WorldWideScience

Sample records for human parasite trypanosoma

  1. Gastrointestinal parasites and Trypanosoma evansi in buffaloes

    International Nuclear Information System (INIS)

    Sani, R.A.; Chandrawathani, P.; Rosli, M.

    1990-01-01

    Gastrointestinal parasitism is common in buffalo calves. The effect of helminths on growth was studied by administration of an anthelmintic to buffalo calves following natural infections with gastrointestinal parasites. In studies conducted on calves belonging to an institute and a smallholder farmer, the treated calves showed improved weight gains. Serial parasitic examinations showed these animals had moderate to high faecal counts with Strongyloides, Toxocara vitulorum and Haemonchus eggs and Eimeria oocytes. In another study, there was no live weight advantage in treated over untreated calves. Few animals in this study had evidence of parasites and even those which were infested had low faecal egg counts. Hence, in general, helminths at certain levels of infection do affect the live weight gains of young buffalo calves. The prevalence of Trypanosoma evansi, as assessed parasitologically using the haematocrit centrifugation technique and mice inoculation, was 2.7 and 1%, respectively, in cattle and buffaloes. The serological prevalence using the enzyme linked immunosorbent assay was 35 and 2% for cattle and buffaloes, respectively. (author). 6 refs, 5 figs, 2 tabs

  2. Ecological host fitting of Trypanosoma cruzi TcI in Bolivia: mosaic population structure, hybridization and a role for humans in Andean parasite dispersal.

    Science.gov (United States)

    Messenger, Louisa A; Garcia, Lineth; Vanhove, Mathieu; Huaranca, Carlos; Bustamante, Marinely; Torrico, Marycruz; Torrico, Faustino; Miles, Michael A; Llewellyn, Martin S

    2015-05-01

    An improved understanding of how a parasite species exploits its genetic repertoire to colonize novel hosts and environmental niches is crucial to establish the epidemiological risk associated with emergent pathogenic genotypes. Trypanosoma cruzi, a genetically heterogeneous, multi-host zoonosis, provides an ideal system to examine the sylvatic diversification of parasitic protozoa. In Bolivia, T. cruzi I, the oldest and most widespread genetic lineage, is pervasive across a range of ecological clines. High-resolution nuclear (26 loci) and mitochondrial (10 loci) genotyping of 199 contemporaneous sylvatic TcI clones was undertaken to provide insights into the biogeographical basis of T. cruzi evolution. Three distinct sylvatic parasite transmission cycles were identified: one highland population among terrestrial rodent and triatomine species, composed of genetically homogenous strains (Ar = 2.95; PA/L = 0.61; DAS = 0.151), and two highly diverse, parasite assemblages circulating among predominantly arboreal mammals and vectors in the lowlands (Ar = 3.40 and 3.93; PA/L = 1.12 and 0.60; DAS = 0.425 and 0.311, respectively). Very limited gene flow between neighbouring terrestrial highland and arboreal lowland areas (distance ~220 km; FST = 0.42 and 0.35) but strong connectivity between ecologically similar but geographically disparate terrestrial highland ecotopes (distance >465 km; FST = 0.016-0.084) strongly supports ecological host fitting as the predominant mechanism of parasite diversification. Dissimilar heterozygosity estimates (excess in highlands, deficit in lowlands) and mitochondrial introgression among lowland strains may indicate fundamental differences in mating strategies between populations. Finally, accelerated parasite dissemination between densely populated, highland areas, compared to uninhabited lowland foci, likely reflects passive, long-range anthroponotic dispersal. The impact of humans on the risk of epizootic Chagas disease transmission in

  3. Parasite Genome Projects and the Trypanosoma cruzi Genome Initiative

    Directory of Open Access Journals (Sweden)

    Wim Degrave

    1997-11-01

    Full Text Available Since the start of the human genome project, a great number of genome projects on other "model" organism have been initiated, some of them already completed. Several initiatives have also been started on parasite genomes, mainly through support from WHO/TDR, involving North-South and South-South collaborations, and great hopes are vested in that these initiatives will lead to new tools for disease control and prevention, as well as to the establishment of genomic research technology in developing countries. The Trypanosoma cruzi genome project, using the clone CL-Brener as starting point, has made considerable progress through the concerted action of more than 20 laboratories, most of them in the South. A brief overview of the current state of the project is given

  4. Cancer in the parasitic protozoans Trypanosoma brucei and Toxoplasma gondii.

    Science.gov (United States)

    Lun, Zhao-Rong; Lai, De-Hua; Wen, Yan-Zi; Zheng, Ling-Ling; Shen, Ji-Long; Yang, Ting-Bo; Zhou, Wen-Liang; Qu, Liang-Hu; Hide, Geoff; Ayala, Francisco J

    2015-07-21

    Cancer is a general name for more than 100 malignant diseases. It is postulated that all cancers start from a single abnormal cell that grows out of control. Untreated cancers can cause serious consequences and deaths. Great progress has been made in cancer research that has significantly improved our knowledge and understanding of the nature and mechanisms of the disease, but the origins of cancer are far from being well understood due to the limitations of suitable model systems and to the complexities of the disease. In view of the fact that cancers are found in various species of vertebrates and other metazoa, here, we suggest that cancer also occurs in parasitic protozoans such as Trypanosoma brucei, a blood parasite, and Toxoplasma gondii, an obligate intracellular pathogen. Without treatment, these protozoan cancers may cause severe disease and death in mammals, including humans. The simpler genomes of these single-cell organisms, in combination with their complex life cycles and fascinating life cycle differentiation processes, may help us to better understand the origins of cancers and, in particular, leukemias.

  5. Genome and transcriptome studies of the protozoan parasites Trypanosoma cruzi and Giardia intestinalis

    OpenAIRE

    Franzén, Oscar

    2012-01-01

    Trypanosoma cruzi and Giardia intestinalis are two human pathogens and protozoan parasites responsible for the diseases Chagas disease and giardiasis, respectively. Both diseases cause su ering and illness in several million individuals. The former disease occurs primarily in South America and Central America, and the latter disease occurs worldwide. Current therapeutics are toxic and lack e cacy, and potential vaccines are far from the market. Increased knowledge about the bio...

  6. Zoonotic trypanosomes in South East Asia : attempts to control Trypanosoma lewisi using human and animal trypanocidal drugs

    OpenAIRE

    Desquesnes, M.; Yangtara, S.; Kunphukhieo, P.; Jittapalapong, S.; Herder, Stéphane

    2016-01-01

    Beside typical human trypanosomes responsible of sleeping sickness in Africa and Chagas disease in Latin America, there is a growing number of reported atypical human infections due to Trypanosoma evansi, a livestock parasite, or Trypanosoma lewisi, a rat parasite, especially in Asia. Drugs available for the treatment of T. brucei ssp. in humans are obviously of choice for the control of T. evansi because it is derived from T. brucei. However, concerning T. lewisi, there is an urgent need to ...

  7. Novel molecular mechanism for targeting the parasite Trypanosoma brucei with snake venom toxins

    DEFF Research Database (Denmark)

    Martos Esteban, Andrea; Laustsen, Andreas Hougaard; Carrington, Mark

    Trypanosoma brucei is a parasitic protozoan species capable to infecting insect vectors whose bite further produces African sleeping sickness inhuman beings. During parasites’extracellular lives in the mammalian host, its outer coat, mainly composedof Variable surface glycoproteins (VSGs)[2...

  8. A haptoglobin-hemoglobin receptor conveys innate immunity to Trypanosoma brucei in humans

    DEFF Research Database (Denmark)

    Vanhollebeke, Benoit; De Muylder, Géraldine; Nielsen, Marianne J

    2008-01-01

    The protozoan parasite Trypanosoma brucei is lysed by apolipoprotein L-I, a component of human high-density lipoprotein (HDL) particles that are also characterized by the presence of haptoglobin-related protein. We report that this process is mediated by a parasite glycoprotein receptor, which...... binds the haptoglobin-hemoglobin complex with high affinity for the uptake and incorporation of heme into intracellular hemoproteins. In mice, this receptor was required for optimal parasite growth and the resistance of parasites to the oxidative burst by host macrophages. In humans, the trypanosome...... immunity against the parasite....

  9. Mating compatibility in the parasitic protist Trypanosoma brucei.

    Science.gov (United States)

    Peacock, Lori; Ferris, Vanessa; Bailey, Mick; Gibson, Wendy

    2014-02-21

    Genetic exchange has been described in several kinetoplastid parasites, but the most well-studied mating system is that of Trypanosoma brucei, the causative organism of African sleeping sickness. Sexual reproduction takes place in the salivary glands (SG) of the tsetse vector and involves meiosis and production of haploid gametes. Few genetic crosses have been carried out to date and consequently there is little information about the mating compatibility of different trypanosomes. In other single-celled eukaryotes, mating compatibility is typically determined by a system of two or more mating types (MT). Here we investigated the MT system in T. brucei. We analysed a large series of F1, F2 and back crosses by pairwise co-transmission of red and green fluorescent cloned cell lines through experimental tsetse flies. To analyse each cross, trypanosomes were cloned from fly SG containing a mixture of both parents, and genotyped by microsatellites and molecular karyotype. To investigate mating compatibility at the level of individual cells, we directly observed the behaviour of SG-derived gametes in intra- or interclonal mixtures of red and green fluorescent trypanosomes ex vivo. Hybrid progeny were found in all F1 and F2 crosses and most of the back crosses. The success of individual crosses was highly variable as judged by the number of hybrid clones produced, suggesting a range of mating compatibilities among F1 progeny. As well as hybrids, large numbers of recombinant genotypes resulting from intraclonal mating (selfers) were found in some crosses. In ex vivo mixtures, red and green fluorescent trypanosome gametes were observed to pair up and interact via their flagella in both inter- and intraclonal combinations. While yellow hybrid trypanosomes were frequently observed in interclonal mixtures, such evidence of cytoplasmic exchange was rare in the intraclonal mixtures. The outcomes of individual crosses, particularly back crosses, were variable in numbers of both

  10. Parasite Infection, Carcinogenesis and Human Malignancy

    Directory of Open Access Journals (Sweden)

    Hoang van Tong

    2017-02-01

    Full Text Available Cancer may be induced by many environmental and physiological conditions. Infections with viruses, bacteria and parasites have been recognized for years to be associated with human carcinogenicity. Here we review current concepts of carcinogenicity and its associations with parasitic infections. The helminth diseases schistosomiasis, opisthorchiasis, and clonorchiasis are highly carcinogenic while the protozoan Trypanosoma cruzi, the causing agent of Chagas disease, has a dual role in the development of cancer, including both carcinogenic and anticancer properties. Although malaria per se does not appear to be causative in carcinogenesis, it is strongly associated with the occurrence of endemic Burkitt lymphoma in areas holoendemic for malaria. The initiation of Plasmodium falciparum related endemic Burkitt lymphoma requires additional transforming events induced by the Epstein-Barr virus. Observations suggest that Strongyloides stercoralis may be a relevant co-factor in HTLV-1-related T cell lymphomas. This review provides an overview of the mechanisms of parasitic infection-induced carcinogenicity.

  11. Semisolid liver infusion tryptose supplemented with human urine allows growth and isolation of Trypanosoma cruzi and Trypanosoma rangeli clonal lineages

    Directory of Open Access Journals (Sweden)

    Emanuella Francisco Fajardo

    2016-06-01

    Full Text Available Abstract: INTRODUCTION This work shows that 3% (v/v human urine (HU in semisolid Liver Infusion Tryptose (SSL medium favors the growth of Trypanosoma cruzi and T. rangeli. METHODS Parasites were plated as individual or mixed strains on SSL medium and on SSL medium with 3% human urine (SSL-HU. Isolate DNA was analyzed using polymerase chain reaction (PCR and pulsed-field gel electrophoresis (PFGE. RESULTS SSL-HU medium improved clone isolation. PCR revealed that T. cruzi strains predominate on mixed-strain plates. PFGE confirmed that isolated parasites share the same molecular karyotype as parental cell lines. CONCLUSIONS SSL-HU medium constitutes a novel tool for obtaining T. cruzi and T. rangeli clonal lineages.

  12. Early Trypanosoma cruzi Infection Reprograms Human Epithelial Cells

    Directory of Open Access Journals (Sweden)

    María Laura Chiribao

    2014-01-01

    Full Text Available Trypanosoma cruzi, the causative agent of Chagas disease, has the peculiarity, when compared with other intracellular parasites, that it is able to invade almost any type of cell. This property makes Chagas a complex parasitic disease in terms of prophylaxis and therapeutics. The identification of key host cellular factors that play a role in the T. cruzi invasion is important for the understanding of disease pathogenesis. In Chagas disease, most of the focus is on the response of macrophages and cardiomyocytes, since they are responsible for host defenses and cardiac lesions, respectively. In the present work, we studied the early response to infection of T. cruzi in human epithelial cells, which constitute the first barrier for establishment of infection. These studies identified up to 1700 significantly altered genes regulated by the immediate infection. The global analysis indicates that cells are literally reprogrammed by T. cruzi, which affects cellular stress responses (neutrophil chemotaxis, DNA damage response, a great number of transcription factors (including the majority of NFκB family members, and host metabolism (cholesterol, fatty acids, and phospholipids. These results raise the possibility that early host cell reprogramming is exploited by the parasite to establish the initial infection and posterior systemic dissemination.

  13. Triatominae-Trypanosoma cruzi/T. rangeli: Vector-parasite interactions.

    Science.gov (United States)

    Vallejo, G A; Guhl, F; Schaub, G A

    2009-01-01

    Of the currently known 140 species in the family Reduviidae, subfamily Triatominae, those which are most important as vectors of the aetiologic agent of Chagas disease, Trypanosoma cruzi, belong to the tribes Triatomini and Rhodniini. The latter not only transmit T. cruzi but also Trypanosoma rangeli, which is considered apathogenic for the mammalian host but can be pathogenic for the vectors. Using different molecular methods, two main lineages of T. cruzi have been classified, T. cruzi I and T. cruzi II. Within T. cruzi II, five subdivisions are recognized, T. cruzi IIa-IIe, according to the variability of the ribosomal subunits 24Salpha rRNA and 18S rRNA. In T. rangeli, differences in the organization of the kinetoplast DNA separate two forms denoted T. rangeli KP1+ and KP1-, although differences in the intergenic mini-exon gene and of the small subunit rRNA (SSU rRNA) suggest four subpopulations denoted T. rangeli A, B, C and D. The interactions of these subpopulations of the trypanosomes with different species and populations of Triatominae determine the epidemiology of the human-infecting trypanosomes in Latin America. Often, specific subpopulations of the trypanosomes are transmitted by specific vectors in a particular geographic area. Studies centered on trypanosome-triatomine interaction may allow identification of co-evolutionary processes, which, in turn, could consolidate hypotheses of the evolution and the distribution of T. cruzi/T. rangeli-vectors in America, and they may help to identify the mechanisms that either facilitate or impede the transmission of the parasites in different vector species. Such mechanisms seem to involve intestinal bacteria, especially the symbionts which are needed by the triatomines to complete nymphal development and to produce eggs. Development of the symbionts is regulated by the vector. T. cruzi and T. rangeli interfere with this system and induce the production of antibacterial substances. Whereas T. cruzi is only

  14. Mechanism of Trypanosoma cruzi Placenta Invasion and Infection: The Use of Human Chorionic Villi Explants

    Directory of Open Access Journals (Sweden)

    Ricardo E. Fretes

    2012-01-01

    Full Text Available Congenital Chagas disease, a neglected tropical disease, endemic in Latin America, is associated with premature labor and miscarriage. During vertical transmission the parasite Trypanosoma cruzi (T. cruzi crosses the placental barrier. However, the exact mechanism of the placental infection remains unclear. We review the congenital transmission of T. cruzi, particularly the role of possible local placental factors that contribute to the vertical transmission of the parasite. Additionally, we analyze the different methods available for studying the congenital transmission of the parasite. In that context, the ex vivo infection with T. cruzi trypomastigotes of human placental chorionic villi constitutes an excellent tool for studying parasite infection strategies as well as possible local antiparasitic mechanisms.

  15. Trypanosoma cruzi: blood parasitism kinetics and their correlation with heart parasitism intensity during long-term infection of Beagle dogs

    Directory of Open Access Journals (Sweden)

    Vanja M Veloso

    2008-09-01

    Full Text Available The goals of the present study were to evaluate the kinetics of blood parasitism by examination of fresh blood, blood culture (BC and PCR assays and their correlation with heart parasitism during two years of infection in Beagle dogs inoculated with the Be-78, Y and ABC Trypanosoma cruzi strains. Our results showed that the parasite or its kDNA is easily detected during the acute phase in all infected animals. On the other hand, a reduced number of positive tests were verified during the chronic phase of the infection. The frequency of positive tests was correlated with T. cruzi strain. The percentage of positive BC and blood PCR performed in samples from animals inoculated with Be-78 and ABC strains were similar and significantly larger in relation to animals infected with the Y strain.Comparison of the positivity of PCR tests performed using blood and heart tissue samples obtained two years after infection showed two different patterns associated with the inoculated T. cruzi strain: (1 high PCR positivity for both blood and tissue was observed in animals infected with Be-78 or ABC strains; (2 lower and higher PCR positivity for the blood and tissue, respectively, was detected in animals infected with Y strains. These data suggest that the sensitivity of BC and blood PCR was T. cruzi strain dependent and, in contrast, the heart tissue PCR revealed higher sensitivity regardless of the parasite stock.

  16. Human parasitic protozoan infection to infertility: a systematic review.

    Science.gov (United States)

    Shiadeh, Malihe Nourollahpour; Niyyati, Maryam; Fallahi, Shirzad; Rostami, Ali

    2016-02-01

    Protozoan parasitic diseases are endemic in many countries worldwide, especially in developing countries, where infertility is a major burden. It has been reported that such infections may cause infertility through impairment in male and female reproductive systems. We searched Medline, PubMed, and Scopus databases and Google scholar to identify the potentially relevant studies on protozoan parasitic infections and their implications in human and animal model infertility. Literature described that some of the protozoan parasites such as Trichomonas vaginalis may cause deformities of the genital tract, cervical neoplasia, and tubal and atypical pelvic inflammations in women and also non-gonoccocal urethritis, asthenozoospermia, and teratozoospermia in men. Toxopalasma gondii could cause endometritis, impaired folliculogenesis, ovarian and uterine atrophy, adrenal hypertrophy, vasculitis, and cessation of estrus cycling in female and also decrease in semen quality, concentration, and motility in male. Trypanosoma cruzi inhibits cell division in embryos and impairs normal implantation and development of placenta. Decrease in gestation rate, infection of hormone-producing glands, parasite invasion of the placenta, and overproduction of inflammatory cytokines in the oviducts and uterine horns are other possible mechanisms induced by Trypanosoma cruzi to infertility. Plasmodium spp. and Trypanosoma brucei spp. cause damage in pituitary gland, hormonal disorders, and decreased semen quality. Entamoeba histolytica infection leads to pelvic pain, salpingitis, tubo-ovarian abscess, and genital ulcers. Cutaneous and visceral leishmaniasis can induce genital lesion, testicular amyloidosis, inflammation of epididymis, prostatitis, and sperm abnormality in human and animals. In addition, some epidemiological studies have reported that rates of protozoan infections in infertile patients are higher than healthy controls. The current review indicates that protozoan parasitic

  17. Parasite Infection, Carcinogenesis and Human Malignancy.

    Science.gov (United States)

    van Tong, Hoang; Brindley, Paul J; Meyer, Christian G; Velavan, Thirumalaisamy P

    2017-02-01

    Cancer may be induced by many environmental and physiological conditions. Infections with viruses, bacteria and parasites have been recognized for years to be associated with human carcinogenicity. Here we review current concepts of carcinogenicity and its associations with parasitic infections. The helminth diseases schistosomiasis, opisthorchiasis, and clonorchiasis are highly carcinogenic while the protozoan Trypanosoma cruzi, the causing agent of Chagas disease, has a dual role in the development of cancer, including both carcinogenic and anticancer properties. Although malaria per se does not appear to be causative in carcinogenesis, it is strongly associated with the occurrence of endemic Burkitt lymphoma in areas holoendemic for malaria. The initiation of Plasmodium falciparum related endemic Burkitt lymphoma requires additional transforming events induced by the Epstein-Barr virus. Observations suggest that Strongyloides stercoralis may be a relevant co-factor in HTLV-1-related T cell lymphomas. This review provides an overview of the mechanisms of parasitic infection-induced carcinogenicity. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Visual genome-wide RNAi screening to identify human host factors required for Trypanosoma cruzi infection

    CSIR Research Space (South Africa)

    Genovesio, A

    2011-05-01

    Full Text Available The protozoan parasite Trypanosoma cruzi is the etiologic agent of Chagas disease, a neglected tropical infection that affects millions of people in the Americas. Current chemotherapy relies on only two drugs that have limited efficacy...

  19. Trypanosoma cruzi: partial prevention of the natural infection of guinea pigs with a killed parasite vaccine.

    Science.gov (United States)

    Basombrio, M A

    1990-07-01

    Guinea pigs are natural reservoirs of Chagas' disease. Domestic breeding and local trade of these animals are common practices among andean communities in South America. Infection by Trypanosoma cruzi occurs when the animals live in triatomine-infested houses or yards. The preventive effect of a vaccine consisting of cultured T. cruzi killed by freezing and thawing plus saponin was tested both in mice and in the guinea pig ecosystem. Resistance against T. cruzi challenge in mice was improved by increasing the trypomastigote/epimastigote ratio in live attenuated vaccines but not in killed parasite vaccines. Although the killing of attenuated parasites sharply reduced their immunogenicity for mice, a protective effect against natural T. cruzi infection was detected in guinea pigs. A total of 88 guinea pigs were vaccinated in four intradermal sites on three occasions. Eighty controls received similar inoculations of culture medium plus saponin. All animals were kept in a triatomine-infested yard. Parasitemia was studied with the capillary microhematocrit method. After an exposure time averaging 4 months, natural T. cruzi infection occurred in 55% (44/80) of the controls and in 33% (29/88) of the vaccinated group (P less than 0.01). The number of highly parasitemic guinea pigs was also significantly decreased (6/80 vs 0/88, P less than 0.01). Thus, immunizing protocols which are only partially protective against artificial callenge with T. cruzi may nevertheless constrain the exchange of parasites between natural hosts and vectors.

  20. A Trypanosoma brucei kinesin heavy chain promotes parasite growth by triggering host arginase activity.

    Directory of Open Access Journals (Sweden)

    Géraldine De Muylder

    2013-10-01

    Full Text Available In order to promote infection, the blood-borne parasite Trypanosoma brucei releases factors that upregulate arginase expression and activity in myeloid cells.By screening a cDNA library of T. brucei with an antibody neutralizing the arginase-inducing activity of parasite released factors, we identified a Kinesin Heavy Chain isoform, termed TbKHC1, as responsible for this effect. Following interaction with mouse myeloid cells, natural or recombinant TbKHC1 triggered SIGN-R1 receptor-dependent induction of IL-10 production, resulting in arginase-1 activation concomitant with reduction of nitric oxide (NO synthase activity. This TbKHC1 activity was IL-4Rα-independent and did not mirror M2 activation of myeloid cells. As compared to wild-type T. brucei, infection by TbKHC1 KO parasites was characterized by strongly reduced parasitaemia and prolonged host survival time. By treating infected mice with ornithine or with NO synthase inhibitor, we observed that during the first wave of parasitaemia the parasite growth-promoting effect of TbKHC1-mediated arginase activation resulted more from increased polyamine production than from reduction of NO synthesis. In late stage infection, TbKHC1-mediated reduction of NO synthesis appeared to contribute to liver damage linked to shortening of host survival time.A kinesin heavy chain released by T. brucei induces IL-10 and arginase-1 through SIGN-R1 signaling in myeloid cells, which promotes early trypanosome growth and favors parasite settlement in the host. Moreover, in the late stage of infection, the inhibition of NO synthesis by TbKHC1 contributes to liver pathogenicity.

  1. Congenital Chagas disease as an ecological model of interactions between Trypanosoma cruzi parasites, pregnant women, placenta and fetuses.

    Science.gov (United States)

    Carlier, Yves; Truyens, Carine

    2015-11-01

    The aim of this paper is to discuss the main ecological interactions between the parasite Trypanosoma cruzi and its hosts, the mother and the fetus, leading to the transmission and development of congenital Chagas disease. One or several infecting strains of T. cruzi (with specific features) interact with: (i) the immune system of a pregnant woman whom responses depend on genetic and environmental factors, (ii) the placenta harboring its own defenses, and, finally, (iii) the fetal immune system displaying responses also susceptible to be modulated by maternal and environmental factors, as well as his own genetic background which is different from her mother. The severity of congenital Chagas disease depends on the magnitude of such final responses. The paper is mainly based on human data, but integrates also complementary observations obtained in experimental infections. It also focuses on important gaps in our knowledge of this congenital infection, such as the role of parasite diversity vs host genetic factors, as well as that of the maternal and placental microbiomes and the microbiome acquisition by infant in the control of infection. Investigations on these topics are needed in order to improve the programs aiming to diagnose, manage and control congenital Chagas disease. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Stearoyl-CoA desaturase is an essential enzyme for the parasitic protist Trypanosoma brucei

    Energy Technology Data Exchange (ETDEWEB)

    Alloatti, Andres [Instituto de Biologia Molecular y Celular de Rosario (IBR), CONICET, Facultad de Ciencias Bioquimicas y Farmaceuticas, Universidad Nacional de Rosario, Santa Fe (Argentina); Gupta, Shreedhara; Gualdron-Lopez, Melisa; Nguewa, Paul A. [Research Unit for Tropical Diseases, de Duve Institute and Laboratory of Biochemistry, Universite Catholique de Louvain, Brussels (Belgium); Altabe, Silvia G. [Instituto de Biologia Molecular y Celular de Rosario (IBR), CONICET, Facultad de Ciencias Bioquimicas y Farmaceuticas, Universidad Nacional de Rosario, Santa Fe (Argentina); Deumer, Gladys; Wallemacq, Pierre [Department of Clinical Chemistry, Cliniques Universitaires Saint-Luc, LTAP, Universite Catholique de Louvain, Brussels (Belgium); Michels, Paul A.M. [Research Unit for Tropical Diseases, de Duve Institute and Laboratory of Biochemistry, Universite Catholique de Louvain, Brussels (Belgium); Uttaro, Antonio D., E-mail: toniuttaro@yahoo.com.ar [Instituto de Biologia Molecular y Celular de Rosario (IBR), CONICET, Facultad de Ciencias Bioquimicas y Farmaceuticas, Universidad Nacional de Rosario, Santa Fe (Argentina)

    2011-08-26

    Highlights: {yields} Inhibiting {Delta}9 desaturase drastically changes T. brucei's fatty-acid composition. {yields} Isoxyl specifically inhibits the {Delta}9 desaturase causing a growth arrest. {yields} RNA interference of desaturase expression causes a similar effect. {yields} Feeding T. brucei-infected mice with Isoxyl decreases the parasitemia. {yields} 70% of Isoxyl-treated mice survived the trypanosome infection. -- Abstract: Trypanosoma brucei, the etiologic agent of sleeping sickness, is exposed to important changes in nutrients and temperature during its life cycle. To adapt to these changes, the fluidity of its membranes plays a crucial role. This fluidity, mediated by the fatty-acid composition, is regulated by enzymes named desaturases. We have previously shown that the oleoyl desaturase is essential for Trypanosoma cruzi and T. brucei. In this work, we present experimental support for the relevance of stearoyl-CoA desaturase (SCD) for T. brucei's survival, in both its insect or procyclic-form (PCF) and bloodstream-form (BSF) stages. We evaluated this essentiality in two different ways: by generating a SCD knocked-down parasite line using RNA interference, and by chemical inhibition of the enzyme with two compounds, Isoxyl and a thiastearate with the sulfur atom at position 10 (10-TS). The effective concentration for 50% growth inhibition (EC{sub 50}) of PCF was 1.0 {+-} 0.2 {mu}M for Isoxyl and 5 {+-} 2 {mu}M for 10-TS, whereas BSF appeared more susceptible with EC{sub 50} values 0.10 {+-} 0.03 {mu}M (Isoxyl) and 1.0 {+-} 0.6 {mu}M (10-TS). RNA interference showed to be deleterious for both stages of the parasite. In addition, T. brucei-infected mice were fed with Isoxyl, causing a reduction of the parasitemia and an increase of the rodents' survival.

  3. Stearoyl-CoA desaturase is an essential enzyme for the parasitic protist Trypanosoma brucei

    International Nuclear Information System (INIS)

    Alloatti, Andres; Gupta, Shreedhara; Gualdron-Lopez, Melisa; Nguewa, Paul A.; Altabe, Silvia G.; Deumer, Gladys; Wallemacq, Pierre; Michels, Paul A.M.; Uttaro, Antonio D.

    2011-01-01

    Highlights: → Inhibiting Δ9 desaturase drastically changes T. brucei's fatty-acid composition. → Isoxyl specifically inhibits the Δ9 desaturase causing a growth arrest. → RNA interference of desaturase expression causes a similar effect. → Feeding T. brucei-infected mice with Isoxyl decreases the parasitemia. → 70% of Isoxyl-treated mice survived the trypanosome infection. -- Abstract: Trypanosoma brucei, the etiologic agent of sleeping sickness, is exposed to important changes in nutrients and temperature during its life cycle. To adapt to these changes, the fluidity of its membranes plays a crucial role. This fluidity, mediated by the fatty-acid composition, is regulated by enzymes named desaturases. We have previously shown that the oleoyl desaturase is essential for Trypanosoma cruzi and T. brucei. In this work, we present experimental support for the relevance of stearoyl-CoA desaturase (SCD) for T. brucei's survival, in both its insect or procyclic-form (PCF) and bloodstream-form (BSF) stages. We evaluated this essentiality in two different ways: by generating a SCD knocked-down parasite line using RNA interference, and by chemical inhibition of the enzyme with two compounds, Isoxyl and a thiastearate with the sulfur atom at position 10 (10-TS). The effective concentration for 50% growth inhibition (EC 50 ) of PCF was 1.0 ± 0.2 μM for Isoxyl and 5 ± 2 μM for 10-TS, whereas BSF appeared more susceptible with EC 50 values 0.10 ± 0.03 μM (Isoxyl) and 1.0 ± 0.6 μM (10-TS). RNA interference showed to be deleterious for both stages of the parasite. In addition, T. brucei-infected mice were fed with Isoxyl, causing a reduction of the parasitemia and an increase of the rodents' survival.

  4. Trypanosoma (Megatrypanum saloboense n. sp. (Kinetoplastida: Trypanosomatidae parasite of Monodelphis emiliae (Marsupiala: Didelphidae from Amazonian Brazil

    Directory of Open Access Journals (Sweden)

    Lainson R.

    2008-06-01

    Full Text Available Trypanosoma (Megatrypanum saloboense n. sp., is described in the Brazilian opossum Monodelphis emiliae (Thomas, 1912 from primary forest in the Salobo area of the Serra dos Carajás (6° S, 50° 18′ W Pará State, North Brazil. Two morphologically different trypomastigotes were noted. Slender forms, regarded as immature parasites, have a poorly developed undulating membrane adhering closely to the body: large, broad forms with a well developed membrane are considered to be the mature trypomastigotes and have a mean total length of 71.2 μm (62.4-76.2 and a width of 6.1 (5.0-8.0. Infections studied in two opossums were of very low parasitaemia. The large size of T. (M. saloboense readily distinguishes it from the two previously described members of the subgenus Megatrypanum of neotropical marsupials, T. (M. freitasi Régo et al., 1957 of Didelphis azarae and D. marsupialis, and T. (M. samueli Mello, 1977 of Monodelphis domesticus, which measure only 49.0-51.5 μm and 42.4 μm respectively. No infections were obtained in hamsters inoculated with triturated liver and spleen from one infected M. emiliae, or in laboratory mice inoculated with epimastigotes from a blood-agar culture. No division stages could be detected in the internal organs or the peripheral blood.

  5. Repurposing a Library of Human Cathepsin L Ligands: Identification of Macrocyclic Lactams as Potent Rhodesain and Trypanosoma brucei Inhibitors.

    Science.gov (United States)

    Giroud, Maude; Dietzel, Uwe; Anselm, Lilli; Banner, David; Kuglstatter, Andreas; Benz, Jörg; Blanc, Jean-Baptiste; Gaufreteau, Delphine; Liu, Haixia; Lin, Xianfeng; Stich, August; Kuhn, Bernd; Schuler, Franz; Kaiser, Marcel; Brun, Reto; Schirmeister, Tanja; Kisker, Caroline; Diederich, François; Haap, Wolfgang

    2018-04-26

    Rhodesain (RD) is a parasitic, human cathepsin L (hCatL) like cysteine protease produced by Trypanosoma brucei ( T. b.) species and a potential drug target for the treatment of human African trypanosomiasis (HAT). A library of hCatL inhibitors was screened, and macrocyclic lactams were identified as potent RD inhibitors ( K i < 10 nM), preventing the cell-growth of Trypanosoma brucei rhodesiense (IC 50 < 400 nM). SARs addressing the S2 and S3 pockets of RD were established. Three cocrystal structures with RD revealed a noncovalent binding mode of this ligand class due to oxidation of the catalytic Cys25 to a sulfenic acid (Cys-SOH) during crystallization. The P-glycoprotein efflux ratio was measured and the in vivo brain penetration in rats determined. When tested in vivo in acute HAT model, the compounds permitted up to 16.25 (vs 13.0 for untreated controls) mean days of survival.

