WorldWideScience

Sample records for human pathogenic escherichia

  1. Pathogenic Potential to Humans of Bovine Escherichia coli O26, Scotland

    Science.gov (United States)

    Rosser, Tracy; Allison, Lesley J.; Courcier, Emily; Evans, Judith; McKendrick, Iain J.; Pearce, Michael C.; Handel, Ian; Caprioli, Alfredo; Karch, Helge; Hanson, Mary F.; Pollock, Kevin G.J.; Locking, Mary E.; Woolhouse, Mark E.J.; Matthews, Louise; Low, J. Chris; Gally, David L.

    2012-01-01

    Escherichia coli O26 and O157 have similar overall prevalences in cattle in Scotland, but in humans, Shiga toxin–producing E. coli O26 infections are fewer and clinically less severe than E. coli O157 infections. To investigate this discrepancy, we genotyped E. coli O26 isolates from cattle and humans in Scotland and continental Europe. The genetic background of some strains from Scotland was closely related to that of strains causing severe infections in Europe. Nonmetric multidimensional scaling found an association between hemolytic uremic syndrome (HUS) and multilocus sequence type 21 strains and confirmed the role of stx2 in severe human disease. Although the prevalences of E. coli O26 and O157 on cattle farms in Scotland are equivalent, prevalence of more virulent strains is low, reducing human infection risk. However, new data on E. coli O26–associated HUS in humans highlight the need for surveillance of non-O157 enterohemorrhagic E. coli and for understanding stx2 phage acquisition. PMID:22377426

  2. Assessment of Shiga toxin-producing Escherichia coli isolates from wildlife meat as potential pathogens for humans.

    Science.gov (United States)

    Miko, Angelika; Pries, Karin; Haby, Sabine; Steege, Katja; Albrecht, Nadine; Krause, Gladys; Beutin, Lothar

    2009-10-01

    A total of 140 Shiga toxin-producing Escherichia coli (STEC) strains from wildlife meat (deer, wild boar, and hare) isolated in Germany between 1998 and 2006 were characterized with respect to their serotypes and virulence markers associated with human pathogenicity. The strains grouped into 38 serotypes, but eight O groups (21, 146, 128, 113, 22, 88, 6, and 91) and four H types (21, 28, 2, and 8) accounted for 71.4% and 75.7% of all STEC strains from game, respectively. Eighteen of the serotypes, including enterohemorrhagic E. coli (EHEC) O26:[H11] and O103:H2, were previously found to be associated with human illness. Genes linked to high-level virulence for humans (stx(2), stx(2d), and eae) were present in 46 (32.8%) STEC strains from game. Fifty-four STEC isolates from game belonged to serotypes which are frequently found in human patients (O103:H2, O26:H11, O113:H21, O91:H21, O128:H2, O146:H21, and O146:H28). These 54 STEC isolates were compared with 101 STEC isolates belonging to the same serotypes isolated from farm animals, from their food products, and from human patients. Within a given serotype, most STEC strains were similar with respect to their stx genotypes and other virulence attributes, regardless of origin. The 155 STEC strains were analyzed for genetic similarity by XbaI pulsed-field gel electrophoresis. O103:H2, O26:H11, O113:H21, O128:H2, and O146:H28 STEC isolates from game were 85 to 100% similar to STEC isolates of the same strains from human patients. By multilocus sequence typing, game EHEC O103:H2 strains were attributed to a clonal lineage associated with hemorrhagic diseases in humans. The results from our study indicate that game animals represent a reservoir for and a potential source of human pathogenic STEC and EHEC strains.

  3. PATHOGENIC POTENTIALS OF ESCHERICHIA COLI ISOLATED ...

    African Journals Online (AJOL)

    Electrolyte and haematological parameters in rabbits infected with pathogenic isolates of Escherichia coli from rural water supplies in Rivers State, Nigeria, where monitored. Rabbits were orally infected with suspension containing 3x107 cfu /ml of Escherichia coli to induce diarrhoea, and the electrolyte (sodium, potassium ...

  4. Occurrence and antimicrobial resistance of pathogenic Escherichia coli and Salmonella spp. in retail raw table eggs sold for human consumption in Enugu state, Nigeria

    Science.gov (United States)

    Okorie-Kanu, O. Josephine; Ezenduka, E. Vivienne; Okorie-Kanu, C. Onwuchokwe; Ugwu, L. Chinweokwu; Nnamani, U. John

    2016-01-01

    Aim: This study was conducted to investigate the occurrence of pathogenic Escherichia coli and Salmonella species in retail raw table eggs sold for human consumption in Enugu State and to determine the resistance of these pathogens to antimicrobials commonly used in human and veterinary practices in Nigeria. Materials and Methods: A total of 340 raw table eggs comprising 68 composite samples (5 eggs per composite sample) were collected from five selected farms (13 composite samples from the farms) and 10 retail outlets (55 composite samples from the retail outlets) in the study area over a period of 4-month (March-June, 2014). The eggs were screened for pathogenic E. coli and Salmonella species following standard procedures within 24 h of sample collection. Isolates obtained were subjected to in-vitro antimicrobial susceptibility test with 15 commonly used antimicrobials using the disk diffusion method. Results: About 37 (54.4%) and 7 (10.3%) of the 68 composite samples were positive for pathogenic E. coli and Salmonella species, respectively. The shells showed significantly higher (p0.05). The organisms obtained showed a multiple drug resistance. They were completely resistant to nitrofurantoin, sulfamethoxazole/trimethoprim, penicillin G and oxacillin. In addition to these, Salmonella spp. also showed 100% resistance to tetracycline. The pathogenic E. coli isolates obtained were 100% susceptible to gentamicin, neomycin, ciprofloxacin, and amoxicillin-clavulanic acid while Salmonella spp. showed 100% susceptibility to erythromycin, neomycin, and rifampicin. Both organisms showed varying degrees of resistance to streptomycin, amoxicillin, vancomycin, and doxycycline. Conclusion: From the results of the study, it can be concluded that the raw table eggs marketed for human consumption in Enugu State, Nigeria is contaminated with pathogenic E. coli and Salmonella species that showed multiple drug resistance to antimicrobial agents commonly used in veterinary and human

  5. Plant innate immunity against human bacterial pathogens

    Directory of Open Access Journals (Sweden)

    Maeli eMelotto

    2014-08-01

    Full Text Available Certain human bacterial pathogens such as the enterohemorrhagic Escherichia coli and Salmonella enterica are not proven to be plant pathogens yet. Nonetheless, under certain conditions they can survive on, penetrate into, and colonize internal plant tissues causing serious food borne disease outbreaks. In this review, we highlight current understanding on the molecular mechanisms of plant responses against human bacterial pathogens and discuss salient common and contrasting themes of plant interactions with phytopathogens or human pathogens.

  6. Recent Advances in Understanding Enteric Pathogenic Escherichia coli

    Science.gov (United States)

    Croxen, Matthew A.; Law, Robyn J.; Scholz, Roland; Keeney, Kristie M.; Wlodarska, Marta

    2013-01-01

    SUMMARY Although Escherichia coli can be an innocuous resident of the gastrointestinal tract, it also has the pathogenic capacity to cause significant diarrheal and extraintestinal diseases. Pathogenic variants of E. coli (pathovars or pathotypes) cause much morbidity and mortality worldwide. Consequently, pathogenic E. coli is widely studied in humans, animals, food, and the environment. While there are many common features that these pathotypes employ to colonize the intestinal mucosa and cause disease, the course, onset, and complications vary significantly. Outbreaks are common in developed and developing countries, and they sometimes have fatal consequences. Many of these pathotypes are a major public health concern as they have low infectious doses and are transmitted through ubiquitous mediums, including food and water. The seriousness of pathogenic E. coli is exemplified by dedicated national and international surveillance programs that monitor and track outbreaks; unfortunately, this surveillance is often lacking in developing countries. While not all pathotypes carry the same public health profile, they all carry an enormous potential to cause disease and continue to present challenges to human health. This comprehensive review highlights recent advances in our understanding of the intestinal pathotypes of E. coli. PMID:24092857

  7. Current pathogenic Escherichia coli foodborne outbreak cases and therapy development.

    Science.gov (United States)

    Yang, Shih-Chun; Lin, Chih-Hung; Aljuffali, Ibrahim A; Fang, Jia-You

    2017-08-01

    Food contamination by pathogenic microorganisms has been a serious public health problem and a cause of huge economic losses worldwide. Foodborne pathogenic Escherichia coli (E. coli) contamination, such as that with E. coli O157 and O104, is very common, even in developed countries. Bacterial contamination may occur during any of the steps in the farm-to-table continuum from environmental, animal, or human sources and cause foodborne illness. To understand the causes of the foodborne outbreaks by E. coli and food-contamination prevention measures, we collected and investigated the past 10 years' worldwide reports of foodborne E. coli contamination cases. In the first half of this review article, we introduce the infection and symptoms of five major foodborne diarrheagenic E. coli pathotypes: enteropathogenic E. coli (EPEC), Shiga toxin-producing E. coli/enterohemorrhagic E. coli (STEC/EHEC), Shigella/enteroinvasive E. coli (EIEC), enteroaggregative E. coli (EAEC), and enterotoxigenic E. coli (ETEC). In the second half of this review article, we introduce the foodborne outbreak cases caused by E. coli in natural foods and food products. Finally, we discuss current developments that can be applied to control and prevent bacterial food contamination.

  8. Lack of the RNA chaperone Hfq attenuates pathogenicity of several Escherichia coli pathotypes towards Caenorhabditis elegans

    DEFF Research Database (Denmark)

    Bojer, Martin Saxtorph; Jakobsen, Henrik; Struve, Carsten

    2012-01-01

    as a model for virulence characterization and screening for novel antimicrobial entities. Several E. coli human pathotypes are also pathogenic towards C. elegans, and we show here that lack of the RNA chaperone Hfq significantly reduces pathogenicity of VTEC, EAEC, and UPEC in the nematode model. Thus, Hfq...... is intrinsically essential to pathogenic E. coli for survival and virulence exerted in the C. elegans host.......Escherichia coli is an important agent of Gram-negative bacterial infections worldwide, being one of the leading causes of diarrhoea and urinary tract infections. Strategies to understand pathogenesis and develop therapeutic compounds include the use of the nematode Caenorhabditis elegans...

  9. Identification of human-pathogenic strains of Shiga toxin-producing Escherichia coli from food by a combination of serotyping and molecular typing of Shiga toxin genes.

    Science.gov (United States)

    Beutin, Lothar; Miko, Angelika; Krause, Gladys; Pries, Karin; Haby, Sabine; Steege, Katja; Albrecht, Nadine

    2007-08-01

    We examined 219 Shiga toxin-producing Escherichia coli (STEC) strains from meat, milk, and cheese samples collected in Germany between 2005 and 2006. All strains were investigated for their serotypes and for genetic variants of Shiga toxins 1 and 2 (Stx1 and Stx2). stx(1) or variant genes were detected in 88 (40.2%) strains and stx(2) and variants in 177 (80.8%) strains. Typing of stx genes was performed by stx-specific PCRs and by analysis of restriction fragment length polymorphisms (RFLP) of PCR products. Major genotypes of the Stx1 (stx(1), stx(1c), and stx(1d)) and the Stx2 (stx(2), stx(2d), stx(2-O118), stx(2e), and stx(2g)) families were detected, and multiple types of stx genes coexisted frequently in STEC strains. Only 1.8% of the STEC strains from food belonged to the classical enterohemorrhagic E. coli (EHEC) types O26:H11, O103:H2, and O157:H7, and only 5.0% of the STEC strains from food were positive for the eae gene, which is a virulence trait of classical EHEC. In contrast, 95 (43.4%) of the food-borne STEC strains carried stx(2) and/or mucus-activatable stx(2d) genes, an indicator for potential high virulence of STEC for humans. Most of these strains belonged to serotypes associated with severe illness in humans, such as O22:H8, O91:H21, O113:H21, O174:H2, and O174:H21. stx(2) and stx(2d) STEC strains were found frequently in milk and beef products. Other stx types were associated more frequently with pork (stx(2e)), lamb, and wildlife meat (stx(1c)). The combination of serotyping and stx genotyping was found useful for identification and for assignment of food-borne STEC to groups with potential lower and higher levels of virulence for humans.

  10. Genomic and Phenomic Study of Mammary Pathogenic Escherichia coli

    Science.gov (United States)

    Blum, Shlomo E.; Heller, Elimelech D.; Sela, Shlomo; Elad, Daniel; Edery, Nir; Leitner, Gabriel

    2015-01-01

    Escherichia coli is a major etiological agent of intra-mammary infections (IMI) in cows, leading to acute mastitis and causing great economic losses in dairy production worldwide. Particular strains cause persistent IMI, leading to recurrent mastitis. Virulence factors of mammary pathogenic E. coli (MPEC) involved pathogenesis of mastitis as well as those differentiating strains causing acute or persistent mastitis are largely unknown. This study aimed to identify virulence markers in MPEC through whole genome and phenome comparative analysis. MPEC strains causing acute (VL2874 and P4) or persistent (VL2732) mastitis were compared to an environmental strain (K71) and to the genomes of strains representing different E. coli pathotypes. Intra-mammary challenge in mice confirmed experimentally that the strains studied here have different pathogenic potential, and that the environmental strain K71 is non-pathogenic in the mammary gland. Analysis of whole genome sequences and predicted proteomes revealed high similarity among MPEC, whereas MPEC significantly differed from the non-mammary pathogenic strain K71, and from E. coli genomes from other pathotypes. Functional features identified in MPEC genomes and lacking in the non-mammary pathogenic strain were associated with synthesis of lipopolysaccharide and other membrane antigens, ferric-dicitrate iron acquisition and sugars metabolism. Features associated with cytotoxicity or intra-cellular survival were found specifically in the genomes of strains from severe and acute (VL2874) or persistent (VL2732) mastitis, respectively. MPEC genomes were relatively similar to strain K-12, which was subsequently shown here to be possibly pathogenic in the mammary gland. Phenome analysis showed that the persistent MPEC was the most versatile in terms of nutrients metabolized and acute MPEC the least. Among phenotypes unique to MPEC compared to the non-mammary pathogenic strain were uric acid and D-serine metabolism. This study

  11. Escherichia coli O157:H7 - An Emerging Pathogen in foods of Animal Origin

    Directory of Open Access Journals (Sweden)

    Ch. Bindu Kiranmayi

    Full Text Available Escherichia coli O157:H7 is an emerging public health concern in most countries of the world. E. coli O157:H7 was known to be a human pathogen for nearly 24 years. EHEC O157 infection is estimated to be the fourth most costly food borne disease in Canada and USA, not counting the cost of possible litigation. E. coli O157:H7 and Salmonella are the leading causes of produce related outbreaks, accounting for 20 and 30% respectively. The authority of the Federal Meat Inspection Act, FSIS (Food Safety and Inspection Service declared Escherichia coli O157:H7, an adulterant in raw ground beef and enforced “zero tolerance” (USDA-FSIS, 17 December 1998. Because of the severity of these illnesses and the apparent low infective dose (less than 10 cells, Escherichia coli O157:H7 is considered one of the most serious of known food borne pathogens. Escherichia coli O157:H7 is mainly pathogenic to human but in cattle and other animals, it did not induce any clinical disease except diarrhea. So, these animals act as carriers to Escherichia coli O157:H7. The majority transmission is through eating of undercooked contaminated ground meat and consumption of raw milk, raw vegetables, fruits contaminated by water, cheese, curd and also through consumption of sprouts, lettuce and juice. The conventional isolation procedure includes growth in enrichment broth like modified EC (E. coli broth or modified tryptic soy broth (mTSB Since the infection primarily occurs via faeco-oral route, the preventive measures include food hygiene measures like proper cooking of meat, consumption of pasteurized milk, washing fruits and vegetables especially those to be eaten raw and drinking chlorine treated water and personnel hygiene measures like washing hands after toilet visits. [Veterinary World 2010; 3(8.000: 382-389

  12. Human pathogen avoidance adaptations

    NARCIS (Netherlands)

    Tybur, J.M.; Lieberman, D.

    2016-01-01

    Over the past few decades, researchers have become increasingly interested in the adaptations guiding the avoidance of disease-causing organisms. Here we discuss the latest developments in this area, including a recently developed information-processing model of the adaptations underlying pathogen

  13. Molecular prophage typing of avian pathogenic Escherichia coli.

    Science.gov (United States)

    Kwon, Hyuk-Joon; Seong, Won-Jin; Kim, Jae-Hong

    2013-03-23

    Escherichia coli prophages confer virulence and resistance to physico-chemical, nutritional, and antibiotic stresses on their hosts, and they enhance the evolution of E. coli. Thus, studies on profiles of E. coli prophages are valuable to understand the population structure and evolution of E. coli pathogenicity. Large terminase genes participate in phage genome packaging and are one of the cornerstones for the identification of prophages. Thus, we designed primers to detect 16 types of large terminase genes and analyzed the genomes of 48 E. coli and Shigella reference strains for the prophage markers. We also investigated the distribution of the 16 prophage markers among 92 avian pathogenic E. coli (APEC) strains. APEC strains were classified into 61 prophage types (PPTs). Each strain was different from the reference strains as measured by the PPTs and from the frequency of each prophage marker. Investigation of the distribution of prophage-related serum resistance (bor), toxin (stx1 and cdtI), and T3SS effector (lom, espK, sopE, nleB, and ospG) genes revealed the presence of bor (44.1%), lom (95.5%) and cdtI (9.1%) in APEC strains with related prophages. Therefore, the molecular prophage typing method may be useful to understand population structure and evolution of E. coli pathogenicity, and further studies on the mobility of the prophages and the roles of virulence genes in APEC pathogenicity may be valuable. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Pathogenic Escherichia coli and food handlers in luxury hotels in Nairobi, Kenya.

    Science.gov (United States)

    Onyango, Abel O; Kenya, Eucharia U; Mbithi, John J N; Ng'ayo, Musa O

    2009-11-01

    The epidemiology and virulence properties of pathogenic Escherichia coli among food handlers in tourist destination hotels in Kenya are largely uncharacterized. This cross-sectional study among consenting 885 food handlers working in nine luxurious tourist hotels in Nairobi, Kenya determined the epidemiology, virulence properties, antibiotics susceptibility profiles and conjugation abilities of pathogenic Escherichia coli. Pathogenic Escherichia coli was detected among 39 (4.4%) subjects, including 1.8% enteroaggregative Escherichia coli (EAEC) harboring aggR genes, 1.2% enterotoxigenic Escherichia coli (ETEC) expressing both LT and STp toxins, 1.1% enteropathogenic Escherichia coli (EPEC) and 0.2% Shiga-like Escherichia coli (EHEC) both harboring eaeA and stx2 genes respectively. All the pathotypes had increased surface hydrophobicity. Using multivariate analyses, food handlers with loose stools were more likely to be infected with pathogenic Escherichia coli. Majority 53.8% of the pathotypes were resistant to tetracycline with 40.2% being multi-drug resistant. About 85.7% pathotypes trans-conjugated with Escherichia coli K12 F(-) NA(r) LA. The carriage of multi-drug resistant, toxin expressing pathogenic Escherichia coli by this population is of public health concern because exposure to low doses can result in infection. Screening food handlers and implementing public awareness programs is recommended as an intervention to control transmission of enteric pathogens.

  15. Human pathogenic bacteria as contaminants in freshly consumed vegetables

    NARCIS (Netherlands)

    Waalwijk, C.; Tongeren, van C.A.M.; Zouwen, van der P.S.; Overbeek, van L.S.

    2014-01-01

    The 2011 enterohaemorrhagic Escherichia coli (EHEC) outbreak in Germany casted new light on the potential reservoirs of human pathogenic bacteria (HUPA) other than the ones commonly recognized in animal production chains. Soil, plants and water systems were demonstrated to be environments where HUPA

  16. Chromosomal features of Escherichia coli serotype O2:K2, an avian pathogenic E. coli

    DEFF Research Database (Denmark)

    Jørgensen, Steffen L; Kudirkiene, Egle; Li, Lili

    2017-01-01

    Escherichia coli causing infection outside the gastrointestinal system are referred to as extra-intestinal pathogenic E. coli. Avian pathogenic E. coli is a subgroup of extra-intestinal pathogenic E. coli and infections due to avian pathogenic E. coli have major impact on poultry production econo...

  17. Comparative genomics of transport proteins in probiotic and pathogenic Escherichia coli and Salmonella enterica strains.

    Science.gov (United States)

    Do, Jimmy; Zafar, Hassan; Saier, Milton H

    2017-06-01

    Escherichia coli is a genetically diverse species that can be pathogenic, probiotic, commensal, or a harmless laboratory strain. Pathogenic strains of E. coli cause urinary tract infections, diarrhea, hemorrhagic colitis, and pyelonephritis, while the two known probiotic E. coli strains combat inflammatory bowel disease and play a role in immunomodulation. Salmonella enterica, a close relative of E. coli, includes two important pathogenic serovars, Typhi and Typhimurium, causing typhoid fever and enterocolitis in humans, respectively, with the latter strain also causing a lethal typhoid fever-like disease in mice. In this study, we identify the transport systems and their substrates within seven E. coli strains: two probiotic strains, two extracellular pathogens, two intracellular pathogens, and K-12, as well as the two intracellular pathogenic S. enterica strains noted above. Transport systems characteristic of each probiotic or pathogenic species were thus identified, and the tabulated results obtained with all of these strains were compared. We found that the probiotic and pathogenic strains generally contain more iron-siderophore and sugar transporters than E. coli K-12. Pathogens have increased numbers of pore-forming toxins, protein secretion systems, decarboxylation-driven Na + exporters, electron flow-driven monovalent cation exporters, and putative transporters of unknown function compared to the probiotic strains. Both pathogens and probiotic strains encode metabolite transporters that reflect their intracellular versus extracellular environments. The results indicate that the probiotic strains live extracellularly. It seems that relatively few virulence factors can convert a beneficial or commensal microorganism into a pathogen. Taken together, the results reveal the distinguishing features of these strains and provide a starting point for future engineering of beneficial enteric bacteria. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Molecular detection of human bacterial pathogens

    National Research Council Canada - National Science Library

    Liu, Dongyou

    2011-01-01

    .... Molecular Detection of Human Bacterial Pathogens addresses this issue, with international scientists in respective bacterial pathogen research and diagnosis providing expert summaries on current...

  19. Lectins in human pathogenic fungi.

    Science.gov (United States)

    Gallegos, Belém; Martínez, Ruth; Pérez, Laura; Del Socorro Pina, María; Perez, Eduardo; Hernández, Pedro

    2014-01-01

    Lectins are carbohydrate-binding proteins widely distributed in nature. They constitute a highly diverse group of proteins consisting of many different protein families that are, in general, structurally unrelated. In the last few years, mushroom and other fungal lectins have attracted wide attention due to their antitumour, antiproliferative and immunomodulatory activities. The present mini-review provides concise information about recent developments in understanding lectins from human pathogenic fungi. A bibliographic search was performed in the Science Direct and PubMed databases, using the following keywords "lectin", "fungi", "human" and "pathogenic". Lectins present in fungi have been classified; however, the role played by lectins derived from human pathogenic fungi in infectious processes remains uncertain; thus, this is a scientific field requiring more research. This manuscript is part of the series of works presented at the "V International Workshop: Molecular genetic approaches to the study of human pathogenic fungi" (Oaxaca, Mexico, 2012). Copyright © 2013 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  20. Human milk glycoconjugates that inhibit pathogens.

    Science.gov (United States)

    Newburg, D S

    1999-02-01

    Breast-fed infants have lower incidence of diarrhea, respiratory disease, and otitis media. The protection by human milk has long been attributed to the presence of secretory IgA. However, human milk contains large numbers and amounts of complex carbohydrates, including glycoproteins, glycolipids, glycosaminoglycans, mucins, and especially oligosaccharides. The oligosaccharides comprise the third most abundant solid constituent of human milk, and contain a myriad of structures. Complex carbohydrate moieties of glycoconjugates and oligosaccharides are synthesized by the many glycosyltransferases in the mammary gland; those with homology to cell surface glycoconjugate pathogen receptors may inhibit pathogen binding, thereby protecting the nursing infant. Several examples are reviewed: A fucosyloligosaccharide inhibits the diarrheagenic effect of stable toxin of Escherichia coli. A different fucosyloligosaccharide inhibits infection by Campylobacter jejuni. Binding of Streptococcus pneumoniae and of enteropathogenic E. coli to their respective receptors is inhibited by human milk oligosaccharides. The 46-kD glycoprotein, lactadherin, inhibits rotavirus binding and infectivity. Low levels of lactadherin in human milk are associated with a higher incidence of symptomatic rotavirus in breast-fed infants. A mannosylated glycopeptide inhibits binding by enterohemorrhagic E. coli. A glycosaminoglycan inhibits binding of gp120 to CD4, the first step in HIV infection. Human milk mucin inhibits binding by S-fimbriated E. coli. The ganglioside, GM1, reduces diarrhea production by cholera toxin and labile toxin of E. coli. The neutral glycosphingolipid, Gb3, binds to Shigatoxin. Thus, many complex carbohydrates of human milk may be novel antipathogenic agents, and the milk glycoconjugates and oligosaccharides may be a major source of protection for breastfeeding infants.

  1. papA gene of avian pathogenic Escherichia coli.

    Science.gov (United States)

    Kariyawasam, Subhashinie; Nolan, Lisa K

    2011-12-01

    P fimbrial adhesins may be associated with the virulence of avian pathogenic Escherichia coli (APEC). However, most APECs are unable to express P fimbriae even when they are grown under conditions that favor P fimbrial expression. This failure can be explained by the complete absence of the pap operon or the presence of an incomplete pap operon in Pap-negative APEC strains. In the present study, we analyzed the pap operon, specifically the papA gene that encodes the major fimbrial shaft, to better understand the pap gene cluster at the genetic level. First, by PCR, we examined a collection of 500 APEC strains for the presence of 11 genes comprising the pap operon. Except for papA, all the other genes of the operon were present in 38% to 41.2% of APEC, whereas the papA was present only in 10.4% of the APEC tested. Using multiplex PCR to probe for allelic variants of papA, we sought to determine if the low prevalence of papA among APEC was related to genetic heterogeneity of the gene itself. It was determined that the papA of APEC always belongs to the F11 allelic variant. Finally, we sequenced the 'papA region' from two papA-negative strains, both of which contain all the other genes of the pap operon. Interestingly, both strains had an 11,104-bp contig interruptingpapA at the 281-bp position. This contig harbored a streptomycin resistance gene and a classic Tn10 transposon containing the genes that confer tetracycline resistance. However, we noted that the papA gene of every papA-negative APEC strain was not interrupted by an 11,104-bp contig. It is likely that transposons bearing antibiotic resistance genes have inserted within pap gene cluster of some APEC strains, and such genetic events may have been selected for by antibiotic use.

  2. Intestinal Pathogenic Escherichia coli: Insights for Vaccine Development

    Directory of Open Access Journals (Sweden)

    Maricarmen Rojas-Lopez

    2018-03-01

    Full Text Available Diarrheal diseases are one of the major causes of mortality among children under five years old and intestinal pathogenic Escherichia coli (InPEC plays a role as one of the large causative groups of these infections worldwide. InPECs contribute significantly to the burden of intestinal diseases, which are a critical issue in low- and middle-income countries (Asia, Africa and Latin America. Intestinal pathotypes such as enteropathogenic E. coli (EPEC and enterotoxigenic E. coli (ETEC are mainly endemic in developing countries, while ETEC strains are the major cause of diarrhea in travelers to these countries. On the other hand, enterohemorrhagic E. coli (EHEC are the cause of large outbreaks around the world, mainly affecting developed countries and responsible for not only diarrheal disease but also severe clinical complications like hemorrhagic colitis and hemolytic uremic syndrome (HUS. Overall, the emergence of antibiotic resistant strains, the annual cost increase in the health care system, the high incidence of traveler diarrhea and the increased number of HUS episodes have raised the need for effective preventive treatments. Although the use of antibiotics is still important in treating such infections, non-antibiotic strategies are either a crucial option to limit the increase in antibiotic resistant strains or absolutely necessary for diseases such as those caused by EHEC infections, for which antibiotic therapies are not recommended. Among non-antibiotic therapies, vaccine development is a strategy of choice but, to date, there is no effective licensed vaccine against InPEC infections. For several years, there has been a sustained effort to identify efficacious vaccine candidates able to reduce the burden of diarrheal disease. The aim of this review is to summarize recent milestones and insights in vaccine development against InPECs.

  3. Cold plasma inactivation of human pathogens on foods and regulatory status update

    Science.gov (United States)

    Contamination of foods with human pathogens such as Salmonella, Listeria monocytogenes, Escherichia coli O157:H7, norovirus, and other pathogens is an ongoing challenge for growers and processors. In recent years, cold plasma has emerged as a promising antimicrobial treatment for fresh and fresh-cut...

  4. SILAC-based comparative analysis of pathogenic Escherichia coli secretomes

    DEFF Research Database (Denmark)

    Boysen, Anders; Borch, Jonas; Krogh, Thøger Jensen

    2015-01-01

    Comparative studies of pathogenic bacteria and their non-pathogenic counterparts has led to the discovery of important virulence factors thereby generating insight into mechanisms of pathogenesis. Protein-based antigens for vaccine development are primarily selected among unique virulence...... experimental approach. In addition we find proteins that are not unique to the pathogenic strains but expressed at levels different from the commensal strain, including the colonization factor YghJ and the surface adhesin antigen 43, which is involved in pathogenesis of other Gram-negative bacteria......-related factors produced by the pathogen of interest. However, recent work indicates that proteins that are not unique to the pathogen but instead selectively expressed compared to its non-pathogenic counterpart could also be vaccine candidates or targets for drug development. Modern methods in quantitative...

  5. Survival of pathogenic Escherichia coli on basil, lettuce, and spinach

    Science.gov (United States)

    The contamination of lettuce, spinach and basil with pathogenic E. coli has caused numerous illnesses over the past decade. E. coli O157:H7, E. coli O104:H4 and avian pathogenic E. coli (APECstx- and APECstx+) were inoculated on basil plants and in promix soiless substrate using drip and overhead ir...

  6. Metabolic investigation of host/pathogen interaction using MS2-infected Escherichia coli

    Directory of Open Access Journals (Sweden)

    Jain Rishi

    2009-12-01

    Full Text Available Abstract Background RNA viruses are responsible for a variety of illnesses among people, including but not limited to the common cold, the flu, HIV, and ebola. Developing new drugs and new strategies for treating diseases caused by these viruses can be an expensive and time-consuming process. Mathematical modeling may be used to elucidate host-pathogen interactions and highlight potential targets for drug development, as well providing the basis for optimizing patient treatment strategies. The purpose of this work was to determine whether a genome-scale modeling approach could be used to understand how metabolism is impacted by the host-pathogen interaction during a viral infection. Escherichia coli/MS2 was used as the host-pathogen model system as MS2 is easy to work with, harmless to humans, but shares many features with eukaryotic viruses. In addition, the genome-scale metabolic model of E. coli is the most comprehensive model at this time. Results Employing a metabolic modeling strategy known as "flux balance analysis" coupled with experimental studies, we were able to predict how viral infection would alter bacterial metabolism. Based on our simulations, we predicted that cell growth and biosynthesis of the cell wall would be halted. Furthermore, we predicted a substantial increase in metabolic activity of the pentose phosphate pathway as a means to enhance viral biosynthesis, while a break down in the citric acid cycle was predicted. Also, no changes were predicted in the glycolytic pathway. Conclusions Through our approach, we have developed a technique of modeling virus-infected host metabolism and have investigated the metabolic effects of viral infection. These studies may provide insight into how to design better drugs. They also illustrate the potential of extending such metabolic analysis to higher order organisms, including humans.

  7. Interrelationships of food safety and plant pathology: the life cycle of human pathogens on plants.

    Science.gov (United States)

    Barak, Jeri D; Schroeder, Brenda K

    2012-01-01

    Bacterial food-borne pathogens use plants as vectors between animal hosts, all the while following the life cycle script of plant-associated bacteria. Similar to phytobacteria, Salmonella, pathogenic Escherichia coli, and cross-domain pathogens have a foothold in agricultural production areas. The commonality of environmental contamination translates to contact with plants. Because of the chronic absence of kill steps against human pathogens for fresh produce, arrival on plants leads to persistence and the risk of human illness. Significant research progress is revealing mechanisms used by human pathogens to colonize plants and important biological interactions between and among bacteria in planta. These findings articulate the difficulty of eliminating or reducing the pathogen from plants. The plant itself may be an untapped key to clean produce. This review highlights the life of human pathogens outside an animal host, focusing on the role of plants, and illustrates areas that are ripe for future investigation.

  8. Hemolytic porcine intestinal Escherichia coli without virulence-associated genes typical of intestinal pathogenic E. coli.

    Science.gov (United States)

    Schierack, Peter; Weinreich, Joerg; Ewers, Christa; Tachu, Babila; Nicholson, Bryon; Barth, Stefanie

    2011-12-01

    Testing 1,666 fecal or intestinal samples from healthy and diarrheic pigs, we obtained hemolytic Escherichia coli isolates from 593 samples. Focusing on hemolytic E. coli isolates without virulence-associated genes (VAGs) typical for enteropathogens, we found that such isolates carried a broad variety of VAGs typical for extraintestinal pathogenic E. coli.

  9. Draft genomic sequencing of six potential extraintestinal pathogenic Escherichia coli isolates from retail chicken meat.

    Science.gov (United States)

    Potential Extraintestinal pathogenic Escherichia coli isolates DP254, WH333, WH398, F356, FEX675 and FEX725 were isolated from retail chicken meat products. Here, we report the draft genome sequences for these six E. coli isolates, which are currently being used in food safety research....

  10. Escherichia coli type III secretion system 2 (ETT2) is widely distributed in avian pathogenic Escherichia coli isolates from Eastern China.

    Science.gov (United States)

    Wang, S; Liu, X; Xu, X; Zhao, Y; Yang, D; Han, X; Tian, M; Ding, C; Peng, D; Yu, S

    2016-10-01

    Pathogens utilize type III secretion systems to deliver effector proteins, which facilitate bacterial infections. The Escherichia coli type III secretion system 2 (ETT2) which plays a crucial role in bacterial virulence, is present in the majority of E. coli strains, although ETT2 has undergone widespread mutational attrition. We investigated the distribution and characteristics of ETT2 in avian pathogenic E. coli (APEC) isolates and identified five different ETT2 isoforms, including intact ETT2, in 57·6% (141/245) of the isolates. The ETT2 locus was present in the predominant APEC serotypes O78, O2 and O1. All of the ETT2 loci in the serotype O78 isolates were degenerate, whereas an intact ETT2 locus was mostly present in O1 and O2 serotype strains, which belong to phylogenetic groups B2 and D, respectively. Interestingly, a putative second type III secretion-associated locus (eip locus) was present only in the isolates with an intact ETT2. Moreover, ETT2 was more widely distributed in APEC isolates and exhibited more isoforms compared to ETT2 in human extraintestinal pathogenic E. coli, suggesting that APEC might be a potential risk to human health. However, there was no distinct correlation between ETT2 and other virulence factors in APEC.

  11. The target of daptomycin is absent from Escherichia coli and other gram-negative pathogens.

    Science.gov (United States)

    Randall, Christopher P; Mariner, Katherine R; Chopra, Ian; O'Neill, Alex J

    2013-01-01

    Antistaphylococcal agents commonly lack activity against Gram-negative bacteria like Escherichia coli owing to the permeability barrier presented by the outer membrane and/or the action of efflux transporters. When these intrinsic resistance mechanisms are artificially compromised, such agents almost invariably demonstrate antibacterial activity against Gram negatives. Here we show that this is not the case for the antibiotic daptomycin, whose target appears to be absent from E. coli and other Gram-negative pathogens.

  12. Funktionale Charakterisierung an der Biofilmbildung beteiligter Faktoren pathogener und kommensaler Escherichia coli

    OpenAIRE

    Reidl, Sebastian

    2009-01-01

    Multizelluläre Gemeinschaften in Form bakterieller Biofilme stellen aus medizinischer Sicht ein großes klinisches Problem dar. Häufig lassen sich chronische oder rezidivierende Erkrankungen aber auch nosokomiale Infektionen auf die multizelluläre Lebensweise von humanpathogenen Erregern zurückführen. Sowohl fakultativ als auch obligat pathogene Escherichia coli-Stämme besitzen eine Vielzahl unterschiedlicher Faktoren, die die Biofilmbildung beeinflussen. Daran beteiligt sind unter anderem Fla...

  13. RNAi suppressors encoded by pathogenic human viruses

    NARCIS (Netherlands)

    de Vries, Walter; Berkhout, Ben

    2008-01-01

    RNA silencing or RNAi interference (RNAi) serves as an innate antiviral mechanism in plants, fungi and animals. Human viruses, like plant viruses, encode suppressor proteins or RNAs that block or modulate the RNAi pathway. This review summarizes the mechanisms by which pathogenic human viruses

  14. Sexual Reproduction of Human Fungal Pathogens

    Science.gov (United States)

    Heitman, Joseph; Carter, Dee A.; Dyer, Paul S.; Soll, David R.

    2014-01-01

    We review here recent advances in our understanding of sexual reproduction in fungal pathogens that commonly infect humans, including Candida albicans, Cryptococcus neoformans/gattii, and Aspergillus fumigatus. Where appropriate or relevant, we introduce findings on other species associated with human infections. In particular, we focus on rapid advances involving genetic, genomic, and population genetic approaches that have reshaped our view of how fungal pathogens evolve. Rather than being asexual, mitotic, and largely clonal, as was thought to be prevalent as recently as a decade ago, we now appreciate that the vast majority of pathogenic fungi have retained extant sexual, or parasexual, cycles. In some examples, sexual and parasexual unions of pathogenic fungi involve closely related individuals, generating diversity in the population but with more restricted recombination than expected from fertile, sexual, outcrossing and recombining populations. In other cases, species and isolates participate in global outcrossing populations with the capacity for considerable levels of gene flow. These findings illustrate general principles of eukaryotic pathogen emergence with relevance for other fungi, parasitic eukaryotic pathogens, and both unicellular and multicellular eukaryotic organisms. PMID:25085958

  15. The viable but non-culturable state in pathogenic Escherichia coli: A general review

    Directory of Open Access Journals (Sweden)

    Jennifer A. Pienaar

    2016-05-01

    Objectives: This review discusses various general aspects of the VBNC state, the mechanisms and possible public health impact of indicator and pathogenic E. coli entering into the VBNC state. Method: A literature review was conducted to ascertain the possibleimpact of E. coli entering into the VBNC state. Results: Escherichia coli enter into the VBNC state by means of several induction mechanisms. Various authors have found that E. coli can be resuscitated post-VBNC. Certain strains of pathogenic E. coli are still able to produce toxins in the VBNC state, whilst others are avirulent during the VBNC state but are able to regain virulence after resuscitation. Conclusion: Pathogenic and indicator E. coli entering into the VBNC state could have an adverse effect on public health if conventional detection methods are used, where the number of viable cells could be underestimated and the VBNC cells still produce toxins or could, at anytime, be resuscitated and become virulent again.

  16. Postgenomics Characterization of an Essential Genetic Determinant of Mammary Pathogenic Escherichia coli

    Science.gov (United States)

    2018-01-01

    ABSTRACT Escherichia coli are major bacterial pathogens causing bovine mastitis, a disease of great economic impact on dairy production worldwide. This work aimed to study the virulence determinants of mammary pathogenic E. coli (MPEC). By whole-genome sequencing analysis of 40 MPEC and 22 environmental (“dairy-farm” E. coli [DFEC]) strains, we found that only the fec locus (fecIRABCDE) for ferric dicitrate uptake was present in the core genome of MPEC and that it was absent in DFEC genomes (P mastitis, whereas the fec+ DFEC K71 mutant was able to trigger intramammary inflammation. For the first time, a single molecular locus was shown to be crucial in MPEC pathogenicity. PMID:29615502

  17. Probiotic Activity of Saccharomyces cerevisiae var. boulardii Against Human Pathogens

    Directory of Open Access Journals (Sweden)

    Katarzyna Rajkowska

    2012-01-01

    Full Text Available Infectious diarrhoea is associated with a modification of the intestinal microflora and colonization of pathogenic bacteria. Tests were performed for seven probiotic yeast strains of Saccharomyces cerevisiae var. boulardii, designated for the prevention and treatment of diarrhoea. To check their possible effectiveness against diarrhoea of different etiologies, the activity against a variety of human pathogenic or opportunistic bacteria was investigated in vitro. In mixed cultures with S. cerevisiae var. boulardii, a statistically significant reduction was observed in the number of cells of Listeria monocytogenes, Pseudomonas aeruginosa and Staphylococcus aureus, by even 55.9 % in the case of L. monocytogenes compared with bacterial monocultures. The influence of yeasts was mostly associated with the shortening of the bacterial lag phase duration, more rapid achievement of the maximum growth rates, and a decrease by 4.4–57.1 % (L. monocytogenes, P. aeruginosa, or an increase by 1.4–70.6 % (Escherichia coli, Enterococcus faecalis, Salmonella Typhimurium in the exponential growth rates. Another issue included in the research was the ability of S. cerevisiae var. boulardii to bind pathogenic bacteria to its cell surface. Yeasts have shown binding capacity of E. coli, S. Typhimurium and additionally of S. aureus, Campylobacter jejuni and E. faecalis. However, no adhesion of L. monocytogenes and P. aeruginosa to the yeast cell wall was noted. The probiotic activity of S. cerevisiae var. boulardii against human pathogens is related to a decrease in the number of viable and active cells of bacteria and the binding capacity of yeasts. These processes may limit bacterial invasiveness and prevent bacterial adherence and translocation in the human intestines.

  18. Protective effects of indigenous Escherichia coli against a pathogenic E. coli challenge strain in pigs.

    Science.gov (United States)

    Vahjen, W; Cuisiniere, T; Zentek, J

    2017-10-13

    To investigate the inhibitory effect of indigenous enterobacteria on pathogenic Escherichia coli, a challenge trial with postweaning pigs was conducted. A pathogenic E. coli strain was administered to all animals and their health was closely monitored thereafter. Faecal samples were taken from three healthy and three diarrhoeic animals. Samples were cultivated on MacConkey agar and isolates were subcultured. A soft agar overlay assay was used to determine the inhibitory activity of the isolates. A total of 1,173 enterobacterial isolates were screened for their ability to inhibit the E. coli challenge strain. Colony forming units of enterobacteria on MacConkey agar were not different between healthy and diarrhoeic animals in the original samples. Furthermore, numbers of isolates per animal were also not significantly different between healthy (482 isolates) and diarrhoeic animals (691 isolates). A total of 43 isolates (3.7%) with inhibitory activity against the pathogenic E. coli challenge strain were detected. All inhibitory isolates were identified as E. coli via MALDI-TOF. The isolates belonged to the phylotypes A, C and E. Many isolates (67.4%) were commensal E. coli without relevant porcine pathogenic factors, but toxin- and fimbrial genes (stx2e, fae, estIb, elt1a, fas, fan) were detected in 14 inhibitory isolates. Healthy animals showed significantly (P=0.003) more inhibitory isolates (36 of 482 isolates; 7.5%) than diseased animals (7 of 691 isolates; 1.0%). There were no significant correlations regarding phylotype or pathogenic factors between healthy and diseased animals. This study has shown that a small proportion of indigenous E. coli is able to inhibit in vitro growth of a pathogenic E. coli strain in pigs. Furthermore, healthy animals possess significantly more inhibitory E. coli strains than diarrhoeic animals. The inhibition of pathogenic E. coli by specific indigenous E. coli strains may be an underlying principle for the containment of pathogenic

  19. Chromosomal features of Escherichia coli serotype O2:K2, an avian pathogenic E. coli.

    Science.gov (United States)

    Jørgensen, Steffen L; Kudirkiene, Egle; Li, Lili; Christensen, Jens P; Olsen, John E; Nolan, Lisa; Olsen, Rikke H

    2017-01-01

    Escherichia coli causing infection outside the gastrointestinal system are referred to as extra-intestinal pathogenic E. coli. Avian pathogenic E. coli is a subgroup of extra-intestinal pathogenic E. coli and infections due to avian pathogenic E. coli have major impact on poultry production economy and welfare worldwide. An almost defining characteristic of avian pathogenic E. coli is the carriage of plasmids, which may encode virulence factors and antibiotic resistance determinates. For the same reason, plasmids of avian pathogenic E. coli have been intensively studied. However, genes encoded by the chromosome may also be important for disease manifestation and antimicrobial resistance. For the E. coli strain APEC_O2 the plasmids have been sequenced and analyzed in several studies, and E. coli APEC_O2 may therefore serve as a reference strain in future studies. Here we describe the chromosomal features of E. coli APEC_O2. E. coli APEC_O2 is a sequence type ST135, has a chromosome of 4,908,820 bp (plasmid removed), comprising 4672 protein-coding genes, 110 RNA genes, and 156 pseudogenes, with an average G + C content of 50.69%. We identified 82 insertion sequences as well as 4672 protein coding sequences, 12 predicated genomic islands, three prophage-related sequences, and two clustered regularly interspaced short palindromic repeats regions on the chromosome, suggesting the possible occurrence of horizontal gene transfer in this strain. The wildtype strain of E. coli APEC_O2 is resistant towards multiple antimicrobials, however, no (complete) antibiotic resistance genes were present on the chromosome, but a number of genes associated with extra-intestinal disease were identified. Together, the information provided here on E. coli APEC_O2 will assist in future studies of avian pathogenic E. coli strains, in particular regarding strain of E. coli APEC_O2, and aid in the general understanding of the pathogenesis of avian pathogenic E. coli .

  20. Characterization of the interaction between the human pathogen Listeria monocytogenes and the model host C. elegans

    DEFF Research Database (Denmark)

    Simonsen, Karina T.; Nielsen, Jesper S.; Hansen, Annie A.

    In nature, C. elegans lives in the soil and feeds on bacteria. This constant contact with soil-borne microbes suggests that nematodes must have evolved protective responses against pathogens which makes the worm an attractive host-pathogen model for exploring their innate immune response....... In addition, C. elegans is a promising model for the identification of novel virulence factors in various pathogens. A large number of human, animal, plant and insect pathogens have been shown to kill the worm, when C. elegans was allowed to feed on pathogens in stead of its normal laboratory diet [1......]. However, the mechanisms that lead to the shortened life span of the worm have been shown to be very different depending on the nature of the pathogen. Examples include Yersinia pestis, which forms a biofilm layer on the cuticle of C. elegans thus inhibiting feeding [2], enteropathogenic Escherichia coli...

  1. Human to human transmission of arthropod-borne pathogens

    NARCIS (Netherlands)

    Martina, Byron E.; Barzon, Luisa; Pijlman, Gorben P.; Fuente, de la José; Rizzoli, Annapaola; Wammes, Linda J.; Takken, Willem; Rij, van Ronald P.; Papa, Anna

    2017-01-01

    Human-to-human (H2H) transmitted arthropod-borne pathogens are a growing burden worldwide, with malaria and dengue being the most common mosquito-borne H2H transmitted diseases. The ability of vectors to get infected by humans during a blood meal to further propel an epidemic depends on complex

  2. Human to human transmission of arthropod-borne pathogens

    NARCIS (Netherlands)

    Martina, B.E.; Barzon, L.; Pijlman, G.P.; Fuente, J. de la; Rizzoli, A.; Wammes, L.J.; Takken, W.; Rij, R.P. van; Papa, A.

    2017-01-01

    Human-to-human (H2H) transmitted arthropod-borne pathogens are a growing burden worldwide, with malaria and dengue being the most common mosquito-borne H2H transmitted diseases. The ability of vectors to get infected by humans during a blood meal to further propel an epidemic depends on complex

  3. Whole genome sequencing of Escherichia coli encoding blaNDM isolated from humans and companion animals in Egypt

    Science.gov (United States)

    Companion animals are a source of zoonotic infections and especially important considering the potential of companion animals to harbor antibiotic resistant pathogens. In this study, blaNDM positive Escherichia coli from companion animals, humans, and the environment from Mansoura, Egypt were charac...

  4. Spread of avian pathogenic Escherichia coli ST117 O78:H4 in Nordic broiler production

    DEFF Research Database (Denmark)

    Ronco, Troels; Stegger, Marc; Olsen, Rikke Heidemann

    2017-01-01

    Escherichia coli infections known as colibacillosis constitute a considerable challenge to poultry farmers worldwide, in terms of decreased animal welfare and production economy. Colibacillosis is caused by avian pathogenic E. coli (APEC). APEC strains are extraintestinal pathogenic E. coli...... of isolates were collected from poultry with colibacillosis on Nordic farms. Subsequently, comparative genomic analyses were carried out. This included in silico typing (sero- and multi-locus sequence typing), identification of virulence and resistance genes and phylogenetic analyses based on single...... diseased broilers and breeders. The data indicate that the closely related ST117 O78:H4 strains have been transferred vertically through the broiler breeding pyramid into distantly located farms across the Nordic countries....

  5. Prevention of pathogenic Escherichia coli infection in mice and stimulation of macrophage activation in rats by an oral administration of probiotic Lactobacillus casei I-5.

    Science.gov (United States)

    Ishida-Fujii, Keiko; Sato, Rieko; Goto, Shingo; Yang, Xiao-Ping; Kuboki, Hiroshi; Hirano, Shin-Ichi; Sato, Michikatsu

    2007-04-01

    Lactobacillus casei I-5 isolated from an alcohol fermentation broth enhanced immunity and prevented pathogenic infection as a probiotic. Mice fed with I-5 cells for 11 days prior to an intraperitoneal challenge with pathogenic Escherichia coli Juhl exhibited a high survival rate compared with the control group. Rats fed with I-5 cells for 10 days significantly increased the phagocytosis of peritoneal macrophages. In a cell culture system employing peritoneal macrophages from rats, the I-5 administration activated NF-kappaB stimulated by LPS. It also enhanced LPS-stimulated IL-12 and TNF-alpha production, but not IL-6 production. These results show that L. casei I-5 effectively prevented infection by pathogenic E. coli possibly through the activation of peritoneal macrophages. The strain would be useful to prevent pathogenic microbial infections in humans and farm animals.

  6. The arable plant ecosystem as battleground for emergence of human pathogens

    Directory of Open Access Journals (Sweden)

    Leo eVan Overbeek

    2014-03-01

    Full Text Available Disease incidences related to Escherichia coli and Salmonella enterica infections by consumption of (fresh vegetables, sprouts and occasionally fruits made clear that these pathogens are not only transmitted to humans via the ‘classical’ routes of meat, eggs and dairy products, but also can be transmitted to humans via plants or products derived from plants. Nowadays, it is of major concern that these human pathogens, especially the ones belonging to the taxonomical family of Enterobacteriaceae, become adapted to environmental habitats without losing their virulence to humans. Adaptation to the plant environment would lead to longer persistence in plants, increasing their chances on transmission to humans via consumption of plant-derived food. One of the mechanisms of adaptation to the plant environment in human pathogens, proposed in this paper, is horizontal transfer of genes from different microbial communities present in the arable ecosystem, like the ones originating from soil, animal digestive track systems (manure, water and plants themselves. Genes that would confer better adaptation to the phytosphere might be genes involved in plant colonization, stress resistance and nutrient acquisition and utilization. Because human pathogenic enterics often were prone to genetic exchanges via phages and conjugative plasmids, it was postulated that these genetic elements may be hold key responsible for horizontal gene transfers between human pathogens and indigenous microbes in agroproduction systems. In analogy to zoonosis, we coin the term phytonosis for a human pathogen that is transmitted via plants and not exclusively via animals.

  7. Influence of surface polysaccharides of Escherichia coli O157:H7 on plant defense response and survival of the human enteric pathogen on Arabidopsis thaliana and lettuce (Lactuca sativa).

    Science.gov (United States)

    Jang, Hyein; Matthews, Karl R

    2018-04-01

    This study aimed to determine the influence of bacterial surface polysaccharides (cellulose, colanic acid, and lipopolysaccharide; LPS) on the colonization or survival of Escherichia coli O157:H7 on plants and the plant defense response. Survival of E. coli O157:H7 were evaluated on Arabidopsis thaliana and romaine lettuce as a model plant and an edible crop (leafy vegetable), respectively. The population of the wild-type strain of E. coli O157:H7 on Arabidopsis plants and lettuce was significantly (P lettuce regardless of day post-inoculation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Effects of recombinant human collagen VI from Escherichia coli on ...

    African Journals Online (AJOL)

    Jane

    2011-07-20

    Jul 20, 2011 ... In this study, we reported the cloning and over expression of a gene coding for human collagen peptide. (CP6) in Escherichia coli and investigated the protective effects of CP6 on UVA-irradiated human skin fibroblasts cells. The collagen peptide (CP6) was highly soluble and the expression level was.

  9. Pathogenic human viruses in coastal waters

    Science.gov (United States)

    Griffin, Dale W.; Donaldson, Kim A.; Paul, J.H.; Rose, Joan B.

    2003-01-01

    This review addresses both historical and recent investigations into viral contamination of marine waters. With the relatively recent emergence of molecular biology-based assays, a number of investigations have shown that pathogenic viruses are prevalent in marine waters being impacted by sewage. Research has shown that this group of fecal-oral viral pathogens (enteroviruses, hepatitis A viruses, Norwalk viruses, reoviruses, adenoviruses, rotaviruses, etc.) can cause a broad range of asymptomatic to severe gastrointestinal, respiratory, and eye, nose, ear, and skin infections in people exposed through recreational use of the water. The viruses and the nucleic acid signature survive for an extended period in the marine environment. One of the primary concerns of public health officials is the relationship between the presence of pathogens and the recreational risk to human health in polluted marine environments. While a number of studies have attempted to address this issue, the relationship is still poorly understood. A contributing factor to our lack of progress in the field has been the lack of sensitive methods to detect the broad range of both bacterial and viral pathogens. The application of new and advanced molecular methods will continue to contribute to our current state of knowledge in this emerging and

  10. Postgenomics Characterization of an Essential Genetic Determinant of Mammary Pathogenic Escherichia coli.

    Science.gov (United States)

    Blum, Shlomo E; Goldstone, Robert J; Connolly, James P R; Répérant-Ferter, Maryline; Germon, Pierre; Inglis, Neil F; Krifucks, Oleg; Mathur, Shubham; Manson, Erin; Mclean, Kevin; Rainard, Pascal; Roe, Andrew J; Leitner, Gabriel; Smith, David G E

    2018-04-03

    Escherichia coli are major bacterial pathogens causing bovine mastitis, a disease of great economic impact on dairy production worldwide. This work aimed to study the virulence determinants of mammary pathogenic E. coli (MPEC). By whole-genome sequencing analysis of 40 MPEC and 22 environmental ("dairy-farm" E. coli [DFEC]) strains, we found that only the fec locus ( fecIRABCDE ) for ferric dicitrate uptake was present in the core genome of MPEC and that it was absent in DFEC genomes ( P price of dairy products on supermarket shelves and the financial hardships suffered by dairy farmers. Mastitis is also the leading reason for the use of antibiotics in dairy farms. Good farm management practices in many countries have dramatically reduced the incidence of contagious mastitis; however, the problems associated with the incidence of environmental mastitis caused by bacteria such as Escherichia coli have proven intractable. E. coli bacteria cause acute mastitis, which affects the health and welfare of cows and in extreme cases may be fatal. Here we show for the first time that the pathogenicity of E. coli causing mastitis in cows is highly dependent on the fecIRABCDE ferric citrate uptake system that allows the bacterium to capture iron from citrate. The Fec system is highly expressed during infection in the bovine udder and is ubiquitous in and necessary for the E. coli bacteria that cause mammary infections in cattle. These results have far-reaching implications, raising the possibility that mastitis may be controllable by targeting this system. Copyright © 2018 Blum et al.

  11. Draft Genome Sequences of Two Avian Pathogenic Escherichia coli Strains of Clinical Importance, E44 and E51

    DEFF Research Database (Denmark)

    Ronco, Troels; Stegger, Marc; Andersen, Paal S

    2016-01-01

    Avian pathogenic Escherichia coli strains have remarkable impacts on animal welfare and the production economy in the poultry industry worldwide. Here, we present the draft genomes of two isolates from chickens (E44 and E51) obtained from field outbreaks and subsequently investigated for their po......Avian pathogenic Escherichia coli strains have remarkable impacts on animal welfare and the production economy in the poultry industry worldwide. Here, we present the draft genomes of two isolates from chickens (E44 and E51) obtained from field outbreaks and subsequently investigated...

  12. The BER necessities: the repair of DNA damage in human-adapted bacterial pathogens.

    Science.gov (United States)

    van der Veen, Stijn; Tang, Christoph M

    2015-02-01

    During colonization and disease, bacterial pathogens must survive the onslaught of the host immune system. A key component of the innate immune response is the generation of reactive oxygen and nitrogen species by phagocytic cells, which target and disrupt pathogen molecules, particularly DNA, and the base excision repair (BER) pathway is the most important mechanism for the repair of such oxidative DNA damage. In this Review, we discuss how the human-specific pathogens Mycobacterium tuberculosis, Helicobacter pylori and Neisseria meningitidis have evolved specialized mechanisms of DNA repair, particularly their BER pathways, compared with model organisms such as Escherichia coli. This specialization in DNA repair is likely to reflect the distinct niches occupied by these important human pathogens in the host.

  13. Disinfection and removal of human pathogenic bacteria in arctic waste stabilization ponds

    DEFF Research Database (Denmark)

    Huang, Yannan; Hansen, Lisbeth Truelstrup; Ragush, Colin M.

    2017-01-01

    Wastewater stabilization ponds (WSPs) are commonly used to treat municipal wastewater in Arctic Canada. The biological treatment in the WSPs is strongly influenced by climatic conditions. Currently, there is limited information about the removal of fecal and pathogenic bacteria during the short...... cool summer treatment season. With relevance to public health, the objectives of this paper were to determine if treatment in arctic WSPs resulted in the disinfection (i.e., removal of fecal indicator bacteria, Escherichia coli) and removal of selected human bacterial pathogens from the treated...... treatment of the wastewater with a 2–3 Log removal of generic indicator E. coli. The bacterial pathogens Salmonella spp., pathogenic E. coli, and Listeria monocytogenes, but not Campylobacter spp. and Helicobacter pylori, were detected in the untreated and treated wastewater, indicating that human...

  14. Shiga toxin-converting phages and the emergence of new pathogenic Escherichia coli: a world in motion

    Science.gov (United States)

    Tozzoli, Rosangela; Grande, Laura; Michelacci, Valeria; Ranieri, Paola; Maugliani, Antonella; Caprioli, Alfredo; Morabito, Stefano

    2014-01-01

    Shiga toxin (Stx)-producing Escherichia coli (STEC) are pathogenic E. coli causing diarrhea, hemorrhagic colitis (HC) and hemolytic uremic syndrome (HUS). STEC are characterized by a constellation of virulence factors additional to Stx and have long been regarded as capable to cause HC and HUS when possessing the ability of inducing the attaching and effacing (A/E) lesion to the enterocyte, although strains isolated from such severe infections sometimes lack this virulence feature. Interestingly, the capability to cause the A/E lesion is shared with another E. coli pathogroup, the Enteropathogenic E. coli (EPEC). In the very recent times, a different type of STEC broke the scene causing a shift in the paradigm for HUS-associated STEC. In 2011, a STEC O104:H4 caused a large outbreak with more than 800 HUS and 50 deaths. Such a strain presented the adhesion determinants of Enteroaggregative E. coli (EAggEC). We investigated the possibility that, besides STEC and EAggEC, other pathogenic E. coli could be susceptible to infection with stx-phages. A panel of stx2-phages obtained from STEC isolated from human disease was used to infect experimentally E. coli strains representing all the known pathogenic types, including both diarrheagenic E. coli (DEC) and extra-intestinal pathogenic E. coli (ExPEC). We observed that all the E. coli pathogroups used in the infection experiments were susceptible to the infection. Our results suggest that the stx2-phages used may not have specificity for E. coli adapted to the intestinal environment, at least in the conditions used. Additionally, we could only observe transient lysogens suggesting that the event of stable stx2-phage acquisition occurs rarely. PMID:24999453

  15. Andrographolide interferes quorum sensing to reduce cell damage caused by avian pathogenic Escherichia coli.

    Science.gov (United States)

    Guo, Xun; Zhang, Li-Yan; Wu, Shuai-Cheng; Xia, Fang; Fu, Yun-Xing; Wu, Yong-Li; Leng, Chun-Qing; Yi, Peng-Fei; Shen, Hai-Qing; Wei, Xu-Bin; Fu, Ben-Dong

    2014-12-05

    Avian pathogenic Escherichia coli (APEC) induce septicemia in chickens by invading type II pneumocytes to breach the blood-air barrier. The virulence of APEC can be regulated by quorum sensing (QS). Andrographolide is a QS inhibitor of Pseudomonas aeruginosa (P. aeruginosa). Therefore, we investigate whether andrographolide inhibits the injury of chicken type II pneumocytes by avian pathogenic E. coli O78 (APEC-O78) by disrupting the bacterial QS system. The results showed that sub-MIC of andrographolide significantly reduced the release of lactate dehydrogenase (LDH), F-actin cytoskeleton polymerization, and the degree of the adherence to chicken type II pneumocytes induced by APEC-O78. Further, we found that andrographolide significantly decreased the autoinducer-2 (AI-2) activity and the expression of virulence factors of APEC-O78. These results suggest that andrographolide reduce the pathogenicity of APEC-O78 in chicken type II pneumocytes by interfering QS and decreasing virulence. These results provide new evidence for colibacillosis prevention methods in chickens. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Abundance of sewage-pollution indicator and human pathogenic bacteria in a tropical estuarine complex

    Digital Repository Service at National Institute of Oceanography (India)

    Nagvenkar, G.S.; Ramaiah, N.

    contamination, allochthonous bacteria Introduction: Environmental surveys are necessary for understanding and documenting the occurrence and distribution of pollution indicator and human pathogenic bacteria. In order to quantify and understand... and Chandramohan 1993; Ruiz et al. 2000; Ramaiah and De 2003). Mortality and survival rates of fecal contamination indicator Escherichia coli in the marine regimes have also been studied (Thom et al. 1992; Darakas 2001). Findings from these studies affirm...

  17. Cladophora (Chlorophyta) spp. Harbor Human Bacterial Pathogens in Nearshore Water of Lake Michigan†

    OpenAIRE

    Ishii, Satoshi; Yan, Tao; Shively, Dawn A.; Byappanahalli, Muruleedhara N.; Whitman, Richard L.; Sadowsky, Michael J.

    2006-01-01

    Cladophora glomerata, a macrophytic green alga, is commonly found in the Great Lakes, and significant accumulations occur along shorelines during the summer months. Recently, Cladophora has been shown to harbor high densities of the fecal indicator bacteria Escherichia coli and enterococci. Cladophora may also harbor human pathogens; however, until now, no studies to address this question have been performed. In the present study, we determined whether attached Cladophora, obtained from the L...

  18. Screening of the novel colicinogenic gram-negative rods against pathogenic Escherichia coli O157:H7

    Directory of Open Access Journals (Sweden)

    H Mushtaq

    2015-01-01

    Full Text Available Purpose: Escherichia coli (E. coli O157:H7 is gram-negative enteric pathogen producing different types of Shiga toxin. This bacterium is the most corporate cause of haemorrhagic colitis in human. Administration of antibiotics (particularly sulfa drugs against this pathogen is a debatable topic as this may increase the risk of uremic syndrome; especially in children and aged people. Around the world, microbiologists are in search of alternative therapeutic methods specially probiotics against this pathogen. In the present study, we have focused on the investigation of alternate bio-therapeutics (probiotics for the treatment of patients infected with E. coli O157:H7. This study is based on the identification of colicin-producing gram-negative bacteria (particularly enterobacteriaceae which can competently exclude E. coli O157:H7 from the gut of the infected individual. Materials and Methods: Hundred samples from human, animal faeces and septic tank water were analysed for nonpathogenic gram-negative rods (GNRs. Results: Out of these samples, 175 isolates of GNRs were checked for their activity against E. coli O157:H7. Only 47 isolates inhibited the growth of E. coli O157:H7, among which majority were identified as E. coli. These E. coli strains were found to be the efficient producers of colicin. Some of the closely related species i. e., Citrobacter sp, Pantoea sp. and Kluyvera sp. also showed considerable colicinogenic activity. Moreover, colicinogenic species were found to be nonhaemolytic, tolerant to acidic environment (pH 3 and sensitive to commonly used antibiotics. Conclusion: Nonhaemolytic, acid tolerant and sensitive to antibiotics suggests the possible use of these circulating endothelial cells (CEC as inexpensive and inoffensive therapeutic agent (probiotics in E. coli O157:H7 infections.

  19. Frequent combination of antimicrobial multiresistance and extraintestinal pathogenicity in Escherichia coli isolates from urban rats (Rattus norvegicus) in Berlin, Germany.

    Science.gov (United States)

    Guenther, Sebastian; Bethe, Astrid; Fruth, Angelika; Semmler, Torsten; Ulrich, Rainer G; Wieler, Lothar H; Ewers, Christa

    2012-01-01

    Urban rats present a global public health concern as they are considered a reservoir and vector of zoonotic pathogens, including Escherichia coli. In view of the increasing emergence of antimicrobial resistant E. coli strains and the on-going discussion about environmental reservoirs, we intended to analyse whether urban rats might be a potential source of putatively zoonotic E. coli combining resistance and virulence. For that, we took fecal samples from 87 brown rats (Rattus norvegicus) and tested at least three E. coli colonies from each animal. Thirty two of these E. coli strains were pre-selected from a total of 211 non-duplicate isolates based on their phenotypic resistance to at least three antimicrobial classes, thus fulfilling the definition of multiresistance. As determined by multilocus sequence typing (MLST), these 32 strains belonged to 24 different sequence types (STs), indicating a high phylogenetic diversity. We identified STs, which frequently occur among extraintestinal pathogenic E. coli (ExPEC), such as STs 95, 131, 70, 428, and 127. Also, the detection of a number of typical virulence genes confirmed that the rats tested carried ExPEC-like strains. In particular, the finding of an Extended-spectrum beta-lactamase (ESBL)-producing strain which belongs to a highly virulent, so far mainly human- and avian-restricted ExPEC lineage (ST95), which expresses a serogroup linked with invasive strains (O18:NM:K1), and finally, which produces an ESBL-type frequently identified among human strains (CTX-M-9), pointed towards the important role, urban rats might play in the transmission of multiresistant and virulent E. coli strains. Indeed, using a chicken infection model, this strain showed a high in vivo pathogenicity. Imagining the high numbers of urban rats living worldwide, the way to the transmission of putatively zoonotic, multiresistant, and virulent strains might not be far ahead. The unforeseeable consequences of such an emerging public health

  20. Airborne pathogens from dairy manure aerial irrigation and the human health risk

    Science.gov (United States)

    Borchardt, Mark A.; Burch, Tucker R

    2016-01-01

    Dairy manure, like the fecal excrement from any domesticated or wild animal, can contain pathogens capable of infecting humans and causing illness or even death. Pathogens in dairy manure can be broadly divided into categories of taxonomy or infectiousness. Dividing by taxonomy there are three pathogen groups in dairy manure: viruses (e.g., bovine rotavirus), bacteria (e.g., Salmonella species), and protozoa (e.g., Cryptosporidium parvum). There are two categories of infectiousness for pathogens found in animals: those that are zoonotic and those that are not. A zoonotic pathogen is one that can infect both human and animal hosts. Some zoonotic pathogens found in dairy manure cause illness in both hosts (e.g., Salmonella) while other zoonotic pathogens, like Escherichia coli O157:H7, (enterohemorrhagic E. coli (EHEC)) cause illness only in humans. As a general rule, the gastrointestinal viruses found in dairy manure are not zoonotic. While there are exceptions (e.g., rare reports of bovine rotavirus infecting children), for the most part the viruses in dairy manure are not a human health concern. The primary concerns are the zoonotic bacteria and protozoa in dairy manure.

  1. Isolation of pathogenic Escherichia coli from buffalo meat sold in Parbhani city, Maharashtra, India

    Directory of Open Access Journals (Sweden)

    M. S. Vaidya

    2013-10-01

    Full Text Available Aim: Isolation, characterization, in-vitro pathogenicity and antibiogram study of E.coli from buffalo meat sold in Parbhani city. Materials and Methods: Meat samples were collected from buffalo immediately after slaughter. Isolation, identification and enumeration of E. coli were done by following standard methods and protocols. Hemolysin test and Congo red binding assay were used to study in-vitro pathogenicity of E. coli isolates. Disc diffusion method was used to study antibiogram of pathogenic E. coli isolates. Results: A total of 250 buffalo meat samples were collected and processed. A total of 22 (8.80 percent E. coli isolates were isolated with average differential count of 1.231 ± 0.136 log cfu/g on EMB agar. All the E. coli isolates were confirmed by 10 Grams staining, biochemical reactions and sugar fermentation and motility tests. A total of 9 (3.6 percent E. coli isolates were found to be pathogenic by in-vitro pathogenicity testing. Antibiogram studies of pathogenic E. coli isolates showed that all 9 isolates were sensitive to gentamycin (20 ± 1.49 mm while 7 isolate showed resistance to enrofloxacin (18.22 ± 3.58 mm and tetracycline (11.44 ± 2.04 mm. Conclusion: Buffalo meat sold in Parbhani city is an important source of E. coli infection to human population. A total of 9 pathogenic E. coli were isolated from buffalo meat immediately after slaughter. All isolates were characterized and confirmed pathogenic by in-vitro pathogenicity tests. Antibiogram studies of all isolates revealed sensitivity to gentamicin and resistance to tetracycline and enrofloxacin. [Vet World 2013; 6(5.000: 277-279

  2. Hemolytic Porcine Intestinal Escherichia coli without Virulence-Associated Genes Typical of Intestinal Pathogenic E. coli ▿ †

    Science.gov (United States)

    Schierack, Peter; Weinreich, Joerg; Ewers, Christa; Tachu, Babila; Nicholson, Bryon; Barth, Stefanie

    2011-01-01

    Testing 1,666 fecal or intestinal samples from healthy and diarrheic pigs, we obtained hemolytic Escherichia coli isolates from 593 samples. Focusing on hemolytic E. coli isolates without virulence-associated genes (VAGs) typical for enteropathogens, we found that such isolates carried a broad variety of VAGs typical for extraintestinal pathogenic E. coli. PMID:21965399

  3. Extreme Heat Resistance of Food Borne Pathogens Campylobacter jejuni, Escherichia coli, and Salmonella Typhimurium on Chicken Breast Fillet during Cooking

    NARCIS (Netherlands)

    Jong, de A.E.I.; Asselt, van E.D.; Zwietering, M.H.; Nauta, M.J.; Jonge, de R.

    2012-01-01

    The aim of this research was to determine the decimal reduction times of bacteria present on chicken fillet in boiling water. The experiments were conducted with Campylobacter jejuni, Salmonella, and Escherichia coli. Whole chicken breast fillets were inoculated with the pathogens, stored overnight

  4. Human Milk Glycoproteins Protect Infants Against Human Pathogens

    Science.gov (United States)

    Liu, Bo

    2013-01-01

    Abstract Breastfeeding protects the neonate against pathogen infection. Major mechanisms of protection include human milk glycoconjugates functioning as soluble receptor mimetics that inhibit pathogen binding to the mucosal cell surface, prebiotic stimulation of gut colonization by favorable microbiota, immunomodulation, and as a substrate for bacterial fermentation products in the gut. Human milk proteins are predominantly glycosylated, and some biological functions of these human milk glycoproteins (HMGPs) have been reported. HMGPs range in size from 14 kDa to 2,000 kDa and include mucins, secretory immunoglobulin A, bile salt-stimulated lipase, lactoferrin, butyrophilin, lactadherin, leptin, and adiponectin. This review summarizes known biological roles of HMGPs that may contribute to the ability of human milk to protect neonates from disease. PMID:23697737

  5. Assessment of sources of human pathogens and fecal contamination in a Florida freshwater lake.

    Science.gov (United States)

    Staley, Christopher; Reckhow, Kenneth H; Lukasik, Jerzy; Harwood, Valerie J

    2012-11-01

    We investigated the potential for a variety of environmental reservoirs to harbor or contribute fecal indicator bacteria (FIB), DNA markers of human fecal contamination, and human pathogens to a freshwater lake. We hypothesized that submerged aquatic vegetation (SAV), sediments, and stormwater act as reservoirs and/or provide inputs of FIB and human pathogens to this inland water. Analysis included microbial source tracking (MST) markers of sewage contamination (Enterococcus faecium esp gene, human-associated Bacteroides HF183, and human polyomaviruses), pathogens (Salmonella, Cryptosporidium, Giardia, and enteric viruses), and FIB (fecal coliforms, Escherichia coli, and enterococci). Bayesian analysis was used to assess relationships among microbial and physicochemical variables. FIB in the water were correlated with concentrations in SAV and sediment. Furthermore, the correlation of antecedent rainfall and major rain events with FIB concentrations and detection of human markers and pathogens points toward multiple reservoirs for microbial contaminants in this system. Although pathogens and human-source markers were detected in 55% and 21% of samples, respectively, markers rarely coincided with pathogen detection. Bayesian analysis revealed that low concentrations (<45 CFU × 100 ml(-1)) of fecal coliforms were associated with 93% probability that pathogens would not be detected; furthermore the Bayes net model showed associations between elevated temperature and rainfall with fecal coliform and enterococci concentrations, but not E. coli. These data indicate that many under-studied matrices (e.g. SAV, sediment, stormwater) are important reservoirs for FIB and potentially human pathogens and demonstrate the usefulness of Bayes net analysis for water quality assessment. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Escherichia coli pathotypes

    Science.gov (United States)

    Escherichia coli strains are important commensals of the intestinal tract of humans and animals; however, pathogenic strains, including diarrhea-inducing E. coli and extraintestinal pathogenic E. coli. Intestinal E. coli pathotypes may cause a dehydrating watery diarrhea, or more severe diseases su...

  7. Assessment of Shiga Toxin-Producing Escherichia coli Isolates from Wildlife Meat as Potential Pathogens for Humans▿

    Science.gov (United States)

    Miko, Angelika; Pries, Karin; Haby, Sabine; Steege, Katja; Albrecht, Nadine; Krause, Gladys; Beutin, Lothar

    2009-01-01

    A total of 140 Shiga toxin-producing Escherichia coli (STEC) strains from wildlife meat (deer, wild boar, and hare) isolated in Germany between 1998 and 2006 were characterized with respect to their serotypes and virulence markers associated with human pathogenicity. The strains grouped into 38 serotypes, but eight O groups (21, 146, 128, 113, 22, 88, 6, and 91) and four H types (21, 28, 2, and 8) accounted for 71.4% and 75.7% of all STEC strains from game, respectively. Eighteen of the serotypes, including enterohemorrhagic E. coli (EHEC) O26:[H11] and O103:H2, were previously found to be associated with human illness. Genes linked to high-level virulence for humans (stx2, stx2d, and eae) were present in 46 (32.8%) STEC strains from game. Fifty-four STEC isolates from game belonged to serotypes which are frequently found in human patients (O103:H2, O26:H11, O113:H21, O91:H21, O128:H2, O146:H21, and O146:H28). These 54 STEC isolates were compared with 101 STEC isolates belonging to the same serotypes isolated from farm animals, from their food products, and from human patients. Within a given serotype, most STEC strains were similar with respect to their stx genotypes and other virulence attributes, regardless of origin. The 155 STEC strains were analyzed for genetic similarity by XbaI pulsed-field gel electrophoresis. O103:H2, O26:H11, O113:H21, O128:H2, and O146:H28 STEC isolates from game were 85 to 100% similar to STEC isolates of the same strains from human patients. By multilocus sequence typing, game EHEC O103:H2 strains were attributed to a clonal lineage associated with hemorrhagic diseases in humans. The results from our study indicate that game animals represent a reservoir for and a potential source of human pathogenic STEC and EHEC strains. PMID:19700552

  8. Human Pathogens on Plants: Designing a Multidisciplinary Strategy for Research.

    Science.gov (United States)

    Fletcher, Jacqueline; Leach, Jan E; Eversole, Kellye; Tauxe, Robert

    2014-10-15

    Recent efforts to address concerns about microbial contamination of food plants and resulting foodborne illness have prompted new collaboration and interactions between the scientific communities of plant pathology and food safety. This article provides perspectives from scientists of both disciplines and presents selected research results and concepts that highlight existing and possible future synergisms for audiences of both disciplines. Plant pathology is a complex discipline that encompasses studies of the dissemination, colonization, and infection of plants by microbes such as bacteria, viruses, fungi, and oomycetes. Plant pathologists study plant diseases as well as host plant defense responses and disease management strategies with the goal of minimizing disease occurrences and impacts. Repeated outbreaks of human illness attributed to the contamination of fresh produce, nuts and seeds, and other plant-derived foods by human enteric pathogens such as Shiga toxin-producing Escherichia coli and Salmonella spp. have led some plant pathologists to broaden the application of their science in the past two decades, to address problems of human pathogens on plants (HPOPs). Food microbiology, which began with the study of microbes that spoil foods and those that are critical to produce food, now also focuses study on how foods become contaminated with pathogens and how this can be controlled or prevented. Thus, at the same time, public health researchers and food microbiologists have become more concerned about plant-microbe interactions before and after harvest. New collaborations are forming between members of the plant pathology and food safety communities, leading to enhanced research capacity and greater understanding of the issues for which research is needed. The two communities use somewhat different vocabularies and conceptual models. For example, traditional plant pathology concepts such as the disease triangle and the disease cycle can help to define

  9. Human pathogens on plants: designing a multidisciplinary strategy for research.

    Science.gov (United States)

    Fletcher, Jacqueline; Leach, Jan E; Eversole, Kellye; Tauxe, Robert

    2013-04-01

    Recent efforts to address concerns about microbial contamination of food plants and resulting foodborne illness have prompted new collaboration and interactions between the scientific communities of plant pathology and food safety. This article provides perspectives from scientists of both disciplines and presents selected research results and concepts that highlight existing and possible future synergisms for audiences of both disciplines. Plant pathology is a complex discipline that encompasses studies of the dissemination, colonization, and infection of plants by microbes such as bacteria, viruses, fungi, and oomycetes. Plant pathologists study plant diseases as well as host plant defense responses and disease management strategies with the goal of minimizing disease occurrences and impacts. Repeated outbreaks of human illness attributed to the contamination of fresh produce, nuts and seeds, and other plant-derived foods by human enteric pathogens such as Shiga toxin-producing Escherichia coli and Salmonella spp. have led some plant pathologists to broaden the application of their science in the past two decades, to address problems of human pathogens on plants (HPOPs). Food microbiology, which began with the study of microbes that spoil foods and those that are critical to produce food, now also focuses study on how foods become contaminated with pathogens and how this can be controlled or prevented. Thus, at the same time, public health researchers and food microbiologists have become more concerned about plant-microbe interactions before and after harvest. New collaborations are forming between members of the plant pathology and food safety communities, leading to enhanced research capacity and greater understanding of the issues for which research is needed. The two communities use somewhat different vocabularies and conceptual models. For example, traditional plant pathology concepts such as the disease triangle and the disease cycle can help to define

  10. Insights into the evolution of pathogenicity of Escherichia coli from genomic analysis of intestinal E. coli of Marmota himalayana in Qinghai-Tibet plateau of China.

