPPs for a number of years and recently also by Swiss NPPs. This article describes the origination, the bases, experiences and thereby the special features of the HPO training programme applied by German NPP operators. Moreover, this article provides an outlook on future developments - in particular when considering the requirements of the ongoing phase out of nuclear energy in Germany.

  5. Human-robot interaction: kinematics and muscle activity inside a powered compliant knee exoskeleton.

    Science.gov (United States)

    Knaepen, Kristel; Beyl, Pieter; Duerinck, Saartje; Hagman, Friso; Lefeber, Dirk; Meeusen, Romain

    2014-11-01

    Until today it is not entirely clear how humans interact with automated gait rehabilitation devices and how we can, based on that interaction, maximize the effectiveness of these exoskeletons. The goal of this study was to gain knowledge on the human-robot interaction, in terms of kinematics and muscle activity, between a healthy human motor system and a powered knee exoskeleton (i.e., KNEXO). Therefore, temporal and spatial gait parameters, human joint kinematics, exoskeleton kinetics and muscle activity during four different walking trials in 10 healthy male subjects were studied. Healthy subjects can walk with KNEXO in patient-in-charge mode with some slight constraints in kinematics and muscle activity primarily due to inertia of the device. Yet, during robot-in-charge walking the muscular constraints are reversed by adding positive power to the leg swing, compensating in part this inertia. Next to that, KNEXO accurately records and replays the right knee kinematics meaning that subject-specific trajectories can be implemented as a target trajectory during assisted walking. No significant differences in the human response to the interaction with KNEXO in low and high compliant assistance could be pointed out. This is in contradiction with our hypothesis that muscle activity would decrease with increasing assistance. It seems that the differences between the parameter settings of low and high compliant control might not be sufficient to observe clear effects in healthy subjects. Moreover, we should take into account that KNEXO is a unilateral, 1 degree-of-freedom device.

  6. Circadian analysis of large human populations: inferences from the power grid.

    Science.gov (United States)

    Stowie, Adam C; Amicarelli, Mario J; Crosier, Caitlin J; Mymko, Ryan; Glass, J David

    2015-03-01

    Few, if any studies have focused on the daily rhythmic nature of modern industrialized populations. The present study utilized real-time load data from the U.S. Pacific Northwest electrical power grid as a reflection of human operative household activity. This approach involved actigraphic analyses of continuously streaming internet data (provided in 5 min bins) from a human subject pool of approximately 43 million primarily residential users. Rhythm analyses reveal striking seasonal and intra-week differences in human activity patterns, largely devoid of manufacturing and automated load interference. Length of the diurnal activity period (alpha) is longer during the spring than the summer (16.64 h versus 15.98 h, respectively; p job-related or other weekday morning arousal cues, substantiating a preference or need to sleep longer on weekends. Finally, a shift in onset time can be seen during the transition to Day Light Saving Time, but not the transition back to Standard Time. The use of grid power load as a means for human actimetry assessment thus offers new insights into the collective diurnal activity patterns of large human populations.

  7. Study on the identification of main drivers affecting the performance of human operators during low power and shutdown operation

    International Nuclear Information System (INIS)

    Kim, Ar Ryum; Park, Jinkyun; Kim, Ji Tae; Kim, Jaewhan; Seong, Poong Hyun

    2016-01-01

    Highlights: • The performance of human operator during LPSD operation is significantly important. • Human performance is affected by drivers such as procedure, training, and etc. • Main drivers during LPSD operation at domestic NPPs were suggested. • It is expected that it will be used for estimating human reliability during LPSD operation. - Abstract: In the past, many researchers believed that a reactor during low power and shutdown operation was sufficiently safe. This belief has been changed by the number of accidents during such types of operation, which is significantly high. Also, it was pointed out that one of the main differences between low power and shutdown operation and full power operation is the significance of human action because there are huge amounts of human actions due to extensive maintenance and testing while automatic control and safety functions may be disabled and procedures are insufficient or incomplete. This paper suggests the main drivers in performing human reliability analysis. For this study, we reviewed eight reports relating to human performance during low power and shutdown operation and applied a root cause analysis method for 53 human or human-related events at domestic nuclear power plants to derive the main drivers that affect the occurrence of those events. As a result, several main drivers were derived, such as procedures, training, experience of personnel, and workload/stress. It is expected that these main drivers will be used to perform human reliability analysis for low power and shutdown operation.

  8. Safety review for human factors engineering and control rooms of nuclear power plants

    International Nuclear Information System (INIS)

    Yang Mengzhuo

    1998-01-01

    Safety review for human factors engineering and control rooms of nuclear power plants (NPP) is in a forward position of science and technology, which began at American TMI severe accident and had been implemented in China. The importance and the significance of the safety review are expounded, the requirements of its scope and profundity are explained in detail. In addition, the situation of the technical document system for nuclear safety regulation on human factors engineering and control rooms of NPP in China is introduced briefly, on which the safety review is based

  9. Measuring Human Performance in Simulated Nuclear Power Plant Control Rooms Using Eye Tracking

    Energy Technology Data Exchange (ETDEWEB)

    Kovesdi, Casey Robert [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rice, Brandon Charles [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bower, Gordon Ross [Idaho National Lab. (INL), Idaho Falls, ID (United States); Spielman, Zachary Alexander [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hill, Rachael Ann [Idaho National Lab. (INL), Idaho Falls, ID (United States); LeBlanc, Katya Lee [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-11-01

    Control room modernization will be an important part of life extension for the existing light water reactor fleet. As part of modernization efforts, personnel will need to gain a full understanding of how control room technologies affect performance of human operators. Recent advances in technology enables the use of eye tracking technology to continuously measure an operator’s eye movement, which correlates with a variety of human performance constructs such as situation awareness and workload. This report describes eye tracking metrics in the context of how they will be used in nuclear power plant control room simulator studies.

  10. Measuring Human Performance in Simulated Nuclear Power Plant Control Rooms Using Eye Tracking

    International Nuclear Information System (INIS)

    Kovesdi, Casey Robert; Rice, Brandon Charles; Bower, Gordon Ross; Spielman, Zachary Alexander; Hill, Rachael Ann; LeBlanc, Katya Lee

    2015-01-01

    Control room modernization will be an important part of life extension for the existing light water reactor fleet. As part of modernization efforts, personnel will need to gain a full understanding of how control room technologies affect performance of human operators. Recent advances in technology enables the use of eye tracking technology to continuously measure an operator's eye movement, which correlates with a variety of human performance constructs such as situation awareness and workload. This report describes eye tracking metrics in the context of how they will be used in nuclear power plant control room simulator studies.

  11. Triboelectric Nanogenerator Enabled Body Sensor Network for Self-Powered Human Heart-Rate Monitoring.

    Science.gov (United States)

    Lin, Zhiming; Chen, Jun; Li, Xiaoshi; Zhou, Zhihao; Meng, Keyu; Wei, Wei; Yang, Jin; Wang, Zhong Lin

    2017-09-26

    Heart-rate monitoring plays a critical role in personal healthcare management. A low-cost, noninvasive, and user-friendly heart-rate monitoring system is highly desirable. Here, a self-powered wireless body sensor network (BSN) system is developed for heart-rate monitoring via integration of a downy-structure-based triboelectric nanogenerator (D-TENG), a power management circuit, a heart-rate sensor, a signal processing unit, and Bluetooth module for wireless data transmission. By converting the inertia energy of human walking into electric power, a maximum power of 2.28 mW with total conversion efficiency of 57.9% was delivered at low operation frequency, which is capable of immediately and sustainably driving the highly integrated BSN system. The acquired heart-rate signal by the sensor would be processed in the signal process circuit, sent to an external device via the Bluetooth module, and displayed on a personal cell phone in a real-time manner. Moreover, by combining a TENG-based generator and a TENG-based sensor, an all-TENG-based wireless BSN system was developed, realizing continuous and self-powered heart-rate monitoring. This work presents a potential method for personal heart-rate monitoring, featured as being self-powered, cost-effective, noninvasive, and user-friendly.

  12. Transient reduction in theta power caused by interictal spikes in human temporal lobe epilepsy.

    Science.gov (United States)

    Manling Ge; Jundan Guo; Yangyang Xing; Zhiguo Feng; Weide Lu; Xinxin Ma; Yuehua Geng; Xin Zhang

    2017-07-01

    The inhibitory impacts of spikes on LFP theta rhythms(4-8Hz) are investigated around sporadic spikes(SSs) based on intracerebral EEG of 4 REM sleep patients with temporal lobe epilepsy(TLE) under the pre-surgical monitoring. Sequential interictal spikes in both genesis area and extended propagation pathway are collected, that, SSs genesis only in anterior hippocampus(aH)(possible propagation pathway in Entorhinal cortex(EC)), only in EC(possible propagation pathway in aH), and in both aH and EC synchronously. Instantaneous theta power was estimated by using Gabor wavelet transform, and theta power level was estimated by averaged over time and frequency before SSs(350ms pre-spike) and after SSs(350ms post-spike). The inhibitory effect around spikes was evaluated by the ratio of theta power level difference between pre-spike and post-spike to pre-spike theta power level. The findings were that theta power level was reduced across SSs, and the effects were more sever in the case of SSs in both aH and EC synchronously than either SSs only in EC or SSs only in aH. It is concluded that interictal spikes impair LFP theta rhythms transiently and directly. The work suggests that the reduction of theta power after the interictal spike might be an evaluation indicator of damage of epilepsy to human cognitive rhythms.

  13. Case Study on Human Walking during Wearing a Powered Prosthetic Device: Effectiveness of the System “Human-Robot”

    Directory of Open Access Journals (Sweden)

    Svetlana Grosu

    2014-01-01

    Full Text Available It is known that force exchanges between a robotic assistive device and the end-user have a direct impact on the quality and performance of a particular movement task. This knowledge finds a special reflective importance in prosthetic industry due to the close human-robot collaboration. Although lower-extremity prostheses are currently better able to provide assistance as their upper-extremity counterparts, specific locomotion problems still remain. In a framework of this contribution the authors introduce the multibody dynamic modelling approach of the transtibial prosthesis wearing on a human body model. The obtained results are based on multibody dynamic simulations against the real experimental data using AMP-Foot 2.0, an energy efficient powered transtibial prosthesis for actively assisted walking of amputees.

  14. Autonomous search and surveillance with small fixed wing aircraft

    Science.gov (United States)

    McGee, Timothy Garland

    Small unmanned aerial vehicles (UAVs) have the potential to act as low cost tools in a variety of both civilian and military applications including traffic monitoring, border patrol, and search and rescue. While most current operational UAV systems require human operators, advances in autonomy will allow these systems to reach their full potential as sensor platforms. This dissertation specifically focuses on developing advanced control, path planning, search, and image processing techniques that allow small fixed wing aircraft to autonomously collect data. The problems explored were motivated by experience with the development and experimental flight testing of a fleet of small autonomous fixed wing aircraft. These issues, which have not been fully addressed in past work done on ground vehicles or autonomous helicopters, include the influence of wind and turning rate constraints, the non-negligible velocity of ground targets relative to the aircraft velocity, and limitations on sensor size and processing power on small vehicles. Several contributions for the autonomous operation of small fixed wing aircraft are presented. Several sliding surface controllers are designed which extend previous techniques to include variable sliding surface coefficients and the use of spatial vehicle dynamics. These advances eliminate potential singularities in the control laws to follow spatially defined paths and allow smooth transition between controllers. The optimal solution for the problem of path planning through an ordered set of points for an aircraft with a bounded turning rate in the presence of a constant wind is then discussed. Path planning strategies are also explored to guarantee that a searcher will travel within sensing distance of a mobile ground target. This work assumes only a maximum velocity of the target and is designed to succeed for any possible path of the target. Closed-loop approximations of both the path planning and search techniques, using the sliding

  15. The human factor in operating nuclear power plants during crisis situations

    International Nuclear Information System (INIS)

    Schnauder, H.; Smidt, D.

    1981-10-01

    Human factors in nuclear power plant operation are a main part of safety analyses. A considerable reduction in the influence of human factors has been obtained through ergonomic control room design, automation, clearly formulated operating manuals, and appropriate personnel education and training. These precautions are directed primarily at skill- and rule-based behaviour and are intended for normal operation and design accidents. In addition, one can construct an area of uncommon and very rare events where a partial failure of the safety systems is assumed. This is an area of knowledge-based behaviour. This report describes and assesses the present situation in German nuclear power plants. Recommendations for further research activity are made and, as a main result, for improvements in knowledge-based behaviour. (orig.) [de

  16. Impulsive ankle push-off powers leg swing in human walking.

    Science.gov (United States)

    Lipfert, Susanne W; Günther, Michael; Renjewski, Daniel; Seyfarth, Andre

    2014-04-15

    Rapid unloading and a peak in power output of the ankle joint have been widely observed during push-off in human walking. Model-based studies hypothesize that this push-off causes redirection of the body center of mass just before touch-down of the leading leg. Other research suggests that work done by the ankle extensors provides kinetic energy for the initiation of swing. Also, muscle work is suggested to power a catapult-like action in late stance of human walking. However, there is a lack of knowledge about the biomechanical process leading to this widely observed high power output of the ankle extensors. In our study, we use kinematic and dynamic data of human walking collected at speeds between 0.5 and 2.5 m s(-1) for a comprehensive analysis of push-off mechanics. We identify two distinct phases, which divide the push-off: first, starting with positive ankle power output, an alleviation phase, where the trailing leg is alleviated from supporting the body mass, and second, a launching phase, where stored energy in the ankle joint is released. Our results show a release of just a small part of the energy stored in the ankle joint during the alleviation phase. A larger impulse for the trailing leg than for the remaining body is observed during the launching phase. Here, the buckling knee joint inhibits transfer of power from the ankle to the remaining body. It appears that swing initiation profits from an impulsive ankle push-off resulting from a catapult without escapement.

  17. Analysis of human factor aspects in connection with available incident reports obligatorily reported by German nuclear power plants

    International Nuclear Information System (INIS)

    Wilpert, B.; Freitag, M.; Miller, R.

    1993-01-01

    Goal of the present study is the analysis of human factor aspects in connection with available incident reports obligatorily reported by German nuclear power plants. Based on psychological theories and empirical studies this study develops a classification scheme which permits the identification of foci of erroneous human actions. This classification scheme is applied to a selection of human factor relevant incidents by calculating frequencies of the occurrence of human error categories. The results allow insights into human factor related problem areas. (orig.) [de

  18. Large Scale Triboelectric Nanogenerator and Self-Powered Flexible Sensor for Human Sleep Monitoring

    Directory of Open Access Journals (Sweden)

    Xiaoheng Ding

    2018-05-01

    Full Text Available The triboelectric nanogenerator (TENG and its application as a sensor is a popular research subject. There is demand for self-powered, flexible sensors with high sensitivity and high power-output for the next generation of consumer electronics. In this study, a 300 mm × 300 mm carbon nanotube (CNT-doped porous PDMS film was successfully fabricated wherein the CNT influenced the micropore structure. A self-powered TENG tactile sensor was established according to triboelectric theory. The CNT-doped porous TENG showed a voltage output seven times higher than undoped porous TENG and 16 times higher than TENG with pure PDMS, respectively. The TENG successfully acquired human motion signals, breath signals, and heartbeat signals during a sleep monitoring experiment. The results presented here may provide an effective approach for fabricating large-scale and low-cost flexible TENG sensors.

