WorldWideScience

Sample records for human physiological body

  1. Earthing the human body influences physiologic processes.

    Science.gov (United States)

    Sokal, Karol; Sokal, Pawel

    2011-04-01

    This study was designed to answer the question: Does the contact of the human organism with the Earth via a copper conductor affect physiologic processes? Subjects and experiments: Five (5) experiments are presented: experiment 1-effect of earthing on calcium-phosphate homeostasis and serum concentrations of iron (N = 84 participants); experiment 2-effect of earthing on serum concentrations of electrolytes (N = 28); experiment 3-effect of earthing on thyroid function (N = 12); experiment 4-effect of earthing on glucose concentration (N = 12); experiment 5-effect of earthing on immune response to vaccine (N = 32). Subjects were divided into two groups. One (1) group of people was earthed, while the second group remained without contact with the Earth. Blood and urine samples were examined. Earthing of an electrically insulated human organism during night rest causes lowering of serum concentrations of iron, ionized calcium, inorganic phosphorus, and reduction of renal excretion of calcium and phosphorus. Earthing during night rest decreases free tri-iodothyronine and increases free thyroxine and thyroid-stimulating hormone. The continuous earthing of the human body decreases blood glucose in patients with diabetes. Earthing decreases sodium, potassium, magnesium, iron, total protein, and albumin concentrations while the levels of transferrin, ferritin, and globulins α1, α2, β, and γ increase. These results are statistically significant. Earthing the human body influences human physiologic processes. This influence is observed during night relaxation and during physical activity. Effect of the earthing on calcium-phosphate homeostasis is the opposite of that which occurs in states of weightlessness. It also increases the activity of catabolic processes. It may be the primary factor regulating endocrine and nervous systems.

  2. Earthing the Human Body Influences Physiologic Processes

    Science.gov (United States)

    Sokal, Karol

    2011-01-01

    Abstract Objectives This study was designed to answer the question: Does the contact of the human organism with the Earth via a copper conductor affect physiologic processes? Subjects and experiments Five (5) experiments are presented: experiment 1—effect of earthing on calcium–phosphate homeostasis and serum concentrations of iron (N = 84 participants); experiment 2—effect of earthing on serum concentrations of electrolytes (N = 28); experiment 3—effect of earthing on thyroid function (N = 12); experiment 4—effect of earthing on glucose concentration (N = 12); experiment 5—effect of earthing on immune response to vaccine (N = 32). Subjects were divided into two groups. One (1) group of people was earthed, while the second group remained without contact with the Earth. Blood and urine samples were examined. Results Earthing of an electrically insulated human organism during night rest causes lowering of serum concentrations of iron, ionized calcium, inorganic phosphorus, and reduction of renal excretion of calcium and phosphorus. Earthing during night rest decreases free tri-iodothyronine and increases free thyroxine and thyroid-stimulating hormone. The continuous earthing of the human body decreases blood glucose in patients with diabetes. Earthing decreases sodium, potassium, magnesium, iron, total protein, and albumin concentrations while the levels of transferrin, ferritin, and globulins α1, α2, β, and γ increase. These results are statistically significant. Conclusions Earthing the human body influences human physiologic processes. This influence is observed during night relaxation and during physical activity. Effect of the earthing on calcium–phosphate homeostasis is the opposite of that which occurs in states of weightlessness. It also increases the activity of catabolic processes. It may be the primary factor regulating endocrine and nervous systems. PMID:21469913

  3. Rowing, the ultimate challenge to the human body - implications for physiological variables

    DEFF Research Database (Denmark)

    Volianitis, S.; Secher, Niels H.

    2009-01-01

    Clinical diagnoses depend on a variety of physiological variables but the full range of these variables is seldom known. With the load placed on the human body during competitive rowing, the physiological range for several variables is illustrated. The extreme work produced during rowing...... is explained by the seated position and the associated ability to increase venous return and, thus, cardiac output. This review highlights experimental work on Olympic rowing that presents a unique challenge to the human capacities, including cerebral metabolism, to unprecedented limits, and provides a unique...

  4. A physiologically based biokinetic model for cesium in the human body

    International Nuclear Information System (INIS)

    Leggett, R.W.; Williams, L.R.; Melo, D.R.; Lipsztein, J.L.

    2003-01-01

    A physiologically descriptive model of the biological behavior of cesium in the human body has been constructed around a detailed blood flow model. The rate of transfer from plasma into a tissue is determined by the blood perfusion rate and the tissue-specific extraction fraction of Cs during passage from arterial to venous plasma. Information on tissue-specific extraction of Cs is supplemented with information on the Cs analogues, K and Rb, and known patterns of discrimination between these metals by tissues. The rate of return from a tissue to plasma is estimated from the relative contents of Cs in plasma and the tissue at equilibrium as estimated from environmental studies. Transfers of Cs other than exchange between plasma and tissues (e.g. secretions into the gastrointestinal tract) are based on a combination of physiological considerations and empirical data on Cs or related elements. Model predictions are consistent with the sizable database on the time-dependent distribution and retention of radiocesium in the human body

  5. Human physiology in space

    Science.gov (United States)

    Vernikos, J.

    1996-01-01

    The universality of gravity (1 g) in our daily lives makes it difficult to appreciate its importance in morphology and physiology. Bone and muscle support systems were created, cellular pumps developed, neurons organised and receptors and transducers of gravitational force to biologically relevant signals evolved under 1g gravity. Spaceflight provides the only microgravity environment where systematic experimentation can expand our basic understanding of gravitational physiology and perhaps provide new insights into normal physiology and disease processes. These include the surprising extent of our body's dependence on perceptual information, and understanding the effect and importance of forces generated within the body's weightbearing structures such as muscle and bones. Beyond this exciting prospect is the importance of this work towards opening the solar system for human exploration. Although both appear promising, we are only just beginning to taste what lies ahead.

  6. The Significance of Epidermal Lipid Metabolism in Whole-Body Physiology

    DEFF Research Database (Denmark)

    Kruse, Vibeke; Neess, Ditte; Færgeman, Nils J

    2017-01-01

    The skin is the largest sensory organ of the human body. The skin not only prevents loss of water and other components of the body, but also is involved in regulation of body temperature and serves as an essential barrier, protecting mammals from both routine and extreme environments. Given...... the importance of the skin in temperature regulation, it is surprising that adaptive alterations in skin functions and morphology only vaguely have been associated with systemic physiological responses. Despite that impaired lipid metabolism in the skin often impairs the epidermal permeability barrier...... and insulation properties of the skin, its role in regulating systemic physiology and metabolism is yet to be recognized....

  7. Human Physiological Responses to Acute and Chronic Cold Exposure

    Science.gov (United States)

    Stocks, Jodie M.; Taylor, Nigel A. S.; Tipton, Michael J.; Greenleaf, John E.

    2001-01-01

    When inadequately protected humans are exposed to acute cold, excessive body heat is lost to the environment and unless heat production is increased and heat loss attenuated, body temperature will decrease. The primary physiological responses to counter the reduction in body temperature include marked cutaneous vasoconstriction and increased metabolism. These responses, and the hazards associated with such exposure, are mediated by a number of factors which contribute to heat production and loss. These include the severity and duration of the cold stimulus; exercise intensity; the magnitude of the metabolic response; and individual characteristics such as body composition, age, and gender. Chronic exposure to a cold environment, both natural and artificial, results in physiological alterations leading to adaptation. Three quite different, but not necessarily exclusive, patterns of human cold adaptation have been reported: metabolic, hypothermic, and insulative. Cold adaptation has also been associated with an habituation response, in which there is a desensitization, or damping, of the normal response to a cold stress. This review provides a comprehensive analysis of the human physiological and pathological responses to cold exposure. Particular attention is directed to the factors contributing to heat production and heat loss during acute cold stress, and the ability of humans to adapt to cold environments.

  8. Physics of the Human Body

    CERN Document Server

    Herman, Irving P

    2007-01-01

    Physics of the Human Body comprehensively addresses the physical and engineering aspects of human physiology by using and building on first-year college physics and mathematics. Topics include the mechanics of the static body and the body in motion, the materials properties of the body, muscles in the body, the energetics of body metabolism, fluid flow in the cardiovascular and respiratory systems, the acoustics of sound waves in speaking and hearing, vision and the optics of the eye, the electrical properties of the body, and the basic engineering principles of feedback and control in regulating all aspects of function. The goal of this text is to understand physical issues concerning the human body, in part by developing and then using simple and subsequently more refined models of the macrophysics of the human body. Many chapters include a brief review of the necessary physical principles. There are problems at the end of each chapter; solutions to selected problems are also provided. This text is geared t...

  9. Research on human physiological parameters intelligent clothing based on distributed Fiber Bragg Grating

    Science.gov (United States)

    Miao, Changyun; Shi, Boya; Li, Hongqiang

    2008-12-01

    A human physiological parameters intelligent clothing is researched with FBG sensor technology. In this paper, the principles and methods of measuring human physiological parameters including body temperature and heart rate in intelligent clothing with distributed FBG are studied, the mathematical models of human physiological parameters measurement are built; the processing method of body temperature and heart rate detection signals is presented; human physiological parameters detection module is designed, the interference signals are filtered out, and the measurement accuracy is improved; the integration of the intelligent clothing is given. The intelligent clothing can implement real-time measurement, processing, storage and output of body temperature and heart rate. It has accurate measurement, portability, low cost, real-time monitoring, and other advantages. The intelligent clothing can realize the non-contact monitoring between doctors and patients, timely find the diseases such as cancer and infectious diseases, and make patients get timely treatment. It has great significance and value for ensuring the health of the elders and the children with language dysfunction.

  10. Physics of the human body

    CERN Document Server

    Herman, Irving P

    2016-01-01

    This book comprehensively addresses the physics and engineering aspects of human physiology by using and building on first-year college physics and mathematics. Topics include the mechanics of the static body and the body in motion, the mechanical properties of the body, muscles in the body, the energetics of body metabolism, fluid flow in the cardiovascular and respiratory systems, the acoustics of sound waves in speaking and hearing, vision and the optics of the eye, the electrical properties of the body, and the basic engineering principles of feedback and control in regulating all aspects of function. The goal of this text is to clearly explain the physics issues concerning the human body, in part by developing and then using simple and subsequently more refined models of the macrophysics of the human body. Many chapters include a brief review of the underlying physics. There are problems at the end of each chapter; solutions to selected problems are also provided. This second edition enhances the treat...

  11. Human whole body cold adaptation.

    Science.gov (United States)

    Daanen, Hein A M; Van Marken Lichtenbelt, Wouter D

    2016-01-01

    Reviews on whole body human cold adaptation generally do not distinguish between population studies and dedicated acclimation studies, leading to confusing results. Population studies show that indigenous black Africans have reduced shivering thermogenesis in the cold and poor cold induced vasodilation in fingers and toes compared to Caucasians and Inuit. About 40,000 y after humans left Africa, natives in cold terrestrial areas seems to have developed not only behavioral adaptations, but also physiological adaptations to cold. Dedicated studies show that repeated whole body exposure of individual volunteers, mainly Caucasians, to severe cold results in reduced cold sensation but no major physiological changes. Repeated cold water immersion seems to slightly reduce metabolic heat production, while repeated exposure to milder cold conditions shows some increase in metabolic heat production, in particular non-shivering thermogenesis. In conclusion, human cold adaptation in the form of increased metabolism and insulation seems to have occurred during recent evolution in populations, but cannot be developed during a lifetime in cold conditions as encountered in temperate and arctic regions. Therefore, we mainly depend on our behavioral skills to live in and survive the cold.

  12. A long term model of circulation. [human body

    Science.gov (United States)

    White, R. J.

    1974-01-01

    A quantitative approach to modeling human physiological function, with a view toward ultimate application to long duration space flight experiments, was undertaken. Data was obtained on the effect of weightlessness on certain aspects of human physiological function during 1-3 month periods. Modifications in the Guyton model are reviewed. Design considerations for bilateral interface models are discussed. Construction of a functioning whole body model was studied, as well as the testing of the model versus available data.

  13. The Physiology and Physical Changes of Human Aging ...

    African Journals Online (AJOL)

    Ageing is associated with a decline in body functions, an accompanying change in structure, loss of lean mass and a relative increase in fat mass over time. This article looked into the physiology and physical changes associated with human ageing through journal and book review. Research over the past several decades ...

  14. Thermoregulatory responses in exercising rats: methodological aspects and relevance to human physiology.

    Science.gov (United States)

    Wanner, Samuel Penna; Prímola-Gomes, Thales Nicolau; Pires, Washington; Guimarães, Juliana Bohnen; Hudson, Alexandre Sérvulo Ribeiro; Kunstetter, Ana Cançado; Fonseca, Cletiana Gonçalves; Drummond, Lucas Rios; Damasceno, William Coutinho; Teixeira-Coelho, Francisco

    2015-01-01

    Rats are used worldwide in experiments that aim to investigate the physiological responses induced by a physical exercise session. Changes in body temperature regulation, which may affect both the performance and the health of exercising rats, are evident among these physiological responses. Despite the universal use of rats in biomedical research involving exercise, investigators often overlook important methodological issues that hamper the accurate measurement of clear thermoregulatory responses. Moreover, much debate exists regarding whether the outcome of rat experiments can be extrapolated to human physiology, including thermal physiology. Herein, we described the impact of different exercise intensities, durations and protocols and environmental conditions on running-induced thermoregulatory changes. We focused on treadmill running because this type of exercise allows for precise control of the exercise intensity and the measurement of autonomic thermoeffectors associated with heat production and loss. Some methodological issues regarding rat experiments, such as the sites for body temperature measurements and the time of day at which experiments are performed, were also discussed. In addition, we analyzed the influence of a high body surface area-to-mass ratio and limited evaporative cooling on the exercise-induced thermoregulatory responses of running rats and then compared these responses in rats to those observed in humans. Collectively, the data presented in this review represent a reference source for investigators interested in studying exercise thermoregulation in rats. In addition, the present data indicate that the thermoregulatory responses of exercising rats can be extrapolated, with some important limitations, to human thermal physiology.

  15. The cooperative economy of food: Implications for human life history and physiology.

    Science.gov (United States)

    Kramer, Karen L

    2018-04-06

    The human diet has undergone substantial modifications since the emergence of modern humans and varies considerably in today's traditional societies. Despite these changes and cross-cultural differences, the human diet can be characterized by several common elements. These include diverse, high quality foods, technological complexity to acquire and process food, and the establishment of home bases for storage, processing and consumption. Together these aspects of the human diet challenge any one individual to independently meet all of his or her daily caloric needs. Humans solve this challenge through food sharing, labor exchange and the division of labor. The cooperative nature of the human diet is associated with many downstream effects on our life history and physiology. This paper overviews the constellation of traits that likely led to a cooperative economy of food, and draws on ethnographic examples to illustrate its effects on human life history and physiology. Two detailed examples using body composition, time allocation and food acquisition data show how cooperation among Savanna Pumé hunter-gatherers affects activity levels, sexual dimorphism in body fat, maturational pace and age at first birth. Copyright © 2018. Published by Elsevier Inc.

  16. Wearable health monitoring using capacitive voltage-mode Human Body Communication.

    Science.gov (United States)

    Maity, Shovan; Das, Debayan; Sen, Shreyas

    2017-07-01

    Rapid miniaturization and cost reduction of computing, along with the availability of wearable and implantable physiological sensors have led to the growth of human Body Area Network (BAN) formed by a network of such sensors and computing devices. One promising application of such a network is wearable health monitoring where the collected data from the sensors would be transmitted and analyzed to assess the health of a person. Typically, the devices in a BAN are connected through wireless (WBAN), which suffers from energy inefficiency due to the high-energy consumption of wireless transmission. Human Body Communication (HBC) uses the relatively low loss human body as the communication medium to connect these devices, promising order(s) of magnitude better energy-efficiency and built-in security compared to WBAN. In this paper, we demonstrate a health monitoring device and system built using Commercial-Off-The-Shelf (COTS) sensors and components, that can collect data from physiological sensors and transmit it through a) intra-body HBC to another device (hub) worn on the body or b) upload health data through HBC-based human-machine interaction to an HBC capable machine. The system design constraints and signal transfer characteristics for the implemented HBC-based wearable health monitoring system are measured and analyzed, showing reliable connectivity with >8× power savings compared to Bluetooth low-energy (BTLE).

  17. The Virtual Physiological Human - a European initiative for in silico human modelling -.

    Science.gov (United States)

    Viceconti, Marco; Clapworthy, Gordon; Van Sint Jan, Serge

    2008-12-01

    The Virtual Physiological Human (VPH) is an initiative, strongly supported by the European Commission (EC), that seeks to develop an integrated model of human physiology at multiple scales from the whole body through the organ, tissue, cell and molecular levels to the genomic level. VPH had its beginnings in 2005 with informal discussions amongst like-minded scientists which led to the STEP project, a Coordination Action funded by the EC that began in early 2006. The STEP project greatly accelerated the progress of the VPH and proved to be a catalyst for wide-ranging discussions within Europe and for outreach activities designed to develop a broad international approach to the huge scientific and technological challenges involved in this area. This paper provides an overview of the VPH and the developments it has engendered in the rapidly expanding worldwide activities associated with the physiome. It then uses one particular project, the Living Human Project, to illustrate the type of advances that are taking place to further the aims of the VPH and similar initiatives worldwide.

  18. Interoception: the sense of the physiological condition of the body.

    Science.gov (United States)

    Craig, A D

    2003-08-01

    Converging evidence indicates that primates have a distinct cortical image of homeostatic afferent activity that reflects all aspects of the physiological condition of all tissues of the body. This interoceptive system, associated with autonomic motor control, is distinct from the exteroceptive system (cutaneous mechanoreception and proprioception) that guides somatic motor activity. The primary interoceptive representation in the dorsal posterior insula engenders distinct highly resolved feelings from the body that include pain, temperature, itch, sensual touch, muscular and visceral sensations, vasomotor activity, hunger, thirst, and 'air hunger'. In humans, a meta-representation of the primary interoceptive activity is engendered in the right anterior insula, which seems to provide the basis for the subjective image of the material self as a feeling (sentient) entity, that is, emotional awareness.

  19. The Effects Of An Exercise Physiology Program on Physical Fitness Variables, Body Satisfaction, and Physiology Knowledge.

    Science.gov (United States)

    Perry, Arlette C.; Rosenblatt, Evelyn S.; Kempner, Lani; Feldman, Brandon B.; Paolercio, Maria A.; Van Bemden, Angie L.

    2002-01-01

    Examined the effects of an exercise physiology program on high school students' physical fitness, body satisfaction, and physiology knowledge. Intervention students received exercise physiology theory and active aerobic and resistance exercise within their biology course. Data from student surveys and measurements indicated that the integrated…

  20. Local air gap thickness and contact area models for realistic simulation of human thermo-physiological response

    Science.gov (United States)

    Psikuta, Agnes; Mert, Emel; Annaheim, Simon; Rossi, René M.

    2018-02-01

    To evaluate the quality of new energy-saving and performance-supporting building and urban settings, the thermal sensation and comfort models are often used. The accuracy of these models is related to accurate prediction of the human thermo-physiological response that, in turn, is highly sensitive to the local effect of clothing. This study aimed at the development of an empirical regression model of the air gap thickness and the contact area in clothing to accurately simulate human thermal and perceptual response. The statistical model predicted reliably both parameters for 14 body regions based on the clothing ease allowances. The effect of the standard error in air gap prediction on the thermo-physiological response was lower than the differences between healthy humans. It was demonstrated that currently used assumptions and methods for determination of the air gap thickness can produce a substantial error for all global, mean, and local physiological parameters, and hence, lead to false estimation of the resultant physiological state of the human body, thermal sensation, and comfort. Thus, this model may help researchers to strive for improvement of human thermal comfort, health, productivity, safety, and overall sense of well-being with simultaneous reduction of energy consumption and costs in built environment.

  1. DigitalHuman (DH): An Integrative Mathematical Model ofHuman Physiology

    Science.gov (United States)

    Hester, Robert L.; Summers, Richard L.; lIescu, Radu; Esters, Joyee; Coleman, Thomas G.

    2010-01-01

    Mathematical models and simulation are important tools in discovering the key causal relationships governing physiological processes and improving medical intervention when physiological complexity is a central issue. We have developed a model of integrative human physiology called DigitalHuman (DH) consisting of -5000 variables modeling human physiology describing cardiovascular, renal, respiratory, endocrine, neural and metabolic physiology. Users can view time-dependent solutions and interactively introduce perturbations by altering numerical parameters to investigate new hypotheses. The variables, parameters and quantitative relationships as well as all other model details are described in XML text files. All aspects of the model, including the mathematical equations describing the physiological processes are written in XML open source, text-readable files. Model structure is based upon empirical data of physiological responses documented within the peer-reviewed literature. The model can be used to understand proposed physiological mechanisms and physiological interactions that may not be otherwise intUitively evident. Some of the current uses of this model include the analyses of renal control of blood pressure, the central role of the liver in creating and maintaining insulin resistance, and the mechanisms causing orthostatic hypotension in astronauts. Additionally the open source aspect of the modeling environment allows any investigator to add detailed descriptions of human physiology to test new concepts. The model accurately predicts both qualitative and more importantly quantitative changes in clinically and experimentally observed responses. DigitalHuman provides scientists a modeling environment to understand the complex interactions of integrative physiology. This research was supported by.NIH HL 51971, NSF EPSCoR, and NASA

  2. Physiological mechanisms of the effect of weightlessness on the body

    Science.gov (United States)

    Kasyan, I. I.; Kopanev, V. I.

    1975-01-01

    Experimental data show that physiological reactions observed under weightlessness conditions are caused by: (1) The direct effect of weightlessness, as a consequence of decrease (""disappearance'') of the weight of body tissues and organs; and (2) the mediated effect of weightlessness, as a result of changes in the functional state of the central nervous system and the cooperative work of the analyzers. The human body adopts to weightless conditions under the prolonged effects of it. In this case, four periods can be distinguished: The first period, a transitional process lasting from 1 to 24 hours; second period, initial adaptation to conditions of weightlessness and readjustment of all functional systems of the body; the third period, adaptation to the unusual mechanical conditions of the external environment, lasting from 3 to 8 days and more; and the fourth period, the stage of possible imbalance of the functions and the systems of some astronauts, as a result of the prolonged effect of weightlessness.

  3. Study on human physiological parameters for monitoring of mental works in the nuclear power plant

    International Nuclear Information System (INIS)

    Takano, Ken-ichi; Yoshino, Kenji; Ishii, Keiichiro; Nakasa, Hiroyasu; Shigeta, Sadayoshi.

    1982-01-01

    To prevent outbreaks of the wrong operation and judgement in the nuclear power plant, human conditions of body and mind should be taken into consideration particularly for the mental works such as inspection and monitoring. To estimate human conditions quantitatively by the measurement of human physiological parameters, this paper presents the following experimental results. (1) Physiological parameters are estimated from both sides of biological meanings and the applicability to field works. (2) Time variation of the parameters is investigated in mental simulation tests in order to select a good indicator of mental fatigue. (3) Correlation analysis between mental fatigue indexes and physiological parameters shows that the heart rate is a best indicator. (author)

  4. Redesigning Human Body Systems: Effective Pedagogical Strategy for Promoting Active Learning and STEM Education

    Directory of Open Access Journals (Sweden)

    Abour H. Cherif

    2012-01-01

    Full Text Available The human body is a remarkable biological machine maintained by interdependent body systems and organized biochemical reactions. Evolution has worked on humans for hundreds of thousands of years, yet the current pace of technological and social change have radically affected our life style and have exposed possible human frailties. This raises the question of whether or not nature’s work could be improved upon. We provide two-sided perspectives as a rationale for the need for the redesign of the human body. Then, we describe pedagogical strategy through which students study morphological and anatomical structures and the physiological functions of the human body systems and their respective organs and parts. The students select their own favorite system or organ to redesign in order to optimize the efficiency of the anatomical structural, physiological function, and/or the aesthetic and functional morphology; a redesign that might lead to, for example, lowering risk of diabetes, heart attack, and/or stroke. Through group work and interaction (student groups compete for a prestigious “in-house” patent award, students actively engage in the learning process in order to understand the role of design in the efficiency and functionality and vulnerability to disease of the human body system.

  5. Human factors estimation methods using physiological informations

    International Nuclear Information System (INIS)

    Takano, Ken-ichi; Yoshino, Kenji; Nakasa, Hiroyasu

    1984-01-01

    To enhance the operational safety in the nuclear power plant, it is necessary to decrease abnormal phenomena due to human errors. Especially, it is essential to basically understand human behaviors under the work environment for plant maintenance workers, inspectors, and operators. On the above stand point, this paper presents the results of literature survey on the present status of human factors engineering technology applicable to the nuclear power plant and also discussed the following items: (1) Application fields where the ergonomical evaluation is needed for workers safety. (2) Basic methodology for investigating the human performance. (3) Features of the physiological information analysis among various types of ergonomical techniques. (4) Necessary conditions for the application of in-situ physiological measurement to the nuclear power plant. (5) Availability of the physiological information analysis. (6) Effectiveness of the human factors engineering methodology, especially physiological information analysis in the case of application to the nuclear power plant. The above discussions lead to the demonstration of high applicability of the physiological information analysis to nuclear power plant, in order to improve the work performance. (author)

  6. An Investigative Laboratory Course in Human Physiology Using Computer Technology and Collaborative Writing

    Science.gov (United States)

    FitzPatrick, Kathleen A.

    2004-01-01

    Active investigative student-directed experiences in laboratory science are being encouraged by national science organizations. A growing body of evidence from classroom assessment supports their effectiveness. This study describes four years of implementation and assessment of an investigative laboratory course in human physiology for 65…

  7. Design Projects in Human Anatomy & Physiology

    Science.gov (United States)

    Polizzotto, Kristin; Ortiz, Mary T.

    2008-01-01

    Very often, some type of writing assignment is required in college entry-level Human Anatomy and Physiology courses. This assignment can be anything from an essay to a research paper on the literature, focusing on a faculty-approved topic of interest to the student. As educators who teach Human Anatomy and Physiology at an urban community college,…

  8. The physiology of blood loss and shock: New insights from a human laboratory model of hemorrhage.

    Science.gov (United States)

    Schiller, Alicia M; Howard, Jeffrey T; Convertino, Victor A

    2017-04-01

    The ability to quickly diagnose hemorrhagic shock is critical for favorable patient outcomes. Therefore, it is important to understand the time course and involvement of the various physiological mechanisms that are active during volume loss and that have the ability to stave off hemodynamic collapse. This review provides new insights about the physiology that underlies blood loss and shock in humans through the development of a simulated model of hemorrhage using lower body negative pressure. In this review, we present controlled experimental results through utilization of the lower body negative pressure human hemorrhage model that provide novel insights on the integration of physiological mechanisms critical to the compensation for volume loss. We provide data obtained from more than 250 human experiments to classify human subjects into two distinct groups: those who have a high tolerance and can compensate well for reduced central blood volume (e.g. hemorrhage) and those with low tolerance with poor capacity to compensate.We include the conceptual introduction of arterial pressure and cerebral blood flow oscillations, reflex-mediated autonomic and neuroendocrine responses, and respiration that function to protect adequate tissue oxygenation through adjustments in cardiac output and peripheral vascular resistance. Finally, unique time course data are presented that describe mechanistic events associated with the rapid onset of hemodynamic failure (i.e. decompensatory shock). Impact Statement Hemorrhage is the leading cause of death in both civilian and military trauma. The work submitted in this review is important because it advances the understanding of mechanisms that contribute to the total integrated physiological compensations for inadequate tissue oxygenation (i.e. shock) that arise from hemorrhage. Unlike an animal model, we introduce the utilization of lower body negative pressure as a noninvasive model that allows for the study of progressive

  9. THERMOREGULATION AND HUMAN PERFORMANCE: PHYSIOLOGICAL AND BIOLOGICAL ASPECTS

    Directory of Open Access Journals (Sweden)

    Frank E Marino

    2008-12-01

    Full Text Available Vol 53 (Medicine & Sport Science This collection on the latest interpretation of research data about the relationship between thermoregulation, exercise performance and fatigue is published as the 53rd volume of Medicine and Sport Science Journal. PURPOSE The book aims to explain how the advances in technology and methodology allowed studying the affects of the changing body temperature on metabolism and the role played by the nervous system in shaping human performance under challenging thermal situations. FEATURES This publication provides different interpretations of recent research for a better understanding of the limitations of thermoregulation in nine titles. The presented titles are: The Evolutionary Basis of Thermoregulation and Exercise Performance; Comparative Thermoregulation and the Quest for Athletic Supremacy; Thermoregulation, Fatigue and Exercise Modality; Neuromuscular Response to Exercise Heat Stress; Intestinal Barrier Dysfunction, Endotoxemia and Gastrointestinal Symptoms: The 'Canary in the Coal Mine' during Exercise-Heat Stress?; Effects of Peripheral Cooling on Characteristics of Local Muscle; Cooling Interventions for the Protection and Recovery of Exercise Performance from Exercise-Induced Heat Stress; Ethnicity and Temperature Regulation; Exercise Heat Stress and Metabolism. The evidence for the human's ability to adjust their performance according to the thermal limits in order to preserve cellular homeostasis is particularly noteworthy. AUDIENCE This is a fundamental book for any students and/or researchers involved in the fields of medicine, exercise physiology and human performance with special reference to thermal regulation. ASSESSMENT This publication is a must-read text for all those working in thermal medicine, exercise physiology and human performance fields

  10. Human body as a food for sexuality

    Directory of Open Access Journals (Sweden)

    Everton Luiz de Oliveira

    2017-06-01

    Full Text Available The present article depicts a theoretical walk, based on a historical and cultural narrative, that presents the body as a central element in the formatting and construction of human sexuality. Such walk intuits to show some projections, thoughts and materialization which ascertained the physical beauty as a promoter of desires, intentions and erotic feelings, in favor of an announced sexuality and common sense as ideal. The objective was also discuss, how the physical body aesthetic has been the driving force for configuring standard discourses on sexuality, distorting the idea that only the similar bodies to the hegemonic body models can be considered as object of desire, pleasure, and sexual and erotic practices. Finally, it learns that the body can also be admitted as an instrument to subvert the predetermined logic that body, beauty and sexual practices appear to form a triad in favor of the myth of perfect or performative sexuality. As the bodies (all of them has been recognized by the community as promoters of pleasures, desires and foundation for effective practices and sexual/erotic routines, regardless of their physiological, anatomical and aesthetic formatting.

  11. Inclusion bodies in loggerhead erythrocytes are associated with unstable hemoglobin and resemble human Heinz bodies.

    Science.gov (United States)

    Basile, Filomena; Di Santi, Annalisa; Caldora, Mercedes; Ferretti, Luigi; Bentivegna, Flegra; Pica, Alessandra

    2011-08-01

    The aim of this study was to clarify the role of the erythrocyte inclusions found during the hematological screening of loggerhead population of the Mediterranean Sea. We studied the erythrocyte inclusions in blood specimens collected from six juvenile and nine adult specimens of the loggerhead turtle, Caretta caretta, from the Adriatic and Tyrrhenian Seas. Our study indicates that the percentage of mature erythrocytes containing inclusions ranged from 3 to 82%. Each erythrocyte contained only one round inclusion body. Inclusion bodies stained with May Grünwald-Giemsa show that their cytochemical and ultrastructure characteristics are identical to those of human Heinz bodies. Because Heinz bodies originate from the precipitation of unstable hemoglobin (Hb) and cause globular osmotic resistance to increase, we analyzed loggerhead Hb using electrophoresis and high-performance liquid chromatography to detect and quantitate Hb fractions. We also tested the resistance of Hb to alkaline pH, heat, isopropanol denaturation, and globular osmosis. Our hemogram results excluded the occurrence of any infection, which could be associated with an inclusion body, in all the specimens. Negative Feulgen staining indicated that the inclusion bodies are not derived from DNA fragmentation. We hypothesize that amino acid substitutions could explain why loggerhead Hb precipitates under normal physiologic conditions, forming Heinz bodies. The identification of inclusion bodies in loggerhead erythrocytes allow us to better understand the haematological characteristics and the physiology of these ancient reptiles, thus aiding efforts to conserve such an endangered species. Copyright © 2011 Wiley-Liss, Inc., A Wiley Company.

  12. Simulating the physiology of athletes during endurance sports events: modelling human energy conversion and metabolism

    NARCIS (Netherlands)

    van Beek, J.H.G.M.; Supandi, F.B.; Gavai, Anand; de Graaf, A.A.; Binsl, T.W.; Hettling, H.

    2011-01-01

    The human physiological system is stressed to its limits during endurance sports competition events.We describe a whole body computational model for energy conversion during bicycle racing. About 23 per cent of the metabolic energy is used for muscle work, the rest is converted to heat. We

  13. Simulating the physiology of athletes during endurance sports events: Modelling human energy conversion and metabolism

    NARCIS (Netherlands)

    Beek, J.H.G.M. van; Supandi, F.; Gavai, A.K.; Graaf, A.A. de; Binsl, T.W.; Hettling, H.

    2011-01-01

    The human physiological system is stressed to its limits during endurance sports competition events.We describe a whole body computational model for energy conversion during bicycle racing. About 23 per cent of the metabolic energy is used for muscle work, the rest is converted to heat. We

  14. The physiological period length of the human circadian clock in vivo is directly proportional to period in human fibroblasts.

    Directory of Open Access Journals (Sweden)

    Lucia Pagani

    Full Text Available BACKGROUND: Diurnal behavior in humans is governed by the period length of a circadian clock in the suprachiasmatic nuclei of the brain hypothalamus. Nevertheless, the cell-intrinsic mechanism of this clock is present in most cells of the body. We have shown previously that for individuals of extreme chronotype ("larks" and "owls", clock properties measured in human fibroblasts correlated with extreme diurnal behavior. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we have measured circadian period in human primary fibroblasts taken from normal individuals and, for the first time, compared it directly with physiological period measured in vivo in the same subjects. Human physiological period length was estimated via the secretion pattern of the hormone melatonin in two different groups of sighted subjects and one group of totally blind subjects, each using different methods. Fibroblast period length was measured via cyclical expression of a lentivirally delivered circadian reporter. Within each group, a positive linear correlation was observed between circadian period length in physiology and in fibroblast gene expression. Interestingly, although blind individuals showed on average the same fibroblast clock properties as sighted ones, their physiological periods were significantly longer. CONCLUSIONS/SIGNIFICANCE: We conclude that the period of human circadian behaviour is mostly driven by cellular clock properties in normal individuals and can be approximated by measurement in peripheral cells such as fibroblasts. Based upon differences among sighted and blind subjects, we also speculate that period can be modified by prolonged unusual conditions such as the total light deprivation of blindness.

  15. Report of the special committee for the study of physiological effects of radon in human

    International Nuclear Information System (INIS)

    1998-01-01

    This report outlines the activities of the committee for the study of physiological effects of radon in human based on the presentation in the meetings by the members in the period, 1996-1998. The methods to estimate the exposed dose of radon (Rn) have been considerably improved now. But it is necessary to consider living conditions such as housing conditions, respiratory ratio as well as physical measurements such as Rn concentration, its balance factor, the ratio of non-absorbed component, for accurate evaluation of the physiological effects of Rn. This committee was established aiming to investigate the physiological effects of Rn in human bodies and solve the problems in this area. In a period from 1996 to 1998, meeting was held nine times by the committee. The respective main themes were as follows: the purpose of this committee and the plans of activities in future for the first meeting, indoor Rn level and balance factor for the second, outdoor Rn level and aerosol of its daughter nuclides for the third, respiratory air movement model for the 4th, Rn inhalation, epidemiological study of Rn for the 5th, epidemiological study of Rn for the 6th, problems in Rn level survey for the 7th, behaviors of Rn and its daughter nuclides in occupational environment for 9th, and variance in dose calibration factor and biological effects of α-ray for 10th. At present, dose evaluation and risk evaluation for Rn exposure include considerable uncertainty. Accurate dose evaluation for Rn is necessary to determine the limitation dose for human bodies to repress the physiological effects. (M.N.)

  16. Prostaglandins - universal biological regulators in the human body (literature review

    Directory of Open Access Journals (Sweden)

    О. V. Tymoshchuk

    2018-02-01

    Full Text Available Recently, researchers of different industries pay great attention to the problem of prostaglandins. Objective: to study and systematize the basic questions of structure, biological action and metabolism of prostaglandins in the human body and using their analogues in pharmacy through the domestic and foreign literature data analysis. Prostaglandins – biologically active substances which are similar in effect to hormones, but are synthesized in cells of different tissues. Prostaglandins as universal cellular mediators are widely distributed in the body, synthesized in small amounts in almost all tissues, have both local and systemic effects. For each prostaglandin there is a target organ. On chemical structure they are small molecules related to eicosanoids - a group of fat-like substances (lipids. Depending on the chemical structure prostaglandins are divided into series (A, B, C, D, E, F, G, H, I and J and three groups (1–3; type F isomers are to be indicated by additional letters α and β. Prostaglandins have an extremely wide range of physiological effects in the body and have three main functions: supporting, molecular, neurotransmitter. Most prostaglandins interact with specific receptors of plasma membranes, but some prostaglandins (group A can act without receptors. There is no stock of prostaglandins in the body, their life cycle is short, and they are quickly produced in response to biological stimulants exposure, have their effect in extremely small quantity and are rapidly inactivated in the bloodstream. Due to the extremely rapid breakdown of prostaglandins in the body they work near their place of secretion. Preparations of prostaglandins and their derivatives are used in experimental and clinical medicine for abortion and induction of labor, treatment of stomach ulcers, asthma, certain heart diseases, congenital heart defects in newborns, glaucoma, atherosclerosis, rheumatic and neurological diseases, kidney diseases, diabetes

  17. Hypoxia regulates microRNA expression in the human carotid body

    International Nuclear Information System (INIS)

    Mkrtchian, Souren; Lee, Kian Leong; Kåhlin, Jessica; Ebberyd, Anette; Poellinger, Lorenz; Fagerlund, Malin Jonsson; Eriksson, Lars I.

    2017-01-01

    The carotid body (CB) is the key sensing organ for physiological oxygen levels in the body. Under conditions of low oxygen (hypoxia), the CB plays crucial roles in signaling to the cardiorespiratory center in the medulla oblongata for the restoration of oxygen homeostasis. How hypoxia regulates gene expression in the human CB remains poorly understood. While limited information on transcriptional regulation in animal CBs is available, the identity and impact of important post-transcriptional regulators such as non-coding RNAs, and in particular miRNAs are not known. Here we show using ex vivo experiments that indeed a number of miRNAs are differentially regulated in surgically removed human CB slices when acute hypoxic conditions were applied. Analysis of the hypoxia-regulated miRNAs shows that they target biological pathways with upregulation of functions related to cell proliferation and immune response and downregulation of cell differentiation and cell death functions. Comparative analysis of the human CB miRNAome with the global miRNA expression patterns of a large number of different human tissues showed that the CB miRNAome had a unique profile which reflects its highly specialized functional status. Nevertheless, the human CB miRNAome is most closely related to the miRNA expression pattern of brain tissues indicating that they may have the most similar developmental origins. - Highlights: • Hypoxia triggers differential expression of many miRNAs in the human carotid body. • This can lead to the upregulation of proliferation and immune response functions. • CB expression profile in the carotid body resembles the miRNA expression pattern in the brain. • miRNAs are involved in the regulation of carotid body functions including oxygen sensing.

  18. Hypoxia regulates microRNA expression in the human carotid body

    Energy Technology Data Exchange (ETDEWEB)

    Mkrtchian, Souren, E-mail: souren.mkrtchian@ki.se [Section for Anesthesiology and Intensive Care Medicine, Department of Physiology and Pharmacology, Karolinska Institute, SE-171 77 Stockholm (Sweden); Lee, Kian Leong, E-mail: csilkl@nus.edu.sg [Cancer Science Institute of Singapore, National University of Singapore, 117599 Singapore (Singapore); Kåhlin, Jessica [Section for Anesthesiology and Intensive Care Medicine, Department of Physiology and Pharmacology, Karolinska Institute, SE-171 77 Stockholm (Sweden); Function Perioperative Medicine and Intensive Care, Karolinska University Hospital, SE-171 76 Stockholm (Sweden); Ebberyd, Anette [Section for Anesthesiology and Intensive Care Medicine, Department of Physiology and Pharmacology, Karolinska Institute, SE-171 77 Stockholm (Sweden); Poellinger, Lorenz [Cancer Science Institute of Singapore, National University of Singapore, 117599 Singapore (Singapore); Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77 Stockholm (Sweden); Fagerlund, Malin Jonsson; Eriksson, Lars I. [Section for Anesthesiology and Intensive Care Medicine, Department of Physiology and Pharmacology, Karolinska Institute, SE-171 77 Stockholm (Sweden); Function Perioperative Medicine and Intensive Care, Karolinska University Hospital, SE-171 76 Stockholm (Sweden)

    2017-03-15

    The carotid body (CB) is the key sensing organ for physiological oxygen levels in the body. Under conditions of low oxygen (hypoxia), the CB plays crucial roles in signaling to the cardiorespiratory center in the medulla oblongata for the restoration of oxygen homeostasis. How hypoxia regulates gene expression in the human CB remains poorly understood. While limited information on transcriptional regulation in animal CBs is available, the identity and impact of important post-transcriptional regulators such as non-coding RNAs, and in particular miRNAs are not known. Here we show using ex vivo experiments that indeed a number of miRNAs are differentially regulated in surgically removed human CB slices when acute hypoxic conditions were applied. Analysis of the hypoxia-regulated miRNAs shows that they target biological pathways with upregulation of functions related to cell proliferation and immune response and downregulation of cell differentiation and cell death functions. Comparative analysis of the human CB miRNAome with the global miRNA expression patterns of a large number of different human tissues showed that the CB miRNAome had a unique profile which reflects its highly specialized functional status. Nevertheless, the human CB miRNAome is most closely related to the miRNA expression pattern of brain tissues indicating that they may have the most similar developmental origins. - Highlights: • Hypoxia triggers differential expression of many miRNAs in the human carotid body. • This can lead to the upregulation of proliferation and immune response functions. • CB expression profile in the carotid body resembles the miRNA expression pattern in the brain. • miRNAs are involved in the regulation of carotid body functions including oxygen sensing.

  19. Population Physiologically-Based Pharmacokinetic Modeling for the Human Lactational Transfer of PCB 153 with Consideration of Worldwide Human Biomonitoring Results

    Energy Technology Data Exchange (ETDEWEB)

    Redding, Laurel E.; Sohn, Michael D.; McKone, Thomas E.; Wang, Shu-Li; Hsieh, Dennis P. H.; Yang, Raymond S. H.

    2008-03-01

    We developed a physiologically based pharmacokinetic model of PCB 153 in women, and predict its transfer via lactation to infants. The model is the first human, population-scale lactational model for PCB 153. Data in the literature provided estimates for model development and for performance assessment. Physiological parameters were taken from a cohort in Taiwan and from reference values in the literature. We estimated partition coefficients based on chemical structure and the lipid content in various body tissues. Using exposure data in Japan, we predicted acquired body burden of PCB 153 at an average childbearing age of 25 years and compare predictions to measurements from studies in multiple countries. Forward-model predictions agree well with human biomonitoring measurements, as represented by summary statistics and uncertainty estimates. The model successfully describes the range of possible PCB 153 dispositions in maternal milk, suggesting a promising option for back estimating doses for various populations. One example of reverse dosimetry modeling was attempted using our PBPK model for possible exposure scenarios in Canadian Inuits who had the highest level of PCB 153 in their milk in the world.

  20. Metabolism of ketone bodies during exercise and training: physiological basis for exogenous supplementation.

    Science.gov (United States)

    Evans, Mark; Cogan, Karl E; Egan, Brendan

    2017-05-01

    Optimising training and performance through nutrition strategies is central to supporting elite sportspeople, much of which has focused on manipulating the relative intake of carbohydrate and fat and their contributions as fuels for energy provision. The ketone bodies, namely acetoacetate, acetone and β-hydroxybutyrate (βHB), are produced in the liver during conditions of reduced carbohydrate availability and serve as an alternative fuel source for peripheral tissues including brain, heart and skeletal muscle. Ketone bodies are oxidised as a fuel source during exercise, are markedly elevated during the post-exercise recovery period, and the ability to utilise ketone bodies is higher in exercise-trained skeletal muscle. The metabolic actions of ketone bodies can alter fuel selection through attenuating glucose utilisation in peripheral tissues, anti-lipolytic effects on adipose tissue, and attenuation of proteolysis in skeletal muscle. Moreover, ketone bodies can act as signalling metabolites, with βHB acting as an inhibitor of histone deacetylases, an important regulator of the adaptive response to exercise in skeletal muscle. Recent development of ketone esters facilitates acute ingestion of βHB that results in nutritional ketosis without necessitating restrictive dietary practices. Initial reports suggest this strategy alters the metabolic response to exercise and improves exercise performance, while other lines of evidence suggest roles in recovery from exercise. The present review focuses on the physiology of ketone bodies during and after exercise and in response to training, with specific interest in exploring the physiological basis for exogenous ketone supplementation and potential benefits for performance and recovery in athletes. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  1. A Community-based Stress Management Program: Using Wearable Devices to Assess Whole Body Physiological Responses in Non-laboratory Settings.

    Science.gov (United States)

    Carter, Robert; Carter, Kirtigandha Salwe; Holliday, John; Holliday, Alice; Harrison, Carlton Keith

    2018-01-22

    A pragmatic breath-based intervention to benefit human performance and stress management is timely and valuable to individuals seeking holistic approaches for emotional regulation and optimizing compensatory reserve mechanisms. This protocol is designed to not only teach mind-body awareness but also to provide feedback utilizing physiological data and survey results. The primary findings of this study showed that heart coherence and alpha variables were significantly correlated after four weeks of the breath-based meditation stress protocol. Meditation and rhythmic breathing produced significant increases in alpha brain activity. These brain physiological responses conformed to the Pleth Variability Index (PVI) changes, suggesting the ability of the human body to enter into a meditative state and effectively manage stress. When assessed after four weeks of daily practicing the techniques employed in the stress management protocol, based on the Five Facet Mindfulness Questionnaire, subjects improved in applying mindfulness skills. The overall mindfulness score, Pleth variability index (PVI), and perfusion index (PI) increased after the 4-week intervention period. Results from electroencephalography (brain waves) were consistent with a meditative state during the post-study follow-up session. This provides evidence that wearable devices are feasible for data collection during a breath-based stress management intervention. This protocol can be easily and efficiently implemented into any study design in which physiological data are desired in a non-laboratory-based setting.

  2. [Human physiology: images and practices of the reflex].

    Science.gov (United States)

    Wübben, Yvonne

    2010-01-01

    The essay examines the function of visualizations and practices in the formation of the reflex concept from Thomas Willis to Marshall Hall. It focuses on the specific form of reflex knowledge that images and practices can contain. In addition, the essay argues that it is through visual representations and experimental practices that technical knowledge is transferred to the field of human reflex physiology. When using technical metaphors in human physiology authors often seem to feel obliged to draw distinctions between humans, machines and animals. On closer scrutiny, these distinctions sometimes fail to establish firm borders between the human and the technical.

  3. The elite cross-country skier provides unique insights into human exercise physiology.

    Science.gov (United States)

    Holmberg, H-C

    2015-12-01

    Successful cross-country skiing, one of the most demanding of endurance sports, involves considerable physiological challenges posed by the combined upper- and lower-body effort of varying intensity and duration, on hilly terrain, often at moderate altitude and in a cold environment. Over the years, this unique sport has helped physiologists gain novel insights into the limits of human performance and regulatory capacity. There is a long-standing tradition of researchers in this field working together with coaches and athletes to improve training routines, monitor progress, and refine skiing techniques. This review summarizes research on elite cross-country skiers, with special emphasis on the studies initiated by Professor Bengt Saltin. He often employed exercise as a means to learn more about the human body, successfully engaging elite endurance athletes to improve our understanding of the demands, characteristics, and specific effects associated with different types of exercise. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Human body communication performance simulations

    OpenAIRE

    Mufti, H. (Haseeb)

    2016-01-01

    Abstract Human Body Communication (HBC) is a novel communication method between devices which use human body as a transmission medium. This idea is mostly based on the concept of wireless biomedical monitoring system. The on-body sensor nodes can monitor vital signs of a human body and use the body as a transmission medium. This technology is convenient for long durations of clinical monitoring with the option of more mobil...

  5. Integrative Physiology: At the Crossroads of Nutrition, Microbiota, Animal Physiology, and Human Health.

    Science.gov (United States)

    Leulier, François; MacNeil, Lesley T; Lee, Won-Jae; Rawls, John F; Cani, Patrice D; Schwarzer, Martin; Zhao, Liping; Simpson, Stephen J

    2017-03-07

    Nutrition is paramount in shaping all aspects of animal biology. In addition, the influence of the intestinal microbiota on physiology is now widely recognized. Given that diet also shapes the intestinal microbiota, this raises the question of how the nutritional environment and microbial assemblages together influence animal physiology. This research field constitutes a new frontier in the field of organismal biology that needs to be addressed. Here we review recent studies using animal models and humans and propose an integrative framework within which to define the study of the diet-physiology-microbiota systems and ultimately link it to human health. Nutritional Geometry sits centrally in the proposed framework and offers means to define diet compositions that are optimal for individuals and populations. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Design of wearable hybrid generator for harvesting heat energy from human body depending on physiological activity

    Science.gov (United States)

    Kim, Myoung-Soo; Kim, Min-Ki; Kim, Kyongtae; Kim, Yong-Jun

    2017-09-01

    We developed a prototype of a wearable hybrid generator (WHG) that is used for harvesting the heat energy of the human body. This WHG is constructed by integrating a thermoelectric generator (TEG) in a circular mesh polyester knit fabric, circular-shaped pyroelectric generator (PEG), and quick sweat-pickup/dry-fabric. The fabric packaging enables the TEG part of the WHG to generate energy steadily while maintaining a temperature difference in extreme temperature environments. Moreover, when the body sweats, the evaporation heat of the sweat leads to thermal fluctuations in the WHG. This phenomenon further leads to an increase in the output power of the WHG. These characteristics of the WHG make it possible to produce electrical energy steadily without reduction in the conversion efficiency, as both TEG and PEG use the same energy source of the human skin and the ambient temperature. Under a temperature difference of ˜6.5 °C and temperature change rate of ˜0.62 °C s-1, the output power and output power density of the WHG, respectively, are ˜4.5 nW and ˜1.5 μW m-2. Our hybrid approach will provide a framework to enhance the output power of the wearable generators that harvest heat energy from human body in various environments.

  7. Evolutionary Medicine: The Ongoing Evolution of Human Physiology and Metabolism.

    Science.gov (United States)

    Rühli, Frank; van Schaik, Katherine; Henneberg, Maciej

    2016-11-01

    The field of evolutionary medicine uses evolutionary principles to understand changes in human anatomy and physiology that have occurred over time in response to environmental changes. Through this evolutionary-based approach, we can understand disease as a consequence of anatomical and physiological "trade-offs" that develop to facilitate survival and reproduction. We demonstrate how diachronic study of human anatomy and physiology is fundamental for an increased understanding of human health and disease. ©2016 Int. Union Physiol. Sci./Am. Physiol. Soc.

  8. An integrated approach to develop, validate and operate thermo-physiological human simulator for the development of protective clothing.

    Science.gov (United States)

    Psikuta, Agnes; Koelblen, Barbara; Mert, Emel; Fontana, Piero; Annaheim, Simon

    2017-12-07

    Following the growing interest in the further development of manikins to simulate human thermal behaviour more adequately, thermo-physiological human simulators have been developed by coupling a thermal sweating manikin with a thermo-physiology model. Despite their availability and obvious advantages, the number of studies involving these devices is only marginal, which plausibly results from the high complexity of the development and evaluation process and need of multi-disciplinary expertise. The aim of this paper is to present an integrated approach to develop, validate and operate such devices including technical challenges and limitations of thermo-physiological human simulators, their application and measurement protocol, strategy for setting test scenarios, and the comparison to standard methods and human studies including details which have not been published so far. A physical manikin controlled by a human thermoregulation model overcame the limitations of mathematical clothing models and provided a complementary method to investigate thermal interactions between the human body, protective clothing, and its environment. The opportunities of these devices include not only realistic assessment of protective clothing assemblies and equipment but also potential application in many research fields ranging from biometeorology, automotive industry, environmental engineering, and urban climate to clinical and safety applications.

  9. Reference values for basic human anatomical and physiological characteristics for use in radiation protection

    International Nuclear Information System (INIS)

    Boecker, B.B.

    2003-01-01

    A new publication prepared by the ICRP Task Group on Reference Man. Basic anatomical and physiological data for use in radiological protection: reference values, is focused on those human characteristics that are important for dosimetric calculations. Moving from the past emphasis on a Reference Man. the new report presents a series of reference values for both male and female subjects of six different ages - newborn, 1, 5, 10, 15 y, and adult. In selecting reference values, the task group has used data on Western Europeans and North Americans because these populations have been well studied with respect to anatomy, body composition and physiology. When appropriate, comparisons are made between the chosen reference values and data from several Asian populations. The reference values for height and body mass are higher than those reported for various Asian populations. However, the reported masses of individual organs and tissues, particularly for China and Japan, are similar to the reference values. (author)

  10. Physiologically Based Pharmacokinetic Model for Terbinafine in Rats and Humans

    Science.gov (United States)

    Hosseini-Yeganeh, Mahboubeh; McLachlan, Andrew J.

    2002-01-01

    The aim of this study was to develop a physiologically based pharmacokinetic (PB-PK) model capable of describing and predicting terbinafine concentrations in plasma and tissues in rats and humans. A PB-PK model consisting of 12 tissue and 2 blood compartments was developed using concentration-time data for tissues from rats (n = 33) after intravenous bolus administration of terbinafine (6 mg/kg of body weight). It was assumed that all tissues except skin and testis tissues were well-stirred compartments with perfusion rate limitations. The uptake of terbinafine into skin and testis tissues was described by a PB-PK model which incorporates a membrane permeability rate limitation. The concentration-time data for terbinafine in human plasma and tissues were predicted by use of a scaled-up PB-PK model, which took oral absorption into consideration. The predictions obtained from the global PB-PK model for the concentration-time profile of terbinafine in human plasma and tissues were in close agreement with the observed concentration data for rats. The scaled-up PB-PK model provided an excellent prediction of published terbinafine concentration-time data obtained after the administration of single and multiple oral doses in humans. The estimated volume of distribution at steady state (Vss) obtained from the PB-PK model agreed with the reported value of 11 liters/kg. The apparent volume of distribution of terbinafine in skin and adipose tissues accounted for 41 and 52%, respectively, of the Vss for humans, indicating that uptake into and redistribution from these tissues dominate the pharmacokinetic profile of terbinafine. The PB-PK model developed in this study was capable of accurately predicting the plasma and tissue terbinafine concentrations in both rats and humans and provides insight into the physiological factors that determine terbinafine disposition. PMID:12069977

  11. Quantitative Circulatory Physiology: an integrative mathematical model of human physiology for medical education.

    Science.gov (United States)

    Abram, Sean R; Hodnett, Benjamin L; Summers, Richard L; Coleman, Thomas G; Hester, Robert L

    2007-06-01

    We have developed Quantitative Circulatory Physiology (QCP), a mathematical model of integrative human physiology containing over 4,000 variables of biological interactions. This model provides a teaching environment that mimics clinical problems encountered in the practice of medicine. The model structure is based on documented physiological responses within peer-reviewed literature and serves as a dynamic compendium of physiological knowledge. The model is solved using a desktop, Windows-based program, allowing students to calculate time-dependent solutions and interactively alter over 750 parameters that modify physiological function. The model can be used to understand proposed mechanisms of physiological function and the interactions among physiological variables that may not be otherwise intuitively evident. In addition to open-ended or unstructured simulations, we have developed 30 physiological simulations, including heart failure, anemia, diabetes, and hemorrhage. Additional stimulations include 29 patients in which students are challenged to diagnose the pathophysiology based on their understanding of integrative physiology. In summary, QCP allows students to examine, integrate, and understand a host of physiological factors without causing harm to patients. This model is available as a free download for Windows computers at http://physiology.umc.edu/themodelingworkshop.

  12. Impact of human emotions on physiological characteristics

    Science.gov (United States)

    Partila, P.; Voznak, M.; Peterek, T.; Penhaker, M.; Novak, V.; Tovarek, J.; Mehic, Miralem; Vojtech, L.

    2014-05-01

    Emotional states of humans and their impact on physiological and neurological characteristics are discussed in this paper. This problem is the goal of many teams who have dealt with this topic. Nowadays, it is necessary to increase the accuracy of methods for obtaining information about correlations between emotional state and physiological changes. To be able to record these changes, we focused on two majority emotional states. Studied subjects were psychologically stimulated to neutral - calm and then to the stress state. Electrocardiography, Electroencephalography and blood pressure represented neurological and physiological samples that were collected during patient's stimulated conditions. Speech activity was recording during the patient was reading selected text. Feature extraction was calculated by speech processing operations. Classifier based on Gaussian Mixture Model was trained and tested using Mel-Frequency Cepstral Coefficients extracted from the patient's speech. All measurements were performed in a chamber with electromagnetic compatibility. The article discusses a method for determining the influence of stress emotional state on the human and his physiological and neurological changes.

  13. Human Physiology The Urban Health Crisis: Strategies for Health for ...

    African Journals Online (AJOL)

    comes its English equivalent, Human Physiology. Though ... Summary of Human Physiology would have been a more appropriate ... This crisis has its origins in the interaction between .... The construction, layout and printing of the book are as.

  14. Review on modeling heat transfer and thermoregulatory responses in human body.

    Science.gov (United States)

    Fu, Ming; Weng, Wenguo; Chen, Weiwang; Luo, Na

    2016-12-01

    Several mathematical models of human thermoregulation have been developed, contributing to a deep understanding of thermal responses in different thermal conditions and applications. In these models, the human body is represented by two interacting systems of thermoregulation: the controlling active system and the controlled passive system. This paper reviews the recent research of human thermoregulation models. The accuracy and scope of the thermal models are improved, for the consideration of individual differences, integration to clothing models, exposure to cold and hot conditions, and the changes of physiological responses for the elders. The experimental validated methods for human subjects and manikin are compared. The coupled method is provided for the manikin, controlled by the thermal model as an active system. Computational Fluid Dynamics (CFD) is also used along with the manikin or/and the thermal model, to evaluate the thermal responses of human body in various applications, such as evaluation of thermal comfort to increase the energy efficiency, prediction of tolerance limits and thermal acceptability exposed to hostile environments, indoor air quality assessment in the car and aerospace industry, and design protective equipment to improve function of the human activities. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Review of the physiology of human thermal comfort while exercising in urban landscapes and implications for bioclimatic design

    Science.gov (United States)

    Vanos, Jennifer K.; Warland, Jon S.; Gillespie, Terry J.; Kenny, Natasha A.

    2010-07-01

    This review comprehensively examines scientific literature pertaining to human physiology during exercise, including mechanisms of heat formation and dissipation, heat stress on the body, the importance of skin temperature monitoring, the effects of clothing, and microclimatic measurements. This provides a critical foundation for microclimatologists and biometeorologists in the understanding of experiments involving human physiology. The importance of the psychological aspects of how an individual perceives an outdoor environment are also reviewed, emphasizing many factors that can indirectly affect thermal comfort (TC). Past and current efforts to develop accurate human comfort models are described, as well as how these models can be used to develop resilient and comfortable outdoor spaces for physical activity. Lack of suitable spaces plays a large role in the deterioration of human health due to physical inactivity, leading to higher rates of illness, heart disease, obesity and heat-related casualties. This trend will continue if urban designers do not make use of current knowledge of bioclimatic urban design, which must be synthesized with physiology, psychology and microclimatology. Increased research is required for furthering our knowledge on the outdoor human energy balance concept and bioclimatic design for health and well-being in urban areas.

  16. Electronic Textbook in Human Physiology.

    Science.gov (United States)

    Broering, Naomi C.; Lilienfield, Lawrence S.

    1994-01-01

    Describes the development of an electronic textbook in human physiology at the Georgetown University Medical Center Library that was designed to enhance learning and visualization through a prototype knowledge base of core instructional materials stored in digital format on Macintosh computers. The use of computers in the medical curriculum is…

  17. Prediction of human core body temperature using non-invasive measurement methods.

    Science.gov (United States)

    Niedermann, Reto; Wyss, Eva; Annaheim, Simon; Psikuta, Agnes; Davey, Sarah; Rossi, René Michel

    2014-01-01

    The measurement of core body temperature is an efficient method for monitoring heat stress amongst workers in hot conditions. However, invasive measurement of core body temperature (e.g. rectal, intestinal, oesophageal temperature) is impractical for such applications. Therefore, the aim of this study was to define relevant non-invasive measures to predict core body temperature under various conditions. We conducted two human subject studies with different experimental protocols, different environmental temperatures (10 °C, 30 °C) and different subjects. In both studies the same non-invasive measurement methods (skin temperature, skin heat flux, heart rate) were applied. A principle component analysis was conducted to extract independent factors, which were then used in a linear regression model. We identified six parameters (three skin temperatures, two skin heat fluxes and heart rate), which were included for the calculation of two factors. The predictive value of these factors for core body temperature was evaluated by a multiple regression analysis. The calculated root mean square deviation (rmsd) was in the range from 0.28 °C to 0.34 °C for all environmental conditions. These errors are similar to previous models using non-invasive measures to predict core body temperature. The results from this study illustrate that multiple physiological parameters (e.g. skin temperature and skin heat fluxes) are needed to predict core body temperature. In addition, the physiological measurements chosen in this study and the algorithm defined in this work are potentially applicable as real-time core body temperature monitoring to assess health risk in broad range of working conditions.

  18. Human Adaptation to Space: Space Physiology and Countermeasures

    Science.gov (United States)

    Fogarty, Jennifer

    2009-01-01

    This viewgraph presentation reviews human physiological responses to spaceflight, and the countermeasures taken to prevent adverse effects of manned space flight. The topics include: 1) Human Spaceflight Experience; 2) Human Response to Spaceflight; 3) ISS Expeditions 1-16; 4) Countermeasure; and 5) Biomedical Data;

  19. Dynamic representations of human body movement.

    Science.gov (United States)

    Kourtzi, Z; Shiffrar, M

    1999-01-01

    Psychophysical and neurophysiological studies suggest that human body motions can be readily recognized. Human bodies are highly articulated and can move in a nonrigid manner. As a result, we perceive highly dissimilar views of the human form in motion. How does the visual system integrate multiple views of a human body in motion so that we can perceive human movement as a continuous event? The results of a set of priming experiments suggest that motion can readily facilitate the linkage of different views of a moving human. Positive priming was found for novel views of a human body that fell within the path of human movement. However, no priming was observed for novel views outside the path of motion. Furthermore, priming was restricted to those views that satisfied the biomechanical constraints of human movement. These results suggest that visual representation of human movement may be based upon the movement limitations of the human body and may reflect a dynamic interaction of motion and object-recognition processes.

  20. The effects of gender on circadian rhythm of human physiological indexes in high temperature environment

    Science.gov (United States)

    Zheng, G. Z.; Li, K.; Bu, W. T.; Lu, Y. Z.; Wang, Y. J.

    2018-03-01

    In the context of frequent high temperature weather in recent years, peoples’ physical health is seriously threatened by the indoor high temperature. The physiological activities of human body show a certain changes of circadian rhythm. In this paper, the circadian rhythms of the physiological indexes in indoor high temperature environment were quantified and compared between the male subjects and female subjects. Ten subjects (five males and five females) were selected. The temperature conditions were set at 28°C, 32°C, 36°C and 38°C, respectively. The blood pressure, heart rate, rectal temperature, eardrum temperature, forehead temperature and mean skin temperature were measured for 24 hours continuously. The medians, amplitudes and acrophases of the circadian rhythms were obtained by the cosinor analysis method. Then the effects of gender on the circadian rhythm of the human body in high temperature environment were analyzed. The results indicate that, compared with the female subjects, the male medians of the systolic pressure and diastolic pressure were higher, and the male medians of heart rate and rectal temperature were lower, however, no significant differences were found between eardrum temperature, forehead temperature and mean skin temperature. This study can provide scientific basis for the health protection of the indoor relevant personnel.

  1. Quantification of human lung structure and physiology using hyperpolarized 129Xe.

    Science.gov (United States)

    Chang, Yulin V; Quirk, James D; Ruset, Iulian C; Atkinson, Jeffrey J; Hersman, F William; Woods, Jason C

    2014-01-01

    To present in vivo, human validation of a previously proposed method to measure key pulmonary parameters related to lung microstructure and physiology. Some parameters, such as blood-air barrier thickness, cannot be measured readily by any other noninvasive modality. Healthy volunteers (n = 12) were studied in 1.5T and 3T whole body human scanners using hyperpolarized xenon. Xenon uptake by lung parenchyma and blood was measured using a chemical shift saturation recovery sequence. Both dissolved-xenon peaks at 197 ppm and 217-218 ppm were fitted against a model of xenon exchange (MOXE) as functions of exchange time. Parameters related to lung function and structure can be obtained by fitting to this model. The following results were obtained from xenon uptake (averaged over all healthy volunteers): surface-area-to-volume ratio = 210 ± 50 cm(-1) ; total septal wall thickness = 9.2 ± 6.5 μm; blood-air barrier thickness = 1.0 ± 0.3 μm; hematocrit = 27 ± 4%; pulmonary capillary blood transit time = 1.3 ± 0.3 s, in good agreement with literature values from invasive experiments. More detailed fitting results are listed in the text. The initial in vivo human results demonstrate that our proposed methods can be used to noninvasively determine lung physiology by simultaneous quantification of a few important pulmonary parameters. This method is highly promising to become a versatile screening method for lung diseases. Copyright © 2013 Wiley Periodicals, Inc.