    Science.gov (United States)

    Lu, Shan; Jin, Dong; Wu, Shusheng; Yang, Jing; Lan, Ruiting; Bai, Xiangning; Liu, Sha; Meng, Qiong; Yuan, Xuejiao; Zhou, Juan; Pu, Ji; Chen, Qiang; Dai, Hang; Hu, Yuanyuan; Xiong, Yanwen; Ye, Changyun; Xu, Jianguo

    2016-12-07

    Escherichia coli is both of a widespread harmless gut commensal and a versatile pathogen of humans. Domestic animals are a well-known reservoir for pathogenic E. coli. However, studies of E. coli populations from wild animals that have been separated from human activities had been very limited. Here we obtained 580 isolates from intestinal contents of 116 wild Marmot Marmota himalayana from Qinghai-Tibet plateau, China, with five isolates per animal. We selected 125 (hereinafter referred to as strains) from the 580 isolates for genome sequencing, based on unique pulse field gel electrophoresis patterns and at least one isolate per animal. Whole genome sequence analysis revealed that all 125 strains carried at least one and the majority (79.2%) carried multiple virulence genes based on the analysis of 22 selected virulence genes. In particular, the majority of the strains carried virulence genes from different pathovars as potential 'hybrid pathogens'. The alleles of eight virulence genes from the Marmot E. coli were found to have diverged earlier than all known alleles from human and other animal E. coli. Phylogenetic analysis of the 125 Marmot E. coli genomes and 355 genomes selected from 1622 human and other E. coli strains identified two new phylogroups, G and H, both of which diverged earlier than the other phylogroups. Eight of the 12 well-known pathogenic E. coli lineages were found to share a most recent common ancestor with one or more Marmot E. coli strains. Our results suggested that the intestinal E. coli of the Marmots contained a diverse virulence gene pool and is potentially pathogenic to humans. These findings provided a new understanding of the evolutionary origin of pathogenic E. coli.

  11. Persistence of Pathogenic and Non-Pathogenic Escherichia coli Strains in Various Tropical Agricultural Soils of India.

    Directory of Open Access Journals (Sweden)

    S Naganandhini

    Full Text Available The persistence of Shiga-like toxin producing E. coli (STEC strains in the agricultural soil creates serious threat to human health through fresh vegetables growing on them. However, the survival of STEC strains in Indian tropical soils is not yet understood thoroughly. Additionally how the survival of STEC strain in soil diverges with non-pathogenic and genetically modified E. coli strains is also not yet assessed. Hence in the present study, the survival pattern of STEC strain (O157-TNAU was compared with non-pathogenic (MTCC433 and genetically modified (DH5α strains on different tropical agricultural soils and on a vegetable growing medium, cocopeat under controlled condition. The survival pattern clearly discriminated DH5α from MTCC433 and O157-TNAU, which had shorter life (40 days than those compared (60 days. Similarly, among the soils assessed, the red laterite and tropical latosol supported longer survival of O157-TNAU and MTCC433 as compared to wetland and black cotton soils. In cocopeat, O157 recorded significantly longer survival than other two strains. The survival data were successfully analyzed using Double-Weibull model and the modeling parameters were correlated with soil physico-chemical and biological properties using principal component analysis (PCA. The PCA of all the three strains revealed that pH, microbial biomass carbon, dehydrogenase activity and available N and P contents of the soil decided the survival of E. coli strains in those soils and cocopeat. The present research work suggests that the survival of O157 differs in tropical Indian soils due to varied physico-chemical and biological properties and the survival is much shorter than those reported in temperate soils. As the survival pattern of non-pathogenic strain, MTCC433 is similar to O157-TNAU in tropical soils, the former can be used as safe model organism for open field studies.

  12. Multiplex PCR Assay for Identification of Human Diarrheagenic Escherichia coli

    OpenAIRE

    Toma, Claudia; Lu, Yan; Higa, Naomi; Nakasone, Noboru; Chinen, Isabel; Baschkier, Ariela; Rivas, Marta; Iwanaga, Masaaki

    2003-01-01

    A multiplex PCR assay for the identification of human diarrheagenic Escherichia coli was developed. The targets selected for each category were eae for enteropathogenic E. coli, stx for Shiga toxin-producing E. coli, elt and est for enterotoxigenic E. coli, ipaH for enteroinvasive E. coli, and aggR for enteroaggregative E. coli. This assay allowed the categorization of a diarrheagenic E. coli strain in a single reaction tube.

  13. Detection of virulence-associated genes in pathogenic and commensal avian Escherichia coli isolates.

    Science.gov (United States)

    Paixão, A C; Ferreira, A C; Fontes, M; Themudo, P; Albuquerque, T; Soares, M C; Fevereiro, M; Martins, L; Corrêa de Sá, M I

    2016-07-01

    Poultry colibacillosis due to Avian Pathogenic Escherichia coli (APEC) is responsible for several extra-intestinal pathological conditions, leading to serious economic damage in poultry production. The most commonly associated pathologies are airsacculitis, colisepticemia, and cellulitis in broiler chickens, and salpingitis and peritonitis in broiler breeders. In this work a total of 66 strains isolated from dead broiler breeders affected with colibacillosis and 61 strains from healthy broilers were studied. Strains from broiler breeders were typified with serogroups O2, O18, and O78, which are mainly associated with disease. The serogroup O78 was the most prevalent (58%). All the strains were checked for the presence of 11 virulence genes: 1) arginine succinyltransferase A (astA); ii) E.coli hemeutilization protein A (chuA); iii) colicin V A/B (cvaA/B); iv) fimbriae mannose-binding type 1 (fimC); v) ferric yersiniabactin uptake A (fyuA); vi) iron-repressible high-molecular-weight proteins 2 (irp2); vii) increased serum survival (iss); viii) iron-uptake systems of E.coli D (iucD); ix) pielonefritis associated to pili C (papC); x) temperature sensitive haemaglutinin (tsh), and xi) vacuolating autotransporter toxin (vat), by Multiplex-PCR. The results showed that all genes are present in both commensal and pathogenic E. coli strains. The iron uptake-related genes and the serum survival gene were more prevalent among APEC. The adhesin genes, except tsh, and the toxin genes, except astA, were also more prevalent among APEC isolates. Except for astA and tsh, APEC strains harbored the majority of the virulence-associated genes studied and fimC was the most prevalent gene, detected in 96.97 and 88.52% of APEC and AFEC strains, respectively. Possession of more than one iron transport system seems to play an important role on APEC survival. © 2016 Poultry Science Association Inc.

  14. Virulence gene profiles of avian pathogenic Escherichia coli isolated from chickens with colibacillosis in Bulawayo, Zimbabwe

    Directory of Open Access Journals (Sweden)

    Joshua Mbanga

    2015-04-01

    Full Text Available Colibacillosis, a disease caused by avian pathogenic Escherichia coli (APEC, is one of the main causes of economic losses in the poultry industry worldwide. This study was carried out in order to determine the APEC-associated virulence genes contained by E. coli isolates causing colibacillosis in chickens. A total of 45 E. coli isolates were obtained from the diagnostics and research branch of the Central Veterinary Laboratories, Bulawayo, Zimbabwe. These isolates were obtained from chickens with confirmed cases of colibacillosis after postmortem examination. The presence of the iutA, hlyF, ompT, frz, sitD, fimH, kpsM, sitA, sopB, uvrY, pstB and vat genes were investigated by multiplex polymerase chain reaction (PCR assay. Of the 45 isolates, 93% were positive for the presence of at least one virulence gene. The three most prevalent virulence genes were iutA (80%, fimH (33.3% and hlyF (24.4%. The kpsM, pstB and ompT genes had the lowest prevalence, having been detected in only 2.2% of the isolates. All 12 virulence genes studied were detected in the 45 APEC isolates. Virulence gene profiles were constructed for each APEC isolate from the multiplex data. The APEC isolates were profiled as 62.2% fitting profile A, 31.1% profile B and 6.7% profile C. None of the isolates had more than seven virulence genes. Virulence profiles of Zimbabwean APEC isolates are different from those previously reported. Zimbabwean APEC isolates appear to be less pathogenic and may rely on environmental factors and stress in hosts to establish infection.

  15. Pathogenic Escherichia coli producing Extended-Spectrum β-Lactamases isolated from surface water and wastewater.

    Science.gov (United States)

    Franz, Eelco; Veenman, Christiaan; van Hoek, Angela H A M; de Roda Husman, Ana; Blaak, Hetty

    2015-09-24

    To assess public health risks from environmental exposure to Extended-Spectrum β-Lactamases (ESBL)-producing bacteria, it is necessary to have insight in the proportion of relative harmless commensal variants and potentially pathogenic ones (which may directly cause disease). In the current study, 170 ESBL-producing E. coli from Dutch wastewater (n = 82) and surface water (n = 88) were characterized with respect to ESBL-genotype, phylogenetic group, resistance phenotype and virulence markers associated with enteroaggregative E. coli (EAEC), enteroinvasive E. coli (EIEC), enteropathogenic E. coli (EPEC), enterotoxigenic E. coli (ETEC), extraintesinal E. coli (ExPEC), and Shiga toxin-producing E. coli (STEC). Overall, 17.1% of all ESBL-producing E. coli were suspected pathogenic variants. Suspected ExPECs constituted 8.8% of all ESBL-producing variants and 8.3% were potential gastrointestinal pathogens (4.1% EAEC, 1.8% EPEC, 1.2% EIEC, 1.2% ETEC, no STEC). Suspected pathogens were significantly associated with ESBL-genotype CTX-M-15 (X(2) = 14.7, P antibiotics. In conclusion, this study demonstrates that the aquatic environment is a potential reservoir of E. coli variants that combine ESBL-genes, a high level of multi-drug resistance and virulence factors, and therewith pose a health risk to humans upon exposure.

  16. The co-transcriptome of uropathogenic Escherichia coli-infected mouse macrophages reveals new insights into host-pathogen interactions

    KAUST Repository

    Mavromatis, Charalampos Harris; Bokil, Nilesh J.; Totsika, Makrina; Kakkanat, Asha; Schaale, Kolja; Cannistraci, Carlo V.; Ryu, Tae Woo; Beatson, Scott A.; Ulett, Glen C.; Schembri, Mark A.; Sweet, Matthew J.; Ravasi, Timothy

    2015-01-01

    Urinary tract infections (UTI) are among the most common infections in humans. Uropathogenic Escherichia coli (UPEC) can invade and replicate within bladder epithelial cells, and some UPEC strains can also survive within macrophages. To understand the UPEC transcriptional programme associated with intramacrophage survival, we performed host–pathogen co-transcriptome analyses using RNA sequencing. Mouse bone marrow-derived macrophages (BMMs) were challenged over a 24 h time course with two UPEC reference strains that possess contrasting intramacrophage phenotypes: UTI89, which survives in BMMs, and 83972, which is killed by BMMs. Neither of these strains caused significant BMM cell death at the low multiplicity of infection that was used in this study. We developed an effective computational framework that simultaneously separated, annotated and quantified the mammalian and bacterial transcriptomes. Bone marrow-derived macrophages responded to the two UPEC strains with a broadly similar gene expression programme. In contrast, the transcriptional responses of the UPEC strains diverged markedly from each other. We identified UTI89 genes up-regulated at 24 h post-infection, and hypothesized that some may contribute to intramacrophage survival. Indeed, we showed that deletion of one such gene (pspA) significantly reduced UTI89 survival within BMMs. Our study provides a technological framework for simultaneously capturing global changes at the transcriptional level in co-cultures, and has generated new insights into the mechanisms that UPEC use to persist within the intramacrophage environment.

  17. Deep sequencing-based transcriptome analysis of chicken spleen in response to avian pathogenic Escherichia coli (APEC infection.

    Directory of Open Access Journals (Sweden)

    Qinghua Nie

    Full Text Available Avian pathogenic Escherichia coli (APEC leads to economic losses in poultry production and is also a threat to human health. The goal of this study was to characterize the chicken spleen transcriptome and to identify candidate genes for response and resistance to APEC infection using Solexa sequencing. We obtained 14422935, 14104324, and 14954692 Solexa read pairs for non-challenged (NC, challenged-mild pathology (MD, and challenged-severe pathology (SV, respectively. A total of 148197 contigs and 98461 unigenes were assembled, of which 134949 contigs and 91890 unigenes match the chicken genome. In total, 12272 annotated unigenes take part in biological processes (11664, cellular components (11927, and molecular functions (11963. Summing three specific contrasts, 13650 significantly differentially expressed unigenes were found in NC Vs. MD (6844, NC Vs. SV (7764, and MD Vs. SV (2320. Some unigenes (e.g. CD148, CD45 and LCK were involved in crucial pathways, such as the T cell receptor (TCR signaling pathway and microbial metabolism in diverse environments. This study facilitates understanding of the genetic architecture of the chicken spleen transcriptome, and has identified candidate genes for host response to APEC infection.

  18. The co-transcriptome of uropathogenic Escherichia coli-infected mouse macrophages reveals new insights into host-pathogen interactions

    KAUST Repository

    Mavromatis, Charalampos Harris

    2015-01-24

    Urinary tract infections (UTI) are among the most common infections in humans. Uropathogenic Escherichia coli (UPEC) can invade and replicate within bladder epithelial cells, and some UPEC strains can also survive within macrophages. To understand the UPEC transcriptional programme associated with intramacrophage survival, we performed host–pathogen co-transcriptome analyses using RNA sequencing. Mouse bone marrow-derived macrophages (BMMs) were challenged over a 24 h time course with two UPEC reference strains that possess contrasting intramacrophage phenotypes: UTI89, which survives in BMMs, and 83972, which is killed by BMMs. Neither of these strains caused significant BMM cell death at the low multiplicity of infection that was used in this study. We developed an effective computational framework that simultaneously separated, annotated and quantified the mammalian and bacterial transcriptomes. Bone marrow-derived macrophages responded to the two UPEC strains with a broadly similar gene expression programme. In contrast, the transcriptional responses of the UPEC strains diverged markedly from each other. We identified UTI89 genes up-regulated at 24 h post-infection, and hypothesized that some may contribute to intramacrophage survival. Indeed, we showed that deletion of one such gene (pspA) significantly reduced UTI89 survival within BMMs. Our study provides a technological framework for simultaneously capturing global changes at the transcriptional level in co-cultures, and has generated new insights into the mechanisms that UPEC use to persist within the intramacrophage environment.

  19. Fitness tradeoffs of antibiotic resistance in extra-intestinal pathogenic Escherichia coli.

    Science.gov (United States)

    Basra, Prabh; Alsaadi, Ahlam; Bernal-Astrain, Gabriel; O'Sullivan, Michael Liam; Hazlett, Bryn; Clarke, Leah Marie; Schoenrock, Andrew; Pitre, Sylvain; Wong, Alex

    2018-02-07

    Evolutionary trade-offs occur when selection on one trait has detrimental effects on other traits. In pathogenic microbes, it has been hypothesized that antibiotic resistance trades off with fitness in the absence of antibiotic. While studies of single resistance mutations support this hypothesis, it is unclear whether trade-offs are maintained over time, due to compensatory evolution and broader effects of genetic background. Here, we leverage natural variation in 39 extra-intestinal clinical isolates of Escherichia coli to assess trade-offs between growth rates and resistance to fluoroquinolone and cephalosporin antibiotics. Whole genome sequencing identifies a broad range of clinically relevant resistance determinants in these strains. We find evidence for a negative correlation between growth rate and antibiotic resistance, consistent with a persistent trade-off between resistance and growth. However, this relationship is sometimes weak, and depends on the environment in which growth rates are measured. Using in vitro selection experiments, we find that compensatory evolution in one environment does not guarantee compensation in other environments. Thus, even in the face of compensatory evolution and other genetic background effects, resistance may be broadly costly, supporting the use of drug restriction protocols to limit the spread of resistance. Furthermore, our study demonstrates the power of using natural variation to study evolutionary trade-offs in microbes. © The Author(s) 2018. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  20. Effect of a lytic bacteriophage on rabbits experimentally infected with pathogenic Escherichia coli

    Directory of Open Access Journals (Sweden)

    J. Zhao

    2017-09-01

    Full Text Available Pathogenic Escherichia coli (E. coli is severely threatening the rabbit industry in China, and the concern over antibiotic-resistant bacteria has given rise to an urgent need for antibiotic alternatives. In this study, a member (ZRP1 of the Myoviridae family was isolated from rabbit faeces using a strain of rabbit atypical enteropathogenic E. coli (ZR1 as host. The one-step growth curve indicated that the latent period was around 25 to 30 min and the burst size was 144±31 plaque-forming unit/cell. The rate of phage-resistant mutation was 7×10–5±4×10–5. When the bacteriophage input at the multiplicity of infection (MOI was 0.1, 1 or 10, the growth of host E. coli in broth was inhibited for 5 h. A single intravenous injection of ZRP1 at MOI 0.1, 1 or 10 significantly prolonged the survival time of rabbits which simultaneously received a lethal dose of ZR1.

  1. Thymus transcriptome reveals novel pathways in response to avian pathogenic Escherichia coli infection.

    Science.gov (United States)

    Sun, H; Liu, P; Nolan, L K; Lamont, S J

    2016-12-01

    Avian pathogenic Escherichia coli (APEC) can cause significant morbidity in chickens. The thymus provides the essential environment for T cell development; however, the thymus transcriptome has not been examined for gene expression in response to APEC infection. An improved understanding of the host genomic response to APEC infection could inform future breeding programs for disease resistance and APEC control. We therefore analyzed the transcriptome of the thymus of birds challenged with APEC, contrasting susceptible and resistant phenotypes. Thousands of genes were differentially expressed in birds of the 5-day post infection (dpi) challenged-susceptible group vs. 5 dpi non-challenged, in 5 dpi challenged-susceptible vs. 5 dpi challenged-resistant birds, as well as in 5 dpi vs. one dpi challenged-susceptible birds. The Toll-like receptor signaling pathway was the major innate immune response for birds to respond to APEC infection. Moreover, lysosome and cell adhesion molecules pathways were common mechanisms for chicken response to APEC infection. The T-cell receptor signaling pathway, cell cycle, and p53 signaling pathways were significantly activated in resistant birds to resist APEC infection. These results provide a comprehensive assessment of global gene networks and biological functionalities of differentially expressed genes in the thymus under APEC infection. These findings provide novel insights into key molecular genetic mechanisms that differentiate host resistance from susceptibility in this primary lymphoid tissue, the thymus. © The Author 2016. Published by Oxford University Press on behalf of Poultry Science Association.

  2. Human Health Hazards from Antimicrobial-Resistant Escherichia coli of Animal Origin

    DEFF Research Database (Denmark)

    Hammerum, A. M.; Heuer, Ole Eske

    2009-01-01

    of antimicrobial agents in food animals may add to the burden of antimicrobial resistance in humans. Bacteria from the animal reservoir that carry resistance to antimicrobial agents that are regarded as highly or critically important in human therapy (e.g., aminoglycosides, fluoroquinolones, and third- and fourth......Because of the intensive use of antimicrobial agents in food animal production, meat is frequently contaminated with antimicrobial-resistant Escherichia coli. Humans can be colonized with E. coli of animal origin, and because of resistance to commonly used antimicrobial agents, these bacteria may...... cause infections for which limited therapeutic options are available. This may lead to treatment failure and can have serious consequences for the patient. Furthermore, E. coli of animal origin may act as a donor of antimicrobial resistance genes for other pathogenic E. coli. Thus, the intensive use...

  3. Frequent combination of antimicrobial multiresistance and extraintestinal pathogenicity in Escherichia coli isolates from urban rats (Rattus norvegicus in Berlin, Germany.

    Directory of Open Access Journals (Sweden)

    Sebastian Guenther

    Full Text Available Urban rats present a global public health concern as they are considered a reservoir and vector of zoonotic pathogens, including Escherichia coli. In view of the increasing emergence of antimicrobial resistant E. coli strains and the on-going discussion about environmental reservoirs, we intended to analyse whether urban rats might be a potential source of putatively zoonotic E. coli combining resistance and virulence. For that, we took fecal samples from 87 brown rats (Rattus norvegicus and tested at least three E. coli colonies from each animal. Thirty two of these E. coli strains were pre-selected from a total of 211 non-duplicate isolates based on their phenotypic resistance to at least three antimicrobial classes, thus fulfilling the definition of multiresistance. As determined by multilocus sequence typing (MLST, these 32 strains belonged to 24 different sequence types (STs, indicating a high phylogenetic diversity. We identified STs, which frequently occur among extraintestinal pathogenic E. coli (ExPEC, such as STs 95, 131, 70, 428, and 127. Also, the detection of a number of typical virulence genes confirmed that the rats tested carried ExPEC-like strains. In particular, the finding of an Extended-spectrum beta-lactamase (ESBL-producing strain which belongs to a highly virulent, so far mainly human- and avian-restricted ExPEC lineage (ST95, which expresses a serogroup linked with invasive strains (O18:NM:K1, and finally, which produces an ESBL-type frequently identified among human strains (CTX-M-9, pointed towards the important role, urban rats might play in the transmission of multiresistant and virulent E. coli strains. Indeed, using a chicken infection model, this strain showed a high in vivo pathogenicity. Imagining the high numbers of urban rats living worldwide, the way to the transmission of putatively zoonotic, multiresistant, and virulent strains might not be far ahead. The unforeseeable consequences of such an emerging public

  4. Pathogens' toolbox to manipulate human complement.

    Science.gov (United States)

    Fernández, Francisco J; Gómez, Sara; Vega, M Cristina

    2017-12-14

    The surveillance and pathogen fighting functions of the complement system have evolved to protect mammals from life-threatening infections. In turn, pathogens have developed complex molecular mechanisms to subvert, divert and evade the effector functions of the complement. The study of complement immunoevasion by pathogens sheds light on their infection drivers, knowledge that is essential to implement therapies. At the same time, complement evasion also acts as a discovery ground that reveals important aspects of how complement works under physiological conditions. In recent years, complex interrelationships between infection insults and the onset of autoimmune and complement dysregulation diseases have led to propose that encounters with pathogens can act as triggering factors for disease. The correct management of these diseases involves the recognition of their triggering factors and the development and administration of complement-associated molecular therapies. Even more recently, unsuspected proteins from pathogens have been shown to possess moonlighting functions as virulence factors, raising the possibility that behind the first line of virulence factors there be many more pathogen proteins playing secondary, helping and supporting roles for the pathogen to successfully establish infections. In an era where antibiotics have a progressively reduced effect on the management and control of infectious diseases worldwide, knowledge on the mechanisms of pathogenic invasion and evasion look more necessary and pressing than ever. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. A recombinant multi-antigen vaccine with broad protection potential against avian pathogenic Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Angelica Van Goor

    Full Text Available Chickens are a major source of protein worldwide, yet infectious diseases continue to threaten the poultry industry. Avian pathogenic Escherichia coli (APEC, a subgroup of extraintestinal pathogenic E. coli (ExPEC, causes colibacillosis in chickens resulting in economic loss because of treatment, condemnation of products, and death. In this study, we evaluated a recombinant antigens (rAg vaccine combining common ExPEC surface proteins EtsC, OmpA, OmpT, and TraT for broad protective potential against APEC infections in chickens. The specific objectives were to evaluate antibody (serum and cytokines (lymphoid organs responses to vaccination; in vitro bactericidal ability of serum and splenocytes against multiple APEC serotypes; and in vivo protection against APEC challenge in chickens. Groups of four-day old chickens (N = 10 were vaccinated twice (two-week interval subcutaneously with rAgs alone or in combination and CpG adjuvant or PBS (control. IgY antibody in the serum and mRNA expression of IL-1β, IL-6, IL-18, IFN-γ, IL-4, IFN-β, and IL-8 in bursa, spleen, and thymus were measured using ELISA and RT-qPCR, respectively. Serum and splenocytes were tested for their bactericidal ability in vitro against multiple APEC isolates. Vaccinated and non-vaccinated chickens were challenged with 108 CFU of APEC-O2 via air sac at 31 days post first vaccination. Vaccine protection was determined by the decrease of bacterial loads in blood and organs (lung, heart, spleen, and liver, as well as gross colibacillosis lesion scores in air sac, heart, and liver. Vaccination significantly (P < 0.05 elicited IgY against specific antigens, induced immune related mRNA expression in the spleen and bursa, reduced in vitro growth of multiple APEC serotypes, and decreased bacterial loads in the heart and spleen, and gross lesion scores of the air sac, heart and liver in chickens. The vaccine reported may be used to provide broad protection against APEC strains

  6. Spleen transcriptome response to infection with avian pathogenic Escherichia coli in broiler chickens.

    Science.gov (United States)

    Sandford, Erin E; Orr, Megan; Balfanz, Emma; Bowerman, Nate; Li, Xianyao; Zhou, Huaijun; Johnson, Timothy J; Kariyawasam, Subhashinie; Liu, Peng; Nolan, Lisa K; Lamont, Susan J

    2011-09-27

    Avian pathogenic Escherichia coli (APEC) is detrimental to poultry health and its zoonotic potential is a food safety concern. Regulation of antimicrobials in food-production animals has put greater focus on enhancing host resistance to bacterial infections through genetics. To better define effective mechanism of host resistance, global gene expression in the spleen of chickens, harvested at two times post-infection (PI) with APEC, was measured using microarray technology, in a design that will enable investigation of effects of vaccination, challenge, and pathology level. There were 1,101 genes significantly differentially expressed between severely infected and non-infected groups on day 1 PI and 1,723 on day 5 PI. Very little difference was seen between mildly infected and non-infected groups on either time point. Between birds exhibiting mild and severe pathology, there were 2 significantly differentially expressed genes on day 1 PI and 799 on day 5 PI. Groups with greater pathology had more genes with increased expression than decreased expression levels. Several predominate immune pathways, Toll-like receptor, Jak-STAT, and cytokine signaling, were represented between challenged and non-challenged groups. Vaccination had, surprisingly, no detectible effect on gene expression, although it significantly protected the birds from observable gross lesions. Functional characterization of significantly expressed genes revealed unique gene ontology classifications during each time point, with many unique to a particular treatment or class contrast. More severe pathology caused by APEC infection was associated with a high level of gene expression differences and increase in gene expression levels. Many of the significantly differentially expressed genes were unique to a particular treatment, pathology level or time point. The present study not only investigates the transcriptomic regulations of APEC infection, but also the degree of pathology associated with that

  7. Spleen transcriptome response to infection with avian pathogenic Escherichia coli in broiler chickens

    Directory of Open Access Journals (Sweden)

    Kariyawasam Subhashinie

    2011-09-01

    Full Text Available Abstract Background Avian pathogenic Escherichia coli (APEC is detrimental to poultry health and its zoonotic potential is a food safety concern. Regulation of antimicrobials in food-production animals has put greater focus on enhancing host resistance to bacterial infections through genetics. To better define effective mechanism of host resistance, global gene expression in the spleen of chickens, harvested at two times post-infection (PI with APEC, was measured using microarray technology, in a design that will enable investigation of effects of vaccination, challenge, and pathology level. Results There were 1,101 genes significantly differentially expressed between severely infected and non-infected groups on day 1 PI and 1,723 on day 5 PI. Very little difference was seen between mildly infected and non-infected groups on either time point. Between birds exhibiting mild and severe pathology, there were 2 significantly differentially expressed genes on day 1 PI and 799 on day 5 PI. Groups with greater pathology had more genes with increased expression than decreased expression levels. Several predominate immune pathways, Toll-like receptor, Jak-STAT, and cytokine signaling, were represented between challenged and non-challenged groups. Vaccination had, surprisingly, no detectible effect on gene expression, although it significantly protected the birds from observable gross lesions. Functional characterization of significantly expressed genes revealed unique gene ontology classifications during each time point, with many unique to a particular treatment or class contrast. Conclusions More severe pathology caused by APEC infection was associated with a high level of gene expression differences and increase in gene expression levels. Many of the significantly differentially expressed genes were unique to a particular treatment, pathology level or time point. The present study not only investigates the transcriptomic regulations of APEC infection

  8. Immunomodulation of Host Chitinase 3-Like 1 During a Mammary Pathogenic Escherichia coli Infection

    Directory of Open Access Journals (Sweden)

    Koen Breyne

    2018-05-01

    Full Text Available Chitin is a N-acetyl-d-glucosamine biopolymer that can be recognized by chitin-binding proteins. Although mammals lack chitin synthase, they induce proteins responsible for detecting chitin in response to bacterial infections. Our aim was to investigate whether chitinase 3-like 1 (CHI3L1 has a potential role in the innate immunity of the Escherichia coli (E. coli infected mammary gland. CHI3L1 protein was found to be secreted in whey of naturally coliform-affected quarters compared to whey samples isolated from healthy udders. In addition, gene expression of CHI3L1 was confirmed in udder tissue of cows experimentally infected with a mammary pathogenic E. coli (MPEC strain. Despite the known anatomical differences, the bovine udders’ innate immune response was mimicked by applying an experimental mouse model using MPEC or non-MPEC isolates. The effect of CHI3L1 expression in the murine mammary gland in response to coliform bacteria was investigated through the use of CHI3L1−/− mice as well as through treatment with either a pan-caspase inhibitor or chitin particles in wild-type mice. The local induction of CHI3L1 postinfection with different E. coli strains was demonstrated to be independent of both bacterial growth and mammary interleukin (IL-8 levels. Indeed, CHI3L1 emerged as a regulator impacting on the transcytosis of Ly6G-positive cells from the interstitial space into the alveolar lumen of the mammary tissue. Furthermore, CHI3L1 was found to be upstream regulated by caspase activity and had a major downstream effect on the local pro-inflammatory cytokine profile, including IL-1beta, IL-6, and RANTES/CCL5. In conclusion, CHI3L1 was demonstrated to play a key role in the cytokine and caspase signaling during E. coli triggered inflammation of the mammary gland.

  9. Captive and free-living urban pigeons (Columba livia) from Brazil as carriers of multidrug-resistant pathogenic Escherichia coli.

    Science.gov (United States)

    Borges, Clarissa A; Maluta, Renato P; Beraldo, Lívia G; Cardozo, Marita V; Guastalli, Elisabete A L; Kariyawasam, Subhashinie; DebRoy, Chitrita; Ávila, Fernando A

    2017-01-01

    Thirty Escherichia coli isolates from captive and free-living pigeons in Brazil were characterised. Virulence-associated genes identified in pigeons included those which occur relatively frequently in avian pathogenic E. coli (APEC) from commercial poultry worldwide. Eleven of 30 E. coli isolates from pigeons, belonging mainly to B1 and B2 phylogenetic groups, had high or intermediate pathogenicity for 1-day-old chicks. The frequency of multi-drug resistant (MDR) E. coli in captive pigeons was relatively high and included one isolate positive for the extended-spectrum β-lactamase (ESBL) gene bla CTX-M-8 . Pulsed field gel electrophoresis (PFGE) showed high heterogeneity among isolates. There is potential for pigeons to transmit antibiotic resistant pathogenic E. coli to other species through environmental contamination or direct contact. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Pathogenicity of Human ST23 Streptococcus agalactiae to Fish and Genomic Comparison of Pathogenic and Non-pathogenic Isolates

    Directory of Open Access Journals (Sweden)

    Rui Wang

    2017-10-01

    Full Text Available Streptococcus agalactiae, or Group B Streptococcus (GBS, is a major pathogen causing neonatal sepsis and meningitis, bovine mastitis, and fish meningoencephalitis. CC23, including its namesake ST23, is not only the predominant GBS strain derived from human and cattle, but also can infect a variety of homeothermic and poikilothermic species. However, it has never been characterized in fish. This study aimed to determine the pathogenicity of ST23 GBS to fish and explore the mechanisms causing the difference in the pathogenicity of ST23 GBS based on the genome analysis. Infection of tilapia with 10 human-derived ST23 GBS isolates caused tissue damage and the distribution of pathogens within tissues. The mortality rate of infection was ranged from 76 to 100%, and it was shown that the mortality rate caused by only three human isolates had statistically significant difference compared with fish-derived ST7 strain (P < 0.05, whereas the mortality caused by other seven human isolates did not show significant difference compared with fish-derived ST7 strain. The genome comparison and prophage analysis showed that the major genome difference between virulent and non-virulent ST23 GBS was attributed to the different prophage sequences. The prophage in the P1 region contained about 43% GC and encoded 28–39 proteins, which can mediate the acquisition of YafQ/DinJ structure for GBS by phage recombination. YafQ/DinJ belongs to one of the bacterial toxin–antitoxin (TA systems and allows cells to cope with stress. The ST23 GBS strains carrying this prophage were not pathogenic to tilapia, but the strains without the prophage or carrying the pophage that had gene mutation or deletion, especially the deletion of YafQ/DinJ structure, were highly pathogenic to tilapia. In conclusion, human ST23 GBS is highly pathogenic to fish, which may be related to the phage recombination.

  11. Ancient pathogen DNA in human teeth and petrous bones

    DEFF Research Database (Denmark)

    Margaryan, Ashot; Hansen, Henrik B.; Rasmussen, Simon

    2018-01-01

    Recent ancient DNA (aDNA) studies of human pathogens have provided invaluable insights into their evolutionary history and prevalence in space and time. Most of these studies were based on DNA extracted from teeth or postcranial bones. In contrast, no pathogen DNA has been reported from the petro...

  12. A multi-pathogen selective enrichment broth for simultaneous growth of Salmonella enteria, Escherichia coli O157:H7 and Shigella flexneri

    Science.gov (United States)

    Salmonella, Shigella, and Escherichia coli O157:H7 contaminate similar types of food and all three can cause foodborne disease. Traditional microbiological enrichment broths to detect these pathogens are different in terms of their composition, which limits the application of multi-pathogen detectio...

  13. Molecular epidemiology of mastitis pathogens of dairy cattle and comparative relevance to humans.

    Science.gov (United States)

    Zadoks, Ruth N; Middleton, John R; McDougall, Scott; Katholm, Jorgen; Schukken, Ynte H

    2011-12-01

    Mastitis, inflammation of the mammary gland, can be caused by a wide range of organisms, including gram-negative and gram-positive bacteria, mycoplasmas and algae. Many microbial species that are common causes of bovine mastitis, such as Escherichia coli, Klebsiella pneumoniae, Streptococcus agalactiae and Staphylococcus aureus also occur as commensals or pathogens of humans whereas other causative species, such as Streptococcus uberis, Streptococcus dysgalactiae subsp. dysgalactiae or Staphylococcus chromogenes, are almost exclusively found in animals. A wide range of molecular typing methods have been used in the past two decades to investigate the epidemiology of bovine mastitis at the subspecies level. These include comparative typing methods that are based on electrophoretic banding patterns, library typing methods that are based on the sequence of selected genes, virulence gene arrays and whole genome sequencing projects. The strain distribution of mastitis pathogens has been investigated within individual animals and across animals, herds, countries and host species, with consideration of the mammary gland, other animal or human body sites, and environmental sources. Molecular epidemiological studies have contributed considerably to our understanding of sources, transmission routes, and prognosis for many bovine mastitis pathogens and to our understanding of mechanisms of host-adaptation and disease causation. In this review, we summarize knowledge gleaned from two decades of molecular epidemiological studies of mastitis pathogens in dairy cattle and discuss aspects of comparative relevance to human medicine.

  14. Survival of pathogenic enterohemorrhagic Escherichia coli (EHEC) and control with calcium oxide in frozen meat products.

    Science.gov (United States)

    Ro, Eun Young; Ko, Young Mi; Yoon, Ki Sun

    2015-08-01

    This study investigated both the level of microbial contamination and the presence of enterohemorrhagic Escherichia coli (EHEC) in frozen meat products, followed by the evaluation of its survival over 180 days under frozen temperature. We also examined the effect of calcium oxide on the populations of EHEC, E. coli O157:H7 and EPEC under both 10 °C and -18 °C storage conditions. Afterward, the morphological changes occurring in EHEC cells in response to freezer storage temperature and calcium oxide (CaO) treatments were examined using transmission electron microscopy. Among the frozen meat products tested, the highest contamination levels of total aerobic counts, coliforms and E. coli were observed in pork cutlets. Examination showed that 20% of the frozen meat products contained virulence genes, including verotoxin (VT) 1 and 2. Over 180 days of frozen storage and after 3 freeze-thaw cycles, the population of EHEC did not change regardless of the type of products or initial inoculated concentration, indicating the strong survival ability of EHEC. Subsequent testing revealed that the growth of three pathogenic E. coli strains was completely inhibited in meat patties prepared with 1% CaO, stored at 10 °C. However, the addition of 2% CaO was necessary to control the survival of EHEC, E. coli O157:H7 and EPEC in meat patties stored at -18 °C. CaO reduced the population of E. coli O157:H7 more effectively than the other EHEC and EPEC strains at both 10 °C and -18 °C. Transmission electron microscopy analysis revealed that exposed EHEC cells were resistant to the freezer storage temperature, although some cells incurred injury and death after several freeze-thaw cycles. Most of the cells exposed to CaO were found to have died or lost their cellular integrity and membranes, indicating that CaO has the potential to be used as a powerful antimicrobial agent for manufacturing frozen meat products. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Prediction of molecular mimicry candidates in human pathogenic bacteria.

    Science.gov (United States)

    Doxey, Andrew C; McConkey, Brendan J

    2013-08-15

    Molecular mimicry of host proteins is a common strategy adopted by bacterial pathogens to interfere with and exploit host processes. Despite the availability of pathogen genomes, few studies have attempted to predict virulence-associated mimicry relationships directly from genomic sequences. Here, we analyzed the proteomes of 62 pathogenic and 66 non-pathogenic bacterial species, and screened for the top pathogen-specific or pathogen-enriched sequence similarities to human proteins. The screen identified approximately 100 potential mimicry relationships including well-characterized examples among the top-scoring hits (e.g., RalF, internalin, yopH, and others), with about 1/3 of predicted relationships supported by existing literature. Examination of homology to virulence factors, statistically enriched functions, and comparison with literature indicated that the detected mimics target key host structures (e.g., extracellular matrix, ECM) and pathways (e.g., cell adhesion, lipid metabolism, and immune signaling). The top-scoring and most widespread mimicry pattern detected among pathogens consisted of elevated sequence similarities to ECM proteins including collagens and leucine-rich repeat proteins. Unexpectedly, analysis of the pathogen counterparts of these proteins revealed that they have evolved independently in different species of bacterial pathogens from separate repeat amplifications. Thus, our analysis provides evidence for two classes of mimics: complex proteins such as enzymes that have been acquired by eukaryote-to-pathogen horizontal transfer, and simpler repeat proteins that have independently evolved to mimic the host ECM. Ultimately, computational detection of pathogen-specific and pathogen-enriched similarities to host proteins provides insights into potentially novel mimicry-mediated virulence mechanisms of pathogenic bacteria.

  16. Extreme Heat Resistance of Food Borne Pathogens Campylobacter jejuni, Escherichia coli, and Salmonella typhimurium on Chicken Breast Fillet during Cooking

    OpenAIRE

    de Jong, Aarieke E. I.; van Asselt, Esther D.; Zwietering, Marcel H.; Nauta, Maarten J.; de Jonge, Rob

    2012-01-01

    The aim of this research was to determine the decimal reduction times of bacteria present on chicken fillet in boiling water. The experiments were conducted with Campylobacter jejuni, Salmonella, and Escherichia coli. Whole chicken breast fillets were inoculated with the pathogens, stored overnight (4∘C), and subsequently cooked. The surface temperature reached 70∘C within 30 sec and 85∘C within one minute. Extremely high decimal reduction times of 1.90, 1.97, and 2.20 min were obtained fo...

  17. Occurrence of weak mutators among avian pathogenic Escherichia coli (APEC) isolates causing salpingitis and peritonitis in broiler breeders

    DEFF Research Database (Denmark)

    Pires dos Santos, Teresa M S; Bisgaard, Magne; Kyvsgaard, Niels Christian

    2014-01-01

    A collection of 46 avian pathogenic Escherichia coli (APEC) isolates was examined for the presence of mutators by determining the rate of mutation to rifampicin resistance. The collection included 34 E. coli isolates obtained in pure culture from chronic lesions of salpingitis and peritonitis in 34...... broiler breeders, of which 12 were associated with the development of secondary septicemia. Twelve additional isolates were obtained from a clonal outbreak (ST95) of E. coli peritonitis syndrome (EPS), the lesions of which changed gradually over time into a subacute/chronic form. The hypothesis...

  18. Pathogens and host immunity in the ancient human oral cavity

    Science.gov (United States)

    Warinner, Christina; Matias Rodrigues, João F.; Vyas, Rounak; Trachsel, Christian; Shved, Natallia; Grossmann, Jonas; Radini, Anita; Hancock, Y.; Tito, Raul Y.; Fiddyment, Sarah; Speller, Camilla; Hendy, Jessica; Charlton, Sophy; Luder, Hans Ulrich; Salazar-García, Domingo C.; Eppler, Elisabeth; Seiler, Roger; Hansen, Lars; Samaniego Castruita, José Alfredo; Barkow-Oesterreicher, Simon; Teoh, Kai Yik; Kelstrup, Christian; Olsen, Jesper V.; Nanni, Paolo; Kawai, Toshihisa; Willerslev, Eske; von Mering, Christian; Lewis, Cecil M.; Collins, Matthew J.; Gilbert, M. Thomas P.; Rühli, Frank; Cappellini, Enrico

    2014-01-01

    Calcified dental plaque (dental calculus) preserves for millennia and entraps biomolecules from all domains of life and viruses. We report the first high-resolution taxonomic and protein functional characterization of the ancient oral microbiome and demonstrate that the oral cavity has long served as a reservoir for bacteria implicated in both local and systemic disease. We characterize: (i) the ancient oral microbiome in a diseased state, (ii) 40 opportunistic pathogens, (iii) the first evidence of ancient human-associated putative antibiotic resistance genes, (iv) a genome reconstruction of the periodontal pathogen Tannerella forsythia, (v) 239 bacterial and 43 human proteins, allowing confirmation of a long-term association between host immune factors, “red-complex” pathogens, and periodontal disease, and (vi) DNA sequences matching dietary sources. Directly datable and nearly ubiquitous, dental calculus permits the simultaneous investigation of pathogen activity, host immunity, and diet, thereby extending the direct investigation of common diseases into the human evolutionary past. PMID:24562188

  19. Epidemiological importance of humans and domestic animals as reservoirs of verocytotoxin-producing Escherichia coli

    Directory of Open Access Journals (Sweden)

    Lazić Srđan

    2006-01-01

    Full Text Available Background/Aim. A "new" pathogenic agent, verocytotoxin - producing Escherichia coli (VTEC emerged in the last 20 years, causing an increased number of sporadic cases, as well as of outbreaks of diarrhoeal diseases. Humans and animals can be infected with VTEC, but their epidemiological importance as a reservoir of this agent is not quite clear, especially in the Balkan region. Therefore, the aim of this study was to investigate the frequency of isolation of VTEC from the intestinal tract of humans and animals and to determine the serogroups of the isolated strains. Methods. A total of, 3 401 stool samples from humans and 2 660 samples from five different species of domestic animals were tested for the presence of this pathogen. Results. VTEC was isolated from 20 (0.6% humans stools and from 431 (16.2% animal fecal samples (p < 0.001. Only 15 (3.3% VTEC strains belonged to human infection-associated serogroups (O26, O55, O111, O128 and O 157, designated as enterohaemorrhagic E. coli (EHEC. The most known serogroup- O157 was identified in 6 (1.3% of the isolated VTEC strains; of them, 1 (5% was of human origin and 5 (1.2% were animal strains. Conclusion. This study revealed that domestic animals were a more important reservoir of VTEC than humans, and that the isolated VTEC strains rarely belonged to O157, as well as to other EHEC serogroups that might explain rare sporadic cases and the absence of epidemic occurrence of diarrhoeal diseases caused by VTEC in this geographic region.

  20. Analyzing indicator microorganisms, antibiotic resistant Escherichia coli, and regrowth potential of foodborne pathogens in various organic fertilizers.

    Science.gov (United States)

    Miller, Cortney; Heringa, Spencer; Kim, Jinkyung; Jiang, Xiuping

    2013-06-01

    This study analyzed various organic fertilizers for indicator microorganisms, pathogens, and antibiotic-resistant Escherichia coli, and evaluated the growth potential of E. coli O157:H7 and Salmonella in fertilizers. A microbiological survey was conducted on 103 organic fertilizers from across the United States. Moisture content ranged from approximately 1% to 86.4%, and the average pH was 7.77. The total aerobic mesophiles ranged from approximately 3 to 9 log colony-forming units (CFU)/g. Enterobacteriaceae populations were in the range of fertilizer, respectively, whereas E. coli O157:H7 grew approximately 4.6, 4.0, 4.0, and 4.8 log CFU/g, respectively. Our results revealed that the microbiological quality of organic fertilizers varies greatly, with some fertilizers containing antibiotic resistant E. coli and a few supporting the growth of foodborne pathogens after reintroduction into the fertilizer.

  1. Studies on occurrence, characterisation and decontamination of emerging pathogenic Escherichia coli (STEC, ETEC and EIEC) in table eggs.

    Science.gov (United States)

    Vinayananda, C O; Fairoze, Nadeem; Madhavaprasad, C B; Byregowda, S M; Nagaraj, C S; Bagalkot, Prashanth; Karabasanavar, Nagappa

    2017-12-01

    1. Escherichia coli is one of the most common facultative anaerobic species present in the gastrointestinal tract of animals and human beings. Usually they occur as commensals, but some serotypes can cause significant illnesses in humans as well as mammals and birds. 2. The occurrence of E. coli in different categories of table eggs collected from markets was evaluated. Isolates were analysed for the presence of virulence genes, antibiotic susceptibility pattern and efficacy of peracetic acid and chlorine for the purpose of decontaminating table eggs. 3. Significant differences were observed in the occurrence of E. coli between different groups viz. processed (cleaned, washed, sanitised and packed eggs), unprocessed (un-cleaned, un-sanitised and loose eggs) and free range (eggs obtained from backyard poultry) table eggs. Overall, E. coli occurred in table eggs at 28.6% with 22.9, 29.2 and 50.0% occurrence in processed, unprocessed and free-range table eggs, respectively. 4. A total of 24 isolates of E. coli were obtained and screened for virulence genes viz. STH, SLT1/2 and INVE genes. Of the 24 isolates recovered, 10 typeable isolates belonged to O141, O119, O9, O120 and O101 serotypes, while the remaining 14 were untypeable. Antibiograms of the isolates showed multiple antimicrobial resistance (MAR) index in the range of 0.13-0.40. 5. Peracetic acid (PAA) and chlorine (CL) were studied for their sanitisation efficacy; concentrations of 100 mg/kg of PAA and 200 mg/kg of CL completely inactivated E. coli over the egg surface and also resulted in 2.58 and 2.38 log reduction in total viable counts (TVC), respectively. 6. The presence of virulence-associated shiga-like toxin (SLT1/2) and invasion E (INVE) genes and antimicrobial resistance among the emerging serotypes of pathogenic E. coli isolated from table eggs has public health implications. It underscores the need to implement better management practices across the production systems and marketing channels to

  2. Principales características y diagnóstico de los grupos patógenos de Escherichia coli Diagnosis and main characteristics of Escherichia coli pathogenic groups

    Directory of Open Access Journals (Sweden)

    Guadalupe Rodríguez-Angeles

    2002-09-01

    Full Text Available Escherichia coli coloniza el intestino del hombre pocas horas después del nacimiento y se considera de flora normal, pero hay descritos seis grupos de E. coli productora de diarrea: enterotoxigénica (ETEC, enterohemorrágica (EHEC, enteroinvasiva (EIEC, enteropatógena (EPEC, enteroagregativa (EAEC y de adherencia difusa (DAEC. La bacteria se puede aislar e identificar tradicionalmente con base en sus características bioquímicas o serológicas, pero también se pueden estudiar sus mecanismos de patogenicidad mediante ensayos en cultivos celulares o modelos animales y, más recientemente, empleando técnicas de biología molecular que evidencian la presencia de genes involucrados en dichos mecanismos. La intención del presente trabajo es resaltar la importancia del estudio y diagnóstico de E. coli como patógeno capaz de causar casos aislados o brotes de diarrea, síndrome urémico hemolítico, colitis hemorrágica y cuadros de disentería, principalmente en niños; por esto es necesario conocer mejor a la bacteria y mantener la vigilancia epidemiológica.Escherichia coli colonizes the human intestinal tract within hours of birth and is considered a non-pathogenic member of the normal intestinal flora. However, there are six pathogenic groups that may produce diarrhea: enterotoxigenic (ETEC, enterohemorrhagic (EHEC, enteroinvasive (EIEC, enteropathogenic (EPEC, enteroaggregative (EAEC and diffusely adherent (DAEC groups. E. coli can be isolated and classified using traditional methods, by identifying its biochemical or serum characteristics. The pathogenic mechanisms may be studied in cell cultures and animal model assays, as well as more up to date molecular biology methods for study and diagnosis. The latter have proven that genes are involved in pathogenesis. The objective of the present work is to draw attention to the importance of E. coli as a pathogenic organism. This microorganism is an etiologic agent of sporadic cases of diarrhea

  3. Expression of fully functional tetrameric human hemoglobin in Escherichia coli

    International Nuclear Information System (INIS)

    Hoffman, S.J.; Looker, D.L.; Roehrich, J.M.; Cozart, P.E.; Durfee, S.L.; Tedesco, J.L.; Stetler, G.L.

    1990-01-01

    Synthesis genes encoding the human α- and β-globin polypeptides have been expressed from a single operon in Escherichia coli. The α- and β-globin polypeptides associate into soluble tetramers, incorporate heme, and accumulate to >5% of the total cellular protein. Purified recombinant hemoglobin has the correct stoichiometry of α- and β-globin chains and contains a full complement of heme. Each globin chain also contains an additional methionine as an extension to the amino terminus. The recombinant hemoglobin has a C 4 reversed-phase HPLC profile essentially identical to that of human hemoglobin A 0 and comigrates with hemoglobin A 0 on SDS/PAGE. The visible spectrum and oxygen affinity are similar to that of native human hemoglobin A 0 . The authors have also expressed the α- and β-globin genes separately and found that the expression of the α-globin gene alone results in a marked decrease in the accumulation of α-globin in the cell. Separate expression of the β-globin gene results in high levels of insoluble β-globin. These observations suggest that the presence of α- and β-globin in the same cell stabilizes α-globin and aids the correct folding of β-globin. This system provides a simple method for expressing large quantities of recombinant hemoglobin and allows facile manipulation of the genes encoding hemoglobin to produce functionally altered forms of this protein

  4. The membrane transporter PotE is required for virulence in avian pathogenic Escherichia coli (APEC)

    DEFF Research Database (Denmark)

    Guerra, Priscila Regina; Herrero-Fresno, Ana; Pors, Susanne Elisabeth

    2018-01-01

    Over the last few years, polyamines have been described as key-signal of virulence in pathogenic bacteria. In the current study, we investigated whether the knockout of genes related to polyamine biosynthesis and putrescine transport affected the virulence of an avian pathogenic E. coli (APEC...

  5. Gold Nanoparticles: An Efficient Antimicrobial Agent against Enteric Bacterial Human Pathogen

    Directory of Open Access Journals (Sweden)

    Shahzadi Shamaila

    2016-04-01

    Full Text Available Enteric bacterial human pathogens, i.e., Escherichia coli, Staphylococcus aureus, Bacillus subtilis and Klebsiella pneumoniae, are the major cause of diarrheal infections in children and adults. Their structure badly affects the human immune system. It is important to explore new antibacterial agents instead of antibiotics for treatment. This project is an attempt to explain how gold nanoparticles affect these bacteria. We investigated the important role of the mean particle size, and the inhibition of a bacterium is dose-dependent. Ultra Violet (UV-visible spectroscopy revealed the size of chemically synthesized gold nanoparticle as 6–40 nm. Atomic force microscopy (AFM analysis confirmed the size and X-ray diffractometry (XRD analysis determined the polycrystalline nature of gold nanoparticles. The present findings explained how gold nanoparticles lyse Gram-negative and Gram-positive bacteria.

  6. Pathogens and host immunity in the ancient human oral cavity

    DEFF Research Database (Denmark)

    Warinner, Christina; Rodrigues, João F Matias; Vyas, Rounak

    2014-01-01

    Calcified dental plaque (dental calculus) preserves for millennia and entraps biomolecules from all domains of life and viruses. We report the first, to our knowledge, high-resolution taxonomic and protein functional characterization of the ancient oral microbiome and demonstrate that the oral...... cavity has long served as a reservoir for bacteria implicated in both local and systemic disease. We characterize (i) the ancient oral microbiome in a diseased state, (ii) 40 opportunistic pathogens, (iii) ancient human-associated putative antibiotic resistance genes, (iv) a genome reconstruction...... calculus permits the simultaneous investigation of pathogen activity, host immunity and diet, thereby extending direct investigation of common diseases into the human evolutionary past....

  7. Survival of pathogenic and lactobacilli species of fermented olives during simulated human digestion.

    Science.gov (United States)

    Arroyo-López, Francisco N; Blanquet-Diot, Stéphanie; Denis, Sylvain; Thévenot, Jonathan; Chalancon, Sandrine; Alric, Monique; Rodríguez-Gómez, Francisco; Romero-Gil, Verónica; Jiménez-Díaz, Rufino; Garrido-Fernández, Antonio

    2014-01-01

    The present survey uses a dynamic gastric and small intestinal model to assess the survival of one pathogenic (Escherichia coli O157:H7 EDL 933) and three lactobacilli bacteria with probiotic potential (Lactobacillus rhamnosus GG, L. pentosus TOMC-LAB2, and L. pentosus TOMC-LAB4) during their passage through the human gastrointestinal tract using fermented olives as the food matrix. The data showed that the survival of the E. coli strain in the stomach and duodenum was very low, while its transit through the distal parts (jejunum and ileum) resulted in an increase in the pathogen population. The production of Shiga toxins by this enterohemorrhagic microorganism in the ileal effluents of the in vitro system was too low to be detected by ELISA assays. On the contrary, the three lactobacilli species assayed showed a considerable resistance to the gastric digestion, but not to the intestinal one, which affected their survival, and was especially evident in the case of both L. pentosus strains. In spite of this, high population levels for all assayed microorganisms were recovered at the end of the gastrointestinal passage. The results obtained in the present study show the potential use of table olives as a vehicle of beneficial microorganisms to the human body, as well as the need for good hygienic practices on the part of olive manufacturers in order to avoid the possibility of contamination by food-borne pathogens.

  8. Survival of pathogenic and lactobacilli species of fermented olives during simulated human digestion

    Directory of Open Access Journals (Sweden)

    Francisco Noé eArroyo López

    2014-10-01

    Full Text Available The present survey uses a dynamic gastric and small intestinal model to assess the survival of one pathogenic (Escherichia coli O157:H7 EDL 933 and three lactobacilli bacteria with probiotic potential (Lactobacillus rhamnosus GG, Lactobacillus pentosus TOMC-LAB2 and Lactobacillus pentosus TOMC-LAB4 during their passage through the human gastrointestinal tract using fermented olives as the food matrix. The data showed that the survival of the E. coli strain in the stomach and duodenum was very low, while its transit through the distal parts (jejunum and ileum resulted in an increase in the pathogen population. The production of Shiga toxins by this enterohemorrhagic microorganism in the ileal effluents of the in vitro system was too low to be detected by ELISA assays. On the contrary, the three lactobacilli species assayed showed a considerable resistance to the gastric digestion, but not to the intestinal one, which affected their survival, and was especially evident in the case of both L. pentosus strains. In spite of this, high population levels for all assayed microorganisms were recovered at the end of the gastrointestinal passage. The results obtained in the present study show the potential use of table olives as a vehicle of beneficial microorganisms to the human body, as well as the need for good hygienic practices on the part of olive manufacturers in order to avoid the possibility of contamination by food-borne pathogens.

  9. Pathogen Loading From Canada Geese Faeces in Freshwater: Potential Risks to Human Health Through Recreational Water Exposure.

    Science.gov (United States)

    Gorham, T J; Lee, J

    2016-05-01

    Canada geese (Branta canadensis) faeces have been shown to contain pathogenic protozoa and bacteria in numerous studies over the past 15 years. Further, increases in both the Canada geese populations and their ideal habitat requirements in the United States (US) translate to a greater presence of these human pathogens in public areas, such as recreational freshwater beaches. Combining these factors, the potential health risk posed by Canada geese faeces at freshwater beaches presents an emerging public health issue that warrants further study. Here, literature concerning human pathogens in Canada geese faeces is reviewed and the potential impacts these pathogens may have on human health are discussed. Pathogens of potential concern include Campylobacter jejuni, Salmonella Typhimurium, Listeria monocytogenes, Helicobacter canadensis, Arcobacter spp., Enterohemorragic Escherichia coli pathogenic strains, Chlamydia psitacci, Cryptosporidium parvum and Giardia lamblia. Scenarios presenting potential exposure to pathogens eluted from faeces include bathers swimming in lakes, children playing with wet and dry sand impacted by geese droppings and other common recreational activities associated with public beaches. Recent recreational water-associated disease outbreaks in the US support the plausibility for some of these pathogens, including Cryptosporidium spp. and C. jejuni, to cause human illness in this setting. In view of these findings and the uncertainties associated with the real health risk posed by Canada geese faecal pathogens to users of freshwater lakes, it is recommended that beach managers use microbial source tracking and conduct a quantitative microbial risk assessment to analyse the local impact of Canada geese on microbial water quality during their decision-making process in beach and watershed management. © 2015 Blackwell Verlag GmbH.

  10. Prevalence of Avian Pathogenic Escherichia coli (APEC Clone Harboring sfa Gene in Brazil

    Directory of Open Access Journals (Sweden)

    Terezinha Knöbl

    2012-01-01

    Full Text Available Escherichia coli sfa+ strains isolated from poultry were serotyped and characterized by polymerase chain reaction (PCR and amplified fragment length polymorphism (AFLP. Isolates collected from 12 Brazilian poultry farms mostly belonged to serogroup O6, followed by serogroups O2, O8, O21, O46, O78, O88, O106, O111, and O143. Virulence genes associated were: iuc 90%, fim 86% neuS 60%, hly 34%, tsh 28%, crl/csg 26%, iss 26%, pap 18%, and 14% cnf. Strains from the same farm presented more than one genotypic pattern belonging to different profiles in AFLP. AFLP showed a clonal relation between Escherichia coli sfa+ serogroup O6. The virulence genes found in these strains reveal some similarity with extraintestinal E. coli (ExPEC, thus alerting for potential zoonotic risk.

  11. An evolutionary analysis of genome expansion and pathogenicity in Escherichia coli

    OpenAIRE

    Bohlin, Jon; Brynildsrud, Ola B; Sekse, Camilla; Snipen, Lars

    2014-01-01

    Background There are several studies describing loss of genes through reductive evolution in microbes, but how selective forces are associated with genome expansion due to horizontal gene transfer (HGT) has not received similar attention. The aim of this study was therefore to examine how selective pressures influence genome expansion in 53 fully sequenced and assembled Escherichia coli strains. We also explored potential connections between genome expansion and the attainment of virulence fa...

  12. Shiga toxin-producing Escherichia coli in humans and the food chain in Bangladesh

    NARCIS (Netherlands)

    Islam, M.A.

    2009-01-01

    Shiga toxin-producing Escherichia coli (STEC) are significant pathogenic bacteria that can cause severe gastrointestinal diseases and also the hemolytic-uremic syndrome. Domestic ruminants appear to be the main reservoirs of these organisms. Although Bangladesh is an endemic zone for diarrhea caused

  13. Isolation of pathogenic Escherichia coli from buffalo meat sold in Parbhani city, Maharashtra, India

    OpenAIRE

    M. S. Vaidya; N. M. Markandeya; R. N. Waghamare; C. S. Shekh; V. V. Deshmukh

    2013-01-01

    Aim: Isolation, characterization, in-vitro pathogenicity and antibiogram study of E.coli from buffalo meat sold in Parbhani city. Materials and Methods: Meat samples were collected from buffalo immediately after slaughter. Isolation, identification and enumeration of E. coli were done by following standard methods and protocols. Hemolysin test and Congo red binding assay were used to study in-vitro pathogenicity of E. coli isolates. Disc diffusion method was used to study antibiogram of patho...

  14. Human Fungal Pathogens of Mucorales and Entomophthorales.

    Science.gov (United States)

    Mendoza, Leonel; Vilela, Raquel; Voelz, Kerstin; Ibrahim, Ashraf S; Voigt, Kerstin; Lee, Soo Chan

    2014-11-06

    In recent years, we have seen an increase in the number of immunocompromised cohorts as a result of infections and/or medical conditions, which has resulted in an increased incidence of fungal infections. Although rare, the incidence of infections caused by fungi belonging to basal fungal lineages is also continuously increasing. Basal fungal lineages diverged at an early point during the evolution of the fungal lineage, in which, in a simplified four-phylum fungal kingdom, Zygomycota and Chytridiomycota belong to the basal fungi, distinguishing them from Ascomycota and Basidiomycota. Currently there are no known human infections caused by fungi in Chytridiomycota; only Zygomycotan fungi are known to infect humans. Hence, infections caused by zygomycetes have been called zygomycosis, and the term "zygomycosis" is often used as a synonym for "mucormycosis." In the four-phylum fungal kingdom system, Zygomycota is classified mainly based on morphology, including the ability to form coenocytic (aseptated) hyphae and zygospores (sexual spores). In the Zygomycota, there are 10 known orders, two of which, the Mucorales and Entomophthorales, contain species that can infect humans, and the infection has historically been known as zygomycosis. However, recent multilocus sequence typing analyses (the fungal tree of life [AFTOL] project) revealed that the Zygomycota forms not a monophyletic clade but instead a polyphyletic clade, whereas Ascomycota and Basidiomycota are monophyletic. Thus, the term "zygomycosis" needed to be further specified, resulting in the terms "mucormycosis" and "entomophthoramycosis." This review covers these two different types of fungal infections. Copyright © 2015 Cold Spring Harbor Laboratory Press; all rights reserved.

  15. Presence and Characterization of Extraintestinal Pathogenic Escherichia coli Virulence Genes in F165-Positive E. coli Strains Isolated from Diseased Calves and Pigs

    OpenAIRE

    Dezfulian, Hojabr; Batisson, Isabelle; Fairbrother, John M.; Lau, Peter C. K.; Nassar, Atef; Szatmari, George; Harel, Josée

    2003-01-01

    The virulence genotype profile and presence of a pathogenicity island(s) (PAI) were studied in 18 strains of F165-positive Escherichia coli originally isolated from diseased calves or piglets. On the basis of their adhesion phenotypes and genotypes, these extraintestinal pathogenic strains were classified into three groups. The F165 fimbrial complex consists of at least two serologically and genetically distinct fimbriae: F1651 and F1652. F1651 is encoded by the foo operon (pap-like), and F16...

  16. ISOLATION AND MOLECULAR IDENTIFICATION OF POTENTIALLY PATHOGENIC Escherichia coli AND Campylobacter jejuni IN FERAL PIGEONS FROM AN URBAN AREA IN THE CITY OF LIMA, PERU

    Science.gov (United States)

    CABALLERO, Moisés; RIVERA, Isabel; JARA, Luis M.; ULLOA-STANOJLOVIC, Francisco M.; SHIVA, Carlos

    2015-01-01

    SUMMARY Feral pigeons (Columbia livia) live in close contact with humans and other animals. They can transmit potentially pathogenic and zoonotic agents. The objective of this study was to isolate and detect strains of diarrheagenic Escherichia coli and Campylobacter jejuni of urban feral pigeons from an area of Lima, Peru. Fresh dropping samples from urban parks were collected for microbiological isolation of E. coli strains in selective agar, and Campylobacter by filtration method. Molecular identification of diarrheagenic pathotypes of E.coli and Campylobacter jejuni was performed by PCR. Twenty-two parks were sampled and 16 colonies of Campylobacter spp. were isolated. The 100% of isolates were identified as Campylobacter jejuni. Furthermore, 102 colonies of E. coliwere isolated and the 5.88% resulted as Enteropathogenic (EPEC) type and 0.98% as Shiga toxin-producing E. coli (STEC). The urban feral pigeons of Lima in Peru can act as a reservoir or carriers of zoonotic potentially pathogenic enteric agents. PMID:26603225

  17. Human pathogens in plant biofilms: Formation, physiology, and detection

    Science.gov (United States)

    Fresh produce, viewed as an essential part of a healthy life style is usually consumed in the form of raw or minimally processed fruits and vegetables, and is a potentially important source of food-borne human pathogenic bacteria and viruses. These are passed on to the consumer since the bacteria ca...

  18. Natural soil reservoirs for human pathogenic and fecal indicator bacteria

    Science.gov (United States)

    Boschiroli, Maria L; Falkinham, Joseph; Favre-Bonte, Sabine; Nazaret, Sylvie; Piveteau, Pascal; Sadowsky, Michael J.; Byappanahalli, Muruleedhara; Delaquis, Pascal; Hartmann, Alain

    2016-01-01

    Soils receive inputs of human pathogenic and indicator bacteria through land application of animal manures or sewage sludge, and inputs by wildlife. Soil is an extremely heterogeneous substrate and contains meso- and macrofauna that may be reservoirs for bacteria of human health concern. The ability to detect and quantify bacteria of human health concern is important in risk assessments and in evaluating the efficacy of agricultural soil management practices that are protective of crop quality and protective of adjacent water resources. The present chapter describes the distribution of selected Gram-positive and Gram-negative bacteria in soils. Methods for detecting and quantifying soilborne bacteria including extraction, enrichment using immunomagnetic capture, culturing, molecular detection and deep sequencing of metagenomic DNA to detect pathogens are overviewed. Methods for strain phenotypic and genotypic characterization are presented, as well as how comparison with clinical isolates can inform the potential for human health risk.

  19. Fate of naturally occurring Escherichia coli O157:H7 and other zoonotic pathogens during minimally managed bovine feedlot manure composting processes

    Science.gov (United States)

    Reducing Escherichia coli O157:H7 in livestock manures before application to cropland is critical for reducing the risk of foodborne illness associated with produce. Our objective was to determine the fate of naturally occurring E. coli O157:H7 and other pathogens during minimally managed on-farm bo...

  20. Comparative genomics and the evolution of pathogenicity in human pathogenic fungi.

    LENUS (Irish Health Repository)

    Moran, Gary P

    2011-01-01

    Because most fungi have evolved to be free-living in the environment and because the infections they cause are usually opportunistic in nature, it is often difficult to identify specific traits that contribute to fungal pathogenesis. In recent years, there has been a surge in the number of sequenced genomes of human fungal pathogens, and comparison of these sequences has proved to be an excellent resource for exploring commonalities and differences in how these species interact with their hosts. In order to survive in the human body, fungi must be able to adapt to new nutrient sources and environmental stresses. Therefore, genes involved in carbohydrate and amino acid metabolism and transport and genes encoding secondary metabolites tend to be overrepresented in pathogenic species (e.g., Aspergillus fumigatus). However, it is clear that human commensal yeast species such as Candida albicans have also evolved a range of specific factors that facilitate direct interaction with host tissues. The evolution of virulence across the human pathogenic fungi has occurred largely through very similar mechanisms. One of the most important mechanisms is gene duplication and the expansion of gene families, particularly in subtelomeric regions. Unlike the case for prokaryotic pathogens, horizontal transfer of genes between species and other genera does not seem to have played a significant role in the evolution of fungal virulence. New sequencing technologies promise the prospect of even greater numbers of genome sequences, facilitating the sequencing of multiple genomes and transcriptomes within individual species, and will undoubtedly contribute to a deeper insight into fungal pathogenesis.

  1. Comparative genomic analysis shows that avian pathogenic Escherichia coli isolate IMT5155 (O2:K1:H5; ST complex 95, ST140 shares close relationship with ST95 APEC O1:K1 and human ExPEC O18:K1 strains.

    Directory of Open Access Journals (Sweden)

    Xiangkai Zhu Ge

    Full Text Available Avian pathogenic E. coli and human extraintestinal pathogenic E. coli serotypes O1, O2 and O18 strains isolated from different hosts are generally located in phylogroup B2 and ST complex 95, and they share similar genetic characteristics and pathogenicity, with no or minimal host specificity. They are popular objects for the study of ExPEC genetic characteristics and pathogenesis in recent years. Here, we investigated the evolution and genetic blueprint of APEC pathotype by performing phylogenetic and comparative genome analysis of avian pathogenic E. coli strain IMT5155 (O2:K1:H5; ST complex 95, ST140 with other E. coli pathotypes. Phylogeny analyses indicated that IMT5155 has closest evolutionary relationship with APEC O1, IHE3034, and UTI89. Comparative genomic analysis showed that IMT5155 and APEC O1 shared significant genetic overlap/similarities with human ExPEC dominant O18:K1 strains (IHE3034 and UTI89. Furthermore, the unique PAI I5155 (GI-12 was identified and found to be conserved in APEC O2 serotype isolates. GI-7 and GI-16 encoding two typical T6SSs in IMT5155 might be useful markers for the identification of ExPEC dominant serotypes (O1, O2, and O18 strains. IMT5155 contained a ColV plasmid p1ColV5155, which defined the APEC pathotype. The distribution analysis of 10 sequenced ExPEC pan-genome virulence factors among 47 sequenced E. coli strains provided meaningful information for B2 APEC/ExPEC-specific virulence factors, including several adhesins, invasins, toxins, iron acquisition systems, and so on. The pathogenicity tests of IMT5155 and other APEC O1:K1 and O2:K1 serotypes strains (isolated in China through four animal models showed that they were highly virulent for avian colisepticemia and able to cause septicemia and meningitis in neonatal rats, suggesting zoonotic potential of these APEC O1:K1 and O2:K1 isolates.

  2. Impacts of Verotoxigenic and Enterohaemorrhagic Escherichia Coli (Vtec and Ehec on Animal, Human and Food

    Directory of Open Access Journals (Sweden)

    Widodo Suwito

    2009-06-01

    Full Text Available Verotoxigenic and enterohaemorrhagic Escherichia coli, VTEC and EHEC are strains that produce a toxin on the Vero cells in vitro, therefore the toxin called verotoxin. Strain VTEC and EHEC have been isolated from human and various animal species, mainly ruminants and pigs. The prevalence of VTEC in cattle is 35%, milk 10%, cheese 1.5%. In beef meat, pork, poultry, goat and sheep is 3.7, 1.5, 1.5, 2 and 2.5%, respectively. In contrast, the human prevalence in United States, Spain and France 5 – 10, 2.5 and 3.4%, respectively. In Indonesia, nine cases of VTEC were reported by Ciptomangunkusumo Hospital and four out of nine cases were died. The verotoxin also named Shiga toxins (Stx, is active in vivo as a pathogen on the endothelial cells of the blood vessels of the gastro intestinal mucosa, kidneys, brain and other tissues of human and piglets. Verotoxin in human, ruminants and piglets causes bloody diarrhea so with ruminants. In the adult ruminants, verotoxin results in clinical signs and they act as asymptomatic carriers of VTEC and EHEC strains but in human, it produced haemorrhagic colitis (HC, haemolytic uremic syndrome (HUS and thrombocytopenia purpura (TPP. Infection in human by the most famous EHEC strain belongs to the O157:H7 serotype, through faecal contamination or environment of either food of animal origin, or other foodstuffs (fruits and vegetables. Infection from EHEC strains could be prevented by avoiding food of animal origin and unpasteurized milk, and by taking care of food hygiene for comsumption.

  3. Human pathogenic bacteria, fungi, and viruses in Drosophila

    Science.gov (United States)

    Panayidou, Stavria; Ioannidou, Eleni; Apidianakis, Yiorgos

    2014-01-01

    Drosophila has been the invertebrate model organism of choice for the study of innate immune responses during the past few decades. Many Drosophila–microbe interaction studies have helped to define innate immunity pathways, and significant effort has been made lately to decipher mechanisms of microbial pathogenesis. Here we catalog 68 bacterial, fungal, and viral species studied in flies, 43 of which are relevant to human health. We discuss studies of human pathogens in flies revealing not only the elicitation and avoidance of immune response but also mechanisms of tolerance, host tissue homeostasis, regeneration, and predisposition to cancer. Prominent among those is the emerging pattern of intestinal regeneration as a defense response induced by pathogenic and innocuous bacteria. Immunopathology mechanisms and many microbial virulence factors have been elucidated, but their relevance to human health conventionally necessitates validation in mammalian models of infection. PMID:24398387

  4. Antibiotic-Resistant Pathogenic Escherichia Coli Isolated from Rooftop Rainwater-Harvesting Tanks in the Eastern Cape, South Africa

    Directory of Open Access Journals (Sweden)

    Mokaba Shirley Malema

    2018-05-01

    Full Text Available Although many developing countries use harvested rainwater (HRW for drinking and other household purposes, its quality is seldom monitored. Continuous assessment of the microbial quality of HRW would ensure the safety of users of such water. The current study investigated the prevalence of pathogenic Escherichia coli strains and their antimicrobial resistance patterns in HRW tanks in the Eastern Cape, South Africa. Rainwater samples were collected weekly between June and September 2016 from 11 tanks in various areas of the province. Enumeration of E. coli was performed using the Colilert®18/Quanti-Tray® 2000 method. E. coli isolates were obtained and screened for their virulence potentials using polymerase chain reaction (PCR, and subsequently tested for antibiotic resistance using the disc-diffusion method against 11 antibiotics. The pathotype most detected was the neonatal meningitis E. coli (NMEC (ibeA 28% while pathotype enteroaggregative E. coli (EAEC was not detected. The highest resistance of the E. coli isolates was observed against Cephalothin (76%. All tested pathotypes were susceptible to Gentamicin, and 52% demonstrated multiple-antibiotic resistance (MAR. The results of the current study are of public health concern since the use of untreated harvested rainwater for potable purposes may pose a risk of transmission of pathogenic and antimicrobial-resistant E. coli.

  5. Antibiotic-Resistant Pathogenic Escherichia Coli Isolated from Rooftop Rainwater-Harvesting Tanks in the Eastern Cape, South Africa.

    Science.gov (United States)

    Malema, Mokaba Shirley; Abia, Akebe Luther King; Tandlich, Roman; Zuma, Bonga; Mwenge Kahinda, Jean-Marc; Ubomba-Jaswa, Eunice

    2018-05-01

    Although many developing countries use harvested rainwater (HRW) for drinking and other household purposes, its quality is seldom monitored. Continuous assessment of the microbial quality of HRW would ensure the safety of users of such water. The current study investigated the prevalence of pathogenic Escherichia coli strains and their antimicrobial resistance patterns in HRW tanks in the Eastern Cape, South Africa. Rainwater samples were collected weekly between June and September 2016 from 11 tanks in various areas of the province. Enumeration of E. coli was performed using the Colilert ® 18/Quanti-Tray ® 2000 method. E. coli isolates were obtained and screened for their virulence potentials using polymerase chain reaction (PCR), and subsequently tested for antibiotic resistance using the disc-diffusion method against 11 antibiotics. The pathotype most detected was the neonatal meningitis E. coli (NMEC) ( ibeA 28%) while pathotype enteroaggregative E. coli (EAEC) was not detected. The highest resistance of the E. coli isolates was observed against Cephalothin (76%). All tested pathotypes were susceptible to Gentamicin, and 52% demonstrated multiple-antibiotic resistance (MAR). The results of the current study are of public health concern since the use of untreated harvested rainwater for potable purposes may pose a risk of transmission of pathogenic and antimicrobial-resistant E. coli.

  6. Escherichia coli O157:H7: Animal Reservoir and Sources of Human Infection

    Science.gov (United States)

    Ferens, Witold A.