  19. Statement to International Conference on Human Resource Development for Introducing and Expanding Nuclear Power Programs

    International Nuclear Information System (INIS)

    Amano, Y.

    2012-01-01

    Mr. President, Excellencies, Ladies and Gentlemen, It is a pleasure for me to open this IAEA conference on Human Resource Development for Introducing and Expanding Nuclear Power Programmes. I am very grateful to the Government of the United Arab Emirates for hosting this important event. As you know, the world is witnessing a resurgence of interest in nuclear power. The IAEA has projects on introducing nuclear power with no fewer than fifty-eight of our Member States. We expect between 10 and 25 new countries to bring their first nuclear power plants on-line by 2030. These are momentous changes. However, some countries are concerned about a possible shortage of skilled professionals in the nuclear field in the coming decades. The generation of professionals who built and led the nuclear power industry for much of the past 50 years is approaching retirement and in some countries there are not enough students coming up through the educational system to take their place. Naturally, we at the IAEA want to do all we can to help Member States address this issue. That is why we have organized this conference. The situation is different in different countries. For countries with expanding nuclear power programmes, the challenge is to scale up their existing education and training in order to have the required qualified workforce on time. Countries planning to supply nuclear technology to others not only have to meet their national human resource needs, but must also be able to transfer education and training capacity together with the technology they provide. Finally, countries embarking on nuclear power cannot become too dependent on their technology supplier and need to develop their own home-grown expertise and skills base. The Agency would be happy to help interested States to formulate country-specific policies on human resource development, education, training and knowledge management in support of nuclear power programmes. We could also help countries make better

  20. Statement to international conference on human resource development for introducing and expanding nuclear power programs

    International Nuclear Information System (INIS)

    Amano, Y.

    2010-03-01

    Full text: Mr. President, Excellencies, Ladies and Gentlemen, It is a pleasure for me to open this IAEA conference on Human Resource Development for Introducing and Expanding Nuclear Power Programmes. I am very grateful to the Government of the United Arab Emirates for hosting this important event. As you know, the world is witnessing a resurgence of interest in nuclear power. The IAEA has projects on introducing nuclear power with no fewer than fifty-eight of our Member States. We expect between 10 and 25 new countries to bring their first nuclear power plants on-line by 2030. These are momentous changes. However, some countries are concerned about a possible shortage of skilled professionals in the nuclear field in the coming decades. The generation of professionals who built and led the nuclear power industry for much of the past 50 years is approaching retirement and in some countries there are not enough students coming up through the educational system to take their place. Naturally, we at the IAEA want to do all we can to help Member States address this issue. That is why we have organized this conference. The situation is different in different countries. For countries with expanding nuclear power programmes, the challenge is to scale up their existing education and training in order to have the required qualified workforce on time. Countries planning to supply nuclear technology to others not only have to meet their national human resource needs, but must also be able to transfer education and training capacity together with the technology they provide. Finally, countries embarking on nuclear power cannot become too dependent on their technology supplier and need to develop their own home-grown expertise and skills base. The Agency would be happy to help interested States to formulate country-specific policies on human resource development, education, training and knowledge management in support of nuclear power programmes. We could also help countries

  1. Development of NASA's Small Fission Power System for Science and Human Exploration

    Science.gov (United States)

    Gibson, Marc A.; Mason, Lee S.; Bowman, Cheryl L.; Poston, David I.; McClure, Patrick R.; Creasy, John; Robinson, Chris

    2015-01-01

    Exploration of our solar system has brought many exciting challenges to our nations scientific and engineering community over the past several decades. As we expand our visions to explore new, more challenging destinations, we must also expand our technology base to support these new missions. NASAs Space Technology Mission Directorate is tasked with developing these technologies for future mission infusion and continues to seek answers to many existing technology gaps. One such technology gap is related to compact power systems (1 kWe) that provide abundant power for several years where solar energy is unavailable or inadequate. Below 1 kWe, Radioisotope Power Systems have been the workhorse for NASA and will continue to be used for lower power applications similar to the successful missions of Voyager, Ulysses, New Horizons, Cassini, and Curiosity. Above 1 kWe, fission power systems become an attractive technology offering a scalable modular design of the reactor, shield, power conversion, and heat transport subsystems. Near term emphasis has been placed in the 1-10kWe range that lies outside realistic radioisotope power levels and fills a promising technology gap capable of enabling both science and human exploration missions. History has shown that development of space reactors is technically, politically, and financially challenging and requires a new approach to their design and development. A small team of NASA and DOE experts are providing a solution to these enabling FPS technologies starting with the lowest power and most cost effective reactor series named Kilopower that is scalable from approximately 1-10 kWe.

  2. Power

    DEFF Research Database (Denmark)

    Elmholdt, Claus Westergård; Fogsgaard, Morten

    2016-01-01

    and creativity suggests that when managers give people the opportunity to gain power and explicate that there is reason to be more creative, people will show a boost in creative behaviour. Moreover, this process works best in unstable power hierarchies, which implies that power is treated as a negotiable....... It is thus a central point that power is not necessarily something that breaks down and represses. On the contrary, an explicit focus on the dynamics of power in relation to creativity can be productive for the organisation. Our main focus is to elaborate the implications of this for practice and theory...

  3. The dispositions of things: the non-human dimension of power and ethics in patient-centred medicine.

    Science.gov (United States)

    Gardner, John; Cribb, Alan

    2016-09-01

    This article explores power relations between clinicians, patients and families as clinicians engage in patient-centred ethical work. Specifically, we draw on actor-network theory to interrogate the role of non-human elements in distributing power relations in clinical settings, as clinicians attempt to manage the expectations of patients and families. Using the activities of a multidisciplinary team providing deep brain stimulation to children with severe movement disorders as an example, we illustrate how a patient-centred tool is implicated in establishing relations that constitute four modes of power: 'power over', 'power to', "power storage" and "power/discretion". We argue that understanding the role of non-human elements in structuring power relations can guide and inform bioethical discussions on the suitability of patient-centred approaches in clinical settings. © 2016 The Authors. Sociology of Health & Illness published by John Wiley & Sons Ltd on behalf of Foundation for SHIL.

  4. Human Power Vehicle Program. Final report, June 15, 1993--June 14, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Crowell, J.; Graves, P.

    1995-11-01

    The Human Power Vehicle Program was an intensive, five day a week, four week program designed to give middle school students the opportunity to ``be engineers``. During the month of July, Delta College, the Macro Michigan Multicultural Pre-Technical Education Partnership (M3PEP), and the United States Department of Energy sponsored a four-week learning experience in human-powered vehicles. This unique experience introduced students to the physiology of exercise, the mechanics of the bicycle, and the physics and mathematics of the bicycle. Students also participated in a three day bike tour. The Program used the Bike Lab facility at Delta College`s International Centre in Saginaw, Michigan. Students had the opportunity to explore the development and refinement of the bicycle design and to investigate it`s power machine-the human body. Interactive instruction was conducted in groups to assure that all students experienced the satisfaction of understanding the bicycle. The purpose of the Program was to increase minority students` awareness and appreciation of mathematics and science. The premise behind the Program was that engineers and scientists are made, not born. The Program was open to all minority youth, grades 8 and 9, and was limited to 25 students. Students were selected to participate based upon their interest, desire, maturity, and attitude.

  5. The human factor and organization to support nuclear power plant operators

    International Nuclear Information System (INIS)

    Naumov, V.I.

    1993-01-01

    Analysis reveals three basic factors which affect the safety of nuclear power reactors: (1) Internal physical properties of the reactor which provide self protection under breakdown and accident conditions; (2) The reliability of technical systems which provide monitoring, control, accident prevention, heat release, and localization of hazardous products during accidents; (3) Reliability of the reactor control personnel. The last of these factors is usually called the human factor. From published data, this factor makes a large contribution to the downtime and accident statistics at nuclear power plants: from 30 to 80% in various countries. Today the importance of the human factor in operating a nuclear power units is rather well recognized. Current ideas on how to increase the reliability of a human operator are reflected in IAEA recommendations and domestic official documents. The concept of 'a culture of safety' is introduced. Basic types of actions to increase the reliability of personnel who control a nuclear reactor are discussed, including: (1) The qualifying and psychological selection and the training of candidates on the operator's obligations. (2) The automation of routine operations which do not require the operator's intellect. (3) Perfecting the work place, information input to the operator, and the organization of the controls

  6. Flexible and multi-directional piezoelectric energy harvester for self-powered human motion sensor

    Science.gov (United States)

    Kim, Min-Ook; Pyo, Soonjae; Oh, Yongkeun; Kang, Yunsung; Cho, Kyung-Ho; Choi, Jungwook; Kim, Jongbaeg

    2018-03-01

    A flexible piezoelectric strain energy harvester that is responsive to multi-directional input forces produced by various human motions is proposed. The structure of the harvester, which includes a polydimethylsiloxane (PDMS) bump, facilitates the effective conversion of strain energy, produced by input forces applied in random directions, into electrical energy. The structural design of the PDMS bump and frame as well as the slits in the piezoelectric polyvinylidene fluoride (PVDF) film provide mechanical flexibility and enhance the strain induced in the PVDF film under input forces applied at various angles. The amount and direction of the strain induced in PVDF can be changed by the direction of the applied force; thus, the generated output power can be varied. The measured maximum output peak voltage is 1.75, 1.29, and 0.98 V when an input force of 4 N (2 Hz) is applied at angles of 0°, 45°, and 90°, and the corresponding maximum output power is 0.064, 0.026, and 0.02 μW, respectively. Moreover, the harvester stably generates output voltage over 1.4 × 104 cycles. Thus, the proposed harvester successfully identifies and converts strain energy produced by multi-directional input forces by various human motions into electrical energy. We demonstrate the potential utility of the proposed flexible energy harvester as a self-powered human motion sensor for wireless healthcare systems.

  7. Sudan Country Profile - Human Resource Development (HRD) for the first Nuclear Power Program

    International Nuclear Information System (INIS)

    Yousif, Eltayeb H. Elneel

    2014-01-01

    Sudan has been decided to prepare a strategy plan for the first nuclear power plant for various reasons like production electricity and increase the national industries besides the capabilities to do the scientific and research activities. Sudan has been started to establish and develop a master plan for the human resource development and makes a comprehensive realistic assessment about the organizational, educational and industrial capabilities and determines the requirements for developing the quality and quantity of human resources needed. The national nuclear regulatory authority has been started to update all legislation and regulations and also reviews and evaluates the international agreements and conventions related to the nuclear energy. In this profile we used the methodology of the international atomic energy agency to assess and evaluate the capacity building in Sudan. The expected outcomes from this profile are identified the gaps regarding the strengthening the national infrastructure and nuclear regulatory framework and issuing regulations to met the requirements for safety and security of the nuclear power plant. The availability of the human resources skills are important for effectively monitors the activities of the companies and facilities involved in nuclear power plant. The new nuclear law and the new national policy of the nuclear program are now under the process of approval.(author)

  8. Aircraft operations management manual

    Science.gov (United States)

    1992-01-01

    The NASA aircraft operations program is a multifaceted, highly diverse entity that directly supports the agency mission in aeronautical research and development, space science and applications, space flight, astronaut readiness training, and related activities through research and development, program support, and mission management aircraft operations flights. Users of the program are interagency, inter-government, international, and the business community. This manual provides guidelines to establish policy for the management of NASA aircraft resources, aircraft operations, and related matters. This policy is an integral part of and must be followed when establishing field installation policy and procedures covering the management of NASA aircraft operations. Each operating location will develop appropriate local procedures that conform with the requirements of this handbook. This manual should be used in conjunction with other governing instructions, handbooks, and manuals.

  9. Measurement and evaluation of human factor training in nuclear power plants

    International Nuclear Information System (INIS)

    Hamasaki, Kenichi

    2006-01-01

    The purpose of this study is to measure and evaluate the effectiveness of human factor training aimed at awareness and behavioral changes, conducted by electric power company for the nuclear power plant staff. As the first step, the researcher investigated recent trends in training measurement and evaluation methods in the United States. It was found that many instances of training measurement/evaluation had been reported, and that the ROI model was the mainstream method for such measurement and evaluation. However, there had been no instances reported in which the effectiveness of human factor training for plant staff had been measured. The researcher therefore developed a new questionnaire-type of effectiveness measurement/evaluation method, based on the framework of the ROI model. Two-years of research was then conducted, in which the effectiveness of a human factor training program was measured using the newly developed method. This research revealed that participants' overall satisfaction and knowledge/skill acquisition levels were high. The percentage of participants who demonstrated awareness/behavioral change after returning to the workplace increased from 50% at first measurement to 81% at second measurement. It can therefore be concluded that the effectiveness of the second training is greater than that of the first training. Use of the new effectiveness measurement/evaluation method will enable quantification of human factor training effectiveness and help improve training quality. (author)

  10. Human factors evaluation of man-machine interface for periodic safety review of nuclear power plants

    International Nuclear Information System (INIS)

    Lee, Yong Hee; Lee, Jung Woon; Park, Jae Chang; Hwang, In Koo; Lee, Hyun Cheol; Jang, Tong Il; Ku, Jin Young; Kim, Soo Jin

    2004-12-01

    This report describes the research results of human factors assessment on the MMI(Man Machine Interface) equipment as part of Periodic Safety Review(PSR) of Nuclear Power Plants(NPPs). As MMI is a key factor among human factors to be reviewed in PSR, we reviewed the MMI components of nuclear power plants in aspect of human factors engineering. The availability, suitability, and effectiveness of the MMI devices were chosen to be reviewed. The MMI devices were investigated through the review of design documents related to the MMI, survey of control panels, evaluation of experts, and experimental assessment. Checklists were used to perform this assessment and record the review results. The items mentioned by the expert comments to review in detail in relation with task procedures were tested by experiments with operators' participation. For some questionable issues arisen during this MMI review, operator workload and possibility of errors in operator actions were analysed. The reviewed MMI devices contain MCR(Main Control Room), SPDS(Safety Parameter Display System), RSP(Remote Shutdown Panel), and the selected LCBs(Local Control Boards) importantly related to safety. As results of the assessments, any significant problem challenging the safety was not found on human factors in the MMI devices. However, several small items to be changed and improved in suitability of MMI devices were discovered. An action plan is recommended to accommodate the suggestions and review comments. It will enhance the plant safety on MMI area

  11. A Study on Human Factors in Maintenance of a Nuclear Power Plant (NPP)

    International Nuclear Information System (INIS)

    Park, Young Ho; Seong, Poong Hyun

    2006-01-01

    In human factors research, more attention has been devoted to the operation of a nuclear power plant (NPP) than to their maintenance. However, more NPP incidents are caused by inadequate maintenance rather than by faulty operation. There is a trend in NPP toward introducing digital technology into safety and non-safety systems. This lead to changes of maintenance, and support systems such as diagnosis system, augmentation system and handy terminal will be developed. In this context, it is important to identify tasks of human related to each phase of maintenance and their relation in order to apply those to maintenance. However, there are few researches of human factors in maintenance. This paper studies on framework of cognitive task analysis for developing maintenance support systems

  12. Concept Design of High Power Solar Electric Propulsion Vehicles for Human Exploration

    Science.gov (United States)

    Hoffman, David J.; Kerslake, Thomas W.; Hojnicki, Jeffrey S.; Manzella, David H.; Falck, Robert D.; Cikanek, Harry A., III; Klem, Mark D.; Free, James M.