  2. Female perception of male body odor.

    Science.gov (United States)

    Sergeant, Mark J T

    2010-01-01

    Olfaction is one of the most crucial forms of communication among nonhuman animals. Historically, olfaction has been perceived as being of limited importance for humans, but recent research has documented that not only do humans have sensitive olfactory abilities, but also odors have the potential to influence our physiology and behavior. This chapter reviews research on olfactory communication among humans, focusing on the effects of male bodily odors on female physiology and behavior. The process of body odor production and the detection of olfactory signals are reviewed, focusing on potential sex differences in these abilities. The effects of male body odors on female physiological and behavioral effects of body odors are considered. Finally, with specific regard to female mate choice, evidence regarding the influence of the major histocompatibility complex and fluctuating asymmetry on male olfactory cues is reviewed. Copyright © 2010 Elsevier Inc. All rights reserved.

  3. [The beginnings of physiology of the human brain, from antiquity to the Renaissance].

    Science.gov (United States)

    Saban, R

    1999-06-01

    For more than 3,000 years in Western civilizations, the knowledge of the human body gained very little ground at first, due to taboos. The body was regarded as sacred and Medicine only resorted to plants in order to heal. Hippocrates was not familiar with anatomy as the human body could not be dissected. He developed a theory of humors connected with the primary elements and opposing the dry and the moist. Even though he did not know the nervous system, he nonetheless pointed out that emotions stemmed from the brain and were caused ty particles (pneuma) emitted by the objects around us. Galien was one of the first to mention physiology but could only dissect animals to understand Man. He took up the theory of humors but did not reach any concrete results as he considered the brain as made up of faeces. Only in 1000 AD did Avicenne try to shape the cell theory with its three cells (the ventricles in today's parlance) in direct relation to the nerves, which he described but did not represent. Representation of the nerves was only be given in the mid-13th century by Khalifah in his ophtalmology treaty. Finally, during the Renaissance, when books started conveying both text and pictures, brain physiology emerged; Albert le Grand was its first expounder and his work was then taken up in a 1475 inculabulum in which 5 cells instead of 3 are described and represented. Leonardo da Vinci was the second one; at the end of the 15th century he dissected may corpses to understand human morphology. Unfortunately his work, which was conducted very rigorously from an anatomical point of view only surfaced at the end of the 19th century. He was the first to conduct the anatomical cross-dissection of the brain. Last came Magnus Hundt and Georg Reisch; in the early 16th century they still represented the three cells of Avicenne even though Reisch described more sophisticated connections between the organs of the senses.

  4. Human age and skin physiology shape diversity and abundance of Archaea on skin.

    Science.gov (United States)

    Moissl-Eichinger, Christine; Probst, Alexander J; Birarda, Giovanni; Auerbach, Anna; Koskinen, Kaisa; Wolf, Peter; Holman, Hoi-Ying N

    2017-06-22

    The human skin microbiome acts as an important barrier protecting our body from pathogens and other environmental influences. Recent investigations have provided evidence that Archaea are a constant but highly variable component of the human skin microbiome, yet factors that determine their abundance changes are unknown. Here, we tested the hypothesis that the abundance of archaea on human skin is influenced by human age and skin physiology by quantitative PCR of 51 different skin samples taken from human subjects of various age. Our results reveal that archaea are more abundant in human subjects either older than 60 years or younger than 12 years as compared to middle-aged human subjects. These results, together with results obtained from spectroscopy analysis, allowed us gain first insights into a potential link of lower sebum levels and lipid content and thus reduced skin moisture with an increase in archaeal signatures. Amplicon sequencing of selected samples revealed the prevalence of specific eury- and mainly thaumarchaeal taxa, represented by a core archaeome of the human skin.

  5. Psycho-physiologic emergentism; four minds in a body

    Directory of Open Access Journals (Sweden)

    David L. Rowland

    2017-10-01

    Full Text Available The mind-body problem represents one of the most debated topics in the neurosciences. From a psychological standpoint, abstract/non-material data are an intrinsic part of the mind, intervening to a large extent in reasoning and decision making processes. Imaging studies also show a strong correlation between higher cognitive functions (such as working memory and specific cerebral brain regions (a fronto-parietal network of interacting left and right brain areas. In contrast, the physical/material brain would be unable to interact with abstract-immaterial data, such that the psychological processing of abstract data (processes such as thinking, reasoning, and judgment is attributed to the mind, with the mind representing a distinct entity interposed between the brain and abstract-immaterial data. Recent data suggest that the mind-body problem may simply be an artifact of human experience/ understanding, as the brain actually represents actually an intrinsic part of the mind. Even if the physical brain is not able to interact with abstract mental data, the brain still could process abstract data through a dynamic association between the abstract data and cerebral stimuli/ impulses. This form of processing without interaction defines the mind as a complex neurobiological structure, with the unconscious part of the mind processing abstract-immaterial data in a conscious/ mental format. In this overview, important concepts of psycho-physiologic emergentism, including internal mental reality, internal mental existence, internal mental interaction, and structural and informational dichotomies of the brain, are iterated. Such concepts/properties represent a neuro-informational support system capable of generating four distinct minds within the single brain. Future studies should further develop the dynamic and immaterial-material nature of the mind, as a possible premise for a scientific definition and understanding of mental events like affectivity

  6. Physiological parameters

    International Nuclear Information System (INIS)

    Natera, E.S.

    1998-01-01

    The physiological characteristics of man depend on the intake, metabolism and excretion of stable elements from food, water, and air. The physiological behavior of natural radionuclides and radionuclides from nuclear weapons testing and from the utilization of nuclear energy is believed to follow the pattern of stable elements. Hence information on the normal physiological processes occurring in the human body plays an important role in the assessment of the radiation dose received by man. Two important physiological parameters needed for internal dose determination are the pulmonary function and the water balance. In the Coordinated Research Programme on the characterization of Asian population, five participants submitted data on these physiological characteristics - China, India, Japan, Philippines and Viet Nam. During the CRP, data on other pertinent characteristics such as physical and dietary were simultaneously being collected. Hence, the information on the physiological characteristics alone, coming from the five participants were not complete and are probably not sufficient to establish standard values for the Reference Asian Man. Nonetheless, the data collected is a valuable contribution to this research programme

  7. Physiological Health Challenges for Human Missions to Mars

    Science.gov (United States)

    Norsk, Peter

    2015-01-01

    During the next decades, manned space missions are expected to be aiming at the Lagrange points, near Earth asteroids, and Mars flyby and/or landing. The question is therefore: Are we ready to go? To answer this with a yes, we are currently using the International Space Station to develop an integrated human physiological countermeasure suite. The integrated countermeasure suite will most likely encounter: 1) Exercise devices for aerobic, dynamic and resistive exercise training; 2) sensory-motor computer training programs and anti-motion sickness medication for preparing EVAs and G-transitions; 3) lower limb bracelets for preventing and/or treating the VIIP (vision impairment and intracranial pressure) syndrome; 4) nutritional components for maintenance of bone, muscle, the cardiovascular system and preventing oxidative stress and damage and immune deficiencies (e. g. omega-3 fatty acids, PRO/K, anti-oxidants and less salt and iron); 5) bisphosphonates for preventing bone degradation.; 6) lower body compression garment and oral salt and fluid loading for landing on a planetary surface to combat orthostatic intolerance; 7) laboratory analysis equipment for individualized monitoring of biomarkers in blood, urine and saliva for estimation of health status in; 8) advanced ultrasound techniques for monitoring bone and cardiovascular health; and 9) computer modeling programs for individual health status assessments of efficiency and subsequent adjustments of countermeasures. In particular for future missions into deep space, we are concerned with the synergistic effects of weightlessness, radiation, operational constraints and other spaceflight environmental factors. Therefore, increased collaboration between physiological, behavioral, radiation and space vehicle design disciplines are strongly warranted. Another venue we are exploring in NASA's Human Research Program is the usefulness of artificial gravity for mitigating the health risks of long duration weightlessness.

  8. An Individualized, Perception-Based Protocol to Investigate Human Physiological Responses to Cooling

    Science.gov (United States)

    Coolbaugh, Crystal L.; Bush, Emily C.; Galenti, Elizabeth S.; Welch, E. Brian; Towse, Theodore F.

    2018-01-01

    Cold exposure, a known stimulant of the thermogenic effects of brown adipose tissue (BAT), is the most widely used method to study BAT physiology in adult humans. Recently, individualized cooling has been recommended to standardize the physiological cold stress applied across participants, but critical experimental details remain unclear. The purpose of this work was to develop a detailed methodology for an individualized, perception-based protocol to investigate human physiological responses to cooling. Participants were wrapped in two water-circulating blankets and fitted with skin temperature probes to estimate BAT activity and peripheral vasoconstriction. We created a thermoesthesia graphical user interface (tGUI) to continuously record the subject's perception of cooling and shivering status during the cooling protocol. The protocol began with a 15 min thermoneutral phase followed by a series of 10 min cooling phases and concluded when sustained shivering (>1 min duration) occurred. Researchers used perception of cooling feedback (tGUI ratings) to manually adjust and personalize the water temperature at each cooling phase. Blanket water temperatures were recorded continuously during the protocol. Twelve volunteers (ages: 26.2 ± 1.4 years; 25% female) completed a feasibility study to evaluate the proposed protocol. Water temperature, perception of cooling, and shivering varied considerably across participants in response to cooling. Mean clavicle skin temperature, a surrogate measure of BAT activity, decreased (−0.99°C, 95% CI: −1.7 to −0.25°C, P = 0.16) after the cooling protocol, but an increase in supraclavicular skin temperature was observed in 4 participants. A strong positive correlation was also found between thermoesthesia and peripheral vasoconstriction (ρ = 0.84, P < 0.001). The proposed individualized, perception-based protocol therefore has potential to investigate the physiological responses to cold stress applied across populations with

  9. Origins and early development of human body knowledge.

    Science.gov (United States)

    Slaughter, Virginia; Heron, Michelle

    2004-01-01

    As a knowable object, the human body is highly complex. Evidence from several converging lines of research, including psychological studies, neuroimaging and clinical neuropsychology, indicates that human body knowledge is widely distributed in the adult brain, and is instantiated in at least three partially independent levels of representation. Sensorimotor body knowledge is responsible for on-line control and movement of one's own body and may also contribute to the perception of others' moving bodies; visuo-spatial body knowledge specifies detailed structural descriptions of the spatial attributes of the human body; and lexical-semantic body knowledge contains language-based knowledge about the human body. In the first chapter of this Monograph, we outline the evidence for these three hypothesized levels of human body knowledge, then review relevant literature on infants' and young children's human body knowledge in terms of the three-level framework. In Chapters II and III, we report two complimentary series of studies that specifically investigate the emergence of visuo-spatial body knowledge in infancy. Our technique is to compare infants'responses to typical and scrambled human bodies, in order to evaluate when and how infants acquire knowledge about the canonical spatial layout of the human body. Data from a series of visual habituation studies indicate that infants first discriminate scrambled from typical human body picture sat 15 to 18 months of age. Data from object examination studies similarly indicate that infants are sensitive to violations of three-dimensional human body stimuli starting at 15-18 months of age. The overall pattern of data supports several conclusions about the early development of human body knowledge: (a) detailed visuo-spatial knowledge about the human body is first evident in the second year of life, (b) visuo-spatial knowledge of human faces and human bodies are at least partially independent in infancy and (c) infants' initial

  10. Human mini-guts: new insights into intestinal physiology and host-pathogen interactions.

    Science.gov (United States)

    In, Julie G; Foulke-Abel, Jennifer; Estes, Mary K; Zachos, Nicholas C; Kovbasnjuk, Olga; Donowitz, Mark

    2016-11-01

    The development of indefinitely propagating human 'mini-guts' has led to a rapid advance in gastrointestinal research related to transport physiology, developmental biology, pharmacology, and pathophysiology. These mini-guts, also called enteroids or colonoids, are derived from LGR5 + intestinal stem cells isolated from the small intestine or colon. Addition of WNT3A and other growth factors promotes stemness and results in viable, physiologically functional human intestinal or colonic cultures that develop a crypt-villus axis and can be differentiated into all intestinal epithelial cell types. The success of research using human enteroids has highlighted the limitations of using animals or in vitro, cancer-derived cell lines to model transport physiology and pathophysiology. For example, curative or preventive therapies for acute enteric infections have been limited, mostly due to the lack of a physiological human intestinal model. However, the human enteroid model enables specific functional studies of secretion and absorption in each intestinal segment as well as observations of the earliest molecular events that occur during enteric infections. This Review describes studies characterizing these human mini-guts as a physiological model to investigate intestinal transport and host-pathogen interactions.

  11. The EuroPhysiome, STEP and a roadmap for the virtual physiological human.

    Science.gov (United States)

    Fenner, J W; Brook, B; Clapworthy, G; Coveney, P V; Feipel, V; Gregersen, H; Hose, D R; Kohl, P; Lawford, P; McCormack, K M; Pinney, D; Thomas, S R; Van Sint Jan, S; Waters, S; Viceconti, M

    2008-09-13

    Biomedical science and its allied disciplines are entering a new era in which computational methods and technologies are poised to play a prevalent role in supporting collaborative investigation of the human body. Within Europe, this has its focus in the virtual physiological human (VPH), which is an evolving entity that has emerged from the EuroPhysiome initiative and the strategy for the EuroPhysiome (STEP) consortium. The VPH is intended to be a solution to common infrastructure needs for physiome projects across the globe, providing a unifying architecture that facilitates integration and prediction, ultimately creating a framework capable of describing Homo sapiens in silico. The routine reliance of the biomedical industry, biomedical research and clinical practice on information technology (IT) highlights the importance of a tailor-made and robust IT infrastructure, but numerous challenges need to be addressed if the VPH is to become a mature technological reality. Appropriate investment will reap considerable rewards, since it is anticipated that the VPH will influence all sectors of society, with implications predominantly for improved healthcare, improved competitiveness in industry and greater understanding of (patho)physiological processes. This paper considers issues pertinent to the development of the VPH, highlighted by the work of the STEP consortium.

  12. Phages in the Human Body.

    Science.gov (United States)

    Navarro, Ferran; Muniesa, Maite

    2017-01-01

    Bacteriophages, viruses that infect bacteria, have re-emerged as powerful regulators of bacterial populations in natural ecosystems. Phages invade the human body, just as they do other natural environments, to such an extent that they are the most numerous group in the human virome. This was only revealed in recent metagenomic studies, despite the fact that the presence of phages in the human body was reported decades ago. The influence of the presence of phages in humans has yet to be evaluated; but as in marine environments, a clear role in the regulation of bacterial populations could be envisaged, that might have an impact on human health. Moreover, phages are excellent vehicles of genetic transfer, and they contribute to the evolution of bacterial cells in the human body by spreading and acquiring DNA horizontally. The abundance of phages in the human body does not pass unnoticed and the immune system reacts to them, although it is not clear to what extent. Finally, the presence of phages in human samples, which most of the time is not considered, can influence and bias microbiological and molecular results; and, in view of the evidences, some studies suggest that more attention needs to be paid to their interference.

  13. Lower core body temperature and greater body fat are components of a human thrifty phenotype.

    Science.gov (United States)

    Reinhardt, M; Schlögl, M; Bonfiglio, S; Votruba, S B; Krakoff, J; Thearle, M S

    2016-05-01

    In small studies, a thrifty human phenotype, defined by a greater 24-hour energy expenditure (EE) decrease with fasting, is associated with less weight loss during caloric restriction. In rodents, models of diet-induced obesity often have a phenotype including a reduced EE and decreased core body temperature. We assessed whether a thrifty human phenotype associates with differences in core body temperature or body composition. Data for this cross-sectional analysis were obtained from 77 individuals participating in one of two normal physiology studies while housed on our clinical research unit. Twenty-four-hour EE using a whole-room indirect calorimeter and 24-h core body temperature were measured during 24 h each of fasting and 200% overfeeding with a diet consisting of 50% carbohydrates, 20% protein and 30% fat. Body composition was measured by dual X-ray absorptiometry. To account for the effects of body size on EE, changes in EE were expressed as a percentage change from 24-hour EE (%EE) during energy balance. A greater %EE decrease with fasting correlated with a smaller %EE increase with overfeeding (r=0.27, P=0.02). The %EE decrease with fasting was associated with both fat mass and abdominal fat mass, even after accounting for covariates (β=-0.16 (95% CI: -0.26, -0.06) %EE per kg fat mass, P=0.003; β=-0.0004 (-0.0007, -0.00004) %EE kg(-1) abdominal fat mass, P=0.03). In men, a greater %EE decrease in response to fasting was associated with a lower 24- h core body temperature, even after adjusting for covariates (β=1.43 (0.72, 2.15) %EE per 0.1 °C, P=0.0003). Thrifty individuals, as defined by a larger EE decrease with fasting, were more likely to have greater overall and abdominal adiposity as well as lower core body temperature consistent with a more efficient metabolism.

  14. Variability of tissue mineral density can determine physiological creep of human vertebral cancellous bone.

    Science.gov (United States)

    Kim, Do-Gyoon; Shertok, Daniel; Ching Tee, Boon; Yeni, Yener N

    2011-06-03

    Creep is a time-dependent viscoelastic deformation observed under a constant prolonged load. It has been indicated that progressive vertebral deformation due to creep may increase the risk of vertebral fracture in the long-term. The objective of this study was to examine the relationships of creep with trabecular architecture and tissue mineral density (TMD) parameters in human vertebral cancellous bone at a physiological static strain level. Architecture and TMD parameters of cancellous bone were analyzed using microcomputerized tomography (micro-CT) in specimens cored out of human vertebrae. Then, creep and residual strains of the specimens were measured after a two-hour physiological compressive constant static loading and unloading cycle. Creep developed (3877 ± 2158 με) resulting in substantial levels of non-recoverable post-creep residual strain (1797 ± 1391 με). A strong positive linear correlation was found between creep and residual strain (r = 0.94, p creep rate. The TMD variability (GL(COV)) was the strongest correlate of creep rate (r = 0.79, p < 0.001). This result suggests that TMD variability may be a useful parameter for estimating the long-term deformation of a whole vertebral body. The results further suggest that the changes in TMD variability resulting from bone remodeling are of importance and may provide an insight into the understanding of the mechanisms underlying progressive failure of vertebral bodies and development of a clinical fracture. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Earthing: Health Implications of Reconnecting the Human Body to the Earth's Surface Electrons

    International Nuclear Information System (INIS)

    Chevalier, G.; Chevalier, G.; Sinatra, S.T.; Oschman, J.L.; Sokal, K.; Sokal, P.

    2012-01-01

    Environmental medicine generally addresses environmental factors with a negative impact on human health. However, emerging scientific research has revealed a surprisingly positive and overlooked environmental factor on health: direct physical contact with the vast supply of electrons on the surface of the Earth. Modern lifestyle separates humans from such contact. The research suggests that this disconnect may be a major contributor to physiological dysfunction and un wellness. Reconnection with the Earth's electrons has been found to promote intriguing physiological changes and subjective reports of well-being. Earthing (or grounding) refers to the discovery of benefits including better sleep and reduced pain from walking barefoot outside or sitting, working, or sleeping indoors connected to conductive systems that transfer the Earth's electrons from the ground into the body. This paper reviews the earthing research and the potential of earthing as a simple and easily accessed global modality of significant clinical importance

  16. Human physiological models of insomnia.

    Science.gov (United States)

    Richardson, Gary S

    2007-12-01

    Despite the wide prevalence and important consequences of insomnia, remarkably little is known about its pathophysiology. Available models exist primarily in the psychological domain and derive from the demonstrated efficacy of behavioral treatment approaches to insomnia management. However, these models offer little specific prediction about the anatomic or physiological foundation of chronic primary insomnia. On the other hand, a growing body of data on the physiology of sleep supports a reasonably circumscribed overview of possible pathophysiological mechanisms, as well as the development of physiological models of insomnia to guide future research. As a pragmatic step, these models focus on primary insomnia, as opposed to comorbid insomnias, because the latter is by its nature a much more heterogeneous presentation, reflecting the effects of the distinct comorbid condition. Current understanding of the regulation of sleep and wakefulness in mammalian brain supports four broad candidate areas: 1) disruption of the sleep homeostat; 2) disruption of the circadian clock; 3) disruption of intrinsic systems responsible for the expression of sleep states; or 4) disruption (hyperactivity) of extrinsic systems capable of over-riding normal sleep-wake regulation. This review examines each of the four candidate pathophysiological mechanisms and the available data in support of each. While studies that directly test the viability of each model are not yet available, descriptive data on primary insomnia favor the involvement of dysfunctional extrinsic stress-response systems in the pathology of primary chronic insomnia.

  17. Physiological and psychological correlates of attention-related body sensations (tingling and warmth).

    Science.gov (United States)

    Tihanyi, B T; Köteles, F

    2017-09-01

    Body sensations play an essential role in the subjective evaluation of our physical health, illness, and healing. They are impacted by peripheral somatic and external processes, but they are also heavily modulated by mental processes, e.g., attention, motor control, and emotion. Body sensations, such as tingling, numbness, pulse, and warmth, can emerge due to simply focusing attention on a body part. It is however an open question, if these sensations are connected with actual peripheral changes or happen "only in the mind." Here, we first tested whether the intensity of such attention-related body sensations is related to autonomic and somatomotor physiological processes and to psychological traits. In this study, attention-related body sensations were not significantly connected to changes in physiology, except warmth sensation, which was linked to decrease in muscle tension. Overall intensity of tingling significantly correlated with body awareness and tendentiously with body-mind practice. This strengthened the hypothesis that attention-related body sensations are more the result of top-down functions, and the connection with peripheral processes is weak. Here, we suggested a novel protocol to examine the effect of manipulating attention on body sensations, which together with our results and discussion can inspire future researches.

  18. Method and System for Physiologically Modulating Videogames and Simulations which Use Gesture and Body Image Sensing Control Input Devices

    Science.gov (United States)

    Pope, Alan T. (Inventor); Stephens, Chad L. (Inventor); Habowski, Tyler (Inventor)

    2017-01-01

    Method for physiologically modulating videogames and simulations includes utilizing input from a motion-sensing video game system and input from a physiological signal acquisition device. The inputs from the physiological signal sensors are utilized to change the response of a user's avatar to inputs from the motion-sensing sensors. The motion-sensing system comprises a 3D sensor system having full-body 3D motion capture of a user's body. This arrangement encourages health-enhancing physiological self-regulation skills or therapeutic amplification of healthful physiological characteristics. The system provides increased motivation for users to utilize biofeedback as may be desired for treatment of various conditions.

  19. Low physiologic oxygen tensions reduce proliferation and differentiation of human multipotent mesenchymal stromal cells

    Directory of Open Access Journals (Sweden)

    Handgretinger Rupert

    2010-01-01

    Full Text Available Abstract Background Human multipotent mesenchymal stromal cells (MSC can be isolated from various tissues including bone marrow. Here, MSC participate as bone lining cells in the formation of the hematopoietic stem cell niche. In this compartment, the oxygen tension is low and oxygen partial pressure is estimated to range from 1% to 7%. We analyzed the effect of low oxygen tensions on human MSC cultured with platelet-lysate supplemented media and assessed proliferation, morphology, chromosomal stability, immunophenotype and plasticity. Results After transferring MSC from atmospheric oxygen levels of 21% to 1%, HIF-1α expression was induced, indicating efficient oxygen reduction. Simultaneously, MSC exhibited a significantly different morphology with shorter extensions and broader cell bodies. MSC did not proliferate as rapidly as under 21% oxygen and accumulated in G1 phase. The immunophenotype, however, was unaffected. Hypoxic stress as well as free oxygen radicals may affect chromosomal stability. However, no chromosomal abnormalities in human MSC under either culture condition were detected using high-resolution matrix-based comparative genomic hybridization. Reduced oxygen tension severely impaired adipogenic and osteogenic differentiation of human MSC. Elevation of oxygen from 1% to 3% restored osteogenic differentiation. Conclusion Physiologic oxygen tension during in vitro culture of human MSC slows down cell cycle progression and differentiation. Under physiological conditions this may keep a proportion of MSC in a resting state. Further studies are needed to analyze these aspects of MSC in tissue regeneration.

  20. [Survival Strategies of Aspergillus in the Human Body].

    Science.gov (United States)

    Tashiro, Masato; Izumikawa, Koichi

    2017-01-01

     The human body is a hostile environment for Aspergillus species, which originally live outside the human body. There are lots of elimination mechanisms against Aspergillus inhaled into the human body, such as high body temperature, soluble lung components, mucociliary clearance mechanism, or responses of phagocytes. Aspergillus fumigatus, which is the primary causative agent of human infections among the human pathogenic species of Aspergillus, defend itself from the hostile human body environment by various mechanisms, such as thermotolerance, mycotoxin production, and characteristic morphological features. Here we review mechanisms of defense in Aspergillus against elimination from the human body.

  1. Magnesium alloys as body implants: fracture mechanism under dynamic and static loadings in a physiological environment.

    Science.gov (United States)

    Choudhary, Lokesh; Raman, R K Singh

    2012-02-01

    It is essential that a metallic implant material possesses adequate resistance to cracking/fracture under the synergistic action of a corrosive physiological environment and mechanical loading (i.e. stress corrosion cracking (SCC)), before the implant can be put to actual use. This paper presents a critique of the fundamental issues with an assessment of SCC of a rapidly corroding material such as magnesium alloys, and describes an investigation into the mechanism of SCC of a magnesium alloy in a physiological environment. The SCC susceptibility of the alloy in a simulated human body fluid was established by slow strain rate tensile (SSRT) testing using smooth specimens under different electrochemical conditions for understanding the mechanism of SCC. However, to assess the life of the implant devices that often possess fine micro-cracks, SCC susceptibility of notched specimens was investigated by circumferential notch tensile (CNT) testing. CNT tests also produced important design data, i.e. threshold stress intensity for SCC (KISCC) and SCC crack growth rate. Fractographic features of SCC were examined using scanning electron microscopy. The SSRT and CNT results, together with fractographic evidence, confirmed the SCC susceptibility of both smooth and notched specimens of a magnesium alloy in the physiological environment. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  2. The effect of stress on core and peripheral body temperature in humans.

    Science.gov (United States)

    Vinkers, Christiaan H; Penning, Renske; Hellhammer, Juliane; Verster, Joris C; Klaessens, John H G M; Olivier, Berend; Kalkman, Cor J

    2013-09-01

    Even though there are indications that stress influences body temperature in humans, no study has systematically investigated the effects of stress on core and peripheral body temperature. The present study therefore aimed to investigate the effects of acute psychosocial stress on body temperature using different readout measurements. In two independent studies, male and female participants were exposed to a standardized laboratory stress task (the Trier Social Stress Test, TSST) or a non-stressful control task. Core temperature (intestinal and temporal artery) and peripheral temperature (facial and body skin temperature) were measured. Compared to the control condition, stress exposure decreased intestinal temperature but did not affect temporal artery temperature. Stress exposure resulted in changes in skin temperature that followed a gradient-like pattern, with decreases at distal skin locations such as the fingertip and finger base and unchanged skin temperature at proximal regions such as the infra-clavicular area. Stress-induced effects on facial temperature displayed a sex-specific pattern, with decreased nasal skin temperature in females and increased cheek temperature in males. In conclusion, the amplitude and direction of stress-induced temperature changes depend on the site of temperature measurement in humans. This precludes a direct translation of the preclinical stress-induced hyperthermia paradigm, in which core temperature uniformly rises in response to stress to the human situation. Nevertheless, the effects of stress result in consistent temperature changes. Therefore, the present study supports the inclusion of body temperature as a physiological readout parameter of stress in future studies.

  3. Indoor Air Quality Assessment Based on Human Physiology - Part 1. New Criteria Proposal

    Directory of Open Access Journals (Sweden)

    M. V. Jokl

    2003-01-01

    Full Text Available Human physiology research makes evident that the Weber-Fechner law applies not only to noise perception but also to the perception of other environmental components. Based on this fact, new decibel units for dor component representing indoor air quality in majority locations have been proposed: decicarbdiox dCd (for carbon dioxide CO2 and decitvoc dTv (for total volatile organic compound TVOC. Equations of these new units have been proved by application of a experimental relationships between odor intensity (representing odor perception by the human body and odor concentrations of CO2 and TVOC, b individually  measured CO2 and TVOC levels (concentrations – from these new decibel units can be calculated and their values compared with decibel units of noise measured in the same locations. The undoubted benefit of using the decibel scale is that it gives much better approximation to human perception of odor intensity compared to the CO2 and TVOC concentration scales.

  4. Major Findings from The Changing Body: Health, Nutrition, and Human Development in the Western World since 1700.

    Science.gov (United States)

    Fogel, Robert W; Grotte, Nathaniel

    2011-12-01

    This paper discusses findings from The Changing Body: Health, Nutrition, and Human Development in the Western World since 1700 (Cambridge University Press) The book is built on the authors' work with 300 years of height and nutrition data and discusses their findings in the context of technophysio evolution, a uniquely modern form of rapid physiological development, the result of humanity's ability to control its environment and create technological innovations to adapt to it.

  5. What is a Human Body?

    DEFF Research Database (Denmark)

    Nissen, Ulrik Becker

    2017-01-01

    The essay offers an overview of different understandings of what a body is. As such, it can be read as an overview of what we mean, when we speak of a “human body”. However, the article also goes a step further; in the last section, a responsive understanding of the human body is outlined....... This is understood as responsiveness in three ways: viz an embodied self that responds to natural life, other human beings and, ultimately, to God....

  6. Mushroom body miscellanea: transgenic Drosophila strains expressing anatomical and physiological sensor proteins in Kenyon cells

    Science.gov (United States)

    Pech, Ulrike; Dipt, Shubham; Barth, Jonas; Singh, Priyanka; Jauch, Mandy; Thum, Andreas S.; Fiala, André; Riemensperger, Thomas

    2013-01-01

    The fruit fly Drosophila melanogaster represents a key model organism for analyzing how neuronal circuits regulate behavior. The mushroom body in the central brain is a particularly prominent brain region that has been intensely studied in several insect species and been implicated in a variety of behaviors, e.g., associative learning, locomotor activity, and sleep. Drosophila melanogaster offers the advantage that transgenes can be easily expressed in neuronal subpopulations, e.g., in intrinsic mushroom body neurons (Kenyon cells). A number of transgenes has been described and engineered to visualize the anatomy of neurons, to monitor physiological parameters of neuronal activity, and to manipulate neuronal function artificially. To target the expression of these transgenes selectively to specific neurons several sophisticated bi- or even multipartite transcription systems have been invented. However, the number of transgenes that can be combined in the genome of an individual fly is limited in practice. To facilitate the analysis of the mushroom body we provide a compilation of transgenic fruit flies that express transgenes under direct control of the Kenyon-cell specific promoter, mb247. The transgenes expressed are fluorescence reporters to analyze neuroanatomical aspects of the mushroom body, proteins to restrict ectopic gene expression to mushroom bodies, or fluorescent sensors to monitor physiological parameters of neuronal activity of Kenyon cells. Some of the transgenic animals compiled here have been published already, whereas others are novel and characterized here for the first time. Overall, the collection of transgenic flies expressing sensor and reporter genes in Kenyon cells facilitates combinations with binary transcription systems and might, ultimately, advance the physiological analysis of mushroom body function. PMID:24065891

  7. Using Stimulation of the Diving Reflex in Humans to Teach Integrative Physiology

    Science.gov (United States)

    Choate, Julia K.; Denton, Kate M.; Evans, Roger G.; Hodgson, Yvonne

    2014-01-01

    During underwater submersion, the body responds by conserving O[subscript 2] and prioritizing blood flow to the brain and heart. These physiological adjustments, which involve the nervous, cardiovascular, and respiratory systems, are known as the diving response and provide an ideal example of integrative physiology. The diving reflex can be…

  8. Human Body Exergy Metabolism

    OpenAIRE

    Mady, Carlos Eduardo Keutenedjian

    2013-01-01

    The exergy analysis of the human body is a tool that can provide indicators of health and life quality. To perform the exergy balance it is necessary to calculate the metabolism on an exergy basis, or metabolic exergy, although there is not yet consensus in its calculation procedure. Hence, the aim of this work is to provide a general method to evaluate this physical quantity for human body based on indirect calorimetry data. To calculate the metabolism on an exergy basis it is necessary to d...

  9. Drawing on student knowledge in human anatomy and physiology

    Science.gov (United States)

    Slominski, Tara Nicole

    Prior to instruction, students may have developed alternative conceptions about the mechanics behind human physiology. To help students re-shape these ideas into correct reasoning, the faulty characteristics reinforcing the alternative conceptions need to made explicit. This study used student-generated drawings to expose alternative conceptions Human Anatomy and Physiology students had prior to instruction on neuron physiology. Specifically, we investigated how students thought about neuron communication across a synapse (n=355) and how neuron activity can be modified (n=311). When asked to depict basic communication between two neurons, at least 80% of students demonstrated incorrect ideas about synaptic transmission. When targeting spatial and temporal summation, only eleven students (3.5%) were able to accurately depict at least one form of summation. In response to both drawing questions, student drawings revealed multiple alternative conceptions that resulted in a deeper analysis and characterization of the wide variation of student ideas.

  10. Metabolism of ketone bodies during exercise and training: physiological basis for exogenous supplementation

    Science.gov (United States)

    Evans, Mark; Cogan, Karl E.

    2016-01-01

    Abstract Optimising training and performance through nutrition strategies is central to supporting elite sportspeople, much of which has focused on manipulating the relative intake of carbohydrate and fat and their contributions as fuels for energy provision. The ketone bodies, namely acetoacetate, acetone and β‐hydroxybutyrate (βHB), are produced in the liver during conditions of reduced carbohydrate availability and serve as an alternative fuel source for peripheral tissues including brain, heart and skeletal muscle. Ketone bodies are oxidised as a fuel source during exercise, are markedly elevated during the post‐exercise recovery period, and the ability to utilise ketone bodies is higher in exercise‐trained skeletal muscle. The metabolic actions of ketone bodies can alter fuel selection through attenuating glucose utilisation in peripheral tissues, anti‐lipolytic effects on adipose tissue, and attenuation of proteolysis in skeletal muscle. Moreover, ketone bodies can act as signalling metabolites, with βHB acting as an inhibitor of histone deacetylases, an important regulator of the adaptive response to exercise in skeletal muscle. Recent development of ketone esters facilitates acute ingestion of βHB that results in nutritional ketosis without necessitating restrictive dietary practices. Initial reports suggest this strategy alters the metabolic response to exercise and improves exercise performance, while other lines of evidence suggest roles in recovery from exercise. The present review focuses on the physiology of ketone bodies during and after exercise and in response to training, with specific interest in exploring the physiological basis for exogenous ketone supplementation and potential benefits for performance and recovery in athletes. PMID:27861911

  11. Human body segmentation via data-driven graph cut.

    Science.gov (United States)

    Li, Shifeng; Lu, Huchuan; Shao, Xingqing

    2014-11-01

    Human body segmentation is a challenging and important problem in computer vision. Existing methods usually entail a time-consuming training phase for prior knowledge learning with complex shape matching for body segmentation. In this paper, we propose a data-driven method that integrates top-down body pose information and bottom-up low-level visual cues for segmenting humans in static images within the graph cut framework. The key idea of our approach is first to exploit human kinematics to search for body part candidates via dynamic programming for high-level evidence. Then, by using the body parts classifiers, obtaining bottom-up cues of human body distribution for low-level evidence. All the evidence collected from top-down and bottom-up procedures are integrated in a graph cut framework for human body segmentation. Qualitative and quantitative experiment results demonstrate the merits of the proposed method in segmenting human bodies with arbitrary poses from cluttered backgrounds.

  12. Anatomy and Physiology. Module Set II: Major Body Systems. Teacher Edition [and] Student Edition. Surgical Technology.

    Science.gov (United States)

    Hilley, Robert

    This document, which is the second part of a two-part set of modules on anatomy and physiology for future surgical technicians, contains the teacher and student editions of an introduction to anatomy and physiology that consists of modules on the following body systems: integumentary system; skeletal system; muscular system; nervous system;…

  13. Singularity now: using the ventricular assist device as a model for future human-robotic physiology.

    Science.gov (United States)

    Martin, Archer K

    2016-04-01

    In our 21 st century world, human-robotic interactions are far more complicated than Asimov predicted in 1942. The future of human-robotic interactions includes human-robotic machine hybrids with an integrated physiology, working together to achieve an enhanced level of baseline human physiological performance. This achievement can be described as a biological Singularity. I argue that this time of Singularity cannot be met by current biological technologies, and that human-robotic physiology must be integrated for the Singularity to occur. In order to conquer the challenges we face regarding human-robotic physiology, we first need to identify a working model in today's world. Once identified, this model can form the basis for the study, creation, expansion, and optimization of human-robotic hybrid physiology. In this paper, I present and defend the line of argument that currently this kind of model (proposed to be named "IshBot") can best be studied in ventricular assist devices - VAD.

  14. Knowledge on the subject of human physiology among Polish high school students--a cross-sectional study.

    Science.gov (United States)

    Zwinczewska, Helena; Rozwadowska, Joanna; Traczyk, Anna; Majda, Szymon; Wysocki, Michał; Grabowski, Kamil; Kopeć, Sylwia; Głowacki, Roman; Węgrzyn, Katarzyna; Tomaszewski, Krzysztof A; Walocha, Jerzy A

    2014-01-01

    In most cases the only knowledge an individual will receive with regards to their own body and its proper functioning is during their high school education. The aim of this study was to evaluate high school students' knowledge about basic physiology. The research was carried out in five, randomly chosen high schools in Krakow, Poland. Young people in the age of 17-19 years were asked to fill in the questionnaire designed by the authors. The first part of the survey included personal data. The second part contained 20 close-ended questions assessing students' knowledge about the basics of human physiology. Question difficulty varied from easy through average, and up to difficult. The maximum number of points to achieve was 20. One-thousand-and eighty-three (out of 1179 invited--91.86%) Polish high school students (63.25% female) filled in a 20-item questionnaire constructed by the authors regarding basic human physiology. The mean age of the group was 17.66 ± 0.80 years. The mean score among the surveyed was 10.15 ± 3.48 (range 0-20). Only 26.04% of students achieved a grade of 60% or more, and only one person obtained the highest possible score. Females achieved significantly better scores than males (10.49 ± 3.38 vs. 9.56 ± 3.56; p physiology, obtained better results than those in their third year who had already finished the biology course (10.70 ± 3.27 vs. 9.81 ± 3.74 respectively; p physiology (10.70 ± 3.27 vs. 9.63 ± 2.74 respectively; p = 0.003). Over 23% of students did not know that mature red blood cells do not have cell nuclei and a similar number of them answered that humans have 500,000 erythrocytes in 1 mm3 of blood. Over 32% believed that plasma does not participate in the transport of respiratory gases, and 31% believed that endocrine glands secrete hormones within their immediate vicinity and into the blood. Our research has shown that young people, especially men, often lack basic physiological knowledge needed to make conscious and

  15. Brief communication: Hair density and body mass in mammals and the evolution of human hairlessness.

    Science.gov (United States)

    Sandel, Aaron A

    2013-09-01

    Humans are unusual among mammals in appearing hairless. Several hypotheses propose explanations for this phenotype, but few data are available to test these hypotheses. To elucidate the evolutionary history of human "hairlessness," a comparative approach is needed. One previous study on primate hair density concluded that great apes have systematically less dense hair than smaller primates. While there is a negative correlation between body size and hair density, it remains unclear whether great apes have less dense hair than is expected for their body size. To revisit the scaling relationship between hair density and body size in mammals, I compiled data from the literature on 23 primates and 29 nonprimate mammals and conducted Phylogenetic Generalized Least Squares regressions. Among anthropoids, there is a significant negative correlation between hair density and body mass. Chimpanzees display the largest residuals, exhibiting less dense hair than is expected for their body size. There is a negative correlation between hair density and body mass among the broader mammalian sample, although the functional significance of this scaling relationship remains to be tested. Results indicate that all primates, and chimpanzees in particular, are relatively hairless compared to other mammals. This suggests that there may have been selective pressures acting on the ancestor of humans and chimpanzees that led to an initial reduction in hair density. To further understand the evolution of human hairlessness, a systematic study of hair density and physiology in a wide range of species is necessary. Copyright © 2013 Wiley Periodicals, Inc.

  16. Human body may produce bacteria.

    Science.gov (United States)

    Salerian, Alen J

    2017-06-01

    "Human body may produce bacteria" proposes that human body may produce bacteria and represent an independent source of infections contrary to the current paradigm of infectious disorders proposed by Louis Pasteur in 1880. The following observations are consistent with this hypothesis: A. Bidirectional transformations of both living and nonliving things have been commonly observed in nature. B. Complex multicellular organisms harbor the necessary properties to produce bacteria (water, nitrogen and oxygen). C. Physical laws suggest any previously observed phenomenon or action will occur again (life began on earth; a non living thing). D. Animal muscle cells may generate energy (fermentation). E. Sterilized food products (i.e. boiled eggs), may produce bacteria and fungus under special conditions and without any exposure to foreign living cells. "Human body may produce bacteria" may challenge the current medical paradigm that views human infectious disorders as the exclusive causative byproducts of invading foreign cells. It may also introduce new avenues to treat infectious disorders. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Space Physiology and Operational Space Medicine

    Science.gov (United States)

    Scheuring, Richard A.

    2009-01-01

    The objectives of this slide presentation are to teach a level of familiarity with: the effects of short and long duration space flight on the human body, the major medical concerns regarding future long duration missions, the environmental issues that have potential medical impact on the crew, the role and capabilities of the Space Medicine Flight Surgeon and the environmental impacts experienced by the Apollo crews. The main physiological effects of space flight on the human body reviewed in this presentation are: space motion sickness (SMS), neurovestibular, cardiovascular, musculoskeletal, immune/hematopoietic system and behavioral/psycho-social. Some countermeasures are discussed to these effects.

  18. subjective approach to subjective approach to human physiological

    African Journals Online (AJOL)

    eobe

    the only physiological variables that influence the heat balance [4]. Yao et al [2] .... between the human responses and outdoor climate. 4.1 Subjective Response ... months seem to be influenced by cloud cover rather than the altitude.

  19. The Graphical Representation of the Digital Astronaut Physiology Backbone

    Science.gov (United States)

    Briers, Demarcus

    2010-01-01

    This report summarizes my internship project with the NASA Digital Astronaut Project to analyze the Digital Astronaut (DA) physiology backbone model. The Digital Astronaut Project (DAP) applies integrated physiology models to support space biomedical operations, and to assist NASA researchers in closing knowledge gaps related to human physiologic responses to space flight. The DA physiology backbone is a set of integrated physiological equations and functions that model the interacting systems of the human body. The current release of the model is HumMod (Human Model) version 1.5 and was developed over forty years at the University of Mississippi Medical Center (UMMC). The physiology equations and functions are scripted in an XML schema specifically designed for physiology modeling by Dr. Thomas G. Coleman at UMMC. Currently it is difficult to examine the physiology backbone without being knowledgeable of the XML schema. While investigating and documenting the tags and algorithms used in the XML schema, I proposed a standard methodology for a graphical representation. This standard methodology may be used to transcribe graphical representations from the DA physiology backbone. In turn, the graphical representations can allow examination of the physiological functions and equations without the need to be familiar with the computer programming languages or markup languages used by DA modeling software.

  20. How dieting makes some fatter: from a perspective of human body composition autoregulation.

    Science.gov (United States)

    Dulloo, Abdul G; Jacquet, Jean; Montani, Jean-Pierre

    2012-08-01

    Dieting makes you fat - the title of a book published in 1983 - embodies the notion that dieting to control body weight predisposes the individual to acquire even more body fat. While this notion is controversial, its debate underscores the large gap that exists in our understanding of basic physiological laws that govern the regulation of human body composition. A striking example is the key role attributed to adipokines as feedback signals between adipose tissue depletion and compensatory increases in food intake. Yet, the relative importance of fat depletion per se as a determinant of post-dieting hyperphagia is unknown. On the other hand, the question of whether the depletion of lean tissues can provide feedback signals on the hunger-appetite drive is rarely invoked, despite evidence that food intake during growth is dominated by the impetus for lean tissue deposition, amidst proposals for the existence of protein-static mechanisms for the regulation of growth and maintenance of lean body mass. In fact, a feedback loop between fat depletion and food intake cannot explain why human subjects recovering from starvation continue to overeat well after body fat has been restored to pre-starvation values, thereby contributing to 'fat overshooting'. In addressing the plausibility and mechanistic basis by which dieting may predispose to increased fatness, this paper integrates the results derived from re-analysis of classic longitudinal studies of human starvation and refeeding. These suggest that feedback signals from both fat and lean tissues contribute to recovering body weight through effects on energy intake and thermogenesis, and that a faster rate of fat recovery relative to lean tissue recovery is a central outcome of body composition autoregulation that drives fat overshooting. A main implication of these findings is that the risk of becoming fatter in response to dieting is greater in lean than in obese individuals.

  1. Molecular and physiological manifestations and measurement of aging in humans.

    Science.gov (United States)

    Khan, Sadiya S; Singer, Benjamin D; Vaughan, Douglas E

    2017-08-01

    Biological aging is associated with a reduction in the reparative and regenerative potential in tissues and organs. This reduction manifests as a decreased physiological reserve in response to stress (termed homeostenosis) and a time-dependent failure of complex molecular mechanisms that cumulatively create disorder. Aging inevitably occurs with time in all organisms and emerges on a molecular, cellular, organ, and organismal level with genetic, epigenetic, and environmental modulators. Individuals with the same chronological age exhibit differential trajectories of age-related decline, and it follows that we should assess biological age distinctly from chronological age. In this review, we outline mechanisms of aging with attention to well-described molecular and cellular hallmarks and discuss physiological changes of aging at the organ-system level. We suggest methods to measure aging with attention to both molecular biology (e.g., telomere length and epigenetic marks) and physiological function (e.g., lung function and echocardiographic measurements). Finally, we propose a framework to integrate these molecular and physiological data into a composite score that measures biological aging in humans. Understanding the molecular and physiological phenomena that drive the complex and multifactorial processes underlying the variable pace of biological aging in humans will inform how researchers assess and investigate health and disease over the life course. This composite biological age score could be of use to researchers seeking to characterize normal, accelerated, and exceptionally successful aging as well as to assess the effect of interventions aimed at modulating human aging. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  2. On scaling of human body models

    Directory of Open Access Journals (Sweden)

    Hynčík L.

    2007-10-01

    Full Text Available Human body is not an unique being, everyone is another from the point of view of anthropometry and mechanical characteristics which means that division of the human body population to categories like 5%-tile, 50%-tile and 95%-tile from the application point of view is not enough. On the other hand, the development of a particular human body model for all of us is not possible. That is why scaling and morphing algorithms has started to be developed. The current work describes the development of a tool for scaling of the human models. The idea is to have one (or couple of standard model(s as a base and to create other models based on these basic models. One has to choose adequate anthropometrical and biomechanical parameters that describe given group of humans to be scaled and morphed among.

  3. Light bodies in human pituitary adenomas

    DEFF Research Database (Denmark)

    Holck, S; Wewer, U M; Albrechtsen, R

    1987-01-01

    Light bodies are large cytoplasmic granules originally described in the gonadotrophic cells of the rat pituitary gland. In order to determine whether similar bodies occur in the human anterior pituitary gland, 89 pituitary adenomas and periadenomatous tissue from 20 cases were examined...... cells in periadenomatous tissue from 20 cases. These results show that some human pituitary adenomas may contain light bodies identical to those seen in gonadotrophs of rat pituitary....... by transmission electron microscopy. Double membrane bound bodies with filamentous internal structure identical to rodent light bodies were identified in 10 hormone-producing adenomas: 5 PRL, 1 PRL-GH, 2 GH, and 2 ACTH-producing tumours. No light bodies were found in the remaining 79 tumours nor in the pituitary...

  4. Beyond diet reconstruction: stable isotope applications to human physiology, health, and nutrition.

    Science.gov (United States)

    Reitsema, Laurie J

    2013-01-01

    Analysis of stable carbon and nitrogen isotopes from soft or mineralized tissues is a direct and widely-used technique for modeling diets. In addition to its continued role in paleodiet analysis, stable isotope analysis is now contributing to studies of physiology, disease, and nutrition in archaeological and living human populations. In humans and other animals, dietary uptake and distribution of carbon and nitrogen among mineralized and soft tissue is carried out with varying efficiency due to factors of internal biology. Human pathophysiologies may lead to pathology-influenced isotopic fractionation that can be exploited to understand not just skeletal health and diet, but physiological health and nutrition. This study reviews examples from human biology, non-human animal ecology, biomedicine, and bioarchaeology demonstrating how stable isotope analyses are usefully applied to the study of physiological adaptation and adaptability. Suggestions are made for future directions in applying stable isotope analysis to the study of nutritional stress, disease, and growth and development in living and past human populations. Copyright © 2013 Wiley Periodicals, Inc.

  5. A modular approach to numerical human body modeling

    NARCIS (Netherlands)

    Forbes, P.A.; Griotto, G.; Rooij, L. van

    2007-01-01

    The choice of a human body model for a simulated automotive impact scenario must take into account both accurate model response and computational efficiency as key factors. This study presents a "modular numerical human body modeling" approach which allows the creation of a customized human body

  6. [Research progress on free radicals in human body].

    Science.gov (United States)

    Wang, Q B; Xu, F P; Wei, C X; Peng, J; Dong, X D

    2016-08-10

    Free radicals are the intermediates of metabolism, widely exist in the human bodies. Under normal circumstances, the free radicals play an important role in the metabolic process on human body, cell signal pathway, gene regulation, induction of cell proliferation and apoptosis, so as to maintain the normal growth and development of human body and to inhibit the growth of bacteria, virus and cancer. However, when organic lesion occurs affected by external factors or when equilibrium of the free radicals is tipped in the human body, the free radicals will respond integratedly with lipids, protein or nucleic acid which may jeopardize the health of human bodies. This paper summarizes the research progress of the free radicals conducted in recent years, in relations to the perspective of the types, origins, test methods of the free radicals and their relationship with human's health. In addition, the possible mechanisms of environmental pollutants (such as polycyclic aromatic hydrocarbons) mediating oxidative stress and free radicals scavenging in the body were also summarized.

  7. Stochastic Uncertainty Quantification of Eddy Currents in the Human Body by Polynomial Chaos Decomposition

    OpenAIRE

    Gaignaire , Roman; Scorretti , Riccardo; Sabariego , Ruth ,; Geuzaine , Christophe

    2011-01-01

    The finite element method can be used to compute the electromagnetic fields induced in the human body by environmental extremely low frequency (ELF) fields. However, the electric properties of tissues are not precisely known and may vary depending on the individual, his/her age and other physiological parameters. In this paper, we account for the uncertainties on the conductivities of the brain tissues and spread them out to the induced fields by means of a nonintrusive approach based on Herm...

  8. Mind and body: concepts of human cognition, physiology and false belief in children with autism or typical development.

    Science.gov (United States)

    Peterson, Candida C

    2005-08-01

    This study examined theory of mind (ToM) and concepts of human biology (eyes, heart, brain, lungs and mind) in a sample of 67 children, including 25 high functioning children with autism (age 6-13), plus age-matched and preschool comparison groups. Contrary to Baron-Cohen [1989, Journal of Autism and Developmental Disorders, 19(4), 579-600], most children with autism correctly understood the functions of the brain (84%) and the mind (64%). Their explanations were predominantly mentalistic. They outperformed typically developing preschoolers in understanding inner physiological (heart, lungs) and cognitive (brain, mind) systems, and scored as high as age-matched typical children. Yet, in line with much previous ToM research, most children with autism (60%) failed false belief, and their ToM performance was unrelated to their understanding of. human biology. Results were discussed in relation to neurobiological and social-experiential accounts of the ToM deficit in autism.

  9. A bacteriophages journey through the human body.

    Science.gov (United States)

    Barr, Jeremy J

    2017-09-01

    The human body is colonized by a diverse collective of microorganisms, including bacteria, fungi, protozoa and viruses. The smallest entity of this microbial conglomerate are the bacterial viruses. Bacteriophages, or phages for short, exert significant selective pressure on their bacterial hosts, undoubtedly influencing the human microbiome and its impact on our health and well-being. Phages colonize all niches of the body, including the skin, oral cavity, lungs, gut, and urinary tract. As such our bodies are frequently and continuously exposed to diverse collections of phages. Despite the prevalence of phages throughout our bodies, the extent of their interactions with human cells, organs, and immune system is still largely unknown. Phages physically interact with our mucosal surfaces, are capable of bypassing epithelial cell layers, disseminate throughout the body and may manipulate our immune system. Here, I establish the novel concept of an "intra-body phageome," which encompasses the collection of phages residing within the classically "sterile" regions of the body. This review will take a phage-centric view of the microbiota, human body, and immune system with the ultimate goal of inspiring a greater appreciation for both the indirect and direct interactions between bacteriophages and their mammalian hosts. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Functional neuronal processing of human body odors.

    Science.gov (United States)

    Lundström, Johan N; Olsson, Mats J

    2010-01-01

    Body odors carry informational cues of great importance for individuals across a wide range of species, and signals hidden within the body odor cocktail are known to regulate several key behaviors in animals. For a long time, the notion that humans may be among these species has been dismissed. We now know, however, that each human has a unique odor signature that carries information related to his or her genetic makeup, as well as information about personal environmental variables, such as diet and hygiene. Although a substantial number of studies have investigated the behavioral effects of body odors, only a handful have studied central processing. Recent studies have, however, demonstrated that the human brain responds to fear signals hidden within the body odor cocktail, is able to extract kin specific signals, and processes body odors differently than other perceptually similar odors. In this chapter, we provide an overview of the current knowledge of how the human brain processes body odors and the potential importance these signals have for us in everyday life. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. Body composition: Where and when.

    Science.gov (United States)

    Mazzoccoli, Gianluigi

    2016-08-01

    The in vivo evaluation of body composition is essential in many clinical investigations, in order to accurately describe and monitor the nutritional status of a range of medical conditions and physiological processes, including sick and malnourished patients, pregnant women, breastfeeding women and the elderly, as well as in patients with cancer, osteoporosis and many other diseases. This research area is also important to the field of human nutrition and exercise physiology. Several research investigations have indicated the importance of measuring fat deposition in different body compartments, in order to gain a fuller understanding of the genetic factors that contribute to obesity, obesity-related disorders, such as dyslipidemia, and thereby to a fuller understanding of obesity associated cardio-metabolic disorders, with relevance to the relationship between body composition and energy expenditure. The spatial and temporal dimension, where and when, may influence the physiological relevance and the pathological implications of the fat composition of different body compartments, and, as such, is a new element to be considered when assessing body composition. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. Evolutionary change in physiological phenotypes along the human lineage.

    Science.gov (United States)

    Vining, Alexander Q; Nunn, Charles L

    2016-01-01

    Research in evolutionary medicine provides many examples of how evolution has shaped human susceptibility to disease. Traits undergoing rapid evolutionary change may result in associated costs or reduce the energy available to other traits. We hypothesize that humans have experienced more such changes than other primates as a result of major evolutionary change along the human lineage. We investigated 41 physiological traits across 50 primate species to identify traits that have undergone marked evolutionary change along the human lineage. We analysed the data using two Bayesian phylogenetic comparative methods. One approach models trait covariation in non-human primates and predicts human phenotypes to identify whether humans are evolutionary outliers. The other approach models adaptive shifts under an Ornstein-Uhlenbeck model of evolution to assess whether inferred shifts are more common on the human branch than on other primate lineages. We identified four traits with strong evidence for an evolutionary increase on the human lineage (amylase, haematocrit, phosphorus and monocytes) and one trait with strong evidence for decrease (neutrophilic bands). Humans exhibited more cases of distinct evolutionary change than other primates. Human physiology has undergone increased evolutionary change compared to other primates. Long distance running may have contributed to increases in haematocrit and mean corpuscular haemoglobin concentration, while dietary changes are likely related to increases in amylase. In accordance with the pathogen load hypothesis, human monocyte levels were increased, but many other immune-related measures were not. Determining the mechanisms underlying conspicuous evolutionary change in these traits may provide new insights into human disease. The Author(s) 2016. Published by Oxford University Press on behalf of the Foundation for Evolution, Medicine, and Public Health.

  13. Biodynamics of deformable human body motion

    Science.gov (United States)

    Strauss, A. M.; Huston, R. L.

    1976-01-01

    The objective is to construct a framework wherein the various models of human biomaterials fit in order to describe the biodynamic response of the human body. The behavior of the human body in various situations, from low frequency, low amplitude vibrations to impact loadings in automobile and aircraft crashes, is very complicated with respect to all aspects of the problem: materials, geometry and dynamics. The materials problem is the primary concern, but the materials problem is intimately connected with geometry and dynamics.

  14. Human body capacitance: static or dynamic concept? [ESD

    DEFF Research Database (Denmark)

    Jonassen, Niels M

    1998-01-01

    A standing human body insulated from ground by footwear and/or floor covering is in principle an insulated conductor and has, as such, a capacitance, i.e. the ability to store a charge and possibly discharge the stored energy in a spark discharge. In the human body, the human body capacitance (HBC...... when a substantial part of the flux extends itself through badly defined stray fields. Since the concept of human body capacitance is normally used in a static (electric) context, it is suggested that the HBC be determined by a static method. No theoretical explanation of the observed differences...

  15. Dynamics of human whole body amino acid metabolism

    International Nuclear Information System (INIS)

    Young, V.R.

    1981-01-01

    The mechanism of regulation of the nitrogen metabolism in humans under various nutritional and physiological states was examined using stable isotopes. In the simultaneous continuous infusion of 1- [ 13 ] - leucine and α- [ 15 N]- lysine, their fluxed decreased when individuals received lower protein intake. The rates of oxidation and incorporation into body proteins of leucine changed in parallel with the protein intake. Such effects of diet on whole body leucine kinetics were modified by the energy state and dietary energy level. The nitrogen balance was also improved by an excess level of dietary energy. When the intake of dietary protein was lowered below the maintenance level, the whole body flux and de novo synthesis of glycine were lowered, but alanine synthesis was clearly increased. The intravenous infusion of glucose at 4 mg/kg.min, which causes increase in excess blood sugar and plasma insulin, increased the alanine flux, but had no effect on the glycine flux. The rate of albumin synthesis, determined by giving 15 N-glycine orally every 3 hr, decreased with the lowered intake of dietary protein in young men, but not in elderly men. This explains why the serum albumin synthesis increases with the increase in the intake of dietary protein in young men, but not in elderly men. The rate of whole body protein synthesis in young men receiving the L-amino acid diets providing with the required intake of specific amino acid was much lower than that in the men receiving the diets providing with generous intake of specific amino acid. Thus the control mechanism to maintain the homeostasis of body nitrogen and amino acids is related in some unknown way to the nutritional requirement of the hosts. (Kaihara, S.)

  16. How consumer physical activity monitors could transform human physiology research.

    Science.gov (United States)

    Wright, Stephen P; Hall Brown, Tyish S; Collier, Scott R; Sandberg, Kathryn

    2017-03-01

    A sedentary lifestyle and lack of physical activity are well-established risk factors for chronic disease and adverse health outcomes. Thus, there is enormous interest in measuring physical activity in biomedical research. Many consumer physical activity monitors, including Basis Health Tracker, BodyMedia Fit, DirectLife, Fitbit Flex, Fitbit One, Fitbit Zip, Garmin Vivofit, Jawbone UP, MisFit Shine, Nike FuelBand, Polar Loop, Withings Pulse O 2 , and others have accuracies similar to that of research-grade physical activity monitors for measuring steps. This review focuses on the unprecedented opportunities that consumer physical activity monitors offer for human physiology and pathophysiology research because of their ability to measure activity continuously under real-life conditions and because they are already widely used by consumers. We examine current and potential uses of consumer physical activity monitors as a measuring or monitoring device, or as an intervention in strategies to change behavior and predict health outcomes. The accuracy, reliability, reproducibility, and validity of consumer physical activity monitors are reviewed, as are limitations and challenges associated with using these devices in research. Other topics covered include how smartphone apps and platforms, such as the Apple ResearchKit, can be used in conjunction with consumer physical activity monitors for research. Lastly, the future of consumer physical activity monitors and related technology is considered: pattern recognition, integration of sleep monitors, and other biosensors in combination with new forms of information processing. Copyright © 2017 the American Physiological Society.

  17. Modeling the exergy behavior of human body

    International Nuclear Information System (INIS)

    Keutenedjian Mady, Carlos Eduardo; Silva Ferreira, Maurício; Itizo Yanagihara, Jurandir; Hilário Nascimento Saldiva, Paulo; Oliveira Junior, Silvio de

    2012-01-01

    Exergy analysis is applied to assess the energy conversion processes that take place in the human body, aiming at developing indicators of health and performance based on the concepts of exergy destroyed rate and exergy efficiency. The thermal behavior of the human body is simulated by a model composed of 15 cylinders with elliptical cross section representing: head, neck, trunk, arms, forearms, hands, thighs, legs, and feet. For each, a combination of tissues is considered. The energy equation is solved for each cylinder, being possible to obtain transitory response from the body due to a variation in environmental conditions. With this model, it is possible to obtain heat and mass flow rates to the environment due to radiation, convection, evaporation and respiration. The exergy balances provide the exergy variation due to heat and mass exchange over the body, and the exergy variation over time for each compartments tissue and blood, the sum of which leads to the total variation of the body. Results indicate that exergy destroyed and exergy efficiency decrease over lifespan and the human body is more efficient and destroys less exergy in lower relative humidities and higher temperatures. -- Highlights: ► In this article it is indicated an overview of the human thermal model. ► It is performed the energy and exergy analysis of the human body. ► Exergy destruction and exergy efficiency decreases with lifespan. ► Exergy destruction and exergy efficiency are a function of environmental conditions.

  18. A Human Life-Stage Physiologically Based Pharmacokinetic and Pharmacodynamic Model for Chlorpyrifos: Development and Validation

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Jordan N.; Hinderliter, Paul M.; Timchalk, Charles; Bartels, M. J.; Poet, Torka S.

    2014-08-01

    Sensitivity to chemicals in animals and humans are known to vary with age. Age-related changes in sensitivity to chlorpyrifos have been reported in animal models. A life-stage physiologically based pharmacokinetic and pharmacodynamic (PBPK/PD) model was developed to computationally predict disposition of CPF and its metabolites, chlorpyrifos-oxon (the ultimate toxicant) and 3,5,6-trichloro-2-pyridinol (TCPy), as well as B-esterase inhibition by chlorpyrifos-oxon in humans. In this model, age-dependent body weight was calculated from a generalized Gompertz function, and compartments (liver, brain, fat, blood, diaphragm, rapid, and slow) were scaled based on body weight from polynomial functions on a fractional body weight basis. Blood flows among compartments were calculated as a constant flow per compartment volume. The life-stage PBPK/PD model was calibrated and tested against controlled adult human exposure studies. Model simulations suggest age-dependent pharmacokinetics and response may exist. At oral doses ≥ 0.55 mg/kg of chlorpyrifos (significantly higher than environmental exposure levels), 6 mo old children are predicted to have higher levels of chlorpyrifos-oxon in blood and higher levels of red blood cell cholinesterase inhibition compared to adults from equivalent oral doses of chlorpyrifos. At lower doses that are more relevant to environmental exposures, the model predicts that adults will have slightly higher levels of chlorpyrifos-oxon in blood and greater cholinesterase inhibition. This model provides a computational framework for age-comparative simulations that can be utilized to predict CPF disposition and biological response over various postnatal life-stages.

  19. 5α-reductases in human physiology: an unfolding story.

    Science.gov (United States)

    Traish, Abdulmaged M

    2012-01-01

    5α-reductases are a family of isozymes expressed in a wide host of tissues including the central nervous system (CNS) and play a pivotal role in male sexual differentiation, development and physiology. A comprehensive literature search from 1970 to 2011 was made through PubMed and the relevant information was summarized. 5α reductases convert testosterone, progesterone, deoxycorticosterone, aldosterone and corticosterone into their respective 5α-dihydro-derivatives, which serve as substrates for 3α-hydroxysteroid dehydrogenase enzymes. The latter transforms these 5α-reduced metabolites into a subclass of neuroactive steroid hormones with distinct physiological functions. The neuroactive steroid hormones modulate a multitude of functions in human physiology encompassing regulation of sexual differentiation, neuroprotection, memory enhancement, anxiety, sleep and stress, among others. In addition, 5α -reductase type 3 is also implicated in the N-glycosylation of proteins via formation of dolichol phosphate. The family of 5α-reductases was targeted for drug development to treat pathophysiological conditions, such as benign prostatic hyperplasia and androgenetic alopecia. While the clinical use of 5α-reductase inhibitors was well established, the scope and the magnitude of the adverse side effects of such drugs, especially on the CNS, is still unrecognized due to lack of knowledge of the various physiological functions of this family of enzymes, especially in the CNS. There is an urgent need to better understand the function of 5α-reductases and the role of neuroactive steroids in human physiology in order to minimize the potential adverse side effects of inhibitors targeting 5α-reductases to treat benign prostatic hyperplasia and androgenic alopecia.

  20. [Clinical aspect of recent progress in phosphate metabolism. Distribution of phosphorus and its physiological roles in the body: the form, distribution, and physiological function].

    Science.gov (United States)

    Yano, Shozo; Sugimoto, Toshitsugu

    2009-06-01

    Phosphorus plays pivotal roles in the survival such as the cellular structure, genomic information, energy metabolism, and cell signaling. Total amount of phosphorus is 500-700 g in human, most of which is stored in the bone in an insoluble form of calcium salt. About 15% of phosphorus is located in the cell membrane and the intracellular fluid in the soft tissues in a form of organic phosphate. Only 0.1% is present in the extracellular fluid. This phosphate pool plays a role in the dynamic equilibrium through the gut, kidney, bone and other tissues. Most of inorganic phosphates in the extracellular fluid are present in a form of ions such as H2PO4- and HPO(4)2-, and the concentration of phosphatic acids is about 1.2 mM. The form, distribution, and physiological function of phosphorus in the body are summarized in this review.