  6. Parasitic loads in tissues of mice infected with Trypanosoma cruzi and treated with AmBisome.

    Directory of Open Access Journals (Sweden)

    Sabrina Cencig

    2011-06-01

    Full Text Available BACKGROUND: Chagas disease is one of the most important public health problems and a leading cause of cardiac failure in Latin America. The currently available drugs to treat T. cruzi infection (benznidazole and nifurtimox are effective in humans when administered during months. AmBisome (liposomal amphotericin B, already shown efficient after administration for some days in human and experimental infection with Leishmania, has been scarcely studied in T. cruzi infection. AIMS: This work investigates the effect of AmBisome treatment, administered in 6 intraperitoneal injections at various times during acute and/or chronic phases of mouse T. cruzi infection, comparing survival rates and parasitic loads in several tissues. METHODOLOGY: Quantitative PCR was used to determine parasitic DNA amounts in tissues. Immunosuppressive treatment with cyclophosphamide was used to investigate residual infection in tissues. FINDINGS: Administration of AmBisome during the acute phase of infection prevented mice from fatal issue. Parasitaemias (microscopic examination were reduced in acute phase and undetectable in chronic infection. Quantitative PCR analyses showed significant parasite load reductions in heart, liver, spleen, skeletal muscle and adipose tissues in acute as well as in chronic infection. An earlier administration of AmBisome (one day after parasite inoculation had a better effect in reducing parasite loads in spleen and liver, whereas repetition of treatment in chronic phase enhanced the parasite load reduction in heart and liver. However, whatever the treatment schedule, cyclophosphamide injections boosted infection to parasite amounts comparable to those observed in acutely infected and untreated mice. CONCLUSIONS: Though AmBisome treatment fails to completely cure mice from T. cruzi infection, it impedes mortality and reduces significantly the parasitic loads in most tissues. Such a beneficial effect, obtained by administrating it over a short

  7. Anti-Parasitic Activities of Allium sativum and Allium cepa against Trypanosoma b. brucei and Leishmania tarentolae.

    Science.gov (United States)

    Krstin, Sonja; Sobeh, Mansour; Braun, Markus Santhosh; Wink, Michael

    2018-04-21

    Background: Garlics and onions have been used for the treatment of diseases caused by parasites and microbes since ancient times. Trypanosomiasis and leishmaniasis are a concern in many areas of the world, especially in poor countries. Methods: Trypanosoma brucei brucei and Leishmania tarentolae were used to investigate the anti-parasitic effects of dichloromethane extracts of Allium sativum (garlic) and Allium cepa (onion) bulbs. As a confirmation of known antimicrobial activities, they were studied against a selection of G-negative, G-positive bacteria and two fungi. Chemical analyses were performed using high-performance liquid chromatography (HPLC) and electrospray ionization-mass spectrometry (LC-ESI-MS/MS). Results: Chemical analyses confirmed the abundance of several sulfur secondary metabolites in garlic and one (zwiebelane) in the onion extract. Both extracts killed both types of parasites efficiently and inhibited the Trypanosoma brucei trypanothione reductase irreversibly. In addition, garlic extract decreased the mitochondrial membrane potential in trypanosomes. Garlic killed the fungi C. albicans and C. parapsilosis more effectively than the positive control. The combinations of garlic and onion with common trypanocidal and leishmanicidal drugs resulted in a synergistic or additive effect in 50% of cases. Conclusion: The mechanism for biological activity of garlic and onion appears to be related to the amount and the profile of sulfur-containing compounds. It is most likely that vital substances inside the parasitic cell, like trypanothione reductase, are inhibited through disulfide bond formation between SH groups of vital redox compounds and sulfur-containing secondary metabolites.

  8. Paleoparasitology: the origin of human parasites

    Directory of Open Access Journals (Sweden)

    Adauto Araujo

    2013-09-01

    Full Text Available Parasitism is composed by three subsystems: the parasite, the host, and the environment. There are no organisms that cannot be parasitized. The relationship between a parasite and its host species most of the time do not result in damage or disease to the host. However, in a parasitic disease the presence of a given parasite is always necessary, at least in a given moment of the infection. Some parasite species that infect humans were inherited from pre-hominids, and were shared with other phylogenetically close host species, but other parasite species were acquired from the environment as humans evolved. Human migration spread inherited parasites throughout the globe. To recover and trace the origin and evolution of infectious diseases, paleoparasitology was created. Paleoparasitology is the study of parasites in ancient material, which provided new information on the evolution, paleoepidemiology, ecology and phylogenetics of infectious diseases.

  9. On the tissular parasitism of Trypanosoma cruzi y strain in swiss mice Sobre o parasitismo tecidual da cepa Y do Trypanosoma cruzi em camundongos albinos (Swiss-Webster

    Directory of Open Access Journals (Sweden)

    Maria Auxiliadora de Sousa

    1984-12-01

    Full Text Available A review of the tissular parasitism of Trypanosoma cruzi Y strain in Swiss mice was carried out. This strain parasitized preferentially smooth, skeletal and cardiac muscle fibers, with low transitory spleen and liver parasitism, as previously found by some Authors, although differing from other reports. These results can be related to the host genetical constitution and/or the degree of the strain virulence at the time of this study. Furthermore, we discuss that the high macrophagotropism reported for this strain in some instances could be an artificially induced condition resulting from its serial maintenance in mice, either for a longer time and/or by using young animals. The heavy parasitism and inflammation observed in the bladder, pancreas and spermatic duct of some inoculated mice, as well as the testis parasitization, were also noteworthy findings.Através deste trabalho fizemos uma revisão do parasitismo tecidual da cepa Y do Trypanosoma cruzi em camundongos albinos (Swiss-Webster. Esta cepa parasitou preferencialmente as fibras musculares lisas, esqueléticas e cardíacas, sendo baixo e transitório seu parasitismo do baço e fígado, conforme já observado por alguns Autores, embora diferindo de outros achados. Estes resultados podem estar relacionados com o padrão genético do hospedeiro e/ou com o grau de virulência da cepa por ocasião deste estudo. Além do mais, discutimos a possibilidade de que o intenso macrofagotropismo descrito para esta cepa em algumas ocasiões possa ser uma condição artificialmente induzida através de sua manutenção seriada em camundongos por tempo prolongado e/ou pelo uso de animais jovens. Também são dignos de nota, o intenso parasitismo e inflamação da bexiga, pâncreas e canal espermático de alguns animais inoculados, assim como, o encontro de ninhos de amastigotas no testículo.

  10. Trypanosoma cruzi Evades the Complement System as an Efficient Strategy to Survive in the Mammalian Host: The Specific Roles of Host/Parasite Molecules and Trypanosoma cruzi Calreticulin

    Directory of Open Access Journals (Sweden)

    Galia Ramírez-Toloza

    2017-09-01

    Full Text Available American Trypanosomiasis is an important neglected reemerging tropical parasitism, infecting about 8 million people worldwide. Its agent, Trypanosoma cruzi, exhibits multiple mechanisms to evade the host immune response and infect host cells. An important immune evasion strategy of T. cruzi infective stages is its capacity to inhibit the complement system activation on the parasite surface, avoiding opsonizing, immune stimulating and lytic effects. Epimastigotes, the non-infective form of the parasite, present in triatomine arthropod vectors, are highly susceptible to complement-mediated lysis while trypomastigotes, the infective form, present in host bloodstream, are resistant. Thus T. cruzi susceptibility to complement varies depending on the parasite stage (amastigote, trypomastigotes or epimastigote and on the T. cruzi strain. To avoid complement-mediated lysis, T. cruzi trypomastigotes express on the parasite surface a variety of complement regulatory proteins, such as glycoprotein 58/68 (gp58/68, T. cruzi complement regulatory protein (TcCRP, trypomastigote decay-accelerating factor (T-DAF, C2 receptor inhibitor trispanning (CRIT and T. cruzi calreticulin (TcCRT. Alternatively, or concomitantly, the parasite captures components with complement regulatory activity from the host bloodstream, such as factor H (FH and plasma membrane-derived vesicles (PMVs. All these proteins inhibit different steps of the classical (CP, alternative (AP or lectin pathways (LP. Thus, TcCRP inhibits the CP C3 convertase assembling, gp58/68 inhibits the AP C3 convertase, T-DAF interferes with the CP and AP convertases assembling, TcCRT inhibits the CP and LP, CRIT confers ability to resist the CP and LP, FH is used by trypomastigotes to inhibit the AP convertases and PMVs inhibit the CP and LP C3 convertases. Many of these proteins have similar molecular inhibitory mechanisms. Our laboratory has contributed to elucidate the role of TcCRT in the host-parasite

  11. Trypanocidal activity of human plasma on Trypanosoma evansi in mice Atividade tripanocida do plasma humano sobre Trypanosoma evansi em camundongos

    Directory of Open Access Journals (Sweden)

    Aleksandro Schafer Da Silva

    2012-03-01

    Full Text Available This study aimed to test an alternative protocol with human plasma to control Trypanosoma evansi infection in mice. Plasma from an apparently 27-year-old healthy male, blood type A+, was used in the study. A concentration of 100 mg.dL-1 apolipoprotein L1 (APOL1 was detected in the plasma. Forty mice were divided into four groups with 10 animals each. Group A comprised uninfected animals. Mice from groups B, C and D were inoculated with a T. evansi isolate. Group B was used as a positive control. At three days post-infection (DPI, the mice were administered intraperitoneally with human plasma. A single dose of 0.2 mL plasma was given to those in group C. The mice from group D were administered five doses of 0.2 mL plasma with a 24 hours interval between the doses. Group B showed high increasing parasitemia that led to their death within 5 DPI. Both treatments eliminated parasites from the blood and increased the longevity of animals. An efficacy of 50 (group C and 80% (group D of human plasma trypanocidal activity was found using PCR. This therapeutic success was likely achieved in the group D due to their higher levels of APOL1 compared with group C.Este estudo teve como objetivo testar um protocolo alternativo com plasma humano para controlar a infecção por Trypanosoma evansi em camundongos. O plasma foi oriundo de um homem aparentemente saudável, com idade entre 27 anos e tipo de sangue A+. Foi detectada uma concentração de 100 mg.dL -1 de apolipoproteína L1 (APOL1 no plasma. Quarenta camundongos foram divididos em quatro grupos, contendo dez animais cada. Grupo A, composto de animais não infectados. Os roedores dos grupos B, C e D foram inoculados intraperitonealmente com um isolado de T. evansi. O Grupo B foi usado como um controle positivo. Três dias pós-infecção (DPI, os camundongos foram tratados com plasma humano. Uma dose única de 0,2 mL de plasma foi administrada nos roedores do grupo C. Os ratos do grupo D receberam cinco

  12. Dynamics of gamete production and mating in the parasitic protist Trypanosoma brucei.

    Science.gov (United States)

    Peacock, Lori; Bailey, Mick; Gibson, Wendy

    2016-07-20

    Sexual reproduction in Plasmodium falciparum and Trypanosoma brucei occurs in the insect vector and is important in generating hybrid strains with different combinations of parental characteristics. Production of hybrid parasite genotypes depends on the likelihood of co-infection of the vector with multiple strains. In mosquitoes, existing infection with Plasmodium facilitates the establishment of a second infection, although the asynchronicity of gamete production subsequently prevents mating. In the trypanosome/tsetse system, flies become increasingly refractory to infection as they age, so the likelihood of a fly acquiring a second infection also decreases. This effectively restricts opportunities for trypanosome mating to co-infections picked up by the fly on its first feed, unless an existing infection increases the chance of successful second infection as in the Plasmodium/mosquito system. Using green and red fluorescent trypanosomes, we compared the rates of trypanosome infection and hybrid production in flies co-infected on the first feed, co-infected on a subsequent feed 18 days after emergence, or fed sequentially with each trypanosome clone 18 days apart. Infection rates were highest in the midguts and salivary glands (SG) of flies that received both trypanosome clones in their first feed, and were halved when the infected feed was delayed to day 18. In flies fed the two trypanosome clones sequentially, the second clone often failed to establish a midgut infection and consequently was not present in the SG. Nevertheless, hybrids were recovered from all three groups of infected flies. Meiotic stages and gametes were produced continuously from day 11 to 42 after the infective feed, and in sequentially infected flies, the co-occurrence of gametes led to hybrid formation. We found that a second trypanosome strain can establish infection in the tsetse SG 18 days after the first infected feed, with co-mingling of gametes and production of trypanosome hybrids

  13. Highly diluted medication reduces tissue parasitism and inflammation in mice infected by Trypanosoma cruzi.

    Science.gov (United States)

    Lopes, Carina Ribeiro; Falkowski, Gislaine Janaina Sanchez; Brustolin, Camila Fernanda; Massini, Paula Fernanda; Ferreira, Érika Cristina; Moreira, Neide Martins; Aleixo, Denise Lessa; Kaneshima, Edilson Nobuyoshi; de Araújo, Silvana Marques

    2016-05-01

    To evaluate the effects of Kalium causticum, Conium maculatum, and Lycopodium clavatum 13cH in mice infected by Trypanosoma cruzi. In a blind, controlled, randomized study, 102 male Swiss mice, 8 weeks old, were inoculated with 1400 trypomastigotes of the Y strain of T. cruzi and distributed into the following groups: CI (treated with 7% hydroalcoholic solution), Ca (treated with Kalium causticum 13cH), Co (treated with Conium maculatum 13cH), and Ly (treated with Lycopodium clavatum 13cH). The treatments were performed 48 h before and 48, 96, and 144 h after infection. The medication was repertorized and prepared in 13cH, according to Brazilian Homeopathic Pharmacopoeia. The following parameters were evaluated: infectivity, prepatent period, parasitemia peak, total parasitemia, tissue tropism, inflammatory infiltrate, and survival. Statistical analysis was conduced considering 5% of significance. The prepatent period was greater in the Ly group than in the CI group (p = 0.02). The number of trypomastigotes on the 8th day after infection was lower in the Ca group than in the CI group (p < 0.05). Total parasitemia was significantly lower in the Ca, Co, and Ly groups than in the CI group. On the 12th day after infection, the Ca, Co, and Ly groups had fewer nests and amastigotes/nest in the heart than the CI group (p < 0.05). Decreases in the number of nests and amastigotes in the intestine were observed in the Ly group compared with the CI group (p < 0.05). In the liver (day 12), Ly significantly prevented the formation of inflammatory foci compared with the other groups. In skeletal muscle, Co and Ly decreased the formation of inflammatory foci compared with CI (p < 0.05). Ly afforded greater animal survival compared with CI, Ca, and Co (p < 0.05). The animals in the Co group died prematurely compared with the CI group (p = 0.03). Ly with 13cH potency had significantly more benefits in the treatment of mice infected with T. cruzi, reducing the number

  14. Profiling the anti-protozoal activity of anti-cancer HDAC inhibitors against Plasmodium and Trypanosoma parasites.

    Science.gov (United States)

    Engel, Jessica A; Jones, Amy J; Avery, Vicky M; Sumanadasa, Subathdrage D M; Ng, Susanna S; Fairlie, David P; Skinner-Adams, Tina; Andrews, Katherine T

    2015-12-01

    Histone deacetylase (HDAC) enzymes work together with histone acetyltransferases (HATs) to reversibly acetylate both histone and non-histone proteins. As a result, these enzymes are involved in regulating chromatin structure and gene expression as well as other important cellular processes. HDACs are validated drug targets for some types of cancer, with four HDAC inhibitors clinically approved. However, they are also showing promise as novel drug targets for other indications, including malaria and other parasitic diseases. In this study the in vitro activity of four anti-cancer HDAC inhibitors was examined against parasites that cause malaria and trypanosomiasis. Three of these inhibitors, suberoylanilide hydroxamic acid (SAHA; vorinostat(®)), romidepsin (Istodax(®)) and belinostat (Beleodaq(®)), are clinically approved for the treatment of T-cell lymphoma, while the fourth, panobinostat, has recently been approved for combination therapy use in certain patients with multiple myeloma. All HDAC inhibitors were found to inhibit the growth of asexual-stage Plasmodium falciparum malaria parasites in the nanomolar range (IC50 10-200 nM), while only romidepsin was active at sub-μM concentrations against bloodstream form Trypanosoma brucei brucei parasites (IC50 35 nM). The compounds were found to have some selectivity for malaria parasites compared with mammalian cells, but were not selective for trypanosome parasites versus mammalian cells. All compounds caused hyperacetylation of histone and non-histone proteins in P. falciparum asexual stage parasites and inhibited deacetylase activity in P. falciparum nuclear extracts in addition to recombinant PfHDAC1 activity. P. falciparum histone hyperacetylation data indicate that HDAC inhibitors may differentially affect the acetylation profiles of histone H3 and H4.

  15. Effects of a novel β–lapachone derivative on Trypanosoma cruzi: Parasite death involving apoptosis, autophagy and necrosis

    Directory of Open Access Journals (Sweden)

    Danielle Oliveira dos Anjos

    2016-12-01

    Full Text Available Natural products comprise valuable sources for new antiparasitic drugs. Here we tested the effects of a novel β–lapachone derivative on Trypanosoma cruzi parasite survival and proliferation and used microscopy and cytometry techniques to approach the mechanism(s underlying parasite death. The selectivity index determination indicate that the compound trypanocidal activity was over ten-fold more cytotoxic to epimastigotes than to macrophages or splenocytes. Scanning electron microscopy analysis revealed that the R72 β–lapachone derivative affected the T. cruzi morphology and surface topography. General plasma membrane waving and blebbing particularly on the cytostome region were observed in the R72-treated parasites. Transmission electron microscopy observations confirmed the surface damage at the cytostome opening vicinity. We also observed ultrastructural evidence of the autophagic mechanism termed macroautophagy. Some of the autophagosomes involved large portions of the parasite cytoplasm and their fusion/confluence may lead to necrotic parasite death. The remarkably enhanced frequency of autophagy triggering was confirmed by quantitating monodansylcadaverine labeling. Some cells displayed evidence of chromatin pycnosis and nuclear fragmentation were detected. This latter phenomenon was also indicated by DAPI staining of R72-treated cells. The apoptotis induction was suggested to take place in circa one-third of the parasites assessed by annexin V labeling measured by flow cytometry. TUNEL staining corroborated the apoptosis induction. Propidium iodide labeling indicate that at least 10% of the R72-treated parasites suffered necrosis within 24 h. The present data indicate that the β–lapachone derivative R72 selectively triggers T. cruzi cell death, involving both apoptosis and autophagy-induced necrosis.

  16. Profiling the anti-protozoal activity of anti-cancer HDAC inhibitors against Plasmodium and Trypanosoma parasites

    Directory of Open Access Journals (Sweden)

    Jessica A. Engel

    2015-12-01

    Full Text Available Histone deacetylase (HDAC enzymes work together with histone acetyltransferases (HATs to reversibly acetylate both histone and non-histone proteins. As a result, these enzymes are involved in regulating chromatin structure and gene expression as well as other important cellular processes. HDACs are validated drug targets for some types of cancer, with four HDAC inhibitors clinically approved. However, they are also showing promise as novel drug targets for other indications, including malaria and other parasitic diseases. In this study the in vitro activity of four anti-cancer HDAC inhibitors was examined against parasites that cause malaria and trypanosomiasis. Three of these inhibitors, suberoylanilide hydroxamic acid (SAHA; vorinostat®, romidepsin (Istodax® and belinostat (Beleodaq®, are clinically approved for the treatment of T-cell lymphoma, while the fourth, panobinostat, has recently been approved for combination therapy use in certain patients with multiple myeloma. All HDAC inhibitors were found to inhibit the growth of asexual-stage Plasmodium falciparum malaria parasites in the nanomolar range (IC50 10–200 nM, while only romidepsin was active at sub-μM concentrations against bloodstream form Trypanosoma brucei brucei parasites (IC50 35 nM. The compounds were found to have some selectivity for malaria parasites compared with mammalian cells, but were not selective for trypanosome parasites versus mammalian cells. All compounds caused hyperacetylation of histone and non-histone proteins in P. falciparum asexual stage parasites and inhibited deacetylase activity in P. falciparum nuclear extracts in addition to recombinant PfHDAC1 activity. P. falciparum histone hyperacetylation data indicate that HDAC inhibitors may differentially affect the acetylation profiles of histone H3 and H4.

  17. Trypanosoma cruzi in the chicken model: Chagas-like heart disease in the absence of parasitism

    Czech Academy of Sciences Publication Activity Database

    Teixeira, A.R.L.; Gomes, C.; Nitz, N.; Sousa, A.O.; Alvez, R.M.; Guimaro, M.C.; Cordeiro, C.; Bernal, F.M.; Rosa, A.C.; Hejnar, Jiří; Leonardecz, E.; Hecht, M.M.

    2011-01-01

    Roč. 5, č. 3 (2011), e1000 ISSN 1935-2735 Institutional research plan: CEZ:AV0Z50520514 Keywords : Chagas disease * Trypanosoma cruzi * kDNA minicircles * inbred chicken Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.716, year: 2011

  18. A role for Sar1 and ARF1 GTPases during Golgi biogenesis in the protozoan parasite Trypanosoma brucei

    Science.gov (United States)

    Yavuz, Sevil; Warren, Graham

    2017-01-01

    A single Golgi stack is duplicated and partitioned into two daughter cells during the cell cycle of the protozoan parasite Trypanosoma brucei. The source of components required to generate the new Golgi and the mechanism by which it forms are poorly understood. Using photoactivatable GFP, we show that the existing Golgi supplies components directly to the newly forming Golgi in both intact and semipermeabilized cells. The movement of a putative glycosyltransferase, GntB, requires the Sar1 and ARF1 GTPases in intact cells. In addition, we show that transfer of GntB from the existing Golgi to the new Golgi can be recapitulated in semipermeabilized cells and is sensitive to the GTP analogue GTPγS. We suggest that the existing Golgi is a key source of components required to form the new Golgi and that this process is regulated by small GTPases. PMID:28495798

  19. F(ab'2 antibody fragments against Trypanosoma cruzi calreticulin inhibit its interaction with the first component of human complement

    Directory of Open Access Journals (Sweden)

    LORENA AGUILAR

    2005-01-01

    Full Text Available Trypanosoma cruzi calreticulin (TcCRT, described in our laboratory, retains several important functional features from its vertebrate homologues. We have shown that recombinant TcCRT inhibits the human complement system when it binds to the collagenous portion of C1q. The generation of classical pathway convertases and membrane attack complexes is thus strongly inhibited. In most T. cruzi-infected individuals, TcCRT is immunogenic and mediates the generation of specific antibodies. By reverting the C1q / TcCRT interaction, a parasite immune evasion strategy, these antibodies contribute to the host / parasite equilibrium. In an in vitro correlate of this situation, we show that the C1q / TcCRT interaction is inhibited by F(ab'2 polyclonal anti-TcCRT IgG fragments. It is therefore feasible that in infected humans anti-TcCRT antibodies participate in reverting an important parasite strategy aimed at inhibiting the classical complement pathway. Thus, membrane-bound TcCRT interacts with the collagenous portion C1q, and this C1q is recognized by the CD91-bound host cell CRT, thus facilitating parasite internalization. Based on our in vitro results, it could be proposed that the in vivo interaction between TcCRT and vertebrate C1q could be inhibited by F(ab'2 fragments anti-rTcCRT or against its S functional domain, thus interfering with the internalization process

  20. Altered distribution of peripheral blood memory B cells in humans chronically infected with Trypanosoma cruzi.

    Science.gov (United States)

    Fernández, Esteban R; Olivera, Gabriela C; Quebrada Palacio, Luz P; González, Mariela N; Hernandez-Vasquez, Yolanda; Sirena, Natalia María; Morán, María L; Ledesma Patiño, Oscar S; Postan, Miriam

    2014-01-01

    Numerous abnormalities of the peripheral blood T cell compartment have been reported in human chronic Trypanosoma cruzi infection and related to prolonged antigenic stimulation by persisting parasites. Herein, we measured circulating lymphocytes of various phenotypes based on the differential expression of CD19, CD4, CD27, CD10, IgD, IgM, IgG and CD138 in a total of 48 T. cruzi-infected individuals and 24 healthy controls. Infected individuals had decreased frequencies of CD19+CD27+ cells, which positively correlated with the frequencies of CD4+CD27+ cells. The contraction of CD19+CD27+ cells was comprised of IgG+IgD-, IgM+IgD- and isotype switched IgM-IgD- memory B cells, CD19+CD10+CD27+ B cell precursors and terminally differentiated CD19+CD27+CD138+ plasma cells. Conversely, infected individuals had increased proportions of CD19+IgG+CD27-IgD- memory and CD19+IgM+CD27-IgD+ transitional/naïve B cells. These observations prompted us to assess soluble CD27, a molecule generated by the cleavage of membrane-bound CD27 and used to monitor systemic immune activation. Elevated levels of serum soluble CD27 were observed in infected individuals with Chagas cardiomyopathy, indicating its potentiality as an immunological marker for disease progression in endemic areas. In conclusion, our results demonstrate that chronic T. cruzi infection alters the distribution of various peripheral blood B cell subsets, probably related to the CD4+ T cell deregulation process provoked by the parasite in humans.

  1. Altered distribution of peripheral blood memory B cells in humans chronically infected with Trypanosoma cruzi.

    Directory of Open Access Journals (Sweden)

    Esteban R Fernández

    Full Text Available Numerous abnormalities of the peripheral blood T cell compartment have been reported in human chronic Trypanosoma cruzi infection and related to prolonged antigenic stimulation by persisting parasites. Herein, we measured circulating lymphocytes of various phenotypes based on the differential expression of CD19, CD4, CD27, CD10, IgD, IgM, IgG and CD138 in a total of 48 T. cruzi-infected individuals and 24 healthy controls. Infected individuals had decreased frequencies of CD19+CD27+ cells, which positively correlated with the frequencies of CD4+CD27+ cells. The contraction of CD19+CD27+ cells was comprised of IgG+IgD-, IgM+IgD- and isotype switched IgM-IgD- memory B cells, CD19+CD10+CD27+ B cell precursors and terminally differentiated CD19+CD27+CD138+ plasma cells. Conversely, infected individuals had increased proportions of CD19+IgG+CD27-IgD- memory and CD19+IgM+CD27-IgD+ transitional/naïve B cells. These observations prompted us to assess soluble CD27, a molecule generated by the cleavage of membrane-bound CD27 and used to monitor systemic immune activation. Elevated levels of serum soluble CD27 were observed in infected individuals with Chagas cardiomyopathy, indicating its potentiality as an immunological marker for disease progression in endemic areas. In conclusion, our results demonstrate that chronic T. cruzi infection alters the distribution of various peripheral blood B cell subsets, probably related to the CD4+ T cell deregulation process provoked by the parasite in humans.

  2. Trypanosoma cruzi benznidazole susceptibility in vitro does not predict the therapeutic outcome of human Chagas disease

    Directory of Open Access Journals (Sweden)

    Margoth Moreno

    2010-11-01

    Full Text Available Therapeutic failure of benznidazole (BZ is widely documented in Chagas disease and has been primarily associated with variations in the drug susceptibility of Trypanosoma cruzi strains. In humans, therapeutic success has been assessed by the negativation of anti-T. cruzi antibodies, a process that may take up to 10 years. A protocol for early screening of the drug resistance of infective strains would be valuable for orienting physicians towards alternative therapies, with a combination of existing drugs or new anti-T. cruzi agents. We developed a procedure that couples the isolation of parasites by haemoculture with quantification of BZ susceptibility in the resultant epimastigote forms. BZ activity was standardized with reference strains, which showed IC50 to BZ between 7.6-32 µM. The assay was then applied to isolates from seven chronic patients prior to administration of BZ therapy. The IC50 of the strains varied from 15.6 ± 3-51.4 ± 1 µM. Comparison of BZ susceptibility of the pre-treatment isolates of patients considered cured by several criteria and of non-cured patients indicates that the assay does not predict therapeutic outcome. A two-fold increase in BZ resistance in the post-treatment isolates of two patients was verified. Based on the profile of nine microsatellite loci, sub-population selection in non-cured patients was ruled out.

  3. Zoonotic trypanosomes in South East Asia: Attempts to control Trypanosoma lewisi using human and animal trypanocidal drugs.

    Science.gov (United States)

    Desquesnes, Marc; Yangtara, Sarawut; Kunphukhieo, Pawinee; Jittapalapong, Sathaporn; Herder, Stéphane

    2016-10-01

    Beside typical human trypanosomes responsible of sleeping sickness in Africa and Chagas disease in Latin America, there is a growing number of reported atypical human infections due to Trypanosoma evansi, a livestock parasite, or Trypanosoma lewisi, a rat parasite, especially in Asia. Drugs available for the treatment of T. brucei ssp. in humans are obviously of choice for the control of T. evansi because it is derived from T. brucei. However, concerning T. lewisi, there is an urgent need to determine the efficacy of trypanocidal drugs for the treatment in humans. In a recent study, pentamidine and fexinidazole were shown to have the best efficacy against one stock of T. lewisi in rats. In the present study suramin, pentamidine, eflornitine, nifurtimox, benznidazole and fexinidazole, were evaluated at low and high doses, in single day administration to normal rats experimentally infected with a stock of T. lewisi recently isolated in Thailand. Because none of these treatments was efficient, a trial was made with the most promising trypanocide identified in a previous study, fexinidazole 100mg/kg, in 5 daily administrations. Results observed were unclear. To confirm the efficacy of fexinidazole, a mixed infection protocol was set up in cyclophosphamide immunosuppressed rats. Animals were infected successively by T. lewisi and T. evansi, and received 10 daily PO administrations of 200mg/kg fexinidazole. Drastic effects were observed against T. evansi which was cleared from the rat's blood within 24 to 48h; however, the treatment did not affect T. lewisi which remained in high number in the blood until the end of the experiment. This mixed infection/treatment protocol clearly demonstrated the efficacy of fexinidazole against T. evansi and its inefficacy against T. lewisi. Since animal trypanocides were also recently shown to be inefficient, other protocols as well as other T. lewisi stocks should be investigated in further studies. Copyright © 2016. Published by

  4. Trypanosoma (megatrypanum) melophagium in the sheep ked, Melophagus ovinus. A scanning electron microscope (SEM) study of the parasites and the insect gut wall surfaces.

    Science.gov (United States)

    Molyneux, D H; Selkirk, M; Lavin, D

    1978-12-01

    A description of the different stages of Trypanosoma (M.) melophagium in different regions of the gut of the sheep ked (Melophagus ovinus) as observed by the SEM is presented. The extensive pile carpet or palisade colonization of the midgut and pylorus is described. The method of attachment and the relationship of the parasites to the microvilli in the midgut and the cuticle of the pylorus and ileum observed by other methods are confirmed. The micro-structure of the surfaces themselves in the regions of the gut to which parasites attach are described. The use of the technique for the study of other similar systems is discussed.

  5. Molecular characterization of Trypanosoma cruzi SAP proteins with host-cell lysosome exocytosis-inducing activity required for parasite invasion.