    2011-01-01

    Human exploration beyond low Earth orbit will require enabling capabilities that are efficient, affordable and reliable. Solar electric propulsion (SEP) has been proposed by NASA s Human Exploration Framework Team as one option to achieve human exploration missions beyond Earth orbit because of its favorable mass efficiency compared to traditional chemical propulsion systems. This paper describes the unique challenges associated with developing a large-scale high-power (300-kWe class) SEP vehicle and design concepts that have potential to meet those challenges. An assessment of factors at the subsystem level that must be considered in developing an SEP vehicle for future exploration missions is presented. Overall concepts, design tradeoffs and pathways to achieve development readiness are discussed.

  13. Lessons Learned from Human Factor Technical Support for Nuclear Power Plants

    International Nuclear Information System (INIS)

    Jung, Yeon Sub; Song, Tae Young

    2011-01-01

    NETEC is on the frontier to support Korean nuclear power plants. Requests of service are distributed through web based system. Human factor requests are occasionally posted. This paper analyzes interesting human factors requests/responses serviced, and summarizes the lesson learned. Subjects of the service include man machine interface, equipment label, procedure writing, procedure adherence, BISI, hand switch and alarm tile. Specifically the man machine interface is related to control command generated by acknowledge button, arrangement of switches. Procedure writing is about how to write contingency actions with proper numbering scheme. BISI is analyzed in view of automation level. Alarm tile is about how to handle the common alarm tile originated from local alarm boards. These topics seem to be legacies of past technology. Even though there are still human engineering discrepancies, these have been less evaluated because the topics need knowledge of other field domains

  14. KEPCO‧s Activity to Power-Engineer Human Resource Development

    Science.gov (United States)

    Kobashi, Kazushi

    While business environment changes a lot, in order to aim at realization of “what we want the Group to look like in 2030” , it is necessary to cultivate human resources with a strong sense of mission. We need to prepare an opportunity to teach and to be taught, in order to cultivate resources and a measure for connecting every person‧s growth to growth of a company. In chapter one, we show Five Trends for attaining what KANSAI Electric Power Corporation wants to be and explain the importance of human resource development under the changing environment. In chapter two, we explain the fundamental policy of human resource cultivation and describe the development plan and the facilities for training based on the policy in chapter two. In chapter three, we express the specific efforts in the field of maintenance, construction, and operation at the department of Engineering and Operation.

  15. The Power of Being Vulnerable in Christian Soul Care: Common Humanity and Humility.

    Science.gov (United States)

    Kim, Kyubo

    2017-02-01

    Soul caregivers often hesitate to be vulnerable in their pastoral practices. Jesus, however, embraced his vulnerabilities as a human to redeem humanity even though he was the Son of God. This paper first explores the dynamics of shame and power that make soul caregivers reluctant to accept their vulnerabilities and then describes the contributions of sharing caregiver's vulnerabilities in a soul care practice. This article argues that being vulnerable allows a soul caregiver to imitate Jesus by sharing in the client's common humanity, initiating an authentic relationship between the client and the soul caregiver; it is also a practice of humility, inviting God's cure in soul care. This study proposes the necessity of embracing vulnerability in soul care ministry, instead of hiding it.

  16. A Software Toolkit to Accelerate Emission Predictions for Turboelectric/Hybrid Electric Aircraft Propulsion, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Electric propulsion represents an attractive path for reducing overall emissions. For larger commercial aircrafts operating in the mega-watt range, power...

  17. Aircraft noise in the region of the Bucharest-Otopeni Airport. [noise pollution in airport environment

    Science.gov (United States)

    Costescu, M.; Gherghel, C.; Curtoglu, A.

    1974-01-01

    Aircraft noise, especially in the region adjoining airports, constitutes a problem that will be aggravated in the near future because of increasing aircraft traffic and the appearance of new types of large tonnage aircraft with continuously increasing powers and speeds. Criteria for the evaluation of aircraft noise are reported and some results of studies carried out in the region of Bucharest-Otopeni Airport are detailed.

  18. SOLAR AIRCRAFT DESIGN

    OpenAIRE

    RAHMATI, Sadegh; GHASED, Amir

    2015-01-01

    Abstract. Generally domain Aircraft uses conventional fuel. These fuel having limited life, high cost and pollutant. Also nowadays price of petrol and other fuels are going to be higher, because of scarcity of those fuels. So there is great demand of use of non-exhaustible unlimited source of energy like solar energy. Solar aircraft is one of the ways to utilize solar energy. Solar aircraft uses solar panel to collect the solar radiation for immediate use but it also store the remaining part ...

  19. Human body heat for powering wearable devices: From thermal energy to application

    International Nuclear Information System (INIS)

    Thielen, Moritz; Sigrist, Lukas; Magno, Michele; Hierold, Christofer; Benini, Luca

    2017-01-01

    Highlights: • A complete system optimization for wearable thermal harvesting from body heat to the application is proposed. • State-of-the-art thermal harvesters and DC-DC converters are compared and classified. • Extensive simulation and experiments are carried out to characterize the harvesting performance. • A case study demonstrates the feasibility to supply a multi-sensor wearables only from body heat. - Abstract: Energy harvesting is the key technology to enable self-sustained wearable devices for the Internet of Things and medical applications. Among various types of harvesting sources such as light, vibration and radio frequency, thermoelectric generators (TEG) are a promising option due to their independence of light conditions or the activity of the wearer. This work investigates scavenging of human body heat and the optimization of the power conversion efficiency from body core to the application. We focus on the critical interaction between thermal harvester and power conditioning circuitry and compare two approaches: (1) a high output voltage, low thermal resistance μTEG combined with a high efficiency actively controlled single inductor DC-DC converter, and (2) a high thermal resistance, low electric resistance mTEG in combination with a low-input voltage coupled inductors based DC-DC converter. The mTEG approach delivers up to 65% higher output power per area in a lab setup and 1–15% in a real-world experiment on the human body depending on physical activity and environmental conditions. Using off-the-shelf and low-cost components, we achieve an average power of 260 μW (μTEG) to 280 μW (mTEG) and power densities of 13 μW cm"−"2 (μTEG) to 14 μW cm"−"2 (mTEG) for systems worn on the human wrist. With the small and lightweight harvesters optimized for wearability, 16% (mTEG) to 24% (μTEG) of the theoretical maximum efficiency is achieved in a worst-case scenario. This efficiency highly depends on the application specific conditions

  20. "Fan-Tip-Drive" High-Power-Density, Permanent Magnet Electric Motor and Test Rig Designed for a Nonpolluting Aircraft Propulsion Program

    Science.gov (United States)

    Brown, Gerald V.; Kascak, Albert F.

    2004-01-01

    A scaled blade-tip-drive test rig was designed at the NASA Glenn Research Center. The rig is a scaled version of a direct-current brushless motor that would be located in the shroud of a thrust fan. This geometry is very attractive since the allowable speed of the armature is approximately the speed of the blade tips (Mach 1 or 1100 ft/s). The magnetic pressure generated in the motor acts over a large area and, thus, produces a large force or torque. This large force multiplied by the large velocity results in a high-power-density motor.

  1. A synergetic use of hydrogen and fuel cells in human spaceflight power systems

    Science.gov (United States)

    Belz, S.

    2016-04-01

    Hydrogen is very flexible in different fields of application of energy conversion. It can be generated by water electrolysis. Stored in tanks it is available for re-electrification by fuel cells. But it is not only the power system, which benefits from use of hydrogen, but also the life support system, which can contain hydrogen consuming technologies for recycling management (e.g. carbon dioxide removal and waste combustion processes). This paper points out various fields of hydrogen use in a human spaceflight system. Depending on mission scenarios, shadow phases, and the need of energy storage, regenerative fuel cell systems can be more efficient than secondary batteries. Here, different power storage concepts are compared by equivalent system mass calculation, thus including impact in the peripheral structure (volume, thermal management, etc.) on the space system. It is also focused on the technical integration aspect, e.g. which peripheral components have to be adapted when hydrogen is also used for life support technologies and what system mass benefit can be expected. Finally, a recommendation is given for the following development steps for a synergetic use of hydrogen and fuel cells in human spaceflight power systems.

  2. Aircraft gas turbine engine vibration diagnostics

    Directory of Open Access Journals (Sweden)

    Stanislav Fábry

    2017-11-01

    Full Text Available In the Czech and Slovak aviation are in service elderly aircrafts, usually produced in former Soviet Union. Their power units can be operated in more efficient way, in case of using additional diagnostic methods that allow evaluating their health. Vibration diagnostics is one of the methods indicating changes of rotational machine dynamics. Ground tests of aircraft gas turbine engines allow vibration recording and analysis. Results contribute to airworthiness evaluation and making corrections, if needed. Vibration sensors distribution, signal recording and processing are introduced in a paper. Recorded and re-calculated vibration parameters are used in role of health indicators.

  3. Establishing a value chain for human factors in nuclear power plantcontrol room modernization

    Energy Technology Data Exchange (ETDEWEB)

    Joe, Jeffrey Clark [Idaho National Laboratory; Thomas, Kenneth David [Idaho National Laboratory; Boring, Ronald Laurids [Idaho National Laboratory

    2015-07-01

    Commercial nuclear power plants in the United States (U.S.) have operated reliably and efficiently for decades. With the life extensions of plants now being planned for operation beyond their original operating licenses, there are opportunities to achieve even greater efficiencies, while maintaining high operational reliabilities, with strategic, risk- and economically-informed, upgrades to plant systems and infrastructure. The U.S. Department of Energy’s Light Water Reactor Sustainability (LWRS) program supports the commercial nuclear industry’s modernization efforts through research and development (R&D) activities across many areas to help establish the technical and economic bases for modernization activities. The Advanced Instrumentation, Information, and Control Systems Technologies pathway is one R&D focus area for the LWRS program, and has researchers at Idaho National Laboratory working with select utility partners to use human factors and instrumentation and controls R&D to help modernize the plant’s main control room. However, some in the nuclear industry have not been as enthusiastic about using human factors R&D to inform life extension decision making. Part of the reason for this may stem from uncertainty decision-makers have regarding how human factors fits into the value chain for nuclear power plant control room modernization. This paper reviews past work that has attempted to demonstrate the value of human factors, and then describes the value chain concept, how it applies to control room modernization, and then makes a case for how and why human factors is an essential link in the modernization value chain.

  4. Competence and the Evolutionary Origins of Status and Power in Humans.

    Science.gov (United States)

    Chapais, Bernard

    2015-06-01

    In this paper I propose an evolutionary model of human status that expands upon an earlier model proposed by Henrich and Gil-White Evolution and Human Behavior, 22,165-196 (2001). According to their model, there are two systems of status attainment in humans-"two ways to the top": the dominance route, which involves physical intimidation, a psychology of fear and hubristic pride, and provides coercive power, and the prestige route, which involves skills and knowledge (competence), a psychology of attraction to experts and authentic pride, and translates mainly into influence. The two systems would have evolved in response to different selective pressures, with attraction to experts serving a social learning function and coinciding with the evolution of cumulative culture. In this paper I argue that (1) the only one way to the top is competence because dominance itself involves competence and confers prestige, so there is no such thing as pure dominance status; (2) dominance in primates has two components: a competitive one involving physical coercion and a cooperative one involving competence-based attraction to high-ranking individuals (proto-prestige); (3) competence grants the same general type of power (dependence-based) in humans and other primates; (4) the attractiveness of high rank in primates is homologous with the admiration of experts in humans; (5) upon the evolution of cumulative culture, the attractiveness of high rank was co-opted to generate status differentials in a vast number of culturally generated domains of activity. I also discuss, in this perspective, the origins of hubristic pride, authentic pride, and nonauthoritarian leadership.

  5. On the role of exchange of power and information signals in control and stability of the human-robot interaction

    Science.gov (United States)

    Kazerooni, H.

    1991-01-01

    A human's ability to perform physical tasks is limited, not only by his intelligence, but by his physical strength. If, in an appropriate environment, a machine's mechanical power is closely integrated with a human arm's mechanical power under the control of the human intellect, the resulting system will be superior to a loosely integrated combination of a human and a fully automated robot. Therefore, we must develop a fundamental solution to the problem of 'extending' human mechanical power. The work presented here defines 'extenders' as a class of robot manipulators worn by humans to increase human mechanical strength, while the wearer's intellect remains the central control system for manipulating the extender. The human, in physical contact with the extender, exchanges power and information signals with the extender. The aim is to determine the fundamental building blocks of an intelligent controller, a controller which allows interaction between humans and a broad class of computer-controlled machines via simultaneous exchange of both power and information signals. The prevalent trend in automation has been to physically separate the human from the machine so the human must always send information signals via an intermediary device (e.g., joystick, pushbutton, light switch). Extenders, however are perfect examples of self-powered machines that are built and controlled for the optimal exchange of power and information signals with humans. The human wearing the extender is in physical contact with the machine, so power transfer is unavoidable and information signals from the human help to control the machine. Commands are transferred to the extender via the contact forces and the EMG signals between the wearer and the extender. The extender augments human motor ability without accepting any explicit commands: it accepts the EMG signals and the contact force between the person's arm and the extender, and the extender 'translates' them into a desired position. In

  6. Advanced energy systems (APU) for large commercial aircraft

    Energy Technology Data Exchange (ETDEWEB)

    Westenberger, A.; Bleil, J.; Arendt, M. [Airbus Deutschland GmbH, Hamburg (Germany)

    2013-06-01

    The intention of using a highly integrated component using on fuel cell technology installed on board of large commercial passenger aircraft for the generation of onboard power for the systems demand during an entire aircraft mission was subject of several studies. The results of these studies have been based on the simulation of the whole system in the context of an aircraft system environment. In front of the work stood the analyses of different fuel cell technologies and the analyses of the aircraft system environment. Today onboard power is provided on ground by an APU and in flight by the main engines. In order to compare fuel cell technology with the today's usual gas turbine operational characteristics have been analysed. A second analysis was devoted to the system demand for typical aircraft categories. The MEA system concept was supposed in all cases. The favourable concept represented an aircraft propelled by conventional engines with starter generator units, providing AC electrical power, covering in total proximately half of the power demand and a component based on fuel cell technology. This component provided electrical DC power, clean potable water, thermal energy at 180 degrees Celsius and nitrogen enriched air for fire suppression and fire extinguishing agent. In opposite of a usual gas turbine based APU, this new unit was operated as the primary power system. (orig.)