    2011-01-01

    Abstract This review surveys the literature on carriage and transmission of enterohemorrhagic Escherichia coli (EHEC) O157:H7 in the context of virulence factors and sampling/culture technique. EHEC of the O157:H7 serotype are worldwide zoonotic pathogens responsible for the majority of severe cases of human EHEC disease. EHEC O157:H7 strains are carried primarily by healthy cattle and other ruminants, but most of the bovine strains are not transmitted to people, and do not exhibit virulence factors associated with human disease. Prevalence of EHEC O157:H7 is probably underestimated. Carriage of EHEC O157:H7 by individual animals is typically short-lived, but pen and farm prevalence of specific isolates may extend for months or years and some carriers, designated as supershedders, may harbor high intestinal numbers of the pathogen for extended periods. The prevalence of EHEC O157:H7 in cattle peaks in the summer and is higher in postweaned calves and heifers than in younger and older animals. Virulent strains of EHEC O157:H7 are rarely harbored by pigs or chickens, but are found in turkeys. The bacteria rarely occur in wildlife with the exception of deer and are only sporadically carried by domestic animals and synanthropic rodents and birds. EHEC O157:H7 occur in amphibian, fish, and invertebrate carriers, and can colonize plant surfaces and tissues via attachment mechanisms different from those mediating intestinal attachment. Strains of EHEC O157:H7 exhibit high genetic variability but typically a small number of genetic types predominate in groups of cattle and a farm environment. Transmission to people occurs primarily via ingestion of inadequately processed contaminated food or water and less frequently through contact with manure, animals, or infected people. PMID:21117940

  7. Immunoglobulin gene usage in the human anti-pathogen response.

    Science.gov (United States)

    Newkirk, M M; Rioux, J D

    1995-09-01

    The human antibody response to foreign pathogens is generated to a relatively small number of target surface proteins and carbohydrates that nonetheless have an extensive array of epitopes. The study of human monoclonal antibodies to different pathogens shows that there are a diversity of mechanisms used to generate a sufficient repertoire of antibodies to combat the invading pathogens. Although many different immunoglobulin gene elements are used to construct the anti-pathogen response, some elements are used more often than would be expected if all elements were used randomly. For example, the immune response to Haemophilus influenzae polysaccharide appears to be quite narrow, being restricted primarily to a specific heavy-chain gene, 3-15, and a lambda light-chain family II member, 4A. In contrast, for the immune response to cytomegalovirus proteins, a wider group of gene elements is needed. It is also surprising that despite an investigator bias for IgG- rather than IgM-secreting immortal B cells (because of their high affinity and neutralizing abilities), 26% of light chains and 13% of heavy chains showed a very low level of somatic mutation, equivalent to an IgM molecule that has not undergone affinity maturation. Although some highly mutated IgG molecules are present in the anti-pathogen response, most of the monoclonal antibodies specific for viruses or bacteria have a level of somatic hypermutation similar to that of the adult IgM repertoire. A number of studies have shown that there are similarities in the antibody responses to pathogens and to self (autoantibodies).(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Extracellular proteolytic enzymes produced by human pathogenic Vibrio species

    Directory of Open Access Journals (Sweden)

    Shin-Ichi eMiyoshi

    2013-11-01

    Full Text Available Bacteria in the genus Vibrio produce extracellular proteolytic enzymes to obtain nutrients via digestion of various protein substrates. However, the enzymes secreted by human pathogenic species have been documented to modulate the bacterial virulence. Several species including Vibrio cholerae and V. vulnificus are known to produce thermolysin-like metalloproteases termed vibriolysin. The vibriolysin from V. vulnificus, a causative agent of serious systemic infection, is a major toxic factor eliciting the secondary skin damage characterized by formation of the hemorrhagic brae. The vibriolysin from intestinal pathogens may play indirect roles in pathogenicity because it can activate protein toxins and hemagglutinin by the limited proteolysis and can affect the bacterial attachment to or detachment from the intestinal surface by degradation of the mucus layer. Two species causing wound infections, V. alginolyticus and V. parahaemolyticus, produce another metalloproteases so-called collagenases. Although the detailed pathological roles have not been studied, the collagenase is potent to accelerate the bacterial dissemination through digestion of the protein components of the extracellular matrix. Some species produce cymotrypsin-like serine proteases, which may also affect the bacterial virulence potential. The intestinal pathogens produce sufficient amounts of the metalloprotease at the small intestinal temperature; however, the metalloprotease production by extra-intestinal pathogens is much higher around the body surface temperature. On the other hand, the serine protease is expressed only in the absence of the metalloprotease.

  9. Cladophora (Chlorophyta) spp. harbor human bacterial pathogens in nearshore water of Lake Michigan

    Science.gov (United States)

    Ishii, S.; Yan, T.; Shively, D.A.; Byappanahalli, M.N.; Whitman, R.L.; Sadowsky, M.J.

    2006-01-01

    Cladophora glomerata, a macrophytic green alga, is commonly found in the Great Lakes, and significant accumulations occur along shorelines during the summer months. Recently, Cladophora has been shown to harbor high densities of the fecal indicator bacteria Escherichia coli and enterococci. Cladophora may also harbor human pathogens; however, until now, no studies to address this question have been performed. In the present study, we determined whether attachedCladophora, obtained from the Lake Michigan and Burns Ditch (Little Calumet River, Indiana) sides of a breakwater during the summers of 2004 and 2005, harbored the bacterial pathogens Shiga toxin-producing Escherichia coli (STEC),Salmonella, Shigella, and Campylobacter. The presence of potential pathogens and numbers of organisms were determined by using cultural methods and by using conventional PCR, most-probable-number PCR (MPN-PCR), and quantitative PCR (QPCR) performed with genus- and toxin-specific primers and probes. WhileShigella and STEC were detected in 100% and 25%, respectively, of the algal samples obtained near Burns Ditch in 2004, the same pathogens were not detected in samples collected in 2005. MPN-PCR and QPCR allowed enumeration of Salmonella in 40 to 80% of the ditch- and lakeside samples, respectively, and the densities were up to 1.6 × 103 cells per g Cladophora. Similarly, these PCR methods allowed enumeration of up to 5.4 × 102 Campylobacter cells/gCladophora in 60 to 100% of lake- and ditchside samples. The Campylobacterdensities were significantly higher (P fingerprint analyses indicated that genotypically identical Salmonella isolates were associated with geographically and temporally distinct Cladophora samples. However, Campylobacter isolates were genetically diverse. Since animal hosts are thought to be the primary habitat forCampylobacter and Salmonella species, our results suggest that Cladophora is a likely secondary habitat for pathogenic

  10. Cladophora (Chlorophyta) spp. Harbor Human Bacterial Pathogens in Nearshore Water of Lake Michigan†

    Science.gov (United States)

    Ishii, Satoshi; Yan, Tao; Shively, Dawn A.; Byappanahalli, Muruleedhara N.; Whitman, Richard L.; Sadowsky, Michael J.

    2006-01-01

    Cladophora glomerata, a macrophytic green alga, is commonly found in the Great Lakes, and significant accumulations occur along shorelines during the summer months. Recently, Cladophora has been shown to harbor high densities of the fecal indicator bacteria Escherichia coli and enterococci. Cladophora may also harbor human pathogens; however, until now, no studies to address this question have been performed. In the present study, we determined whether attached Cladophora, obtained from the Lake Michigan and Burns Ditch (Little Calumet River, Indiana) sides of a breakwater during the summers of 2004 and 2005, harbored the bacterial pathogens Shiga toxin-producing Escherichia coli (STEC), Salmonella, Shigella, and Campylobacter. The presence of potential pathogens and numbers of organisms were determined by using cultural methods and by using conventional PCR, most-probable-number PCR (MPN-PCR), and quantitative PCR (QPCR) performed with genus- and toxin-specific primers and probes. While Shigella and STEC were detected in 100% and 25%, respectively, of the algal samples obtained near Burns Ditch in 2004, the same pathogens were not detected in samples collected in 2005. MPN-PCR and QPCR allowed enumeration of Salmonella in 40 to 80% of the ditch- and lakeside samples, respectively, and the densities were up to 1.6 × 103 cells per g Cladophora. Similarly, these PCR methods allowed enumeration of up to 5.4 × 102 Campylobacter cells/g Cladophora in 60 to 100% of lake- and ditchside samples. The Campylobacter densities were significantly higher (P Cladophora samples than in the ditchside Cladophora samples. DNA fingerprint analyses indicated that genotypically identical Salmonella isolates were associated with geographically and temporally distinct Cladophora samples. However, Campylobacter isolates were genetically diverse. Since animal hosts are thought to be the primary habitat for Campylobacter and Salmonella species, our results suggest that Cladophora is a

  11. Cladophora (Chlorophyta) spp. harbor human bacterial pathogens in nearshore water of Lake Michigan.

    Science.gov (United States)

    Ishii, Satoshi; Yan, Tao; Shively, Dawn A; Byappanahalli, Muruleedhara N; Whitman, Richard L; Sadowsky, Michael J

    2006-07-01

    Cladophora glomerata, a macrophytic green alga, is commonly found in the Great Lakes, and significant accumulations occur along shorelines during the summer months. Recently, Cladophora has been shown to harbor high densities of the fecal indicator bacteria Escherichia coli and enterococci. Cladophora may also harbor human pathogens; however, until now, no studies to address this question have been performed. In the present study, we determined whether attached Cladophora, obtained from the Lake Michigan and Burns Ditch (Little Calumet River, Indiana) sides of a breakwater during the summers of 2004 and 2005, harbored the bacterial pathogens Shiga toxin-producing Escherichia coli (STEC), Salmonella, Shigella, and Campylobacter. The presence of potential pathogens and numbers of organisms were determined by using cultural methods and by using conventional PCR, most-probable-number PCR (MPN-PCR), and quantitative PCR (QPCR) performed with genus- and toxin-specific primers and probes. While Shigella and STEC were detected in 100% and 25%, respectively, of the algal samples obtained near Burns Ditch in 2004, the same pathogens were not detected in samples collected in 2005. MPN-PCR and QPCR allowed enumeration of Salmonella in 40 to 80% of the ditch- and lakeside samples, respectively, and the densities were up to 1.6 x 10(3) cells per g Cladophora. Similarly, these PCR methods allowed enumeration of up to 5.4 x 10(2) Campylobacter cells/g Cladophora in 60 to 100% of lake- and ditchside samples. The Campylobacter densities were significantly higher (P Cladophora samples than in the ditchside Cladophora samples. DNA fingerprint analyses indicated that genotypically identical Salmonella isolates were associated with geographically and temporally distinct Cladophora samples. However, Campylobacter isolates were genetically diverse. Since animal hosts are thought to be the primary habitat for Campylobacter and Salmonella species, our results suggest that Cladophora is a

  12. Pathogen-driven selection in the human genome.

    Science.gov (United States)

    Cagliani, Rachele; Sironi, Manuela

    2013-01-01

    Infectious diseases and epidemics have always accompanied and characterized human history, representing one of the main causes of death. Even today, despite progress in sanitation and medical research, infections are estimated to account for about 15% of deaths. The hypothesis whereby infectious diseases have been acting as a powerful selective pressure was formulated long ago, but it was not until the availability of large-scale genetic data and the development of novel methods to study molecular evolution that we could assess how pervasively infectious agents have shaped human genetic diversity. Indeed, recent evidences indicated that among the diverse environmental factors that acted as selective pressures during the evolution of our species, pathogen load had the strongest influence. Beside the textbook example of the major histocompatibility complex, selection signatures left by pathogen-exerted pressure can be identified at several human loci, including genes not directly involved in immune response. In the future, high-throughput technologies and the availability of genetic data from different populations are likely to provide novel insights into the evolutionary relationships between the human host and its pathogens. Hopefully, this will help identify the genetic determinants modulating the susceptibility to infectious diseases and will translate into new treatment strategies.

  13. Antimicrobial resistance prevalence of pathogenic and commensal Escherichia coli in food-producing animals in Belgium

    OpenAIRE

    Chantziaras, Ilias; Dewulf, Jeroen; Boyen, Filip; Callens, Benedicte; Butaye, Patrick

    2014-01-01

    In this article, detailed studies on antimicrobial resistance to commensal E. coli (in pigs, meat-producing bovines, broiler chickens and veal calves) and pathogenic E. coli (in pigs and bovines) in Belgium are presented for 2011. Broiler chicken and veal calf isolates of commensal E. coli demonstrated higher antimicrobial resistance prevalence than isolates from pigs and bovines. Fifty percent of E. coli isolates from broiler chickens were resistant to at least five antimicrobials, whereas s...

  14. Lectin-Like Molecules of Lactobacillus rhamnosus GG Inhibit Pathogenic Escherichia coli and Salmonella Biofilm Formation

    Science.gov (United States)

    Petrova, Mariya I.; Imholz, Nicole C. E.; Verhoeven, Tine L. A.; Balzarini, Jan; Van Damme, Els J. M.; Schols, Dominique; Vanderleyden, Jos; Lebeer, Sarah

    2016-01-01

    Objectives Increased antibiotic resistance has catalyzed the research on new antibacterial molecules and alternative strategies, such as the application of beneficial bacteria. Since lectin molecules have unique sugar-recognizing capacities, and pathogens are often decorated with sugars that affect their survival and infectivity, we explored whether lectins from the probiotic strain Lactobacillus rhamnosus GG have antipathogenic properties. Methods The genome sequence of L. rhamnosus GG was screened for the presence of lectin-like proteins. Two genes, LGG_RS02780 and LGG_RS02750, encoding for polypeptides with an N-terminal conserved L-type lectin domain were detected and designated Llp1 (lectin-like protein 1) and Llp2. The capacity of Llp1 and Llp2 to inhibit biofilm formation of various pathogens was investigated. Sugar specificity was determined by Sepharose beads assays and glycan array screening. Results The isolated lectin domains of Llp1 and Llp2 possess pronounced inhibitory activity against biofilm formation by various pathogens, including clinical Salmonella species and uropathogenic E. coli, with Llp2 being more active than Llp1. In addition, sugar binding assays with Llp1 and Llp2 indicate specificity for complex glycans. Both proteins are also involved in the adhesion capacity of L. rhamnosus GG to gastrointestinal and vaginal epithelial cells. Conclusions Lectins isolated from or expressed by beneficial lactobacilli could be considered promising bio-active ingredients for improved prophylaxis of urogenital and gastrointestinal infections. PMID:27537843

  15. Lectin-Like Molecules of Lactobacillus rhamnosus GG Inhibit Pathogenic Escherichia coli and Salmonella Biofilm Formation.

    Science.gov (United States)

    Petrova, Mariya I; Imholz, Nicole C E; Verhoeven, Tine L A; Balzarini, Jan; Van Damme, Els J M; Schols, Dominique; Vanderleyden, Jos; Lebeer, Sarah

    2016-01-01

    Increased antibiotic resistance has catalyzed the research on new antibacterial molecules and alternative strategies, such as the application of beneficial bacteria. Since lectin molecules have unique sugar-recognizing capacities, and pathogens are often decorated with sugars that affect their survival and infectivity, we explored whether lectins from the probiotic strain Lactobacillus rhamnosus GG have antipathogenic properties. The genome sequence of L. rhamnosus GG was screened for the presence of lectin-like proteins. Two genes, LGG_RS02780 and LGG_RS02750, encoding for polypeptides with an N-terminal conserved L-type lectin domain were detected and designated Llp1 (lectin-like protein 1) and Llp2. The capacity of Llp1 and Llp2 to inhibit biofilm formation of various pathogens was investigated. Sugar specificity was determined by Sepharose beads assays and glycan array screening. The isolated lectin domains of Llp1 and Llp2 possess pronounced inhibitory activity against biofilm formation by various pathogens, including clinical Salmonella species and uropathogenic E. coli, with Llp2 being more active than Llp1. In addition, sugar binding assays with Llp1 and Llp2 indicate specificity for complex glycans. Both proteins are also involved in the adhesion capacity of L. rhamnosus GG to gastrointestinal and vaginal epithelial cells. Lectins isolated from or expressed by beneficial lactobacilli could be considered promising bio-active ingredients for improved prophylaxis of urogenital and gastrointestinal infections.

  16. Human herpesvirus 8 – A novel human pathogen

    Directory of Open Access Journals (Sweden)

    Edelman Daniel C

    2005-09-01

    Full Text Available Abstract In 1994, Chang and Moore reported on the latest of the gammaherpesviruses to infect humans, human herpesvirus 8 (HHV-8 1. This novel herpesvirus has and continues to present challenges to define its scope of involvement in human disease. In this review, aspects of HHV-8 infection are discussed, such as, the human immune response, viral pathogenesis and transmission, viral disease entities, and the virus's epidemiology with an emphasis on HHV-8 diagnostics.

  17. Application of bacteriophages in post-harvest control of human pathogenic and food spoiling bacteria.

    Science.gov (United States)

    Pérez Pulido, Rubén; Grande Burgos, Maria José; Gálvez, Antonio; Lucas López, Rosario

    2016-10-01

    Bacteriophages have attracted great attention for application in food biopreservation. Lytic bacteriophages specific for human pathogenic bacteria can be isolated from natural sources such as animal feces or industrial wastes where the target bacteria inhabit. Lytic bacteriophages have been tested in different food systems for inactivation of main food-borne pathogens including Listeria monocytogenes, Staphylococcus aureus, Escherichia coli O157:H7, Salmonella enterica, Shigella spp., Campylobacter jejuni and Cronobacter sakazkii, and also for control of spoilage bacteria. Application of lytic bacteriophages could selectively control host populations of concern without interfering with the remaining food microbiota. Bacteriophages could also be applied for inactivation of bacteria attached to food contact surfaces or grown as biofilms. Bacteriophages may receive a generally recognized as safe status based on their lack of toxicity and other detrimental effects to human health. Phage preparations specific for L. monocytogenes, E. coli O157:H7 and S. enterica serotypes have been commercialized and approved for application in foods or as part of surface decontamination protocols. Phage endolysins have a broader host specificity compared to lytic bacteriophages. Cloned endolysins could be used as natural preservatives, singly or in combination with other antimicrobials such as bacteriocins.

  18. Phytochemicals Screening and In Vitro Antibacterial Activity of Elaeis guineensis Leaves Extracts Against Human Pathogenic Bacteria

    International Nuclear Information System (INIS)

    Noorshilawati Abdul Aziz; Umi Nadhirah Halim; Nur Suraya Abdullah

    2015-01-01

    Chloroform and methanol extracts of Elaeis guineensis leaves were investigated for in vitro antibacterial activity against the human pathogenic bacteria Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Four different concentrations of both extracts consists of 50, 100, 200 and 300 mg/ ml were prepared for antibacterial activity using disc diffusion method. The results revealed that chloroform and methonal extract showed high toxicity against all bacterial strain tested. However, both extracts is more effective and exhibit better inhibiting activity against gram positive bacteria, S. aureus compared to gram negative bacteria (E. coli and P. aeruginosa). Methanol extract of Elaeis guineensis leaves shows greater inhibition zone compared to chloroform extract as phyto chemical screening revealed that this extracts contain terpenoids, tannins and saponin. The highest antibacterial activity was exhibited by 300 mg/ ml methanolic extracts against S. aureus which inhibited 10.67 ± 0.33 mm of the diameter zone. Followed by 200 mg/ ml methanolic extracts and 300 mg/ ml chloroform extracts against S. aureus which inhibited 9.17 ± 0.17 mm and 8.33 ± 1.67 mm respectively. This result revealed the potentials of Elaeis guineensis as antibacterial agent in combating infections from human pathogenic bacteria. However, further studies, including identification and purification of the active compounds, will need to be pursued. (author)

  19. Pathogenicity of Virulent Species of Group C Streptococci in Human

    Directory of Open Access Journals (Sweden)

    Marta Kłos

    2017-01-01

    Full Text Available Group C streptococci (GCS are livestock pathogens and they often cause zoonotic diseases in humans. They are Gram-positive, in mostly β-hemolytic and facultative anaerobes. Because of their close evolutionary kinship with group A streptococci (GAS, GCS share many common virulence factors with GAS and cause a similar range of diseases. Due to the exchange of genetic material with GAS, GCS belong to bacteria that are difficult to be distinguished from group A streptococci; GCS are often treated in microbiological diagnostics as contamination of the culture. This report focuses mainly on the pathogenicity of virulent species of GCS and their association with human diseases. The condition that is most frequently quoted is pharyngitis. In this paper, the virulence factors have also been mentioned and an interesting link has been made between GCS and the pathogenesis of rheumatic diseases among the native people of India and Aboriginal populations.

  20. Heterologously expressed bacterial and human multidrug resistance proteins confer cadmium resistance to Escherichia coli

    NARCIS (Netherlands)

    Achard-Joris, M; van Saparoea, HBV; Driessen, AJM; Bourdineaud, JP; Bourdineaud, Jean-Paul

    2005-01-01

    The human MDR1 gene is induced by cadmium exposure although no resistance to this metal is observed in human cells overexpressing hMDR1. To access the role of MDR proteins in cadmium resistance, human MDR1, Lactococcus lactis lmrA, and Oenococcus oeni omrA were expressed in an Escherichia coli tolC

  1. Coating of silicone with mannoside-PAMAM dendrimers to enhance formation of non-pathogenic Escherichia coli biofilms against colonization of uropathogens.

    Science.gov (United States)

    Zhu, Zhiling; Yu, Fei; Chen, Haoqing; Wang, Jun; Lopez, Analette I; Chen, Quan; Li, Siheng; Long, Yuyu; Darouiche, Rabih O; Hull, Richard A; Zhang, Lijuan; Cai, Chengzhi

    2017-12-01

    Bacterial interference using non-pathogenic Escherichia coli 83972 is a novel strategy for preventing catheter-associated urinary tract infection (CAUTI). Crucial to the success of this strategy is to establish a high coverage and stable biofilm of the non-pathogenic bacteria on the catheter surface. However, this non-pathogenic strain is sluggish to form biofilms on silicone as the most widely used material for urinary catheters. We have addressed this issue by modifying the silicone catheter surfaces with mannosides that promote the biofilm formation, but the stability of the non-pathogenic biofilms challenged by uropathogens over long-term remains a concern. Herein, we report our study on the stability of the non-pathogenic biofilms grown on propynylphenyl mannoside-modified silicone. The result shows that 94% non-pathogenic bacteria were retained on the modified silicone under >0.5 Pa shear stress. After being challenged by three multidrug-resistant uropathogenic isolates in artificial urine for 11 days, large amounts (>4 × 10 6  CFU cm -2 ) of the non-pathogenic bacteria remained on the surfaces. These non-pathogenic biofilms reduced the colonization of the uropathogens by >3.2-log. In bacterial interference, the non-pathogenic Escherichia coli strains are sluggish to form biofilms on the catheter surfaces, due to rapid removal by urine flow. We have demonstrated a solution to this bottleneck by pre-functionalization of mannosides on the silicone surfaces to promote E. coli biofilm formation. A pre-conjugated high affinity propynylphenyl mannoside ligand tethered to the nanometric amino-terminated poly(amido amine) (PAMAM) dendrimer is used for binding to a major E. coli adhesin FimH. It greatly improves the efficiency for the catheter modification, the non-pathogenic biofilm coverage, as well as the (long-term) stability for prevention of uropathogen infections. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  2. Human milk inactivates pathogens individually, additively, and synergistically.

    Science.gov (United States)

    Isaacs, Charles E

    2005-05-01

    Breast-feeding can reduce the incidence and the severity of gastrointestinal and respiratory infections in the suckling neonate by providing additional protective factors to the infant's mucosal surfaces. Human milk provides protection against a broad array of infectious agents through redundancy. Protective factors in milk can target multiple early steps in pathogen replication and target each step with more than one antimicrobial compound. The antimicrobial activity in human milk results from protective factors working not only individually but also additively and synergistically. Lipid-dependent antimicrobial activity in milk results from the additive activity of all antimicrobial lipids and not necessarily the concentration of one particular lipid. Antimicrobial milk lipids and peptides can work synergistically to decrease both the concentrations of individual compounds required for protection and, as importantly, greatly reduce the time needed for pathogen inactivation. The more rapidly pathogens are inactivated the less likely they are to establish an infection. The total antimicrobial protection provided by human milk appears to be far more than can be elucidated by examining protective factors individually.

  3. Evaluation of antimicrobial activity of silver nanoparticles synthesized from Piper betle leaves against human and plant pathogens

    Science.gov (United States)

    Jha, Babita; Rao, Mugdha; Prasad, K.; Jha, Anal K.

    2018-05-01

    The present work encompasses the fabrication of biocompatible silver nanoparticles from the leaves of the medicinal plant Piper betle using green chemistry approach. The synthesized nanoparticles were characterized by different standard techniques like: UV-visible spectroscopy, X-ray diffraction, scanning electron microscopy and Fourier transformed infrared spectroscopy. The antimicrobial efficacy of the silver nanoparticles was assessed against human and plant pathogens namely Ralstonia solanacearum, Burkholderia gladioli, Escherichia coli and Sacchromyces cerevisiae by agar well diffusion method. The obtained results clearly indicate its possible use as an alternative to antibiotics and pesticides in near future.

  4. Characterization of an Hfq dependent antisense sRNA in the Gram-positive human pathogen Listeria monocytogenes

    DEFF Research Database (Denmark)

    Nielsen, Jesper Sejrup; Lei Kristensen, Lisbeth; Hanghøj Chrisitansen, Mie

    between sRNA and target mRNA rely on the RNA chaperone Hfq. Hfq is a ubiquitous protein found in almost all genres of bacterial life. However, so far its role as an RNA chaperone has only been described in Gram-negative species such as Escherichia coli and Salmonella (Vogel, J. 2009). We previously...... identified several Hfq-binding sRNAs in the Gram-positive human pathogen L. monocytogenes (Christiansen et al 2006). Through bioinformatics, we have identified a number of candidate targets for one of these sRNAs (LhrA). Here, we present the characterization of one of these targets. Our results suggest...

  5. Epidemiology and clinical manifestations of enteroaggregative Escherichia coli

    DEFF Research Database (Denmark)

    Hebbelstrup Jensen, Betina; Olsen, Katharina E P; Struve, Carsten

    2014-01-01

    Enteroaggregative Escherichia coli (EAEC) represents a heterogeneous group of E. coli strains. The pathogenicity and clinical relevance of these bacteria are still controversial. In this review, we describe the clinical significance of EAEC regarding patterns of infection in humans, transmission...

  6. Fate and persistence of a pathogenic NDM-1-positive Escherichia coli strain in anaerobic and aerobic sludge microcosms

    KAUST Repository

    Mantilla-Calderon, David

    2017-04-15

    The presence of emerging biological pollutants in treated wastewater effluents has gained attention due to increased interest in water reuse. To evaluate the effectiveness of the removal of such contaminants by the conventional wastewater treatment process, the fate and decay kinetics of NDM-1-positive Escherichia coli strain PI7 and its plasmid-encoded antibiotic resistance genes (ARGs) were assessed in microcosms of anaerobic and aerobic sludge. Results showed that E. coli PI7 decayed at a significantly slower rate under anaerobic conditions. Approximate half-lives were 32.4 ± 1.4 h and 5.9 ± 0.9 h in the anaerobic and aerobic microcosms, respectively. In the aerobic microcosms, after 72 h of operation, E. coli PI7 remained detectable but no further decay was observed. Instead, 1 in every 10000 E. coli cells was identified to be recalcitrant to decay and persist indefinitely in the sludge. ARGs associated with the E. coli PI7 were detected to have transferred to other native microorganisms in the sludge, or are released to the liquid fraction upon host decay. Extracellular DNA quickly degraded in the liquid fraction of the aerobic sludge. In contrast, no DNA decay was detected in the anaerobic sludge water matrix throughout the 24 h sampling period. This study suggests an increased likelihood of environmental dispersion of ARGs associated with anaerobically treated wastewater effluents and highlights the potential importance of persister cells in the dissemination of E. coli in the environment during reuse events of treated wastewater.IMPORTANCE This study examines the decay kinetics of a pathogenic and antibiotic resistant strain of Escherichia coli in microcosms simulating biological treatment units of aerobic and anaerobic sludge. The results of this study points at a significantly prolonged persistence of the E. coli and the associated antibiotic resistance gene in the anaerobic sludge. However, horizontal transfer of the plasmid encoding the antibiotic

  7. Fate and Persistence of a Pathogenic NDM-1-Positive Escherichia coli Strain in Anaerobic and Aerobic Sludge Microcosms.

    Science.gov (United States)

    Mantilla-Calderon, David; Hong, Pei-Ying

    2017-07-01

    The presence of emerging biological pollutants in treated wastewater effluents has gained attention due to increased interest in water reuse. To evaluate the effectiveness of the removal of such contaminants by the conventional wastewater treatment process, the fate and decay kinetics of NDM-1-positive Escherichia coli strain PI7 and its plasmid-encoded antibiotic resistance genes (ARGs) were assessed in microcosms of anaerobic and aerobic sludge. Results showed that E. coli PI7 decayed at a significantly lower rate under anaerobic conditions. Approximate half-lives were 32.4 ± 1.4 h and 5.9 ± 0.9 h in the anaerobic and aerobic microcosms, respectively. In the aerobic microcosms, after 72 h of operation, E. coli PI7 remained detectable, but no further decay was observed. Instead, 1 in every 10,000 E. coli cells was identified to be recalcitrant to decay and persist indefinitely in the sludge. ARGs associated with the E. coli PI7 strain were detected to have transferred to other native microorganisms in the sludge or were released to the liquid fraction upon host decay. Extracellular DNA quickly degraded in the liquid fraction of the aerobic sludge. In contrast, no DNA decay was detected in the anaerobic sludge water matrix throughout the 24-h sampling period. This study suggests an increased likelihood of environmental dispersion of ARGs associated with anaerobically treated wastewater effluents and highlights the potential importance of persister cells in the dissemination of E. coli in the environment during reuse events of treated wastewater. IMPORTANCE This study examines the decay kinetics of a pathogenic and antibiotic resistant strain of Escherichia coli in microcosms simulating biological treatment units of aerobic and anaerobic sludge. The results of this study point at a significantly prolonged persistence of the E. coli and the associated antibiotic resistance gene in the anaerobic sludge. However, horizontal transfer of the plasmid encoding the

  8. An evolutionary analysis of genome expansion and pathogenicity in Escherichia coli.

    Science.gov (United States)

    Bohlin, Jon; Brynildsrud, Ola B; Sekse, Camilla; Snipen, Lars

    2014-10-09

    There are several studies describing loss of genes through reductive evolution in microbes, but how selective forces are associated with genome expansion due to horizontal gene transfer (HGT) has not received similar attention. The aim of this study was therefore to examine how selective pressures influence genome expansion in 53 fully sequenced and assembled Escherichia coli strains. We also explored potential connections between genome expansion and the attainment of virulence factors. This was performed using estimations of several genomic parameters such as AT content, genomic drift (measured using relative entropy), genome size and estimated HGT size, which were subsequently compared to analogous parameters computed from the core genome consisting of 1729 genes common to the 53 E. coli strains. Moreover, we analyzed how selective pressures (quantified using relative entropy and dN/dS), acting on the E. coli core genome, influenced lineage and phylogroup formation. Hierarchical clustering of dS and dN estimations from the E. coli core genome resulted in phylogenetic trees with topologies in agreement with known E. coli taxonomy and phylogroups. High values of dS, compared to dN, indicate that the E. coli core genome has been subjected to substantial purifying selection over time; significantly more than the non-core part of the genome (pcoli genome size correlated with estimated HGT size (pcoli are largely attained through HGT. No associations were found between selective pressures operating on the E. coli core genome, as estimated using relative entropy, and genome size (p~0.98). On a larger time frame, genome expansion in E. coli, which is significantly associated with the acquisition of virulence factors, appears to be independent of selective forces operating on the core genome.

  9. Characterization of antibiotic resistant and pathogenic Escherichia coli in irrigation water and vegetables in household farms.

    Science.gov (United States)

    Araújo, Susana; A T Silva, Isabel; Tacão, Marta; Patinha, Carla; Alves, Artur; Henriques, Isabel

    2017-09-18

    This study aimed to characterize Escherichia coli present in irrigation water and vegetables from 16 household farms. Isolates were obtained from 50% of water (n=210 isolates) and 38% of vegetable samples (n=239). Phylogroups B1 (56% of isolates) and A (22%) were the most prevalent both in water and vegetables. Diarrheagenic strains were detected in vegetables. Irrespective of the source (i.e. water or vegetables), the most common antibiotic resistance was against streptomycin (89% resistant isolates) and tetracycline (24%). Common acquired genes (e.g. bla TEM , tetA, tetB) were found in isolates from both sources. Class I integrons were detected in water (arrays dfrA1-aadA1 and dfr16-blaP1b-aadA2-ereA) and vegetables (unknown arrays). intI2 was detected in water (dfrA1-sat2-aadA1). Plasmids were detected in 14 isolates (IncFIC, IncFIB, IncFrep, IncI1 in both samples; IncY in vegetables). Plasmids from seven isolates were transferrable by conjugation, conferring resistance to antibiotics to the recipient strain. Multidrug-resistant (MDR) strains were isolated from water (12% of the unique isolates) and vegetables (21%). Predominant sequence types (STs) among MDR isolates were ST10, ST297 and ST2522. In some cases, the same STs and identical clones (as showed by rep-PCR typing) were detected in water and vegetables, suggesting cross-contamination. This study identified several risk factors in E. coli isolates from vegetables and irrigation water, raising health concerns. Also, results suggest that irrigation groundwater constitutes a source of E. coli that may enter the food chain through vegetables ingestion. Copyright © 2017. Published by Elsevier B.V.

  10. An ultrasensitive hollow-silica-based biosensor for pathogenic Escherichia coli DNA detection.

    Science.gov (United States)

    Ariffin, Eda Yuhana; Lee, Yook Heng; Futra, Dedi; Tan, Ling Ling; Karim, Nurul Huda Abd; Ibrahim, Nik Nuraznida Nik; Ahmad, Asmat

    2018-03-01

    A novel electrochemical DNA biosensor for ultrasensitive and selective quantitation of Escherichia coli DNA based on aminated hollow silica spheres (HSiSs) has been successfully developed. The HSiSs were synthesized with facile sonication and heating techniques. The HSiSs have an inner and an outer surface for DNA immobilization sites after they have been functionalized with 3-aminopropyltriethoxysilane. From field emission scanning electron microscopy images, the presence of pores was confirmed in the functionalized HSiSs. Furthermore, Brunauer-Emmett-Teller (BET) analysis indicated that the HSiSs have four times more surface area than silica spheres that have no pores. These aminated HSiSs were deposited onto a screen-printed carbon paste electrode containing a layer of gold nanoparticles (AuNPs) to form a AuNP/HSiS hybrid sensor membrane matrix. Aminated DNA probes were grafted onto the AuNP/HSiS-modified screen-printed electrode via imine covalent bonds with use of glutaraldehyde cross-linker. The DNA hybridization reaction was studied by differential pulse voltammetry using an anthraquinone redox intercalator as the electroactive DNA hybridization label. The DNA biosensor demonstrated a linear response over a wide target sequence concentration range of 1.0×10 -12 -1.0×10 -2 μM, with a low detection limit of 8.17×10 -14 μM (R 2 = 0.99). The improved performance of the DNA biosensor appeared to be due to the hollow structure and rough surface morphology of the hollow silica particles, which greatly increased the total binding surface area for high DNA loading capacity. The HSiSs also facilitated molecule diffusion through the silica hollow structure, and substantially improved the overall DNA hybridization assay. Graphical abstract Step-by-step DNA biosensor fabrication based on aminated hollow silica spheres.

  11. Comparative genomic analysis of human fungal pathogens causing paracoccidioidomycosis.

    Directory of Open Access Journals (Sweden)

    Christopher A Desjardins

    2011-10-01

    Full Text Available Paracoccidioides is a fungal pathogen and the cause of paracoccidioidomycosis, a health-threatening human systemic mycosis endemic to Latin America. Infection by Paracoccidioides, a dimorphic fungus in the order Onygenales, is coupled with a thermally regulated transition from a soil-dwelling filamentous form to a yeast-like pathogenic form. To better understand the genetic basis of growth and pathogenicity in Paracoccidioides, we sequenced the genomes of two strains of Paracoccidioides brasiliensis (Pb03 and Pb18 and one strain of Paracoccidioides lutzii (Pb01. These genomes range in size from 29.1 Mb to 32.9 Mb and encode 7,610 to 8,130 genes. To enable genetic studies, we mapped 94% of the P. brasiliensis Pb18 assembly onto five chromosomes. We characterized gene family content across Onygenales and related fungi, and within Paracoccidioides we found expansions of the fungal-specific kinase family FunK1. Additionally, the Onygenales have lost many genes involved in carbohydrate metabolism and fewer genes involved in protein metabolism, resulting in a higher ratio of proteases to carbohydrate active enzymes in the Onygenales than their relatives. To determine if gene content correlated with growth on different substrates, we screened the non-pathogenic onygenale Uncinocarpus reesii, which has orthologs for 91% of Paracoccidioides metabolic genes, for growth on 190 carbon sources. U. reesii showed growth on a limited range of carbohydrates, primarily basic plant sugars and cell wall components; this suggests that Onygenales, including dimorphic fungi, can degrade cellulosic plant material in the soil. In addition, U. reesii grew on gelatin and a wide range of dipeptides and amino acids, indicating a preference for proteinaceous growth substrates over carbohydrates, which may enable these fungi to also degrade animal biomass. These capabilities for degrading plant and animal substrates suggest a duality in lifestyle that could enable pathogenic

  12. Nucleic acid probes in the diagnosis of human microbial pathogens

    International Nuclear Information System (INIS)

    Hyypia, T.; Huovinen, P.; Holmberg, M.; Pettersson, U.

    1989-01-01

    The development of effective vaccines and antimicrobial drugs against infectious diseases has been among the most successful achievements in modern medicine. The control of these diseases requires efficient diagnostic methods for the evaluation of the prevalence of diseases and for initiation of specific treatment. Virtually all known microbes can be specifically identified today but in many cases further development is needed for more accurate, rapid, easy-to-use, and inexpensive diagnostic assays. Cell culture facilities are needed for the isolation of viruses in clinical specimens. Any gene of any known microorganism can be cloned in a vector and produced in large amounts economically and then used in diagnostic assays for the identification of the pathogen. The application of the nucleic acid hybridization methods in detection of human pathogens has received considerable attention during the past few years. This paper presents examples of this application of gene technology

  13. Comparative genomics of multidrug resistance-encoding IncA/C plasmids from commensal and pathogenic Escherichia coli from multiple animal sources.

    Science.gov (United States)

    Fernández-Alarcón, Claudia; Singer, Randall S; Johnson, Timothy J

    2011-01-01

    Incompatibility group A/C (IncA/C) plasmids have received recent attention for their broad host range and ability to confer resistance to multiple antimicrobial agents. Due to the potential spread of multidrug resistance (MDR) phenotypes from foodborne pathogens to human pathogens, the dissemination of these plasmids represents a public health risk. In this study, four animal-source IncA/C plasmids isolated from Escherichia coli were sequenced and analyzed, including isolates from commercial dairy cows, pigs and turkeys in the U.S. and Chile. These plasmids were initially selected because they either contained the floR and tetA genes encoding for florfenicol and tetracycline resistance, respectively, and/or the bla(CMY-2) gene encoding for extended spectrum β-lactamase resistance. Overall, sequence analysis revealed that each of the four plasmids retained a remarkably stable and conserved backbone sequence, with differences observed primarily within their accessory regions, which presumably have evolved via horizontal gene transfer events involving multiple modules. Comparison of these plasmids with other available IncA/C plasmid sequences further defined the core and accessory elements of these plasmids in E. coli and Salmonella. Our results suggest that the bla(CMY-2) plasmid lineage appears to have derived from an ancestral IncA/C plasmid type harboring floR-tetAR-strAB and Tn21-like accessory modules. Evidence is mounting that IncA/C plasmids are widespread among enteric bacteria of production animals and these emergent plasmids have flexibility in their acquisition of MDR-encoding modules, necessitating further study to understand the evolutionary mechanisms involved in their dissemination and stability in bacterial populations.

  14. Microbiological quality of water from the rivers of Curitiba, Paraná State, Brazil, and the susceptibility to antimicrobial drugs and pathogenicity of Escherichia coli.

    Science.gov (United States)

    Giowanella, Melissa; Bozza, Angela; do Rocio Dalzoto, Patricia; Dionísio, Jair Alves; Andraus, Sumaia; Guimarães, Edson Luiz Gomes; Pimentel, Ida Chapaval

    2015-11-01

    Water safety is determined by several markers, and Escherichia coli is one of the most important indicators of water quality. The objective of this study was to evaluate the microbiological parameters in environmental samples of fresh water from rivers of Curitiba and its metropolitan area in Paraná State, Brazil. In addition, we evaluated the pathogenicity and susceptibility to antimicrobial drugs in E. coli. These evaluations were performed by quantitative and qualitative methods employing selective media for isolating thermotolerant coliforms and biochemical tests for identifying E. coli. Pathogenic strains of E. coli were detected by PCR multiplex using specific primers. From the water samples, 494 thermotolerant coliforms were obtained, of which 96 (19.43%) isolates were characterized as E. coli. Three isolates were identified as enteroaggregative E. coli, one as enterotoxigenic E. coli, one as enteropathogenic E. coli, and two carried the Eae virulence gene. E. coli susceptibility to commonly employed antimicrobial drugs was analyzed by the disc diffusion method. The results showed 49 (51.04%) isolates resistant to all the drugs assayed, 16 (16.67%) with an intermediate resistance to all drugs, and 31 (32.29%) intermediately or fully resistant to one or more drugs tested. The highest rate of resistance was observed for tetracycline 30 μg, streptomycin 10 μg, and ceftazidime 30 μg. Detection of E. coli is associated with water contamination by fecal material from humans and warm-blooded animals. The occurrence of resistant strains can be the result of the indiscriminate use of antimicrobial drugs and poor sanitation in the areas assayed.

  15. Comparative genomics of multidrug resistance-encoding IncA/C plasmids from commensal and pathogenic Escherichia coli from multiple animal sources.

    Directory of Open Access Journals (Sweden)

    Claudia Fernández-Alarcón

    Full Text Available Incompatibility group A/C (IncA/C plasmids have received recent attention for their broad host range and ability to confer resistance to multiple antimicrobial agents. Due to the potential spread of multidrug resistance (MDR phenotypes from foodborne pathogens to human pathogens, the dissemination of these plasmids represents a public health risk. In this study, four animal-source IncA/C plasmids isolated from Escherichia coli were sequenced and analyzed, including isolates from commercial dairy cows, pigs and turkeys in the U.S. and Chile. These plasmids were initially selected because they either contained the floR and tetA genes encoding for florfenicol and tetracycline resistance, respectively, and/or the bla(CMY-2 gene encoding for extended spectrum β-lactamase resistance. Overall, sequence analysis revealed that each of the four plasmids retained a remarkably stable and conserved backbone sequence, with differences observed primarily within their accessory regions, which presumably have evolved via horizontal gene transfer events involving multiple modules. Comparison of these plasmids with other available IncA/C plasmid sequences further defined the core and accessory elements of these plasmids in E. coli and Salmonella. Our results suggest that the bla(CMY-2 plasmid lineage appears to have derived from an ancestral IncA/C plasmid type harboring floR-tetAR-strAB and Tn21-like accessory modules. Evidence is mounting that IncA/C plasmids are widespread among enteric bacteria of production animals and these emergent plasmids have flexibility in their acquisition of MDR-encoding modules, necessitating further study to understand the evolutionary mechanisms involved in their dissemination and stability in bacterial populations.

  16. Diversity of Multi-Drug Resistant Avian Pathogenic Escherichia coli (APEC) Causing Outbreaks of Colibacillosis in Broilers during 2012 in Spain.

    Science.gov (United States)

    Solà-Ginés, Marc; Cameron-Veas, Karla; Badiola, Ignacio; Dolz, Roser; Majó, Natalia; Dahbi, Ghizlane; Viso, Susana; Mora, Azucena; Blanco, Jorge; Piedra-Carrasco, Nuria; González-López, Juan José; Migura-Garcia, Lourdes

    2015-01-01

    Avian pathogenic Escherichia coli (APEC) are the major cause of colibacillosis in poultry production. In this study, a total of 22 E. coli isolated from colibacillosis field cases and 10 avian faecal E. coli (AFEC) were analysed. All strains were characterised phenotypically by susceptibility testing and molecular typing methods such as pulsed-field gel electrophoresis (PFGE) and multi-locus sequence typing (MLST). The presence of 29 virulence genes associated to APEC and human extraintestinal pathogenic E. coli (ExPEC) was also evaluated. For cephalosporin resistant isolates, cephalosporin resistance genes, plasmid location and replicon typing was assessed. Avian isolates belonged to 26 O:H serotypes and 24 sequence types. Out of 22 APEC isolates, 91% contained the virulence genes predictors of APEC; iutA, hlyF, iss, iroN and ompT. Of all strains, 34% were considered ExPEC. PFGE analysis demonstrated a high degree of genetic polymorphism. All strains were multi-resistant, including those isolated from healthy animals. Eleven strains were resistant to cephalosporins; six contained blaCTX-M-14, two blaSHV-12, two blaCMY-2 and one blaSHV-2. Two strains harboured qnrA, and two qnrA together with aac(6')-Ib-cr. Additionally, the emergent clone O25b:H4-B2-ST131 was isolated from a healthy animal which harboured blaCMY-2 and qnrS genes. Cephalosporin resistant genes were mainly associated to the presence of IncK replicons. This study demonstrates a very diverse population of multi-drug resistant E. coli containing a high number of virulent genes. The E. coli population among broilers is a reservoir of resistance and virulence-associated genes that could be transmitted into the community through the food chain. More epidemiological studies are necessary to identify clonal groups and resistance mechanisms with potential relevance to public health.

  17. Diversity of Multi-Drug Resistant Avian Pathogenic Escherichia coli (APEC Causing Outbreaks of Colibacillosis in Broilers during 2012 in Spain.

    Directory of Open Access Journals (Sweden)

    Marc Solà-Ginés

    Full Text Available Avian pathogenic Escherichia coli (APEC are the major cause of colibacillosis in poultry production. In this study, a total of 22 E. coli isolated from colibacillosis field cases and 10 avian faecal E. coli (AFEC were analysed. All strains were characterised phenotypically by susceptibility testing and molecular typing methods such as pulsed-field gel electrophoresis (PFGE and multi-locus sequence typing (MLST. The presence of 29 virulence genes associated to APEC and human extraintestinal pathogenic E. coli (ExPEC was also evaluated. For cephalosporin resistant isolates, cephalosporin resistance genes, plasmid location and replicon typing was assessed. Avian isolates belonged to 26 O:H serotypes and 24 sequence types. Out of 22 APEC isolates, 91% contained the virulence genes predictors of APEC; iutA, hlyF, iss, iroN and ompT. Of all strains, 34% were considered ExPEC. PFGE analysis demonstrated a high degree of genetic polymorphism. All strains were multi-resistant, including those isolated from healthy animals. Eleven strains were resistant to cephalosporins; six contained blaCTX-M-14, two blaSHV-12, two blaCMY-2 and one blaSHV-2. Two strains harboured qnrA, and two qnrA together with aac(6'-Ib-cr. Additionally, the emergent clone O25b:H4-B2-ST131 was isolated from a healthy animal which harboured blaCMY-2 and qnrS genes. Cephalosporin resistant genes were mainly associated to the presence of IncK replicons. This study demonstrates a very diverse population of multi-drug resistant E. coli containing a high number of virulent genes. The E. coli population among broilers is a reservoir of resistance and virulence-associated genes that could be transmitted into the community through the food chain. More epidemiological studies are necessary to identify clonal groups and resistance mechanisms with potential relevance to public health.

  18. Integron, Plasmid and Host Strain Characteristics of Escherichia coli from Humans and Food Included in the Norwegian Antimicrobial Resistance Monitoring Programs.

    Science.gov (United States)

    Sunde, Marianne; Simonsen, Gunnar Skov; Slettemeås, Jannice Schau; Böckerman, Inger; Norström, Madelaine

    2015-01-01

    Antimicrobial resistant Escherichia coli (n=331) isolates from humans with bloodstream infections were investigated for the presence of class 1 and class 2 integrons. The integron cassettes arrays were characterized and the findings were compared with data from similar investigations on resistant E. coli from meat and meat products (n=241) produced during the same time period. All isolates were obtained from the Norwegian monitoring programs for antimicrobial resistance in human pathogens and in the veterinary sector. Methods used included PCR, sequencing, conjugation experiments, plasmid replicon typing and subtyping, pulsed-field-gel-electrophoresis and serotyping. Integrons of class 1 and 2 occurred significantly more frequently among human isolates; 45.4% (95% CI: 39.9-50.9) than among isolates from meat; 18% (95% CI: 13.2 -23.3), (pfood source and from a human clinical sample highlights the possible role of meat as a source of resistance elements for pathogenic bacteria.

  19. Escherichia coli K-12 pathogenicity in the pea aphid, Acyrthosiphon pisum, reveals reduced antibacterial defense in aphids.

    Science.gov (United States)

    Altincicek, Boran; Ter Braak, Bas; Laughton, Alice M; Udekwu, Klas I; Gerardo, Nicole M

    2011-10-01

    To better understand the molecular basis underlying aphid immune tolerance to beneficial bacteria and immune defense to pathogenic bacteria, we characterized how the pea aphid Acyrthosiphon pisum responds to Escherichia coli K-12 infections. E. coli bacteria, usually cleared in the hemolymph of other insect species, were capable of growing exponentially and killing aphids within a few days. Red fluorescence protein expressing E. coli K-12 laboratory strain multiplied in the aphid hemolymph as well as in the digestive tract, resulting in death of infected aphids. Selected gene deletion mutants of the E. coli K-12 predicted to have reduced virulence during systemic infections showed no difference in either replication or killing rate when compared to the wild type E. coli strain. Of note, however, the XL1-Blue E. coli K-12 strain exhibited a significant lag phase before multiplying and killing aphids. This bacterial strain has recently been shown to be more sensitive to oxidative stress than other E. coli K-12 strains, revealing a potential role for reactive oxygen species-mediated defenses in the otherwise reduced aphid immune system. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Human pathogens in marine mammal meat – a northern perspective.

    Science.gov (United States)

    Tryland, M; Nesbakken, T; Robertson, L; Grahek-Ogden, D; Lunestad, B T

    2014-09-01

    Only a few countries worldwide hunt seals and whales commercially. In Norway, hooded and harp seals and minke whales are commercially harvested, and coastal seals (harbour and grey seals) are hunted as game. Marine mammal meat is sold to the public and thus included in general microbiological meat control regulations. Slaughtering and dressing of marine mammals are performed in the open air on deck, and many factors on board sealing or whaling vessels may affect meat quality, such as the ice used for cooling whale meat and the seawater used for cleaning, storage of whale meat in the open air until ambient temperature is reached, and the hygienic conditions of equipment, decks, and other surfaces. Based on existing reports, it appears that meat of seal and whale does not usually represent a microbiological hazard to consumers in Norway, because human disease has not been associated with consumption of such foods. However, as hygienic control on marine mammal meat is ad hoc, mainly based on spot-testing, and addresses very few human pathogens, this conclusion may be premature. Additionally, few data from surveys or systematic quality control screenings have been published. This review examines the occurrence of potential human pathogens in marine mammals, as well as critical points for contamination of meat during the slaughter, dressing, cooling, storage and processing of meat. Some zoonotic agents are of particular relevance as foodborne pathogens, such as Trichinella spp., Toxoplasma gondii, Salmonella and Leptospira spp. In addition, Mycoplasma spp. parapoxvirus and Mycobacterium spp. constitute occupational risks during handling of marine mammals and marine mammal products. Adequate training in hygienic procedures is necessary to minimize the risk of contamination on board, and acquiring further data is essential for obtaining a realistic assessment of the microbiological risk to humans from consuming marine mammal meat.

  1. Molecular cloning and characterization of a new peptide deformylase from human pathogenic bacterium Helicobacter pylori

    International Nuclear Information System (INIS)

    Han Cong; Wang Qi; Dong Lei; Sun Haifang; Peng Shuying; Chen Jing; Yang Yiming; Yue Jianmin; Shen Xu; Jiang Hualiang

    2004-01-01

    Helicobacter pylori is a gram-negative pathogenic bacterium, which is associated with peptic ulcer disease and gastric cancer. It is urgent to discover novel drug targets for appropriate antimicrobial agents against this human pathogen. In bacteria, peptide deformylase (PDF) catalyzes the removal of a formyl group from the N-termini of nascent polypeptides. Due to its essentiality and absence in mammalian cells, PDF has been considered as an attractive target for the discovery of novel antibiotics. In this work, a new PDF gene (def) from H. pylori strain SS1 was cloned, expressed, and purified in Escherichia coli system. Sequence alignment shows that H. pylori PDF (HpPDF) shares about 40% identity to E. coli PDF (EcPDF). The enzymatic properties of HpPDF demonstrate its relatively high activity toward formyl-Met-Ala-Ser, with K cat of 3.4 s -1 , K m of 1.7 mM, and K cat /K m of 2000 M -1 s -1 . HpPDF enzyme appears to be fully active at pH between 8.0 and 9.0, and temperature 50 deg. C. The enzyme activity of Co 2+ -containing HpPDF is apparently higher than that of Zn 2+ -containing HpPDF. This present work thereby supplies a potential platform that facilitates the discovery of novel HpPDF inhibitors and further of possible antimicrobial agents against H. pylori

  2. Molecular cloning and characterization of a new peptide deformylase from human pathogenic bacterium Helicobacter pylori.

    Science.gov (United States)

    Han, Cong; Wang, Qi; Dong, Lei; Sun, Haifang; Peng, Shuying; Chen, Jing; Yang, Yiming; Yue, Jianmin; Shen, Xu; Jiang, Hualiang

    2004-07-09

    Helicobacter pylori is a gram-negative pathogenic bacterium, which is associated with peptic ulcer disease and gastric cancer. It is urgent to discover novel drug targets for appropriate antimicrobial agents against this human pathogen. In bacteria, peptide deformylase (PDF) catalyzes the removal of a formyl group from the N-termini of nascent polypeptides. Due to its essentiality and absence in mammalian cells, PDF has been considered as an attractive target for the discovery of novel antibiotics. In this work, a new PDF gene (def) from H. pylori strain SS1 was cloned, expressed, and purified in Escherichia coli system. Sequence alignment shows that H. pylori PDF (HpPDF) shares about 40% identity to E. coli PDF (EcPDF). The enzymatic properties of HpPDF demonstrate its relatively high activity toward formyl-Met-Ala-Ser, with K(cat) of 3.4s(-1), K(m) of 1.7 mM, and K(cat) / K(m) of 2000M(-1)s(-1). HpPDF enzyme appears to be fully active at pH between 8.0 and 9.0, and temperature 50 degrees C. The enzyme activity of Co(2+)-containing HpPDF is apparently higher than that of Zn(2+)-containing HpPDF. This present work thereby supplies a potential platform that facilitates the discovery of novel HpPDF inhibitors and further of possible antimicrobial agents against H. pylori.

  3. Immunogenicity and protective efficacy of a single-dose live non-pathogenic Escherichia coli oral vaccine against F4-positive enterotoxigenic Escherichia coli challenge in pigs.

    Science.gov (United States)

    Fairbrother, John Morris; Nadeau, Éric; Bélanger, Louise; Tremblay, Cindy-Love; Tremblay, Danielle; Brunelle, Mélanie; Wolf, Regina; Hellmann, Klaus; Hidalgo, Álvaro

    2017-01-05

    Enterotoxigenic Escherichia coli strains expressing F4 (K88) fimbriae (F4-ETEC) are one of the most important causes of post-weaning diarrhea (PWD) in pigs. F4, a major antigen, plays an important role in the early steps of the infection. Herein, the efficacy of a live oral vaccine consisting of a non-pathogenic E. coli strain expressing F4 for protection of pigs against PWD was evaluated. Three blinded, placebo-controlled, block design, parallel-group confirmatory experiments were conducted, using an F4-ETEC PWD challenge model, each with a different vaccination-challenge interval (3, 7, and 21days). The pigs were vaccinated via the drinking water with a single dose of the Coliprotec® F4 vaccine one day post-weaning. Efficacy was assessed by evaluating diarrhea, clinical observations, intestinal fluid accumulation, weight gain, intestinal colonization and fecal shedding of F4-ETEC. The immune response was evaluated by measuring serum and intestinal F4-specific antibodies. The administration of the vaccine resulted in a significant reduction of the incidence of moderate to severe diarrhea, ileal colonization by F4-ETEC, and fecal shedding of F4-ETEC after the heterologous challenge at 7 and 21days post-vaccination. The 7-day onset of protection was associated with an increase of serum anti-F4 IgM whereas the 21-day duration of protection was associated with an increase of both serum anti-F4 IgM and IgA. Significant correlations between levels of serum and intestinal secretory anti-F4 antibodies were detected. Maternally derived F4-specific serum antibodies did not interfere with the vaccine efficacy. The evaluation of protection following a challenge three days after vaccination showed a reduction of the severity and the duration of diarrhea and of fecal shedding of F4-ETEC. The 7-day onset and the 21-day duration of protection induced by Coliprotec® F4 vaccine administered once in drinking water to pigs of at least 18days of age were confirmed by protection

  4. Meta-regression analysis of commensal and pathogenic Escherichia coli survival in soil and water.

    Science.gov (United States)

    Franz, Eelco; Schijven, Jack; de Roda Husman, Ana Maria; Blaak, Hetty

    2014-06-17

    The extent to which pathogenic and commensal E. coli (respectively PEC and CEC) can survive, and which factors predominantly determine the rate of decline, are crucial issues from a public health point of view. The goal of this study was to provide a quantitative summary of the variability in E. coli survival in soil and water over a broad range of individual studies and to identify the most important sources of variability. To that end, a meta-regression analysis on available literature data was conducted. The considerable variation in reported decline rates indicated that the persistence of E. coli is not easily predictable. The meta-analysis demonstrated that for soil and water, the type of experiment (laboratory or field), the matrix subtype (type of water and soil), and temperature were the main factors included in the regression analysis. A higher average decline rate in soil of PEC compared with CEC was observed. The regression models explained at best 57% of the variation in decline rate in soil and 41% of the variation in decline rate in water. This indicates that additional factors, not included in the current meta-regression analysis, are of importance but rarely reported. More complete reporting of experimental conditions may allow future inference on the global effects of these variables on the decline rate of E. coli.

  5. Leaching of human pathogens in repacked soil lysimeters and contamination of potato tubers under subsurface drip irrigation in Denmark

    DEFF Research Database (Denmark)

    Forslund, Anita; Plauborg, Finn; Andersen, Mathias Neumann

    2011-01-01

    The risk for contamination of potatoes and groundwater through subsurface drip irrigation with low quality water was explored in 30 large-scale lysimeters containing repacked coarse sand and sandy loam soils. The human pathogens, Salmonella Senftenberg, Campylobacter jejuni and Escherichia coli O......, phage 28B was detected in low concentrations (2 pfu ml1) in leachate from both sandy loam soil and coarse sand lysimeters. After 27 days, phage 28B continued to be present in similar concentrations in leachate from lysimeters containing coarse sand, while no phage were found in lysimeters with sandy....... The findings of bacterial pathogens and phage 28 on all potato samples suggest that the main risk associated with subsurface drip irrigation with low quality water is faecal contamination of root crops, in particular those consumed raw....

  6. Human pathogens in plant biofilms: Formation, physiology, and detection.

    Science.gov (United States)

    Ximenes, Eduardo; Hoagland, Lori; Ku, Seockmo; Li, Xuan; Ladisch, Michael

    2017-07-01

    Fresh produce, viewed as an essential part of a healthy life style is usually consumed in the form of raw or minimally processed fruits and vegetables, and is a potentially important source of food-borne human pathogenic bacteria and viruses. These are passed on to the consumer since the bacteria can form biofilms or otherwise populate plant tissues, thereby using plants as vectors to infect animal hosts. The life cycle of the bacteria in plants differs from those in animals or humans and results in altered physiochemical and biological properties (e.g., physiology, immunity, native microflora, physical barriers, mobility, and temperature). Mechanisms by which healthy plants may become contaminated by microorganisms, develop biofilms, and then pass on their pathogenic burden to people are explored in the context of hollow fiber microfiltration by which plant-derived microorganisms may be recovered and rapidly concentrated to facilitate study of their properties. Enzymes, when added to macerated plant tissues, hydrolyze or alter macromolecules that would otherwise foul hollow-fiber microfiltration membranes. Hence, microfiltration may be used to quickly increase the concentration of microorganisms to detectable levels. This review discusses microbial colonization of vegetables, formation and properties of biofilms, and how hollow fiber microfiltration may be used to concentrate microbial targets to detectable levels. The use of added enzymes helps to disintegrate biofilms and minimize hollow fiber membrane fouling, thereby providing a new tool for more time effectively elucidating mechanisms by which biofilms develop and plant tissue becomes contaminated with human pathogens. Biotechnol. Bioeng. 2017;114: 1403-1418. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  7. Dynamics of extended-spectrum cephalosporin resistance in pathogenic Escherichia coli isolated from diseased pigs in Quebec, Canada.

    Science.gov (United States)

    Jahanbakhsh, Seyedehameneh; Smith, Matthew G; Kohan-Ghadr, Hamid-Reza; Letellier, Ann; Abraham, Sam; Trott, Darren J; Fairbrother, John Morris

    2016-08-01

    The aim of this study was to investigate the evolution with time of ceftiofur-resistant Escherichia coli clinical isolates from pigs in Québec, Canada, between 1997 and 2012 with respect to pathotypes, clones and antimicrobial resistance. Eighty-five ceftiofur-resistant E. coli isolates were obtained from the OIE (World Organisation for Animal Health) Reference Laboratory for Escherichia coli. The most prevalent pathovirotypes were enterotoxigenic E. coli (ETEC):F4 (40%), extraintestinal pathogenic E. coli (ExPEC) (16.5%) and Shiga toxin-producing E. coli (STEC):F18 (8.2%). Susceptibility testing to 15 antimicrobial agents revealed a high prevalence of resistance to 13 antimicrobials, with all isolates being multidrug-resistant. blaCMY-2 (96.5%) was the most frequently detected β-lactamase gene, followed by blaTEM (49.4%) and blaCTX-M (3.5%). Pulsed-field gel electrophoresis (PFGE) applied to 45 representative E. coli isolates revealed that resistance to ceftiofur is spread both horizontally and clonally. In addition, the emergence of extended-spectrum β-lactamase-producing E. coli isolates carrying blaCTX-M was observed in 2011 and 2012 in distinct clones. The most predominant plasmid incompatibility (Inc) groups were IncFIB, IncI1, IncA/C and IncFIC. Resistance to gentamicin, kanamycin and chloramphenicol as well as the frequency of blaTEM and IncA/C significantly decreased over the study period, whereas the frequency of IncI1 and multidrug resistance to seven antimicrobial categories significantly increased. These findings reveal that extended-spectrum cephalosporin-resistant porcine E. coli isolates in Québec belong to several different clones with diverse antimicrobial resistance patterns and plasmids. Furthermore, blaCMY-2 was the major β-lactamase gene in these isolates. From 2011, we report the emergence of blaCTX-M in distinct clones. Copyright © 2016 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  8. Genetic recombination between human and animal parasites creates novel strains of human pathogen.

    Directory of Open Access Journals (Sweden)

    Wendy Gibson

    2015-03-01

    Full Text Available Genetic recombination between pathogens derived from humans and livestock has the potential to create novel pathogen strains, highlighted by the influenza pandemic H1N1/09, which was derived from a re-assortment of swine, avian and human influenza A viruses. Here we investigated whether genetic recombination between subspecies of the protozoan parasite, Trypanosoma brucei, from humans and animals can generate new strains of human pathogen, T. b. rhodesiense (Tbr responsible for sleeping sickness (Human African Trypanosomiasis, HAT in East Africa. The trait of human infectivity in Tbr is conferred by a single gene, SRA, which is potentially transferable to the animal pathogen Tbb by sexual reproduction. We tracked the inheritance of SRA in crosses of Tbr and Tbb set up by co-transmitting genetically-engineered fluorescent parental trypanosome lines through tsetse flies. SRA was readily transferred into new genetic backgrounds by sexual reproduction between Tbr and Tbb, thus creating new strains of the human pathogen, Tbr. There was no evidence of diminished growth or transmissibility of hybrid trypanosomes carrying SRA. Although expression of SRA is critical to survival of Tbr in the human host, we show that the gene exists as a single copy in a representative collection of Tbr strains. SRA was found on one homologue of chromosome IV in the majority of Tbr isolates examined, but some Ugandan Tbr had SRA on both homologues. The mobility of SRA by genetic recombination readily explains the observed genetic variability of Tbr in East Africa. We conclude that new strains of the human pathogen Tbr are being generated continuously by recombination with the much larger pool of animal-infective trypanosomes. Such novel recombinants present a risk for future outbreaks of HAT.

  9. Genetic recombination between human and animal parasites creates novel strains of human pathogen.

    Science.gov (United States)

    Gibson, Wendy; Peacock, Lori; Ferris, Vanessa; Fischer, Katrin; Livingstone, Jennifer; Thomas, James; Bailey, Mick

    2015-03-01

    Genetic recombination between pathogens derived from humans and livestock has the potential to create novel pathogen strains, highlighted by the influenza pandemic H1N1/09, which was derived from a re-assortment of swine, avian and human influenza A viruses. Here we investigated whether genetic recombination between subspecies of the protozoan parasite, Trypanosoma brucei, from humans and animals can generate new strains of human pathogen, T. b. rhodesiense (Tbr) responsible for sleeping sickness (Human African Trypanosomiasis, HAT) in East Africa. The trait of human infectivity in Tbr is conferred by a single gene, SRA, which is potentially transferable to the animal pathogen Tbb by sexual reproduction. We tracked the inheritance of SRA in crosses of Tbr and Tbb set up by co-transmitting genetically-engineered fluorescent parental trypanosome lines through tsetse flies. SRA was readily transferred into new genetic backgrounds by sexual reproduction between Tbr and Tbb, thus creating new strains of the human pathogen, Tbr. There was no evidence of diminished growth or transmissibility of hybrid trypanosomes carrying SRA. Although expression of SRA is critical to survival of Tbr in the human host, we show that the gene exists as a single copy in a representative collection of Tbr strains. SRA was found on one homologue of chromosome IV in the majority of Tbr isolates examined, but some Ugandan Tbr had SRA on both homologues. The mobility of SRA by genetic recombination readily explains the observed genetic variability of Tbr in East Africa. We conclude that new strains of the human pathogen Tbr are being generated continuously by recombination with the much larger pool of animal-infective trypanosomes. Such novel recombinants present a risk for future outbreaks of HAT.

  10. Oxidative Stress Responses in the Human Fungal Pathogen, Candida albicans

    Science.gov (United States)

    da Silva Dantas, Alessandra; Day, Alison; Ikeh, Mélanie; Kos, Iaroslava; Achan, Beatrice; Quinn, Janet

    2015-01-01

    Candida albicans is a major fungal pathogen of humans, causing approximately 400,000 life-threatening systemic infections world-wide each year in severely immunocompromised patients. An important fungicidal mechanism employed by innate immune cells involves the generation of toxic reactive oxygen species (ROS), such as superoxide and hydrogen peroxide. Consequently, there is much interest in the strategies employed by C. albicans to evade the oxidative killing by macrophages and neutrophils. Our understanding of how C. albicans senses and responds to ROS has significantly increased in recent years. Key findings include the observations that hydrogen peroxide triggers the filamentation of this polymorphic fungus and that a superoxide dismutase enzyme with a novel mode of action is expressed at the cell surface of C. albicans. Furthermore, recent studies have indicated that combinations of the chemical stresses generated by phagocytes can actively prevent C. albicans oxidative stress responses through a mechanism termed the stress pathway interference. In this review, we present an up-date of our current understanding of the role and regulation of oxidative stress responses in this important human fungal pathogen. PMID:25723552

  11. Appraisal of Microbial Evolution to Commensalism and Pathogenicity in Humans

    Directory of Open Access Journals (Sweden)

    Asit Ranjan Ghosh

    2013-01-01

    Full Text Available The human body is host to a number of microbes occurring in various forms of host-microbe associations, such as commensals, mutualists, pathogens and opportunistic symbionts. While this association with microbes in certain cases is beneficial to the host, in many other cases it seems to offer no evident benefit or motive. The emergence and re-emergence of newer varieties of infectious diseases with causative agents being strains that were once living in the human system makes it necessary to study the environment and the dynamics under which this host microbe relationship thrives. The present discussion examines this interaction while tracing the origins of this association, and attempts to hypothesize a possible framework of selective pressures that could have lead microbes to inhabit mammalian host systems.

  12. Preliminary survey of antibiotic-resistant fecal indicator bacteria and pathogenic Escherichia coli from river-water samples collected in Oakland County, Michigan, 2003

    Science.gov (United States)

    Fogarty, Lisa R.; Duris, Joseph W.; Aichele, Stephen S.

    2005-01-01

    A preliminary study was done in Oakland County, Michigan, to determine the concentration of fecal indicator bacteria (fecal coliform bacteria and enterococci), antibiotic resistance patterns of these two groups, and the presence of potentially pathogenic Escherichia coli (E. coli). For selected sites, specific members of these groups [E. coli, Enterococcus faecium (E. faecium) and Enterococcus faecalis (E. faecalis)] were isolated and tested for levels of resistance to specific antibiotics used to treat human infections by pathogens in these groups and for their potential to transfer these resistances. In addition, water samples from all sites were tested for indicators of potentially pathogenic E. coli by three assays: a growth-based assay for sorbitol-negative E. coli, an immunological assay for E. coli O157, and a molecular assay for three virulence and two serotype genes. Samples were also collected from two non-urbanized sites outside of Oakland County. Results from the urbanized Oakland County area were compared to those from these two non-urbanized sites. Fecal indicator bacteria concentrations exceeded State of Michigan recreational water-quality standards and (or) recommended U.S. Environmental Protection Agency (USEPA) standards in samples from all but two Oakland County sites. Multiple-antibiotic-resistant fecal coliform bacteria were found at all sites, including two reference sites from outside the county. Two sites (Stony Creek and Paint Creek) yielded fecal coliform isolates resistant to all tested antibiotics. Patterns indicative of extended-spectrum-β-lactamase (ESBL)- producing fecal coliform bacteria were found at eight sites in Oakland County and E. coli resistant to clinically significant antibiotics were recovered from the River Rouge, Clinton River, and Paint Creek. Vancomycin-resistant presumptive enterococci were found at six sites in Oakland County and were not found at the reference sites. Evidence of acquired antibiotic resistances was

  13. Hybrids of Shigatoxigenic and Enterotoxigenic Escherichia coli (STEC/ETEC) Among Human and Animal Isolates in Finland.

    Science.gov (United States)

    Nyholm, O; Heinikainen, S; Pelkonen, S; Hallanvuo, S; Haukka, K; Siitonen, A

    2015-11-01

    Diarrhoeagenic Escherichia coli (DEC) cause serious foodborne infections in humans. Total of 450 Shigatoxigenic E. coli (STEC) strains isolated from humans, animals and environment in Finland were examined by multiplex PCR targeting the virulence genes of various DEC pathogroups simultaneously. One per cent (3/291) of the human STEC and 14% (22/159) of the animal and environmental STEC had genes typically present in enterotoxigenic E. coli (ETEC). The strains possessed genes encoding both Shiga toxin 1 and/or 2 (stx1 and/or stx2 ) and ETEC-specific heat-stable (ST) enterotoxin Ia (estIa). The identified stx subtypes were stx1a, stx1c, stx2a, stx2d and stx2g. The three human STEC/ETEC strains were isolated from the patients with haemolytic uraemic syndrome and diarrhoea and from an asymptomatic carrier. The animal STEC/ETEC strains were isolated from cattle and moose. The human and animal STEC/ETEC strains belonged to 11 serotypes, of which O2:H27, O15:H16, O101:H-, O128:H8 and O141:H8 have previously been described to be associated with human disease. Identification of multiple virulence genes offers further information for assessing the virulence potential of STEC and other DEC. The emergence of novel hybrid pathogens should be taken into account in the patient care and epidemiological surveillance. © 2015 Blackwell Verlag GmbH.

  14. Lactobacillus zeae protects Caenorhabditis elegans from enterotoxigenic Escherichia coli-caused death by inhibiting enterotoxin gene expression of the pathogen.

    Directory of Open Access Journals (Sweden)

    Mengzhou Zhou

    Full Text Available BACKGROUND: The nematode Caenorhabditis elegans has become increasingly used for screening antimicrobials and probiotics for pathogen control. It also provides a useful tool for studying microbe-host interactions. This study has established a C. elegans life-span assay to preselect probiotic bacteria for controlling K88(+ enterotoxigenic Escherichia coli (ETEC, a pathogen causing pig diarrhea, and has determined a potential mechanism underlying the protection provided by Lactobacillus. METHODOLOGY/PRINCIPAL FINDINGS: Life-span of C. elegans was used to measure the response of worms to ETEC infection and protection provided by lactic acid-producing bacteria (LAB. Among 13 LAB isolates that varied in their ability to protect C. elegans from death induced by ETEC strain JG280, Lactobacillus zeae LB1 offered the highest level of protection (86%. The treatment with Lactobacillus did not reduce ETEC JG280 colonization in the nematode intestine. Feeding E. coli strain JFF4 (K88(+ but lacking enterotoxin genes of estA, estB, and elt did not cause death of worms. There was a significant increase in gene expression of estA, estB, and elt during ETEC JG280 infection, which was remarkably inhibited by isolate LB1. The clone with either estA or estB expressed in E. coli DH5α was as effective as ETEC JG280 in killing the nematode. However, the elt clone killed only approximately 40% of worms. The killing by the clones could also be prevented by isolate LB1. The same isolate only partially inhibited the gene expression of enterotoxins in both ETEC JG280 and E. coli DH5α in-vitro. CONCLUSIONS/SIGNIFICANCE: The established life-span assay can be used for studies of probiotics to control ETEC (for effective selection and mechanistic studies. Heat-stable enterotoxins appeared to be the main factors responsible for the death of C. elegans. Inhibition of ETEC enterotoxin production, rather than interference of its intestinal colonization, appears to be the

  15. Effect of Lactobacillus sp. isolates supernatant on Escherichia coli O157:H7 enhances the role of organic acids production as a factor for pathogen control

    Directory of Open Access Journals (Sweden)

    Larissa B. Poppi

    2015-04-01

    Full Text Available Many attempts have been made to establish the control of foodborne pathogens through Lactobacillus isolates and their metabolism products with success being obtained in several situations. The aim of this study was to investigate the antagonistic effect of eight Lactobacillus isolates, including L. casei subsp. pseudoplantarum, L. plantarum, L. reuteri and L. delbrueckii subsp. delbrueckii, on the pathogenic Escherichia colistrain O157:H7. The inhibitory effect of pure cultures and two pooled cultures supernatants of Lactobacillus on the growth of pathogenic bacteria was evaluated by the spot agar method and by monitoring turbidity. Antimicrobial activity was confirmed for L. reuteri and L. delbrueckii subsp. delbrueckii and for a pool of lactic acid bacteria. The neutralized supernatant of the pool exerted a higher antimicrobial activity than that of the individual strains. Furthermore, D-lactic acid and acetic acid were produced during growth of the Lactobacillus isolates studied.

  16. Survival of Potentially Pathogenic Human-Associated Bacteria in the Rhizosphere of Hydroponically Grown Wheat

    Science.gov (United States)

    Morales, Anabelle; Garland, Jay L.; Lim, Daniel V.

    1996-01-01

    Plants may serve as reservoirs for human-associated bacteria (H-AB) in long-term space missions containing bioregenerative life support systems. The current study examined the abilities of five human-associated potential pathogens, Pseudomonas aeruginosa, Pseudomonas cepacia, Staphylococcus aureus, Streptococcus pyogenes, and Escherichia coli, to colonize and grow in the rhizosphere of hydroponically grown wheat, a candidate crop for life support. All of these bacteria have been recovered from past NASA missions and present potential problems for future missions. The abilities of these organisms to adhere to the roots of axenic five-day-old wheat (Triticum aestivum L. cv. Yecora rojo) were evaluated by enumeration of the attached organisms after a one hour incubation of roots in a suspension (approximately 10(exp 8 cu/ml)) of the H-AB. Results showed that a greater percentage of P. aeruginosa cells adhered to the wheat roots than the other four H-AB. Similarly incubated seedlings were also grown under attempted axenic conditions for seven days to examine the potential of each organism to proliferate in the rhizosphere (root colonization capacity). P. cepacia and P. aeruginosa showed considerable growth. E. coli and S. aureus showed no significant growth, and S. pyogenes died off in the wheat rhizosphere. Studies examining the effects of competition on the survival of these microorganisms indicated that P. aeruginosa was the only organism that survived in the rhizosphere of hydroponically grown wheat in the presence of different levels of microbial competition.

  17. Rapid Growth of Uropathogenic Escherichia coli during Human Urinary Tract Infection

    Directory of Open Access Journals (Sweden)

    Valerie S. Forsyth

    2018-03-01

    Full Text Available Uropathogenic Escherichia coli (UPEC strains cause most uncomplicated urinary tract infections (UTIs. These strains are a subgroup of extraintestinal pathogenic E. coli (ExPEC strains that infect extraintestinal sites, including urinary tract, meninges, bloodstream, lungs, and surgical sites. Here, we hypothesize that UPEC isolates adapt to and grow more rapidly within the urinary tract than other E. coli isolates and survive in that niche. To date, there has not been a reliable method available to measure their growth rate in vivo. Here we used two methods: segregation of nonreplicating plasmid pGTR902, and peak-to-trough ratio (PTR, a sequencing-based method that enumerates bacterial chromosomal replication forks present during cell division. In the murine model of UTI, UPEC strain growth was robust in vivo, matching or exceeding in vitro growth rates and only slowing after reaching high CFU counts at 24 and 30 h postinoculation (hpi. In contrast, asymptomatic bacteriuria (ABU strains tended to maintain high growth rates in vivo at 6, 24, and 30 hpi, and population densities did not increase, suggesting that host responses or elimination limited population growth. Fecal strains displayed moderate growth rates at 6 hpi but did not survive to later times. By PTR, E. coli in urine of human patients with UTIs displayed extraordinarily rapid growth during active infection, with a mean doubling time of 22.4 min. Thus, in addition to traditional virulence determinants, including adhesins, toxins, iron acquisition, and motility, very high growth rates in vivo and resistance to the innate immune response appear to be critical phenotypes of UPEC strains.

  18. Preliminary molecular characterization of the human pathogen Angiostrongylus cantonensis

    Directory of Open Access Journals (Sweden)

    He Ai

    2009-10-01

    Full Text Available Abstract Background Human angiostrongyliasis is an emerging food-borne public health problem, with the number of cases increasing worldwide, especially in mainland China. Angiostrongylus cantonensis is the causative agent of this severe disease. However, little is known about the genetics and basic biology of A. cantonensis. Results A cDNA library of A. cantonensis fourth-stage larvae was constructed, and ~1,200 clones were sequenced. Bioinformatic analyses revealed 378 cDNA clusters, 54.2% of which matched known genes at a cutoff expectation value of 10-20. Of these 378 unique cDNAs, 168 contained open reading frames encoding proteins containing an average of 238 amino acids. Characterization of the functions of these encoded proteins by Gene Ontology analysis showed enrichment in proteins with binding and catalytic activity. The observed pattern of enzymes involved in protein metabolism, lipid metabolism and glycolysis may reflect the central nervous system habitat of this pathogen. Four proteins were tested for their immunogenicity using enzyme-linked immunosorbent assays and histopathological examinations. The specificity of each of the four proteins was superior to that of crude somatic and excretory/secretory antigens of larvae, although their sensitivity was relatively low. We further showed that mice immunized with recombinant cystatin, a product of one of the four cDNA candidate genes, were partially protected from A. cantonensis infection. Conclusion The data presented here substantially expand the available genetic information about the human pathogen A. cantonensis, and should be a significant resource for angiostrongyliasis researchers. As such, this work serves as a starting point for molecular approaches for diagnosing and controlling human angiostrongyliasis.