  1. The Contributions of Human Mini-Intestines to the Study of Intestinal Physiology and Pathophysiology.

    Science.gov (United States)

    Yu, Huimin; Hasan, Nesrin M; In, Julie G; Estes, Mary K; Kovbasnjuk, Olga; Zachos, Nicholas C; Donowitz, Mark

    2017-02-10

    The lack of accessibility to normal and diseased human intestine and the inability to separate the different functional compartments of the intestine even when tissue could be obtained have held back the understanding of human intestinal physiology. Clevers and his associates identified intestinal stem cells and established conditions to grow "mini-intestines" ex vivo in differentiated and undifferentiated conditions. This pioneering work has made a new model of the human intestine available and has begun making contributions to the understanding of human intestinal transport in normal physiologic conditions and the pathophysiology of intestinal diseases. However, this model is reductionist and lacks many of the complexities of normal intestine. Consequently, it is not yet possible to predict how great the advances using this model will be for understanding human physiology and pathophysiology, nor how the model will be modified to include multiple other intestinal cell types and physical forces necessary to more closely approximate normal intestine. This review describes recent studies using mini-intestines, which have readdressed previously established models of normal intestinal transport physiology and newly examined intestinal pathophysiology. The emphasis is on studies with human enteroids grown either as three-dimensional spheroids or two-dimensional monolayers. In addition, comments are provided on mouse studies in cases when human studies have not yet been described.

  2. Effects of body temperature on post-anoxic oxidative stress from the perspective of postnatal physiological adaptive processes in rats.

    Science.gov (United States)

    Kletkiewicz, H; Rogalska, J; Nowakowska, A; Wozniak, A; Mila-Kierzenkowska, C; Caputa, M

    2016-04-01

    It is well known that decrease in body temperature provides protection to newborns subjected to anoxia/ischemia. We hypothesized that the normal body temperature of 33°C in neonatal rats (4°C below normal body temperature in adults) is in fact a preadaptation to protect CNS from anoxia and further reductions as well as elevations in temperature may be counterproductive. Our experiments aimed to examine the effect of changes in body temperature on oxidative stress development in newborn rats exposed to anoxia. Two-day-old Wistar rats were divided into 4 temperature groups: i. hypothermic at body temperature of 31°C, ii. maintaining physiological neonatal body temperature of 33°C, iii. forced to maintain hyperthermic temperature of 37°C, and i.v. forced to maintain hyperthermic temperature of 39°C. The temperature was controlled starting 15 minutes before and afterword during 10 minutes of anoxia as well as for 2 hours post-anoxia. Cerebral concentrations of lipid peroxidation products malondialdehyde (MDA) and conjugated dienes (CD) and the activities of antioxidant enzymes had been determined post mortem: immediately after anoxia was finished and 3, 7, and 14 days later. There were no post-anoxic changes in the concentration of MDA, CD and in antioxidant enzymes activity in newborn rats kept at their physiological body temperature of 33°C. In contrast, perinatal anoxia at body temperature elevated to 37°C or 39°C as well as under hypothermic conditions (31°C) intensified post-anoxic oxidative stress and depleted the antioxidant pool. Overall, these findings suggest that elevated body temperature (hyperthermia or fever), as well as exceeding cooling beyond the physiological level of body temperature of newborn rats, may extend perinatal anoxia-induced brain lesions. Our findings provide new insights into the role of body temperature in anoxic insult in vivo.

  3. Human colorectal mucosal microbiota correlates with its host niche physiology revealed by endomicroscopy.

    Science.gov (United States)

    Wang, Ai-Hua; Li, Ming; Li, Chang-Qing; Kou, Guan-Jun; Zuo, Xiu-Li; Li, Yan-Qing

    2016-02-26

    The human gut microbiota plays a pivotal role in the maintenance of health, but how the microbiota interacts with the host at the colorectal mucosa is poorly understood. We proposed that confocal laser endomicroscopy (CLE) might help to untangle this relationship by providing in vivo physiological information of the mucosa. We used CLE to evaluate the in vivo physiology of human colorectal mucosa, and the mucosal microbiota was quantified using 16 s rDNA pyrosequencing. The human mucosal microbiota agglomerated to three major clusters dominated by Prevotella, Bacteroides and Lactococcus. The mucosal microbiota clusters did not significantly correlate with the disease status or biopsy sites but closely correlated with the mucosal niche physiology, which was non-invasively revealed by CLE. Inflammation tilted two subnetworks within the mucosal microbiota. Infiltration of inflammatory cells significantly correlated with multiple components in the predicted metagenome, such as the VirD2 component of the type IV secretory pathway. Our data suggest that a close correlation exists between the mucosal microbiota and the colorectal mucosal physiology, and CLE is a clinically available tool that can be used to facilitate the study of the in vivo correlation between colorectal mucosal physiology and the mucosal microbiota.

  4. Human body region enhancement method based on Kinect infrared imaging

    Science.gov (United States)

    Yang, Lei; Fan, Yubo; Song, Xiaowei; Cai, Wenjing

    2016-10-01

    To effectively improve the low contrast of human body region in the infrared images, a combing method of several enhancement methods is utilized to enhance the human body region. Firstly, for the infrared images acquired by Kinect, in order to improve the overall contrast of the infrared images, an Optimal Contrast-Tone Mapping (OCTM) method with multi-iterations is applied to balance the contrast of low-luminosity infrared images. Secondly, to enhance the human body region better, a Level Set algorithm is employed to improve the contour edges of human body region. Finally, to further improve the human body region in infrared images, Laplacian Pyramid decomposition is adopted to enhance the contour-improved human body region. Meanwhile, the background area without human body region is processed by bilateral filtering to improve the overall effect. With theoretical analysis and experimental verification, the results show that the proposed method could effectively enhance the human body region of such infrared images.

  5. Physiological correlates and emotional specificity of human piloerection.

    Science.gov (United States)

    Benedek, Mathias; Kaernbach, Christian

    2011-03-01

    Piloerection is known as an indicator of strong emotional experiences. However, little is known about the physiological and emotional specificity of this psychophysiological response. In the presented study, piloerection was elicited by audio stimuli taken from music and film episodes. The physiological response accompanying the incidence of piloerection was recorded with respect to electrodermal, cardiovascular and respiratory measures and compared to a matched control condition. The employment of an optical recording system allowed for a direct and objective assessment of visible piloerection. The occurrence of piloerection was primarily accompanied by an increase of phasic electrodermal activity and increased respiration depth as compared to a matched control condition. This physiological response pattern is discussed in the context of dominant theories of human piloerection. Consideration of all available evidence suggests that emotional piloerection represents a valuable indicator of the state of being moved or touched. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Linking adult hippocampal neurogenesis with human physiology and disease.

    Science.gov (United States)

    Bowers, Megan; Jessberger, Sebastian

    2016-07-01

    We here review the existing evidence linking adult hippocampal neurogenesis and human brain function in physiology and disease. Furthermore, we aim to point out where evidence is missing, highlight current promising avenues of investigation, and suggest future tools and approaches to foster the link between life-long neurogenesis and human brain function. Developmental Dynamics 245:702-709, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. Integrating Cellular Metabolism into a Multiscale Whole-Body Model

    Science.gov (United States)

    Krauss, Markus; Schaller, Stephan; Borchers, Steffen; Findeisen, Rolf; Lippert, Jörg; Kuepfer, Lars

    2012-01-01

    Cellular metabolism continuously processes an enormous range of external compounds into endogenous metabolites and is as such a key element in human physiology. The multifaceted physiological role of the metabolic network fulfilling the catalytic conversions can only be fully understood from a whole-body perspective where the causal interplay of the metabolic states of individual cells, the surrounding tissue and the whole organism are simultaneously considered. We here present an approach relying on dynamic flux balance analysis that allows the integration of metabolic networks at the cellular scale into standardized physiologically-based pharmacokinetic models at the whole-body level. To evaluate our approach we integrated a genome-scale network reconstruction of a human hepatocyte into the liver tissue of a physiologically-based pharmacokinetic model of a human adult. The resulting multiscale model was used to investigate hyperuricemia therapy, ammonia detoxification and paracetamol-induced toxication at a systems level. The specific models simultaneously integrate multiple layers of biological organization and offer mechanistic insights into pathology and medication. The approach presented may in future support a mechanistic understanding in diagnostics and drug development. PMID:23133351

  8. PHYSIOLOGICAL STATUS, BLOOD PROFILE AND BODY COMPOSITION OF SHEEP FED WITH CA-SAPONIFIED LEMURU OIL COATED BY HERBS

    Directory of Open Access Journals (Sweden)

    Dewi Apri Astuti

    2015-06-01

    Full Text Available This study was aimed to evaluate the physiological status, blood profiles and body composition of sheep fed with Ca-saponified lemuru oil coated by herbs. Twenty fat-tailed sheep (av. BW 23±1.2 kg were used in this experiment by using Completely Randomized Design with five treatments ration and four replications of each. Sheep fed with concentrate containing 3% Ca-saponified lemuru oil and king grass (1:1 ad libitum. Treatments were control diet without herbs (R1; Ca-saponified lemuru oil coated by curcumae domestica (R2; coated by Zingiber officinale Rosc (R3; coated by Eugenia polyantha (R4 and coated by Pluchea indica Less (R5. Data of physiological parameters were measured three times a day, in the morning, at noon and afternoon. Blood samples were collected at the end of the experiment through jugular vein, together with zero sample for Urea Space measurement. The variables observed were physiological data (heart rate, respiration rate, and rectal temperature, blood profiles (erythrocyte, hemoglobin, packed cell volume (PCV, leucocytes and body composition (water, protein and fat measured using Urea Space technique. Results of the study showed that sheep fed with Ca-saponified lemuru oil coated by herbs was not significantly different on heart rate, respiration rate and rectal temperature among treatments. Meanwhile, total leucocytes, neutrophil cell, and lymphocytes significantly increased (P<0.05 by the treatment. Body composition percentage (water, protein and fat were same in all treatments, except the total body fat and energy retained. In conclusion, supplementation of 3% Ca-saponified lemuru oil coated by Curcumae domestica, Zingiber officinale Rosc, Eugenia polyantha and Pluchea indica Less in fat-tailed sheep had no effect on physiological parameters, but improved the leucocyte and neutrophil cells. Total body fat and energy retained lower compared to control treatment. (Key words: Body composition, Ca-saponified, Herbs, Lemuru

  9. Human Body Image Edge Detection Based on Wavelet Transform

    Institute of Scientific and Technical Information of China (English)

    李勇; 付小莉

    2003-01-01

    Human dresses are different in thousands way.Human body image signals have big noise, a poor light and shade contrast and a narrow range of gray gradation distribution. The application of a traditional grads method or gray method to detect human body image edges can't obtain satisfactory results because of false detections and missed detections. According to tte peculiarity of human body image, dyadic wavelet transform of cubic spline is successfully applied to detect the face and profile edges of human body image and Mallat algorithm is used in the wavelet decomposition in this paper.

  10. Combined effect of whole-body vibration and ambient lighting on human discomfort, heart rate, and reaction time.

    Science.gov (United States)

    Monazzam, Mohammad Reza; Shoja, Esmaeil; Zakerian, Seyed Abolfazl; Foroushani, Abbas Rahimi; Shoja, Mohsen; Gharaee, Masoumeh; Asgari, Amin

    2018-03-12

    This study aimed to investigate the effect of whole-body vibration and ambient lighting, as well as their combined effect on human discomfort, heart rate, and reaction time in laboratory conditions. 44 men were recruited with an average age of 25.4 ± 1.9 years. Each participant was subjected to 12 experimental steps, each step lasting five minutes for four different vibration accelerations in X, Y, and Z axes at a fixed frequency; three different lighting intensities of 50, 500, and 1000 lx were also considered. At each step, a visual computerized reaction test was taken from subjects and their heart rate recorded by pulse oximeter. In addition, the discomfort rate of subjects was measured using Borg scale. Increasing vibration acceleration significantly increased the discomfort rate and heart beat but not the reaction time. Lack of lighting caused more discomfort in the subjects, but there was no significant correlation between lighting intensity with heart rate and reaction time. The results also showed that the combined effect of vibration and lighting had no significant effect on any of the discomfort, heart rate, and reaction time variables. Whole-body vibration is an important factor in the development of human subjective and physiological reactions compared to lighting. Therefore, consideration of the level of vibration to which an individual is exposed in workplaces subject to vibration plays an important role in reducing the level of human discomfort, but its interaction with ambient lighting does not have a significant effect on human subjective and physiological responses.

  11. Smart sensor: a platform for an interactive human physiological state recognition study

    Directory of Open Access Journals (Sweden)

    Andrej Gorochovik

    2013-03-01

    Full Text Available This paper describes a concept of making interactive human state recognition systems based on smart sensor design. The token measures on proper ADC signal processing had significantly lowered the interference level. A more reliable way of measuring human skin temperature was offered by using Maxim DS18B20 digital thermometers. They introduced a more sensible response to temperature changes compared to previously used analog LM35 thermometers. An adaptive HR measuring algorithm was introduced to suppress incorrect ECG signal readings caused by human muscular activities. User friendly interactive interface for touch sensitive GLCD screen was developed to present real time physiological data readings both in numerals and graphics. User was granted an ability to dynamically customize data processing methods according to his needs. Specific procedures were developed to simplify physiological state recording for further analysis. The introduced physiological data sampling and preprocessing platform was optimized to be compatible with “ATmega Oscilloscope” PC data collecting and visualizing software.

  12. Multichannel Human Body Communication

    International Nuclear Information System (INIS)

    Przystup, Piotr; Bujnowski, Adam; Wtorek, Jerzy

    2016-01-01

    Human Body Communication is an attractive alternative for traditional wireless communication (Bluetooth, ZigBee) in case of Body Sensor Networks. Low power, high data rates and data security makes it ideal solution for medical applications. In this paper, signal attenuation for different frequencies, using FR4 electrodes, has been investigated. Performance of single and multichannel transmission with frequency modulation of analog signal has been tested. Experiment results show that HBC is a feasible solution for transmitting data between BSN nodes

  13. Human Identification at a Distance Using Body Shape Information

    International Nuclear Information System (INIS)

    Rashid, N K A M; Yahya, M F; Shafie, A A

    2013-01-01

    Shape of human body is unique from one person to another. This paper presents an intelligent system approach for human identification at a distance using human body shape information. The body features used are the head, shoulder, and trunk. Image processing techniques for detection of these body features were developed in this work. Then, the features are recognized using fuzzy logic approach and used as inputs to a recognition system based on a multilayer neural network. The developed system is only applicable for recognizing a person from its frontal view and specifically constrained to male gender to simplify the algorithm. In this research, the accuracy for human identification using the proposed method is 77.5%. Thus, it is proved that human can be identified at a distance using body shape information

  14. Noninvasive, three-dimensional full-field body sensor for surface deformation monitoring of human body in vivo

    Science.gov (United States)

    Chen, Zhenning; Shao, Xinxing; He, Xiaoyuan; Wu, Jialin; Xu, Xiangyang; Zhang, Jinlin

    2017-09-01

    Noninvasive, three-dimensional (3-D), full-field surface deformation measurements of the human body are important for biomedical investigations. We proposed a 3-D noninvasive, full-field body sensor based on stereo digital image correlation (stereo-DIC) for surface deformation monitoring of the human body in vivo. First, by applying an improved water-transfer printing (WTP) technique to transfer optimized speckle patterns onto the skin, the body sensor was conveniently and harmlessly fabricated directly onto the human body. Then, stereo-DIC was used to achieve 3-D noncontact and noninvasive surface deformation measurements. The accuracy and efficiency of the proposed body sensor were verified and discussed by considering different complexions. Moreover, the fabrication of speckle patterns on human skin, which has always been considered a challenging problem, was shown to be feasible, effective, and harmless as a result of the improved WTP technique. An application of the proposed stereo-DIC-based body sensor was demonstrated by measuring the pulse wave velocity of human carotid artery.

  15. Lower body negative pressure as a tool for research in aerospace physiology and military medicine

    Science.gov (United States)

    Convertino, V. A.

    2001-01-01

    Lower body negative pressure (LBNP) has been extensively used for decades in aerospace physiological research as a tool to investigate cardiovascular mechanisms that are associated with or underlie performance in aerospace and military environments. In comparison with clinical stand and tilt tests, LBNP represents a relatively safe methodology for inducing highly reproducible hemodynamic responses during exposure to footward fluid shifts similar to those experienced under orthostatic challenge. By maintaining an orthostatic challenge in a supine posture, removal of leg support (muscle pump) and head motion (vestibular stimuli) during LBNP provides the capability to isolate cardiovascular mechanisms that regulate blood pressure. LBNP can be used for physiological measurements, clinical diagnoses and investigational research comparisons of subject populations and alterations in physiological status. The applications of LBNP to the study of blood pressure regulation in spaceflight, groundbased simulations of low gravity, and hemorrhage have provided unique insights and understanding for development of countermeasures based on physiological mechanisms underlying the operational problems.

  16. Microwave non-contact imaging of subcutaneous human body tissues.

    Science.gov (United States)

    Kletsov, Andrey; Chernokalov, Alexander; Khripkov, Alexander; Cho, Jaegeol; Druchinin, Sergey

    2015-10-01

    A small-size microwave sensor is developed for non-contact imaging of a human body structure in 2D, enabling fitness and health monitoring using mobile devices. A method for human body tissue structure imaging is developed and experimentally validated. Subcutaneous fat tissue reconstruction depth of up to 70 mm and maximum fat thickness measurement error below 2 mm are demonstrated by measurements with a human body phantom and human subjects. Electrically small antennas are developed for integration of the microwave sensor into a mobile device. Usability of the developed microwave sensor for fitness applications, healthcare, and body weight management is demonstrated.

  17. Physiological correlates of stress-induced decrements in human perceptual performance.

    Science.gov (United States)

    1993-11-01

    Stress-induced changes in human performance have been thought to result from alterations in the "multidimensional arousal state" of the individual, as indexed by alterations in the physiological and psychological mechanisms controlling performance. I...

  18. Stretch sensors for human body motion

    Science.gov (United States)

    O'Brien, Ben; Gisby, Todd; Anderson, Iain A.

    2014-03-01

    Sensing motion of the human body is a difficult task. From an engineers' perspective people are soft highly mobile objects that move in and out of complex environments. As well as the technical challenge of sensing, concepts such as comfort, social intrusion, usability, and aesthetics are paramount in determining whether someone will adopt a sensing solution or not. At the same time the demands for human body motion sensing are growing fast. Athletes want feedback on posture and technique, consumers need new ways to interact with augmented reality devices, and healthcare providers wish to track recovery of a patient. Dielectric elastomer stretch sensors are ideal for bridging this gap. They are soft, flexible, and precise. They are low power, lightweight, and can be easily mounted on the body or embedded into clothing. From a commercialisation point of view stretch sensing is easier than actuation or generation - such sensors can be low voltage and integrated with conventional microelectronics. This paper takes a birds-eye view of the use of these sensors to measure human body motion. A holistic description of sensor operation and guidelines for sensor design will be presented to help technologists and developers in the space.

  19. An overview of artificial gravity. [effects on human performance and physiology

    Science.gov (United States)

    Stone, R. W., Jr.

    1973-01-01

    The unique characteristics of artificial gravity that affect human performance and physiology in an artificial gravity environment are reviewed. The rate at which these unique characteristics change decreases very rapidly with increasing radius of a rotating vehicle used to produce artificial gravity. Reducing their influence on human performance or physiology by increasing radius becomes a situation of very rapidly diminishing returns. A review of several elements of human performance has developed criteria relative to the sundry characteristics of artificial gravity. A compilation of these criteria indicates that the maximum acceptable rate of rotation, leg heaviness while walking, and material handling are the factors that define the minimum acceptable radius. The ratio of Coriolis force to artificial weight may also be significant. Based on current knowledge and assumptions for the various criteria, a minimum radius between 15.2 and 16.8 m seems desirable.

  20. The biology of human sexuality: evolution, ecology and physiology

    Directory of Open Access Journals (Sweden)

    PW Bateman

    2006-09-01

    Full Text Available Many evolutionary biologists argue that human sexual behaviour can be studied in exactly the same way as that of other species. Many sociologists argue that social influences effectively obscure, and are more important than, a reductionist biological approach to human sexual behaviour. Here,we authors attempt to provide a broad introduction to human sexual behaviour from a biological standpoint and to indicate where the ambiguous areas are. We outline the evolutionary selective pressures that are likely to have influenced human behaviour and mate choice in the past and in the present; ecological features that influence such things as degree of parental care and polygamy; and the associated physiology of human sexuality. Then they end with a discussion of �abnormal� sexuality.

  1. Post-human body and beauty.

    Science.gov (United States)

    Russo, Maria Teresa; Di Stefano, Nicola

    2014-01-01

    The article calls into question the very possibility of a post-human aesthetics, starting from the following premise: rather than post-human, it is more correct to speak of post-natural, indicating by this expression a reality produced through a new type of evolution, which does not simply change human nature, but de-natures it, radically transforming it into an artefact. This post-nature which aspires to be perfect, immortal, invulnerable, is entirely devoid of beauty. In fact, while there may be an aesthetic of the artificial and of the artefact if it is in relation to objects, there is, however, no aesthetic of the post-human body. This is because is configured as a non-body and does not have the characteristics for what is commonly intended as beauty (harmony between matter and form, a reflection of inner life, uniqueness). Also in this case, it is more correct to speak of post-beauty, which in its properties appears to be the mirror image of beauty and ultimately, represents its complete dissolution.

  2. Noninvasive, three-dimensional full-field body sensor for surface deformation monitoring of human body in vivo.

    Science.gov (United States)

    Chen, Zhenning; Shao, Xinxing; He, Xiaoyuan; Wu, Jialin; Xu, Xiangyang; Zhang, Jinlin

    2017-09-01

    Noninvasive, three-dimensional (3-D), full-field surface deformation measurements of the human body are important for biomedical investigations. We proposed a 3-D noninvasive, full-field body sensor based on stereo digital image correlation (stereo-DIC) for surface deformation monitoring of the human body in vivo. First, by applying an improved water-transfer printing (WTP) technique to transfer optimized speckle patterns onto the skin, the body sensor was conveniently and harmlessly fabricated directly onto the human body. Then, stereo-DIC was used to achieve 3-D noncontact and noninvasive surface deformation measurements. The accuracy and efficiency of the proposed body sensor were verified and discussed by considering different complexions. Moreover, the fabrication of speckle patterns on human skin, which has always been considered a challenging problem, was shown to be feasible, effective, and harmless as a result of the improved WTP technique. An application of the proposed stereo-DIC-based body sensor was demonstrated by measuring the pulse wave velocity of human carotid artery. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  3. Integrating cellular metabolism into a multiscale whole-body model.

    Directory of Open Access Journals (Sweden)

    Markus Krauss

    Full Text Available Cellular metabolism continuously processes an enormous range of external compounds into endogenous metabolites and is as such a key element in human physiology. The multifaceted physiological role of the metabolic network fulfilling the catalytic conversions can only be fully understood from a whole-body perspective where the causal interplay of the metabolic states of individual cells, the surrounding tissue and the whole organism are simultaneously considered. We here present an approach relying on dynamic flux balance analysis that allows the integration of metabolic networks at the cellular scale into standardized physiologically-based pharmacokinetic models at the whole-body level. To evaluate our approach we integrated a genome-scale network reconstruction of a human hepatocyte into the liver tissue of a physiologically-based pharmacokinetic model of a human adult. The resulting multiscale model was used to investigate hyperuricemia therapy, ammonia detoxification and paracetamol-induced toxication at a systems level. The specific models simultaneously integrate multiple layers of biological organization and offer mechanistic insights into pathology and medication. The approach presented may in future support a mechanistic understanding in diagnostics and drug development.

  4. Body Composition and Physiological Responses of Masters Female Swimmers 20 to 70 Years of Age.

    Science.gov (United States)

    Vaccaro, Paul; And Others

    1984-01-01

    Female masters swimmers ranging in age from 20 to 69 were chosen for a study of their body composition and physiological responses at rest and during exercise. Two training groups were formed that differed on the basis of frequency, duration, and intensity of swimming workouts. Results are discussed. (Author/DF)

  5. Colonic Fermentation: A Neglected Topic in Human Physiology Education

    Science.gov (United States)

    Valeur, Jorgen; Berstad, Arnold

    2010-01-01

    Human physiology textbooks tend to limit their discussion of colonic functions to those of absorbing water and electrolytes and storing waste material. However, the colon is a highly active metabolic organ, containing an exceedingly complex society of microbes. By means of fermentation, gastrointestinal microbes break down nutrients that cannot be…

  6. In-to-out body path loss for wireless radio frequency capsule endoscopy in a human body.

    Science.gov (United States)

    Vermeeren, G; Tanghe, E; Thielens, A; Martens, L; Joseph, W

    2016-08-01

    Physical-layer characterization is important for design of in-to-out body communication for wireless body area networks (WBANs). This paper numerically investigates the path loss of an in-to-out body radio frequency (RF) wireless link between an endoscopy capsule and a receiver outside the body using a 3D electromagnetic solver. A spiral antenna in the endoscopy capsule is tuned to operate in the Medical Implant Communication Service (MICS) band at 402 MHz, accounting for the properties of the human body. The influence of misalignment, rotation of the capsule, and human body model are investigated. Semi-empirical path loss models for various homogeneous tissues and 3D realistic human body models are provided for manufacturers to evaluate the performance of in-to-out-body WBAN systems.

  7. PHYSIOLOGICALLY BASED PHARMACOKINETIC MODEL FOR HUMAN EXPOSURES TO METHYL TERTIARY-BUTYL ETHER

    Science.gov (United States)

    Humans can be exposed by inhalation, ingestion, or dermal absorption to methyl tertiary-butyl ether (MTBE), an oxygenated fuel additive, from contaminated water sources. The purpose of this research was to develop a physiologically based pharmacokinetic model describing in human...

  8. Associations between Thermal and Physiological Responses of Human Body during Exercise

    Directory of Open Access Journals (Sweden)

    Suleyman Zora

    2017-12-01

    Full Text Available In this study, thermal behaviours of the athletes were investigated with respect to thermal comfort and exercise intensity. The relationship between an index for analysing thermal comfort (Predicted Mean Vote: PMV and Rating of Perceived Exertion (RPE which shows exercise intensity and exhaustion level was evaluated. Eleven moderately trained male athletes ( V ˙ O2max 54 ± 9.9 mL∙min−1∙kg−1 had volunteered for the study (age: 22.2 ± 3.7 years; body mass: 73.8 ± 6.9 kg; height: 181 ± 6.3 cm; Body surface area (BSA: 1.93 ± 0.1 m2; body fat: 12.6% ± 4.2%; V ˙ O2max: 54 ± 9.9 mL∙min−1∙kg−1. Experiments were carried out by using a cycle ergometer in an air-conditioned test chamber which provided fresh air and had the ability to control the temperature and relative humidity. The study cohort was divided into two groups according to maximal oxygen consumption levels of the participants. Statistical analyses were conducted with the whole study cohort as well as the two separated groups. There was a moderate correlation between PMV and RPE for whole cohort (r: −0.51. When the whole cohort divided as low and high aerobic power groups, an average correlation coefficient at high oxygen consumption cohort decreased to r: −0.21, while the average correlation coefficient at low oxygen consumption cohort increased to r: −0.77. In conclusion, PMV and RPE have a high correlation in less trained participants, but not in the more trained ones. The case may bring to mind that thermal distribution may be better in high aerobic power group in spite of high RPE and thus the relation between PMV and RPE is affected by exercise performance status.

  9. An emerging paradigm for teaching human anatomy and physiology

    African Journals Online (AJOL)

    Rabab El-Sayed Hassan El-Sayed

    2013-03-15

    Mar 15, 2013 ... information about the anatomy and physiology of human ... tional curriculum in a range of teaching fields that are based ..... et al.,47 who were studying the acceptance and benefits of vi- .... Foreign language teaching methods: Culture lesson 3: the case for .... vations in integrating ICT in education, vol. 3.

  10. A Circuit Model of Real Time Human Body Hydration.

    Science.gov (United States)

    Asogwa, Clement Ogugua; Teshome, Assefa K; Collins, Stephen F; Lai, Daniel T H

    2016-06-01

    Changes in human body hydration leading to excess fluid losses or overload affects the body fluid's ability to provide the necessary support for healthy living. We propose a time-dependent circuit model of real-time human body hydration, which models the human body tissue as a signal transmission medium. The circuit model predicts the attenuation of a propagating electrical signal. Hydration rates are modeled by a time constant τ, which characterizes the individual specific metabolic function of the body part measured. We define a surrogate human body anthropometric parameter θ by the muscle-fat ratio and comparing it with the body mass index (BMI), we find theoretically, the rate of hydration varying from 1.73 dB/min, for high θ and low τ to 0.05 dB/min for low θ and high τ. We compare these theoretical values with empirical measurements and show that real-time changes in human body hydration can be observed by measuring signal attenuation. We took empirical measurements using a vector network analyzer and obtained different hydration rates for various BMI, ranging from 0.6 dB/min for 22.7 [Formula: see text] down to 0.04 dB/min for 41.2 [Formula: see text]. We conclude that the galvanic coupling circuit model can predict changes in the volume of the body fluid, which are essential in diagnosing and monitoring treatment of body fluid disorder. Individuals with high BMI would have higher time-dependent biological characteristic, lower metabolic rate, and lower rate of hydration.

  11. "Sebocytes' makeup": novel mechanisms and concepts in the physiology of the human sebaceous glands.

    Science.gov (United States)

    Tóth, Balázs I; Oláh, Attila; Szöllosi, Attila G; Czifra, Gabriella; Bíró, Tamás

    2011-06-01

    The pilosebaceous unit of the human skin consists of the hair follicle and the sebaceous gland. Within this "mini-organ", the sebaceous gland has been neglected by the researchers of the field for several decades. Actually, it was labeled as a reminiscence of human development ("a living fossil with a past but no future"), and was thought to solely act as a producer of sebum, a lipid-enriched oily substance which protects our skin (and hence the body) against various insults. However, due to emerging research activities of the past two decades, it has now become evident that the sebaceous gland is not only a "passive" cutaneous "relic" to establish the physico-chemical barrier function of the skin against constant environmental challenges, but it rather functions as an "active" neuro-immuno-endocrine cutaneous organ. This review summarizes recent findings of sebaceous gland research by mainly focusing on newly discovered physiological functions, novel regulatory mechanisms, key events in the pathology of the gland, and future directions in both experimental and clinical dermatology.

  12. Small-bodied humans from Palau, Micronesia.

    Directory of Open Access Journals (Sweden)

    Lee R Berger

    Full Text Available UNLABELLED: Newly discovered fossil assemblages of small bodied Homo sapiens from Palau, Micronesia possess characters thought to be taxonomically primitive for the genus Homo. BACKGROUND: Recent surface collection and test excavation in limestone caves in the rock islands of Palau, Micronesia, has produced a sizeable sample of human skeletal remains dating roughly between 940-2890 cal ybp. PRINCIPLE FINDINGS: Preliminary analysis indicates that this material is important for two reasons. First, individuals from the older time horizons are small in body size even relative to "pygmoid" populations from Southeast Asia and Indonesia, and thus may represent a marked case of human insular dwarfism. Second, while possessing a number of derived features that align them with Homo sapiens, the human remains from Palau also exhibit several skeletal traits that are considered to be primitive for the genus Homo. SIGNIFICANCE: These features may be previously unrecognized developmental correlates of small body size and, if so, they may have important implications for interpreting the taxonomic affinities of fossil specimens of Homo.

  13. Human transient response under local thermal stimulation

    Directory of Open Access Journals (Sweden)

    Wang Lijuan

    2017-01-01

    Full Text Available Human body can operate physiological thermoregulation system when it is exposed to cold or hot environment. Whether it can do the same work when a local part of body is stimulated by different temperatures? The objective of this paper is to prove it. Twelve subjects are recruited to participate in this experiment. After stabilizing in a comfort environment, their palms are stimulated by a pouch of 39, 36, 33, 30, and 27°C. Subject’s skin temperature, heart rate, heat flux of skin, and thermal sensation are recorded. The results indicate that when local part is suffering from harsh temperature, the whole body is doing physiological thermoregulation. Besides, when the local part is stimulated by high temperature and its thermal sensation is warm, the thermal sensation of whole body can be neutral. What is more, human body is more sensitive to cool stimulation than to warm one. The conclusions are significant to reveal and make full use of physiological thermoregulation.

  14. Sandia's severe human body Electrostatic Discharge Tester (SSET)

    International Nuclear Information System (INIS)

    Barnum, J.R.

    1991-01-01

    This paper reports that the Electromagnetic Testing Division at Sandia National Laboratories (SNL) has developed a simulator to replicate a severe human body electrostatic discharge event. This simulator is referred to as Sandia's Severe Human Body Electrostatic Discharge Tester (SSET). The SSET is configured as a coaxial transmission line, which allows control of parasitic inductance and capacitance to achieve the desired waveform signature, and operates reliably at voltages up to 35 kV. It is constructed from off-the-shelf or easily fabricated components and costs approximately $750 for materials, not including the power supply. The output is very repeatable and provides good simulation fidelity of a severe human body discharge

  15. Human body micro-environment: The benefits of controlling airflow interaction

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor

    2015-01-01

    This paper focuses on the micro-environment around a human body, and especially on its interaction with the surrounding environment. Research on the free convection flow generated by a human body (including the convective boundary layer around the body and the thermal plume above the body), its...

  16. The Reconfigured Body. Human-animal relations in xenotransplantation

    Directory of Open Access Journals (Sweden)

    Kristofer Hansson

    2011-12-01

    Full Text Available The article explores issues concerning the reconfiguration of human and animal bodies in modern biotechnology. The examples are based on xenotransplantation: Transplantation of cells, tissue and organs from animals to humans. Three thematic issues that emerged from xenotransplantation research in Sweden in the 1990s and early 2000s are examined in the article. The first issue concerns how the pig was introduced as a donor animal in xenotransplantation and, at the same time, dehumanized in relation to what is human. Baboons and chimpanzees that had previously been used in xenotransplantation now became an ethically problematic choice, and were in stead humanized. The second issue concerns the introduction of transgenic and cloned pigs as commoditized objects. The biotechnological development reconfigured the pig’s cells, tissue and organs to become more human-like. The third issue concerns the risk that pigs contain retrovirus that could infect the transplanted patients. The human body became part of a network of both animal and retrovirus. Boundlessness between human and animal bodies appears in these three thematic phases and is analysed from a cultural perspective.

  17. Alliances in Human Biology: The Harvard Committee on Industrial Physiology, 1929-1939.

    Science.gov (United States)

    Oakes, Jason

    2015-08-01

    In 1929 the newly-reorganized Rockefeller Foundation funded the work of a cross-disciplinary group at Harvard University called the Committee on Industrial Physiology (CIP). The committee's research and pedagogical work was oriented towards different things for different members of the alliance. The CIP program included a research component in the Harvard Fatigue Laboratory and Elton May's interpretation of the Hawthorne Studies; a pedagogical aspect as part of Wallace Donham's curriculum for Harvard Business School; and Lawrence Henderson's work with the Harvard Pareto Circle, his course Sociology 23, and the Harvard Society of Fellows. The key actors within the CIP alliance shared a concern with training men for elite careers in government service, business leadership, and academic prominence. But the first communications between the CIP and the Rockefeller Foundation did not emphasize training in human biology. Instead, the CIP presented itself as a coordinating body that would be able to organize all the varied work going on at Harvard that did not fit easily into one department, and it was on this basis that the CIP became legible to the President of Harvard, A. Lawrence Lowell, and to Rockefeller's Division of Social Sciences. The members of the CIP alliance used the term human biology for this project of research, training and institutional coordination.

  18. [Microbiota and representations of the human body].

    Science.gov (United States)

    Dodet, Betty

    2016-11-01

    Although the presence of an intestinal flora has been known for a long time, the discovery of the role of gut microbiota in human health and disease has been widely recognized as one of the most important advances in the recent years. Chronic diseases may result from dysbiosis, i.e. a disruption of the balance within the bacterial population hosted by the human body. These developments open new prospects in terms of prevention and treatment, including the design of adapted diets, the development of functional foods and fecal transplantation. These discoveries have profoundly altered our view of microbes, of health and disease, of self and non-self, as well as our representations of the body and its relationship with its ecosystem. Gut microbiota is now generally considered as an organ in its own right. A model of the "microbiotic person" thus arises, in which the human organism is defined as an ecosystem, a chimeric superorganism with a double genome, both human and microbial. Thought should be given to the way in which these new paradigms modify lay perceptions of the human body. © 2016 médecine/sciences – Inserm.

  19. Macro And Microcosmus: Moon Influence On The Human Body

    Science.gov (United States)

    Zanchin, Giorgio

    Belief in the action of the macrocosmus, i.e., celestial bodies, on the microcosmus, i.e., on man, goes back to the dawn of human thinking. More specifically, lunar phases have been considered to act on behaviour and on physiological functions. This possible relationship has not only been taken for granted for many centuries in ancient medicine but also investigated in a number of modern published works, mainly on the issues of emergency activity; violent behaviour; car accidents; drug overdose; menses and birth; and mood disorders. Indeed, if the idea that the stars and planets may influence human health and behaviour can be traced so far in the past, it seems that not only the laymen but a high proportion of health professionals continue to hold this credence: recently, in New Orleans a questionnaire sent to 325 people indicated that 140 individuals (43%) held the opinion that lunar phenomena alter personal behaviour. Specifically, it came out that mental health professionals (social workers, clinical psychologists, nurses' aides) held this belief more strongly than other occupational groups (Vance, 1995). A short historical outline of some old beliefs and the results of contemporary research on this fascinating, time-honoured field, will be presented.

  20. [The gift of human body's products: philosophical and ethical aspects].

    Science.gov (United States)

    Baertschi, B

    2014-09-01

    In continental Europe, there is a very strong moral condemnation against putting parts or products of the human body on sale-and, consequently, against putting sperms and oocytes on sale. Only a gift is morally permissible. The situation is different in Anglo-Saxon countries. Who is right? Above all, it must be noticed that two views of the human body are facing each other here: for the first, the human body is a part of the person (so, it partakes of the person's dignity), whereas for the second, the human body is a possession of the person (the person is the owner of his/her body). In my opinion, the argument of dignity comes up against serious objections, and the property argument is more consistent. However, it does not follow that it would be judicious to put parts and products of the human body for sale on a market. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  1. The Relationship between Human Operators' Psycho-physiological Condition and Human Errors in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Kim, Arryum; Jang, Inseok; Kang, Hyungook; Seong, Poonghyun

    2013-01-01

    The safe operation of nuclear power plants (NPPs) is substantially dependent on the performance of the human operators who operate the systems. In this environment, human errors caused by inappropriate performance of operator have been considered to be critical since it may lead serious problems in the safety-critical plants. In order to provide meaningful insights to prevent human errors and enhance the human performance, operators' physiological conditions such as stress and workload have been investigated. Physiological measurements were considered as reliable tools to assess the stress and workload. T. Q. Tran et al. and J. B. Brooking et al pointed out that operators' workload can be assessed using eye tracking, galvanic skin response, electroencephalograms (EEGs), heart rate, respiration and other measurements. The purpose of this study is to investigate the effect of the human operators' tense level and knowledge level to the number of human errors. For this study, the experiments were conducted in the mimic of the main control rooms (MCR) in NPP. It utilized the compact nuclear simulator (CNS) which is modeled based on the three loop Pressurized Water Reactor, 993MWe, Kori unit 3 and 4 in Korea and the subjects were asked to follow the tasks described in the emergency operating procedures (EOP). During the simulation, three kinds of physiological measurement were utilized; Electrocardiogram (ECG), EEG and nose temperature. Also, subjects were divided into three groups based on their knowledge of the plant operation. The result shows that subjects who are tense make fewer errors. In addition, subjects who are in higher knowledge level tend to be tense and make fewer errors. For the ECG data, subjects who make fewer human errors tend to be located in higher tense level area of high SNS activity and low PSNS activity. The results of EEG data are also similar to ECG result. Beta power ratio of subjects who make fewer errors was higher. Since beta power ratio is

  2. Human ketone body production and utilization studied using tracer techniques: Regulation by free fatty acids, insulin, catecholamines, and thyroid hormones

    Energy Technology Data Exchange (ETDEWEB)

    Keller, U.; Lustenberger, M.; Mueller-Brand, J.G.; Gerber, P.P.; Stauffacher, W.

    1989-05-01

    Ketone body concentrations fluctuate markedly during physiological and pathological conditions. Tracer techniques have been developed in recent years to study production, utilization, and the metabolic clearance rate of ketone bodies. This review describes data on the roles of insulin, catecholamines, and thyroid hormones in the regulation of ketone body kinetics. The data indicate that insulin lowers ketone body concentrations by three independent mechanisms: first, it inhibits lipolysis, and thus lowers free fatty acid availability for ketogenesis; second, it restrains ketone body production within the liver; third, it enhances peripheral ketone body utilization. To assess these effects in humans in vivo, experimental models were developed to study insulin effects with controlled concentrations of free fatty acids, insulin, glucagon, and ketone bodies. Presently available data also support an important role of catecholamines in increasing ketone body concentrations. Evidence was presented that norepinephrine increases ketogenesis not only by stimulating lipolysis, and thus releasing free fatty acids, but also by increasing intrahepatic ketogenesis. Thyroid hormone availability was associated with lipolysis and ketogenesis. Ketone body concentrations after an overnight fast were only modestly elevated in hyperthyroidism resulting from increased peripheral ketone body clearance. There was a significant correlation between serum triiodothyronine levels and the ketone body metabolic clearance rate. Thus, ketone body homeostasis in human subjects resulted from the interaction of hormones such as insulin, catecholamines, and thyroid hormones regulating lipolysis, intrahepatic ketogenesis, and peripheral ketone body utilization. 58 references.

  3. Human ketone body production and utilization studied using tracer techniques: Regulation by free fatty acids, insulin, catecholamines, and thyroid hormones

    International Nuclear Information System (INIS)

    Keller, U.; Lustenberger, M.; Mueller-Brand, J.G.; Gerber, P.P.; Stauffacher, W.

    1989-01-01

    Ketone body concentrations fluctuate markedly during physiological and pathological conditions. Tracer techniques have been developed in recent years to study production, utilization, and the metabolic clearance rate of ketone bodies. This review describes data on the roles of insulin, catecholamines, and thyroid hormones in the regulation of ketone body kinetics. The data indicate that insulin lowers ketone body concentrations by three independent mechanisms: first, it inhibits lipolysis, and thus lowers free fatty acid availability for ketogenesis; second, it restrains ketone body production within the liver; third, it enhances peripheral ketone body utilization. To assess these effects in humans in vivo, experimental models were developed to study insulin effects with controlled concentrations of free fatty acids, insulin, glucagon, and ketone bodies. Presently available data also support an important role of catecholamines in increasing ketone body concentrations. Evidence was presented that norepinephrine increases ketogenesis not only by stimulating lipolysis, and thus releasing free fatty acids, but also by increasing intrahepatic ketogenesis. Thyroid hormone availability was associated with lipolysis and ketogenesis. Ketone body concentrations after an overnight fast were only modestly elevated in hyperthyroidism resulting from increased peripheral ketone body clearance. There was a significant correlation between serum triiodothyronine levels and the ketone body metabolic clearance rate. Thus, ketone body homeostasis in human subjects resulted from the interaction of hormones such as insulin, catecholamines, and thyroid hormones regulating lipolysis, intrahepatic ketogenesis, and peripheral ketone body utilization. 58 references

  4. Emerging role of mitophagy in human diseases and physiology.

    Science.gov (United States)

    Um, Jee-Hyun; Yun, Jeanho

    2017-06-01

    Mitophagy is a process of selective removal of damaged or unnecessary mitochondria using autophagic machinery. Mitophagy plays an essential role in maintaining mitochondrial quality control and homeostasis. Mitochondrial dysfunctions and defective mitophagy in neurodegenerative diseases, cancer, and metabolic diseases indicate a close link between human disease and mitophagy. Furthermore, recent studies showing the involvement of mitophagy in differentiation and development, suggest that mitophagy may play a more active role in controlling cellular functions. A better understanding of mitophagy will provide insights about human disease and offer novel chance for treatment. This review mainly focuses on the recent implications for mitophagy in human diseases and normal physiology. [BMB Reports 2017; 50(6): 299-307].

  5. Physiological Responses to Thermal Stress and Exercise

    Science.gov (United States)

    Iyota, Hiroyuki; Ohya, Akira; Yamagata, Junko; Suzuki, Takashi; Miyagawa, Toshiaki; Kawabata, Takashi

    The simple and noninvasive measuring methods of bioinstrumentation in humans is required for optimization of air conditioning and management of thermal environments, taking into consideration the individual specificity of the human body as well as the stress conditions affecting each. Changes in human blood circulation were induced with environmental factors such as heat, cold, exercise, mental stress, and so on. In this study, the physiological responses of human body to heat stress and exercise were investigated in the initial phase of the developmental research. We measured the body core and skin temperatures, skin blood flow, and pulse wave as the indices of the adaptation of the cardiovascular system. A laser Doppler skin blood flowmetry using an optical-sensor with a small portable data logger was employed for the measurement. These results reveal the heat-stress and exercise-induced circulatory responses, which are under the control of the sympathetic nerve system. Furthermore, it was suggested that the activity of the sympathetic nervous system could be evaluated from the signals of the pulse wave included in the signals derived from skin blood flow by means of heart rate variability assessments and detecting peak heights of velocity-plethysmogram.

  6. Media Representation of the Human Body: Discourse Analysis of Advertisements

    Directory of Open Access Journals (Sweden)

    Marija Lončar

    2015-09-01

    Full Text Available Even though advertisements represent a world of its own, they are an inevitable part of different kinds of media. The purpose of advertising is not only to promote a product but also to transfer messages, values and ideas in order to make emotional connections with brands. By building emotional attachment, advertisers increase and strengthen consumers’ responses. The promoting of the advertisements’ images becomes much more important than promoting the product itself. Nowadays, an increasing interest in representing a human body along with different kinds of products and services has become a commonplace among advertisers. Representation of the body is a socially constructed phenomenon. In other words, social processes shape perceptions of our bodies and these perceptions (recreate human experiences of the body. The authors’ approach includes qualitative discourse analysis of advertisements. The objective was to identify the relationship between the human body and textual messages as integral components of the advertised item taken in consideration, as well as the ways in which they interact with the reader’s overall experience. For this purpose, different advertisements that contain visual and textual messages representing human bodies have been analysed. They were all published in the following lifestyle magazines: Cosmopolitan, Playboy, Men’s Health, during 2012 and 2013. The authors conclude that media representations of a human body as social phenomena perceive value and treat the body in different ways depending on the relationship between the advertisement, the textual message and the human body.

  7. A generic whole body physiologically based pharmacokinetic model for therapeutic proteins in PK-Sim.

    Science.gov (United States)

    Niederalt, Christoph; Kuepfer, Lars; Solodenko, Juri; Eissing, Thomas; Siegmund, Hans-Ulrich; Block, Michael; Willmann, Stefan; Lippert, Jörg

    2018-04-01

    Proteins are an increasingly important class of drugs used as therapeutic as well as diagnostic agents. A generic physiologically based pharmacokinetic (PBPK) model was developed in order to represent at whole body level the fundamental mechanisms driving the distribution and clearance of large molecules like therapeutic proteins. The model was built as an extension of the PK-Sim model for small molecules incorporating (i) the two-pore formalism for drug extravasation from blood plasma to interstitial space, (ii) lymph flow, (iii) endosomal clearance and (iv) protection from endosomal clearance by neonatal Fc receptor (FcRn) mediated recycling as especially relevant for antibodies. For model development and evaluation, PK data was used for compounds with a wide range of solute radii. The model supports the integration of knowledge gained during all development phases of therapeutic proteins, enables translation from pre-clinical species to human and allows predictions of tissue concentration profiles which are of relevance for the analysis of on-target pharmacodynamic effects as well as off-target toxicity. The current implementation of the model replaces the generic protein PBPK model available in PK-Sim since version 4.2 and becomes part of the Open Systems Pharmacology Suite.

  8. [Functional state of various physiological systems of the human body during respiration of neon-oxygen mixture at depth up to 400 meters].

    Science.gov (United States)

    Poleshuk, I P; Genin, A M; Unku, R D; Mikhnenko, A E; Sementsov, V N; Suvorov, A V

    1991-01-01

    Hyperbaric neon-oxygen mixture has been studied for the effect of its high density under pressure of 41 ata on basic physiological functions of human organism. Typical changes of the cardiorespiratory system and tissue respiration parameters are revealed. Changes in physical working capacity are shown. Exposure to gaseous medium of high pressure and density is accompanied by the development of some compensatory-adaptive reactions. The possibility to perform mid-hard physical work is attained with overstrain of respiration and circulation function.

  9. Evaluation of Propagation Characteristics Using the Human Body as an Antenna.

    Science.gov (United States)

    Li, Jingzhen; Nie, Zedong; Liu, Yuhang; Wang, Lei; Hao, Yang

    2017-12-11

    In this paper, an inhomogeneous human body model was presented to investigate the propagation characteristics when the human body was used as an antenna to achieve signal transmission. Specifically, the channel gain of four scenarios, namely, (1) both TX electrode and RX electrode were placed in the air, (2) TX electrode was attached on the human body, and RX electrode was placed in the air, (3) TX electrode was placed in the air, and RX electrode was attached on the human body, (4) both the TX electrode and RX electrode were attached on the human body, were studied through numerical simulation in the frequency range 1 MHz to 90 MHz. Furthermore, the comparisons of input efficiency, accepted efficiency, total efficiency, absorption power of human body, and electric field distribution of different distances of four aforementioned scenarios were explored when the frequency was at 44 MHz. In addition, the influences of different human tissues, electrode position, and the distance between electrode and human body on the propagation characteristics were investigated respectively at 44 MHz. The results showed that the channel gain of Scenario 4 was the maximum when the frequency was from 1 MHz to 90 MHz. The propagation characteristics were almost independent of electrode position when the human body was using as an antenna. However, as the distance between TX electrode and human body increased, the channel gain decreased rapidly. The simulations were verified by experimental measurements. The results showed that the simulations were in agreement with the measurements.

  10. Novel biotransformation and physiological properties of norursodeoxycholic acid in humans

    NARCIS (Netherlands)

    Hofmann, AF; Zakko, SF; Lira, M; Clerici, C; Hagey, LR; Lambert, KK; Steinbach, JH; Schteingart, CD; Olinga, P; Groothuis, GMM

    2005-01-01

    Experiments were performed in 2 volunteers to define the biotransformation and physiological properties of norursodeoxycholic acid (norUDCA), the C(23) (C(24)-nor) homolog of UDCA. To complement the in vivo studies, the biotransformation of norUDCA ex vivo using precision-cut human liver slices was

  11. Physiological effects of light on the human circadian pacemaker

    Science.gov (United States)

    Shanahan, T. L.; Czeisler, C. A.

    2000-01-01

    The physiology of the human circadian pacemaker and its influence and on the daily organization of sleep, endocrine and behavioral processes is an emerging interest in science and medicine. Understanding the development, organization and fundamental properties underlying the circadian timing system may provide insight for the application of circadian principles to the practice of clinical medicine, both diagnostically (interpretation of certain clinical tests are dependent on time of day) and therapeutically (certain pharmacological responses vary with the time of day). The light-dark cycle is the most powerful external influence acting upon the human circadian pacemaker. It has been shown that timed exposure to light can both synchronize and reset the phase of the circadian pacemaker in a predictable manner. The emergence of detectable circadian rhythmicity in the neonatal period is under investigation (as described elsewhere in this issue). Therefore, the pattern of light exposure provided in the neonatal intensive care setting has implications. One recent study identified differences in both amount of sleep time and weight gain in infants maintained in a neonatal intensive care environment that controlled the light-dark cycle. Unfortunately, neither circadian phase nor the time of day has been considered in most clinical investigations. Further studies with knowledge of principles characterizing the human circadian timing system, which governs a wide array of physiological processes, are required to integrate these findings with the practice of clinical medicine.

  12. Knowledge environments representing molecular entities for the virtual physiological human.

    Science.gov (United States)

    Hofmann-Apitius, Martin; Fluck, Juliane; Furlong, Laura; Fornes, Oriol; Kolárik, Corinna; Hanser, Susanne; Boeker, Martin; Schulz, Stefan; Sanz, Ferran; Klinger, Roman; Mevissen, Theo; Gattermayer, Tobias; Oliva, Baldo; Friedrich, Christoph M

    2008-09-13

    In essence, the virtual physiological human (VPH) is a multiscale representation of human physiology spanning from the molecular level via cellular processes and multicellular organization of tissues to complex organ function. The different scales of the VPH deal with different entities, relationships and processes, and in consequence the models used to describe and simulate biological functions vary significantly. Here, we describe methods and strategies to generate knowledge environments representing molecular entities that can be used for modelling the molecular scale of the VPH. Our strategy to generate knowledge environments representing molecular entities is based on the combination of information extraction from scientific text and the integration of information from biomolecular databases. We introduce @neuLink, a first prototype of an automatically generated, disease-specific knowledge environment combining biomolecular, chemical, genetic and medical information. Finally, we provide a perspective for the future implementation and use of knowledge environments representing molecular entities for the VPH.

  13. Analysis of Long-Term Temperature Variations in the Human Body.

    Science.gov (United States)

    Dakappa, Pradeepa Hoskeri; Mahabala, Chakrapani

    2015-01-01

    Body temperature is a continuous physiological variable. In normal healthy adults, oral temperature is estimated to vary between 36.1°C and 37.2°C. Fever is a complex host response to many external and internal agents and is a potential contributor to many clinical conditions. Despite being one of the foremost vital signs, temperature and its analysis and variations during many pathological conditions has yet to be examined in detail using mathematical techniques. Classical fever patterns based on recordings obtained every 8-12 h have been developed. However, such patterns do not provide meaningful information in diagnosing diseases. Because fever is a host response, it is likely that there could be a unique response to specific etiologies. Continuous long-term temperature monitoring and pattern analysis using specific analytical methods developed in engineering and physics could aid in revealing unique fever responses of hosts and in different clinical conditions. Furthermore, such analysis can potentially be used as a novel diagnostic tool and to study the effect of pharmaceutical agents and other therapeutic protocols. Thus, the goal of our article is to present a comprehensive review of the recent relevant literature and analyze the current state of research regarding temperature variations in the human body.

  14. Dynamic Human Body Modeling Using a Single RGB Camera.

    Science.gov (United States)

    Zhu, Haiyu; Yu, Yao; Zhou, Yu; Du, Sidan

    2016-03-18

    In this paper, we present a novel automatic pipeline to build personalized parametric models of dynamic people using a single RGB camera. Compared to previous approaches that use monocular RGB images, our system can model a 3D human body automatically and incrementally, taking advantage of human motion. Based on coarse 2D and 3D poses estimated from image sequences, we first perform a kinematic classification of human body parts to refine the poses and obtain reconstructed body parts. Next, a personalized parametric human model is generated by driving a general template to fit the body parts and calculating the non-rigid deformation. Experimental results show that our shape estimation method achieves comparable accuracy with reconstructed models using depth cameras, yet requires neither user interaction nor any dedicated devices, leading to the feasibility of using this method on widely available smart phones.

  15. Human bipedalism and body-mass index.

    Science.gov (United States)

    Yi, Su Do; Noh, Jae Dong; Minnhagen, Petter; Song, Mi-Young; Chon, Tae-Soo; Kim, Beom Jun

    2017-06-16

    Body-mass index, abbreviated as BMI and given by M/H 2 with the mass M and the height H, has been widely used as a useful proxy to measure a general health status of a human individual. We generalise BMI in the form of M/H p and pursue to answer the question of the value of p for populations of animal species including human. We compare values of p for several different datasets for human populations with the ones obtained for other animal populations of fish, whales, and land mammals. All animal populations but humans analyzed in our work are shown to have p ≈ 3 unanimously. In contrast, human populations are different: As young infants grow to become toddlers and keep growing, the sudden change of p is observed at about one year after birth. Infants younger than one year old exhibit significantly larger value of p than two, while children between one and five years old show p ≈ 2, sharply different from other animal species. The observation implies the importance of the upright posture of human individuals. We also propose a simple mechanical model for a human body and suggest that standing and walking upright should put a clear division between bipedal human (p ≈ 2) and other animals (p ≈ 3).

  16. Human reconstructed skin xenografts on mice to model skin physiology.

    Science.gov (United States)

    Salgado, Giorgiana; Ng, Yi Zhen; Koh, Li Fang; Goh, Christabelle S M; Common, John E

    Xenograft models to study skin physiology have been popular for scientific use since the 1970s, with various developments and improvements to the techniques over the decades. Xenograft models are particularly useful and sought after due to the lack of clinically relevant animal models in predicting drug effectiveness in humans. Such predictions could in turn boost the process of drug discovery, since novel drug compounds have an estimated 8% chance of FDA approval despite years of rigorous preclinical testing and evaluation, albeit mostly in non-human models. In the case of skin research, the mouse persists as the most popular animal model of choice, despite its well-known anatomical differences with human skin. Differences in skin biology are especially evident when trying to dissect more complex skin conditions, such as psoriasis and eczema, where interactions between the immune system, epidermis and the environment likely occur. While the use of animal models are still considered the gold standard for systemic toxicity studies under controlled environments, there are now alternative models that have been approved for certain applications. To overcome the biological limitations of the mouse model, research efforts have also focused on "humanizing" the mice model to better recapitulate human skin physiology. In this review, we outline the different approaches undertaken thus far to study skin biology using human tissue xenografts in mice and the technical challenges involved. We also describe more recent developments to generate humanized multi-tissue compartment mice that carry both a functioning human immune system and skin xenografts. Such composite animal models provide promising opportunities to study drugs, disease and differentiation with greater clinical relevance. Copyright © 2017 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  17. Delineating the Impact of Weightlessness on Human Physiology Using Computational Models

    Science.gov (United States)

    Kassemi, Mohammad

    2015-01-01

    Microgravity environment has profound effects on several important human physiological systems. The impact of weightlessness is usually indirect as mediated by changes in the biological fluid flow and transport and alterations in the deformation and stress fields of the compliant tissues. In this context, Fluid-Structural and Fluid-Solid Interaction models provide a valuable tool in delineating the physical origins of the physiological changes so that systematic countermeasures can be devised to reduce their adverse effects. In this presentation, impact of gravity on three human physiological systems will be considered. The first case involves prediction of cardiac shape change and altered stress distributions in weightlessness. The second, presents a fluid-structural-interaction (FSI) analysis and assessment of the vestibular system and explores the reasons behind the unexpected microgravity caloric stimulation test results performed aboard the Skylab. The last case investigates renal stone development in microgravity and the possible impact of re-entry into partial gravity on the development and transport of nucleating, growing, and agglomerating renal calculi in the nephron. Finally, the need for model validation and verification and application of the FSI models to assess the effects of Artificial Gravity (AG) are also briefly discussed.

  18. Functional Neuronal Processing of Human Body Odors

    OpenAIRE

    Lundström, Johan N.; Olsson, Mats J.

    2010-01-01

    Body odors carry informational cues of great importance for individuals across a wide range of species, and signals hidden within the body odor cocktail are known to regulate several key behaviors in animals. For a long time, the notion that humans may be among these species has been dismissed. We now know, however, that each human has a unique odor signature that carries information related to his or her genetic makeup, as well as information about personal environmental variables, such as d...

  19. Human whole body cold adaptation.

    OpenAIRE

    Daanen, Hein A.M.; Van Marken Lichtenbelt, Wouter D.

    2016-01-01

    ABSTRACT Reviews on whole body human cold adaptation generally do not distinguish between population studies and dedicated acclimation studies, leading to confusing results. Population studies show that indigenous black Africans have reduced shivering thermogenesis in the cold and poor cold induced vasodilation in fingers and toes compared to Caucasians and Inuit. About 40,000?y after humans left Africa, natives in cold terrestrial areas seems to have developed not only behavioral adaptations...

  20. Human Body Representations in Didactic Books of Science

    Directory of Open Access Journals (Sweden)

    Emerson de Lima Soares

    2018-01-01

    Full Text Available Several authors have pointed out that Didactic Book still plays an important role in the teaching and learning process, and is often the main, and the only educational resource available to teachers. In this way, we will analyze human body representations in Didactic Books of science adopted by a municipal public school in the city of Uruguaiana/RS. In the context of writing, we understand that body's perceptions permeate a historical and cultural construction, constituted from the relationships lived by the subjects in society. This study is a qualitative research, based on the content analysis of Bardin, in which we seek to identify human body representations in the messages, characteristics, structures, contents, and figures present in books. For this, we set up an analytical matrix with guiding questions related to the approach of the body, showed in didactic books. The results demonstrate that the contents follow the same pattern, that is, a body divided into parts like a human body just formed by limbs, organs, and tissues. They present a detailed division of content, from the cellular organization, concepts, structures, and the images are presented in a fragmented way, always following normative standards. We found these books dedicate spaces to analyze and discuss the biosocial body, in a well-elaborated way, contemplating different visions, such as sexuality beyond human reproduction. We believe that these issues should be part of the Political Education Projects (PPPs of schools and the educational system as a whole because in this way more projects will be carried out contemplating the issue. However, it is still up to the teacher to take this approach, and if such issues are not addressed in the LD, he should keep in mind that if we are thinking beings, our body is much more than organic components, and so seek means to carry out this approach.

  1. Human whole body cold adaptation.

    NARCIS (Netherlands)

    Daanen, Hein A.M.; Van Marken Lichtenbelt, Wouter D.

    2016-01-01

    Reviews on whole body human cold adaptation generally do not distinguish between population studies and dedicated acclimation studies, leading to confusing results. Population studies show that indigenous black Africans have reduced shivering thermogenesis in the cold and poor cold induced

  2. NATURAL USER INTERFACE SENSORS FOR HUMAN BODY MEASUREMENT

    Directory of Open Access Journals (Sweden)

    J. Boehm

    2012-08-01

    Full Text Available The recent push for natural user interfaces (NUI in the entertainment and gaming industry has ushered in a new era of low cost three-dimensional sensors. While the basic idea of using a three-dimensional sensor for human gesture recognition dates some years back it is not until recently that such sensors became available on the mass market. The current market leader is PrimeSense who provide their technology for the Microsoft Xbox Kinect. Since these sensors are developed to detect and observe human users they should be ideally suited to measure the human body. We describe the technology of a line of NUI sensors and assess their performance in terms of repeatability and accuracy. We demonstrate the implementation of a prototype scanner integrating several NUI sensors to achieve full body coverage. We present the results of the obtained surface model of a human body.

  3. Natural User Interface Sensors for Human Body Measurement

    Science.gov (United States)

    Boehm, J.

    2012-08-01

    The recent push for natural user interfaces (NUI) in the entertainment and gaming industry has ushered in a new era of low cost three-dimensional sensors. While the basic idea of using a three-dimensional sensor for human gesture recognition dates some years back it is not until recently that such sensors became available on the mass market. The current market leader is PrimeSense who provide their technology for the Microsoft Xbox Kinect. Since these sensors are developed to detect and observe human users they should be ideally suited to measure the human body. We describe the technology of a line of NUI sensors and assess their performance in terms of repeatability and accuracy. We demonstrate the implementation of a prototype scanner integrating several NUI sensors to achieve full body coverage. We present the results of the obtained surface model of a human body.

  4. Acute and phase-shifting effects of ocular and extraocular light in human circadian physiology

    NARCIS (Netherlands)

    Rüger, Melanie; Gordijn, Marijke C.M.; Beersma, Domien G.M.; de Vries, Bonnie; Daan, Serge

    2003-01-01

    Light can influence physiology and performance of humans in two distinct ways. It can acutely change the level of physiological and behavioral parameters, and it can induce a phase shift in the circadian oscillators underlying variations in these levels. Until recently, both effects were thought to

  5. Physiological Motion Axis for the Seat of a Dynamic Office Chair

    Science.gov (United States)

    Kuster, Roman Peter; Bauer, Christoph Markus; Oetiker, Sarah; Kool, Jan

    2016-01-01

    Objective The aim of this study was to determine and verify the optimal location of the motion axis (MA) for the seat of a dynamic office chair. Background A dynamic seat that supports pelvic motion may improve physical well-being and decrease the risk of sitting-associated disorders. However, office work requires an undisturbed view on the work task, which means a stable position of the upper trunk and head. Current dynamic office chairs do not fulfill this need. Consequently, a dynamic seat was adapted to the physiological kinematics of the human spine. Method Three-dimensional motion tracking in free sitting helped determine the physiological MA of the spine in the frontal plane. Three dynamic seats with physiological, lower, and higher MA were compared in stable upper body posture (thorax inclination) and seat support of pelvic motion (dynamic fitting accuracy). Spinal kinematics during sitting and walking were compared. Results The physiological MA was at the level of the 11th thoracic vertebra, causing minimal thorax inclination and high dynamic fitting accuracy. Spinal motion in active sitting and walking was similar. Conclusion The physiological MA of the seat allows considerable lateral flexion of the spine similar to walking with a stable upper body posture and a high seat support of pelvic motion. Application The physiological MA enables lateral flexion of the spine, similar to walking, without affecting stable upper body posture, thus allowing active sitting while focusing on work. PMID:27150530

  6. Human physiologically based pharmacokinetic model for propofol

    Directory of Open Access Journals (Sweden)

    Schnider Thomas W

    2005-04-01

    Full Text Available Abstract Background Propofol is widely used for both short-term anesthesia and long-term sedation. It has unusual pharmacokinetics because of its high lipid solubility. The standard approach to describing the pharmacokinetics is by a multi-compartmental model. This paper presents the first detailed human physiologically based pharmacokinetic (PBPK model for propofol. Methods PKQuest, a freely distributed software routine http://www.pkquest.com, was used for all the calculations. The "standard human" PBPK parameters developed in previous applications is used. It is assumed that the blood and tissue binding is determined by simple partition into the tissue lipid, which is characterized by two previously determined set of parameters: 1 the value of the propofol oil/water partition coefficient; 2 the lipid fraction in the blood and tissues. The model was fit to the individual experimental data of Schnider et. al., Anesthesiology, 1998; 88:1170 in which an initial bolus dose was followed 60 minutes later by a one hour constant infusion. Results The PBPK model provides a good description of the experimental data over a large range of input dosage, subject age and fat fraction. Only one adjustable parameter (the liver clearance is required to describe the constant infusion phase for each individual subject. In order to fit the bolus injection phase, for 10 or the 24 subjects it was necessary to assume that a fraction of the bolus dose was sequestered and then slowly released from the lungs (characterized by two additional parameters. The average weighted residual error (WRE of the PBPK model fit to the both the bolus and infusion phases was 15%; similar to the WRE for just the constant infusion phase obtained by Schnider et. al. using a 6-parameter NONMEM compartmental model. Conclusion A PBPK model using standard human parameters and a simple description of tissue binding provides a good description of human propofol kinetics. The major advantage of a

  7. Human body composition models and methodology : theory and experiment

    NARCIS (Netherlands)

    Wang, Z.M.