  7. Achieving excellence in human performance through leadership, education, and training in nuclear power industry

    International Nuclear Information System (INIS)

    Clark, C.R.; Kazennov, A.; Kossilov, A.; Mazour, T.; Yoder, J.

    2004-01-01

    Full text: In order to achieve and maintain high levels of safety and productivity, nuclear power plants are required to be staffed with an adequate number of highly qualified and experienced personnel who are duly aware of the technical and administrative requirements for safety and are motivated to adopt a positive attitude to safety, as an element of safety culture. To establish and maintain a high level of human performance, appropriate education and training programmes should be in place and kept under constant review to ensure their relevance. As the nuclear power industry continues to be challenged by increasing safety requirements, a high level of competition and decreasing budgets, it becomes more important than ever to maintain excellence in human performance and ensure that NPP personnel training provides a value to the organization. Nuclear industry managers and supervisors bear the primary responsibility to assure that people perform their jobs safely and effectively. Training personnel must be responsive to the needs of the organization, working hand-in-hand with line managers and supervisors to ensure that human performance improvement needs are properly analyzed, and that training as well as other appropriate interventions are developed and implemented in the most effective and efficient way possible. The International Atomic Energy Agency together with its Member States has provided for coordinated information exchange and developed guidance on methods and practices to identify and improve the effectiveness NPP personnel training. This has resulted in: plant performance improvements, improved human performance, meeting goals and objectives of the business (quality, safety, productivity), and more effective training programs. This article describes the IAEA activities and achievements in the subject area for systematically understanding and improving human performance in nuclear power industry. The article also describes cooperation programmes

  8. GUIDANCE FOR NUCLEAR POWER PLANT CONTROL ROOM AND HUMAN-SYSTEM INTERFACE MODERNIZATION

    International Nuclear Information System (INIS)

    Naser, J.; Morris, G.

    2004-01-01

    Several nuclear power plants in the United States are starting instrumentation and control (I and C) modernization programs using digital equipment to address obsolescence issues and the need to improve plant performance while maintaining high levels of safety. As an integral part of the I and C modernization program at a nuclear power plant, the control room and other human-system interfaces (HSIs) are also being modernized. To support safe and effective operation, it is critical to plan, design, implement, train for, operate, and maintain the control room and HSI changes to take advantage of human cognitive processing abilities. A project, jointly funded by the Electric Power Research Institute (EPRI) and the United States Department of Energy (DOE) under the Nuclear Energy Plant Optimization (NEPO) Program, is developing guidance for specifying and designing control rooms, remote shut-down panels, HSIs etc. The guidance is intended for application by utilities and suppliers of control room and HSI modernization. The guidance will facilitate specification, design, implementation, operations, maintenance, training, and licensing activities. This guidance will be used to reduce the likelihood of human errors and licensing risk, to gain maximum benefit of implemented technology, and to increase performance. The guidance is of five types. The first is planning guidance to help a utility develop its plant-specific control room operating concepts, its plant-specific endpoint vision for the control room, its migration path to achieve that endpoint vision, and its regulatory, licensing, and human factors program plans. The second is process guidance for general HSI design and integration, human factors engineering analyses, verification and validation, in-service monitoring processes, etc. The third is detailed human factors engineering guidance for control room and HSI technical areas. The fourth is guidance for licensing. The fifth is guidance for special topics

  9. Review of human factors R and D in the nuclear power industry

    International Nuclear Information System (INIS)

    Parris, H.L.

    1986-01-01

    The history of human factors (HF) R and D in the nuclear power industry can clearly be divided into two phases: pre- and post-Three Mile Island (TMI). Pre-TMI, most people in the industry were unfamiliar with the discipline and its contributions to military and space system designs, and the number of HF professionals involved with nuclear power could essentially be counted on the fingers of two hands. Consequently, there was little research into the improvement of plant man/machine interfaces. The picture changed dramatically in the aftermath of TMI as investigation after investigation pointed to deficiencies in the operator/control room interface, training, procedures, communications, and organizational effectiveness. This paper first outlines pre-TMI events, then examines the post-TMI scenario, and concludes with summary observations and suggestions for future efforts

  10. International Conference on Human Resource Development for Nuclear Power Programmes: Building and Sustaining Capacity. Presentations

    International Nuclear Information System (INIS)

    2014-01-01

    The objectives of the conference are to: • Review developments in the global status of HRD since the 2010 international conference; • Emphasize the role of human resources and capacity building programmes at the national and organizational level for achieving safe, secure and sustainable nuclear power programmes; • Discuss the importance of building competence in nuclear safety and security; • Provide a forum for information exchange on national, as well as international, policies and practices; • Share key elements and best practices related to the experience of Member States that are introducing, operating or expanding nuclear power programmes; • Highlight the practices and issues regarding HRD at the organizational and national level; • Highlight education and training programmes and practices; • Emphasize the role of nuclear knowledge management for knowledge transfer and HRD; and • Elaborate on the role and scope of various knowledge networks

  11. The extreme relativity of perception: A new contextual effect modulates human resolving power.

    Science.gov (United States)

    Namdar, Gal; Ganel, Tzvi; Algom, Daniel

    2016-04-01

    The authors report the discovery of a new effect of context that modulates human resolving power with respect to an individual stimulus. They show that the size of the difference threshold or the just noticeable difference around a standard stimulus depends on the range of the other standards tested simultaneously for resolution within the same experimental session. The larger this range, the poorer the resolving power for a given standard. The authors term this effect the range of standards effect (RSE). They establish this result both in the visual domain for the perception of linear extent, and in the somatosensory domain for the perception of weight. They discuss the contingent nature of stimulus resolution in perception and psychophysics and contrast it with the immunity to contextual influences of visually guided action. (c) 2016 APA, all rights reserved).

  12. Aircraft Fire Protection Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Navy Aircraft Protection Laboratory provides complete test support for all Navy air vehicle fire protection systems.The facility allows for the simulation of a...

  13. Automated Inspection of Aircraft

    Science.gov (United States)

    1998-04-01

    This report summarizes the development of a robotic system designed to assist aircraft inspectors by remotely deploying non-destructive inspection (NDI) sensors and acquiring, processing, and storing inspection data. Carnegie Mellon University studie...

  14. Aircraft Depainting Technology

    National Research Council Canada - National Science Library

    Kozol, Joseph

    1999-01-01

    ... of aircraft and component stripping at various levels of maintenance. Under this program, the Navy pursued development of non-HAP chemical paint strippers as alternatives for methylene chloride based strippers...

  15. The Aircraft Industry, 2006

    National Research Council Canada - National Science Library

    Daniel, Keith

    2006-01-01

    .... and global economic growth. The overall outlook for the industry is positive. Orders for commercial aircraft are up from a boom in air travel that is likely to continue well into the next decade...

  16. The Aircraft Industry

    National Research Council Canada - National Science Library

    Fitzgerald, Tim; Baiche, Noureddine; Brewer, Mike; Collins, Al; Knapp, Kathy; Kott, Marilyn; McGill, Duncan; Mensah, Dunstan; Neighbors, Mark; Reardon, Dee

    2005-01-01

    .... As the airline companies prepare to buy new Boeing and Airbus passenger jets, they remain under intense pressure to cut costs in order to remain profitable, forcing aircraft and engine manufacturers...

  17. Essentials of aircraft armaments

    CERN Document Server

    Kaushik, Mrinal

    2017-01-01

    This book aims to provide a complete exposure about armaments from their design to launch from the combat aircraft. The book details modern ammunition and their tactical roles in warfare. The proposed book discusses aerodynamics, propulsion, structural as well as navigation, control, and guidance of aircraft armament. It also introduces the various types of ammunition developed by different countries and their changing trends. The book imparts knowledge in the field of design, and development of aircraft armaments to aerospace engineers and covers the role of the United Nations in peacekeeping and disarmament. The book will be very useful to researchers, students, and professionals working in design and manufacturing of aircraft armaments. The book will also serve air force and naval aspirants, and those interested in working on defence research and developments organizations. .

  18. The Aircraft Morphing Program

    Science.gov (United States)

    Wlezien, R. W.; Horner, G. C.; McGowan, A. R.; Padula, S. L.; Scott, M. A.; Silcox, R. J.; Simpson, J. O.

    1998-01-01

    In the last decade smart technologies have become enablers that cut across traditional boundaries in materials science and engineering. Here we define smart to mean embedded actuation, sensing, and control logic in a tightly coupled feedback loop. While multiple successes have been achieved in the laboratory, we have yet to see the general applicability of smart devices to real aircraft systems. The NASA Aircraft Morphing program is an attempt to couple research across a wide range of disciplines to integrate smart technologies into high payoff aircraft applications. The program bridges research in seven individual disciplines and combines the effort into activities in three primary program thrusts. System studies are used to assess the highest- payoff program objectives, and specific research activities are defined to address the technologies required for development of smart aircraft systems. In this paper we address the overall program goals and programmatic structure, and discuss the challenges associated with bringing the technologies to fruition.

  19. Depreciation of aircraft

    Science.gov (United States)

    Warner, Edward P

    1922-01-01

    There is a widespread, and quite erroneous, impression to the effect that aircraft are essentially fragile and deteriorate with great rapidity when in service, so that the depreciation charges to be allowed on commercial or private operation are necessarily high.

  20. An Overview of NASA's Subsonic Research Aircraft Testbed (SCRAT)

    Science.gov (United States)

    Baumann, Ethan; Hernandez, Joe; Ruhf, John C.

    2013-01-01

    National Aeronautics and Space Administration Dryden Flight Research Center acquired a Gulfstream III (GIII) aircraft to serve as a testbed for aeronautics flight research experiments. The aircraft is referred to as SCRAT, which stands for SubsoniC Research Aircraft Testbed. The aircraft's mission is to perform aeronautics research; more specifically raising the Technology Readiness Level (TRL) of advanced technologies through flight demonstrations and gathering high-quality research data suitable for verifying the technologies, and validating design and analysis tools. The SCRAT has the ability to conduct a range of flight research experiments throughout a transport class aircraft's flight envelope. Experiments ranging from flight-testing of a new aircraft system or sensor to those requiring structural and aerodynamic modifications to the aircraft can be accomplished. The aircraft has been modified to include an instrumentation system and sensors necessary to conduct flight research experiments along with a telemetry capability. An instrumentation power distribution system was installed to accommodate the instrumentation system and future experiments. An engineering simulation of the SCRAT has been developed to aid in integrating research experiments. A series of baseline aircraft characterization flights has been flown that gathered flight data to aid in developing and integrating future research experiments. This paper describes the SCRAT's research systems and capabilities.

  1. Influence of Power Delivery Timing on the Energetics and Biomechanics of Humans Wearing a Hip Exoskeleton

    Science.gov (United States)

    Young, Aaron J.; Foss, Jessica; Gannon, Hannah; Ferris, Daniel P.

    2017-01-01

    A broad goal in the field of powered lower limb exoskeletons is to reduce the metabolic cost of walking. Ankle exoskeletons have successfully achieved this goal by correctly timing a plantarflexor torque during late stance phase. Hip exoskeletons have the potential to assist with both flexion and extension during walking gait, but the optimal timing for maximally reducing metabolic cost is unknown. The focus of our study was to determine the best assistance timing for applying hip assistance through a pneumatic exoskeleton on human subjects. Ten non-impaired subjects walked with a powered hip exoskeleton, and both hip flexion and extension assistance were separately provided at different actuation timings using a simple burst controller. The largest average across-subject reduction in metabolic cost for hip extension was at 90% of the gait cycle (just prior to heel contact) and for hip flexion was at 50% of the gait cycle; this resulted in an 8.4 and 6.1% metabolic reduction, respectively, compared to walking with the unpowered exoskeleton. However, the ideal timing for both flexion and extension assistance varied across subjects. When selecting the assistance timing that maximally reduced metabolic cost for each subject, average metabolic cost for hip extension was 10.3% lower and hip flexion was 9.7% lower than the unpowered condition. When taking into account user preference, we found that subject preference did not correlate with metabolic cost. This indicated that user feedback was a poor method of determining the most metabolically efficient assistance power timing. The findings of this study are relevant to developers of exoskeletons that have a powered hip component to assist during human walking gait. PMID:28337434

  2. Influence of Power Delivery Timing on the Energetics and Biomechanics of Humans Wearing a Hip Exoskeleton.

    Science.gov (United States)

    Young, Aaron J; Foss, Jessica; Gannon, Hannah; Ferris, Daniel P

    2017-01-01

    A broad goal in the field of powered lower limb exoskeletons is to reduce the metabolic cost of walking. Ankle exoskeletons have successfully achieved this goal by correctly timing a plantarflexor torque during late stance phase. Hip exoskeletons have the potential to assist with both flexion and extension during walking gait, but the optimal timing for maximally reducing metabolic cost is unknown. The focus of our study was to determine the best assistance timing for applying hip assistance through a pneumatic exoskeleton on human subjects. Ten non-impaired subjects walked with a powered hip exoskeleton, and both hip flexion and extension assistance were separately provided at different actuation timings using a simple burst controller. The largest average across-subject reduction in metabolic cost for hip extension was at 90% of the gait cycle (just prior to heel contact) and for hip flexion was at 50% of the gait cycle; this resulted in an 8.4 and 6.1% metabolic reduction, respectively, compared to walking with the unpowered exoskeleton. However, the ideal timing for both flexion and extension assistance varied across subjects. When selecting the assistance timing that maximally reduced metabolic cost for each subject, average metabolic cost for hip extension was 10.3% lower and hip flexion was 9.7% lower than the unpowered condition. When taking into account user preference, we found that subject preference did not correlate with metabolic cost. This indicated that user feedback was a poor method of determining the most metabolically efficient assistance power timing. The findings of this study are relevant to developers of exoskeletons that have a powered hip component to assist during human walking gait.

  3. Multifuel rotary aircraft engine

    Science.gov (United States)

    Jones, C.; Berkowitz, M.

    1980-01-01

    The broad objectives of this paper are the following: (1) to summarize the Curtiss-Wright design, development and field testing background in the area of rotary aircraft engines; (2) to briefly summarize past activity and update development work in the area of stratified charge rotary combustion engines; and (3) to discuss the development of a high-performance direct injected unthrottled stratified charge rotary combustion aircraft engine. Efficiency improvements through turbocharging are also discussed.