  19. Antibacterial activities of Rhazya stricta leaf extracts against multidrug-resistant human pathogens

    Directory of Open Access Journals (Sweden)

    Raziuddin Khan

    2016-09-01

    Full Text Available Bacterial resistance to antibiotics, first a major concern in the 1960s, has re-emerged worldwide over the last 20 years. The World Health Organization (WHO and other health organizations have, therefore, declared ‘war’ against human microbial pathogens, particularly hospital-acquired infections, and have made drug discovery a top priority for these diseases. Because these bacteria are refractory to conventional chemotherapy, medicinal and herbal plants used in various countries should be assessed for their therapeutic potential; these valuable bio-resources are a reservoir of complex bioactive molecules. Earlier studies from our laboratory on Rhazya stricta, a native herbal shrub of Asia, have shown that this plant has a number of therapeutic properties. In this study, we evaluated the antimicrobial activities of various concentrations of five solvent extracts (aqueous alkaloid, aqueous non-alkaloid, organic alkaloid, organic non-alkaloid and whole aqueous extracts derived from R. stricta leaves against several multidrug-resistant, human-pathogenic bacteria, including methicillin-resistant Staphylococcus aureus (MRSA and extended-spectrum beta-lactamase-positive Escherichia coli. In vitro, molecular and electron microscopy analyses conclusively demonstrated the antimicrobial effects of these extracts against a panel of Gram-negative and Gram-positive bacteria. The organic alkaloid extract was the most effective against E. coli and MRSA, resulting in cell membrane disruption visible with transmission electron microscopy. In the near future, we intend to further focus and delineate the molecular mechanism-of-action for specific alkaloids of R. stricta, particularly against MRSA.

  20. Trichomonas vaginalis: pathogenicity and potential role in human reproductive failure.

    Science.gov (United States)

    Mielczarek, Ewelina; Blaszkowska, Joanna

    2016-08-01

    Trichomonas vaginalis, which colonizes the genitourinary tract of men and women, is a sexually transmitted parasite causing symptomatic or asymptomatic trichomoniasis. The host-parasite relationship is very complex, and clinical symptoms cannot likely be attributed to a single pathogenic effect. Among the many factors responsible for interactions between T. vaginalis and host tissues, contact-dependent and contact-independent mechanisms are important in pathogenicity, as is the immune response. This review focuses on the potential virulence properties of T. vaginalis and its role in female and male infertility. It highlights the association between T. vaginalis infection and serious adverse health consequences experienced by women, including infertility, preterm birth and low-birth-weight infants. Long-term clinical observations and results of in vitro experimental studies indicate that in men, trichomoniasis has been also associated with infertility through inflammatory damage to the genitourinary tract or interference with sperm function. These results contribute significantly to improving our knowledge of the role of parasitic virulence factors in the development of infection and its role in human infertility.

  1. The graphene oxide contradictory effects against human pathogens

    Science.gov (United States)

    Palmieri, Valentina; Carmela Lauriola, Maria; Ciasca, Gabriele; Conti, Claudio; De Spirito, Marco; Papi, Massimiliano

    2017-04-01

    Standing out as the new wonder bidimensional material, graphene oxide (GO) has aroused an exceptional interest in biomedical research by holding promise for being the antibacterial of future. First, GO possesses a specific interaction with microorganisms combined with a mild toxicity for human cells. Additionally, its antibacterial action seems to be directed to multiple targets in pathogens, causing both membranes mechanical injury and oxidative stress. Lastly, compared to other carbon materials, GO has easy and low-cost processing and is environment-friendly. This remarkable specificity and multi-targeting antibacterial activity come at a time when antibiotic resistance represents the major health challenge. Unfortunately, a comprehensive framework to understand how to effectively utilize this material against microorganisms is still lacking. In the last decade, several groups tried to define the mechanisms of interaction between GO flakes and pathogens but conflicting results have been reported. This review is focused on all the contradictions of GO antimicrobial properties in solution. Flake size, incubation protocol, time of exposure and species considered are examples of factors influencing results. These parameters will be summarized and analyzed with the aim of defining the causes of contradictions, to allow fast GO clinical application.

  2. Phytomonas serpens: immunological similarities with the human trypanosomatid pathogens.

    Science.gov (United States)

    Santos, André L S; d'Avila-Levy, Claudia M; Elias, Camila G R; Vermelho, Alane B; Branquinha, Marta H

    2007-07-01

    The present review provides an overview of recent discoveries concerning the immunological similarities between Phytomonas serpens, a tomato parasite, and human trypanosomatid pathogens, with special emphasis on peptidases. Leishmania spp. and Trypanosoma cruzi express peptidases that are well-known virulence factors, named leishmanolysin and cruzipain. P. serpens synthesizes two distinct classes of proteolytic enzymes, metallo- and cysteine-type peptidases, that share common epitopes with leishmanolysin and cruzipain, respectively. The leishmanolysin-like and cruzipain-like molecules from P. serpens participate in several biological processes including cellular growth and adhesion to the salivary glands of Oncopeltus fasciatus, a phytophagous insect experimental model. Since previous reports demonstrated that immunization of mice with P. serpens induced a partial protective immune response against T. cruzi, this plant trypanosomatid may be a suitable candidate for vaccine studies. Moreover, comparative approaches in the Trypanosomatidae family may be useful to understand kinetoplastid biology, biochemistry and evolution.

  3. A Quantitative Prioritisation of Human and Domestic Animal Pathogens in Europe

    Science.gov (United States)

    McIntyre, K. Marie; Setzkorn, Christian; Hepworth, Philip J.; Morand, Serge; Morse, Andrew P.; Baylis, Matthew

    2014-01-01

    Disease or pathogen risk prioritisations aid understanding of infectious agent impact within surveillance or mitigation and biosecurity work, but take significant development. Previous work has shown the H-(Hirsch-)index as an alternative proxy. We present a weighted risk analysis describing infectious pathogen impact for human health (human pathogens) and well-being (domestic animal pathogens) using an objective, evidence-based, repeatable approach; the H-index. This study established the highest H-index European pathogens. Commonalities amongst pathogens not included in previous surveillance or risk analyses were examined. Differences between host types (humans/animals/zoonotic) in pathogen H-indices were explored as a One Health impact indicator. Finally, the acceptability of the H-index proxy for animal pathogen impact was examined by comparison with other measures. 57 pathogens appeared solely in the top 100 highest H-indices (1) human or (2) animal pathogens list, and 43 occurred in both. Of human pathogens, 66 were zoonotic and 67 were emerging, compared to 67 and 57 for animals. There were statistically significant differences between H-indices for host types (humans, animal, zoonotic), and there was limited evidence that H-indices are a reasonable proxy for animal pathogen impact. This work addresses measures outlined by the European Commission to strengthen climate change resilience and biosecurity for infectious diseases. The results include a quantitative evaluation of infectious pathogen impact, and suggest greater impacts of human-only compared to zoonotic pathogens or scientific under-representation of zoonoses. The outputs separate high and low impact pathogens, and should be combined with other risk assessment methods relying on expert opinion or qualitative data for priority setting, or could be used to prioritise diseases for which formal risk assessments are not possible because of data gaps. PMID:25136810

  4. Draft genome sequence of the first human isolate of the ruminant pathogen Mycoplasma capricolum subsp. capricolum

    DEFF Research Database (Denmark)

    Seersholm, Frederik Valeur; Fischer, Anne; Heller, Martin

    2015-01-01

    Mycoplasma capricolum subsp. capricolum is a well-known pathogen of small ruminants. A recent human case of septicemia involving this agent raised the question of its potential pathogenicity to humans. We present the first draft genome sequence of a human Mycoplasma capricolum subsp. capricolum...

  5. A Rapid and Simple Real-Time PCR Assay for Detecting Foodborne Pathogenic Bacteria in Human Feces.

    Science.gov (United States)

    Hanabara, Yutaro; Ueda, Yutaka

    2016-11-22

    A rapid, simple method for detecting foodborne pathogenic bacteria in human feces is greatly needed. Here, we examined the efficacy of a method that employs a combination of a commercial PCR master mix, which is insensitive to PCR inhibitors, and a DNA extraction method which used sodium dodecyl benzene sulfonate (SDBS), and Tween 20 to counteract the inhibitory effects of SDBS on the PCR assay. This method could detect the target genes (stx1 and stx2 of enterohemorrhagic Escherichia coli, invA of Salmonella Enteritidis, tdh of Vibrio parahaemolyticus, gyrA of Campylobacter jejuni, ceuE of Campylobacter coli, SEA of Staphylococcus aureus, ces of Bacillus cereus, and cpe of Clostridium perfringens) in a fecal suspension containing 1.0 × 10 1 to 1.0 × 10 3 CFU/ml. Furthermore, the assay was neither inhibited nor influenced by individual differences among the fecal samples of 10 subjects or fecal concentration (40-160 mg/ml in the fecal suspension). When we attempted to detect the genes of pathogenic bacteria in 4 actual clinical cases, we found that this method was more sensitive than standard culture method. These results showed that this assay is a rapid, simple detection method for foodborne pathogenic bacteria in human feces.

  6. Presence of multi-drug resistant pathogenic Escherichia coli in the San Pedro River located in the State of Aguascalientes, Mexico.

    Directory of Open Access Journals (Sweden)

    Flor Yazmin Ramirez Castillo

    2013-06-01

    Full Text Available Contamination of surface waters in developing countries is a great concern. Treated and untreated wastewaters have been discharged into rivers and streams, leading to possible waterborne infection outbreaks and may represent a significant dissemination mechanism of antibiotic resistance genes. In this study, the water quality of San Pedro River, the main river and pluvial collector of the Aguascalientes State, Mexico was assessed. Thirty sample locations were tested throughout the River. The main physicochemical parameters of water were evaluated. Results showed high levels of fecal pollution as well as inorganic and organic matter abundant enough to support the heterotrophic growth of microorganisms. These results indicate poor water quality in samples from different locations. One hundred and fifty Escherichia coli were collected and screened by PCR for several virulence genes. Isolates were classified as either pathogenic (n = 91 or commensal (n = 59. The disc diffusion method was used to determine antimicrobial susceptibility to 13 antibiotics. Fifty-two percent of the isolates were resistant to at least one antimicrobial agent and 30.6% were multi-resistant. Eighteen E. coli strains were quinolone resistant of which 16 were multi-resistant. Plasmid-mediated quinolone resistance genes were detected in 12 isolates. Mutations at the Ser-83→Leu and/or Asp-87→Asn in the gyrA gene were detected as well as mutations at the Ser-80→Ile in parC. An E. coli microarray (Maxivirulence V 3.1 was used to characterize the virulence and antimicrobial resistance genes profiles of the fluoroquinolone-resistant isolates. Antimicrobial resistance genes such as blaTEM, sulI, sulII, dhfrIX, aph3 (strA and tet (B as well as integrons were found in fluoroquinolone resistance E. coli strains. The presence of potential pathogenic E. coli and antibiotic resistance in San Pedro River such as fluoroquinolone resistant E. coli could pose a potential threat to human

  7. Escherichia coli lipoprotein binds human plasminogen via an intramolecular domain

    Directory of Open Access Journals (Sweden)

    Tammy eGonzalez

    2015-10-01

    Full Text Available Escherichia coli lipoprotein (Lpp is a major cellular component that exists in two distinct states, bound-form and free-form. Bound-form Lpp is known to interact with the periplasmic bacterial cell wall, while free-form Lpp is localized to the bacterial cell surface. A function for surface-exposed Lpp has yet to be determined. We hypothesized that the presence of C-terminal lysines in the surface-exposed region of Lpp would facilitate binding to the host zymogen plasminogen, a protease commandeered by a number of clinically important bacteria. Recombinant Lpp was synthesized and the binding of Lpp to plasminogen, the effect of various inhibitors on this binding, and the effects of various mutations of Lpp on Lpp-plasminogen interactions were examined. Additionally, the ability of Lpp-bound plasminogen to be converted to active plasmin was analyzed. We determined that Lpp binds plasminogen via an atypical domain located near the center of mature Lpp that may not be exposed on the surface of intact E. coli according to the current localization model. Finally, we found that plasminogen bound by Lpp can be converted to active plasmin. While the consequences of Lpp binding plasminogen are unclear, these results prompt further investigation of the ability of surface exposed Lpp to interact with host molecules such as extracellular matrix components and complement regulators, and the role of these interactions in infections caused by E. coli and other bacteria.

  8. Concurrent Detection of Human Norovirus and Bacterial Pathogens in Water Samples from an Agricultural Region in Central California Coast

    Directory of Open Access Journals (Sweden)

    Peng Tian

    2017-08-01

    Full Text Available Bacterial pathogens and human norovirus (HuNoV are major cause for acute gastroenteritis caused by contaminated food and water. Public waterways can become contaminated from a variety of sources and flood after heavy rain events, leading to pathogen contamination of produce fields. We initiated a survey of several public watersheds in a major leafy green produce production region of the Central California Coast to determine the prevalence of HuNoV as well as bacterial pathogens. Moore swabs were used to collect environmental samples bi-monthly at over 30 sampling sites in the region. High prevalence of HuNoV and bacterial pathogens were detected in environmental water samples in the region. The overall detection rates of HuNoV, O157 Shiga toxin-producing Escherichia coli (STEC, non-O157 STEC, Salmonella, and Listeria were 25.58, 7.91, 9.42, 59.65, and 44.30%, respectively. The detection rates of Salmonella and L. monocytogenes were significantly higher in the spring. Fall and spring had elevated detection rates of O157 STEC. The overall detection rates of non-O157 STEC in the fall were lower than the other seasons but not significant. The overall detection rates of HuNoV were highest in fall, followed by spring and winter, with summer being lowest and significantly lower than other seasons. This study presented the first study of evaluating the correlation between the detection rate of HuNoV and the detection rates of four bacterial pathogens from environmental water. Overall, there was no significant difference in HuNoV detection rates between samples testing positive or negative for the four bacterial pathogens tested. Pathogens in animal-impacted and human-impacted areas were investigated. There were significant higher detection rates in animal-impacted areas than that of human-impacted areas for bacterial pathogens. However, there was no difference in HuNoV detection rates between these two areas. The overall detection levels of generic E

  9. Alkanna tinctoria leaves extracts: a prospective remedy against multidrug resistant human pathogenic bacteria.

    Science.gov (United States)

    Khan, Usman Ali; Rahman, Hazir; Qasim, Muhammad; Hussain, Anwar; Azizllah, Azizullah; Murad, Waheed; Khan, Zakir; Anees, Muhammad; Adnan, Muhammad

    2015-04-23

    Plants are rich source of chemical compounds that are used to accomplish biological activity. Indigenously crude extracts of plants are widely used as herbal medicine for the treatment of infections by people of different ethnic groups. The present investigation was carried out to evaluate the biological potential of Alkanna tinctoria leaves extract from district Charsadda, Pakistan against multidrug resistant human pathogenic bacteria including Acinetobacter baumannii, Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Anti-multi-drug resistant bacterial activity of aqueous, chloroform, ethanol and hexane extracts of Alkanna tinctoria leaves were evaluated by well diffusion method. Minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs) of different extracts were determined. Moreover qualitative phytochemicals screening of the studied extracts was performed. All four selected bacteria including A. baumannii, E. coli, P. aeruginosa and S. aureus were categorized as multi-drug resistant (MDR) as they were found to be resistant to 13, 10, 19 and 22 antibiotics belonging to different groups respectively. All the four extract showed potential activity against S. aureus as compare to positive control antibiotic (Imipenem). Similarly among the four extracts of Alkanna tinctoria leaves, aqueous extract showed best activity against A. baumannii (10±03 mm), P. aeruginosa (12±0.5 mm), and S. aureus (14±0.5 mm) as compare to Imipenem. The MICs and MBCs results also showed quantitative concentration of plant extracts to inhibit or kill MDR bacteria. When phytochemicals analysis was performed it was observed that aqueous and ethanol extracts showed phytochemicals with large number as well as volume, especially Alkaloides, Flavonoides and Charbohydrates. The undertaken study demonstrated that all the four extracts of Alkanna tinctoria leaves exhibited considerable antibacterial activity against MDR isolates. Finding from the

  10. Function of the CRISPR-Cas System of the Human Pathogen Clostridium difficile

    Science.gov (United States)

    Boudry, Pierre; Semenova, Ekaterina; Monot, Marc; Datsenko, Kirill A.; Lopatina, Anna; Sekulovic, Ognjen; Ospina-Bedoya, Maicol; Fortier, Louis-Charles; Severinov, Konstantin; Dupuy, Bruno

    2015-01-01

    ABSTRACT Clostridium difficile is the cause of most frequently occurring nosocomial diarrhea worldwide. As an enteropathogen, C. difficile must be exposed to multiple exogenous genetic elements in bacteriophage-rich gut communities. CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) systems allow bacteria to adapt to foreign genetic invaders. Our recent data revealed active expression and processing of CRISPR RNAs from multiple type I-B CRISPR arrays in C. difficile reference strain 630. Here, we demonstrate active expression of CRISPR arrays in strain R20291, an epidemic C. difficile strain. Through genome sequencing and host range analysis of several new C. difficile phages and plasmid conjugation experiments, we provide evidence of defensive function of the CRISPR-Cas system in both C. difficile strains. We further demonstrate that C. difficile Cas proteins are capable of interference in a heterologous host, Escherichia coli. These data set the stage for mechanistic and physiological analyses of CRISPR-Cas-mediated interactions of important global human pathogen with its genetic parasites. PMID:26330515

  11. Synthesis of nano-cuboidal gold particles for effective antimicrobial property against clinical human pathogens.

    Science.gov (United States)

    Murphin Kumar, Paskalis Sahaya; MubarakAli, Davoodbasha; Saratale, Rijuta Ganesh; Saratale, Ganesh Dattatraya; Pugazhendhi, Arivalagan; Gopalakrishnan, Kumar; Thajuddin, Nooruddin

    2017-12-01

    Algae could offer a potential source of fine chemicals, pharmaceuticals and biofuels. In this study, a green synthesis of dispersed cuboidal gold nanoparticles (AuNPs) was achieved using red algae, Gelidium amansii reacted with HAuCl 4 . It was found to be 4-7 nm sized cubical nanoparticles with aspect ratio of 1.4 were synthesized using 0.5 mM of HAuCl 4 by HRSEM analysis. The crystalline planes (111), (200), (220), (311) and elemental signal of gold was observed by XRD and EDS respectively. The major constitutes, galactose and 3,6-anhydrogalactose in the alga played a critical role in the synthesis of crystalline AuNPs with cubical dimension. Further, the antibacterial potential of synthesized AuNPs was tested against human pathogens, Escherichia coli and Staphylococcus aureus. The synthesized AuNPs found biocompatible up to 100 ppm and high concentration showed an inhibition against cancer cell. This novel report could be helped to exploration of bioresources to material synthesis for the application of biosensor and biomedical application. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Genotype-specific pathogenic effects in human dilated cardiomyopathy.

    Science.gov (United States)

    Bollen, Ilse A E; Schuldt, Maike; Harakalova, Magdalena; Vink, Aryan; Asselbergs, Folkert W; Pinto, Jose R; Krüger, Martina; Kuster, Diederik W D; van der Velden, Jolanda

    2017-07-15

    Mutations in genes encoding cardiac troponin I (TNNI3) and cardiac troponin T (TNNT2) caused altered troponin protein stoichiometry in patients with dilated cardiomyopathy. TNNI3 p.98trunc resulted in haploinsufficiency, increased Ca 2+ -sensitivity and reduced length-dependent activation. TNNT2 p.K217del caused increased passive tension. A mutation in the gene encoding Lamin A/C (LMNA p.R331Q ) led to reduced maximal force development through secondary disease remodelling in patients suffering from dilated cardiomyopathy. Our study shows that different gene mutations induce dilated cardiomyopathy via diverse cellular pathways. Dilated cardiomyopathy (DCM) can be caused by mutations in sarcomeric and non-sarcomeric genes. In this study we defined the pathogenic effects of three DCM-causing mutations: the sarcomeric mutations in genes encoding cardiac troponin I (TNNI3 p.98truncation ) and cardiac troponin T (TNNT2 p.K217deletion ; also known as the p.K210del) and the non-sarcomeric gene mutation encoding lamin A/C (LMNA p.R331Q ). We assessed sarcomeric protein expression and phosphorylation and contractile behaviour in single membrane-permeabilized cardiomyocytes in human left ventricular heart tissue. Exchange with recombinant troponin complex was used to establish the direct pathogenic effects of the mutations in TNNI3 and TNNT2. The TNNI3 p.98trunc and TNNT2 p.K217del mutation showed reduced expression of troponin I to 39% and 51%, troponin T to 64% and 53%, and troponin C to 73% and 97% of controls, respectively, and altered stoichiometry between the three cardiac troponin subunits. The TNNI3 p.98trunc showed pure haploinsufficiency, increased Ca 2+ -sensitivity and impaired length-dependent activation. The TNNT2 p.K217del mutation showed a significant increase in passive tension that was not due to changes in titin isoform composition or phosphorylation. Exchange with wild-type troponin complex corrected troponin protein levels to 83% of controls in the TNNI3

  13. Genotype‐specific pathogenic effects in human dilated cardiomyopathy

    Science.gov (United States)

    Schuldt, Maike; Harakalova, Magdalena; Vink, Aryan; Asselbergs, Folkert W.; Pinto, Jose R.; Krüger, Martina; Kuster, Diederik W. D.; van der Velden, Jolanda

    2017-01-01

    Key points Mutations in genes encoding cardiac troponin I (TNNI3) and cardiac troponin T (TNNT2) caused altered troponin protein stoichiometry in patients with dilated cardiomyopathy. TNNI3p.98trunc resulted in haploinsufficiency, increased Ca2+‐sensitivity and reduced length‐dependent activation. TNNT2p.K217del caused increased passive tension.A mutation in the gene encoding Lamin A/C (LMNA p.R331Q) led to reduced maximal force development through secondary disease remodelling in patients suffering from dilated cardiomyopathy.Our study shows that different gene mutations induce dilated cardiomyopathy via diverse cellular pathways. Abstract Dilated cardiomyopathy (DCM) can be caused by mutations in sarcomeric and non‐sarcomeric genes. In this study we defined the pathogenic effects of three DCM‐causing mutations: the sarcomeric mutations in genes encoding cardiac troponin I (TNNI3p.98truncation) and cardiac troponin T (TNNT2p.K217deletion; also known as the p.K210del) and the non‐sarcomeric gene mutation encoding lamin A/C (LMNAp.R331Q). We assessed sarcomeric protein expression and phosphorylation and contractile behaviour in single membrane‐permeabilized cardiomyocytes in human left ventricular heart tissue. Exchange with recombinant troponin complex was used to establish the direct pathogenic effects of the mutations in TNNI3 and TNNT2. The TNNI3p.98trunc and TNNT2p.K217del mutation showed reduced expression of troponin I to 39% and 51%, troponin T to 64% and 53%, and troponin C to 73% and 97% of controls, respectively, and altered stoichiometry between the three cardiac troponin subunits. The TNNI3p.98trunc showed pure haploinsufficiency, increased Ca2+‐sensitivity and impaired length‐dependent activation. The TNNT2p.K217del mutation showed a significant increase in passive tension that was not due to changes in titin isoform composition or phosphorylation. Exchange with wild‐type troponin complex corrected troponin protein levels to 83% of

  14. Human viral pathogens are pervasive in wastewater treatment center aerosols.

    Science.gov (United States)

    Brisebois, Evelyne; Veillette, Marc; Dion-Dupont, Vanessa; Lavoie, Jacques; Corbeil, Jacques; Culley, Alexander; Duchaine, Caroline

    2018-05-01

    Wastewater treatment center (WTC) workers may be vulnerable to diseases caused by viruses, such as the common cold, influenza and gastro-intestinal infections. Although there is a substantial body of literature characterizing the microbial community found in wastewater, only a few studies have characterized the viral component of WTC aerosols, despite the fact that most diseases affecting WTC workers are of viral origin and that some of these viruses are transmitted through the air. In this study, we evaluated in four WTCs the presence of 11 viral pathogens of particular concern in this milieu and used a metagenomic approach to characterize the total viral community in the air of one of those WTCs. The presence of viruses in aerosols in different locations of individual WTCs was evaluated and the results obtained with four commonly used air samplers were compared. We detected four of the eleven viruses tested, including human adenovirus (hAdV), rotavirus, hepatitis A virus (HAV) and Herpes Simplex virus type 1 (HSV1). The results of the metagenomic assay uncovered very few viral RNA sequences in WTC aerosols, however sequences from human DNA viruses were in much greater relative abundance. Copyright © 2017. Published by Elsevier B.V.

  15. The human-bacterial pathogen protein interaction networks of Bacillus anthracis, Francisella tularensis, and Yersinia pestis.

    Directory of Open Access Journals (Sweden)

    Matthew D Dyer

    2010-08-01

    Full Text Available Bacillus anthracis, Francisella tularensis, and Yersinia pestis are bacterial pathogens that can cause anthrax, lethal acute pneumonic disease, and bubonic plague, respectively, and are listed as NIAID Category A priority pathogens for possible use as biological weapons. However, the interactions between human proteins and proteins in these bacteria remain poorly characterized leading to an incomplete understanding of their pathogenesis and mechanisms of immune evasion.In this study, we used a high-throughput yeast two-hybrid assay to identify physical interactions between human proteins and proteins from each of these three pathogens. From more than 250,000 screens performed, we identified 3,073 human-B. anthracis, 1,383 human-F. tularensis, and 4,059 human-Y. pestis protein-protein interactions including interactions involving 304 B. anthracis, 52 F. tularensis, and 330 Y. pestis proteins that are uncharacterized. Computational analysis revealed that pathogen proteins preferentially interact with human proteins that are hubs and bottlenecks in the human PPI network. In addition, we computed modules of human-pathogen PPIs that are conserved amongst the three networks. Functionally, such conserved modules reveal commonalities between how the different pathogens interact with crucial host pathways involved in inflammation and immunity.These data constitute the first extensive protein interaction networks constructed for bacterial pathogens and their human hosts. This study provides novel insights into host-pathogen interactions.

  16. Hemocytes from Pediculus humanus humanus are hosts for human bacterial pathogens.

    Directory of Open Access Journals (Sweden)

    Eric eGhigo

    2015-01-01

    Full Text Available Pediculus humanus humanus is an human ectoparasite which represents a serious public health threat because it is vector for pathogenic bacteria. It is important to understand and identify where bacteria reside in human body lice to define new strategies to counterstroke the capacity of vectorization of the bacterial pathogens by body lice. It is known that phagocytes from vertebrates can be hosts or reservoirs for several microbes. Therefore, we wondered if Pediculus humanus humanus phagocytes could hide pathogens. In this study, we characterized the phagocytes from Pediculus humanus humanus and evaluated their contribution as hosts for human pathogens such as Rickettsia prowazekii, Bartonella quintana and Acinetobacter baumannii.

  17. Isolation, genotyping, and antimicrobial resistance of zoonotic shiga toxin-producing escherichia coli

    Science.gov (United States)

    Shiga toxin-producing Escherichia coli (STEC) is an enteric pathogen linked to outbreaks of human gastroenteritis with diverse clinical spectra. Traditional culture and isolation methods, including selective enrichment and differential plating, have enabled the effective recovery of STEC. Ruminants ...

  18. Prevalence of Salmonella enterica, Listeria monocytogenes, and pathogenic Escherichia coli in bulk tank milk and milk filters from US dairy operations in the National Animal Health Monitoring System Dairy 2014 study.

    Science.gov (United States)

    Sonnier, Jakeitha L; Karns, Jeffrey S; Lombard, Jason E; Kopral, Christine A; Haley, Bradd J; Kim, Seon-Woo; Van Kessel, Jo Ann S

    2018-03-01

    The dairy farm environment is a well-documented reservoir for zoonotic pathogens such as Salmonella enterica, Shiga-toxigenic Escherichia coli, and Listeria monocytogenes, and humans may be exposed to these pathogens via consumption of unpasteurized milk and dairy products. As part of the National Animal Health Monitoring System Dairy 2014 study, bulk tank milk (BTM, n = 234) and milk filters (n = 254) were collected from a total of 234 dairy operations in 17 major dairy states and analyzed for the presence of these pathogens. The invA gene was detected in samples from 18.5% of operations and Salmonella enterica was isolated from 18.0% of operations. Salmonella Dublin was detected in 0.7% of operations. Sixteen Salmonella serotypes were isolated, and the most common serotypes were Cerro, Montevideo, and Newport. Representative Salmonella isolates (n = 137) were tested against a panel of 14 antimicrobials. Most (85%) were pansusceptible; the remaining were resistant to 1 to 9 antimicrobials, and within the resistant strains the most common profile was resistance to ampicillin/clavulanic acid, ampicillin, cefoxitin, ceftiofur, ceftriaxone, chloramphenicol, streptomycin, sulfisoxazole, and tetracycline. Listeria spp. were isolated from 19.9% of operations, and L. monocytogenes was isolated from 3.0% of operations. Serogroups 1/2a and 1/2b were the most common, followed by 4b and 4a. One or more E. coli virulence genes were detected in the BTM from 30.5% of operations and in the filters from 75.3% of operations. A combination of stx 2 , eaeA, and γ-tir genes was detected in the BTM from 0.5% of operations and in the filters from 6.6% of operations. The results of this study indicate an appreciable prevalence of bacterial pathogens in BTM and filters, including serovars known to infect humans. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  19. Antibiotic Resistance Escherichia coli isolated from Faecal of Healthy Human

    OpenAIRE

    , S. Budiarti

    2011-01-01

    The objective of this research was to examine antibiotic resistant of Escherechia coli as intestinal normal şora, isolated from healthy human. The samples were collected from faeces of new born children, children under 3 and 5years-old, and human adult. Bacteria were isolated at Eosin Methylen Blue solid media followed by biochemistry reaction for physiological E.coli identiŞcation. Antibiotic resistant test was carried out using Kirby-Bauer method. The result showed that 95 % bacterial strai...

  20. Enterohemorrhagic Escherichia coli (EHEC

    Directory of Open Access Journals (Sweden)

    Abdullah Kilic

    2011-08-01

    Full Text Available Escherichia coli is a bacterium that is commonly found in the gut of humans and warm-blooded animals. Most strains of E. coli are harmless for human. E. coli O157:H7 is the most common member of a group of pathogenic E. coli strains known variously as enterohaemorrhagic, verocytotoxin-producing, or Shiga-toxin-producing organisms. EHEC bacterium is the major cause of haemorrhagic colitis and haemolytic uraemic syndrome. The reservoir of this pathogen appears to be mainly cattle and other ruminants such as camels. It is transmitted to humans primarily through consumption of contaminated foods. [TAF Prev Med Bull 2011; 10(4.000: 387-388

  1. Genotypic and Phenotypic Characteristics Associated with Biofilm Formation by Human Clinical Escherichia coli Isolates of Different Pathotypes.

    Science.gov (United States)

    Schiebel, Juliane; Böhm, Alexander; Nitschke, Jörg; Burdukiewicz, Michał; Weinreich, Jörg; Ali, Aamir; Roggenbuck, Dirk; Rödiger, Stefan; Schierack, Peter

    2017-12-15

    Bacterial biofilm formation is a widespread phenomenon and a complex process requiring a set of genes facilitating the initial adhesion, maturation, and production of the extracellular polymeric matrix and subsequent dispersal of bacteria. Most studies on Escherichia coli biofilm formation have investigated nonpathogenic E. coli K-12 strains. Due to the extensive focus on laboratory strains in most studies, there is poor information regarding biofilm formation by pathogenic E. coli isolates. In this study, we genotypically and phenotypically characterized 187 human clinical E. coli isolates representing various pathotypes (e.g., uropathogenic, enteropathogenic, and enteroaggregative E. coli ). We investigated the presence of biofilm-associated genes ("genotype") and phenotypically analyzed the isolates for motility and curli and cellulose production ("phenotype"). We developed a new screening method to examine the in vitro biofilm formation ability. In summary, we found a high prevalence of biofilm-associated genes. However, we could not detect a biofilm-associated gene or specific phenotype correlating with the biofilm formation ability. In contrast, we did identify an association of increased biofilm formation with a specific E. coli pathotype. Enteroaggregative E. coli (EAEC) was found to exhibit the highest capacity for biofilm formation. Using our image-based technology for the screening of biofilm formation, we demonstrated the characteristic biofilm formation pattern of EAEC, consisting of thick bacterial aggregates. In summary, our results highlight the fact that biofilm-promoting factors shown to be critical for biofilm formation in nonpathogenic strains do not reflect their impact in clinical isolates and that the ability of biofilm formation is a defined characteristic of EAEC. IMPORTANCE Bacterial biofilms are ubiquitous and consist of sessile bacterial cells surrounded by a self-produced extracellular polymeric matrix. They cause chronic and device

  2. Biosynthesis of Cu, ZVI, and Ag nanoparticles using Dodonaea viscosa extract for antibacterial activity against human pathogens

    Energy Technology Data Exchange (ETDEWEB)

    Kiruba Daniel, S. C. G.; Vinothini, G. [Anna University of Technology, Tiruchirappalli, Department of Nanoscience and Technology (India); Subramanian, N. [Anna University of Technology, Tiruchirappalli, Department of Pharmaceutical Technology (India); Nehru, K. [Anna University of Technology, Tiruchirappalli, Department of Chemistry (India); Sivakumar, M., E-mail: muthusiva@gmail.com [Anna University of Technology, Tiruchirappalli, Department of Nanoscience and Technology (India)

    2013-01-15

    Biosynthesis of copper, zero-valent iron (ZVI), and silver nanoparticles using leaf extract of Dodonaea viscosa has been investigated in this report. There are no additional surfactants/polymers used as capping or reducing agents for these syntheses. The synthesized nanoparticles were characterized by UV-Vis spectroscopy, X-ray diffraction, atomic force microscopy, and high-resolution transmission electron microscopy. The phase analysis was performed using selected area electron diffraction. The pH dependence of surface plasmon resonance and subsequent size variation has been determined. The synthesized nanoparticles showed spherical morphology and the average size of 29, 27, and 16 nm for Cu, ZVI, and Ag nanoparticles, respectively. Finally, biosynthesized Cu, ZVI, and Ag nanoparticles were tested against human pathogens viz. Gram-negative Escherichia coli, Klebsiella pneumonia, Pseudomonas fluorescens and Gram-positive Staphylococcus aureus and Bacillus subtilis, and showed good antimicrobial activity.

  3. Biosynthesis of Cu, ZVI, and Ag nanoparticles using Dodonaea viscosa extract for antibacterial activity against human pathogens

    International Nuclear Information System (INIS)

    Kiruba Daniel, S. C. G.; Vinothini, G.; Subramanian, N.; Nehru, K.; Sivakumar, M.

    2013-01-01

    Biosynthesis of copper, zero-valent iron (ZVI), and silver nanoparticles using leaf extract of Dodonaea viscosa has been investigated in this report. There are no additional surfactants/polymers used as capping or reducing agents for these syntheses. The synthesized nanoparticles were characterized by UV–Vis spectroscopy, X-ray diffraction, atomic force microscopy, and high-resolution transmission electron microscopy. The phase analysis was performed using selected area electron diffraction. The pH dependence of surface plasmon resonance and subsequent size variation has been determined. The synthesized nanoparticles showed spherical morphology and the average size of 29, 27, and 16 nm for Cu, ZVI, and Ag nanoparticles, respectively. Finally, biosynthesized Cu, ZVI, and Ag nanoparticles were tested against human pathogens viz. Gram-negative Escherichia coli, Klebsiella pneumonia, Pseudomonas fluorescens and Gram-positive Staphylococcus aureus and Bacillus subtilis, and showed good antimicrobial activity.

  4. The Shared Antibiotic Resistome of Soil Bacteria and Human Pathogens

    DEFF Research Database (Denmark)

    Forsberg, Kevin J.; Reyes, Alejandro; Wang, Bin

    2012-01-01

    protocol to assemble short-read sequence data after antibiotic selection experiments, using 12 different drugs in all antibiotic classes, and compared antibiotic resistance gene sequences between soil bacteria and clinically occurring pathogens. Sixteen sequences, representing seven gene products, were...... discovered in farmland soil bacteria within long stretches of perfect nucleotide identity with pathogenic proteobacteria....

  5. Human sepsis-associated Escherichia coli (SEPEC) is able to adhere to and invade kidney epithelial cells in culture

    Energy Technology Data Exchange (ETDEWEB)

    Conceição, R.A. [Departamento de Genética, Evolução e Bioagentes, Universidade Estadual de Campinas, Campinas, SP (Brazil); Ludovico, M.S. [Departamento de Microbiologia, Universidade Estadual de Londrina, Londrina, PR (Brazil); Andrade, C.G.T.J. [Departamento de Biologia Geral, Universidade Estadual de Londrina, Londrina, PR (Brazil); Yano, T. [Departamento de Genética, Evolução e Bioagentes, Universidade Estadual de Campinas, Campinas, SP (Brazil)

    2012-04-13

    The adhesins of extraintestinal pathogenic Escherichia coli are essential for mediating direct interactions between the microbes and the host cell surfaces that they infect. Using fluorescence microscopy and gentamycin protection assays, we observed that 49 sepsis-associated E. coli (SEPEC) strains isolated from human adults adhered to and invaded Vero cells in the presence of D-mannose (100%). In addition, bacteria concentrations of approximately 2 × 10{sup 7} CFU/mL were recovered from Vero cells following an invasion assay. Furthermore, PCR analysis of adhesin genes showed that 98.0% of these SEPEC strains tested positive for fimH, 69.4% for flu, 53.1% for csgA, 38.8% for mat, and 32.7% for iha. Analysis of the invasin genes showed that 16.3% of the SEPEC strains were positive for tia, 12.3% for gimB, and 10.2% for ibeA. Therefore, these data suggest that SEPEC adhesion to cell surfaces occurs through non-fimH mechanisms. Scanning electron microscopy showed the formation of microcolonies on the Vero cell surface. SEPEC invasiveness was also confirmed by the presence of intracellular bacteria, and ultrastructural analysis using electron transmission microscopy revealed bacteria inside the Vero cells. Taken together, these results demonstrate that these SEPEC strains had the ability to adhere to and invade Vero cells. Moreover, these data support the theory that renal cells may be the predominant pathway through which SEPEC enters human blood vessels.

  6. Fimbrial adhesins from extraintestinal Escherichia coli

    DEFF Research Database (Denmark)

    Klemm, Per; Hancock, Viktoria; Schembri, Mark A.

    2010-01-01

    Extraintestinal pathogenic Escherichia coli (ExPEC) represent an important subclass of E. coli that cause a wide spectrum of diseases in human and animal hosts. Fimbriae are key virulence factors of ExPEC strains. These long surface located rod-shaped organelles mediate receptor-specific attachment...

  7. Transmission of antibiotic-resistant Escherichia coli between cattle, humans and the environment in peri-urban livestock keeping communities in Morogoro, Tanzania

    DEFF Research Database (Denmark)

    Lupindu, Athumani M; Dalsgaard, Anders; Msoffe, Peter L. M.

    2015-01-01

    Urban and peri-urban livestock farming is expanding world-widely because of increased urbanization and demands for food of animal origin. Such farming practices pose a public health risk as livestock are reservoirs of several zoonotic pathogens. In an attempt to determine the fecal transmission...... infrastructures (Odd Ratio=11.2, 95% CI=1.1-119.3) were associated with E. coli showing identical PFGE types within and between clusters. There is a need to improve animal husbandry and manure management practices to reduce risks of transmission of enteropathogens between livestock and humans in urban and peri-urban...... between livestock and people, 100 household clusters keeping cattle in close proximity of humans were selected in urban and peri-urban areas of Morogoro in Tanzania. One hundred eighteen ampicillin and tetracycline resistant Escherichia coli (40 from human stool, 50 from cattle feces, 21 from soil...

  8. Possible mistranslation of Shiga toxin from pathogenic Escherichia coli as measured by MALDI-TOF and Orbitrap mass spectrometry

    Science.gov (United States)

    RATIONALE: Shiga toxin-producing Escherichia coli (STEC) are often subjected to DNA damaging antibiotics during culturing in order to elicit the bacterial SOS response and up-regulation of bacteriophage-encoded proteins including Shiga toxin (Stx). However, such antibiotic exposure and stress may al...

  9. Antagonistic activity of antibiotic producing Streptomyces sp. against fish and human pathogenic bacteria

    Directory of Open Access Journals (Sweden)

    Nazmul Hossain

    2014-04-01

    Full Text Available In this study, attempts were made to isolate Streptomyces sp. from soil samples of two different regions of Bangladesh and evaluate their antagonistic activity against fish and human pathogenic bacteria. A total of 10 isolates were identified as Streptomyces sp. based on several morphological, physiological and biochemical tests. Cross streak method was used to observe the antagonistic activity of the Streptomyces sp. isolates against different fish pathogens belonging to the genus Aeromonas, Pseudomonas and Edwardsiella and human clinical isolates belonging to the genus Klebsiella, Salmonella and Streptococcus. Seven Streptomyces sp. isolates showed antagonism against both fish and human pathogenic bacteria. Four isolates viz., N24, N26, N28 and N47 showed broad spectrum of antagonistic activity (80-100% against all genera of fish and human pathogenic bacteria. The isolate N49 exhibited highest spectrum of antagonism against all fish pathogens (90-100% but comparatively lower degree of antagonism against human pathogens (50-60%. Rest of the two isolates (N21 and N23 showed variability in their antagonism. Results showed that broad spectrum antibiotic(s could be developed from the isolates N24, N26, N28 and N47against several human and fish pathogens. The isolate N49 could be a potential source of antibiotic, especially for fish pathogenic bacteria.

  10. Developmental gene expression profiles of the human pathogen Schistosoma japonicum

    Directory of Open Access Journals (Sweden)

    McManus Donald P

    2009-03-01

    Full Text Available Abstract Background The schistosome blood flukes are complex trematodes and cause a chronic parasitic disease of significant public health importance worldwide, schistosomiasis. Their life cycle is characterised by distinct parasitic and free-living phases involving mammalian and snail hosts and freshwater. Microarray analysis was used to profile developmental gene expression in the Asian species, Schistosoma japonicum. Total RNAs were isolated from the three distinct environmental phases of the lifecycle – aquatic/snail (eggs, miracidia, sporocysts, cercariae, juvenile (lung schistosomula and paired but pre-egg laying adults and adult (paired, mature males and egg-producing females, both examined separately. Advanced analyses including ANOVA, principal component analysis, and hierarchal clustering provided a global synopsis of gene expression relationships among the different developmental stages of the schistosome parasite. Results Gene expression profiles were linked to the major environmental settings through which the developmental stages of the fluke have to adapt during the course of its life cycle. Gene ontologies of the differentially expressed genes revealed a wide range of functions and processes. In addition, stage-specific, differentially expressed genes were identified that were involved in numerous biological pathways and functions including calcium signalling, sphingolipid metabolism and parasite defence. Conclusion The findings provide a comprehensive database of gene expression in an important human pathogen, including transcriptional changes in genes involved in evasion of the host immune response, nutrient acquisition, energy production, calcium signalling, sphingolipid metabolism, egg production and tegumental function during development. This resource should help facilitate the identification and prioritization of new anti-schistosome drug and vaccine targets for the control of schistosomiasis.

  11. Elimination of Pathogen Escherichia coli O157:H7 in Ground Beef by a Newly Isolated Strain of Lactobacillus acidophilus during Storage at 5°C

    Directory of Open Access Journals (Sweden)

    Alireza Goodarzi

    2016-06-01

    Full Text Available Background and Objective: Constant use of limited number of lactic acid bacteria species in biopreservation can cause genetic degradation and or rising resistance against food pathogens or antimicrobial substances they produce. For this objective, a newly isolated strain of Lactobacillus acidophilus possessing high antimicrobial activity was evaluated as a candidate for use in biopreservation.Materials and Methods: Antibacterial activity was evaluated by agar disk diffusion method. Hydrogen peroxide amount was measured by Merckoquant Peroxide test strips. Microbiological analysis of the ground beef infected by Escherichia coli O157:H7 and treated by Lactobacillus acidophilus GH 201was done by plating of serial dilution in physiological saline on Tryptose agar.Results and Conclusion: The cells (109 CFU ml-1 of Lactobacillus acidophilus produced significant amount of antibacterial substances mainly hydrogen peroxide (28 and 30 μg ml-1 in sodium phosphate buffer (0.2 M, pH 6.5 and LAPTg at 5°C during submerged cultivation with no growth, respectively. Submerged co-cultivation of Escherichia coli O157:H7 with lactobacilli in LAPTg broth at 5°C reduced the total number of the pathogen more than 2 log for 5 days. In case of solid state cultivation on agar-based medium, the maximum inhibitory zones on Escherichia coli O157:H7 lawn around the disks soaked by different amounts of washed Lactobacillus acidophilus cells appear for one-day cold exposition. The size of inhibition zone depends on the concentration of lactic acid bacteria cells. The cell suspension intended for treatment must contain 108-9CFU ml-1 of lactic acid bacteria. Lactobacillus acidophilus reduced the initial amount (2×105 CFU ml-1 of Escherichia coli O157:H7 in ground beef up to 2 log for 5 days of solid-state co-cultivation. The application of Lactobacillus acidophilus bacteria expanded the shelf-life of ground beef due to inhibition of

  12. Reduced Set of Virulence Genes Allows High Accuracy Prediction of Bacterial Pathogenicity in Humans

    Science.gov (United States)

    Iraola, Gregorio; Vazquez, Gustavo; Spangenberg, Lucía; Naya, Hugo

    2012-01-01

    Although there have been great advances in understanding bacterial pathogenesis, there is still a lack of integrative information about what makes a bacterium a human pathogen. The advent of high-throughput sequencing technologies has dramatically increased the amount of completed bacterial genomes, for both known human pathogenic and non-pathogenic strains; this information is now available to investigate genetic features that determine pathogenic phenotypes in bacteria. In this work we determined presence/absence patterns of different virulence-related genes among more than finished bacterial genomes from both human pathogenic and non-pathogenic strains, belonging to different taxonomic groups (i.e: Actinobacteria, Gammaproteobacteria, Firmicutes, etc.). An accuracy of 95% using a cross-fold validation scheme with in-fold feature selection is obtained when classifying human pathogens and non-pathogens. A reduced subset of highly informative genes () is presented and applied to an external validation set. The statistical model was implemented in the BacFier v1.0 software (freely available at ), that displays not only the prediction (pathogen/non-pathogen) and an associated probability for pathogenicity, but also the presence/absence vector for the analyzed genes, so it is possible to decipher the subset of virulence genes responsible for the classification on the analyzed genome. Furthermore, we discuss the biological relevance for bacterial pathogenesis of the core set of genes, corresponding to eight functional categories, all with evident and documented association with the phenotypes of interest. Also, we analyze which functional categories of virulence genes were more distinctive for pathogenicity in each taxonomic group, which seems to be a completely new kind of information and could lead to important evolutionary conclusions. PMID:22916122

  13. Cross-modulation of pathogen-specific pathways enhances malnutrition during enteric co-infection with Giardia lamblia and enteroaggregative Escherichia coli.

    Science.gov (United States)

    Bartelt, Luther A; Bolick, David T; Mayneris-Perxachs, Jordi; Kolling, Glynis L; Medlock, Gregory L; Zaenker, Edna I; Donowitz, Jeffery; Thomas-Beckett, Rose Viguna; Rogala, Allison; Carroll, Ian M; Singer, Steven M; Papin, Jason; Swann, Jonathan R; Guerrant, Richard L

    2017-07-01

    Diverse enteropathogen exposures associate with childhood malnutrition. To elucidate mechanistic pathways whereby enteric microbes interact during malnutrition, we used protein deficiency in mice to develop a new model of co-enteropathogen enteropathy. Focusing on common enteropathogens in malnourished children, Giardia lamblia and enteroaggregative Escherichia coli (EAEC), we provide new insights into intersecting pathogen-specific mechanisms that enhance malnutrition. We show for the first time that during protein malnutrition, the intestinal microbiota permits persistent Giardia colonization and simultaneously contributes to growth impairment. Despite signals of intestinal injury, such as IL1α, Giardia-infected mice lack pro-inflammatory intestinal responses, similar to endemic pediatric Giardia infections. Rather, Giardia perturbs microbial host co-metabolites of proteolysis during growth impairment, whereas host nicotinamide utilization adaptations that correspond with growth recovery increase. EAEC promotes intestinal inflammation and markers of myeloid cell activation. During co-infection, intestinal inflammatory signaling and cellular recruitment responses to EAEC are preserved together with a Giardia-mediated diminishment in myeloid cell activation. Conversely, EAEC extinguishes markers of host energy expenditure regulatory responses to Giardia, as host metabolic adaptations appear exhausted. Integrating immunologic and metabolic profiles during co-pathogen infection and malnutrition, we develop a working mechanistic model of how cumulative diet-induced and pathogen-triggered microbial perturbations result in an increasingly wasted host.

  14. Abundance of Pathogenic Escherichia coli Virulence-Associated Genes in Well and Borehole Water Used for Domestic Purposes in a Peri-Urban Community of South Africa.

    Science.gov (United States)

    Abia, Akebe Luther King; Schaefer, Lisa; Ubomba-Jaswa, Eunice; Le Roux, Wouter

    2017-03-20

    In the absence of pipe-borne water, many people in Africa, especially in rural communities, depend on alternative water sources such as wells, boreholes and rivers for household and personal hygiene. Poor maintenance and nearby pit latrines, however, lead to microbial pollution of these sources. We evaluated the abundance of Escherichia coli and the prevalence of pathogenic E. coli virulence genes in water from wells, boreholes and a river in a South African peri-urban community. Monthly samples were collected between August 2015 and November 2016. In all, 144 water samples were analysed for E. coli using the Colilert 18 system. Virulence genes ( eagg , eaeA , stx1 , stx2 , flichH7 , ST , ipaH , ibeA ) were investigated using real-time polymerase chain reaction. Mean E. coli counts ranged between 0 and 443.1 Most Probable Number (MPN)/100 mL of water sample. Overall, 99.3% of samples were positive for at least one virulence gene studied, with flicH7 being the most detected gene (81/140; 57.6%) and the stx2 gene the least detected gene (8/140; 5.7%). Both intestinal and extraintestinal pathogenic E. coli genes were detected. The detection of virulence genes in these water sources suggests the presence of potentially pathogenic E. coli strains and is a public health concern.

  15. Abundance of Pathogenic Escherichia coli Virulence-Associated Genes in Well and Borehole Water Used for Domestic Purposes in a Peri-Urban Community of South Africa

    Directory of Open Access Journals (Sweden)

    Akebe Luther King Abia

    2017-03-01

    Full Text Available In the absence of pipe-borne water, many people in Africa, especially in rural communities, depend on alternative water sources such as wells, boreholes and rivers for household and personal hygiene. Poor maintenance and nearby pit latrines, however, lead to microbial pollution of these sources. We evaluated the abundance of Escherichia coli and the prevalence of pathogenic E. coli virulence genes in water from wells, boreholes and a river in a South African peri-urban community. Monthly samples were collected between August 2015 and November 2016. In all, 144 water samples were analysed for E. coli using the Colilert 18 system. Virulence genes (eagg, eaeA, stx1, stx2, flichH7, ST, ipaH, ibeA were investigated using real-time polymerase chain reaction. Mean E. coli counts ranged between 0 and 443.1 Most Probable Number (MPN/100 mL of water sample. Overall, 99.3% of samples were positive for at least one virulence gene studied, with flicH7 being the most detected gene (81/140; 57.6% and the stx2 gene the least detected gene (8/140; 5.7%. Both intestinal and extraintestinal pathogenic E. coli genes were detected. The detection of virulence genes in these water sources suggests the presence of potentially pathogenic E. coli strains and is a public health concern.

  16. Emergence of Antimicrobial-Resistant Escherichia coli of Animal Origin Spreading in Humans.

    Science.gov (United States)

    Skurnik, David; Clermont, Olivier; Guillard, Thomas; Launay, Adrien; Danilchanka, Olga; Pons, Stéphanie; Diancourt, Laure; Lebreton, François; Kadlec, Kristina; Roux, Damien; Jiang, Deming; Dion, Sara; Aschard, Hugues; Denamur, Maurice; Cywes-Bentley, Colette; Schwarz, Stefan; Tenaillon, Olivier; Andremont, Antoine; Picard, Bertrand; Mekalanos, John; Brisse, Sylvain; Denamur, Erick

    2016-04-01

    In the context of the great concern about the impact of human activities on the environment, we studied 403 commensal Escherichia coli/Escherichia clade strains isolated from several animal and human populations that have variable contacts to one another. Multilocus sequence typing (MLST) showed a decrease of diversity 1) in strains isolated from animals that had an increasing contact with humans and 2) in all strains that had increased antimicrobial resistance. A specific B1 phylogroup clonal complex (CC87, Institut Pasteur schema nomenclature) of animal origin was identified and characterized as being responsible for the increased antimicrobial resistance prevalence observed in strains from the environments with a high human-mediated antimicrobial pressure. CC87 strains have a high capacity of acquiring and disseminating resistance genes with specific metabolic and genetic determinants as demonstrated by high-throughput sequencing and phenotyping. They are good mouse gut colonizers but are not virulent. Our data confirm the predominant role of human activities in the emergence of antimicrobial resistance in the environmental bacterial strains and unveil a particular E. coli clonal complex of animal origin capable of spreading antimicrobial resistance to other members of microbial communities. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Emergence of Antimicrobial-Resistant Escherichia coli of Animal Origin Spreading in Humans

    Science.gov (United States)

    Skurnik, David; Clermont, Olivier; Guillard, Thomas; Launay, Adrien; Danilchanka, Olga; Pons, Stéphanie; Diancourt, Laure; Lebreton, François; Kadlec, Kristina; Roux, Damien; Jiang, Deming; Dion, Sara; Aschard, Hugues; Denamur, Maurice; Cywes-Bentley, Colette; Schwarz, Stefan; Tenaillon, Olivier; Andremont, Antoine; Picard, Bertrand; Mekalanos, John; Brisse, Sylvain; Denamur, Erick

    2016-01-01

    In the context of the great concern about the impact of human activities on the environment, we studied 403 commensal Escherichia coli/Escherichia clade strains isolated from several animal and human populations that have variable contacts to one another. Multilocus sequence typing (MLST) showed a decrease of diversity 1) in strains isolated from animals that had an increasing contact with humans and 2) in all strains that had increased antimicrobial resistance. A specific B1 phylogroup clonal complex (CC87, Institut Pasteur schema nomenclature) of animal origin was identified and characterized as being responsible for the increased antimicrobial resistance prevalence observed in strains from the environments with a high human-mediated antimicrobial pressure. CC87 strains have a high capacity of acquiring and disseminating resistance genes with specific metabolic and genetic determinants as demonstrated by high-throughput sequencing and phenotyping. They are good mouse gut colonizers but are not virulent. Our data confirm the predominant role of human activities in the emergence of antimicrobial resistance in the environmental bacterial strains and unveil a particular E. coli clonal complex of animal origin capable of spreading antimicrobial resistance to other members of microbial communities. PMID:26613786

  18. Comparative innate immune interactions of human and bovine secretory IgA with pathogenic and non-pathogenic bacteria.

    Science.gov (United States)

    Hodgkinson, Alison J; Cakebread, Julie; Callaghan, Megan; Harris, Paul; Brunt, Rachel; Anderson, Rachel C; Armstrong, Kelly M; Haigh, Brendan

    2017-03-01

    Secretory IgA (SIgA) from milk contributes to early colonization and maintenance of commensal/symbiotic bacteria in the gut, as well as providing defence against pathogens. SIgA binds bacteria using specific antigenic sites or non-specifically via its glycans attached to α-heavy-chain and secretory component. In our study, we tested the hypothesis that human and bovine SIgA have similar innate-binding activity for bacteria. SIgAs, isolated from human and bovine milk, were incubated with a selection of commensal, pathogenic and probiotic bacteria. Using flow cytometry, we measured numbers of bacteria binding SIgA and their level of SIgA binding. The percentage of bacteria bound by human and bovine SIgA varied from 30 to 90% depending on bacterial species and strains, but was remarkably consistent between human and bovine SIgA. The level of SIgA binding per bacterial cell was lower for those bacteria that had a higher percentage of SIgA-bound bacteria, and higher for those bacteria that had lower percentage of SIgA-bound bacteria. Overall, human and bovine SIgA interacted with bacteria in a comparable way. This contributes to longer term research about the potential benefits of bovine SIgA for human consumers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Escherichia coli O157:H7- patógeno alimentar emergente / Escherichia coli O157:H7 - emerging food pathogen

    Directory of Open Access Journals (Sweden)

    Cheila Minéia Daniel de Paula

    2014-11-01

    Full Text Available Segundo a Organização Mundial da Saúde, cerca de 2,2 milhões de pessoas morrem anualmente em função de doenças hídricas ou alimentares, a maioria dos quais são crianças. Estas doenças são causadas por patógenos já conhecidos, emergentes ou reemergentes, principalmente bactérias. A globalização tem contribuído na disseminação de patógenos de origem alimentar, aumentando o desafio relacionado à identificação da origem desses agentes e à elaboração de regulamentação e fiscalização adequadas. O cenário das Doenças Transmitidas por Alimentos (DTA muda constantemente e a prevalência de determinada doença varia de época para época, assim como os agentes etiológicos destas. Dentre os principais patógenos emergentes em nível mundial, E. coli O157:H7 tem ganhado grande destaque nos últimos 20 anos, devido à severidade de seus surtos. Até pouco tempo, o Brasil era considerado livre desse patógeno, porém a bibliografia científica e registros epidemiológicos demonstram o contrário. Em vista disso, o presente artigo objetiva realizar uma revisão integrativa da literatura, enfocando as características, os métodos de isolamento e detecção e os dados epidemiológicos da E. coli O157:H7 no Brasil e no mundo. =============================================== According to the World Health Organization, about 2.2 million people, most of whom are children, die each year due to water and foodborne illnesses. These illnesses are caused by known, emerging, or reemerging pathogens, mainly bacteria. Globalization has contributed to the spread of foodborne pathogens, increasing the challenge of identifying the origin of these agents and of developing appropriate regulation and monitoring. The scenario of Foodborne Illnesses (FI constantly changes and the prevalence of a particular illnesses as well as its etiological agents, vary from season to season. Among the major emerging pathogens at a global level, E. coli O157:H7

  20. Systematic high-yield production of human secreted proteins in Escherichia coli

    International Nuclear Information System (INIS)

    Dai Xueyu; Chen Qiang; Lian Min; Zhou Yanfeng; Zhou Mo; Lu Shanyun; Chen Yunjia; Luo Jingchu; Gu Xiaocheng; Jiang Ying; Luo Ming; Zheng Xiaofeng

    2005-01-01

    Human secreted proteins play a very important role in signal transduction. In order to study all potential secreted proteins identified from the human genome sequence, systematic production of large amounts of biologically active secreted proteins is a prerequisite. We selected 25 novel genes as a trial case for establishing a reliable expression system to produce active human secreted proteins in Escherichia coli. Expression of proteins with or without signal peptides was examined and compared in E. coli strains. The results indicated that deletion of signal peptides, to a certain extent, can improve the expression of these proteins and their solubilities. More importantly, under expression conditions such as induction temperature, N-terminus fusion peptides need to be optimized in order to express adequate amounts of soluble proteins. These recombinant proteins were characterized as well-folded proteins. This system enables us to rapidly obtain soluble and highly purified human secreted proteins for further functional studies

  1. Human Intestinal Cells Modulate Conjugational Transfer of Multidrug Resistance Plasmids between Clinical Escherichia coli Isolates

    DEFF Research Database (Denmark)

    Machado, Ana Manuel; Sommer, Morten

    2014-01-01

    Bacterial conjugation in the human gut microbiota is believed to play a major role in the dissemination of antibiotic resistance genes and virulence plasmids. However, the modulation of bacterial conjugation by the human host remains poorly understood and there is a need for controlled systems...... to study this process. We established an in vitro co-culture system to study the interaction between human intestinal cells and bacteria. We show that the conjugation efficiency of a plasmid encoding an extended spectrum beta-lactamase is reduced when clinical isolates of Escherichia coli are co...... of the intestinal cells exposed to bacteria leading to a two-fold reduction in conjugation efficiency. These results show that human gut epithelial cells can modulate bacterial conjugation and may have relevance to gene exchange in the gut....

  2. An outbreak of enterotoxigenic Escherichia coli (ETEC) infection in Norway, 2012: a reminder to consider uncommon pathogens in outbreaks involving imported products.

    Science.gov (United States)

    MacDonald, E; Møller, K E; Wester, A L; Dahle, U R; Hermansen, N O; Jenum, P A; Thoresen, L; Vold, L

    2015-02-01

    We investigated an outbreak of gastroenteritis following a Christmas buffet served on 4-9 December 2012 to ~1300 hotel guests. More than 300 people were reported ill in initial interviews with hotel guests. To identify possible sources of infection we conducted a cohort investigation through which we identified 214 probable cases. Illness was associated with consumption of scrambled eggs (odds ratio 9·07, 95% confidence interval 5·20-15·84). Imported chives added fresh to the scrambled eggs were the suspected source of the outbreak but were unavailable for testing. Enterotoxigenic Escherichia coli (ETEC) infection was eventually confirmed in 40 hotel guests. This outbreak reinforces that ETEC should be considered in non-endemic countries when the clinical picture is consistent and common gastrointestinal pathogens are not found. Following this outbreak, the Norwegian Food Safety Authority recommended that imported fresh herbs should be heat-treated before use in commercial kitchens.

  3. Antimicrobial resistance genes in marine bacteria and human uropathogenic Escherichia coli from a region of intensive aquaculture.

    Science.gov (United States)

    Tomova, Alexandra; Ivanova, Larisa; Buschmann, Alejandro H; Rioseco, Maria Luisa; Kalsi, Rajinder K; Godfrey, Henry P; Cabello, Felipe C

    2015-10-01

    Antimicrobials are heavily used in Chilean salmon aquaculture. We previously found significant differences in antimicrobial-resistant bacteria between sediments from an aquaculture and a non-aquaculture site. We now show that levels of antimicrobial resistance genes (ARG) are significantly higher in antimicrobial-selected marine bacteria than in unselected bacteria from these sites. While ARG in tetracycline- and florfenicol-selected bacteria from aquaculture and non-aquaculture sites were equally frequent, there were significantly more plasmid-mediated quinolone resistance genes per bacterium and significantly higher numbers of qnrB genes in quinolone-selected bacteria from the aquaculture site. Quinolone-resistant urinary Escherichia coli from patients in the Chilean aquacultural region were significantly enriched for qnrB (including a novel qnrB gene), qnrS, qnrA and aac(6')-1b, compared with isolates from New York City. Sequences of qnrA1, qnrB1 and qnrS1 in quinolone-resistant Chilean E. coli and Chilean marine bacteria were identical, suggesting horizontal gene transfer between antimicrobial-resistant marine bacteria and human pathogens. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  4. N-chlorotaurine, a long-lived oxidant produced by human leukocytes, inactivates Shiga toxin of enterohemorrhagic Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Christian Eitzinger

    Full Text Available N-chlorotaurine (NCT, the main representative of long-lived oxidants produced by granulocytes and monocytes, is known to exert broad-spectrum microbicidal activity. Here we show that NCT directly inactivates Shiga toxin 2 (Stx2, used as a model toxin secreted by enterohemorrhagic Escherichia coli (EHEC. Bacterial growth and Stx2 production were both inhibited by 2 mM NCT. The cytotoxic effect of Stx2 on Vero cells was removed by ≥5.5 mM NCT. Confocal microscopy and FACS analyses showed that the binding of Stx2 to human kidney glomerular endothelial cells was inhibited, and no NCT-treated Stx2 entered the cytosol. Mass spectrometry displayed oxidation of thio groups and aromatic amino acids of Stx2 by NCT. Therefore, long-lived oxidants may act as powerful tools of innate immunity against soluble virulence factors of pathogens. Moreover, inactivation of virulence factors may contribute to therapeutic success of NCT and novel analogs, which are in development as topical antiinfectives.

  5. Genetic Structure and Antimicrobial Resistance of Escherichia coli and Cryptic Clades in Birds with Diverse Human Associations.

    Science.gov (United States)

    Blyton, Michaela D J; Pi, Hongfei; Vangchhia, Belinda; Abraham, Sam; Trott, Darren J; Johnson, James R; Gordon, David M

    2015-08-01

    The manner and extent to which birds associate with humans may influence the genetic attributes and antimicrobial resistance of their commensal Escherichia communities through strain transmission and altered selection pressures. In this study, we determined whether the distribution of the different Escherichia coli phylogenetic groups and cryptic clades, the occurrence of 49 virulence associated genes, and/or the prevalence of resistance to 12 antimicrobials differed between four groups of birds from Australia with contrasting types of human association. We found that birds sampled in suburban and wilderness areas had similar Escherichia communities. The Escherichia communities of backyard domestic poultry were phylogenetically distinct from the Escherichia communities sourced from all other birds, with a large proportion (46%) of poultry strains belonging to phylogenetic group A and a significant minority (17%) belonging to the cryptic clades. Wild birds sampled from veterinary and wildlife rehabilitation centers (in-care birds) carried Escherichia isolates that possessed particular virulence-associated genes more often than Escherichia isolates from birds sampled in suburban and wilderness areas. The Escherichia isolates from both the backyard poultry and in-care birds were more likely to be multidrug resistant than the Escherichia isolates from wild birds. We also detected a multidrug-resistant E. coli strain circulating in a wildlife rehabilitation center, reinforcing the importance of adequate hygiene practices when handling and caring for wildlife. We suggest that the relatively high frequency of antimicrobial resistance in the in-care birds and backyard poultry is due primarily to the use of antimicrobials in these animals, and we recommend that the treatment protocols used for these birds be reviewed. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  6. Colonization of Enteroaggregative Escherichia coli and Shiga toxin-producing Escherichia coli in chickens and humans in southern Vietnam

    NARCIS (Netherlands)

    Trung, Nguyen Vinh; Nhung, Hoang Ngoc; Carrique-Mas, Juan J.; Mai, Ho Huynh; Tuyen, Ha Thanh; Campbell, James; Nhung, Nguyen Thi; van Minh, Pham; Wagenaar, Jaap A.; Mai, Nguyen Thi Nhu; Hieu, Thai Quoc; Schultsz, Constance; Hoa, Ngo Thi

    2016-01-01

    Enteroaggregative (EAEC) and Shiga-toxin producing Escherichia coli (STEC) are a major cause of diarrhea worldwide. E. coli carrying both virulence factors characteristic for EAEC and STEC and producing extended-spectrum beta-lactamase caused severe and protracted disease during an outbreak of E.

  7. Identification of some human pathogenic fungi using four DNA ...

    African Journals Online (AJOL)

    Stocks from pathogenic fungi isolated from infected areas on different patients, around Lagos-Nigeria were analysed using molecular methods (DNA extraction, PCR-RFLP and DNA sequencing). Four DNA extraction protocols were employed in the identification of the fungal isolates. Sixteen different fungal isolates were ...

  8. Human enteric pathogen internalization by root uptake into food crops

    Science.gov (United States)

    With an increasing number of outbreaks and illnesses associated with pre-harvest contaminated produce, understanding the potential and mechanisms of produce contamination by enteric pathogens can aid in the development of preventative measures and post-harvest processing to reduce microbial populati...

  9. Cell wall modifications during conidial maturation of the human pathogenic fungus Pseudallescheria boydii

    NARCIS (Netherlands)

    Ghamrawi, Sarah; Rénier, Gilles; Saulnier, Patrick; Cuenot, Stéphane; Zykwinska, Agata; Dutilh, Bas E; Thornton, Christopher; Faure, Sébastien; Bouchara, Jean-Philippe

    Progress in extending the life expectancy of cystic fibrosis (CF) patients remains jeopardized by the increasing incidence of fungal respiratory infections. Pseudallescheria boydii (P. boydii), an emerging pathogen of humans, is a filamentous fungus frequently isolated from the respiratory

  10. Cell Wall Modifications during Conidial Maturation of the Human Pathogenic Fungus Pseudallescheria boydii

    NARCIS (Netherlands)

    Ghamrawi, S.; Renier, G.; Saulnier, P.; Cuenot, S.; Zykwinska, A.; Dutilh, B.E.; Thornton, C.; Faure, S.; Bouchara, J.P.

    2014-01-01

    Progress in extending the life expectancy of cystic fibrosis (CF) patients remains jeopardized by the increasing incidence of fungal respiratory infections. Pseudallescheria boydii (P. boydii), an emerging pathogen of humans, is a filamentous fungus frequently isolated from the respiratory

  11. Experimental Reservoirs of Human Pathogens: The Vibrio Cholerae Paradigm (7th Annual SFAF Meeting, 2012)

    Energy Technology Data Exchange (ETDEWEB)

    Colwell, Rita

    2012-06-01

    Rita Colwell on "Experimental Reservoirs of Human Pathogens: The Vibrio cholerae paradigm" at the 2012 Sequencing, Finishing, Analysis in the Future Meeting held June 5-7, 2012 in Santa Fe, New Mexico.

  12. Characterization of pathogenic germline mutations in human Protein Kinases

    Directory of Open Access Journals (Sweden)

    Orengo Christine A

    2011-07-01

    Full Text Available Abstract Background Protein Kinases are a superfamily of proteins involved in crucial cellular processes such as cell cycle regulation and signal transduction. Accordingly, they play an important role in cancer biology. To contribute to the study of the relation between kinases and disease we compared pathogenic mutations to neutral mutations as an extension to our previous analysis of cancer somatic mutations. First, we analyzed native and mutant proteins in terms of amino acid composition. Secondly, mutations were characterized according to their potential structural effects and finally, we assessed the location of the different classes of polymorphisms with respect to kinase-relevant positions in terms of subfamily specificity, conservation, accessibility and functional sites. Results Pathogenic Protein Kinase mutations perturb essential aspects of protein function, including disruption of substrate binding and/or effector recognition at family-specific positions. Interestingly these mutations in Protein Kinases display a tendency to avoid structurally relevant positions, what represents a significant difference with respect to the average distribution of pathogenic mutations in other protein families. Conclusions Disease-associated mutations display sound differences with respect to neutral mutations: several amino acids are specific of each mutation type, different structural properties characterize each class and the distribution of pathogenic mutations within the consensus structure of the Protein Kinase domain is substantially different to that for non-pathogenic mutations. This preferential distribution confirms previous observations about the functional and structural distribution of the controversial cancer driver and passenger somatic mutations and their use as a proxy for the study of the involvement of somatic mutations in cancer development.

  13. Role of commercial probiotic strains against human pathogen adhesion to intestinal mucus.

    Science.gov (United States)

    Collado, M C; Meriluoto, J; Salminen, S

    2007-10-01

    The aims of this study present were to assess and to evaluate in vitro the abilities of commercial probiotic strains derived from fermented milk products and related sources currently marketed in European countries, to inhibit, compete and displace the adhesion of selected potential pathogens to immobilized human mucus. The adhesion was assessed by measuring the radioactivity of bacteria adhered to the human mucus. We tested 12 probiotic strains against eight selected pathogens. All strains tested were able to adhere to mucus. All probiotic strains tested were able to inhibit and displace (P<0.05) the adhesion of Bacteroides, Clostridium, Staphylococcus and Enterobacter. In addition, the abilities to inhibit and to displace adhered pathogens depended on both the probiotic and the pathogen strains tested suggesting that several complementary mechanisms are implied in the processes. Our results indicate the need for a case-by-case assessment in order to select strains with the ability to inhibit or displace a specific pathogen. Probiotics could be useful to correct deviations observed in intestinal microbiota associated with specific diseases and also, to prevent pathogen infections. The competitive exclusion properties of probiotics as well as their ability to displace and inhibit pathogens are the most importance for therapeutic manipulation of the enteric microbiota. The application of such strategies could contribute to expand the beneficial properties on human health against pathogen infection.

  14. Pathogen prevalence predicts human cross-cultural variability in individualism/collectivism

    OpenAIRE

    Fincher, Corey L; Thornhill, Randy; Murray, Damian R; Schaller, Mark

    2008-01-01

    Pathogenic diseases impose selection pressures on the social behaviour of host populations. In humans (Homo sapiens), many psychological phenomena appear to serve an antipathogen defence function. One broad implication is the existence of cross-cultural differences in human cognition and behaviour contingent upon the relative presence of pathogens in the local ecology. We focus specifically on one fundamental cultural variable: differences in individualistic versus collectivist values. We sug...

  15. Migrating microbes: what pathogens can tell us about population movements and human evolution.

    Science.gov (United States)

    Houldcroft, Charlotte J; Ramond, Jean-Baptiste; Rifkin, Riaan F; Underdown, Simon J

    2017-08-01

    The biology of human migration can be observed from the co-evolutionary relationship with infectious diseases. While many pathogens are brief, unpleasant visitors to human bodies, others have the ability to become life-long human passengers. The story of a pathogen's genetic code may, therefore, provide insight into the history of its human host. The evolution and distribution of disease in Africa is of particular interest, because of the deep history of human evolution in Africa, the presence of a variety of non-human primates, and tropical reservoirs of emerging infectious diseases. This study explores which pathogens leave traces in the archaeological record, and whether there are realistic prospects that these pathogens can be recovered from sub-Saharan African archaeological contexts. Three stories are then presented of germs on a journey. The first is the story of HIV's spread on the back of colonialism and the railway networks over the last 150 years. The second involves the spread of Schistosoma mansoni, a parasite which shares its history with the trans-Atlantic slave trade and the origins of fresh-water fishing. Finally, we discuss the tantalising hints of hominin migration and interaction found in the genome of human herpes simplex virus 2. Evidence from modern African pathogen genomes can provide data on human behaviour and migration in deep time and contribute to the improvement of human quality-of-life and longevity.

  16. Global gene expression profiling of asymptomatic bacteriuria Escherichia coli during biofilm growth in human urine

    DEFF Research Database (Denmark)

    Hancock, Viktoria; Klemm, Per

    2007-01-01

    Urinary tract infection (UTI) is an important health problem worldwide, with many millions of cases each year, and Escherichia coli is the most common organism causing UTI in humans. Also, E. coli is responsible for most infections in patients with chronic indwelling bladder catheter. The two...... asymptomatic bacteriuria (ABU) E. coli strains 83972 and VR50 are significantly better biofilm formers in their natural growth medium, human urine, than the two uropathogenic E. coli isolates CFT073 and 536. We used DNA microarrays to monitor the expression profile during biofilm growth in urine of the two ABU...... strains 83972 and VR50. Significant differences in expression levels were seen between the biofilm expression profiles of the two strains with the corresponding planktonic expression profiles in morpholinepropanesulfonic acid minimal laboratory medium and human urine; 417 and 355 genes were up- and down...

  17. Construction of a highly flexible and comprehensive gene collection representing the ORFeome of the human pathogen Chlamydia pneumoniae

    Directory of Open Access Journals (Sweden)

    Maier Christina J

    2012-11-01

    Full Text Available Abstract Background The Gram-negative bacterium Chlamydia pneumoniae (Cpn is the leading intracellular human pathogen responsible for respiratory infections such as pneumonia and bronchitis. Basic and applied research in pathogen biology, especially the elaboration of new mechanism-based anti-pathogen strategies, target discovery and drug development, rely heavily on the availability of the entire set of pathogen open reading frames, the ORFeome. The ORFeome of Cpn will enable genome- and proteome-wide systematic analysis of Cpn, which will improve our understanding of the molecular networks and mechanisms underlying and governing its pathogenesis. Results Here we report the construction of a comprehensive gene collection covering 98.5% of the 1052 predicted and verified ORFs of Cpn (Chlamydia pneumoniae strain CWL029 in Gateway® ‘entry’ vectors. Based on genomic DNA isolated from the vascular chlamydial strain CV-6, we constructed an ORFeome library that contains 869 unique Gateway® entry clones (83% coverage and an additional 168 PCR-verified ‘pooled’ entry clones, reaching an overall coverage of ~98.5% of the predicted CWL029 ORFs. The high quality of the ORFeome library was verified by PCR-gel electrophoresis and DNA sequencing, and its functionality was demonstrated by expressing panels of recombinant proteins in Escherichia coli and by genome-wide protein interaction analysis for a test set of three Cpn virulence factors in a yeast 2-hybrid system. The ORFeome is available in different configurations of resource stocks, PCR-products, purified plasmid DNA, and living cultures of E. coli harboring the desired entry clone or pooled entry clones. All resources are available in 96-well microtiterplates. Conclusion This first ORFeome library for Cpn provides an essential new tool for this important pathogen. The high coverage of entry clones will enable a systems biology approach for Cpn or host–pathogen analysis. The high yield of

  18. Antibiotic resistance profile of Escherichia coli isolated from five ...

    African Journals Online (AJOL)

    Information on the resistance profiles of clinical and non clinical human bacteria isolates in the developing countries can serve as important means of understanding the human pathogens drug resistance interactions in the zone. Escherichia coli isolated from five geopolitical zones of Nigeria were screened for anti-microbial ...

  19. Ralstonia insidiosa serves as bridges in biofilm formation by foodborne pathogens Listeria monocytogenes, Salmonella enterica, and enterohemorrhagic Escherichia coli

    Science.gov (United States)

    Biofilm formation on abiotic surfaces in fresh produce processing facilities might play a role in foodborne outbreaks by providing protective microniches for pathogenic bacteria. Our previous study showed that a strain of Ralstonia insidiosa isolated from a fresh produce processing plant could enhan...