    1997-01-01


    The study of human body composition is a branch of human biology which focuses on the in vivo quantification of body components, the quantitative relationships between components, and the quantitative changes in these components related to various influencing factors.

  8. Heat remains unaccounted for in thermal physiology and climate change research [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Andreas D. Flouris

    2017-03-01

    Full Text Available In the aftermath of the Paris Agreement, there is a crucial need for scientists in both thermal physiology and climate change research to develop the integrated approaches necessary to evaluate the health, economic, technological, social, and cultural impacts of 1.5°C warming. Our aim was to explore the fidelity of remote temperature measurements for quantitatively identifying the continuous redistribution of heat within both the Earth and the human body. Not accounting for the regional distribution of warming and heat storage patterns can undermine the results of thermal physiology and climate change research. These concepts are discussed herein using two parallel examples: the so-called slowdown of the Earth’s surface temperature warming in the period 1998-2013; and the controversial results in thermal physiology, arising from relying heavily on core temperature measurements. In total, the concept of heat is of major importance for the integrity of systems, such as the Earth and human body. At present, our understanding about the interplay of key factors modulating the heat distribution on the surface of the Earth and in the human body remains incomplete. Identifying and accounting for the interconnections among these factors will be instrumental in improving the accuracy of both climate models and health guidelines.

  9. The Body and the Beautiful: Health, Attractiveness and Body Composition in Men's and Women's Bodies.

    Directory of Open Access Journals (Sweden)

    Mary-Ellen Brierley

    Full Text Available The dominant evolutionary theory of physical attraction posits that attractiveness reflects physiological health, and attraction is a mechanism for identifying a healthy mate. Previous studies have found that perceptions of the healthiest body mass index (weight scaled for height; BMI for women are close to healthy BMI guidelines, while the most attractive BMI is significantly lower, possibly pointing to an influence of sociocultural factors in determining attractive BMI. However, less is known about ideal body size for men. Further, research has not addressed the role of body fat and muscle, which have distinct relationships with health and are conflated in BMI, in determining perceived health and attractiveness. Here, we hypothesised that, if attractiveness reflects physiological health, the most attractive and healthy appearing body composition should be in line with physiologically healthy body composition. Thirty female and 33 male observers were instructed to manipulate 15 female and 15 male body images in terms of their fat and muscle to optimise perceived health and, separately, attractiveness. Observers were unaware that they were manipulating the muscle and fat content of bodies. The most attractive apparent fat mass for female bodies was significantly lower than the healthiest appearing fat mass (and was lower than the physiologically healthy range, with no significant difference for muscle mass. The optimal fat and muscle mass for men's bodies was in line with the healthy range. Male observers preferred a significantly lower overall male body mass than did female observers. While the body fat and muscle associated with healthy and attractive appearance is broadly in line with physiologically healthy values, deviations from this pattern suggest that future research should examine a possible role for internalization of body ideals in influencing perceptions of attractive body composition, particularly in women.

  10. The Body and the Beautiful: Health, Attractiveness and Body Composition in Men's and Women's Bodies.

    Science.gov (United States)

    Brierley, Mary-Ellen; Brooks, Kevin R; Mond, Jonathan; Stevenson, Richard J; Stephen, Ian D

    2016-01-01

    The dominant evolutionary theory of physical attraction posits that attractiveness reflects physiological health, and attraction is a mechanism for identifying a healthy mate. Previous studies have found that perceptions of the healthiest body mass index (weight scaled for height; BMI) for women are close to healthy BMI guidelines, while the most attractive BMI is significantly lower, possibly pointing to an influence of sociocultural factors in determining attractive BMI. However, less is known about ideal body size for men. Further, research has not addressed the role of body fat and muscle, which have distinct relationships with health and are conflated in BMI, in determining perceived health and attractiveness. Here, we hypothesised that, if attractiveness reflects physiological health, the most attractive and healthy appearing body composition should be in line with physiologically healthy body composition. Thirty female and 33 male observers were instructed to manipulate 15 female and 15 male body images in terms of their fat and muscle to optimise perceived health and, separately, attractiveness. Observers were unaware that they were manipulating the muscle and fat content of bodies. The most attractive apparent fat mass for female bodies was significantly lower than the healthiest appearing fat mass (and was lower than the physiologically healthy range), with no significant difference for muscle mass. The optimal fat and muscle mass for men's bodies was in line with the healthy range. Male observers preferred a significantly lower overall male body mass than did female observers. While the body fat and muscle associated with healthy and attractive appearance is broadly in line with physiologically healthy values, deviations from this pattern suggest that future research should examine a possible role for internalization of body ideals in influencing perceptions of attractive body composition, particularly in women.

  11. Cytoplasmic lipid bodies of human neutrophilic leukocytes

    International Nuclear Information System (INIS)

    Weller, P.F.; Ackerman, S.J.; Nicholson-Weller, A.; Dvorak, A.M.

    1989-01-01

    The morphology and function of cytoplasmic lipid bodies in human neutrophils were evaluated. By transmission electron microscopy, neutrophil lipid bodies were cytoplasmic inclusions, usually several microns in diameter, that occasionally coalesced to attain a diameter up to 7 microM. Neutrophil lipid bodies were not enveloped by membrane but were often surrounded by a more electron-dense shell at their periphery. Normal peripheral blood neutrophils contained an average of approximately one lipid body per cell. Lipid bodies appeared in greater numbers in neutrophils from inflammatory lesions. Perturbation of neutrophils during conventional methods of cell isolation and purification modestly increased lipid body numbers in neutrophils, whereas incubation of neutrophils with 1 microM oleic acid rapidly induced lipid body formation over 30 to 60 minutes. After granulocytes were incubated for 2 hours with 3H-fatty acids, including arachidonic, oleic, and palmitic acids, electron microscopic autoradiography demonstrated that lipid bodies represented the predominant intracellular sites of localization of each of the three 3H-fatty acids. There was lesser labeling noted in the perinuclear cisterna, but not in cell membranes. Virtually all of each of the three 3H-fatty acids incorporated by the neutrophils were esterified into chromatographically resolved classes of neutral lipids or phospholipids. These findings indicate that cytoplasmic lipid bodies are more prominent in neutrophils in vivo engaged in inflammatory responses and that these organelles in human neutrophils function as sites of deposition of esterified, incorporated fatty acids

  12. Wearable sensors in intelligent clothing for measuring human body temperature based on optical fiber Bragg grating.

    Science.gov (United States)

    Li, Hongqiang; Yang, Haijing; Li, Enbang; Liu, Zhihui; Wei, Kejia

    2012-05-21

    Measuring body temperature is considerably important to physiological studies as well as clinical investigations. In recent years, numerous observations have been reported and various methods of measurement have been employed. The present paper introduces a novel wearable sensor in intelligent clothing for human body temperature measurement. The objective is the integration of optical fiber Bragg grating (FBG)-based sensors into functional textiles to extend the capabilities of wearable solutions for body temperature monitoring. In addition, the temperature sensitivity is 150 pm/°C, which is almost 15 times higher than that of a bare FBG. This study combines large and small pipes during fabrication to implant FBG sensors into the fabric. The law of energy conservation of the human body is considered in determining heat transfer between the body and its clothing. The mathematical model of heat transmission between the body and clothed FBG sensors is studied, and the steady-state thermal analysis is presented. The simulation results show the capability of the material to correct the actual body temperature. Based on the skin temperature obtained by the weighted average method, this paper presents the five points weighted coefficients model using both sides of the chest, armpits, and the upper back for the intelligent clothing. The weighted coefficients of 0.0826 for the left chest, 0.3706 for the left armpit, 0.3706 for the right armpit, 0.0936 for the upper back, and 0.0826 for the right chest were obtained using Cramer's Rule. Using the weighting coefficient, the deviation of the experimental result was ± 0.18 °C, which favors the use for clinical armpit temperature monitoring. Moreover, in special cases when several FBG sensors are broken, the weighted coefficients of the other sensors could be changed to obtain accurate body temperature.

  13. New Window into the Human Body

    Science.gov (United States)

    1985-01-01

    Michael Vannier, MD, a former NASA engineer, recognized the similarity between NASA's computerized image processing technology and nuclear magnetic resonance. With technical assistance from Kennedy Space Center, he developed a computer program for Mallinckrodt Institute of Radiology enabling Nuclear Magnetic Resonance (NMR) to scan body tissue for earlier diagnoses. Dr. Vannier feels that "satellite imaging" has opened a new window into the human body.

  14. Herbivory and body size: allometries of diet quality and gastrointestinal physiology, and implications for herbivore ecology and dinosaur gigantism.

    Science.gov (United States)

    Clauss, Marcus; Steuer, Patrick; Müller, Dennis W H; Codron, Daryl; Hummel, Jürgen

    2013-01-01

    Digestive physiology has played a prominent role in explanations for terrestrial herbivore body size evolution and size-driven diversification and niche differentiation. This is based on the association of increasing body mass (BM) with diets of lower quality, and with putative mechanisms by which a higher BM could translate into a higher digestive efficiency. Such concepts, however, often do not match empirical data. Here, we review concepts and data on terrestrial herbivore BM, diet quality, digestive physiology and metabolism, and in doing so give examples for problems in using allometric analyses and extrapolations. A digestive advantage of larger BM is not corroborated by conceptual or empirical approaches. We suggest that explanatory models should shift from physiological to ecological scenarios based on the association of forage quality and biomass availability, and the association between BM and feeding selectivity. These associations mostly (but not exclusively) allow large herbivores to use low quality forage only, whereas they allow small herbivores the use of any forage they can physically manage. Examples of small herbivores able to subsist on lower quality diets are rare but exist. We speculate that this could be explained by evolutionary adaptations to the ecological opportunity of selective feeding in smaller animals, rather than by a physiologic or metabolic necessity linked to BM. For gigantic herbivores such as sauropod dinosaurs, other factors than digestive physiology appear more promising candidates to explain evolutionary drives towards extreme BM.

  15. Herbivory and body size: allometries of diet quality and gastrointestinal physiology, and implications for herbivore ecology and dinosaur gigantism.

    Directory of Open Access Journals (Sweden)

    Marcus Clauss

    Full Text Available Digestive physiology has played a prominent role in explanations for terrestrial herbivore body size evolution and size-driven diversification and niche differentiation. This is based on the association of increasing body mass (BM with diets of lower quality, and with putative mechanisms by which a higher BM could translate into a higher digestive efficiency. Such concepts, however, often do not match empirical data. Here, we review concepts and data on terrestrial herbivore BM, diet quality, digestive physiology and metabolism, and in doing so give examples for problems in using allometric analyses and extrapolations. A digestive advantage of larger BM is not corroborated by conceptual or empirical approaches. We suggest that explanatory models should shift from physiological to ecological scenarios based on the association of forage quality and biomass availability, and the association between BM and feeding selectivity. These associations mostly (but not exclusively allow large herbivores to use low quality forage only, whereas they allow small herbivores the use of any forage they can physically manage. Examples of small herbivores able to subsist on lower quality diets are rare but exist. We speculate that this could be explained by evolutionary adaptations to the ecological opportunity of selective feeding in smaller animals, rather than by a physiologic or metabolic necessity linked to BM. For gigantic herbivores such as sauropod dinosaurs, other factors than digestive physiology appear more promising candidates to explain evolutionary drives towards extreme BM.

  16. Filtration of human EEG recordings from physiological artifacts with empirical mode method

    Science.gov (United States)

    Grubov, Vadim V.; Runnova, Anastasiya E.; Khramova, Marina V.

    2017-03-01

    In the paper we propose the new method for dealing with noise and physiological artifacts in experimental human EEG recordings. The method is based on analysis of EEG signals with empirical mode decomposition (Hilbert-Huang transform). We consider noises and physiological artifacts on EEG as specific oscillatory patterns that cause problems during EEG analysis and can be detected with additional signals recorded simultaneously with EEG (ECG, EMG, EOG, etc.) We introduce the algorithm of the method with following steps: empirical mode decomposition of EEG signal, choosing of empirical modes with artifacts, removing empirical modes with artifacts, reconstruction of the initial EEG signal. We test the method on filtration of experimental human EEG signals from eye-moving artifacts and show high efficiency of the method.

  17. The Relationship between Human Operators' Psycho-physiological Condition and Human Errors in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Arryum; Jang, Inseok; Kang, Hyungook; Seong, Poonghyun [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2013-05-15

    The safe operation of nuclear power plants (NPPs) is substantially dependent on the performance of the human operators who operate the systems. In this environment, human errors caused by inappropriate performance of operator have been considered to be critical since it may lead serious problems in the safety-critical plants. In order to provide meaningful insights to prevent human errors and enhance the human performance, operators' physiological conditions such as stress and workload have been investigated. Physiological measurements were considered as reliable tools to assess the stress and workload. T. Q. Tran et al. and J. B. Brooking et al pointed out that operators' workload can be assessed using eye tracking, galvanic skin response, electroencephalograms (EEGs), heart rate, respiration and other measurements. The purpose of this study is to investigate the effect of the human operators' tense level and knowledge level to the number of human errors. For this study, the experiments were conducted in the mimic of the main control rooms (MCR) in NPP. It utilized the compact nuclear simulator (CNS) which is modeled based on the three loop Pressurized Water Reactor, 993MWe, Kori unit 3 and 4 in Korea and the subjects were asked to follow the tasks described in the emergency operating procedures (EOP). During the simulation, three kinds of physiological measurement were utilized; Electrocardiogram (ECG), EEG and nose temperature. Also, subjects were divided into three groups based on their knowledge of the plant operation. The result shows that subjects who are tense make fewer errors. In addition, subjects who are in higher knowledge level tend to be tense and make fewer errors. For the ECG data, subjects who make fewer human errors tend to be located in higher tense level area of high SNS activity and low PSNS activity. The results of EEG data are also similar to ECG result. Beta power ratio of subjects who make fewer errors was higher. Since beta

  18. Towards an IMU Evaluation Framework for Human Body Tracking.

    Science.gov (United States)

    Venek, Verena; Kremser, Wolfgang; Schneider, Cornelia

    2018-01-01

    Existing full-body tracking systems, which use Inertial Measurement Units (IMUs) as sensing unit, require expert knowledge for setup and data collection. Thus, the daily application for human body tracking is difficult. In particular, in the field of active and assisted living (AAL), tracking human movements would enable novel insights not only into the quantity but also into the quality of human movement, for example by monitoring functional training. While the current market offers a wide range of products with vastly different properties, literature lacks guidelines for choosing IMUs for body tracking applications. Therefore, this paper introduces developments towards an IMU evaluation framework for human body tracking which compares IMUs against five requirement areas that consider device features and data quality. The data quality is assessed by conducting a static and a dynamic error analysis. In a first application to four IMUs of different component consumption, the IMU evaluation framework convinced as promising tool for IMU selection.

  19. Customized Body Mapping to Facilitate the Ergonomic Design of Sportswear.

    Science.gov (United States)

    Cao, Mingliang; Li, Yi; Guo, Yueping; Yao, Lei; Pan, Zhigeng

    2016-01-01

    A successful high-performance sportswear design that considers human factors should result in a significant increase in thermal comfort and reduce energy loss. The authors describe a body-mapping approach that facilitates the effective ergonomic design of sportswear. Their general framework can be customized based on the functional requirements of various sports and sportswear, the desired combination and selection of mapping areas for the human body, and customized quantitative data distribution of target physiological indicators.

  20. Dealing with noise and physiological artifacts in human EEG recordings: empirical mode methods

    Science.gov (United States)

    Runnova, Anastasiya E.; Grubov, Vadim V.; Khramova, Marina V.; Hramov, Alexander E.

    2017-04-01

    In the paper we propose the new method for removing noise and physiological artifacts in human EEG recordings based on empirical mode decomposition (Hilbert-Huang transform). As physiological artifacts we consider specific oscillatory patterns that cause problems during EEG analysis and can be detected with additional signals recorded simultaneously with EEG (ECG, EMG, EOG, etc.) We introduce the algorithm of the proposed method with steps including empirical mode decomposition of EEG signal, choosing of empirical modes with artifacts, removing these empirical modes and reconstructing of initial EEG signal. We show the efficiency of the method on the example of filtration of human EEG signal from eye-moving artifacts.

  1. Scanpath-based analysis of objects conspicuity in context of human vision physiology.

    Science.gov (United States)

    Augustyniak, Piotr

    2007-01-01

    This paper discusses principal aspects of objects conspicuity investigated with use of an eye tracker and interpreted on the background of human vision physiology. Proper management of objects conspicuity is fundamental in several leading edge applications in the information society like advertisement, web design, man-machine interfacing and ergonomics. Although some common rules of human perception are applied since centuries in the art, the interest of human perception process is motivated today by the need of gather and maintain the recipient attention by putting selected messages in front of the others. Our research uses the visual tasks methodology and series of progressively modified natural images. The modifying details were attributed by their size, color and position while the scanpath-derived gaze points confirmed or not the act of perception. The statistical analysis yielded the probability of detail perception and correlations with the attributes. This probability conforms to the knowledge about the retina anatomy and perception physiology, although we use noninvasive methods only.

  2. Digitization of the human body in the present-day economy

    Science.gov (United States)

    D'Apuzzo, Nicola

    2005-01-01

    In this paper we report on the historic development of human body digitization and on the actual state of commercially available technology. Complete systems for the digitization of the human body exist since more than ten years. One of the main users of this technology was the entertainment industry. Every new movie excited with attractive visual effects, but only few people knew that the most thrilling cuts were realized by using virtual persons. The faces and bodies of actors were digitized and the "virtual twin" replaced the actor in the movie. Nowadays, the state of the human body digitization is so high that it is not possible any more to distinguish the real actor from the virtual one. Indeed, for the rush technical development has to be thanked the movie industry, which was one of the strong economic motors for this technology. Today, with the possibility of a massive cost reduction given by new technologies, methods for digitization of the human body are used also in other fields of application, such as ergonomics, medical applications, computer games, biometry and anthropometrics. With the time, this technology becomes interesting also for sport, fitness, fashion and beauty. A large expansion of human body digitization is expected in the near future. To date, different technologies are used commercially for the measurement of the human body. They can be divided into three distinguished groups: laser-scanning, projection of light patterns, combination modeling and image processing. The different solutions have strengths and weaknesses that profile their suitability for specific applications. This paper gives an overview of their differences and characteristics and expresses clues for the selection of the adequate method. Practical examples of commercial exploitation of human body digitization are also presented and new interesting perspectives are introduced.

  3. Animal physiology. Summer declines in activity and body temperature offer polar bears limited energy savings.

    Science.gov (United States)

    Whiteman, J P; Harlow, H J; Durner, G M; Anderson-Sprecher, R; Albeke, S E; Regehr, E V; Amstrup, S C; Ben-David, M

    2015-07-17

    Polar bears (Ursus maritimus) summer on the sea ice or, where it melts, on shore. Although the physiology of "ice" bears in summer is unknown, "shore" bears purportedly minimize energy losses by entering a hibernation-like state when deprived of food. Such a strategy could partially compensate for the loss of on-ice foraging opportunities caused by climate change. However, here we report gradual, moderate declines in activity and body temperature of both shore and ice bears in summer, resembling energy expenditures typical of fasting, nonhibernating mammals. Also, we found that to avoid unsustainable heat loss while swimming, bears employed unusual heterothermy of the body core. Thus, although well adapted to seasonal ice melt, polar bears appear susceptible to deleterious declines in body condition during the lengthening period of summer food deprivation. Copyright © 2015, American Association for the Advancement of Science.

  4. The effects of feed restriction on physical activity, body weight, physiology, haematology and immunology in female mink

    DEFF Research Database (Denmark)

    Damgaard, Birthe Marie; Dalgaard, Tina Sørensen; Larsen, Torben

    2012-01-01

    The aim of the present study was to investigate if adult mink females characterised as having a high or low residual feed intake (RFI) differed in their response to feed restriction with regard to activity, body weight loss and physiological parameters. For RFI-High, the activity was higher prior...

  5. Human cold stress of strong local-wind "Hijikawa-arashi" in Japan, based on the UTCI index and thermo-physiological responses

    Science.gov (United States)

    Ohashi, Yukitaka; Katsuta, Takumi; Tani, Haruka; Okabayashi, Taiki; Miyahara, Satoshi; Miyashita, Ryoji

    2018-03-01

    We investigated the cold stress caused by a strong local wind called "Hijikawa-arashi," through in situ vital measurements and the Universal Thermal Climate Index (UTCI). This wind is a very interesting winter phenomenon, localized in an area within 1 km of the seashore in Ozu City, Ehime Prefecture in Japan. When a strong Hijikawa-arashi (HA) occurred at 14-15 m s-1, the UTCI decreased to - 30 °C along the bridge where commuting residents are the most exposed to strong and cold winds. On the bridge, most participants in our experiment felt "very cold" or "extremely cold." The UTCI of HA can be predicted from a multiple regression equation using wind speed and air temperature. The cold HA wind is also harmful to human thermo-physiological responses. It leads to higher blood pressure and increased heart rate, both of which act as cardiovascular stress triggers. Increases of 6-10 mmHg and 3-6 bpm for every 10 °C reduction in UTCI were seen on all observational days, including HA and non-HA days. In fact, the participants' body skin temperatures decreased by approximately 1.2 to 1.7 °C for every 10 °C reduction in UTCI. Thus, the UTCI variation due to the HA outbreak corresponded well with the cold sensation and thermo-physiological responses in humans. This result suggests that daily UTCI monitoring enables the prediction of thermo-physiological responses to the HA cold stress.

  6. Energy Generation in the Human Body by the Human Cells ...

    African Journals Online (AJOL)

    We adapted the thermodynamics equation for energy generation in a diesel engine in modeling energy generation in human body by the human cells by doing a thorough study on both systems and saw that the process of energy generation is the same in them. We equally saw that the stages involved in energy generation ...

  7. Injury to the human body, part 2

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    Injuries by exposure to the atomic bomb at Hiroshima and Nagasaki and its effects were studied as follows: 1) Injury to the human body following exposure to the atomic bomb; 2) Body injury in the initial stage-acute stage of atomic bomb injury; 3) Aftereffects and genetic effects. (J.P.N.)

  8. Experimental investigation of biodynamic human body models subjected to whole-body vibration during a vehicle ride.

    Science.gov (United States)

    Taskin, Yener; Hacioglu, Yuksel; Ortes, Faruk; Karabulut, Derya; Arslan, Yunus Ziya

    2018-02-06

    In this study, responses of biodynamic human body models to whole-body vibration during a vehicle ride were investigated. Accelerations were acquired from three different body parts, such as the head, upper torso and lower torso, of 10 seated passengers during a car ride while two different road conditions were considered. The same multipurpose vehicle was used during all experiments. Additionally, by two widely used biodynamic models in the literature, a set of simulations were run to obtain theoretical accelerations of the models and were compared with those obtained experimentally. To sustain a quantified comparison between experimental and theoretical approaches, the root mean square acceleration and acceleration spectral density were calculated. Time and frequency responses of the models demonstrated that neither of the models showed the best prediction performance of the human body behaviour in all cases, indicating that further models are required for better prediction of the human body responses.

  9. Accelerated generation of human induced pluripotent stem cells with retroviral transduction and chemical inhibitors under physiological hypoxia

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, Hidenori [Department of Bioartificial Organs, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawaharacho, Shogoin, Sakyoku, Kyoto 606-8507 (Japan); Hashimoto, Yoshiya [Department of Biomaterials, Osaka Dental University, 8-1, Hanazonocho, Kuzuha, Hirakatashi, Osaka 573-1121 (Japan); Nakada, Akira; Shigeno, Keiji [Department of Bioartificial Organs, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawaharacho, Shogoin, Sakyoku, Kyoto 606-8507 (Japan); Nakamura, Tatsuo, E-mail: nakamura@frontier.kyoto-u.ac.jp [Department of Bioartificial Organs, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawaharacho, Shogoin, Sakyoku, Kyoto 606-8507 (Japan)

    2012-01-13

    Highlights: Black-Right-Pointing-Pointer Very rapid generation of human iPS cells under optimized conditions. Black-Right-Pointing-Pointer Five chemical inhibitors under hypoxia boosted reprogramming. Black-Right-Pointing-Pointer We performed genome-wide DNA methylation analysis. -- Abstract: Induced pluripotent stem (iPS) cells are generated from somatic cells by the forced expression of a defined set of pluripotency-associated transcription factors. Human iPS cells can be propagated indefinitely, while maintaining the capacity to differentiate into all cell types in the body except for extra-embryonic tissues. This technology not only represents a new way to use individual-specific stem cells for regenerative medicine but also constitutes a novel method to obtain large amounts of disease-specific cells for biomedical research. Despite their great potential, the long reprogramming process (up to 1 month) remains one of the most significant challenges facing standard virus-mediated methodology. In this study, we report the accelerated generation of human iPS cells from adipose-derived stem (ADS) cells, using a new combination of chemical inhibitors under a setting of physiological hypoxia in conjunction with retroviral transduction of Oct4, Sox2, Klf4, and L-Myc. Under optimized conditions, we observed human embryonic stem (ES)-like cells as early as 6 days after the initial retroviral transduction. This was followed by the emergence of fully reprogrammed cells bearing Tra-1-81-positive and DsRed transgene-silencing properties on day 10. The resulting cell lines resembled human ES cells in many respects including proliferation rate, morphology, pluripotency-associated markers, global gene expression patterns, genome-wide DNA methylation states, and the ability to differentiate into all three of the germ layers, both in vitro and in vivo. Our method, when combined with chemical inhibitors under conditions of physiological hypoxia, offers a powerful tool for rapidly

  10. Accelerated generation of human induced pluripotent stem cells with retroviral transduction and chemical inhibitors under physiological hypoxia

    International Nuclear Information System (INIS)

    Shimada, Hidenori; Hashimoto, Yoshiya; Nakada, Akira; Shigeno, Keiji; Nakamura, Tatsuo

    2012-01-01

    Highlights: ► Very rapid generation of human iPS cells under optimized conditions. ► Five chemical inhibitors under hypoxia boosted reprogramming. ► We performed genome-wide DNA methylation analysis. -- Abstract: Induced pluripotent stem (iPS) cells are generated from somatic cells by the forced expression of a defined set of pluripotency-associated transcription factors. Human iPS cells can be propagated indefinitely, while maintaining the capacity to differentiate into all cell types in the body except for extra-embryonic tissues. This technology not only represents a new way to use individual-specific stem cells for regenerative medicine but also constitutes a novel method to obtain large amounts of disease-specific cells for biomedical research. Despite their great potential, the long reprogramming process (up to 1 month) remains one of the most significant challenges facing standard virus-mediated methodology. In this study, we report the accelerated generation of human iPS cells from adipose-derived stem (ADS) cells, using a new combination of chemical inhibitors under a setting of physiological hypoxia in conjunction with retroviral transduction of Oct4, Sox2, Klf4, and L-Myc. Under optimized conditions, we observed human embryonic stem (ES)-like cells as early as 6 days after the initial retroviral transduction. This was followed by the emergence of fully reprogrammed cells bearing Tra-1-81-positive and DsRed transgene-silencing properties on day 10. The resulting cell lines resembled human ES cells in many respects including proliferation rate, morphology, pluripotency-associated markers, global gene expression patterns, genome-wide DNA methylation states, and the ability to differentiate into all three of the germ layers, both in vitro and in vivo. Our method, when combined with chemical inhibitors under conditions of physiological hypoxia, offers a powerful tool for rapidly generating bona fide human iPS cells and facilitates the application of i

  11. Effect of Olive Pulpe Levels in The Diet of Buffalo Calves on Physiological Body Functions and Productive Traits Under Heat Stress Conditions

    International Nuclear Information System (INIS)

    Gad, A.E.

    2013-01-01

    The present study was planned to investigate the changes that occur in growth and some physiological traits in buffalo calves as a result of using olive pulp levels (20 or 40%) under different conditions in Egypt. The study was carried out on 30 male growing buffalo calves aged 14-16 months with average body weight 309 kg and including two experiments; the 1st was carried out under mild climate in winter season on 15 calves while the 2nd was conducted during heat stress conditions of summer season on another 15 calves. In each of the two periods, animals were divided into three equal groups (5 buffalo calves in each). The first group was considered as control to olive pulp levels of 0% . The second and third groups receive olive pulp with 20 and 40% of the ingredient ration, respectively. The results showed that heat stress conditions of hot period induced significant decreases in the levels of final live body weight (FLBW), daily body weight gain (DBWG), total body weight gain (TBWG), total protein, albumin, total lipids, total cholesterol, Ca, inorganic P and thyroid hormones level (T4 and T3). On the other hand, significant increase in urea-N, creatinine, GOT and GPT as compared with animals under mild conditions was recorded. Olive pulp levels in the diet affected significantly the total body gain, daily body weight gain, total cholesterol and thyroid hormones (T4 or T3). The values were lower in the group received 40% olive pulp than in the two groups received 0 and 20.0 % olive pulp. In addition, animals received 40% olive pulp showed significant increase in urea-N, creatinine, GPT, total lipids and Ca. It could be concluded that heat stress conditions of summer period induced significant depression in daily body weight gain and changed most blood components and thyroid hormones which related to physiological functions in buffalo calves. Concerning added olive pulp to the ration of buffalo calves, it could be concluded that daily body gain of buffalo calves

  12. Changing undergraduate human anatomy and physiology laboratories: perspectives from a large-enrollment course.

    Science.gov (United States)

    Griff, Edwin R

    2016-09-01

    In the present article, a veteran lecturer of human anatomy and physiology taught several sections of the laboratory component for the first time and shares his observations and analysis from this unique perspective. The article discusses a large-enrollment, content-heavy anatomy and physiology course in relationship to published studies on learning and student self-efficacy. Changes in the laboratory component that could increase student learning are proposed. The author also points out the need for research to assess whether selective curricular changes could increase the depth of understanding and retention of learned material. Copyright © 2016 The American Physiological Society.

  13. "Scientific peep show": the human body in contemporary science museums.

    Science.gov (United States)

    Canadelli, Elena

    2011-01-01

    The essay focuses on the discourse about the human body developed by contemporary science museums with educational and instructive purposes directed at the general public. These museums aim mostly at mediating concepts such as health and prevention. The current scenario is linked with two examples of past museums: the popular anatomical museums which emerged during the 19th century and the health museums thrived between 1910 and 1940. On the museological path about the human body self-care we went from the emotionally involving anatomical Venuses to the inexpressive Transparent Man, from anatomical specimens of ill organs and deformed subjects to the mechanical and electronic models of the healthy body. Today the body is made transparent by the new medical diagnostics and by the latest discoveries of endoscopy. The way museums and science centers presently display the human body involves computers, 3D animation, digital technologies, hands-on models of large size human parts.

  14. Transport of gaseous pollutants around a human body in quiescent indoor environment

    DEFF Research Database (Denmark)

    Licina, Dusan; Melikov, Arsen Krikor; Mioduszewski, Pawel

    2014-01-01

    (CBL) to transport the pollution in quiescent indoor environment. A human body is resembled by a thermal manikin with a body shape and surface temperature distribution of a real person. The objective of the study is to examine the impact of the pollutant location around the human body on the pollution...... concentration levels in the breathing zone. The results show that the location of the pollution source has a considerable influence of the breathing zone concentrations. This is contributed to the human CBL, as it pulls the pollution emitted close to the human body and transports it to the breathing zone...... the human body should be recognized in ventilation design practice....

  15. The Human Body Sword

    Directory of Open Access Journals (Sweden)

    Kris Borer

    2010-08-01

    Full Text Available The human body shield problem involves an apparent dilemma for a libertarian, forcing him to choose between his own death and the death of an innocent person. This paper argues that the non-aggression principle permits a forceful response against the property of innocent individuals when a conflict is initiated with that property. In other words, a libertarian may shoot the hostage in order to save himself.

  16. Observation of the human body thermoregulation and extraction of its vein signature using NIR and MWIR imaging

    Science.gov (United States)

    Bouzida, Nabila; Bendada, Abdelhakim; Maldague, Xavier P.

    2009-05-01

    The article aims first to present a new study on the thermal regulatory response of the human skin surface while exposed to a cold environment. Our work has shown that when a cold stress is applied to the left hand, thermal infrared imaging (MWIR spectral band: 3-5 μm) allows a clear observation of a temperature rise on the right hand. Moreover, a frequency analysis was also carried out upon selected vein pixels of the images monitored during the same cold stress experiment. The objective was to identify the specific frequencies that could be linked to some physiological mechanisms of the human body. This kind of study could be very useful for the characterization of possible thermo-physiological pathologies. Besides thermoregulation, we also present in this article some results on the extraction of the hand vein pattern. Firstly, we show some vein extraction results obtained after image processing of the thermal images recorded in the thermal band (MWIR), then we compare this vein pattern to the signature obtained with a camera operating in the NIR spectral band (0.85-1.7 μm). This method could be used as a complementary means for finger print signatures in biometrics.

  17. The physiology of the normal human breast: an exploratory study.

    Science.gov (United States)

    Mills, Dixie; Gordon, Eva J; Casano, Ashley; Lahti, Sarah Michelle; Nguyen, Tinh; Preston, Alex; Tondre, Julie; Wu, Kuan; Yanase, Tiffany; Chan, Henry; Chia, David; Esfandiari, Mahtash; Himmel, Tiffany; Love, Susan M

    2011-12-01

    The physiology of the nonlactating human breast likely plays a key role in factors that contribute to the etiology of breast cancer and other breast conditions. Although there has been extensive research into the physiology of lactation, few reports explore the physiology of the resting mammary gland, including mechanisms by which compounds such as hormones, drugs, and potential carcinogens enter the breast ducts. The purpose of this study was to explore transport of exogenous drugs into ductal fluid in nonlactating women and determine if their concentrations in the fluid are similar to those observed in the breast milk of lactating women. We selected two compounds that have been well characterized during lactation, caffeine and cimetidine. Caffeine passively diffuses into breast milk, but cimetidine is actively transported and concentrated in breast milk. After ingestion of caffeine and cimetidine, 14 nonlactating subjects had blood drawn and underwent ductal lavage at five time points over 12 h to measure drug levels in the fluid and blood. The concentrations of both caffeine and cimetidine in lavage fluid were substantially less than those observed in breast milk. Our results support recent evidence that the cimetidine transporter is not expressed in the nonlactating mammary gland, and highlight intriguing differences in the physiology and molecular transport of the lactating and nonlactating breast. The findings of this exploratory study warrant further exploration into the physiology of the nonlactating mammary gland to elucidate factors involved in disease initiation and progression.

  18. High School Students' Understanding of the Human Body System

    Science.gov (United States)

    Assaraf, Orit Ben-Zvi; Dodick, Jeff; Tripto, Jaklin

    2013-01-01

    In this study, 120 tenth-grade students from 8 schools were examined to determine the extent of their ability to perceive the human body as a system after completing the first stage in their biology curriculum--"The human body, emphasizing homeostasis". The students' systems thinking was analyzed according to the STH thinking model, which roughly…

  19. Human vocal attractiveness as signaled by body size projection.

    Directory of Open Access Journals (Sweden)

    Yi Xu

    Full Text Available Voice, as a secondary sexual characteristic, is known to affect the perceived attractiveness of human individuals. But the underlying mechanism of vocal attractiveness has remained unclear. Here, we presented human listeners with acoustically altered natural sentences and fully synthetic sentences with systematically manipulated pitch, formants and voice quality based on a principle of body size projection reported for animal calls and emotional human vocal expressions. The results show that male listeners preferred a female voice that signals a small body size, with relatively high pitch, wide formant dispersion and breathy voice, while female listeners preferred a male voice that signals a large body size with low pitch and narrow formant dispersion. Interestingly, however, male vocal attractiveness was also enhanced by breathiness, which presumably softened the aggressiveness associated with a large body size. These results, together with the additional finding that the same vocal dimensions also affect emotion judgment, indicate that humans still employ a vocal interaction strategy used in animal calls despite the development of complex language.

  20. Nutrition and human physiological adaptations to space flight

    Science.gov (United States)

    Lane, H. W.; LeBlanc, A. D.; Putcha, L.; Whitson, P. A.

    1993-01-01

    Space flight provides a model for the study of healthy individuals undergoing unique stresses. This review focuses on how physiological adaptations to weightlessness may affect nutrient and food requirements in space. These adaptations include reductions in body water and plasma volume, which affect the renal and cardiovascular systems and thereby fluid and electrolyte requirements. Changes in muscle mass and function may affect requirements for energy, protein and amino acids. Changes in bone mass lead to increased urinary calcium concentrations, which may increase the risk of forming renal stones. Space motion sickness may influence putative changes in gastro-intestinal-hepatic function; neurosensory alterations may affect smell and taste. Some or all of these effects may be ameliorated through the use of specially designed dietary countermeasures.

  1. Long-term exercise in mice has sex-dependent benefits on body composition and metabolism during aging.

    Science.gov (United States)

    McMullan, Rachel C; Kelly, Scott A; Hua, Kunjie; Buckley, Brian K; Faber, James E; Pardo-Manuel de Villena, Fernando; Pomp, Daniel

    2016-11-01

    Aging is associated with declining exercise and unhealthy changes in body composition. Exercise ameliorates certain adverse age-related physiological changes and protects against many chronic diseases. Despite these benefits, willingness to exercise and physiological responses to exercise vary widely, and long-term exercise and its benefits are difficult and costly to measure in humans. Furthermore, physiological effects of aging in humans are confounded with changes in lifestyle and environment. We used C57BL/6J mice to examine long-term patterns of exercise during aging and its physiological effects in a well-controlled environment. One-year-old male (n = 30) and female (n = 30) mice were divided into equal size cohorts and aged for an additional year. One cohort was given access to voluntary running wheels while another was denied exercise other than home cage movement. Body mass, composition, and metabolic traits were measured before, throughout, and after 1 year of treatment. Long-term exercise significantly prevented gains in body mass and body fat, while preventing loss of lean mass. We observed sex-dependent differences in body mass and composition trajectories during aging. Wheel running (distance, speed, duration) was greater in females than males and declined with age. We conclude that long-term exercise may serve as a preventive measure against age-related weight gain and body composition changes, and that mouse inbred strains can be used to characterize effects of long-term exercise and factors (e.g. sex, age) modulating these effects. These findings will facilitate studies on relationships between exercise and health in aging populations, including genetic predisposition and genotype-by-environment interactions. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  2. Relationship between alertness, performance, and body temperature in humans

    Science.gov (United States)

    Wright, Kenneth P Jr; Hull, Joseph T.; Czeisler, Charles A.

    2002-01-01

    Body temperature has been reported to influence human performance. Performance is reported to be better when body temperature is high/near its circadian peak and worse when body temperature is low/near its circadian minimum. We assessed whether this relationship between performance and body temperature reflects the regulation of both the internal biological timekeeping system and/or the influence of body temperature on performance independent of circadian phase. Fourteen subjects participated in a forced desynchrony protocol allowing assessment of the relationship between body temperature and performance while controlling for circadian phase and hours awake. Most neurobehavioral measures varied as a function of internal biological time and duration of wakefulness. A number of performance measures were better when body temperature was elevated, including working memory, subjective alertness, visual attention, and the slowest 10% of reaction times. These findings demonstrate that an increased body temperature, associated with and independent of internal biological time, is correlated with improved performance and alertness. These results support the hypothesis that body temperature modulates neurobehavioral function in humans.

  3. Estructura y Funcionamiento del Cuerpo Humano. Prontuario. Guia del Maestro. Documento de Trabajo (Structure and Function of the Human Body. Handbook and Teacher's Guide. Working Document).

    Science.gov (United States)

    Puerto Rico State Dept. of Education, Hato Rey. Area for Vocational and Technical Education.

    This handbook and teacher's guide are for a 37-week course on the human body, intended for secondary or postsecondary students in allied health occupations. The syllabus lists general objectives and the number of hours and weeks devoted to each unit. A course outline is provided for five units: anatomy and physiology terminology; general…

  4. Human and animal sounds influence recognition of body language.

    Science.gov (United States)

    Van den Stock, Jan; Grèzes, Julie; de Gelder, Beatrice

    2008-11-25

    In naturalistic settings emotional events have multiple correlates and are simultaneously perceived by several sensory systems. Recent studies have shown that recognition of facial expressions is biased towards the emotion expressed by a simultaneously presented emotional expression in the voice even if attention is directed to the face only. So far, no study examined whether this phenomenon also applies to whole body expressions, although there is no obvious reason why this crossmodal influence would be specific for faces. Here we investigated whether perception of emotions expressed in whole body movements is influenced by affective information provided by human and by animal vocalizations. Participants were instructed to attend to the action displayed by the body and to categorize the expressed emotion. The results indicate that recognition of body language is biased towards the emotion expressed by the simultaneously presented auditory information, whether it consist of human or of animal sounds. Our results show that a crossmodal influence from auditory to visual emotional information obtains for whole body video images with the facial expression blanked and includes human as well as animal sounds.

  5. A vision and strategy for the virtual physiological human: 2012 update

    NARCIS (Netherlands)

    Hunter, P.; Chapman, T.; Coveney, P.V.; De Bono, B.; Diaz, V.; Fenner, J.; Frangi, A.F.; Harris, P.; Hose, R.; Kohl, P.; Lawford, P.; McCormack, K.; Mendes, M.; Omholt, S.; Quarteroni, A.; Shublaq, N.; Skår, J.; Stroetmann, K.; Tegner, J.; Thomas, S.R.; Tollis, I.; Tsamardinos, I.; van Beek, J.H.G.M.; Viceconti, M.

    2013-01-01

    European funding under Framework 7 (FP7) for the virtual physiological human (VPH) project has been in place now for 5 years. The VPH Network of Excellence (NoE) has been set up to help develop common standards, open source software, freely accessible data and model repositories, and various

  6. Energetic and exergetic comparison of the human body for the summer season

    International Nuclear Information System (INIS)

    Caliskan, Hakan

    2013-01-01

    Highlights: • Energetic and exergetic comparison of the human body. • Usage of summer season data. • Calculation of entropy generation of the human body. • Thermal comfort. • Determining predicted mean vote rate and predicted percentage dissatisfied rate for the human comfort. - Abstract: The energy and exergy analyses are performed to the human body for the summer season of the Izmir city in Turkey. It is found that the metabolism energy and exergy rates are the major part of the human body’s energy generation. However, metabolism energy rate (58.326 W/m 2 ) is much higher than corresponding exergetic one (1.661 W/m 2 ). The maximum energy loss of the human body (70.59%) occurs due to heat exchange such as radiation, convection, and conduction. On the other hand, the maximum exergy loss of the human body happens due to exhaled humid air (6.393%), while the most of the total exergy is consumed by the human body (90.786%). Thermal comfort condition is also calculated. The Predicted Mean Vote (PMV) rate is found as 0.028 which means that the thermal sensation of the human body is called as comfortable. Furthermore, the Predicted Percentage Dissatisfied (PPD) rate is determined to be 5.017% which is low and shows the thermally dissatisfied people percentages

  7. Is Lutein a Physiologically Important Ligand for Transthyretin in Humans?

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Liwei [Iowa State Univ., Ames, IA (United States)

    2003-01-01

    Lutein and zeaxanthin are the only carotenoids accumulated in the macula of the human retina and are known as the macular pigments (MP). These pigments account for the yellow color of the macula and appear to play an important role in protecting against age-related macular degeneration (AMD). The uptake of lutein and zeaxanthin in human eyes is remarkably specific. It is likely that specific transport or binding proteins are involved. The objective is to determine whether transthyretin (TTR) is a transport protein in human plasma and could thus deliver lutein from the blood to the retina. In this study, they used a biosynthetic 13C-lutein tracer and gas chromatography-combustion interfaced-isotope ratio mass spectrometry (GCC-IRMS) to gain the requisite sensitivity to detect the minute amounts of lutein expected as a physiological ligand for human transthyretin. The biosynthetic 13C-labeled lutein tracer was purified from algae. Healthy women (n = 4) each ingested 1 mg of 13C-labeled lutein daily for 3 days and a blood sample was collected 24 hours after the final dose. Plasma TTR was isolated by retinol-binding protein (RBP)-sepharose affinity chromatography and extracted with chloroform. The 13C/12C ratio in the TTR extract was measured by GCC-IRMS. There was no 13C-lutein enrichment in the pure TTR extract. This result indicated that lutein is not associated with TTR in human plasma after ingestion in physiological amounts. Some hydrophobic compounds with yellow color may bind to human TTR in the plasma. However, this association needs to be further proved by showing specificity. The study provides a new approach for carotenoid-binding protein studies using a stable isotope tracer method combined with the high precision of GCC-IRMS. The mechanism of selective transport, uptake, and accumulation of lutein in human macula remain to be determined.

  8. Electric field prediction for a human body-electric machine system.

    Science.gov (United States)

    Ioannides, Maria G; Papadopoulos, Peter J; Dimitropoulou, Eugenia

    2004-01-01

    A system consisting of an electric machine and a human body is studied and the resulting electric field is predicted. A 3-phase induction machine operating at full load is modeled considering its geometry, windings, and materials. A human model is also constructed approximating its geometry and the electric properties of tissues. Using the finite element technique the electric field distribution in the human body is determined for a distance of 1 and 5 m from the machine and its effects are studied. Particularly, electric field potential variations are determined at specific points inside the human body and for these points the electric field intensity is computed and compared to the limit values for exposure according to international standards.

  9. ESTIMATION OF HUMAN BODY SHAPE PARAMETERS USING MICROSOFT KINECTSENCOR

    Directory of Open Access Journals (Sweden)

    D. M. Vasilkov

    2017-01-01

    Full Text Available In the paper a human body shape estimation technology based on scan data acquired from sensor controller Microsoft Kinect is described. This device includes an RGB camera and a depth sensor that provides, for each pixel of the image,a distance from the camera focus to the object. A scan session produces a triangulated high-density surface noised with oscillations, isolated fragments and holes. When scanning a human, additional noise comes from garment folds and wrinkles. An algorithm of creating a sparse and regular 3D human body model (avatar free of these defects, which approximates shape, posture and basic metrics of the scanned body is proposed. This solution finds application in individual clothing industry and computer games, as well.

  10. Gender Recognition from Unconstrained and Articulated Human Body

    Directory of Open Access Journals (Sweden)

    Qin Wu

    2014-01-01

    human body images acquired from an unconstrained environment in the real world. A systematic study of some critical issues in body-based gender recognition, such as which body parts are informative, how many body parts are needed to combine together, and what representations are good for articulated body-based gender recognition, is also presented. This paper also pursues data fusion schemes and efficient feature dimensionality reduction based on the partial least squares estimation. Extensive experiments are performed on two unconstrained databases which have not been explored before for gender recognition.

  11. Flexible and wearable electronic silk fabrics for human physiological monitoring

    Science.gov (United States)

    Mao, Cuiping; Zhang, Huihui; Lu, Zhisong

    2017-09-01

    The development of textile-based devices for human physiological monitoring has attracted tremendous interest in recent years. However, flexible physiological sensing elements based on silk fabrics have not been realized. In this paper, ZnO nanorod arrays are grown in situ on reduced graphene oxide-coated silk fabrics via a facile electro-deposition method for the fabrication of silk-fabric-based mechanical sensing devices. The data show that well-aligned ZnO nanorods with hexagonal wurtzite crystalline structures are synthesized on the conductive silk fabric surface. After magnetron sputtering of gold electrodes, silk-fabric-based devices are produced and applied to detect periodic bending and twisting. Based on the electric signals, the deformation and release processes can be easily differentiated. Human arterial pulse and respiration can also be real-time monitored to calculate the pulse rate and respiration frequency, respectively. Throat vibrations during coughing and singing are detected to demonstrate the voice recognition capability. This work may not only help develop silk-fabric-based mechanical sensing elements for potential applications in clinical diagnosis, daily healthcare monitoring and voice recognition, but also provide a versatile method for fabricating textile-based flexible electronic devices.

  12. Virtual physiological human: training challenges.

    Science.gov (United States)

    Lawford, Patricia V; Narracott, Andrew V; McCormack, Keith; Bisbal, Jesus; Martin, Carlos; Bijnens, Bart; Brook, Bindi; Zachariou, Margarita; Freixa, Jordi Villà I; Kohl, Peter; Fletcher, Katherine; Diaz-Zuccarini, Vanessa

    2010-06-28

    The virtual physiological human (VPH) initiative encompasses a wide range of activities, including structural and functional imaging, data mining, knowledge discovery tool and database development, biomedical modelling, simulation and visualization. The VPH community is developing from a multitude of relatively focused, but disparate, research endeavours into an integrated effort to bring together, develop and translate emerging technologies for application, from academia to industry and medicine. This process initially builds on the evolution of multi-disciplinary interactions and abilities, but addressing the challenges associated with the implementation of the VPH will require, in the very near future, a translation of quantitative changes into a new quality of highly trained multi-disciplinary personnel. Current strategies for undergraduate and on-the-job training may soon prove insufficient for this. The European Commission seventh framework VPH network of excellence is exploring this emerging need, and is developing a framework of novel training initiatives to address the predicted shortfall in suitably skilled VPH-aware professionals. This paper reports first steps in the implementation of a coherent VPH training portfolio.

  13. Using stimulation of the diving reflex in humans to teach integrative physiology.

    Science.gov (United States)

    Choate, Julia K; Denton, Kate M; Evans, Roger G; Hodgson, Yvonne

    2014-12-01

    During underwater submersion, the body responds by conserving O2 and prioritizing blood flow to the brain and heart. These physiological adjustments, which involve the nervous, cardiovascular, and respiratory systems, are known as the diving response and provide an ideal example of integrative physiology. The diving reflex can be stimulated in the practical laboratory setting using breath holding and facial immersion in water. Our undergraduate physiology students complete a laboratory class in which they investigate the effects of stimulating the diving reflex on cardiovascular variables, which are recorded and calculated with a Finapres finger cuff. These variables include heart rate, cardiac output, stroke volume, total peripheral resistance, and arterial pressures (mean, diastolic, and systolic). Components of the diving reflex are stimulated by 1) facial immersion in cold water (15°C), 2) breathing with a snorkel in cold water (15°C), 3) facial immersion in warm water (30°C), and 4) breath holding in air. Statistical analysis of the data generated for each of these four maneuvers allows the students to consider the factors that contribute to the diving response, such as the temperature of the water and the location of the sensory receptors that initiate the response. In addition to providing specific details about the equipment, protocols, and learning outcomes, this report describes how we assess this practical exercise and summarizes some common student misunderstandings of the essential physiological concepts underlying the diving response. Copyright © 2014 The American Physiological Society.

  14. Physiological evidence for a human-induced landscape of fear in brown bears (Ursus arctos).

    Science.gov (United States)

    Støen, Ole-Gunnar; Ordiz, Andres; Evans, Alina L; Laske, Timothy G; Kindberg, Jonas; Fröbert, Ole; Swenson, Jon E; Arnemo, Jon M

    2015-12-01

    Human persecution is a major cause of mortality for large carnivores. Consequently, large carnivores avoid humans, but may use human-dominated landscapes by being nocturnal and elusive. Behavioral studies indicate that certain ecological systems are "landscapes of fear", driven by antipredator behavior. Because behavior and physiology are closely interrelated, physiological assessments may provide insight into the behavioral response of large carnivores to human activity. To elucidate changes in brown bears' (Ursus arctos) behavior associated with human activity, we evaluated stress as changes in heart rate (HR) and heart rate variability (HRV) in 12 GPS-collared, free-ranging bears, 7 males and 5 females, 3-11 years old, using cardiac-monitoring devices. We applied generalized linear regression models with HR and HRV as response variables and chest activity, time of day, season, distance traveled, and distance to human settlements from GPS positions recorded every 30 min as potential explanatory variables. Bears exhibited lower HRV, an indication of stress, when they were close to human settlements and especially during the berry season, when humans were more often in the forest, picking berries and hunting. Our findings provide evidence of a human-induced landscape of fear in this hunted population of brown bears. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  15. A novel human body exergy consumption formula to determine indoor thermal conditions for optimal human performance in office buildings

    DEFF Research Database (Denmark)

    Wu, Xiaozhou; Zhao, Jianing; Olesen, Bjarne W.

    2013-01-01

    In this paper, a novel human body exergy consumption formula was derived strictly according to Gagge's two-node thermal transfer model. The human body exergy consumption calculated by the formula was compared with values calculated using Shukuya's formula for a typical office environment....... The results show that human body exergy consumption calculated by either of these formulas reaches a minimum under the same thermal condition. It is shown that this is in accordance with expectation. The relation between human performance and human body exergy consumption was studied by analyzing the data...... obtained in simulated office environments in winter. The results show that human body exergy consumption and human performance are inversely as operative temperature changes from 17 to 28°C or human thermal sensation changes from −1.0 to +1.4, and that optimum thermal comfort cannot be expected to lead...

  16. Scandinavian Semantics and the Human Body

    DEFF Research Database (Denmark)

    Levisen, Carsten

    2015-01-01

    , it is demonstrated that Scandinavian and English systems differ significantly in some aspects of the way in which the construe the human body with words. The study ventures an innovative combination of methods, pairing the Natural Semantic Metalanguage (NSM) approach to linguistic and conceptual analysis......This paper presents an ethnolinguistic analysis of how the space between the head and the body is construed in Scandinavian semantic systems vis-a-vis the semantic system of English. With an extensive case study of neck-related meanings in Danish, and with cross-Scandinavian reference...... with empirical evidence from the Evolution of Semantic Systems (EoSS) project. This combination of empirical and interpretative tools helps to integrate evidence from semantics and semiotics, pinning out in great detail the intricacies of the meanings of particular body words. The paper concludes that body words...

  17. Human cold stress of strong local-wind "Hijikawa-arashi" in Japan, based on the UTCI index and thermo-physiological responses.

    Science.gov (United States)

    Ohashi, Yukitaka; Katsuta, Takumi; Tani, Haruka; Okabayashi, Taiki; Miyahara, Satoshi; Miyashita, Ryoji

    2018-03-30

    We investigated the cold stress caused by a strong local wind called "Hijikawa-arashi," through in situ vital measurements and the Universal Thermal Climate Index (UTCI). This wind is a very interesting winter phenomenon, localized in an area within 1 km of the seashore in Ozu City, Ehime Prefecture in Japan. When a strong Hijikawa-arashi (HA) occurred at 14-15 m s -1 , the UTCI decreased to - 30 °C along the bridge where commuting residents are the most exposed to strong and cold winds. On the bridge, most participants in our experiment felt "very cold" or "extremely cold." The UTCI of HA can be predicted from a multiple regression equation using wind speed and air temperature. The cold HA wind is also harmful to human thermo-physiological responses. It leads to higher blood pressure and increased heart rate, both of which act as cardiovascular stress triggers. Increases of 6-10 mmHg and 3-6 bpm for every 10 °C reduction in UTCI were seen on all observational days, including HA and non-HA days. In fact, the participants' body skin temperatures decreased by approximately 1.2 to 1.7 °C for every 10 °C reduction in UTCI. Thus, the UTCI variation due to the HA outbreak corresponded well with the cold sensation and thermo-physiological responses in humans. This result suggests that daily UTCI monitoring enables the prediction of thermo-physiological responses to the HA cold stress.

  18. Physiology and culture of the human blastocyst.

    Science.gov (United States)

    Gardner, David K; Lane, Michelle; Schoolcraft, William B

    2002-01-01

    The human embryo undergoes many changes in physiology during the first 4 days of life as it develops and differentiates from a fertilized oocyte to the blastocyst stage. Concomitantly, the embryo is exposed to gradients of nutrients within the female reproductive tract and exhibits changes in its own nutrient requirements and utilization. Determining the nature of such nutrient gradients in the female tract and the changing requirements of the embryo has facilitated the formulation of stage-specific culture media designed to support embryo development throughout the preimplantation period. Resultant implantation rates attained with the culture and transfer of human blastocysts are higher than those associated with the transfer of cleavage stage embryos to the uterus. Such increases in implantation rates have facilitated the establishment of high pregnancy rates while reducing the number of embryos transferred. With the introduction of new scoring systems for the blastocyst and the non-invasive assessment of metabolic activity of individual embryos, it should be possible to move to single blastocyst transfer for the majority of patients.

  19. Concentrations of trace elements in human tissues and relation of ratios of mutual metals to the human health

    International Nuclear Information System (INIS)

    Ling-wei, X.; Shao-xian, L.; Xiao-juan, Z.

    1989-01-01

    According to the experimental results, the concentrations and concentrations in order, of trace elements in human tissues among Changsha's People in China are reported. The authors particularly present that the ratios of mutual metals (M/N) in normal physiological tissues and fluids are very important factors which indicate the metabolic situations of trace elements in the body and as the indices which evaluate the situation of human health. (M and N mean the concentrations of different trace elements in the tissues or fluids, respectively.) Up to now, it is still an interesting field to study the functions of trace elements for the human health. There are previously some reports about the concentrations of trace elements in normal physiological tissues/ or organs and fluids of human body. These provide very valuable data for biological medicine. In the study presented atomic absorption method was adopted in order to determine the concentrations of Zn, Cu, Mn, Ni, Pb and Cd in human tissues (liver, spleen, kidney, bone, lung, pancreas, heart and artery and muscle) at autopsy. The authors suggest that trace elements, are contained in the body in an aproportional way, in normal physiological tissues and fluids, and the ratios may directly indicate metabolic situation of trace elements in the body which further reveal the mystery of trace elements for human health. Therefore, the ratios M/N as an indicator of health is more proper than that only using concentrations of trace elements. Schroeder (1973) reported that incidence of heart disease is related to the imbalance of ration Zn/Cd and Zn/Cu rather than the concentrations of Zn, Cd, Cu, and the intellectual development also depends on the proper proportion among copper, cadmium, lead, zinc in the body

  20. Sensing power transfer between the human body and the environment

    NARCIS (Netherlands)

    Veltink, Petrus H.; Kortier, H.G.; Schepers, H. Martin

    The power transferred between the human body and the environment at any time and the work performed are important quantities to be estimated when evaluating and optimizing the physical interaction between the human body and the environment in sports, physical labor, and rehabilitation. It is the

  1. Heat Exchange in “Human body - Thermal protection - Environment” System

    Science.gov (United States)

    Khromova, I. V.

    2017-11-01

    This article is devoted to the issues of simulation and calculation of thermal processes in the system called “Human body - Thermal protection - Environment” under low temperature conditions. It considers internal heat sources and convective heat transfer between calculated elements. Overall this is important for the Heat Transfer Theory. The article introduces complex heat transfer calculation method and local thermophysical parameters calculation method in the system called «Human body - Thermal protection - Environment», considering passive and active thermal protections, thermophysical and geometric properties of calculated elements in a wide range of environmental parameters (water, air). It also includes research on the influence that thermal resistance of modern materials, used in special protective clothes development, has on heat transfer in the system “Human body - Thermal protection - Environment”. Analysis of the obtained results allows adding of the computer research data to experiments and optimizing of individual life-support system elements, which are intended to protect human body from exposure to external factors.

  2. Singular value decomposition based feature extraction technique for physiological signal analysis.

    Science.gov (United States)

    Chang, Cheng-Ding; Wang, Chien-Chih; Jiang, Bernard C

    2012-06-01

    Multiscale entropy (MSE) is one of the popular techniques to calculate and describe the complexity of the physiological signal. Many studies use this approach to detect changes in the physiological conditions in the human body. However, MSE results are easily affected by noise and trends, leading to incorrect estimation of MSE values. In this paper, singular value decomposition (SVD) is adopted to replace MSE to extract the features of physiological signals, and adopt the support vector machine (SVM) to classify the different physiological states. A test data set based on the PhysioNet website was used, and the classification results showed that using SVD to extract features of the physiological signal could attain a classification accuracy rate of 89.157%, which is higher than that using the MSE value (71.084%). The results show the proposed analysis procedure is effective and appropriate for distinguishing different physiological states. This promising result could be used as a reference for doctors in diagnosis of congestive heart failure (CHF) disease.

  3. Study of exposure to cold stress and body physiological responses in auto mechanic employees in Hamadan city

    Directory of Open Access Journals (Sweden)

    Keivan Saedpanah

    2017-09-01

    Full Text Available Introduction: Continuous exposure to cold air is considered to be a hazardous agent in the workplace in cold seasons. This study aimed to determine the level of cold stress and relation with physiological responses in auto mechanic employees. Method: This cross-sectional study was conducted in the winter of 1395 on auto mechanic employees in Hamadan city. Physiological responses during daily activity were measured in accordance with ISO 9886 standard method. Environmental air measures like air temperature and air velocity were measured simultaneously and cold stress indexes were also determined. Data was analyzed using SPSS 21 software. Result: The result showed that mean wind chill index, equivalent chill temperature and required clothing insulation were 489.97±47.679 kcal/m2.h, 13.78± 1.869 0c and 2.04 ± 0.246 clo, respectively. According to the results of cold stress indexes, the studied employees are exposed to cold stress. Pearson correlation test showed that there are significant relationship between cold stress indexes with physiological responses (p<0.05, however, IREQ min showed more correlation than the others.  There is also a significant relationship between body fat percentage and deep temperature (p<0.05, r=0.314. Conclusion: The result confirmed that IREQ min index has high validity for estimation of cold stress among auto mechanic employees. Moreover, the increase of body fat percentage leads to an increase of cold tolerance power of employees.

  4. Scanning 3D full human bodies using Kinects.

    Science.gov (United States)

    Tong, Jing; Zhou, Jin; Liu, Ligang; Pan, Zhigeng; Yan, Hao

    2012-04-01

    Depth camera such as Microsoft Kinect, is much cheaper than conventional 3D scanning devices, and thus it can be acquired for everyday users easily. However, the depth data captured by Kinect over a certain distance is of extreme low quality. In this paper, we present a novel scanning system for capturing 3D full human body models by using multiple Kinects. To avoid the interference phenomena, we use two Kinects to capture the upper part and lower part of a human body respectively without overlapping region. A third Kinect is used to capture the middle part of the human body from the opposite direction. We propose a practical approach for registering the various body parts of different views under non-rigid deformation. First, a rough mesh template is constructed and used to deform successive frames pairwisely. Second, global alignment is performed to distribute errors in the deformation space, which can solve the loop closure problem efficiently. Misalignment caused by complex occlusion can also be handled reasonably by our global alignment algorithm. The experimental results have shown the efficiency and applicability of our system. Our system obtains impressive results in a few minutes with low price devices, thus is practically useful for generating personalized avatars for everyday users. Our system has been used for 3D human animation and virtual try on, and can further facilitate a range of home–oriented virtual reality (VR) applications.

  5. Molecular clocks and the human condition: approaching their characterization in human physiology and disease.

    Science.gov (United States)

    Fitzgerald, G A; Yang, G; Paschos, G K; Liang, X; Skarke, C

    2015-09-01

    Molecular clockworks knit together diverse biological networks and compelling evidence from model systems infers their importance in metabolism, immunological and cardiovascular function. Despite this and the diurnal variation in many aspects of human physiology and the phenotypic expression of disease, our understanding of the role and importance of clock function and dysfunction in humans is modest. There are tantalizing hints of connection across the translational divide and some correlative evidence of gene variation and human disease but most of what we know derives from forced desynchrony protocols in controlled environments. We now have the ability to monitor quantitatively ex vivo or in vivo the genome, metabolome, proteome and microbiome of humans in the wild. Combining this capability, with the power of mobile telephony and the evolution of remote sensing, affords a new opportunity for deep phenotyping, including the characterization of diurnal behaviour and the assessment of the impact of the clock on approved drug function. © 2015 John Wiley & Sons Ltd.

  6. Investigation of human body potential measured by a non-contact measuring system.

    Science.gov (United States)

    Ichikawa, Norimitsu

    2016-12-07

    A human body is occasionally electrified in a room. This charged object will be a source of electrostatic accidents, including the malfunction of electronic equipment. Hence, prevention of these accidents is required. Accidents occasionally occur, even though antistatic clothes and shoes are used. One of the causes for these accidents is that there is a lack of the preventive measures. This situation occurs when using, for example, unconductive wax. In this study, human body potential (voltage) is measured using a non-contact measuring system. An investigation of the human body's voltage when using this system is conducted. The result demonstrates that the voltage of a human body wearing antistatic clothes and shoes or light clothes and slippers exceeds a malfunctioning voltage of a microelectronics device when the body walks on floors. Thus, accidents may occur even if a human body wearing the antistatic clothes walks on flooring. These results will be useful in estimating determination whether electrostatic accidents occur or not.