  4. 2002 Industry Studies: Aircraft

    Science.gov (United States)

    2002-01-01

    aircraft to a defense electronics, systems integration and information technology company.39 Northrop Grumman no longer seeks a position as a prime...between the military and civil market . Though also upgrading the H-1 helicopter series for the USMC, Bell has mortgaged its future on tiltrotor technology ...business in export dollars, the industry has been forced to look for new markets as worldwide aircraft sales have dropped. Because the U.S. national

  5. Modeling Programs Increase Aircraft Design Safety

    Science.gov (United States)

    2012-01-01

    Flutter may sound like a benign word when associated with a flag in a breeze, a butterfly, or seaweed in an ocean current. When used in the context of aerodynamics, however, it describes a highly dangerous, potentially deadly condition. Consider the case of the Lockheed L-188 Electra Turboprop, an airliner that first took to the skies in 1957. Two years later, an Electra plummeted to the ground en route from Houston to Dallas. Within another year, a second Electra crashed. In both cases, all crew and passengers died. Lockheed engineers were at a loss as to why the planes wings were tearing off in midair. For an answer, the company turned to NASA s Transonic Dynamics Tunnel (TDT) at Langley Research Center. At the time, the newly renovated wind tunnel offered engineers the capability of testing aeroelastic qualities in aircraft flying at transonic speeds near or just below the speed of sound. (Aeroelasticity is the interaction between aerodynamic forces and the structural dynamics of an aircraft or other structure.) Through round-the-clock testing in the TDT, NASA and industry researchers discovered the cause: flutter. Flutter occurs when aerodynamic forces acting on a wing cause it to vibrate. As the aircraft moves faster, certain conditions can cause that vibration to multiply and feed off itself, building to greater amplitudes until the flutter causes severe damage or even the destruction of the aircraft. Flutter can impact other structures as well. Famous film footage of the Tacoma Narrows Bridge in Washington in 1940 shows the main span of the bridge collapsing after strong winds generated powerful flutter forces. In the Electra s case, faulty engine mounts allowed a type of flutter known as whirl flutter, generated by the spinning propellers, to transfer to the wings, causing them to vibrate violently enough to tear off. Thanks to the NASA testing, Lockheed was able to correct the Electra s design flaws that led to the flutter conditions and return the

  6. Human speech articulator measurements using low power, 2GHz Homodyne sensors

    International Nuclear Information System (INIS)

    Barnes, T; Burnett, G C; Holzrichter, J F

    1999-01-01

    Very low power, short-range microwave ''radar-like'' sensors can measure the motions and vibrations of internal human speech articulators as speech is produced. In these animate (and also in inanimate acoustic systems) microwave sensors can measure vibration information associated with excitation sources and other interfaces. These data, together with the corresponding acoustic data, enable the calculation of system transfer functions. This information appears to be useful for a surprisingly wide range of applications such as speech coding and recognition, speaker or object identification, speech and musical instrument synthesis, noise cancellation, and other applications

  7. Human speech articulator measurements using low power, 2GHz Homodyne sensors

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, T; Burnett, G C; Holzrichter, J F

    1999-06-29

    Very low power, short-range microwave ''radar-like'' sensors can measure the motions and vibrations of internal human speech articulators as speech is produced. In these animate (and also in inanimate acoustic systems) microwave sensors can measure vibration information associated with excitation sources and other interfaces. These data, together with the corresponding acoustic data, enable the calculation of system transfer functions. This information appears to be useful for a surprisingly wide range of applications such as speech coding and recognition, speaker or object identification, speech and musical instrument synthesis, noise cancellation, and other applications.

  8. Aerodynamic design of the Cal Poly Da Vinci Human-Powered Helicopter

    Science.gov (United States)

    Larwood, Scott; Saiki, Neal

    1990-01-01

    This paper will discuss the methodology used in designing the rotor and drive propellers for the third generation Cal Poly Da Vinci Human-Powered Helicopter. The rotor was designed using a lifting surface, uniform inflow hover analysis code and the propeller was designed using a minimum induced-loss method. Construction, geometry, and operating considerations are discussed as they impact the designs. Optimization of the design performance is also explained. The propellers were tested in a wind tunnel and results are compared with theoretical data. Successful flight tests of the Da Vinci III are discussed.

  9. A proposal for human factors education in a power plant company

    International Nuclear Information System (INIS)

    Hikono, Masaru

    2004-01-01

    The author was asked by a power plant company to investigate how to change the actual education system concerning human factor education for the plant staff. First, the problems faced by actual education system were investigated based on the results of a large number of surveys conducted in educational fields, and various documents. In the present paper, the author describes the newly proposed educational program., using as illustration a case study. The findings of the present study suggests that, concerning the content of the educational program, it is indispensable for each company to develop a curriculum based on its specific needs. (author)

  10. Human performance tools in nuclear power plants. Introduction, implementation and experiences

    International Nuclear Information System (INIS)

    Dexheimer, Kai; Bassing, Gerd; Kreuzer, Peter

    2015-01-01

    The basis of safe nuclear power plant operation (NPP) and a strong safety culture is the professional application of Human Performance Optimisation Tools (HPO). HPO trainings have been carried out by German NPPs for a number of years and recently also by Swiss NPPs. This article describes the origination, the bases, experiences and thereby the special features of the HPO training programme applied by German NPP operators. Moreover, this article provides an outlook on future developments - in particular when considering the requirements of the ongoing phase out of nuclear energy in Germany.

  11. Development of effective tool for iterative design of human machine interfaces in nuclear power plant

    International Nuclear Information System (INIS)

    Nakagawa, Takashi; Matsuo, Satoko; Yoshikawa, Hidekazu; Wu, Wei; Kameda, Akiyuki; Fumizawa, Motoo

    2000-01-01

    The authors have developed SEAMAID, which is a Simulation-based Evaluation and Analysis support system for MAn-machine Interface Design (SEAMAID) in the domain of nuclear power plants. The SEAMAID simulated the interaction between an operator and human machine interfaces (HMI), and supports to evaluate the HMI by using the simulation results. In this paper, a case study of evaluation for conventional center control room design was conducted. The authors were confirmed that SEAMAID is a useful tool for improvements of HMI design (J.P.N.)

  12. The NUCLARR databank: Human reliability and hardware failure data for the nuclear power industry

    International Nuclear Information System (INIS)

    Reece, W.J.

    1993-01-01

    Under the sponsorship of the US Nuclear Regulatory Commission (NRC), the Nuclear Computerized Library for Assessing Reactor Reliability (NUCLARR) was developed to provide human reliability and hardware failure data to analysts in the nuclear power industry. This IBM-compatible databank is contained on a set of floppy diskettes which include data files and a menu-driven system for locating, reviewing, sorting, and retrieving the data. NUCLARR contains over 2500 individual data records, drawn from more, than 60 sources. The system is upgraded annually, to include additional human error and hardware component failure data and programming enhancements (i.e., increased user-friendliness). NUCLARR is available from the NRC through project staff at the INEL

  13. Toward human-centered man-machine system in nuclear power plants

    International Nuclear Information System (INIS)

    Tanabe, Fumiya

    1993-01-01

    The Japanese LWR power plants are classified into 4 categories, from the viewpoints of the control panel in central control room and the extent of automation. Their characteristics are outlined. The potential weaknesses indwelt in the conventional approaches are discussed; that are the loss of applicability to the unanticipated facts and the loss of morale of the operators. The need for the construction of human-centered man-machine system is emphasized in order to overcome these potential weaknesses. The most important features required for the system are, in short term, to support operators in dificulties, and at the same time, in long term, to assure the acquisition and conservation of the personnels' morale and potential to cope with the problems. The concepts of the 'ecological interface' and 'adaptive aiding' system are introduced as the design concepts for the human-centered man-machine system. (J.P.N.)

  14. Opening remarks at the International Conference on Human Resource Development for Introducing and Expanding Nuclear Power Programmes

    International Nuclear Information System (INIS)

    Klein, D.E.

    2010-03-01

    The topic of this conference - human resources development and the expansion of nuclear power - is about the commitment and investment in people. The importance of this 'human side' of modern technology is sometimes forgotten or assumed to develop on its own once basic educational programs and institutions are put in place. In my view, the development and maintenance of a skilled national workforce is critical to the development of a stable, successful national nuclear power program

  15. Aircraft to aircraft intercomparison during SEMAPHORE

    Science.gov (United States)

    Lambert, Dominique; Durand, Pierre

    1998-10-01

    During the Structure des Echanges Mer-Atmosphère, Propriétés des Hétérogénéités Océaniques: Recherche Expérimentale (SEMAPHORE) experiment, performed in the Azores region in 1993, two French research aircraft were simultaneously used for in situ measurements in the atmospheric boundary layer. We present the results obtained from one intercomparison flight between the two aircraft. The mean parameters generally agree well, although the temperature has to be slightly shifted in order to be in agreement for the two aircraft. A detailed comparison of the turbulence parameters revealed no bias. The agreement is good for variances and is satisfactory for fluxes and skewness. A thorough study of the errors involved in flux computation revealed that the greatest accuracy is obtained for latent heat flux. Errors in sensible heat flux are considerably greater, and the worst results are obtained for momentum flux. The latter parameter, however, is more accurate than expected from previous parameterizations.

  16. Results of a nuclear power plant Application of a new technique for human error analysis (ATHEANA)

    International Nuclear Information System (INIS)

    Forester, J.A.; Whitehead, D.W.; Kolaczkowski, A.M.; Thompson, C.M.

    1997-01-01

    A new method to analyze human errors has been demonstrated at a pressurized water reactor (PWR) nuclear power plant. This was the first application of the new method referred to as A Technique for Human Error Analysis (ATHEANA). The main goals of the demonstration were to test the ATHEANA process as described in the frame-of-reference manual and the implementation guideline, test a training package developed for the method, test the hypothesis that plant operators and trainers have significant insight into the error-forcing-contexts (EFCs) that can make unsafe actions (UAs) more likely, and to identify ways to improve the method and its documentation. A set of criteria to evaluate the open-quotes successclose quotes of the ATHEANA method as used in the demonstration was identified. A human reliability analysis (HRA) team was formed that consisted of an expert in probabilistic risk assessment (PRA) with some background in HRA (not ATHEANA) and four personnel from the nuclear power plant. Personnel from the plant included two individuals from their PRA staff and two individuals from their training staff. Both individuals from training are currently licensed operators and one of them was a senior reactor operator open-quotes on shiftclose quotes until a few months before the demonstration. The demonstration was conducted over a 5 month period and was observed by members of the Nuclear Regulatory Commission's ATHEANA development team, who also served as consultants to the HRA team when necessary. Example results of the demonstration to date, including identified human failure events (HFEs), UAs, and EFCs are discussed. Also addressed is how simulator exercises are used in the ATHEANA demonstration project

  17. Human performance evaluation: The procedures of ultimate response guideline for nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Kang-Hung, E-mail: alvinks@iner.gov.tw [Institute of Nuclear Energy Research, Atomic Engery Council, No. 1000, Whenhua Road, Jiaan Village, Longtan Township, Taoyuan County, Taiwan (China); Hwang, Sheue-Ling, E-mail: slhwang@ie.nthu.edu.tw [Department of Industrial Engineering and Engineering Management, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu, Taiwan 30013, Taiwan (China)

    2014-07-01

    Highlights: • This study adopts SPAR-H to evaluate HEPs in the URG procedures. • The involvement of URG procedures could reduce CDF significantly. • Upgrading the training level of staff will enhance the reliability effectively. • Aiding the plant manager in making URG decision will enhance the reliability. - Abstract: In the nuclear accident which occurred in Japan on March 11, 2011, several units of Fukushima conventional BWR experienced a total loss of power and water supply triggered by a heavy earthquake and subsequent Tsunami which were outside design models. In the past, when an accident occurred, operators in nuclear power plants (NPP) followed emergency operating procedures (EOPs) or severe accident management guidance (SAMG). However, EOP and SAMG are symptom-based procedures to cope with severe transients and accidents, depending on real-time operational parameters. Ultimate response guidelines (URG), a plant specific interim remedy action plan, was developed to manage accidents caused by compound disasters which exceed design models. The URG guides the plant operators’ conduct of reactor depressurization, core cooling water injection, and containment venting. This study adopts NUREG/CR-6883 (Standardized Plant Analysis Risk Human Reliability Analysis, SPAR-H) to evaluate human error probabilities (HEPs) of action and diagnosis in the current URG procedures. We found the human reliability of URG procedures analyzed by SPAR-H is about 85% (depending on different decision makers). Upgrading the training level of staff or enhancing plant managers ability to decide whether to execute URG will enhance the human reliability of URG procedures.

  18. Assessment of Human Performance and Safety Culture at the Paks Nuclear Power Plant

    International Nuclear Information System (INIS)

    Toth, Janos; Hadnagy, Lajos

    2002-01-01

    Evaluation of human performance and safety culture of the personnel at a Nuclear Power Plant is a very important element of the self assessment process. At the Paks NPP a systematic approach to this problem started in the early 90's. The first comprehensive analysis of the human performance of the personnel was performed by the Hungarian Research Institute for Electric Power (VEIKI). The analysis of human failures is also a part of the investigation and analysis of safety related reported events. This human performance analysis of events is carried out by the Laboratory of Psychology of the plant and a supporting organisation namely the Department of Ergonomics and Psychology of the Budapest University of Technical and Economical Sciences. The analysis of safety culture at the Paks NPP has been in the focus of attention since the implementation of the INSAG-4 document started world-wide. In 1993 an IAEA model project namely 'Strengthening Training for Operational Safety' was initiated with a sub-project called 'Enhancement of Safety Culture'. Within this project the first step was the initial assessment of the safety culture level at the Paks NPP. It was followed by some corrective actions and safety culture improvement programme. In 1999 the second assessment was performed in order to evaluate the progress as a result of the improvement programme. A few indicators reflecting the elements of safety culture were defined and compared. The assessment of the safety culture with a survey among the managers was performed in September 2000 and the results are being evaluated at the moment. The intention of the plant management is to repeat the assessment every 2-3 years and evaluate the trend of the indicator. (authors)

  19. Expert judgment in analysis of human and organizational behaviour at nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Reiman, L [Finnish Centre for Radiation and Nuclear Safety, Helsinki (Finland). Dept. of Nuclear Safety

    1994-12-01

    Probabilistic safety assessment (PSA) of a nuclear power plant includes an assessment of the probability of each event sequence that can lead to a reactor core damage and of their consequences. Despite increasing maturity of PSA methods, there are still several problems in their use. These include the assessment of human reliability and the impact of organizational factors on plant safety. The assessment of both these issues is based on expert judgment. Therefore, the use of expert judgment in analysis of human and organizational behaviour was studied theoretically and in practical case studies in this thesis. Human errors were analysed in two case studies. In the first study cognitive actions of control room operators were analysed. For this purpose methods were developed for the qualitative and quantitative phases of the analysis. Errors of test and maintenance personnel were analysed in the second case study. Especially the dependence of errors between sequential tasks performed in redundant subsystems of a safety system was studied. A method to assess organizational behaviour was developed and applied in the third case study. The three case studies demonstrated that expert judgment can be used in the analysis of human reliability and organizational behaviour taking into account the observations made and the remarks presented in the study. However, significant uncertainties are related with expert judgment. Recommendations are presented concerning the use of different methods. Also, some insights are presented into how reliance on expert judgment could be reduced. (241 refs., 20 figs., 36 tabs.).