  20. Extreme Heat Resistance of Food Borne Pathogens Campylobacter jejuni, Escherichia coli, and Salmonella typhimurium on Chicken Breast Fillet during Cooking

    DEFF Research Database (Denmark)

    de Jong, Aarieke E I; van Asselt, Esther D; Zwietering, Marcel H

    2012-01-01

    cooking enlarged the heat resistance of the food borne pathogens. Additionally, a high challenge temperature or fast heating rate contributed to the level of heat resistance. The data were used to assess the probability of illness (campylobacteriosis) due to consumption of chicken fillet as a function...

  1. The Gene tia, Harbored by the Subtilase-Encoding Pathogenicity Island, Is Involved in the Ability of Locus of Enterocyte Effacement-Negative Shiga Toxin-Producing Escherichia coli Strains To Invade Monolayers of Epithelial Cells

    Science.gov (United States)

    Chiani, Paola; Michelacci, Valeria; Minelli, Fabio; Caprioli, Alfredo; Morabito, Stefano

    2017-01-01

    ABSTRACT Locus of enterocyte effacement (LEE)-negative Shiga toxin (Stx)-producing Escherichia coli (STEC) strains are human pathogens that lack the LEE locus, a pathogenicity island (PAI) involved in the intimate adhesion of LEE-positive strains to the host gut epithelium. The mechanism used by LEE-negative STEC strains to colonize the host intestinal mucosa is still not clear. The cell invasion determinant tia, previously described in enterotoxigenic E. coli strains, has been identified in LEE-negative STEC strains that possess the subtilase-encoding pathogenicity island (SE-PAI). We evaluated the role of the gene tia, present in these LEE-negative STEC strains, in the invasion of monolayers of cultured cells. We observed that these strains were able to invade Caco-2 and HEp-2 cell monolayers and compared their invasion ability with that of a mutant strain in which the gene tia had been inactivated. Mutation of the gene tia resulted in a strong reduction of the invasive phenotype, and complementation of the tia mutation with a functional copy of the gene restored the invasion activity. Moreover, we show that the gene tia is overexpressed in bacteria actively invading cell monolayers, demonstrating that tia is involved in the ability to invade cultured monolayers of epithelial cells shown by SE-PAI-positive E. coli, including STEC, strains. However, the expression of the tia gene in the E. coli K-12 strain JM109 was not sufficient, in its own right, to confer to this strain the ability to invade cell monolayers, suggesting that at least another factor must be involved in the invasion ability displayed by the SE-PAI-positive strains. PMID:28893912

  2. The Gene tia, Harbored by the Subtilase-Encoding Pathogenicity Island, Is Involved in the Ability of Locus of Enterocyte Effacement-Negative Shiga Toxin-Producing Escherichia coli Strains To Invade Monolayers of Epithelial Cells.

    Science.gov (United States)

    Bondì, Roslen; Chiani, Paola; Michelacci, Valeria; Minelli, Fabio; Caprioli, Alfredo; Morabito, Stefano

    2017-12-01

    Locus of enterocyte effacement (LEE)-negative Shiga toxin (Stx)-producing Escherichia coli (STEC) strains are human pathogens that lack the LEE locus, a pathogenicity island (PAI) involved in the intimate adhesion of LEE-positive strains to the host gut epithelium. The mechanism used by LEE-negative STEC strains to colonize the host intestinal mucosa is still not clear. The cell invasion determinant tia , previously described in enterotoxigenic E. coli strains, has been identified in LEE-negative STEC strains that possess the subtilase-encoding pathogenicity island (SE-PAI). We evaluated the role of the gene tia , present in these LEE-negative STEC strains, in the invasion of monolayers of cultured cells. We observed that these strains were able to invade Caco-2 and HEp-2 cell monolayers and compared their invasion ability with that of a mutant strain in which the gene tia had been inactivated. Mutation of the gene tia resulted in a strong reduction of the invasive phenotype, and complementation of the tia mutation with a functional copy of the gene restored the invasion activity. Moreover, we show that the gene tia is overexpressed in bacteria actively invading cell monolayers, demonstrating that tia is involved in the ability to invade cultured monolayers of epithelial cells shown by SE-PAI-positive E. coli , including STEC, strains. However, the expression of the tia gene in the E. coli K-12 strain JM109 was not sufficient, in its own right, to confer to this strain the ability to invade cell monolayers, suggesting that at least another factor must be involved in the invasion ability displayed by the SE-PAI-positive strains. Copyright © 2017 American Society for Microbiology.

  3. Fecal-indicator bacteria and Escherichia coli pathogen data collected near a novel sub-irrigation water-treatment system in Lenawee County, Michigan, June-November 2007

    Science.gov (United States)

    Duris, Joseph W.; Beeler, Stephanie

    2008-01-01

    The U.S. Geological Survey, in cooperation with the Lenawee County Conservation District in Lenawee County, Mich., conducted a sampling effort over a single growing season (June to November 2007) to evaluate the microbiological water quality around a novel livestock reservoir wetland sub-irrigation system. Samples were collected and analyzed for fecal coliform bacteria, Escherichia coli (E. coli) bacteria, and six genes from pathogenic strains of E. coli.A total of 73 water-quality samples were collected on nine occasions from June to November 2007. These samples were collected within the surface water, shallow ground water, and the manure-treatment system near Bakerlads Farm near Clayton in Lenawee County, Mich. Fecal coliform bacteria concentrations ranged from 10 to 1.26 million colony forming units per 100 milliliters (CFU/100 mL). E. coli bacteria concentrations ranged from 8 to 540,000 CFU/100 mL. Data from the E. coli pathogen analysis showed that 73 percent of samples contained the eaeA gene, 1 percent of samples contained the stx2 gene, 37 percent of samples contained the stx1 gene, 21 percent of samples contained the rfbO157 gene, and 64 percent of samples contained the LTIIa gene.

  4. Molecular relatedness of ESBL/AmpC-producing Escherichia coli from humans, animals, food and the enviroment

    NARCIS (Netherlands)

    Dorado-Garcia, Alejandro; Smid, J.H.; Pelt, Van Wilfrid; Bonten, M.J.M.; Fluit, A.C.; Bunt, van den Gerrita; Wagenaar, J.A.; Hordijk, J.; Dierikx, C.M.; Veldman, K.T.; Koeijer, de A.A.; Dohmen, W.; Schmitt, H.; Liakopoulos, A.; Pacholewicz, Ewa; Lam, T.J.G.M.; Velthuis, Annet; Heuvelink, A.; Gonggrijp, Maaike; Duijkeren, van E.; Hoek, van A.H.A.M.; Roda Husman, de A.N.; Blaak, H.; Havelaar, A.H.; Mevius, D.J.; Heederik, D.J.J.

    2018-01-01

    Background: In recent years, ESBL/AmpC-producing Escherichia coli ESBL/AmpC-EC) have been isolated with increasing frequency from animals, food, environmental sources and humans. With incomplete and scattered evidence, the contribution to the human carriage burden from these reservoirs remains

  5. Molecular relatedness of ESBL/AmpC-producing Escherichia coli from humans, animals, food and the environment : a pooled analysis

    NARCIS (Netherlands)

    Dorado-García, Alejandro|info:eu-repo/dai/nl/372621023; Smid, Joost H|info:eu-repo/dai/nl/313996458; van Pelt, Wilfrid; Bonten, Marc J M; Fluit, Ad C; van den Bunt, Gerrita; Wagenaar, Jaap A|info:eu-repo/dai/nl/126613354; Hordijk, Joost|info:eu-repo/dai/nl/314839542; Dierikx, Cindy M; Veldman, Kees T; de Koeijer, Aline; Dohmen, Wietske|info:eu-repo/dai/nl/333690451; Schmitt, Heike|info:eu-repo/dai/nl/304831042; Liakopoulos, Apostolos; Pacholewicz, Ewa; Lam, Theo J G M|info:eu-repo/dai/nl/14686820X; Velthuis, Annet G J; Heuvelink, Annet; Gonggrijp, Maaike A; van Duijkeren, Engeline; van Hoek, Angela H A M; de Roda Husman, Ana Maria|info:eu-repo/dai/nl/139498281; Blaak, Hetty; Havelaar, Arie H|info:eu-repo/dai/nl/072306122; Mevius, Dik J|info:eu-repo/dai/nl/079677347; Heederik, Dick J J|info:eu-repo/dai/nl/072910542

    Background: In recent years, ESBL/AmpC-producing Escherichia coli (ESBL/AmpC-EC) have been isolated with increasing frequency from animals, food, environmental sources and humans. With incomplete and scattered evidence, the contribution to the human carriage burden from these reservoirs remains

  6. Typing of avian pathogenic Escherichia coli strains by REP-PCR Tipificação de amostras aviárias patogênicas de Escherichia coli pela REP-PCR

    Directory of Open Access Journals (Sweden)

    Marcelo Brocchi

    2006-06-01

    Full Text Available In the present study the repetitive extragenic palindromic (REP polymerase chain reaction (PCR technique was used to establish the clonal variability of 49 avian Escherichia coli (APEC strains isolated from different outbreak cases of septicemia (n=24, swollen head syndrome (n=14 and omphalitis (n=11. Thirty commensal strains isolated from poultry with no signs of these illnesses were used as control strains. The purified DNA of these strains produced electrophoretic profiles ranging from 0 to 15 bands with molecular sizes varying from 100 bp to 6.1 kb, allowing the grouping of the 79 strains into a dendrogram containing 49 REP-types. Although REP-PCR showed good discriminating power it was not able to group the strains either into specific pathogenic classes or to differentiate between pathogenic and non-pathogenic strains. On the contrary, we recently demonstrated that other techniques such as ERIC-PCR and isoenzyme profiles are appropriate to discriminate between commensal and APEC strains and also to group these strains into specific pathogenic classes. In conclusion, REP-PCR seems to be a technique neither efficient nor universal for APEC strains discrimination. However, the population clonal structure obtained with the use of REP-PCR must not be ignored particularly if one takes into account that the APEC pathogenic mechanisms are not completely understood yet.A técnica de REP (Repetitive extragenic palindrome-PCR foi utilizada para avaliar a variabilidade genética de 49 amostras de Escherichia coli patogênicas para aves (APEC, isoladas de aves de corte (frangos em diferentes surtos de septicemia (n=24, síndrome da cabeça inchada (n=14 e onfalite (n=11. Trinta amostras comensais, isoladas de frangos sem sinais de doença, foram utilizadas como controle. A análise do perfil eletroforético obtido por reação de REP-PCR utilizando DNA purificado das amostras evidenciou a amplificação de 0 a 15 bandas de DNA com pesos moleculares

  7. Occurrence of human pathogenic Clostridium botulinum among healthy dairy animals: an emerging public health hazard.

    Science.gov (United States)

    Abdel-Moein, Khaled A; Hamza, Dalia A

    2016-01-01

    The current study was conducted to investigate the occurrence of human pathogenic Clostridium botulinum in the feces of dairy animals. Fecal samples were collected from 203 apparently healthy dairy animals (50 cattle, 50 buffaloes, 52 sheep, 51 goats). Samples were cultured to recover C. botulinum while human pathogenic C. botulinum strains were identified after screening of all C. botulinum isolates for the presence of genes that encode toxins type A, B, E, F. The overall prevalence of C. botulinum was 18.7% whereas human pathogenic C. botulinum strains (only type A) were isolated from six animals at the rates of 2, 2, 5.8, and 2% for cattle, buffaloes, sheep, and goats, respectively. High fecal carriage rates of C. botulinum among apparently healthy dairy animals especially type A alarm both veterinary and public health communities for a potential role which may be played by dairy animals in the epidemiology of such pathogen.

  8. Disease induction by human microbial pathogens in plant-model systems: potential, problems and prospects.

    Science.gov (United States)

    van Baarlen, Peter; van Belkum, Alex; Thomma, Bart P H J

    2007-02-01

    Relatively simple eukaryotic model organisms such as the genetic model weed plant Arabidopsis thaliana possess an innate immune system that shares important similarities with its mammalian counterpart. In fact, some human pathogens infect Arabidopsis and cause overt disease with human symptomology. In such cases, decisive elements of the plant's immune system are likely to be targeted by the same microbial factors that are necessary for causing disease in humans. These similarities can be exploited to identify elementary microbial pathogenicity factors and their corresponding targets in a green host. This circumvents important cost aspects that often frustrate studies in humans or animal models and, in addition, results in facile ethical clearance.

  9. Inhibition of Inducible Nitric Oxide Controls Pathogen Load and Brain Damage by Enhancing Phagocytosis of Escherichia coli K1 in Neonatal Meningitis

    OpenAIRE

    Mittal, Rahul; Gonzalez-Gomez, Ignacio; Goth, Kerstin A.; Prasadarao, Nemani V.

    2010-01-01

    Escherichia coli K1 is a leading cause of neonatal meningitis in humans. In this study, we sought to determine the pathophysiologic relevance of inducible nitric oxide (iNOS) in experimental E. coli K1 meningitis. By using a newborn mouse model of meningitis, we demonstrate that E. coli infection triggered the expression of iNOS in the brains of mice. Additionally, iNOS−/− mice were resistant to E. coli K1 infection, displaying normal brain histology, no bacteremia, no disruption of the blood...

  10. Prevalence, quantification and isolation of pathogenic shiga toxin Escherichia coli O157:H7 along the production and supply chain of pork around Hubei Province of China.

    Science.gov (United States)

    Khan, Sher Bahadar; Zou, Geng; Xiao, Ran; Cheng, Yuting; Rehman, Zia Ur; Ali, Sher; Memon, Atta Muhammad; Fahad, Shah; Ahmad, Irshad; Zhou, Rui

    2018-02-01

    Shiga toxin Escherichia coli (STEC) O157:H7 is an important zoonotic food borne pathogen causing gastroenteritis that may lead to life threatening hemorragic colitis (HC) and hemorrhagic uremic syndrome (HUS). 325 meat and tissue samples were tested for enumeration of O157:H7 strains using most probable number (MPN)-PCR targeting their specific genes flicH7 and rfbO157 followed by isolation, sereotyping and pathogenicity testing. The overall prevalence of O157:H7 was 41.3% (134/325) along the production and supply chain of pork (PSCP), being higher in supply chain (59%, 118/200) as compared to pig farms (12.8%, 16/125). Along the PSCP, the highest prevalence was found in slaughter houses (86.25%, 69/80) followed by wet- (53.3%, 32/60) and super-markets (28.3%, 17/60). The MPN values ranged from 3 to 1100 MPN/g in overall positive samples, being higher in slaughter houses followed by wet and super markets. Except from intestine and meat samples of slaughter house, the MPN was found higher in summer as compared to winter samples. Eight STEC O157:H7 isolated from meat and liver samples were tested in Balb/C mice for pathogenicity. After development of clinical signs and symptoms, 50-83.3% mortality was produced in the infected mice. Histopathological investigations revealed visible necrosis of intestinal epithelial cells, shedding of cellular debris in the intestine, while in the kidney, necrosis of renal cortical portion of tubular epithelial cells was observed. STEC O157:H7 is prevalent along PSCP around Hubei of China in different proportions being alarmingly higher in supply chain and markets which is a matter of concern for public health. Copyright © 2017. Published by Elsevier Ltd.

  11. Long-term variations in abundance and distribution of sewage pollution indicator and human pathogenic bacteria along the central west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Rodrigues, V.; Ramaiah, N.; Kakti, S.; Samant, D.

    - FC and Escherichia coli - EC) and potential pathogens (Vibrio cholerae - VC, Shigella - SH, and Salmonella spp. - SA). In both Mandovi and Zuari estuaries, where fishing and tourist-related activities are sizable and long-term data collection...

  12. Whole-genome comparison of urinary pathogenic Escherichia coli and faecal isolates of UTI patients and healthy controls

    DEFF Research Database (Denmark)

    Nielsen, Karen Leth; Stegger, Marc; Kiil, Kristoffer

    2017-01-01

    The faecal flora is a common reservoir for urinary tract infection (UTI), and Escherichia coli (E. coli) is frequently found in this reservoir without causing extraintestinal infection. We investigated these E. coli reservoirs by whole-genome sequencing a large collection of E. coli from healthy...... controls (faecal), who had never previously had UTI, and from UTI patients (faecal and urinary) sampled from the same geographical area. We compared MLST types, phylogenetic relationship, accessory genome content and FimH type between patient and control faecal isolates as well as between UTI and faecal......-only isolates, respectively. Comparison of the accessory genome of UTI isolates to faecal isolates revealed 35 gene families which were significantly more prevalent in the UTI isolates compared to the faecal isolates, although none of these were unique to one of the two groups. Of these 35, 22 belonged...

  13. The asymptomatic bacteriuria Escherichia coli strain 83972 outcompetes uropathogenic E. coli strains in human urine

    DEFF Research Database (Denmark)

    Hancock, Viktoria; Ulett, G.C.; Schembri, M.A.

    2006-01-01

    Escherichia coli is the most common organism associated with asymptomatic bacteriuria (ABU). In contrast to uropathogenic E. coli (UPEC), which causes symptomatic urinary tract infections (UTI), very little is known about the mechanisms by which these strains colonize the human urinary tract....... The prototype ABU E. coli strain 83972 was originally isolated from a girl who had carried it asymptomatically for 3 years. Deliberate colonization of UTI-susceptible individuals with E. coli 83972 has been used successfully as an alternative approach for the treatment of patients who are refractory...... to conventional therapy. Colonization with strain 83972 appears to prevent infection with UPEC strains in such patients despite the fact that this strain is unable to express the primary adhesins involved in UTI, viz. P and type 1 fimbriae. Here we investigated the growth characteristics of E. coli 83972 in human...

  14. Culture of human cell lines by a pathogen-inactivated human platelet lysate.

    Science.gov (United States)

    Fazzina, R; Iudicone, P; Mariotti, A; Fioravanti, D; Procoli, A; Cicchetti, E; Scambia, G; Bonanno, G; Pierelli, L

    2016-08-01

    Alternatives to the use of fetal bovine serum (FBS) have been investigated to ensure xeno-free growth condition. In this study we evaluated the efficacy of human platelet lysate (PL) as a substitute of FBS for the in vitro culture of some human cell lines. PL was obtained by pools of pathogen inactivated human donor platelet (PLT) concentrates. Human leukemia cell lines (KG-1, K562, JURKAT, HL-60) and epithelial tumor cell lines (HeLa and MCF-7) were cultured with either FBS or PL. Changes in cell proliferation, viability, morphology, surface markers and cell cycle were evaluated for each cell line. Functional characteristics were analysed by drug sensitivity test and cytotoxicity assay. Our results demonstrated that PL can support growth and expansion of all cell lines, although the cells cultured in presence of PL experienced a less massive proliferation compared to those grown with FBS. We found a comparable percentage of viable specific marker-expressing cells in both conditions, confirming lineage fidelity in all cultures. Functionality assays showed that cells in both FBS- and PL-supported cultures maintained their normal responsiveness to adriamycin and NK cell-mediated lysis. Our findings indicate that PL is a feasible serum substitute for supporting growth and propagation of haematopoietic and epithelial cell lines with many advantages from a perspective of process standardization, ethicality and product safety.

  15. [Expression, purification and immunogenicity of human papillomavirus type 11 virus-like particles from Escherichia coli].

    Science.gov (United States)

    Yan, Chunyan; Li, Shaowei; Wang, Jin; Wei, Minxi; Huang, Bo; Zhuang, Yudi; Li, Zhongyi; Pan, Huirong; Zhang, Jun; Xia, Ningshao

    2009-11-01

    To produce human papillomavirus type 11 virus-like particles (HPV11 VLPs) from Escherichia coli and to investigate its immunogenicity and type cross neutralization nature. We expressed the major capsid protein of HPV11 (HPV11-L1) in Escherichia coli ER2566 in non fusion fashion and purified by amino sulfate precipitation, ion-exchange chromatography and hydrophobic interaction chromatography, sequentially. Then we removed the reductant DTT to have the purified HPV11-L1 self-assemble into VLPs in vitro. We investigated the morphology of these VLPs with dynamic light scattering and transmission electron microscopy. We assayed the immunogenicity of the resultant HPV11 VLPs by vaccinations on mice and evaluated by HPV6/11/16/18 pseudovirion neutralization cell models. We expressed HPV11 L1 in Escherichia coli with two forms, soluble and inclusion body. The soluble HPV11 L1 with over 95% purity can self assemble to VLPs in high efficiency. Morphologically, these VLPs were globular, homogeneous and with a diameter of - 50 nm, which is quite similar with native HPV11 virions. The half effective dosage (ED50) of HPV11 VLPs is 0.031 microg, and the maximum titer of neutralizing antibody elicited is averaged to 10(6). The cross neutralization activity (against HPV6/16/18) of the anti-HPV11 serum was found to have exact correlation to the inter-type homology in amino acid alignment. We can provide HPV11 VLPs with highly immunogenicity from prokaryote expression system, which may pave a new way for research and development of prophylactic vaccine for HPV11.

  16. Systematic detection of positive selection in the human-pathogen interactome and lasting effects on infectious disease susceptibility.

    Directory of Open Access Journals (Sweden)

    Erik Corona

    Full Text Available Infectious disease has shaped the natural genetic diversity of humans throughout the world. A new approach to capture positive selection driven by pathogens would provide information regarding pathogen exposure in distinct human populations and the constantly evolving arms race between host and disease-causing agents. We created a human pathogen interaction database and used the integrated haplotype score (iHS to detect recent positive selection in genes that interact with proteins from 26 different pathogens. We used the Human Genome Diversity Panel to identify specific populations harboring pathogen-interacting genes that have undergone positive selection. We found that human genes that interact with 9 pathogen species show evidence of recent positive selection. These pathogens are Yersenia pestis, human immunodeficiency virus (HIV 1, Zaire ebolavirus, Francisella tularensis, dengue virus, human respiratory syncytial virus, measles virus, Rubella virus, and Bacillus anthracis. For HIV-1, GWAS demonstrate that some naturally selected variants in the host-pathogen protein interaction networks continue to have functional consequences for susceptibility to these pathogens. We show that selected human genes were enriched for HIV susceptibility variants (identified through GWAS, providing further support for the hypothesis that ancient humans were exposed to lentivirus pandemics. Human genes in the Italian, Miao, and Biaka Pygmy populations that interact with Y. pestis show significant signs of selection. These results reveal some of the genetic footprints created by pathogens in the human genome that may have left lasting marks on susceptibility to infectious disease.

  17. Metabolic Modeling of Common Escherichia coli Strains in Human Gut Microbiome

    Directory of Open Access Journals (Sweden)

    Yue-Dong Gao

    2014-01-01

    Full Text Available The recent high-throughput sequencing has enabled the composition of Escherichia coli strains in the human microbial community to be profiled en masse. However, there are two challenges to address: (1 exploring the genetic differences between E. coli strains in human gut and (2 dynamic responses of E. coli to diverse stress conditions. As a result, we investigated the E. coli strains in human gut microbiome using deep sequencing data and reconstructed genome-wide metabolic networks for the three most common E. coli strains, including E. coli HS, UTI89, and CFT073. The metabolic models show obvious strain-specific characteristics, both in network contents and in behaviors. We predicted optimal biomass production for three models on four different carbon sources (acetate, ethanol, glucose, and succinate and found that these stress-associated genes were involved in host-microbial interactions and increased in human obesity. Besides, it shows that the growth rates are similar among the models, but the flux distributions are different, even in E. coli core reactions. The correlations between human diabetes-associated metabolic reactions in the E. coli models were also predicted. The study provides a systems perspective on E. coli strains in human gut microbiome and will be helpful in integrating diverse data sources in the following study.

  18. Emergence and Adaptation of a Novel Highly Pathogenic H7N9 Influenza Virus in Birds and Humans from a 2013 Human-Infecting Low-Pathogenic Ancestor.

    Science.gov (United States)

    Qi, Wenbao; Jia, Weixin; Liu, Di; Li, Jing; Bi, Yuhai; Xie, Shumin; Li, Bo; Hu, Tao; Du, Yingying; Xing, Li; Zhang, Jiahao; Zhang, Fuchun; Wei, Xiaoman; Eden, John-Sebastian; Li, Huanan; Tian, Huaiyu; Li, Wei; Su, Guanming; Lao, Guangjie; Xu, Chenggang; Xu, Bing; Liu, Wenjun; Zhang, Guihong; Ren, Tao; Holmes, Edward C; Cui, Jie; Shi, Weifeng; Gao, George F; Liao, Ming

    2018-01-15

    Since its emergence in 2013, the H7N9 low-pathogenic avian influenza virus (LPAIV) has been circulating in domestic poultry in China, causing five waves of human infections. A novel H7N9 highly pathogenic avian influenza virus (HPAIV) variant possessing multiple basic amino acids at the cleavage site of the hemagglutinin (HA) protein was first reported in two cases of human infection in January 2017. More seriously, those novel H7N9 HPAIV variants have been transmitted and caused outbreaks on poultry farms in eight provinces in China. Herein, we demonstrate the presence of three different amino acid motifs at the cleavage sites of these HPAIV variants which were isolated from chickens and humans and likely evolved from the preexisting LPAIVs. Animal experiments showed that these novel H7N9 HPAIV variants are both highly pathogenic in chickens and lethal to mice. Notably, human-origin viruses were more pathogenic in mice than avian viruses, and the mutations in the PB2 gene associated with adaptation to mammals (E627K, A588V, and D701N) were identified by next-generation sequencing (NGS) and Sanger sequencing of the isolates from infected mice. No polymorphisms in the key amino acid substitutions of PB2 and HA in isolates from infected chicken lungs were detected by NGS. In sum, these results highlight the high degree of pathogenicity and the valid transmissibility of this new H7N9 variant in chickens and the quick adaptation of this new H7N9 variant to mammals, so the risk should be evaluated and more attention should be paid to this variant. IMPORTANCE Due to the recent increased numbers of zoonotic infections in poultry and persistent human infections in China, influenza A(H7N9) virus has remained a public health threat. Most of the influenza A(H7N9) viruses reported previously have been of low pathogenicity. Now, these novel H7N9 HPAIV variants have caused human infections in three provinces and outbreaks on poultry farms in eight provinces in China. We analyzed

  19. In Silico Prediction of Human Pathogenicity in the gamma-Proteobacteria

    DEFF Research Database (Denmark)

    Andreatta, Massimo; Nielsen, Morten; Aarestrup, Frank Møller

    2010-01-01

    to be able to separate pathogenic organisms from non-pathogenic ones. Using traditional experimental methods for this purpose can be very costly and time-consuming, and also uncertain since animal models are not always good predictors for pathogenicity in humans. Bioinformatics-based methods are therefore...... tested. An additional validation on an independent test-set assigned correctly 22 out of 24 bacteria. Conclusions: The proposed approach was demonstrated to go beyond the species bias imposed by evolutionary relatedness, and performs better than predictors based solely on taxonomy or sequence similarity...

  20. The virulence of human pathogenic fungi: notes from the South of France.

    Science.gov (United States)

    Reedy, Jennifer L; Bastidas, Robert J; Heitman, Joseph

    2007-08-16

    The Second FEBS Advanced Lecture Course on Human Fungal Pathogens: Molecular Mechanisms of Host-Pathogen Interactions and Virulence, organized by Christophe d'Enfert (Institut Pasteur, France), Anita Sil (UCSF, USA), and Steffen Rupp (Fraunhofer, IGB, Germany), occurred May 2007 in La Colle sur Loup, France. Here we review the advances presented and the current state of knowledge in key areas of fungal pathogenesis.

  1. The Dynamic Genome and Transcriptome of the Human Fungal Pathogen Blastomyces and Close Relative Emmonsia

    OpenAIRE

    Muñoz, José F.; Gauthier, Gregory M.; Desjardins, Christopher A.; Gallo, Juan E.; Holder, Jason; Sullivan, Thomas D.; Marty, Amber J.; Carmen, John C.; Chen, Zehua; Ding, Li; Gujja, Sharvari; Magrini, Vincent; Misas, Elizabeth; Mitreva, Makedonka; Priest, Margaret

    2015-01-01

    Three closely related thermally dimorphic pathogens are causal agents of major fungal diseases affecting humans in the Americas: blastomycosis, histoplasmosis and paracoccidioidomycosis. Here we report the genome sequence and analysis of four strains of the etiological agent of blastomycosis, Blastomyces, and two species of the related genus Emmonsia, typically pathogens of small mammals. Compared to related species, Blastomyces genomes are highly expanded, with long, often sharply demarcated...

  2. Prevalence of plant beneficial and human pathogenic bacteria isolated from salad vegetables in India.

    Science.gov (United States)

    Nithya, Angamuthu; Babu, Subramanian

    2017-03-14

    The study aimed at enumerating, identifying and categorizing the endophytic cultivable bacterial community in selected salad vegetables (carrot, cucumber, tomato and onion). Vegetable samples were collected from markets of two vegetable hot spot growing areas, during two different crop harvest seasons. Crude and diluted vegetable extracts were plated and the population of endophytic bacteria was assessed based on morphologically distinguishable colonies. The bacterial isolates were identified by growth in selective media, biochemical tests and 16S rRNA gene sequencing. The endophytic population was found to be comparably higher in cucumber and tomato in both of the sampling locations, whereas lower in carrot and onion. Bacterial isolates belonged to 5 classes covering 46 distinct species belonging to 19 genera. Human opportunistic pathogens were predominant in carrot and onion, whereas plant beneficial bacteria dominated in cucumber and tomato. Out of the 104 isolates, 16.25% are human pathogens and 26.5% are human opportunistic pathogens. Existence of a high population of plant beneficial bacteria was found to have suppressed the population of plant and human pathogens. There is a greater potential to study the native endophytic plant beneficial bacteria for developing them as biocontrol agents against human pathogens that are harboured by plants.

  3. The occurrence of Escherichia coli O157:H7 in market and abattoir ...

    African Journals Online (AJOL)

    Escherichia coli O157:H7 is a newly emerging pathogen frequently associated with the consumption of foods of bovine origin. The severity of the infections caused by this food borne pathogen in the young and the elderly has had a tremendous impact on human health and food industry. The present study evaluated the ...

  4. Pathogen prevalence predicts human cross-cultural variability in individualism/collectivism.

    Science.gov (United States)

    Fincher, Corey L; Thornhill, Randy; Murray, Damian R; Schaller, Mark

    2008-06-07

    Pathogenic diseases impose selection pressures on the social behaviour of host populations. In humans (Homo sapiens), many psychological phenomena appear to serve an antipathogen defence function. One broad implication is the existence of cross-cultural differences in human cognition and behaviour contingent upon the relative presence of pathogens in the local ecology. We focus specifically on one fundamental cultural variable: differences in individualistic versus collectivist values. We suggest that specific behavioural manifestations of collectivism (e.g. ethnocentrism, conformity) can inhibit the transmission of pathogens; and so we hypothesize that collectivism (compared with individualism) will more often characterize cultures in regions that have historically had higher prevalence of pathogens. Drawing on epidemiological data and the findings of worldwide cross-national surveys of individualism/collectivism, our results support this hypothesis: the regional prevalence of pathogens has a strong positive correlation with cultural indicators of collectivism and a strong negative correlation with individualism. The correlations remain significant even when controlling for potential confounding variables. These results help to explain the origin of a paradigmatic cross-cultural difference, and reveal previously undocumented consequences of pathogenic diseases on the variable nature of human societies.

  5. Targeted Disruption of Melanin Biosynthesis Genes in the Human Pathogenic Fungus Lomentospora prolificans and Its Consequences for Pathogen Survival

    Directory of Open Access Journals (Sweden)

    Ayat Al-Laaeiby

    2016-03-01

    Full Text Available The dematiaceous (melanised fungus Lomentospora (Scedosporium prolificans is a life-threatening opportunistic pathogen of immunocompromised humans, resistant to anti-fungal drugs. Melanin has been shown to protect human pathogenic fungi against antifungal drugs, oxidative killing and environmental stresses. To determine the protective role of melanin in L. prolificans to oxidative killing (H2O2, UV radiation and the polyene anti-fungal drug amphotericin B, targeted gene disruption was used to generate mutants of the pathogen lacking the dihydroxynaphthalene (DHN-melanin biosynthetic enzymes polyketide synthase (PKS1, tetrahydroxynapthalene reductase (4HNR and scytalone dehydratase (SCD1. Infectious propagules (spores of the wild-type strain 3.1 were black/brown, whereas spores of the PKS-deficient mutant ΔLppks1::hph were white. Complementation of the albino mutant ΔLppks1::hph restored the black-brown spore pigmentation, while the 4HNR-deficient mutant ΔLp4hnr::hph and SCD-deficient mutant ΔLpscd1::hph both produced orange-yellow spores. The mutants ΔLppks1::hph and ΔLp4hnr::hph showed significant reductions in spore survival following H2O2 treatment, while spores of ΔLpscd1::hph and the ΔLppks1::hph complemented strain ΔLppks1::hph:PKS showed spore survivals similar to strain 3.1. Spores of the mutants ΔLp4hnr::hph and ΔLpscd1::hph and complemented strain ΔLppks1::hph:PKS showed spore survivals similar to 3.1 following exposure to UV radiation, but survival of ΔLppks1::hph spores was significantly reduced compared to the wild-type strain. Strain 3.1 and mutants ΔLp4hnr::hph and ΔLppks1::hph:PKS were resistant to amphotericin B while, paradoxically, the PKS1- and SCD1-deficient mutants showed significant increases in growth in the presence of the antifungal drug. Taken together, these results show that while melanin plays a protective role in the survival of the pathogen to oxidative killing and UV radiation, melanin does not

  6. Targeted Disruption of Melanin Biosynthesis Genes in the Human Pathogenic Fungus Lomentospora prolificans and Its Consequences for Pathogen Survival.

    Science.gov (United States)

    Al-Laaeiby, Ayat; Kershaw, Michael J; Penn, Tina J; Thornton, Christopher R

    2016-03-24

    The dematiaceous (melanised) fungus Lomentospora (Scedosporium) prolificans is a life-threatening opportunistic pathogen of immunocompromised humans, resistant to anti-fungal drugs. Melanin has been shown to protect human pathogenic fungi against antifungal drugs, oxidative killing and environmental stresses. To determine the protective role of melanin in L. prolificans to oxidative killing (H₂O₂), UV radiation and the polyene anti-fungal drug amphotericin B, targeted gene disruption was used to generate mutants of the pathogen lacking the dihydroxynaphthalene (DHN)-melanin biosynthetic enzymes polyketide synthase (PKS1), tetrahydroxynapthalene reductase (4HNR) and scytalone dehydratase (SCD1). Infectious propagules (spores) of the wild-type strain 3.1 were black/brown, whereas spores of the PKS-deficient mutant ΔLppks1::hph were white. Complementation of the albino mutant ΔLppks1::hph restored the black-brown spore pigmentation, while the 4HNR-deficient mutant ΔLp4hnr::hph and SCD-deficient mutant ΔLpscd1::hph both produced orange-yellow spores. The mutants ΔLppks1::hph and ΔLp4hnr::hph showed significant reductions in spore survival following H₂O₂ treatment, while spores of ΔLpscd1::hph and the ΔLppks1::hph complemented strain ΔLppks1::hph:PKS showed spore survivals similar to strain 3.1. Spores of the mutants ΔLp4hnr::hph and ΔLpscd1::hph and complemented strain ΔLppks1::hph:PKS showed spore survivals similar to 3.1 following exposure to UV radiation, but survival of ΔLppks1::hph spores was significantly reduced compared to the wild-type strain. Strain 3.1 and mutants ΔLp4hnr::hph and ΔLppks1::hph:PKS were resistant to amphotericin B while, paradoxically, the PKS1- and SCD1-deficient mutants showed significant increases in growth in the presence of the antifungal drug. Taken together, these results show that while melanin plays a protective role in the survival of the pathogen to oxidative killing and UV radiation, melanin does not

  7. Expression of human ferredoxin and assembly of the [2Fe-2S] center in Escherichia coli

    International Nuclear Information System (INIS)

    Coghlan, V.M.; Vickery, L.E.

    1989-01-01

    A cDNA fragment encoding human ferredoxin, a mitochondrial [2Fe-2S] protein, was introduced into Escherichia coli by using an expression vector based on the approach of Nagai and Thogersen. Expression was under control of the λP L promoter and resulted in production of ferredoxin as a cleavable fusion protein with an amino-terminal fragment derived from bacteriophage λcII protein. The fusion protein was isolated from the soluble fraction of induced cells and was specifically cleaved to yield mature recombinant ferredoxin. The recombinant protein was shown to be identical in size to ferredoxin isolated from human placenta (13,546 Da) by NaDodSO 4 /PAGE and partial amino acid sequencing. E. coli cells expressing human ferredoxin were brown in color, and absorbance and electron paramagnetic resonance spectra of the purified recombinant protein established that the [2Fe-2S]center was assembled and incorporated into ferredoxin in vivo. Recombinant ferredoxin was active in steroid hydroxylations when reconstituted with cytochromes P-450 sec and P-450 11β and exhibited rates comparable to those observed for ferredoxin isolated from human placenta. This expression system should be useful in production of native and structurally altered forms of human ferredoxin for studies of ferredoxin structure and function

  8. Human pathogen shown to cause disease in the threatened eklhorn coral Acropora palmata.

    Directory of Open Access Journals (Sweden)

    Kathryn Patterson Sutherland

    Full Text Available Coral reefs are in severe decline. Infections by the human pathogen Serratia marcescens have contributed to precipitous losses in the common Caribbean elkhorn coral, Acropora palmata, culminating in its listing under the United States Endangered Species Act. During a 2003 outbreak of this coral disease, called acroporid serratiosis (APS, a unique strain of the pathogen, Serratia marcescens strain PDR60, was identified from diseased A. palmata, human wastewater, the non-host coral Siderastrea siderea and the corallivorous snail Coralliophila abbreviata. In order to examine humans as a source and other marine invertebrates as vectors and/or reservoirs of the APS pathogen, challenge experiments were conducted with A. palmata maintained in closed aquaria to determine infectivity of strain PDR60 from reef and wastewater sources. Strain PDR60 from wastewater and diseased A. palmata caused disease signs in elkhorn coral in as little as four and five days, respectively, demonstrating that wastewater is a definitive source of APS and identifying human strain PDR60 as a coral pathogen through fulfillment of Koch's postulates. A. palmata inoculated with strain PDR60 from C. abbreviata showed limited virulence, with one of three inoculated fragments developing APS signs within 13 days. Strain PDR60 from non-host coral S. siderea showed a delayed pathogenic effect, with disease signs developing within an average of 20 days. These results suggest that C. abbreviata and non-host corals may function as reservoirs or vectors of the APS pathogen. Our results provide the first example of a marine "reverse zoonosis" involving the transmission of a human pathogen (S. marcescens to a marine invertebrate (A. palmata. These findings underscore the interaction between public health practices and environmental health indices such as coral reef survival.

  9. Human pathogen shown to cause disease in the threatened eklhorn coral Acropora palmata.

    Science.gov (United States)

    Sutherland, Kathryn Patterson; Shaban, Sameera; Joyner, Jessica L; Porter, James W; Lipp, Erin K

    2011-01-01

    Coral reefs are in severe decline. Infections by the human pathogen Serratia marcescens have contributed to precipitous losses in the common Caribbean elkhorn coral, Acropora palmata, culminating in its listing under the United States Endangered Species Act. During a 2003 outbreak of this coral disease, called acroporid serratiosis (APS), a unique strain of the pathogen, Serratia marcescens strain PDR60, was identified from diseased A. palmata, human wastewater, the non-host coral Siderastrea siderea and the corallivorous snail Coralliophila abbreviata. In order to examine humans as a source and other marine invertebrates as vectors and/or reservoirs of the APS pathogen, challenge experiments were conducted with A. palmata maintained in closed aquaria to determine infectivity of strain PDR60 from reef and wastewater sources. Strain PDR60 from wastewater and diseased A. palmata caused disease signs in elkhorn coral in as little as four and five days, respectively, demonstrating that wastewater is a definitive source of APS and identifying human strain PDR60 as a coral pathogen through fulfillment of Koch's postulates. A. palmata inoculated with strain PDR60 from C. abbreviata showed limited virulence, with one of three inoculated fragments developing APS signs within 13 days. Strain PDR60 from non-host coral S. siderea showed a delayed pathogenic effect, with disease signs developing within an average of 20 days. These results suggest that C. abbreviata and non-host corals may function as reservoirs or vectors of the APS pathogen. Our results provide the first example of a marine "reverse zoonosis" involving the transmission of a human pathogen (S. marcescens) to a marine invertebrate (A. palmata). These findings underscore the interaction between public health practices and environmental health indices such as coral reef survival.

  10. In vitro secretion profiles of interleukin (IL-1beta, IL-6, IL-8, IL-10, and TNF alpha after selective infection with Escherichia coli in human fetal membranes

    Directory of Open Access Journals (Sweden)

    Maida-Claros Rolando

    2007-12-01

    Full Text Available Abstract Background Chorioamniotic membranes infection is a pathologic condition in which an abnormal secretion of proinflammatory cytokines halts fetal immune tolerance. The aim of the present study was to evaluate the functional response of human chorioamniotic membranes, as well as the individual contribution of the amnion and choriodecidua after stimulation with Escherichia coli, a pathogen associated with preterm labor. Methods Explants of chorioamniotic membranes from 10 women (37–40 weeks of gestation were mounted and cultured in a Transwell system, which allowed us to test the amnion and choriodecidua compartments independently. Escherichia coli (1 × 10 6 CFU/mL was added to either the amniotic or the choriodecidual regions or both; after a 24-h incubation, the secretion of IL-1beta, IL-6, TNFalpha, IL-8, and IL-10 in both compartments was measured using a specific ELISA. Data were analyzed by Kruskal-Wallis one-way analysis of variance. Results After stimulation with Escherichia coli, the choriodecidua compartment showed an increase in the secretion of IL-1beta (21-fold, IL-6 (2-fold, IL-8 (6-fold, and IL-10 (37-fold, regardless of which side of the membrane was stimulated; TNFalpha secretion augmented (22-fold also but only when the stimulus was applied simultaneously to both sides. When the amnion was stimulated directly, the level of IL-1beta (13-fold rose significantly; however, the increase in IL-8 secretion was larger (20-fold, regardless of the primary site of infection. TNFalpha secretion in the amnion compartment rose markedly only when Escherichia coli was simultaneously applied to both sides. Conclusion Selective stimulation of fetal membranes with Escherichia coli results in a differential production of IL-1beta, IL-6, TNFalpha, IL-8, and IL-10. These tissues were less responsive when the amnion side was stimulated. This is in agreement with the hypothesis that the choriodecidua may play a primary role during an ascending

  11. Extreme Heat Resistance of Food Borne Pathogens Campylobacter jejuni, Escherichia coli, and Salmonella typhimurium on Chicken Breast Fillet during Cooking

    Directory of Open Access Journals (Sweden)

    Aarieke E.I. de Jong

    2012-01-01

    The surface temperature reached 70∘C within 30 sec and 85∘C within one minute. Extremely high decimal reduction times of 1.90, 1.97, and 2.20 min were obtained for C. jejuni, E. coli, and S. typhimurium, respectively. Chicken meat and refrigerated storage before cooking enlarged the heat resistance of the food borne pathogens. Additionally, a high challenge temperature or fast heating rate contributed to the level of heat resistance. The data were used to assess the probability of illness (campylobacteriosis due to consumption of chicken fillet as a function of cooking time. The data revealed that cooking time may be far more critical than previously assumed.

  12. Aspergillus flavus: human pathogen, allergen and mycotoxin producer.

    Science.gov (United States)

    Hedayati, M T; Pasqualotto, A C; Warn, P A; Bowyer, P; Denning, D W

    2007-06-01

    Aspergillus infections have grown in importance in the last years. However, most of the studies have focused on Aspergillus fumigatus, the most prevalent species in the genus. In certain locales and hospitals, Aspergillus flavus is more common in air than A. fumigatus, for unclear reasons. After A. fumigatus, A. flavus is the second leading cause of invasive aspergillosis and it is the most common cause of superficial infection. Experimental invasive infections in mice show A. flavus to be 100-fold more virulent than A. fumigatus in terms of inoculum required. Particularly common clinical syndromes associated with A. flavus include chronic granulomatous sinusitis, keratitis, cutaneous aspergillosis, wound infections and osteomyelitis following trauma and inoculation. Outbreaks associated with A. flavus appear to be associated with single or closely related strains, in contrast to those associated with A. fumigatus. In addition, A. flavus produces aflatoxins, the most toxic and potent hepatocarcinogenic natural compounds ever characterized. Accurate species identification within Aspergillus flavus complex remains difficult due to overlapping morphological and biochemical characteristics, and much taxonomic and population genetics work is necessary to better understand the species and related species. The flavus complex currently includes 23 species or varieties, including two sexual species, Petromyces alliaceus and P. albertensis. The genome of the highly related Aspergillus oryzae is completed and available; that of A. flavus in the final stages of annotation. Our understanding of A. flavus lags far behind that of A. fumigatus. Studies of the genomics, taxonomy, population genetics, pathogenicity, allergenicity and antifungal susceptibility of A. flavus are all required.

  13. Complete sequencing of the bla(NDM-1)-positive IncA/C plasmid from Escherichia coli ST38 isolate suggests a possible origin from plant pathogens.

    Science.gov (United States)

    Sekizuka, Tsuyoshi; Matsui, Mari; Yamane, Kunikazu; Takeuchi, Fumihiko; Ohnishi, Makoto; Hishinuma, Akira; Arakawa, Yoshichika; Kuroda, Makoto

    2011-01-01

    The complete sequence of the plasmid pNDM-1_Dok01 carrying New Delhi metallo-β-lactamase (NDM-1) was determined by whole genome shotgun sequencing using Escherichia coli strain NDM-1_Dok01 (multilocus sequence typing type: ST38) and the transconjugant E. coli DH10B. The plasmid is an IncA/C incompatibility type composed of 225 predicted coding sequences in 195.5 kb and partially shares a sequence with bla(CMY-2)-positive IncA/C plasmids such as E. coli AR060302 pAR060302 (166.5 kb) and Salmonella enterica serovar Newport pSN254 (176.4 kb). The bla(NDM-1) gene in pNDM-1_Dok01 is terminally flanked by two IS903 elements that are distinct from those of the other characterized NDM-1 plasmids, suggesting that the bla(NDM-1) gene has been broadly transposed, together with various mobile elements, as a cassette gene. The chaperonin groES and groEL genes were identified in the bla(NDM-1)-related composite transposon, and phylogenetic analysis and guanine-cytosine content (GC) percentage showed similarities to the homologs of plant pathogens such as Pseudoxanthomonas and Xanthomonas spp., implying that plant pathogens are the potential source of the bla(NDM-1) gene. The complete sequence of pNDM-1_Dok01 suggests that the bla(NDM-1) gene was acquired by a novel composite transposon on an extensively disseminated IncA/C plasmid and transferred to the E. coli ST38 isolate.

  14. Towards a pathogenic Escherichia coli detection platform using multiplex SYBR®Green Real-time PCR methods and high resolution melting analysis.

    Directory of Open Access Journals (Sweden)

    Dafni-Maria Kagkli

    Full Text Available Escherichia coli is a group of bacteria which has raised a lot of safety concerns in recent years. Five major intestinal pathogenic groups have been recognized amongst which the verocytotoxin or shiga-toxin (stx1 and/or stx2 producing E. coli (VTEC or STEC respectively have received a lot of attention recently. Indeed, due to the high number of outbreaks related to VTEC strains, the European Food Safety Authority (EFSA has requested the monitoring of the "top-five" serogroups (O26, O103, O111, O145 and O157 most often encountered in food borne diseases and addressed the need for validated VTEC detection methods. Here we report the development of a set of intercalating dye Real-time PCR methods capable of rapidly detecting the presence of the toxin genes together with intimin (eae in the case of VTEC, or aggregative protein (aggR, in the case of the O104:H4 strain responsible for the outbreak in Germany in 2011. All reactions were optimized to perform at the same annealing temperature permitting the multiplex application in order to minimize the need of material and to allow for high-throughput analysis. In addition, High Resolution Melting (HRM analysis allowing the discrimination among strains possessing similar virulence traits was established. The development, application to food samples and the flexibility in use of the methods are thoroughly discussed. Together, these Real-time PCR methods facilitate the detection of VTEC in a new highly efficient way and could represent the basis for developing a simple pathogenic E. coli platform.

  15. Characterization of the response chemiluminescence of neutrophils human beings to the hemolysin Escherichia coli alpha

    International Nuclear Information System (INIS)

    Garcia, J.

    2000-01-01

    Escherichia coli alpha hemolysin (AH) evoked a luminol-amplified chemiluminescence (CL) response from human polymorphonuclear leukocytes (PMN). Analysis of kinetic parameters of the PMN CL response to AH established similarities with that of PMN to the calcium ionophore A23187. PMN CL responses to both AH and A23187 were equally decreased by preincubating PMN with A63612, a hidroxamic acid derivative and lipooxigenase inhibitor, showing that the CL response to both hemolysin and ionophore share a common mechanism, probably activation of leukotriene synthesis, due to calcium entry into the cells brought about by AH and A23187. In addition, the CL response of PMN to AH was lowered by the hydroxyl radical scavenger dimethyl sulfoxide, further suggesting arachidonate metabolism is involved in CL response. (Author) [es

  16. Automated thermometric enzyme immunoassay of human proinsulin produced by Escherichia coli.

    Science.gov (United States)

    Birnbaum, S; Bülow, L; Hardy, K; Danielsson, B; Mosbach, K

    1986-10-01

    We have determined and monitored the production and release of human proinsulin by genetically engineered Escherichia coli cells. Several M9 media samples were analyzed sequentially after centrifugation with the aid of a rapid automated flow-through thermometric enzyme-linked immunosorbent assay (TELISA) system. The response time was 7 min after sample injection and a single assay was complete after 13 min. Insulin concentrations in the range of 0.1-50 micrograms/ml could be determined. The TELISA method correlated well with conventional radioimmunoassay determinations. Standard curves were reproducible over a period of several days even when the immobilized antibody column was stored at 25 degrees C in the enzyme thermistor unit. Thus, immediate assay start up was possible.

  17. Automated thermometric enzyme immunoassay of human proinsulin produced by Escherichia coli

    International Nuclear Information System (INIS)

    Birnbaum, S.; Buelow, L.; Hardy, K.; Danielsson, B.; Mosbach, K.

    1986-01-01

    The authors have determined and monitored the production and release of human proinsulin by genetically engineered Escherichia coli cells. Several M9 media samples were analyzed sequentially after centrifugation with the aid of a rapid automated flow-through thermometric enzyme-linked immunosorbent assay (TELISA) system. The response time was 7 min after after sample injection and a single assay was complete after 13 min. Insulin concentrations in the range of 0.1-50 μg/ml could be determined. The TELISA method correlated well with conventional radioimmunoassay determinations. Standard curves were reproducible over a period of several days even when the immobilized antibody column was stored at 25 0 C in the enzyme thermistor unit. Thus, immediate assay start up was possible

  18. Efecto citotóxico en colon humano de Escherichia coli enterohemorrágico aislado de terneros con diarrea sanguinolenta Cytotoxic effect in human colon of enterohemorrhagic Escherichia coli isolated from calves with bloody diarrhea

    Directory of Open Access Journals (Sweden)

    V. Pistone Creydt

    2005-09-01

    Full Text Available Escherichia coli productor de toxina Shiga (STEC es el patógeno emergente en alimentos de mayor impacto, siendo su principal reservorio el ganado bovino. STEC puede causar diarrea, colitis hemorrágica y síndrome urémico hemolítico. El presente trabajo estudió la acción citotóxica de dos cepas de STEC aisladas de heces de terneros diarreicos en colon humano in vitro. Los fragmentos se montaron como un diafragma en una cámara de Ussing y se incubaron con las cepas patógenas. El flujo neto absortivo de agua (Jw disminuyó y la corriente de cortocircuito (Isc aumentó significativamente (P Shiga toxin-producing E. coli (STEC is one of the most important emergent pathogen in foods, being its main reservoir bovine cattle. STEC can cause diarrhea, hemorrhagic colitis and hemolytic-uremic syndrome. The present work have studied the cytotoxic action in human colon of cultures of two STEC strains isolated from faeces of calves with bloody diarrhea. Colonic mucosa was mounted as a diaphragm in a Ussing chamber and incubated with the cultures of pathogenic strains. Net water flow (Jw decreased and the short-circuit current (Isc increased significantly (p < 0,01 compared to negative control. Tissues showed an erosion of the mucose, epithelial exfoliation, and presence of pseudo-membranes in the lumen. Mild circulatory lesions were observed in the lamina propia. A moderate neutrophils infiltration was observed in the lumen and into the epithelial cells. Colonic crypts were not disrupted. Both experimental strains caused a similar lesion on colon tissues. This is the first study that shows that cultures of STEC strains isolated from bovine cattle produce cytotoxic effects in vitro in human colon.

  19. Analysis of the human intestinal epithelial cell transcriptional response to Lactobacillus acidophilus, Lactobacillus salivarius, Bifidobacterium lactis and Escherichia coli

    DEFF Research Database (Denmark)

    Putaala, H; Barrangou, R; Leyer, G J

    2010-01-01

    a comparative analysis of the global in vitro transcriptional response of human intestinal epithelial cells to Lactobacillus acidophilus NCFM™, Lactobacillus salivarius Ls-33, Bifidobacterium animalis subsp. lactis 420, and enterohaemorrhagic Escherichia coli O157:H7 (EHEC). Interestingly, L. salivarius Ls-33...

  20. Potential human pathogenic bacteria in a mixed urban watershed as revealed by pyrosequencing.

    Directory of Open Access Journals (Sweden)

    A Mark Ibekwe

    Full Text Available Current microbial source tracking (MST methods for water depend on testing for fecal indicator bacterial counts or specific marker gene sequences to identify fecal contamination where potential human pathogenic bacteria could be present. In this study, we applied 454 high-throughput pyrosequencing to identify bacterial pathogen DNA sequences, including those not traditionally monitored by MST and correlated their abundances to specific sources of contamination such as urban runoff and agricultural runoff from concentrated animal feeding operations (CAFOs, recreation park area, waste-water treatment plants, and natural sites with little or no human activities. Samples for pyrosequencing were surface water, and sediment collected from 19 sites. A total of 12,959 16S rRNA gene sequences with average length of ≤400 bp were obtained, and were assigned to corresponding taxonomic ranks using ribosomal database project (RDP, Classifier and Greengenes databases. The percent of total potential pathogens were highest in urban runoff water (7.94%, agricultural runoff sediment (6.52%, and Prado Park sediment (6.00%, respectively. Although the numbers of DNA sequence tags from pyrosequencing were very high for the natural site, corresponding percent potential pathogens were very low (3.78-4.08%. Most of the potential pathogenic bacterial sequences identified were from three major phyla, namely, Proteobacteria, Bacteroidetes, and Firmicutes. The use of deep sequencing may provide improved and faster methods for the identification of pathogen sources in most watersheds so that better risk assessment methods may be developed to enhance public health.

  1. Computational determination of the effects of virulent Escherichia coli and salmonella bacteriophages on human gut.

    Science.gov (United States)

    Mostafa, Marwa Mostafa; Nassef, Mohammad; Badr, Amr

    2016-10-01

    Salmonella and Escherichia coli are different types of bacteria that cause food poisoning in humans. In the elderly, infants and people with chronic conditions, it is very dangerous if Salmonella or E. coli gets into the bloodstream and then they must be treated by phage therapy. Treating Salmonella and E. coli by phage therapy affects the gut flora. This research paper presents a system for detecting the effects of virulent E. coli and Salmonella bacteriophages on human gut. A method based on Domain-Domain Interactions (DDIs) model is implemented in the proposed system to determine the interactions between the proteins of human gut bacteria and the proteins of bacteriophages that infect virulent E. coli and Salmonella. The system helps gastroenterologists to realize the effect of injecting bacteriophages that infect virulent E. coli and Salmonella on the human gut. By testing the system over Enterobacteria phage 933W, Enterobacteria phage VT2-Sa and Enterobacteria phage P22, it resulted in four interactions between the proteins of the bacteriophages that infect E. coli O157:H7, E. coli O104:H4 and Salmonella typhimurium and the proteins of human gut bacterium strains. Several effects were detected such as: antibacterial activity against a number of bacterial species in human gut, regulation of cellular differentiation and organogenesis during gut, lung, and heart development, ammonia assimilation in bacteria, yeasts, and plants, energizing defense system and its function in the detoxification of lipopolysaccharide, and in the prevention of bacterial translocation in human gut. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Evaluating Antimicrobial Effects of Centaurea Plant’s Essential Oil on Pathogenic Bacteria: Staphylococcus Aureus, Staphylococcus Epidermidis, and Escherichia Coli Isolated from Clinical Specimens

    Directory of Open Access Journals (Sweden)

    Haedeh Mobaiyen

    2016-03-01

    Full Text Available Background & Objectives :Nowadays, development of drug resistance against chemical antimicrobial drugs has attracted attention using medicinal plants in treatment of infections. The aim of this study is to evaluate the antimicrobial effects of two species of Centaurea plant’s essential oil on drug resistant clinical isolates of three pathogenic isolates. Materials & Methods :The studied plants were collected from Marand city in East Azerbaijan, Iran and were confirmed as Centaurea Depressa M.B. and Centaurea Cyanus L. by botanists of Iran Agriculture Organization. The essential oil of these plants (Stems and leaf were extracted via steam distillation method by Clevenger, and their antimicrobial effects were studied by well diffusion method in the abovementioned bacteria. The components of essential oil were identified by injection to gas chromatography linked to mass spectrometry (GC/M. Results :The results of this study prove that the essential oils from the abovementioned plants have bactericidal effects. The most antibacterial effect is observed in Escherichia coli strains. The results of GC/MS chromatography reveal that the essential oils of Centaurea Depressa M.B. and Centaurea Cyanus L. have 28 and 32 compounds, respectively. Conclusion: This study confirmed that the grasses could be used in medicinal plants group with antibacterial properties. However, their effects in vivo must be evaluated and the most effective component of them must be identified carefully so that they can be applied commonly as an alternative synthetic drug in treating infections.

  3. Protein-protein association and cellular localization of four essential gene products encoded by tellurite resistance-conferring cluster "ter" from pathogenic Escherichia coli.

    Science.gov (United States)

    Valkovicova, Lenka; Vavrova, Silvia Minarikova; Mravec, Jozef; Grones, Jozef; Turna, Jan

    2013-12-01

    Gene cluster "ter" conferring high tellurite resistance has been identified in various pathogenic bacteria including Escherichia coli O157:H7. However, the precise mechanism as well as the molecular function of the respective gene products is unclear. Here we describe protein-protein association and localization analyses of four essential Ter proteins encoded by minimal resistance-conferring fragment (terBCDE) by means of recombinant expression. By using a two-plasmid complementation system we show that the overproduced single Ter proteins are not able to mediate tellurite resistance, but all Ter members play an irreplaceable role within the cluster. We identified several types of homotypic and heterotypic protein-protein associations among the Ter proteins by in vitro and in vivo pull-down assays and determined their cellular localization by cytosol/membrane fractionation. Our results strongly suggest that Ter proteins function involves their mutual association, which probably happens at the interface of the inner plasma membrane and the cytosol.

  4. Whole-genome comparison of urinary pathogenic Escherichia coli and faecal isolates of UTI patients and healthy controls.

    Science.gov (United States)

    Nielsen, Karen Leth; Stegger, Marc; Kiil, Kristoffer; Godfrey, Paul A; Feldgarden, Michael; Lilje, Berit; Andersen, Paal S; Frimodt-Møller, Niels

    2017-12-01

    The faecal flora is a common reservoir for urinary tract infection (UTI), and Escherichia coli (E. coli) is frequently found in this reservoir without causing extraintestinal infection. We investigated these E. coli reservoirs by whole-genome sequencing a large collection of E. coli from healthy controls (faecal), who had never previously had UTI, and from UTI patients (faecal and urinary) sampled from the same geographical area. We compared MLST types, phylogenetic relationship, accessory genome content and FimH type between patient and control faecal isolates as well as between UTI and faecal-only isolates, respectively. Comparison of the accessory genome of UTI isolates to faecal isolates revealed 35 gene families which were significantly more prevalent in the UTI isolates compared to the faecal isolates, although none of these were unique to one of the two groups. Of these 35, 22 belonged to a genomic island and three putatively belonged to a type VI secretion system (T6SS). MLST types and SNP phylogeny indicated no clustering of the UTI or faecal E. coli from patients distinct from the control faecal isolates, although there was an overrepresentation of UTI isolates belonging to clonal lineages CC73 and CC12. One combination of mutations in FimH, N70S/S78N, was significantly associated to UTI, while phylogenetic analysis of FimH and fimH identified no signs of distinct adaptation of UTI isolates compared to faecal-only isolates not causing UTI. In summary, the results showed that (i) healthy women who had never previously had UTI carried faecal E. coli which were overall closely related to UTI and faecal isolates from UTI patients; (ii) UTI isolates do not cluster separately from faecal-only isolates based on SNP analysis; and (iii) 22 gene families of a genomic island, putative T6SS proteins as well as specific metabolism and virulence associated proteins were significantly more common in UTI isolates compared to faecal-only isolates and (iv) evolution of fim

  5. Antibacterial Properties of Endophytic Bacteria Isolated from a Fern Species Equisetum arvense L. Against Foodborne Pathogenic Bacteria Staphylococcus aureus and Escherichia coli O157:H7.

    Science.gov (United States)

    Das, Gitishree; Patra, Jayanta Kumar; Baek, Kwang-Hyun

    2017-01-01

    Endophytic bacteria (EB) are a rich source of secondary metabolites with medicinal importance. In this study, EB were isolated from the bottle brush herb Equisetum arvense and identified based on 16S rRNA sequencing. Evaluation of its antibacterial potential was conducted using two common foodborne pathogenic bacteria, Staphylococcus aureus ATCC 12600 and Escherichia coli O157:H7 ATCC 43890. Out of 103 identified EB, three species, Streptomyces albolongus, Dermacoccus sp., and Mycobacterium sp., showed significant antibacterial activity against S. aureus with inhibition zones of 45.34 ± 0.15, 43.28 ± 0.19, and 22.98 ± 0.18 mm, respectively, whereas only two species, Streptomyces griseoaurantiacus (EAL196) and Paenibacillus sp. (EAS116), showed moderate antibacterial activity against E. coli O157:H7 with inhibition zones of 9.41 ± 0.29 and 10.44 ± 0.31 mm, respectively. Furthermore, ethyl acetate extract of S. albolongus, Mycobacterium sp., and Dermacoccus sp. showed antibacterial activity against S. aureus, with inhibition zones of 23.43 ± 0.21, 21.18 ± 0.22, and 19.72 ± 0.10 mm, respectively. The methanol extract of Dermacoccus sp. and Paenibacillus sp. showed antibacterial activity against S. aureus and E. coli O157:H7, with inhibition zones of 11.30 ± 0.17 and 10.01 ± 0.21 mm, respectively. Scanning electron microscopy indicated swollen and lysed cell membranes of pathogens treated with ethyl acetate extract. A possible reason might be, likely due to EB metabolites penetrating the bacterial cell membranes and affecting various metabolic functions resulting in lysis. To the best of our knowledge, this is the first study to report that EB from E. arvense can be used as a source of natural antibacterial compounds against foodborne pathogenic bacteria.

  6. Aerially transmitted human fungal pathogens: what can we learn from metagenomics and comparative genomics?

    Science.gov (United States)

    Aliouat-Denis, Cécile-Marie; Chabé, Magali; Delhaes, Laurence; Dei-Cas, Eduardo

    2014-01-01

    In the last few decades, aerially transmitted human fungal pathogens have been increasingly recognized to impact the clinical course of chronic pulmonary diseases, such as asthma, cystic fibrosis or chronic obstructive pulmonary disease. Thanks to recent development of culture-free high-throughput sequencing methods, the metagenomic approaches are now appropriate to detect, identify and even quantify prokaryotic or eukaryotic microorganism communities inhabiting human respiratory tract and to access the complexity of even low-burden microbe communities that are likely to play a role in chronic pulmonary diseases. In this review, we explore how metagenomics and comparative genomics studies can alleviate fungal culture bottlenecks, improve our knowledge about fungal biology, lift the veil on cross-talks between host lung and fungal microbiota, and gain insights into the pathogenic impact of these aerially transmitted fungi that affect human beings. We reviewed metagenomic studies and comparative genomic analyses of carefully chosen microorganisms, and confirmed the usefulness of such approaches to better delineate biology and pathogenesis of aerially transmitted human fungal pathogens. Efforts to generate and efficiently analyze the enormous amount of data produced by such novel approaches have to be pursued, and will potentially provide the patients suffering from chronic pulmonary diseases with a better management. This manuscript is part of the series of works presented at the "V International Workshop: Molecular genetic approaches to the study of human pathogenic fungi" (Oaxaca, Mexico, 2012). Copyright © 2013 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  7. Human Bile Reduces Antimicrobial Activity of Selected Antibiotics against Enterococcus faecalis and Escherichia coli In Vitro.

    Science.gov (United States)

    Wulkersdorfer, Beatrix; Jaros, David; Eberl, Sabine; Poschner, Stefan; Jäger, Walter; Cosentini, Enrico; Zeitlinger, Markus; Schwameis, Richard

    2017-08-01

    It has been known from previous studies that body fluids, such as cerebrospinal fluid, lung surfactant, and urine, have a strong impact on the bacterial killing of many anti-infective agents. However, the influence of human bile on the antimicrobial activity of antibiotics is widely unknown. Human bile was obtained and pooled from 11 patients undergoing cholecystectomy. After sterilization of the bile fluid by gamma irradiation, its effect on bacterial killing was investigated for linezolid (LZD) and tigecycline (TGC) against Enterococcus faecalis ATCC 29212. Further, ciprofloxacin (CIP), meropenem (MEM), and TGC were tested against Escherichia coli ATCC 25922. Time-kill curves were performed in pooled human bile and Mueller-Hinton broth (MHB) over 24 h. Bacterial counts (in CFU per milliliter after 24 h) of bile growth controls were approximately equal to MHB growth controls for E. coli and approximately 2-fold greater for E. faecalis , indicating a promotion of bacterial growth by bile for the latter strain. Bile reduced the antimicrobial activity of CIP, MEM, and TGC against E. coli as well as the activity of LZD and TGC against E. faecalis This effect was strongest for TGC against the two strains. Degradation of TGC in bile was identified as the most likely explanation. These findings may have important implications for the treatment of bacterial infections of the gallbladder and biliary tract and should be explored in more detail. Copyright © 2017 American Society for Microbiology.

  8. Relative gene transcription and pathogenicity of enterohemorrhagic Escherichia coli after long-term adaptation to acid and salt stress

    DEFF Research Database (Denmark)

    Olesen, Inger; Jespersen, Lene

    2010-01-01

    Relative gene transcription and virulence potential, as measured by a Caco-2 adhesion assay, were investigated for three enterohemorrhagic Escherichia coli (EHEC) strains after long-term adaptation for 24 h to acid (BHI pH 5.5) and salt (BHI 4.5% (w/v) NaCl) stress. Five virulence genes (eae, lpf...... compared to EDL933 (O157:H7, raw hamburger). Long-term adaptation to salt stress significantly increased the adhesion of all three EHEC strains to Caco-2 compared to the non-stressed controls. The present study shows that long-term adaptation to food related stress factors such as acid and salt is capable...... of changing the relative transcription of important virulence and stress response genes and increasing the virulence potential as measured by adhesion to the human colonic epithelial cell line, Caco-2....

  9. Prevalence and characterization of plasmids carrying sulfonamide resistance genes among Escherichia coli from pigs, pig carcasses and human

    OpenAIRE

    Wu, Shuyu; Dalsgaard, Anders; Hammerum, Anette M; Porsbo, Lone J; Jensen, Lars B

    2010-01-01

    Abstract Background Sulfonamide resistance is very common in Escherichia coli. The aim of this study was to characterize plasmids carrying sulfonamide resistance genes (sul1, sul2 and sul3) in E. coli isolated from pigs and humans with a specific objective to assess the genetic diversity of plasmids involved in the mobility of sul genes. Methods A total of 501 E. coli isolates from pig feces, pig carcasses and human stools were tested for their susceptibility to selected antimicrobial. Multip...

  10. Broiler chickens, broiler chicken meat, pigs and pork as sources of ExPEC related virulence genes and resistance in Escherichia coli isolates from community-dwelling humans and UTI patients

    DEFF Research Database (Denmark)

    Jakobsen, L; Spangholm, D. J.; Pedersen, Karl

    2010-01-01

    Urinary tract infection (UTI) is one of the most common bacterial infections. UTI is primarily caused by extraintestinal pathogenic Escherichia coli (ExPEC) from the patients' own fecal flora. The ExPEC often belong to phylogroups B2 and D, the groups which include potent human ExPEC isolates...... causing UTI, bacteremia, and meningitis. The external sources of these ExPEC in the human intestine are unknown. The food supply may transmit ExPEC to humans. However, evidence of this hypothesis is limited. To assess this hypothesis, the objective of our study was to investigate the presence of Ex......PEC related virulence genes in E. coli isolates from UTI patients, community-dwelling humans, meat, and production animals. Accordingly, we included 964 geographically and temporally matched E. coli isolates from UTI patients (n=102), community-dwelling humans (n=109), fresh Danish (n=197) and imported...

  11. OI-57, a Genomic Island of Escherichia coli O157, Is Present in Other Seropathotypes of Shiga Toxin-Producing E. coli Associated with Severe Human Disease▿

    Science.gov (United States)

    Imamovic, Lejla; Tozzoli, Rosangela; Michelacci, Valeria; Minelli, Fabio; Marziano, Maria Luisa; Caprioli, Alfredo; Morabito, Stefano

    2010-01-01

    Strains of Shiga toxin-producing Escherichia coli (STEC) are a heterogeneous E. coli group that may cause severe disease in humans. STEC have been categorized into seropathotypes (SPTs) based on their phenotypic and molecular characteristics and the clinical features of the associated diseases. SPTs range from A to E, according to a decreasing rank of pathogenicity. To define the virulence gene asset (“virulome”) characterizing the highly pathogenic SPTs, we used microarray hybridization to compare the whole genomes of STEC belonging to SPTs B, C, and D with that of STEC O157 (SPT A). The presence of the open reading frames (ORFs) associated with SPTs A and B was subsequently investigated by PCR in a larger panel of STEC and in other E. coli strains. A genomic island termed OI-57 was present in SPTs A and B but not in the other SPTs. OI-57 harbors the putative virulence gene adfO, encoding a factor enhancing the adhesivity of STEC O157, and ckf, encoding a putative killing factor for the bacterial cell. PCR analyses showed that OI-57 was present in its entirety in the majority of the STEC genomes examined, indicating that it represents a stable acquisition of the positive clonal lineages. OI-57 was also present in a high proportion of the human enteropathogenic E. coli genomes assayed, suggesting that it could be involved in the attaching-and-effacing colonization of the intestinal mucosa. In conclusion, OI-57 appears to be part of the virulome of pathogenic STEC and further studies are needed to elucidate its role in the pathogenesis of STEC infections. PMID:20823207

  12. Human exposure assessment to antibiotic-resistant Escherichia coli through drinking water.

    Science.gov (United States)

    O'Flaherty, E; Borrego, C M; Balcázar, J L; Cummins, E

    2018-03-01

    Antibiotic-resistant bacteria (ARB) are a potential threat to human health through drinking water with strong evidence of ARB presence in post treated tap water around the world. This study examines potential human exposure to antibiotic-resistant (AR) Escherichia coli (E. coli) through drinking water, the effect of different drinking water treatments on AR E. coli and the concentration of AR E. coli required in the source water for the EU Drinking Water Directive (DWD) (Council Directive 98/83/EC, 0CFU/100ml of E. coli in drinking water) to be exceeded. A number of scenarios were evaluated to examine different water treatment combinations and to reflect site specific conditions at a study site in Europe. A literature search was carried out to collate data on the effect of environmental conditions on AR E. coli, the effect of different water treatments on AR E. coli and typical human consumption levels of tap water. A human exposure assessment model was developed with probability distributions used to characterise uncertainty and variability in the input data. Overall results show the mean adult human exposure to AR E. coli from tap water consumption ranged between 3.44×10 -7 and 2.95×10 -1 cfu/day for the scenarios tested and varied depending on the water treatments used. The level of AR E. coli required in the source water pre-treatment to exceed the DWD varied between 1 and 5logcfu/ml, depending on the water treatments used. This can be used to set possible monitoring criteria in pre-treated water for potential ARB exposure in drinking water. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Can Plant Viruses Cross the Kingdom Border and Be Pathogenic to Humans?

    Directory of Open Access Journals (Sweden)

    Fanny Balique

    2015-04-01

    Full Text Available Phytoviruses are highly prevalent in plants worldwide, including vegetables and fruits. Humans, and more generally animals, are exposed daily to these viruses, among which several are extremely stable. It is currently accepted that a strict separation exists between plant and vertebrate viruses regarding their host range and pathogenicity, and plant viruses are believed to infect only plants. Accordingly, plant viruses are not considered to present potential pathogenicity to humans and other vertebrates. Notwithstanding these beliefs, there are many examples where phytoviruses circulate and propagate in insect vectors. Several issues are raised here that question if plant viruses might further cross the kingdom barrier to cause diseases in humans. Indeed, there is close relatedness between some plant and animal viruses, and almost identical gene repertoires. Moreover, plant viruses can be detected in non-human mammals and humans samples, and there are evidence of immune responses to plant viruses in invertebrates, non-human vertebrates and humans, and of the entry of plant viruses or their genomes into non-human mammal cells and bodies after experimental exposure. Overall, the question raised here is unresolved, and several data prompt the additional extensive study of the interactions between phytoviruses and non-human mammals and humans, and the potential of these viruses to cause diseases in humans.

  14. Laboratory containment practices for arthropod vectors of human and animal pathogens.

    Science.gov (United States)

    Tabachnick, Walter J

    2006-03-01

    Arthropod-borne pathogens have an impact on the health and well-being of humans and animals throughout the world. Research involving arthropod vectors of disease is often dependent on the ability to maintain the specific arthropod species in laboratory colonies. The author reviews current arthropod containment practices and discusses their importance from public health and ecological perspectives.

  15. Draft Genome Sequence of the Animal and Human Pathogen Malassezia pachydermatis Strain CBS 1879

    Science.gov (United States)

    Triana, Sergio; González, Andrés; Ohm, Robin A.; Wösten, Han A. B.; de Cock, Hans; Restrepo, Silvia

    2015-01-01

    Malassezia pachydermatis is a basidiomycetous yeast that causes infections in humans and animals. Here, we report the genome sequence of Malassezia pachydermatis strain CBS 1879, which will facilitate the study of mechanisms underlying pathogenicity of the only non-lipid-dependent Malasezzia species. PMID:26472839

  16. Exserohilum rostratum: characterization of a cross-kingdom pathogen of plants and humans.

    Directory of Open Access Journals (Sweden)

    Kalpana Sharma

    Full Text Available Pathogen host shifts represent a major source of new infectious diseases. There are several examples of cross-genus host jumps that have caused catastrophic epidemics in animal and plant species worldwide. Cross-kingdom jumps are rare, and are often associated with nosocomial infections. Here we provide an example of human-mediated cross-kingdom jumping of Exserohilum rostratum isolated from a patient who had received a corticosteroid injection and died of fungal meningitis in a Florida hospital in 2012. The clinical isolate of E. rostratum was compared with two plant pathogenic isolates of E. rostratum and an isolate of the closely related genus Bipolaris in terms of morphology, phylogeny, and pathogenicity on one C3 grass, Gulf annual rye grass (Lolium multiflorum, and two C4 grasses, Japanese stilt grass (Microstegium vimineum and bahia grass (Paspalum notatum. Colony growth and color, as well as conidia shape and size were the same for the clinical and plant isolates of E. rostratum, while these characteristics differed slightly for the Bipolaris sp. isolate. The plant pathogenic and clinical isolates of E. rostratum were indistinguishable based on morphology and ITS and 28S rDNA sequence analysis. The clinical isolate was as pathogenic to all grass species tested as the plant pathogenic strains that were originally isolated from plant hosts. The clinical isolate induced more severe symptoms on stilt grass than on rye grass, while this was the reverse for the plant isolates of E. rostratum. The phylogenetic similarity between the clinical and plant-associated E. rostratum isolates and the ability of the clinical isolate to infect plants suggests that a plant pathogenic strain of E. rostratum contaminated the corticosteroid injection fluid and was able to cause systemic disease in the affected patient. This is the first proof that a clinical isolate of E. rostratum is also an effective plant pathogen.

  17. CEACAM3-mediated phagocytosis of human-specific bacterial pathogens involves the adaptor molecule Nck

    OpenAIRE

    Peterson, Lisa

    2010-01-01

    Carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) are exploited by human-specific pathogens to anchor themselves to or invade host cells. Interestingly, human granulocytes express a specific isoform, CEACAM3, that can direct efficient, opsonin-independent phagocytosis of CEACAM-binding Neisseria, Moraxella and Haemophilus species. As opsonin-independent phagocytosis of CEACAM-binding Neisseria depends on Src-family protein tyrosine kinase (PTK) phosphorylation of the CEACAM3 ...

  18. Overexpression of functional human oxidosqualene cyclase in Escherichia coli

    DEFF Research Database (Denmark)

    Kürten, Charlotte; Uhlén, Mathias; Syrén, Per-Olof

    2015-01-01

    The generation of multicyclic scaffolds from linear oxidosqualene by enzymatic polycyclization catalysis constitutes a cornerstone in biology for the generation of bioactive compounds. Human oxidosqualene cyclase (hOSC) is a membrane-bound triterpene cyclase that catalyzes the formation of the te......The generation of multicyclic scaffolds from linear oxidosqualene by enzymatic polycyclization catalysis constitutes a cornerstone in biology for the generation of bioactive compounds. Human oxidosqualene cyclase (hOSC) is a membrane-bound triterpene cyclase that catalyzes the formation...... of the tetracyclic steroidal backbone, a key step in cholesterol biosynthesis. Protein expression of hOSC and other eukaryotic oxidosqualene cyclases has traditionally been performed in yeast and insect cells, which has resulted in protein yields of 2.7mg protein/g cells (hOSC in Pichia pastoris) after 48h...... of expression. Herein we present, to the best of our knowledge, the first functional expression of hOSC in the model organism Escherichia coli. Using a codon-optimized gene and a membrane extraction procedure for which detergent is immediately added after cell lysis, a protein yield of 2.9mg/g bacterial cells...