  7. Prediction of human CNS pharmacokinetics using a physiologically-based pharmacokinetic modeling approach

    NARCIS (Netherlands)

    Yamamoto, Yumi; Valitalo, Pyry A.; Wong, Yin Cheong; Huntjens, Dymphy R.; Proost, Johannes H.; Vermeulen, An; Krauwinkel, Walter; Beukers, Margot W.; Kokki, Hannu; Kokki, Merja; Danhof, Meindert; van Hasselt, Johan G. C.; de Lange, Elizabeth C. M.

    2018-01-01

    Knowledge of drug concentration-time profiles at the central nervous system (CNS) target-site is critically important for rational development of CNS targeted drugs. Our aim was to translate a recently published comprehensive CNS physiologically-based pharmacokinetic (PBPK) model from rat to human,

  8. Finite element approach to study the behavior of fluid distribution in the dermal regions of human body due to thermal stress

    Directory of Open Access Journals (Sweden)

    M.A. Khanday

    2015-10-01

    Full Text Available The human body is a complex structure where the balance of mass and heat transport in all tissues is necessary for its normal functioning. The stabilities of intracellular and extracellular fluids are important physiological factors responsible for homoeostasis. To estimate the effects of thermal stress on the behavior of extracellular fluid concentration in human dermal regions, a mathematical model based on diffusion equation along with appropriate boundary conditions has been formulated. Atmospheric temperature, evaporation rate, moisture concentration and other factors affecting the fluid concentration were taken into account. The variational finite element approach has been employed to solve the model and the results were interpreted graphically.

  9. Anatomical and physiological basis for the allometric scaling of cisplatin clearance in dogs.

    Science.gov (United States)

    Achanta, S; Sewell, A; Ritchey, J W; Broaddus, K; Bourne, D W A; Clarke, C R; Maxwell, L K

    2016-06-01

    Cisplatin is a platinum-containing cytotoxic drug indicated for the treatment of solid tumors in veterinary and human patients. Several of the algorithms used to standardize the doses of cytotoxic drugs utilize allometry, or the nonproportional relationships between anatomical and physiological variables, but the underlying basis for these relationships is poorly understood. The objective of this proof of concept study was to determine whether allometric equations explain the relationships between body weight, kidney weight, renal physiology, and clearance of a model, renally cleared anticancer agent in dogs. Postmortem body, kidney, and heart weights were collected from 364 dogs (127 juveniles and 237 adults, including 51 dogs ≥ 8 years of age). Renal physiological and cisplatin pharmacokinetic studies were conducted in ten intact male dogs including two juvenile and eight adult dogs (4-55 kg). Glomerular filtration rate (GFR), effective renal plasma flow, effective renal blood flow, renal cisplatin clearance, and total cisplatin clearance were allometrically related to body weight with powers of 0.75, 0.59, 0.61, 0.71, and 0.70, respectively. The similar values of these diverse mass exponents suggest a common underlying basis for the allometry of kidney size, renal physiology, and renal drug handling. © 2015 John Wiley & Sons Ltd.

  10. Review of Evidence Suggesting That the Fascia Network Could Be the Anatomical Basis for Acupoints and Meridians in the Human Body

    Directory of Open Access Journals (Sweden)

    Yu Bai

    2011-01-01

    Full Text Available The anatomical basis for the concept of meridians in traditional Chinese medicine (TCM has not been resolved. This paper reviews the evidence supporting a relationship between acupuncture points/meridians and fascia. The reviewed evidence supports the view that the human body's fascia network may be the physical substrate represented by the meridians of TCM. Specifically, this hypothesis is supported by anatomical observations of body scan data demonstrating that the fascia network resembles the theoretical meridian system in salient ways, as well as physiological, histological, and clinical observations. This view represents a theoretical basis and means for applying modern biomedical research to examining TCM principles and therapies, and it favors a holistic approach to diagnosis and treatment.

  11. The evolution of body size and shape in the human career

    Science.gov (United States)

    Grabowski, Mark; Hatala, Kevin G.; Richmond, Brian G.

    2016-01-01

    Body size is a fundamental biological property of organisms, and documenting body size variation in hominin evolution is an important goal of palaeoanthropology. Estimating body mass appears deceptively simple but is laden with theoretical and pragmatic assumptions about best predictors and the most appropriate reference samples. Modern human training samples with known masses are arguably the ‘best’ for estimating size in early bipedal hominins such as the australopiths and all members of the genus Homo, but it is not clear if they are the most appropriate priors for reconstructing the size of the earliest putative hominins such as Orrorin and Ardipithecus. The trajectory of body size evolution in the early part of the human career is reviewed here and found to be complex and nonlinear. Australopith body size varies enormously across both space and time. The pre-erectus early Homo fossil record from Africa is poor and dominated by relatively small-bodied individuals, implying that the emergence of the genus Homo is probably not linked to an increase in body size or unprecedented increases in size variation. Body size differences alone cannot explain the observed variation in hominin body shape, especially when examined in the context of small fossil hominins and pygmy modern humans. This article is part of the themed issue ‘Major transitions in human evolution’. PMID:27298459

  12. Renal renin secretion as regulator of body fluid homeostasis

    DEFF Research Database (Denmark)

    Damkjær, Mads; Isaksson, Gustaf L; Stubbe, Jane

    2013-01-01

    The renin-angiotensin system is essential for body fluid homeostasis and blood pressure regulation. This review focuses on the homeostatic regulation of the secretion of active renin in the kidney, primarily in humans. Under physiological conditions, renin secretion is determined mainly by sodium...

  13. [The solidarity of the human body].

    Science.gov (United States)

    Bioy, Xavier

    2014-06-01

    The legal and bioethical regulation of the uses of the elements of the human body can be described by means of the concept of solidarity. From the French example, we can so show that the State tries to frame solidarities which already exist, for example between people who share the same genome, in the family, or, on the contrary, tent to impose or to direct the sharing of the human biological resources (organs, tissues, gametes, stem cell...).

  14. Statistical multi-path exposure method for assessing the whole-body SAR in a heterogeneous human body model in a realistic environment.

    Science.gov (United States)

    Vermeeren, Günter; Joseph, Wout; Martens, Luc

    2013-04-01

    Assessing the whole-body absorption in a human in a realistic environment requires a statistical approach covering all possible exposure situations. This article describes the development of a statistical multi-path exposure method for heterogeneous realistic human body models. The method is applied for the 6-year-old Virtual Family boy (VFB) exposed to the GSM downlink at 950 MHz. It is shown that the whole-body SAR does not differ significantly over the different environments at an operating frequency of 950 MHz. Furthermore, the whole-body SAR in the VFB for multi-path exposure exceeds the whole-body SAR for worst-case single-incident plane wave exposure by 3.6%. Moreover, the ICNIRP reference levels are not conservative with the basic restrictions in 0.3% of the exposure samples for the VFB at the GSM downlink of 950 MHz. The homogeneous spheroid with the dielectric properties of the head suggested by the IEC underestimates the absorption compared to realistic human body models. Moreover, the variation in the whole-body SAR for realistic human body models is larger than for homogeneous spheroid models. This is mainly due to the heterogeneity of the tissues and the irregular shape of the realistic human body model compared to homogeneous spheroid human body models. Copyright © 2012 Wiley Periodicals, Inc.

  15. Variability in human body size

    Science.gov (United States)

    Annis, J. F.

    1978-01-01

    The range of variability found among homogeneous groups is described and illustrated. Those trends that show significantly marked differences between sexes and among a number of racial/ethnic groups are also presented. Causes of human-body size variability discussed include genetic endowment, aging, nutrition, protective garments, and occupation. The information is presented to aid design engineers of space flight hardware and equipment.

  16. Measurement of Radioactivity in the Human Body

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, I Oe; Nilsson, I

    1960-12-15

    A body counter with a steel room and a 4-inch-diameter by 4-inch thick Nal scintillation counter has been in operation since February 1958. It is used to control the internal contamination in people working with radioactive materials. Measurements have also been made on the natural activity in the human body. The average cesium-137/potassium ratio in a group of Swedish males was in May 1959 73 {mu}{mu}c per gram of body potassium and in June 1960 55 {mu}{mu}c per gram of body potassium. The cessation of the nuclear bomb tests has caused a decrease in the cesium level in people. This gives some information of how cesium is entering the biosphere.

  17. Measurement of Radioactivity in the Human Body

    International Nuclear Information System (INIS)

    Andersson, I.Oe.; Nilsson, I.

    1960-12-01

    A body counter with a steel room and a 4-inch-diameter by 4-inch thick Nal scintillation counter has been in operation since February 1958. It is used to control the internal contamination in people working with radioactive materials. Measurements have also been made on the natural activity in the human body. The average cesium-137/potassium ratio in a group of Swedish males was in May 1959 73 μμc per gram of body potassium and in June 1960 55 μμc per gram of body potassium. The cessation of the nuclear bomb tests has caused a decrease in the cesium level in people. This gives some information of how cesium is entering the biosphere

  18. Pulpal status of human primary teeth with physiological root resorption.

    Science.gov (United States)

    Monteiro, Joana; Day, Peter; Duggal, Monty; Morgan, Claire; Rodd, Helen

    2009-01-01

    The overall aim of this study was to determine whether any changes occur in the pulpal structure of human primary teeth in association with physiological root resorption. The experimental material comprised 64 sound primary molars, obtained from children requiring routine dental extractions under general anaesthesia. Pulp sections were processed for indirect immunofluorescence using combinations of: (i) protein gene product 9.5 (a general neuronal marker); (ii) leucocyte common antigen CD45 (a general immune cell marker); and (iii) Ulex europaeus I lectin (a marker of vascular endothelium). Image analysis was then used to determine the percentage area of staining for each label within both the pulp horn and mid-coronal region. Following measurement of the greatest degree of root resorption in each sample, teeth were subdivided into three groups: those with physiological resorption involving less than one-third, one-third to two-thirds, and more than two-thirds of their root length. Wide variation was evident between different tooth samples with some resorbed teeth showing marked changes in pulpal histology. Decreased innervation density, increased immune cell accumulation, and increased vascularity were evident in some teeth with advanced root resorption. Analysis of pooled data, however, did not reveal any significant differences in mean percentage area of staining for any of these variables according to the three root resorption subgroups (P > 0.05, analysis of variance on transformed data). This investigation has revealed some changes in pulpal status of human primary teeth with physiological root resorption. These were not, however, as profound as one may have anticipated. It is therefore speculated that teeth could retain the potential for sensation, healing, and repair until advanced stages of root resorption.

  19. Teaching exploration and practice of the human body structure course

    Institute of Scientific and Technical Information of China (English)

    Feng LI; Ming-feng CHEN; Wen-long DING

    2015-01-01

    In the 21 st century,the medical model has transformed from the biological model to the biopsycho-social medical model. The transformation of medical model raises higher requirements for the training of medical staff. Comprehensive promotion of the reform of medical education has become the consensus and trend,which breeds the integrated medical teaching that is based on modules and organ systems. As one of eight integrated modules,the human body structure course of Shanghai Jiao Tong University School of Medicine introduces morphological structures of normal human organs according to function systems( such as locomotor system,digestive system,angiological system,and nervous system) of human organs and parts of human body. This course endeavors to integrate theories with practices,contents of disciplines of basic medicine,and basic medicine with clinical medicine. The human body structure course combines basic medicine with clinical medicine and is an important part of medical science.

  20. Adropin – physiological and pathophysiological role

    Directory of Open Access Journals (Sweden)

    Natalia Marczuk

    2016-09-01

    Full Text Available Adropin is a peptide hormone that was discovered in 2008 by Kumar et al. This protein consists of 76 amino acids, and it was originally described as a secreted peptide, with residues 1-33 encoding a secretory signal peptide sequence. The amino acid sequence of this protein in humans, mice and rats is identical. While our knowledge of the exact physiological roles of this poorly understood peptide continues to evolve, recent data suggest a role in energy homeostasis and the control of glucose and fatty acid metabolism. This protein is encoded by the Enho gene, which is expressed primarily in the liver and the central nervous system. The regulation of adropin secretion is controversial. Adropin immunoreactivity has been reported by several laboratories in the circulation of humans, non-human primates and rodents. However, more recently it has been suggested that adropin is a membrane-bound protein that modulates cell-cell communication. Moreover, adropin has been detected in various tissues and body fluids, such as brain, cerebellum, liver, kidney, heart, pancreas, small intestine, endothelial cells, colostrum, cheese whey and milk. The protein level, as shown by previous research, changes in various physiological and pathophysiological conditions. Adropin is involved in carbohydrate-lipid metabolism, metabolic diseases, central nervous system function, endothelial function and cardiovascular disease. The knowledge of this interesting protein, its exact role and mechanism of action is insufficient. This article provides an overview of the existing literature about the role of adropin, both in physiological and pathophysiological conditions.

  1. Human body motion tracking based on quantum-inspired immune cloning algorithm

    Science.gov (United States)

    Han, Hong; Yue, Lichuan; Jiao, Licheng; Wu, Xing

    2009-10-01

    In a static monocular camera system, to gain a perfect 3D human body posture is a great challenge for Computer Vision technology now. This paper presented human postures recognition from video sequences using the Quantum-Inspired Immune Cloning Algorithm (QICA). The algorithm included three parts. Firstly, prior knowledge of human beings was used, the key joint points of human could be detected automatically from the human contours and skeletons which could be thinning from the contours; And due to the complexity of human movement, a forecasting mechanism of occlusion joint points was addressed to get optimum 2D key joint points of human body; And then pose estimation recovered by optimizing between the 2D projection of 3D human key joint points and 2D detection key joint points using QICA, which recovered the movement of human body perfectly, because this algorithm could acquire not only the global optimal solution, but the local optimal solution.

  2. Staying human in the 21st century : thinking beyond human enhancement technologies inside the body

    NARCIS (Netherlands)

    Est, van Q.C.; Schuijff, M.; Boer, de T.; Fischer, R.

    2013-01-01

    The debate on human enhancement has focused so far on invasive biomedical technologies that work inside the body. To fully address the question of what does it mean to be human in the 21st century, we should also pay attention to a broad range of technologies that work outside the body, but still

  3. Subjective thermal sensation and human body exergy consumption rate: analysis and correlation

    DEFF Research Database (Denmark)

    Simone, Angela; Dovjak, M.; Kolarik, Jakub

    2011-01-01

    , it is reasonable to consider both the exergy flows in building and those within the human body. There is a need to verify the human-body exergy model with the Thermal-Sensation (TS) response of subjects exposed to different combinations of indoor climate parameters (temperature, humidity, etc.). First results...... available on the relation between human-body exergy consumption rates and subjectively assessed thermal sensation showed that the minimum human body exergy consumption rate is associated with thermal sensation votes close to thermal neutrality, tending to slightly cool side of thermal sensation. By applying...... the exergy concept to the built indoor environment, additional results are going to be explored. By using the data available so far of operative temperature (to), the human body exergy consumption rates increase as to increases above 24°C or decreases below 22°C at relative humidity (RH) lower than 50...

  4. The Importance of Magnesium in the Human Body: A Systematic Literature Review

    DEFF Research Database (Denmark)

    Glasdam, Sidsel-Marie; Glasdam, Stinne; Peters, Günther H.J.

    2016-01-01

    Magnesium, the second and fourth most abundant cation in the intracellular compartment and whole body, respectively, is of great physiologic importance. Magnesium exists as bound and free ionized forms depending on temperature, pH, ionic strength, and competing ions. Free magnesium participates...

  5. Carbonic anhydrases and their functional differences in human and mouse sperm physiology.

    Science.gov (United States)

    José, O; Torres-Rodríguez, P; Forero-Quintero, L S; Chávez, J C; De la Vega-Beltrán, J L; Carta, F; Supuran, C T; Deitmer, J W; Treviño, C L

    2015-12-25

    Fertilization is a key reproductive event in which sperm and egg fuse to generate a new individual. Proper regulation of certain parameters (such as intracellular pH) is crucial for this process. Carbonic anhydrases (CAs) are among the molecular entities that control intracellular pH dynamics in most cells. Unfortunately, little is known about the function of CAs in mammalian sperm physiology. For this reason, we re-explored the expression of CAI, II, IV and XIII in human and mouse sperm. We also measured the level of CA activity, determined by mass spectrometry, and found that it is similar in non-capacitated and capacitated mouse sperm. Importantly, we found that CAII activity accounts for half of the total CA activity in capacitated mouse sperm. Using the general CA inhibitor ethoxyzolamide, we studied how CAs participate in fundamental sperm physiological processes such as motility and acrosome reaction in both species. We found that capacitated human sperm depend strongly on CA activity to support normal motility, while capacitated mouse sperm do not. Finally, we found that CA inhibition increases the acrosome reaction in capacitated human sperm, but not in capacitated mouse sperm. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Gender Recognition from Unconstrained and Articulated Human Body

    OpenAIRE

    Wu, Qin; Guo, Guodong

    2014-01-01

    Gender recognition has many useful applications, ranging from business intelligence to image search and social activity analysis. Traditional research on gender recognition focuses on face images in a constrained environment. This paper proposes a method for gender recognition in articulated human body images acquired from an unconstrained environment in the real world. A systematic study of some critical issues in body-based gender recognition, such as which body parts are informative, ho...

  7. Expression of Siglec-11 by human and chimpanzee ovarian stromal cells, with uniquely human ligands: implications for human ovarian physiology and pathology

    Science.gov (United States)

    Wang, Xiaoxia; Chow, Renee; Deng, Liwen; Anderson, Dan; Weidner, Noel; Godwin, Andrew K; Bewtra, Chanda; Zlotnik, Albert; Bui, Jack; Varki, Ajit; Varki, Nissi

    2011-01-01

    Siglecs (Sialic acid-binding Immunoglobulin Superfamily Lectins) are cell surface signaling receptors of the I-type lectin group that recognize sialic acid-bearing glycans. CD33-related-Siglecs are a subset with expression primarily in cells of hematopoietic origin and functional relevance to immune reactions. Earlier we reported a human-specific gene conversion event that markedly changed the coding region for the extracellular domain of Siglec-11, associated with human-specific expression in microglia (Hayakawa T, Angata T, Lewis AL, Mikkelsen TS, Varki NM, Varki A. 2005. A human-specific gene in microglia. Science. 309:1693). Analyzing human gene microarrays to define new patterns of expression, we observed high levels of SIGLEC11 transcript in the ovary and adrenal cortex. Thus, we examined human and chimpanzee tissues using a well-characterized anti-Siglec-11 mouse monoclonal antibody. Although adrenal expression was variable and confined to infiltrating macrophages in capillaries, ovarian expression of Siglec-11 in both humans and chimpanzees was on fibroblasts, the first example of Siglec expression on mesenchyme-derived stromal cells. Cytokines from such ovarian stromal fibroblasts play important roles in follicle development and ovulation. Stable transfection of SIGLEC11 into a primary human ovarian stromal fibroblast cell line altered the secretion of growth-regulated oncogene α, interleukin (IL)-10, IL-7, transforming growth factor β1 and tumor necrosis factor-α, cytokines involved in ovarian physiology. Probing for Siglec-11 ligands revealed distinct and strong mast cell expression in human ovaries, contrasting to diffuse stromal ligands in chimpanzee ovaries. Interestingly, there was a trend of increased Siglec-11 expression in post-menopausal ovaries compared with pre-menopausal ones. Siglec-11 expression was also found on human ovarian stromal tumors and in polycystic ovarian syndrome, a human-specific disease. These results indicate potential

  8. Transport of gaseous pollutants by convective boundary layer around a human body

    DEFF Research Database (Denmark)

    Licina, Dusan; Melikov, Arsen Krikor; Sekhar, Chandra

    2015-01-01

    This study investigates the ability of the human convective boundary layer to transport pollution in a quiescent indoor environment. The impact of the source location in the vicinity of a human body is examined in relation to pollution distribution in the breathing zone and the thickness...... of the pollution boundary layer. The study, in addition, evaluates the effects of the room air temperature, table positioning, and seated body inclination. The human body is represented by a thermal manikin that has a body shape, size, and surface temperature that resemble those of a real person. The results show...... at the upper back or behind the chair. The results also indicate that a decrease in personal exposure to pollutants released from or around the human body increases the extent to which the pollution spreads to the surroundings. Reducing the room air temperature or backward body inclination intensifies...

  9. Steady-state visually evoked potential correlates of human body perception.

    Science.gov (United States)

    Giabbiconi, Claire-Marie; Jurilj, Verena; Gruber, Thomas; Vocks, Silja

    2016-11-01

    In cognitive neuroscience, interest in the neuronal basis underlying the processing of human bodies is steadily increasing. Based on functional magnetic resonance imaging studies, it is assumed that the processing of pictures of human bodies is anchored in a network of specialized brain areas comprising the extrastriate and the fusiform body area (EBA, FBA). An alternative to examine the dynamics within these networks is electroencephalography, more specifically so-called steady-state visually evoked potentials (SSVEPs). In SSVEP tasks, a visual stimulus is presented repetitively at a predefined flickering rate and typically elicits a continuous oscillatory brain response at this frequency. This brain response is characterized by an excellent signal-to-noise ratio-a major advantage for source reconstructions. The main goal of present study was to demonstrate the feasibility of this method to study human body perception. To that end, we presented pictures of bodies and contrasted the resulting SSVEPs to two control conditions, i.e., non-objects and pictures of everyday objects (chairs). We found specific SSVEPs amplitude differences between bodies and both control conditions. Source reconstructions localized the SSVEP generators to a network of temporal, occipital and parietal areas. Interestingly, only body perception resulted in activity differences in middle temporal and lateral occipitotemporal areas, most likely reflecting the EBA/FBA.

  10. Study of Physiological Responses to Acute Carbon Monoxide Exposure with a Human Patient Simulator

    Science.gov (United States)

    Cesari, Whitney A.; Caruso, Dominique M.; Zyka, Enela L.; Schroff, Stuart T.; Evans, Charles H., Jr.; Hyatt, Jon-Philippe K.

    2006-01-01

    Human patient simulators are widely used to train health professionals and students in a clinical setting, but they also can be used to enhance physiology education in a laboratory setting. Our course incorporates the human patient simulator for experiential learning in which undergraduate university juniors and seniors are instructed to design,…

  11. Coupling of the Models of Human Physiology and Thermal Comfort

    Science.gov (United States)

    Pokorny, J.; Jicha, M.

    2013-04-01

    A coupled model of human physiology and thermal comfort was developed in Dymola/Modelica. A coupling combines a modified Tanabe model of human physiology and thermal comfort model developed by Zhang. The Coupled model allows predicting the thermal sensation and comfort of both local and overall from local boundary conditions representing ambient and personal factors. The aim of this study was to compare prediction of the Coupled model with the Fiala model prediction and experimental data. Validation data were taken from the literature, mainly from the validation manual of software Theseus-FE [1]. In the paper validation of the model for very light physical activities (1 met) indoor environment with temperatures from 12 °C up to 48 °C is presented. The Coupled model predicts mean skin temperature for cold, neutral and warm environment well. However prediction of core temperature in cold environment is inaccurate and very affected by ambient temperature. Evaluation of thermal comfort in warm environment is supplemented by skin wettedness prediction. The Coupled model is designed for non-uniform and transient environmental conditions; it is also suitable simulation of thermal comfort in vehicles cabins. The usage of the model is limited for very light physical activities up to 1.2 met only.

  12. Coupling of the Models of Human Physiology and Thermal Comfort

    Directory of Open Access Journals (Sweden)

    Jicha M.

    2013-04-01

    Full Text Available A coupled model of human physiology and thermal comfort was developed in Dymola/Modelica. A coupling combines a modified Tanabe model of human physiology and thermal comfort model developed by Zhang. The Coupled model allows predicting the thermal sensation and comfort of both local and overall from local boundary conditions representing ambient and personal factors. The aim of this study was to compare prediction of the Coupled model with the Fiala model prediction and experimental data. Validation data were taken from the literature, mainly from the validation manual of software Theseus–FE [1]. In the paper validation of the model for very light physical activities (1 met indoor environment with temperatures from 12 °C up to 48 °C is presented. The Coupled model predicts mean skin temperature for cold, neutral and warm environment well. However prediction of core temperature in cold environment is inaccurate and very affected by ambient temperature. Evaluation of thermal comfort in warm environment is supplemented by skin wettedness prediction. The Coupled model is designed for non-uniform and transient environmental conditions; it is also suitable simulation of thermal comfort in vehicles cabins. The usage of the model is limited for very light physical activities up to 1.2 met only.

  13. Ethyl nitrite is produced in the human stomach from dietary nitrate and ethanol, releasing nitric oxide at physiological pH: potential impact on gastric motility.

    Science.gov (United States)

    Rocha, Bárbara S; Gago, Bruno; Barbosa, Rui M; Cavaleiro, Carlos; Laranjinha, João

    2015-05-01

    Nitric oxide ((∙)NO), a ubiquitous molecule involved in a plethora of signaling pathways, is produced from dietary nitrate in the gut through the so-called nitrate-nitrite-NO pathway. In the stomach, nitrite derived from dietary nitrate triggers a network of chemical reactions targeting endogenous and exogenous biomolecules, thereby producing new compounds with physiological activity. The aim of this study was to ascertain whether compounds with physiological relevance are produced in the stomach upon consumption of nitrate- and ethanol-rich foods. Human volunteers consumed a serving of lettuce (source of nitrate) and alcoholic beverages (source of ethanol). After 15 min, samples of the gastric headspace were collected and ethyl nitrite was identified by GC-MS. Wistar rats were used to study the impact of ethyl nitrite on gastric smooth muscle relaxation at physiological pH. Nitrogen oxides, produced from nitrite in the stomach, induce nitrosation of ethanol from alcoholic beverages in the human stomach yielding ethyl nitrite. Ethyl nitrite, a potent vasodilator, is produced in vivo upon the consumption of lettuce with either red wine or whisky. Moreover, at physiological pH, ethyl nitrite induces gastric smooth muscle relaxation through a cGMP-dependent pathway. Overall, these results suggest that ethyl nitrite is produced in the gastric lumen and releases (∙)NO at physiological pH, which ultimately may have an impact on gastric motility. Systemic effects may also be expected if ethyl nitrite diffuses through the gastric mucosa reaching blood vessels, therefore operating as a (∙)NO carrier throughout the body. These data pinpoint posttranslational modifications as an underappreciated mechanism for the production of novel molecules with physiological impact locally in the gut and highlight the notion that diet may fuel compounds with the potential to modulate gastrointestinal welfare. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. [The physiological classification of human thermal states under high environmental temperatures].

    Science.gov (United States)

    Bobrov, A F; Kuznets, E I

    1995-01-01

    The paper deals with the physiological classification of human thermal states in a hot environment. A review of the basic systems of classifications of thermal states is given, their main drawbacks are discussed. On the basis of human functional state research in a broad range of environmental temperatures the system of evaluation and classification of human thermal states is proposed. New integral one-dimensional multi-parametric criteria for evaluation are used. For the development of these criteria methods of factor, cluster and canonical correlation analyses are applied. Stochastic nomograms capable of identification of human thermal state for different intensity of influence are given. In this case evaluation of intensity is estimated according to one-dimensional criteria taking into account environmental temperature, physical load and time of man's staying in overheating conditions.

  15. Optimization study of using PTC for human body heating dissipation

    Directory of Open Access Journals (Sweden)

    Tiberiu Adrian SALAORU

    2014-06-01

    Full Text Available A better knowledge of the human body heat loses mechanisms is important for both diminishing the number of deaths during the surgical procedures of the patients under effect of full anaesthesia and increasing the efficiency of the Heating, Ventilation and Air Conditioning (HVAC systems. For these studies it is necessary to manufacture a human body mannequin having its surface temperature maintained on a value close to the real human body temperature. A number of PTC (Positive Temperature Coefficient thermistors placed on the entire external surface of the mannequin can be used for this purpose. This paper presents a study of the transient heating regime and the stability of the maintained temperature, performed on these devices.

  16. Integrating multi-scale data to create a virtual physiological mouse heart.

    Science.gov (United States)

    Land, Sander; Niederer, Steven A; Louch, William E; Sejersted, Ole M; Smith, Nicolas P

    2013-04-06

    While the virtual physiological human (VPH) project has made great advances in human modelling, many of the tools and insights developed as part of this initiative are also applicable for facilitating mechanistic understanding of the physiology of a range of other species. This process, in turn, has the potential to provide human relevant insights via a different scientific path. Specifically, the increasing use of mice in experimental research, not yet fully complemented by a similar increase in computational modelling, is currently missing an important opportunity for using and interpreting this growing body of experimental data to improve our understanding of cardiac function. This overview describes our work to address this issue by creating a virtual physiological mouse model of the heart. We describe the similarities between human- and mouse-focused modelling, including the reuse of VPH tools, and the development of methods for investigating parameter sensitivity that are applicable across species. We show how previous results using this approach have already provided important biological insights, and how these can also be used to advance VPH heart models. Finally, we show an example application of this approach to test competing multi-scale hypotheses by investigating variations in length-dependent properties of cardiac muscle.

  17. Micro-patterned graphene-based sensing skins for human physiological monitoring

    Science.gov (United States)

    Wang, Long; Loh, Kenneth J.; Chiang, Wei-Hung; Manna, Kausik

    2018-03-01

    Ultrathin, flexible, conformal, and skin-like electronic transducers are emerging as promising candidates for noninvasive and nonintrusive human health monitoring. In this work, a wearable sensing membrane is developed by patterning a graphene-based solution onto ultrathin medical tape, which can then be attached to the skin for monitoring human physiological parameters and physical activity. Here, the sensor is validated for monitoring finger bending/movements and for recognizing hand motion patterns, thereby demonstrating its future potential for evaluating athletic performance, physical therapy, and designing next-generation human-machine interfaces. Furthermore, this study also quantifies the sensor’s ability to monitor eye blinking and radial pulse in real-time, which can find broader applications for the healthcare sector. Overall, the printed graphene-based sensing skin is highly conformable, flexible, lightweight, nonintrusive, mechanically robust, and is characterized by high strain sensitivity.

  18. Emergency Handling for MAC Protocol in Human Body Communication

    Directory of Open Access Journals (Sweden)

    Kwon Youngmi

    2011-01-01

    Full Text Available The human body communication (HBC is a technology that enables short range data communication using the human body as a medium, like an electrical wire. Thus it removes the need for a traditional antenna. HBC may be used as a type of data communication in body area network (BAN, while the devices are being in contact with body. One of important issues in BAN is an emergency alarm because it may be closely related to human life. For emergency data communication, the most critical factor is the time constraint. IEEE 802.15.6 specifies that the emergency alarm for the BAN must be notified in less than 1 sec and must provide prioritization mechanisms for emergency traffic and notification. As one type of BAN, the HBC must follow this recommendation, too. Existing emergency handling methods in BAN are based on the carrier sensing capability on radio frequencies to detect the status of channels. However, PHY protocol in HBC does not provide the carrier sensing. So the previous methods are not well suitable for HBC directly. Additionally, in the environment that the emergency rate is very low, the allocation of dedicated slot(s for emergency in each superframe is very wasteful. In this work, we proposed specific emergency handling operation for human body communication's medium access control (HBC-MAC protocol to meet the emergency requirements for BAN. We also showed the optimal number of emergency slots for the various combinations of beacon intervals and emergency rates.

  19. How consumer physical activity monitors could transform human physiology research

    Science.gov (United States)

    Hall Brown, Tyish S.; Collier, Scott R.; Sandberg, Kathryn

    2017-01-01

    A sedentary lifestyle and lack of physical activity are well-established risk factors for chronic disease and adverse health outcomes. Thus, there is enormous interest in measuring physical activity in biomedical research. Many consumer physical activity monitors, including Basis Health Tracker, BodyMedia Fit, DirectLife, Fitbit Flex, Fitbit One, Fitbit Zip, Garmin Vivofit, Jawbone UP, MisFit Shine, Nike FuelBand, Polar Loop, Withings Pulse O2, and others have accuracies similar to that of research-grade physical activity monitors for measuring steps. This review focuses on the unprecedented opportunities that consumer physical activity monitors offer for human physiology and pathophysiology research because of their ability to measure activity continuously under real-life conditions and because they are already widely used by consumers. We examine current and potential uses of consumer physical activity monitors as a measuring or monitoring device, or as an intervention in strategies to change behavior and predict health outcomes. The accuracy, reliability, reproducibility, and validity of consumer physical activity monitors are reviewed, as are limitations and challenges associated with using these devices in research. Other topics covered include how smartphone apps and platforms, such as the Apple ResearchKit, can be used in conjunction with consumer physical activity monitors for research. Lastly, the future of consumer physical activity monitors and related technology is considered: pattern recognition, integration of sleep monitors, and other biosensors in combination with new forms of information processing. PMID:28052867

  20. Thermometry, calorimetry, and mean body temperature during heat stress.

    Science.gov (United States)

    Kenny, Glen P; Jay, Ollie

    2013-10-01

    Heat balance in humans is maintained at near constant levels through the adjustment of physiological mechanisms that attain a balance between the heat produced within the body and the heat lost to the environment. Heat balance is easily disturbed during changes in metabolic heat production due to physical activity and/or exposure to a warmer environment. Under such conditions, elevations of skin blood flow and sweating occur via a hypothalamic negative feedback loop to maintain an enhanced rate of dry and evaporative heat loss. Body heat storage and changes in core temperature are a direct result of a thermal imbalance between the rate of heat production and the rate of total heat dissipation to the surrounding environment. The derivation of the change in body heat content is of fundamental importance to the physiologist assessing the exposure of the human body to environmental conditions that result in thermal imbalance. It is generally accepted that the concurrent measurement of the total heat generated by the body and the total heat dissipated to the ambient environment is the most accurate means whereby the change in body heat content can be attained. However, in the absence of calorimetric methods, thermometry is often used to estimate the change in body heat content. This review examines heat exchange during challenges to heat balance associated with progressive elevations in environmental heat load and metabolic rate during exercise. Further, we evaluate the physiological responses associated with heat stress and discuss the thermal and nonthermal influences on the body's ability to dissipate heat from a heat balance perspective.

  1. Convolutional Neural Networks for Human Activity Recognition Using Body-Worn Sensors

    Directory of Open Access Journals (Sweden)

    Fernando Moya Rueda

    2018-05-01

    Full Text Available Human activity recognition (HAR is a classification task for recognizing human movements. Methods of HAR are of great interest as they have become tools for measuring occurrences and durations of human actions, which are the basis of smart assistive technologies and manual processes analysis. Recently, deep neural networks have been deployed for HAR in the context of activities of daily living using multichannel time-series. These time-series are acquired from body-worn devices, which are composed of different types of sensors. The deep architectures process these measurements for finding basic and complex features in human corporal movements, and for classifying them into a set of human actions. As the devices are worn at different parts of the human body, we propose a novel deep neural network for HAR. This network handles sequence measurements from different body-worn devices separately. An evaluation of the architecture is performed on three datasets, the Oportunity, Pamap2, and an industrial dataset, outperforming the state-of-the-art. In addition, different network configurations will also be evaluated. We find that applying convolutions per sensor channel and per body-worn device improves the capabilities of convolutional neural network (CNNs.

  2. Fast detection and modeling of human-body parts from monocular video

    NARCIS (Netherlands)

    Lao, W.; Han, Jungong; With, de P.H.N.; Perales, F.J.; Fisher, R.B.

    2009-01-01

    This paper presents a novel and fast scheme to detect different body parts in human motion. Using monocular video sequences, trajectory estimation and body modeling of moving humans are combined in a co-operating processing architecture. More specifically, for every individual person, features of

  3. DEVELOPMENT OF 2D HUMAN BODY MODELING USING THINNING ALGORITHM

    Directory of Open Access Journals (Sweden)

    K. Srinivasan

    2010-11-01

    Full Text Available Monitoring the behavior and activities of people in Video surveillance has gained more applications in Computer vision. This paper proposes a new approach to model the human body in 2D view for the activity analysis using Thinning algorithm. The first step of this work is Background subtraction which is achieved by the frame differencing algorithm. Thinning algorithm has been used to find the skeleton of the human body. After thinning, the thirteen feature points like terminating points, intersecting points, shoulder, elbow, and knee points have been extracted. Here, this research work attempts to represent the body model in three different ways such as Stick figure model, Patch model and Rectangle body model. The activities of humans have been analyzed with the help of 2D model for the pre-defined poses from the monocular video data. Finally, the time consumption and efficiency of our proposed algorithm have been evaluated.

  4. A finite-element simulation of galvanic coupling intra-body communication based on the whole human body.

    Science.gov (United States)

    Song, Yong; Zhang, Kai; Hao, Qun; Hu, Lanxin; Wang, Jingwen; Shang, Fuzhou

    2012-10-09

    Simulation based on the finite-element (FE) method plays an important role in the investigation of intra-body communication (IBC). In this paper, a finite-element model of the whole body model used for the IBC simulation is proposed and verified, while the FE simulation of the galvanic coupling IBC with different signal transmission paths has been achieved. Firstly, a novel finite-element method for modeling the whole human body is proposed, and a FE model of the whole human body used for IBC simulation was developed. Secondly, the simulations of the galvanic coupling IBC with the different signal transmission paths were implemented. Finally, the feasibility of the proposed method was verified by using in vivo measurements within the frequency range of 10 kHz-5 MHz, whereby some important conclusions were deduced. Our results indicate that the proposed method will offer significant advantages in the investigation of the galvanic coupling intra-body communication.

  5. Effects of MDMA on body temperature in humans

    Science.gov (United States)

    Liechti, Matthias E

    2014-01-01

    Hyperthermia is a severe complication associated with the recreational use of 3,4-methylenedioxymethamphetamine (MDMA, Ecstasy). In this review, the clinical laboratory studies that tested the effects of MDMA on body temperature are summarized. The mechanisms that underlie the hyperthermic effects of MDMA in humans and treatment of severe hyperthermia are presented. The data show that MDMA produces an acute and dose-dependent rise in core body temperature in healthy subjects. The increase in body temperature is in the range of 0.2-0.8°C and does not result in hyperpyrexia (>40°C) in a controlled laboratory setting. However, moderately hyperthermic body temperatures >38.0°C occur frequently at higher doses, even in the absence of physical activity and at room temperature. MDMA primarily releases serotonin and norepinephrine. Mechanistic clinical studies indicate that the MDMA-induced elevations in body temperature in humans partially depend on the MDMA-induced release of norepinephrine and involve enhanced metabolic heat generation and cutaneous vasoconstriction, resulting in impaired heat dissipation. The mediating role of serotonin is unclear. The management of sympathomimetic toxicity and associated hyperthermia mainly includes sedation with benzodiazepines and intravenous fluid replacement. Severe hyperthermia should primarily be treated with additional cooling and mechanical ventilation. PMID:27626046

  6. The construction of human body--from model to reality.

    Science.gov (United States)

    Motoc, A; Motoc, Marilena; Bolintineanu, S; Muşuroi, Corina; Munteanu, M

    2005-01-01

    The human body building represented a complex research topic for the scientist in the most diverse domains. Although their interests and reasons were different, the goal was always the same: establishing a relation to verify the ratio between the dimensions of the constituent segments It appears that the mystery was solved out in the XIX-th century by Adolf Zeising, a German, who, using the statistic calculus, defined the division of a segment by the gold section. This purely mathematic logic confirms the human body's integration in proportion to the finest segments, thus providing the technical instrument of building a fully harmonious human body. The present study aims to compare the ideal, the calculated perfection to the reality, namely the theoretically obtained values to the average values of an 18-year-old male. It appears that the differences refer especially to the limbs; both the superior ones and the inferior ones being longer comparing to the ideal pattern while the bust is shorter and broader.

  7. Air temperature investigation in microenvironment around a human body

    DEFF Research Database (Denmark)

    Licina, Dusan; Melikov, Arsen Krikor; Sekhar, Chandra

    2015-01-01

    The aim of this study is to investigate the temperature boundary layer around a human body in a quiescent indoor environment. The air temperature, mean in time and standard deviation of the temperature fluctuations around a breathing thermal manikin are examined in relation to the room temperature......, body posture and human respiratory flow. To determine to what extent the experiments represent the realistic scenario, the additional experiments were performed with a real human subject. The results show that at a lower room air temperature (20°C), the fluctuations of air temperature increased close...... to the surface of the body. The large standard deviation of air temperature fluctuations, up to 1.2°C, was recorded in the region of the chest, and up to 2.9°C when the exhalation was applied. The manikin leaned backwards increased the air temperature in the breathing zone, which was opposite from the forward...

  8. Measuring Accurate Body Parameters of Dressed Humans with Large-Scale Motion Using a Kinect Sensor

    Directory of Open Access Journals (Sweden)

    Sidan Du

    2013-08-01

    Full Text Available Non-contact human body measurement plays an important role in surveillance, physical healthcare, on-line business and virtual fitting. Current methods for measuring the human body without physical contact usually cannot handle humans wearing clothes, which limits their applicability in public environments. In this paper, we propose an effective solution that can measure accurate parameters of the human body with large-scale motion from a Kinect sensor, assuming that the people are wearing clothes. Because motion can drive clothes attached to the human body loosely or tightly, we adopt a space-time analysis to mine the information across the posture variations. Using this information, we recover the human body, regardless of the effect of clothes, and measure the human body parameters accurately. Experimental results show that our system can perform more accurate parameter estimation on the human body than state-of-the-art methods.

  9. Matrix Intensification Affects Body and Physiological Condition of Tropical Forest-Dependent Passerines.

    Science.gov (United States)

    Deikumah, Justus P; McAlpine, Clive A; Maron, Martine

    2015-01-01

    Matrix land-use intensification is a relatively recent and novel landscape change that can have important influences on the biota within adjacent habitat patches. While there are immediate local changes that it brings about, the influences on individual animals occupying adjacent habitats may be less evident initially. High-intensity land use could induce chronic stress in individuals in nearby remnants, leading ultimately to population declines. We investigated how physiological indicators and body condition measures of tropical forest-dependent birds differ between forest adjacent to surface mining sites and that near farmlands at two distances from remnant edge in southwest Ghana. We used mixed effects models of several condition indices including residual body mass and heterophil to lymphocyte (H/L) ratios (an indicator of elevated chronic stress) to explore the effect of matrix intensity on forest-dependent passerines classed as either sedentary area-sensitive habitat specialists or nomadic generalists. Individual birds occupying tropical forest remnants near surface mining sites were in poorer condition, as indicated by lower residual body mass and elevated chronic stress, compared to those in remnants near agricultural lands. The condition of the sedentary forest habitat specialists white-tailed alethe, Alethe diademata and western olive sunbird, Cyanomitra obscura was most negatively affected by high-intensity surface mining land-use adjacent to remnants, whereas generalist species were not affected. Land use intensification may set in train a new trajectory of faunal relaxation beyond that expected based on habitat loss alone. Patterns of individual condition may be useful in identifying habitats where species population declines may occur before faunal relaxation has concluded.

  10. Persons and their bodies: how we should think about human embryos.

    Science.gov (United States)

    McLachlan, Hugh V

    2002-01-01

    The status of human embryos is discussed particularly in the light of the claim by Fox, in Health Care Analysis 8 that it would be useful to think of them in terms of cyborg metaphors. It is argued that we should consider human embryos for what they are--partially formed human bodies--rather than for what they are like in some respects (and unlike in others)--cyborgs. However to settle the issue of the status of the embryo is not to answer the moral questions which arise concerning how embryos should be treated. Since persons rather than bodies have rights, embryos do not have rights. However, whether or not embryos have rights, people can have duties concerning them. Furthermore, the persons whose fully developed bodies embryos will, might (or might have) become can have rights. Contrary to what is often assumed, it is not merely persons who have (or have had) living, developed human bodies who have moral rights: so it is argued in this paper.

  11. Warm hands, cold heart: progressive whole-body cooling increases warm thermosensitivity of human hands and feet in a dose-dependent fashion.

    Science.gov (United States)

    Filingeri, Davide; Morris, Nathan B; Jay, Ollie

    2017-01-01

    What is the central question of this study? Investigations on inhibitory/facilitatory modulation of vision, touch and pain show that conditioning stimuli outside the receptive field of testing stimuli modulate the central processing of visual, touch and painful stimuli. We asked whether contextual modulation also exists in human temperature integration. What is the main finding and its importance? Progressive decreases in whole-body mean skin temperature (the conditioning stimulus) significantly increased local thermosensitivity to skin warming but not cooling (the testing stimuli) in a dose-dependent fashion. In resembling the central mechanisms underlying endogenous analgesia, our findings point to the existence of an endogenous thermosensory system in humans that could modulate local skin thermal sensitivity to facilitate thermal behaviour. Although inhibitory/facilitatory central modulation of vision and pain has been investigated, contextual modulation of skin temperature integration has not been explored. Hence, we tested whether progressive decreases in whole-body mean skin temperature (T sk ; a large conditioning stimulus) alter the magnitude estimation of local warming and cooling stimuli applied to hairy and glabrous skin. On four separate occasions, eight men (27 ± 5 years old) underwent a 30 min whole-body cooling protocol (water-perfused suit; temperature, 5°C), during which a quantitative thermosensory test, consisting of reporting the perceived magnitude of warming and cooling stimuli (±8°C from 30°C baseline) applied to the hand (palm/dorsum) and foot (sole/dorsum), was performed before cooling and every 10 min thereafter. The cooling protocol resulted in large progressive reductions in T sk [10 min, -3.36°C (95% confidence interval -2.62 to -4.10); 20 min, -5.21°C (-4.47 to -5.95); and 30 min, -6.32°C (-5.58 to -7.05); P fashion. In highlighting a novel feature of human temperature integration, these findings point to the existence

  12. Signal transmission in a human body medium-based body sensor network using a Mach-Zehnder electro-optical sensor.

    Science.gov (United States)

    Song, Yong; Hao, Qun; Zhang, Kai; Wang, Jingwen; Jin, Xuefeng; Sun, He

    2012-11-30

    The signal transmission technology based on the human body medium offers significant advantages in Body Sensor Networks (BSNs) used for healthcare and the other related fields. In previous works we have proposed a novel signal transmission method based on the human body medium using a Mach-Zehnder electro-optical (EO) sensor. In this paper, we present a signal transmission system based on the proposed method, which consists of a transmitter, a Mach-Zehnder EO sensor and a corresponding receiving circuit. Meanwhile, in order to verify the frequency response properties and determine the suitable parameters of the developed system, in-vivo measurements have been implemented under conditions of different carrier frequencies, baseband frequencies and signal transmission paths. Results indicate that the proposed system will help to achieve reliable and high speed signal transmission of BSN based on the human body medium.

  13. Green perspectives for public health: a narrative review on the physiological effects of experiencing outdoor nature.

    Science.gov (United States)

    Haluza, Daniela; Schönbauer, Regina; Cervinka, Renate

    2014-05-19

    Natural environments offer a high potential for human well-being, restoration and stress recovery in terms of allostatic load. A growing body of literature is investigating psychological and physiological health benefits of contact with Nature. So far, a synthesis of physiological health outcomes of direct outdoor nature experiences and its potential for improving Public Health is missing. We were interested in summarizing the outcomes of studies that investigated physiological outcomes of experiencing Nature measuring at least one physiological parameter during the last two decades. Studies on effects of indoor or simulated Nature exposure via videos or photos, animal contact, and wood as building material were excluded from further analysis. As an online literature research delivered heterogeneous data inappropriate for quantitative synthesis approaches, we descriptively summarized and narratively synthesized studies. The procedure started with 1,187 titles. Research articles in English language published in international peer-reviewed journals that investigated the effects of natural outdoor environments on humans by were included. We identified 17 relevant articles reporting on effects of Nature by measuring 20 different physiological parameters. We assigned these parameters to one of the four body systems brain activity, cardiovascular system, endocrine system, and immune function. These studies reported mainly direct and positive effects, however, our analyses revealed heterogeneous outcomes regarding significance of results. Most of the studies were conducted in Japan, based on quite small samples, predominantly with male students as participants in a cross-sectional design. In general, our narrative review provided an ambiguous illustration of the effects outdoor nature exerted on physiological parameters. However, the majority of studies reported significant positive effects. A harmonizing effect of Nature, especially on physiological stress reactions, was

  14. Green Perspectives for Public Health: A Narrative Review on the Physiological Effects of Experiencing Outdoor Nature

    Directory of Open Access Journals (Sweden)

    Daniela Haluza

    2014-05-01

    Full Text Available Natural environments offer a high potential for human well-being, restoration and stress recovery in terms of allostatic load. A growing body of literature is investigating psychological and physiological health benefits of contact with Nature. So far, a synthesis of physiological health outcomes of direct outdoor nature experiences and its potential for improving Public Health is missing. We were interested in summarizing the outcomes of studies that investigated physiological outcomes of experiencing Nature measuring at least one physiological parameter during the last two decades. Studies on effects of indoor or simulated Nature exposure via videos or photos, animal contact, and wood as building material were excluded from further analysis. As an online literature research delivered heterogeneous data inappropriate for quantitative synthesis approaches, we descriptively summarized and narratively synthesized studies. The procedure started with 1,187 titles. Research articles in English language published in international peer-reviewed journals that investigated the effects of natural outdoor environments on humans by were included. We identified 17 relevant articles reporting on effects of Nature by measuring 20 different physiological parameters. We assigned these parameters to one of the four body systems brain activity, cardiovascular system, endocrine system, and immune function. These studies reported mainly direct and positive effects, however, our analyses revealed heterogeneous outcomes regarding significance of results. Most of the studies were conducted in Japan, based on quite small samples, predominantly with male students as participants in a cross-sectional design. In general, our narrative review provided an ambiguous illustration of the effects outdoor nature exerted on physiological parameters. However, the majority of studies reported significant positive effects. A harmonizing effect of Nature, especially on physiological

  15. Physiological basis for human autonomic rhythms

    Science.gov (United States)

    Eckberg, D. L.

    2000-01-01

    Oscillations of arterial pressures, heart periods, and muscle sympathetic nerve activity have been studied intensively in recent years to explore otherwise obscure human neurophysiological mechanisms. The best-studied rhythms are those occurring at breathing frequencies. Published evidence indicates that respiratory fluctuations of muscle sympathetic nerve activity and electrocardiographic R-R intervals result primarily from the action of a central 'gate' that opens during expiration and closes during inspiration. Parallel respiratory fluctuations of arterial pressures and R-R intervals are thought to be secondary to arterial baroreflex physiology: changes in systolic pressure provoke changes in the R-R interval. However, growing evidence suggests that these parallel oscillations result from the influence of respiration on sympathetic and vagal-cardiac motoneurones rather than from baroreflex physiology. There is a rapidly growing literature on the use of mathematical models of low- and high-frequency (respiratory) R-R interval fluctuations in characterizing instantaneous 'sympathovagal balance'. The case for this approach is based primarily on measurements made with patients in upright tilt. However, the strong linear relation between such measures as the ratio of low- to high-frequency R-R interval oscillations and the angle of the tilt reflects exclusively the reductions of the vagal (high-frequency) component. As the sympathetic component does not change in tilt, the low- to high-frequency R-R interval ratio provides no proof that sympathetic activity increases. Moreover, the validity of extrapolating from measurements performed during upright tilt to measurements during supine rest has not been established. Nonetheless, it is clear that measures of heart rate variability provide important prognostic information in patients with cardiovascular diseases. It is not known whether reduced heart rate variability is merely a marker for the severity of disease or a

  16. The menagerie of human lipocalins: a natural protein scaffold for molecular recognition of physiological compounds.

    Science.gov (United States)

    Schiefner, André; Skerra, Arne

    2015-04-21

    all higher organisms, physiologically important members of this family have long been known in the human body, for example with the plasma retinol-binding protein that serves for the transport of vitamin A. This prototypic human lipocalin was the first for which a crystal structure was solved. Notably, several other lipocalins were discovered and assigned to this protein class before the term itself became familiar, which explains their diverse names in the scientific literature. To date, up to 15 distinct members of the lipocalin family have been characterized in humans, and during the last two decades the three-dimensional structures of a dozen major subtypes have been elucidated. This Account presents a comprehensive overview of the human lipocalins, revealing common structural principles but also deviations that explain individual functional features. Taking advantage of modern methods for combinatorial protein design, lipocalins have also been employed as scaffolds for the construction of artifical binding proteins with novel ligand specificities, so-called Anticalins, hence opening perspectives as a new class of biopharmaceuticals for medical therapy.

  17. Selenoproteins in human body: focus on thyroid pathophysiology.

    Science.gov (United States)

    Valea, Ana; Georgescu, Carmen Emanuela

    2018-06-05

    Selenium (Se) has a multilevel, complex and dynamic effect on the human body as a major component of selenocysteine, incorporated into selenoproteins, which include the selenocysteine-containing enzymes iodothyronine deiodinases. At the thyroid level, these proteins play an essential role in antioxidant protection and hormone metabolism. This is a narrative review based on PubMed/Medline database research regarding thyroid physiology and conditions with Se and Se-protein interferences. In humans, Se-dependent enzyme functions are best expressed through optimal Se intake, although there is gap in our knowledge concerning the precise mechanisms underlying the interrelation. There is a good level of evidence linking low serum Se to autoimmune thyroid diseases and, to a lesser extent, differentiated thyroid cancer. However, when it comes to routine supplementation, the results are heterogeneous, except in the case of mild Graves' orbitopathy. Autoimmune hypothyroidism is associated with a state of higher oxidative stress, but not all studies found an improvement of thyroid function after Se was introduced as antioxidant support. Meanwhile, no routine supplementation is recommended. Low Se intake is correlated with an increased risk of developing antithyroid antibodies, its supplementation decreasing their titres; there is also a potential reduction in levothyroxine replacement dose required for hypothyroidism and/or the possibility that it prevents progression of subclinical hypothyroidism, although not all studies agree. In thyroid-associated orbitopathy, euthyroidism is more rapidly achieved if the micronutrient is added to traditional drugs, while controls appear to benefit from the microelement only if they are deficient; thus, a basal assay of Se appears advisable to better select patients who need substitution. Clearly, further Se status biomarkers are required. Future introduction of individual supplementation algorithms based on baseline micronutrient levels

  18. [Physiological features of skin ageing in human].

    Science.gov (United States)

    Tikhonova, I V; Tankanag, A V; Chemeris, N K

    2013-01-01

    The issue deals with the actual problem of gerontology, notably physiological features of human skin ageing. In the present review the authors have considered the kinds of ageing, central factors, affected on the ageing process (ultraviolet radiation and oxidation stress), as well as the research guidelines of the ageing changes in the skin structure and fuctions: study of mechanical properties, microcirculation, pH and skin thickness. The special attention has been payed to the methods of assessment of skin blood flow, and to results of investigations of age features of peripheral microhemodynamics. The laser Doppler flowmetry technique - one of the modern, noninvasive and extensively used methods for the assessmant of skin blood flow microcirculation system has been expanded in the review. The main results of the study of the ageing changes of skin blood perfusion using this method has been also presented.

  19. Transcriptomics resources of human tissues and organs

    DEFF Research Database (Denmark)

    Uhlén, Mathias; Hallström, Björn M.; Lindskog, Cecilia

    2016-01-01

    a framework for defining the molecular constituents of the human body as well as for generating comprehensive lists of proteins expressed across tissues or in a tissue-restricted manner. Here, we review publicly available human transcriptome resources and discuss body-wide data from independent genome......Quantifying the differential expression of genes in various human organs, tissues, and cell types is vital to understand human physiology and disease. Recently, several large-scale transcriptomics studies have analyzed the expression of protein-coding genes across tissues. These datasets provide...

  20. More-Realistic Digital Modeling of a Human Body

    Science.gov (United States)

    Rogge, Renee

    2010-01-01

    A MATLAB computer program has been written to enable improved (relative to an older program) modeling of a human body for purposes of designing space suits and other hardware with which an astronaut must interact. The older program implements a kinematic model based on traditional anthropometric measurements that do provide important volume and surface information. The present program generates a three-dimensional (3D) whole-body model from 3D body-scan data. The program utilizes thin-plate spline theory to reposition the model without need for additional scans.

  1. Intellectual property rights and detached human body parts.

    Science.gov (United States)

    Pila, Justine

    2014-01-01

    This paper responds to an invitation by the editors to consider whether the intellectual property (IP) regime suggests an appropriate model for protecting interests in detached human body parts. It begins by outlining the extent of existing IP protection for body parts in Europe, and the relevant strengths and weaknesses of the patent system in that regard. It then considers two further species of IP right of less obvious relevance. The first are the statutory rights of ownership conferred by domestic UK law in respect of employee inventions, and the second are the economic and moral rights recognised by European and international law in respect of authorial works. In the argument made, both of these species of IP right may suggest more appropriate models of sui generis protection for detached human body parts than patent rights because of their capacity better to accommodate the relevant public and private interests in respect of the same.

  2. Perspective of the Human Body in Sasang Constitutional Medicine

    Directory of Open Access Journals (Sweden)

    Junhee Lee

    2009-01-01

    Full Text Available The Sasang constitutional medicine (SCM, a medical tradition originating from Korea, is distinguished from the traditional Chinese medicine in its philosophical background, theoretical development and especially, the fundamental rationale that analyzes the structure and function of the human body within a quadrifocal scheme. In SCM, the structure of the body is comprehended within the Sasang quadrifocal scheme, and the function of the body is understood within the context of the energy-fluid metabolism and the water-food metabolism controlled by the four main organs (lung, spleen, liver and kidney. Also, the concept of Seong-Jeong is used to explain the structural and functional variations between different constitutional types that arise from the constitutional variations in organ system scheme, which are in turn caused by deviations in the constitutional Seong-Jeong. Therefore, understanding the SCM perspective of the human body is essential in order to fully appreciate the advantages of the constitutional typological system (which focuses on individual idiosyncrasies found in SCM.

  3. Resourcifying human bodies--Kant and bioethics.

    Science.gov (United States)

    Miyasaka, Michio

    2005-01-01

    This essay roughly sketches two major conceptions of autonomy in contemporary bioethics that promote the resourcification of human body parts: (1) a narrow conception of autonomy as self-determination; and (2) the conception of autonomy as dissociated from human dignity. In this paper I will argue that, on the one hand, these two conceptions are very different from that found in the modern European tradition of philosophical inquiry, because bioethics has concentrated on an external account of patient's self-determination and on dissociating dignity from internal human nature. However, on the other hand, they are consistent with more recent European philosophy. In this more recent tradition, human dignity has gradually been dissociated from contextual values, and human subjectivity has been dissociated from objectivity and absolutized as never to be objectified. In the concluding part, I will give a speculative sketch in which Kant's internal inquiry of maxim of ends, causality and end, and dignity as iirreplaceability is recombined with bioethics' externalized one and used to support an extended human resourcification.

  4. Body maps on the human genome.

    Science.gov (United States)

    Cherniak, Christopher; Rodriguez-Esteban, Raul

    2013-12-20

    Chromosomes have territories, or preferred locales, in the cell nucleus. When these sites are taken into account, some large-scale structure of the human genome emerges. The synoptic picture is that genes highly expressed in particular topologically compact tissues are not randomly distributed on the genome. Rather, such tissue-specific genes tend to map somatotopically onto the complete chromosome set. They seem to form a "genome homunculus": a multi-dimensional, genome-wide body representation extending across chromosome territories of the entire spermcell nucleus. The antero-posterior axis of the body significantly corresponds to the head-tail axis of the nucleus, and the dorso-ventral body axis to the central-peripheral nucleus axis. This large-scale genomic structure includes thousands of genes. One rationale for a homuncular genome structure would be to minimize connection costs in genetic networks. Somatotopic maps in cerebral cortex have been reported for over a century.

  5. A DXA Whole Body Composition Cross-Calibration Experience: Evaluation With Humans, Spine, and Whole Body Phantoms.

    Science.gov (United States)

    Krueger, Diane; Libber, Jessie; Sanfilippo, Jennifer; Yu, Hui Jing; Horvath, Blaine; Miller, Colin G; Binkley, Neil

    2016-01-01

    New densitometer installation requires cross-calibration for accurate longitudinal assessment. When replacing a unit with the same model, the International Society for Clinical Densitometry recommends cross-calibrating by scanning phantoms 10 times on each instrument and states that spine bone mineral density (BMD) should be within 1%, whereas total body lean, fat, and %fat mass should be within 2% of the prior instrument. However, there is limited validation that these recommendations provide adequate total body cross-calibration. Here, we report a total body cross-calibration experience with phantoms and humans. Cross-calibration between an existing and new Lunar iDXA was performed using 3 encapsulated spine phantoms (GE [GE Lunar, Madison, WI], BioClinica [BioClinica Inc, Princeton, NJ], and Hologic [Hologic Inc, Bedford, MA]), 1 total body composition phantom (BioClinica), and 30 human volunteers. Thirty scans of each phantom and a total body scan of human volunteers were obtained on each instrument. All spine phantom BMD means were similar (within 1%; g/cm2 bias) between the existing and new dual-energy X-ray absorptiometry unit. The BioClinica body composition phantom (BBCP) BMD and bone mineral content (BMC) values were within 2% with biases of 0.005 g/cm2 and -3.4 g. However, lean and fat mass and %fat differed by 4.6%-7.7% with biases of +463 g, -496 g, and -2.8%, respectively. In vivo comparison supported BBCP data; BMD and BMC were within ∼2%, but lean and fat mass and %fat differed from 1.6% to 4.9% with biases of +833 g, -860 g, and -1.1%. As all body composition comparisons exceeded the recommended 2%, the new densitometer was recalibrated. After recalibration, in vivo bias was lower (g, respectively. Similarly, BBCP lean and fat agreement improved. In conclusion, the BBCP behaves similarly, but not identical, to human in vivo measurements for densitometer cross-calibration. Spine phantoms, despite good BMD and BMC agreement, did not detect

  6. Half-life of each dioxin and PCB congener in the human body

    Energy Technology Data Exchange (ETDEWEB)

    Ogura, Isamura [National Institute of Advanced Industrial Science and Technology, Tsukuba (Japan)

    2004-09-15

    It is well known that dioxin and PCB congeners accumulate in the human body. For assessing their toxicological risk, it is important to know the half-life of each congener in the human body. This study summarizes the overall half-lives of congeners in humans as reported in the literature, and compares them with the half-lives due to fecal and sebum excretions, as estimated by data on the concentrations of congeners in feces and sebum in the literature. In addition, the overall half-lives of congeners for the general Japanese population were estimated from the data on dietary intakes and concentrations in the human body reported by the municipalities.

  7. Audio-Tutorial Project: An Audio-Tutorial Approach to Human Anatomy and Physiology.

    Science.gov (United States)

    Muzio, Joseph N.; And Others

    A two course sequence on human anatomy and physiology using the audiotutorial method of instruction was developed for use by nursing students and other students in the health or medical fields at the Kingsborough Community College in New York. The project was motivated by the problems of often underprepared students coming to learn a new field and…

  8. Teaching practices epistemologically differentiated about human body learning

    Directory of Open Access Journals (Sweden)

    Rosália Maria Ribeiro de Aragão

    2011-12-01

    Full Text Available How could we teach about THE HUMAN BODY as a different way, in both epistemological and pedagogical approaches? How could we leave behind stagnant as well as stagnating aspects of traditional way of teaching, such as the fragmentation/segmentation of contents, the far away reality, the excessive use of details or else, whenever learning about our own body? These are some of the questions we have considered when trying to escape the bad influence which came from our "environment formation" - putting it on all the marks we have acquired inside or even outside school - trying to overview as meaning our body working...in constant interaction with the surrounding ambient. Among those pointed kind of formation marks we frequently acquire from studying at the University - which need to be transcended —here we come to detach those innumerable contacts with both anatomized and misfigurated supposed human bodies' which didn't even look like actual human bodies, because they could never seem to have sheltered life inside themselves. They were inert as well as static bodies, only used as a such of vain "didactic materials" that could/can permit many teachers on their educational formation to focus a certain teaching approach which only seeks both the students' memorization of an infinitude of "complicated words", and to structure the systems -by several procedures of nouns definition and/or classification - as part of the so called biological organism. In order to do a different way of teaching, we have based our approach on three alternative teaching methodologies which focus these matters under a constructive perspective. On those three focused studies, it is possible to observe that some very principles of a present day teaching approach were there considered to achieve some of them: the respect for the students' previous ideas; the understanding about knowledge as something that is not established for good but as ever changeable and, at last, the

  9. Human Activity Recognition from Body Sensor Data using Deep Learning.

    Science.gov (United States)

    Hassan, Mohammad Mehedi; Huda, Shamsul; Uddin, Md Zia; Almogren, Ahmad; Alrubaian, Majed

    2018-04-16

    In recent years, human activity recognition from body sensor data or wearable sensor data has become a considerable research attention from academia and health industry. This research can be useful for various e-health applications such as monitoring elderly and physical impaired people at Smart home to improve their rehabilitation processes. However, it is not easy to accurately and automatically recognize physical human activity through wearable sensors due to the complexity and variety of body activities. In this paper, we address the human activity recognition problem as a classification problem using wearable body sensor data. In particular, we propose to utilize a Deep Belief Network (DBN) model for successful human activity recognition. First, we extract the important initial features from the raw body sensor data. Then, a kernel principal component analysis (KPCA) and linear discriminant analysis (LDA) are performed to further process the features and make them more robust to be useful for fast activity recognition. Finally, the DBN is trained by these features. Various experiments were performed on a real-world wearable sensor dataset to verify the effectiveness of the deep learning algorithm. The results show that the proposed DBN outperformed other algorithms and achieves satisfactory activity recognition performance.