  20. The human factors and job task analysis in nuclear power plant operation

    International Nuclear Information System (INIS)

    Stefanescu, Petre; Mihailescu, Nicolae; Dragusin, Octavian

    1999-01-01

    After a long period of time, during the development of the NPP technology, where the plant hardware has been considered to be the main factor for a safe, reliable and economic operation, the industry is now changing to an adequate responsibility of plant hardware and operation. Since the human factors has been not discussed methodically so far, there is still a lack of improved classification systems for human errors as well as a lack of methods for the systematic approach in designing the operator's working system, as for instance by using the job task analysis (J.T.A.). The J.T.A. appears to be an adequate method to study the human factor in the nuclear power plant operation, enabling an easy conversion to operational improvements. While the results of the analysis of human errors tell 'what' is to be improved, the J.T.A. shows 'how' to improve, for increasing the quality of the work and the safety of the operator's working system. The paper analyses the issue of setting the task and displays four criteria used to select aspects in NPP operation which require special consideration as personal training, design of control room, content and layout of the procedure manual, or organizing the operating personnel. The results are given as three tables giving: 1- Evaluation of deficiencies in the Working System; 2- Evaluation of the Deficiencies of Operator's Disposition; 3- Evaluation of the Mental Structure of Operation

  1. Expert judgment in analysis of human and organizational behaviour at nuclear power plants

    International Nuclear Information System (INIS)

    Reiman, L.

    1994-12-01

    Probabilistic safety assessment (PSA) of a nuclear power plant includes an assessment of the probability of each event sequence that can lead to a reactor core damage and of their consequences. Despite increasing maturity of PSA methods, there are still several problems in their use. These include the assessment of human reliability and the impact of organizational factors on plant safety. The assessment of both these issues is based on expert judgment. Therefore, the use of expert judgment in analysis of human and organizational behaviour was studied theoretically and in practical case studies in this thesis. Human errors were analysed in two case studies. In the first study cognitive actions of control room operators were analysed. For this purpose methods were developed for the qualitative and quantitative phases of the analysis. Errors of test and maintenance personnel were analysed in the second case study. Especially the dependence of errors between sequential tasks performed in redundant subsystems of a safety system was studied. A method to assess organizational behaviour was developed and applied in the third case study. The three case studies demonstrated that expert judgment can be used in the analysis of human reliability and organizational behaviour taking into account the observations made and the remarks presented in the study. However, significant uncertainties are related with expert judgment. Recommendations are presented concerning the use of different methods. Also, some insights are presented into how reliance on expert judgment could be reduced. (241 refs., 20 figs., 36 tabs.)

  2. A HUMAN FACTORS META MODEL FOR U.S. NUCLEAR POWER PLANT CONTROL ROOM MODERNIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Joe, Jeffrey C.

    2017-03-01

    Over the last several years, the United States (U.S.) Department of Energy (DOE) has sponsored human factors research and development (R&D) and human factors engineering (HFE) activities through its Light Water Reactor Sustainability (LWRS) program to modernize the main control rooms (MCR) of commercial nuclear power plants (NPP). Idaho National Laboratory (INL), in partnership with numerous commercial nuclear utilities, has conducted some of this R&D to enable the life extension of NPPs (i.e., provide the technical basis for the long-term reliability, productivity, safety, and security of U.S. NPPs). From these activities performed to date, a human factors meta model for U.S. NPP control room modernization can now be formulated. This paper discusses this emergent HFE meta model for NPP control room modernization, with the goal of providing an integrated high level roadmap and guidance on how to perform human factors R&D and HFE for those in the U.S. nuclear industry that are engaging in the process of upgrading their MCRs.

  3. Human observer detection experiments with mammograms and power-law noise

    International Nuclear Information System (INIS)

    Burgess, Arthur E.; Jacobson, Francine L.; Judy, Philip F.

    2001-01-01

    We determined contrast thresholds for lesion detection as a function of lesion size in both mammograms and filtered noise backgrounds with the same average power spectrum, P(f )=B/f 3 . Experiments were done using hybrid images with digital images of tumors added to digitized normal backgrounds, displayed on a monochrome monitor. Four tumors were extracted from digitized specimen radiographs. The lesion sizes were varied by digital rescaling to cover the range from 0.5 to 16 mm. Amplitudes were varied to determine the value required for 92% correct detection in two-alternative forced-choice (2AFC) and 90% for search experiments. Three observers participated, two physicists and a radiologist. The 2AFC mammographic results demonstrated a novel contrast-detail (CD) diagram with threshold amplitudes that increased steadily (with slope of 0.3) with increasing size for lesions larger than 1 mm. The slopes for prewhitening model observers were about 0.4. Human efficiency relative to these models was as high as 90%. The CD diagram slopes for the 2AFC experiments with filtered noise were 0.44 for humans and 0.5 for models. Human efficiency relative to the ideal observer was about 40%. The difference in efficiencies for the two types of backgrounds indicates that breast structure cannot be considered to be pure random noise for 2AFC experiments. Instead, 2AFC human detection with mammographic backgrounds is limited by a combination of noise and deterministic masking effects. The search experiments also gave thresholds that increased with lesion size. However, there was no difference in human results for mammographic and filtered noise backgrounds, suggesting that breast structure can be considered to be pure random noise for this task. Our conclusion is that, in spite of the fact that mammographic backgrounds have nonstationary statistics, models based on statistical decision theory can still be applied successfully to estimate human performance

  4. Advanced technology components for model GTP305-2 aircraft auxiliary power system. Final report 6 May 75-15 Jul 79

    Energy Technology Data Exchange (ETDEWEB)

    Kidwell, J.R.; Large, G.D.

    1980-02-01

    The GTP305-2 Advanced APU is a single shaft, all shaft power engine incorporating an axial-centrifugal compressor, a reverse flow annular combustor and a radial-axial turbine. Cycle analyses indicated a 10-percent high pressure compressor flow increase improved matching characteristics with the low pressure compressor. The combustion system is a reverse flow annular combustor with an air-assist/airblast fuel injection system. The radial-axial turbine stage is characterized by an integrally cast turbine rotor and a cast exhaust duct assembly. The Integrated Components Assembly (ICA) rig consists of the combustor and turbines with a dummy mass on the shaft to simulate the compressor. ICA testing was conducted to establish component performance at design operating conditions. ICA and cold air aerodynamic testing of the turbine stage and cooling flow effects, indicates design efficiency goals were exceeded. ICA test results, cold-air testing and combustion system parameters were input to the cycle model. Room temperature strain-control LCF tests were performed and results analyzed on a Weibull distribution. Data analysis indicated LCF life improvement was obtained through HIP and heat treatment.

  5. 150 Passenger Commercial Aircraft

    Science.gov (United States)

    Bucovsky, Adrian; Romli, Fairuz I.; Rupp, Jessica

    2002-01-01

    It has been projected that the need for a short-range mid-sized, aircraft is increasing. The future strategy to decrease long-haul flights will increase the demand for short-haul flights. Since passengers prefer to meet their destinations quickly, airlines will increase the frequency of flights, which will reduce the passenger load on the aircraft. If a point-to-point flight is not possible, passengers will prefer only a one-stop short connecting flight to their final destination. A 150-passenger aircraft is an ideal vehicle for these situations. It is mid-sized aircraft and has a range of 3000 nautical miles. This type of aircraft would market U.S. domestic flights or inter-European flight routes. The objective of the design of the 150-passenger aircraft is to minimize fuel consumption. The configuration of the aircraft must be optimized. This aircraft must meet CO2 and NOx emissions standards with minimal acquisition price and operating costs. This report contains all the work that has been performed for the completion of the design of a 150 passenger commercial aircraft. The methodology used is the Technology Identification, Evaluation, and Selection (TIES) developed at Georgia Tech Aerospace Systems Design laboratory (ASDL). This is an eight-step conceptual design process to evaluate the probability of meeting the design constraints. This methodology also allows for the evaluation of new technologies to be implemented into the design. The TIES process begins with defining the problem with a need established and a market targeted. With the customer requirements set and the target values established, a baseline concept is created. Next, the design space is explored to determine the feasibility and viability of the baseline aircraft configuration. If the design is neither feasible nor viable, new technologies can be implemented to open up the feasible design space and allow for a plausible solution. After the new technologies are identified, they must be evaluated

  6. Nuclear power flies high

    International Nuclear Information System (INIS)

    Friedman, S.T.

    1983-01-01

    Nuclear power in aircraft, rockets and satellites is discussed. No nuclear-powered rockets or aircraft have ever flown, but ground tests were successful. Nuclear reactors are used in the Soviet Cosmos serles of satellites, but only one American satellite, the SNAP-10A, contained a reactor. Radioisotope thermoelectric generators, many of which use plutonium 238, have powered more than 20 satellites launched into deep space by the U.S.A

  7. Does ankle joint power reflect type of muscle action of soleus and gastrocnemius during walking in cats and humans?

    Science.gov (United States)

    Cronin, Neil J; Prilutsky, Boris I; Lichtwark, Glen A; Maas, Huub

    2013-04-26

    The main objective of this paper is to highlight the difficulties of identifying shortening and lengthening contractions based on analysis of power produced by resultant joint moments. For that purpose, we present net ankle joint powers and muscle fascicle/muscle-tendon unit (MTU) velocities for medial gastrocnemius (MG) and soleus (SO) muscles during walking in species of different size (humans and cats). For the cat, patterns of ankle joint power and MTU velocity of MG and SO during stance were similar: negative power (ankle moment×angular velocityankle joint power and fascicle velocity patterns were observed for MG muscle. In humans, like cats, the patterns of ankle joint power and MTU velocity of SO and MG were similar. Unlike the cat, there were substantial differences between patterns of fascicle velocity and ankle joint power during stance in both muscles. These results indicate that during walking, only a small fraction of mechanical work of the ankle moment is either generated or absorbed by the muscle fascicles, thus confirming the contribution of in-series elastic structures and/or energy transfer via two-joint muscles. We conclude that ankle joint negative power does not necessarily indicate eccentric action of muscle fibers and that positive power cannot be exclusively attributed to muscle concentric action, especially in humans. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. A Grounded Theory Study of Aircraft Maintenance Technician Decision-Making

    Science.gov (United States)

    Norcross, Robert

    Aircraft maintenance technician decision-making and actions have resulted in aircraft system errors causing aircraft incidents and accidents. Aircraft accident investigators and researchers examined the factors that influence aircraft maintenance technician errors and categorized the types of errors in an attempt to prevent similar occurrences. New aircraft technology introduced to improve aviation safety and efficiency incur failures that have no information contained in the aircraft maintenance manuals. According to the Federal Aviation Administration, aircraft maintenance technicians must use only approved aircraft maintenance documents to repair, modify, and service aircraft. This qualitative research used a grounded theory approach to explore the decision-making processes and actions taken by aircraft maintenance technicians when confronted with an aircraft problem not contained in the aircraft maintenance manuals. The target population for the research was Federal Aviation Administration licensed aircraft and power plant mechanics from across the United States. Nonprobability purposeful sampling was used to obtain aircraft maintenance technicians with the experience sought in the study problem. The sample population recruitment yielded 19 participants for eight focus group sessions to obtain opinions, perceptions, and experiences related to the study problem. All data collected was entered into the Atlas ti qualitative analysis software. The emergence of Aircraft Maintenance Technician decision-making themes regarding Aircraft Maintenance Manual content, Aircraft Maintenance Technician experience, and legal implications of not following Aircraft Maintenance Manuals surfaced. Conclusions from this study suggest Aircraft Maintenance Technician decision-making were influenced by experience, gaps in the Aircraft Maintenance Manuals, reliance on others, realizing the impact of decisions concerning aircraft airworthiness, management pressures, and legal concerns

  9. Critical human-factors issues in nuclear-power regulation and a recommended comprehensive human-factors long-range plan. Executive summary

    International Nuclear Information System (INIS)

    Hopkins, C.O.; Snyder, H.L.; Price, H.E.; Hornick, R.J.; Mackie, R.R.; Smillie, R.J.; Sugarman, R.C.

    1982-08-01

    This comprehensive long-range human factors plan for nuclear reactor regulation was developed by a Study Group of the Human Factors Society, Inc. This Study Group was selected by the Executive Council of the Society to provide a balanced, experienced human factors perspective to the applications of human factors scientific and engineering knowledge to nuclear power generation. The report is presented in three volumes. Volume 1 contains an Executive Summary of the 18-month effort and its conclusions. Volume 2 summarizes all known nuclear-related human factors activities, evaluates these activities wherever adequate information is available, and describes the recommended long-range (10-year) plan for human factors in regulation. Volume 3 elaborates upon each of the human factors issues and areas of recommended human factors involvement contained in the plan, and discusses the logic that led to the recommendations

  10. Computational Fluid Dynamics Ventilation Study for the Human Powered Centrifuge at the International Space Station

    Science.gov (United States)

    Son, Chang H.

    2012-01-01

    The Human Powered Centrifuge (HPC) is a facility that is planned to be installed on board the International Space Station (ISS) to enable crew exercises under the artificial gravity conditions. The HPC equipment includes a "bicycle" for long-term exercises of a crewmember that provides power for rotation of HPC at a speed of 30 rpm. The crewmember exercising vigorously on the centrifuge generates the amount of carbon dioxide of about two times higher than a crewmember in ordinary conditions. The goal of the study is to analyze the airflow and carbon dioxide distribution within Pressurized Multipurpose Module (PMM) cabin when HPC is operating. A full unsteady formulation is used for airflow and CO2 transport CFD-based modeling with the so-called sliding mesh concept when the HPC equipment with the adjacent Bay 4 cabin volume is considered in the rotating reference frame while the rest of the cabin volume is considered in the stationary reference frame. The rotating part of the computational domain includes also a human body model. Localized effects of carbon dioxide dispersion are examined. Strong influence of the rotating HPC equipment on the CO2 distribution detected is discussed.

  11. Design of intelligent comfort control system with human learning and minimum power control strategies

    International Nuclear Information System (INIS)

    Liang, J.; Du, R.

    2008-01-01

    This paper presents the design of an intelligent comfort control system by combining the human learning and minimum power control strategies for the heating, ventilating and air conditioning (HVAC) system. In the system, the predicted mean vote (PMV) is adopted as the control objective to improve indoor comfort level by considering six comfort related variables, whilst a direct neural network controller is designed to overcome the nonlinear feature of the PMV calculation for better performance. To achieve the highest comfort level for the specific user, a human learning strategy is designed to tune the user's comfort zone, and then, a VAV and minimum power control strategy is proposed to minimize the energy consumption further. In order to validate the system design, a series of computer simulations are performed based on a derived HVAC and thermal space model. The simulation results confirm the design of the intelligent comfort control system. In comparison to the conventional temperature controller, this system can provide a higher comfort level and better system performance, so it has great potential for HVAC applications in the future

  12. Human-factors methods for assessing and enhancing power-plant maintainability

    International Nuclear Information System (INIS)

    Seminara, J.L.