  19. Expression and structural and functional properties of human ferritin L-chain from Escherichia coli

    International Nuclear Information System (INIS)

    Levi, S.; Salfeld, J.; Franceschinelli, F.; Cozzi, A.; Dorner, M.H.; Arosio, P.

    1989-01-01

    The human ferritin L-chain cDNA was cloned into a vector for overproduction in Escherichia coli, under the regulation of a λ promoter. The plasmid obtained contains the full L-chain coding region modified at the first two codons. It is able to direct the synthesis of the L-chain which can constitute up to 15% of the total soluble protein of bacterial extract. The L-chains assemble to form a ferritin homopolymer with electrophoretic mobility, molecular weight, thermal stability, spectroscopic, and immunological properties analogous to natural ferritin from human liver (95% L-chain). This recombinant L-ferritin is able to incorporate and retain iron in solution at physiological pH values. At variance with the H-ferritin, the L form does not uptake iron at acidic pH values and does not show detectable ferroxidase activity. It is concluded that ferritin L-chain lacks the ferroxidase site present in the H-chain and that the two chains may have specialized functions in intracellular iron metabolism

  20. Over-expression in Escherichia coli and characterization of two recombinant isoforms of human FAD synthetase

    International Nuclear Information System (INIS)

    Brizio, Carmen; Galluccio, Michele; Wait, Robin; Torchetti, Enza Maria; Bafunno, Valeria; Accardi, Rosita; Gianazza, Elisabetta; Indiveri, Cesare; Barile, Maria

    2006-01-01

    FAD synthetase (FADS) (EC 2.7.7.2) is a key enzyme in the metabolic pathway that converts riboflavin into the redox cofactor FAD. Two hypothetical human FADSs, which are the products of FLAD1 gene, were over-expressed in Escherichia coli and identified by ESI-MS/MS. Isoform 1 was over-expressed as a T7-tagged protein which had a molecular mass of 63 kDa on SDS-PAGE. Isoform 2 was over-expressed as a 6-His-tagged fusion protein, carrying an extra 84 amino acids at the N-terminal with an apparent molecular mass of 60 kDa on SDS-PAGE. It was purified near to homogeneity from the soluble cell fraction by one-step affinity chromatography. Both isoforms possessed FADS activity and had a strict requirement for MgCl 2 , as demonstrated using both spectrophotometric and chromatographic methods. The purified recombinant isoform 2 showed a specific activity of 6.8 ± 1.3 nmol of FAD synthesized/min/mg protein and exhibited a K M value for FMN of 1.5 ± 0.3 μM. This is First report on characterization of human FADS, and First cloning and over-expression of FADS from an organism higher than yeast

  1. Lactobacillus reuteri Inhibition of Enteropathogenic Escherichia coli Adherence to Human Intestinal Epithelium.

    Science.gov (United States)

    Walsham, Alistair D S; MacKenzie, Donald A; Cook, Vivienne; Wemyss-Holden, Simon; Hews, Claire L; Juge, Nathalie; Schüller, Stephanie

    2016-01-01

    Enteropathogenic Escherichia coli (EPEC) is a major cause of diarrheal infant death in developing countries, and probiotic bacteria have been shown to provide health benefits in gastrointestinal infections. In this study, we have investigated the influence of the gut symbiont Lactobacillus reuteri on EPEC adherence to the human intestinal epithelium. Different host cell model systems including non-mucus-producing HT-29 and mucus-producing LS174T intestinal epithelial cell lines as well as human small intestinal biopsies were used. Adherence of L. reuteri to HT-29 cells was strain-specific, and the mucus-binding proteins CmbA and MUB increased binding to both HT-29 and LS174T cells. L. reuteri ATCC PTA 6475 and ATCC 53608 significantly inhibited EPEC binding to HT-29 but not LS174T cells. While pre-incubation of LS174T cells with ATCC PTA 6475 did not affect EPEC attaching/effacing (A/E) lesion formation, it increased the size of EPEC microcolonies. ATCC PTA 6475 and ATCC 53608 binding to the mucus layer resulted in decreased EPEC adherence to small intestinal biopsy epithelium. Our findings show that L. reuteri reduction of EPEC adhesion is strain-specific and has the potential to target either the epithelium or the mucus layer, providing further rationale for the selection of probiotic strains.

  2. Antigenic Relationships among Human Pathogenic Orientia tsutsugamushi Isolates from Thailand.

    Directory of Open Access Journals (Sweden)

    Sarah L James

    2016-06-01

    Full Text Available Scrub typhus is a common cause of undiagnosed febrile illness in certain tropical regions, but can be easily treated with antibiotics. The causative agent, Orientia tsutsugamushi, is antigenically variable which complicates diagnosis and efforts towards vaccine development.This study aimed to dissect the antigenic and genetic relatedness of O. tsutsugamushi strains and investigate sero-diagnostic reactivities by titrating individual patient sera against their O. tsutsugamushi isolates (whole-cell antigen preparation, in homologous and heterologous serum-isolate pairs from the same endemic region in NE Thailand. The indirect immunofluorescence assay was used to titrate Orientia tsutsugamushi isolates and human sera, and a mathematical technique, antigenic cartography, was applied to these data to visualise the antigenic differences and cross-reactivity between strains and sera. No functional or antigen-specific analyses were performed. The antigenic variation found in clinical isolates was much less pronounced than the genetic differences found in the 56kDa type-specific antigen genes. The Karp-like sera were more broadly reactive than the Gilliam-like sera.Antigenic cartography worked well with scrub typhus indirect immunofluorescence titres. The data from humoral responses suggest that a Karp-like strain would provide broader antibody cross-reactivity than a Gilliam-like strain. Although previous exposure to O. tsutsugamushi could not be ruled out, scrub typhus patient serum antibody responses were characterised by strong homologous, but weak heterologous antibody titres, with little evidence for cross-reactivity by Gilliam-like sera, but a broader response from some Karp-like sera. This work highlights the importance of antigenic variation in O. tsutsugamushi diagnosis and determination of new serotypes.

  3. Simplified Method to Produce Human Bioactive Leukemia Inhibitory Factor in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Houman Kahroba

    2016-07-01

    Full Text Available Background Human leukemia inhibitory factor (hLIF is a poly functional cytokine with numerous regulatory effects on different cells. Main application of hLIF is maintaining pluripotency of embryonic stem cells. hLIF indicated effective work in implantation rate of fertilized eggs and multiple sclerosis (MS treatment. Low production of hLIF in eukaryotic cells and prokaryotic host’s problems for human protein production convinced us to develop a simple way to reach high amount of this widely used clinical and research factor. Objectives In this study we want to purify recombinant human leukemia inhibitory factor in single simple method. Materials and Methods This is an experimental study, gene expression: human LIF gene was codon optimized for expression in Escherichia coli and attached his-tag tail to make it extractable. After construction and transformation of vector to E. coli, isopropyl β-D-1-thiogalactopyranoside (IPTG used for induction. Single step immobilized metal affinity chromatography (IMAC used for purification confirmed by Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS PAGE and western blotting. Bioactivity of the hLIF were tested by MTT assay with TF-1 cells and CISH gene stimulation in monocyte and TF-1 by real-time PCR. Induction by 0.4 mM of IPTG in 25°C for 3 hours indicated best result for soluble expression. SPSS indicated P ˂ 0.05 that is significant for our work. Results Cloning, expression, and extraction of bio active rhLIF was successfully achieved according MTT assay and real time PCR after treatment of TF-1 and monocyte cell lines. Conclusions We developed an effective single step purification method to produce bioactive recombinant hLIF in E. coli. For the first time we used CISH gene stimulating for bioactivity test for qualifying of recombinant hLIF for application.

  4. Characteristics of Quinolone Resistance in Escherichia coli Isolates from Humans, Animals, and the Environment in the Czech Republic

    Science.gov (United States)

    Röderova, Magdalena; Halova, Dana; Papousek, Ivo; Dolejska, Monika; Masarikova, Martina; Hanulik, Vojtech; Pudova, Vendula; Broz, Petr; Htoutou-Sedlakova, Miroslava; Sauer, Pavel; Bardon, Jan; Cizek, Alois; Kolar, Milan; Literak, Ivan

    2017-01-01

    Escherichia coli is a common commensal bacterial species of humans and animals that may become a troublesome pathogen causing serious diseases. The aim of this study was to characterize the quinolone resistance phenotypes and genotypes in E. coli isolates of different origin from one area of the Czech Republic. E. coli isolates were obtained from hospitalized patients and outpatients, chicken farms, retailed turkeys, rooks wintering in the area, and wastewaters. Susceptibility of the isolates grown on the MacConkey agar with ciprofloxacin (0.05 mg/L) to 23 antimicrobial agents was determined. The presence of plasmid-mediated quinolone resistance (PMQR) and ESBL genes was tested by PCR and sequencing. Specific mutations in gyrA, gyrB, parC, and parE were also examined. Multilocus sequence typing and pulsed-field gel electrophoresis were performed to assess the clonal relationship. In total, 1050 E. coli isolates were obtained, including 303 isolates from humans, 156 from chickens, 105 from turkeys, 114 from the rooks, and 372 from wastewater samples. PMQR genes were detected in 262 (25%) isolates. The highest occurrence was observed in isolates from retailed turkey (49% of the isolates were positive) and inpatients (32%). The qnrS1 gene was the most common PMQR determinant identified in 146 (56%) followed by aac(6′)-Ib-cr in 77 (29%), qnrB19 in 41 (16%), and qnrB1 in 9 (3%) isolates. All isolates with high level of ciprofloxacin resistance (>32 mg/L) carried double or triple mutations in gyrA combined with single or double mutations in parC. The most frequently identified substitutions were Ser(83)Leu; Asp(87)Asn in GyrA, together with Ser(80)Ile, or Glu(84)Val in ParC. Majority of these isolates showed resistance to beta-lactams and multiresistance phenotype was found in 95% isolates. Forty-eight different sequence types among 144 isolates analyzed were found, including five major clones ST131 (26), ST355 (19), ST48 (13), ST95 (10), and ST10 (5). No isolates

  5. Including pathogen risk in life cycle assessment of wastewater management. 2. Quantitative comparison of pathogen risk to other impacts on human health.

    Science.gov (United States)

    Heimersson, Sara; Harder, Robin; Peters, Gregory M; Svanström, Magdalena

    2014-08-19

    Resource recovery from sewage sludge has the potential to save natural resources, but the potential risks connected to human exposure to heavy metals, organic micropollutants, and pathogenic microorganisms attract stakeholder concern. The purpose of the presented study was to include pathogen risks to human health in life cycle assessment (LCA) of wastewater and sludge management systems, as this is commonly omitted from LCAs due to methodological limitations. Part 1 of this article series estimated the overall pathogen risk for such a system with agricultural use of the sludge, in a way that enables the results to be integrated in LCA. This article (part 2) presents a full LCA for two model systems (with agricultural utilization or incineration of sludge) to reveal the relative importance of pathogen risk in relation to other potential impacts on human health. The study showed that, for both model systems, pathogen risk can constitute an important part (in this study up to 20%) of the total life cycle impacts on human health (expressed in disability adjusted life years) which include other important impacts such as human toxicity potential, global warming potential, and photochemical oxidant formation potential.

  6. Uropathogenic Escherichia coli pathogenicity islands and other ExPEC virulence genes may contribute to the genome variability of enteroinvasive E. coli.

    Science.gov (United States)

    da Silva, Laís Cristina; de Mello Santos, Ana Carolina; Silva, Rosa Maria

    2017-03-16

    Enteroinvasive Escherichia coli (EIEC) may be the causative agent of part of those million cases of diarrhea illness reported worldwide every year and attributable to Shigella. That is because both enteropathogens have many common characteristics that difficult their identification either by traditional microbiological methods or by molecular tools used in the clinical laboratory settings. While Shigella has been extensively studied, EIEC remains barely characterized at the molecular level. Recent EIEC important outbreaks, apparently generating more life-threatening cases, have prompted us to screen EIEC for virulence traits usually related to extraintestinal pathogenic E. coli (ExPEC). That could explain the appearance of EIEC strains presenting higher virulence potential. EIEC strains were distributed mainly in three phylogroups in a serogroup-dependent manner. Serogroups O124, O136, O144, and O152 were exclusively classified in phylogroup A; O143 in group E; and O28ac and O29 in group B1. Only two serogroups showed diverse phylogenetic origin as follows: O164 was assigned to groups A, B1, C, and B2 (one strain each), and O167 in groups E (five strains), and A (one strain) (Table 1). Eleven of 20 virulence genes (VGs) searched were detected, and the majority of the 19 different VGs combinations found were serogroup-specific. Uropathogenic E. coli (UPEC) PAI genetic markers were detected in all EIEC strains. PAIs I J96 and II CFT073 were the most frequent (92.1 and 80.4%, respectively). PAI IV 536 was restricted to some serogroups from phylogroups A, B1 and E. PAI I CFT073 was uniquely detected in phylogroups B2 and E. A total of 45 (88%) strains presented multiple PAI markers (two to four). PAIs I J96 and II CFT073 were found together in 80% of strains. EIEC is a DEC pathovar that presents VGs and pathogenicity island genetic markers typically associated with ExPEC, especially UPEC. These features are distributed in a phylogenetic and serogroup-dependent manner

  7. Use of caprylic acid to control pathogens (Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium) in apple juice at mild heat temperature.

    Science.gov (United States)

    Kim, S A; Rhee, M S

    2015-11-01

    The aim of this study was to examine the effects of caprylic acid (CA) on pathogens in apple juice having intrinsic organic acids, and to determine any synergistic effects. Bactericidal effects of CA were examined against Escherichia coli O157:H7 and Salmonella Typhimurium present in apple juice at mild heating temperatures. Apple juice containing each of the pathogens was treated with CA (0·1, 0·2, 0·4, 0·6 or 0·8 mmol l(-1)) at 50 or 55°C. Treatment with 0·8 mmol l(-1) (0·013%) CA at 50°C for 5 min or with 0·6 mmol l(-1) (0·010%) CA at 55°C for 5 min resulted in the complete eradication of E. coli O157:H7 (initial population: 7·25-7·34 log CFU ml(-1)). Salmonella Typhimurium were more sensitive than E. coli O157:H7: all bacteria (7·81-7·55 log CFU ml(-1)) were eradicated by treatment with 0·2 mmol l(-1) (0·0032%) CA at 55°C for 5 min or with 0·6 mmol l(-1) CA at 50°C for 5 min. By contrast, when pH-adjusted apple juice (pH 7·0) was treated with 0·8 mmol l(-1) CA, there was no significant difference in bactericidal effects between CA-treated samples and controls (heat treatment alone or heat + 0·1% ethanol treatment). This result suggested that acidic pH in the apple juice boost the antibacterial effects of CA. CA treatment did not affect (P > 0·05) the pH, colour or °Brix of the apple juice. This study highlights the utility of CA as a natural antibacterial agent that can eliminate micro-organisms from apple juice at very low concentrations (≤0·013%) and temperatures (≤55°C) within a short time (≤10 min). The results of our study may contribute to the development of an efficient method for improving the microbiological safety of apple juice. © 2015 The Society for Applied Microbiology.

  8. Bioengineered 2'-fucosyllactose and 3-fucosyllactose inhibit the adhesion of Pseudomonas aeruginosa and enteric pathogens to human intestinal and respiratory cell lines.

    Science.gov (United States)

    Weichert, Stefan; Jennewein, Stefan; Hüfner, Eric; Weiss, Christel; Borkowski, Julia; Putze, Johannes; Schroten, Horst

    2013-10-01

    Human milk oligosaccharides help to prevent infectious diseases in breastfed infants. Larger scale testing, particularly in animal models and human clinical studies, is still limited due to shortened availability of more complex oligosaccharides. The purpose of this study was to evaluate 2'-fucosyllactose (2'-FL) and 3-fucosyllactose (3-FL) synthesized by whole-cell biocatalysis for their biological activity in vitro. Therefore, we have tested these oligosaccharides for their inhibitory potential of pathogen adhesion in two different human epithelial cell lines. 2'-FL could inhibit adhesion of Campylobacter jejuni, enteropathogenic Escherichia coli, Salmonella enterica serovar fyris, and Pseudomonas aeruginosa to the intestinal human cell line Caco-2 (reduction of 26%, 18%, 12%, and 17%, respectively), as could be shown for 3-FL (enteropathogenic E coli 29%, P aeruginosa 26%). Furthermore, adherence of P aeruginosa to the human respiratory epithelial cell line A549 was significantly inhibited by 2'-FL and 3-FL (reduction of 24% and 23%, respectively). These results confirm the biological and functional activity of biotechnologically synthesized human milk oligosaccharides. Mass-tailored human milk oligosaccharides could be used in the future to supplement infant formula ingredients or as preventatives to reduce the impact of infectious diseases. © 2013 Elsevier Inc. All rights reserved.

  9. Immunogenicity in chickens with orally administered recombinant chicken-borne Lactobacillus saerimneri expressing FimA and OmpC antigen of O78 avian pathogenic Escherichia coli.

    Science.gov (United States)

    Ma, Sun-Ting; Ding, Guo-Jie; Huang, Xue-Wei; Wang, Zi-Wei; Wang, Li; Yu, Mei-Ling; Shi, Wen; Jiang, Yan-Ping; Tang, Li-Jie; Xu, Yi-Gang; Li, Yi-Jing

    2018-03-01

    Avian colibacillosis is responsible for economic losses to poultry producers worldwide. To combat this, we aimed to develop an effective oral vaccine for chicken against O78 avian pathogenic Escherichia coli (APEC) infection through a Lactobacillus delivery system. Eight Lactobacillus strains isolated from the intestines of broiler chickens were evaluated based on their in vitro adherence ability to assess their potential as a delivery vector. Fimbrial subunit A (FimA) and outer-membrane protein C (OmpC) of APEC with and without fusion to dendritic cell-targeting peptide (DCpep) and microfold cell-targeting peptide (Co1) were displayed on the surface of Lactobacillus saerimneri M-11 and yielded vaccine groups (pPG-ompC-fimA/M-11 and pPG-ompC-fimA-Co1-DCpep/M-11, respectively). The colonization of the recombinant strains in vivo was assessed and the immunogenicity and protective efficacy of orally administered recombinant strains in chickens were evaluated. The colonization of the recombinant strains in vivo revealed no significant differences between the recombinant and wild-type strains. Chickens orally administered with vaccine groups showed significantly higher levels of OmpC/FimA-specific IgG in serum and mucosal IgA in cecum lavage, nasal lavage and stool compared to the pPG/M-11 group. After challenge with APEC CVCC1553, better protective efficacy was observed in chickens orally immunized with pPG-ompC-fimA/M-11 and pPG-ompC-fimA-Co1-DCpep/M-11, but no significant differences were observed between the two groups. Recombinant chicken-borne L. saerimneri M-11 showed good immunogenicity in chickens, suggesting that it may be a promising vaccine candidate against APEC infections. However, the activity of mammalian DCpep and Co1 was not significant in chickens.

  10. Comparative Genomics of Recent Shiga Toxin-Producing Escherichia coli O104:H4: Short-Term Evolution of an Emerging Pathogen

    Science.gov (United States)

    Grad, Yonatan H.; Godfrey, Paul; Cerquiera, Gustavo C.; Mariani-Kurkdjian, Patricia; Gouali, Malika; Bingen, Edouard; Shea, Terrence P.; Haas, Brian J.; Griggs, Allison; Young, Sarah; Zeng, Qiandong; Lipsitch, Marc; Waldor, Matthew K.; Weill, François-Xavier; Wortman, Jennifer R.; Hanage, William P.

    2013-01-01

    ABSTRACT The large outbreak of diarrhea and hemolytic uremic syndrome (HUS) caused by Shiga toxin-producing Escherichia coli O104:H4 in Europe from May to July 2011 highlighted the potential of a rarely identified E. coli serogroup to cause severe disease. Prior to the outbreak, there were very few reports of disease caused by this pathogen and thus little known of its diversity and evolution. The identification of cases of HUS caused by E. coli O104:H4 in France and Turkey after the outbreak and with no clear epidemiological links raises questions about whether these sporadic cases are derived from the outbreak. Here, we report genome sequences of five independent isolates from these cases and results of a comparative analysis with historical and 2011 outbreak isolates. These analyses revealed that the five isolates are not derived from the outbreak strain; however, they are more closely related to the outbreak strain and each other than to isolates identified prior to the 2011 outbreak. Over the short time scale represented by these closely related organisms, the majority of genome variation is found within their mobile genetic elements: none of the nine O104:H4 isolates compared here contain the same set of plasmids, and their prophages and genomic islands also differ. Moreover, the presence of closely related HUS-associated E. coli O104:H4 isolates supports the contention that fully virulent O104:H4 isolates are widespread and emphasizes the possibility of future food-borne E. coli O104:H4 outbreaks. PMID:23341549

  11. Comparative Genomic Analysis of Globally Dominant ST131 Clone with Other Epidemiologically Successful Extraintestinal Pathogenic Escherichia coli (ExPEC Lineages

    Directory of Open Access Journals (Sweden)

    Sabiha Shaik

    2017-10-01

    Full Text Available Escherichia coli sequence type 131 (ST131, a pandemic clone responsible for the high incidence of extraintestinal pathogenic E. coli (ExPEC infections, has been known widely for its contribution to the worldwide dissemination of multidrug resistance. Although other ExPEC-associated and extended-spectrum-β-lactamase (ESBL-producing E. coli clones, such as ST38, ST405, and ST648 have been studied widely, no comparative genomic data with respect to other genotypes exist for ST131. In this study, comparative genomic analysis was performed for 99 ST131 E. coli strains with 40 genomes from three other STs, including ST38 (n = 12, ST405 (n = 10, and ST648 (n = 18, and functional studies were performed on five in-house strains corresponding to the four STs. Phylogenomic analysis results from this study corroborated with the sequence type-specific clonality. Results from the genome-wide resistance profiling confirmed that all strains were inherently multidrug resistant. ST131 genomes showed unique virulence profiles, and analysis of mobile genetic elements and their associated methyltransferases (MTases has revealed that several of them were missing from the majority of the non-ST131 strains. Despite the fact that non-ST131 strains lacked few essential genes belonging to the serum resistome, the in-house strains representing all four STs demonstrated similar resistance levels to serum antibactericidal activity. Core genome analysis data revealed that non-ST131 strains usually lacked several ST131-defined genomic coordinates, and a significant number of genes were missing from the core of the ST131 genomes. Data from this study reinforce adaptive diversification of E. coli strains belonging to the ST131 lineage and provide new insights into the molecular mechanisms underlying clonal diversification of the ST131 lineage.

  12. Use of molecular hydrogen as an energy substrate by human pathogenic bacteria.

    Science.gov (United States)

    Maier, R J

    2005-02-01

    Molecular hydrogen is produced as a fermentation by-product in the large intestine of animals and its production can be correlated with the digestibility of the carbohydrates consumed. Pathogenic Helicobacter species (Helicobacter pylori and H. hepaticus) have the ability to use H(2) through a respiratory hydrogenase, and it was demonstrated that the gas is present in the tissues colonized by these pathogens (the stomach and the liver respectively of live animals). Mutant strains of H. pylori unable to use H(2) are deficient in colonizing mice compared with the parent strain. On the basis of available annotated gene sequence information, the enteric pathogen Salmonella, like other enteric bacteria, contains three putative membrane-associated H(2)-using hydrogenase enzymes. From the analysis of gene-targeted mutants it is concluded that each of the three membrane-bound hydrogenases of Salmonella enterica serovar Typhimurium are coupled with an H(2)-oxidizing respiratory pathway. From microelectrode probe measurements on live mice, H(2) could be detected at approx. 50 muM levels within the tissues (liver and spleen), which are colonized by Salmonella. The half-saturation affinity of whole cells of these pathogens for H(2) is much less than this, so it is expected that the (H(2)-utilizing) hydrogenase enzymes be saturated with the reducing substrate in vivo. All three enteric NiFe hydrogenase enzymes contribute to virulence of the bacterium in a typhoid fever-mouse model, and the combined removal of all three hydrogenases resulted in a strain that is avirulent and (in contrast with the parent strain) one that is not able to pass the intestinal tract to invade liver or spleen tissue. It is proposed that H(2) utilization and specifically its oxidation, coupled with a respiratory pathway, is required for energy production to permit growth and maintain efficient virulence of a number of pathogenic bacteria during infection of animals. These would be expected to include

  13. Role of major surface structures of Escherichia coli O157:H7 in initial attachment to biotic and abiotic surfaces

    Science.gov (United States)

    Infection by human pathogens through fresh, minimally processed produce and solid plant-derived foods is a major concern of U.S. and global food industry and public health services. The enterohemorrhagic Escherichia coli O157:H7 is a frequent and potent food borne pathogen that causes severe disease...

  14. Human milk blocks DC-SIGN - pathogen interaction via MUC1

    Directory of Open Access Journals (Sweden)

    Nathalie eKoning

    2015-03-01

    Full Text Available Beneficial effects of breastfeeding are well-recognized and include both immediate neonatal protection against pathogens, as well as long term protection against allergies and autoimmune diseases. Although several proteins have been identified to have anti-viral or anti-bacterial effects like secretory IgA or lactoferrin, the mechanisms of immune modulation are not fully understood. Recent studies identified important beneficial effects of glycans in human milk, such as those expressed in oligosaccharides or on glycoproteins. Glycans are recognized by the carbohydrate receptors C-type lectins on DC and specific tissue macrophages, which exert important functions in immune modulation and immune homeostasis. A well-characterized C-type lectin is DC-SIGN, which binds terminal fucose. The present study shows that in human milk, MUC1 is the major milk glycoprotein that binds to the lectin domain of DC-SIGN and prevents pathogen interaction through the presence of Lewis x-type oligosaccharides. Surprisingly, this was specific for human milk, as formula, bovine or camel milk did not show any presence of proteins that interacted with DC-SIGN. The expression of DC-SIGN is found in young infants along the entire gastro-intestinal tract. Our data thus suggest the importance of human milk glycoproteins for blocking pathogen interaction to DC in young children. Moreover, a potential benefit of human milk later in life in shaping the infants immune system through DC-SIGN cannot be ruled out.

  15. Enteropathogenic Escherichia coli: foe or innocent bystander?

    Science.gov (United States)

    Hu, Jia; Torres, Alfredo G.

    2015-01-01

    Enteropathogenic Escherichia coli (EPEC) remain one the most important pathogens infecting children and they are one of the main causes of persistent diarrhea worldwide. Historically, typical EPEC (tEPEC), defined as those isolates with the attaching and effacement (A/E) genotype (eae+), which possess bfpA+ and lack the stx- genes are found strongly associated with diarrheal cases. However, occurrence of atypical EPEC (aEPEC; eae+ bfpA- stx-) in diarrheal and asymptomatic hosts has made investigators question the role of these pathogens in human disease. Current epidemiological data is helping answering the question whether EPEC is mainly a foe or an innocent bystander during infection. PMID:25726041

  16. Cloning and characterization of a functional human homolog of Escherichia coli endonuclease III

    Science.gov (United States)

    Aspinwall, Richard; Rothwell, Dominic G.; Roldan-Arjona, Teresa; Anselmino, Catherine; Ward, Christopher J.; Cheadle, Jeremy P.; Sampson, Julian R.; Lindahl, Tomas; Harris, Peter C.; Hickson, Ian D.

    1997-01-01

    Repair of oxidative damage to DNA bases is essential to prevent mutations and cell death. Endonuclease III is the major DNA glycosylase activity in Escherichia coli that catalyzes the excision of pyrimidines damaged by ring opening or ring saturation, and it also possesses an associated lyase activity that incises the DNA backbone adjacent to apurinic/apyrimidinic sites. During analysis of the area adjacent to the human tuberous sclerosis gene (TSC2) in chromosome region 16p13.3, we identified a gene, OCTS3, that encodes a 1-kb transcript. Analysis of OCTS3 cDNA clones revealed an open reading frame encoding a predicted protein of 34.3 kDa that shares extensive sequence similarity with E. coli endonuclease III and a related enzyme from Schizosaccharomyces pombe, including a conserved active site region and an iron/sulfur domain. The product of the OCTS3 gene was therefore designated hNTH1 (human endonuclease III homolog 1). The hNTH1 protein was overexpressed in E. coli and purified to apparent homogeneity. The recombinant protein had spectral properties indicative of the presence of an iron/sulfur cluster, and exhibited DNA glycosylase activity on double-stranded polydeoxyribonucleotides containing urea and thymine glycol residues, as well as an apurinic/apyrimidinic lyase activity. Our data indicate that hNTH1 is a structural and functional homolog of E. coli endonuclease III, and that this class of enzymes, for repair of oxidatively damaged pyrimidines in DNA, is highly conserved in evolution from microorganisms to human cells. PMID:8990169

  17. A novel system of cytoskeletal elements in the human pathogen Helicobacter pylori.

    Directory of Open Access Journals (Sweden)

    Barbara Waidner

    2009-11-01

    Full Text Available Pathogenicity of the human pathogen Helicobacter pylori relies upon its capacity to adapt to a hostile environment and to escape from the host response. Therefore, cell shape, motility, and pH homeostasis of these bacteria are specifically adapted to the gastric mucus. We have found that the helical shape of H. pylori depends on coiled coil rich proteins (Ccrp, which form extended filamentous structures in vitro and in vivo, and are differentially required for the maintenance of cell morphology. We have developed an in vivo localization system for this pathogen. Consistent with a cytoskeleton-like structure, Ccrp proteins localized in a regular punctuate and static pattern within H. pylori cells. Ccrp genes show a high degree of sequence variation, which could be the reason for the morphological diversity between H. pylori strains. In contrast to other bacteria, the actin-like MreB protein is dispensable for viability in H. pylori, and does not affect cell shape, but cell length and chromosome segregation. In addition, mreB mutant cells displayed significantly reduced urease activity, and thus compromise a major pathogenicity factor of H. pylori. Our findings reveal that Ccrp proteins, but not MreB, affect cell morphology, while both cytoskeletal components affect the development of pathogenicity factors and/or cell cycle progression.

  18. Comparative analysis of antibiotic resistance and phylogenetic group patterns in human and porcine urinary tract infectious Escherichia coli

    DEFF Research Database (Denmark)

    Hancock, Viktoria; Nielsen, E.M.; Krag, L.

    2009-01-01

    Urinary tract infections (UTIs) are one of the most common infectious diseases in humans and domestic animals such as pigs. The most frequent infectious agent in such infections is Escherichia coli. Virulence characteristics of E. coli UTI strains range from highly virulent pyelonephritis strains...... to relatively benign asymptomatic bacteriuria strains. Here we analyse a spectrum of porcine and human UTI E. coli strains with respect to their antibiotic resistance patterns and their phylogenetic groups, determined by multiplex PCR. The clonal profiles of the strains differed profoundly; whereas human...

  19. Global gene expression profiling of the asymptomatic bacteriuria Escherichia coli strain 83972 in the human urinary tract

    DEFF Research Database (Denmark)

    Hancock, Viktoria; Klemm, Per

    2006-01-01

    Urinary tract infections (UTIs) are an important health problem worldwide, with many million cases each year. Escherichia coli is the most common organism causing UTIs in humans. The asymptomatic bacteriuria E. coli strain 83972 is an excellent colonizer of the human urinary tract, where it causes...... long-term bladder colonization. The strain has been used for prophylactic purposes in patients prone to more severe and recurrent UTIs. For this study, we used DNA microarrays to monitor the expression profile of strain 83972 in the human urinary tract. Significant differences in expression levels were...

  20. Expression of human DNA polymerase β in Escherichia coli and characterization of the recombinant enzyme

    International Nuclear Information System (INIS)

    Abbotts, J.; SenGupta, D.N.; Zmudzka, B.; Widen, S.G.; Notario, V.; Wilson, S.H.

    1988-01-01

    The coding region of a human β-polymerase cDNA, predicting a 335 amino acid protein, was subcloned in the Escherichia coli expression plasmid pRC23. After induction of transformed cells, the crude soluble extract was found to contain a new protein immunoreactive with β-polymerase antibody and corresponding in size to the protein deduced from the cDNA. This protein was purified in a yield of 1-2 mg/50 g of cells. The recombinant protein had about the same DNA polymerase specific activity as β-polymerase purified from mammalian tissues, and template-primer specificity and immunological properties of the recombinant polymerase were similar to those of natural β-polymerases. The purified enzyme was free of nuclease activity. The authors studied detailed catalytic properties of the recombinant β-polymerase using defined template-primer systems. The results indicate that this β-polymerase is essentially identical with natural β-polymerases. The recombinant enzyme is distributive in mode of synthesis and is capable of detecting changes in the integrity of the single-stranded template, such as methylated bases and a double-stranded region. The enzyme recognizes a template region four to seven bases downstream of the primer 3' end and utilizes alternative primers if this downstream template region is double stranded. The enzyme is unable to synthesize past methylated bases N 3 -methyl-dT or O 6 -methyl-dG

  1. Functional expression of a human GDP-L-fucose transporter in Escherichia coli.

    Science.gov (United States)

    Förster-Fromme, Karin; Schneider, Sarah; Sprenger, Georg A; Albermann, Christoph

    2017-02-01

    To investigate the translocation of nucleotide-activated sugars from the cytosol across a membrane into the endoplasmatic reticulum or the Golgi apparatus which is an important step in the synthesis of glycoproteins and glycolipids in eukaryotes. The heterologous expression of the recombinant and codon-adapted human GDP-L-fucose antiporter gene SLC35C1 (encoding an N-terminal OmpA-signal sequence) led to a functional transporter protein located in the cytoplasmic membrane of Escherichia coli. The in vitro transport was investigated using inverted membrane vesicles. SLC35C1 is an antiporter specific for GDP-L-fucose and depending on the concomitant reverse transport of GMP. The recombinant transporter FucT1 exhibited an activity for the transport of 3 H-GDP-L-fucose with a V max of 8 pmol/min mg with a K m of 4 µM. The functional expression of SLC35C1 in GDP-L-fucose overproducing E. coli led to the export of GDP-L-fucose to the culture supernatant. The export of GDP-L-fucose by E. coli provides the opportunity for the engineering of a periplasmatic fucosylation reaction in recombinant bacterial cells.

  2. High Efficient Expression, Purification, and Functional Characterization of Native Human Epidermal Growth Factor in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Yi Ma

    2016-01-01

    Full Text Available Human epidermal growth factor (hEGF is a small, mitotic growth polypeptide that promotes the proliferation of various cells and is widely applied in clinical practices. However, high efficient expression of native hEGF in Escherichia coli has not been successful, since three disulfide bonds in monomer hEGF made it unable to fold into correct 3D structure using in vivo system. To tackle this problem, we fused Mxe GyrA intein (Mxe at the C-terminal of hEGF followed by small ubiquitin-related modifier (SUMO and 10x His-tag to construct a chimeric protein hEGF-Mxe-SUMO-H10. The fusion protein was highly expressed at the concentration of 281 mg/L and up to 59.5% of the total cellular soluble proteins. The fusion protein was purified by affinity chromatography and 29.4 mg/L of native hEGF can be released by thiol induced N-terminal cleavage without any proteases. The mitotic activity in Balb/c 3T3 cells is proliferated by commercial and recombinant hEGF measured with methylthiazolyldiphenyl-tetrazolium bromide (MTT assay which indicated that recombinant hEGF protein stimulates the cell proliferation similar to commercial protein. This study significantly improved the yield and reduced the cost of hEGF in the recombinant E. coli system and could be a better strategy to produce native hEGF for pharmaceutical development.

  3. High Efficient Expression, Purification, and Functional Characterization of Native Human Epidermal Growth Factor in Escherichia coli.

    Science.gov (United States)

    Ma, Yi; Yu, Jieying; Lin, Jinglian; Wu, Shaomin; Li, Shan; Wang, Jufang

    2016-01-01

    Human epidermal growth factor (hEGF) is a small, mitotic growth polypeptide that promotes the proliferation of various cells and is widely applied in clinical practices. However, high efficient expression of native hEGF in Escherichia coli has not been successful, since three disulfide bonds in monomer hEGF made it unable to fold into correct 3D structure using in vivo system. To tackle this problem, we fused Mxe GyrA intein (Mxe) at the C-terminal of hEGF followed by small ubiquitin-related modifier (SUMO) and 10x His-tag to construct a chimeric protein hEGF-Mxe-SUMO-H 10 . The fusion protein was highly expressed at the concentration of 281 mg/L and up to 59.5% of the total cellular soluble proteins. The fusion protein was purified by affinity chromatography and 29.4 mg/L of native hEGF can be released by thiol induced N-terminal cleavage without any proteases. The mitotic activity in Balb/c 3T3 cells is proliferated by commercial and recombinant hEGF measured with methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay which indicated that recombinant hEGF protein stimulates the cell proliferation similar to commercial protein. This study significantly improved the yield and reduced the cost of hEGF in the recombinant E. coli system and could be a better strategy to produce native hEGF for pharmaceutical development.

  4. Identification of tick-borne pathogens in ticks feeding on humans in Turkey.

    Directory of Open Access Journals (Sweden)

    Ömer Orkun

    2014-08-01

    Full Text Available The importance of tick-borne diseases is increasing all over the world, including Turkey. The tick-borne disease outbreaks reported in recent years and the abundance of tick species and the existence of suitable habitats increase the importance of studies related to the epidemiology of ticks and tick-borne pathogens in Turkey. The aim of this study was to investigate the presence of and to determine the infection rates of some tick-borne pathogens, including Babesia spp., Borrelia burgdorferi sensu lato and spotted fever group rickettsiae in the ticks removed from humans in different parts of Ankara.A total of 169 ticks belonging to the genus Haemaphysalis, Hyalomma, Ixodes and Rhipicephalus were collected by removing from humans in different parts of Ankara. Ticks were molecularly screened for Babesia spp., Borrelia burgdorferi sensu lato and spotted fever group rickettsiae by PCR and sequencing analysis. We detected 4 Babesia spp.; B. crassa, B. major, B. occultans and B. rossi, one Borrelia spp.; B. burgdorferi sensu stricto and 3 spotted fever group rickettsiae; R. aeschlimannii, R. slovaca and R. hoogstraalii in the tick specimens analyzed. This is the report showing the presence of B. rossi in a region that is out of Africa and in the host species Ha. parva. In addition, B. crassa, for which limited information is available on its distribution and vector species, and B. occultans, for which no conclusive information is available on its presence in Turkey, were identified in Ha. parva and H. marginatum, respectively. Two human pathogenic rickettsia species (R. aeschlimannii and R. slovaca were detected with a high prevalence in ticks. Additionally, B. burgdorferi sensu stricto was detected in unusual tick species (H. marginatum, H. excavatum, Hyalomma spp. (nymph and Ha. parva.This study investigates both the distribution of several tick-borne pathogens affecting humans and animals, and the presence of new tick-borne pathogens in Turkey

  5. Signatures of environmental genetic adaptation pinpoint pathogens as the main selective pressure through human evolution.

    Directory of Open Access Journals (Sweden)

    Matteo Fumagalli

    2011-11-01

    Full Text Available Previous genome-wide scans of positive natural selection in humans have identified a number of non-neutrally evolving genes that play important roles in skin pigmentation, metabolism, or immune function. Recent studies have also shown that a genome-wide pattern of local adaptation can be detected by identifying correlations between patterns of allele frequencies and environmental variables. Despite these observations, the degree to which natural selection is primarily driven by adaptation to local environments, and the role of pathogens or other ecological factors as selective agents, is still under debate. To address this issue, we correlated the spatial allele frequency distribution of a large sample of SNPs from 55 distinct human populations to a set of environmental factors that describe local geographical features such as climate, diet regimes, and pathogen loads. In concordance with previous studies, we detected a significant enrichment of genic SNPs, and particularly non-synonymous SNPs associated with local adaptation. Furthermore, we show that the diversity of the local pathogenic environment is the predominant driver of local adaptation, and that climate, at least as measured here, only plays a relatively minor role. While background demography by far makes the strongest contribution in explaining the genetic variance among populations, we detected about 100 genes which show an unexpectedly strong correlation between allele frequencies and pathogenic environment, after correcting for demography. Conversely, for diet regimes and climatic conditions, no genes show a similar correlation between the environmental factor and allele frequencies. This result is validated using low-coverage sequencing data for multiple populations. Among the loci targeted by pathogen-driven selection, we found an enrichment of genes associated to autoimmune diseases, such as celiac disease, type 1 diabetes, and multiples sclerosis, which lends credence to the

  6. Steps toward broad-spectrum therapeutics: discovering virulence-associated genes present in diverse human pathogens

    Directory of Open Access Journals (Sweden)

    de Rochefort Anna

    2009-10-01

    Full Text Available Abstract Background New and improved antimicrobial countermeasures are urgently needed to counteract increased resistance to existing antimicrobial treatments and to combat currently untreatable or new emerging infectious diseases. We demonstrate that computational comparative genomics, together with experimental screening, can identify potential generic (i.e., conserved across multiple pathogen species and novel virulence-associated genes that may serve as targets for broad-spectrum countermeasures. Results Using phylogenetic profiles of protein clusters from completed microbial genome sequences, we identified seventeen protein candidates that are common to diverse human pathogens and absent or uncommon in non-pathogens. Mutants of 13 of these candidates were successfully generated in Yersinia pseudotuberculosis and the potential role of the proteins in virulence was assayed in an animal model. Six candidate proteins are suggested to be involved in the virulence of Y. pseudotuberculosis, none of which have previously been implicated in the virulence of Y. pseudotuberculosis and three have no record of involvement in the virulence of any bacteria. Conclusion This work demonstrates a strategy for the identification of potential virulence factors that are conserved across a number of human pathogenic bacterial species, confirming the usefulness of this tool.

  7. [Human plague and pneumonic plague : pathogenicity, epidemiology, clinical presentations and therapy].

    Science.gov (United States)

    Riehm, Julia M; Löscher, Thomas

    2015-07-01

    Yersinia pestis is a highly pathogenic gram-negative bacterium and the causative agent of human plague. In the last 1500 years and during three dreaded pandemics, millions of people became victims of Justinian's plague, the Black Death, or modern plague. Today, Y. pestis is endemic in natural foci of Asian, African and American countries. Due to its broad dissemination in mammal species and fleas, eradication of the pathogen will not be possible in the near future. In fact, plague is currently classified as a "re-emerging disease". Infection may occur after the bite of an infected flea, but also after oral ingestion or inhalation of the pathogen. The clinical presentations comprise the bubonic and pneumonic form, septicemia, rarely pharyngitis, and meningitis. Most human cases can successfully be treated with antibiotics. However, the high transmission rate and lethality of pneumonic plague require international and mandatory case notification and quarantine of patients. Rapid diagnosis, therapy and barrier nursing are not only crucial for the individual patient but also for the prevention of further spread of the pathogen or of epidemics. Therefore, WHO emergency schedules demand the isolation of cases, identification and surveillance of contacts as well as control of zoonotic reservoir animals and vectors. These sanctions and effective antibiotic treatment usually allow a rapid containment of outbreaks. However, multiple antibiotic resistant strains of Y. pestis have been isolated from patients in the past. So far, no outbreaks with such strains have been reported.

  8. Human and Pathogen Factors Associated with Chlamydia trachomatis-Related Infertility in Women

    Science.gov (United States)

    Menon, S.; Timms, P.; Allan, J. A.; Alexander, K.; Rombauts, L.; Horner, P.; Keltz, M.; Hocking, J.

    2015-01-01

    SUMMARY Chlamydia trachomatis is the most common bacterial sexually transmitted pathogen worldwide. Infection can result in serious reproductive pathologies, including pelvic inflammatory disease, ectopic pregnancy, and infertility, in women. However, the processes that result in these reproductive pathologies have not been well defined. Here we review the evidence for the human disease burden of these chlamydial reproductive pathologies. We then review human-based evidence that links Chlamydia with reproductive pathologies in women. We present data supporting the idea that host, immunological, epidemiological, and pathogen factors may all contribute to the development of infertility. Specifically, we review the existing evidence that host and pathogen genotypes, host hormone status, age of sexual debut, sexual behavior, coinfections, and repeat infections are all likely to be contributory factors in development of infertility. Pathogen factors such as infectious burden, treatment failure, and tissue tropisms or ascension capacity are also potential contributory factors. We present four possible processes of pathology development and how these processes are supported by the published data. We highlight the limitations of the evidence and propose future studies that could improve our understanding of how chlamydial infertility in women occurs and possible future interventions to reduce this disease burden. PMID:26310245

  9. Genomic evidence for the evolution of Streptococcus equi: host restriction, increased virulence, and genetic exchange with human pathogens.

    Directory of Open Access Journals (Sweden)

    Matthew T G Holden

    2009-03-01

    Full Text Available The continued evolution of bacterial pathogens has major implications for both human and animal disease, but the exchange of genetic material between host-restricted pathogens is rarely considered. Streptococcus equi subspecies equi (S. equi is a host-restricted pathogen of horses that has evolved from the zoonotic pathogen Streptococcus equi subspecies zooepidemicus (S. zooepidemicus. These pathogens share approximately 80% genome sequence identity with the important human pathogen Streptococcus pyogenes. We sequenced and compared the genomes of S. equi 4047 and S. zooepidemicus H70 and screened S. equi and S. zooepidemicus strains from around the world to uncover evidence of the genetic events that have shaped the evolution of the S. equi genome and led to its emergence as a host-restricted pathogen. Our analysis provides evidence of functional loss due to mutation and deletion, coupled with pathogenic specialization through the acquisition of bacteriophage encoding a phospholipase A(2 toxin, and four superantigens, and an integrative conjugative element carrying a novel iron acquisition system with similarity to the high pathogenicity island of Yersinia pestis. We also highlight that S. equi, S. zooepidemicus, and S. pyogenes share a common phage pool that enhances cross-species pathogen evolution. We conclude that the complex interplay of functional loss, pathogenic specialization, and genetic exchange between S. equi, S. zooepidemicus, and S. pyogenes continues to influence the evolution of these important streptococci.

  10. Molecular Characterization of Human Atypical Sorbitol-Fermenting Enteropathogenic Escherichia coli O157 Reveals High Diversity.

    Science.gov (United States)

    Kossow, Annelene; Zhang, Wenlan; Bielaszewska, Martina; Rhode, Sophie; Hansen, Kevin; Fruth, Angelika; Rüter, Christian; Karch, Helge; Mellmann, Alexander

    2016-05-01

    Alongside the well-characterized enterohemorrhagic Escherichia coli (EHEC) O157:H7, serogroup O157 comprises sorbitol-fermenting typical and atypical enteropathogenic E. coli (EPEC/aEPEC) strains that carry the intimin-encoding gene eae but not Shiga toxin-encoding genes (stx). Since little is known about these pathogens, we characterized 30 clinical isolates from patients with hemolytic uremic syndrome (HUS) or uncomplicated diarrhea with respect to their flagellin gene (fliC) type and multilocus sequence type (MLST). Moreover, we applied whole-genome sequencing (WGS) to determine the phylogenetic relationship with other eae-positive EHEC serotypes and the composition of the rfbO157 region. fliC typing resulted in five fliC types (H7, H16, H34, H39, and H45). Isolates of each fliC type shared a unique ST. In comparison to the 42 HUS-associated E. coli (HUSEC) strains, only the stx-negative isolates with fliCH7 shared their ST with EHEC O157:H7/H(-) strains. With the exception of one O157:H(-) fliCH16 isolate, HUS was exclusively associated with fliCH7. WGS corroborated the separation of the fliCH7 isolates, which were closely related to the EHEC O157:H7/H(-) isolates, and the diverse group of isolates exhibiting different fliC types, indicating independent evolution of the different serotypes. This was also supported by the heterogeneity within the rfbO157 region that exhibited extensive recombinations. The genotypic subtypes and distribution of clinical symptoms suggested that the stx-negative O157 strains with fliCH7 were originally EHEC strains that lost stx The remaining isolates form a distinct and diverse group of atypical EPEC isolates that do not possess the full spectrum of virulence genes, underlining the importance of identifying the H antigen for clinical risk assessment. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  11. An Evidenced-Based Scale of Disease Severity following Human Challenge with Enteroxigenic Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Chad K Porter

    Full Text Available Experimental human challenge models have played a major role in enhancing our understanding of infectious diseases. Primary outcomes have typically utilized overly simplistic outcomes that fail to entirely account for complex illness syndromes. We sought to characterize clinical outcomes associated with experimental infection with enterotoxigenic Escherichia coli (ETEC and to develop a disease score.Data were obtained from prior controlled human ETEC infection studies. Correlation and univariate regression across sign and symptom severity was performed. A multiple correspondence analysis was conducted. A 3-parameter disease score with construct validity was developed in an iterative fashion, compared to standard outcome definitions and applied to prior vaccine challenge trials.Data on 264 subjects receiving seven ETEC strains at doses from 1x105 to 1x1010 cfu were used to construct a standardized dataset. The strongest observed correlation was between vomiting and nausea (r = 0.65; however, stool output was poorly correlated with subjective activity-impacting outcomes. Multiple correspondence analyses showed covariability in multiple signs and symptoms, with severity being the strongest factor corresponding across outcomes. The developed disease score performed well compared to standard outcome definitions and differentiated disease in vaccinated and unvaccinated subjects.Frequency and volumetric definitions of diarrhea severity poorly characterize ETEC disease. These data support a disease severity score accounting for stool output and other clinical signs and symptoms. Such a score could serve as the basis for better field trial outcomes and gives an additional outcome measure to help select future vaccines that warrant expanded testing in pivotal pre-licensure trials.

  12. Specific binding of lactoferrin to Escherichia coli isolated from human intestinal infections

    International Nuclear Information System (INIS)

    Naidu, S.S.; Erdei, J.; Forsgren, A.; Naidu, A.S.; Czirok, E.; Gado, I.; Kalfas, S.; Thoren, A.

    1991-01-01

    The degrees of human lactoferrin (HLf) and bovine lactoferrin (BLf) binding in 169 Escherichia coli strains isolated from human intestinal infections, and in an additional 68 strains isolated from healthy individuals, were examined in a 125 I-labelled protein binding assay. The binding was expressed as a percentage calculated from the total labelled ligand added to bacteria. The HLf and BLf binding to E. coli was in the range 3.7 to 73.4% and 4.8 to 61.6%, respectively. Enterotoxigenic strains demonstrated a significantly higher HLf binding (median = 19%) than enteropathogenic, enteroinvasive, enterohaemorrhagic strains or normal intestinal E. coli isolates (medians 6 to 9). Enteropathogenic strains belonging to serotypes O44 and O127 demonstrated significantly higher HLf binding compared to O26, O55, O111, O119 and O126. No significant differences in the degree of HLf or BLf binding were found between aerobactin-producing and non-producing strains. The interaction was further characterized in a high Lf-binging EPEC strain, E34663 (serotype O127). The binding was stable in the pH range 4.0 to 7.5, did not dissociate in the presence of 2M NaCl or 2M urea, and reached saturation within two h. Unlabelled HLf and BLf displaced the 125 I-HLf binding to E34663 in a dose-dependent manner. Apo- and iron-saturated forms of Lf demonstrated similar binding to E34663. Among various unlabelled subephithelial matrix proteins and carbohydrates tested (in 10 4 -fold excess) only fibronectin and fibrinogen caused a moderate inhibition of 125 I-HLf binding. According to Scatchard plot analysis, 5,400 HLf-binding sites/cell, with an affinity constant (K a ) of 1.4 x 10 -7 M, were estimated in strain E34663. These data establish the presence of a specific Lf-binding mechanism in E. coli. (au)

  13. Surveillance of laboratory exposures to human pathogens and toxins: Canada 2016.

    Science.gov (United States)

    Bienek, A; Heisz, M; Su, M

    2017-11-02

    Canada recently enacted legislation to authorize the collection of data on laboratory incidents involving a biological agent. This is done by the Public Health Agency of Canada (PHAC) as part of a comprehensive national program that protects Canadians from the health and safety risks posed by human and terrestrial animal pathogens and toxins. To describe the first year of data on laboratory exposure incidents and/or laboratory-acquired infections in Canada since the Human Pathogens and Toxins Regulations came into effect. Incidents that occurred between January 1 and December 31, 2016 were self-reported by federally-regulated parties across Canada using a standardized form from the Laboratory Incident Notification Canada (LINC) surveillance system. Exposure incidents were described by sector, frequency of occurrence, timeliness of reporting, number of affected persons, human pathogens and toxins involved, causes and corrective actions taken. Microsoft Excel 2010 was used for basic descriptive analyses. In 2016, 46 exposure incidents were reported by holders of 835 active licences in Canada representing 1,352 physical areas approved for work involving a biological agent, for an overall incidence of 3.4%. The number of incidents was highest in the academic (n=16; 34.8%) and hospital (n=12; 26.1%) sectors, while the number of reported incidents was relatively low in the private industry sector. An average of four to five incidents occurred each month; the month of September presented as an outlier with 10 incidents. ​: A total of 100 people were exposed, with no reports of secondary exposure. Four incidents led to suspected (n=3) or confirmed (n=1) cases of laboratory-acquired infection. Most incidents involved pathogens classified at a risk group 2 level that were manipulated in a containment level 2 laboratory (91.3%). Over 22 different species of human pathogens and toxins were implicated, with bacteria the most frequent (34.8%), followed by viruses (26

  14. Classification of human pathogen bacteria for early screening using electronic nose

    Science.gov (United States)

    Zulkifli, Syahida Amani; Mohamad, Che Wan Syarifah Robiah; Abdullah, Abu Hassan

    2017-10-01

    This paper present human pathogen bacteria for early screening using electronic nose. Electronic nose (E-nose) known as gas sensor array is a device that analyze the odor measurement give the fast response and less time consuming for clinical diagnosis. Many bacterial pathogens could lead to life threatening infections. Accurate and rapid diagnosis is crucial for the successful management of these infections disease. The conventional method need more time to detect the growth of bacterial. Alternatively, the bacteria are Pseudomonas aeruginosa and Shigella cultured on different media agar can be detected and classifies according to the volatile compound in shorter time using electronic nose (E-nose). Then, the data from electronic nose (E-nose) is processed using statistical method which is principal component analysis (PCA). The study shows the capability of electronic nose (E-nose) for early screening for bacterial infection in human stomach.

  15. CEACAM3: ein neuartiger phagozytischer Rezeptor der angeborenen Immunantwort zur Erkennung human-spezifischer Pathogene

    OpenAIRE

    Schmitter, Tim

    2006-01-01

    Eine Infektion durch das ausschließlich human-spezifische Pathogen Neisseria gonorrhoeae manifestiert sich bei einer symptomatischen Kolonisierung in der sog. Gonorrhö, einer venerischen Erkrankung, die durch akute Inflammation des befallenen Gewebes und durch die massive Infiltration von Granulozyten charakterisiert ist. Die Gonokokken können im Verlauf einer symptomatischen Infektion über ihre OpaCEA-Adhäsine mit CEACAM Proteinen unterschiedlicher Wirtszellen interagieren. In der vorliegend...

  16. Draft genome sequences of two opportunistic pathogenic strains of Staphylococcus cohnii isolated from human patients

    OpenAIRE

    Mendoza-Olazar?n, Soraya; Garcia-Mazcorro, Jos? F.; Morf?n-Otero, Rayo; Villarreal-Trevi?o, Licet; Camacho-Ortiz, Adri?n; Rodr?guez-Noriega, Eduardo; Bocanegra-Ibarias, Paola; Maldonado-Garza, H?ctor J.; Dowd, Scot E.; Garza-Gonz?lez, Elvira

    2017-01-01

    Herein, we report the draft-genome sequences and annotation of two opportunistic pathogenic strains of Staphylococcus cohnii isolated from humans. One strain (SC-57) was isolated from blood from a male patient in May 2006 and the other (SC-532) from a catheter from a male patient in June 2006. Similar to other genomes of Staphylococcus species, most genes (42%) of both strains are involved in metabolism of amino acids and derivatives, carbohydrates and proteins. Eighty (4%) genes are involved...

  17. The Genome of the Basidiomycetous Yeast and Human Pathogen Cryptococcus neoformans

    OpenAIRE

    Loftus, Brendan J.; Fung, Eula; Roncaglia, Paola; Rowley, Don; Amedeo, Paolo; Bruno, Dan; Vamathevan, Jessica; Miranda, Molly; Anderson, Iain J.; Fraser, James A.; Allen, Jonathan E.; Bosdet, Ian E.; Brent, Michael R.; Chiu, Readman; Doering, Tamara L.

    2005-01-01

    Cryptococcus neoformans is a basidiomycetous yeast ubiquitous in the environment, a model for fungal pathogenesis, and an opportunistic human pathogen of global importance. We have sequenced its ~20-megabase genome, which contains ~6500 intron-rich gene structures and encodes a transcriptome abundant in alternatively spliced and antisense messages. The genome is rich in transposons, many of which cluster at candidate centromeric regions. The presence of these transposons may drive karyotype i...

  18. Depletion of Human DNA in Spiked Clinical Specimens for Improvement of Sensitivity of Pathogen Detection by Next-Generation Sequencing

    OpenAIRE

    Hasan, Mohammad R.; Rawat, Arun; Tang, Patrick; Jithesh, Puthen V.; Thomas, Eva; Tan, Rusung; Tilley, Peter

    2016-01-01

    Next-generation sequencing (NGS) technology has shown promise for the detection of human pathogens from clinical samples. However, one of the major obstacles to the use of NGS in diagnostic microbiology is the low ratio of pathogen DNA to human DNA in most clinical specimens. In this study, we aimed to develop a specimen-processing protocol to remove human DNA and enrich specimens for bacterial and viral DNA for shotgun metagenomic sequencing. Cerebrospinal fluid (CSF) and nasopharyngeal aspi...

  19. Colonization of plants by human pathogenic bacteria in the course of organic vegetable production

    Directory of Open Access Journals (Sweden)

    Andreas eHofmann

    2014-05-01

    Full Text Available In recent years, increasing numbers of outbreaks caused by the consumption of vegetables contaminated with human pathogenic bacteria were reported. The application of organic fertilizers during vegetable production is one of the possible reasons for contamination with those pathogens. In this study laboratory experiments in axenic and soil systems following common practices in organic farming were conducted to identify the minimal dose needed for bacterial colonization of plants and to identify possible factors like bacterial species or serovariation, plant species or organic fertilizer types used, influencing the success of plant colonization by human pathogenic bacteria. Spinach and corn salad were chosen as model plants and were inoculated with different concentrations of Salmonella enterica sv. Weltevreden, Listeria monocytogenes sv. 4b and EGD-E sv. 1/2a either directly (axenic system or via agricultural soil amended with spiked organic fertilizers (soil system. In addition to PCR- and culture-based detection methods, fluorescence in situ hybridization (FISH was applied in order to localize bacteria on or in plant tissues. Our results demonstrate that shoots were colonized by the pathogenic bacteria at inoculation doses as low as 4x10CFU/ml in the axenic system or 4x105CFU/g in the soil system. In addition, plant species dependent effects were observed. Spinach was colonized more often and at lower inoculation doses compared to corn salad. Differential colonization sites on roots, depending on the plant species could be detected using FISH-CLSM analysis. Furthermore, the transfer of pathogenic bacteria to plants via organic fertilizers was observed more often and at lower initial inoculation doses when fertilization was performed with inoculated slurry compared to inoculated manure. Finally, it could be shown that by introducing a simple washing step, the bacterial contamination was reduced in most cases or even was removed completely in

  20. Studies on Antifungal Potential, Primary Characterization and Mode of Action of a De Novo Cytoplasmic Protein (EAF) from Human Commensal Escherichia coli Against Aspergillus spp.

    Science.gov (United States)

    Balhara, Meenakshi; Ruhil, Sonam; Dhankhar, Sandeep; Chhillar, Anil K

    2015-01-01

    A de novo protein named as EAF (Escherichia antifungal protein) from the cytoplasmic pool of an Escherichia coli strain (MTCC 1652), has been purified to homogeneity using anion exchange (Q-XL Sepharose) and cation exchange (SP-Sepharose) chromatography. The MIC (minimum inhibitory concentration) values of purified protein against A. fumigatus (the major pathogenic species) were found to be comparable with standard drugs i.e. 3.90 µg/ml, 3.90 µg/ml and 1.25 µg/disc via microbroth dilution assay (MDA), percentage spore germination inhibition (PSGI) and disc diffusion assay (DDA) respectively. Toxicity results confirmed that it causes no haemolysis against human RBCs upto a concentration of 1000.0 µg/ml as compared to Amphotericin B (conventional antifungal drug) that causes hundred percent haemolysis at a concentration of 37.50 µg/ml only.The purified protein demonstrated a molecular mass of 28 kDa on SDS-PAGE which was further authenticated by MALDI-TOF. Proteomic and bioinformatics studies deciphered its significant homology (72 %) with chain A-D-ribose binding protein (cluster 2 sugar binding periplasmic proteins; sequence homologues of transcription regulatory proteins) from E. coli. Single dimensional page analysis of A. fumigatusproteins with due effect of EAF (at MIC50) revealed the inhibition of two major proteins; a heat shock protein 70-Hsp70 (68 kDa); having role in protein folding and functioning andphenylanalyl-t RNA synthetase PodG subunit protein (74 kDa); involved in growth polarity in fungi. Scanning electron microscopic studies depicted homologous results. We suggest that EAF most likely belongs to a new group of proteins with potent antifungal characteristics, negligible toxicity and targeting vital proteins of fungal metabolism.

  1. Antimicrobial activity of the ethanolic and aqueous extracts of Salacia chinensis Linn. against human pathogens

    Directory of Open Access Journals (Sweden)

    oorthy kannaiyan

    2012-05-01

    Full Text Available Objective: To investigate antimicrobial effects of ethanolic and aqueous extracts of Salacia chinensis (S. chinensis Linn. against pathogenic bacteria and fungi. Methods: The Staphylococcus aureus (S. aureus (MTCC 96, Staphylococcus epidermidis (S. epidermidis (MTCC 435, Bacillus subtilis (B. subtilis (MTCC 121, Escherichia coli (E. coli (MTCC 443, Klebsiella pneumoniae (K. pneumoniae (MTCC 432, Proteus mirabilis (P. mirabilis (MTCC 1429, Salmonella paratyphi A (S. paratyphi A (MTCC 735, Salmonella typhimurium (S. typhimurium (MTCC 98, Shigella flexneri (S. flexneri (MTCC 1457 and Pseudomonas aeruginosa (P. aeruginosa (MTCC 424, Candida albicans (C. albicans (MTCC 183 and Cryptococcus neoformans (C. neoformans (clinical isolate were originally obtained from Microbial Type Culture Collection Centre, Institute of Microbial Technology, Chandigarh, India. Antimicrobial activity was carried out by disc diffusion and broth dilution methods against pathogens by using crude ethanolic and aqueous extracts. Results: Ethanolic extract of S. chinensis L. leaves showed significant antimicrobial activity against S. epidermidis (33.20 mm, C. albicans (30.40 mm and C. neoformans (18.20 mm mean values were documented. Aqueous extract of leaves showed significant inhibitory activity against C. neoformans (19.8 mm and S. epidermidis (17.80 mm were observed. Based on broth dilution method, the ethanolic extract of crude plant material showed the minimum inhibitory concentration (MIC values against S. epidermidis, C. neoformans (256 毺 g/mL and C. albicans (512 毺 g/mL, whereas the aqueous extract of S. chinensis L. leaves showed significant inhibitory activity against S. epidermidis (512 毺 g/mL and C. neoformans (1024 毺 g/mL were observed. Conclusions: The present result revealed that ethanolic extract of S. chinensis L. possesses significant antifungal activity when compared as the antibacterial activities.

  2. [Antibacterial actin of vinegar against food-borne pathogenic bacteria including Escherichia coli O157:H7 (Part 2). Effect of sodium chloride and temperature on bactericidal activity].

    Science.gov (United States)

    Entani, E; Asai, M; Tsujihata, S; Tsukamoto, Y; Ohta, M

    1997-05-01

    Bactericidal effects of various kinds of AWASEZU (processed vinegar, 2.5% acidity) on food-borne pathogenic bacteria including Escherichia coli O157:H7 and other bacteria were examined. the order of bactericidal activities was NIHAIZU (3.5% NaCl was added) > SANBA-IZU (3.5% NaCl and 10% sucrose were added) > plain vinegar (spirit vinegar) > AMAZU (10% sucrose was added). This indicates that their activities were enhanced by the addition of sodium chloride and suppressed by the addition of sugar. On the other hand, when soy sauce was used instead of sodium chloride, the order of bactericidal activities was plain vinegar > AMAZU > NIHAIZU > SANBAIZU. This is mainly because their activities were suppressed by the increase in the pH value. The effect of sodium chloride (0.01-15%) and temperature (10-50 degrees C) on bactericidal activities against E. coli O157:H7 in spirit vinegar (0.5-2.5% acidity) was further examined. When vinegar was used in combination with sodium chloride, predominant synergism on the bactericidal activity was observed. Their activities were markedly enhanced by the addition of sodium chloride in proportion to the concentration. In addition to this, at higher temperatures spirit vinegar killed bacteria much more rapidly. It should be noted that the bactericidal activity of spirit vinegar was extremely enhanced by the combined use of the addition of sodium chloride and the rise of temperature. For example, in 2.5% acidity vinegar, the time required for 3 log decrease in viable cell numbers at 20 degrees C was shortened to 1/140-fold by the addition of 5% sodium chloride, shortened to 1/51-fold by the rise of the reaction temperature at 40 degrees C, and shortened to 1/830-fold; 0.89 minutes by both the addition of 5% sodium chloride and the rise of temperature at 40 degrees C. In order to propose the methods to prevent food poisoning by bacterial infection, bactericidal activities of vinegar solution containing sodium chloride on cooking tools and

  3. Progress in rapid detection and identification of unknown human and agricultural pathogens

    International Nuclear Information System (INIS)

    Barnes, T; Holzrichter, J F; Milanovich, F P

    1999-01-01

    contained in pathogen systems, such as their full genomic information, can be very helpful in identifying malevolent users. In addition, it is undoubtedly true that an understanding of replication and human or other sensitivity to pathogens will improve our medical understanding of human health in general

  4. Antifungal activity of different neem leaf extracts and the nimonol against some important human pathogens

    Directory of Open Access Journals (Sweden)

    D.A Mahmoud

    2011-09-01

    Full Text Available This study was conducted to evaluate the effect of aqueous, ethanolic and ethyl acetate extracts from neem leaves on growth of some human pathogens (Aspergillus flavus, Aspergillus fumigatus, Aspergillus niger, Aspergillus terreus, Candida albicans and Microsporum gypseum in vitro. Different concentrations (5, 10, 15 and 20% prepared from these extracts inhibited the growth of the test pathogens and the effect gradually increased with concentration. The 20% ethyl acetate extract gave the strongest inhibition compared with the activity obtained by the same concentration of the other extracts. High Performance Liquid Chromatography (HPLC analysis of ethyl acetate extract showed the presence of a main component (nimonol which was purified and chemically confirmed by Nuclear Magnetic Resonance (NMR spectroscopic analysis. The 20% ethyl acetate extract lost a part of its antifungal effect after pooling out the nimonol and this loss in activity was variable on test pathogens. The purified nimonol as a separate compound did not show any antifungal activity when assayed against all the six fungal pathogens.

  5. Investigating the Antimicrobial Bioactivity of Cyano bacterial Extracts on Some Plant and Human Pathogens

    International Nuclear Information System (INIS)

    El-Semary, N.A.; Osman, M.E.; Ahmed, A.S.; Botros, H.W.; Farag, A.T.

    2014-01-01

    The search for broad spectrum antimicrobial agents against microbial pathogens, as the available bioactive compounds, has decreasing efficacy and the multidrug resistance trait is spreading among pathogens. Accordingly, the study was carried out to investigate the antimicrobial bioactivity of extracts derived from a cyano bacterial strain from Egypt. The solvents used were diethyl ether, chloroform and methanol. The antimicrobial bioassay of the lipophilic fraction dissolved in diethyl ether of Synechococcus spp. (isolated from Wadi El-Natroun, Egypt) showed the highest broad spectrum bioactivity as it inhibited the growth of both plant and human pathogens. The extract was also effective on the filamentous plant pathogenic fungi Aspergillus flavus and Aspergillus niger. The effects of incubation periods, growth media and pH values on both growth and antimicrobial activity of Synechococcus spp. were investigated. Chu medium was the medium that gave the highest growth followed by BG11 medium then Oscillatoria medium and all these three media showed antibacterial activities but only BG11 showed both antibacterial and antifungal activities after 18 days of incubation. The pH value 10 proved to be the best for growth and antimicrobial activities of Synechococcus spp. in BG11 medium

  6. What's the risk? Identifying potential human pathogens within grey-headed flying foxes faeces.

    Directory of Open Access Journals (Sweden)

    Rebekah Henry

    Full Text Available Pteropus poliocephalus (grey-headed flying foxes are recognised vectors for a range of potentially fatal human pathogens. However, to date research has primarily focused on viral disease carriage, overlooking bacterial pathogens, which also represent a significant human disease risk. The current study applied 16S rRNA amplicon sequencing, community analysis and a multi-tiered database OTU picking approach to identify faecal-derived zoonotic bacteria within two colonies of P. poliocephalus from Victoria, Australia. Our data show that sequences associated with Enterobacteriaceae (62.8% ± 24.7%, Pasteurellaceae (19.9% ± 25.7% and Moraxellaceae (9.4% ± 11.8% dominate flying fox faeces. Further colony specific differences in bacterial faecal colonisation patterns were also identified. In total, 34 potential pathogens, representing 15 genera, were identified. However, species level definition was only possible for Clostridium perfringens, which likely represents a low infectious risk due to the low proportion observed within the faeces and high infectious dose required for transmission. In contrast, sequences associated with other pathogenic species clusters such as Haemophilus haemolyticus-H. influenzae and Salmonella bongori-S. enterica, were present at high proportions in the faeces, and due to their relatively low infectious doses and modes of transmissions, represent a greater potential human disease risk. These analyses of the microbial community composition of Pteropus poliocephalus have significantly advanced our understanding of the potential bacterial disease risk associated with flying foxes and should direct future epidemiological and quantitative microbial risk assessments to further define the health risks presented by these animals.

  7. Mechanisms of Surface Antigenic Variation in the Human Pathogenic Fungus Pneumocystis jirovecii.

    Science.gov (United States)

    Schmid-Siegert, Emanuel; Richard, Sophie; Luraschi, Amanda; Mühlethaler, Konrad; Pagni, Marco; Hauser, Philippe M

    2017-11-07

    Microbial pathogens commonly escape the human immune system by varying surface proteins. We investigated the mechanisms used for that purpose by Pneumocystis jirovecii This uncultivable fungus is an obligate pulmonary pathogen that in immunocompromised individuals causes pneumonia, a major life-threatening infection. Long-read PacBio sequencing was used to assemble a core of subtelomeres of a single P. jirovecii strain from a bronchoalveolar lavage fluid specimen from a single patient. A total of 113 genes encoding surface proteins were identified, including 28 pseudogenes. These genes formed a subtelomeric gene superfamily, which included five families encoding adhesive glycosylphosphatidylinositol (GPI)-anchored glycoproteins and one family encoding excreted glycoproteins. Numerical analyses suggested that diversification of the glycoproteins relies on mosaic genes created by ectopic recombination and occurs only within each family. DNA motifs suggested that all genes are expressed independently, except those of the family encoding the most abundant surface glycoproteins, which are subject to mutually exclusive expression. PCR analyses showed that exchange of the expressed gene of the latter family occurs frequently, possibly favored by the location of the genes proximal to the telomere because this allows concomitant telomere exchange. Our observations suggest that (i) the P. jirovecii cell surface is made of a complex mixture of different surface proteins, with a majority of a single isoform of the most abundant glycoprotein, (ii) genetic mosaicism within each family ensures variation of the glycoproteins, and (iii) the strategy of the fungus consists of the continuous production of new subpopulations composed of cells that are antigenically different. IMPORTANCE Pneumocystis jirovecii is a fungus causing severe pneumonia in immunocompromised individuals. It is the second most frequent life-threatening invasive fungal infection. We have studied the mechanisms

  8. Effects of natural honey on polymicrobial culture of various human pathogens

    Science.gov (United States)

    Al-Waili, Faiza S.; Akmal, Mohammed; Ali, Amjed; Salom, Khelod Y.; Al Ghamdi, Ahmad A.

    2012-01-01

    Introduction Honey has a wide range of antimicrobial activity. All previous studies have considered honey's effect on a single microbe. The present study investigated activity of honey towards a high dose of single or polymicrobial culture. Material and methods 10 µl specimens of Staphylococcus aureus (S. aureus), Streptococcus pyogenes (S. pyogenes), Escherichia coli (E. coli) and Candida albicans (C. albicans) were cultured in 10 ml of 10-100% (wt/v) honey diluted in broth. Six types of polymicrobial microbial cultures were prepared by culturing the isolates with each other onto broth (control) and broth containing various concentrations of honey (10-100% wt/v). Microbial growth was assessed on solid plate media after 24 h incubation. Results Honey (30-70%) prevents growth of 10 µl specimens of all the isolates. Greater reduction in growth of E. coli was observed when cultured with S. aureus. Culturing of S. aureus with S. pyogenes, C. albicans, or E. coli increased its sensitivity to honey. S. aureus and S. pyogenes increased sensitivity of C. albicans to honey while E. coli and C. albicans decreased sensitivity of S. pyogenes. Conclusions It might be concluded that honey prevents and inhibits growth of single and polymicrobial pathogenic cultures. Polymicrobial culture affects growth of the isolates and increases their sensitivity to honey. PMID:24904656

  9. Identifying pathogenicity of human variants via paralog-based yeast complementation.

    Directory of Open Access Journals (Sweden)

    Fan Yang

    2017-05-01

    Full Text Available To better understand the health implications of personal genomes, we now face a largely unmet challenge to identify functional variants within disease-associated genes. Functional variants can be identified by trans-species complementation, e.g., by failure to rescue a yeast strain bearing a mutation in an orthologous human gene. Although orthologous complementation assays are powerful predictors of pathogenic variation, they are available for only a few percent of human disease genes. Here we systematically examine the question of whether complementation assays based on paralogy relationships can expand the number of human disease genes with functional variant detection assays. We tested over 1,000 paralogous human-yeast gene pairs for complementation, yielding 34 complementation relationships, of which 33 (97% were novel. We found that paralog-based assays identified disease variants with success on par with that of orthology-based assays. Combining all homology-based assay results, we found that complementation can often identify pathogenic variants outside the homologous sequence region, presumably because of global effects on protein folding or stability. Within our search space, paralogy-based complementation more than doubled the number of human disease genes with a yeast-based complementation assay for disease variation.

  10. From deep-sea volcanoes to human pathogens: a conserved quorum-sensing signal in Epsilonproteobacteria.

    Science.gov (United States)

    Pérez-Rodríguez, Ileana; Bolognini, Marie; Ricci, Jessica; Bini, Elisabetta; Vetriani, Costantino

    2015-05-01

    Chemosynthetic Epsilonproteobacteria from deep-sea hydrothermal vents colonize substrates exposed to steep thermal and redox gradients. In many bacteria, substrate attachment, biofilm formation, expression of virulence genes and host colonization are partly controlled via a cell density-dependent mechanism involving signal molecules, known as quorum sensing. Within the Epsilonproteobacteria, quorum sensing has been investigated only in human pathogens that use the luxS/autoinducer-2 (AI-2) mechanism to control the expression of some of these functions. In this study we showed that luxS is conserved in Epsilonproteobacteria and that pathogenic and mesophilic members of this class inherited this gene from a thermophilic ancestor. Furthermore, we provide evidence that the luxS gene is expressed--and a quorum-sensing signal is produced--during growth of Sulfurovum lithotrophicum and Caminibacter mediatlanticus, two Epsilonproteobacteria from deep-sea hydrothermal vents. Finally, we detected luxS transcripts in Epsilonproteobacteria-dominated biofilm communities collected from deep-sea hydrothermal vents. Taken together, our findings indicate that the epsiloproteobacterial lineage of the LuxS enzyme originated in high-temperature geothermal environments and that, in vent Epsilonproteobacteria, luxS expression is linked to the production of AI-2 signals, which are likely produced in situ at deep-sea vents. We conclude that the luxS gene is part of the ancestral epsilonproteobacterial genome and represents an evolutionary link that connects thermophiles to human pathogens.

  11. Human Infection with Highly Pathogenic Avian Influenza A(H7N9) Virus, China.

    Science.gov (United States)

    Ke, Changwen; Mok, Chris Ka Pun; Zhu, Wenfei; Zhou, Haibo; He, Jianfeng; Guan, Wenda; Wu, Jie; Song, Wenjun; Wang, Dayan; Liu, Jiexiong; Lin, Qinhan; Chu, Daniel Ka Wing; Yang, Lei; Zhong, Nanshan; Yang, Zifeng; Shu, Yuelong; Peiris, Joseph Sriyal Malik

    2017-07-01

    The recent increase in zoonotic avian influenza A(H7N9) disease in China is a cause of public health concern. Most of the A(H7N9) viruses previously reported have been of low pathogenicity. We report the fatal case of a patient in China who was infected with an A(H7N9) virus having a polybasic amino acid sequence at its hemagglutinin cleavage site (PEVPKRKRTAR/GL), a sequence suggestive of high pathogenicity in birds. Its neuraminidase also had R292K, an amino acid change known to be associated with neuraminidase inhibitor resistance. Both of these molecular features might have contributed to the patient's adverse clinical outcome. The patient had a history of exposure to sick and dying poultry, and his close contacts had no evidence of A(H7N9) disease, suggesting human-to-human transmission did not occur. Enhanced surveillance is needed to determine whether this highly pathogenic avian influenza A(H7N9) virus will continue to spread.