  10. Quasi-static modeling of human limb for intra-body communications with experiments.

    Science.gov (United States)

    Pun, Sio Hang; Gao, Yue Ming; Mak, PengUn; Vai, Mang I; Du, Min

    2011-11-01

    In recent years, the increasing number of wearable devices on human has been witnessed as a trend. These devices can serve for many purposes: personal entertainment, communication, emergency mission, health care supervision, delivery, etc. Sharing information among the devices scattered across the human body requires a body area network (BAN) and body sensor network (BSN). However, implementation of the BAN/BSN with the conventional wireless technologies cannot give optimal result. It is mainly because the high requirements of light weight, miniature, energy efficiency, security, and less electromagnetic interference greatly limit the resources available for the communication modules. The newly developed intra-body communication (IBC) can alleviate most of the mentioned problems. This technique, which employs the human body as a communication channel, could be an innovative networking method for sensors and devices on the human body. In order to encourage the research and development of the IBC, the authors are favorable to lay a better and more formal theoretical foundation on IBC. They propose a multilayer mathematical model using volume conductor theory for galvanic coupling IBC on a human limb with consideration on the inhomogeneous properties of human tissue. By introducing and checking with quasi-static approximation criteria, Maxwell's equations are decoupled and capacitance effect is included to the governing equation for further improvement. Finally, the accuracy and potential of the model are examined from both in vitro and in vivo experimental results.

  11. Exploring the human body space: A geographical information system based anatomical atlas

    Directory of Open Access Journals (Sweden)

    Antonio Barbeito

    2016-06-01

    Full Text Available Anatomical atlases allow mapping the anatomical structures of the human body. Early versions of these systems consisted of analogical representations with informative text and labeled images of the human body. With computer systems, digital versions emerged and the third and fourth dimensions were introduced. Consequently, these systems increased their efficiency, allowing more realistic visualizations with improved interactivity and functionality. The 4D atlases allow modeling changes over time on the structures represented. The anatomical atlases based on geographic information system (GIS environments allow the creation of platforms with a high degree of interactivity and new tools to explore and analyze the human body. In this study we expand the functions of a human body representation system by creating new vector data, topology, functions, and an improved user interface. The new prototype emulates a 3D GIS with a topological model of the human body, replicates the information provided by anatomical atlases, and provides a higher level of functionality and interactivity. At this stage, the developed system is intended to be used as an educational tool and integrates into the same interface the typical representations of surface and sectional atlases.

  12. Gender recognition from unconstrained and articulated human body.

    Science.gov (United States)

    Wu, Qin; Guo, Guodong

    2014-01-01

    Gender recognition has many useful applications, ranging from business intelligence to image search and social activity analysis. Traditional research on gender recognition focuses on face images in a constrained environment. This paper proposes a method for gender recognition in articulated human body images acquired from an unconstrained environment in the real world. A systematic study of some critical issues in body-based gender recognition, such as which body parts are informative, how many body parts are needed to combine together, and what representations are good for articulated body-based gender recognition, is also presented. This paper also pursues data fusion schemes and efficient feature dimensionality reduction based on the partial least squares estimation. Extensive experiments are performed on two unconstrained databases which have not been explored before for gender recognition.

  13. Gender Recognition from Unconstrained and Articulated Human Body

    Science.gov (United States)

    Wu, Qin; Guo, Guodong

    2014-01-01

    Gender recognition has many useful applications, ranging from business intelligence to image search and social activity analysis. Traditional research on gender recognition focuses on face images in a constrained environment. This paper proposes a method for gender recognition in articulated human body images acquired from an unconstrained environment in the real world. A systematic study of some critical issues in body-based gender recognition, such as which body parts are informative, how many body parts are needed to combine together, and what representations are good for articulated body-based gender recognition, is also presented. This paper also pursues data fusion schemes and efficient feature dimensionality reduction based on the partial least squares estimation. Extensive experiments are performed on two unconstrained databases which have not been explored before for gender recognition. PMID:24977203

  14. CAD Design of Human Male Body for Mass–Inertial Characteristics Studies

    Directory of Open Access Journals (Sweden)

    Nikolova Gergana

    2018-01-01

    Full Text Available The aim of the present research is to present a 16-segmental biomechanical model of the Bulgarian male to determine the mass-inertial characteristics of the body of the Bulgarian male based on parameters available in the literature and its 3D generation within SolidWorks software. The motivation of the research is to support mainly sport, rehabilitation, wearable robots and furniture design users. The proposed CAD model of the human body of men is verified against the analytical results from our previous investigation, as well as through comparison with data available in the provided references. In this paper we model two basic human body positions: standing position and sitting with thighs elevated. The comparison performed between our model results and data reported in literature gives us confidence that this model can be reliably used to calculate the mass-inertial characteristics of male body at any postures of the body that is of interest. Therefore, our model can be used to obtain data for positions which the human body has to take in everyday live, in sport, leisure, including space exploration, for investigating criminology cases – body fall, car crash, etc. The model is suitable for performing computer simulation in robotics, medicine, sport and other areas.

  15. Mathematical human body modelling for impact loading

    NARCIS (Netherlands)

    Happee, R.; Morsink, P.L.J.; Wismans, J.S.H.M.

    1999-01-01

    Mathematical modelling of the human body is widely used for automotive crash safety research and design. Simulations have contributed to a reduction of injury numbers by optimisation of vehicle structures and restraint systems. Currently such simulations are largely performed using occupant models

  16. Multi-modal RGB–Depth–Thermal Human Body Segmentation

    DEFF Research Database (Denmark)

    Palmero, Cristina; Clapés, Albert; Bahnsen, Chris

    2016-01-01

    This work addresses the problem of human body segmentation from multi-modal visual cues as a first stage of automatic human behavior analysis. We propose a novel RGB-Depth-Thermal dataset along with a multi-modal seg- mentation baseline. The several modalities are registered us- ing a calibration...... to other state-of-the-art meth- ods, obtaining an overlap above 75% on the novel dataset when compared to the manually annotated ground-truth of human segmentations....

  17. Matrix Intensification Affects Body and Physiological Condition of Tropical Forest-Dependent Passerines.

    Directory of Open Access Journals (Sweden)

    Justus P Deikumah

    Full Text Available Matrix land-use intensification is a relatively recent and novel landscape change that can have important influences on the biota within adjacent habitat patches. While there are immediate local changes that it brings about, the influences on individual animals occupying adjacent habitats may be less evident initially. High-intensity land use could induce chronic stress in individuals in nearby remnants, leading ultimately to population declines. We investigated how physiological indicators and body condition measures of tropical forest-dependent birds differ between forest adjacent to surface mining sites and that near farmlands at two distances from remnant edge in southwest Ghana. We used mixed effects models of several condition indices including residual body mass and heterophil to lymphocyte (H/L ratios (an indicator of elevated chronic stress to explore the effect of matrix intensity on forest-dependent passerines classed as either sedentary area-sensitive habitat specialists or nomadic generalists. Individual birds occupying tropical forest remnants near surface mining sites were in poorer condition, as indicated by lower residual body mass and elevated chronic stress, compared to those in remnants near agricultural lands. The condition of the sedentary forest habitat specialists white-tailed alethe, Alethe diademata and western olive sunbird, Cyanomitra obscura was most negatively affected by high-intensity surface mining land-use adjacent to remnants, whereas generalist species were not affected. Land use intensification may set in train a new trajectory of faunal relaxation beyond that expected based on habitat loss alone. Patterns of individual condition may be useful in identifying habitats where species population declines may occur before faunal relaxation has concluded.

  18. Modeling and characterization of different channels based on human body communication.

    Science.gov (United States)

    Jingzhen Li; Zedong Nie; Yuhang Liu; Lei Wang

    2017-07-01

    Human body communication (HBC), which uses the human body as a transmission medium for electrical signals, provides a prospective communication solution for body sensor networks (BSNs). In this paper, an inhomogeneous model which includes the tissue layers of skin, fat, and muscle is proposed to study the propagation characteristics of different HBC channels. Specifically, the HBC channels, namely, the on-body to on-body (OB-OB)channel, on-body to in-body (OB-IB) channel, in-body to on-body (IB-OB) channel, and in-body to in-body (IB-IB)channel, are studied over different frequencies (from 1MHz to 100MHz) through numerical simulations with finite-difference time-domain (FDTD) method. The results show that the gain of OB-IB channel and IB-OB channel is almost the same. The gain of IB-IB channel is greater than other channels in the frequency range 1MHz to 70MHz. In addition, the gain of all channels is associated with the channel length and communication frequency. The simulations are verified by experimental measurements in a porcine tissue sample. The results show that the simulations are in agreement with the measurements.

  19. Physiological markers of motor inhibition during human behavior

    Science.gov (United States)

    Duque, Julie; Greenhouse, Ian; Labruna, Ludovica; Ivry, Richard B.

    2017-01-01

    Transcranial magnetic stimulation (TMS) studies in humans have shown that many behaviors engage processes that suppress excitability within the corticospinal tract. Inhibition of the motor output pathway has been extensively studied in the context of action stopping, where a planned movement needs to be abruptly aborted. Recent TMS work has also revealed markers of motor inhibition during the preparation of movement. Here, we review the evidence for motor inhibition during action stopping and action preparation, focusing on studies that have used TMS to monitor changes in the excitability of the corticospinal pathway. We discuss how these physiological results have motivated theoretical models of how the brain selects actions, regulates movement initiation and execution, and switches from one state to another. PMID:28341235

  20. Dynamics of food availability, body condition and physiological stress response in breeding Black-legged Kittiwakes

    Science.gov (United States)

    Kitaysky, A.S.; Wingfield, J.C.; Piatt, John F.

    1999-01-01

    1. The seasonal dynamics of body condition (BC), circulating corticosterone levels (baseline, BL) and the adrenocortical response to acute stress (SR) were examined in long-lived Black-legged Kittiwakes, Rissa tridactyla, breeding at Duck (food-poor colony) and Gull (food-rich colony) Islands in lower Cook Inlet, Alaska. It was tested whether the dynamics of corticosterone levels reflect a seasonal change in bird physiological condition due to reproduction and/or variation in foraging conditions. 2. BC declined seasonally, and the decline was more pronounced in birds at the food-poor colony. BL and SR levels of corticosterone rose steadily through the reproductive season, and BL levels were significantly higher in birds on Duck island compared with those on Gull Island. During the egg-laying and chick-rearing stages, birds had lower SR on Duck Island than on Gull Island. 3. The results suggest that, in addition to a seasonal change in bird physiology during reproduction, local ecological factors such as food availability affect circulating levels of corticosterone and adrenal response to acute stress.

  1. ['Anatomia actuosa et apta'. The mechanist 'proto'-physiology of B.S. Albinus].

    Science.gov (United States)

    van der Korst, J K

    1993-01-01

    Already during his tenure as professor of anatomy and surgery (1721-1746) and before he became a professor of physiology and medicine at the University of Leiden, Bernard Siegfried Albinus held private lecture courses on physiology. In these lectures he pleaded for a separation of physiology from theoretical medicine, which was still its customary place in the medical curriculum of the first half of the eighteenth century. According to Albinus, physiology was a science in its own right and should be solely based on the careful observation of forms and structures of the human body. From the 'fabrica', the function ('aptitudo') could be derived by careful reasoning. As shown by a set of lecture notes, which recently came to light, Albinus adhered, initially, to a strictly mechanistic explanatory model, which was almost completely based on the physiological concepts of Herman Boerhaave. However, in contrast to the latter, he even rejected the involvement of chemical processes in digestion. Although his lectures were highly acclaimed as demonstrations of minute anatomy, Albinus met with little or no direct response in regard to his concept of physiology.

  2. Physiological determinants of human acute hypoxia tolerance.

    Science.gov (United States)

    2013-11-01

    AbstractIntroduction. We investigated possible physiological determinants of variability in hypoxia tolerance in subjects given a 5-minute normobaric exposure to 25,000 ft equivalent. Physiological tolerance to hypoxia was defined as the magnitude of...

  3. Genetic variability of environmental sensitivity revealed by phenotypic variation in body weight and (its correlations to physiological and behavioral traits.

    Directory of Open Access Journals (Sweden)

    Delphine Lallias

    Full Text Available Adaptive phenotypic plasticity is a key component of the ability of organisms to cope with changing environmental conditions. Fish have been shown to exhibit a substantial level of phenotypic plasticity in response to abiotic and biotic factors. In the present study, we investigate the link between environmental sensitivity assessed globally (revealed by phenotypic variation in body weight and more targeted physiological and behavioral indicators that are generally used to assess the sensitivity of a fish to environmental stressors. We took advantage of original biological material, the rainbow trout isogenic lines, which allowed the disentangling of the genetic and environmental parts of the phenotypic variance. Ten lines were characterized for the changes of body weight variability (weight measurements taken every month during 18 months, the plasma cortisol response to confinement stress (3 challenges and a set of selected behavioral indicators. This study unambiguously demonstrated the existence of genetic determinism of environmental sensitivity, with some lines being particularly sensitive to environmental fluctuations and others rather insensitive. Correlations between coefficient of variation (CV for body weight and behavioral and physiological traits were observed. This confirmed that CV for body weight could be used as an indicator of environmental sensitivity. As the relationship between indicators (CV weight, risk-taking, exploration and cortisol was shown to be likely depending on the nature and intensity of the stressor, the joint use of several indicators should help to investigate the biological complexity of environmental sensitivity.

  4. Effects of face/head and whole body cooling during passive heat stress on human somatosensory processing.

    Science.gov (United States)

    Nakata, Hiroki; Namba, Mari; Kakigi, Ryusuke; Shibasaki, Manabu

    2017-06-01

    We herein investigated the effects of face/head and whole body cooling during passive heat stress on human somatosensory processing recorded by somatosensory-evoked potentials (SEPs) at C4' and Fz electrodes. Fourteen healthy subjects received a median nerve stimulation at the left wrist. SEPs were recorded at normothermic baseline (Rest), when esophageal temperature had increased by ~1.2°C (heat stress: HS) during passive heating, face/head cooling during passive heating (face/head cooling: FHC), and after HS (whole body cooling: WBC). The latencies and amplitudes of P14, N20, P25, N35, P45, and N60 at C4' and P14, N18, P22, and N30 at Fz were evaluated. Latency indicated speed of the subcortical and cortical somatosensory processing, while amplitude reflected the strength of neural activity. Blood flow in the internal and common carotid arteries (ICA and CCA, respectively) and psychological comfort were recorded in each session. Increases in esophageal temperature due to HS significantly decreased the amplitude of N60, psychological comfort, and ICA blood flow in the HS session, and also shortened the latencies of SEPs (all, P body temperature. Copyright © 2017 the American Physiological Society.

  5. Investigation of the effects of human body stability on joint angles’ prediction

    International Nuclear Information System (INIS)

    Pasha Zanoosi, A. A.; Naderi, D.; Sadeghi-Mehr, M.; Feri, M.; Beheshtiha, A. Sh.; Fallahnejad, K.

    2015-01-01

    Loosing stability control in elderly or paralyzed has motivated researchers to study how a stability control system works and how to determine its state at every time instant. Studying the stability of a human body is not only an important problem from a scientific viewpoint, but also finally leads to new designs of prostheses and orthoses and rehabilitation methods. Computer modeling enables researchers to study and describe the reactions and propose a suitable and optimized motion pattern to strengthen the neuromuscular system and helps a human body maintain its stability. A perturbation as a tilting is exposed to an underfoot plate of a musculoskeletal model of the body to study the stability. The studied model of a human body included four links and three degrees of freedom with eight muscles in the sagittal plane. Lagrangian dynamics was used for deriving equations of motion and muscles were modeled using Hill’s model. Using experimental data of joint trajectories for a human body under tilting perturbation, forward dynamics has been applied to predict joint trajectories and muscle activation. This study investigated the effects of stability on predicting body joints’ motion. A new stability function for a human body, based on the zero moment point, has been employed in a forward dynamics procedure using a direct collocation method. A multi-objective optimization based on genetic algorithm has been proposed to employ stability as a robotic objective function along with muscle stresses as a biological objective function. The obtained results for joints’ motion were compared to experimental data. The results show that, for this type of perturbations, muscle stresses are in conflict with body stability. This means that more body stability requires more stresses in muscles and reverse. Results also show the effects of the stability objective function in better prediction of joint trajectories

  6. Investigation of the effects of human body stability on joint angles’ prediction

    Energy Technology Data Exchange (ETDEWEB)

    Pasha Zanoosi, A. A., E-mail: aliakbar.pasha@yahoo.com, E-mail: aliakbar.pasha@qiau.ac.ir [Islamic Azad University, Faculty of Industrial & Mechanical Engineering, Qazvin Branch (Iran, Islamic Republic of); Naderi, D.; Sadeghi-Mehr, M.; Feri, M. [Bu Ali-Sina University, Mechanical Engineering Department, Faculty of Engineering (Iran, Islamic Republic of); Beheshtiha, A. Sh. [Leibniz Universität Hannover, Institute of Mechanics and Computational Mechanics (Germany); Fallahnejad, K. [Flinders University, Discipline of Mechanical Engineering, School of Computer Science, Engineering and Mathematics (Australia)

    2015-10-15

    Loosing stability control in elderly or paralyzed has motivated researchers to study how a stability control system works and how to determine its state at every time instant. Studying the stability of a human body is not only an important problem from a scientific viewpoint, but also finally leads to new designs of prostheses and orthoses and rehabilitation methods. Computer modeling enables researchers to study and describe the reactions and propose a suitable and optimized motion pattern to strengthen the neuromuscular system and helps a human body maintain its stability. A perturbation as a tilting is exposed to an underfoot plate of a musculoskeletal model of the body to study the stability. The studied model of a human body included four links and three degrees of freedom with eight muscles in the sagittal plane. Lagrangian dynamics was used for deriving equations of motion and muscles were modeled using Hill’s model. Using experimental data of joint trajectories for a human body under tilting perturbation, forward dynamics has been applied to predict joint trajectories and muscle activation. This study investigated the effects of stability on predicting body joints’ motion. A new stability function for a human body, based on the zero moment point, has been employed in a forward dynamics procedure using a direct collocation method. A multi-objective optimization based on genetic algorithm has been proposed to employ stability as a robotic objective function along with muscle stresses as a biological objective function. The obtained results for joints’ motion were compared to experimental data. The results show that, for this type of perturbations, muscle stresses are in conflict with body stability. This means that more body stability requires more stresses in muscles and reverse. Results also show the effects of the stability objective function in better prediction of joint trajectories.

  7. A vision and strategy for the virtual physiological human in 2010 and beyond

    NARCIS (Netherlands)

    Hunter, P.; Coveney, P.V.; de Bono, B.; Diaz, V.; Fenner, J.; Frangi, A.F.; Harris, P.; Hose, R.; Kohl, P.; Lawford, P.; McCormack, K.; Mendes, M.; Omholt, S.; Quarteroni, A.; Skar, J.; Tegner, J.; Thomas, S.R.; Tollis, I.; Tsamardinos, I.; van Beek, J.H.G.M.; Viceconti, M.

    2010-01-01

    European funding under framework 7 (FP7) for the virtual physiological human (VPH) project has been in place now for nearly 2 years. The VPH network of excellence (NoE) is helping in the development of common standards, open-source software, freely accessible data and model repositories, and various

  8. Design of Secure ECG-Based Biometric Authentication in Body Area Sensor Networks.

    Science.gov (United States)

    Peter, Steffen; Reddy, Bhanu Pratap; Momtaz, Farshad; Givargis, Tony

    2016-04-22

    Body area sensor networks (BANs) utilize wireless communicating sensor nodes attached to a human body for convenience, safety, and health applications. Physiological characteristics of the body, such as the heart rate or Electrocardiogram (ECG) signals, are promising means to simplify the setup process and to improve security of BANs. This paper describes the design and implementation steps required to realize an ECG-based authentication protocol to identify sensor nodes attached to the same human body. Therefore, the first part of the paper addresses the design of a body-area sensor system, including the hardware setup, analogue and digital signal processing, and required ECG feature detection techniques. A model-based design flow is applied, and strengths and limitations of each design step are discussed. Real-world measured data originating from the implemented sensor system are then used to set up and parametrize a novel physiological authentication protocol for BANs. The authentication protocol utilizes statistical properties of expected and detected deviations to limit the number of false positive and false negative authentication attempts. The result of the described holistic design effort is the first practical implementation of biometric authentication in BANs that reflects timing and data uncertainties in the physical and cyber parts of the system.

  9. Design of Secure ECG-Based Biometric Authentication in Body Area Sensor Networks

    Science.gov (United States)

    Peter, Steffen; Pratap Reddy, Bhanu; Momtaz, Farshad; Givargis, Tony

    2016-01-01

    Body area sensor networks (BANs) utilize wireless communicating sensor nodes attached to a human body for convenience, safety, and health applications. Physiological characteristics of the body, such as the heart rate or Electrocardiogram (ECG) signals, are promising means to simplify the setup process and to improve security of BANs. This paper describes the design and implementation steps required to realize an ECG-based authentication protocol to identify sensor nodes attached to the same human body. Therefore, the first part of the paper addresses the design of a body-area sensor system, including the hardware setup, analogue and digital signal processing, and required ECG feature detection techniques. A model-based design flow is applied, and strengths and limitations of each design step are discussed. Real-world measured data originating from the implemented sensor system are then used to set up and parametrize a novel physiological authentication protocol for BANs. The authentication protocol utilizes statistical properties of expected and detected deviations to limit the number of false positive and false negative authentication attempts. The result of the described holistic design effort is the first practical implementation of biometric authentication in BANs that reflects timing and data uncertainties in the physical and cyber parts of the system. PMID:27110785

  10. Design of Secure ECG-Based Biometric Authentication in Body Area Sensor Networks

    Directory of Open Access Journals (Sweden)

    Steffen Peter

    2016-04-01

    Full Text Available Body area sensor networks (BANs utilize wireless communicating sensor nodes attached to a human body for convenience, safety, and health applications. Physiological characteristics of the body, such as the heart rate or Electrocardiogram (ECG signals, are promising means to simplify the setup process and to improve security of BANs. This paper describes the design and implementation steps required to realize an ECG-based authentication protocol to identify sensor nodes attached to the same human body. Therefore, the first part of the paper addresses the design of a body-area sensor system, including the hardware setup, analogue and digital signal processing, and required ECG feature detection techniques. A model-based design flow is applied, and strengths and limitations of each design step are discussed. Real-world measured data originating from the implemented sensor system are then used to set up and parametrize a novel physiological authentication protocol for BANs. The authentication protocol utilizes statistical properties of expected and detected deviations to limit the number of false positive and false negative authentication attempts. The result of the described holistic design effort is the first practical implementation of biometric authentication in BANs that reflects timing and data uncertainties in the physical and cyber parts of the system.

  11. Outdoor thermal physiology along human pathways: a study using a wearable measurement system

    Science.gov (United States)

    Nakayoshi, Makoto; Kanda, Manabu; Shi, Rui; de Dear, Richard

    2015-05-01

    An outdoor summer study on thermal physiology along subjects' pathways was conducted in a Japanese city using a unique wearable measurement system that measures all the relevant thermal variables: ambient temperature, humidity, wind speed ( U) and short/long-wave radiation ( S and L), along with some physio-psychological parameters: skin temperature ( T skin), pulse rate, subjective thermal sensation and state of body motion. U, S and L were measured using a globe anemo-radiometer adapted use with pedestrian subjects. The subjects were 26 healthy Japanese adults (14 males, 12 females) ranging from 23 to 74 years in age. Each subject wore a set of instruments that recorded individual microclimate and physiological responses along a designated pedestrian route that traversed various urban textures. The subjects experienced varying thermal environments that could not be represented by fixed-point routine observational data. S fluctuated significantly reflecting the mixture of sunlit/shade distributions within complex urban morphology. U was generally low within urban canyons due to drag by urban obstacles such as buildings but the subjects' movements enhanced convective heat exchanges with the atmosphere, leading to a drop in T skin. The amount of sweating increased as standard effective temperature (SET*) increased. A clear dependence of sweating on gender and body size was found; males sweated more than females; overweight subjects sweated more than standard/underweight subjects. T skin had a linear relationship with SET* and a similarly clear dependence on gender and body size differences. T skin of the higher-sweating groups was lower than that of the lower-sweating groups, reflecting differences in evaporative cooling by perspiration.

  12. Phage Therapy: Eco-Physiological Pharmacology

    Directory of Open Access Journals (Sweden)

    Stephen T. Abedon

    2014-01-01

    Full Text Available Bacterial virus use as antibacterial agents, in the guise of what is commonly known as phage therapy, is an inherently physiological, ecological, and also pharmacological process. Physiologically we can consider metabolic properties of phage infections of bacteria and variation in those properties as a function of preexisting bacterial states. In addition, there are patient responses to pathogenesis, patient responses to phage infections of pathogens, and also patient responses to phage virions alone. Ecologically, we can consider phage propagation, densities, distribution (within bodies, impact on body-associated microbiota (as ecological communities, and modification of the functioning of body “ecosystems” more generally. These ecological and physiological components in many ways represent different perspectives on otherwise equivalent phenomena. Comparable to drugs, one also can view phages during phage therapy in pharmacological terms. The relatively unique status of phages within the context of phage therapy as essentially replicating antimicrobials can therefore result in a confluence of perspectives, many of which can be useful towards gaining a better mechanistic appreciation of phage therapy, as I consider here. Pharmacology more generally may be viewed as a discipline that lies at an interface between organism-associated phenomena, as considered by physiology, and environmental interactions as considered by ecology.

  13. The Effects of an Olive Fruit Polyphenol-Enriched Yogurt on Body Composition, Blood Redox Status, Physiological and Metabolic Parameters and Yogurt Microflora.

    Science.gov (United States)

    Georgakouli, Kalliopi; Mpesios, Anastasios; Kouretas, Demetrios; Petrotos, Konstantinos; Mitsagga, Chrysanthi; Giavasis, Ioannis; Jamurtas, Athanasios Z

    2016-06-03

    In the present study we investigated the effects of an olive polyphenol-enriched yogurt on yogurt microflora, as well as hematological, physiological and metabolic parameters, blood redox status and body composition. In a randomized double-blind, crossover design, 16 (6 men, 10 women) nonsmoking volunteers with non-declared pathology consumed either 400 g of olive fruit polyphenol-enriched yogurt with 50 mg of encapsulated olive polyphenols (experimental condition-EC) or 400 g of plain yogurt (control condition-CC) every day for two weeks. Physiological measurements and blood collection were performed before and after two weeks of each condition. The results showed that body weight, body mass index, hip circumference and systolic blood pressure decreased significantly (p yogurt regardless of condition. A tendency towards significance for decreased levels of low density lipoprotein (LDL) cholesterol (p = 0.06) and thiobarbituric acid reactive substances (p yogurt consumption was observed. The population of lactic acid bacteria (LAB) and production of lactate in yogurt were significantly enhanced after addition of olive polyphenols, contrary to the population of yeasts and molds. The results indicate that consumption of the polyphenol-enriched yogurt may help individuals with non-declared pathology reduce body weight, blood pressure, LDL cholesterol levels and lipid peroxidation, and promote growth of beneficial LAB.

  14. Fractal physiology and the fractional calculus: a perspective

    Directory of Open Access Journals (Sweden)

    Bruce J West

    2010-10-01

    Full Text Available This paper presents a restricted overview of Fractal Physiology focusing on the complexity of the human body and the characterization of that complexity through fractal measures and their dynamics, with fractal dynamics being described by the fractional calculus. We review the allometric aggregation approach to the processing of physiologic time series as a way of determining the fractal character of the underlying phenomena. This straight forward method establishes the scaling behavior of complex physiologic networks and some dynamic models capable of generating such scaling are reviewed. These models include simple and fractional random walks, which describe how the scaling of correlation functions and probability densities are related to time series data. Subsequently, it is suggested that a proper methodology for describing the dynamics of fractal time series may well be the fractional calculus, either through the fractional Langevin equation or the fractional diffusion equation. Fractional operators acting on fractal functions yield fractal functions, allowing us to construct a fractional Langevin equation to describe the evolution of a fractal statistical process. Control of physiologic complexity is one of the goals of medicine. Allometric control incorporates long-time memory, inverse power-law (IPL correlations, and long-range interactions in complex phenomena as manifest by IPL distributions. We hypothesize that allometric control, rather than homeostatic control, maintains the fractal character of erratic physiologic time series to enhance the robustness of physiological networks. Moreover, allometric control can be described using the fractional calculus to capture the dynamics of complex physiologic networks. This hypothesis is supported by a number of physiologic time series data.

  15. Deciphering the iron isotope message of the human body

    Science.gov (United States)

    Walczyk, Thomas; von Blanckenburg, Friedhelm

    2005-04-01

    Mass-dependent variations in isotopic composition are known since decades for the light elements such as hydrogen, carbon or oxygen. Multicollector-inductively coupled plasma mass spectrometry (MC-ICP-MS) and double-spike thermal ionization mass spectrometry (TIMS) permit us now to resolve small variations in isotopic composition even for the heavier elements such as iron. Recent studies on the iron isotopic composition of human blood and dietary iron sources have shown that lighter iron isotopes are enriched along the food chain and that each individual bears a certain iron isotopic signature in blood. To make use of this finding in biomedical research, underlying mechanisms of isotope fractionation by the human body need to be understood. In this paper available iron isotope data for biological samples are discussed within the context of isotope fractionation concepts and fundamental aspects of human iron metabolism. This includes evaluation of new data for body tissues which show that blood and muscle tissue have a similar iron isotopic composition while heavier iron isotopes are concentrated in the liver. This new observation is in agreement with our earlier hypothesis of a preferential absorption of lighter iron isotopes by the human body. Possible mechanisms for inducing an iron isotope effect at the cellular and molecular level during iron uptake are presented and the potential of iron isotope effects in human blood as a long-term measure of dietary iron absorption is discussed.

  16. Critical determinants of combined sprint and endurance performance: an integrative analysis from muscle fiber to the human body.

    Science.gov (United States)

    van der Zwaard, Stephan; van der Laarse, Willem J; Weide, Guido; Bloemers, Frank W; Hofmijster, Mathijs J; Levels, Koen; Noordhof, Dionne A; de Koning, Jos J; de Ruiter, Cornelis J; Jaspers, Richard T

    2018-04-01

    Optimizing physical performance is a major goal in current physiology. However, basic understanding of combining high sprint and endurance performance is currently lacking. This study identifies critical determinants of combined sprint and endurance performance using multiple regression analyses of physiologic determinants at different biologic levels. Cyclists, including 6 international sprint, 8 team pursuit, and 14 road cyclists, completed a Wingate test and 15-km time trial to obtain sprint and endurance performance results, respectively. Performance was normalized to lean body mass 2/3 to eliminate the influence of body size. Performance determinants were obtained from whole-body oxygen consumption, blood sampling, knee-extensor maximal force, muscle oxygenation, whole-muscle morphology, and muscle fiber histochemistry of musculus vastus lateralis. Normalized sprint performance was explained by percentage of fast-type fibers and muscle volume ( R 2 = 0.65; P body.

  17. The major histocompatibility complex and perfumers' descriptions of human body odors

    OpenAIRE

    Wedekind, C.; Escher, S.; Van de Waal, M.; Frei, E.

    2007-01-01

    The MHC (major histocompatibility complex) is a group of genes that play a crucial role in immune recognition and in tolerance of tissue grafting. The MHC has also been found to influence body odors, body odor preferences, and mate choice in mice and humans. Here we test whether verbal descriptions of human body odors can be linked to the MHC. We asked 45 male students to live as odor neutral as possible for two consecutive days and to wear a T-shirt during the nights. The odors of these T-sh...

  18. The venality of human body parts and products in French law and common law.

    Science.gov (United States)

    Haoulia, Naima

    2012-03-01

    The successive bioethics laws in France have constantly argued that the human body is not for sale and consecrated an absolute principle of free and anonymous donations, whether of semen, ova, blood, tissues or organs. Nonetheless, this position is not shared by all countries. These legal divergences upset today our moral principles and the development of these practices leads us to question the legal status of human biological material and its gradual commodification. This paper outlines the current law principles that protect people's interests in their bodies, excised body parts and tissues without conferring the rights of full legal ownership in French law and in Common law. Contrary to what many people believe, people do not legally 'own' their bodies, body parts or tissues. However, they do have some legal rights in relation to their bodies and excised body material. For lawyers, the exact relationship people have with their bodies has raised a host of complex questions and long debates about the status we should grant to human body parts. The significance of this issue is due to two reasons:first, because of the imperative protection we have to assure to human dignity and then, because of the economic value which is attached to human products.

  19. On making nursing undergraduate human reproductive physiology content meaningful and relevant: discussion of human pleasure in its biological context.

    Science.gov (United States)

    McClusky, Leon Mendel

    2012-01-01

    The traditional presentation of the Reproductive Physiology component in an Anatomy and Physiology course to nursing undergraduates focuses on the broad aspects of hormonal regulation of reproduction and gonadal anatomy, with the role of the higher centres of the brain omitted. An introductory discussion is proposed which could precede the lectures on the reproductive organs. The discussion gives an overview of the biological significance of human pleasure, the involvement of the neurotransmitter dopamine, and the role of pleasure in the survival of the individual and even species. Pleasure stimuli (positive and negative) and the biological significance of naturally-induced pleasurable experiences are briefly discussed in the context of reproduction and the preservation of genetic material with an aim to foster relevancy between subject material and human behaviour in any type of society. The tenderness of this aspect of the human existence is well-understood because of its invariable association with soul-revealing human expressions such as love, infatuation, sexual flirtations, all of which are underpinned by arousal, desire and/or pleasure. Assuming that increased knowledge correlates with increased confidence, the proposed approach may provide the nurse with an adequate knowledge base to overcome well-known barriers in communicating with their patients about matters of sexual health and intimacy. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Identifying blood biomarkers and physiological processes that distinguish humans with superior performance under psychological stress.

    Directory of Open Access Journals (Sweden)

    Amanda M Cooksey

    2009-12-01

    Full Text Available Attrition of students from aviation training is a serious financial and operational concern for the U.S. Navy. Each late stage navy aviator training failure costs the taxpayer over $1,000,000 and ultimately results in decreased operational readiness of the fleet. Currently, potential aviators are selected based on the Aviation Selection Test Battery (ASTB, which is a series of multiple-choice tests that evaluate basic and aviation-related knowledge and ability. However, the ASTB does not evaluate a person's response to stress. This is important because operating sophisticated aircraft demands exceptional performance and causes high psychological stress. Some people are more resistant to this type of stress, and consequently better able to cope with the demands of naval aviation, than others.Although many psychological studies have examined psychological stress resistance none have taken advantage of the human genome sequence. Here we use high-throughput -omic biology methods and a novel statistical data normalization method to identify plasma proteins associated with human performance under psychological stress. We identified proteins involved in four basic physiological processes: innate immunity, cardiac function, coagulation and plasma lipid physiology.The proteins identified here further elucidate the physiological response to psychological stress and suggest a hypothesis that stress-susceptible pilots may be more prone to shock. This work also provides potential biomarkers for screening humans for capability of superior performance under stress.

  1. A relation between calculated human body exergy consumption rate and subjectively assessed thermal sensation

    DEFF Research Database (Denmark)

    Simone, Angela; Kolarik, Jakub; Iwamatsu, Toshiya

    2011-01-01

    occupants, it is reasonable to consider both the exergy flows in building and those within the human body. Until now, no data have been available on the relation between human-body exergy consumption rates and subjectively assessed thermal sensation. The objective of the present work was to relate thermal...... sensation data, from earlier thermal comfort studies, to calculated human-body exergy consumption rates. The results show that the minimum human body exergy consumption rate is associated with thermal sensation votes close to thermal neutrality, tending to the slightly cool side of thermal sensation....... Generally, the relationship between air temperature and the exergy consumption rate, as a first approximation, shows an increasing trend. Taking account of both convective and radiative heat exchange between the human body and the surrounding environment by using the calculated operative temperature, exergy...

  2. Estimation of temperature change in human body using MRI

    International Nuclear Information System (INIS)

    Nikawa, Yoshio; Nakamura, Suguru

    2016-01-01

    In the field of traditional oriental medicine, two types of treatment style, which are an acupuncture treatment and a moxibustion treatment have been performed. These treatments are used and effected by doctor or acupuncturist in their clinic or hospital and are widely spread. In spite of such a general treatment, it is not deeply discussed about mechanism of heat transfer modality and about temperature distribution in the treatment of moxibustion. Also, it is not discussed about temperature distribution deep inside human tissue during acupuncture treatment. It comes from the difficulty of noninvasive measurement of temperature deep inside human body. In this study, a temperature distribution for acupuncture and moxibustion treatment is measured and analyzed using thermograph and MRI by measuring the phase of longitudinal relaxation time of protons. The experimental results of measured temperature distribution under the human legs have been demonstrated. The result of temperature analysis in the human body is also reported. (author)

  3. Centralized Networks to Generate Human Body Motions.

    Science.gov (United States)

    Vakulenko, Sergei; Radulescu, Ovidiu; Morozov, Ivan; Weber, Andres

    2017-12-14

    We consider continuous-time recurrent neural networks as dynamical models for the simulation of human body motions. These networks consist of a few centers and many satellites connected to them. The centers evolve in time as periodical oscillators with different frequencies. The center states define the satellite neurons' states by a radial basis function (RBF) network. To simulate different motions, we adjust the parameters of the RBF networks. Our network includes a switching module that allows for turning from one motion to another. Simulations show that this model allows us to simulate complicated motions consisting of many different dynamical primitives. We also use the model for learning human body motion from markers' trajectories. We find that center frequencies can be learned from a small number of markers and can be transferred to other markers, such that our technique seems to be capable of correcting for missing information resulting from sparse control marker settings.

  4. Insulin-like peptide genes in honey bee fat body respond differently to manipulation of social behavioral physiology.

    Science.gov (United States)

    Nilsen, Kari-Anne; Ihle, Kate E; Frederick, Katy; Fondrk, M Kim; Smedal, Bente; Hartfelder, Klaus; Amdam, Gro V

    2011-05-01

    Nutrient sensitive insulin-like peptides (ILPs) have profound effects on invertebrate metabolism, nutrient storage, fertility and aging. Many insects transcribe ILPs in specialized neurosecretory cells at changing levels correlated with life history. However, the major site of insect metabolism and nutrient storage is not the brain, but rather the fat body, where functions of ILP expression are rarely studied and poorly understood. Fat body is analogous to mammalian liver and adipose tissue, with nutrient stores that often correlate with behavior. We used the honey bee (Apis mellifera), an insect with complex behavior, to test whether ILP genes in fat body respond to experimentally induced changes of behavioral physiology. Honey bee fat body influences endocrine state and behavior by secreting the yolk protein precursor vitellogenin (Vg), which suppresses lipophilic juvenile hormone and social foraging behavior. In a two-factorial experiment, we used RNA interference (RNAi)-mediated vg gene knockdown and amino acid nutrient enrichment of hemolymph (blood) to perturb this regulatory module. We document factor-specific changes in fat body ilp1 and ilp2 mRNA, the bee's ILP-encoding genes, and confirm that our protocol affects social behavior. We show that ilp1 and ilp2 are regulated independently and differently and diverge in their specific expression-localization between fat body oenocyte and trophocyte cells. Insect ilp functions may be better understood by broadening research to account for expression in fat body and not only brain.

  5. Nuclear body formation and PML body remodeling by the human cytomegalovirus protein UL35

    International Nuclear Information System (INIS)

    Salsman, Jayme; Wang Xueqi; Frappier, Lori

    2011-01-01

    The human cytomegalovirus (HCMV) UL35 gene encodes two proteins, UL35 and UL35a. Expression of UL35 in transfected cells results in the formation of UL35 nuclear bodies that associate with promyelocytic leukemia (PML) protein. PML forms the basis for PML nuclear bodies that are important for suppressing viral lytic gene expression. Given the important relationship between PML and viral infection, we have further investigated the association of UL35 with PML bodies. We demonstrate that UL35 bodies form independently of PML and subsequently recruit PML, Sp100 and Daxx. In contrast, UL35a did not form bodies; however, it could bind UL35 and inhibit the formation of UL35 bodies. The HCMV tegument protein pp71 promoted the formation of UL35 bodies and the cytoplasmic localization of UL35a. Similarly, UL35a shifted pp71 to the cytoplasm. These results indicate that the interplay between UL35, UL35a and pp71 affects their subcellular localization and likely their functions throughout infection.

  6. Physiology Of Prolonged Bed Rest

    Science.gov (United States)

    Greenleaf, John E.

    1991-01-01

    Report describes physiological effects of prolonged bed rest. Rest for periods of 24 hours or longer deconditions body to some extent; healing proceeds simultaneously with deconditioning. Report provides details on shifts in fluid electrolytes and loss of lean body mass, which comprises everything in body besides fat - that is, water, muscle, and bone. Based on published research.

  7. Review-Research on the physical training model of human body based on HQ.

    Science.gov (United States)

    Junjie, Liu

    2016-11-01

    Health quotient (HQ) is the newest health culture and concept in the 21st century, and the analysis of the human body sports model is not enough mature at present, what's more, the purpose of this paper is to study the integration of the two subjects the health quotient and the sport model. This paper draws the conclusion that physical training and education in colleges and universities can improve the health quotient, and it will make students possess a more healthy body and mind. Then through a new rigid body model of sports to simulate the human physical exercise. After that this paper has an in-depth study on the dynamic model of the human body movement on the basis of establishing the matrix and equation. The simulation results of the human body bicycle riding and pole throwing show that the human body joint movement simulation can be realized and it has a certain operability as well. By means of such simulated calculation, we can come to a conclusion that the movement of the ankle joint, knee joint and hip joint's motion law and real motion are basically the same. So it further verify the accuracy of the motion model, which lay the foundation of other research movement model, also, the study of the movement model is an important method in the study of human health in the future.

  8. Regulation of body fluid and salt homeostasis--from observations in space to new concepts on Earth.

    Science.gov (United States)

    Gerzer, R; Heer, M

    2005-08-01

    The present manuscript summarizes recent discoveries that were made by studying salt and fluid homeostasis in weightlessness. These data indicate that 1. atrial natriuretic peptide appears not to play an important role in natriuresis in physiology, 2. the distribution of body fluids appears to be tightly coupled with hunger and thirst regulation, 3. intrathoracic pressure may be an important co-regulator of body fluid homeostasis, 4. a so far unknown low-affinity, high capacity osmotically inactive sodium storage mechanism appears to be present in humans that is acting through sodium/hydrogen exchange on glycosaminoglycans and might explain the pathophysiology, e.g., of salt sensitive hypertension. The surprising and unexpected data underline that weightlessness is an excellent tool to investigate the physiology of our human body: If we knew it, we should be able to predict changes that occur when gravity is absent. But, as data from space demonstrate, we do not.

  9. Biochemical and physiological effects of phenols on human health

    Directory of Open Access Journals (Sweden)

    Danuta Wojcieszyńska

    2011-03-01

    Full Text Available Introduction of phenol compounds into environment results from human activities.. Moreover plants produce polyphenols as by products of metabolism Their influence on human health is very important. It is observed, that polyphenols found in groceries are the most abundant dietary antioxidants, anti-inflammatory, anti allergic, antiarteriosclerotic and antitumour factors. Alkylphenols, chlorophenols, nitrophenols or biphenyls can be toxic for body systems and because of their similarity to ligands of steroid receptors they can influence the activity of endocrine system. Their appearance in organisms enhances the risk of developing type 2 diabetes mellitus, hypertension, dyslipidemia, cancer, problems with fertility. Moreover strong genotoxic activities of these compounds is observed. Because they influence human health in many different ways continuous monitoring of phenols content in environment seems to be very important.

  10. Realistic Modeling and Animation of Human Body Based on Scanned Data

    Institute of Scientific and Technical Information of China (English)

    Yong-You Ma; Hui Zhang; Shou-Wei Jiang

    2004-01-01

    In this paper we propose a novel method for building animation model of real human body from surface scanned data.The human model is represented by a triangular mesh and described as a layered geometric model.The model consists of two layers: the control skeleton generating body animation from motion capture data,and the simplified surface model providing an efficient representation of the skin surface shape.The skeleton is generated automatically from surface scanned data using the feature extraction,and thena point-to-line mapping is used to map the surface model onto the underlying skeleton.The resulting model enables real-time and smooth animation by manipulation of the skeleton while maintaining the surface detail.Compared with earlier approach,the principal advantages of our approach are the automated generation of body control skeletons from the scanned data for real-time animation,and the automatic mapping and animation of the captured human surface shape.The human model constructed in this work can be used for applications of ergonomic design,garment CAD,real-time simulating humans in virtual reality environment and so on.

  11. The Body as a Frontier: Paolo Volponi and Tiziano Scarpa

    Directory of Open Access Journals (Sweden)

    Francesca Negro

    2011-06-01

    Full Text Available This paper proposes an analysis of some texts by Paolo Volponi and Tiziano Scarpa in which the body reveals the alienation of the protagonist. By the analysis of the texts we reflect on the concept of the Persona as the complex concept of human being in which the physical body, the juridical essence and the sensible entity are unified. The body is a porous barrier, a threshold that the authors use to discover the points of contact and separation with the external world, it’s man’s first space and his first language. In the age of the Body fabrication” some concepts as “the senses feast” by Kristeva, and as the one of Somatisation derive from a recent analysis of the human body and of its relations with the representation of human sensibility. These works describe cases of alienation by mean of a sort of body language, activated by the illness or other specific circumstances, the paper then tries to reconstruct the last changes related to the body concept and to analyse the literary examples in relation to recent theories on fragmentation and dissociative disorders (corps sans organes- Deleuze Guattari The description of this fragmented condition reveals the necessity to rebuild a human integrity, to construct a new concept of human physiology based on an organic vision of the human being. The current dilatation and deflagration of the intimacy then seems to be a strategy to overpass the limits of conscious communication, to impose a new holistic concept of human sensibility

  12. Chronic microelectrode investigations of normal human brain physiology using a hybrid depth electrode.

    Science.gov (United States)

    Howard, M A; Volkov, I O; Noh, M D; Granner, M A; Mirsky, R; Garell, P C

    1997-01-01

    Neurosurgeons have unique access to in vivo human brain tissue, and in the course of clinical treatment important scientific advances have been made that further our understanding of normal brain physiology. In the modern era, microelectrode recordings have been used to systematically investigate the cellular properties of lateral temporal cerebral cortex. The current report describes a hybrid depth electrode (HDE) recording technique that was developed to enable neurosurgeons to simultaneously investigate normal cellular physiology during chronic intracranial EEG recordings. The HDE combines microelectrode and EEG recordings sites on a single shaft. Multiple microelectrode recordings are obtained from MRI defined brain sites and single-unit activity is discriminated from these data. To date, over 60 HDEs have been placed in 20 epilepsy surgery patients. Unique physiologic data have been gathered from neurons in numerous brain regions, including amygdala, hippocampus, frontal lobe, insula and Heschl's gyrus. Functional activation studies were carried out without risking patient safety or comfort.

  13. A topological multilayer model of the human body.

    Science.gov (United States)

    Barbeito, Antonio; Painho, Marco; Cabral, Pedro; O'Neill, João

    2015-11-04

    Geographical information systems deal with spatial databases in which topological models are described with alphanumeric information. Its graphical interfaces implement the multilayer concept and provide powerful interaction tools. In this study, we apply these concepts to the human body creating a representation that would allow an interactive, precise, and detailed anatomical study. A vector surface component of the human body is built using a three-dimensional (3-D) reconstruction methodology. This multilayer concept is implemented by associating raster components with the corresponding vector surfaces, which include neighbourhood topology enabling spatial analysis. A root mean square error of 0.18 mm validated the three-dimensional reconstruction technique of internal anatomical structures. The expansion of the identification and the development of a neighbourhood analysis function are the new tools provided in this model.

  14. Transfer of fallout tritium from environment to human body

    International Nuclear Information System (INIS)

    Hisamatsu, Shun-ichi; Takizawa, Yukio

    1989-01-01

    A large quntity of tritium will be used as a fuel of nuclear fusion in the future. It is, therefore, considered important to elucidate tritium behavior present in the environment and the process of tritium transfer from the environment to the human body. Fallout tritium is an applicable material in searching for the long term behavior of tritium in the environment. This paper focuses on the American, Italian, Japanese literature concerning fallout tritium in food and in the human body. The specific activity ratio of bound to free tritium poses an important problem. The mechanism of biological concentration must await further studies. (N.K.) 63 refs

  15. Effect of the environmental stimuli upon the human body in winter outdoor thermal environment

    DEFF Research Database (Denmark)

    Sakoi, Tomonori; Kondo, Emi; Ishii, Jin

    2013-01-01

    the psychological thermal responses of the human body and winter outdoor thermal environment variables. Subjective experiments were conducted in the winter outdoor environment. Environmental factors and human psychological responses were measured. The relationship between the psychological thermal responses...... of the human body and the outdoor thermal environment index ETFe (enhanced conduction-corrected modified effective temperature) in winter was shown. The variables which influence the thermal sensation vote of the human body are air temperature, long-wave thermal radiation and short-wave solar radiation....... The variables that influence the thermal comfort vote of the human body are air temperature, humidity, short-wave solar radiation, long-wave thermal radiation, and heat conduction. Short-wave solar radiation, and heat conduction are among the winter outdoor thermal environment variables that affect...

  16. Medical Sequencing at the extremes of Human Body Mass

    Energy Technology Data Exchange (ETDEWEB)

    Ahituv, Nadav; Kavaslar, Nihan; Schackwitz, Wendy; Ustaszewski,Anna; Martin, Joes; Hebert, Sybil; Doelle, Heather; Ersoy, Baran; Kryukov, Gregory; Schmidt, Steffen; Yosef, Nir; Ruppin, Eytan; Sharan,Roded; Vaisse, Christian; Sunyaev, Shamil; Dent, Robert; Cohen, Jonathan; McPherson, Ruth; Pennacchio, Len A.

    2006-09-01

    Body weight is a quantitative trait with significantheritability in humans. To identify potential genetic contributors tothis phenotype, we resequenced the coding exons and splice junctions of58 genes in 379 obese and 378 lean individuals. Our 96Mb survey included21 genes associated with monogenic forms of obesity in humans or mice, aswell as 37 genes that function in body weight-related pathways. We foundthat the monogenic obesity-associated gene group was enriched for rarenonsynonymous variants unique to the obese (n=46) versus lean (n=26)populations. Computational analysis further predicted a significantlygreater fraction of deleterious variants within the obese cohort.Consistent with the complex inheritance of body weight, we did notobserve obvious familial segregation in the majority of the 28 availablekindreds. Taken together, these data suggest that multiple rare alleleswith variable penetrance contribute to obesity in the population andprovide a deep medical sequencing based approach to detectthem.

  17. Physiology for engineers applying engineering methods to physiological systems

    CERN Document Server

    Chappell, Michael

    2016-01-01

    This book provides an introduction to qualitative and quantitative aspects of human physiology. It looks at biological and physiological processes and phenomena, including a selection of mathematical models, showing how physiological problems can be mathematically formulated and studied. It also illustrates how a wide range of engineering and physics topics, including electronics, fluid dynamics, solid mechanics and control theory can be used to describe and understand physiological processes and systems. Throughout the text there are introductions to measuring and quantifying physiological processes using both signal and imaging technologies. Physiology for Engineers describes the basic structure and models of cellular systems, the structure and function of the cardiovascular system, the electrical and mechanical activity of the heart and provides an overview of the structure and function of the respiratory and nervous systems. It also includes an introduction to the basic concepts and applications of reacti...

  18. Relationship between human physiological parameters and geomagnetic variations of solar origin

    Science.gov (United States)

    Dimitrova, S.

    Results presented concern influence of increased geomagnetic activity on some human physiological parameters. The blood pressure and heart rate of 86 volunteers were measured on working days in autumn 2001 (01/10 09/11) and in spring 2002 (08/04 28/05). These periods were chosen because of maximal expected geomagnetic activity. Altogether 2799 recordings were obtained and analysed. Questionnaire information about subjective psycho-physiological complaints was also gathered. MANOVA was employed to check the significance of the influence of three factors on the physiological parameters under consideration. The factors were the following: (1) planetary geomagnetic activity level estimated by Ap-index and divided into five levels; (2) gender males and females; (3) blood pressure degree persons in the group examined were divided into hypotensive, normotensive and hypertensive. Post hoc analysis was performed to elicit the significance of differences in the factors’ levels. The average arterial blood pressure of the group was found to increase significantly with the increase of geomagnetic activity level. The average increment of systolic and diastolic blood pressure of the group examined reached 9%. This effect was present irrespectively of gender. Results obtained suppose that hypertensive persons have the highest sensitivity and the hypotensive persons have the lowest sensitivity of the arterial blood pressure to increase of geomagnetic activity. The results did not show significant changes in the heart rate. The percentage of the persons who reported subjective psycho-physiological complaints was also found to increase significantly with the geomagnetic activity increase and the highest sensitivity was revealed for the hypertensive females.

  19. Back to the future! Revisiting the physiological cost of negative work as a team-based activity for exercise physiology students.

    Science.gov (United States)

    Kilgas, Matthew A; Elmer, Steven J

    2017-03-01

    We implemented a team-based activity in our exercise physiology teaching laboratory that was inspired from Abbott et al.'s classic 1952 Journal of Physiology paper titled "The physiological cost of negative work." Abbott et al. connected two bicycles via one chain. One person cycled forward (muscle shortening contractions, positive work) while the other resisted the reverse moving pedals (muscle lengthening contractions, negative work), and the cost of work was compared. This study was the first to link human whole body energetics with isolated muscle force-velocity characteristics. The laboratory activity for our students ( n = 35) was designed to reenact Abbott et al.'s experiment, integrate previously learned techniques, and illustrate differences in physiological responses to muscle shortening and lengthening contractions. Students (11-12 students/laboratory section) were split into two teams (positive work vs. negative work). One student from each team volunteered to cycle against the other for ~10 min. The remaining students in each team were tasked with measuring: 1 ) O 2 consumption, 2 ) heart rate, 3 ) blood lactate, and 4 ) perceived exertion. Students discovered that O 2 consumption during negative work was about one-half that of positive work and all other physiological parameters were also substantially lower. Muscle lengthening contractions were discussed and applied to rehabilitation and sport training. The majority of students (>90%) agreed or strongly agreed that they stayed engaged during the activity and it improved their understanding of exercise physiology. All students recommended the activity be performed again. This activity was engaging, emphasized teamwork, yielded clear results, was well received, and preserved the history of classic physiological experiments. Copyright © 2017 the American Physiological Society.

  20. Altered serotonin physiology in human breast cancers favors paradoxical growth and cell survival.

    Science.gov (United States)

    Pai, Vaibhav P; Marshall, Aaron M; Hernandez, Laura L; Buckley, Arthur R; Horseman, Nelson D

    2009-01-01

    The breast microenvironment can either retard or accelerate the events associated with progression of latent cancers. However, the actions of local physiological mediators in the context of breast cancers are poorly understood. Serotonin (5-HT) is a critical local regulator of epithelial homeostasis in the breast and other organs. Herein, we report complex alterations in the intrinsic mammary gland serotonin system of human breast cancers. Serotonin biosynthetic capacity was analyzed in human breast tumor tissue microarrays using immunohistochemistry for tryptophan hydroxylase 1 (TPH1). Serotonin receptors (5-HT1-7) were analyzed in human breast tumors using the Oncomine database. Serotonin receptor expression, signal transduction, and 5-HT effects on breast cancer cell phenotype were compared in non-transformed and transformed human breast cells. In the context of the normal mammary gland, 5-HT acts as a physiological regulator of lactation and involution, in part by favoring growth arrest and cell death. This tightly regulated 5-HT system is subverted in multiple ways in human breast cancers. Specifically, TPH1 expression undergoes a non-linear change during progression, with increased expression during malignant progression. Correspondingly, the tightly regulated pattern of 5-HT receptors becomes dysregulated in human breast cancer cells, resulting in both ectopic expression of some isoforms and suppression of others. The receptor expression change is accompanied by altered downstream signaling of 5-HT receptors in human breast cancer cells, resulting in resistance to 5-HT-induced apoptosis, and stimulated proliferation. Our data constitutes the first report of direct involvement of 5-HT in human breast cancer. Increased 5-HT biosynthetic capacity accompanied by multiple changes in 5-HT receptor expression and signaling favor malignant progression of human breast cancer cells (for example, stimulated proliferation, inappropriate cell survival). This occurs

  1. Electromagnetic Modeling of Human Body Using High Performance Computing

    Science.gov (United States)

    Ng, Cho-Kuen; Beall, Mark; Ge, Lixin; Kim, Sanghoek; Klaas, Ottmar; Poon, Ada

    Realistic simulation of electromagnetic wave propagation in the actual human body can expedite the investigation of the phenomenon of harvesting implanted devices using wireless powering coupled from external sources. The parallel electromagnetics code suite ACE3P developed at SLAC National Accelerator Laboratory is based on the finite element method for high fidelity accelerator simulation, which can be enhanced to model electromagnetic wave propagation in the human body. Starting with a CAD model of a human phantom that is characterized by a number of tissues, a finite element mesh representing the complex geometries of the individual tissues is built for simulation. Employing an optimal power source with a specific pattern of field distribution, the propagation and focusing of electromagnetic waves in the phantom has been demonstrated. Substantial speedup of the simulation is achieved by using multiple compute cores on supercomputers.

  2. Smart sensors and virtual physiology human approach as a basis of personalized therapies in diabetes mellitus.

    Science.gov (United States)

    Fernández Peruchena, Carlos M; Prado-Velasco, Manuel

    2010-01-01

    Diabetes mellitus (DM) has a growing incidence and prevalence in modern societies, pushed by the aging and change of life styles. Despite the huge resources dedicated to improve their quality of life, mortality and morbidity rates, these are still very poor. In this work, DM pathology is revised from clinical and metabolic points of view, as well as mathematical models related to DM, with the aim of justifying an evolution of DM therapies towards the correction of the physiological metabolic loops involved. We analyze the reliability of mathematical models, under the perspective of virtual physiological human (VPH) initiatives, for generating and integrating customized knowledge about patients, which is needed for that evolution. Wearable smart sensors play a key role in this frame, as they provide patient's information to the models.A telehealthcare computational architecture based on distributed smart sensors (first processing layer) and personalized physiological mathematical models integrated in Human Physiological Images (HPI) computational components (second processing layer), is presented. This technology was designed for a renal disease telehealthcare in earlier works and promotes crossroads between smart sensors and the VPH initiative. We suggest that it is able to support a truly personalized, preventive, and predictive healthcare model for the delivery of evolved DM therapies.

  3. The Effect of Body Mass on Outdoor Adult Human Decomposition.

    Science.gov (United States)

    Roberts, Lindsey G; Spencer, Jessica R; Dabbs, Gretchen R

    2017-09-01

    Forensic taphonomy explores factors impacting human decomposition. This study investigated the effect of body mass on the rate and pattern of adult human decomposition. Nine males and three females aged 49-95 years ranging in mass from 73 to 159 kg who were donated to the Complex for Forensic Anthropology Research between December 2012 and September 2015 were included in this study. Kelvin accumulated degree days (KADD) were used to assess the thermal energy required for subjects to reach several total body score (TBS) thresholds: early decomposition (TBS ≥6.0), TBS ≥12.5, advanced decomposition (TBS ≥19.0), TBS ≥23.0, and skeletonization (TBS ≥27.0). Results indicate no significant correlation between body mass and KADD at any TBS threshold. Body mass accounted for up to 24.0% of variation in decomposition rate depending on stage, and minor differences in decomposition pattern were observed. Body mass likely has a minimal impact on postmortem interval estimation. © 2017 American Academy of Forensic Sciences.

  4. Seasonal change in body fat of the Hyrax Procavia capensis (Pallas, 1766 using a body fat ranking index

    Directory of Open Access Journals (Sweden)

    L.J. Fourie

    1985-11-01

    Full Text Available Changes in the body fat content of the hyrax Procavia capensis were used as an indicator of physiological condition. Body fat rankings for the different sexes showed seasonal variations related to physiologically stressful periods (rutting, gestation and lactation. The subjective body fat rankings were correlated significantly with total body fat.

  5. Visuals and Visualisation of Human Body Systems

    Science.gov (United States)

    Mathai, Sindhu; Ramadas, Jayashree

    2009-01-01

    This paper explores the role of diagrams and text in middle school students' understanding and visualisation of human body systems. We develop a common framework based on structure and function to assess students' responses across diagram and verbal modes. Visualisation is defined in terms of understanding transformations on structure and relating…

  6. Coursera's Introductory Human Physiology Course: Factors That Characterize Successful Completion of a MOOC

    Science.gov (United States)

    Engle, Deborah; Mankoff, Chris; Carbrey, Jennifer

    2015-01-01

    Since Massive Open Online Courses (MOOCs) are accessible by anyone in the world at no cost, they have large enrollments that are conducive to educational research. This study examines students in the Coursera MOOC, Introductory Human Physiology. Of the 33,378 students who accessed the course, around 15,000 students responded to items on the…

  7. Point-Structured Human Body Modeling Based on 3D Scan Data

    Directory of Open Access Journals (Sweden)

    Ming-June Tsai

    2018-01-01

    Full Text Available A novel point-structured geometrical modelling for realistic human body is introduced in this paper. This technique is based on the feature extraction from the 3D body scan data. Anatomic feature such as the neck, the arm pits, the crotch points, and other major feature points are recognized. The body data is then segmented into 6 major parts. A body model is then constructed by re-sampling the scanned data to create a point-structured mesh. The body model contains body geodetic landmarks in latitudinal and longitudinal curves passing through those feature points. The body model preserves the perfect body shape and all the body dimensions but requires little space. Therefore, the body model can be used as a mannequin in garment industry, or as a manikin in various human factor designs, but the most important application is to use as a virtue character to animate the body motion in mocap (motion capture systems. By adding suitable joint freedoms between the segmented body links, kinematic and dynamic properties of the motion theories can be applied to the body model. As a result, a 3D virtual character that is fully resembled the original scanned individual is vividly animating the body motions. The gaps between the body segments due to motion can be filled up by skin blending technique using the characteristic of the point-structured model. The model has the potential to serve as a standardized datatype to archive body information for all custom-made products.

  8. Representational Momentum for the Human Body: Awkwardness Matters, Experience Does Not

    Science.gov (United States)

    Wilson, Margaret; Lancaster, Jessy; Emmorey, Karen

    2010-01-01

    Perception of the human body appears to involve predictive simulations that project forward to track unfolding body-motion events. Here we use representational momentum (RM) to investigate whether implicit knowledge of a learned arbitrary system of body movement such as sign language influences this prediction process, and how this compares to…

  9. Development of the ventral body wall in the human embryo

    NARCIS (Netherlands)

    Mekonen, Hayelom K.; Hikspoors, Jill P. J. M.; Mommen, Greet; Köhler, S. Eleonore; Lamers, Wouter H.

    2015-01-01

    Migratory failure of somitic cells is the commonest explanation for ventral body wall defects. However, the embryo increases ~ 25-fold in volume in the period that the ventral body wall forms, so that differential growth may, instead, account for the observed changes in topography. Human embryos

  10. Governing the postmortem procurement of human body material for research.

    Science.gov (United States)

    Van Assche, Kristof; Capitaine, Laura; Pennings, Guido; Sterckx, Sigrid

    2015-03-01

    Human body material removed post mortem is a particularly valuable resource for research. Considering the efforts that are currently being made to study the biochemical processes and possible genetic causes that underlie cancer and cardiovascular and neurodegenerative diseases, it is likely that this type of research will continue to gain in importance. However, post mortem procurement of human body material for research raises specific ethical concerns, more in particular with regard to the consent of the research participant. In this paper, we attempt to determine which consent regime should govern the post mortem procurement of body material for research. In order to do so, we assess the various arguments that could be put forward in support of a duty to make body material available for research purposes after death. We argue that this duty does in practice not support conscription but is sufficiently strong to defend a policy of presumed rather than explicit consent.

  11. The Effects of an Olive Fruit Polyphenol-Enriched Yogurt on Body Composition, Blood Redox Status, Physiological and Metabolic Parameters and Yogurt Microflora

    Directory of Open Access Journals (Sweden)

    Kalliopi Georgakouli

    2016-06-01

    Full Text Available In the present study we investigated the effects of an olive polyphenol-enriched yogurt on yogurt microflora, as well as hematological, physiological and metabolic parameters, blood redox status and body composition. In a randomized double-blind, crossover design, 16 (6 men, 10 women nonsmoking volunteers with non-declared pathology consumed either 400 g of olive fruit polyphenol-enriched yogurt with 50 mg of encapsulated olive polyphenols (experimental condition—EC or 400 g of plain yogurt (control condition—CC every day for two weeks. Physiological measurements and blood collection were performed before and after two weeks of each condition. The results showed that body weight, body mass index, hip circumference and systolic blood pressure decreased significantly (p < 0.05 following the two-week consumption of yogurt regardless of condition. A tendency towards significance for decreased levels of low density lipoprotein (LDL cholesterol (p = 0.06 and thiobarbituric acid reactive substances (p < 0.05 following two weeks of polyphenol-enriched yogurt consumption was observed. The population of lactic acid bacteria (LAB and production of lactate in yogurt were significantly enhanced after addition of olive polyphenols, contrary to the population of yeasts and molds. The results indicate that consumption of the polyphenol-enriched yogurt may help individuals with non-declared pathology reduce body weight, blood pressure, LDL cholesterol levels and lipid peroxidation, and promote growth of beneficial LAB.

  12. Investigation and Modeling of Capacitive Human Body Communication.

    Science.gov (United States)

    Zhu, Xiao-Qi; Guo, Yong-Xin; Wu, Wen

    2017-04-01

    This paper presents a systematic investigation of the capacitive human body communication (HBC). The measurement of HBC channels is performed using a novel battery-powered system to eliminate the effects of baluns, cables and instruments. To verify the measured results, a numerical model incorporating the entire HBC system is established. Besides, it is demonstrated that both the impedance and path gain bandwidths of HBC channels is affected by the electrode configuration. Based on the analysis of the simulated electric field distribution, an equivalent circuit model is proposed and the circuit parameters are extracted using the finite element method. The transmission capability along the human body is also studied. The simulated results using the numerical and circuit models coincide very well with the measurement, which demonstrates that the proposed circuit model can effectively interpret the operation mechanism of the capacitive HBC.