    Science.gov (United States)

    Zanforlin, Tamiris; Bayer-Santos, Ethel; Cortez, Cristian; Almeida, Igor C; Yoshida, Nobuko; da Silveira, José Franco

    2013-01-01

    To invade target cells, Trypanosoma cruzi metacyclic forms engage distinct sets of surface and secreted molecules that interact with host components. Serine-, alanine-, and proline-rich proteins (SAP) comprise a multigene family constituted of molecules with a high serine, alanine and proline residue content. SAP proteins have a central domain (SAP-CD) responsible for interaction with and invasion of mammalian cells by metacyclic forms. Using a 513 bp sequence from SAP-CD in blastn analysis, we identified 39 full-length SAP genes in the genome of T. cruzi. Although most of these genes were mapped in the T. cruzi in silico chromosome TcChr41, several SAP sequences were spread out across the genome. The level of SAP transcripts was twice as high in metacyclic forms as in epimastigotes. Monoclonal (MAb-SAP) and polyclonal (anti-SAP) antibodies produced against the recombinant protein SAP-CD were used to investigate the expression and localization of SAP proteins. MAb-SAP reacted with a 55 kDa SAP protein released by epimastigotes and metacyclic forms and with distinct sets of SAP variants expressed in amastigotes and tissue culture-derived trypomastigotes (TCTs). Anti-SAP antibodies reacted with components located in the anterior region of epimastigotes and between the nucleus and the kinetoplast in metacyclic trypomastigotes. In contrast, anti-SAP recognized surface components of amastigotes and TCTs, suggesting that SAP proteins are directed to different cellular compartments. Ten SAP peptides were identified by mass spectrometry in vesicle and soluble-protein fractions obtained from parasite conditioned medium. Using overlapping sequences from SAP-CD, we identified a 54-aa peptide (SAP-CE) that was able to induce host-cell lysosome exocytosis and inhibit parasite internalization by 52%. This study provides novel information about the genomic organization, expression and cellular localization of SAP proteins and proposes a triggering role for extracellular SAP

  6. Lack of evidence for integration of Trypanosoma cruzi minicircle DNA in South American human genomes

    Czech Academy of Sciences Publication Activity Database

    Flegontova, Olga; Lukeš, Julius; Flegontov, Pavel

    2012-01-01

    Roč. 42, č. 5 (2012), s. 437-441 ISSN 0020-7519 Grant - others:GA MŠk(CZ) LM2010005 Institutional support: RVO:60077344 Keywords : Trypanosoma cruzi * Kinetoplast minicircle * Chagas disease * Horizontal gene transfer * Human genome Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.637, year: 2012 http://www.sciencedirect.com/science/article/pii/S0020751912000781

  7. Crystallization and preliminary X-ray analysis of aspartate transcarbamoylase from the parasitic protist Trypanosoma cruzi

    International Nuclear Information System (INIS)

    Matoba, Kazuaki; Nara, Takeshi; Aoki, Takashi; Honma, Teruki; Tanaka, Akiko; Inoue, Masayuki; Matsuoka, Shigeru; Inaoka, Daniel Ken; Kita, Kiyoshi; Harada, Shigeharu

    2009-01-01

    Aspartate transcarbamoylase, the second enzyme of the de novo pyrimidine-biosynthetic pathway, from T. cruzi has been purified and crystallized for X-ray structure analysis. Aspartate transcarbamoylase (ATCase), the second enzyme of the de novo pyrimidine-biosynthetic pathway, catalyzes the production of carbamoyl aspartate from carbamoyl phosphate and l-aspartate. In contrast to Escherichia coli ATCase and eukaryotic CAD multifunctional fusion enzymes, Trypanosoma cruzi ATCase lacks regulatory subunits and is not part of the multifunctional fusion enzyme. Recombinant T. cruzi ATCase expressed in E. coli was purified and crystallized in a ligand-free form and in a complex with carbamoyl phosphate at 277 K by the sitting-drop vapour-diffusion technique using polyethylene glycol 3350 as a precipitant. Ligand-free crystals (space group P1, unit-cell parameters a = 78.42, b = 79.28, c = 92.02 Å, α = 69.56, β = 82.90, γ = 63.25°) diffracted X-rays to 2.8 Å resolution, while those cocrystallized with carbamoyl phosphate (space group P2 1 , unit-cell parameters a = 88.41, b = 158.38, c = 89.00 Å, β = 119.66°) diffracted to 1.6 Å resolution. The presence of two homotrimers in the asymmetric unit (38 kDa × 6) gives V M values of 2.3 and 2.5 Å 3 Da −1 for the P1 and P2 1 crystal forms, respectively

  8. Distinct Trypanosoma cruzi isolates induce activation and apoptosis of human neutrophils.

    Directory of Open Access Journals (Sweden)

    Luísa M D Magalhães

    Full Text Available Neutrophils are critical players in the first line of defense against pathogens and in the activation of subsequent cellular responses. We aimed to determine the effects of the interaction of Trypanosoma cruzi with human neutrophils, using isolates of the two major discrete type units (DTUs associated with Chagas' disease in Latin America (clone Col1.7G2 and Y strain, DTU I and II, respectively. Thus, we used CFSE-stained trypomastigotes to measure neutrophil-T. cruzi interaction, neutrophil activation, cytokine expression and death, after infection with Col1.7G2 and Y strain. Our results show that the frequency of CFSE+ neutrophils, indicative of interaction, and CFSE intensity on a cell-per-cell basis were similar when comparing Col1.7G2 and Y strains. Interaction with T. cruzi increased neutrophil activation, as measured by CD282, CD284, TNF and IL-12 expression, although at different levels between the two strains. No change in IL-10 expression was observed after interaction of neutrophils with either strain. We observed that exposure to Y and Col1.7G2 caused marked neutrophil death. This was specific to neutrophils, since interaction of either strain with monocytes did not cause death. Our further analysis showed that neutrophil death was a result of apoptosis, which was associated with an upregulation of TNF-receptor, TNF and FasLigand, but not of Fas. Induction of TNF-associated neutrophil apoptosis by the different T. cruzi isolates may act as an effective common mechanism to decrease the host's immune response and favor parasite survival.

  9. Lineage Analysis of Circulating Trypanosoma cruzi Parasites and Their Association with Clinical Forms of Chagas Disease in Bolivia

    Science.gov (United States)

    del Puerto, Ramona; Nishizawa, Juan Eiki; Kikuchi, Mihoko; Iihoshi, Naomi; Roca, Yelin; Avilas, Cinthia; Gianella, Alberto; Lora, Javier; Gutierrez Velarde, Freddy Udalrico; Renjel, Luis Alberto; Miura, Sachio; Higo, Hiroo; Komiya, Norihiro; Maemura, Koji; Hirayama, Kenji

    2010-01-01

    Background The causative agent of Chagas disease, Trypanosoma cruzi, is divided into 6 Discrete Typing Units (DTU): Tc I, IIa, IIb, IIc, IId and IIe. In order to assess the relative pathogenicities of different DTUs, blood samples from three different clinical groups of chronic Chagas disease patients (indeterminate, cardiac, megacolon) from Bolivia were analyzed for their circulating parasites lineages using minicircle kinetoplast DNA polymorphism. Methods and Findings Between 2000 and 2007, patients sent to the Centro Nacional de Enfermedades Tropicales for diagnosis of Chagas from clinics and hospitals in Santa Cruz, Bolivia, were assessed by serology, cardiology and gastro-intestinal examinations. Additionally, patients who underwent colonectomies due to Chagasic magacolon at the Hospital Universitario Japonés were also included. A total of 306 chronic Chagas patients were defined by their clinical types (81 with cardiopathy, 150 without cardiopathy, 100 with megacolon, 144 without megacolon, 164 with cardiopathy or megacolon, 73 indeterminate and 17 cases with both cardiopathy and megacolon). DNA was extracted from 10 ml of peripheral venous blood for PCR analysis. The kinetoplast minicircle DNA (kDNA) was amplified from 196 out of 306 samples (64.1%), of which 104 (53.3%) were Tc IId, 4 (2.0%) Tc I, 7 (3.6%) Tc IIb, 1 (0.5%) Tc IIe, 26 (13.3%) Tc I/IId, 1 (0.5%) Tc I/IIb/IId, 2 (1.0%) Tc IIb/d and 51 (25.9%) were unidentified. Of the 133 Tc IId samples, three different kDNA hypervariable region patterns were detected; Mn (49.6%), TPK like (48.9%) and Bug-like (1.5%). There was no significant association between Tc types and clinical manifestations of disease. Conclusions None of the identified lineages or sublineages was significantly associated with any particular clinical manifestations in the chronic Chagas patients in Bolivia. PMID:20502516

  10. Trypanosoma brucei TbIF1 inhibits the essential F1-ATPase in the infectious form of the parasite.

    Directory of Open Access Journals (Sweden)

    Brian Panicucci

    2017-04-01

    Full Text Available The mitochondrial (mt FoF1-ATP synthase of the digenetic parasite, Trypanosoma brucei, generates ATP during the insect procyclic form (PF, but becomes a perpetual consumer of ATP in the mammalian bloodstream form (BF, which lacks a canonical respiratory chain. This unconventional dependence on FoF1-ATPase is required to maintain the essential mt membrane potential (Δψm. Normally, ATP hydrolysis by this rotary molecular motor is restricted to when eukaryotic cells experience sporadic hypoxic conditions, during which this compulsory function quickly depletes the cellular ATP pool. To protect against this cellular treason, the highly conserved inhibitory factor 1 (IF1 binds the enzyme in a manner that solely inhibits the hydrolytic activity. Intriguingly, we were able to identify the IF1 homolog in T. brucei (TbIF1, but determined that its expression in the mitochondrion is tightly regulated throughout the life cycle as it is only detected in PF cells. TbIF1 appears to primarily function as an emergency brake in PF cells, where it prevented the restoration of the Δψm by FoF1-ATPase when respiration was chemically inhibited. In vitro, TbIF1 overexpression specifically inhibits the hydrolytic activity but not the synthetic capability of the FoF1-ATP synthase in PF mitochondria. Furthermore, low μM amounts of recombinant TbIF1 achieve the same inhibition of total mt ATPase activity as the FoF1-ATPase specific inhibitors, azide and oligomycin. Therefore, even minimal ectopic expression of TbIF1 in BF cells proved lethal as the indispensable Δψm collapsed due to inhibited FoF1-ATPase. In summary, we provide evidence that T. brucei harbors a natural and potent unidirectional inhibitor of the vital FoF1-ATPase activity that can be exploited for future structure-based drug design.

  11. Old Yellow Enzyme from Trypanosoma cruzi Exhibits In Vivo Prostaglandin F2α Synthase Activity and Has a Key Role in Parasite Infection and Drug Susceptibility

    Directory of Open Access Journals (Sweden)

    Florencia Díaz-Viraqué

    2018-03-01

    Full Text Available The discovery that trypanosomatids, unicellular organisms of the order Kinetoplastida, are capable of synthesizing prostaglandins raised questions about the role of these molecules during parasitic infections. Multiple studies indicate that prostaglandins could be related to the infection processes and pathogenesis in trypanosomatids. This work aimed to unveil the role of the prostaglandin F2α synthase TcOYE in the establishment of Trypanosoma cruzi infection, the causative agent of Chagas disease. This chronic disease affects several million people in Latin America causing high morbidity and mortality. Here, we propose a prokaryotic evolutionary origin for TcOYE, and then we used in vitro and in vivo experiments to show that T. cruzi prostaglandin F2α synthase plays an important role in modulating the infection process. TcOYE overexpressing parasites were less able to complete the infective cycle in cell culture infections and increased cardiac tissue parasitic load in infected mice. Additionally, parasites overexpressing the enzyme increased PGF2α synthesis from arachidonic acid. Finally, an increase in benznidazole and nifurtimox susceptibility in TcOYE overexpressing parasites showed its participation in activating the currently anti-chagasic drugs, which added to its observed ability to confer resistance to hydrogen peroxide, highlights the relevance of this enzyme in multiple events including host–parasite interaction.

  12. The miRNA and mRNA Signatures of Peripheral Blood Cells in Humans Infected with Trypanosoma brucei gambiense.

    Directory of Open Access Journals (Sweden)

    Smiths Lueong

    Full Text Available Simple, reliable tools for diagnosis of human African Trypanosomiases could ease field surveillance and enhance patient care. In particular, current methods to distinguish patients with (stage II and without (stage I brain involvement require samples of cerebrospinal fluid. We describe here an exploratory study to find out whether miRNAs from peripheral blood leukocytes might be useful in diagnosis of human trypanosomiasis, or for determining the stage of the disease. Using microarrays, we measured miRNAs in samples from Trypanosoma brucei gambiense-infected patients (9 stage I, 10 stage II, 8 seronegative parasite-negative controls and 12 seropositive, but parasite-negative subjects. 8 miRNAs (out of 1205 tested showed significantly lower expression in patients than in seronegative, parasite-negative controls, and 1 showed increased expression. There were no clear differences in miRNAs between patients in different disease stages. The miRNA profiles could not distinguish seropositive, but parasitologically negative samples from controls and results within this group did not correlate with those from the trypanolysis test. Some of the regulated miRNAs, or their predicted mRNA targets, were previously reported changed during other infectious diseases or cancer. We conclude that the changes in miRNA profiles of peripheral blood lymphocytes in human African trypanosomiasis are related to immune activation or inflammation, are probably disease-non-specific, and cannot be used to determine the disease stage. The approach has little promise for diagnostics but might yield information about disease pathology.

  13. Captopril increases the intensity of monocyte infection by Trypanosoma cruzi and induces human T helper type 17 cells.

    Science.gov (United States)

    Coelho dos Santos, J S; Menezes, C A S; Villani, F N A; Magalhães, L M D; Scharfstein, J; Gollob, K J; Dutra, W O

    2010-12-01

    The anti-hypertensive drug captopril is used commonly to reduce blood pressure of patients with severe forms of Chagas disease, a cardiomyopathy caused by chronic infection with the intracellular protozoan Trypanosoma cruzi. Captopril acts by inhibiting angiotensin-converting enzyme (ACE), the vasopressor metallopeptidase that generates angiotensin II and promotes the degradation of bradykinin (BK). Recent studies in mice models of Chagas disease indicated that captopril can potentiate the T helper type 1 (Th1)-directing natural adjuvant property of BK. Equipped with kinin-releasing cysteine proteases, T. cruzi trypomastigotes were shown previously to invade non-professional phagocytic cells, such as human endothelial cells and murine cardiomyocytes, through the signalling of G protein-coupled bradykinin receptors (B(2) KR). Monocytes are also parasitized by T. cruzi and these cells are known to be important for the host immune response during infection. Here we showed that captopril increases the intensity of T. cruzi infection of human monocytes in vitro. The increased parasitism was accompanied by up-regulated expression of ACE in human monocytes. While T. cruzi infection increased the expression of interleukin (IL)-10 by monocytes significantly, compared to uninfected cells, T. cruzi infection in association with captopril down-modulated IL-10 expression by the monocytes. Surprisingly, studies with peripheral blood mononuclear cells revealed that addition of the ACE inhibitor in association with T. cruzi increased expression of IL-17 by CD4(+) T cells in a B(2) KR-dependent manner. Collectively, our results suggest that captopril might interfere with host-parasite equilibrium by enhancing infection of monocytes, decreasing the expression of the modulatory cytokine IL-10, while guiding development of the proinflammatory Th17 subset. © 2010 The Authors. Clinical and Experimental Immunology © 2010 British Society for Immunology.

  14. Functional expression of parasite drug targets and their human orthologs in yeast.

    Directory of Open Access Journals (Sweden)

    Elizabeth Bilsland

    2011-10-01

    Full Text Available The exacting nutritional requirements and complicated life cycles of parasites mean that they are not always amenable to high-throughput drug screening using automated procedures. Therefore, we have engineered the yeast Saccharomyces cerevisiae to act as a surrogate for expressing anti-parasitic targets from a range of biomedically important pathogens, to facilitate the rapid identification of new therapeutic agents.Using pyrimethamine/dihydrofolate reductase (DHFR as a model parasite drug/drug target system, we explore the potential of engineered yeast strains (expressing DHFR enzymes from Plasmodium falciparum, P. vivax, Homo sapiens, Schistosoma mansoni, Leishmania major, Trypanosoma brucei and T. cruzi to exhibit appropriate differential sensitivity to pyrimethamine. Here, we demonstrate that yeast strains (lacking the major drug efflux pump, Pdr5p expressing yeast ((ScDFR1, human ((HsDHFR, Schistosoma ((SmDHFR, and Trypanosoma ((TbDHFR and (TcDHFR DHFRs are insensitive to pyrimethamine treatment, whereas yeast strains producing Plasmodium ((PfDHFR and (PvDHFR DHFRs are hypersensitive. Reassuringly, yeast strains expressing field-verified, drug-resistant mutants of P. falciparum DHFR ((Pfdhfr(51I,59R,108N are completely insensitive to pyrimethamine, further validating our approach to drug screening. We further show the versatility of the approach by replacing yeast essential genes with other potential drug targets, namely phosphoglycerate kinases (PGKs and N-myristoyl transferases (NMTs.We have generated a number of yeast strains that can be successfully harnessed for the rapid and selective identification of urgently needed anti-parasitic agents.

  15. Detection and Quantification of Viable and Nonviable Trypanosoma cruzi Parasites by a Propidium Monoazide Real-Time Polymerase Chain Reaction Assay

    Science.gov (United States)

    Cancino-Faure, Beatriz; Fisa, Roser; Alcover, M. Magdalena; Jimenez-Marco, Teresa; Riera, Cristina

    2016-01-01

    Molecular techniques based on real-time polymerase chain reaction (qPCR) allow the detection and quantification of DNA but are unable to distinguish between signals from dead or live cells. Because of the lack of simple techniques to differentiate between viable and nonviable cells, the aim of this study was to optimize and evaluate a straightforward test based on propidium monoazide (PMA) dye action combined with a qPCR assay (PMA-qPCR) for the selective quantification of viable/nonviable epimastigotes of Trypanosoma cruzi. PMA has the ability to penetrate the plasma membrane of dead cells and covalently cross-link to the DNA during exposure to bright visible light, thereby inhibiting PCR amplification. Different concentrations of PMA (50–200 μM) and epimastigotes of the Maracay strain of T. cruzi (1 × 105–10 parasites/mL) were assayed; viable and nonviable parasites were tested and quantified by qPCR with a TaqMan probe specific for T. cruzi. In the PMA-qPCR assay optimized at 100 μM PMA, a significant qPCR signal reduction was observed in the nonviable versus viable epimastigotes treated with PMA, with a mean signal reduction of 2.5 logarithm units and a percentage of signal reduction > 98%, in all concentrations of parasites assayed. This signal reduction was also observed when PMA-qPCR was applied to a mixture of live/dead parasites, which allowed the detection of live cells, except when the concentration of live parasites was low (10 parasites/mL). The PMA-qPCR developed allows differentiation between viable and nonviable epimastigotes of T. cruzi and could thus be a potential method of parasite viability assessment and quantification. PMID:27139452

  16. Antiparasitic activity of diallyl trisulfide (Dasuansu) on human and animal pathogenic protozoa (Trypanosoma sp., Entamoeba histolytica and Giardia lamblia) in vitro.

    Science.gov (United States)

    Lun, Z R; Burri, C; Menzinger, M; Kaminsky, R

    1994-03-01

    Garlic (Allium sativum L.) and one of its major components, allicin, have been known to have antibacterial and antifungal activity for a long time. Diallyl trisulfide is a chemically stable final transformation product of allicin which was synthesized in 1981 in China and used for treatment of bacterial, fungal and parasitic infections in man. The activity of diallyl trisulfide was investigated in several important protozoan parasites in vitro. The IC50 (concentration which inhibits metabolism or growth of parasites by 50%) for Trypanosoma brucei brucei, T.b. rhodesiense, T.b. gambiense, T. evansi, T. congolense and T. equiperdum was in the range of 0.8-5.5 micrograms/ml. IC50 values were 59 micrograms/ml for Entamoeba histolytica and 14 micrograms/ml for Giardia lamblia. The cytotoxicity of the compound was evaluated on two fibroblast cell lines (MASEF, Mastomys natalensis embryo fibroblast and HEFL-12, human embryo fibroblast) in vitro. The maximum tolerated concentration for both cell lines was 25 micrograms/ml. The results indicate that the compound has potential to be used for treatment of several human and animal parasitic diseases.

  17. Genome and transcriptome studies of the protozoan parasites Trypanosoma cruzi and Giardia intestinalis

    Science.gov (United States)

    Farran, Alexandra J. E.

    Vocal fold (VF) diseases and disorders are difficult to treat surgically or therapeutically. Tissue engineering offers an alternative strategy for the restoration of functional VF. In this work, we have developed tissue engineering methodologies for the functional reconstruction of VF. As a first step, the structure, composition and mechanical properties of native VF tissues have been investigated. In pigs ranging from fetal to 2+ years old, the VF structure and viscoelastic properties were found to be age-dependent. Adult tissues were more organized, displaying a denser lamina propria, and mature elastin fibers compared to fetal tissues, resulting in higher storage moduli. Secondly, biomimetic scaffolds which recaptured the mechanical properties of the native VF were developed. Chemically-defined collagen-hyaluronic acid (HA) composite hydrogels, and elastin-mimetic hybrid polymers (EMHPs) were successfully used as conducive 3D matrices, and 2D elastic scaffolds respectively, to in vitro static culture of fibroblasts. While the collagen-HA hydrogels allowed for in situ cell encapsulation and supported cell attachment and proliferation in 3D, the integrin-binding domain RGDSP was needed for cell proliferation on EMHPs. To emulate in vitro the mechanical environment of the native VF tissue, a dynamic culture system capable of generating vibratory stimulations at human phonation frequencies was successfully created and characterized. Gene expression analysis of fibroblasts subjected to 1 hour vibrations in 2D revealed that the expression of ECM-related genes was altered in response to changes in vibratory frequency and amplitude. Finally, expanding on our previous studies, the dynamic culture system was modified to accommodate for the long-term dynamic culture of cell-laden hydrogels. Human mesenchymal stem cells (hMSCs) encapsulated in a collagen/HA-based hydrogel, cultured in presence of connective tissue growth factor (CTGF), and subjected to high frequency

  18. Molecular Evidence of a Trypanosoma brucei gambiense Sylvatic Cycle in the Human African Trypanosomiasis Foci of Equatorial Guinea

    Directory of Open Access Journals (Sweden)

    Carlos eCordon-Obras

    2015-07-01

    Full Text Available Gambiense trypanosomiasis is considered an anthroponotic disease. Consequently, control programs are generally aimed at stopping transmission of Trypanosoma brucei gambiense (T. b. gambiense by detecting and treating human cases. However, the persistence of numerous foci despite efforts to eliminate this disease questions this strategy as unique tool to pursue the eradication. The role of animals as a reservoir of T. b. gambiense is still controversial, but could partly explain maintenance of the infection at hypo-endemic levels. In the present study, we evaluated the presence of T. b. gambiense in wild animals in Equatorial Guinea. The infection rate ranged from 0.8% in the insular focus of Luba to more than 12% in Mbini, a focus with a constant trickle of human cases. The parasite was detected in a wide range of animal species including four species never described previously as putative reservoirs. Our study comes to reinforce the hypothesis that animals may play a role in the persistence of T. b. gambiense transmission, being particularly relevant in low transmission settings. Under these conditions the integration of sustained vector control and medical interventions should be considered to achieve the elimination of Gambiense trypanosomiasis.

  19. Genetic recombination between human and animal parasites creates novel strains of human pathogen.

    Directory of Open Access Journals (Sweden)

    Wendy Gibson

    2015-03-01

    Full Text Available Genetic recombination between pathogens derived from humans and livestock has the potential to create novel pathogen strains, highlighted by the influenza pandemic H1N1/09, which was derived from a re-assortment of swine, avian and human influenza A viruses. Here we investigated whether genetic recombination between subspecies of the protozoan parasite, Trypanosoma brucei, from humans and animals can generate new strains of human pathogen, T. b. rhodesiense (Tbr responsible for sleeping sickness (Human African Trypanosomiasis, HAT in East Africa. The trait of human infectivity in Tbr is conferred by a single gene, SRA, which is potentially transferable to the animal pathogen Tbb by sexual reproduction. We tracked the inheritance of SRA in crosses of Tbr and Tbb set up by co-transmitting genetically-engineered fluorescent parental trypanosome lines through tsetse flies. SRA was readily transferred into new genetic backgrounds by sexual reproduction between Tbr and Tbb, thus creating new strains of the human pathogen, Tbr. There was no evidence of diminished growth or transmissibility of hybrid trypanosomes carrying SRA. Although expression of SRA is critical to survival of Tbr in the human host, we show that the gene exists as a single copy in a representative collection of Tbr strains. SRA was found on one homologue of chromosome IV in the majority of Tbr isolates examined, but some Ugandan Tbr had SRA on both homologues. The mobility of SRA by genetic recombination readily explains the observed genetic variability of Tbr in East Africa. We conclude that new strains of the human pathogen Tbr are being generated continuously by recombination with the much larger pool of animal-infective trypanosomes. Such novel recombinants present a risk for future outbreaks of HAT.

  20. Genetic recombination between human and animal parasites creates novel strains of human pathogen.

    Science.gov (United States)

    Gibson, Wendy; Peacock, Lori; Ferris, Vanessa; Fischer, Katrin; Livingstone, Jennifer; Thomas, James; Bailey, Mick

    2015-03-01

    Genetic recombination between pathogens derived from humans and livestock has the potential to create novel pathogen strains, highlighted by the influenza pandemic H1N1/09, which was derived from a re-assortment of swine, avian and human influenza A viruses. Here we investigated whether genetic recombination between subspecies of the protozoan parasite, Trypanosoma brucei, from humans and animals can generate new strains of human pathogen, T. b. rhodesiense (Tbr) responsible for sleeping sickness (Human African Trypanosomiasis, HAT) in East Africa. The trait of human infectivity in Tbr is conferred by a single gene, SRA, which is potentially transferable to the animal pathogen Tbb by sexual reproduction. We tracked the inheritance of SRA in crosses of Tbr and Tbb set up by co-transmitting genetically-engineered fluorescent parental trypanosome lines through tsetse flies. SRA was readily transferred into new genetic backgrounds by sexual reproduction between Tbr and Tbb, thus creating new strains of the human pathogen, Tbr. There was no evidence of diminished growth or transmissibility of hybrid trypanosomes carrying SRA. Although expression of SRA is critical to survival of Tbr in the human host, we show that the gene exists as a single copy in a representative collection of Tbr strains. SRA was found on one homologue of chromosome IV in the majority of Tbr isolates examined, but some Ugandan Tbr had SRA on both homologues. The mobility of SRA by genetic recombination readily explains the observed genetic variability of Tbr in East Africa. We conclude that new strains of the human pathogen Tbr are being generated continuously by recombination with the much larger pool of animal-infective trypanosomes. Such novel recombinants present a risk for future outbreaks of HAT.

  1. The improbable transmission of Trypanosoma cruzi to human: the missing link in the dynamics and control of Chagas disease.

    Directory of Open Access Journals (Sweden)

    Pierre Nouvellet

    2013-11-01

    Full Text Available Chagas disease has a major impact on human health in Latin America and is becoming of global concern due to international migrations. Trypanosoma cruzi, the etiological agent of the disease, is one of the rare human parasites transmitted by the feces of its vector, as it is unable to reach the salivary gland of the insect. This stercorarian transmission is notoriously poorly understood, despite its crucial role in the ecology and evolution of the pathogen and the disease. The objective of this study was to quantify the probability of T. cruzi vectorial transmission to humans, and to use such an estimate to predict human prevalence from entomological data. We developed several models of T. cruzi transmission to estimate the probability of transmission from vector to host. Using datasets from the literature, we estimated the probability of transmission per contact with an infected triatomine to be 5.8 × 10(-4 (95%CI: [2.6 ; 11.0] × 10(-4. This estimate was consistent across triatomine species, robust to variations in other parameters, and corresponded to 900-4,000 contacts per case. Our models subsequently allowed predicting human prevalence from vector abundance and infection rate in 7/10 independent datasets covering various triatomine species and epidemiological situations. This low probability of T. cruzi transmission reflected well the complex and unlikely mechanism of transmission via insect feces, and allowed predicting human prevalence from basic entomological data. Although a proof of principle study would now be valuable to validate our models' predictive ability in an even broader range of entomological and ecological settings, our quantitative estimate could allow switching the evaluation of disease risk and vector control program from purely entomological indexes to parasitological measures, as commonly done for other major vector borne diseases. This might lead to different quantitative perspectives as these indexes are well known

  2. Human Leucocyte Antigen-G (HLA-G and Its Murine Functional Homolog Qa2 in the Trypanosoma cruzi Infection

    Directory of Open Access Journals (Sweden)

    Fabrício C. Dias

    2015-01-01

    Full Text Available Genetic susceptibility factors, parasite strain, and an adequate modulation of the immune system seem to be crucial for disease progression after Trypanosoma cruzi infection. HLA-G and its murine functional homolog Qa2 have well-recognized immunomodulatory properties. We evaluated the HLA-G 3′ untranslated region (3′UTR polymorphic sites (associated with mRNA stability and target for microRNA binding and HLA-G tissue expression (heart, colon, and esophagus in patients presenting Chagas disease, stratified according to the major clinical variants. Further, we investigated the transcriptional levels of Qa2 and other pro- and anti-inflammatory genes in affected mouse tissues during T. cruzi experimental acute and early chronic infection induced by the CL strain. Chagas disease patients exhibited differential HLA-G 3′UTR susceptibility allele/genotype/haplotype patterns, according to the major clinical variant (digestive/cardiac/mixed/indeterminate. HLA-G constitutive expression on cardiac muscle and colonic cells was decreased in Chagasic tissues; however, no difference was observed for Chagasic and non-Chagasic esophagus tissues. The transcriptional levels of Qa2 and other anti and proinflammatory (CTLA-4, PDCD1, IL-10, INF-γ, and NOS-2 genes were induced only during the acute T. cruzi infection in BALB/c and C57BL/6 mice. We present several lines of evidence indicating the role of immunomodulatory genes and molecules in human and experimental T. cruzi infection.

  3. The Chagas disease domestic transmission cycle in Guatemala: Parasite-vector switches and lack of mitochondrial co-diversification between Triatoma dimidiata and Trypanosoma cruzi subpopulations suggest non-vectorial parasite dispersal across the Motagua valley.

    Science.gov (United States)

    Pennington, Pamela M; Messenger, Louisa Alexandra; Reina, Jeffrey; Juárez, José G; Lawrence, Gena G; Dotson, Ellen M; Llewellyn, Martin S; Cordón-Rosales, Celia

    2015-11-01

    Parasites transmitted by insects must adapt to their vectors and reservoirs. Chagas disease, an American zoonosis caused by Trypanosoma cruzi, is transmitted by several species of triatomines. In Central America, Triatoma dimidiata is a widely dispersed vector found in sylvatic and domestic habitats, with distinct populations across the endemic region of Guatemala. Our aim was to test the strength of association between vector and parasite genetic divergence in domestic environments. Microsatellite (MS) loci were used to characterize parasites isolated from T. dimidiata (n=112) collected in domestic environments. Moderate genetic differentiation was observed between parasites north and south of the Motagua Valley, an ancient biogeographic barrier (FST 0.138, p=0.009). Slightly reduced genotypic diversity and increased heterozygosity in the north (Allelic richness (Ar)=1.00-6.05, FIS -0.03) compared to the south (Ar=1.47-6.30, FIS 0.022) suggest either a selective or demographic process during parasite dispersal. Based on parasite genotypes and geographic distribution, 15 vector specimens and their parasite isolates were selected for mitochondrial co-diversification analysis. Genetic variability and phylogenetic congruence were determined with mitochondrial DNA sequences (10 parasite maxicircle gene fragments and triatomine ND4+CYT b). A Mantel test as well as phylogenetic, network and principal coordinates analyses supported at least three T. dimidiata haplogroups separated by geographic distance across the Motagua Valley. Maxicircle sequences showed low T. cruzi genetic variability (π nucleotide diversity 0.00098) with no evidence of co-diversification with the vector, having multiple host switches across the valley. Sylvatic Didelphis marsupialis captured across the Motagua Valley were found to be infected with T. cruzi strains sharing MS genotypes with parasites isolated from domiciliated triatomines. The current parasite distribution in domestic environments

  4. Adipose Tissue-Derived Mesenchymal Stromal Cells Protect Mice Infected with Trypanosoma cruzi from Cardiac Damage through Modulation of Anti-parasite Immunity.

    Science.gov (United States)

    Mello, Debora B; Ramos, Isalira P; Mesquita, Fernanda C P; Brasil, Guilherme V; Rocha, Nazareth N; Takiya, Christina M; Lima, Ana Paula C A; Campos de Carvalho, Antonio C; Goldenberg, Regina S; Carvalho, Adriana B

    2015-01-01

    Chagas disease, caused by the protozoan Trypanosoma cruzi (T. cruzi), is a complex disease endemic in Central and South America. It has been gathering interest due to increases in non-vectorial forms of transmission, especially in developed countries. The objective of this work was to investigate if adipose tissue-derived mesenchymal stromal cells (ASC) can alter the course of the disease and attenuate pathology in a mouse model of chagasic cardiomyopathy. ASC were injected intraperitoneally at 3 days post-infection (dpi). Tracking by bioluminescence showed that cells remained in the abdominal cavity for up to 9 days after injection and most of them migrated to the abdominal or subcutaneous fat, an early parasite reservoir. ASC injection resulted in a significant reduction in blood parasitemia, which was followed by a decrease in cardiac tissue inflammation, parasitism and fibrosis at 30 dpi. At the same time point, analyses of cytokine release in cells isolated from the heart and exposed to T. cruzi antigens indicated an anti-inflammatory response in ASC-treated animals. In parallel, splenocytes exposed to the same antigens produced a pro-inflammatory response, which is important for the control of parasite replication, in placebo and ASC-treated groups. However, splenocytes from the ASC group released higher levels of IL-10. At 60 dpi, magnetic resonance imaging revealed that right ventricular (RV) dilation was prevented in ASC-treated mice. In conclusion, the injection of ASC early after T. cruzi infection prevents RV remodeling through the modulation of immune responses. Lymphoid organ response to the parasite promoted the control of parasite burden, while the heart, a target organ of Chagas disease, was protected from damage due to an improved control of inflammation in ASC-treated mice.

  5. Adipose Tissue-Derived Mesenchymal Stromal Cells Protect Mice Infected with Trypanosoma cruzi from Cardiac Damage through Modulation of Anti-parasite Immunity.