  12. Endo-symbiont mediated synthesis of gold nanobactericides and their activity against human pathogenic bacteria.

    Science.gov (United States)

    Syed, Baker; M N, Nagendra Prasad; K, Mohan Kumar; B L, Dhananjaya; Satish, Sreedharamurthy

    2017-06-01

    Synthesis of gold nanobactericides (AuNBs) were achieved by treating 1mM chloroaurate with cell free supernatant of Aneurinibacillus migulanus. Formation of AuNBs was initially was monitored with change in colour to ruby red. Further confirmation was assessed with UV-visible spectra with maximum absorption occurring at 510nm. Transmission electron microscopy (TEM) analysis revealed the polydispersity of AuNBs with size distribution ranging from 10 to 60nm with an average size of 30nm. Crystalline nature was studied using X-ray diffraction which exhibited characteristic peaks indexed to Bragg's reflection at 2θ angle which confers (111), (200), (220), and (311) planes suggesting AuNBs were face-centred cubic. Fourier transform infrared spectroscopy (FTIR) analysis revealed absorption peaks occurring at 3341cm -1 , 1635cm -1 and 670cm -1 which corresponds to functional groups attributing to synthesis. The antibacterial efficacy of AuNBs was tested against selective human pathogenic bacteria and activity was measured as zone of inhibition by using disc and well diffusion. Bactericidal activity was interpreted with standard antibiotics gentamicin and kanamycin. Micro broth dilution assay expressed the minimal concentration of AuNBs to inhibit the growth of test pathogens. Highest activity was observed against Pseudomonas aeruginosa (MTCC 7903) with 21.00±0.57mm compared to other pathogens. The possible mode of action of AuNBs on DNA was carried out with in vitro assay as preliminary test against pathogenic DNA isolated from P. aeruginosa. Further studies will be interesting enough to reveal the exact interactive mechanism of AuNBs with DNA. Overall study contributes towards biogenic synthesis of AuNBs as one of the alternative in combating drug resistant pathogens. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Antibacterial screening of traditional herbal plants and standard antibiotics against some human bacterial pathogens.

    Science.gov (United States)

    Awan, Uzma Azeem; Andleeb, Saiqa; Kiyani, Ayesha; Zafar, Atiya; Shafique, Irsa; Riaz, Nazia; Azhar, Muhammad Tehseen; Uddin, Hafeez

    2013-11-01

    Chloroformic and isoamyl alcohol extracts of Cinnnamomum zylanicum, Cuminum cyminum, Curcuma long Linn, Trachyspermum ammi and selected standard antibiotics were investigated for their in vitro antibacterial activity against six human bacterial pathogens. The antibacterial activity was evaluated and based on the zone of inhibition using agar disc diffusion method. The tested bacterial strains were Streptococcus pyogenes, Staphylococcus epidermidis, Klebsiella pneumonia, Staphylococcus aurues, Serratia marcesnces, and Pseudomonas aeruginosa. Ciprofloxacin showed highly significant action against K. pneumonia and S. epidermidis while Ampicillin and Amoxicillin indicated lowest antibacterial activity against tested pathogens. Among the plants chloroform and isoamyl alcohol extracts of C. cyminum, S. aromaticum and C. long Linn had significant effect against P. aeruginosa, S. marcesnces and S. pyogenes. Comparison of antibacterial activity of medicinal herbs and standard antibiotics was also recorded via activity index. Used medicinal plants have various phytochemicals which reasonably justify their use as antibacterial agent.

  14. Detection of human bacterial pathogens in ticks collected from Louisiana black bears (Ursus americanus luteolus).

    Science.gov (United States)

    Leydet, Brian F; Liang, Fang-Ting

    2013-04-01

    There are 4 major human-biting tick species in the northeastern United States, which include: Amblyomma americanum, Amblyomma maculatum, Dermacentor variabilis, and Ixodes scapularis. The black bear is a large mammal that has been shown to be parasitized by all the aforementioned ticks. We investigated the bacterial infections in ticks collected from Louisiana black bears (Ursus americanus subspecies luteolus). Eighty-six ticks were collected from 17 black bears in Louisiana from June 2010 to March 2011. All 4 common human-biting tick species were represented. Each tick was subjected to polymerase chain reaction (PCR) targeting select bacterial pathogens and symbionts. Bacterial DNA was detected in 62% of ticks (n=53). Rickettsia parkeri, the causative agent of an emerging spotted fever group rickettsiosis, was identified in 66% of A. maculatum, 28% of D. variabilis, and 11% of I. scapularis. The Lyme disease bacterium, Borrelia burgdorferi, was detected in 2 I. scapularis, while one A. americanum was positive for Borrelia bissettii, a putative human pathogen. The rickettsial endosymbionts Candidatus Rickettsia andeanae, rickettsial endosymbiont of I. scapularis, and Rickettsia amblyommii were detected in their common tick hosts at 21%, 39%, and 60%, respectively. All ticks were PCR-negative for Anaplasma phagocytophilum, Ehrlichia spp., and Babesia microti. This is the first reported detection of R. parkeri in vector ticks in Louisiana; we also report the novel association of R. parkeri with I. scapularis. Detection of both R. parkeri and B. burgdorferi in their respective vectors in Louisiana demands further investigation to determine potential for human exposure to these pathogens. Copyright © 2013 Elsevier GmbH. All rights reserved.

  15. Bacterial and protozoal pathogens found in ticks collected from humans in Corum province of Turkey.

    Directory of Open Access Journals (Sweden)

    Djursun Karasartova

    2018-04-01

    Full Text Available Tick-borne diseases are increasing all over the word, including Turkey. The aim of this study was to determine the bacterial and protozoan vector-borne pathogens in ticks infesting humans in the Corum province of Turkey.From March to November 2014 a total of 322 ticks were collected from patients who attended the local hospitals with tick bites. Ticks were screened by real time-PCR and PCR, and obtained amplicons were sequenced. The dedected tick was belonging to the genus Hyalomma, Haemaphysalis, Rhipicephalus, Dermacentor and Ixodes. A total of 17 microorganism species were identified in ticks. The most prevalent Rickettsia spp. were: R. aeschlimannii (19.5%, R. slovaca (4.5%, R. raoultii (2.2%, R. hoogstraalii (1.9%, R. sibirica subsp. mongolitimonae (1.2%, R. monacensis (0.31%, and Rickettsia spp. (1.2%. In addition, the following pathogens were identified: Borrelia afzelii (0.31%, Anaplasma spp. (0.31%, Ehrlichia spp. (0.93%, Babesia microti (0.93%, Babesia ovis (0.31%, Babesia occultans (3.4%, Theileria spp. (1.6%, Hepatozoon felis (0.31%, Hepatozoon canis (0.31%, and Hemolivia mauritanica (2.1%. All samples were negative for Francisella tularensis, Coxiella burnetii, Bartonella spp., Toxoplasma gondii and Leishmania spp.Ticks in Corum carry a large variety of human and zoonotic pathogens that were detected not only in known vectors, but showed a wider vector diversity. There is an increase in the prevalence of ticks infected with the spotted fever group and lymphangitis-associated rickettsiosis, while Ehrlichia spp. and Anaplasma spp. were reported for the first time from this region. B. microti was detected for the first time in Hyalomma marginatum infesting humans. The detection of B. occultans, B. ovis, Hepatozoon spp., Theileria spp. and Hemolivia mauritanica indicate the importance of these ticks as vectors of pathogens of veterinary importance, therefore patients with a tick infestation should be followed for a variety of pathogens

  16. Comparison of U.S. Environmental Protection Agency and U.S. Composting Council... Escherichia coli O157:H7 in finished compost

    Science.gov (United States)

    Composting management or conditions that result in inadequate exposure of the compostable materials to destructive time-temperature regimens can result in survival of enteric human pathogens. Bacterial pathogens, such as Escherichia coli O157:H7 and Salmonella spp., can regrow in finished compost. ...

  17. Draft Genome Sequences of Human Pathogenic Fungus Geomyces pannorum Sensu Lato and Bat White Nose Syndrome Pathogen Geomyces (Pseudogymnoascus) destructans

    OpenAIRE

    Chibucos, Marcus C.; Crabtree, Jonathan; Nagaraj, Sushma; Chaturvedi, Sudha; Chaturvedi, Vishnu

    2013-01-01

    We report the draft genome sequences of Geomyces pannorum sensu lato and Geomyces (Pseudogymnoascus) destructans. G.?pannorum has a larger proteome than G.?destructans, containing more proteins with ascribed enzymatic functions. This dichotomy in the genomes of related psychrophilic fungi is a valuable target for defining their distinct saprobic and pathogenic attributes.

  18. Draft Genome Sequences of Human Pathogenic Fungus Geomyces pannorum Sensu Lato and Bat White Nose Syndrome Pathogen Geomyces (Pseudogymnoascus) destructans.

    Science.gov (United States)

    Chibucos, Marcus C; Crabtree, Jonathan; Nagaraj, Sushma; Chaturvedi, Sudha; Chaturvedi, Vishnu

    2013-12-19

    We report the draft genome sequences of Geomyces pannorum sensu lato and Geomyces (Pseudogymnoascus) destructans. G. pannorum has a larger proteome than G. destructans, containing more proteins with ascribed enzymatic functions. This dichotomy in the genomes of related psychrophilic fungi is a valuable target for defining their distinct saprobic and pathogenic attributes.

  19. [Arms racing between human beings and pathogens: NDM-1 and superbugs].

    Science.gov (United States)

    Sun, Mingwei; Zheng, Beiwen; Gao, George F; Zhu, Baoli

    2010-11-01

    Throughout human history, pandemic bacterial diseases such as the plague and tuberculosis have posed an enormous threat to human beings. The discovery of antibiotics has provided us with powerful arsenal for the defense against bacterial infections. However, bacteria are acquiring more and more resistance genes to shield off antibiotics through mutation and horizontal gene transfer. Therefore, novel antibiotics must be produced and the arms race between bacterial pathogens and antibiotics is becoming increasingly intense. Recently, researchers have found that plasmids carrying a new metallo-beta-lactamase gene, blaNDM-1, and many other antibiotics resistance genes can easily spread through bacterial populations and confer recipient stains resistance to nearly all of the current antibiotics. It is a threat to the human health and a great challenge for our medical science, which we are facing. We need to find new ways to fight and win this arms racing.

  20. Ingestion of Staphylococcus aureus, Staphylococcus epidermidis, and Escherichia coli by human peritoneal mesothelial cells

    NARCIS (Netherlands)

    Visser, C. E.; Brouwer-Steenbergen, J. J.; Schadee-Eestermans, I. L.; Meijer, S.; Krediet, R. T.; Beelen, R. H.

    1996-01-01

    In the present study we examined whether mesothelial cells can ingest and digest bacteria. The results showed that all strains were ingested. Ingested staphylococci proliferated abundantly, and only a few were digested. Escherichia coli, however, was digested during the first 8 h, whereafter the

  1. Human bladder uroepithelial cells synergize with monocytes to promote IL-10 synthesis and other cytokine responses to uropathogenic Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Benjamin L Duell

    Full Text Available Urinary tract infections are a major source of morbidity for women and the elderly, with Uropathogenic Escherichia coli (UPEC being the most prevalent causative pathogen. Studies in recent years have defined a key anti-inflammatory role for Interleukin-10 (IL-10 in urinary tract infection mediated by UPEC and other uropathogens. We investigated the nature of the IL-10-producing interactions between UPEC and host cells by utilising a novel co-culture model that incorporated lymphocytes, mononuclear and uroepithelial cells in histotypic proportions. This co-culture model demonstrated synergistic IL-10 production effects between monocytes and uroepithelial cells following infection with UPEC. Membrane inserts were used to separate the monocyte and uroepithelial cell types during infection and revealed two synergistic IL-10 production effects based on contact-dependent and soluble interactions. Analysis of a comprehensive set of immunologically relevant biomarkers in monocyte-uroepithelial cell co-cultures highlighted that multiple cytokine, chemokine and signalling factors were also produced in a synergistic or antagonistic fashion. These results demonstrate that IL-10 responses to UPEC occur via multiple interactions between several cells types, implying a complex role for infection-related IL-10 during UTI. Development and application of the co-culture model described in this study is thus useful to define the degree of contact dependency of biomarker production to UPEC, and highlights the relevance of histotypic co-cultures in studying complex host-pathogen interactions.

  2. The genus Shewanella: from the briny depths below to human pathogen.

    Science.gov (United States)

    Janda, J Michael; Abbott, Sharon L

    2014-11-01

    The genus Shewanella is currently composed of more than 50 species that inhabit a range of marine environs and ecosystems. Several members of this genus, including S. oneidensis, have been identified that could potentially play key roles in environmental processes such as bioremediation of toxic elements and heavy metals and serving as microbial fuel cells. In contrast to this beneficial role, shewanellae are increasingly being implicated as human pathogens in persons exposed through occupational or recreational activities to marine niches containing shewanellae. Documented illnesses linked to Shewanella include skin and soft tissue infections, bacteremia, and otitis media. At present, it is unclear exactly how many Shewanella species are truly bona fide human pathogens. Recent advances in the taxonomy and phylogenetic relatedness of members of this genus, however, support the concept that most human infections are caused by a single species, S. algae. Some phylogenetic data further suggest that some current members of the genus are not true Shewanella species sensu stricto. The current review summarizes our present knowledge of the distribution, epidemiology, disease spectrum, and identification of microbial species focusing on a clinical perspective.

  3. CD56 Is a Pathogen Recognition Receptor on Human Natural Killer Cells.

    Science.gov (United States)

    Ziegler, Sabrina; Weiss, Esther; Schmitt, Anna-Lena; Schlegel, Jan; Burgert, Anne; Terpitz, Ulrich; Sauer, Markus; Moretta, Lorenzo; Sivori, Simona; Leonhardt, Ines; Kurzai, Oliver; Einsele, Hermann; Loeffler, Juergen

    2017-07-21

    Aspergillus (A.) fumigatus is an opportunistic fungal mold inducing invasive aspergillosis (IA) in immunocompromised patients. Although antifungal activity of human natural killer (NK) cells was shown in previous studies, the underlying cellular mechanisms and pathogen recognition receptors (PRRs) are still unknown. Using flow cytometry we were able to show that the fluorescence positivity of the surface receptor CD56 significantly decreased upon fungal contact. To visualize the interaction site of NK cells and A. fumigatus we used SEM, CLSM and dSTORM techniques, which clearly demonstrated that NK cells directly interact with A. fumigatus via CD56 and that CD56 is re-organized and accumulated at this interaction site time-dependently. The inhibition of the cytoskeleton showed that the receptor re-organization was an active process dependent on actin re-arrangements. Furthermore, we could show that CD56 plays a role in the fungus mediated NK cell activation, since blocking of CD56 surface receptor reduced fungal mediated NK cell activation and reduced cytokine secretion. These results confirmed the direct interaction of NK cells and A. fumigatus, leading to the conclusion that CD56 is a pathogen recognition receptor. These findings give new insights into the functional role of CD56 in the pathogen recognition during the innate immune response.

  4. Diversity and Antagonistic Activity of Actinomycete Strains From Myristica Swamp Soils Against Human Pathogens

    Directory of Open Access Journals (Sweden)

    Varghese Rlnoy

    2014-05-01

    Full Text Available Under the present investigation Actinomycetes were isolated from the soils of Myristica swamps of southern Western Ghats and the antagonistic activity against different human bacterial pathogens was evaluated. Results of the present study revealed that Actinomycetes population in the soils of Myristica swamp was spatially and seasonally varied. Actinomycetes load was varied from 24×104 to 71×103, from 129×103 to 40×103 and from 31×104 to 84×103 in post monsoon, monsoon and pre monsoon respectively. A total of 23 Actinomycetes strains belonging to six genera were isolated from swamp soils. Identification of the isolates showed that most of the isolates belonged to the genus Streptomyces (11, followed by Nocardia (6, Micromonospora (3, Pseudonocardia (1, Streptosporangium (1, and Nocardiopsis (1. Antagonistic studies revealed that 91.3% of Actinomycete isolates were active against one or more tested pathogens, of that 56.52% exhibited activity against Gram negative and 86.95% showed activity against Gram positive bacteria. 39.13% isolates were active against all the bacterial pathogens selected and its inhibition zone diameter was also high. 69.5% of Actinomycetes were exhibited antibacterial activity against Listeria followed by Bacillus cereus (65.21%, Staphylococcus (60.86%, Vibrio cholera (52.17%, Salmonella (52.17% and E. coli (39.13%. The results indicate that the Myristica swamp soils of Southern Western Ghats might be a remarkable reserve of Actinomycetes with potential antagonistic activity.

  5. Identification of virulence determinants of the human pathogenic fungi Aspergillus fumigatus and Candida albicans by proteomics.

    Science.gov (United States)

    Kniemeyer, Olaf; Schmidt, André D; Vödisch, Martin; Wartenberg, Dirk; Brakhage, Axel A

    2011-06-01

    Both fungi Candida albicans and Aspergillus fumigatus can cause a number of life-threatening systemic infections in humans. The commensal yeast C. albicans is one of the main causes of nosocomial fungal infectious diseases, whereas the filamentous fungus A. fumigatus has become one of the most prevalent airborne fungal pathogens. Early diagnosis of these fungal infections is challenging, only a limited number of antifungals for treatment are available, and the molecular details of pathogenicity are hardly understood. The completion of both the A. fumigatus and C. albicans genome sequence provides the opportunity to improve diagnosis, to define new drug targets, to understand the functions of many uncharacterised proteins, and to study protein regulation on a global scale. With the application of proteomic tools, particularly two-dimensional gel electrophoresis and LC/MS-based methods, a comprehensive overview about the proteins of A. fumigatus and C. albicans present or induced during environmental changes and stress conditions has been obtained in the past 5 years. However, for the discovery of further putative virulence determinants, more sensitive and targeted proteomic methods have to be applied. Here, we review the recent proteome data generated for A. fumigatus and C. albicans that are related to factors required for pathogenicity. Copyright © 2011 Elsevier GmbH. All rights reserved.

  6. Presence of potentially pathogenic Babesia sp. for human in Ixodes ricinus in Switzerland.

    Science.gov (United States)

    Casati, Simona; Sager, Heinz; Gern, Lise; Piffaretti, Jean-Claude

    2006-01-01

    We have designed and performed a new PCR method based on the 18S rRNA in order to individuate the presence and the identity of Babesia parasites. Out of 1159 Ixodes ricinus (Acari: Ixodidae) ticks collected in four areas of Switzerland, nine were found to contain Babesia DNA. Sequencing of the short amplicon obtained (411-452 bp) allowed the identification of three human pathogenic species: Babesia microti, B. divergens, for the first time in Switzerland, Babesia sp. EU1. We also report coinfections with B. sp. EU1-Borrelia burgdorferi sensu stricto and Babesia sp. EU1-B. afzelii.

  7. The Genome of the Basidiomycetous Yeast and Human Pathogen Cryptococcus neoformans

    Science.gov (United States)

    Loftus, Brendan J.; Fung, Eula; Roncaglia, Paola; Rowley, Don; Amedeo, Paolo; Bruno, Dan; Vamathevan, Jessica; Miranda, Molly; Anderson, Iain J.; Fraser, James A.; Allen, Jonathan E.; Bosdet, Ian E.; Brent, Michael R.; Chiu, Readman; Doering, Tamara L.; Donlin, Maureen J.; D’Souza, Cletus A.; Fox, Deborah S.; Grinberg, Viktoriya; Fu, Jianmin; Fukushima, Marilyn; Haas, Brian J.; Huang, James C.; Janbon, Guilhem; Jones, Steven J. M.; Koo, Hean L.; Krzywinski, Martin I.; Kwon-Chung, June K.; Lengeler, Klaus B.; Maiti, Rama; Marra, Marco A.; Marra, Robert E.; Mathewson, Carrie A.; Mitchell, Thomas G.; Pertea, Mihaela; Riggs, Florenta R.; Salzberg, Steven L.; Schein, Jacqueline E.; Shvartsbeyn, Alla; Shin, Heesun; Shumway, Martin; Specht, Charles A.; Suh, Bernard B.; Tenney, Aaron; Utterback, Terry R.; Wickes, Brian L.; Wortman, Jennifer R.; Wye, Natasja H.; Kronstad, James W.; Lodge, Jennifer K.; Heitman, Joseph; Davis, Ronald W.; Fraser, Claire M.; Hyman, Richard W.

    2012-01-01

    Cryptococcus neoformans is a basidiomycetous yeast ubiquitous in the environment, a model for fungal pathogenesis, and an opportunistic human pathogen of global importance. We have sequenced its ~20-megabase genome, which contains ~6500 intron-rich gene structures and encodes a transcriptome abundant in alternatively spliced and antisense messages. The genome is rich in transposons, many of which cluster at candidate centromeric regions. The presence of these transposons may drive karyotype instability and phenotypic variation. C. neoformans encodes unique genes that may contribute to its unusual virulence properties, and comparison of two phenotypically distinct strains reveals variation in gene content in addition to sequence polymorphisms between the genomes. PMID:15653466

  8. Cloning, overexpression, purification of bacteriocin enterocin-B and structural analysis, interaction determination of enterocin-A, B against pathogenic bacteria and human cancer cells.

    Science.gov (United States)

    Ankaiah, Dasari; Palanichamy, Esakkiraj; Antonyraj, Christian Bharathi; Ayyanna, Repally; Perumal, Venkatesh; Ahamed, Syed Ibrahim Basheer; Arul, Venkatesan

    2018-05-02

    In this present study, a gene (ent-B) encoding the bacteriocin enterocin-B was cloned, overexpressed and purified from Enterococcus faecium por1. The molecular weight of the bacteriocin enterocin-B was observed around 7.2 kDa and exhibited antimicrobial activity against several human pathogenic bacteria. The antimicrobial activity of cloned enterocin-B was increased effectively by combining with another bacteriocin enterocin-A from the same microorganism. Protein-protein docking and molecular dynamics simulation studies revealed that the bacteriocin enterocin-B is interacting with enterocin-A and formation of a heterodimer (enterocin A + B). The heterodimer of bacteriocin enterocin-A + B exhibited potential anti-bacterial, anti-biofilm activity against Staphylococcus aureus, Acinetobacter baumannii, Listeria monocytogenes and Escherichia coli. The bacteriocin enterocin-B, A and heterodimer of bacteriocin enterocin A + B showed no haemolysis on human RBC cells. This is the first report that the cell growth inhibitory activity of the bacteriocin enterocin B against HeLa, HT-29 and AGS human cancer cells and this cell growth inhibitory activity was significantly increased when cancer cells treated with the heterodimer of bacteriocins enterocin-A + B. The cell growth inhibitory activity of the bacteriocin enterocin-B and the heterodimer of bacteriocin enterocin-A + B were not observed in non-cancerous INT-407 cells (intestinal epithelial cells). Copyright © 2018. Published by Elsevier B.V.

  9. Xenosurveillance: a novel mosquito-based approach for examining the human-pathogen landscape.

    Directory of Open Access Journals (Sweden)

    Nathan D Grubaugh

    2015-03-01

    Full Text Available Globally, regions at the highest risk for emerging infectious diseases are often the ones with the fewest resources. As a result, implementing sustainable infectious disease surveillance systems in these regions is challenging. The cost of these programs and difficulties associated with collecting, storing and transporting relevant samples have hindered them in the regions where they are most needed. Therefore, we tested the sensitivity and feasibility of a novel surveillance technique called xenosurveillance. This approach utilizes the host feeding preferences and behaviors of Anopheles gambiae, which are highly anthropophilic and rest indoors after feeding, to sample viruses in human beings. We hypothesized that mosquito bloodmeals could be used to detect vertebrate viral pathogens within realistic field collection timeframes and clinically relevant concentrations.To validate this approach, we examined variables influencing virus detection such as the duration between mosquito blood feeding and mosquito processing, the pathogen nucleic acid stability in the mosquito gut and the pathogen load present in the host's blood at the time of bloodmeal ingestion using our laboratory model. Our findings revealed that viral nucleic acids, at clinically relevant concentrations, could be detected from engorged mosquitoes for up to 24 hours post feeding by qRT-PCR. Subsequently, we tested this approach in the field by examining blood from engorged mosquitoes from two field sites in Liberia. Using next-generation sequencing and PCR we were able to detect the genetic signatures of multiple viral pathogens including Epstein-Barr virus and canine distemper virus.Together, these data demonstrate the feasibility of xenosurveillance and in doing so validated a simple and non-invasive surveillance tool that could be used to complement current biosurveillance efforts.

  10. Differential activity of a lectin from Solieria filiformis against human pathogenic bacteria

    Directory of Open Access Journals (Sweden)

    M.L. Holanda

    2005-12-01

    Full Text Available A lectin isolated from the red alga Solieria filiformis was evaluated for its effect on the growth of 8 gram-negative and 3 gram-positive bacteria cultivated in liquid medium (three independent experiments/bacterium. The lectin (500 µg/mL stimulated the growth of the gram-positive species Bacillus cereus and inhibited the growth of the gram-negative species Serratia marcescens, Salmonella typhi, Klebsiella pneumoniae, Enterobacter aerogenes, Proteus sp, and Pseudomonas aeruginosa at 1000 µg/mL but the lectin (10-1000 µg/mL had no effect on the growth of the gram-positive bacteria Staphylococcus aureus and B. subtilis, or on the gram-negative bacteria Escherichia coli and Salmonella typhimurium. The purified lectin significantly reduced the cell density of gram-negative bacteria, although no changes in growth phases (log, exponential and of decline were observed. It is possible that the interaction of S. filiformis lectin with the cell surface receptors of gram-negative bacteria promotes alterations in the flow of nutrients, which would explain the bacteriostatic effect. Growth stimulation of the gram-positive bacterium B. cereus was more marked in the presence of the lectin at a concentration of 1000 µg/mL. The stimulation of the growth of B. cereus was not observed when the lectin was previously incubated with mannan (125 µg/mL, its hapten. Thus, we suggest the involvement of the binding site of the lectin in this effect. The present study reports the first data on the inhibition and stimulation of pathogenic bacterial cells by marine alga lectins.

  11. From Insect to Man: Photorhabdus Sheds Light on the Emergence of Human Pathogenicity.

    Directory of Open Access Journals (Sweden)

    Geraldine Mulley

    Full Text Available Photorhabdus are highly effective insect pathogenic bacteria that exist in a mutualistic relationship with Heterorhabditid nematodes. Unlike other members of the genus, Photorhabdus asymbiotica can also infect humans. Most Photorhabdus cannot replicate above 34°C, limiting their host-range to poikilothermic invertebrates. In contrast, P. asymbiotica must necessarily be able to replicate at 37°C or above. Many well-studied mammalian pathogens use the elevated temperature of their host as a signal to regulate the necessary changes in gene expression required for infection. Here we use RNA-seq, proteomics and phenotype microarrays to examine temperature dependent differences in transcription, translation and phenotype of P. asymbiotica at 28°C versus 37°C, relevant to the insect or human hosts respectively. Our findings reveal relatively few temperature dependant differences in gene expression. There is however a striking difference in metabolism at 37°C, with a significant reduction in the range of carbon and nitrogen sources that otherwise support respiration at 28°C. We propose that the key adaptation that enables P. asymbiotica to infect humans is to aggressively acquire amino acids, peptides and other nutrients from the human host, employing a so called "nutritional virulence" strategy. This would simultaneously cripple the host immune response while providing nutrients sufficient for reproduction. This might explain the severity of ulcerated lesions observed in clinical cases of Photorhabdosis. Furthermore, while P. asymbiotica can invade mammalian cells they must also resist immediate killing by humoral immunity components in serum. We observed an increase in the production of the insect Phenol-oxidase inhibitor Rhabduscin normally deployed to inhibit the melanisation immune cascade. Crucially we demonstrated this molecule also facilitates protection against killing by the alternative human complement pathway.

  12. Challenges and Strategies for Proteome Analysis of the Interaction of Human Pathogenic Fungi with Host Immune Cells.

    Science.gov (United States)

    Krüger, Thomas; Luo, Ting; Schmidt, Hella; Shopova, Iordana; Kniemeyer, Olaf

    2015-12-14

    Opportunistic human pathogenic fungi including the saprotrophic mold Aspergillus fumigatus and the human commensal Candida albicans can cause severe fungal infections in immunocompromised or critically ill patients. The first line of defense against opportunistic fungal pathogens is the innate immune system. Phagocytes such as macrophages, neutrophils and dendritic cells are an important pillar of the innate immune response and have evolved versatile defense strategies against microbial pathogens. On the other hand, human-pathogenic fungi have sophisticated virulence strategies to counteract the innate immune defense. In this context, proteomic approaches can provide deeper insights into the molecular mechanisms of the interaction of host immune cells with fungal pathogens. This is crucial for the identification of both diagnostic biomarkers for fungal infections and therapeutic targets. Studying host-fungal interactions at the protein level is a challenging endeavor, yet there are few studies that have been undertaken. This review draws attention to proteomic techniques and their application to fungal pathogens and to challenges, difficulties, and limitations that may arise in the course of simultaneous dual proteome analysis of host immune cells interacting with diverse morphotypes of fungal pathogens. On this basis, we discuss strategies to overcome these multifaceted experimental and analytical challenges including the viability of immune cells during co-cultivation, the increased and heterogeneous protein complexity of the host proteome dynamically interacting with the fungal proteome, and the demands on normalization strategies in terms of relative quantitative proteome analysis.

  13. Human mini-guts: new insights into intestinal physiology and host-pathogen interactions.

    Science.gov (United States)

    In, Julie G; Foulke-Abel, Jennifer; Estes, Mary K; Zachos, Nicholas C; Kovbasnjuk, Olga; Donowitz, Mark

    2016-11-01

    The development of indefinitely propagating human 'mini-guts' has led to a rapid advance in gastrointestinal research related to transport physiology, developmental biology, pharmacology, and pathophysiology. These mini-guts, also called enteroids or colonoids, are derived from LGR5 + intestinal stem cells isolated from the small intestine or colon. Addition of WNT3A and other growth factors promotes stemness and results in viable, physiologically functional human intestinal or colonic cultures that develop a crypt-villus axis and can be differentiated into all intestinal epithelial cell types. The success of research using human enteroids has highlighted the limitations of using animals or in vitro, cancer-derived cell lines to model transport physiology and pathophysiology. For example, curative or preventive therapies for acute enteric infections have been limited, mostly due to the lack of a physiological human intestinal model. However, the human enteroid model enables specific functional studies of secretion and absorption in each intestinal segment as well as observations of the earliest molecular events that occur during enteric infections. This Review describes studies characterizing these human mini-guts as a physiological model to investigate intestinal transport and host-pathogen interactions.

  14. Draft Genome Sequences of Three Escherichia coli Strains with Different In Vivo Pathogenicities in an Avian (Ascending) Infection Model of the Oviduct.

    Science.gov (United States)

    Olsen, Rikke Heidemann; Thøfner, Ida Cecilie Naundrup; Pors, Susanne Elisabeth; Christensen, Henrik; Bisgaard, Magne; Christensen, Jens Peter

    2015-05-07

    Here, we present three draft genome sequences of Escherichia coli strains that experimentally were proven to possess low (strain D2-2), intermediate (Chronic_salp), or high virulence (Cp6salp3) in an avian (ascending) infection model of the oviduct. Copyright © 2015 Olsen et al.

  15. Cysteamine-mediated clearance of antibiotic-resistant pathogens in human cystic fibrosis macrophages.

    Directory of Open Access Journals (Sweden)

    Chandra L Shrestha

    Full Text Available Members of the Burkholderia cepacia complex are virulent, multi-drug resistant pathogens that survive and replicate intracellularly in patients with cystic fibrosis (CF. We have discovered that B. cenocepacia cannot be cleared from CF macrophages due to defective autophagy, causing continued systemic inflammation and infection. Defective autophagy in CF is mediated through constitutive reactive oxygen species (ROS activation of transglutaminase-2 (TG2, which causes the sequestration (accumulation of essential autophagy initiating proteins. Cysteamine is a TG2 inhibitor and proteostasis regulator with the potential to restore autophagy. Therefore, we sought to examine the impact of cysteamine on CF macrophage autophagy and bacterial killing. Human peripheral blood monocyte-derived macrophages (MDMs and alveolar macrophages were isolated from CF and non-CF donors. Macrophages were infected with clinical isolates of relevant CF pathogens. Cysteamine caused direct bacterial growth killing of live B. cenocepacia, B. multivorans, P. aeruginosa and MRSA in the absence of cells. Additionally, B. cenocepacia, B. multivorans, and P. aeruginosa invasion were significantly decreased in CF MDMs treated with cysteamine. Finally, cysteamine decreased TG2, p62, and beclin-1 accumulation in CF, leading to increased Burkholderia uptake into autophagosomes, increased macrophage CFTR expression, and decreased ROS and IL-1β production. Cysteamine has direct anti-bacterial growth killing and improves human CF macrophage autophagy resulting in increased macrophage-mediated bacterial clearance, decreased inflammation, and reduced constitutive ROS production. Thus, cysteamine may be an effective adjunct to antibiotic regimens in CF.

  16. TLR-dependent human mucosal epithelial cell responses to microbial pathogens.

    Directory of Open Access Journals (Sweden)

    Paola eMassari

    2014-08-01

    Full Text Available AbstractToll-Like Receptor (TLR signaling represents one of the best studied pathways to implement defense mechanisms against invading microbes in humans as well as in animals. TLRs respond to specific microbial ligands and to danger signals produced by the host during infection, and initiate downstream cascades that activate both innate and adaptive immunity. TLRs are expressed by professional immune cells and by the large majority of non-hematopoietic cells, including epithelial cells. In epithelial tissues, TLR functions are particularly important because these sites are constantly exposed to microorganisms, due to their location at the host interface with the environment. While at these sites, specific defense mechanisms and inflammatory responses are initiated via TLR signaling against pathogens, suppression or lack of TLR activation is also observed in response to the commensal microbiota. The mechanisms by which TLR signaling is regulated in mucosal epithelial cells include differential expression and levels of TLRs (and their signaling partners, their cellular localization and positioning within the tissue in a fashion that favors responses to pathogens while dampening responses to commensals and maintaining tissue homeostasis in physiologic conditions. In this review, the expression and activation of TLRs in mucosal epithelial cells of several sites of the human body are examined. Specifically, the oral cavity, the ear canal and eye, the airways, the gut and the reproductive tract are discussed, along with how site-specific host defense mechanisms are implemented via TLR signaling.

  17. Bactericidal activity of bio-synthesized silver nanoparticles against human pathogenic bacteria

    International Nuclear Information System (INIS)

    Abalkhil, Tarad Abdulaziz; Alharbi, Sulaiman Ali; Salmen, Saleh Hussein; Wainwright, Milton

    2017-01-01

    Green synthesis is an attractive and eco-friendly approach to generate potent antibacterial silver nanoparticles (Ag-NPs). Such particles have long been used to fight bacteria and represent a promising tool to overcome the emergence of antibiotic-resistant bacteria. In this study, green synthesis of Ag-NPs was attempted using plant extracts of Aloe vera, Portulaca oleracea and Cynodon dactylon. The identity and size of Ag-NPs was characterized by ultraviolet–visible spectrophotometer and scanning electron microscopy. Monodispersed Ag-NPs were produced with a range of different sizes based on the plant extract used. The bactericidal activity of Ag-NPs against a number of human pathogenic bacteria was determined using the disc diffusion method. The results showed that Gram positive bacteria were more susceptible than Gram negative ones to these antibacterial agents. The minimum inhibitory concentration was determined using the 96- well plate method. Finally, the mechanism by which Ag-NPs affect bacteria was investigated by SEM analysis. Bacteria treated with Ag-NPs were seen to undergo shrinkage and to lose their viability. This study provides evidence for a cheap and effective method for synthesizing potent bactericidal Ag-NPs and demonstrates their effectiveness against human pathogenic bacteria

  18. Assessment and impact of microbial fecal pollution and human enteric pathogens in a coastal community.

    Science.gov (United States)

    Lipp, E K; Farrah, S A; Rose, J B

    2001-04-01

    The goals of this study were to assess watersheds impacted by high densities of OSDS (onsite sewage disposal systems) for evidence of fecal contamination and evaluate the occurrence of human pathogens in coastal waters off west Florida. Eleven stations (representing six watersheds) were intensively sampled for microbial indicators of fecal pollution (fecal coliform bacteria, enterococci, Clostridium perfringens and coliphage) and the human enteric pathogens, Cryptosporidium, Giardia, and enteroviruses during the summer rainy season (May-September 1996). Levels of all indicators ranged between 4000 CFU/100 ml. Cryptosporidium and Giardia were detected infrequently (6.8% and 2.3% of samples tested positive, respectively). Conversely, infectious enteroviruses were detected at low levels in 5 of the 6 watersheds sampled. Using cluster analysis, sites were grouped into two categories, high and low risks, based on combined levels of indicators. These results suggest that stations of highest pollution risk were located within areas of high OSDS densities. Furthermore, data indicate a subsurface transport of contaminated water to surface waters. The high prevalence of enteroviruses throughout the study area suggests a chronic pollution problem and potential risk to recreational swimmers in and around Sarasota Bay.

  19. Helicobacter pylori the Latent Human Pathogen or an Ancestral Commensal Organism

    Directory of Open Access Journals (Sweden)

    Jackie Li

    2018-04-01

    Full Text Available We dedicated this review to discuss Helicobacter pylori as one of the latest identified bacterial pathogens in humans and whether its role is mainly as a pathogen or a commensal. Diseases associated with this bacterium were highly prevalent during the 19th century and gradually have declined. Most diseases associated with H. pylori occurred in individuals older than 40 years of age. However, acquisition of H. pylori occurs mainly in young children inside the family setting. Prevalence and incidence of H. pylori has had a dramatic change in the last part of the 20th century and beginning of the 21th century. In developed countries there is a clear interruption of transmission and the lowest prevalence is observed in children younger than 10 years in these countries. A similar decline is observed but not at the same level in developing countries. Here we discuss the impact of the presence or absence of H. pylori in the health status of humans. We also discuss whether it is necessary or not to establish H. pylori eradication programs on light of the current decline in H. pylori prevalence.

  20. Streptococcus suis, an emerging drug-resistant animal and human pathogen

    Directory of Open Access Journals (Sweden)

    Claudio ePalmieri

    2011-11-01

    Full Text Available Streptococcus suis, a major porcine pathogen, has been receiving growing attention not only for its role in severe and increasingly reported infections in humans, but also for its involvement in drug resistance. Recent studies and the analysis of sequenced genomes have been providing important insights into the S. suis resistome, and have resulted in the identification of resistance determinants for tetracyclines, macrolides, aminoglycosides, chloramphenicol, antifolate drugs, streptothricin, and cadmium salts. Resistance gene-carrying genetic elements described so far include integrative and conjugative elements, transposons, genomic islands, phages, and chimeric elements. Some of these elements are similar to those reported in major streptococcal pathogens such as Streptococcus pyogenes, Streptococcus pneumoniae, and Streptococcus agalactiae and share the same chromosomal insertion sites. The available information strongly suggests that S. suis is an important antibiotic resistance reservoir that can contribute to the spread of resistance genes to the above-mentioned streptococci. S. suis is thus a paradigmatic example of possible intersections between animal and human resistomes.

  1. Prevalence and diversity of human pathogenic rickettsiae in urban versus rural habitats, Hungary.

    Science.gov (United States)

    Szekeres, Sándor; Docters van Leeuwen, Arieke; Rigó, Krisztina; Jablonszky, Mónika; Majoros, Gábor; Sprong, Hein; Földvári, Gábor

    2016-02-01

    Tick-borne rickettsioses belong to the important emerging infectious diseases worldwide. We investigated the potential human exposure to rickettsiae by determining their presence in questing ticks collected in an urban park of Budapest and a popular hunting and recreational forest area in southern Hungary. Differences were found in the infectious risk between the two habitats. Rickettsia monacensis and Rickettsia helvetica were identified with sequencing in questing Ixodes ricinus, the only ticks species collected in the city park. Female I. ricinus had a particularly high prevalence of R. helvetica (45%). Tick community was more diverse in the rural habitat with Dermacentor reticulatus ticks having especially high percentage (58%) of Rickettsia raoultii infection. We conclude that despite the distinct eco-epidemiological traits, the risk (hazard and exposure) of acquiring human pathogenic rickettsial infections in both the urban and the rural study sites exists.

  2. Metabolic adaptation of a human pathogen during chronic infections - a systems biology approach

    DEFF Research Database (Denmark)

    Thøgersen, Juliane Charlotte

    modeling to uncover how human pathogens adapt to the human host. Pseudomonas aeruginosa infections in cystic fibrosis patients are used as a model system for under-­‐ standing these adaptation processes. The exploratory systems biology approach facilitates identification of important phenotypes...... by classical molecular biology approaches where genes and reactions typically are investigated in a one to one relationship. This thesis is an example of how mathematical approaches and modeling can facilitate new biologi-­‐ cal understanding and provide new surprising ideas to important biological processes....... and metabolic pathways that are necessary or related to establishment of chronic infections. Archetypal analysis showed to be successful in extracting relevant phenotypes from global gene expression da-­‐ ta. Furthermore, genome-­‐scale metabolic modeling showed to be useful in connecting the genotype...

  3. Draft genome sequences of two opportunistic pathogenic strains of Staphylococcus cohnii isolated from human patients.

    Science.gov (United States)

    Mendoza-Olazarán, Soraya; Garcia-Mazcorro, José F; Morfín-Otero, Rayo; Villarreal-Treviño, Licet; Camacho-Ortiz, Adrián; Rodríguez-Noriega, Eduardo; Bocanegra-Ibarias, Paola; Maldonado-Garza, Héctor J; Dowd, Scot E; Garza-González, Elvira

    2017-01-01

    Herein, we report the draft-genome sequences and annotation of two opportunistic pathogenic strains of Staphylococcus cohnii isolated from humans. One strain (SC-57) was isolated from blood from a male patient in May 2006 and the other (SC-532) from a catheter from a male patient in June 2006. Similar to other genomes of Staphylococcus species, most genes (42%) of both strains are involved in metabolism of amino acids and derivatives, carbohydrates and proteins. Eighty (4%) genes are involved in virulence, disease, and defense and both species show phenotypic low biofilm production and evidence of increased antibiotic resistance associated to biofilm production. From both isolates, a new Staphylococcal Cassette Chromosome mec was detected: mec class A, ccr type 1. This is the first report of whole genome sequences of opportunistic S. cohnii isolated from human patients.

  4. Immune Recognition of Latency-insitigating Pathogens by Human Dendritic Cells

    DEFF Research Database (Denmark)

    Søndergaard, Jonas Nørskov

    for society. Consequently there is a pressing need to search for new treatment strategies. Nowadays it is known that HIV-1 and Mtb have acquired the ability to escape the removal from the body by exploiting the immune system for their own benefits. Dendritic cells (DCs) determine the way the immune response......Latent infections with the human pathogenic microorganisms Mycobacterium tuberculosis (Mtb) and the human immunodeficiency virus (HIV) are creating some of the most devastating pandemics to date, with great impact on the infected people’s lives, their expected lifetime, as well as general costs...... unfolds by signaling other immune cells how to respond. An early deregulation of the DCs may therefore propagate into detrimental effects in later stages of the immune response, and may permit HIV-1 and Mtb to become latent. Hence, understanding the way HIV-1 and Mtb interacts with DCs could lead to novel...

  5. The complete genome sequence and analysis of the human pathogen Campylobacter lari

    DEFF Research Database (Denmark)

    Miller, WG; Wang, G; Binnewies, Tim Terence

    2008-01-01

    Campylobacter lari is a member of the epsilon subdivision of the Proteobacteria and is part of the thermotolerant Campylobacter group, a clade that includes the human pathogen C. jejuni. Here we present the complete genome sequence of the human clinical isolate, C. lari RM2100. The genome of strain...... RM2100 is approximately 1.53 Mb and includes the 46 kb megaplasmid pCL2100. Also present within the strain RM2100 genome is a 36 kb putative prophage, termed CLIE1, which is similar to CJIE4, a putative prophage present within the C. jejuni RM1221 genome. Nearly all (90%) of the gene content...... in strain RM2100 is similar to genes present in the genomes of other characterized thermotolerant campylobacters. However, several genes involved in amino acid biosynthesis and energy metabolism, identified previously in other Campylobacter genomes, are absent from the C. lari RM2100 genome. Therefore, C...

  6. wKinMut-2: Identification and Interpretation of Pathogenic Variants in Human Protein Kinases

    DEFF Research Database (Denmark)

    Vazquez, Miguel; Pons, Tirso; Brunak, Søren

    2016-01-01

    forest approach. To understand the biological mechanisms causative of human diseases and cancer, information from pertinent reference knowledgebases and the literature is automatically mined, digested and homogenized. Variants are visualized in their structural contexts and residues affecting catalytic...... is often scattered across different sources, which makes the integrative analysis complex and laborious. wKinMut-2 constitutes a solution to facilitate the interpretation of the consequences of human protein kinase variation. Nine methods predict their pathogenicity, including a kinase-specific random...... and drug-binding are identified. Known protein-protein interactions are reported. Altogether, this information is intended to assist the generation of new working hypothesis to be corroborated with ulterior experimental work. The wKinMut-2 system, along with a user manual and examples is freely accessible...

  7. Adherence of Enterohemorrhagic Escherichia coli to Human Epithelial Cells: The Role of Intimin

    Science.gov (United States)

    1995-04-28

    mucosa (e.g., enterotoxigenic E. coli, Vibrio cholerae , and Boroetella pertussis); ii) damage to the epithelial cell microvilli induced by the...diarrhea in Mayan childm in Mexico . J. Infect. Dis. 163, 507-513. G6mez-Ouarte, O.G. and Kaper, J.B. (1995). A plasmid-encoded regulartory region...de la Cabaca, F., and Garibay, E.V. (1987). Enteroadherent Escherichia coli as a cause of diarrhea among children in Mexico . J . Clin. Microbiol. 25

  8. Escherichia coli O104 associated with human diarrhea, South Africa, 2004-2011.

    Science.gov (United States)

    Tau, Nomsa P; Meidany, Parastu; Smith, Anthony M; Sooka, Arvinda; Keddy, Karen H

    2012-08-01

    To determine the origin of >4,000 suspected diarrheagenic Escherichia coli strains isolated during 2004-2011 in South Africa, we identified 7 isolates as serotype O104; 5 as enteroaggregative E. coli O104:H4, and 2 as enteropathogenic E. coli O104:non-H4. Pulsed-field gel electrophoresis showed that these isolates were unrelated to the 2011 E. coli O104:H4 outbreak strain from Germany.

  9. Role of urinary cathelicidin LL-37 and human β-defensin 1 in uncomplicated Escherichia coli urinary tract infections

    DEFF Research Database (Denmark)

    Nielsen, Karen L; Dynesen, Pia; Larsen, Preben

    2014-01-01

    Cathelicidin (LL-37) and human β-defensin 1 (hBD-1) are important components of the innate defense in the urinary tract. The aim of this study was to characterize whether these peptides are important for developing uncomplicated Escherichia coli urinary tract infections (UTIs). This was investiga......Cathelicidin (LL-37) and human β-defensin 1 (hBD-1) are important components of the innate defense in the urinary tract. The aim of this study was to characterize whether these peptides are important for developing uncomplicated Escherichia coli urinary tract infections (UTIs......). This was investigated by comparing urinary peptide levels of UTI patients during and after infection to those of controls, as well as characterizing the fecal flora of participants with respect to susceptibility to LL-37 and in vivo virulence. Forty-seven UTI patients and 50 controls who had never had a UTI were...... included. Participants were otherwise healthy, premenopausal, adult women. LL-37 MIC levels were compared for fecal E. coli clones from patients and controls and were also compared based on phylotypes (A, B1, B2, and D). In vivo virulence was investigated in the murine UTI model by use of selected fecal...

  10. Differentiation of the emerging human pathogens Trichosporon asahii and Trichosporon asteroides from other pathogenic yeasts and moulds by using species-specific monoclonal antibodies.

    Directory of Open Access Journals (Sweden)

    Genna E Davies

    Full Text Available The fungal genus Trichosporon contains emerging opportunistic pathogens of humans, and is the third most commonly isolated non-candidal yeast from humans. Trichosporon asahii and T. asteroides are the most important species causing disseminated disease in immunocompromised patients, while inhalation of T. asahii spores is the most important cause of summer-type hypersensitivity pneumonitis in healthy individuals. Trichosporonosis is misdiagnosed as candidiasis or cryptococcosis due to a lack of awareness and the ambiguity of diagnostic tests for these pathogens. In this study, hybridoma technology was used to produce two murine monoclonal antibodies (MAbs, CA7 and TH1, for detection and differentiation of Trichosporon from other human pathogenic yeasts and moulds. The MAbs react with extracellular antigens from T. asahii and T. asteroides, but do not recognise other related Trichosporon spp., or unrelated pathogenic yeasts and moulds including Candida, Cryptococcus, Aspergillus, Fusarium, and Scedosporium spp., or the etiologic agents of mucormycosis. Immunofluorescence and Western blotting studies show that MAb CA7, an immunoglobulin G1 (IgG1, binds to a major 60 kDa glycoprotein antigen produced on the surface of hyphae, while TH1, an immunoglobulin M (IgM, binds to an antigen produced on the surface of conidia. The MAbs were used in combination with a standard mycological growth medium (Sabouraud Dextrose Agar to develop an enzyme-linked immunosorbent assay (ELISA for differentiation of T. asahii from Candida albicans and Cryptococcus neoformans in single and mixed species cultures. The MAbs represent a major advance in the identification of T. asahii and T. asteroides using standard mycological identification methods.

  11. "It's a gut feeling" - Escherichia coli biofilm formation in the gastrointestinal tract environment

    DEFF Research Database (Denmark)

    Rossi, Elio; Cimdins, Annika; Luthje, Petra

    2018-01-01

    Escherichia coli can commonly be found, either as a commensal, probiotic or a pathogen, in the human gastrointestinal (GI) tract. Biofilm formation and its regulation is surprisingly variable, although distinct regulatory pattern of red, dry and rough (rdar) biofilm formation arise in certain pat...

  12. Survival of foodborne pathogens (Escherichia coli O157:H7, Salmonella Typhimurium, Staphylococcus aureus, Listeria monocytogenes, and Vibrio parahaemolyticus) in raw ready-to-eat crab marinated in soy sauce.

    Science.gov (United States)

    Cho, T J; Kim, N H; Kim, S A; Song, J H; Rhee, M S

    2016-12-05

    Knowing the survival characteristics of foodborne pathogens in raw ready-to-eat (RTE) seafood is the key to predicting whether they pose a microbiological hazard. The present study examined the survival of Escherichia coli O157:H7, Salmonella Typhimurium, Vibrio parahaemoliticus, Listeria monocytogenes, and Staphylococcus aureus in raw RTE crab marinated in soy sauce. Inoculated crabs (initial bacterial population=4.1-4.4logCFU/g) were immersed in soy sauce and then stored at refrigeration (5°C) or room temperature (22°C) for up to 28days. At 5°C, all bacteria (except V. parahaemolyticus) survived in crab samples until Day 28 (counts of 1.4, 1.6, 3.1, 3.2 log CFU/g for E. coli O157:H7, S. Typhimurium, L. monocytogenes, and S. aureus, respectively). However, at 22°C, all tested bacteria were more susceptible to the antimicrobial effects of marination. Regardless of temperature, foodborne pathogens attached to crab samples were more resistant to marination than those suspended in soy sauce samples; however, the survival pattern for each species was different. Gram-positive bacteria were most resistant to marination conditions (high salinity, low pH), whereas V. parahaemolyticus was extremely susceptible. Marination is the only antibacterial step in the manufacturing processes; however, the results presented herein reveal that this is not sufficient to inactivate foodborne pathogens. In particular, the survival of pathogens on crabs at refrigeration temperature may pose a major hazard for the consumption of raw RTE seafood. Thus, appropriate decontamination methods and implementation of safety management practices are needed. This study provides predictive microbiological information of foodborne pathogens in raw RTE seafood with marination. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Environmental controls, oceanography and population dynamics of pathogens and harmful algal blooms: connecting sources to human exposure

    Directory of Open Access Journals (Sweden)

    Minnett Peter

    2008-11-01

    Full Text Available Abstract Coupled physical-biological models are capable of linking the complex interactions between environmental factors and physical hydrodynamics to simulate the growth, toxicity and transport of infectious pathogens and harmful algal blooms (HABs. Such simulations can be used to assess and predict the impact of pathogens and HABs on human health. Given the widespread and increasing reliance of coastal communities on aquatic systems for drinking water, seafood and recreation, such predictions are critical for making informed resource management decisions. Here we identify three challenges to making this connection between pathogens/HABs and human health: predicting concentrations and toxicity; identifying the spatial and temporal scales of population and ecosystem interactions; and applying the understanding of population dynamics of pathogens/HABs to management strategies. We elaborate on the need to meet each of these challenges, describe how modeling approaches can be used and discuss strategies for moving forward in addressing these challenges.

  14. Comparative genomics allowed the identification of drug targets against human fungal pathogens

    Directory of Open Access Journals (Sweden)

    Martins Natalia F

    2011-01-01

    Full Text Available Abstract Background The prevalence of invasive fungal infections (IFIs has increased steadily worldwide in the last few decades. Particularly, there has been a global rise in the number of infections among immunosuppressed people. These patients present severe clinical forms of the infections, which are commonly fatal, and they are more susceptible to opportunistic fungal infections than non-immunocompromised people. IFIs have historically been associated with high morbidity and mortality, partly because of the limitations of available antifungal therapies, including side effects, toxicities, drug interactions and antifungal resistance. Thus, the search for alternative therapies and/or the development of more specific drugs is a challenge that needs to be met. Genomics has created new ways of examining genes, which open new strategies for drug development and control of human diseases. Results In silico analyses and manual mining selected initially 57 potential drug targets, based on 55 genes experimentally confirmed as essential for Candida albicans or Aspergillus fumigatus and other 2 genes (kre2 and erg6 relevant for fungal survival within the host. Orthologs for those 57 potential targets were also identified in eight human fungal pathogens (C. albicans, A. fumigatus, Blastomyces dermatitidis, Paracoccidioides brasiliensis, Paracoccidioides lutzii, Coccidioides immitis, Cryptococcus neoformans and Histoplasma capsulatum. Of those, 10 genes were present in all pathogenic fungi analyzed and absent in the human genome. We focused on four candidates: trr1 that encodes for thioredoxin reductase, rim8 that encodes for a protein involved in the proteolytic activation of a transcriptional factor in response to alkaline pH, kre2 that encodes for α-1,2-mannosyltransferase and erg6 that encodes for Δ(24-sterol C-methyltransferase. Conclusions Our data show that the comparative genomics analysis of eight fungal pathogens enabled the identification of

  15. Potent innate immune response to pathogenic leptospira in human whole blood.

    Directory of Open Access Journals (Sweden)

    Marga G A Goris

    Full Text Available BACKGROUND: Leptospirosis is caused by pathogenic spirochetes of the genus Leptospira. The bacteria enter the human body via abraded skin or mucous membranes and may disseminate throughout. In general the clinical picture is mild but some patients develop rapidly progressive, severe disease with a high case fatality rate. Not much is known about the innate immune response to leptospires during haematogenous dissemination. Previous work showed that a human THP-1 cell line recognized heat-killed leptospires and leptospiral LPS through TLR2 instead of TLR4. The LPS of virulent leptospires displayed a lower potency to trigger TNF production by THP-1 cells compared to LPS of non-virulent leptospires. METHODOLOGY/PRINCIPAL FINDINGS: We investigated the host response and killing of virulent and non-virulent Leptospira of different serovars by human THP-1 cells, human PBMC's and human whole blood. Virulence of each leptospiral strain was tested in a well accepted standard guinea pig model. Virulent leptospires displayed complement resistance in human serum and whole blood while in-vitro attenuated non-virulent leptospires were rapidly killed in a complement dependent manner. In vitro stimulation of THP-1 and PBMC's with heat-killed and living leptospires showed differential serovar and cell type dependence of cytokine induction. However, at low, physiological, leptospiral dose, living virulent complement resistant strains were consistently more potent in whole blood stimulations than the corresponding non-virulent complement sensitive strains. At higher dose living virulent and non-virulent leptospires were equipotent in whole blood. Inhibition of different TLRs indicated that both TLR2 and TLR4 as well as TLR5 play a role in the whole blood cytokine response to living leptospires. CONCLUSIONS/SIGNIFICANCE: Thus, in a minimally altered system as human whole blood, highly virulent Leptospira are potent inducers of the cytokine response.

  16. Immunological Control of Viral Infections in Bats and the Emergence of Viruses Highly Pathogenic to Humans

    Directory of Open Access Journals (Sweden)

    Tony Schountz

    2017-09-01

    Full Text Available Bats are reservoir hosts of many important viruses that cause substantial disease in humans, including coronaviruses, filoviruses, lyssaviruses, and henipaviruses. Other than the lyssaviruses, they do not appear to cause disease in the reservoir bats, thus an explanation for the dichotomous outcomes of infections of humans and bat reservoirs remains to be determined. Bats appear to have a few unusual features that may account for these differences, including evidence of constitutive interferon (IFN activation and greater combinatorial diversity in immunoglobulin genes that do not undergo substantial affinity maturation. We propose these features may, in part, account for why bats can host these viruses without disease and how they may contribute to the highly pathogenic nature of bat-borne viruses after spillover into humans. Because of the constitutive IFN activity, bat-borne viruses may be shed at low levels from bat cells. With large naive antibody repertoires, bats may control the limited virus replication without the need for rapid affinity maturation, and this may explain why bats typically have low antibody titers to viruses. However, because bat viruses have evolved in high IFN environments, they have enhanced countermeasures against the IFN response. Thus, upon infection of human cells, where the IFN response is not constitutive, the viruses overwhelm the IFN response, leading to abundant virus replication and pathology.

  17. Comparative genomics of pathogenic Leptospira interrogans serovar Canicola isolated from swine and human in Brazil

    Directory of Open Access Journals (Sweden)

    Luisa Z Moreno

    Full Text Available Leptospira interrogans serovar Canicola is one of the most important pathogenic serovars for the maintenance of urban leptospirosis. Even though it is considered highly adapted to dogs, serovar Canicola infection has already been described in other animals and even a few human cases. Here, we present the genomic characterisation of two Brazilian L. interrogans serovar Canicola strains isolated from slaughtered sows (L0-3 and L0-4 and their comparison with human strain Fiocruz LV133. It was observed that the porcine serovar Canicola strains present the genetic machinery to cause human infection and, therefore, represent a higher risk to public health. Both human and porcine serovar Canicola isolates also presented sequences with high identity to the Chinese serovar Canicola published plasmids pGui1 and pGui2. The plasmids identification in the Brazilian and Chinese serovar Canicola strains suggest that extra-chromosomal elements are one more feature of this serovar that was previously unnoticed.

  18. Modelling the regulation of thermal adaptation in Candida albicans, a major fungal pathogen of humans.

    Directory of Open Access Journals (Sweden)

    Michelle D Leach

    Full Text Available Eukaryotic cells have evolved mechanisms to sense and adapt to dynamic environmental changes. Adaptation to thermal insults, in particular, is essential for their survival. The major fungal pathogen of humans, Candida albicans, is obligately associated with warm-blooded animals and hence occupies thermally buffered niches. Yet during its evolution in the host it has retained a bona fide heat shock response whilst other stress responses have diverged significantly. Furthermore the heat shock response is essential for the virulence of C. albicans. With a view to understanding the relevance of this response to infection we have explored the dynamic regulation of thermal adaptation using an integrative systems biology approach. Our mathematical model of thermal regulation, which has been validated experimentally in C. albicans, describes the dynamic autoregulation of the heat shock transcription factor Hsf1 and the essential chaperone protein Hsp90. We have used this model to show that the thermal adaptation system displays perfect adaptation, that it retains a transient molecular memory, and that Hsf1 is activated during thermal transitions that mimic fever. In addition to providing explanations for the evolutionary conservation of the heat shock response in this pathogen and the relevant of this response to infection, our model provides a platform for the analysis of thermal adaptation in other eukaryotic cells.

  19. Activation of the TREM-1 pathway in human monocytes by periodontal pathogens and oral commensal bacteria.

    Science.gov (United States)

    Varanat, M; Haase, E M; Kay, J G; Scannapieco, F A

    2017-08-01

    Periodontitis is a highly prevalent disease caused in part by an aberrant host response to the oral multi-species biofilm. A balance between the oral bacteria and host immunity is essential for oral health. Imbalances in the oral microbiome lead to an uncontrolled host inflammatory response and subsequent periodontal disease (i.e. gingivitis and periodontitis). TREM-1 is a signaling receptor present on myeloid cells capable of acting synergistically with other pattern recognition receptors leading to amplification of inflammatory responses. The aim of this study was to investigate the activation of the TREM-1 pathway in the human monocyte-like cell line THP-1 exposed to both oral pathogens and commensals. The relative expression of the genes encoding TREM-1 and its adapter protein DAP12 were determined by quantitative real-time polymerase chain reaction. The surface expression of TREM-1 was determined by flow cytometry. Soluble TREM-1 and cytokines were measured by enzyme-linked immunosorbent assay. The results demonstrate that both commensal and pathogenic oral bacteria activate the TREM-1 pathway, resulting in a proinflammatory TREM-1 activity-dependent increase in proinflammatory cytokine production. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Linalool-induced oxidative stress processes in the human pathogen Candida albicans.

    Science.gov (United States)

    Máté, Gábor; Kovács, Dominika; Gazdag, Zoltán; Pesti, Miklós; Szántó, Árpád

    2017-06-01

    The present study investigated the linalool (Lol)-induced effects in acute toxicity tests in the human pathogen Candida albicans (C. albicans). Lol treatments induced reduced germ tube formation of the pathogen, which plays a crucial role in the virulence. In comparison with the untreated control, the exposure of 107 cells ml -1 to 0.7 mM or 1.4 mM Lol for one hour induced 20% and 30% decrements, respectively, in the colony-forming ability. At the same time, these treatments caused dose-dependent decrease in the levels of superoxide anion radical and total reactive oxygen species, while there was 1.5 and 1.8-fold increases in the concentrations of peroxides and lipid peroxides, respectively, indicating oxidative stress induction in the presence of Lol. Lol treatments resulted in different adaptive modifications of the antioxidant system. In 0.7 mM-treated cells, decreased specific activities of superoxide dismutase and catalase were detected, while exposure to 1.4 mM Lol resulted in the up-regulation of catalase, glutathione reductase and glutathione peroxidases.

  1. Antifungal susceptibility profiles of 1698 yeast reference strains revealing potential emerging human pathogens.

    Directory of Open Access Journals (Sweden)

    Marie Desnos-Ollivier

    Full Text Available New molecular identification techniques and the increased number of patients with various immune defects or underlying conditions lead to the emergence and/or the description of novel species of human and animal fungal opportunistic pathogens. Antifungal susceptibility provides important information for ecological, epidemiological and therapeutic issues. The aim of this study was to assess the potential risk of the various species based on their antifungal drug resistance, keeping in mind the methodological limitations. Antifungal susceptibility profiles to the five classes of antifungal drugs (polyens, azoles, echinocandins, allylamines and antimetabolites were determined for 1698 yeast reference strains belonging to 992 species (634 Ascomycetes and 358 Basidiomycetes. Interestingly, geometric mean minimum inhibitory concentrations (MICs of all antifungal drugs tested were significantly higher for Basidiomycetes compared to Ascomycetes (p<0.001. Twenty four strains belonging to 23 species of which 19 were Basidiomycetes seem to be intrinsically "resistant" to all drugs. Comparison of the antifungal susceptibility profiles of the 4240 clinical isolates and the 315 reference strains belonging to 53 shared species showed similar results. Even in the absence of demonstrated in vitro/in vivo correlation, knowing the in vitro susceptibility to systemic antifungal agents and the putative intrinsic resistance of yeast species present in the environment is important because they could become opportunistic pathogens.

  2. Pathogen reduction by ultraviolet C light effectively inactivates human white blood cells in platelet products.

    Science.gov (United States)

    Pohler, Petra; Müller, Meike; Winkler, Carla; Schaudien, Dirk; Sewald, Katherina; Müller, Thomas H; Seltsam, Axel

    2015-02-01

    Residual white blood cells (WBCs) in cellular blood components induce a variety of adverse immune events, including nonhemolytic febrile transfusion reactions, alloimmunization to HLA antigens, and transfusion-associated graft-versus-host disease (TA-GVHD). Pathogen reduction (PR) methods such as the ultraviolet C (UVC) light-based THERAFLEX UV-Platelets system were developed to reduce the risk of transfusion-transmitted infection. As UVC light targets nucleic acids, it interferes with the replication of both pathogens and WBCs. This preclinical study aimed to evaluate the ability of UVC light to inactivate contaminating WBCs in platelet concentrates (PCs). The in vitro and in vivo function of WBCs from UVC-treated PCs was compared to that of WBCs from gamma-irradiated and untreated PCs by measuring cell viability, proliferation, cytokine secretion, antigen presentation in vitro, and xenogeneic GVHD responses in a humanized mouse model. UVC light was at least as effective as gamma irradiation in preventing GVHD in the mouse model. It was more effective in suppressing T-cell proliferation (>5-log reduction in the limiting dilution assay), cytokine secretion, and antigen presentation than gamma irradiation. The THERAFLEX UV-Platelets (MacoPharma) PR system can substitute gamma irradiation for TA-GVHD prophylaxis in platelet (PLT) transfusion. Moreover, UVC treatment achieves suppression of antigen presentation and inhibition of cytokine accumulation during storage of PCs, which has potential benefits for transfusion recipients. © 2014 AABB.

  3. Genetic diversity, phylogroup distribution and virulence gene profile of pks positive Escherichia coli colonizing human intestinal polyps.

    Science.gov (United States)

    Sarshar, Meysam; Scribano, Daniela; Marazzato, Massimiliano; Ambrosi, Cecilia; Aprea, Maria Rita; Aleandri, Marta; Pronio, Annamaria; Longhi, Catia; Nicoletti, Mauro; Zagaglia, Carlo; Palamara, Anna Teresa; Conte, Maria Pia

    2017-11-01

    Some Escherichia coli strains of phylogroup B2 harbor a (pks) pathogenicity island that encodes a polyketide-peptide genotoxin called colibactin. It causes DNA double-strand breaks and megalocytosis in eukaryotic cells and it may contribute to cancer development. Study of bacterial community that colonizes the adenomatous polyp lesion, defined as precancerous lesions, could be helpful to assess if such pathogenic bacteria possess a role in the polyp progression to cancer. In this cross-sectional study, a total of 1500 E. coli isolates were obtained from biopsies of patients presenting adenomatous colon polyps, the normal tissues adjacent to the polyp lesion and patients presenting normal mucosa. pks island frequency, phylogenetic grouping, fingerprint genotyping, and virulence gene features of pks positive (pks + ) E. coli isolates were performed. We found pks + E. coli strongly colonize two patients presenting polypoid lesions and none were identified in patients presenting normal mucosa. Predominant phylogroups among pks + E. coli isolates were B2, followed by D. Clustering based on fragment profiles of composite analysis, typed the pks + isolates into 5 major clusters (I-V) and 17 sub-clusters, demonstrating a high level of genetic diversity among them. The most prevalent virulence genes were fimH and fyuA (100%), followed by vat (92%), hra and papA (69%), ibeA (28%), and hlyA (25%). Our results revealed that pks + E. coli can colonize the precancerous lesions, with a high distribution in both the polyp lesions and in normal tissues adjacent to the lesion. The high differences in fingerprinting patterns obtained indicate that pks + E. coli strains were genetically diverse, possibly allowing them to more easily adapt to environmental variations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Detection of Escherichia coli Shiga toxin-producing in viscera of animals bovine and chicken intended for human consumption

    Directory of Open Access Journals (Sweden)

    Zotta, Claudio Marcelo

    2016-05-01

    Full Text Available Escherichia coli producing-Shiga toxin (STEC is associated with foodborne illness (ETA. It can cause bloody diarrhea, hemorrhagic colitis, hemolytic uremic syndrome and thrombotic thrombocytopenic purpura. The aim of the study was to detect the presence of STEC in samples of organs (offal of bovine animals and chicken intended for human consumption. Between 2008-2009, 76 samples bovine entrails and 22 chicken viscera samples, were processed and underwent, as screening technique, the polymerase chain reaction (PCR for detection of multiple genes coding for the factors virulence: Shiga toxin (stx1, stx2 and rfbO157 gene coding for capsular O157 lipopolysaccharide LPS. Samples from bovine offal development showed 84.2% for coliform bacteria. These isolates showed no virulence factor that characterized as STEC or Escherichia coli O157. The chicken offal samples showed 95.5% of development for coliform bacteria, being negative for the presence of genes encoding the Shiga toxins 1 and 2 (stx1, stx2 and rfbO157 gene. While this work does not STEC was detected, the presence of coliform bacteria in the samples studied makes these foods should be considered as potentially hazardous to consume undercooked with the consequent possibility of filing ETA.

  5. 3-Bromopyruvate: a novel antifungal agent against the human pathogen Cryptococcus neoformans.

    Science.gov (United States)

    Dyląg, Mariusz; Lis, Paweł; Niedźwiecka, Katarzyna; Ko, Young H; Pedersen, Peter L; Goffeau, Andre; Ułaszewski, Stanisław

    2013-05-03

    We have investigated the antifungal activity of the pyruvic acid analogue: 3-bromopyruvate (3-BP). Growth inhibition by 3-BP of 110 strains of yeast-like and filamentous fungi was tested by standard spot tests or microdilution method. The human pathogen Cryptococcus neoformans exhibited a low Minimal Inhibitory Concentration (MIC) of 0.12-0.15 mM 3-BP. The high toxicity of 3-BP toward C. neoformans correlated with high intracellular accumulation of 3-BP and also with low levels of intracellular ATP and glutathione. Weak cytotoxicity towards mammalian cells and lack of resistance conferred by the PDR (Pleiotropic Drug Resistance) network in the yeast Saccharomyces cerevisiae, are other properties of 3-BP that makes it a novel promising anticryptococcal drug. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Complement and innate immune evasion strategies of the human pathogenic fungus Candida albicans.

    Science.gov (United States)

    Luo, Shanshan; Skerka, Christine; Kurzai, Oliver; Zipfel, Peter F

    2013-12-15

    Candida albicans is a medically important fungus that can cause a wide range of diseases ranging from superficial infections to disseminated disease, which manifests primarily in immuno-compromised individuals. Despite the currently applied anti-fungal therapies, both mortality and morbidity caused by this human pathogenic fungus are still unacceptably high. Therefore new prophylactic and therapeutic strategies are urgently needed to prevent fungal infection. In order to define new targets for combating fungal disease, there is a need to understand the immune evasion strategies of C. albicans in detail. In this review, we summarize different sophisticated immune evasion strategies that are utilized by C. albicans. The description of the molecular mechanisms used for immune evasion does on one hand help to understand the infection process, and on the other hand provides valuable information to define new strategies and diagnostic approaches to fight and interfere with Candida infections. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Pharmaceutical Properties of Marine Macroalgal Communities from Gulf of Mannar against Human Fungal Pathogens

    Directory of Open Access Journals (Sweden)

    R. Lavanya

    2012-05-01

    Full Text Available Objective: To evaluate the antifungal activity of seaweed extracts against human fungal pathogens. Methods: Antifungal activity of six species of marine macro algae Codium decorticatum, Caulerpa scalpelliformis, Gracilaria crassa, Acanthophora spicifera, Sargassum wightii and Turbinaria conoides using different solvents acetone, methanol, chloroform, diethyl ether, ethyl acetate, hexane and aqueous were evaluated against Fusarium oxysporum, Fusarium udum, Fusarium solani, Rhizoctonia solani, Alternaria alternat, Botrytis cinerea, Candida albicans, Candida krusei, Aspergillus niger and Aspergillus flavus. Results: From the investigation, the maximum activity was recorded from Phaeophyceae, Chlorophyceae and Rhodophyceae respectively. The maximum inhibition zone was noted in acetone extract of T. conoides against F. udum. Conclusions: From these findings, it is concluded that brown seaweed Turbinaria conoides is more effective than the green and red seaweeds.

  8. Plasma membrane organization promotes virulence of the human fungal pathogen Candida albicans.

    Science.gov (United States)

    Douglas, Lois M; Konopka, James B

    2016-03-01

    Candida albicans is a human fungal pathogen capable of causing lethal systemic infections. The plasma membrane plays key roles in virulence because it not only functions as a protective barrier, it also mediates dynamic functions including secretion of virulence factors, cell wall synthesis, invasive hyphal morphogenesis, endocytosis, and nutrient uptake. Consistent with this functional complexity, the plasma membrane is composed of a wide array of lipids and proteins. These components are organized into distinct domains that will be the topic of this review. Some of the plasma membrane domains that will be described are known to act as scaffolds or barriers to diffusion, such as MCC/eisosomes, septins, and sites of contact with the endoplasmic reticulum. Other zones mediate dynamic processes, including secretion, endocytosis, and a special region at hyphal tips that facilitates rapid growth. The highly organized architecture of the plasma membrane facilitates the coordination of diverse functions and promotes the pathogenesis of C. albicans.

  9. Plasma membrane organization promotes virulence of the human fungal pathogen Candida albicans

    Science.gov (United States)

    Douglas, Lois M.; Konopka, James. B.

    2017-01-01

    Candida albicans is a human fungal pathogen capable of causing lethal systemic infections. The plasma membrane plays key roles in virulence because it not only functions as a protective barrier, it also mediates dynamic functions including secretion of virulence factors, cell wall synthesis, invasive hyphal morphogenesis, endocytosis, and nutrient uptake. Consistent with this functional complexity, the plasma membrane is composed of a wide array of lipids and proteins. These components are organized into distinct domains that will be the topic of this review. Some of the plasma membrane domains that will be described are known to act as scaffolds or barriers to diffusion, such as MCC/eisosomes, septins, and sites of contact with the endoplasmic reticulum. Other zones mediate dynamic processes, including secretion, endocytosis, and a special region at hyphal tips that facilitates rapid growth. The highly organized architecture of the plasma membrane facilitates the coordination of diverse functions and promotes the pathogenesis of C. albicans. PMID:26920878

  10. Comparison of Escherichia coli Isolates from humans, food, and farm and companion animals for presence of Shiga toxin-producing E. coli virulence markers.

    Science.gov (United States)

    Murinda, Shelton E; Nguyen, Lien T; Landers, Tippi L; Draughon, F Ann; Mathew, Alan G; Hogan, Joseph S; Smith, K Larry; Hancock, Dale D; Oliver, Stephen P

    2004-01-01

    The objective of this study was to characterize Escherichia coli isolates from dairy cows/feedlots, calves, mastitis, pigs, dogs, parrot, iguana, human disease, and food products for prevalence of Shiga toxin-producing E. coli (STEC) virulence markers. The rationale of the study was that, isolates of the same serotypes that were obtained from different sources and possessed the same marker profiles, could be cross-species transmissible. Multiplex polymerase chain reaction (PCR) was used to detect presence of genes encoding Shiga toxin 1 and 2 (stx1 and stx2), H7 flagella (flicC), enterohemolysin (hly) and intimin (eaeA) in E. coli isolates (n = 400). Shiga toxin-producing isolates were tested for production of Shiga toxins (Stx1 and Stx2 and enterohemolysin. Of the E. coli O157:H7/H- strains, 150 of 164 (mostly human, cattle, and food) isolates were stx+. Sixty-five percent of O157 STEC produced both Stx1 and Stx2; 32% and 0.7% produced Stx2 or Stx1, respectively. Ninety-eight percent of O157 STEC had sequences for genes encoding intimin and enterohemolysin. Five of 20 E. coli O111, 4 of 14 O128 and 4 of 10 O26 were stx+ . Five of 6 stx+ O26 and O111 produced Stx1, however, stx+ O128 were Stx-negative. Acid resistance (93.3%) and tellurite resistance (87.3%) were common attributes of O157 STEC, whereas, non-O157 stx+ strains exhibited 38.5% and 30.8% of the respective resistances. stx-positive isolates were mostly associated with humans and cattle, whereas, all isolates from mastitis (n = 105), and pigs, dogs, parrot and iguanas (n = 48) were stx-negative. Multiplex PCR was an effective tool for characterizing STEC pathogenic profiles and distinguished STEC O157:H7 from other STEC. Isolates from cattle and human disease shared similar toxigenic profiles, whereas isolates from other disease sources had few characteristics in common with the former isolates. These data suggest interspecies transmissibility of certain serotypes, in particular, STEC O157:H7, between

  11. Siderophore biosynthesis coordinately modulated the virulence-associated interactive metabolome of uropathogenic Escherichia coli and human urine.

    Science.gov (United States)

    Su, Qiao; Guan, Tianbing; Lv, Haitao

    2016-04-14

    Uropathogenic Escherichia coli (UPEC) growth in women's bladders during urinary tract infection (UTI) incurs substantial chemical exchange, termed the "interactive metabolome", which primarily accounts for the metabolic costs (utilized metabolome) and metabolic donations (excreted metabolome) between UPEC and human urine. Here, we attempted to identify the individualized interactive metabolome between UPEC and human urine. We were able to distinguish UPEC from non-UPEC by employing a combination of metabolomics and genetics. Our results revealed that the interactive metabolome between UPEC and human urine was markedly different from that between non-UPEC and human urine, and that UPEC triggered much stronger perturbations in the interactive metabolome in human urine. Furthermore, siderophore biosynthesis coordinately modulated the individualized interactive metabolome, which we found to be a critical component of UPEC virulence. The individualized virulence-associated interactive metabolome contained 31 different metabolites and 17 central metabolic pathways that were annotated to host these different metabolites, including energetic metabolism, amino acid metabolism, and gut microbe metabolism. Changes in the activities of these pathways mechanistically pinpointed the virulent capability of siderophore biosynthesis. Together, our findings provide novel insights into UPEC virulence, and we propose that siderophores are potential targets for further discovery of drugs to treat UPEC-induced UTI.

  12. Comparison of extended-spectrum-β-lactamase (ESBL) carrying Escherichia coli from sewage sludge and human urinary tract infection

    International Nuclear Information System (INIS)

    Zarfel, G.; Galler, H.; Feierl, G.; Haas, D.; Kittinger, C.; Leitner, E.; Grisold, A.J.; Mascher, F.; Posch, J.; Pertschy, B.; Marth, E.; Reinthaler, F.F.