    1982-05-01

    EPRI Final Report NP-1567, dated February 1981, presented the results of a human factors review of plant maintainability at nine power plants (five nuclear and four fossil). This investigation revealed a wide range of plant and equipment design features that can potentially compromise the effectiveness, safety, and productivity of maintenance personnel. The present study is an extension of the earlier work. It provides those utilities that did not participate in the original study with the methodological tools to conduct a review of maintenance provisions, facilities, and practices. This report describes and provides a self-review checklist; a structured interview; a task analysis approach; methods for reviewing maintenance errors or accidents; and recommended survey techniques for evaluating such factors as noise, illumination, and communications. Application of the human factors methods described in this report should reveal avenues for enhancing existing power plants from the maintainability and availability standpoints. This document may also serve a useful purpose for designers or reviewers of new plant designs or near-operational plants presently being constructed

  13. Information note about the protection of nuclear facilities against aircraft crashes

    International Nuclear Information System (INIS)

    2001-01-01

    The protection of nuclear facilities against external risks (earthquakes, floods, fires etc..) is an aspect of safety taken into consideration by the French authority of nuclear safety (ASN). Concerning the aircraft crashes, the fundamental safety rules make three categories of aircraft: the small civil aircraft (weight 5.7 t). Nuclear facilities are designed to resist against crashes of aircraft from the first category only, because the probability of the accidental crash of a big aircraft are extremely low. This document comprises an information note about the protection of nuclear facilities against aircraft crashes, a dossier about the safety of nuclear facilities with respect to external risks in general (natural disasters and aircraft crashes), and an article about the protection of nuclear power plants against aircraft crashes (design, safety measures, regulation, surveillance, experience feedback). (J.S.)

  14. An Approach to Sensorless Detection of Human Input Torque and Its Application to Power Assist Motion in Electric Wheelchair

    Science.gov (United States)

    Kaida, Yukiko; Murakami, Toshiyuki

    A wheelchair is an important apparatus of mobility for people with disability. Power-assist motion in an electric wheelchair is to expand the operator's field of activities. This paper describes force sensorless detection of human input torque. Reaction torque estimation observer calculates the total disturbance torque first. Then, the human input torque is extracted from the estimated disturbance. In power-assist motion, assist torque is synthesized according to the product of assist gain and the average torque of the right and left input torque. Finally, the proposed method is verified through the experiments of power-assist motion.

  15. A basic framework for the analysis of the human error potential due to the computerization in nuclear power plants

    International Nuclear Information System (INIS)

    Lee, Y. H.

    1999-01-01

    Computerization and its vivid benefits expected in the nuclear power plant design cannot be realized without verifying the inherent safety problems. Human error aspect is also included in the verification issues. The verification spans from the perception of the changes in operation functions such as automation to the unfamiliar experience of operators due to the interface change. Therefore, a new framework for human error analysis might capture both the positive and the negative effect of the computerization. This paper suggest a basic framework for error identification through the review of the existing human error studies and the experience of computerizations in nuclear power plants

  16. Studies of safety and critical work situations in nuclear power plants: A human factors perspective

    International Nuclear Information System (INIS)

    Jacobsson Kecklund, L.

    1998-05-01

    The purpose of this thesis was to develop and apply different approaches for analyzing safety in critical work situations in real work settings in nuclear power plants, and also to identify safety enhancing measures by using the framework of interaction between human, organizational and technical subsystems. A Cognitive Psychology as well as a Stress Psychology framework was used. All studies were related to the annual outage operational state where the need for coping with many infrequent tasks, often carried out under high time pressure, puts great strain on the staff and organisation of the plant. In three studies the natural variations in the plant state, normal operation and annual outage operation, were used to explore human performance, work-related factors as well as coping and the operators' own resources and the relationship between them. In the annual outage condition high work demands, decreased sleepiness at night shift, more errors and less satisfaction with work performance quality was reported by maintenance as well as by control room operators. A relationship between high work demands and more organizational problems and reports of more frequent human errors and lower satisfactions with work performance quality was also identified in the annual outage condition. Moreover, a relationship between increased sleepiness during night shift, more frequent use of coping strategies and a higher frequency of human errors was reported. In two studies the Event and Barrier Function Model was applied to analyze the safety of barrier function systems inserted into work process sequences to protect the systems from the negative consequences of failures and errors. The model was also used to assess safety in relation to a technical and organizational change. The last study addressed changes in work performance and work-related factors in relation to a technical and organizational change of a safety significant work process involving increased automation and new

  17. Optimizing the human engineering design of control panels in nuclear power plant control rooms

    International Nuclear Information System (INIS)

    Behrendt, V.; Krehbiehl, T.; Hartfiel, H.D.; Mannhaupt, H.R.

    1986-12-01

    The study contains two parts. In the first part an analytical procedure is developed to logically and reproducibly subdivide the control room personnel tasks resulting in a list of the elements (operations) and the structure (operations scheme) of a task. The second part lists together all knowledge of and influences on human engineering which are known at this time and which should be taken into account in designing control rooms. The content of this catalogue can best be used and presented by using a personal computer. Two fundamental different ways are possible to use the catalogue. Designing new control rooms or new parts of control rooms the results of the task analysis which should be done first, should guide the search in the catalogue to find the right human engineering factors. For assessing existing control room panels the performance shaping factors which are establishing the table of content, permit a quick access to the catalogue. Both the specific procedure of the task analysis and the different ways of access to the catalogue of human engineering knowledge for designing nuclear power plant control rooms have been proven by experienced system engineers and safety experts. The results are presented. They have been considered in this version of the study. (orig.) [de

  18. Behavioral simulation of a nuclear power plant operator crew for human-machine system design

    International Nuclear Information System (INIS)

    Furuta, K.; Shimada, T.; Kondo, S.

    1999-01-01

    This article proposes an architecture of behavioral simulation of an operator crew in a nuclear power plant including group processes and interactions between the operators and their working environment. An operator model was constructed based on the conceptual human information processor and then substantiated as a knowledge-based system with multiple sets of knowledge base and blackboard, each of which represents an individual operator. From a trade-off between reality and practicality, we adopted an architecture of simulation that consists of the operator, plant and environment models in order to consider operator-environment interactions. The simulation system developed on this framework and called OCCS was tested using a scenario of BWR plant operation. The case study showed that operator-environment interactions have significant effects on operator crew performance and that they should be considered properly for simulating behavior of human-machine systems. The proposed architecture contributed to more realistic simulation in comparison with an experimental result, and a good prospect has been obtained that computer simulation of an operator crew is feasible and useful for human-machine system design. (orig.)

  19. Safe Operation of Nuclear Power Plants: Impacts of Human and Organisational Factors and Emerging Technologies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    In co-operation with the OECD Nuclear Energy Agency (NEA), the Halden Reactor Project organised a Summer School on ''Safe Operation of Nuclear Power Plants: Impacts of Human and Organisational Factors and Emerging Technologies'' in the period August 27-August 31, 2001. The Summer School was intended for scientists, engineers and technicians working for nuclear installations, engineering companies, industry and members of universities and research institutes, who wanted to broaden their nuclear background by getting acquainted with Man-Technology-Organisation-related subjects and issues. The Summer School should also serve to transfer knowledge to the ''young generation'' in the nuclear field. The following presentations were given: (1) Overview of the Nuclear Community and Current issues, (2) The Elements of Safety Culture; Evaluation of Events, (3) Quality Management (QM), (4) Probabilistic Risk Assessment (PSA), (5) Human Behaviour from the Viewpoint of Industrial Psychology, (6) Technical tour of the Halden Project Experimental Facilities, (7) Human Factors in Control Room Design, (8) Computerised Operator Support Systems (COSSs) and (9) Artificial Intelligence; a new Approach. Most of the contributions are overhead figures from spoken lectures.

  20. Energy Harvesting from the Animal/Human Body for Self-Powered Electronics.

    Science.gov (United States)

    Dagdeviren, Canan; Li, Zhou; Wang, Zhong Lin

    2017-06-21

    Living subjects (i.e., humans and animals) have abundant sources of energy in chemical, thermal, and mechanical forms. The use of these energies presents a viable way to overcome the battery capacity limitation that constrains the long-term operation of wearable/implantable devices. The intersection of novel materials and fabrication techniques offers boundless possibilities for the benefit of human health and well-being via various types of energy harvesters. This review summarizes the existing approaches that have been demonstrated to harvest energy from the bodies of living subjects for self-powered electronics. We present material choices, device layouts, and operation principles of these energy harvesters with a focus on in vivo applications. We discuss a broad range of energy harvesters placed in or on various body parts of human and animal models. We conclude with an outlook of future research in which the integration of various energy harvesters with advanced electronics can provide a new platform for the development of novel technologies for disease diagnostics, treatment, and prevention.

  1. Updating Human Factors Engineering Guidelines for Conducting Safety Reviews of Nuclear Power Plants

    International Nuclear Information System (INIS)

    O'Hara, J.M.; Higgins, J.; Fleger, Stephen

    2011-01-01

    The U.S. Nuclear Regulatory Commission (NRC) reviews the human factors engineering (HFE) programs of applicants for nuclear power plant construction permits, operating licenses, standard design certifications, and combined operating licenses. The purpose of these safety reviews is to help ensure that personnel performance and reliability are appropriately supported. Detailed design review procedures and guidance for the evaluations is provided in three key documents: the Standard Review Plan (NUREG-0800), the HFE Program Review Model (NUREG-0711), and the Human-System Interface Design Review Guidelines (NUREG-0700). These documents were last revised in 2007, 2004 and 2002, respectively. The NRC is committed to the periodic update and improvement of the guidance to ensure that it remains a state-of-the-art design evaluation tool. To this end, the NRC is updating its guidance to stay current with recent research on human performance, advances in HFE methods and tools, and new technology being employed in plant and control room design. This paper describes the role of HFE guidelines in the safety review process and the content of the key HFE guidelines used. Then we will present the methodology used to develop HFE guidance and update these documents, and describe the current status of the update program.

  2. Safe Operation of Nuclear Power Plants: Impacts of Human and Organisational Factors and Emerging Technologies

    International Nuclear Information System (INIS)

    2001-01-01

    In co-operation with the OECD Nuclear Energy Agency (NEA), the Halden Reactor Project organised a Summer School on ''Safe Operation of Nuclear Power Plants: Impacts of Human and Organisational Factors and Emerging Technologies'' in the period August 27-August 31, 2001. The Summer School was intended for scientists, engineers and technicians working for nuclear installations, engineering companies, industry and members of universities and research institutes, who wanted to broaden their nuclear background by getting acquainted with Man-Technology-Organisation-related subjects and issues. The Summer School should also serve to transfer knowledge to the ''young generation'' in the nuclear field. The following presentations were given: (1) Overview of the Nuclear Community and Current issues, (2) The Elements of Safety Culture; Evaluation of Events, (3) Quality Management (QM), (4) Probabilistic Risk Assessment (PSA), (5) Human Behaviour from the Viewpoint of Industrial Psychology, (6) Technical tour of the Halden Project Experimental Facilities, (7) Human Factors in Control Room Design, (8) Computerised Operator Support Systems (COSSs) and (9) Artificial Intelligence; a new Approach. Most of the contributions are overhead figures from spoken lectures

  3. A Function-Behavior-State Approach to Designing Human Machine Interface for Nuclear Power Plant Operators

    Science.gov (United States)

    Lin, Y.; Zhang, W. J.

    2005-02-01

    This paper presents an approach to human-machine interface design for control room operators of nuclear power plants. The first step in designing an interface for a particular application is to determine information content that needs to be displayed. The design methodology for this step is called the interface design framework (called framework ). Several frameworks have been proposed for applications at varying levels, including process plants. However, none is based on the design and manufacture of a plant system for which the interface is designed. This paper presents an interface design framework which originates from design theory and methodology for general technical systems. Specifically, the framework is based on a set of core concepts of a function-behavior-state model originally proposed by the artificial intelligence research community and widely applied in the design research community. Benefits of this new framework include the provision of a model-based fault diagnosis facility, and the seamless integration of the design (manufacture, maintenance) of plants and the design of human-machine interfaces. The missing linkage between design and operation of a plant was one of the causes of the Three Mile Island nuclear reactor incident. A simulated plant system is presented to explain how to apply this framework in designing an interface. The resulting human-machine interface is discussed; specifically, several fault diagnosis examples are elaborated to demonstrate how this interface could support operators' fault diagnosis in an unanticipated situation.

  4. Safe Operation of Nuclear Power Plants: Impacts of Human and Organisational Factors and Emerging Technologies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    In co-operation with the OECD Nuclear Energy Agency (NEA), the Halden Reactor Project organised a Summer School on ''Safe Operation of Nuclear Power Plants: Impacts of Human and Organisational Factors and Emerging Technologies'' in the period August 27-August 31, 2001. The Summer School was intended for scientists, engineers and technicians working for nuclear installations, engineering companies, industry and members of universities and research institutes, who wanted to broaden their nuclear background by getting acquainted with Man-Technology-Organisation-related subjects and issues. The Summer School should also serve to transfer knowledge to the ''young generation'' in the nuclear field. The following presentations were given: (1) Overview of the Nuclear Community and Current issues, (2) The Elements of Safety Culture; Evaluation of Events, (3) Quality Management (QM), (4) Probabilistic Risk Assessment (PSA), (5) Human Behaviour from the Viewpoint of Industrial Psychology, (6) Technical tour of the Halden Project Experimental Facilities, (7) Human Factors in Control Room Design, (8) Computerised Operator Support Systems (COSSs) and (9) Artificial Intelligence; a new Approach. Most of the contributions are overhead figures from spoken lectures.

  5. A human reliability analysis of the Three Mile power plant accident considering the THERP and ATHEANA methodologies

    International Nuclear Information System (INIS)

    Fonseca, Renato Alves da

    2004-03-01

    The main purpose of this work is the study of human reliability using the THERP (Technique for Human Error Prediction) and ATHEANA methods (A Technique for Human Error Analysis), and some tables and also, from case studies presented on the THERP Handbook to develop a qualitative and quantitative study of nuclear power plant accident. This accident occurred in the TMI (Three Mile Island Unit 2) power plant, PWR type plant, on March 28th, 1979. The accident analysis has revealed a series of incorrect actions, which resulted in the Unit 2 shut down and permanent loss of the reactor. This study also aims at enhancing the understanding of the THERP method and ATHEANA, and of its practical applications. In addition, it is possible to understand the influence of plant operational status on human failures and of these on equipment of a system, in this case, a nuclear power plant. (author)

  6. AEROSTATIC AND AERODYNAMIC MODULES OF A HYBRID BUOYANT AIRCRAFT: AN ANALYTICAL APPROACH

    Directory of Open Access Journals (Sweden)

    Anwar Ul Haque

    2015-05-01

    Full Text Available An analytical approach is essential for the estimation of the requirements of aerodynamic and aerostatic lift for a hybrid buoyant aircraft. Such aircrafts have two different modules to balance the weight of aircraft; aerostatic module and aerodynamic module. Both these modules are to be treated separately for estimation of the mass budget of propulsion systems and required power. In the present work, existing relationships of aircraft and airship are reviewed for its further application for these modules. Limitations of such relationships are also disussed and it is precieved that it will provide a strating point for better understanding of design anatomy of such aircraft.