    Directory of Open Access Journals (Sweden)

    Debora B Mello

    Full Text Available Chagas disease, caused by the protozoan Trypanosoma cruzi (T. cruzi, is a complex disease endemic in Central and South America. It has been gathering interest due to increases in non-vectorial forms of transmission, especially in developed countries. The objective of this work was to investigate if adipose tissue-derived mesenchymal stromal cells (ASC can alter the course of the disease and attenuate pathology in a mouse model of chagasic cardiomyopathy.ASC were injected intraperitoneally at 3 days post-infection (dpi. Tracking by bioluminescence showed that cells remained in the abdominal cavity for up to 9 days after injection and most of them migrated to the abdominal or subcutaneous fat, an early parasite reservoir. ASC injection resulted in a significant reduction in blood parasitemia, which was followed by a decrease in cardiac tissue inflammation, parasitism and fibrosis at 30 dpi. At the same time point, analyses of cytokine release in cells isolated from the heart and exposed to T. cruzi antigens indicated an anti-inflammatory response in ASC-treated animals. In parallel, splenocytes exposed to the same antigens produced a pro-inflammatory response, which is important for the control of parasite replication, in placebo and ASC-treated groups. However, splenocytes from the ASC group released higher levels of IL-10. At 60 dpi, magnetic resonance imaging revealed that right ventricular (RV dilation was prevented in ASC-treated mice.In conclusion, the injection of ASC early after T. cruzi infection prevents RV remodeling through the modulation of immune responses. Lymphoid organ response to the parasite promoted the control of parasite burden, while the heart, a target organ of Chagas disease, was protected from damage due to an improved control of inflammation in ASC-treated mice.

  6. Functional studies of TcRjl, a novel GTPase of Trypanosoma cruzi, reveals phenotypes related with MAPK activation during parasite differentiation and after heterologous expression in Drosophila model system

    Energy Technology Data Exchange (ETDEWEB)

    Reis Monteiro dos-Santos, Guilherme Rodrigo [Laboratório de Parasitologia Molecular, Instituto de Biofísica Carlos Chagas Filho, CCS, UFRJ, Rio de Janeiro (Brazil); Fontenele, Marcio Ribeiro [Laboratório de Biologia Molecular do Desenvolvimento Instituto de Ciências Biomédicas, CCS, UFRJ, Rio de Janeiro (Brazil); Dias, Felipe de Almeida [Laboratório de Bioquímica de Artrópodes Hematófagos, Instituto de Bioquímica Médica, CCS, UFRJ, Rio de Janeiro (Brazil); Oliveira, Pedro Lagerblad de [Laboratório de Bioquímica de Artrópodes Hematófagos, Instituto de Bioquímica Médica, CCS, UFRJ, Rio de Janeiro (Brazil); Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM) (Brazil); Nepomuceno-Silva, José Luciano [Laboratório Integrado de Bioquímica Hatisaburo Masuda, NUPEM/UFRJ, Pólo Barreto, Universidade Federal do Rio de Janeiro, Campus Macaé, Macaé (Brazil); and others

    2015-11-06

    The life cycle of the protozoan parasite Trypanosoma cruzi comprises rounds of proliferative cycles and differentiation in distinct host environments. Ras GTPases are molecular switches that play pivotal regulatory functions in cell fate. Rjl is a novel GTPase with unknown function. Herein we show that TcRjl blocks in vivo cell differentiation. The forced expression of TcRjl leads to changes in the overall tyrosine protein phosphorylation profile of parasites. TcRjl expressing parasites sustained DNA synthesis regardless the external stimuli for differentiation. Heterologous expression in the Drosophila melanogaster genetic system strongly suggests a role from TcRjl protein in RTK-dependent pathways and MAPK activation.

  7. Functional studies of TcRjl, a novel GTPase of Trypanosoma cruzi, reveals phenotypes related with MAPK activation during parasite differentiation and after heterologous expression in Drosophila model system

    International Nuclear Information System (INIS)

    Reis Monteiro dos-Santos, Guilherme Rodrigo; Fontenele, Marcio Ribeiro; Dias, Felipe de Almeida; Oliveira, Pedro Lagerblad de; Nepomuceno-Silva, José Luciano

    2015-01-01

    The life cycle of the protozoan parasite Trypanosoma cruzi comprises rounds of proliferative cycles and differentiation in distinct host environments. Ras GTPases are molecular switches that play pivotal regulatory functions in cell fate. Rjl is a novel GTPase with unknown function. Herein we show that TcRjl blocks in vivo cell differentiation. The forced expression of TcRjl leads to changes in the overall tyrosine protein phosphorylation profile of parasites. TcRjl expressing parasites sustained DNA synthesis regardless the external stimuli for differentiation. Heterologous expression in the Drosophila melanogaster genetic system strongly suggests a role from TcRjl protein in RTK-dependent pathways and MAPK activation.

  8. Acute Trypanosoma cruzi Infection in Mouse Induces Infertility or Placental Parasite Invasion and Ischemic Necrosis Associated with Massive Fetal Loss

    OpenAIRE

    Mjihdi, Abdelkarim; Lambot, Marie-Alexandra; Stewart, Ian J.; Detournay, Olivier; Noël, Jean-Christophe; Carlier, Yves; Truyens, Carine

    2002-01-01

    Pathogens may impair reproduction in association or not with congenital infections. We have investigated the effect of acute infection with Trypanosoma cruzi, the protozoan agent of Chagas’ disease in Latin America, on reproduction of mice. Although mating of infected mice occurred at a normal rate, 80% of them did not become gravid. In the few gravid infected mice, implantation numbers were as in uninfected control mice, but 28% of fetuses resorbed. Such infertility and early fetal losses we...

  9. Susceptibility of Mice to Trypanosoma evansi Treated with Human Plasma Containing Different Concentrations of Apolipoprotein L-1

    Science.gov (United States)

    Fanfa, Vinicius R.; Otto, Mateus A.; Gressler, Lucas T.; Tavares, Kaio C.S.; Lazzarotto, Cícera R.; Tonin, Alexandre A.; Miletti, Luiz C.; Duarte, Marta M.M.F.; Monteiro, Silvia G.

    2011-01-01

    The aim of this study was to test the susceptibility of mice to Trypanosoma evansi treated with human plasma containing different concentrations of apolipoprotein L-1 (APOL1). For this experiment, a strain of T. evansi and human plasma (plasmas 1, 2, and 3) from 3 adult males clinically healthy were used. In vivo test used 50 mice divided in 5 groups (A to E) with 10 animals in each group. Animals of groups B to E were infected, and then treated with 0.2 ml of human plasma in the following outline: negative control (A), positive control (B), treatment with plasma 1 (C), treatment with plasma 2 (D), and treatment with plasma 3 (E). Mice treated with human plasma showed an increase in longevity of 40.9±0.3 (C), 20±9.0 (D) and 35.6±9.3 (E) days compared to the control group (B) which was 4.3±0.5 days. The number of surviving mice and free of the parasite (blood smear and PCR negative) at the end of the experiment was 90%, 0%, and 60% for groups C, D, and E, respectively. The quantification of APOL1 was performed due to the large difference in the treatments that differed in the source plasma. In plasmas 1, 2, and 3 was detected the concentration of 194, 99, and 115 mg/dl of APOL1, respectively. However, we believe that this difference in the treatment efficiency is related to the level of APOL1 in plasmas. PMID:22355213

  10. Further genetic characterization of the two Trypanosoma cruzi Berenice strains (Be-62 and Be-78) isolated from the first human case of Chagas disease (Chagas, 1909).

    Science.gov (United States)

    Cruz, R E; Macedo, A M; Barnabé, C; Freitas, J M; Chiari, E; Veloso, V M; Carneiro, C M; Bahia, M T; Tafuri, Washington L; Lana, M

    2006-03-01

    We describe here an extension of a previous genetic characterization of Trypanosoma cruzi strains (Be-62 and Be-78) isolated from the patient Berenice, the first human case of Chagas disease [Chagas, C., 1909. Nova Tripanomíase humana. Estudos sobre morfologia e o ciclo evolutivo do Schizotrypanum cruzi, n. gen., n. sp., agente etiolójico da nova entidade morbida do homem. Mem. Inst. Oswaldo Cruz 1, 159-218]. We wanted to verify the composition of T. cruzi populations originated from these two isolates. In the present work, 22 enzymatic loci (MLEE), nine RAPD primers and 7 microsatellite loci were analyzed. Clones from both strains were also characterized to verify whether these strains are mono or polyclonal. Be-62 and Be-78 strains were different in 3 out of 22 enzymatic systems, in 3 out of 9 RAPD primers tested and in all microsatellite loci investigated. However, our data suggests that both strains are phylogenetically closely related, belonging to genetic group 32 from Tibayrenc and Ayala [Tibayrenc, M., Ayala, F.J., 1988. Isoenzime variability in Trypanosoma cruzi, the agent of Chagas' disease: genetical, taxonomical, and epidemiological significance. Evolution 42, 277-292], equivalent to zymodeme 2 and T. cruzi II major lineage which, in Brazil, comprises parasites from the domestic cycle of the disease. Microsatellite analyses showed differences between the parental strains but suggested that both populations are monoclonal since each strain and their respective clones showed the same amplification products.

  11. Widespread Trypanosoma cruzi infection in government working dogs along the Texas-Mexico border: Discordant serology, parasite genotyping and associated vectors.

    Directory of Open Access Journals (Sweden)

    Alyssa C Meyers

    2017-08-01

    Full Text Available Chagas disease, caused by the vector-borne protozoan Trypanosoma cruzi, is increasingly recognized in the southern U.S. Government-owned working dogs along the Texas-Mexico border could be at heightened risk due to prolonged exposure outdoors in habitats with high densities of vectors. We quantified working dog exposure to T. cruzi, characterized parasite strains, and analyzed associated triatomine vectors along the Texas-Mexico border.In 2015-2016, we sampled government working dogs in five management areas plus a training center in Texas and collected triatomine vectors from canine environments. Canine serum was tested for anti-T. cruzi antibodies with up to three serological tests including two immunochromatographic assays (Stat-Pak and Trypanosoma Detect and indirect fluorescent antibody (IFA test. The buffy coat fraction of blood and vector hindguts were tested for T. cruzi DNA and parasite discrete typing unit was determined. Overall seroprevalence was 7.4 and 18.9% (n = 528 in a conservative versus inclusive analysis, respectively, based on classifying weakly reactive samples as negative versus positive. Canines in two western management areas had 2.6-2.8 (95% CI: 1.0-6.8 p = 0.02-0.04 times greater odds of seropositivity compared to the training center. Parasite DNA was detected in three dogs (0.6%, including TcI and TcI/TcIV mix. Nine of 20 (45% T. gerstaeckeri and T. rubida were infected with TcI and TcIV; insects analyzed for bloodmeals (n = 11 fed primarily on canine (54.5%.Government working dogs have widespread exposure to T. cruzi across the Texas-Mexico border. Interpretation of sample serostatus was challenged by discordant results across testing platforms and very faint serological bands. In the absence of gold standard methodologies, epidemiological studies will benefit from presenting a range of results based on different tests/interpretation criteria to encompass uncertainty. Working dogs are highly trained in security

  12. A human type 5 adenovirus-based Trypanosoma cruzi therapeutic vaccine re-programs immune response and reverses chronic cardiomyopathy.

    Directory of Open Access Journals (Sweden)

    Isabela Resende Pereira

    2015-01-01

    Full Text Available Chagas disease (CD, caused by the protozoan Trypanosoma cruzi, is a prototypical neglected tropical disease. Specific immunity promotes acute phase survival. Nevertheless, one-third of CD patients develop chronic chagasic cardiomyopathy (CCC associated with parasite persistence and immunological unbalance. Currently, the therapeutic management of patients only mitigates CCC symptoms. Therefore, a vaccine arises as an alternative to stimulate protective immunity and thereby prevent, delay progression and even reverse CCC. We examined this hypothesis by vaccinating mice with replication-defective human Type 5 recombinant adenoviruses (rAd carrying sequences of amastigote surface protein-2 (rAdASP2 and trans-sialidase (rAdTS T. cruzi antigens. For prophylactic vaccination, naïve C57BL/6 mice were immunized with rAdASP2+rAdTS (rAdVax using a homologous prime/boost protocol before challenge with the Colombian strain. For therapeutic vaccination, rAdVax administration was initiated at 120 days post-infection (dpi, when mice were afflicted by CCC. Mice were analyzed for electrical abnormalities, immune response and cardiac parasitism and tissue damage. Prophylactic immunization with rAdVax induced antibodies and H-2Kb-restricted cytotoxic and interferon (IFNγ-producing CD8+ T-cells, reduced acute heart parasitism and electrical abnormalities in the chronic phase. Therapeutic vaccination increased survival and reduced electrical abnormalities after the prime (analysis at 160 dpi and the boost (analysis at 180 and 230 dpi. Post-therapy mice exhibited less heart injury and electrical abnormalities compared with pre-therapy mice. rAdVax therapeutic vaccination preserved specific IFNγ-mediated immunity but reduced the response to polyclonal stimuli (anti-CD3 plus anti-CD28, CD107a+ CD8+ T-cell frequency and plasma nitric oxide (NO levels. Moreover, therapeutic rAdVax reshaped immunity in the heart tissue as reduced the number of perforin+ cells

  13. Serodiagnosis of bovine trypanosomosis caused by non-tsetse transmitted Trypanosoma (Duttonella) vivax parasites using the soluble form of a Trypanozoon variant surface glycoprotein antigen.

    Science.gov (United States)

    Uzcanga, Graciela L; Pérez-Rojas, Yenis; Camargo, Rocío; Izquier, Adriana; Noda, José A; Chacín, Ronny; Parra, Nereida; Ron, Lenin; Rodríguez-Hidalgo, Richar; Bubis, José

    2016-03-15

    Previous studies have shown that a 64-kDa antigen (p64) that was purified from the Venezuelan TeAp-N/D1 isolate of Trypanosoma (Trypanozoon) equiperdum corresponds to the soluble form of its predominant variant surface glycoprotein (VSG), and exhibited cross-reactivity with Trypanosoma (Duttonella) vivax. The course of experimental acute infections of bovines with T. vivax were followed by measuring whole anti-p64 antibodies and specific anti-p64 IgG and IgM antibodies in animal sera by indirect enzyme-linked immunosorbent assay (ELISA). The value of p64 to diagnose bovine trypanosomosis was also examined using 350 sera from healthy and T. vivax-infected cows living in a trypanosomosis-endemic and enzootic stable area, and 48 sera obtained during a trypanosomosis outbreak. Serological assays showed that ∼ 70-80% of the infected sera contained anti-p64 antibodies, based on the comparative immunodetection of the T. equiperdum clarified antigenic fraction used as a reference test. In the absence of a gold standard, Bayesian analysis for multiple testing estimated a sensitivity and specificity of 71.6% and 98.8%, respectively, for the indirect ELISA using p64 as antigen. An apparent prevalence of 37.7% for bovine trypanosomosis infection was also estimated with a Bayesian approach when the p64 ELISA test was used. Employing blood from acute infected cows, the indirect ELISA response against p64 was contrasted with the microhematocrit centrifuge method and analyses by polymerase chain reaction (PCR) using specific primers targeting the inter-specific length variation of the internal transcribed spacer 1 region of the 18S ribosomal gene. The efficiency of p64 for the detection of anti-trypanosome antibodies in acute infected bovines was also corroborated serologically by comparing its response to that of the Indonesian Trypanosoma evansi Rode Trypanozoon antigen type (RoTat) 1.2 VSG, which possesses high specificity and sensitivity. As expected, PCR was the best

  14. Parasites and cancers: parasite antigens as possible targets for cancer immunotherapy.

    Science.gov (United States)

    Darani, Hossein Yousofi; Yousefi, Morteza

    2012-12-01

    An adverse relationship between some parasite infections and cancer in the human population has been reported by different research groups. Anticancer activity of some parasites such as Trypanosoma cruzi, Toxoplasma gondii, Toxocara canis, Acantamoeba castellani and Plasmodium yoelii has been shown in experimental animals. Moreover, it has been shown that cancer-associated mucin-type O-glycan compositions are made by parasites, therefore cancers and parasites have common antigens. In this report anticancer activities of some parasites have been reviewed and the possible mechanisms of these actions have also been discussed.

  15. Molecular basis of Trypanosoma cruzi and Leishmania interaction with their host(s): exploitation of immune and defense mechanisms by the parasite leading to persistence and chronicity, features reminiscent of immune system evasion strategies in cancer diseases.

    Science.gov (United States)

    Ouaissi, Ali; Ouaissi, Mehdi

    2005-01-01

    A number of features occurring during host-parasite interactions in Chagas disease caused by the protozoan parasite, Trypanosoma cruzi, and Leishmaniasis, caused by a group of kinetoplastid protozoan parasites are reminiscent of those observed in cancer diseases. In fact,although the cancer is not a single disease, and that T.cruzi and Leishmania are sophisticated eukaryotic parasites presenting a high level of genotypic variability the growth of the parasites in their host and that of cancer cells share at least one common feature, that is their mutual capacity for rapid cell division. Surprisingly, the parasitic diseases and cancers share some immune evasion strategies. Consideration of these immunological alterations must be added to the evaluation of the pathogenic processes. The molecular and functional characterization of virulence factors and the study of their effect on the arms of the immune system have greatly improved understanding of the regulation of immune effectors functions. The purpose of this review is to analyze some of the current data related to the regulatory components or processes originating from the parasite that control or interfere with host cell physiology. Attempts are also made to delineate some similarities between the immune evasion strategies that parasites and tumors employ. The elucidation of the mode of action of parasite virulence factors toward the host cell allow not only provide us with a more comprehensive view of the host-parasite relationships but may also represent a step forward in efforts aimed to identify new target molecules for therapeutic intervention.

  16. Host-Parasite Interaction: Parasite-Derived and -Induced Proteases That Degrade Human Extracellular Matrix

    Directory of Open Access Journals (Sweden)

    Carolina Piña-Vázquez

    2012-01-01

    Full Text Available Parasitic protozoa are among the most important pathogens worldwide. Diseases such as malaria, leishmaniasis, amoebiasis, giardiasis, trichomoniasis, and trypanosomiasis affect millions of people. Humans are constantly threatened by infections caused by these pathogens. Parasites engage a plethora of surface and secreted molecules to attach to and enter mammalian cells. The secretion of lytic enzymes by parasites into host organs mediates critical interactions because of the invasion and destruction of interstitial tissues, enabling parasite migration to other sites within the hosts. Extracellular matrix is a complex, cross-linked structure that holds cells together in an organized assembly and that forms the basement membrane lining (basal lamina. The extracellular matrix represents a major barrier to parasites. Therefore, the evolution of mechanisms for connective-tissue degradation may be of great importance for parasite survival. Recent advances have been achieved in our understanding of the biochemistry and molecular biology of proteases from parasitic protozoa. The focus of this paper is to discuss the role of protozoan parasitic proteases in the degradation of host ECM proteins and the participation of these molecules as virulence factors. We divide the paper into two sections, extracellular and intracellular protozoa.

  17. Peritoneum from Trypanosoma cruzi-infected mice is a homing site of Syndecan-1 neg plasma cells which mainly provide non-parasite-specific antibodies.

    Science.gov (United States)

    Merino, Maria C; Montes, Carolina L; Acosta-Rodriguez, Eva V; Bermejo, Daniela A; Amezcua-Vesely, Maria C; Gruppi, Adriana

    2010-05-01

    Humoral immunity during experimental Chagas disease has been considered a double-edge sword, critical to control Trypanosoma cruzi spreading but also associated to tissue damage. Peritoneal B-1 cells have been linked to the pathogenesis of Chagas disease; however, they may also help to control the infection by providing a fast wave of antibodies. In the present work, we determined that peritoneal B-cell response to T. cruzi is characterized by a marked reduction of CD19(+) B cells due to plasma cell differentiation rather than to cell death. Both peritoneal B-2 and B-1 cells decrease after parasite infection, but with different kinetics. Thus, the reduction in B-2 cell number can be detected from day 4 postinfection while the number of B-1 cells decreases only after 15 days of infection. Differentiation of peritoneal B-1 and B-2 cells into IgM-secreting cells was triggered by parasites but not by cytokines produced by peritoneal cells. Electron microscopy studies showed that peritoneum of infected mice lodges plasma cells with typical morphology as well as atypical plasma cells named 'Mott-like cells' containing high number of cytoplasmatic Ig(+) granules. The plasma cells induced during the infection showed a phenotype that may allow their persistence in peritoneum and they may contribute to the high levels of antibodies exhibited at the chronic phase of infection. We also showed that the peritoneal B-cell response is scarcely specific for the invading pathogen and rather constitute an important source of non-parasite-specific IgM and IgG in the infected host.

  18. Trypanosoma cruzi infection induces a massive extrafollicular and follicular splenic B-cell response which is a high source of non-parasite-specific antibodies.

    Science.gov (United States)

    Bermejo, Daniela A; Amezcua Vesely, María C; Khan, Mahmood; Acosta Rodríguez, Eva V; Montes, Carolina L; Merino, Maria C; Toellner, Kai Michael; Mohr, Elodie; Taylor, Dale; Cunningham, Adam F; Gruppi, Adriana

    2011-01-01

    Acute infection with Trypanosoma cruzi, the aetiological agent of Chagas' disease, results in parasitaemia and polyclonal lymphocyte activation. It has been reported that polyclonal B-cell activation is associated with hypergammaglobulinaemia and delayed parasite-specific antibody response. In the present study we analysed the development of a B-cell response within the different microenvironments of the spleen during acute T. cruzi infection. We observed massive germinal centre (GC) and extrafollicular (EF) responses at the peak of infection. However, the EF foci were evident since day 3 post-infection (p.i.), and, early in the infection, they mainly provided IgM. The EF foci response reached its peak at 11 days p.i. and extended from the red pulp into the periarteriolar lymphatic sheath. The GCs were detected from day 8 p.i. At the peak of parasitaemia, CD138(+) B220(+) plasma cells in EF foci, red pulp and T-cell zone expressed IgM and all the IgG isotypes. Instead of the substantial B-cell response, most of the antibodies produced by splenic cells did not target the parasite, and parasite-specific IgG isotypes could be detected in sera only after 18 days p.i. We also observed that the bone marrow of infected mice presented a strong reduction in CD138(+) B220(+) cells compared with that of normal mice. Hence, in acute infection with T. cruzi, the spleen appears to be the most important lymphoid organ that lodges plasma cells and the main producer of antibodies. The development of a B-cell response during T. cruzi infection shows features that are particular to T. cruzi and other protozoan infection but different to other infections or immunization with model antigens.

  19. Molecular Detection of Rickettsia amblyommii in Amblyomma americanum Parasitizing Humans

    Science.gov (United States)

    2010-01-01

    Detection of Rickettsia amblyommii in Amblyomma americanum Parasitizing Humans Ju Jiang~ Tamasin Yarina~ Melissa K. Miller,2 Ellen Y. Stromdahl? and...protein B gene (ompB) of Rickettsia amblyommii was employed to assess the threat of R. amblyommii exposure to humans parasitized by Amblyomma americanum...infection of and possibly disease in humans. Key Words: Amblyomma americanum-Lone star ticks-Real-time PCR- Rickettsia amblyommii. Introduction R

  20. Seroprevalence of human Trypanosoma cruzi infection in diferent geografic zones of Chiapas, Mexico.

    Science.gov (United States)

    Mazariego-Arana, M A; Monteón, V M; Ballinas-Verdugo, M A; Hernández-Becerril, N; Alejandre-Aguilar, R; Reyes, P A

    2001-01-01

    A serologic survey was carried out in four different geographic zones of Chiapas, Mexico. A total of 1,333 samples were collected from residents of thirteen communities located on the Coast, Central Mountain, Lacandon Forest and a zone called Mesochiapas. One hundred and fifty one seropositive individuals (11.3%) were identified. Human Trypanosoma cruzi infection was influenced by geography. In the Lacandon Forest and Central Mountains there was a higher seroprevalence 32.1 and 13.8% respectively, than on the coast (1.2%). In Mesochiapas there were no seropositive individuals among the 137 persons tested. An active transmission is probably continuing because seropositive cases (13.8%) were detected in children under 10 years of age. The vector recognized on the Coast was Triatoma dimidiata while in the Lacandon Forest it was Rhodnius prolixus.

  1. Human Parasites in Medieval Europe: Lifestyle, Sanitation and Medical Treatment.

    Science.gov (United States)

    Mitchell, Piers D

    2015-01-01

    Parasites have been infecting humans throughout our evolution. However, not all people suffered with the same species or to the same intensity throughout this time. Our changing way of life has altered the suitability of humans to infection by each type of parasite. This analysis focuses upon the evidence for parasites from archaeological excavations at medieval sites across Europe. Comparison between the patterns of infection in the medieval period allows us to see how changes in sanitation, herding animals, growing and fertilizing crops, the fishing industry, food preparation and migration all affected human susceptibility to different parasites. We go on to explore how ectoparasites may have spread infectious bacterial diseases, and also consider what medieval medical practitioners thought of parasites and how they tried to treat them. While modern research has shown the use of a toilet decreases the risk of contracting certain intestinal parasites, the evidence for past societies presented here suggests that the invention of latrines had no observable beneficial effects upon intestinal health. This may be because toilets were not sufficiently ubiquitous until the last century, or that the use of fresh human faeces for manuring crops still ensured those parasite species were easily able to reinfect the population. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Genome-scale multilocus microsatellite typing of Trypanosoma cruzi discrete typing unit I reveals phylogeographic structure and specific genotypes linked to human infection.

    Directory of Open Access Journals (Sweden)

    Martin S Llewellyn

    2009-05-01

    Full Text Available Trypanosoma cruzi is the most important parasitic infection in Latin America and is also genetically highly diverse, with at least six discrete typing units (DTUs reported: Tc I, IIa, IIb, IIc, IId, and IIe. However, the current six-genotype classification is likely to be a poor reflection of the total genetic diversity present in this undeniably ancient parasite. To determine whether epidemiologically important information is "hidden" at the sub-DTU level, we developed a 48-marker panel of polymorphic microsatellite loci to investigate population structure among 135 samples from across the geographic distribution of TcI. This DTU is the major cause of resurgent human disease in northern South America but also occurs in silvatic triatomine vectors and mammalian reservoir hosts throughout the continent. Based on a total dataset of 12,329 alleles, we demonstrate that silvatic TcI populations are extraordinarily genetically diverse, show spatial structuring on a continental scale, and have undergone recent biogeographic expansion into the southern United States of America. Conversely, the majority of human strains sampled are restricted to two distinct groups characterised by a considerable reduction in genetic diversity with respect to isolates from silvatic sources. In Venezuela, most human isolates showed little identity with known local silvatic strains, despite frequent invasion of the domestic setting by infected adult vectors. Multilocus linkage indices indicate predominantly clonal parasite propagation among all populations. However, excess homozygosity among silvatic strains and raised heterozygosity among domestic populations suggest that some level of genetic recombination cannot be ruled out. The epidemiological significance of these findings is discussed.

  3. Human Parasitic Diseases in Bulgaria in Between 2013-2014

    Science.gov (United States)

    Rainova, Iskra; Harizanov, Rumen; Kaftandjiev, Iskren; Tsvetkova, Nina; Mikov, Ognyan; Kaneva, Eleonora

    2018-01-01

    Background: In Bulgaria, more than 20 autochthonous human parasitic infections have been described and some of them are widespread. Over 50 imported protozoan and helminthic infections represent diagnostic and therapeutic challenges and pose epidemiological risks due to the possibility of local transmission. Aims: To establish the distribution of autochthonous and imported parasitic diseases among the population of the country over a 2-year period (2013-2014) and to evaluate their significance in the public health system. Study Design: Cross sectional study. Methods: We used the annual reports by regional health inspectorates and data from the National Reference Laboratory at the National Centre of Infectious and Parasitic Diseases on all individuals infected with parasitic diseases in the country. Prevalence was calculated for parasitic diseases with few or absent clinical manifestations (oligosymptomatic or asymptomatic infections). Incidence per 100.000 was calculated for diseases with an overt clinical picture or those that required hospitalisation and specialised medical interventions (e.g. surgery). Results: During the research period, parasitological studies were conducted on 1441.244 persons, and parasitic infections were diagnosed in 22.039 individuals. Distribution of various parasitic pathogens among the population displayed statistically significant differences in prevalence for some intestinal parasites (enterobiasis 0.81%, giardiasis 0.34% and blastocystosis 0.22%). For certain zoonotic diseases such as cystic echinococcosis (average incidence of 3.99 per 100.000) and trichinellosis (average incidence of 0.8 per 100.000), the incidence exceeds several times the annual incidence recorded in the European Union. Conclusion: Parasitic diseases still pose a substantial problem with social and medical impacts on the residents of our country. Improved efficiency regarding autochthonous and imported parasitic diseases is essential in providing the public

  4. Meiosis and Haploid Gametes in the Pathogen Trypanosoma brucei

    OpenAIRE

    Peacock, Lori; Bailey, Mick; Carrington, Mark; Gibson, Wendy

    2014-01-01

    Summary In eukaryote pathogens, sex is an important driving force in spreading genes for drug resistance, pathogenicity, and virulence [1]. For the parasitic trypanosomes that cause African sleeping sickness, mating occurs during transmission by the tsetse vector [2, 3] and involves meiosis [4], but haploid gametes have not yet been identified. Here, we show that meiosis is a normal part of development in the insect salivary glands for all subspecies of Trypanosoma brucei, including the human...

  5. Targeted mutagenesis in a human-parasitic nematode

    Science.gov (United States)

    Gang, Spencer S.; Castelletto, Michelle L.

    2017-01-01

    Parasitic nematodes infect over 1 billion people worldwide and cause some of the most common neglected tropical diseases. Despite their prevalence, our understanding of the biology of parasitic nematodes has been limited by the lack of tools for genetic intervention. In particular, it has not yet been possible to generate targeted gene disruptions and mutant phenotypes in any parasitic nematode. Here, we report the development of a method for introducing CRISPR-Cas9-mediated gene disruptions in the human-parasitic threadworm Strongyloides stercoralis. We disrupted the S. stercoralis twitchin gene unc-22, resulting in nematodes with severe motility defects. Ss-unc-22 mutations were resolved by homology-directed repair when a repair template was provided. Omission of a repair template resulted in deletions at the target locus. Ss-unc-22 mutations were heritable; we passed Ss-unc-22 mutants through a host and successfully recovered mutant progeny. Using a similar approach, we also disrupted the unc-22 gene of the rat-parasitic nematode Strongyloides ratti. Our results demonstrate the applicability of CRISPR-Cas9 to parasitic nematodes, and thereby enable future studies of gene function in these medically relevant but previously genetically intractable parasites. PMID:29016680

  6. Human mixed infections of Leishmania spp. and Leishmania-Trypanosoma cruzi in a sub Andean Bolivian area: identification by polymerase chain reaction/hybridization and isoenzyme

    Directory of Open Access Journals (Sweden)

    B Bastrenta

    2003-03-01

    Full Text Available Parasites belonging to Leishmania braziliensis, Leishmania donovani, Leishmania mexicana complexes and Trypanosoma cruzi (clones 20 and 39 were searched in blood, lesions and strains collected from 28 patients with active cutaneous leishmaniasis and one patient with visceral leishmaniasis. PCR-hybridization with specific probes of Leishmania complexes (L. braziliensis, L. donovani and L. mexicana and T. cruzi clones was applied to the different DNA samples. Over 29 patients, 8 (27.6% presented a mixed infection Leishmania complex species, 17 (58.6% a mixed infection Leishmania-T. cruzi, and 4 (13.8% a multi Leishmania-T. cruzi infection. Several patients were infected by the two Bolivian major clones 20 and 39 of T. cruzi (44.8%. The L. braziliensis complex was more frequently detected in lesions than in blood and a reverse result was observed for L. mexicana complex. The polymerase chain reaction-hybridization design offers new arguments supporting the idea of an underestimated rate of visceral leishmanisis in Bolivia. Parasites were isolated by culture from the blood of two patients and lesions of 10 patients. The UPGMA (unweighted pair-group method with arithmetic averages dendrogram computed from Jaccard's distances obtained from 11 isoenzyme loci data confirmed the presence of the three Leishmania complexes and undoubtedly identified human infections by L. (V. braziliensis, L. (L. chagasi and L. (L. mexicana species. Additional evidence of parasite mixtures was visualized through mixed isoenzyme profiles, L. (V. braziliensis-L. (L. mexicana and Leishmania spp.-T. cruzi.The epidemiological profile in the studied area appeared more complex than currently known. This is the first report of parasitological evidence of Bolivian patients with trypanosomatidae multi infections and consequences on the diseases' control and patient treatments are discussed.

  7. Ancient Human Parasites in Ethnic Chinese Populations.

    Science.gov (United States)

    Yeh, Hui-Yuan; Mitchell, Piers D

    2016-10-01

    Whilst archaeological evidence for many aspects of life in ancient China is well studied, there has been much less interest in ancient infectious diseases, such as intestinal parasites in past Chinese populations. Here, we bring together evidence from mummies, ancient latrines, and pelvic soil from burials, dating from the Neolithic Period to the Qing Dynasty, in order to better understand the health of the past inhabitants of China and the diseases endemic in the region. Seven species of intestinal parasite have been identified, namely roundworm, whipworm, Chinese liver fluke, oriental schistosome, pinworm, Taenia sp. tapeworm, and the intestinal fluke Fasciolopsis buski . It was found that in the past, roundworm, whipworm, and Chinese liver fluke appear to have been much more common than the other species. While roundworm and whipworm remained common into the late 20th century, Chinese liver fluke seems to have undergone a marked decline in its prevalence over time. The iconic transport route known as the Silk Road has been shown to have acted as a vector for the transmission of ancient diseases, highlighted by the discovery of Chinese liver fluke in a 2,000 year-old relay station in northwest China, 1,500 km outside its endemic range.