  13. Real-time stylistic prediction for whole-body human motions.

    Science.gov (United States)

    Matsubara, Takamitsu; Hyon, Sang-Ho; Morimoto, Jun

    2012-01-01

    The ability to predict human motion is crucial in several contexts such as human tracking by computer vision and the synthesis of human-like computer graphics. Previous work has focused on off-line processes with well-segmented data; however, many applications such as robotics require real-time control with efficient computation. In this paper, we propose a novel approach called real-time stylistic prediction for whole-body human motions to satisfy these requirements. This approach uses a novel generative model to represent a whole-body human motion including rhythmic motion (e.g., walking) and discrete motion (e.g., jumping). The generative model is composed of a low-dimensional state (phase) dynamics and a two-factor observation model, allowing it to capture the diversity of motion styles in humans. A real-time adaptation algorithm was derived to estimate both state variables and style parameter of the model from non-stationary unlabeled sequential observations. Moreover, with a simple modification, the algorithm allows real-time adaptation even from incomplete (partial) observations. Based on the estimated state and style, a future motion sequence can be accurately predicted. In our implementation, it takes less than 15 ms for both adaptation and prediction at each observation. Our real-time stylistic prediction was evaluated for human walking, running, and jumping behaviors. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Supra-physiological folic acid concentrations induce aberrant DNA methylation in normal human cells in vitro.

    Science.gov (United States)

    Charles, Michelle A; Johnson, Ian T; Belshaw, Nigel J

    2012-07-01

    The micronutrients folate and selenium may modulate DNA methylation patterns by affecting intracellular levels of the methyl donor S-adenosylmethionine (SAM) and/or the product of methylation reactions S-adenosylhomocysteine (SAH). WI-38 fibroblasts and FHC colon epithelial cells were cultured in the presence of two forms of folate or four forms of selenium at physiologically-relevant doses, and their effects on LINE-1 methylation, gene-specific CpG island (CGI) methylation and intracellular SAM:SAH were determined. At physiologically-relevant doses the forms of folate or selenium had no effect on LINE-1 or CGI methylation, nor on intracellular SAM:SAH. However the commercial cell culture media used for the selenium studies, containing supra-physiological concentrations of folic acid, induced LINE-1 hypomethylation, CGI hypermethylation and decreased intracellular SAM:SAH in both cell lines. We conclude that the exposure of normal human cells to supra-physiological folic acid concentrations present in commercial cell culture media perturbs the intracellular SAM:SAH ratio and induces aberrant DNA methylation.

  15. Clinical physiology of bed rest

    Science.gov (United States)

    Greenleaf, John E.

    1993-01-01

    Maintenance of optimal health in humans requires the proper balance between exercise, rest, and sleep as well as time in the upright position. About one-third of a lifetime is spent sleeping; and it is no coincidence that sleeping is performed in the horizontal position, the position in which gravitational influence on the body is minimal. Although enforced bed rest is necessary for the treatment of some ailments, in some cases it has probably been used unwisely. In addition to the lower hydrostatic pressure with the normally dependent regions of the cardiovascular system, body fuid compartments during bed rest in the horizontal body position, and virtual elimination of compression on the long bones of the skeletal system during bed rest (hypogravia), there is often reduction in energy metabolism due to the relative confinement (hypodynamia) and alteration of ambulatory circadian variations in metabolism, body temperature, and many hormonal systems. If patients are also moved to unfamiliar surroundings, they probably experience some feelings of anxiety and some sociopsychological problems. Adaptive physiological responses during bed rest are normal for that environment. They are attempts by the body to reduce unnecessary energy expenditure, to optimize its function, and to enhance its survival potential. Many of the deconditioning responses begin within the first day or two of bed rest; these early responses have prompted physicians to insist upon early resumption of the upright posture and ambulation of bedridden patients.

  16. Optimization of wearable microwave antenna with simplified electromagnetic model of the human body

    Science.gov (United States)

    Januszkiewicz, Łukasz; Barba, Paolo Di; Hausman, Sławomir

    2017-12-01

    In this paper the problem of optimization design of a microwave wearable antenna is investigated. Reference is made to a specific antenna design that is a wideband Vee antenna the geometry of which is characterized by 6 parameters. These parameters were automatically adjusted with an evolution strategy based algorithm EStra to obtain the impedance matching of the antenna located in the proximity of the human body. The antenna was designed to operate in the ISM (industrial, scientific, medical) band which covers the frequency range of 2.4 GHz up to 2.5 GHz. The optimization procedure used the finite-difference time-domain method based full-wave simulator with a simplified human body model. In the optimization procedure small movements of antenna towards or away of the human body that are likely to happen during real use were considered. The stability of the antenna parameters irrespective of the movements of the user's body is an important factor in wearable antenna design. The optimization procedure allowed obtaining good impedance matching for a given range of antenna distances with respect to the human body.

  17. Leptin expression in ruminants: nutritional and physiological regulations in relation with energy metabolism.

    Science.gov (United States)

    Chilliard, Y; Delavaud, C; Bonnet, M

    2005-07-01

    Leptin, mainly produced in adipose tissue (AT), is a protein involved in the central and/or peripheral regulation of body homeostasis, energy intake, storage and expenditure, fertility and immune functions. Its role is well documented in rodent and human species, but less in ruminants. This review is focused on some intrinsic and extrinsic factors which regulate adipose tissue leptin gene expression and leptinemia in cattle, sheep, goat and camel: age, physiological status (particularly pregnancy and lactation) in interaction with long-term (adiposity) and short-term effects of feeding level, energy intake and balance, diet composition, specific nutrients and hormones (insulin, glucose and fatty acids), and seasonal non-dietary factors such as photoperiod. Body fatness strongly regulates leptin and its responses to other factors. For example, leptinemia is higher after underfeeding or during lactation in fat than in lean animals. Physiological status per se also modulates leptin expression, with lactation down-regulating leptinemia, even when energy balance (EB) is positive. These results suggest that leptin could be a link between nutritional history and physiological regulations, which integrates the animal's requirements (e.g., for a pregnancy-lactation cycle), predictable food availability (e.g., due to seasonal variations) and potential for survival (e.g., body fatness level). Reaching permissive leptin thresholds should be necessary for pubertal or postpartum reproductive activity. In addition to the understanding of leptin yield regulation, these data are helpful to understand the physiological significance of changes in leptin secretion and leptin effects, and how husbandry strategies could integrate the adaptative capacities of ruminant species to their environment.

  18. More accurate picture of human body organs

    International Nuclear Information System (INIS)

    Kolar, J.

    1985-01-01

    Computerized tomography and nucler magnetic resonance tomography (NMRT) are revolutionary contributions to radiodiagnosis because they allow to obtain a more accurate image of human body organs. The principles are described of both methods. Attention is mainly devoted to NMRT which has clinically only been used for three years. It does not burden the organism with ionizing radiation. (Ha)

  19. Form Factor Evaluation of Open Body Area Network (OBAN) Physiological Status Monitoring (PSM) System Prototype Designs

    Science.gov (United States)

    2018-05-11

    critical tasks such as shooting in the prone position and low crawling, and 3) interference with a person’s ability to sleep . These issues were...Real-time physiological monitoring while encapsulated in personal protective equipment. Journal of Sport and Human Performance, 1(4): 14-21, 2013...17. Have you previously worn any type of heart rate monitor, such as the Polar Heart Rate Monitor or other Sports Monitors

  20. Modal analysis of human body vibration model for Indian subjects under sitting posture.

    Science.gov (United States)

    Singh, Ishbir; Nigam, S P; Saran, V H

    2015-01-01

    Need and importance of modelling in human body vibration research studies are well established. The study of biodynamic responses of human beings can be classified into experimental and analytical methods. In the past few decades, plenty of mathematical models have been developed based on the diverse field measurements to describe the biodynamic responses of human beings. In this paper, a complete study on lumped parameter model derived from 50th percentile anthropometric data for a seated 54- kg Indian male subject without backrest support under free un-damped conditions has been carried out considering human body segments to be of ellipsoidal shape. Conventional lumped parameter modelling considers the human body as several rigid masses interconnected by springs and dampers. In this study, concept of mass of interconnecting springs has been incorporated and eigenvalues thus obtained are found to be closer to the values reported in the literature. Results obtained clearly establish decoupling of vertical and fore-and-aft oscillations. The mathematical modelling of human body vibration studies help in validating the experimental investigations for ride comfort of a sitting subject. This study clearly establishes the decoupling of vertical and fore-and-aft vibrations and helps in better understanding of possible human response to single and multi-axial excitations.

  1. Data Fusion Research of Triaxial Human Body Motion Gesture based on Decision Tree

    Directory of Open Access Journals (Sweden)

    Feihong Zhou

    2014-05-01

    Full Text Available The development status of human body motion gesture data fusion domestic and overseas has been analyzed. A triaxial accelerometer is adopted to develop a wearable human body motion gesture monitoring system aimed at old people healthcare. On the basis of a brief introduction of decision tree algorithm, the WEKA workbench is adopted to generate a human body motion gesture decision tree. At last, the classification quality of the decision tree has been validated through experiments. The experimental results show that the decision tree algorithm could reach an average predicting accuracy of 97.5 % with lower time cost.

  2. An Impact of Thermodynamic Processes in Human Bodies on Performance Reliability of Individuals

    Directory of Open Access Journals (Sweden)

    Smalko Zbigniew

    2015-01-01

    Full Text Available The article presents the problem of the influence of thermodynamic factors on human fallibility in different zones of thermal discomfort. Describes the processes of energy in the human body. Been given a formal description of the energy balance of the human body thermoregulation. Pointed to human reactions to temperature changes of internal and external environment, including reactions associated with exercise. The methodology to estimate and determine the reliability of indicators of human basal acting in different zones of thermal discomfort. The significant effect of thermodynamic factors on the reliability and security ofperson.

  3. A Balanced-Fed Dual Inverted-F Antenna with Reduced Human Body Effects

    Directory of Open Access Journals (Sweden)

    Wang-Sang Lee

    2013-01-01

    Full Text Available A balanced-fed dual inverted-F antenna with reduced human body effects for WLAN applications at 2.45 GHz is presented. In order to reduce the influence by a close proximity or a touch of a human body, the proposed antenna employs an impedance matching using a lumped LC-balun which has the simple and compact structure applying for mobile handsets. The resonant frequency of the proposed antenna is fixed at 2.45 GHz regardless of the close proximity of a human body. By applying for the L-shape ground plane, the proposed antenna has the wide impedance bandwidth of about 150 MHz and the peak realized gain of about 4 dBi.

  4. Prediction of drug terminal half-life and terminal volume of distribution after intravenous dosing based on drug clearance, steady-state volume of distribution, and physiological parameters of the body.

    Science.gov (United States)

    Berezhkovskiy, Leonid M

    2013-02-01

    The steady state, V(ss), terminal volume of distribution, V(β), and the terminal half-life, t(1/2), are commonly obtained from the drug plasma concentration-time profile, C(p)(t), following intravenous dosing. Unlike V(ss) that can be calculated based on the physicochemical properties of drugs considering the equilibrium partitioning between plasma and organ tissues, t(1/2) and V(β) cannot be calculated that way because they depend on the rates of drug transfer between blood and tissues. Considering the physiological pharmacokinetic model pertinent to the terminal phase of drug elimination, a novel equation that calculates t(1/2) (and consequently V(β)) was derived. It turns out that V(ss), the total body clearance, Cl, equilibrium blood-plasma concentration ratio, r; and the physiological parameters of the body such as cardiac output, and blood and tissue volumes are sufficient for determination of terminal kinetics. Calculation of t(1/2) by the obtained equation appears to be in good agreement with the experimentally observed vales of this parameter in pharmacokinetic studies in rat, monkey, dog, and human. The equation for the determination of the pre-exponent of the terminal phase of C(p)(t) is also found. The obtained equation allows to predict t(1/2) in human assuming that V(ss) and Cl were either obtained by allometric scaling or, respectively, calculated in silico or based on in vitro drug stability measurements. For compounds that have high clearance, the derived equation may be applied to calculate r just using the routine data on Cl, V(ss), and t(1/2), rather than doing the in vitro assay to measure this parameter. Copyright © 2012 Wiley Periodicals, Inc.

  5. Robotic Reconnaissance Missions to Small Bodies and Their Potential Contributions to Human Exploration

    Science.gov (United States)

    Abell, P. A.; Rivkin, A. S.

    2015-01-01

    Introduction: Robotic reconnaissance missions to small bodies will directly address aspects of NASA's Asteroid Initiative and will contribute to future human exploration. The NASA Asteroid Initiative is comprised of two major components: the Grand Challenge and the Asteroid Mission. The first component, the Grand Challenge, focuses on protecting Earth's population from asteroid impacts by detecting potentially hazardous objects with enough warning time to either prevent them from impacting the planet, or to implement civil defense procedures. The Asteroid Mission involves sending astronauts to study and sample a near- Earth asteroid (NEA) prior to conducting exploration missions of the Martian system, which includes Phobos and Deimos. The science and technical data obtained from robotic precursor missions that investigate the surface and interior physical characteristics of an object will help identify the pertinent physical properties that will maximize operational efficiency and reduce mission risk for both robotic assets and crew operating in close proximity to, or at the surface of, a small body. These data will help fill crucial strategic knowledge gaps (SKGs) concerning asteroid physical characteristics that are relevant for human exploration considerations at similar small body destinations. Small Body Strategic Knowledge Gaps: For the past several years NASA has been interested in identifying the key SKGs related to future human destinations. These SKGs highlight the various unknowns and/or data gaps of targets that the science and engineering communities would like to have filled in prior to committing crews to explore the Solar System. An action team from the Small Bodies Assessment Group (SBAG) was formed specifically to identify the small body SKGs under the direction of the Human Exploration and Operations Missions Directorate (HEOMD), given NASA's recent interest in NEAs and the Martian moons as potential human destinations [1]. The action team

  6. Preference for human body odors is influenced by gender and sexual orientation.

    Science.gov (United States)

    Martins, Yolanda; Preti, George; Crabtree, Christina R; Runyan, Tamar; Vainius, Aldona A; Wysocki, Charles J

    2005-09-01

    Human body odor may contribute to selection of partners. If so, sexual orientation may influence preference for and perhaps production of human body odors. In a test of these hypotheses, heterosexual and homosexual males and females made two-alternative forced-choice preference judgments for body odors obtained from other heterosexual and homosexual males and females. Subjects chose between odors from (a) heterosexual males and gay males, (b) heterosexual males and heterosexual females, (c) heterosexual females and lesbians, and (d) gay males and lesbians. Results indicate that differences in body odor are detected and responded to on the basis of, in part, an individual's gender and sexual orientation. Possible mechanisms underlying these findings are discussed.

  7. Body Topography Parcellates Human Sensory and Motor Cortex.

    Science.gov (United States)

    Kuehn, Esther; Dinse, Juliane; Jakobsen, Estrid; Long, Xiangyu; Schäfer, Andreas; Bazin, Pierre-Louis; Villringer, Arno; Sereno, Martin I; Margulies, Daniel S

    2017-07-01

    The cytoarchitectonic map as proposed by Brodmann currently dominates models of human sensorimotor cortical structure, function, and plasticity. According to this model, primary motor cortex, area 4, and primary somatosensory cortex, area 3b, are homogenous areas, with the major division lying between the two. Accumulating empirical and theoretical evidence, however, has begun to question the validity of the Brodmann map for various cortical areas. Here, we combined in vivo cortical myelin mapping with functional connectivity analyses and topographic mapping techniques to reassess the validity of the Brodmann map in human primary sensorimotor cortex. We provide empirical evidence that area 4 and area 3b are not homogenous, but are subdivided into distinct cortical fields, each representing a major body part (the hand and the face). Myelin reductions at the hand-face borders are cortical layer-specific, and coincide with intrinsic functional connectivity borders as defined using large-scale resting state analyses. Our data extend the Brodmann model in human sensorimotor cortex and suggest that body parts are an important organizing principle, similar to the distinction between sensory and motor processing. © The Author 2017. Published by Oxford University Press.

  8. Sensing Movement: Microsensors for Body Motion Measurement

    Directory of Open Access Journals (Sweden)

    Hansong Zeng

    2011-01-01

    Full Text Available Recognition of body posture and motion is an important physiological function that can keep the body in balance. Man-made motion sensors have also been widely applied for a broad array of biomedical applications including diagnosis of balance disorders and evaluation of energy expenditure. This paper reviews the state-of-the-art sensing components utilized for body motion measurement. The anatomy and working principles of a natural body motion sensor, the human vestibular system, are first described. Various man-made inertial sensors are then elaborated based on their distinctive sensing mechanisms. In particular, both the conventional solid-state motion sensors and the emerging non solid-state motion sensors are depicted. With their lower cost and increased intelligence, man-made motion sensors are expected to play an increasingly important role in biomedical systems for basic research as well as clinical diagnostics.

  9. The 4-vessel Sampling Approach to Integrative Studies of Human Placental Physiology In Vivo.

    Science.gov (United States)

    Holme, Ane M; Holm, Maia B; Roland, Marie C P; Horne, Hildegunn; Michelsen, Trond M; Haugen, Guttorm; Henriksen, Tore

    2017-08-02

    The human placenta is highly inaccessible for research while still in utero. The current understanding of human placental physiology in vivo is therefore largely based on animal studies, despite the high diversity among species in placental anatomy, hemodynamics and duration of the pregnancy. The vast majority of human placenta studies are ex vivo perfusion studies or in vitro trophoblast studies. Although in vitro studies and animal models are essential, extrapolation of the results from such studies to the human placenta in vivo is uncertain. We aimed to study human placenta physiology in vivo at term, and present a detailed protocol of the method. Exploiting the intraabdominal access to the uterine vein just before the uterine incision during planned cesarean section, we collect blood samples from the incoming and outgoing vessels on the maternal and fetal sides of the placenta. When combining concentration measurements from blood samples with volume blood flow measurements, we are able to quantify placental and fetal uptake and release of any compound. Furthermore, placental tissue samples from the same mother-fetus pairs can provide measurements of transporter density and activity and other aspects of placental functions in vivo. Through this integrative use of the 4-vessel sampling method we are able to test some of the current concepts of placental nutrient transfer and metabolism in vivo, both in normal and pathological pregnancies. Furthermore, this method enables the identification of substances secreted by the placenta to the maternal circulation, which could be an important contribution to the search for biomarkers of placenta dysfunction.

  10. Robot and Human Surface Operations on Solar System Bodies

    Science.gov (United States)

    Weisbin, C. R.; Easter, R.; Rodriguez, G.

    2001-01-01

    This paper presents a comparison of robot and human surface operations on solar system bodies. The topics include: 1) Long Range Vision of Surface Scenarios; 2) Human and Robots Complement Each Other; 3) Respective Human and Robot Strengths; 4) Need More In-Depth Quantitative Analysis; 5) Projected Study Objectives; 6) Analysis Process Summary; 7) Mission Scenarios Decompose into Primitive Tasks; 7) Features of the Projected Analysis Approach; and 8) The "Getting There Effect" is a Major Consideration. This paper is in viewgraph form.

  11. Central respiratory chemosensitivity and cerebrovascular CO2 reactivity: a rebreathing demonstration illustrating integrative human physiology.

    Science.gov (United States)

    MacKay, Christina M; Skow, Rachel J; Tymko, Michael M; Boulet, Lindsey M; Davenport, Margie H; Steinback, Craig D; Ainslie, Philip N; Lemieux, Chantelle C M; Day, Trevor A

    2016-03-01

    One of the most effective ways of engaging students of physiology and medicine is through laboratory demonstrations and case studies that combine 1) the use of equipment, 2) problem solving, 3) visual representations, and 4) manipulation and interpretation of data. Depending on the measurements made and the type of test, laboratory demonstrations have the added benefit of being able to show multiple organ system integration. Many research techniques can also serve as effective demonstrations of integrative human physiology. The "Duffin" hyperoxic rebreathing test is often used in research settings as a test of central respiratory chemosensitivity and cerebrovascular reactivity to CO2. We aimed to demonstrate the utility of the hyperoxic rebreathing test for both respiratory and cerebrovascular responses to increases in CO2 and illustrate the integration of the respiratory and cerebrovascular systems. In the present article, methods such as spirometry, respiratory gas analysis, and transcranial Doppler ultrasound are described, and raw data traces can be adopted for discussion in a tutorial setting. If educators have these instruments available, instructions on how to carry out the test are provided so students can collect their own data. In either case, data analysis and quantification are discussed, including principles of linear regression, calculation of slope, the coefficient of determination (R(2)), and differences between plotting absolute versus normalized data. Using the hyperoxic rebreathing test as a demonstration of the complex interaction and integration between the respiratory and cerebrovascular systems provides senior undergraduate, graduate, and medical students with an advanced understanding of the integrative nature of human physiology. Copyright © 2016 The American Physiological Society.

  12. Mechanical impedance of the human body in vertical direction.

    Science.gov (United States)

    Holmlund, P; Lundström, R; Lindberg, L

    2000-08-01

    The mechanical impedance of the human body in sitting posture and vertical direction was measured during different experimental conditions, such as vibration level (0.5-1.4 m/s2), frequency (2-100 Hz), body weight (57-92 kg), relaxed and erect upper body posture. The outcome shows that impedance increases with frequency up to a peak at about 5 Hz after which it decreases in a complex manner which includes two additional peaks. The frequency at which the first and second impedance peak occurs decreases with higher vibration level. Erect, compared with relaxed body posture resulted in higher impedance magnitudes and with peaks located at somewhat higher frequencies. Heavy persons show higher impedance magnitudes and peaks at lower frequencies.

  13. Brazilian legal and bioethical approach about donation for research and patents of human body parts.

    Science.gov (United States)

    Fernandes, Márcia Santana; Silla, Lúcia; Goldim, José Roberto; Martins-Costa, Judith

    2017-07-01

    The aim of this paper is to explain why the Brazilian legal system does not accept commercialization or commodification of human body parts, including genes or cells. As a consequence, in Brazil, the donation of human body parts for research-including basic or translational-must be made altruistically. For the same reason, the Brazilian patent system cannot be applied to human parts, cells or genes. Here, we present a qualitative analysis of juridical, bioethical, and social reasoning related to the legal status of human body parts especially in biobanks, as well as a description of the Brazilian legal system for clarification. Our aim is to discuss the responsibility of researchers for making available the scientific information resulting from scientific research and biobank storage of human body parts and to ensure the free utilization of knowledge in human health research.

  14. Learning objects as coadjuvants in the human physiology teaching-learning process

    Directory of Open Access Journals (Sweden)

    Marcus Vinícius Lara

    2014-08-01

    Full Text Available The use of Information and Communication Technologies (ICTs in the academic environment of biomedical area has gained much importance, both for their ability to complement the understanding of the subject obtained in the classroom, is the ease of access, or makes more pleasure the learning process, since these tools are present in everyday of the students and use a simple language. Considering that, this study aims to report the experience of building learning objects in human physiology as a tool for learning facilitation, and discuss the impact of this teaching methodology

  15. Body temperature norms

    Science.gov (United States)

    Normal body temperature; Temperature - normal ... Morrison SF. Regulation of body temperature. In: Boron WF, Boulpaep EL, eds. Medical Physiology . 3rd ed. Philadelphia, PA: Elsevier; 2017:chap 59. Sajadi MM, Mackowiak ...

  16. Cytotoxic activities of Coriolus versicolor (Yunzhi) extracts on human ...

    African Journals Online (AJOL)

    SERVER

    2007-08-06

    Aug 6, 2007 ... four human liver cancer (7703, HepG2, 7721, PLC) and four human breast cancer (Bcap37, ZR75-30,. MCF-7, T-47D) cell lines ... Key words: Coriolus versicolor, fruit body, polysaccharide, anti-tumor. INTRODUCTION. Coriolus ... somewhat in structure, composition, and physiological activity. The present ...

  17. Influence of the model's degree of freedom on human body dynamics identification.

    Science.gov (United States)

    Maita, Daichi; Venture, Gentiane

    2013-01-01

    In fields of sports and rehabilitation, opportunities of using motion analysis of the human body have dramatically increased. To analyze the motion dynamics, a number of subject specific parameters and measurements are required. For example the contact forces measurement and the inertial parameters of each segment of the human body are necessary to compute the joint torques. In this study, in order to perform accurate dynamic analysis we propose to identify the inertial parameters of the human body and to evaluate the influence of the model's number of degrees of freedom (DoF) on the results. We use a method to estimate the inertial parameters without torque sensor, using generalized coordinates of the base link, joint angles and external forces information. We consider a 34DoF model, a 58DoF model, as well as the case when the human is manipulating a tool (here a tennis racket). We compare the obtained in results in terms of contact force estimation.

  18. Ex Vivo Model of Human Penile Transplantation and Rejection: Implications for Erectile Tissue Physiology.

    Science.gov (United States)

    Sopko, Nikolai A; Matsui, Hotaka; Lough, Denver M; Miller, Devin; Harris, Kelly; Kates, Max; Liu, Xiaopu; Billups, Kevin; Redett, Richard; Burnett, Arthur L; Brandacher, Gerald; Bivalacqua, Trinity J

    2017-04-01

    Penile transplantation is a potential treatment option for severe penile tissue loss. Models of human penile rejection are lacking. Evaluate effects of rejection and immunosuppression on cavernous tissue using a novel ex vivo mixed lymphocyte reaction (MLR) model. Cavernous tissue and peripheral blood mononuclear cells (PBMCs) from 10 patients undergoing penile prosthesis operations and PBMCs from a healthy volunteer were obtained. Ex vivo MLRs were prepared by culturing cavernous tissue for 48h in media alone, in media with autologous PBMCs, or in media with allogenic PBMCs to simulate control, autotransplant, and allogenic transplant conditions with or without 1μM cyclosporine A (CsA) or 20nM tacrolimus (FK506) treatment. Rejection was characterized by PBMC flow cytometry and gene expression transplant array. Cavernous tissues were evaluated by histomorphology and myography to assess contraction and relaxation. Data were analyzed using two-way analysis of variance and unpaired Student t test. Flow cytometry and tissue array demonstrated allogenic PBMC activation consistent with rejection. Rejection impaired cavernous tissue physiology and was associated with cellular infiltration and apoptosis. CsA prevented rejection but did not improve tissue relaxation. CsA treatment impaired relaxation in tissues cultured without PBMCs compared with media and FK506. Study limitations included the use of penile tissue with erectile dysfunction and lack of cross-matching data. This model could be used to investigate the effects of penile rejection and immunosuppression. Additional studies are needed to optimize immunosuppression to prevent rejection and maximize corporal tissue physiology. This report describes a novel ex vivo model of human penile transplantation rejection. Tissue rejection impaired erectile tissue physiology. This report suggests that cyclosporin A might hinder corporal physiology and that other immunosuppressant agents, such as FK506, might be better suited

  19. Performance of human body communication-based wearable ECG with capacitive coupling electrodes.

    Science.gov (United States)

    Sakuma, Jun; Anzai, Daisuke; Wang, Jianqing

    2016-09-01

    Wearable electrocardiogram (ECG) is attracting much attention in daily healthcare applications, and human body communication (HBC) technology provides an evident advantage in making the sensing electrodes of ECG also working for transmission through the human body. In view of actual usage in daily life, however, non-contact electrodes to the human body are desirable. In this Letter, the authors discussed the ECG circuit structure in the HBC-based wearable ECG for removing the common mode noise when employing non-contact capacitive coupling electrodes. Through the comparison of experimental results, they have shown that the authors' proposed circuit structure with the third electrode directly connected to signal ground can provide an effect on common mode noise reduction similar to the usual drive-right-leg circuit, and a sufficiently good acquisition performance of ECG signals.

  20. A Review of the Extraction and Determination Methods of Thirteen Essential Vitamins to the Human Body: An Update from 2010.

    Science.gov (United States)

    Zhang, Yuan; Zhou, Wei-E; Yan, Jia-Qing; Liu, Min; Zhou, Yu; Shen, Xin; Ma, Ying-Lin; Feng, Xue-Song; Yang, Jun; Li, Guo-Hui

    2018-06-19

    Vitamins are a class of essential nutrients in the body; thus, they play important roles in human health. The chemicals are involved in many physiological functions and both their lack and excess can put health at risk. Therefore, the establishment of methods for monitoring vitamin concentrations in different matrices is necessary. In this review, an updated overview of the main pretreatments and determination methods that have been used since 2010 is given. Ultrasonic assisted extraction, liquid⁻liquid extraction, solid phase extraction and dispersive liquid⁻liquid microextraction are the most common pretreatment methods, while the determination methods involve chromatography methods, electrophoretic methods, microbiological assays, immunoassays, biosensors and several other methods. Different pretreatments and determination methods are discussed.

  1. A Review of the Extraction and Determination Methods of Thirteen Essential Vitamins to the Human Body: An Update from 2010

    Directory of Open Access Journals (Sweden)

    Yuan Zhang

    2018-06-01

    Full Text Available Vitamins are a class of essential nutrients in the body; thus, they play important roles in human health. The chemicals are involved in many physiological functions and both their lack and excess can put health at risk. Therefore, the establishment of methods for monitoring vitamin concentrations in different matrices is necessary. In this review, an updated overview of the main pretreatments and determination methods that have been used since 2010 is given. Ultrasonic assisted extraction, liquid–liquid extraction, solid phase extraction and dispersive liquid–liquid microextraction are the most common pretreatment methods, while the determination methods involve chromatography methods, electrophoretic methods, microbiological assays, immunoassays, biosensors and several other methods. Different pretreatments and determination methods are discussed.

  2. Spectrophotometric analysis of flavonoid-DNA binding interactions at physiological conditions

    Science.gov (United States)

    Janjua, Naveed Kausar; Siddiqa, Asima; Yaqub, Azra; Sabahat, Sana; Qureshi, Rumana; Haque, Sayed ul

    2009-12-01

    Mode of interactions of three flavonoids [morin (M), quercetin (Q), and rutin (R)] with chicken blood ds.DNA (ck.DNA) has been investigated spectrophotometrically at different temperatures including body temperature (310 K) and at two physiological pH values, i.e. 7.4 (human blood pH) and 4.7 (stomach pH). The binding constants, Kf, evaluated using Benesi-Hildebrand equation showed that the flavonoids bind effectively through intercalation at both pH values and body temperature. Quercetin, somehow, showed greater binding capabilities with DNA. The free energies of flavonoid-DNA complexes indicated the spontaneity of their binding. The order of binding constants of three flavonoids at both pH values were found to be Kf(Q) > Kf(R) > Kf(M) and at 310 K.

  3. Embalmment: a veritable source of human body preservation ...

    African Journals Online (AJOL)

    Embalmment is the process of chemically treating the dead human body to reduce the presence and growth of microorganisms, in order to retard organic decomposition and restore acceptable physical appearance. This paper presents a synopsis of the historical aspect of embalming and the various documented ...

  4. Policy needs and options for a common approach towards modelling and simulation of human physiology and diseases with a focus on the virtual physiological human.

    Science.gov (United States)

    Viceconti, Marco; McCulloch, Andrew D

    2011-01-01

    Life is the result of an intricate systemic interaction between many processes occurring at radically different spatial and temporal scales. Every day, worldwide biomedical research and clinical practice produce a huge amount of information on such processes. However, this information being highly fragmented, its integration is largely left to the human actors who find this task increasingly and ever more demanding in a context where the information available continues to increase exponentially. Investments in the Virtual Physiological Human (VPH) research are largely motivated by the need for integration in healthcare. As all health information becomes digital, the complexity of health care will continue to evolve, translating into an ever increasing pressure which will result from a growing demand in parallel to limited budgets. Hence, the best way to achieve the dream of personalised, preventive, and participative medicine at sustainable costs will be through the integration of all available data, information and knowledge.

  5. Development of Swimming Human Simulation Model Considering Rigid Body Dynamics and Unsteady Fluid Force for Whole Body

    Science.gov (United States)

    Nakashima, Motomu; Satou, Ken; Miura, Yasufumi

    The purpose of this study is to develop a swimming human simulation model considering rigid body dynamics and unsteady fluid force for the whole body, which will be utilized to analyze various dynamical problems in human swimming. First, the modeling methods and their formulations for the human body and the fluid force are respectively described. Second, experiments to identify the coefficients of the normal drag and the added mass are conducted by use of an experimental setup, in which a limb model rotates in the water, and its rotating angle and the bending moment at the root are measured. As the result of the identification, the present model for the fluid force was found to have satisfactory performance in order to represent the unsteady fluctuations of the experimental data, although it has 10% error. Third, a simulation for the gliding position is conducted in order to identify the tangential drag coefficient. Finally, a simulation example of standard six beat front crawl swimming is shown. The swimming speed of the simulation became a reasonable value, indicating the validity of the present simulation model, although it is 7.5% lower than the actual swimming.

  6. Human thermal physiological and psychological responses under different heating environments.

    Science.gov (United States)

    Wang, Zhaojun; Ning, Haoran; Ji, Yuchen; Hou, Juan; He, Yanan

    2015-08-01

    Anecdotal evidence suggests that many residents of severely cold areas of China who use floor heating (FH) systems feel warmer but drier compared to those using radiant heating (RH) systems. However, this phenomenon has not been verified experimentally. In order to validate the empirical hypothesis, and research the differences of human physiological and psychological responses in these two asymmetrical heating environments, an experiment was designed to mimic FH and RH systems. The subjects participating in the experiment were volunteer college-students. During the experiment, the indoor air temperature, air speed, relative humidity, globe temperature, and inner surface temperatures were measured, and subjects' heart rate, blood pressure and skin temperatures were recorded. The subjects were required to fill in questionnaires about their thermal responses during testing. The results showed that the subjects' skin temperatures, heart rate and blood pressure were significantly affected by the type of heating environment. Ankle temperature had greatest impact on overall thermal comfort relative to other body parts, and a slightly cool FH condition was the most pleasurable environment for sedentary subjects. The overall thermal sensation, comfort and acceptability of FH were higher than that of RH. However, the subjects of FH felt drier than that of RH, although the relative humidity in FH environments was higher than that of the RH environment. In future environmental design, the thermal comfort of the ankles should be scrutinized, and a FH cool condition is recommended as the most comfortable thermal environment for office workers. Consequently, large amounts of heating energy could be saved in this area in the winter. The results of this study may lead to more efficient energy use for office or home heating systems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Assessment of body doses from photon exposures using human voxel models

    International Nuclear Information System (INIS)

    Zankl, M.; Fill, U.; Petoussi-Henss, N.; Regulla, D.

    2000-01-01

    For the scope of risk assessment in protection against ionising radiation (occupational, environmental and medical) it is necessary to determine the radiation dose to specific body organs and tissues. For this purpose, a series of models of the human body were designed in the past, together with computer codes simulating the radiation transport and energy deposition in the body. Most of the computational body models in use are so-called mathematical models; the most famous is the MIRD-5 phantom developed at Oak Ridge National Laboratory. In the 1980s, a new generation of human body models was introduced at GSF, constructed from whole body CT data. Due to being constructed from image data of real persons, these 'voxel models' offer an improved realism of external and internal shape of the body and its organs, compared to MIRD-type models. Comparison of dose calculations involving voxel models with respective dose calculations for MIRD-type models revealed that the deviation of the individual anatomy from that described in the MIRD-type models indeed introduces significant deviations of the calculated organ doses. Specific absorbed fractions of energy released in a source organ due to incorporated activity which are absorbed in target organs may differ by more than an order of magnitude between different body models; for external photon irradiation, the discrepancies are more moderate. (author)

  8. Computational modeling of blast wave interaction with a human body and assessment of traumatic brain injury

    Science.gov (United States)

    Tan, X. G.; Przekwas, A. J.; Gupta, R. K.

    2017-11-01

    The modeling of human body biomechanics resulting from blast exposure poses great challenges because of the complex geometry and the substantial material heterogeneity. We developed a detailed human body finite element model representing both the geometry and the materials realistically. The model includes the detailed head (face, skull, brain and spinal cord), the neck, the skeleton, air cavities (lungs) and the tissues. Hence, it can be used to properly model the stress wave propagation in the human body subjected to blast loading. The blast loading on the human was generated from a simulated C4 explosion. We used the highly scalable solvers in the multi-physics code CoBi for both the blast simulation and the human body biomechanics. The meshes generated for these simulations are of good quality so that relatively large time-step sizes can be used without resorting to artificial time scaling treatments. The coupled gas dynamics and biomechanics solutions were validated against the shock tube test data. The human body models were used to conduct parametric simulations to find the biomechanical response and the brain injury mechanism due to blasts impacting the human body. Under the same blast loading condition, we showed the importance of inclusion of the whole body.

  9. Agricultural land use and human presence around breeding sites increase stress-hormone levels and decrease body mass in barn owl nestlings.

    Science.gov (United States)

    Almasi, Bettina; Béziers, Paul; Roulin, Alexandre; Jenni, Lukas

    2015-09-01

    Human activities can have a suite of positive and negative effects on animals and thus can affect various life history parameters. Human presence and agricultural practice can be perceived as stressors to which animals react with the secretion of glucocorticoids. The acute short-term secretion of glucocorticoids is considered beneficial and helps an animal to redirect energy and behaviour to cope with a critical situation. However, a long-term increase of glucocorticoids can impair e.g. growth and immune functions. We investigated how nestling barn owls (Tyto alba) are affected by the surrounding landscape and by human activities around their nest sites. We studied these effects on two response levels: (a) the physiological level of the hypothalamus-pituitary-adrenal axis, represented by baseline concentrations of corticosterone and the concentration attained by a standardized stressor; (b) fitness parameters: growth of the nestlings and breeding performance. Nestlings growing up in intensively cultivated areas showed increased baseline corticosterone levels late in the season and had an increased corticosterone release after a stressful event, while their body mass was decreased. Nestlings experiencing frequent anthropogenic disturbance had elevated baseline corticosterone levels, an increased corticosterone stress response and a lower body mass. Finally, breeding performance was better in structurally more diverse landscapes. In conclusion, anthropogenic disturbance affects offspring quality rather than quantity, whereas agricultural practices affect both life history traits.

  10. Isomap transform for segmenting human body shapes.

    Science.gov (United States)

    Cerveri, P; Sarro, K J; Marchente, M; Barros, R M L

    2011-09-01

    Segmentation of the 3D human body is a very challenging problem in applications exploiting volume capture data. Direct clustering in the Euclidean space is usually complex or even unsolvable. This paper presents an original method based on the Isomap (isometric feature mapping) transform of the volume data-set. The 3D articulated posture is mapped by Isomap in the pose of Da Vinci's Vitruvian man. The limbs are unrolled from each other and separated from the trunk and pelvis, and the topology of the human body shape is recovered. In such a configuration, Hoshen-Kopelman clustering applied to concentric spherical shells is used to automatically group points into the labelled principal curves. Shepard interpolation is utilised to back-map points of the principal curves into the original volume space. The experimental results performed on many different postures have proved the validity of the proposed method. Reliability of less than 2 cm and 3° in the location of the joint centres and direction axes of rotations has been obtained, respectively, which qualifies this procedure as a potential tool for markerless motion analysis.

  11. Human Cognitive Limitations. Broad, Consistent, Clinical Application of Physiological Principles Will Require Decision Support.

    Science.gov (United States)

    Morris, Alan H

    2018-02-01

    Our education system seems to fail to enable clinicians to broadly understand core physiological principles. The emphasis on reductionist science, including "omics" branches of research, has likely contributed to this decrease in understanding. Consequently, clinicians cannot be expected to consistently make clinical decisions linked to best physiological evidence. This is a large-scale problem with multiple determinants, within an even larger clinical decision problem: the failure of clinicians to consistently link their decisions to best evidence. Clinicians, like all human decision-makers, suffer from significant cognitive limitations. Detailed context-sensitive computer protocols can generate personalized medicine instructions that are well matched to individual patient needs over time and can partially resolve this problem.

  12. Latent physiological factors of complex human diseases revealed by independent component analysis of clinarrays

    Directory of Open Access Journals (Sweden)

    Chen David P

    2010-10-01

    Full Text Available Abstract Background Diagnosis and treatment of patients in the clinical setting is often driven by known symptomatic factors that distinguish one particular condition from another. Treatment based on noticeable symptoms, however, is limited to the types of clinical biomarkers collected, and is prone to overlooking dysfunctions in physiological factors not easily evident to medical practitioners. We used a vector-based representation of patient clinical biomarkers, or clinarrays, to search for latent physiological factors that underlie human diseases directly from clinical laboratory data. Knowledge of these factors could be used to improve assessment of disease severity and help to refine strategies for diagnosis and monitoring disease progression. Results Applying Independent Component Analysis on clinarrays built from patient laboratory measurements revealed both known and novel concomitant physiological factors for asthma, types 1 and 2 diabetes, cystic fibrosis, and Duchenne muscular dystrophy. Serum sodium was found to be the most significant factor for both type 1 and type 2 diabetes, and was also significant in asthma. TSH3, a measure of thyroid function, and blood urea nitrogen, indicative of kidney function, were factors unique to type 1 diabetes respective to type 2 diabetes. Platelet count was significant across all the diseases analyzed. Conclusions The results demonstrate that large-scale analyses of clinical biomarkers using unsupervised methods can offer novel insights into the pathophysiological basis of human disease, and suggest novel clinical utility of established laboratory measurements.

  13. ¿Disposable Matter or Personal Entity? The Human Body, Biotechnology and the Juridical Requirements of Dignity

    Directory of Open Access Journals (Sweden)

    Jorge Nicolás Lafferriere

    2018-01-01

    Full Text Available Biotechnological interventions affect the human body in new and powerful ways in the process of procreation, through actions of enhancement or replacement of the body, or by the search of the immortality of the body. This implies new legal challenges to prevent biotechnoscience from considering the human body as "operable and disposable matter", and treating it as the human person himself. In this article, we will study these challenges, starting from human dignity as a fundamental principle for an assessment of this biotechnology, and focusing on four legal issues: improvement interventions and their legal enforceability; the commodification of human life; growing social inequalities and the emergence of new forms of discrimination; and the principle of integrity of the human species.

  14. Inhibition of human pancreatic and biliary output but not intestinal motility by physiological intraileal lipid loads

    DEFF Research Database (Denmark)

    Keller, Jutta; Holst, Jens Juul; Layer, Peter

    2005-01-01

    Lipid perfusion into the distal ileal lumen at supraphysiological loads inhibits pancreatic exocrine secretion and gastrointestinal motility in humans. In the present study, we sought to determine the effects of physiological postprandial intraileal lipid concentrations on endogenously stimulated...

  15. Human body contour data based activity recognition.

    Science.gov (United States)

    Myagmarbayar, Nergui; Yuki, Yoshida; Imamoglu, Nevrez; Gonzalez, Jose; Otake, Mihoko; Yu, Wenwei

    2013-01-01

    This research work is aimed to develop autonomous bio-monitoring mobile robots, which are capable of tracking and measuring patients' motions, recognizing the patients' behavior based on observation data, and providing calling for medical personnel in emergency situations in home environment. The robots to be developed will bring about cost-effective, safe and easier at-home rehabilitation to most motor-function impaired patients (MIPs). In our previous research, a full framework was established towards this research goal. In this research, we aimed at improving the human activity recognition by using contour data of the tracked human subject extracted from the depth images as the signal source, instead of the lower limb joint angle data used in the previous research, which are more likely to be affected by the motion of the robot and human subjects. Several geometric parameters, such as, the ratio of height to weight of the tracked human subject, and distance (pixels) between centroid points of upper and lower parts of human body, were calculated from the contour data, and used as the features for the activity recognition. A Hidden Markov Model (HMM) is employed to classify different human activities from the features. Experimental results showed that the human activity recognition could be achieved with a high correct rate.

  16. Physiological stress reactivity in human pregnancy--a review.

    NARCIS (Netherlands)

    Weerth, C. de; Buitelaar, J.K.

    2005-01-01

    Prenatal maternal stress has been found to have long-lasting effects on the behavioral and physiological development of the offspring. These programming effects on the fetus would be physiologically mediated through heightened and/or abnormal activity of the maternal sympathetic-adrenal-medullary

  17. Physiological stress reactivity in human pregnancy - a review

    NARCIS (Netherlands)

    Weerth, C. de; Buitelaar, J.K.

    2005-01-01

    Prenatal maternal stress has been found to have long-lasting effects on the behavioral and physiological development of the offspring. These programming effects on the fetus would be physiologically mediated through heightened and/or abnormal activity of the maternal sympathetic-adrenal-medullary

  18. Human body scents: do they influence our behavior?

    Science.gov (United States)

    Mildner, Sophie; Buchbauer, Gerhard

    2013-11-01

    Pheromonal communication in the animal world has been of great research interest for a long time. While extraordinary discoveries in this field have been made, the importance of the human sense of smell was of far lower interest. Humans are seen as poor smellers and therefore research about human olfaction remains quite sparse compared with other animals. Nevertheless amazing achievements have been made during the past 15 years. This is a collection of available data on this topic and a controversial discussion on the role of putative human pheromones in our modem way of living. While the focus was definitely put on behavioral changes evoked by putative human pheromones this article also includes other important aspects such as the possible existence of a human vomeronasal organ. If pheromones do have an influence on human behavior there has to be a receptor organ. How are human body scents secreted and turned into odorous substances? And how can con-specifics detect those very odors and transmit them to the brain? Apart from that the most likely candidates for human pheromones are taken on account and their impact on human behavior is shown in various detail.

  19. Physiological reactions to capture in hibernating brown bears.

    Science.gov (United States)

    Evans, Alina L; Singh, Navinder J; Fuchs, Boris; Blanc, Stéphane; Friebe, Andrea; Laske, Timothy G; Frobert, Ole; Swenson, Jon E; Arnemo, Jon M

    2016-01-01

    Human disturbance can affect animal life history and even population dynamics. However, the consequences of these disturbances are difficult to measure. This is especially true for hibernating animals, which are highly vulnerable to disturbance, because hibernation is a process of major physiological changes, involving conservation of energy during a resource-depleted time of year. During the winters of 2011-15, we captured 15 subadult brown bears ( Ursus arctos ) and recorded their body temperatures ( n  = 11) and heart rates ( n = 10) before, during and after capture using biologgers. We estimated the time for body temperature and heart rate to normalize after the capture event. We then evaluated the effect of the captures on the pattern and depth of hibernation and the day of den emergence by comparing the body temperature of captured bears with that of undisturbed subadult bears ( n  = 11). Both body temperature and heart rate increased during capture and returned to hibernation levels after 15-20 days. We showed that bears required 2-3 weeks to return to hibernation levels after winter captures, suggesting high metabolic costs during this period. There were also indications that the winter captures resulted in delayed den emergence.

  20. Analysis of measured data of human body based on error correcting frequency

    Science.gov (United States)

    Jin, Aiyan; Peipei, Gao; Shang, Xiaomei

    2014-04-01

    Anthropometry is to measure all parts of human body surface, and the measured data is the basis of analysis and study of the human body, establishment and modification of garment size and formulation and implementation of online clothing store. In this paper, several groups of the measured data are gained, and analysis of data error is gotten by analyzing the error frequency and using analysis of variance method in mathematical statistics method. Determination of the measured data accuracy and the difficulty of measured parts of human body, further studies of the causes of data errors, and summarization of the key points to minimize errors possibly are also mentioned in the paper. This paper analyses the measured data based on error frequency, and in a way , it provides certain reference elements to promote the garment industry development.

  1. Plantar flexor stretch reflex responses to whole body loading/unloading during human walking

    DEFF Research Database (Denmark)

    Grey, Michael James; van Doornik, Johannes; Sinkjær, Thomas

    2002-01-01

    Numerous animal and human studies have shown that afferent information from the periphery contributes to the control of walking. In particular, recent studies have consistently shown that load receptor input is an important element of the locomotion control mechanism. The objective of this study...... perturbation during human walking. Three body load conditions were investigated: normal body load, a 30% increase in body load, and a 30% decrease in body load. Healthy subjects walked on a treadmill at approximately 3.6 km/h with the left ankle attached to a portable stretching device. Dorsiflexion...... strongly to the corrective response of the stretch reflex in the plantar flexor muscles during walking....

  2. The Major Histocompatibility Complex and Perfumers' Descriptions of Human Body Odors

    Directory of Open Access Journals (Sweden)

    Claus Wedekind

    2007-04-01

    Full Text Available The MHC (major histocompatibility complex is a group of genes that play a crucial role in immune recognition and in tolerance of tissue grafting. The MHC has also been found to influence body odors, body odor preferences, and mate choice in mice and humans. Here we test whether verbal descriptions of human body odors can be linked to the MHC. We asked 45 male students to live as odor neutral as possible for two consecutive days and to wear a T-shirt during the nights. The odors of these T-shirts were then described by five evaluators: two professional perfumers and three laymen. One of the perfumers was able to describe the T-shirt odors in such a way that some of the allelic specificity of the MHC was significantly revealed (after Bonferroni correction for multiple testing. This shows that, although difficult, some people are able to describe MHC-correlated body odor components.

  3. An investigation on the assessed thermal sensation and human body exergy consumption rate

    DEFF Research Database (Denmark)

    Simone, Angela; Kolarik, Jakub; Iwamatsu, Toshiya

    2010-01-01

    perception of the indoor environment is rare. As the building should provide healthy and comfortable environment for its occupants, it is reasonable to consider both the exergy flows in the building and within the human body. A relatively new approach of the relation between the exergy concept and the built......-environment research has been explored in the present work. The relationship of subjectively assessed thermal sensation data, from earlier thermal comfort studies, to the calculated human-body exergy consumption has been analysed. The results show that the minimum human body exergy consumption rate was related......The exergy concept helps to optimize indoor climate conditioning systems to meet the requirements of sustainable building design. While the exergy approach to design and operation of indoor climate conditioning systems is relatively well established, its exploitation in connection to human...

  4. A human life-stage physiologically based pharmacokinetic and pharmacodynamic model for chlorpyrifos: development and validation.

    Science.gov (United States)

    Smith, Jordan Ned; Hinderliter, Paul M; Timchalk, Charles; Bartels, Michael J; Poet, Torka S

    2014-08-01

    Sensitivity to some chemicals in animals and humans are known to vary with age. Age-related changes in sensitivity to chlorpyrifos have been reported in animal models. A life-stage physiologically based pharmacokinetic and pharmacodynamic (PBPK/PD) model was developed to predict disposition of chlorpyrifos and its metabolites, chlorpyrifos-oxon (the ultimate toxicant) and 3,5,6-trichloro-2-pyridinol (TCPy), as well as B-esterase inhibition by chlorpyrifos-oxon in humans. In this model, previously measured age-dependent metabolism of chlorpyrifos and chlorpyrifos-oxon were integrated into age-related descriptions of human anatomy and physiology. The life-stage PBPK/PD model was calibrated and tested against controlled adult human exposure studies. Simulations suggest age-dependent pharmacokinetics and response may exist. At oral doses ⩾0.6mg/kg of chlorpyrifos (100- to 1000-fold higher than environmental exposure levels), 6months old children are predicted to have higher levels of chlorpyrifos-oxon in blood and higher levels of red blood cell cholinesterase inhibition compared to adults from equivalent doses. At lower doses more relevant to environmental exposures, simulations predict that adults will have slightly higher levels of chlorpyrifos-oxon in blood and greater cholinesterase inhibition. This model provides a computational framework for age-comparative simulations that can be utilized to predict chlorpyrifos disposition and biological response over various postnatal life stages. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Fractal physiology and the fractional calculus: a perspective.

    Science.gov (United States)

    West, Bruce J

    2010-01-01

    This paper presents a restricted overview of Fractal Physiology focusing on the complexity of the human body and the characterization of that complexity through fractal measures and their dynamics, with fractal dynamics being described by the fractional calculus. Not only are anatomical structures (Grizzi and Chiriva-Internati, 2005), such as the convoluted surface of the brain, the lining of the bowel, neural networks and placenta, fractal, but the output of dynamical physiologic networks are fractal as well (Bassingthwaighte et al., 1994). The time series for the inter-beat intervals of the heart, inter-breath intervals and inter-stride intervals have all been shown to be fractal and/or multifractal statistical phenomena. Consequently, the fractal dimension turns out to be a significantly better indicator of organismic functions in health and disease than the traditional average measures, such as heart rate, breathing rate, and stride rate. The observation that human physiology is primarily fractal was first made in the 1980s, based on the analysis of a limited number of datasets. We review some of these phenomena herein by applying an allometric aggregation approach to the processing of physiologic time series. This straight forward method establishes the scaling behavior of complex physiologic networks and some dynamic models capable of generating such scaling are reviewed. These models include simple and fractional random walks, which describe how the scaling of correlation functions and probability densities are related to time series data. Subsequently, it is suggested that a proper methodology for describing the dynamics of fractal time series may well be the fractional calculus, either through the fractional Langevin equation or the fractional diffusion equation. A fractional operator (derivative or integral) acting on a fractal function, yields another fractal function, allowing us to construct a fractional Langevin equation to describe the evolution of a

  6. Students' Conceptions about Energy and the Human Body

    Science.gov (United States)

    Mann, Michael; Treagust, David F.

    2010-01-01

    Students' understanding of energy has been primarily within the domain of physics. This study sought to examine students' understanding of concepts relating to energy and the human body using pencil and paper questionnaires administered to 610 students in Years 8-12. From students' responses to the questionnaires, conceptual patterns were…

  7. A probabilistic model of human variability in physiology for future application to dose reconstruction and QIVIVE.

    Science.gov (United States)

    McNally, Kevin; Loizou, George D

    2015-01-01

    The risk assessment of environmental chemicals and drugs is undergoing a paradigm shift in approach which seeks the full replacement of animal testing with high throughput, mechanistic, in vitro systems. This new approach will be reliant on the measurement in vitro, of concentration-dependent responses where prolonged excessive perturbations of specific biochemical pathways are likely to lead to adverse health effects in an intact organism. Such an approach requires a framework, into which disparate data generated by in vitro, in silico, and in chemico systems can be integrated and utilized for quantitative in vitro-to-in vivo extrapolation (QIVIVE), ultimately to the human population level. Physiologically based pharmacokinetic (PBPK) models are ideally suited to this and are needed to translate in vitro concentration- response relationships to an exposure or dose, route and duration regime in human populations. Thus, a realistic description of the variation in the physiology of the human population being modeled is critical. Whilst various studies in the past decade have made progress in describing human variability, the algorithms are typically coded in computer programs and as such are unsuitable for reverse dosimetry. In this report we overcome this limitation by developing a hierarchical statistical model using standard probability distributions for the specification of a virtual US and UK human population. The work draws on information from both population databases and cadaver studies.

  8. A probabilistic model of human variability in physiology for future application to dose reconstruction and QIVIVE

    Directory of Open Access Journals (Sweden)

    Kevin eMcNally

    2015-10-01

    Full Text Available The risk assessment of environmental chemicals and drugs is undergoing a paradigm shift in approach which seeks the full replacement of animal testing with high throughput, mechanistic, in vitro systems. This new approach will be reliant on the measurement in vitro, of concentration-dependent responses where prolonged excessive perturbations of specific biochemical pathways are likely to lead to adverse health effects in an intact organism. Such an approach requires a framework, into which disparate data generated by in vitro, in silico and in chemico systems can be integrated and utilised for quantitative in vitro-to-in vivo extrapolation (QIVIVE, ultimately to the human population level. Physiologically based pharmacokinetic (PBPK models are ideally suited to this and are needed to translate in vitro concentration- response relationships to an exposure or dose, route and duration regime in human populations. Thus a realistic description of the variation in the physiology of the human population being modelled is critical. Whilst various studies in the past decade have made progress in describing human variability, the algorithms are typically coded in computer programs and as such are unsuitable for reverse dosimetry. In this report we overcome this limitation by developing a hierarchical statistical model using standard probability distributions for the specification of a virtual US and UK human population. The work draws on information from both population databases and cadaver studies.

  9. Genotyping of human lice suggests multiple emergencies of body lice from local head louse populations.

    Directory of Open Access Journals (Sweden)

    Wenjun Li

    Full Text Available BACKGROUND: Genetic analyses of human lice have shown that the current taxonomic classification of head lice (Pediculus humanus capitis and body lice (Pediculus humanus humanus does not reflect their phylogenetic organization. Three phylotypes of head lice A, B and C exist but body lice have been observed only in phylotype A. Head and body lice have different behaviours and only the latter have been involved in outbreaks of infectious diseases including epidemic typhus, trench fever and louse borne recurrent fever. Recent studies suggest that body lice arose several times from head louse populations. METHODS AND FINDINGS: By introducing a new genotyping technique, sequencing variable intergenic spacers which were selected from louse genomic sequence, we were able to evaluate the genotypic distribution of 207 human lice. Sequence variation of two intergenic spacers, S2 and S5, discriminated the 207 lice into 148 genotypes and sequence variation of another two intergenic spacers, PM1 and PM2, discriminated 174 lice into 77 genotypes. Concatenation of the four intergenic spacers discriminated a panel of 97 lice into 96 genotypes. These intergenic spacer sequence types were relatively specific geographically, and enabled us to identify two clusters in France, one cluster in Central Africa (where a large body louse outbreak has been observed and one cluster in Russia. Interestingly, head and body lice were not genetically differentiated. CONCLUSIONS: We propose a hypothesis for the emergence of body lice, and suggest that humans with both low hygiene and head louse infestations provide an opportunity for head louse variants, able to ingest a larger blood meal (a required characteristic of body lice, to colonize clothing. If this hypothesis is ultimately supported, it would help to explain why poor human hygiene often coincides with outbreaks of body lice. Additionally, if head lice act as a reservoir for body lice, and that any social degradation in

  10. The study of human bodies' impedance networks in testing leakage currents of electrical equipments

    Science.gov (United States)

    Zhang, Zhaohui; Wang, Xiaofei

    2006-11-01

    In the testing of electrical equipments' leakage currents, impedance networks of human bodies are used to simulate the current's effect on human bodies, and they are key to the preciseness of the testing result. This paper analyses and calculates three human bodies' impedance networks of measuring electric burn current, perception or reaction current, let-go current in IEC60990, by using Matlab, compares the research result of current effect thresholds' change with sine wave's frequency published in IEC479-2, and amends parameters of measuring networks. It also analyses the change of perception or reaction current with waveform by Multisim.

  11. Critical review evaluating the pig as a model for human nutritional physiology.

    Science.gov (United States)

    Roura, Eugeni; Koopmans, Sietse-Jan; Lallès, Jean-Paul; Le Huerou-Luron, Isabelle; de Jager, Nadia; Schuurman, Teun; Val-Laillet, David

    2016-06-01

    The present review examines the pig as a model for physiological studies in human subjects related to nutrient sensing, appetite regulation, gut barrier function, intestinal microbiota and nutritional neuroscience. The nutrient-sensing mechanisms regarding acids (sour), carbohydrates (sweet), glutamic acid (umami) and fatty acids are conserved between humans and pigs. In contrast, pigs show limited perception of high-intensity sweeteners and NaCl and sense a wider array of amino acids than humans. Differences on bitter taste may reflect the adaptation to ecosystems. In relation to appetite regulation, plasma concentrations of cholecystokinin and glucagon-like peptide-1 are similar in pigs and humans, while peptide YY in pigs is ten to twenty times higher and ghrelin two to five times lower than in humans. Pigs are an excellent model for human studies for vagal nerve function related to the hormonal regulation of food intake. Similarly, the study of gut barrier functions reveals conserved defence mechanisms between the two species particularly in functional permeability. However, human data are scant for some of the defence systems and nutritional programming. The pig model has been valuable for studying the changes in human microbiota following nutritional interventions. In particular, the use of human flora-associated pigs is a useful model for infants, but the long-term stability of the implanted human microbiota in pigs remains to be investigated. The similarity of the pig and human brain anatomy and development is paradigmatic. Brain explorations and therapies described in pig, when compared with available human data, highlight their value in nutritional neuroscience, particularly regarding functional neuroimaging techniques.

  12. A Novel Human Body Area Network for Brain Diseases Analysis.

    Science.gov (United States)

    Lin, Kai; Xu, Tianlang

    2016-10-01

    Development of wireless sensor and mobile communication technology provide an unprecedented opportunity for realizing smart and interactive healthcare systems. Designing such systems aims to remotely monitor the health and diagnose the diseases for users. In this paper, we design a novel human body area network for brain diseases analysis, which is named BABDA. Considering the brain is one of the most complex organs in the human body, the BABDA system provides four function modules to ensure the high quality of the analysis result, which includes initial data collection, data correction, data transmission and comprehensive data analysis. The performance evaluation conducted in a realistic environment with several criteria shows the availability and practicability of the BABDA system.

  13. [Anatomia sacra. Religiously motivated interventions on human or animal bodies].

    Science.gov (United States)

    Gladigow, B

    1995-01-01

    Controlled surgery in the interior of human or animal bodies in classical antiquity was allowed only under certain circumstances. Bloody animal sacrifice and its rules for the interpretation of entrails as well as the rare examples of 'ritual anatomy' presented a religious framework for the opening of bodies. Greek mythology provided several examples of medical operations, for example, the Caesarean section, transplantations and plastic surgery. Great cultic significance was given to organ votives or reproductions of human inner organs which were offered in temples ex voto or with request for their curing. The anatomical knowledge transported along with these offerings represents a separate tradition different from the state of anatomical knowledge found in medical literature of the period.

  14. A Managerial Approach To A Controversial Exhibition: The Human Body

    Directory of Open Access Journals (Sweden)

    Viorica Aura Păuş

    2013-12-01

    Full Text Available This paper will analyse the reception of the Human Body exhibition of 2013 in Romania, from a managerial point of view. The research is based on the exhibition visitors’ book, to which a content analysis was applied. The main aim of the paper is to investigate how the ‘Grigore Antipa’ Museum (Romania constructed the cultural context in which the scientific arguments prevailed over the religious ones, turning the exhibition of plastinated human bodies into an accepted public event, with a strong emphasis on education and science (medicine. At the same time, ethical concerns and religious criticism were downplayed by maintaining the focus on the ‘education for health’ frame.

  15. The body fades away: investigating the effects of transparency of an embodied virtual body on pain threshold and body ownership

    Science.gov (United States)

    Martini, Matteo; Kilteni, Konstantina; Maselli, Antonella; Sanchez-Vives, Maria V.

    2015-01-01

    The feeling of “ownership” over an external dummy/virtual body (or body part) has been proven to have both physiological and behavioural consequences. For instance, the vision of an “embodied” dummy or virtual body can modulate pain perception. However, the impact of partial or total invisibility of the body on physiology and behaviour has been hardly explored since it presents obvious difficulties in the real world. In this study we explored how body transparency affects both body ownership and pain threshold. By means of virtual reality, we presented healthy participants with a virtual co-located body with four different levels of transparency, while participants were tested for pain threshold by increasing ramps of heat stimulation. We found that the strength of the body ownership illusion decreases when the body gets more transparent. Nevertheless, in the conditions where the body was semi-transparent, higher levels of ownership over a see-through body resulted in an increased pain sensitivity. Virtual body ownership can be used for the development of pain management interventions. However, we demonstrate that providing invisibility of the body does not increase pain threshold. Therefore, body transparency is not a good strategy to decrease pain in clinical contexts, yet this remains to be tested. PMID:26415748

  16. Radionuclide withdrawal from animal and human body

    International Nuclear Information System (INIS)

    Arkhipov, A.S.; Sidorova, T.F.

    1995-01-01

    The authors review the history of the problem of radionuclide withdrawal from animal and human body and discuss methodological approaches to it. Results of studies of radionuclide elimination by means of chemical and bioactive substances are analyzed. Special attention is paid to decorporation of radioactive elements which are the most hazardous as regards intoxication in connection with the Chernobyl accident: 131 I, 89 St and 90 Sr, 137 Cs, 238 Pu, and 241 Am. The authors analyze the results of studies of radionuclide withdrawal based on the dissolution effect, ionic antagonism, and by means of complexons, carried out in humans and animals. Efficacies of alimentary fibers and other adsorbents, foodstuffs and drinks are demonstrated. 48 refs

  17. Physiological stress responses in wild Asian elephants Elephas maximus in a human-dominated landscape in the Western Ghats, southern India.

    Science.gov (United States)

    Vijayakrishnan, Sreedhar; Kumar, Mavatur Ananda; Umapathy, G; Kumar, Vinod; Sinha, Anindya

    2018-05-16

    Increasing anthropogenic pressures on forests, especially in the tropical regions of the world, have restricted several large mammalian species such as the Asian elephant to fragmented habitats within human-dominated landscapes. In this study, we assessed the effects of an anthropogenic landscape and its associated conflict with humans on the physiological stress responses displayed by Asian elephants in the Anamalai Hills of the Western Ghats mountains in south India. We have quantified faecal glucocorticoid metabolite (FGM) concentrations in focal individual elephants within and across herds, inhabiting both anthropogenic and natural habitats, and evaluated their physiological responses to different socio-ecological situations between November 2013 and April 2014. Physiological stress responses varied significantly among the tested elephant age- and sex categories but not across different types of social organisation. Adults generally showed higher FGM concentrations, even in the absence of stressors, than did any other age category. Males also appeared to have higher stress responses than did females. Although there was no significant variation in mean stress levels between elephants on the plateau in the absence of human interactions and those in adjacent, relatively undisturbed forest habitats, FGM concentrations increased significantly for adult and subadult individuals as well as for calves following drives, during which elephants were driven off aggressively by people. Our study emphasises the general importance of understanding individual variation in physiology and behaviour within a population of a seriously threatened mammalian species, the Asian elephant, and specifically highlights the need for long-term monitoring of the stress physiology and behavioural responses of individual elephants across both human-dominated and natural landscapes. Such studies would not only provide comprehensive insights into the adaptive biology of elephants in changing

  18. A REVIEW ON LOWER APPENDICULAR MUSCULOSKELETAL SYSTEM OF HUMAN BODY

    Directory of Open Access Journals (Sweden)

    M. Akhtaruzzaman

    2016-04-01

    Full Text Available Rehabilitation engineering plays an important role in designing various autonomous robots to provide better therapeutic exercise to disabled patients. Hence it is necessary to study human musculoskeletal system and also needs to be presented in scientific manner in order to describe and analyze the biomechanics of human body motion. This review focuses on lower appendicular musculoskeletal structure of human body to represent joints and links architectures; to identify muscle attachments and functions; and to illustrate muscle groups which are responsible for a particular joint movement. Firstly, human lower skeletal structure, linking systems, joint mechanisms, and their functions are described with a conceptual representation of joint architecture of human skeleton. This section also represents joints and limbs by comparing with mechanical systems. Characteristics of ligaments and their functions to construct skeletal joints are also discussed briefly in this part. Secondly, the study focuses on muscular system of human lower limbs where muscle structure, functions, roles in moving endoskeleton structure, and supporting mechanisms are presented ellaborately. Thirdly, muscle groups are tabulated based on functions that provide mobility to different joints of lower limbs. Finally, for a particular movement action of lower extremity, muscles are also grouped and tabulated to have a better understanding on functions of individual muscle. Basically the study presents an overview of the structure of human lower limbs by characterizing and classifying skeletal and muscular systems.KEYWORDS:   Musculoskeletal system; Human lower limbs; Muscle groups; Joint motion; Biomechatronics; Rehabilitation.