    2013-01-01

    For many years, extended-spectrum-beta-lactamase (ESBL) producing bacteria were a problem mainly located in medical facilities. Within the last decade however, ESBL-producing bacteria have started spreading into the community and the environment. In this study, ESBL-producing Escherichia coli from sewage sludge were collected, analysed and compared to ESBL-E. coli from human urinary tract infections (UTIs). The dominant ESBL-gene-family in both sample groups was bla CTX-M , which is the most prevalent ESBL-gene-family in human infection. Still, the distribution of ESBL genes and the frequency of additional antibiotic resistances differed in the two sample sets. Nevertheless, phenotyping did not divide isolates of the two sources into separate groups, suggesting similar strains in both sample sets. We speculate that an exchange is taking place between the ESBL E. coli populations in infected humans and sewage sludge, most likely by the entry of ESBL E. coli from UTIs into the sewage system. - Highlights: ► ESBL E. coli strains from sewage sludge harbour the same dominant ESBL enzymes as human isolates. ► High resistance rates for important antibiotics can be found in isolated ESBL strains. ► High phenotypic diversity of ESBL E. coli isolates from sewage sludge and from human sources. - The distribution of ESBL resistance genes in isolates from patients and environmental samples.

  13. Antimicrobial Property of Extracts of Indian Lichen against Human Pathogenic Bacteria

    Directory of Open Access Journals (Sweden)

    Priya Srivastava

    2013-01-01

    Full Text Available Context. Usnea ghattensis G. Awasthi (Usneaceae endemic fruticose lichen found growing luxuriantly in Northern Western Ghats of India, it also contains Usnic acid as a major chemical and tested against some human pathogenic bacteria. Objective. To explore antimicrobial properties of Usnea ghattensis against some human pathogenic bacteria. Materials and Methods. The lichen was extracted in acetone, methanol, and ethanol. In vitro antimicrobial activity was tested initially by Kirby-Bauer technique of disc diffusion method and was confirmed by minimum inhibitory concentration using Broth microdilution method according to the NCCLS guidelines. Results. Ethanol extract was most effective against Bacillus cereus and Pseudomonas aeruginosa with a zone of inhibition 29.8 ± 0.6 mm and 12.3 ± 0.5 mm diameters at a concentration of 0.2 mg/mL. Acetone and methanol extract demonstrated almost similar activity against Staphylococcus aureus and the zone of inhibition was 24.6 ± 0.5 and 24.7 ± 0.4 mm. Only methanol extract was showing activity against Streptococcus faecalis with a 13.5 ± 0.8 mm zone. MIC value noted against Staphylococcus aureus and Streptococcus faecalis was 6.25 μg/mL and 25 μg/mL, whereas against Bacillus cereus and Pseudomonas aeruginosa, MIC calculated was 3.125 μg/mL and 200 μg/mL, respectively. Conclusion. The present study demonstrates the relatively higher activity of this lichen against not only gram (+ but significantly also against gram (− bacteria. This indicates that this lichen might be a rich source of effective antimicrobial agents.

  14. An integrative in-silico approach for therapeutic target identification in the human pathogen Corynebacterium diphtheriae.

    Directory of Open Access Journals (Sweden)

    Syed Babar Jamal

    Full Text Available Corynebacterium diphtheriae (Cd is a Gram-positive human pathogen responsible for diphtheria infection and once regarded for high mortalities worldwide. The fatality gradually decreased with improved living standards and further alleviated when many immunization programs were introduced. However, numerous drug-resistant strains emerged recently that consequently decreased the efficacy of current therapeutics and vaccines, thereby obliging the scientific community to start investigating new therapeutic targets in pathogenic microorganisms. In this study, our contributions include the prediction of modelome of 13 C. diphtheriae strains, using the MHOLline workflow. A set of 463 conserved proteins were identified by combining the results of pangenomics based core-genome and core-modelome analyses. Further, using subtractive proteomics and modelomics approaches for target identification, a set of 23 proteins was selected as essential for the bacteria. Considering human as a host, eight of these proteins (glpX, nusB, rpsH, hisE, smpB, bioB, DIP1084, and DIP0983 were considered as essential and non-host homologs, and have been subjected to virtual screening using four different compound libraries (extracted from the ZINC database, plant-derived natural compounds and Di-terpenoid Iso-steviol derivatives. The proposed ligand molecules showed favorable interactions, lowered energy values and high complementarity with the predicted targets. Our proposed approach expedites the selection of C. diphtheriae putative proteins for broad-spectrum development of novel drugs and vaccines, owing to the fact that some of these targets have already been identified and validated in other organisms.

  15. The Effect of Cryopreserved Human Placental Tissues on Biofilm Formation of Wound-Associated Pathogens.

    Science.gov (United States)

    Mao, Yong; Singh-Varma, Anya; Hoffman, Tyler; Dhall, Sandeep; Danilkovitch, Alla; Kohn, Joachim

    2018-01-08

    Biofilm, a community of bacteria, is tolerant to antimicrobial agents and ubiquitous in chronic wounds. In a chronic DFU (Diabetic Foot Ulcers) clinical trial, the use of a human cryopreserved viable amniotic membrane (CVAM) resulted in a high rate of wound closure and reduction of wound-related infections. Our previous study demonstrated that CVAM possesses intrinsic antimicrobial activity against a spectrum of wound-associated bacteria under planktonic culture conditions. In this study, we evaluated the effect of CVAM and cryopreserved viable umbilical tissue (CVUT) on biofilm formation of S. aureus and P. aeruginosa , the two most prominent pathogens associated with chronic wounds. Firstly, we showed that, like CVAM, CVUT released antibacterial activity against multiple bacterial pathogens and the devitalization of CVUT reduced its antibacterial activity. The biofilm formation was then measured using a high throughput method and an ex vivo porcine dermal tissue model. We demonstrate that the formation of biofilm was significantly reduced in the presence of CVAM- or CVUT-derived conditioned media compared to control assay medium. The formation of P. aeruginosa biofilm on CVAM-conditioned medium saturated porcine dermal tissues was reduced 97% compared with the biofilm formation on the control medium saturated dermal tissues. The formation of S. auerus biofilm on CVUT-conditioned medium saturated dermal tissues was reduced 72% compared with the biofilm formation on the control tissues. This study is the first to show that human cryopreserved viable placental tissues release factors that inhibit biofilm formation. Our results provide an explanation for the in vivo observation of their ability to support wound healing.

  16. The Effect of Cryopreserved Human Placental Tissues on Biofilm Formation of Wound-Associated Pathogens

    Directory of Open Access Journals (Sweden)

    Yong Mao

    2018-01-01

    Full Text Available Biofilm, a community of bacteria, is tolerant to antimicrobial agents and ubiquitous in chronic wounds. In a chronic DFU (Diabetic Foot Ulcers clinical trial, the use of a human cryopreserved viable amniotic membrane (CVAM resulted in a high rate of wound closure and reduction of wound-related infections. Our previous study demonstrated that CVAM possesses intrinsic antimicrobial activity against a spectrum of wound-associated bacteria under planktonic culture conditions. In this study, we evaluated the effect of CVAM and cryopreserved viable umbilical tissue (CVUT on biofilm formation of S. aureus and P. aeruginosa, the two most prominent pathogens associated with chronic wounds. Firstly, we showed that, like CVAM, CVUT released antibacterial activity against multiple bacterial pathogens and the devitalization of CVUT reduced its antibacterial activity. The biofilm formation was then measured using a high throughput method and an ex vivo porcine dermal tissue model. We demonstrate that the formation of biofilm was significantly reduced in the presence of CVAM- or CVUT-derived conditioned media compared to control assay medium. The formation of P. aeruginosa biofilm on CVAM-conditioned medium saturated porcine dermal tissues was reduced 97% compared with the biofilm formation on the control medium saturated dermal tissues. The formation of S. auerus biofilm on CVUT-conditioned medium saturated dermal tissues was reduced 72% compared with the biofilm formation on the control tissues. This study is the first to show that human cryopreserved viable placental tissues release factors that inhibit biofilm formation. Our results provide an explanation for the in vivo observation of their ability to support wound healing.

  17. Xenosurveillance reflects traditional sampling techniques for the identification of human pathogens: A comparative study in West Africa.

    Directory of Open Access Journals (Sweden)

    Joseph R Fauver

    2018-03-01

    Full Text Available Novel surveillance strategies are needed to detect the rapid and continuous emergence of infectious disease agents. Ideally, new sampling strategies should be simple to implement, technologically uncomplicated, and applicable to areas where emergence events are known to occur. To this end, xenosurveillance is a technique that makes use of blood collected by hematophagous arthropods to monitor and identify vertebrate pathogens. Mosquitoes are largely ubiquitous animals that often exist in sizable populations. As well, many domestic or peridomestic species of mosquitoes will preferentially take blood-meals from humans, making them a unique and largely untapped reservoir to collect human blood.We sought to take advantage of this phenomenon by systematically collecting blood-fed mosquitoes during a field trail in Northern Liberia to determine whether pathogen sequences from blood engorged mosquitoes accurately mirror those obtained directly from humans. Specifically, blood was collected from humans via finger-stick and by aspirating bloodfed mosquitoes from the inside of houses. Shotgun metagenomic sequencing of RNA and DNA derived from these specimens was performed to detect pathogen sequences. Samples obtained from xenosurveillance and from finger-stick blood collection produced a similar number and quality of reads aligning to two human viruses, GB virus C and hepatitis B virus.This study represents the first systematic comparison between xenosurveillance and more traditional sampling methodologies, while also demonstrating the viability of xenosurveillance as a tool to sample human blood for circulating pathogens.

  18. Adaptation of the genetically tractable malaria pathogen Plasmodium knowlesi to continuous culture in human erythrocytes

    KAUST Repository

    Moon, Robert

    2012-12-24

    Research into the aetiological agent of the most widespread form of severe malaria, Plasmodium falciparum, has benefitted enormously from the ability to culture and genetically manipulate blood-stage forms of the parasite in vitro. However, most malaria outside Africa is caused by a distinct Plasmodium species, Plasmodium vivax, and it has become increasingly apparent that zoonotic infection by the closely related simian parasite Plasmodium knowlesi is a frequent cause of life-threatening malaria in regions of southeast Asia. Neither of these important malarial species can be cultured in human cells in vitro, requiring access to primates with the associated ethical and practical constraints. We report the successful adaptation of P. knowlesi to continuous culture in human erythrocytes. Human-adapted P. knowlesi clones maintain their capacity to replicate in monkey erythrocytes and can be genetically modified with unprecedented efficiency, providing an important and unique model for studying conserved aspects of malarial biology as well as species-specific features of an emerging pathogen.

  19. Adaptation of the genetically tractable malaria pathogen Plasmodium knowlesi to continuous culture in human erythrocytes

    KAUST Repository

    Moon, Robert; Hall, Joanna M.; Rangkuti, Farania; Ho, YungShwen; Almond, Neil M.; Mitchell, Graham Howard; Pain, Arnab; Holder, Anthony A.; Blackman, Michael J.

    2012-01-01

    Research into the aetiological agent of the most widespread form of severe malaria, Plasmodium falciparum, has benefitted enormously from the ability to culture and genetically manipulate blood-stage forms of the parasite in vitro. However, most malaria outside Africa is caused by a distinct Plasmodium species, Plasmodium vivax, and it has become increasingly apparent that zoonotic infection by the closely related simian parasite Plasmodium knowlesi is a frequent cause of life-threatening malaria in regions of southeast Asia. Neither of these important malarial species can be cultured in human cells in vitro, requiring access to primates with the associated ethical and practical constraints. We report the successful adaptation of P. knowlesi to continuous culture in human erythrocytes. Human-adapted P. knowlesi clones maintain their capacity to replicate in monkey erythrocytes and can be genetically modified with unprecedented efficiency, providing an important and unique model for studying conserved aspects of malarial biology as well as species-specific features of an emerging pathogen.

  20. Fluoroquinolone resistance mechanisms in urinary tract pathogenic Escherichia coli isolated during rapidly increasing fluoroquinolone consumption in a low-use country

    DEFF Research Database (Denmark)

    Christiansen, Nina; Nielsen, Lene; Jakobsen, Lotte

    2011-01-01

    Resistance to ciprofloxacin in Escherichia coli from urinary tract infections (UTI) in Denmark is increasing parallel to increased use of fluoroquinolones both in Denmark and in other European countries. The objective was to investigate the occurrence of ciprofloxacin resistance mechanisms......, phenotypic coresistance, and if ciprofloxacin resistance was caused by clonal spread or to individual mutational events in a collection of consecutively obtained E. coli submitted to a clinical microbiology department at a Danish hospital. One hundred four UTI-related E. coli resistant toward nalidixic acid...

  1. Expression and purification of moricin CM4 and human β-defensins 4 in Escherichia coli using a new technology.

    Science.gov (United States)

    Shen, Yang; Ai, Hong-Xin; Song, Ren; Liang, Zhen-Ning; Li, Jian-Feng; Zhang, Shuang-Quan

    2010-10-20

    Different strategies have been developed to produce small antimicrobial peptides using recombinant techniques. Here we report a new technology of biosynthesis of moricin CM4 and human β-defensins 4 (HβD4) in the Escherichia coli. The CM4 and HβD4 gene were cloned into a vector containing the tags elastin-like peptide (ELP) and intein to construct the expression vector pET-EI-CM4 and pET-EI-HβD4. All the peptides, expressed as soluble fusions, were isolated from the protein debris by the method called inverse transition cycling (ITC) rather than traditional immobilized metal affinity chromatography (IMAC) and separated from the fusion leader by self-cleavage. Fully reduced peptides that were purified exhibited expected antimicrobial activity. The approach described here is a low-cost, convenient and potential way for generating small antimicrobial peptide. Copyright © 2010 Elsevier GmbH. All rights reserved.

  2. The alpha hemolisina of Escherichia Coli induces increases in the calcium citoplasmico of neutrofilos and monocytes human beings

    International Nuclear Information System (INIS)

    Garcia, J.

    2000-01-01

    Escherichia coli alpha hemolysin (AH) and the calcium ionophores ionomycin and 4 Br A23187 caused increases in cell fluorescence, indicative of elevations in cytoplasmic calcium, in fura 2-loaded human polymorphonuclear leukocytes(PMN) and monocytes (MN). The increase in fluorescence caused by AH was dose dependent. Quelation of extracellular calcium with EGTA prevented fluorescence increases in PMN exposed to 2 HU50/ml AH, but did not prevent a small increase in 4 μM, ionomycin-treated PMN, indicating that ionomycin treatment under conditions of calcium quelation can mobilize calcium from internal stores, and that entry of external calcium accounts for most of the increases in cell fluorescence in cells treated with both AH and calcium ionophores. AH, as well as calcium ionophores and the chemotactic peptide FMLP caused rease of myeloperoxidase (MPO) from PMM suggesting that increments in intracellular calcium cause degramulation with release of granule contents (Author) [es

  3. The in vitro synergistic inhibitory effect of human amniotic fluid and gentamicin on growth of Escherichia coli.

    Science.gov (United States)

    Miglioli, P A; Schoffel, U; Gianfranceschi, L

    1996-01-01

    The activity of serum and its synergistic effect with many antibiotics against bacteria are well known. Few reports are available on similar phenomena produced by human amniotic fluid (HAF). Thus we investigated the antibacterial activity of HAF and the presence of a synergistic effect with gentamicin (GM) against Escherichia coli strains. Antimicrobial activity was evaluated as a delay of the growth curve, using a turbidimetric method. E. coli ATCC 10798 and E. coli SC 12155 were employed as test micro-organisms in nutrient broth, and GM was used at a subinhibitory concentration. HAF exerted antibacterial activity and, cooperating with GM at subinhibitory concentration, enhanced its antibiotic activity against E. coli. The presence of Schlievert's glycoprotein in HAF could explain these results.

  4. Neisseria meningitidis and Escherichia coli are protected from leukocyte phagocytosis by binding to erythrocyte complement receptor 1 in human blood

    DEFF Research Database (Denmark)

    Brekke, O. L.; Hellerud, B. C.; Christiansen, D.

    2011-01-01

    The initial interaction of Gram-negative bacteria with erythrocytes and its implications on leukocyte phagocytosis and oxidative burst in human whole blood were examined. Alexa-labeled Escherichia coli, wild-type H44/76 N. meningitidis and the H44/76lpxA lipopolysaccharide (LPS)-deficient mutant...... antagonist (C5aRa) and a complement receptor 1 (CR1)-blocking antibody (3D9) were examined. Most bacteria (80%) immediately bound to erythrocytes. The binding gradually declined over time, with a parallel increase in phagocytosis. Complement inhibition with compstatin reduced erythrocyte binding...... and bacterial C3 opsonization. In contrast, the C5aRa efficiently reduced phagocytosis, but did not affect the binding of bacteria to erythrocytes. The anti-CR1 blocking mAb dose-dependently reduced bacterial binding to erythrocytes to nil, with subsequent increased phagocytosis and oxidative burst. LPS had...

  5. Determination of human pathogen profiles in food by quality assured microbial assays. Proceedings of a final Research Coordination Meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-01-15

    This publication includes the results of a Coordinated Research Project (CRP). Major food microbial contaminants were identified in some of the main foods exported in the international food market. Thousands of samples in a wide variety of foods were selected to be studied during different points of the food chain: meat (chicken, beef and pork), seafood (shellfish such as shrimp, prawns, scampi, squid, and lobsters, and different types of fish such as salmon, cuttle fish, rohu, fin herring, catfish, milkfish, and tilapia), spices (pepper, paprika), frozen vegetables (asparagus, peas and corn) and other products (coconut and dairy products). The analysis included pathogenic bacteria such as Salmonella spp. (several serotypes), Escherichia coli, E. coli 0157:H7, Staphylococcus aureus, Clostridium perfringens, Bacillus cereus, Vibrio choleare, Vibrio parahaemolitycus and Yersinia enterolítica. This publication includes data that may be used to conduct better risk assessments on food by importing as well as exporting countries.

  6. Characterization of epidemic IncI1-Iγ plasmids harboring ambler class A and C genes in Escherichia coli and Salmonella enterica from animals and humans

    NARCIS (Netherlands)

    Smith, Hilde; Bossers, Alex; Harders, Frank; Wu, Guanghui; Woodford, Neil; Schwarz, Stefan; Guerra, Beatriz; Rodríguez, Irene; van Essen-Zandbergen, Alieda; Brouwer, Michael; Mevius, Dik

    The aim of the study was to identify the plasmid-encoded factors contributing to the emergence and spread of epidemic IncI1-Iγ plasmids obtained from Escherichia coli and Salmonella enterica isolates from animal and human reservoirs. For this, 251 IncI1-Iγ plasmids carrying various extended-spectrum

  7. Emergence of Escherichia coli encoding Shiga toxin 2f in human Shiga toxin-producing E-coli (STEC) infections in the Netherlands, January 2008 to December 2011

    NARCIS (Netherlands)

    Friesema, I.; van der Zwaluw, K.; Schuurman, T.; Kooistra-Smid, M.; Franz, E.; van Duynhoven, Y.; van Pelt, W.

    2014-01-01

    The Shiga toxins of Shiga toxin-producing Escherichia coli (STEC) can be divided into Shiga toxin 1 (Stx1) and Shiga toxin 2 (Stx2) with several sub-variants. Variant Stx(2f) is one of the latest described, but has been rarely associated with symptomatic human infections. In the enhanced STEC

  8. Molecular characterization and antimicrobial resistance of faecal and urinary Escherichia coli isolated from dogs and humans in Italy

    Directory of Open Access Journals (Sweden)

    Clara Tramuta

    2014-03-01

    Full Text Available During this study, 109 faecal Escherichia coli samples isolated from 61 dogs and 48 humans were characterised according to phylogenetic group, extraintestinal virulence factors and antibiotic resistance. The isolates from dogs were predominantly distributed within phylogroup B1 (36%, while the majority of human strains belonged to phylogroup B2 (54%. The prevalence of cnf1, hlyA, papC and sfa virulence genes was significantly associated with the group B2. Canine isolates showed multidrug resistance (MDR more frequently than human strains. Since group B2 contains most of the strains that cause extraintestinal infections, all 46 B2 faecal strains were confronted against an addition population of 57 urinary E. coli strains belonging to the same phylogroup. The comparison shows that there was no significant difference in the occurrence of virulence factors or in the distribution of antibiotic resistance between faecal and urinary E. coli isolates fromd dogs. At the same time, a highly significant association was detected between multiple resistence and the source of the strains and between MDR and E. coli isolated from urine in human. This study highlighted similar features of E. coli isolated across sources and hosts. The data suggest a high prevalence of antibiotic resistance in faecal strains, which may represent a serious health risk since these strains can function as a reservoir for uropathogenic E. coli.

  9. A Premature Termination of Human Epidermal Growth Factor Receptor Transcription in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Jihene Elloumi-Mseddi

    2014-01-01

    Full Text Available Our success in producing an active epidermal growth factor receptor (EGFR tyrosine kinase in Escherichia coli encouraged us to express the full-length receptor in the same host. Despite its large size, we were successful at producing the full-length EGFR protein fused to glutathione S-transferase (GST that was detected by Western blot analysis. Moreover, we obtained a majoritarian truncated GST-EGFR form detectable by gel electrophoresis and Western blot. This truncated protein was purified and confirmed by MALDI-TOF/TOF analysis to belong to the N-terminal extracellular region of the EGFR fused to GST. Northern blot analysis showed two transcripts suggesting the occurrence of a transcriptional arrest.

  10. Allspice, garlic and oregano plant essential oils in tomato films inactivate the foodborne pathogens, Escherichia coli O157:h7, Salmonella enterica and Listeria monocytogenes

    Science.gov (United States)

    Edible films containing plant essential oils arc gaining importance as potential antibacterial formulations to extend product shelf life and reduce risk of pathogen growth on food surfaces. An evaluation of both antimicrobial and physicochemical properties of edible films is important for applicatio...

  11. Allspice, garlic, and oregano plant essential oils in tomato films inactive the foodborne pathogens Escherichia coli O157:H7, Salmonella enterica, and Listeria monocytogenes

    Science.gov (United States)

    Edible films containing plant essential oils are gaining importance as potential antibacterial formulations to extend product shelf-life and reduce risk of pathogen growth on food surfaces. An evaluation of both antimicrobial and physicochemical properties of edible films is important for applicati...

  12. Pathogen-free, plasma-poor platelet lysate and expansion of human mesenchymal stem cells.

    Science.gov (United States)

    Iudicone, Paola; Fioravanti, Daniela; Bonanno, Giuseppina; Miceli, Michelina; Lavorino, Claudio; Totta, Pierangela; Frati, Luigi; Nuti, Marianna; Pierelli, Luca

    2014-01-27

    Supplements to support clinical-grade cultures of mesenchymal stem cells (MSC) are required to promote growth and expansion of these cells. Platelet lysate (PL) is a human blood component which may replace animal serum in MSC cultures being rich in various growth factors. Here, we describe a plasma poor pathogen-free platelet lysate obtained by pooling 12 platelet (PLT) units, to produce a standardized and safe supplement for clinical-grade expansion of MSC. PL lots were obtained by combining 2 6-unit PLT pools in additive solution (AS) following a transfusional-based procedure including pathogen inactivation (PI) by Intercept technology and 3 cycles of freezing/thawing, followed by membrane removal. Three PI-PL and 3 control PL lots were produced to compare their ability to sustain bone marrow derived MSC selection and expansion. Moreover, two further PL, subjected to PI or not, were also produced starting from the same initial PLT pools to evaluate the impact of PI on growth factor concentration and capacity to sustain cell growth. Additional PI-PL lots were used for comparison with fetal bovine serum (FBS) on MSC expansion. Immunoregulatory properties of PI-PL-generated MSC were documented in vitro by mixed lymphocyte culture (MLC) and peripheral blood mononuclear cells (PBMC) mitogen induced proliferation. PI-PL and PL control lots had similar concentrations of 4 well-described growth factors endowed with MSC stimulating ability. Initial growth and MSC expansion by PI-PL and PL controls were comparable either using different MSC populations or in head to head experiments. Moreover, PI-PL and PL control sustained similar MSC growth of frozen/thawed MSC. Multilineage differentiation of PI-derived and PI-PL-derived MSC were maintained in any MSC cultures as well as their immunoregulatory properties. Finally, no direct impact of PI on growth factor concentration and MSC growth support was observed, whereas the capacity of FBS to sustain MSC expansion in basic

  13. Coping with genetic diversity: the contribution of pathogen and human genomics to modern vaccinology

    International Nuclear Information System (INIS)

    Lemaire, D.; Barbosa, T.; Rihet, P.

    2011-01-01

    Vaccine development faces major difficulties partly because of genetic variation in both infectious organisms and humans. This causes antigenic variation in infectious agents and a high interindividual variability in the human response to the vaccine. The exponential growth of genome sequence information has induced a shift from conventional culture-based to genome-based vaccinology, and allows the tackling of challenges in vaccine development due to pathogen genetic variability. Additionally, recent advances in immunogenetics and genomics should help in the understanding of the influence of genetic factors on the interindividual and interpopulation variations in immune responses to vaccines, and could be useful for developing new vaccine strategies. Accumulating results provide evidence for the existence of a number of genes involved in protective immune responses that are induced either by natural infections or vaccines. Variation in immune responses could be viewed as the result of a perturbation of gene networks; this should help in understanding how a particular polymorphism or a combination thereof could affect protective immune responses. Here we will present: i) the first genome-based vaccines that served as proof of concept, and that provided new critical insights into vaccine development strategies; ii) an overview of genetic predisposition in infectious diseases and genetic control in responses to vaccines; iii) population genetic differences that are a rationale behind group-targeted vaccines; iv) an outlook for genetic control in infectious diseases, with special emphasis on the concept of molecular networks that will provide a structure to the huge amount of genomic data

  14. Characterizing ncRNAs in human pathogenic protists using high-throughput sequencing technology

    Directory of Open Access Journals (Sweden)

    Lesley Joan Collins

    2011-12-01

    Full Text Available ncRNAs are key genes in many human diseases including cancer and viral infection, as well as providing critical functions in pathogenic organisms such as fungi, bacteria, viruses and protists. Until now the identification and characterization of ncRNAs associated with disease has been slow or inaccurate requiring many years of testing to understand complicated RNA and protein gene relationships. High-throughput sequencing now offers the opportunity to characterize miRNAs, siRNAs, snoRNAs and long ncRNAs on a genomic scale making it faster and easier to clarify how these ncRNAs contribute to the disease state. However, this technology is still relatively new, and ncRNA discovery is not an application of high priority for streamlined bioinformatics. Here we summarize background concepts and practical approaches for ncRNA analysis using high-throughput sequencing, and how it relates to understanding human disease. As a case study, we focus on the parasitic protists Giardia lamblia and Trichomonas vaginalis, where large evolutionary distance has meant difficulties in comparing ncRNAs with those from model eukaryotes. A combination of biological, computational and sequencing approaches has enabled easier classification of ncRNA classes such as snoRNAs, but has also aided the identification of novel classes. It is hoped that a higher level of understanding of ncRNA expression and interaction may aid in the development of less harsh treatment for protist-based diseases.

  15. Characterizing ncRNAs in Human Pathogenic Protists Using High-Throughput Sequencing Technology

    Science.gov (United States)

    Collins, Lesley Joan

    2011-01-01

    ncRNAs are key genes in many human diseases including cancer and viral infection, as well as providing critical functions in pathogenic organisms such as fungi, bacteria, viruses, and protists. Until now the identification and characterization of ncRNAs associated with disease has been slow or inaccurate requiring many years of testing to understand complicated RNA and protein gene relationships. High-throughput sequencing now offers the opportunity to characterize miRNAs, siRNAs, small nucleolar RNAs (snoRNAs), and long ncRNAs on a genomic scale, making it faster and easier to clarify how these ncRNAs contribute to the disease state. However, this technology is still relatively new, and ncRNA discovery is not an application of high priority for streamlined bioinformatics. Here we summarize background concepts and practical approaches for ncRNA analysis using high-throughput sequencing, and how it relates to understanding human disease. As a case study, we focus on the parasitic protists Giardia lamblia and Trichomonas vaginalis, where large evolutionary distance has meant difficulties in comparing ncRNAs with those from model eukaryotes. A combination of biological, computational, and sequencing approaches has enabled easier classification of ncRNA classes such as snoRNAs, but has also aided the identification of novel classes. It is hoped that a higher level of understanding of ncRNA expression and interaction may aid in the development of less harsh treatment for protist-based diseases. PMID:22303390

  16. Human Salivary Protein Histatin 5 Has Potent Bactericidal Activity against ESKAPE Pathogens.

    Science.gov (United States)

    Du, Han; Puri, Sumant; McCall, Andrew; Norris, Hannah L; Russo, Thomas; Edgerton, Mira

    2017-01-01

    ESKAPE ( Enterococcus faecium , Staphylococcus aureus , Klebsiella pneumoniae , Acinetobacter baumanni , Pseudomonas aeruginosa , and Enterobacter species) pathogens have characteristic multiple-drug resistance and cause an increasing number of nosocomial infections worldwide. Peptide-based therapeutics to treat ESKAPE infections might be an alternative to conventional antibiotics. Histatin 5 (Hst 5) is a salivary cationic histidine-rich peptide produced only in humans and higher primates. It has high antifungal activity against Candida albicans through an energy-dependent, non-lytic process; but its bactericidal effects are less known. We found Hst 5 has bactericidal activity against S. aureus (60-70% killing) and A. baumannii (85-90% killing) in 10 and 100 mM sodium phosphate buffer (NaPB), while killing of >99% of P. aeruginosa , 60-80% E. cloacae and 20-60% of E. faecium was found in 10 mM NaPB. Hst 5 killed 60% of biofilm cells of P. aeruginosa , but had reduced activity against biofilms of S. aureus and A. baumannii . Hst 5 killed 20% of K. pneumonia biofilm cells but not planktonic cells. Binding and uptake studies using FITC-labeled Hst 5 showed E. faecium and E. cloacae killing required Hst 5 internalization and was energy dependent, while bactericidal activity was rapid against P. aeruginosa and A. baumannii suggesting membrane disruption. Hst 5-mediated killing of S. aureus was both non-lytic and energy independent. Additionally, we found that spermidine conjugated Hst 5 (Hst5-Spd) had improved killing activity against E. faecium, E. cloacae , and A. baumannii . Hst 5 or its derivative has antibacterial activity against five out of six ESKAPE pathogens and may be an alternative treatment for these infections.

  17. The Dynamic Genome and Transcriptome of the Human Fungal Pathogen Blastomyces and Close Relative Emmonsia.

    Directory of Open Access Journals (Sweden)

    José F Muñoz

    2015-10-01

    Full Text Available Three closely related thermally dimorphic pathogens are causal agents of major fungal diseases affecting humans in the Americas: blastomycosis, histoplasmosis and paracoccidioidomycosis. Here we report the genome sequence and analysis of four strains of the etiological agent of blastomycosis, Blastomyces, and two species of the related genus Emmonsia, typically pathogens of small mammals. Compared to related species, Blastomyces genomes are highly expanded, with long, often sharply demarcated tracts of low GC-content sequence. These GC-poor isochore-like regions are enriched for gypsy elements, are variable in total size between isolates, and are least expanded in the avirulent B. dermatitidis strain ER-3 as compared with the virulent B. gilchristii strain SLH14081. The lack of similar regions in related species suggests these isochore-like regions originated recently in the ancestor of the Blastomyces lineage. While gene content is highly conserved between Blastomyces and related fungi, we identified changes in copy number of genes potentially involved in host interaction, including proteases and characterized antigens. In addition, we studied gene expression changes of B. dermatitidis during the interaction of the infectious yeast form with macrophages and in a mouse model. Both experiments highlight a strong antioxidant defense response in Blastomyces, and upregulation of dioxygenases in vivo suggests that dioxide produced by antioxidants may be further utilized for amino acid metabolism. We identify a number of functional categories upregulated exclusively in vivo, such as secreted proteins, zinc acquisition proteins, and cysteine and tryptophan metabolism, which may include critical virulence factors missed before in in vitro studies. Across the dimorphic fungi, loss of certain zinc acquisition genes and differences in amino acid metabolism suggest unique adaptations of Blastomyces to its host environment. These results reveal the dynamics

  18. The Dynamic Genome and Transcriptome of the Human Fungal Pathogen Blastomyces and Close Relative Emmonsia.

    Science.gov (United States)

    Muñoz, José F; Gauthier, Gregory M; Desjardins, Christopher A; Gallo, Juan E; Holder, Jason; Sullivan, Thomas D; Marty, Amber J; Carmen, John C; Chen, Zehua; Ding, Li; Gujja, Sharvari; Magrini, Vincent; Misas, Elizabeth; Mitreva, Makedonka; Priest, Margaret; Saif, Sakina; Whiston, Emily A; Young, Sarah; Zeng, Qiandong; Goldman, William E; Mardis, Elaine R; Taylor, John W; McEwen, Juan G; Clay, Oliver K; Klein, Bruce S; Cuomo, Christina A

    2015-10-01

    Three closely related thermally dimorphic pathogens are causal agents of major fungal diseases affecting humans in the Americas: blastomycosis, histoplasmosis and paracoccidioidomycosis. Here we report the genome sequence and analysis of four strains of the etiological agent of blastomycosis, Blastomyces, and two species of the related genus Emmonsia, typically pathogens of small mammals. Compared to related species, Blastomyces genomes are highly expanded, with long, often sharply demarcated tracts of low GC-content sequence. These GC-poor isochore-like regions are enriched for gypsy elements, are variable in total size between isolates, and are least expanded in the avirulent B. dermatitidis strain ER-3 as compared with the virulent B. gilchristii strain SLH14081. The lack of similar regions in related species suggests these isochore-like regions originated recently in the ancestor of the Blastomyces lineage. While gene content is highly conserved between Blastomyces and related fungi, we identified changes in copy number of genes potentially involved in host interaction, including proteases and characterized antigens. In addition, we studied gene expression changes of B. dermatitidis during the interaction of the infectious yeast form with macrophages and in a mouse model. Both experiments highlight a strong antioxidant defense response in Blastomyces, and upregulation of dioxygenases in vivo suggests that dioxide produced by antioxidants may be further utilized for amino acid metabolism. We identify a number of functional categories upregulated exclusively in vivo, such as secreted proteins, zinc acquisition proteins, and cysteine and tryptophan metabolism, which may include critical virulence factors missed before in in vitro studies. Across the dimorphic fungi, loss of certain zinc acquisition genes and differences in amino acid metabolism suggest unique adaptations of Blastomyces to its host environment. These results reveal the dynamics of genome evolution

  19. Comparative genomic analysis of pathogenic and probiotic Enterococcus faecalis isolates, and their transcriptional responses to growth in human urine.

    Directory of Open Access Journals (Sweden)

    Heidi C Vebø

    Full Text Available Urinary tract infection (UTI is the most common infection caused by enterococci, and Enterococcus faecalis accounts for the majority of enterococcal infections. Although a number of virulence related traits have been established, no comprehensive genomic or transcriptomic studies have been conducted to investigate how to distinguish pathogenic from non-pathogenic E. faecalis in their ability to cause UTI. In order to identify potential genetic traits or gene regulatory features that distinguish pathogenic from non-pathogenic E. faecalis with respect to UTI, we have performed comparative genomic analysis, and investigated growth capacity and transcriptome profiling in human urine in vitro. Six strains of different origins were cultivated and all grew readily in human urine. The three strains chosen for transcriptional analysis showed an overall similar response with respect to energy and nitrogen metabolism, stress mechanism, cell envelope modifications, and trace metal acquisition. Our results suggest that citrate and aspartate are significant for growth of E. faecalis in human urine, and manganese appear to be a limiting factor. The majority of virulence factors were either not differentially regulated or down-regulated. Notably, a significant up-regulation of genes involved in biofilm formation was observed. Strains from different origins have similar capacity to grow in human urine. The overall similar transcriptional responses between the two pathogenic and the probiotic strain suggest that the pathogenic potential of a certain E. faecalis strain may to a great extent be determined by presence of fitness and virulence factors, rather than the level of expression of such traits.

  20. Lack of direct effects of agrochemicals on zoonotic pathogens and fecal indicator bacteria.

    Science.gov (United States)

    Staley, Zachery R; Senkbeil, Jacob K; Rohr, Jason R; Harwood, Valerie J

    2012-11-01

    Agrochemicals, fecal indicator bacteria (FIB), and pathogens frequently contaminate water simultaneously. No significant direct effects of fertilizer, atrazine, malathion, and chlorothalonil on the survival of Escherichia coli, Enterococcus faecalis, Salmonella enterica, human polyomaviruses, and adenovirus were detected, supporting the assertion that previously observed effects of agrochemicals on FIB were indirect.

  1. Potential of predatory bacteria as biocontrol agents for foodborne and plant pathogens

    Science.gov (United States)

    Foodborne pathogens such as Escherichia coli O157:H7, Salmonella spp., Listeria monocytogenes, Shigella are responsible for frequent occurrences of illnesses and mortality in humans and produce losses. Pre-harvest yield losses and post-harvest decay on minimally processed produce (fruits, vegetables...

  2. Risk-analysis of human pathogen spread in the vegetable industry: a comparison between organic and conventional production chains

    NARCIS (Netherlands)

    Franz, E.; Bruggen, van A.H.C.; Semenov, A.M.

    2004-01-01

    An overview is given of recent problems with food-borne enteric human pathogens originating from contaminated agricultural animals. The need for risk analysis is indicated, and the generally accepted procedure for risk assessment is outlined. Two main approaches to probability and risk calculations,

  3. High-level expression of human stem cell factor fused with erythropoietin mimetic peptide in Escherichia coli.

    Science.gov (United States)

    Su, Lin; Chen, Song-Sen; Yang, Ke-Gong; Liu, Chang-Zheng; Zhang, Yan-Li; Liang, Zhi-Quan

    2006-06-01

    Stem cell factor (SCF) and erythropoietin are essential for normal erythropoiesis and induce proliferation and differentiation synergistically for erythroid progenitor cells. Here, we report our work on construction of SCF/erythropoietin mimetic peptide (EMP) fusion protein gene, in which human SCF cDNA (1-165aa) and EMP sequence (20aa) were connected using a short (GGGGS) or long (GGGGSGGGGGS) linker sequence. The SCF/EMP gene was cloned into the pBV220 vector and expressed in the Escherichia coli DH5alpha strain. The expression level of the fusion protein was about 30% of total cell protein. The resulting inclusion bodies were solubilized with 8 M urea, followed by dilution refolding. The renatured protein was subsequently purified by Q-Sepharose FF column. The final product was >95% pure by SDS-PAGE and the yield of fusion protein was about 40 mg/L of culture. UT-7 cell proliferation and human cord blood cell colony-forming assays showed that the fusion proteins exhibited more potent activity than recombinant human SCF, suggesting a new strategy to enhance biological activities of growth factors.

  4. Substrate overlap and functional competition between human nucleotide excision repair and Escherichia coli photolyase and (A)BC excision nuclease

    International Nuclear Information System (INIS)

    Sibghat-Ullah; Sancar, Z.

    1990-01-01

    Human cell free extract prepared by the method of Manley et al. carries out repair synthesis on UV-irradiated DNA. Removal of pyrimidine dimers by photoreactivation with DNA photolyase reduces repair synthesis by about 50%. With excess enzyme in the reaction mixture photolyase reduced the repair signal by the same amount even in the absence of photoreactivating light, presumably by binding to pyrimidine dimers and interfering with the binding of human damage recognition protein. Similarly, the UvrB subunit of Escherichia coli (A)BC excinuclease when loaded onto UV-irradiated or psoralen-adducted DNA inhibited repair synthesis by cell-free extract by 75-80%. The opposite was true also as HeLa cell free extract specifically inhibited the photorepair of a thymine dimer by DNA photolyase and its removal by (A)BC excinuclease. Cell-free extracts from xeroderma pigmentosum (XP) complementation groups A and C were equally effective in blocking the E. coli repair proteins, while extracts from complementation groups D and E were ineffective in blocking the E. coli enzyme. These results suggest that XP-D and XP-E cells are defective in the damage recognition subunits(s) of human excision nuclease

  5. HIV Infection Disrupts the Sympatric Host–Pathogen Relationship in Human Tuberculosis

    Science.gov (United States)

    Fenner, Lukas; Egger, Matthias; Bodmer, Thomas; Furrer, Hansjakob; Ballif, Marie; Battegay, Manuel; Helbling, Peter; Fehr, Jan; Gsponer, Thomas; Rieder, Hans L.; Zwahlen, Marcel; Hoffmann, Matthias; Bernasconi, Enos; Cavassini, Matthias; Calmy, Alexandra; Dolina, Marisa; Frei, Reno; Janssens, Jean-Paul; Borrell, Sonia; Stucki, David; Schrenzel, Jacques; Böttger, Erik C.; Gagneux, Sebastien

    2013-01-01

    The phylogeographic population structure of Mycobacterium tuberculosis suggests local adaptation to sympatric human populations. We hypothesized that HIV infection, which induces immunodeficiency, will alter the sympatric relationship between M. tuberculosis and its human host. To test this hypothesis, we performed a nine-year nation-wide molecular-epidemiological study of HIV–infected and HIV–negative patients with tuberculosis (TB) between 2000 and 2008 in Switzerland. We analyzed 518 TB patients of whom 112 (21.6%) were HIV–infected and 233 (45.0%) were born in Europe. We found that among European-born TB patients, recent transmission was more likely to occur in sympatric compared to allopatric host–pathogen combinations (adjusted odds ratio [OR] 7.5, 95% confidence interval [95% CI] 1.21–infinity, p = 0.03). HIV infection was significantly associated with TB caused by an allopatric (as opposed to sympatric) M. tuberculosis lineage (OR 7.0, 95% CI 2.5–19.1, p<0.0001). This association remained when adjusting for frequent travelling, contact with foreigners, age, sex, and country of birth (adjusted OR 5.6, 95% CI 1.5–20.8, p = 0.01). Moreover, it became stronger with greater immunosuppression as defined by CD4 T-cell depletion and was not the result of increased social mixing in HIV–infected patients. Our observation was replicated in a second independent panel of 440 M. tuberculosis strains collected during a population-based study in the Canton of Bern between 1991 and 2011. In summary, these findings support a model for TB in which the stable relationship between the human host and its locally adapted M. tuberculosis is disrupted by HIV infection. PMID:23505379

  6. Rapid identification of emerging human-pathogenic Sporothrix species with rolling circle amplification

    Directory of Open Access Journals (Sweden)

    Anderson Messias Rodrigues

    2015-12-01

    Full Text Available Sporothrix infections are emerging as an important human and animal threat among otherwise healthy patients, especially in Brazil and China. Correct identification of sporotrichosis agents is beneficial for epidemiological surveillance, enabling implementation of adequate public-health policies and guiding antifungal therapy. In areas of limited resources where sporotrichosis is endemic, high-throughput detection methods that are specific and sensitive are preferred over phenotypic methods that usually result in misidentification of closely related Sporothrix species. We sought to establish rolling circle amplification (RCA as a low-cost screening tool for species-specific identification of human-pathogenic Sporothrix. We developed six species-specific padlock probes targeting polymorphisms in the gene encoding calmodulin. BLAST-searches revealed candidate probes that were conserved intraspecifically; no significant homology with sequences from humans, mice, plants or microorganisms outside members of Sporothrix were found. The accuracy of our RCA-based assay was demonstrated through the specificity of probe-template binding to 25 S. brasiliensis, 58 S. schenckii, 5 S. globosa, 1 S. luriei, 4 S. mexicana, and 3 S. pallida samples. No cross reactivity between closely related species was evident in vitro, and padlock probes yielded 100% specificity and sensitivity down to 3 x 10 6 copies of the target sequence. RCA-based speciation matched identifications via phylogenetic analysis of the gene encoding calmodulin and the rDNA operon (kappa 1.0; 95% confidence interval 1.0-1.0, supporting its use as a reliable alternative to DNA sequencing. This method is a powerful tool for rapid identification and specific detection of medically relevant Sporothrix, and due to its robustness has potential for ecological studies.

  7. Effects of Flower and Fruit Extracts of Melastoma malabathricum Linn. on Growth of Pathogenic Bacteria: Listeria monocytogenes, Staphylococcus aureus, Escherichia coli, and Salmonella typhimurium

    Directory of Open Access Journals (Sweden)

    Siti Nurhadis Che Omar

    2013-01-01

    Full Text Available Melastoma malabathricum Linn. is a shrub that comes with beautiful pink or purple flowers and has berries-like fruits rich in anthocyanins. This study was carried out with the aim to evaluate the inhibitory activities of different concentrations of the M. malabathricum Linn. flower and fruit crude extracts against Listeria monocytogenes IMR L55, Staphylococcus aureus IMR S244, Escherichia coli IMR E30, and Salmonella typhimurium IMR S100 using the disc diffusion method. The lowest concentrations of the extracts producing inhibition zones against the test microorganisms were used to determine their minimum inhibitory concentrations (MICs and minimum bactericidal concentrations (MBCs. In addition, the growth of Listeria monocytogenes IMR L55 and Staphylococcus aureus IMR S244 grown in medium supplemented with the respective extracts at different temperatures (4°C, 25°C, and 37°C and pHs (4, 6, 7, and 8 was determined.

  8. Pathological alterations in respiratory system during co-infection with low pathogenic avian influenza virus (H9N2 and Escherichia coli in broiler chickens

    Directory of Open Access Journals (Sweden)

    Jaleel Shahid

    2017-09-01

    Full Text Available Introduction: Despite the advancements in the field, there is a lack of data when it comes to co-infections in poultry. Therefore, this study was designed to address this issue. Material and Methods: Broiler birds were experimentally infected with E. coli (O78 and low pathogenic avian influenza (LPAI strain, alone or in combination. The experimental groups were negative control. Results: The infected birds showed most severe clinical signs in E. coli+LPAI group along with a significant decrease in weight and enhanced macroscopic and microscopic pathological lesions. The survival rate was 60%, 84%, and 100% in birds inoculated with E. coli+LPAI, E. coli, and LPAI virus alone, respectively. The results showed that experimental co-infection with E. coli and H9N2 strain of LPAI virus increased the severity of clinical signs, mortality rate, and gross lesions. The HI titre against LPAI virus infection in the co-infected group was significantly higher than the HI titre of LPAI group, which may indicate that E. coli may promote propagation of H9N2 LPAI virus by alteration of immune response. Conclusion: The present study revealed that co-infection with E. coli and H9N2 LPAI virus caused more serious synergistic pathogenic effects and indicates the role of both pathogens as complicating factors in poultry infections.

  9. Occurrence and characterization of Shiga toxin-producing Escherichia coli O157:H7 and other non-sorbitol-fermenting E. coli in cattle and humans in urban areas of Morogoro, Tanzania.

    Science.gov (United States)

    Lupindu, Athumani M; Olsen, John E; Ngowi, Helena A; Msoffe, Peter L M; Mtambo, Madundo M; Scheutz, Flemming; Dalsgaard, Anders

    2014-07-01

    Escherichia coli strains such as Shiga toxin-producing E. coli (STEC), enteropathogenic E. coli, enterotoxigenic, attaching, and effacing E. coli, and enteroinvasive E. coli cause diarrhea in humans. Although other serotypes exist, the most commonly reported STEC in outbreaks is O157:H7. A cross-sectional study was conducted to isolate and characterize non-sorbitol-fermenting (NSF) E. coli O157:H7 from urban and periurban livestock settings of Morogoro, Tanzania. Human stool, cattle feces, and soil and water samples were collected. Observations and questionnaire interview studies were used to gather information about cattle and manure management practices in the study area. E. coli were isolated on sorbitol MacConkey agar and characterized by conventional biochemical tests. Out of 1049 samples, 143 (13.7%) yielded NSF E. coli. Serological and antimicrobial tests and molecular typing were performed to NSF E. coli isolates. These procedures detected 10 (7%) pathogenic E. coli including STEC (n=7), enteropathogenic E. coli (EPEC) (n=2), and attaching and effacing E. coli (A/EEC) (n=1) strains. The STEC strains had the ability to produce VT1 and different VT2 toxin subtypes that caused cytopathic effects on Vero cells. The prevalence of STEC in cattle was 1.6%, out of which 0.9% was serotype O157:H7 and the overall prevalence of diarrheagenic E. coli in cattle was 2.2%. The serotypes O157:H7, O142:H34, O113:H21, O+:H-, O+:H16, and O25:H4 were identified. One ESBL-producing isolate showed the MLST type ST131. To our knowledge, this is the first finding in Tanzania of this recently emerged worldwide pandemic clonal group, causing widespread antimicrobial-resistant infections, and adds knowledge of the geographical distribution of ST131. Cattle manure was indiscriminately deposited within residential areas, and there was direct contact between humans and cattle feces during manure handling. Cattle and manure management practices expose humans, animals, and the environment

  10. [A case of human highly pathogenic avian influenza in Shenzhen, China: application of field epidemiological study].

    Science.gov (United States)

    Zhang, Shun-Xiang; Cheng, Jin-Quan; Ma, Han-Wu; He, Jian-Fan; Cheng, Xiao-Wen; Jiang, Li-Juan; Mou, Jin; Wu, Chun-Li; Lv, Xing; Zhang, Shao-Hua; Zhang, Ya-De; Wu, Yong-Sheng; Wang, Xin

    2008-03-01

    Based on analyzing the characteristics of a case with human avian influenza and the effects of field epidemiological study. An emergency-response-system was started up to follow the probable human Highly Pathogenic Avian Influenza case initially detected by the "Undefined Pneumonia Surveillance System of Shenzhen". Public health professionals administered several epidemiologic investigations and giving all the contacts of the patient with a 7-day-long medical observation for temporally related influenza-like illness. Reverse transcriptase-polymerase chain reaction (RT-PCR) with primers for H5 and N1 was applied to test respiratory tract samples and/or throat swabs of the patient and all his contacts specific for the hemagglutinin gene of influenza A H5N1. Activities and strategies such as media response,notification in the public, communications with multiple related sectors, social participation and information exchange with Hong Kong were involved in field control and management. The patient was a male, 31 years old,with an occupation as a truck driver in a factory,and had been residing in Shenzhen for 7 years. Started with an influenza-like syndrome, the patient received treatment on the 4th day of the onset, from a clinic and on the 6th day from a regular hospital. On the 8th day of the disease course, he was confirmed by Shenzhen Center for Disease Control and Prevention as human avian flu case and was then transferred to Intensive Care Unit (ICU). On the 83rd day of commence, the patients was healed and released from the hospital. The patient had no significant exposure to sick poultry or poultry that died from the illness before the onset of the disease. The patient and five family members lived together, but no family member was affected and no contact showed positive results for H5N1. A small food market with live poultry, which was under formal supervision and before illness the patient once visited, located near his apartment. Totally, 35 swabs from live

  11. Pathogenic strains of Yersinia enterocolitica isolated from domestic dogs (Canis familiaris) belonging to farmers are of the same subtype as pathogenic Y. enterocolitica strains isolated from humans and may be a source of human infection in Jiangsu Province, China.

    Science.gov (United States)

    Wang, Xin; Cui, Zhigang; Wang, Hua; Tang, Liuying; Yang, Jinchuan; Gu, Ling; Jin, Dong; Luo, Longze; Qiu, Haiyan; Xiao, Yuchun; Xiong, Haiping; Kan, Biao; Xu, Jianguo; Jing, Huaiqi

    2010-05-01

    We isolated 326 Yersinia enterocolitica strains from 5,919 specimens from patients with diarrhea at outpatient clinics, livestock, poultry, wild animals, insect vectors, food, and the environment in the cities of Nantong and Xuzhou in Jiangsu Province, China, from 2004 to 2008. The results showed that the 12 pathogenic strains were of the O:3 serotype. Six strains were isolated from domestic dogs (Canis familiaris) belonging to farmers and were found to be the primary carriers of pathogenic Y. enterocolitica strains, especially in Xuzhou. Pulsed-field gel electrophoresis analysis of the pathogenic strains from dogs belonging to farmers showed that they shared the same patterns as strains from diarrhea patients isolated in 1994. This indicates that the strains from domestic dogs have a close correlation with the strains causing human infections.

  12. Genetic diversity and antibiogram profile of diarrhoeagenic Escherichia coli pathotypes isolated from human, animal, foods and associated environmental sources

    Directory of Open Access Journals (Sweden)

    Pankaj Dhaka

    2016-05-01

    Full Text Available Introduction: Infectious diarrhoea particularly due to pathogenic bacteria is a major health problem in developing countries, including India. Despite significant reports of diarrhoeagenic Escherichia coli (DEC pathotypes around the globe, studies which address genetic relatedness, antibiogram profile and their correlation with respect to their isolation from different sources are sparse. The present study determines isolation and identification of DEC pathotypes from different sources, their genetic characterisation, antibiogram profile and their correlation if any. Materials and methods: A total of 336 samples comprising diarrhoeic stool samples from infants (n=103, young animal (n=106, foods (n=68 and associated environmental sources (n=59 were collected from Bareilly region of India. All the samples were screened by using standard microbiological methods for the detection of E. coli. The identified E. coli were then confirmed as DEC pathotypes using polymerase chain reaction–based assays. Those DEC pathotypes identified as Enteroaggregative E. coli (EAEC were further confirmed using HEp-2 adherence assay. All the isolated DEC pathotypes were studied for their genetic diversity using pulsed-field gel electrophoresis (PFGE, and antimicrobial susceptibility testing was performed by using disc diffusion method as per Clinical Laboratory Standards Institute guidelines. Results and discussion: Of the four DEC pathotypes investigated, EAEC was found to be the predominant pathogen with an isolation rate of 16.5% from infants, 17.9% from young animals, 16.2% from foods and 3.4% from the associated environmental sources. These EAEC isolates, on further characterisation, revealed predominance of ‘atypical’ EAEC, with an isolation rate of 10.7% from infants, 15.1% from young animals, 16.2% from foods, and 3.4% from the associated environmental sources. On PFGE analysis, discrimination was evident within DEC pathotypes as 52 unique pulsotypes were

  13. Functional Complementation Studies Reveal Different Interaction Partners of Escherichia coli IscS and Human NFS1.

    Science.gov (United States)

    Bühning, Martin; Friemel, Martin; Leimkühler, Silke

    2017-08-29

    The trafficking and delivery of sulfur to cofactors and nucleosides is a highly regulated and conserved process among all organisms. All sulfur transfer pathways generally have an l-cysteine desulfurase as an initial sulfur-mobilizing enzyme in common, which serves as a sulfur donor for the biosynthesis of sulfur-containing biomolecules like iron-sulfur (Fe-S) clusters, thiamine, biotin, lipoic acid, the molybdenum cofactor (Moco), and thiolated nucleosides in tRNA. The human l-cysteine desulfurase NFS1 and the Escherichia coli homologue IscS share a level of amino acid sequence identity of ∼60%. While E. coli IscS has a versatile role in the cell and was shown to have numerous interaction partners, NFS1 is mainly localized in mitochondria with a crucial role in the biosynthesis of Fe-S clusters. Additionally, NFS1 is also located in smaller amounts in the cytosol with a role in Moco biosynthesis and mcm 5 s 2 U34 thio modifications of nucleosides in tRNA. NFS1 and IscS were conclusively shown to have different interaction partners in their respective organisms. Here, we used functional complementation studies of an E. coli iscS deletion strain with human NFS1 to dissect their conserved roles in the transfer of sulfur to a specific target protein. Our results show that human NFS1 and E. coli IscS share conserved binding sites for proteins involved in Fe-S cluster assembly like IscU, but not with proteins for tRNA thio modifications or Moco biosynthesis. In addition, we show that human NFS1 was almost fully able to complement the role of IscS in Moco biosynthesis when its specific interaction partner protein MOCS3 from humans was also present.

  14. Enteroaggregative, Shiga Toxin-Producing Escherichia coli O111:H2 Associated with an Outbreak of Hemolytic-Uremic Syndrome

    Science.gov (United States)

    Morabito, Stefano; Karch, Helge; Mariani-Kurkdjian, Patrizia; Schmidt, Herbert; Minelli, Fabio; Bingen, Edouard; Caprioli, Alfredo

    1998-01-01

    Shiga toxin-producing Escherichia coli O111:H2 strains from an outbreak of hemolytic-uremic syndrome showed aggregative adhesion to HEp-2 cells and harbored large plasmids which hybridized with the enteroaggregative E. coli probe PCVD432. These strains present a novel combination of virulence factors and might be as pathogenic to humans as the classic enterohemorrhagic E. coli. PMID:9508328

  15. Recovery of Cephalosporin Resistant Escherichia coli and Salmonella from Pork, Beef and Chicken Marketed in Nova Scotia

    Directory of Open Access Journals (Sweden)

    Kevin R Forward

    2004-01-01

    Full Text Available BACKGROUND: Antimicrobial use in farm animals is a potentially important contributor to the emergence of antimicrobial resistance. Resistant Salmonella may lead to serious human infections and resistant Escherichia coli may transfer plasmid-encoded resistance genes to other pathogens.

  16. Epithelial and Mesenchymal Cells in the Bovine Colonic Mucosa Differ in Their Responsiveness to Escherichia coli Shiga Toxin 1

    Science.gov (United States)

    Cells in the depth of the crypts in the bovine colon express CD77 molecules that potentially act as receptors for Shiga toxins (Stx). The implication of this finding for the intestinal colonization 25 of cattle with human pathogenic Stx-producing Escherichia coli (STEC) remains undefined. We used f...

  17. Prevalence and characteristics of Shiga toxin-producing Escherichia coli in finishing pigs: implications on public health

    Science.gov (United States)

    Shiga toxin-producing Escherichia coli (STEC) are important food-borne pathogens, which can cause serious illnesses, including hemorrhagic colitis and hemolytic uremic syndrome. To examine if pigs are potential animal reservoirs for human STEC infections, we conducted a longitudinal cohort study in ...

  18. Improved Design and Ultrasound-assisted Sanitation of Lettuce Harvesting Knives for Minimizing Escherichia coli O157:H7 Contamination

    Science.gov (United States)

    Laboratory studies have shown that Escherichia coli O157:H7 can be transferred to lettuce during harvesting. Knives used for lettuce coring-in-field (CIF) harvesting are likely to contact soil and consequently could serve as a vehicle for the transmission of food-borne human pathogens from contamin...

  19. Variability in the characterization of total coliforms, fecal coliforms, and escherichia coli in recreational water supplies of North Mississippi, USA

    Science.gov (United States)

    The fecal coliform, Escherichia coli, is a historical organism for the detection of fecal pollution in water supplies. The presence of E. coli indicates a potential contamination of the water supply by other more hazardous human pathogens. In order to accurately determine the presence and degree o...

  20. Estimating the Prevalence of Potential Enteropathogenic Escherichia coli and Intimin Gene Diversity in a Human Community by Monitoring Sanitary Sewage

    Science.gov (United States)

    Yang, Kun; Pagaling, Eulyn

    2014-01-01

    Presently, the understanding of bacterial enteric diseases in the community and their virulence factors relies almost exclusively on clinical disease reporting and examination of clinical pathogen isolates. This study aimed to investigate the feasibility of an alternative approach that monitors potential enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli (EHEC) prevalence and intimin gene (eae) diversity in a community by directly quantifying and characterizing target virulence genes in the sanitary sewage. The quantitative PCR (qPCR) quantification of the eae, stx1, and stx2 genes in sanitary sewage samples collected over a 13-month period detected eae in all 13 monthly sewage samples at significantly higher abundance (93 to 7,240 calibrator cell equivalents [CCE]/100 ml) than stx1 and stx2, which were detected sporadically. The prevalence level of potential EPEC in the sanitary sewage was estimated by calculating the ratio of eae to uidA, which averaged 1.0% (σ = 0.4%) over the 13-month period. Cloning and sequencing of the eae gene directly from the sewage samples covered the majority of the eae diversity in the sewage and detected 17 unique eae alleles belonging to 14 subtypes. Among them, eae-β2 was identified to be the most prevalent subtype in the sewage, with the highest detection frequency in the clone libraries (41.2%) and within the different sampling months (85.7%). Additionally, sewage and environmental E. coli isolates were also obtained and used to determine the detection frequencies of the virulence genes as well as eae genetic diversity for comparison. PMID:24141131

  1. D10 value determination for Escherichia coli O157:H7 in different cultivations

    International Nuclear Information System (INIS)

    Oliveira, Sergio Eduardo M. de; Pires, Luis Fernando G.; Vital, Helio de C.

    2002-01-01

    Escherichia coli serum type O157:H7 is a highly pathogenic bacterium. Inside the human body, that microorganism causes a disease that leads to bloody diarrhea, stoppage of kidney functions and clots in the brain. That type of infection has been related to the consumption of different varieties of foods, mainly meat and other products of animal origin. Irradiation is an efficient method for elimination of pathogenic and spoiling microorganisms in foods. Thus, this work investigates the use of gamma irradiation for elimination of Escherichia coli O157:H7. For that purpose, inoculated samples in trypticase soy broth and saline solution 0,85% media were exposed to several gamma radiation doses. Counting the number of surviving bacteria yielded the following D 10 values for Escherichia coli O157:H7: 98±7 Gy, in trypticase soy broth and 49±4 Gy in saline solution 0,85% medium. (author)

  2. A novel model to study neonatal Escherichia coli sepsis and the effect of treatment on the human immune system using humanized mice.

    Science.gov (United States)

    Schlieckau, Florian; Schulz, Daniela; Fill Malfertheiner, Sara; Entleutner, Kathrin; Seelbach-Goebel, Birgit; Ernst, Wolfgang

    2018-04-19

    Neonatal sepsis is a serious threat especially for preterm infants. As existing in vitro and in vivo models have limitations, we generated a novel neonatal sepsis model using humanized mice and tested the effect of Betamethasone and Indomethacin which are used in the clinic in case of premature birth. Humanized mice were infected with Escherichia coli (E. coli). Subsequently, the effect of the infection itself, and treatment with Betamethasone and Indomethacin on survival, recovery, bacterial burden, leukocyte populations, and cytokine production, was analyzed. The human immune system in the animals responded with leukocyte trafficking to the site of infection and granulopoiesis in the bone marrow. Treatment with Indomethacin had no pronounced effect on the immune system or bacterial burden. Betamethasone induced a decline of splenocytes. The human immune system in humanized mice responds to the infection, making them a suitable model to study neonatal E. coli sepsis and the immune response of the neonatal immune system. Treatment with Betamethasone could have potential negative long-term effects for the immune system of the child. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Evidence that the human pathogenic fungus Cryptococcus neoformans var. grubii may have evolved in Africa.

    Directory of Open Access Journals (Sweden)

    Anastasia P Litvintseva

    2011-05-01

    Full Text Available Most of the species of fungi that cause disease in mammals, including Cryptococcus neoformans var. grubii (serotype A, are exogenous and non-contagious. Cryptococcus neoformans var. grubii is associated worldwide with avian and arboreal habitats. This airborne, opportunistic pathogen is profoundly neurotropic and the leading cause of fungal meningitis. Patients with HIV/AIDS have been ravaged by cryptococcosis--an estimated one million new cases occur each year, and mortality approaches 50%. Using phylogenetic and population genetic analyses, we present evidence that C. neoformans var. grubii may have evolved from a diverse population in southern Africa. Our ecological studies support the hypothesis that a few of these strains acquired a new environmental reservoir, the excreta of feral pigeons (Columba livia, and were globally dispersed by the migration of birds and humans. This investigation also discovered a novel arboreal reservoir for highly diverse strains of C. neoformans var. grubii that are restricted to southern Africa, the mopane tree (Colophospermum mopane. This finding may have significant public health implications because these primal strains have optimal potential for evolution and because mopane trees contribute to the local economy as a source of timber, folkloric remedies and the edible mopane worm.

  4. Forecasting the Human Pathogen Vibrio Parahaemolyticus in Shellfish Tissue within Long Island Sound

    Science.gov (United States)

    Whitney, M. M.; DeRosia-Banick, K.

    2016-02-01

    Vibrio parahaemolyticus (Vp) is a marine bacterium that occurs naturally in brackish and saltwater environments and may be found in higher concentrations in the warmest months. Vp is a growing threat to producing safe seafood. Consumption of shellfish with high Vp levels can result in gastrointestinal human illnesses. Management response to Vp-related illness outbreaks includes closure of shellfish growing areas. Water quality observations, Vp measurements, and model forecasts are key components to effective management of shellfish growing areas. There is a clear need for observations within the growing area themselves. These areas are offshore of coastal stations and typically inshore of the observing system moorings. New field observations in Long Island Sound (LIS) shellfish growing areas are described and their agreement with high-resolution satellite sea surface temperature data is discussed. A new dataset of Vp concentrations in shellfish tissue is used to determine the LIS-specific Vp vs. temperature relationship following methods in the FDA pre-harvest Vp risk model. This information is combined with output from a high-resolution hydrodynamic model of LIS to make daily forecasts of Vp levels. The influence of river inflows, the role of heat waves, and predictions for future warmer climates are discussed. The key elements of this observational-modeling approach to pathogen forecasting are extendable to other coastal systems.

  5. Pyrosequencing detects human and animal pathogenic taxa in the grapevine endosphere.

    Science.gov (United States)

    Yousaf, Sohail; Bulgari, Daniela; Bergna, Alessandro; Pancher, Michael; Quaglino, Fabio; Casati, Paola; Campisano, Andrea

    2014-01-01

    Generally, plants are not considered as hosts for human and animal pathogens (HAP). The recent produce-associated outbreaks of food-borne diseases have drawn attention toward significant deficiencies in our understanding of the ecology of HAP, and their potential for interkingdom transfer. To examine the association of microorganisms classified as HAP with plants, we surveyed the presence and distribution of HAP bacterial taxa (henceforth HAPT, for brevity's sake) in the endosphere of grapevine (Vitis vinifera L.) both in the plant stems and leaves. An enrichment protocol was used on leaves to detect taxa with very low abundance in undisturbed tissues. We used pyrosequencing and phylogenetic analyses of the 16S rDNA gene. We identified several HAPT, and focused on four genera (Propionibacterium, Staphylococcus, Clostridium, and Burkholderia). The majority of the bacterial sequences in the genus Propionibacterium, from grapevine leaf and stem, were identified as P. acnes. Clostridia were detected in leaves and stems, but their number was much higher in leaves after enrichment. HAPT were indentified both in leaves and wood of grapevines. This depicts the ability of these taxa to be internalized within plant tissues and maintain their population levels in a variety of environments. Our analysis highlighted the presence of HAPT in the grapevine endosphere and unexpected occurrence of these bacterial taxa in this atypical environment.

  6. Near-ultraviolet radiation-induced lipid peroxidation and membrane effects in Escherichia coli and human skin fibroblasts

    International Nuclear Information System (INIS)

    Chamberlain, J.

    1987-01-01

    The first part of this thesis examines the response of an unsaturated fatty acid auxotroph, Escherichia coli K1060 to broad-band near-UV radiation. Sensitivity, lipid peroxidation and leakage of rubidium from irradiated cells were found to increase with increasing unsaturation of membrane fatty acids. The involvement of singlet oxygen was implicated by an increase in sensitivity, lipid peroxidation and leakage of rubidium following irradiation in deuterium oxide. Some factors influencing survival following irradiation were investigated, where lower growth rates were shown to enhance survival. In the second part, the study was extended to human fibroblasts where a normal human skin fibroblast strain, GM730 and a strain derived from an actinic reticuloid patient, AR6LO, are compared. Lipid peroxidation was measured in both cell lines following broad-band near-UV irradiation. Membrane activity, as assessed by the pinocytic uptake of 14 C-sucrose and its subsequent release from the cell, was measured. Near-UV irradiation was found to increase such activity in both strains. Vitamin E and Trolox-C were found to decrease this response in AR6LO but not GM730 cells. The final part consists of preliminary investigations into the near-UV induced peroxidation of fatty acids and liposomes, and the subsequent increase in the level of hydroperoxides in the hours following irradiation. (author)

  7. Human infection with highly pathogenic H5N1 influenza virus

    NARCIS (Netherlands)

    Gambotto, Andrea; Barratt-Boyes, Simon M.; de Jong, Menno D.; Neumann, Gabriele; Kawaoka, Yoshihiro

    2008-01-01

    Highly pathogenic H5N1 influenza A viruses have spread relentlessly across the globe since 2003, and they are associated with widespread death in poultry, substantial economic loss to farmers, and reported infections of more than 300 people with a mortality rate of 60%. The high pathogenicity of

  8. Draft Genome Sequence of the Human-Pathogenic Fungus Scedosporium boydii

    OpenAIRE

    Duvaux, Ludovic; Shiller, Jason; Vandeputte, Patrick; Dug? de Bernonville, Thomas; Thornton, Christopher; Papon, Nicolas; Le Cam, Bruno; Bouchara, Jean-Philippe; Gastebois, Amandine

    2017-01-01

    ABSTRACT The opportunistic fungal pathogen Scedosporium boydii is the most common Scedosporium species in French patients with cystic fibrosis. Here we present the first genome report for S.?boydii, providing a resource which may enable the elucidation of the pathogenic mechanisms in this species.

  9. Mobilisation and remobilisation of a large archetypal pathogenicity island of uropathogenic Escherichia coli in vitro support the role of conjugation for horizontal transfer of genomic islands

    Directory of Open Access Journals (Sweden)

    Hochhut Bianca

    2011-09-01

    Full Text Available Abstract Background A substantial amount of data has been accumulated supporting the important role of genomic islands (GEIs - including pathogenicity islands (PAIs - in bacterial genome plasticity and the evolution of bacterial pathogens. Their instability and the high level sequence similarity of different (partial islands suggest an exchange of PAIs between strains of the same or even different bacterial species by horizontal gene transfer (HGT. Transfer events of archetypal large genomic islands of enterobacteria which often lack genes required for mobilisation or transfer have been rarely investigated so far. Results To study mobilisation of such large genomic regions in prototypic uropathogenic E. coli (UPEC strain 536, PAI II536 was supplemented with the mobRP4 region, an origin of replication (oriVR6K, an origin of transfer (oriTRP4 and a chloramphenicol resistance selection marker. In the presence of helper plasmid RP4, conjugative transfer of the 107-kb PAI II536 construct occured from strain 536 into an E. coli K-12 recipient. In transconjugants, PAI II536 existed either as a cytoplasmic circular intermediate (CI or integrated site-specifically into the recipient's chromosome at the leuX tRNA gene. This locus is the chromosomal integration site of PAI II536 in UPEC strain 536. From the E. coli K-12 recipient, the chromosomal PAI II536 construct as well as the CIs could be successfully remobilised and inserted into leuX in a PAI II536 deletion mutant of E. coli 536. Conclusions Our results corroborate that mobilisation and conjugal transfer may contribute to evolution of bacterial pathogens through horizontal transfer of large chromosomal regions such as PAIs. Stabilisation of these mobile genetic elements in the bacterial chromosome result from selective loss of mobilisation and transfer functions of genomic islands.

  10. Control of human pathogenic Yersinia enterocolitica in minced meat: Comparative analysis of different interventions using a risk assessment approach

    DEFF Research Database (Denmark)

    Van Damme, I.; De Zutter, L.; Jacxsens, L.

    2017-01-01

    . enterocolitica in minced meat produced in industrial meat processing plants. The model described the production of minced pork starting from the contamination of pig carcasses with pathogenic Y. enterocolitica just before chilling. The endpoints of the assessment were (i) the proportion of 0.5 kg minced meat packages...... contamination and different decontamination procedures of carcasses have an important effect on the proportion of highly contaminated minced meat packages at the end of storage. The addition of pork cheeks and minimal quantities of tonsillar tissue into minced meat also had a large effect on the endpoint......This study aimed to evaluate the effect of different processing scenarios along the farm-to-fork chain on the contamination of minced pork with human pathogenic Y. enterocolitica. A modular process risk model (MPRM) was used to perform the assessment of the concentrations of pathogenic Y...

  11. EFSA Panel on Biological Hazards (BIOHAZ); Scientific Opinion on the risk posed by Shiga toxinproducing Escherichia coli (STEC) and other pathogenic bacteria in seeds and sprouted seeds

    DEFF Research Database (Denmark)

    Hald, Tine

    Sprouted seeds are young seedlings obtained from the germination of seeds. They are ready-to-eat foods which have caused large outbreaks. The bacterial pathogens most frequently associated with illness due to contaminated sprouted seeds are Salmonella and to a lesser extent STEC. Bacillus cereus,...... of seed crops intended for sprouted seeds production before planting, and application of GAP, GHP, GMP, HACCP principles at all steps of the production chain. The relevance of decontamination treatments of seeds and of microbiological criteria is also discussed....

  12. Low Prevalence of Human Pathogens on Fresh Produce on Farms and in Packing Facilities: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Amelia E. Van Pelt

    2018-02-01

    Full Text Available Foodborne illness burdens individuals around the world and may be caused by consuming fresh produce contaminated with bacterial, parasite, and viral pathogens. Pathogen contamination on produce may originate at the farm and packing facility. This research aimed to determine the prevalence of human pathogens (bacteria, parasites, and viruses on fresh produce (fruits, herbs, and vegetables on farms and in packing facilities worldwide through a systematic review of 38 peer-reviewed articles. The median and range of the prevalence was calculated, and Kruskal–Wallis tests and logistic regression were performed to compare prevalence among pooled samples of produce groups, pathogen types, and sampling locations. Results indicated a low median percentage of fresh produce contaminated with pathogens (0%. Both viruses (p-value = 0.017 and parasites (p-value = 0.033, on fresh produce, exhibited higher prevalence than bacteria. No significant differences between fresh produce types or between farm and packing facility were observed. These results may help to better quantify produce contamination in the production environment and inform strategies to prevent future foodborne illness.

  13. Occurrence and characterisation of pathogenic Escherichia coli isolated from beef meat imported from South Africa and marketed in united Arab Emirates

    Science.gov (United States)

    Dulaimi, Samar Abdulkareem Khalifa Al; Ibrahim, Nazlina

    2018-04-01

    This study is aimed at determining the presence of Escherichia coli and characterizing the availability of Shiga toxin gene in beef meat samples imported from South Africa. Meat samples (n=47) were randomly collected from meat sections at different supermarkets in the United Arab Emirates (UAE) from the beginning of August 2016 till the end of March 2017. Samples were diluted and inoculated on MacConkey agar and Eosin methylene blue agar (EMB), and the colony forming units (CFU) were recorded. API 20E identification kit was used for biochemical identification of E. coli. Detection of the 16S rRNA and shiga toxin genes by PCR amplification was done. Our results revealed that 14 (29.7%) out of the total 47 samples were positive for E. coli. The bacterial burden of E. coli as determined by colony growth showed variable level of contamination. From the PCR amplification, the shiga toxin gene carried by the E. coli is the Stx2 gene. This study revealed moderately high contamination levels of E. coli in beef samples imported from South Africa and marketed in UAE which mostly carries the shiga toxin gene Stx2.

  14. Microfluidic PCR Amplification and MiSeq Amplicon Sequencing Techniques for High-Throughput Detection and Genotyping of Human Pathogenic RNA Viruses in Human Feces, Sewage, and Oysters

    Directory of Open Access Journals (Sweden)

    Mamoru Oshiki

    2018-04-01

    Full Text Available Detection and genotyping of pathogenic RNA viruses in human and environmental samples are useful for monitoring the circulation and prevalence of these pathogens, whereas a conventional PCR assay followed by Sanger sequencing is time-consuming and laborious. The present study aimed to develop a high-throughput detection-and-genotyping tool for 11 human RNA viruses [Aichi virus; astrovirus; enterovirus; norovirus genogroup I (GI, GII, and GIV; hepatitis A virus; hepatitis E virus; rotavirus; sapovirus; and human parechovirus] using a microfluidic device and next-generation sequencer. Microfluidic nested PCR was carried out on a 48.48 Access Array chip, and the amplicons were recovered and used for MiSeq sequencing (Illumina, Tokyo, Japan; genotyping was conducted by homology searching and phylogenetic analysis of the obtained sequence reads. The detection limit of the 11 tested viruses ranged from 100 to 103 copies/μL in cDNA sample, corresponding to 101–104 copies/mL-sewage, 105–108 copies/g-human feces, and 102–105 copies/g-digestive tissues of oyster. The developed assay was successfully applied for simultaneous detection and genotyping of RNA viruses to samples of human feces, sewage, and artificially contaminated oysters. Microfluidic nested PCR followed by MiSeq sequencing enables efficient tracking of the fate of multiple RNA viruses in various environments, which is essential for a better understanding of the circulation of human pathogenic RNA viruses in the human population.

  15. Genetic diversity and antimicrobial resistance of Escherichia coli from human and animal sources uncovers multiple resistances from human sources.

    Directory of Open Access Journals (Sweden)

    A Mark Ibekwe

    Full Text Available Escherichia coli are widely used as indicators of fecal contamination, and in some cases to identify host sources of fecal contamination in surface water. Prevalence, genetic diversity and antimicrobial susceptibility were determined for 600 generic E. coli isolates obtained from surface water and sediment from creeks and channels along the middle Santa Ana River (MSAR watershed of southern California, USA, after a 12 month study. Evaluation of E. coli populations along the creeks and channels showed that E. coli were more prevalent in sediment compared to surface water. E. coli populations were not significantly different (P = 0.05 between urban runoff sources and agricultural sources, however, E. coli genotypes determined by pulsed-field gel electrophoresis (PFGE were less diverse in the agricultural sources than in urban runoff sources. PFGE also showed that E. coli populations in surface water were more diverse than in the sediment, suggesting isolates in sediment may be dominated by clonal populations.Twenty four percent (144 isolates of the 600 isolates exhibited resistance to more than one antimicrobial agent. Most multiple resistances were associated with inputs from urban runoff and involved the antimicrobials rifampicin, tetracycline, and erythromycin. The occurrence of a greater number of E. coli with multiple antibiotic resistances from urban runoff sources than agricultural sources in this watershed provides useful evidence in planning strategies for water quality management and public health protection.

  16. R5 strains of human immunodeficiency virus type 1 from rapid progressors lacking X4 strains do not possess X4-type pathogenicity in human thymus