  8. Human fascioliasis: a parasitic health problem in Dakahlia Governorate, Egypt.

    Science.gov (United States)

    el Shazly, A M; Handousa, A E; Youssef, M E; Rizk, H; Hamouda, M M

    1991-08-01

    Fascioliasis has a cosmopolitan distribution and is prevalent in sheep-raising countries. Now, it is an increasingly important parasite of man in the Mediterranean countries. In Dakahlia G., human fascioliasis has imposed itself as a parasitic health problem. In this paper, 23 human cases were selected to throw some light on the signs, symptoms and diagnosis of the disease. It was concluded that painful hepatomegaly, fever, anaemia and marked eosinophilia are tetrad suggesting fascioliasis in patient who has consumed watercress as green salade. Data concerning treatment and follow up will be published later.

  9. Parasites

    Centers for Disease Control (CDC) Podcasts

    2010-05-06

    In this podcast, a listener wants to know what to do if he thinks he has a parasite or parasitic disease.  Created: 5/6/2010 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 5/6/2010.

  10. Production of cytokine and chemokines by human mononuclear cells and whole blood cells after infection with Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    Karine Rezende-Oliveira

    2012-02-01

    Full Text Available INTRODUCTION: The innate immune response is the first mechanism of protection against Trypanosoma cruzi, and the interaction of inflammatory cells with parasite molecules may activate this response and modulate the adaptive immune system. This study aimed to analyze the levels of cytokines and chemokines synthesized by the whole blood cells (WBC and peripheral blood mononuclear cells (PBMC of individuals seronegative for Chagas disease after interaction with live T. cruzi trypomastigotes. METHODS: IL-12, IL-10, TNF-α, TGF-β, CCL-5, CCL-2, CCL-3, and CXCL-9 were measured by ELISA. Nitrite was determined by the Griess method. RESULTS: IL-10 was produced at high levels by WBC compared with PBMC, even after incubation with live trypomastigotes. Production of TNF-α by both PBMC and WBC was significantly higher after stimulation with trypomastigotes. Only PBMC produced significantly higher levels of IL-12 after parasite stimulation. Stimulation of cultures with trypomastigotes induced an increase of CXCL-9 levels produced by WBC. Nitrite levels produced by PBMC increased after the addition of parasites to the culture. CONCLUSIONS: Surface molecules of T. cruzi may induce the production of cytokines and chemokines by cells of the innate immune system through the activation of specific receptors not evaluated in this experiment. The ability to induce IL-12 and TNF-α contributes to shift the adaptive response towards a Th1 profile.

  11. Exploring the Trypanosoma brucei Hsp83 potential as a target for structure guided drug design.

    Directory of Open Access Journals (Sweden)

    Juan Carlos Pizarro

    Full Text Available Human African trypanosomiasis is a neglected parasitic disease that is fatal if untreated. The current drugs available to eliminate the causative agent Trypanosoma brucei have multiple liabilities, including toxicity, increasing problems due to treatment failure and limited efficacy. There are two approaches to discover novel antimicrobial drugs--whole-cell screening and target-based discovery. In the latter case, there is a need to identify and validate novel drug targets in Trypanosoma parasites. The heat shock proteins (Hsp, while best known as cancer targets with a number of drug candidates in clinical development, are a family of emerging targets for infectious diseases. In this paper, we report the exploration of T. brucei Hsp83--a homolog of human Hsp90--as a drug target using multiple biophysical and biochemical techniques. Our approach included the characterization of the chemical sensitivity of the parasitic chaperone against a library of known Hsp90 inhibitors by means of differential scanning fluorimetry (DSF. Several compounds identified by this screening procedure were further studied using isothermal titration calorimetry (ITC and X-ray crystallography, as well as tested in parasite growth inhibitions assays. These experiments led us to the identification of a benzamide derivative compound capable of interacting with TbHsp83 more strongly than with its human homologs and structural rationalization of this selectivity. The results highlight the opportunities created by subtle structural differences to develop new series of compounds to selectively target the Trypanosoma brucei chaperone and effectively kill the sleeping sickness parasite.

  12. Parasitic, fungal and prion zoonoses: an expanding universe of candidates for human disease.

    Science.gov (United States)

    Akritidis, N

    2011-03-01

    Zoonotic infections have emerged as a burden for millions of people in recent years, owing to re-emerging or novel pathogens often causing outbreaks in the developing world in the presence of inadequate public health infrastructure. Among zoonotic infections, those caused by parasitic pathogens are the ones that affect millions of humans worldwide, who are also at risk of developing chronic disease. The present review discusses the global effect of protozoan pathogens such as Leishmania sp., Trypanosoma sp., and Toxoplasma sp., as well as helminthic pathogens such as Echinococcus sp., Fasciola sp., and Trichinella sp. The zoonotic aspects of agents that are not essentially zoonotic are also discussed. The review further focuses on the zoonotic dynamics of fungal pathogens and prion diseases as observed in recent years, in an evolving environment in which novel patient target groups have developed for agents that were previously considered to be obscure or of minimal significance. © 2011 The Author. Clinical Microbiology and Infection © 2011 European Society of Clinical Microbiology and Infectious Diseases.

  13. Control of human parasitic diseases: Context and overview.

    Science.gov (United States)

    Molyneux, David H

    2006-01-01

    The control of parasitic diseases of humans has been undertaken since the aetiology and natural history of the infections was recognized and the deleterious effects on human health and well-being appreciated by policy makers, medical practitioners and public health specialists. However, while some parasitic infections such as malaria have proved difficult to control, as defined by a sustained reduction in incidence, others, particularly helminth infections can be effectively controlled. The different approaches to control from diagnosis, to treatment and cure of the clinically sick patient, to control the transmission within the community by preventative chemotherapy and vector control are outlined. The concepts of eradication, elimination and control are defined and examples of success summarized. Overviews of the health policy and financing environment in which programmes to control or eliminate parasitic diseases are positioned and the development of public-private partnerships as vehicles for product development or access to drugs for parasite disease control are discussed. Failure to sustain control of parasites may be due to development of drug resistance or the failure to implement proven strategies as a result of decreased resources within the health system, decentralization of health management through health-sector reform and the lack of financial and human resources in settings where per capita government expenditure on health may be less than $US 5 per year. However, success has been achieved in several large-scale programmes through sustained national government investment and/or committed donor support. It is also widely accepted that the level of investment in drug development for the parasitic diseases of poor populations is an unattractive option for pharmaceutical companies. The development of partnerships to specifically address this need provides some hope that the intractable problems of the treatment regimens for the trypanosomiases and

  14. A global comparison of the human and T. brucei degradomes gives insights about possible parasite drug targets.

    Directory of Open Access Journals (Sweden)

    Susan T Mashiyama

    Full Text Available We performed a genome-level computational study of sequence and structure similarity, the latter using crystal structures and models, of the proteases of Homo sapiens and the human parasite Trypanosoma brucei. Using sequence and structure similarity networks to summarize the results, we constructed global views that show visually the relative abundance and variety of proteases in the degradome landscapes of these two species, and provide insights into evolutionary relationships between proteases. The results also indicate how broadly these sequence sets are covered by three-dimensional structures. These views facilitate cross-species comparisons and offer clues for drug design from knowledge about the sequences and structures of potential drug targets and their homologs. Two protease groups ("M32" and "C51" that are very different in sequence from human proteases are examined in structural detail, illustrating the application of this global approach in mining new pathogen genomes for potential drug targets. Based on our analyses, a human ACE2 inhibitor was selected for experimental testing on one of these parasite proteases, TbM32, and was shown to inhibit it. These sequence and structure data, along with interactive versions of the protein similarity networks generated in this study, are available at http://babbittlab.ucsf.edu/resources.html.

  15. A global comparison of the human and T. brucei degradomes gives insights about possible parasite drug targets.

    Science.gov (United States)

    Mashiyama, Susan T; Koupparis, Kyriacos; Caffrey, Conor R; McKerrow, James H; Babbitt, Patricia C

    2012-01-01

    We performed a genome-level computational study of sequence and structure similarity, the latter using crystal structures and models, of the proteases of Homo sapiens and the human parasite Trypanosoma brucei. Using sequence and structure similarity networks to summarize the results, we constructed global views that show visually the relative abundance and variety of proteases in the degradome landscapes of these two species, and provide insights into evolutionary relationships between proteases. The results also indicate how broadly these sequence sets are covered by three-dimensional structures. These views facilitate cross-species comparisons and offer clues for drug design from knowledge about the sequences and structures of potential drug targets and their homologs. Two protease groups ("M32" and "C51") that are very different in sequence from human proteases are examined in structural detail, illustrating the application of this global approach in mining new pathogen genomes for potential drug targets. Based on our analyses, a human ACE2 inhibitor was selected for experimental testing on one of these parasite proteases, TbM32, and was shown to inhibit it. These sequence and structure data, along with interactive versions of the protein similarity networks generated in this study, are available at http://babbittlab.ucsf.edu/resources.html.

  16. Origin of the human malaria parasite Plasmodium falciparum in gorillas.

    Science.gov (United States)

    Liu, Weimin; Li, Yingying; Learn, Gerald H; Rudicell, Rebecca S; Robertson, Joel D; Keele, Brandon F; Ndjango, Jean-Bosco N; Sanz, Crickette M; Morgan, David B; Locatelli, Sabrina; Gonder, Mary K; Kranzusch, Philip J; Walsh, Peter D; Delaporte, Eric; Mpoudi-Ngole, Eitel; Georgiev, Alexander V; Muller, Martin N; Shaw, George M; Peeters, Martine; Sharp, Paul M; Rayner, Julian C; Hahn, Beatrice H

    2010-09-23

    Plasmodium falciparum is the most prevalent and lethal of the malaria parasites infecting humans, yet the origin and evolutionary history of this important pathogen remain controversial. Here we develop a single-genome amplification strategy to identify and characterize Plasmodium spp. DNA sequences in faecal samples from wild-living apes. Among nearly 3,000 specimens collected from field sites throughout central Africa, we found Plasmodium infection in chimpanzees (Pan troglodytes) and western gorillas (Gorilla gorilla), but not in eastern gorillas (Gorilla beringei) or bonobos (Pan paniscus). Ape plasmodial infections were highly prevalent, widely distributed and almost always made up of mixed parasite species. Analysis of more than 1,100 mitochondrial, apicoplast and nuclear gene sequences from chimpanzees and gorillas revealed that 99% grouped within one of six host-specific lineages representing distinct Plasmodium species within the subgenus Laverania. One of these from western gorillas comprised parasites that were nearly identical to P. falciparum. In phylogenetic analyses of full-length mitochondrial sequences, human P. falciparum formed a monophyletic lineage within the gorilla parasite radiation. These findings indicate that P. falciparum is of gorilla origin and not of chimpanzee, bonobo or ancient human origin.

  17. Targeting NAD+ metabolism in the human malaria parasite Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    Jessica K O'Hara

    Full Text Available Nicotinamide adenine dinucleotide (NAD+ is an essential metabolite utilized as a redox cofactor and enzyme substrate in numerous cellular processes. Elevated NAD+ levels have been observed in red blood cells infected with the malaria parasite Plasmodium falciparum, but little is known regarding how the parasite generates NAD+. Here, we employed a mass spectrometry-based metabolomic approach to confirm that P. falciparum lacks the ability to synthesize NAD+ de novo and is reliant on the uptake of exogenous niacin. We characterized several enzymes in the NAD+ pathway and demonstrate cytoplasmic localization for all except the parasite nicotinamidase, which concentrates in the nucleus. One of these enzymes, the P. falciparum nicotinate mononucleotide adenylyltransferase (PfNMNAT, is essential for NAD+ metabolism and is highly diverged from the human homolog, but genetically similar to bacterial NMNATs. Our results demonstrate the enzymatic activity of PfNMNAT in vitro and demonstrate its ability to genetically complement the closely related Escherichia coli NMNAT. Due to the similarity of PfNMNAT to the bacterial enzyme, we tested a panel of previously identified bacterial NMNAT inhibitors and synthesized and screened twenty new derivatives, which demonstrate a range of potency against live parasite culture. These results highlight the importance of the parasite NAD+ metabolic pathway and provide both novel therapeutic targets and promising lead antimalarial compounds.

  18. Detection of Trypanosoma brucei parasites in blood samples using real-time nucleic acid sequence-based amplification

    NARCIS (Netherlands)

    Mugasa, Claire M.; Schoone, Gerard J.; Ekangu, Rosine A.; Lubega, George W.; Kager, Piet A.; Schallig, Henk D. F. H.

    2008-01-01

    Currently, the conventional diagnosis of human African trypanosomiasis (HAT) is by microscopic demonstration of trypomastigotes in blood, lymph, and/or cerebrospinal fluid. However, microscopic diagnosis of HAT is not sensitive enough and may give false-negative results, thus, denying the patient

  19. Species-specific markers for the differential diagnosis of Trypanosoma cruzi and Trypanosoma rangeli and polymorphisms detection in Trypanosoma rangeli.

    Science.gov (United States)

    Ferreira, Keila Adriana Magalhães; Fajardo, Emanuella Francisco; Baptista, Rodrigo P; Macedo, Andrea Mara; Lages-Silva, Eliane; Ramírez, Luis Eduardo; Pedrosa, André Luiz

    2014-06-01

    Trypanosoma cruzi and Trypanosoma rangeli are kinetoplastid parasites which are able to infect humans in Central and South America. Misdiagnosis between these trypanosomes can be avoided by targeting barcoding sequences or genes of each organism. This work aims to analyze the feasibility of using species-specific markers for identification of intraspecific polymorphisms and as target for diagnostic methods by PCR. Accordingly, primers which are able to specifically detect T. cruzi or T. rangeli genomic DNA were characterized. The use of intergenic regions, generally divergent in the trypanosomatids, and the serine carboxypeptidase gene were successful. Using T. rangeli genomic sequences for the identification of group-specific polymorphisms and a polymorphic AT(n) dinucleotide repeat permitted the classification of the strains into two groups, which are entirely coincident with T. rangeli main lineages, KP1 (+) and KP1 (-), previously determined by kinetoplast DNA (kDNA) characterization. The sequences analyzed totalize 622 bp (382 bp represent a hypothetical protein sequence, and 240 bp represent an anonymous sequence), and of these, 581 (93.3%) are conserved sites and 41 bp (6.7%) are polymorphic, with 9 transitions (21.9%), 2 transversions (4.9%), and 30 (73.2%) insertion/deletion events. Taken together, the species-specific markers analyzed may be useful for the development of new strategies for the accurate diagnosis of infections. Furthermore, the identification of T. rangeli polymorphisms has a direct impact in the understanding of the population structure of this parasite.

  20. Early double-negative thymocyte export in Trypanosoma cruzi infection is restricted by sphingosine receptors and associated with human chagas disease.

    Directory of Open Access Journals (Sweden)

    Ailin Lepletier

    2014-10-01

    Full Text Available The protozoan parasite Trypanosoma cruzi is able to target the thymus and induce alterations of the thymic microenvironmental and lymphoid compartments. Acute infection results in severe atrophy of the organ and early release of immature thymocytes into the periphery. To date, the pathophysiological effects of thymic changes promoted by parasite-inducing premature release of thymocytes to the periphery has remained elusive. Herein, we show that sphingosine-1-phosphate (S1P, a potent mediator of T cell chemotaxis, plays a role in the exit of immature double-negative thymocytes in experimental Chagas disease. In thymuses from T. cruzi-infected mice we detected reduced transcription of the S1P kinase 1 and 2 genes related to S1P biosynthesis, together with increased transcription of the SGPL1 sphingosine-1-lyase gene, whose product inactivates S1P. These changes were associated with reduced intrathymic levels of S1P kinase activity. Interestingly, double-negative thymocytes from infected animals expressed high levels of the S1P receptor during infection, and migrated to lower levels of S1P. Moreover, during T. cruzi infection, this thymocyte subset expresses high levels of IL-17 and TNF-α cytokines upon polyclonal stimulation. In vivo treatment with the S1P receptor antagonist FTY720 resulted in recovery the numbers of double-negative thymocytes in infected thymuses to physiological levels. Finally, we showed increased numbers of double-negative T cells in the peripheral blood in severe cardiac forms of human Chagas disease.

  1. Cell surface proteome analysis of human-hosted Trypanosoma cruzi life stages

    DEFF Research Database (Denmark)

    Queiroz, Rayner M L; Charneau, Sébastien; Bastos, Izabela M D

    2014-01-01

    Chagas' disease is a neglected infectious illness, caused by the protozoan Trypanosoma cruzi. It remains a challenging health issue in Latin America, where it is endemic, and so far there is no immunoprophylatic vaccine or satisfactory chemotherapic treatment for its chronic stage. The present work...

  2. Analysis of the mitochondrial maxicircle of Trypanosoma lewisi, a neglected human pathogen

    Czech Academy of Sciences Publication Activity Database

    Lin, R.-H.; Lai, D.-H.; Zheng, L.-L.; Wu, J.; Lukeš, Julius; Hide, G.; Lun, Z.-R.

    2015-01-01

    Roč. 8, 30 December 2015 (2015), s. 665 ISSN 1756-3305 Institutional support: RVO:60077344 Keywords : Trypanosoma lewisi * Kinetoplast maxicircle * Mitochondrial DNA * RNA editing * Palindrome Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.234, year: 2015

  3. Current Perspectives of Telomerase Structure and Function in Eukaryotes with Emerging Views on Telomerase in Human Parasites.

    Science.gov (United States)

    Dey, Abhishek; Chakrabarti, Kausik

    2018-01-24

    Replicative capacity of a cell is strongly correlated with telomere length regulation. Aberrant lengthening or reduction in the length of telomeres can lead to health anomalies, such as cancer or premature aging. Telomerase is a master regulator for maintaining replicative potential in most eukaryotic cells. It does so by controlling telomere length at chromosome ends. Akin to cancer cells, most single-cell eukaryotic pathogens are highly proliferative and require persistent telomerase activity to maintain constant length of telomere and propagation within their host. Although telomerase is key to unlimited cellular proliferation in both cases, not much was known about the role of telomerase in human parasites (malaria, Trypanosoma , etc.) until recently. Since telomerase regulation is mediated via its own structural components, interactions with catalytic reverse transcriptase and several factors that can recruit and assemble telomerase to telomeres in a cell cycle-dependent manner, we compare and discuss here recent findings in telomerase biology in cancer, aging and parasitic diseases to give a broader perspective of telomerase function in human diseases.

  4. The origins of human parasites: Exploring the evidence for endoparasitism throughout human evolution.

    Science.gov (United States)

    Mitchell, Piers D

    2013-09-01

    It is important to determine the origins of human parasites if we are to understand the health of past populations and the effects of parasitism upon human evolution. It also helps us to understand emerging infectious diseases and the modern clinical epidemiology of parasites. This study aims to distinguish those heirloom parasites that have infected humans and their ancestors throughout their evolution in Africa from those recent souvenir species to which humans have only become exposed following contact with animals during their migration across the globe. Ten such heirloom parasites are proposed, which appear to have been spread across the globe. Six further heirlooms are noted to have limited spread due to the constraints of their life cycle. Twelve souvenir parasites of humans are described, along with their animal reservoirs. While the origins of 28 species of endoparasite have been determined, many more species require further assessment once a more systematic analysis of ancient parasites in other regions of Africa has been undertaken. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Food-borne human parasitic pathogens associated with household cockroaches and houseflies in Nigeria

    Directory of Open Access Journals (Sweden)

    Oyetunde T. Oyeyemi

    2016-03-01

    Full Text Available Cockroaches and houseflies pose significant public health threat owning to their ability to mechanically transmit human intestinal parasites and other disease-causing microorganisms. This study aims at assessing the vectoral capacity of cockroaches and houseflies in the transmission of human intestinal parasites. Intestinal parasite external surface contamination of 130 cockroaches and 150 houseflies caught within dwelling places in Ilishan-Remo town, Ogun State, Nigeria was determined. Cockroaches (six parasite species were more contaminated than houseflies (four parasite species. The most prevalent parasites were Trichuris trichiura (74.0% and hookworm (63.0% in houseflies and cockroaches respectively. There were significant differences in the prevalence of hookworm, T. trichiura and Taenia spp. isolated from cockroaches and houseflies (P < 0.05. There is high contamination of human intestinal parasites in cockroaches and houseflies in human dwelling places in the study area, thus they have the ability to transmit these parasites to unkempt food materials.

  6. Induction of IL-12 Production in Human Peripheral Monocytes by Trypanosoma cruzi Is Mediated by Glycosylphosphatidylinositol-Anchored Mucin-Like Glycoproteins and Potentiated by IFN-γ and CD40-CD40L Interactions

    Directory of Open Access Journals (Sweden)

    Lúcia Cristina Jamli Abel

    2014-01-01

    Full Text Available Chagas disease, caused by the protozoan parasite Trypanosoma cruzi (T. cruzi, is characterized by immunopathology driven by IFN-γ secreting Th1-like T cells. T. cruzi has a thick coat of mucin-like glycoproteins covering its surface, which plays an important role in parasite invasion and host immunomodulation. It has been extensively described that T. cruzi or its products—like GPI anchors isolated from GPI-anchored mucins from the trypomastigote life cycle stage (tGPI-mucins—are potent inducers of proinflammatory responses (i.e., cytokines and NO production by IFN-γ primed murine macrophages. However, little is known about whether T. cruzi or GPI-mucins exert a similar action in human cells. We therefore decided to further investigate the in vitro cytokine production profile from human mononuclear cells from uninfected donors exposed to T. cruzi as well as tGPI-mucins. We observed that both living T. cruzi trypomastigotes and tGPI-mucins are potent inducers of IL-12 by human peripheral blood monocytes and this effect depends on CD40-CD40L interaction and IFN-γ. Our findings suggest that the polarized T1-type cytokine profile seen in T. cruzi infected patients might be a long-term effect of IL-12 production induced by lifelong exposure to T. cruzi tGPI-mucins.

  7. Heritability of the human infectious reservoir of malaria parasites.

    Directory of Open Access Journals (Sweden)

    Yaye Ramatoulaye Lawaly

    Full Text Available BACKGROUND: Studies on human genetic factors associated with malaria have hitherto concentrated on their role in susceptibility to and protection from disease. In contrast, virtually no attention has been paid to the role of human genetics in eliciting the production of parasite transmission stages, the gametocytes, and thus enhancing the spread of disease. METHODS AND FINDINGS: We analysed four longitudinal family-based cohort studies from Senegal and Thailand followed for 2-8 years and evaluated the relative impact of the human genetic and non-genetic factors on gametocyte production in infections of Plasmodium falciparum or P. vivax. Prevalence and density of gametocyte carriage were evaluated in asymptomatic and symptomatic infections by examination of Giemsa-stained blood smears and/or RT-PCR (for falciparum in one site. A significant human genetic contribution was found to be associated with gametocyte prevalence in asymptomatic P. falciparum infections. By contrast, there was no heritability associated with the production of gametocytes for P. falciparum or P. vivax symptomatic infections. Sickle cell mutation, HbS, was associated with increased gametocyte prevalence but its contribution was small. CONCLUSIONS: The existence of a significant human genetic contribution to gametocyte prevalence in asymptomatic infections suggests that candidate gene and genome wide association approaches may be usefully applied to explore the underlying human genetics. Prospective epidemiological studies will provide an opportunity to generate novel and perhaps more epidemiologically pertinent gametocyte data with which similar analyses can be performed and the role of human genetics in parasite transmission ascertained.

  8. Trypanosoma brucei TbIF1 inhibits the essential Finf1/inf-ATPase in the infectious form of the parasite

    Czech Academy of Sciences Publication Activity Database

    Panicucci, Brian; Gahura, Ondřej; Zíková, Alena

    2017-01-01

    Roč. 11, č. 4 (2017), č. článku e0005552. ISSN 1935-2735 R&D Projects: GA MŠk(CZ) EE2.3.30.0032; GA ČR GA17-22248S; GA MŠk LL1205 Institutional support: RVO:60077344 Keywords : mt * TblF1 * Trypanosoma brucei Subject RIV: EE - Microbiology, Virology OBOR OECD: Infectious Diseases Impact factor: 3.834, year: 2016

  9. Proteomics of Trypanosoma evansi infection in rodents.

    Science.gov (United States)

    Roy, Nainita; Nageshan, Rishi Kumar; Pallavi, Rani; Chakravarthy, Harshini; Chandran, Syama; Kumar, Rajender; Gupta, Ashok Kumar; Singh, Raj Kumar; Yadav, Suresh Chandra; Tatu, Utpal

    2010-03-22

    Trypanosoma evansi infections, commonly called 'surra', cause significant economic losses to livestock industry. While this infection is mainly restricted to large animals such as camels, donkeys and equines, recent reports indicate their ability to infect humans. There are no World Animal Health Organization (WAHO) prescribed diagnostic tests or vaccines available against this disease and the available drugs show significant toxicity. There is an urgent need to develop improved methods of diagnosis and control measures for this disease. Unlike its related human parasites T. brucei and T. cruzi whose genomes have been fully sequenced T. evansi genome sequence remains unavailable and very little efforts are being made to develop improved methods of prevention, diagnosis and treatment. With a view to identify potential diagnostic markers and drug targets we have studied the clinical proteome of T. evansi infection using mass spectrometry (MS). Using shot-gun proteomic approach involving nano-lc Quadrupole Time Of Flight (QTOF) mass spectrometry we have identified over 160 proteins expressed by T. evansi in mice infected with camel isolate. Homology driven searches for protein identification from MS/MS data led to most of the matches arising from related Trypanosoma species. Proteins identified belonged to various functional categories including metabolic enzymes; DNA metabolism; transcription; translation as well as cell-cell communication and signal transduction. TCA cycle enzymes were strikingly missing, possibly suggesting their low abundances. The clinical proteome revealed the presence of known and potential drug targets such as oligopeptidases, kinases, cysteine proteases and more. Previous proteomic studies on Trypanosomal infections, including human parasites T. brucei and T. cruzi, have been carried out from lab grown cultures. For T. evansi infection this is indeed the first ever proteomic study reported thus far. In addition to providing a glimpse into the

  10. Proteomics of Trypanosoma evansi infection in rodents.

    Directory of Open Access Journals (Sweden)

    Nainita Roy

    2010-03-01

    Full Text Available Trypanosoma evansi infections, commonly called 'surra', cause significant economic losses to livestock industry. While this infection is mainly restricted to large animals such as camels, donkeys and equines, recent reports indicate their ability to infect humans. There are no World Animal Health Organization (WAHO prescribed diagnostic tests or vaccines available against this disease and the available drugs show significant toxicity. There is an urgent need to develop improved methods of diagnosis and control measures for this disease. Unlike its related human parasites T. brucei and T. cruzi whose genomes have been fully sequenced T. evansi genome sequence remains unavailable and very little efforts are being made to develop improved methods of prevention, diagnosis and treatment. With a view to identify potential diagnostic markers and drug targets we have studied the clinical proteome of T. evansi infection using mass spectrometry (MS.Using shot-gun proteomic approach involving nano-lc Quadrupole Time Of Flight (QTOF mass spectrometry we have identified over 160 proteins expressed by T. evansi in mice infected with camel isolate. Homology driven searches for protein identification from MS/MS data led to most of the matches arising from related Trypanosoma species. Proteins identified belonged to various functional categories including metabolic enzymes; DNA metabolism; transcription; translation as well as cell-cell communication and signal transduction. TCA cycle enzymes were strikingly missing, possibly suggesting their low abundances. The clinical proteome revealed the presence of known and potential drug targets such as oligopeptidases, kinases, cysteine proteases and more.Previous proteomic studies on Trypanosomal infections, including human parasites T. brucei and T. cruzi, have been carried out from lab grown cultures. For T. evansi infection this is indeed the first ever proteomic study reported thus far. In addition to providing a

  11. Quantitative Proteomic and Phosphoproteomic Analysis of Trypanosoma cruzi Amastigogenesis

    DEFF Research Database (Denmark)

    Queiroz, Rayner M L; Charneau, Sebastien; Mandacaru, Samuel C

    2014-01-01

    Chagas disease is a tropical neglected disease endemic in Latin America and it is caused by the protozoan Trypanosoma cruzi. The parasite has four major life stages: epimastigote, metacyclic trypomastigote, bloodstream trypomastigote and amastigote. The differentiation from infective trypomastigo......Chagas disease is a tropical neglected disease endemic in Latin America and it is caused by the protozoan Trypanosoma cruzi. The parasite has four major life stages: epimastigote, metacyclic trypomastigote, bloodstream trypomastigote and amastigote. The differentiation from infective...

  12. Trypanosoma cruzi strains isolated from human, vector, and animal reservoir in the same endemic region in Mexico and typed as T. cruzi I, discrete typing unit 1 exhibit considerable biological diversity

    Directory of Open Access Journals (Sweden)

    María del Carmen Sánchez-Guillén

    2006-09-01

    Full Text Available In this study, three strains of Trypanosoma cruzi were isolated at the same time and in the same endemic region in Mexico from a human patient with chronic chagasic cardiomyopathy (RyC-H; vector (Triatoma barberi (RyC-V; and rodent reservoir (Peromyscus peromyscus (RyC-R. The three strains were characterized by multilocus enzyme electrophoresis, random amplified polymorphic DNA, and by pathological profiles in experimental animals (biodemes. Based on the analysis of genetic markers the three parasite strains were typed as belonging to T. cruzi I major group, discrete typing unit 1. The pathological profile of RyC-H and RyC-V strains indicated medium virulence and low mortality and, accordingly, the strains should be considered as belonging to biodeme Type III. On the other hand, the parasites from RyC-R strain induced more severe inflammatory processes and high mortality (> 40% and were considered as belonging to biodeme Type II. The relationship between genotypes and biological characteristics in T. cruzi strains is still debated and not clearly understood. An expert committee recommended in 1999 that Biodeme Type III would correspond to T. cruzi I group, whereas Biodeme Type II, to T. cruzi II group. Our findings suggest that, at least for Mexican isolates, this correlation does not stand and that biological characteristics such as pathogenicity and virulence could be determined by factors different from those identified in the genotypic characterization

  13. Anthropogenics: Human influence on global and genetic homogenization of parasite populations

    Science.gov (United States)

    The distribution, abundance, and diversity of life on Earth have been greatly shaped by human activities. This is no truer than in the geographic expansion of parasites; however, measuring the extent to which humans have influenced the dissemination and population structure of parasites has been cha...

  14. Targeting the HSP60/10 chaperonin systems of Trypanosoma brucei as a strategy for treating African sleeping sickness.

    Science.gov (United States)

    Abdeen, Sanofar; Salim, Nilshad; Mammadova, Najiba; Summers, Corey M; Goldsmith-Pestana, Karen; McMahon-Pratt, Diane; Schultz, Peter G; Horwich, Arthur L; Chapman, Eli; Johnson, Steven M

    2016-11-01

    Trypanosoma brucei are protozoan parasites that cause African sleeping sickness in humans (also known as Human African Trypanosomiasis-HAT). Without treatment, T. brucei infections are fatal. There is an urgent need for new therapeutic strategies as current drugs are toxic, have complex treatment regimens, and are becoming less effective owing to rising antibiotic resistance in parasites. We hypothesize that targeting the HSP60/10 chaperonin systems in T. brucei is a viable anti-trypanosomal strategy as parasites rely on these stress response elements for their development and survival. We recently discovered several hundred inhibitors of the prototypical HSP60/10 chaperonin system from Escherichia coli, termed GroEL/ES. One of the most potent GroEL/ES inhibitors we discovered was compound 1. While examining the PubChem database, we found that a related analog, 2e-p, exhibited cytotoxicity to Leishmania major promastigotes, which are trypanosomatids highly related to Trypanosoma brucei. Through initial counter-screening, we found that compounds 1 and 2e-p were also cytotoxic to Trypanosoma brucei parasites (EC 50 =7.9 and 3.1μM, respectively). These encouraging initial results prompted us to develop a library of inhibitor analogs and examine their anti-parasitic potential in vitro. Of the 49 new chaperonin inhibitors developed, 39% exhibit greater cytotoxicity to T. brucei parasites than parent compound 1. While many analogs exhibit moderate cytotoxicity to human liver and kidney cells, we identified molecular substructures to pursue for further medicinal chemistry optimization to increase the therapeutic windows of this novel class of chaperonin-targeting anti-parasitic candidates. An intriguing finding from this study is that suramin, the first-line drug for treating early stage T. brucei infections, is also a potent inhibitor of GroEL/ES and HSP60/10 chaperonin systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Mitosis in the Human Malaria Parasite Plasmodium falciparum ▿

    OpenAIRE

    Gerald, Noel; Mahajan, Babita; Kumar, Sanjai

    2011-01-01

    Malaria is caused by intraerythrocytic protozoan parasites belonging to Plasmodium spp. (phylum Apicomplexa) that produce significant morbidity and mortality, mostly in developing countries. Plasmodium parasites have a complex life cycle that includes multiple stages in anopheline mosquito vectors and vertebrate hosts. During the life cycle, the parasites undergo several cycles of extreme population growth within a brief span, and this is critical for their continued transmission and a contri...