  19. NIH Human Microbiome Project defines normal bacterial makeup of the body

    Science.gov (United States)

    Microbes inhabit just about every part of the human body, living on the skin, in the gut, and up the nose. Sometimes they cause sickness, but most of the time, microorganisms live in harmony with their human hosts, providing vital functions essential for

  20. [Fractionation of hydrogen stable isotopes in the human body].

    Science.gov (United States)

    Siniak, Iu E; Grigor'ev, A I; Skuratov, V M; Ivanova, S M; Pokrovskiĭ, B G

    2006-01-01

    Fractionation of hydrogen stable isotopes was studied in 9 human subjects in a chamber with normal air pressure imitating a space cabin. Mass-spectrometry of isotopes in blood, urine, saliva, and potable water evidenced increases in the contents of heavy H isotope (deuterium) in the body liquids as compared with water. These results support one of the theories according to which the human organism eliminates heavy stable isotopes of biogenous chemical elements.

  1. High energy radiation effects on the human body

    International Nuclear Information System (INIS)

    Kato, Kazuaki

    1977-01-01

    High-energy radiation injuries and their risks were recognized, information on low-energy radiation injuries was also arranged, and with these backgrounds, countermeasures against prevention of radiation injuries were considered. Redintegration of DNA and mutation by radiation were described, and relationship between radiation injuries and dose was considered. Interaction of high-energy radiation and substances in the living body and injuries by the interaction were also considered. Expression method of risk was considered, and a concept of protection dose was suggested. Protection dose is dose equivalent which is worthy of value at the point where the ratio to permissible dose distributed among each part of the body is at its maximum in the distribution of dose equivalent formed within the body when standard human body is placed at a certain radiation field for a certain time. Significance and countermeasures of health examination which is under an abligation to make radiation workers receive health check were thought, and problems were proposed on compensation when radiation injuries should appear actually. (Tsunoda, M.)

  2. "Voice Forum" The Human Voice as Primary Instrument in Music Therapy

    DEFF Research Database (Denmark)

    Pedersen, Inge Nygaard; Storm, Sanne

    2009-01-01

    Aspects will be drawn on the human voice as tool for embodying our psychological and physiological state, and attempting integration of feelings. Presentations and dialogues on different methods and techniques in "Therapy related body-and voice work.", as well as the human voice as a tool for non...

  3. Physiological and Biomechanical Mechanisms of Distance Specific Human Running Performance.

    Science.gov (United States)

    Thompson, M A

    2017-08-01

    Running events range from 60-m sprints to ultra-marathons covering 100 miles or more, which presents an interesting diversity in terms of the parameters for successful performance. Here, we review the physiological and biomechanical variations underlying elite human running performance in sprint to ultramarathon distances. Maximal running speeds observed in sprint disciplines are achieved by high vertical ground reaction forces applied over short contact times. To create this high force output, sprint events rely heavily on anaerobic metabolism, as well as a high number and large cross-sectional area of type II fibers in the leg muscles. Middle distance running performance is characterized by intermediates of biomechanical and physiological parameters, with the possibility of unique combinations of each leading to high-level performance. The relatively fast velocities in mid-distance events require a high mechanical power output, though ground reaction forces are less than in sprinting. Elite mid-distance runners exhibit local muscle adaptations that, along with a large anaerobic capacity, provide the ability to generate a high power output. Aerobic capacity starts to become an important aspect of performance in middle distance events, especially as distance increases. In distance running events, V˙O2max is an important determinant of performance, but is relatively homogeneous in elite runners. V˙O2 and velocity at lactate threshold have been shown to be superior predictors of elite distance running performance. Ultramarathons are relatively new running events, as such, less is known about physiological and biomechanical parameters that underlie ultra-marathon performance. However, it is clear that performance in these events is related to aerobic capacity, fuel utilization, and fatigue resistance. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology 2017. This work is written by US Government employees and is in

  4. Of Human Bodies in Scientific Communication and Enculturation

    Science.gov (United States)

    Hwang, SungWon; Roth, Wolff-Michael

    2008-01-01

    How do students become enculturated and come to enact culture in ways that are new to them? This study probes the dialectical processes of enculturation, the central aspect of which is the role of human bodies in communication. For students, as for any individual, culture exists in terms of action possibilities that presuppose their…

  5. Host genetic variation impacts microbiome composition across human body sites.

    Science.gov (United States)

    Blekhman, Ran; Goodrich, Julia K; Huang, Katherine; Sun, Qi; Bukowski, Robert; Bell, Jordana T; Spector, Timothy D; Keinan, Alon; Ley, Ruth E; Gevers, Dirk; Clark, Andrew G

    2015-09-15

    The composition of bacteria in and on the human body varies widely across human individuals, and has been associated with multiple health conditions. While microbial communities are influenced by environmental factors, some degree of genetic influence of the host on the microbiome is also expected. This study is part of an expanding effort to comprehensively profile the interactions between human genetic variation and the composition of this microbial ecosystem on a genome- and microbiome-wide scale. Here, we jointly analyze the composition of the human microbiome and host genetic variation. By mining the shotgun metagenomic data from the Human Microbiome Project for host DNA reads, we gathered information on host genetic variation for 93 individuals for whom bacterial abundance data are also available. Using this dataset, we identify significant associations between host genetic variation and microbiome composition in 10 of the 15 body sites tested. These associations are driven by host genetic variation in immunity-related pathways, and are especially enriched in host genes that have been previously associated with microbiome-related complex diseases, such as inflammatory bowel disease and obesity-related disorders. Lastly, we show that host genomic regions associated with the microbiome have high levels of genetic differentiation among human populations, possibly indicating host genomic adaptation to environment-specific microbiomes. Our results highlight the role of host genetic variation in shaping the composition of the human microbiome, and provide a starting point toward understanding the complex interaction between human genetics and the microbiome in the context of human evolution and disease.

  6. Physiological Parameters Database for Older Adults

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Physiological Parameters Database for Older Adults is available for download and contains physiological parameters values for healthy older human adults (age 60...

  7. Wireless body sensor networks for health-monitoring applications

    International Nuclear Information System (INIS)

    Hao, Yang; Foster, Robert

    2008-01-01

    Current wireless technologies, such as wireless body area networks and wireless personal area networks, provide promising applications in medical monitoring systems to measure specified physiological data and also provide location-based information, if required. With the increasing sophistication of wearable and implantable medical devices and their integration with wireless sensors, an ever-expanding range of therapeutic and diagnostic applications is being pursued by research and commercial organizations. This paper aims to provide a comprehensive review of recent developments in wireless sensor technology for monitoring behaviour related to human physiological responses. It presents background information on the use of wireless technology and sensors to develop a wireless physiological measurement system. A generic miniature platform and other available technologies for wireless sensors have been studied in terms of hardware and software structural requirements for a low-cost, low-power, non-invasive and unobtrusive system. (topical review)

  8. Narrative review: the role of leptin in human physiology: emerging clinical applications.

    Science.gov (United States)

    Kelesidis, Theodore; Kelesidis, Iosif; Chou, Sharon; Mantzoros, Christos S

    2010-01-19

    Leptin is a hormone secreted by adipose tissue in direct proportion to amount of body fat. The circulating leptin levels serve as a gauge of energy stores, thereby directing the regulation of energy homeostasis, neuroendocrine function, and metabolism. Persons with congenital deficiency are obese, and treatment with leptin results in dramatic weight loss through decreased food intake and possible increased energy expenditure. However, most obese persons are resistant to the weight-reducing effects of leptin. Recent studies suggest that leptin is physiologically more important as an indicator of energy deficiency, rather than energy excess, and may mediate adaptation by driving increased food intake and directing neuroendocrine function to converse energy, such as inducing hypothalamic hypogonadism to prevent fertilization. Current studies investigate the role of leptin in weight-loss management because persons who have recently lost weight have relative leptin deficiency that may drive them to regain weight. Leptin deficiency is also evident in patients with diet- or exercise-induced hypothalamic amenorrhea and lipoatrophy. Replacement of leptin in physiologic doses restores ovulatory menstruation in women with hypothalamic amenorrhea and improves metabolic dysfunction in patients with lipoatrophy, including lipoatrophy associated with HIV or highly active antiretroviral therapy. The applications of leptin continue to grow and will hopefully soon be used therapeutically.

  9. Klismaphilia--a physiological perspective.

    Science.gov (United States)

    Agnew, J

    1982-10-01

    Dr. Joanne Denko coined the work klismaphilia to describe the practices of some of her patients who enjoyed the use of enemas as a sexual stimulant. Since then questions occasionally appear in the professional literature asking about the relationship between enemas and sexual pleasure. This paper considers some of the physiological aspects of the human sexual apparatus that relate to anal sensitivity and explores why klismaphilia can be sexually grafifying. The paper starts with a discussion of the physiological basis for anal sensitivity and anal masturbation in both the human male and the human female. The paper then goes on to relate all this to the sexual sensations received from an enema, and discusses the similarities and differences between all these types of stimulation. Some of the psychological aspects of klismaphilia are also considered in relationship to the physiology involved. The paper concludes with a brief discussion of masked anal masturbation among the population at large. A comprehensive list of references from the literature is given to support these findings.

  10. Local cooling of the human body using ventilated matress in hospitals

    DEFF Research Database (Denmark)

    Bivolarova, Mariya Petrova; Melikov, Arsen Krikor; Kokora, Monika

    2014-01-01

    A series of experiments were conducted in order to examine the cooling of the human body in bed equipped with a ventilated mattress (VM). The experiments were performed in a climate chamber (4.65 m width x 5.3 m length x 2.6 m height) which was air-conditioned by mixing ventilation system...... temperature or by use of natural ventilation. However the non-uniform body cooling may cause local thermal discomfort. This needs to be further studied in human subject experiments......., 26 and 30 oC. The performance of the VM was tested when VM was operating at different air flow rates (1.5, 3, 4.5 and 6 L/s). The impact of body covering on the cooling effect from the VM was also studied. The performance of the cooling method was evaluated based on comparison of the segmental...

  11. Procedures of Exercise Physiology Laboratories

    Science.gov (United States)

    Bishop, Phillip A.; Fortney, Suzanne; Greenisen, Michael; Siconolfi, Steven F.; Bamman, Marcas M.; Moore, Alan D., Jr.; Squires, William

    1998-01-01

    This manual describes the laboratory methods used to collect flight crew physiological performance data at the Johnson Space Center. The Exercise Countermeasures Project Laboratory is a standard physiology laboratory; only the application to the study of human physiological adaptations to spaceflight is unique. In the absence of any other recently published laboratory manual, this manual should be a useful document staffs and students of other laboratories.

  12. Safety issues associated with the use of nanoparticles in human body.

    Science.gov (United States)

    Sufian, Mian Muhammad; Khattak, Jabar Zaman Khan; Yousaf, Shahzad; Rana, Muhammad Suleman

    2017-09-01

    Nanotechnology has transformed the world by the introduction of a distinctive class of materials and products in a wide array of fields. It has contributed to the production of innovative materials and devices. Having unique advantages and domestic along with industrial applications, however, has raised the issue of safety for consumers, producers and environment. Having a comparative smaller dimension and other exclusive properties, nanoparticles have the ability to harm human body by interacting through various mechanisms. Here, we endeavoured to review and discuss the characteristics of nanoparticles relevant to their toxicity, conceivable exposure routes of nanoparticles to human body like skin contact, inhalation, and ingestion, and the basic approaches which can aid to control human exposures to toxic nanoparticles have been discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Micromechanics of the human vertebral body for forward flexion.

    Science.gov (United States)

    Yang, Haisheng; Nawathe, Shashank; Fields, Aaron J; Keaveny, Tony M

    2012-08-09

    To provide mechanistic insight into the etiology of osteoporotic wedge fractures, we investigated the spatial distribution of tissue at the highest risk of initial failure within the human vertebral body for both forward flexion and uniform compression loading conditions. Micro-CT-based linear elastic finite element analysis was used to virtually load 22 human T9 vertebral bodies in either 5° of forward flexion or uniform compression; we also ran analyses replacing the simulated compliant disc (E=8 MPa) with stiff polymethylmethacrylate (PMMA, E=2500 MPa). As expected, we found that, compared to uniform compression, forward flexion increased the overall endplate axial load on the anterior half of the vertebra and shifted the spatial distribution of high-risk tissue within the vertebra towards the anterior aspect of the vertebral body. However, despite that shift, the high-risk tissue remained primarily within the central regions of the trabecular bone and endplates, and forward flexion only slightly altered the ratio of cortical-to-trabecular load sharing at the mid-vertebral level (mean±SD for n=22: 41.3±7.4% compression; 44.1±8.2% forward flexion). When the compliant disc was replaced with PMMA, the anterior shift of high-risk tissue was much more severe. We conclude that, for a compliant disc, a moderate degree of forward flexion does not appreciably alter the spatial distribution of stress within the vertebral body. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Effect of the Environmental Stimuli upon the Human Body in Winter Outdoor Thermal Environment

    Directory of Open Access Journals (Sweden)

    Yoshihito Kurazumi

    2013-01-01

    Full Text Available In order to manage the outdoor thermal environment with regard to human health and the environmental impact of waste heat, quantitative evaluations are indispensable. It is necessary to use a thermal environment evaluation index. The purpose of this paper is to clarify the relationship between the psychological thermal responses of the human body and winter outdoor thermal environment variables. Subjective experiments were conducted in the winter outdoor environment. Environmental factors and human psychological responses were measured. The relationship between the psychological thermal responses of the human body and the outdoor thermal environment index ETFe (enhanced conduction-corrected modified effective temperature in winter was shown. The variables which influence the thermal sensation vote of the human body are air temperature, long-wave thermal radiation and short-wave solar radiation. The variables that influence the thermal comfort vote of the human body are air temperature, humidity, short-wave solar radiation, long-wave thermal radiation, and heat conduction. Short-wave solar radiation, and heat conduction are among the winter outdoor thermal environment variables that affect psychological responses to heat. The use of thermal environment evaluation indices that comprise short-wave solar radiation and heat conduction in winter outdoor spaces is a valid approach.

  15. Effect of the Environmental Stimuli upon the Human Body in Winter Outdoor Thermal Environment

    Science.gov (United States)

    Kurazumi, Yoshihito; Kondo, Emi; Ishii, Jin; Sakoi, Tomonori; Fukagawa, Kenta; Bolashikov, Zhecho Dimitrov; Tsuchikawa, Tadahiro; Matsubara, Naoki; Horikoshi, Tetsumi

    2013-01-01

    In order to manage the outdoor thermal environment with regard to human health and the environmental impact of waste heat, quantitative evaluations are indispensable. It is necessary to use a thermal environment evaluation index. The purpose of this paper is to clarify the relationship between the psychological thermal responses of the human body and winter outdoor thermal environment variables. Subjective experiments were conducted in the winter outdoor environment. Environmental factors and human psychological responses were measured. The relationship between the psychological thermal responses of the human body and the outdoor thermal environment index ETFe (enhanced conduction-corrected modified effective temperature) in winter was shown. The variables which influence the thermal sensation vote of the human body are air temperature, long-wave thermal radiation and short-wave solar radiation. The variables that influence the thermal comfort vote of the human body are air temperature, humidity, short-wave solar radiation, long-wave thermal radiation, and heat conduction. Short-wave solar radiation, and heat conduction are among the winter outdoor thermal environment variables that affect psychological responses to heat. The use of thermal environment evaluation indices that comprise short-wave solar radiation and heat conduction in winter outdoor spaces is a valid approach. PMID:23861691

  16. Ionizing radiation and lipid peroxidation in human body

    International Nuclear Information System (INIS)

    Giubileo, Gianfranco

    1997-07-01

    Lipids are organic compounds constituting the living cells. Lipid molecules can be disassembled through peroxidative pathways and hydrocarbons can be bred as end-product of lipid peroxidation in vivo. Lipid peroxidation can be started by an indirect effect of ionizing radiation. So a radioinduced cellular damage in human body can be detected by monitoring the production of specific hydrocarbons

  17. Coming to Know about the Body in Human Movement Studies Programmes

    Science.gov (United States)

    Varea, Valeria; Tinning, Richard

    2016-01-01

    This paper explores how a group of undergraduate Human Movement Studies (HMS) students learnt to know about the body during their four-year academic programme at an Australian university. When students begin an undergraduate programme in HMS they bring with them particular constructions, ideas and beliefs about their own bodies and about the body…

  18. Preliminary results of Physiological plant growth modelling for human life support in space

    Science.gov (United States)

    Sasidharan L, Swathy; Dussap, Claude-Gilles; Hezard, Pauline

    2012-07-01

    Human life support is fundamental and crucial in any kind of space explorations. MELiSSA project of European Space Agency aims at developing a closed, artificial ecological life support system involving human, plants and micro organisms. Consuming carbon dioxide and water from the life support system, plants grow in one of the chambers and convert it into food and oxygen along with potable water. The environmental conditions, nutrient availability and its consumption of plants should be studied and necessarily modeled to predict the amount of food, oxygen and water with respect to the environmental changes and limitations. The reliability of a completely closed system mainly depends on the control laws and strategies used. An efficient control can occur, only if the system to control is itself well known, described and ideally if the responses of the system to environmental changes are predictable. In this aspect, the general structure of plant growth model has been designed together with physiological modelling.The physiological model consists of metabolic models of leaves, stem and roots, of which concern specific metabolisms of the associated plant parts. On the basis of the carbon source transport (eg. sucrose) through stem, the metabolic models (leaf and root) can be interconnected to each other and finally coupled to obtain the entire plant model. For the first step, leaf metabolic model network was built using stoichiometric, mass and energy balanced metabolic equations under steady state approach considering all necessary plant pathways for growth and maintenance of leaves. As the experimental data for lettuce plants grown in closed and controlled environmental chambers were available, the leaf metabolic model has been established for lettuce leaves. The constructed metabolic network is analyzed using known stoichiometric metabolic technique called metabolic flux analysis (MFA). Though, the leaf metabolic model alone is not sufficient to achieve the

  19. “Making difference: theories on gender, body and behaviour”

    Directory of Open Access Journals (Sweden)

    Maria Teresa Citeli

    2001-01-01

    Full Text Available Since the end of the nineteenth century, when Darwin published his work on evolution, several female scientists have reacted by adopting basically two points of view: while some deny the potential of the biological sciences to explain social arrangements, others reinterpret biology studies on sex differences, admitting that these may explain human behavior and social inequality. In an attempt to appraise how social differences are assigned to the human body, this article discusses theoretical trends in recent works of biological sciences, which try to either reaffirm or deny the plausibility of theories that resort to sex differences presumably located in the body (brains, genes, male and female physiology to explain variations in human beings’ skills, abilities, cognitive patterns, and sexuality. And, given the influence of the media on our views on male and female, it also discusses the repercussion of such essentialist views on national and international print media.

  20. A relation between calculated human body exergy consumption rate and subjectively assessed thermal sensation

    Energy Technology Data Exchange (ETDEWEB)

    Simone, Angela; Kolarik, Jakub; Olesen, Bjarne W. [ICIEE/BYG, Technical University of Denmark (Denmark); Iwamatsu, Toshiya [Faculty of Urban Environmental Science, Tokyo Metropolitan University (Japan); Asada, Hideo [Architech Consulting Co., Tokyo (Japan); Dovjak, Mateja [Faculty of Civil and Geodetic Engineering, University of Ljubljana (Slovenia); Schellen, Lisje [Eindhoven University of Technology, Faculty of Architecture Building and Planning (Netherlands); Shukuya, Masanori [Laboratory of Building Environment, Tokyo City University, Yokohama (Japan)

    2011-01-15

    Application of the exergy concept to research on the built environment is a relatively new approach. It helps to optimize climate conditioning systems so that they meet the requirements of sustainable building design. As the building should provide a healthy and comfortable environment for its occupants, it is reasonable to consider both the exergy flows in building and those within the human body. Until now, no data have been available on the relation between human-body exergy consumption rates and subjectively assessed thermal sensation. The objective of the present work was to relate thermal sensation data, from earlier thermal comfort studies, to calculated human-body exergy consumption rates. The results show that the minimum human body exergy consumption rate is associated with thermal sensation votes close to thermal neutrality, tending to the slightly cool side of thermal sensation. Generally, the relationship between air temperature and the exergy consumption rate, as a first approximation, shows an increasing trend. Taking account of both convective and radiative heat exchange between the human body and the surrounding environment by using the calculated operative temperature, exergy consumption rates increase as the operative temperature increases above 24 C or decreases below 22 C. With the data available so far, a second-order polynomial relationship between thermal sensation and the exergy consumption rate was established. (author)

  1. Numerical simulation of thermal behaviors of a clothed human body with evaluation of indoor solar radiation

    International Nuclear Information System (INIS)

    Mao, Aihua; Luo, Jie; Li, Yi

    2017-01-01

    Highlights: • Solar radiation evaluation is integrated with the thermal transfer in clothed humans. • Thermal models are developed for clothed humans exposed in indoor solar radiation. • The effect of indoor solar radiation on humans can be predicted in different situations in living. • The green solar energy can be efficiently utilized in the building development. - Abstract: Solar radiation is a valuable green energy, which is important in achieving a successful building design for thermal comfort in indoor environment. This paper considers solar radiation indoors into the transient thermal transfer models of a clothed human body and offers a new numerical method to analyze the dynamic thermal status of a clothed human body under different solar radiation incidences. The evaluation model of solar radiation indoors and a group of coupled thermal models of the clothed human body are developed and integrated. The simulation capacities of these integrated models are validated through a comparison between the predicted results and the experimental data in reference. After that, simulation cases are also conducted to show the influence of solar radiation on the thermal status of individual clothed body segments when the human body is staying indoors in different seasons. This numerical simulation method provides a useful tool to analyze the thermal status of clothed human body under different solar radiation incidences indoors and thus enables the architect to efficiently utilize the green solar energy in building development.

  2. Effects of short-term fasting on stress physiology, body condition, and locomotor activity in wintering male white-crowned sparrows.

    Science.gov (United States)

    Krause, Jesse S; Pérez, Jonathan H; Meddle, Simone L; Wingfield, John C

    2017-08-01

    For wild free-living animals the availability of food resources can be greatly affected by environmental perturbations such as weather events. In response to environmental perturbations, animals activate the hypothalamic-pituitary-adrenal (HPA) axis to adjust physiology and behavior. The literature asserts that during weather events food intake declines leading to changes in HPA axis activity, as measured by both baseline and stress-induced glucocorticoid concentrations. Here we investigated how body condition, locomotor activity, and stress physiology were affected by varying lengths of a fast (1, 2, 6, and 24h; similar to that experienced by free-living birds) compared to when food was provided ad libitum in captive wintering male white-crowned sparrows, Zonotrichia leucophrys gambelii, exposed to a short day photoperiod. Baseline corticosterone concentrations were increased for all fasting durations but were highest in 6 and 24h fasted birds. Stress-induced corticosterone was elevated in 1h fasted birds with a trend for the 2h of fast; no other differences were found. Baseline corticosterone concentrations were negatively related to both total fat scores and body mass. All birds lost body mass regardless of fast length but birds fasted for 24h lost the most. Fat scores declined in the 6 and 24h groups, and no measureable changes were detected in pectoralis muscle profile. Locomotor activity was increased over the entire period in which food was removed regardless of fasting duration. Together this suggests that reduced food availability is responsible, at least in part, for the rapid elevation both baseline corticosterone under any duration of fast and stress-induced concentrations during short-term fasts. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Selective analysis of human serum albumin based on SEC-ICP-MS after labelling with iophenoxic acid

    DEFF Research Database (Denmark)

    Dersch, Julie Maria; Nguyen, Tam T. T. N.; Østergaard, Jesper

    2015-01-01

    Human serum albumin (HSA) is the most abundant protein in the human plasma. HSA has several physiological roles in the human body, including storage and transport. Owing to the predominance of albumin in plasma, HSA is often involved in the protein binding of drugs. The aim of this work was to de...... plasma and urine samples and for studying the binding of cisplatin to proteins in the human plasma.......Human serum albumin (HSA) is the most abundant protein in the human plasma. HSA has several physiological roles in the human body, including storage and transport. Owing to the predominance of albumin in plasma, HSA is often involved in the protein binding of drugs. The aim of this work...... was to develop a selective, quantitative method for determining albumin in plasma with the purpose of clarifying the fate of metal-based drugs in biological systems. The method can also be applied for determination of urine albumin, which is of relevance in diagnostics of kidney disease. A selective method...

  4. Physiological Studies of Arctic Carnivores.

    Science.gov (United States)

    1982-12-01

    All transmitters were maintained in a cold sterilant ( benzalkonium chloride ) until implanted in a bear. Radio-transmitters for monitoring temperature...body was unknown, particularly during the winter when bears are in dens and there is a generalized reduction in metabolism and other physiological... reduction in core body temperature from summer to winter closely agrees with those reported earlier for bears maintained in captivity under simulated

  5. Understanding Protein Synthesis: A Role-Play Approach in Large Undergraduate Human Anatomy and Physiology Classes

    Science.gov (United States)

    Sturges, Diana; Maurer, Trent W.; Cole, Oladipo

    2009-01-01

    This study investigated the effectiveness of role play in a large undergraduate science class. The targeted population consisted of 298 students enrolled in 2 sections of an undergraduate Human Anatomy and Physiology course taught by the same instructor. The section engaged in the role-play activity served as the study group, whereas the section…

  6. Video-based lectures: An emerging paradigm for teaching human anatomy and physiology to student nurses

    Directory of Open Access Journals (Sweden)

    Rabab El-Sayed Hassan El-Sayed

    2013-09-01

    Full Text Available Video-based teaching material is a rich and powerful medium being used in computer assisted learning. This paper aimed to assess the learning outcomes and student nurses’ acceptance and satisfaction with the video-based lectures versus the traditional method of teaching human anatomy and physiology courses. Data were collected from 27 students in a Bachelor of Nursing program and experimental control was achieved using an alternating-treatments design. Overall, students experienced 10 lectures, which delivered by the teacher as either video-based or PowerPoint-based lectures. Results revealed that video-based lectures offer more successes and reduce failures in the immediate and follow-up measures as compared with the traditional method of teaching human anatomy and physiology that was based on printout illustrations, but these differences were not statistically significant. Moreover, nurse students appeared positive about their learning experiences, as they rated highly all the items assessing their acceptance and satisfaction with the video-based lectures. KEYWORDS: Video-based lecture, Traditional, Print-based illustration

  7. Multi-sector thermo-physiological head simulator for headgear research

    Science.gov (United States)

    Martinez, Natividad; Psikuta, Agnes; Corberán, José Miguel; Rossi, René M.; Annaheim, Simon

    2017-02-01

    A novel thermo-physiological human head simulator for headgear testing was developed by coupling a thermal head manikin with a thermo-physiological model. As the heat flux at head-site is directly measured by the head manikin, this method provides a realistic quantification of the heat transfer phenomena occurring in the headgear, such as moisture absorption-desorption cycles, condensation, or moisture migration across clothing layers. Before coupling, the opportunities of the head manikin for representing the human physiology were evaluated separately. The evaluation revealed reduced precision in forehead and face temperature predictions under extreme heterogeneous temperature distributions and no initial limitation for simulating temperature changes observed in the human physiology. The thermo-physiological model predicted higher sweat rates when applied for coupled than for pure virtual simulations. After coupling, the thermo-physiological human head simulator was validated using eight human experiments. It precisely predicted core, mean skin, and forehead temperatures with average rmsd values within the average experimental standard deviation (rmsd of 0.20 ± 0.15, 0.83 ± 0.34, and 1.04 ± 0.54 °C, respectively). However, in case of forehead, precision was lower for the exposures including activity than for the sedentary exposures. The representation of the human sweat evaporation could be affected by a reduced evaporation efficiency and the manikin sweat dynamics. The industry will benefit from this thermo-physiological human head simulator leading to the development of helmet designs with enhanced thermal comfort and, therefore, with higher acceptance by users.

  8. Multi-sector thermo-physiological head simulator for headgear research.

    Science.gov (United States)

    Martinez, Natividad; Psikuta, Agnes; Corberán, José Miguel; Rossi, René M; Annaheim, Simon

    2017-02-01

    A novel thermo-physiological human head simulator for headgear testing was developed by coupling a thermal head manikin with a thermo-physiological model. As the heat flux at head-site is directly measured by the head manikin, this method provides a realistic quantification of the heat transfer phenomena occurring in the headgear, such as moisture absorption-desorption cycles, condensation, or moisture migration across clothing layers. Before coupling, the opportunities of the head manikin for representing the human physiology were evaluated separately. The evaluation revealed reduced precision in forehead and face temperature predictions under extreme heterogeneous temperature distributions and no initial limitation for simulating temperature changes observed in the human physiology. The thermo-physiological model predicted higher sweat rates when applied for coupled than for pure virtual simulations. After coupling, the thermo-physiological human head simulator was validated using eight human experiments. It precisely predicted core, mean skin, and forehead temperatures with average rmsd values within the average experimental standard deviation (rmsd of 0.20 ± 0.15, 0.83 ± 0.34, and 1.04 ± 0.54 °C, respectively). However, in case of forehead, precision was lower for the exposures including activity than for the sedentary exposures. The representation of the human sweat evaporation could be affected by a reduced evaporation efficiency and the manikin sweat dynamics. The industry will benefit from this thermo-physiological human head simulator leading to the development of helmet designs with enhanced thermal comfort and, therefore, with higher acceptance by users.

  9. Physiology of SLC12 transporters: lessons from inherited human genetic mutations and genetically engineered mouse knockouts.

    Science.gov (United States)

    Gagnon, Kenneth B; Delpire, Eric

    2013-04-15

    Among the over 300 members of the solute carrier (SLC) group of integral plasma membrane transport proteins are the nine electroneutral cation-chloride cotransporters belonging to the SLC12 gene family. Seven of these transporters have been functionally described as coupling the electrically silent movement of chloride with sodium and/or potassium. Although in silico analysis has identified two additional SLC12 family members, no physiological role has been ascribed to the proteins encoded by either the SLC12A8 or the SLC12A9 genes. Evolutionary conservation of this gene family from protists to humans confirms their importance. A wealth of physiological, immunohistochemical, and biochemical studies have revealed a great deal of information regarding the importance of this gene family to human health and disease. The sequencing of the human genome has provided investigators with the capability to link several human diseases with mutations in the genes encoding these plasma membrane proteins. The availability of bacterial artificial chromosomes, recombination engineering techniques, and the mouse genome sequence has simplified the creation of targeting constructs to manipulate the expression/function of these cation-chloride cotransporters in the mouse in an attempt to recapitulate some of these human pathologies. This review will summarize the three human disorders that have been linked to the mutation/dysfunction of the Na-Cl, Na-K-2Cl, and K-Cl cotransporters (i.e., Bartter's, Gitleman's, and Andermann's syndromes), examine some additional pathologies arising from genetically modified mouse models of these cotransporters including deafness, blood pressure, hyperexcitability, and epithelial transport deficit phenotypes.

  10. Ideas about the Human Body among Secondary Students in South Africa

    Science.gov (United States)

    Granklint Enochson, Pernilla; Redfors, Andreas; Dempster, Edith R.; Tibell, Lena A. E.

    2015-01-01

    In this paper we focus on how South African students' ideas about the human body are constituted in their descriptions of three different scenarios involving the pathway of a sandwich, a painkiller and a glass of water through the body. In particular, we have studied the way in which the students transferred ideas between the sandwich and the…

  11. [Human body meridian spatial decision support system for clinical treatment and teaching of acupuncture and moxibustion].

    Science.gov (United States)

    Wu, Dehua

    2016-01-01

    The spatial position and distribution of human body meridian are expressed limitedly in the decision support system (DSS) of acupuncture and moxibustion at present, which leads to the failure to give the effective quantitative analysis on the spatial range and the difficulty for the decision-maker to provide a realistic spatial decision environment. Focusing on the limit spatial expression in DSS of acupuncture and moxibustion, it was proposed that on the basis of the geographic information system, in association of DSS technology, the design idea was developed on the human body meridian spatial DSS. With the 4-layer service-oriented architecture adopted, the data center integrated development platform was taken as the system development environment. The hierarchical organization was done for the spatial data of human body meridian via the directory tree. The structured query language (SQL) server was used to achieve the unified management of spatial data and attribute data. The technologies of architecture, configuration and plug-in development model were integrated to achieve the data inquiry, buffer analysis and program evaluation of the human body meridian spatial DSS. The research results show that the human body meridian spatial DSS could reflect realistically the spatial characteristics of the spatial position and distribution of human body meridian and met the constantly changeable demand of users. It has the powerful spatial analysis function and assists with the scientific decision in clinical treatment and teaching of acupuncture and moxibustion. It is the new attempt to the informatization research of human body meridian.

  12. The personification of animals: coding of human and nonhuman body parts based on posture and function.

    Science.gov (United States)

    Welsh, Timothy N; McDougall, Laura; Paulson, Stephanie

    2014-09-01

    The purpose of the present research was to determine how humans represent the bodies and limbs of nonhuman mammals based on anatomical and functional properties. To this end, participants completed a series of body-part compatibility tasks in which they responded with a thumb or foot response to the color of a stimulus (red or blue, respectively) presented on different limbs of several animals. Across the studies, this compatibility task was conducted with images of human and nonhuman animals (bears, cows, and monkeys) in bipedal or quadrupedal postures. The results revealed that the coding of the limbs of nonhuman animals is strongly influenced by the posture of the body, but not the functional capacity of the limb. Specifically, body-part compatibility effects were present for both human and nonhuman animals when the figures were in a bipedal posture, but were not present when the animals were in a quadrupedal stance (Experiments 1a-c). Experiments 2a and 2b revealed that the posture-based body-part compatibility effects were not simply a vertical spatial compatibility effect or due to a mismatch between the posture of the body in the image and the participant. These data indicate that nonhuman animals in a bipedal posture are coded with respect to the "human" body representation, whereas nonhuman animals in a quadrupedal posture are not mapped to the human body representation. Overall, these studies provide new insight into the processes through which humans understand, mimic, and learn from the actions of nonhuman animals. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Dynamics and associations of microbial community types across the human body.

    Science.gov (United States)

    Ding, Tao; Schloss, Patrick D

    2014-05-15

    A primary goal of the Human Microbiome Project (HMP) was to provide a reference collection of 16S ribosomal RNA gene sequences collected from sites across the human body that would allow microbiologists to better associate changes in the microbiome with changes in health. The HMP Consortium has reported the structure and function of the human microbiome in 300 healthy adults at 18 body sites from a single time point. Using additional data collected over the course of 12-18 months, we used Dirichlet multinomial mixture models to partition the data into community types for each body site and made three important observations. First, there were strong associations between whether individuals had been breastfed as an infant, their gender, and their level of education with their community types at several body sites. Second, although the specific taxonomic compositions of the oral and gut microbiomes were different, the community types observed at these sites were predictive of each other. Finally, over the course of the sampling period, the community types from sites within the oral cavity were the least stable, whereas those in the vagina and gut were the most stable. Our results demonstrate that even with the considerable intra- and interpersonal variation in the human microbiome, this variation can be partitioned into community types that are predictive of each other and are probably the result of life-history characteristics. Understanding the diversity of community types and the mechanisms that result in an individual having a particular type or changing types, will allow us to use their community types to assess disease risk and to personalize therapies.

  14. Physiological serum copper concentrations found in malignancies cause unfolding induced aggregation of human serum albumin in vitro.

    Science.gov (United States)

    Rizvi, Asim; Furkan, Mohd; Naseem, Imrana

    2017-12-15

    Malignancies are characterized by several drastic metabolic changes, one of which is a progressive rise in the levels of serum copper. This rise in serum copper is documented across all malignancies and across malignancies in several species. This study aims to explore in vitro the effect of increased copper levels on the structure of the blood protein human serum albumin. Exposure of human serum albumin to physiologically relevant copper concentrations for 21 days resulted in structural modifications in the protein which were evident by changes in the intrinsic florescence. A loss of the predominantly alpha helical structure of human serum albumin was recorded along with a tendency to form protein aggregates. This aggregation was characterized by Thioflavin T and Congo Red assays. Rayleigh light scattering and turbidity assays confirmed aggregation. The aggregates were visually confirmed using transmission electron microscopy. This is the first report implicating increased copper levels as a cause of aggregation of blood proteins in malignancies. The physiological and biochemical implications of this phenomenon are discussed. Copyright © 2017. Published by Elsevier Inc.

  15. Relationship between sociability toward humans and physiological stress in dogs.

    Science.gov (United States)

    Shin, Yoon-Joo; Shin, Nam-Shik

    2017-07-28

    Sociability is an essential trait for dogs to successfully interact with humans. In this study, the relationship between sociability and physiological stress was examined. Additionally, whether differences exist between companion dogs (C group) and shelter dogs (S group) was examined. Overall, healthy 37 dogs (C group=21 and S group=16) were examined. After 5 min of walking, the dog and the owner (or the chief manager) rested freely in the experimental location for 5 min. The behavioral test with 6 categories was conducted to evaluate sociability over 4 min. The establishment of two groups (H group=dogs with high sociability; L group=dogs with low sociability) was supported by the statistical results of the behavioral tests. Saliva was collected before (P1) and after the test period (P2), and salivary cortisol levels were determined and statistically analyzed. The cortisol concentrations at P2 and the differences in concentrations between P1 and P2 (P2-P1) in the groups with high sociability were significantly lower than those in the groups with low sociability. These results may demonstrate that sociable dogs adapt more comfortably to strangers and unfamiliar situations. Meanwhile, there were significant differences in hormonal results between the C and S groups. For this reason, their sociability should be evaluated using behavioral and physiological assessments before re-adoption to ensure their successful adaptation.

  16. The emergence of Applied Physiology within the discipline of Physiology.

    Science.gov (United States)

    Tipton, Charles M

    2016-08-01

    Despite the availability and utilization of the physiology textbooks authored by Albrecht von Haller during the 18th century that heralded the modern age of physiology, not all physicians or physiologists were satisfied with its presentation, contents, or application to medicine. Initial reasons were fundamental disagreements between the "mechanists," represented by Boerhaave, Robinson, and von Haller, and the "vitalists," represented by the faculty and graduates of the Montpellier School of Medicine in France, notably, Bordeu and Barthez. Subsequently, objections originated from Europe, United Kingdom, and the United States in publications that focused not only on the teaching of physiology to medical and secondary students, but on the specific applications of the content of physiology to medicine, health, hygiene, pathology, and chronic diseases. At the turn of the 20th century, texts began to appear with applied physiology in their titles and in 1926, physician Samson Wright published a textbook entitled Applied Physiology that was intended for both medical students and the medical profession. Eleven years later, physicians Best and Taylor published The Physiological Basis of Medical Practice: A University of Toronto Texbook in Applied Physiology Although both sets of authors defined the connection between applied physiology and physiology, they failed to define the areas of physiology that were included within applied physiology. This was accomplished by the American Physiological Society (APS) Publications Committee in 1948 with the publication of the Journal of Appplied Physiology, that stated the word "applied" would broadly denote human physiology whereas the terms stress and environment would broadly include work, exercise, plus industrial, climatic and social factors. NIH established a study section (SS) devoted to applied physiology in 1964 which remained active until 2001 when it became amalgamated into other SSs. Before the end of the 20th century when

  17. The Virtual Physiological Human ToolKit.

    Science.gov (United States)

    Cooper, Jonathan; Cervenansky, Frederic; De Fabritiis, Gianni; Fenner, John; Friboulet, Denis; Giorgino, Toni; Manos, Steven; Martelli, Yves; Villà-Freixa, Jordi; Zasada, Stefan; Lloyd, Sharon; McCormack, Keith; Coveney, Peter V

    2010-08-28

    The Virtual Physiological Human (VPH) is a major European e-Science initiative intended to support the development of patient-specific computer models and their application in personalized and predictive healthcare. The VPH Network of Excellence (VPH-NoE) project is tasked with facilitating interaction between the various VPH projects and addressing issues of common concern. A key deliverable is the 'VPH ToolKit'--a collection of tools, methodologies and services to support and enable VPH research, integrating and extending existing work across Europe towards greater interoperability and sustainability. Owing to the diverse nature of the field, a single monolithic 'toolkit' is incapable of addressing the needs of the VPH. Rather, the VPH ToolKit should be considered more as a 'toolbox' of relevant technologies, interacting around a common set of standards. The latter apply to the information used by tools, including any data and the VPH models themselves, and also to the naming and categorizing of entities and concepts involved. Furthermore, the technologies and methodologies available need to be widely disseminated, and relevant tools and services easily found by researchers. The VPH-NoE has thus created an online resource for the VPH community to meet this need. It consists of a database of tools, methods and services for VPH research, with a Web front-end. This has facilities for searching the database, for adding or updating entries, and for providing user feedback on entries. Anyone is welcome to contribute.

  18. Prediction of heat-illness symptoms with the prediction of human vascular response in hot environment under resting condition.

    Science.gov (United States)

    Aggarwal, Yogender; Karan, Bhuwan Mohan; Das, Barsa Nand; Sinha, Rakesh Kumar

    2008-04-01

    The thermoregulatory control of human skin blood flow is vital to maintain the body heat storage during challenges of thermal homeostasis under heat stress. Whenever thermal homeostasis disturbed, the heat load exceeds heat dissipation capacity, which alters the cutaneous vascular responses along with other body physiological variables. Whole body skin blood flow has been calculated from the forearm blood flow. Present model has been designed using electronics circuit simulator (Multisim 8.0, National Instruments, USA), is to execute a series of predictive equations for early prediction of physiological parameters of young nude subjects during resting condition at various level of dry heat stress under almost still air to avoid causalities associated with hot environmental. The users can execute the model by changing the environmental temperature in degrees C and exposure time in minutes. The model would be able to predict and detect the changes in human vascular responses along with other physiological parameters and from this predicted values heat related-illness symptoms can be inferred.

  19. A systematic review of the human body burden of e-waste exposure in China.

    Science.gov (United States)

    Song, Qingbin; Li, Jinhui

    2014-07-01

    As China is one of the countries facing the most serious pollution and human exposure effects of e-waste in the world, much of the population there is exposed to potentially hazardous substances due to informal e-waste recycling processes. This report reviews recent studies on human exposure to e-waste in China, with particular focus on exposure routes (e.g. dietary intake, inhalation, and soil/dust ingestion) and human body burden markers (e.g. placenta, umbilical cord blood, breast milk, blood, hair, and urine) and assesses the evidence for the association between such e-waste exposure and the human body burden in China. The results suggest that residents in the e-waste exposure areas, located mainly in the three traditional e-waste recycling sites (Taizhou, Guiyu, and Qingyuan), are faced with a potential higher daily intake of these pollutants than residents in the control areas, especially via food ingestion. Moreover, pollutants (PBBs, PBDEs, PCBs, PCDD/Fs, and heavy metals) from the e-waste recycling processes were all detectable in the tissue samples at high levels, showing that they had entered residents' bodies through the environment and dietary exposure. Children and neonates are the groups most sensitive to the human body effects of e-waste exposure. We also recorded plausible outcomes associated with exposure to e-waste, including 7 types of human body burden. Although the data suggest that exposure to e-waste is harmful to health, better designed epidemiological investigations in vulnerable populations, especially neonates and children, are needed to confirm these associations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Human pathogens in plant biofilms: Formation, physiology, and detection.

    Science.gov (United States)

    Ximenes, Eduardo; Hoagland, Lori; Ku, Seockmo; Li, Xuan; Ladisch, Michael

    2017-07-01

    Fresh produce, viewed as an essential part of a healthy life style is usually consumed in the form of raw or minimally processed fruits and vegetables, and is a potentially important source of food-borne human pathogenic bacteria and viruses. These are passed on to the consumer since the bacteria can form biofilms or otherwise populate plant tissues, thereby using plants as vectors to infect animal hosts. The life cycle of the bacteria in plants differs from those in animals or humans and results in altered physiochemical and biological properties (e.g., physiology, immunity, native microflora, physical barriers, mobility, and temperature). Mechanisms by which healthy plants may become contaminated by microorganisms, develop biofilms, and then pass on their pathogenic burden to people are explored in the context of hollow fiber microfiltration by which plant-derived microorganisms may be recovered and rapidly concentrated to facilitate study of their properties. Enzymes, when added to macerated plant tissues, hydrolyze or alter macromolecules that would otherwise foul hollow-fiber microfiltration membranes. Hence, microfiltration may be used to quickly increase the concentration of microorganisms to detectable levels. This review discusses microbial colonization of vegetables, formation and properties of biofilms, and how hollow fiber microfiltration may be used to concentrate microbial targets to detectable levels. The use of added enzymes helps to disintegrate biofilms and minimize hollow fiber membrane fouling, thereby providing a new tool for more time effectively elucidating mechanisms by which biofilms develop and plant tissue becomes contaminated with human pathogens. Biotechnol. Bioeng. 2017;114: 1403-1418. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  1. New equivalent-electrical circuit model and a practical measurement method for human body impedance.

    Science.gov (United States)

    Chinen, Koyu; Kinjo, Ichiko; Zamami, Aki; Irei, Kotoyo; Nagayama, Kanako

    2015-01-01

    Human body impedance analysis is an effective tool to extract electrical information from tissues in the human body. This paper presents a new measurement method of impedance using armpit electrode and a new equivalent circuit model for the human body. The lowest impedance was measured by using an LCR meter and six electrodes including armpit electrodes. The electrical equivalent circuit model for the cell consists of resistance R and capacitance C. The R represents electrical resistance of the liquid of the inside and outside of the cell, and the C represents high frequency conductance of the cell membrane. We propose an equivalent circuit model which consists of five parallel high frequency-passing CR circuits. The proposed equivalent circuit represents alpha distribution in the impedance measured at a lower frequency range due to ion current of the outside of the cell, and beta distribution at a high frequency range due to the cell membrane and the liquid inside cell. The calculated values by using the proposed equivalent circuit model were consistent with the measured values for the human body impedance.

  2. Robotic Missions to Small Bodies and Their Potential Contributions to Human Exploration and Planetary Defense

    Science.gov (United States)

    Abell, Paul A.; Rivkin, Andrew S.

    2015-01-01

    Introduction: Robotic missions to small bodies will directly address aspects of NASA's Asteroid Initiative and will contribute to future human exploration and planetary defense. The NASA Asteroid Initiative is comprised of two major components: the Grand Challenge and the Asteroid Mission. The first component, the Grand Challenge, focuses on protecting Earth's population from asteroid impacts by detecting potentially hazardous objects with enough warning time to either prevent them from impacting the planet, or to implement civil defense procedures. The Asteroid Mission involves sending astronauts to study and sample a near-Earth asteroid (NEA) prior to conducting exploration missions of the Martian system, which includes Phobos and Deimos. The science and technical data obtained from robotic precursor missions that investigate the surface and interior physical characteristics of an object will help identify the pertinent physical properties that will maximize operational efficiency and reduce mission risk for both robotic assets and crew operating in close proximity to, or at the surface of, a small body. These data will help fill crucial strategic knowledge gaps (SKGs) concerning asteroid physical characteristics that are relevant for human exploration considerations at similar small body destinations. These data can also be applied for gaining an understanding of pertinent small body physical characteristics that would also be beneficial for formulating future impact mitigation procedures. Small Body Strategic Knowledge Gaps: For the past several years NASA has been interested in identifying the key SKGs related to future human destinations. These SKGs highlight the various unknowns and/or data gaps of targets that the science and engineering communities would like to have filled in prior to committing crews to explore the Solar System. An action team from the Small Bodies Assessment Group (SBAG) was formed specifically to identify the small body SKGs under the

  3. Distribution and probable physiological role of esterases in reproductive, digestive, and fat-body tissues of the adult cotton boll weevil, Anthonomus grandis Boh.

    Science.gov (United States)

    Jones, B R; Bancroft, H R

    1986-06-01

    Polyacrylamide gel electrophoresis was used to examine gut, Malpighian tube, fat-body, testes, and ovarioles tissues of the adult cotton boll weevil, Anthonomus grandis Boh. Esterases for which the inheritance has been reported previously by Terranova using whole-body homogenates were detected in dissected tissues and the probable physiological function of each allozyme is suggested. EST-1 occurs most frequently in ovarioles and female fat bodies. EST-2 is most often found in fat bodies and may be important in lipid turnover. No sex difference was observed. EST-3S is found in fat bodies and reproductive tissue, while EST-3F is always located in gut tissues, indicating that EST-3 is not controlled by a single autosomal locus with two codominant alleles as previously reported. EST-4, the most abundant esterase, can be detected in gut tissue at any age and is probably involved in digestion. EST-5 contains four allozymes which appear most frequently in testes and may be important during reproduction.

  4. Genetics of human body size and shape: body proportions and indices.

    Science.gov (United States)

    Livshits, Gregory; Roset, A; Yakovenko, K; Trofimov, S; Kobyliansky, E

    2002-01-01

    environmental effects were also detectable. Genetic factors substantially influence inter-individual differences in body shape and configuration in two studied samples. However, further studies are needed to clarify the extent of pleiotropy and epigenetic effects on various facets of the human physique.

  5. Unsteady-state human-body exergy consumption rate and its relation to subjective assessment of dynamic thermal environments

    DEFF Research Database (Denmark)

    Schweiker, Marcel; Kolarik, Jakub; Dovjak, Mateja

    2016-01-01

    of the present study confirmed previously indicated trends that lowest human body exergy consumption rate is associated with thermal sensation close to neutrality. Moreover, higher acceptability was in general associated with lower human body exergy consumption rate. (C) 2016 Elsevier B.V. All rights reserved.......Few examples studied applicability of exergy analysis on human thermal comfort. These examples relate the human-body exergy consumption rate with subjectively obtained thermal sensation votes and had been based on steady-state calculation methods. However, humans are rarely exposed to steady...... between the human-body exergy consumption rate and subjective assessment of thermal environment represented by thermal sensation as well as to extend the investigation towards thermal acceptability votes. Comparison of steady-state and unsteady-state model showed that results from both models were...

  6. On the dynamics of a human body model.

    Science.gov (United States)

    Huston, R. L.; Passerello, C. E.

    1971-01-01

    Equations of motion for a model of the human body are developed. Basically, the model consists of an elliptical cylinder representing the torso, together with a system of frustrums of elliptical cones representing the limbs. They are connected to the main body and each other by hinges and ball and socket joints. Vector, tensor, and matrix methods provide a systematic organization of the geometry. The equations of motion are developed from the principles of classical mechanics. The solution of these equations then provide the displacement and rotation of the main body when the external forces and relative limb motions are specified. Three simple example motions are studied to illustrate the method. The first is an analysis and comparison of simple lifting on the earth and the moon. The second is an elementary approach to underwater swimming, including both viscous and inertia effects. The third is an analysis of kicking motion and its effect upon a vertically suspended man such as a parachutist.

  7. Force direction patterns promote whole body stability even in hip-flexed walking, but not upper body stability in human upright walking

    Science.gov (United States)

    Müller, Roy; Rode, Christian; Aminiaghdam, Soran; Vielemeyer, Johanna; Blickhan, Reinhard

    2017-11-01

    Directing the ground reaction forces to a focal point above the centre of mass of the whole body promotes whole body stability in human and animal gaits similar to a physical pendulum. Here we show that this is the case in human hip-flexed walking as well. For all upper body orientations (upright, 25°, 50°, maximum), the focal point was well above the centre of mass of the whole body, suggesting its general relevance for walking. Deviations of the forces' lines of action from the focal point increased with upper body inclination from 25 to 43 mm root mean square deviation (RMSD). With respect to the upper body in upright gait, the resulting force also passed near a focal point (17 mm RMSD between the net forces' lines of action and focal point), but this point was 18 cm below its centre of mass. While this behaviour mimics an unstable inverted pendulum, it leads to resulting torques of alternating sign in accordance with periodic upper body motion and probably provides for low metabolic cost of upright gait by keeping hip torques small. Stabilization of the upper body is a consequence of other mechanisms, e.g. hip reflexes or muscle preflexes.

  8. Perfringolysin O as a useful tool to study human sperm physiology.

    Science.gov (United States)

    Pocognoni, Cristián A; De Blas, Gerardo A; Heuck, Alejandro P; Belmonte, Silvia A; Mayorga, Luis S

    2013-01-01

    To evaluate perfringolysin O, a cholesterol-dependent pore-forming cytolysin, as a tool to study several aspects of human sperm physiology. Prospective study. Basic research laboratory. Human semen samples with normal parameters obtained from healthy donors. Interaction of recombinant perfringolysin O with human spermatozoa. Assessment of perfringolysin O binding to spermatozoa, tests for acrosome and plasma membrane integrity, and acrosomal exocytosis assays. Perfringolysin O associated with human spermatozoa at 4°C. The binding was sensitive to changes in cholesterol concentrations and distribution occurring in the plasma membrane of these cells during capacitation. When perfringolysin O-treated sperm were incubated at 37°C, the plasma membrane became permeable, whereas the acrosome membrane remained intact. Permeabilized spermatozoa were able to respond to exocytic stimuli. The process was inhibited by proteins that interfere with membrane fusion, indicating that large molecules, including antibodies, were able to permeate into the spermatozoa. PFO is a useful probe to assess changes in the amount and distribution of the active sterol fraction present in the sperm plasma membrane. The toxin can be used for the efficient and selective permeabilization of this membrane, rendering a flexible experimental model suitable for studying molecular processes occurring in the sperm cytoplasm. Copyright © 2013 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  9. Psychological and physiological human responses to simulated and real environments: A comparison between Photographs, 360° Panoramas, and Virtual Reality.

    Science.gov (United States)

    Higuera-Trujillo, Juan Luis; López-Tarruella Maldonado, Juan; Llinares Millán, Carmen

    2017-11-01

    Psychological research into human factors frequently uses simulations to study the relationship between human behaviour and the environment. Their validity depends on their similarity with the physical environments. This paper aims to validate three environmental-simulation display formats: photographs, 360° panoramas, and virtual reality. To do this we compared the psychological and physiological responses evoked by simulated environments set-ups to those from a physical environment setup; we also assessed the users' sense of presence. Analysis show that 360° panoramas offer the closest to reality results according to the participants' psychological responses, and virtual reality according to the physiological responses. Correlations between the feeling of presence and physiological and other psychological responses were also observed. These results may be of interest to researchers using environmental-simulation technologies currently available in order to replicate the experience of physical environments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Active numerical model of human body for reconstruction of falls from height.

    Science.gov (United States)

    Milanowicz, Marcin; Kędzior, Krzysztof

    2017-01-01

    Falls from height constitute the largest group of incidents out of approximately 90,000 occupational accidents occurring each year in Poland. Reconstruction of the exact course of a fall from height is generally difficult due to lack of sufficient information from the accident scene. This usually results in several contradictory versions of an incident and impedes, for example, determination of the liability in a judicial process. In similar situations, in many areas of human activity, researchers apply numerical simulation. They use it to model physical phenomena to reconstruct their real course over time; e.g. numerical human body models are frequently used for investigation and reconstruction of road accidents. However, they are validated in terms of specific road traffic accidents and are considerably limited when applied to the reconstruction of other types of accidents. The objective of the study was to develop an active numerical human body model to be used for reconstruction of accidents associated with falling from height. Development of the model involved extension and adaptation of the existing Pedestrian human body model (available in the MADYMO package database) for the purposes of reconstruction of falls from height by taking into account the human reaction to the loss of balance. The model was developed by using the results of experimental tests of the initial phase of the fall from height. The active numerical human body model covering 28 sets of initial conditions related to various human reactions to the loss of balance was developed. The application of the model was illustrated by using it to reconstruct a real fall from height. From among the 28 sets of initial conditions, those whose application made it possible to reconstruct the most probable version of the incident was selected. The selection was based on comparison of the results of the reconstruction with information contained in the accident report. Results in the form of estimated

  11. Physiological, Biomechanical, and Maximal Performance Comparisons of Female Soldiers Carrying Loads Using Prototype U.S. Marine Corps Modular Lightweight Load-Carrying Equipment (MOLLE) with Interceptor Body Armor and U.S. Army All-Purpose Lightweight Individual Carrying Equipment (ALICE) with PASGT Body Armor

    National Research Council Canada - National Science Library

    Harman, Everett

    1999-01-01

    The experiment evaluated the physiological, biomechanical, and maximal performance responses of 12 female soldiers carrying loads with prototype Modular Lightweight Load-Carrying Equipment with Interceptor body armor (MOLLE...

  12. HuPSON: the human physiology simulation ontology.

    Science.gov (United States)

    Gündel, Michaela; Younesi, Erfan; Malhotra, Ashutosh; Wang, Jiali; Li, Hui; Zhang, Bijun; de Bono, Bernard; Mevissen, Heinz-Theodor; Hofmann-Apitius, Martin

    2013-11-22

    Large biomedical simulation initiatives, such as the Virtual Physiological Human (VPH), are substantially dependent on controlled vocabularies to facilitate the exchange of information, of data and of models. Hindering these initiatives is a lack of a comprehensive ontology that covers the essential concepts of the simulation domain. We propose a first version of a newly constructed ontology, HuPSON, as a basis for shared semantics and interoperability of simulations, of models, of algorithms and of other resources in this domain. The ontology is based on the Basic Formal Ontology, and adheres to the MIREOT principles; the constructed ontology has been evaluated via structural features, competency questions and use case scenarios.The ontology is freely available at: http://www.scai.fraunhofer.de/en/business-research-areas/bioinformatics/downloads.html (owl files) and http://bishop.scai.fraunhofer.de/scaiview/ (browser). HuPSON provides a framework for a) annotating simulation experiments, b) retrieving relevant information that are required for modelling, c) enabling interoperability of algorithmic approaches used in biomedical simulation, d) comparing simulation results and e) linking knowledge-based approaches to simulation-based approaches. It is meant to foster a more rapid uptake of semantic technologies in the modelling and simulation domain, with particular focus on the VPH domain.

  13. Hepatic mTORC1 controls locomotor activity, body temperature, and lipid metabolism through FGF21

    Science.gov (United States)

    Cornu, Marion; Oppliger, Wolfgang; Albert, Verena; Robitaille, Aaron M.; Trapani, Francesca; Quagliata, Luca; Fuhrer, Tobias; Sauer, Uwe; Terracciano, Luigi; Hall, Michael N.

    2014-01-01

    The liver is a key metabolic organ that controls whole-body physiology in response to nutrient availability. Mammalian target of rapamycin (mTOR) is a nutrient-activated kinase and central controller of growth and metabolism that is negatively regulated by the tumor suppressor tuberous sclerosis complex 1 (TSC1). To investigate the role of hepatic mTOR complex 1 (mTORC1) in whole-body physiology, we generated liver-specific Tsc1 (L-Tsc1 KO) knockout mice. L-Tsc1 KO mice displayed reduced locomotor activity, body temperature, and hepatic triglyceride content in a rapamycin-sensitive manner. Ectopic activation of mTORC1 also caused depletion of hepatic and plasma glutamine, leading to peroxisome proliferator–activated receptor γ coactivator-1α (PGC-1α)–dependent fibroblast growth factor 21 (FGF21) expression in the liver. Injection of glutamine or knockdown of PGC-1α or FGF21 in the liver suppressed the behavioral and metabolic defects due to mTORC1 activation. Thus, mTORC1 in the liver controls whole-body physiology through PGC-1α and FGF21. Finally, mTORC1 signaling correlated with FGF21 expression in human liver tumors, suggesting that treatment of glutamine-addicted cancers with mTOR inhibitors might have beneficial effects at both the tumor and whole-body level. PMID:25082895

  14. Infrasonic Stethoscope for Monitoring Physiological Processes

    Science.gov (United States)

    Shams, Qamar A. (Inventor); Zuckerwar, Allan J. (Inventor); Dimarcantonio, Albert L. (Inventor)

    2018-01-01

    An infrasonic stethoscope for monitoring physiological processes of a patient includes a microphone capable of detecting acoustic signals in the audible frequency bandwidth and in the infrasonic bandwidth (0.03 to 1000 Hertz), a body coupler attached to the body at a first opening in the microphone, a flexible tube attached to the body at a second opening in the microphone, and an earpiece attached to the flexible tube. The body coupler is capable of engagement with a patient to transmit sounds from the person, to the microphone and then to the earpiece.

  15. Influence of mechanical stimulation on human dermal fibroblasts derived from different body sites.

    Science.gov (United States)

    Kuang, Ruixia; Wang, Zhiguo; Xu, Quanchen; Liu, Su; Zhang, Weidong

    2015-01-01

    Mechanical stimulation is highly associated with pathogenesis of human hypertrophic scar. Although much work has focused on the influence of mechanical stress on fibroblast populations from various tissues and organs in the human body, their effects on cultured dermal fibroblasts by the area of the body have not been as well studied. In this study, cultures of skin fibroblasts from two different body sites were subjected to cyclic mechanical stimulation with a 10% stretching amplitude at a frequency of 0.1 Hz for 24, 36 and 48 hours, respectively, and thereafter harvested for experimental assays. Fibroblasts from scapular upper back skin, subjected to mechanical loads for 36 and 48 hours, respectively, were observed to proliferate at a higher rate and reach confluent more rapidly during in vitro culturing, had higher expression levels of mRNA and protein production of integrin β1, p130Cas and TGF β1 versus those from medial side of upper arm. These data indicate that skin fibroblasts, with regard to originated body sites studied in the experiments, display a diversity of mechanotransduction properties and biochemical reactions in response to applied mechanical stress, which contributes to the increased susceptibility to hypertrophic scars formation at certain areas of human body characterized by higher skin and muscle tension.

  16. Skin Sensitive Difference of Human Body Sections under Clothing-Smirnov Test of Skin Surface Temperatures' Dynamic Changing

    Institute of Scientific and Technical Information of China (English)

    LI Jun; WU Hai-yan; WANG Yun-yi

    2004-01-01

    Skin sensitive difference of human body sections under clothing is the theoretic foundation of thermal insulation clothing design.By a new method of researching on clothing comfort perception,the skin temperature live changing procedure of human body sections affected by the same cold stimulation is inspected.Furthermore with the Smirnov test the skin temperatures dynamic changing patterns of main human body sections are obtained.

  17. Electromagnetic Fields at the Surface of Human-Body Cylinders

    DEFF Research Database (Denmark)

    Kammersgaard, Nikolaj Peter Iversen; Kvist, Søren H.; Thaysen, Jesper

    2016-01-01

    transverse electric and transverse magnetic polarization. The results show that the material assumption when modeling the human body as a homogeneous material is very important. Furthermore, it is shown that one assumption might lead to higher fields for a specific polarization, angle of incidence...

  18. Towards Individualized Physiology Lecturing in Africa

    African Journals Online (AJOL)

    Dr Olaleye Samuel

    1 (1): 13 - 16. Journal of African Association of Physiological Sciences ... import from validated text format question series and seamless use of any computer program or internet .... Silverthorn D U, Human Physiology, an Integrated. Approach ...

  19. Animal lifespan and human influence

    Science.gov (United States)

    Guo, Q.; Yang, S.

    2002-01-01

    Lifespan differs radically among organisms ever lived on earth, even among those roughly similar in size, shape, form, and physiology; Yet, in general, there exists a strong positive relationship between lifespan and body size. Although lifespans of humans and human-related (domestic) animals are becoming increasingly longer than that of other animals of similar sizes, the slope of the regression (lifespan-body size) line and the intercepts have been surprisingly stable over the course of the dramatic human population growth, indicating substantial depression in lifespans of many other animals probably due to shrunk and fragmented natural habitats. This article addresses two questions related to the lifespan-size relationship: (1) what caused the exceptions (e.g., a few remote human-related animals are also located above the regression line with great residuals) and why (e.g., could brain size or intelligence be a covariate in addition to body size in predicting lifespan?), and (2) whether continued human activities can eventually alter the ' natural' regression line in the future, and if so, how much. We also suggest similar research efforts to be extended to the plant world as well.

  20. Design of flexible thermoelectric generator as human body sensor

    DEFF Research Database (Denmark)

    Qing, Shaowei; Rezaniakolaei, Alireza; Rosendahl, Lasse Aistrup

    2018-01-01

    Flexible thermoelectric generator (TEG) became an attractive technology that has been widely used especially for curved surfaces applications. This study aims an optimal design of a flexible TEG for human body application. The flexible TEG is part of a sensor and supplies required electrical power...... for data transmission by the sensor. The TEG module includes ink based thermoelements made of nano-carbon bismuth telluride materials. One flexible fin conducts the body heat to the TEG module and there are two fins that exchange the heat from the cold side of the TEG to the ambient. The proposed design...