  7. Human cognitive task distribution model for maintenance support system of a nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Park, Young Ho

    2007-02-15

    In human factors research, more attention has been devoted to the operation of nuclear power plants (NPPs) than to their maintenance. However, human error related to maintenance is 45% among the total human errors from 1990 to 2005 in Korean nuclear power plants. Therefore, it is necessary to study human factors in the maintenance of an NPP. There is a current trend toward introducing digital technology into both safety and non-safety systems in NPPs. A variety of information about plant conditions can be used digitally. In the future, maintenance support systems will be developed based on an information-oriented NPP. In this context, it is necessary to study the cognitive tasks of the personnel involved in maintenance and the interaction between the personnel and maintenance support systems. The fundamental purpose of this work is how to distribute the cognitive tasks of the personnel involved in the maintenance in order to develop a maintenance support system that considers human factors. The second purpose is to find the causes of errors due to engineers or maintainers and propose system functions that are countermeasures to reduce these errors. In this paper, a cognitive task distribution model of the personnel involved in maintenance is proposed using Rasmussen's decision making model. First, the personnel were divided into three groups: the operators (inspectors), engineers, and maintainers. Second, human cognitive tasks related to maintenance were distributed based on these groups. The operators' cognitive tasks are detection and observation; the engineers' cognitive tasks are identification, evaluation, target state, select target, and procedure: and the maintainers' cognitive task is execution. The case study is an analysis of failure reports related to human error in maintenance over a period of 15years. By using error classification based on the information processing approach, the human errors involved in maintenance were classified

  8. Human cognitive task distribution model for maintenance support system of a nuclear power plant

    International Nuclear Information System (INIS)

    Park, Young Ho

    2007-02-01

    In human factors research, more attention has been devoted to the operation of nuclear power plants (NPPs) than to their maintenance. However, human error related to maintenance is 45% among the total human errors from 1990 to 2005 in Korean nuclear power plants. Therefore, it is necessary to study human factors in the maintenance of an NPP. There is a current trend toward introducing digital technology into both safety and non-safety systems in NPPs. A variety of information about plant conditions can be used digitally. In the future, maintenance support systems will be developed based on an information-oriented NPP. In this context, it is necessary to study the cognitive tasks of the personnel involved in maintenance and the interaction between the personnel and maintenance support systems. The fundamental purpose of this work is how to distribute the cognitive tasks of the personnel involved in the maintenance in order to develop a maintenance support system that considers human factors. The second purpose is to find the causes of errors due to engineers or maintainers and propose system functions that are countermeasures to reduce these errors. In this paper, a cognitive task distribution model of the personnel involved in maintenance is proposed using Rasmussen's decision making model. First, the personnel were divided into three groups: the operators (inspectors), engineers, and maintainers. Second, human cognitive tasks related to maintenance were distributed based on these groups. The operators' cognitive tasks are detection and observation; the engineers' cognitive tasks are identification, evaluation, target state, select target, and procedure: and the maintainers' cognitive task is execution. The case study is an analysis of failure reports related to human error in maintenance over a period of 15years. By using error classification based on the information processing approach, the human errors involved in maintenance were classified

  9. A code for simulation of human failure events in nuclear power plants: SIMPROC

    International Nuclear Information System (INIS)

    Gil, Jesus; Fernandez, Ivan; Murcia, Santiago; Gomez, Javier; Marrao, Hugo; Queral, Cesar; Exposito, Antonio; Rodriguez, Gabriel; Ibanez, Luisa; Hortal, Javier; Izquierdo, Jose M.; Sanchez, Miguel; Melendez, Enrique

    2011-01-01

    Over the past years, many Nuclear Power Plant organizations have performed Probabilistic Safety Assessments to identify and understand key plant vulnerabilities. As part of enhancing the PSA quality, the Human Reliability Analysis is essential to make a realistic evaluation of safety and about the potential facility's weaknesses. Moreover, it has to be noted that HRA continues to be a large source of uncertainty in the PSAs. Within their current joint collaborative activities, Indizen, Universidad Politecnica de Madrid and Consejo de Seguridad Nuclear have developed the so-called SIMulator of PROCedures (SIMPROC), a tool aiming at simulate events related with human actions and able to interact with a plant simulation model. The tool helps the analyst to quantify the importance of human actions in the final plant state. Among others, the main goal of SIMPROC is to check the Emergency Operating Procedures being used by operating crew in order to lead the plant to a safe shutdown plant state. Currently SIMPROC is coupled with the SCAIS software package, but the tool is flexible enough to be linked to other plant simulation codes. SIMPROC-SCAIS applications are shown in the present article to illustrate the tool performance. The applications were developed in the framework of the Nuclear Energy Agency project on Safety Margin Assessment and Applications (SM2A). First an introductory example was performed to obtain the damage domain boundary of a selected sequence from a SBLOCA. Secondly, the damage domain area of a selected sequence from a loss of Component Cooling Water with a subsequent seal LOCA was calculated. SIMPROC simulates the corresponding human actions in both cases. The results achieved shown how the system can be adapted to a wide range of purposes such as Dynamic Event Tree delineation, Emergency Operating Procedures and damage domain search.

  10. Indicators of Economic Progress: The Power of Measurement and Human Welfare

    Directory of Open Access Journals (Sweden)

    Garry Jacobs

    2010-10-01

    Full Text Available Right measurement is a powerful instrument for social progress; wrong or imprecise measurement a source of hazard and even havoc. The essential purpose of economic activity is the promotion of human development, welfare and well-being in a sustainable manner, and not growth for growth’s sake, yet we lack effective measures to monitor progress toward these objectives. Advances in understanding, theory and measurement must necessarily proceed hand in hand. A companion article in this publication sets forth the urgent need for new theory in economics. This article sets forth the complementary need for new measures. The stakes are high and the choice is ours. On one side, rising social tensions, recurring financial crises and ecological disaster; on the other, the progressive unfolding and development of human capacity in harmony with Nature. The deficiencies of GDP as a measure are well-documented by leading economists Kuznets, Tobin, Tinbergen and many others; but, unfortunately, decision-making still remains largely based on GDP, valid during 1930-70 perhaps, but certainly inappropriate today. The challenge is to derive more appropriate indicators to reflect real, sustainable economic welfare, social development and human wellbeing. The attributes that have made GDP so successful are often overlooked — it provides clear objectives for policy and decision-making. We propose new composite indicator, HEWI, which can be used to guide decision-making, which retains the strengths associated with GDP, while substantially enhancing its value as a measure of human economic development. HEWI monitors progress on factors that contribute prominently to present economic welfare — household consumption, government welfare-related expenditure, income inequality and unemployment — as well as factors that have the potential to significantly enhance long term sustainability — education, fossil fuel energy efficiency and net household savings. The index

  11. AIRCRAFT MAINTENANCE HANGAR

    Directory of Open Access Journals (Sweden)

    GEAMBASU Gabriel George

    2017-05-01

    Full Text Available The paper presents the maintenance process that is done on an airplane, at a certain period of time, or after a number of flight hours or cycles and describes the checks performed behind each inspection. The first part of research describes the aircraft maintenance process that has to be done after an updated maintenance manual according with aircraft type, followed by a short introduction about maintenance hangar. The second part of the paper presents a hangar design with a foldable roof and walls, which can be folded or extended, over an airplane when a maintenance process is done, or depending on weather condition.

  12. Combat aircraft noise

    Science.gov (United States)

    Sgarbozza, M.; Depitre, A.

    1992-04-01

    A discussion of the characteristics and the noise levels of combat aircraft and of a transport aircraft in taking off and landing are presented. Some methods of noise reduction are discussed, including the following: operational anti-noise procedures; and concepts of future engines (silent post-combustion and variable cycle). Some measurement results concerning the noise generated in flight at great speeds and low altitude will also be examined. Finally, the protection of the environment of French air bases against noise will be described and the possibilities of regulation examined.

  13. Scientific Research Program for Power, Energy, and Thermal Technologies. Task Order 0001: Energy, Power, and Thermal Technologies and Processes Experimental Research. Subtask: Thermal Management of Electromechanical Actuation System for Aircraft Primary Flight Control Surfaces

    Science.gov (United States)

    2014-05-01

    Computer FHPCP Flexible Heat Pipe Cold Plate HPEAS High Performance Electric Actuation System HPU Hydraulic Power Unit HSM Hydraulic Service...provide improved thermal paths and phase change materials offer energy storage. Loop heat pipes (LHP’s) and Flexible Heat Pipe Cold Plates (FHPCP’s...flows upward due to density difference through centrally located vapor channels called risers and then condenses on the colder surface associated

  14. Aircraft Impact Assessment of APR1400 Reactor Containment Building

    International Nuclear Information System (INIS)

    Moon, Il Hwan; Kim, Do Yeon; Kim, Jae Hee; Kim, Sang Yun

    2011-01-01

    The implementation of a protection to withstand aircraft impact on safety-related structures and systems is basically based on a probabilistic evaluation for each site, if the licensing body doesn't require a deterministic approach. Existing nuclear power plants in Korea were designed based on the probabilistic approach, and the aircraft impact hazard remained less than a probability of 10 -7 . However, a man-made aircraft impact have been considered as a possible external accident for the nuclear power plant. New plant designs that are to be constructed in the U.S. after July 2009 must consider the effect of impact from a large commercial aircraft according to the requirements of 10 CFR 50.150. Especially, Reactor Containment Building (RCB) housing the safety-related equipment and fuels should be protected safely against aircraft crash without perforation and scabbing failure of external wall. APR1400 RCB is constructed as a prestressed concrete containment vessel (PCCV) which is surrounded by the auxiliary building housing additional safety-related equipment and other systems. In this study, the aircraft impact analyses for the RCB are carried out using Riera forcing function and aircraft model. Considered external wall thickness is 4 ft 6 in. for the cylindrical wall and 4 ft for the dome. Actual strengths of concrete and steel are considered as the material properties. For these analyses, the dynamic increment factor and concrete aging effect are considered in accordance with NEI 07-13(2011)

  15. Applying Human Factors Evaluation and Design Guidance to a Nuclear Power Plant Digital Control System

    Energy Technology Data Exchange (ETDEWEB)

    Thomas Ulrich; Ronald Boring; William Phoenix; Emily Dehority; Tim Whiting; Jonathan Morrell; Rhett Backstrom

    2012-08-01

    The United States (U.S.) nuclear industry, like similar process control industries, has moved toward upgrading its control rooms. The upgraded control rooms typically feature digital control system (DCS) displays embedded in the panels. These displays gather information from the system and represent that information on a single display surface. In this manner, the DCS combines many previously separate analog indicators and controls into a single digital display, whereby the operators can toggle between multiple windows to monitor and control different aspects of the plant. The design of the DCS depends on the function of the system it monitors, but revolves around presenting the information most germane to an operator at any point in time. DCSs require a carefully designed human system interface. This report centers on redesigning existing DCS displays for an example chemical volume control system (CVCS) at a U.S. nuclear power plant. The crucial nature of the CVCS, which controls coolant levels and boration in the primary system, requires a thorough human factors evaluation of its supporting DCS. The initial digital controls being developed for the DCSs tend to directly mimic the former analog controls. There are, however, unique operator interactions with a digital vs. analog interface, and the differences have not always been carefully factored in the translation of an analog interface to a replacement DCS. To ensure safety, efficiency, and usability of the emerging DCSs, a human factors usability evaluation was conducted on a CVCS DCS currently being used and refined at an existing U.S. nuclear power plant. Subject matter experts from process control engineering, software development, and human factors evaluated the DCS displays to document potential usability issues and propose design recommendations. The evaluation yielded 167 potential usability issues with the DCS. These issues should not be considered operator performance problems but rather opportunities

  16. Composite materials for aircraft structures

    National Research Council Canada - National Science Library

    Baker, A. A; Dutton, Stuart; Kelly, Donald

    2004-01-01

    ... materials for aircraft structures / Alan Baker, Stuart Dutton, and Donald Kelly- 2nd ed. p. cm. - (Education series) Rev. ed. of: Composite materials for aircraft structures / edited by B. C. Hos...

  17. Assessments and applications to enhance human reliability and reduce risk during less-than-full-power operations

    International Nuclear Information System (INIS)

    Hannaman, G.W.; Singh, A.

    1992-01-01

    Study of events, interviews with plant personnel, and applications of risk studies indicate that the risk of a potential accident during less-than-full-power (LTFP) operation is becoming a greater fraction of the risk as improvements are made to the full-power operations. Industry efforts have been increased to reduce risk and the cost of shutdown operations. These efforts consider the development and application of advanced tools to help utilities proactively identify issues and develop contingencies and interventions to enhance reliability and reduce risk of low-power operations at nuclear power plants. The role for human reliability assessments is to help improve utility outage planning to better achieve schedule and risk control objectives. Improvements are expected to include intervention tools to identify and reduce human error, definition of new instructional modules, and prioritization of risk reduction issues for operators. The Electric Power Research Institute is sponsoring a project to address the identification and quantification of factors that affect human reliability during LTFP operation of nuclear power plants. The results of this project are expected to promote the development of proactively applied interventions and contingencies for enhanced human reliability during shutdown operations

  18. Procedures for using expert judgment to estimate human-error probabilities in nuclear power plant operations

    International Nuclear Information System (INIS)

    Seaver, D.A.; Stillwell, W.G.

    1983-03-01

    This report describes and evaluates several procedures for using expert judgment to estimate human-error probabilities (HEPs) in nuclear power plant operations. These HEPs are currently needed for several purposes, particularly for probabilistic risk assessments. Data do not exist for estimating these HEPs, so expert judgment can provide these estimates in a timely manner. Five judgmental procedures are described here: paired comparisons, ranking and rating, direct numerical estimation, indirect numerical estimation and multiattribute utility measurement. These procedures are evaluated in terms of several criteria: quality of judgments, difficulty of data collection, empirical support, acceptability, theoretical justification, and data processing. Situational constraints such as the number of experts available, the number of HEPs to be estimated, the time available, the location of the experts, and the resources available are discussed in regard to their implications for selecting a procedure for use

  19. Balancing the roles of humans and machines in power plant control

    International Nuclear Information System (INIS)

    Lipsett, J.J.

    1989-05-01

    A number of factors are leading to a re-examination of the balance between the roles of the operators and the machine in controlling nuclear power plants. Some of these factors are: the advent of new and advanced computer technologies; increased plant complexity, placing heavy workloads and stress on the control room operator; and increasing concerns about the role of human reliability in industrial mishaps. In light of the changing control aspects, we examine the meaning of automation, we discuss a proposed model of the control process, the concept of control within a few defined reactor states, a decision-making sequence; and we identify some possible problem areas in implementing new control technologies. Significant benefits should come from the new control methods and these opportunities should be exploited as soon as prudence allows, taking great care that the safety of the plants is improved

  20. Organizational change and human expertise in nuclear power plants: some implications for training and error prevention

    International Nuclear Information System (INIS)

    Masson, M.; Malaise, N.; Housiaux, A.; Keyser, V. de

    1993-01-01

    Reliability and safety are two very important goals, which depend on technical and organizational factors, but also on human expertise. How to ensure a safe functioning of a nuclear power plant in a changing context, and what might be the role and aspects of training and transfer of knowledge? These are the questions we shall deal with in this paper, on the basis of two field studies. The two field studies stress the needs for setting up case based training, which best ensure the acquisition of know-how. Furthermore, as shown by the second one, gaining expertise involves developing large repertoires of highly skilled, semi-routinized activities. Supporting expert operators not only should tackle problem solving activities but should thus also include the prevention of routine errors, which go along with skill acquisition. (orig.)