  16. Parasites of wild animals as a potential source of hazard to humans.

    Science.gov (United States)

    Gałęcki, Remigiusz; Sokół, Rajmund; Koziatek, Sylwia

    2015-01-01

    The decline in wild animal habitats and the uncontrolled growth of their population make these animals come closer to human settlements. The aim of the study was to identify parasitic infections in wild animals in the selected area, and to specify the hazards they create for humans. In more than 66% of the analysed faecal samples from wild boar, hares, roe deer, deer and fallow deer various developmental forms of parasites were found. These included parasites dangerous for humans: Toxocara canis, Capillaria hepatica, Capillaria bovis, Trichuris suis, Trichuris ovis, Trichuris globulosus, Eimeria spp., and Trichostongylus spp. It is necessary to monitor parasitic diseases in wild animals as they can lead to the spread of parasites creating a hazard to humans, pets and livestock.

  17. 4-aminopyridyl-based lead compounds targeting CYP51 prevent spontaneous parasite relapse in a chronic model and improve cardiac pathology in an acute model of Trypanosoma cruzi infection.

    Science.gov (United States)

    Calvet, Claudia Magalhaes; Choi, Jun Yong; Thomas, Diane; Suzuki, Brian; Hirata, Ken; Lostracco-Johnson, Sharon; de Mesquita, Liliane Batista; Nogueira, Alanderson; Meuser-Batista, Marcelo; Silva, Tatiana Araujo; Siqueira-Neto, Jair Lage; Roush, William R; de Souza Pereira, Mirian Claudia; McKerrow, James H; Podust, Larissa M

    2017-12-01

    Chagas disease, caused by the protozoan Trypanosoma cruzi, is the leading cause of heart failure in Latin America. The clinical treatment of Chagas disease is limited to two 60 year-old drugs, nifurtimox and benznidazole, that have variable efficacy against different strains of the parasite and may lead to severe side effects. CYP51 is an enzyme in the sterol biosynthesis pathway that has been exploited for the development of therapeutics for fungal and parasitic infections. In a target-based drug discovery program guided by x-ray crystallography, we identified the 4-aminopyridyl-based series of CYP51 inhibitors as being efficacious versus T.cruzi in vitro; two of the most potent leads, 9 and 12, have now been evaluated for toxicity and efficacy in mice. Both acute and chronic animal models infected with wild type or transgenic T. cruzi strains were evaluated. There was no evidence of toxicity in the 28-day dosing study of uninfected animals, as judged by the monitoring of multiple serum and histological parameters. In two acute models of Chagas disease, 9 and 12 drastically reduced parasitemia, increased survival of mice, and prevented liver and heart injury. None of the compounds produced long term sterile cure. In the less severe acute model using the transgenic CL-Brenner strain of T.cruzi, parasitemia relapsed upon drug withdrawal. In the chronic model, parasitemia fell to a background level and, as evidenced by the bioluminescence detection of T. cruzi expressing the red-shifted luciferase marker, mice remained negative for 4 weeks after drug withdrawal. Two immunosuppression cycles with cyclophosphamide were required to re-activate the parasites. Although no sterile cure was achieved, the suppression of parasitemia in acutely infected mice resulted in drastically reduced inflammation in the heart. The positive outcomes achieved in the absence of sterile cure suggest that the target product profile in anti-Chagasic drug discovery should be revised in favor of

  18. Tulbaghia violacea and Allium ursinum Extracts Exhibit Anti-Parasitic and Antimicrobial Activities.

    Science.gov (United States)

    Krstin, Sonja; Sobeh, Mansour; Braun, Markus Santhosh; Wink, Michael

    2018-02-02

    Garlic has played an important role in culinary arts and remedies in the traditional medicine throughout human history. Parasitic infections represent a burden in the society of especially poor countries, causing more than 1 billion infections every year and leading to around one million deaths. In this study, we investigated the mode of anti-parasitic activity of "wild garlics" Tulbaghia violacea and Allium ursinum dichloromethane extracts against parasites Trypanosoma brucei brucei and Leishmania tarentolae with regard to their already known antimicrobial activity. We also evaluated their cytotoxic potential against human cells. Both extracts showed a relevant trypanocidal and leishmanicidal activity, although L. tarentolae was less sensitive. We determined that the probable mode of action of both extracts is the irreversible inhibition of the activity of Trypanosoma brucei trypanothione reductase enzyme. The extracts showed a mild cytotoxic activity against human keratinocytes. They also exhibited weak-in most cases comparable-antibacterial and antifungal activity. HPLC-MS/MS analysis showed that both extracts are abundant in sulfur compounds. Thus, for the first time, the ability of Allium ursinum and Tulbaghia violacea to kill Trypanosoma sp. and Leishmania sp. parasites, probably by binding to and inactivating sulfur-containing compounds essential for the survival of the parasite, is shown.

  19. Tulbaghia violacea and Allium ursinum Extracts Exhibit Anti-Parasitic and Antimicrobial Activities

    Directory of Open Access Journals (Sweden)

    Sonja Krstin

    2018-02-01

    Full Text Available Garlic has played an important role in culinary arts and remedies in the traditional medicine throughout human history. Parasitic infections represent a burden in the society of especially poor countries, causing more than 1 billion infections every year and leading to around one million deaths. In this study, we investigated the mode of anti-parasitic activity of “wild garlics” Tulbaghia violacea and Allium ursinum dichloromethane extracts against parasites Trypanosoma brucei brucei and Leishmania tarentolae with regard to their already known antimicrobial activity. We also evaluated their cytotoxic potential against human cells. Both extracts showed a relevant trypanocidal and leishmanicidal activity, although L. tarentolae was less sensitive. We determined that the probable mode of action of both extracts is the irreversible inhibition of the activity of Trypanosoma brucei trypanothione reductase enzyme. The extracts showed a mild cytotoxic activity against human keratinocytes. They also exhibited weak—in most cases comparable—antibacterial and antifungal activity. HPLC-MS/MS analysis showed that both extracts are abundant in sulfur compounds. Thus, for the first time, the ability of Allium ursinum and Tulbaghia violacea to kill Trypanosoma sp. and Leishmania sp. parasites, probably by binding to and inactivating sulfur-containing compounds essential for the survival of the parasite, is shown.

  20. Efeito protetor do benznidazol contra a reativação parasitária em pacientes cronicamente infectados pelo Trypanosoma cruzi e tratados com corticóide em virtude de afecções associadas

    Directory of Open Access Journals (Sweden)

    Rassi Anis

    1999-01-01

    Full Text Available Pacientes na fase crônica da doença de Chagas foram tratados com corticóide em virtude de afecções associadas e, a fim de tentar coibir reativação da infecção pelo Trypanosoma cruzi, houve administração do benznidazol, iniciada concomitantemente em um grupo de 12 pacientes, ou 15 dias após o começo do uso daquele medicamento em outro grupo de 6. Levando em conta o verificado em pesquisa anterior, quando corticóide de fato promoveu aumento da parasitemia, como ainda valorizando os resultados de xenodiagnóstico, pôde ser notado que o benznidazol mostrou-se apto a evitar a citada acentuação parasitária, podendo tal constatação ser útil em procedimentos assistenciais, quando estiverem presentes doença de Chagas e imunodepressão.

  1. HOW HUMAN HISTORY HAS INFLUENCED GEOGRAPHY AND GENETICS OF PARASITE POPULATIONS

    Science.gov (United States)

    Human beings have radically altered agricultural landscapes, establishing a limited repertoire of plants and animals over vast expanses. Here, I consider what impact such a history may have had on the distribution and diversity of animal parasite, hypothesizing that certain parasites may have been '...

  2. The flagellum of Trypanosoma brucei: new tricks from an old dog

    Science.gov (United States)

    Ralston, Katherine S.; Hill, Kent L.

    2010-01-01

    African trypanosomes, i.e. Trypanosoma brucei and related sub-species, are devastating human and animal pathogens that cause significant human mortality and limit sustained economic development in sub-Saharan Africa. Trypanosoma brucei is a highly motile protozoan parasite and coordinated motility is central to both disease pathogenesis in the mammalian host and parasite development in the tsetse fly vector. Since motility is critical for parasite development and pathogenesis, understanding unique aspects of the T. brucei flagellum may uncover novel targets for therapeutic intervention in African sleeping sickness. Moreover, studies of conserved features of the T. brucei flagellum are directly relevant to understanding fundamental aspects of flagellum and cilium function in other eukaryotes, making T. brucei an important model system. The T. brucei flagellum contains a canonical 9 + 2 axoneme, together with additional features that are unique to kinetoplastids and a few closely-related organisms. Until recently, much of our knowledge of the structure and function of the trypanosome flagellum was based on analogy and inference from other organisms. There has been an explosion in functional studies in T. brucei in recent years, revealing conserved as well as novel and unexpected structural and functional features of the flagellum. Most notably, the flagellum has been found to be an essential organelle, with critical roles in parasite motility, morphogenesis, cell division and immune evasion. This review highlights recent discoveries on the T. brucei flagellum. PMID:18472102

  3. Molecular epidemiology of Trypanosoma cruzi and Triatoma dimidiata in costal Ecuador.

    Science.gov (United States)

    Wong, Yim Yan; Sornosa Macias, Karen Jeniffer; Guale Martínez, Doris; Solorzano, Luis F; Ramirez-Sierra, Maria Jesus; Herrera, Claudia; Dumonteil, Eric

    2016-07-01

    Chagas disease is a neglected tropical disease caused by the protozoan parasite Trypanosoma cruzi. In Ecuador, Triatoma dimidiata and Rhodnius ecuadoriensis are the main vector species, responsible for over half of the cases of T. cruzi infection in the country. T. dimidiata is believed to have been introduced in Ecuador during colonial times, and its elimination from the country is thus believed to be feasible. We investigated here the molecular ecology of T. dimidiata and T. cruzi in costal Ecuador to further guide control efforts. Analysis of the Internal Transcribed Spacer 2 (ITS-2) of 23 specimens from Progreso, Guayas, unambiguously supported the likely importation of T. dimidiata from Central America to Ecuador. The observation of a very high parasite infection rate (54%) and frequent feeding on humans (3/5) confirmed a continued risk of transmission to humans. All genotyped parasites corresponded to TcI DTU and Trypanosoma rangeli was not detected in T. dimidiata. TcI subgroups corresponded to TcIa (25%), and mixed infections with TcIa and TcId (75%). Further studies should help clarify T. cruzi genetic structure in the country, and the possible impact of the introduction of T. dimidiata on the circulating parasite strains. The elevated risk posed by this species warrants continuing efforts for its control, but its apparent mobility between peridomestic and domestic habitats may favor reinfestation following insecticide spraying. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Comparative analysis of the kinomes of three pathogenic trypanosomatids: Leishmania major, Trypanosoma brucei and Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    Ward Pauline N

    2005-09-01

    Full Text Available Abstract Background The trypanosomatids Leishmania major, Trypanosoma brucei and Trypanosoma cruzi cause some of the most debilitating diseases of humankind: cutaneous leishmaniasis, African sleeping sickness, and Chagas disease. These protozoa possess complex life cycles that involve development in mammalian and insect hosts, and a tightly coordinated cell cycle ensures propagation of the highly polarized cells. However, the ways in which the parasites respond to their environment and coordinate intracellular processes are poorly understood. As a part of an effort to understand parasite signaling functions, we report the results of a genome-wide analysis of protein kinases (PKs of these three trypanosomatids. Results Bioinformatic searches of the trypanosomatid genomes for eukaryotic PKs (ePKs and atypical PKs (aPKs revealed a total of 176 PKs in T. brucei, 190 in T. cruzi and 199 in L. major, most of which are orthologous across the three species. This is approximately 30% of the number in the human host and double that of the malaria parasite, Plasmodium falciparum. The representation of various groups of ePKs differs significantly as compared to humans: trypanosomatids lack receptor-linked tyrosine and tyrosine kinase-like kinases, although they do possess dual-specificity kinases. A relative expansion of the CMGC, STE and NEK groups has occurred. A large number of unique ePKs show no strong affinity to any known group. The trypanosomatids possess few ePKs with predicted transmembrane domains, suggesting that receptor ePKs are rare. Accessory Pfam domains, which are frequently present in human ePKs, are uncommon in trypanosomatid ePKs. Conclusion Trypanosomatids possess a large set of PKs, comprising approximately 2% of each genome, suggesting a key role for phosphorylation in parasite biology. Whilst it was possible to place most of the trypanosomatid ePKs into the seven established groups using bioinformatic analyses, it has not been

  5. Mechanisms of cellular invasion by intracellular parasites.

    Science.gov (United States)

    Walker, Dawn M; Oghumu, Steve; Gupta, Gaurav; McGwire, Bradford S; Drew, Mark E; Satoskar, Abhay R

    2014-04-01

    Numerous disease-causing parasites must invade host cells in order to prosper. Collectively, such pathogens are responsible for a staggering amount of human sickness and death throughout the world. Leishmaniasis, Chagas disease, toxoplasmosis, and malaria are neglected diseases and therefore are linked to socio-economical and geographical factors, affecting well-over half the world's population. Such obligate intracellular parasites have co-evolved with humans to establish a complexity of specific molecular parasite-host cell interactions, forming the basis of the parasite's cellular tropism. They make use of such interactions to invade host cells as a means to migrate through various tissues, to evade the host immune system, and to undergo intracellular replication. These cellular migration and invasion events are absolutely essential for the completion of the lifecycles of these parasites and lead to their for disease pathogenesis. This review is an overview of the molecular mechanisms of protozoan parasite invasion of host cells and discussion of therapeutic strategies, which could be developed by targeting these invasion pathways. Specifically, we focus on four species of protozoan parasites Leishmania, Trypanosoma cruzi, Plasmodium, and Toxoplasma, which are responsible for significant morbidity and mortality.

  6. Blood parasites in reptiles imported to Germany.

    Science.gov (United States)

    Halla, Ursula; Ursula, Halla; Korbel, Rüdiger; Rüdiger, Korbel; Mutschmann, Frank; Frank, Mutschmann; Rinder, Monika; Monika, Rinder

    2014-12-01

    Though international trade is increasing, the significance of imported reptiles as carriers of pathogens with relevance to animal and human health is largely unknown. Reptiles imported to Germany were therefore investigated for blood parasites using light microscopy, and the detected parasites were morphologically characterized. Four hundred ten reptiles belonging to 17 species originating from 11 Asian, South American and African countries were included. Parasites were detected in 117 (29%) of individual reptiles and in 12 species. Haemococcidea (Haemogregarina, Hepatozoon, Schellackia) were found in 84% of snakes (Python regius, Corallus caninus), 20% of lizards (Acanthocercus atricollis, Agama agama, Kinyongia fischeri, Gekko gecko) and 50% of turtles (Pelusios castaneus). Infections with Hematozoea (Plasmodium, Sauroplasma) were detected in 14% of lizards (Acanthocercus atricollis, Agama agama, Agama mwanzae, K. fischeri, Furcifer pardalis, Xenagama batillifera, Acanthosaura capra, Physignathus cocincinus), while those with Kinetoplastea (Trypanosoma) were found in 9% of snakes (Python regius, Corallus caninus) and 25 % of lizards (K. fischeri, Acanthosaura capra, G. gecko). Nematoda including filarial larvae parasitized in 10% of lizards (Agama agama, Agama mwanzae, K. fischeri, Fu. pardalis, Physignathus cocincinus). Light microscopy mostly allowed diagnosis of the parasites' genus, while species identification was not possible because of limited morphological characteristics available for parasitic developmental stages. The investigation revealed a high percentage of imported reptiles being carriers of parasites while possible vectors and pathogenicity are largely unknown so far. The spreading of haemoparasites thus represents an incalculable risk for pet reptiles, native herpetofauna and even human beings.

  7. Anthropogenics: human influence on global and genetic homogenization of parasite populations.

    Science.gov (United States)

    Zarlenga, Dante S; Hoberg, Eric; Rosenthal, Benjamin; Mattiucci, Simonetta; Nascetti, Giuseppe

    2014-12-01

    The distribution, abundance, and diversity of life on Earth have been greatly shaped by human activities. This includes the geographic expansion of parasites; however, measuring the extent to which humans have influenced the dissemination and population structure of parasites has been challenging. In-depth comparisons among parasite populations extending to landscape-level processes affecting disease emergence have remained elusive. New research methods have enhanced our capacity to discern human impact, where the tools of population genetics and molecular epidemiology have begun to shed light on our historical and ongoing influence. Only since the 1990s have parasitologists coupled morphological diagnosis, long considered the basis of surveillance and biodiversity studies, with state-of-the-art tools enabling variation to be examined among, and within, parasite populations. Prior to this time, populations were characterized only by phenotypic attributes such as virulence, infectivity, host range, and geographical location. The advent of genetic/molecular methodologies (multilocus allozyme electrophoresis, polymerase chain reaction-DNA [PCR-DNA] fragments analysis, DNA sequencing, DNA microsatellites, single nucleotide polymorphisms, etc.) have transformed our abilities to reveal variation among, and within, populations at local, regional, landscape, and global scales, and thereby enhanced our understanding of the biosphere. Numerous factors can affect population structure among parasites, e.g., evolutionary and ecological history, mode of reproduction and transmission, host dispersal, and life-cycle complexity. Although such influences can vary considerably among parasite taxa, anthropogenic factors are demonstrably perturbing parasite fauna. Minimal genetic structure among many geographically distinct (isolated) populations is a hallmark of human activity, hastened by geographic introductions, environmental perturbation, and global warming. Accelerating

  8. Gastrointestinal parasites of canids, a latent risk to human health in Tunisia.

    Science.gov (United States)

    Oudni-M'rad, Myriam; Chaâbane-Banaoues, Raja; M'rad, Selim; Trifa, Fatma; Mezhoud, Habib; Babba, Hamouda

    2017-06-05

    Although data on the parasite environmental contamination are crucial to implement strategies for control and treatment, information about zoonotic helminths is very limited in Tunisia. Contamination of areas with canid faeces harboring infective parasite elements represents a relevant health-risk impact for humans. The aim of this study was to assess the environmental contamination with eggs and oocysts of gastrointestinal parasites of dogs and wild canids in Tunisia with special attention to those that can be transmitted to humans. One thousand two hundred and seventy faecal samples from stray dogs and 104 from wild canids (red foxes and golden jackals) were collected from different geographical regions throughout Tunisia. The helminth eggs and protozoan oocysts were concentrated by sucrose flotation and identified by microscopic examination. The most frequently observed parasites in dog samples were Toxocara spp. (27.2%), E. granulosus (25.8%), and Coccidia (13.1%). For wild canid faeces, the most commonly encountered parasites were Toxocara spp. (16.3%) followed by Capillaria spp. (9.6%). The parasite contamination of dog faeces varied significantly from one region to another in function of the climate. To our knowledge, the study highlights for the first time in Tunisia a serious environmental contamination by numerous parasitic stages infective to humans. Efforts should be made to increase the awareness of the contamination risk of such parasites in the environment and implement a targeted educational program.

  9. DNA content analysis allows discrimination between Trypanosoma cruzi and Trypanosoma rangeli.

    Science.gov (United States)

    Naves, Lucila Langoni; da Silva, Marcos Vinícius; Fajardo, Emanuella Francisco; da Silva, Raíssa Bernardes; De Vito, Fernanda Bernadelli; Rodrigues, Virmondes; Lages-Silva, Eliane; Ramírez, Luis Eduardo; Pedrosa, André Luiz

    2017-01-01

    Trypanosoma cruzi, a human protozoan parasite, is the causative agent of Chagas disease. Currently the species is divided into six taxonomic groups. The genome of the CL Brener clone has been estimated to be 106.4-110.7 Mb, and DNA content analyses revealed that it is a diploid hybrid clone. Trypanosoma rangeli is a hemoflagellate that has the same reservoirs and vectors as T. cruzi; however, it is non-pathogenic to vertebrate hosts. The haploid genome of T. rangeli was previously estimated to be 24 Mb. The parasitic strains of T. rangeli are divided into KP1(+) and KP1(-). Thus, the objective of this study was to investigate the DNA content in different strains of T. cruzi and T. rangeli by flow cytometry. All T. cruzi and T. rangeli strains yielded cell cycle profiles with clearly identifiable G1-0 (2n) and G2-M (4n) peaks. T. cruzi and T. rangeli genome sizes were estimated using the clone CL Brener and the Leishmania major CC1 as reference cell lines because their genome sequences have been previously determined. The DNA content of T. cruzi strains ranged from 87,41 to 108,16 Mb, and the DNA content of T. rangeli strains ranged from 63,25 Mb to 68,66 Mb. No differences in DNA content were observed between KP1(+) and KP1(-) T. rangeli strains. Cultures containing mixtures of the epimastigote forms of T. cruzi and T. rangeli strains resulted in cell cycle profiles with distinct G1 peaks for strains of each species. These results demonstrate that DNA content analysis by flow cytometry is a reliable technique for discrimination between T. cruzi and T. rangeli isolated from different hosts.

  10. Seroprevalence of human Trypanosoma cruzi infection in diferent geografic zones of Chiapas, Mexico Soroprevalência da infecção humana pelo Trypanosoma cruzi em diferentes regiões de Chiapas, México

    Directory of Open Access Journals (Sweden)

    Miguel Angel Mazariego-Arana

    2001-10-01

    Full Text Available A serologic survey was carried out in four different geographic zones of Chiapas, Mexico. A total of 1,333 samples were collected from residents of thirteen communities located on the Coast, Central Mountain, Lacandon Forest and a zone called Mesochiapas. One hundred and fifty one seropositive individuals (11.3% were identified. Human Trypanosoma cruzi infection was influenced by geography. In the Lacandon Forest and Central Mountains there was a higher seroprevalence 32.1 and 13.8% respectively, than on the coast (1.2%. In Mesochiapas there were no seropositive individuals among the 137 persons tested. An active transmission is probably continuing because seropositive cases (13.8% were detected in children under 10 years of age. The vector recognized on the Coast was Triatoma dimidiata while in the Lacandon Forest it was Rhodnius prolixus.Foi feito um estudo sorológico em quatro zonas geográficas do estado de Chiapas México. Foram colhidas 1333 amostras dos habitantes das 13 comunidades situadas na costa, na região central montanhosa, na floresta lacandona e na região chamada mesochiapas. Cento cinqüenta e uma pessoas (11,3% foram identificadas como soropositivas. A infecção pelo Trypanosoma cruzi teve a influência da geografia local. Na floresta lacandona nas montanhas centrais, foi encontrada uma prevalência de 32,1 e 13,8% respectivamente, mais que na costa 1,2%. Na zona de mesochiapas não foi encontrada nenhuma pessoa com sorologia positiva entre 137 estudadas. Como encontramos sorologia positiva em crianças menores de 10 anos, pensamos que exista uma transmissão ativa contínua. Na costa foi reconhecido o vetor Triatoma dimidiata e na floresta Lacandona o Rhodnius prolixus.

  11. The isolation and identification of Trypanosoma cruzi from raccoons in Maryland

    Science.gov (United States)

    Walton, B.C.; Bauman, P.M.; Diamond, L.S.; Herman, C.M.

    1958-01-01

    Five raccoons trapped at Patuxent Research Refuge, Laurel, Maryland, were found to have trypanosomes in the blood which were morphologically indistinguishable from Trypanosoma cruzi on stained smears. The organism grew well in culture. It developed and reproduced in Triatoma protracta, T. infestans, T. phyllosoma, and Rhodnius prolixus. Experimental infections were produced in raccoons, opossums, mice, rats, and monkeys by inoculation of blood, culture, and triatome forms. Typical leishmaniform bodies were found in tissue sections of cardiac muscle fibers from naturally and experimentally infected animals. Cross agglutinations carried out with Iiving cultural forms and rabbit antisera demonstrated a close antigenic relationship between the raccoon trypanosome and T. cruzi (Brazil strain). On the basis of (1) morphology, (2) presence of leishmaniform tissue stages, (3) development in triatomes, (4) infectivity to a variety of mammals, (5) culture characteristics, and (6) cross reactions in serological tests, this parasite is considered conspecific with Trypanosoma cruzi (Chagas, 1909), the causative agent of American human trypanosomiasis.

  12. Chlorophyllin as a possible measure against vectors of human parasites and fish parasites

    Directory of Open Access Journals (Sweden)

    Peter Rolf Richter

    2014-06-01

    Full Text Available Water soluble chlorophyll (chlorophyllin exerts pronounced photodynamic activity. Chlorophyllin is a potential remedy against mosquito larvae and aquatic stages in the life cycle of parasites as well as against ectoparasites in fish. In the recent years it was found that mosquito larvae and other pest organisms can be killed by means of photodynamic substances such as different porphyrin derivates (e.g. hematoporphyrin, meso-tri(N-methylpyridyl, meso-mono(N-tetra-decylpyridyl porphyrine, hematoporphyrin IX, or hermatoporphyrin formula (HPF. It was found that incubation of mosquito larvae in chlorophyllin solution and subsequent irradiation results in photodynamic destruction of the larvae. Incorporation of about 8 ng chlorophyllin per larvae was sufficient to induce its death. In fish mass cultivation ichthyophthiriosis is a severe parasitic protozoan disease caused by the ciliate Ichthyophthirius multifiliis. It was found that incubation of infected fishes in chlorophyllin and subsequent illumination reduced the number of trophonts significantly (more than 50 %. The fishes were not impaired. Chlorophyllin and other photodynamic substances may become a possible countermeasure against I. multifiliis and other ectoparasites in aquaculture. The effectiveness of chlorophyllin depends on light attenuation in the water body.

  13. Prevalencia de infeccion humana por Trypanosoma cruzi en bancos de sangre en Venezuela Prevalence of human infections by Trypanosoma cruzi in Venezuelan blood banks

    Directory of Open Access Journals (Sweden)

    Alberto Aché

    1993-10-01

    Full Text Available Las primeras investigaciones realizadas a nivel de bancos de sangre, durante la década 50, indican que la seroprevalencia por infecciones a T. cruzi entre hemodadores fue de 12%. Un estudio posterior, entre 1963-64, efectuado en varios bancos de sangre, así como otros centros, registró una seroprevalencia global de 6.0% (1.1-10.1%. La donación de sangre en Venezuela es gratuita. El control de los bancos de sangre recae en el Departamento de Transfusiones y Bancos de Sangre del Ministerio de Sanidad y Asistencia Social. A partir de 1988, se emplea uniformemente la técnica de ELISA para el diagnóstico de infecciones a T. cruzi en los Bancos de Sangre. La seropositividad promedio interanual, entre 1984-1992, fue de 1.20% (1.09-1.94%. Existen variaciones geográficas entre las localidades de varias entidades federales. Los estados con mayor prevalencia se ubican en las regiones del occidente y centro del país, a saber: Portuguesa, Barinas, Lara, Trujillo, Cojedes y Carabobo. Por las dificultades en obtener tasas de incidencia para el Mal de Chagas, resulta adecuado emplear tasas de prevalencia para uso en salud pública, en función de su mayor estabilidad; y en el caso de Venezuela, dada la severidad menor y una sobrevivencia mayor por esta patologia hoy día. La especificidad, como parámetro de las pruebas serológicas, debería considerarse en función de la baja seroprevalencia detectada a nivel nacional. Convendría emplear varias pruebas diagnósticas en paralelo para buscar un equilibrio entre sensibilidad y especificidad.Primary investigations carried out in blood banks in Venezuela during the 1950s, indicated that overall seroprevalence for Trypanosoma cruzi infection was 12% amongst blood donors. In Venezuela, blood donation is free. All public and private blood banks are controlled by the Ministry of Health. As from 1988 the ELISA technique was uniformly used in blood banks for the detection of T. cruzi infections. Annual median

  14. Deciphering RNA Regulatory Elements Involved in the Developmental and Environmental Gene Regulation of Trypanosoma brucei.

    Science.gov (United States)

    Gazestani, Vahid H; Salavati, Reza

    2015-01-01

    Trypanosoma brucei is a vector-borne parasite with intricate life cycle that can cause serious diseases in humans and animals. This pathogen relies on fine regulation of gene expression to respond and adapt to variable environments, with implications in transmission and infectivity. However, the involved regulatory elements and their mechanisms of actions are largely unknown. Here, benefiting from a new graph-based approach for finding functional regulatory elements in RNA (GRAFFER), we have predicted 88 new RNA regulatory elements that are potentially involved in the gene regulatory network of T. brucei. We show that many of these newly predicted elements are responsive to both transcriptomic and proteomic changes during the life cycle of the parasite. Moreover, we found that 11 of predicted elements strikingly resemble previously identified regulatory elements for the parasite. Additionally, comparison with previously predicted motifs on T. brucei suggested the superior performance of our approach based on the current limited knowledge of regulatory elements in T. brucei.

  15. Expression of cancer-associated simple mucin-type O-glycosylated antigens in parasites.

    Science.gov (United States)

    Osinaga, Eduardo

    2007-01-01

    Simple mucin-type O-glycan structures, such as Tn, TF, sialyl-Tn and Tk antigens, are among of the most specific human cancer-associated structures. These antigens are involved in several types of receptor-ligand interactions, and they are potential targets for immunotherapy. In the last few years several simple mucin-type O-glycan antigens were identified in different species belonging to the main two helminth parasite phyla, and sialyl-Tn bearing glycoproteins were detected in Trypanosoma cruzi. These results are of interest to understand new aspects in parasite glycoimmunology and may help identify new biological characteristics of parasites as well of the host-parasite relationship. Considering that different groups reported a negative correlation between certain parasite infections and cancer development, we could hypothesize that simple mucin-type O-glycosylated antigens obtained from parasites could be good potential targets for cancer immunotherapy.

  16. Homology modeling of parasite histone deacetylases to guide the structure-based design of selective inhibitors.

    Science.gov (United States)

    Melesina, Jelena; Robaa, Dina; Pierce, Raymond J; Romier, Christophe; Sippl, Wolfgang

    2015-11-01

    Histone deacetylases (HDACs) are promising epigenetic targets for the treatment of various diseases, including cancer and neurodegenerative disorders. There is evidence that they can also be addressed to treat parasitic infections. Recently, the first X-ray structure of a parasite HDAC was published, Schistosoma mansoni HDAC8, giving structural insights into its inhibition. However, most of the targets from parasites of interest still lack this structural information. Therefore, we prepared homology models of relevant parasitic HDACs and compared them to human and S. mansoni HDACs. The information about known S. mansoni HDAC8 inhibitors and compounds that affect the growth of Trypanosoma, Leishmania and Plasmodium species was used to validate the models by docking and molecular dynamics studies. Our results provide analysis of structural features of parasitic HDACs and should be helpful for selecting promising candidates for biological testing and for structure-based optimisation of parasite-specific inhibitors. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Morphological and Molecular Descriptors of the Developmental Cycle of Babesia divergens Parasites in Human Erythrocytes.

    Directory of Open Access Journals (Sweden)

    Ingrid Rossouw

    2015-05-01

    Full Text Available Human babesiosis, especially caused by the cattle derived Babesia divergens parasite, is on the increase, resulting in renewed attentiveness to this potentially life threatening emerging zoonotic disease. The molecular mechanisms underlying the pathophysiology and intra-erythrocytic development of these parasites are poorly understood. This impedes concerted efforts aimed at the discovery of novel anti-babesiacidal agents. By applying sensitive cell biological and molecular functional genomics tools, we describe the intra-erythrocytic development cycle of B. divergens parasites from immature, mono-nucleated ring forms to bi-nucleated paired piriforms and ultimately multi-nucleated tetrads that characterizes zoonotic Babesia spp. This is further correlated for the first time to nuclear content increases during intra-erythrocytic development progression, providing insight into the part of the life cycle that occurs during human infection. High-content temporal evaluation elucidated the contribution of the different stages to life cycle progression. Moreover, molecular descriptors indicate that B. divergens parasites employ physiological adaptation to in vitro cultivation. Additionally, differential expression is observed as the parasite equilibrates its developmental stages during its life cycle. Together, this information provides the first temporal evaluation of the functional transcriptome of B. divergens parasites, information that could be useful in identifying biological processes essential to parasite survival for future anti-babesiacidal discoveries.

  18. [Current situation of human resources of parasitic disease control and prevention organizations in Henan Province].

    Science.gov (United States)

    Ya-Lan, Zhang; Yan-Kun, Zhu; Wei-Qi, Chen; Yan, Deng; Peng, Li

    2018-01-10

    To understand the current status of human resources of parasitic disease control and prevention organizations in Henan Province, so as to provide the reference for promoting the integrative ability of the prevention and control of parasitic diseases in Henan Province. The questionnaires were designed and the method of census was adopted. The information, such as the amounts, majors, education background, technical titles, working years, and turnover in each parasitic disease control and prevention organization was collected by the centers for disease control and prevention (CDCs) at all levels. The data were descriptively analyzed. Totally 179 CDCs were investigated, in which only 19.0% (34/179) had the independent parasitic diseases control institution (department) . There were only 258 full-time staffs working on parasitic disease control and prevention in the whole province, in which only 61.9% (159/258) were health professionals. Those with junior college degree or below in the health professionals accounted for 60.3% (96/159) . Most of them (42.1%) had over 20 years of experience, but 57.9% (92/159) of their technical post titles were at primary level or below. The proportion of the health professionals is low in the parasitic disease control and prevention organizations in Henan Province. The human resource construction for parasitic disease control and prevention at all levels should be strengthened.

  19. Genome sequencing of chimpanzee malaria parasites reveals possible pathways of adaptation to human hosts

    KAUST Repository

    Otto, Thomas D.

    2014-09-09

    Plasmodium falciparum causes most human malaria deaths, having prehistorically evolved from parasites of African Great Apes. Here we explore the genomic basis of P. falciparum adaptation to human hosts by fully sequencing the genome of the closely related chimpanzee parasite species P. reichenowi, and obtaining partial sequence data from a more distantly related chimpanzee parasite (P. gaboni). The close relationship between P. reichenowi and P. falciparum is emphasized by almost complete conservation of genomic synteny, but against this strikingly conserved background we observe major differences at loci involved in erythrocyte invasion. The organization of most virulence-associated multigene families, including the hypervariable var genes, is broadly conserved, but P. falciparum has a smaller subset of rif and stevor genes whose products are expressed on the infected erythrocyte surface. Genome-wide analysis identifies other loci under recent positive selection, but a limited number of changes at the host–parasite interface may have mediated host switching.

  20. The genome of the simian and human malaria parasite Plasmodium knowlesi

    DEFF Research Database (Denmark)

    Pain, A; Böhme, U; Berry, A E

    2008-01-01

    Plasmodium knowlesi is an intracellular malaria parasite whose natural vertebrate host is Macaca fascicularis (the 'kra' monkey); however, it is now increasingly recognized as a significant cause of human malaria, particularly in southeast Asia. Plasmodium knowlesi was the first malaria parasite...... species in which antigenic variation was demonstrated, and it has a close phylogenetic relationship to Plasmodium vivax, the second most important species of human malaria parasite (reviewed in ref. 4). Despite their relatedness, there are important phenotypic differences between them, such as host blood...... cell preference, absence of a dormant liver stage or 'hypnozoite' in P. knowlesi, and length of the asexual cycle (reviewed in ref. 4). Here we present an analysis of the P. knowlesi (H strain, Pk1(A+) clone) nuclear genome sequence. This is the first monkey malaria parasite genome to be described...

  1. Multi-criteria decision analysis and spatial statistic: an approach to determining human vulnerability to vector transmission of Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    Diego Montenegro

    Full Text Available BACKGROUND Chagas disease (CD, caused by the protozoan Trypanosoma cruzi, is a neglected human disease. It is endemic to the Americas and is estimated to have an economic impact, including lost productivity and disability, of 7 billion dollars per year on average. OBJECTIVES To assess vulnerability to vector-borne transmission of T. cruzi in domiciliary environments within an area undergoing domiciliary vector interruption of T. cruzi in Colombia. METHODS Multi-criteria decision analysis [preference ranking method for enrichment evaluation (PROMETHEE and geometrical analysis for interactive assistance (GAIA methods] and spatial statistics were performed on data from a socio-environmental questionnaire and an entomological survey. In the construction of multi-criteria descriptors, decision-making processes and indicators of five determinants of the CD vector pathway were summarily defined, including: (1 house indicator (HI; (2 triatominae indicator (TI; (3 host/reservoir indicator (Ho/RoI; (4 ecotope indicator (EI; and (5 socio-cultural indicator (S-CI. FINDINGS Determination of vulnerability to CD is mostly influenced by TI, with 44.96% of the total weight in the model, while the lowest contribution was from S-CI, with 7.15%. The five indicators comprise 17 indices, and include 78 of the original 104 priority criteria and variables. The PROMETHEE and GAIA methods proved very efficient for prioritisation and quantitative categorisation of socio-environmental determinants and for better determining which criteria should be considered for interrupting the man-T. cruzi-vector relationship in endemic areas of the Americas. Through the analysis of spatial autocorrelation it is clear that there is a spatial dependence in establishing categories of vulnerability, therefore, the effect of neighbors’ setting (border areas on local values should be incorporated into disease management for establishing programs of surveillance and control of CD via vector

  2. Multi-criteria decision analysis and spatial statistic: an approach to determining human vulnerability to vector transmission of Trypanosoma cruzi.

    Science.gov (United States)

    Montenegro, Diego; Cunha, Ana Paula da; Ladeia-Andrade, Simone; Vera, Mauricio; Pedroso, Marcel; Junqueira, Angela

    2017-10-01

    Chagas disease (CD), caused by the protozoan Trypanosoma cruzi, is a neglected human disease. It is endemic to the Americas and is estimated to have an economic impact, including lost productivity and disability, of 7 billion dollars per year on average. To assess vulnerability to vector-borne transmission of T. cruzi in domiciliary environments within an area undergoing domiciliary vector interruption of T. cruzi in Colombia. Multi-criteria decision analysis [preference ranking method for enrichment evaluation (PROMETHEE) and geometrical analysis for interactive assistance (GAIA) methods] and spatial statistics were performed on data from a socio-environmental questionnaire and an entomological survey. In the construction of multi-criteria descriptors, decision-making processes and indicators of five determinants of the CD vector pathway were summarily defined, including: (1) house indicator (HI); (2) triatominae indicator (TI); (3) host/reservoir indicator (Ho/RoI); (4) ecotope indicator (EI); and (5) socio-cultural indicator (S-CI). Determination of vulnerability to CD is mostly influenced by TI, with 44.96% of the total weight in the model, while the lowest contribution was from S-CI, with 7.15%. The five indicators comprise 17 indices, and include 78 of the original 104 priority criteria and variables. The PROMETHEE and GAIA methods proved very efficient for prioritisation and quantitative categorisation of socio-environmental determinants and for better determining which criteria should be considered for interrupting the man-T. cruzi-vector relationship in endemic areas of the Americas. Through the analysis of spatial autocorrelation it is clear that there is a spatial dependence in establishing categories of vulnerability, therefore, the effect of neighbors' setting (border areas) on local values should be incorporated into disease management for establishing programs of surveillance and control of CD via vector. The study model proposed here is flexible and

  3. Targeting channels and transporters in protozoan parasite infections

    Science.gov (United States)

    Meier, Anna; Erler, Holger; Beitz, Eric

    2018-03-01

    Infectious diseases caused by pathogenic protozoa are among the most significant causes of death in humans. Therapeutic options are scarce and massively challenged by the emergence of resistant parasite strains. Many of the current anti-parasite drugs target soluble enzymes, generate unspecific oxidative stress, or act by an unresolved mechanism within the parasite. In recent years, collections of drug-like compounds derived from large-scale phenotypic screenings, such as the malaria or pathogen box, have been made available to researchers free of charge boosting the identification of novel promising targets. Remarkably, several of the compound hits have been found to inhibit membrane proteins at the periphery of the parasites, i.e. channels and transporters for ions and metabolites. In this review, we will focus on the progress made on targeting channels and transporters at different levels and the potential for use against infections with apicomplexan parasites mainly Plasmodium spp. (malaria) and Toxoplasma gondii (toxoplasmosis), with kinetoplastids Trypanosoma brucei (sleeping sickness), Trypanosoma cruzi (Chagas disease) and Leishmania ssp. (leishmaniasis), and the amoeba Entamoeba histolytica (amoebiasis).

  4. African trypanosomiasis with special reference to Egyptian Trypanosoma evansi: is it a neglected zoonosis?

    Science.gov (United States)

    El-Bahnasawy, Mamdouh M M; Khater, Mai Kh A; Morsy, Tosson A

    2014-12-01

    Trypanosomes (including humans) are blood and sometimes tissue parasites of the order Kinetoplastida, family Trypanosomatidae, genus Trypanosoma, principally transmitted by biting insects where most of them undergo a biological cycle. They are divided into Stercoraria with the posterior station inoculation, including T. cruzi, both an extra- and intracellular parasite that causes Chagas disease, a major human disease affecting 15 million people and threatening 100 million people in Latin America, and the Salivaria with the anterior station inoculation, mainly African livestock pathogenic trypanosomes, including the agents of sleeping sickness, a major human disease affecting around half a million people and threatening 60 million people in Africa. Now, T. evansi was reported in man is it required to investigate its zoonotic potential?

  5. Enzyme catalysed production of sialylated human milk oligosaccharides and galactooligosaccharides by Trypanosoma cruzi trans-sialidase

    DEFF Research Database (Denmark)

    Holck, Jesper; Larsen, Dorte Møller; Michalak, Malwina

    2014-01-01

    Bifidobacterium strains in single culture fermentations. The trans-sialidase also catalysed the transfer of sialic acid from CGMP to galacto-oligosaccharides (GOS) and to the human milk oligosaccharide (HMO) backbone lacto-N-tetraose (LNT) to produce 3′-sialyl-GOS, including doubly sialylated GOS products, and 3...

  6. Normocyte-binding protein required for human erythrocyte invasion by the zoonotic malaria parasitePlasmodium knowlesi

    KAUST Repository

    Moon, Robert W.; Sharaf, Hazem; Hastings, Claire H.; Ho, Yung Shwen; Nair, Mridul; Rchiad, ‍ Zineb; Knuepfer, Ellen; Ramaprasad, Abhinay; Mohring, Franziska; Amir, Amirah; Yusuf, Noor A.; Hall, Joanna; Almond, Neil; Lau, Yee Ling; Pain, Arnab; Blackman, Michael J.; Holder, Anthony A.

    2016-01-01

    The dominant cause of malaria in Malaysia is now Plasmodium knowlesi, a zoonotic parasite of cynomolgus macaque monkeys found throughout South East Asia. Comparative genomic analysis of parasites adapted to in vitro growth in either cynomolgus or human RBCs identified a genomic deletion that includes the gene encoding normocyte-binding protein Xa (NBPXa) in parasites growing in cynomolgus RBCs but not in human RBCs. Experimental deletion of the NBPXa gene in parasites adapted to growth in human RBCs (which retain the ability to grow in cynomolgus RBCs) restricted them to cynomolgus RBCs, demonstrating that this gene is selectively required for parasite multiplication and growth in human RBCs. NBPXa-null parasites could bind to human RBCs, but invasion of these cells was severely impaired. Therefore, NBPXa is identified as a key mediator of P. knowlesi human infection and may be a target for vaccine development against this emerging pathogen.

  7. Normocyte-binding protein required for human erythrocyte invasion by the zoonotic malaria parasitePlasmodium knowlesi

    KAUST Repository

    Moon, Robert W.

    2016-06-15

    The dominant cause of malaria in Malaysia is now Plasmodium knowlesi, a zoonotic parasite of cynomolgus macaque monkeys found throughout South East Asia. Comparative genomic analysis of parasites adapted to in vitro growth in either cynomolgus or human RBCs identified a genomic deletion that includes the gene encoding normocyte-binding protein Xa (NBPXa) in parasites growing in cynomolgus RBCs but not in human RBCs. Experimental deletion of the NBPXa gene in parasites adapted to growth in human RBCs (which retain the ability to grow in cynomolgus RBCs) restricted them to cynomolgus RBCs, demonstrating that this gene is selectively required for parasite multiplication and growth in human RBCs. NBPXa-null parasites could bind to human RBCs, but invasion of these cells was severely impaired. Therefore, NBPXa is identified as a key mediator of P. knowlesi human infection and may be a target for vaccine development against this emerging pathogen.

  8. Monoclonal antibodies (MAb) made against insect-derived metacyclic trypomastigotes (IMT) of Trypanosoma cruzi (TC) cross-react with other parasite forms

    International Nuclear Information System (INIS)

    Kirchhoff, L.V.; Gilliam, F.C.

    1986-01-01

    Considerable information has been generated in recent years about stage-specific surface membrane antigens of a number of protozoa, and this phenomenon has been observed among several stages of TC as well. However, little is known about the surface antigens of IMT, the true infective stage of TC, because of the difficulty of obtaining sufficient numbers of these organisms for analysis. The Tulahuen strain of TC was maintained in the reduviid vector Dipetalogaster maximus by repeated feeding on mice with high parasitemias. IMT collected with insect urine were irradiated (150 krad) and used to immunize a BALB/c mouse for hybridoma production. Supernatants were screened by immunofluorescence assay for the presence of IgG MAb that react with methanol-fixed IMT, epimastogotes (EPI) and culture-derived metacyclic trypomastigoes (CMT). Of 41 MAb obtained, 40 reacted with IMT, 37 with EPI and 38 with CMT. Four MAb immunoprecipitated radioiodinated proteins or protein conjugates of M/sub r/ 80, 72, 45 and 45 from lysates of 125 I surface-labeled EPI. These results indicate that, at least at the epitopic level, there is considerable overlap among IMT, EPI and CMT surface antigens. This finding suggests that analysis of surface proteins of the latter 2 parasite forms may lead to identification of molecules useful for vaccine development

  9. Human intestinal parasites in the past: new findings and a review

    Directory of Open Access Journals (Sweden)

    Marcelo Luiz Carvalho Gonçalves

    2003-01-01

    Full Text Available Almost all known human specific parasites have been found in ancient feces. A review of the paleoparasitological helminth and intestinal protozoa findings available in the literature is presented. We also report the new paleoparasitologic findings from the examination performed in samples collected in New and Old World archaeological sites. New finds of ancylostomid, Ascaris lumbricoides, Trichuris trichiura, Enterobius vermicularis, Trichostrongylus spp., Diphyllobothrium latum, Hymenolepis nana and Acantocephalan eggs are reported. According to the findings, it is probable that A. lumbricoides was originally a human parasite. Human ancylostomids, A. lumbricoides and T. trichiura, found in the New World in pre-Columbian times, have not been introduced into the Americas by land via Beringia. These parasites could not supported the cold climate of the region. Nomadic prehistoric humans that have crossed the Bering Land Bridge from Asia to the Americas in the last glaciation, probably during generations, would have lost these parasites, which life cycles need warm temperatures in the soil to be transmitted from host to host. Alternative routes are discussed for human parasite introduction into the Americas.

  10. Membrane-Wrapping Contributions to Malaria Parasite Invasion of the Human Erythrocyte

    Science.gov (United States)

    Dasgupta, Sabyasachi; Auth, Thorsten; Gov, Nir S.; Satchwell, Timothy J.; Hanssen, Eric; Zuccala, Elizabeth S.; Riglar, David T.; Toye, Ashley M.; Betz, Timo; Baum, Jake; Gompper, Gerhard

    2014-01-01

    The blood stage malaria parasite, the merozoite, has a small window of opportunity during which it must successfully target and invade a human erythrocyte. The process of invasion is nonetheless remarkably rapid. To date, mechanistic models of invasion have focused predominantly on the parasite actomyosin motor contribution to the energetics of entry. Here, we have conducted a numerical analysis using dimensions for an archetypal merozoite to predict the respective contributions of the host-parasite interactions to invasion, in particular the role of membrane wrapping. Our theoretical modeling demonstrates that erythrocyte membrane wrapping alone, as a function of merozoite adhesive and shape properties, is sufficient to entirely account for the first key step of the invasion process, that of merozoite reorientation to its apex and tight adhesive linkage between the two cells. Next, parasite-induced reorganization of the erythrocyte cytoskeleton and release of parasite-derived membrane can also account for a considerable energetic portion of actual invasion itself, through membrane wrapping. Thus, contrary to the prevailing dogma, wrapping by the erythrocyte combined with parasite-derived membrane release can markedly reduce the expected contributions of the merozoite actomyosin motor to invasion. We therefore propose that invasion is a balance between parasite and host cell contributions, evolved toward maximal efficient use of biophysical forces between the two cells. PMID:24988340

  11. Mitochondrial localization of human frataxin is necessary but processing is not for rescuing frataxin deficiency in Trypanosoma brucei

    Czech Academy of Sciences Publication Activity Database

    Long, Shaojun; Jirků, Milan; Ayala, F. J.; Lukeš, Julius

    2008-01-01

    Roč. 105, č. 36 (2008), s. 13468-13473 ISSN 0027-8424 R&D Projects: GA AV ČR IAA500960705; GA MŠk LC07032; GA MŠk 2B06129; GA ČR GA204/06/1558 Institutional research plan: CEZ:AV0Z60220518 Keywords : frataxin * mitochondrion * Trypanosoma * Kinetoplastida Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 9.380, year: 2008

  12. First description of Trypanosoma cruzi human infection in Esmeraldas province, Ecuador.

    Science.gov (United States)

    Guevara, Ángel; Moreira, Juan; Criollo, Hipatia; Vivero, Sandra; Racines, Marcia; Cevallos, Varsovia; Prandi, Rosanna; Caicedo, Cynthia; Robinzon, Francisco; Anselmi, Mariella

    2014-08-06

    Chagas disease was described in Ecuador in 1930 in the province of Guayas and thereafter in various provinces. Triatomine were reported in the province of Esmeraldas but no human infection has been described. Here we report the first evidence that the disease does exist in the province of Esmeraldas. In indigenous Awá communities located in the northwest jungle of the Esmeraldas province, 144 individuals were tested using ELISA and PCR for T.cruzi of which 5 (3.47%) were positive. Twenty eight triatomine were collected, 27 were Triatoma dispar and 1 Pastrongylus rufotuberculatus, T.cruzi was detected in 11 (42.3%) of 26 insects.

  13. Dogs, cats, parasites, and humans in Brazil: opening the black box

    Science.gov (United States)

    2014-01-01

    Dogs and cats in Brazil serve as primary hosts for a considerable number of parasites, which may affect their health and wellbeing. These may include endoparasites (e.g., protozoa, cestodes, trematodes, and nematodes) and ectoparasites (i.e., fleas, lice, mites, and ticks). While some dog and cat parasites are highly host-specific (e.g., Aelurostrongylus abstrusus and Felicola subrostratus for cats, and Angiostrongylus vasorum and Trichodectes canis for dogs), others may easily switch to other hosts, including humans. In fact, several dog and cat parasites (e.g., Toxoplasma gondii, Dipylidium caninum, Ancylostoma caninum, Strongyloides stercoralis, and Toxocara canis) are important not only from a veterinary perspective but also from a medical standpoint. In addition, some of them (e.g., Lynxacarus radovskyi on cats and Rangelia vitalii in dogs) are little known to most veterinary practitioners working in Brazil. This article is a compendium on dog and cat parasites in Brazil and a call for a One Health approach towards a better management of some of these parasites, which may potentially affect humans. Practical aspects related to the diagnosis, treatment, and control of parasitic diseases of dogs and cats in Brazil are discussed. PMID:24423244

  14. Landscape epidemiology in urban environments: The example of rodent-borne Trypanosoma in Niamey, Niger.

    Science.gov (United States)

    Rossi, Jean-Pierre; Kadaouré, Ibrahima; Godefroid, Martin; Dobigny, Gauthier

    2017-10-05

    Trypanosomes are protozoan parasites found worldwide, infecting humans and animals. In the past decade, the number of reports on atypical human cases due to Trypanosoma lewisi or T. lewisi-like has increased urging to investigate the multiple factors driving the disease dynamics, particularly in cities where rodents and humans co-exist at high densities. In the present survey, we used a species distribution model, Maxent, to assess the spatial pattern of Trypanosoma-positive rodents in the city of Niamey. The explanatory variables were landscape metrics describing urban landscape composition and physiognomy computed from 8 land-cover classes. We computed the metrics around each data location using a set of circular buffers of increasing radii (20m, 40m, 60m, 80m and 100m). For each spatial resolution, we determined the optimal combination of feature class and regularization multipliers by fitting Maxent with the full dataset. Since our dataset was small (114 occurrences) we expected an important uncertainty associated to data partitioning into calibration and evaluation datasets. We thus performed 350 independent model runs with a training dataset representing a random subset of 80% of the occurrences and the optimal Maxent parameters. Each model yielded a map of habitat suitability over Niamey, which was transformed into a binary map implementing a threshold maximizing the sensitivity and the specificity. The resulting binary maps were combined to display the proportion of models that indicated a good environmental suitability for Trypanosoma-positive rodents. Maxent performed better with landscape metrics derived from buffers of 80m. Habitat suitability for Trypanosoma-positive rodents exhibited large patches linked to urban features such as patch richness and the proportion of landscape covered by concrete or tarred areas. Such inferences could be helpful in assessing areas at risk, setting of monitoring programs, public and medical staff awareness or even

  15. Analysis of a summary network of co-infection in humans reveals that parasites interact most via shared resources

    OpenAIRE

    Griffiths, Emily C; Pedersen, Amy B; Fenton, Andy; Petchey, Owen L

    2014-01-01

    Simultaneous infection by multiple parasite species (viruses, bacteria, helminths, protozoa or fungi) is commonplace. Most reports show co-infected humans to have worse health than those with single infections. However, we have little understanding of how co-infecting parasites interact within human hosts. We used data from over 300 published studies to construct a network that offers the first broad indications of how groups of co-infecting parasites tend to interact. The network had three l...

  16. Genotyping of Trypanosoma cruzi Sublineage in Human Samples from a North-East Argentina Area by Hybridization with DNA Probes and Specific Polymerase Chain Reaction (PCR)

    Science.gov (United States)

    Diez, Cristina; Lorenz, Virginia; Ortiz, Silvia; Gonzalez, Verónica; Racca, Andrea; Bontempi, Iván; Manattini, Silvia; Solari, Aldo; Marcipar, Iván

    2010-01-01

    We have evaluated blood samples of chronic and congenital Trypanosoma cruzi-infected patients from the city of Reconquista located in the northeast of Argentina where no information was previously obtained about the genotype of infecting parasites. Fourteen samples of congenital and 19 chronical patients were analyzed by hybridization with DNA probes of minicircle hypervariable regions (mHVR). In congenital patients, 50% had single infections with TcIId, 7% single infections with TcIIe, 29% mixed infections with TcIId/e, and 7% had mixed infections with TcIId/b and 7% TcIId/b, respectively. In Chronical patients, 52% had single infections with TcIId, 11% single infections with TcIIe, 26% had mixed infections with TcIId/e, and 11% had non-identified genotypes. With these samples, we evaluated the minicircle lineage-specific polymerase chain reaction assay (MLS-PCR), which involves a nested PCR to HVR minicircle sequences and we found a correlation with hybridization probes of 96.4% for TcIId and 54.8% for TcIIe. PMID:20064998

  17. Human waterborne parasites in zebra mussels ( Dreissena polymorpha) from the Shannon River drainage area, Ireland.

    Science.gov (United States)

    Graczyk, Thaddeus K; Conn, David Bruce; Lucy, Frances; Minchin, Dan; Tamang, Leena; Moura, Lacy N S; DaSilva, Alexandre J

    2004-08-01

    Zebra mussels ( Dreissena polymorpha) from throughout the Shannon River drainage area in Ireland were tested for the anthropozoonotic waterborne parasites Cryptosporidium parvum, Giardia lamblia, Encephalitozoon intestinalis, E. hellem, and Enterocytozoon bieneusi, by the multiplexed combined direct immunofluorescent antibody and fluorescent in situ hybridization method, and PCR. Parasite transmission stages were found at 75% of sites, with the highest mean concentration of 16, nine, and eight C. parvum oocysts, G. lamblia cysts, and Encephalitozoon intestinalis spores/mussel, respectively. On average eight Enterocytozoon bieneusi spores/mussel were recovered at any selected site. Approximately 80% of all parasites were viable and thus capable of initiating human infection. The Shannon River is polluted with serious emerging human waterborne pathogens including C. parvum, against which no therapy exists. Zebra mussels can recover and concentrate environmentally derived pathogens and can be used for the sanitary assessment of water quality.

  18. Crispoic acid, a new compound from Laelia marginata (Orchidaceae), and biological evaluations against parasites, human cancer cell lines and Zika virus.

    Science.gov (United States)

    Belloto, Andrezza C; Souza, Gredson K; Perin, Paula C; Schuquel, Ivania T A; Santin, Silvana M O; Chiavelli, Lucas U R; Garcia, Francielle P; Kaplum, Vanessa; Rodrigues, Jean H S; Scariot, Débora B; Delvecchio, Rodrigo; Machado-Ferreira, Erik; Santana Aguiar, Renato; Soares, Carlos A G; Nakamura, Celso V; Pomini, Armando M

    2017-11-08

    The phytochemical study of Laelia marginata (Lindl.) L. O. Williams (Orchidaceae) led to the isolation of a new natural product named crispoic acid (1), together with six other known compounds (2-7). The new natural product was identified as a dimer of eucomic acid and was structurally characterised based upon 1D and 2D NMR and HRMS data. Biological assays with plant crude extract, fractions and isolated compounds were performed against two human cancer cell lines (Hela and Siha), and the tropical parasites Trypanosoma cruzi and Leishmania (Leishmania) amazonensis. The phenantrenoid 9,10-dihydro-4-methoxyphenanthren-2,7-diol 2 was active against Hela and Siha cells (CC 50 5.86 ± 0.19 and 20.78 ± 2.72 μg/mL, respectively). Sub-lethal concentrations of the flavone rhamnazin 4 were not able to rescue the viability of the Vero cells infected by Zika virus.

  19. The prevalence and diversity of intestinal parasitic infections in humans and domestic animals in a rural Cambodian village

    DEFF Research Database (Denmark)

    Schär, Fabian; Inpankaew, Tawin; Traub, Rebecca J.

    2014-01-01

    In Cambodia, intestinal parasitic infections are prevalent in humans and particularly in children. Yet, information on potentially zoonotic parasites in animal reservoir hosts is lacking. In May 2012, faecal samples from 218 humans, 94 dogs and 76 pigs were collected from 67 households in Dong vi...

  20. Geographical Distribution of Trypanosoma cruzi Genotypes in Venezuela

    Science.gov (United States)

    Carrasco, Hernán J.; Segovia, Maikell; Llewellyn, Martin S.; Morocoima, Antonio; Urdaneta-Morales, Servio; Martínez, Cinda; Martínez, Clara E.; Garcia, Carlos; Rodríguez, Marlenes; Espinosa, Raul; de Noya, Belkisyolé A.; Díaz-Bello, Zoraida; Herrera, Leidi; Fitzpatrick, Sinead; Yeo, Matthew; Miles, Michael A.; Feliciangeli, M. Dora

    2012-01-01

    Chagas disease is an endemic zoonosis native to the Americas and is caused by the kinetoplastid protozoan parasite Trypanosoma cruzi. The parasite is also highly genetically diverse, with six discrete typing units (DTUs) reported TcI – TcVI. These DTUs broadly correlate with several epidemiogical, ecological and pathological features of Chagas disease. In this manuscript we report the most comprehensive evaluation to date of the genetic diversity of T. cruzi in Venezuela. The dataset includes 778 samples collected and genotyped over the last twelve years from multiple hosts and vectors, including nine wild and domestic mammalian host species, and seven species of triatomine bug, as well as from human sources. Most isolates (732) can be assigned to the TcI clade (94.1%); 24 to the TcIV group (3.1%) and 22 to TcIII (2.8%). Importantly, among the 95 isolates genotyped from human disease cases, 79% belonged to TcI - a DTU common in the Americas, however, 21% belonged to TcIV- a little known genotype previously thought to be rare in humans. Furthermore, were able to assign multiple oral Chagas diseases cases to TcI in the area around the capital, Caracas. We discuss our findings in the context of T. cruzi DTU distributions elsewhere in the Americas, and evaluate the impact they have on the future of Chagas disease control in Venezuela. PMID:22745843

  1. Social Parasites

    Science.gov (United States)

    Lopez, Miguel A.; Nguyen, HoangKim T.; Oberholzer, Michael; Hill, Kent L.

    2011-01-01

    Summary of recent advances Protozoan parasites cause tremendous human suffering worldwide, but strategies for therapeutic intervention are limited. Recent studies illustrate that the paradigm of microbes as social organisms can be brought to bear on questions about parasite biology, transmission and pathogenesis. This review discusses recent work demonstrating adaptation of social behaviors by parasitic protozoa that cause African sleeping sickness and malaria. The recognition of social behavior and cell-cell communication as a ubiquitous property of bacteria has transformed our view of microbiology, but protozoan parasites have not generally been considered in this context. Works discussed illustrate the potential for concepts of sociomicrobiology to provide insight into parasite biology and should stimulate new approaches for thinking about parasites and parasite-host interactions. PMID:22020108

  2. Visceral leishmaniasis in eastern Sudan: parasite identification in humans and dogs; host-parasite relationships.

    Science.gov (United States)

    Dereure, Jacques; El-Safi, Sayda Hassan; Bucheton, Bruno; Boni, Mickaël; Kheir, Musa Mohamed; Davoust, Bernard; Pratlong, Francine; Feugier, Eric; Lambert, Monique; Dessein, Alain; Dedet, Jean Pierre

    2003-10-01

    In 1996, an epidemic outbreak of visceral leishmaniasis (VL) started in Barbar el Fugara, a village in Gedarif State (eastern Sudan). From 1997 to 2000, regular epidemiological studies were carried out in the human population, as well as in mammals and sand flies. In symptomatic patients, 46/69 lymph node, 6/20 post kala-azar dermal leishmaniasis (PKDL) and 1/4 cutaneous cultures in NNN medium were positive. In 69 dogs, 23/79 lymph node cultures were positive. In other mammals (47 rodents, five donkeys, one mongoose and one monkey) spleen and/or blood cultures were negative. Characterization of isolated strains (by starch gel electrophoresis and isoelectrofocusing) identified three zymodemes of Leishmania donovani, two of L. infantum and two of L. archibaldi complexes from patient samples and three zymodemes of L. donovani, three of L. infantum and two of L. archibaldi complexes from dog samples. Five of them were present in both man and dog. For the first time, a strain from a PKDL case was identified as L. infantum, and a child had the same L. infantum zymodeme in VL and in subsequent PKDL. Blood samples from dogs were studied by immunofluorescent antibody test (IFAT). The seroprevalence in dogs was 72.5%, 74.3% and 42.9% in 1998, 1999 and 2000, respectively. By using CDC miniature light traps 12 745 sand flies were collected and then identified. Phlebotomus papatasi (7%) and P. orientalis (5%) were sympatric, mainly inside homes (85% and 75%, respectively). These results, the relative stability of seroprevalence in dogs and the intradomiciliar presence of P. orientalis, known as a vector of VL in Sudan, suggest several hypotheses: (i) man is responsible for the disease in dogs, (ii) the dog is the reservoir of VL, (iii) the dog is an intermediate host between a possible sylvatic cycle and the anthroponotic cycle. More extensive studies are needed to assess the transmission cycle of VL in this area of Sudan.

  3. Cytometric quantification of singlet oxygen in the human malaria parasite Plasmodium falciparum

    NARCIS (Netherlands)

    Butzloff, Sabine; Groves, Matthew R; Wrenger, Carsten; Müller, Ingrid B

    The malaria parasite Plasmodium falciparum proliferates within human erythrocytes and is thereby exposed to a variety of reactive oxygen species (ROS) such as hydrogen peroxide, hydroxyl radical, superoxide anion, and highly reactive singlet oxygen ((1)O(2)). While most ROS are already well studied

  4. A tropical tale: how Naja nigricollis venom beats Trypanosoma brucei

    DEFF Research Database (Denmark)

    Martos Esteban, Andrea; Laustsen, Andreas Hougaard; Carrington, Mark

    Trypanosoma brucei is a parasitic protozoan species capable to infecting insect vectors whose bite further produces African sleeping sickness inhuman beings [1]. During the parasite’s extracellular life in the mammalian host,its outer coat, mainly composed of Variable Surface Glycoproteins (VSGs)...

  5. Trypanosoma cruzi: avirulence of the PF strain to Callithrix marmosets

    Directory of Open Access Journals (Sweden)

    Humberto Menezes

    1981-06-01

    Full Text Available Callithrix jacchus geoffroy marmosets (HumBol. 1812 were injected once subcutaneously with 10.000 parasites/g body weight and followed for a period of six months. The PF strain of Trypanosoma cruzi was used. Follow-up was done through blood cultures, xenodiagnosis, serological tests, and ECG. A small number of normaI animais served as control.

  6. The importance of the opossum (Didelphis albiventris as a reservoir for Trypanosoma cruzi in Bambuí, Minas Gerais state

    Directory of Open Access Journals (Sweden)

    Alexandre José Fernandes

    1991-03-01

    Full Text Available In a survey realized on the sylvatic and peridomestic environment at Bambuí county, Minas Gerais State, 44 (37.9% out of 116 opossums (Didelphis albiventris captured were found to be naturally infected with Trypanosoma cruzi. One handred and forty three parasite samples were obtanied from 43 infected opossums using simultaneously hemoculture, xenodiagnosis (Triatoma infestans, Panstrongylus megistus and Rhodnius neglectus and examination of anal glands contents. The parasite samples were characterized according to six isoenzyme patterns. All samples, independently of the method of isolation, presented an isoenzyme pattern similar to the standard T. cruzi Z1, showing that either xenodiagnosis or hemoculture can used without selecting parasite subpopulation from naturally infected opossums. Preveous isoenzyme patterns reported for human T.cruzi isolates from same region were completely different. This isoenzyme dissimilarity between sylvatic and domiciliar environments suggests the existence of two independent T. cruzi transmission cycles in Bambuí. The epidemiological implicatinos of these results are discussed.

  7. [SWOT Analysis of the National Survey on Current Status of Major Human Parasitic Diseases in China].

    Science.gov (United States)

    ZHU, Hui-hui; ZHOU, Chang-hai; CHEN, Ying-dan; ZANG, Wei; XIAO, Ning; ZHOU, Xiao-nong

    2015-10-01

    The National Survey on Current Status of Major Human Parasitic Diseases in China has been carried out since 2014 under the organization of the National Health and Family Planning Commission of the People's Republic of China. The National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (NIPD, China CDC) provided technical support and was responsible for quality control in this survey. This study used SWOT method to analyze the strengths, weaknesses, opportunities and threats that were encountered by he NIPD, China CDC during the completion of the survey. Accordingly, working strategies were proposed to facilitate the future field work.

  8. Survey of the parasite Toxoplasma gondii in human consumed ovine meat in Tunis City.

    Directory of Open Access Journals (Sweden)

    Sonia Boughattas

    Full Text Available Toxoplasmosis has been recognized as parasitic zoonosis with the highest human incidence. The human infection by the parasite can lead to severe clinical manifestations in congenital toxoplasmosis and immunocompromised patients. Contamination occurs mainly by foodborne ways especially consumption of raw or undercooked meat. In contrast to other foodborne infections, toxoplasmosis is a chronic infection which would make its economic and social impact much higher than even previously anticipated. Ovine meat was advanced as a major risk factor, so we investigated its parasite survey, under natural conditions. Serological MAT technique and touchdown PCR approaches were used for prevalence determination of the parasite in slaughtered sheep intended to human consumption in Tunis City. The genotyping was carried by SNPs analysis of SAG3 marker. Anti-Toxoplasma antibodies were present in 38.2% of young sheep and in 73.6% of adult sheep. Molecular detection revealed the contamination of 50% of ewes' tissue. Sequencing and SNPs analysis enabled unambiguous typing of meat isolates and revealed the presence of mixed strains as those previously identified from clinical samples in the same area. Our findings conclude that slaughtered sheep are highly infected, suggesting them as a major risk factor of Toxoplasma gondii transmission by meat consumption. Special aware should target consequently this factor when recommendations have to be established by the health care commanders.

  9. The landscape of human genes involved in the immune response to parasitic worms

    Directory of Open Access Journals (Sweden)

    Fumagalli Matteo

    2010-08-01

    Full Text Available Abstract Background More than 2 billion individuals worldwide suffer from helminth infections. The highest parasite burdens occur in children and helminth infection during pregnancy is a risk factor for preterm delivery and reduced birth weight. Therefore, helminth infections can be regarded as a strong selective pressure. Results Here we propose that candidate susceptibility genes for parasitic worm infections can be identified by searching for SNPs that display a strong correlation with the diversity of helminth species/genera transmitted in different geographic areas. By a genome-wide search we identified 3478 variants that correlate with helminth diversity. These SNPs map to 810 distinct human genes including loci involved in regulatory T cell function and in macrophage activation, as well as leukocyte integrins and co-inhibitory molecules. Analysis of functional relationships among these genes identified complex interaction networks centred around Th2 cytokines. Finally, several genes carrying candidate targets for helminth-driven selective pressure also harbour susceptibility alleles for asthma/allergy or are involved in airway hyper-responsiveness, therefore expanding the known parallelism between these conditions and parasitic infections. Conclusions Our data provide a landscape of human genes that modulate susceptibility to helminths and indicate parasitic worms as one of the major selective forces in humans.

  10. Trypanosoma brucei Invasion and T-Cell Infiltration of the Brain Parenchyma in Experimental Sleeping Sickness: Timing and Correlation with Functional Changes.

    Directory of Open Access Journals (Sweden)

    Claudia Laperchia

    2016-12-01

    Full Text Available The timing of Trypanosoma brucei entry into the brain parenchyma to initiate the second, meningoencephalitic stage of human African trypanosomiasis or sleeping sickness is currently debated and even parasite invasion of the neuropil has been recently questioned. Furthermore, the relationship between neurological features and disease stage are unclear, despite the important diagnostic and therapeutic implications.Using a rat model of chronic Trypanosoma brucei brucei infection we determined the timing of parasite and T-cell neuropil infiltration and its correlation with functional changes. Parasite DNA was detected using trypanosome-specific PCR. Body weight and sleep structure alterations represented by sleep-onset rapid eye movement (SOREM periods, reported in human and experimental African trypanosomiasis, were monitored. The presence of parasites, as well as CD4+ and CD8+ T-cells in the neuropil was assessed over time in the brain of the same animals by immunocytochemistry and quantitative analyses.Trypanosome DNA was present in the brain at day 6 post-infection and increased more than 15-fold by day 21. Parasites and T-cells were observed in the parenchyma from day 9 onwards. Parasites traversing blood vessel walls were observed in the hypothalamus and other brain regions. Body weight gain was reduced from day 7 onwards. SOREM episodes started in most cases early after infection, with an increase in number and duration after parasite neuroinvasion.These findings demonstrate invasion of the neuropil over time, after an initial interval, by parasites and lymphocytes crossing the blood-brain barrier, and show that neurological features can precede this event. The data thus challenge the current clinical and cerebrospinal fluid criteria of disease staging.

  11. Trypanosoma brucei Invasion and T-Cell Infiltration of the Brain Parenchyma in Experimental Sleeping Sickness: Timing and Correlation with Functional Changes.

    Science.gov (United States)

    Laperchia, Claudia; Palomba, Maria; Seke Etet, Paul F; Rodgers, Jean; Bradley, Barbara; Montague, Paul; Grassi-Zucconi, Gigliola; Kennedy, Peter G E; Bentivoglio, Marina

    2016-12-01

    The timing of Trypanosoma brucei entry into the brain parenchyma to initiate the second, meningoencephalitic stage of human African trypanosomiasis or sleeping sickness is currently debated and even parasite invasion of the neuropil has been recently questioned. Furthermore, the relationship between neurological features and disease stage are unclear, despite the important diagnostic and therapeutic implications. Using a rat model of chronic Trypanosoma brucei brucei infection we determined the timing of parasite and T-cell neuropil infiltration and its correlation with functional changes. Parasite DNA was detected using trypanosome-specific PCR. Body weight and sleep structure alterations represented by sleep-onset rapid eye movement (SOREM) periods, reported in human and experimental African trypanosomiasis, were monitored. The presence of parasites, as well as CD4+ and CD8+ T-cells in the neuropil was assessed over time in the brain of the same animals by immunocytochemistry and quantitative analyses. Trypanosome DNA was present in the brain at day 6 post-infection and increased more than 15-fold by day 21. Parasites and T-cells were observed in the parenchyma from day 9 onwards. Parasites traversing blood vessel walls were observed in the hypothalamus and other brain regions. Body weight gain was reduced from day 7 onwards. SOREM episodes started in most cases early after infection, with an increase in number and duration after parasite neuroinvasion. These findings demonstrate invasion of the neuropil over time, after an initial interval, by parasites and lymphocytes crossing the blood-brain barrier, and show that neurological features can precede this event. The data thus challenge the current clinical and cerebrospinal fluid criteria of disease staging.

  12. Tapeworm Diphyllobothrium dendriticum (Cestoda)-Neglected or Emerging Human Parasite?

    Czech Academy of Sciences Publication Activity Database

    Kuchta, Roman; Brabec, Jan; Kubáčková, P.; Scholz, Tomáš

    2013-01-01

    Roč. 7, č. 12 (2013), e2535 ISSN 1935-2727 R&D Projects: GA ČR GAP506/12/1632 Institutional support: RVO:60077344 Keywords : tapeworm * human disease * cox1 gene Subject RIV: GJ - Animal Vermins ; Diseases, Veterinary Medicine Impact factor: 4.716, year: 2011

  13. Zoonotic gastrointestinal parasite burden of local dogs in Zaria, Northern Nigeria: Implications for human health

    Directory of Open Access Journals (Sweden)

    Christopher I. Ogbaje

    2015-10-01

    Full Text Available Background: Zoonotic gastrointestinal parasites of dogs are of the global problem particularly in the developing countries. Dogs are the most common pet animals worldwide and have been reported to be hosts of many intestinal parasites of zoonotic importance globally. In Nigeria, gastrointestinal helminthes of dogs is currently endemic in 20 of the 36 states. Aim: In general, dogs are the closest animals to humans and for that reason we decided to carry out a survey study to check the incidence of these parasites in dogs and to ascertain the level of environmental contamination in the study area. Materials and Methods: Fecal samples were collected from dog patients presented to small animal clinic of Veterinary Teaching Hospital of Faculty of Veterinary Medicine, Ahmadu Bello University Zaria, dog’s fecal droppings from the streets, and residential Quarters of the University and gastrointestinal tracts (GIT of dogs from dogs slaughtering house at Basawa Barrack, Zaria. Three methods were used in the analysis of the samples; simple flotation, sedimentation, and GIT processing methods within 48 h of collection. Results: Out of 224 samples analyzed 76(33.9% were positive of at least one of the parasites. Of the 101 samples from streets and residential quarters of ABU, Zaria, Isospora spp. 12(11.9% recorded the highest prevalence rate followed by Taenia spp. 6(5.9%, then Toxocara canis, Ancylostoma caninum, and Dipylidium caninum were 5.0%, 4.0%, and 1.0%, respectively. Isospora spp. (19.0% recorded the highest prevalence rate for the 100 samples collected from small animal clinic. Other parasites encountered were T. canis (8.0%, A. caninum (8.0% and Taenia spp. (5.0%. Parasites observed from the 23 gastrointestinal contents from “dog slaughtered houses” were T. canis (17.3%, Isospora spp.(13.1% and A. caninum (4.3. Conclusion: The study revealed that zoonotic gastrointestinal parasites of dogs are endemic in Zaria and the general public in the

  14. Proteins involved in invasion of human red blood cells by malaria parasites

    Directory of Open Access Journals (Sweden)

    Ewa Jaśkiewicz

    2010-11-01

    Full Text Available Malaria is a disease caused by parasites of Plasmodium species. It is responsible for around 1-2 million deaths annually, mainly children under the age of 5. It occurs mainly in tropical and subtropical areas.Malaria is caused by five Plasmodium species:[i] P. falciparum, P. malariae, P. vivax, P. knowlesi[/i] and [i]P. ovale[/i]. Mosquitoes spread the disease by biting humans. The malaria parasite has two stages of development: the human stage and the mosquito stage. The first stage occurs in the human body and is divided into two phases: the liver phase and the blood phase.The invasion of erythrocytes by [i]Plasmodium[/i] merozoites is a multistep process of specific protein interactions between the parasite and red blood cell. The first step is the reversible merozoite attachment to the erythrocyte followed by its apical reorientation, then formation of an irreversible “tight” junction and finally entry into the red cell in a parasitophorous vacuole.The blood phase is supported by a number of proteins produced by the parasite. The merozoite surface GPI-anchored proteins (MSP-1, 2, 4, 5, 8 and 10 assist in the process of recognition of susceptible erythrocytes, apical membrane antigen (AMA-1 may be directly responsible for apical reorientation of the merozoite and apical proteins which function in tight junction formation. These ligands are members of two families: Duffy binding-like (DBL and reticulocyte binding-like (RBL proteins. In [i]Plasmodium[/i] [i]falciparum[/i] the DBL family includes: EBA-175, EBA-140 (BAEBL, EBA-181 (JESEBL, EBA-165 (PEBL and EBL-1 ligands.To date, no effective antimalarial vaccine has been developed, but there are several studies for this purpose. Therefore, it is crucial to understand the molecular basis of host cells invasion by parasites. Major efforts are focused on developing a multiantigenic and multiepitope vaccine preventing all steps of [i]Plasmodium[/i] invasion.

  15. Epidemiology of infections with intestinal parasites and human immunodeficiency virus (HIV) among sugar-estate residents in Ethiopia

    NARCIS (Netherlands)

    Fontanet, A. L.; Sahlu, T.; Rinke de Wit, T.; Messele, T.; Masho, W.; Woldemichael, T.; Yeneneh, H.; Coutinho, R. A.

    2000-01-01

    Intestinal parasitic infections could play an important role in the progression of infection with human immunodeficiency virus (HIV), by further disturbing the immune system whilst it is already engaged in the fight against HIV. HIV and intestinal parasitic infections were investigated in 1239,

  16. Rickettsia species in human-parasitizing ticks in Greece.

    Science.gov (United States)

    Papa, Anna; Xanthopoulou, Kyriaki; Kotriotsiou, Tzimoula; Papaioakim, Miltiadis; Sotiraki, Smaragda; Chaligiannis, Ilias; Maltezos, Efstratios

    2016-05-01

    Ticks serve as vectors and reservoirs for a variety of bacterial, viral and protozoan pathogens affecting humans and animals. Unusual increased tick aggressiveness was observed in 2008-2009 in northeastern Greece. The aim of the study was to check ticks removed from persons during 2009 for infection with Rickettsia species. A total of 159 ticks were removed from 147 persons who sought medical advice in a hospital. Tick identification was performed morphologically using taxonomic keys. DNA was extracted from each individual tick and a PCR assay targeting the rickettsial outer membrane protein A gene of Rickettsia spp. was applied. Most of the adult ticks (132/153, 86.3%) were Rhipicephalus sanguineus. Rickettsiae were detected in 23 of the 153 (15.0%) adult ticks. Five Rickettsiae species were identified: R. aeschlimannii, R. africae (n=6), R. massilae (4), R. monacensis (1), and Candidatus R. barbariae (1). To our knowledge, this is the first report of R. africae, R. monacensis, and Candidatus R. barbariae in Greece. Several Rickettsia species were identified in ticks removed from humans in Greece, including those that are prevalent in northern and southern latitudes. © The Author 2016. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Recognition of Human Erythrocyte Receptors by the Tryptophan-Rich Antigens of Monkey Malaria Parasite Plasmodium knowlesi.

    Directory of Open Access Journals (Sweden)

    Kriti Tyagi

    Full Text Available The monkey malaria parasite Plasmodium knowlesi also infect humans. There is a lack of information on the molecular mechanisms that take place between this simian parasite and its heterologous human host erythrocytes leading to this zoonotic disease. Therefore, we investigated here the binding ability of P. knowlesi tryptophan-rich antigens (PkTRAgs to the human erythrocytes and sharing of the erythrocyte receptors between them as well as with other commonly occurring human malaria parasites.Six PkTRAgs were cloned and expressed in E.coli as well as in mammalian CHO-K1 cell to determine their human erythrocyte binding activity by cell-ELISA, and in-vitro rosetting assay, respectively.Three of six PkTRAgs (PkTRAg38.3, PkTRAg40.1, and PkTRAg67.1 showed binding to human erythrocytes. Two of them (PkTRAg40.1 and PkTRAg38.3 showed cross-competition with each other as well as with the previously described P.vivax tryptophan-rich antigens (PvTRAgs for human erythrocyte receptors. However, the third protein (PkTRAg67.1 utilized the additional but different human erythrocyte receptor(s as it did not cross-compete for erythrocyte binding with either of these two PkTRAgs as well as with any of the PvTRAgs. These three PkTRAgs also inhibited the P.falciparum parasite growth in in-vitro culture, further indicating the sharing of human erythrocyte receptors by these parasite species and the biological significance of this receptor-ligand interaction between heterologous host and simian parasite.Recognition and sharing of human erythrocyte receptor(s by PkTRAgs with human parasite ligands could be part of the strategy adopted by the monkey malaria parasite to establish inside the heterologous human host.

  18. Recognition of Human Erythrocyte Receptors by the Tryptophan-Rich Antigens of Monkey Malaria Parasite Plasmodium knowlesi.

    Science.gov (United States)

    Tyagi, Kriti; Gupta, Deepali; Saini, Ekta; Choudhary, Shilpa; Jamwal, Abhishek; Alam, Mohd Shoeb; Zeeshan, Mohammad; Tyagi, Rupesh K; Sharma, Yagya D

    2015-01-01

    The monkey malaria parasite Plasmodium knowlesi also infect humans. There is a lack of information on the molecular mechanisms that take place between this simian parasite and its heterologous human host erythrocytes leading to this zoonotic disease. Therefore, we investigated here the binding ability of P. knowlesi tryptophan-rich antigens (PkTRAgs) to the human erythrocytes and sharing of the erythrocyte receptors between them as well as with other commonly occurring human malaria parasites. Six PkTRAgs were cloned and expressed in E.coli as well as in mammalian CHO-K1 cell to determine their human erythrocyte binding activity by cell-ELISA, and in-vitro rosetting assay, respectively. Three of six PkTRAgs (PkTRAg38.3, PkTRAg40.1, and PkTRAg67.1) showed binding to human erythrocytes. Two of them (PkTRAg40.1 and PkTRAg38.3) showed cross-competition with each other as well as with the previously described P.vivax tryptophan-rich antigens (PvTRAgs) for human erythrocyte receptors. However, the third protein (PkTRAg67.1) utilized the additional but different human erythrocyte receptor(s) as it did not cross-compete for erythrocyte binding with either of these two PkTRAgs as well as with any of the PvTRAgs. These three PkTRAgs also inhibited the P.falciparum parasite growth in in-vitro culture, further indicating the sharing of human erythrocyte receptors by these parasite species and the biological significance of this receptor-ligand interaction between heterologous host and simian parasite. Recognition and sharing of human erythrocyte receptor(s) by PkTRAgs with human parasite ligands could be part of the strategy adopted by the monkey malaria parasite to establish inside the heterologous human host.

  19. Medicinal Plants: A Source of Anti-Parasitic Secondary Metabolites

    Directory of Open Access Journals (Sweden)

    Michael Wink

    2012-10-01

    Full Text Available This review summarizes human infections caused by endoparasites, including protozoa, nematodes, trematodes, and cestodes, which affect more than 30% of the human population, and medicinal plants of potential use in their treatment. Because vaccinations do not work in most instances and the parasites have sometimes become resistant to the available synthetic therapeutics, it is important to search for alternative sources of anti-parasitic drugs. Plants produce a high diversity of secondary metabolites with interesting biological activities, such as cytotoxic, anti-parasitic and anti-microbial properties. These drugs often interfere with central targets in parasites, such as DNA (intercalation, alkylation, membrane integrity, microtubules and neuronal signal transduction. Plant extracts and isolated secondary metabolites which can inhibit protozoan parasites, such as Plasmodium, Trypanosoma, Leishmania, Trichomonas and intestinal worms are discussed. The identified plants and compounds offer a chance to develop new drugs against parasitic diseases. Most of them need to be tested in more detail, especially in animal models and if successful, in clinical trials.

  20. Adhesion of Trypanosoma cruzi trypomastigotes to fibronectin or laminin modifies tubulin and paraflagellar rod protein phosphorylation.

    Directory of Open Access Journals (Sweden)

    Eliciane C Mattos

    Full Text Available BACKGROUND: The unicellular parasite Trypanosoma cruzi is the causative agent of Chagaś disease in humans. Adherence of the infective stage to elements of the extracellular matrix (ECM, as laminin and fibronectin, is an essential step in host cell invasion. Although members of the gp85/TS, as Tc85, were identified as laminin and fibronectin ligands, the signaling events triggered on the parasite upon binding to these molecules are largely unexplored. METHODOLOGY/PRINCIPAL FINDINGS: Viable infective parasites were incubated with laminin, fibronectin or bovine serum albumin for different periods of time and the proteins were separated by bidimensional gels. The phosphoproteins were envisaged by specific staining and the spots showing phosphorylation levels significantly different from the control were excised and identified by MS/MS. The results of interest were confirmed by immunoblotting or immunoprecipitation and the localization of proteins in the parasite was determined by immunofluorescence. Using a host cell-free system, our data indicate that the phosphorylation contents of T. cruzi proteins encompassing different cellular functions are modified upon incubation of the parasite with fibronectin or laminin. CONCLUSIONS/SIGNIFICANCE: Herein it is shown, for the first time, that paraflagellar rod proteins and α-tubulin, major structural elements of the parasite cytoskeleton, are predominantly dephosphorylated during the process, probably involving the ERK1/2 pathway. It is well established that T. cruzi binds to ECM elements during the cell infection process. The fact that laminin and fibronectin induce predominantly dephosphorylation of the main cytoskeletal proteins of the parasite suggests a possible correlation between cytoskeletal modifications and the ability of the parasite to internalize into host cells.

  1. Hemoglobin is a co-factor of human trypanosome lytic factor

    DEFF Research Database (Denmark)

    Widener, Justin; Nielsen, Marianne Jensby; Shiflett, April

    2007-01-01

    Trypanosome lytic factor (TLF) is a high-density lipoprotein (HDL) subclass providing innate protection to humans against infection by the protozoan parasite Trypanosoma brucei brucei. Two primate-specific plasma proteins, haptoglobin-related protein (Hpr) and apolipoprotein L-1 (ApoL-1), have be...

  2. Trypanosoma brucei gambiense: HMI-9 medium containing methylcellulose and human serum supports the continuous axenic in vitro propagation of the bloodstream form.

    Science.gov (United States)

    Van Reet, N; Pyana, P P; Deborggraeve, S; Büscher, P; Claes, F

    2011-07-01

    Trypanosoma brucei (T.b.) gambiense causes the chronic form of human African trypanosomiasis or sleeping sickness. One of the major problems with studying T.b. gambiense is the difficulty to isolate it from its original host and the difficult adaptation to in vivo and in vitro mass propagation. The objective of this study was to evaluate if an established method for axenic culture of pleomorphic bloodstream form T.b. brucei strains, based on methylcellulose containing HMI-9 medium, also facilitated the continuous in vitro propagation of other bloodstream form Trypanozoon strains, in particular of T.b. gambiense. Bloodstream form trypanosomes from one T.b. brucei, two T.b. rhodesiense, one T. evansi and seven T.b. gambiense strains were isolated from mouse blood and each was concurrently cultivated in liquid and methylcellulose-containing HMI-9 based medium, either with or without additional human serum supplementation, for over 10 consecutive sub passages. Although HMI-9 based medium supplemented with 1.1% (w/v) methylcellulose supported the continuous cultivation of all non-gambiense strains better than liquid media could, the in vitro cultivation of all gambiense strains was only achieved in HMI-9 based medium containing 1.1% (w/v) methylcellulose, 15% (v/v) fetal calf serum and 5% (v/v) heat-inactivated human serum. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Human parasitic meningitis caused by Angiostrongylus cantonensis infection in Taiwan.

    Science.gov (United States)

    Tsai, Hung-Chin; Chen, Yao-Shen; Yen, Chuan-Min

    2013-06-01

    The major cause of eosinophilic meningitis in Taiwan is Angiostrongylus cantonensis. Humans are infected by ingesting terrestrial and freshwater snails and slugs. In 1998 and 1999, two outbreaks of eosinophilic meningitis caused by A. cantonensis infection were reported among 17 adult male immigrant Thai laborers who had eaten raw golden apple snails (Pomacea canaliculata). Another outbreak associated with consuming a health drink consisting of raw vegetable juice was reported in 2001. These adult cases differed from reports in the 1970s and 1980s, in which most of the cases were in children. With improvements in public health and education of foreign laborers, there have since been only sporadic cases in Taiwan. Review of clinical research indicates inconsistent association of Magnetic Resonance Imaging (MRI) results with clinical features of eosinophilic meningitis. MRI features were nonspecific but there was an association between the presence of high brain MRI signal intensities and severity of peripheral and cerebrospinal fluid (CSF) eosinophilia. Inflammatory markers have been identified in the CSF of patients with eosinophilic meningitis caused by A. cantonensis infection, and vascular endothelial growth factor (VEGF), hepatocyte growth factor (HGF), and the matrix metalloproteinase system may be associated with blood-brain barrier disruption. Eosinophilic meningitis caused by A. cantonensis infection is not a reportable disease in Taiwan. It is important that a public advisory and education program be developed to reduce future accidental infection.

  4. Clinical Correlates of Diarrhea and Gut Parasites among Human Immunodeficiency Virus Seropositive Patients

    Directory of Open Access Journals (Sweden)

    Elvis Bisong

    2017-09-01

    Full Text Available Cluster differentiation 4 (CD4 count estimation, which is not readily available in most resource poor settings in Nigeria, is an important indexdetermining commencement of antiretroviral therapy (ART. It is imperative for physicians who come in contact with these patients in such settings to recognize other parameters to evaluate these patients. The clinical correlates of diarrhea and gut parasites among human immunodeficiency virus (HIV-seropositive patients attending our special treatment clinic were studied. Three hundred and forty consenting HIV-positive adult subjects were enrolled. Their stool and blood specimens were collected for a period of three months. Stool samples were analyzed for the presence of diarrhea and gut parasites. The patients were clinically evaluated by physical examination for the presence of pallor, dehydration, oral thrush, wasting lymphadenopathy, dermatitis, skin hyperpigmentation, and finger clubbing. Participants with diarrhea represented 14.1% of the population, while 21.5% harbored one or more parasites. In the subjects with diarrhea, 14.6% harbored gut parasites. The presence of diarrhea was associated with a low CD4 count. Clinically, oral thrush, wasting, and rashes were more reliable predictors of low CD4 count levels; whereas, the presence of pallor, dehydration, wasting, and rashes correlated with the presence of diarrhea. HIV patients presenting with pallor, dehydration, wasting, and rashes should be evaluated for the presence of diarrhea. The clinical variables associated with low CD4 count in this study may guide commencing antiretroviral therapy in resource poor settings.

  5. The Oral Antimalarial Drug Tafenoquine Shows Activity against Trypanosoma brucei.

    Science.gov (United States)

    Carvalho, Luis; Martínez-García, Marta; Pérez-Victoria, Ignacio; Manzano, José Ignacio; Yardley, Vanessa; Gamarro, Francisco; Pérez-Victoria, José M

    2015-10-01

    The protozoan parasite Trypanosoma brucei causes human African trypanosomiasis, or sleeping sickness, a neglected tropical disease that requires new, safer, and more effective treatments. Repurposing oral drugs could reduce both the time and cost involved in sleeping sickness drug discovery. Tafenoquine (TFQ) is an oral antimalarial drug belonging to the 8-aminoquinoline family which is currently in clinical phase III. We show here that TFQ efficiently kills different T. brucei spp. in the submicromolar concentration range. Our results suggest that TFQ accumulates into acidic compartments and induces a necrotic process involving cell membrane disintegration and loss of cytoplasmic content, leading to parasite death. Cell lysis is preceded by a wide and multitarget drug action, affecting the lysosome, mitochondria, and acidocalcisomes and inducing a depolarization of the mitochondrial membrane potential, elevation of intracellular Ca(2+), and production of reactive oxygen species. This is the first report of an 8-aminoquinoline demonstrating significant in vitro activity against T. brucei. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  6. Phenolic Constituents of Medicinal Plants with Activity against Trypanosoma brucei

    Directory of Open Access Journals (Sweden)

    Ya Nan Sun

    2016-04-01

    Full Text Available Neglected tropical diseases (NTDs affect over one billion people all over the world. These diseases are classified as neglected because they impact populations in areas with poor financial conditions and hence do not attract sufficient research investment. Human African Trypanosomiasis (HAT or sleeping sickness, caused by the parasite Trypanosoma brucei, is one of the NTDs. The current therapeutic interventions for T. brucei infections often have toxic side effects or require hospitalization so that they are not available in the rural environments where HAT occurs. Furthermore, parasite resistance is increasing, so that there is an urgent need to identify novel lead compounds against this infection. Recognizing the wide structural diversity of natural products, we desired to explore and identify novel antitrypanosomal chemotypes from a collection of natural products obtained from plants. In this study, 440 pure compounds from various medicinal plants were tested against T. brucei by in a screening using whole cell in vitro assays. As the result, twenty-two phenolic compounds exhibited potent activity against cultures of T. brucei. Among them, eight compounds—4, 7, 11, 14, 15, 18, 20, and 21—showed inhibitory activity against T. brucei, with IC50 values below 5 µM, ranging from 0.52 to 4.70 μM. Based on these results, we attempt to establish some general trends with respect to structure-activity relationships, which indicate that further investigation and optimization of these derivatives might enable the preparation of potentially useful compounds for treating HAT.

  7. Dichotomy in the human CD4+ T-cell response to Leishmania parasites

    DEFF Research Database (Denmark)

    Kemp, M; Kurtzhals, J A; Kharazmi, A

    1994-01-01

    Leishmania parasites cause human diseases ranging from self-healing cutaneous ulcers to fatal systemic infections. In addition, many individuals become infected without developing disease. In mice the two subsets of CD4+ T cells, Th1 and Th2, have different effects on the outcome of experimental...... in humans, and that the balance between subsets of parasite-specific T cells may play an important regulatory role in determining the outcome of the infections....

  8. Parasitic Zoonoses in Humans and Their Dogs from a Rural Community of Tropical Mexico

    Directory of Open Access Journals (Sweden)

    Antonio Ortega-Pacheco

    2015-01-01

    Full Text Available A cross-sectional study was made on 89 inhabitants and their dogs from a rural community of Yucatan, Mexico, to determine the serological prevalence of some zoonotic parasitic agents. Samples were taken to monitor the presence and intensity of infection with gastrointestinal parasites in dogs. In humans, the serological prevalence of T. canis, T. gondii, and T. spiralis was 29.2%, 91.0%, and 6.7%, respectively. No associations were found between positive cases and studied variables. From the total of blood samples taken from dogs, 87 (97.6% were seropositive to T. gondii; only 52 viable fecal samples were collected from dogs of which 46.2% had the presence of gastrointestinal parasites with low to moderate intensity; from those, 12% had the presence of T. canis. This study demonstrates the presence of the studied zoonotic agents in the area particularly T. gondii which suggest a common source of infection in dogs and humans and a high number of oocyts present in the environment. Preventive measures must be designed towards good prophylactic practices in domestic and backyard animals (T. canis and T. spiralis. Contaminated sources with T. gondii (food and water should be further investigated in order to design effective control measures.

  9. Trypanosoma sp. diversity in Amazonian bats (Chiroptera; Mammalia) from Acre State, Brazil.

    Science.gov (United States)

    Dos Santos, Francisco C B; Lisboa, Cristiane V; Xavier, Samanta C C; Dario, Maria A; Verde, Rair de S; Calouro, Armando M; Roque, André Luiz R; Jansen, Ana M

    2017-11-16

    Bats are ancient hosts of Trypanosoma species and their flying ability, longevity and adaptability to distinct environments indicate that they are efficient dispersers of parasites. Bats from Acre state (Amazon Biome) were collected in four expeditions conducted in an urban forest (Parque Zoobotânico) and one relatively more preserved area (Seringal Cahoeira) in Rio Branco and Xapuri municipalities. Trypanosoma sp. infection was detected by hemoculture and fresh blood examination. Isolated parasite species were identified by the similarity of the obtained DNA sequence from 18S rDNA polymerase chain reaction and reference strains. Overall, 367 bats from 23 genera and 32 species were examined. Chiropterofauna composition was specific to each municipality, although Artibeus sp. and Carollia sp. prevailed throughout. Trypanosoma sp. infection was detected in 85 bats (23·2%). The most widely distributed and prevalent genotypes were (in order) Trypanosoma cruzi TcI, T. cruzi marinkellei, Trypanosoma dionisii, T. cruzi TcIV and Trypanosoma rangeli. At least one still-undescribed Trypanosoma species was also detected in this study. The detection of T. cruzi TcI and TcIV (the ones associated with Chagas disease in Amazon biome) demonstrates the putative importance of these mammal hosts in the epidemiology of the disease in the Acre State.

  10. Transcriptionally Driven DNA Replication Program of the Human Parasite Leishmania major

    Directory of Open Access Journals (Sweden)

    Rodrigo Lombraña

    2016-08-01

    Full Text Available Faithful inheritance of eukaryotic genomes requires the orchestrated activation of multiple DNA replication origins (ORIs. Although origin firing is mechanistically conserved, how origins are specified and selected for activation varies across different model systems. Here, we provide a complete analysis of the nucleosomal landscape and replication program of the human parasite Leishmania major, building on a better evolutionary understanding of replication organization in Eukarya. We found that active transcription is a driving force for the nucleosomal organization of the L. major genome and that both the spatial and the temporal program of DNA replication can be explained as associated to RNA polymerase kinetics. This simple scenario likely provides flexibility and robustness to deal with the environmental changes that impose alterations in the genetic programs during parasitic life cycle stages. Our findings also suggest that coupling replication initiation to transcription elongation could be an ancient solution used by eukaryotic cells for origin maintenance.

  11. Trypanosoma brucei gambiense group 1 is distinguished by a unique amino acid substitution in the HpHb receptor implicated in human serum resistance.

    Directory of Open Access Journals (Sweden)

    Rebecca E Symula

    Full Text Available Trypanosoma brucei rhodesiense (Tbr and T. b. gambiense (Tbg, causative agents of Human African Trypanosomiasis (sleeping sickness in Africa, have evolved alternative mechanisms of resisting the activity of trypanosome lytic factors (TLFs, components of innate immunity in human serum that protect against infection by other African trypanosomes. In Tbr, lytic activity is suppressed by the Tbr-specific serum-resistance associated (SRA protein. The mechanism in Tbg is less well understood but has been hypothesized to involve altered activity and expression of haptoglobin haemoglobin receptor (HpHbR. HpHbR has been shown to facilitate internalization of TLF-1 in T.b. brucei (Tbb, a member of the T. brucei species complex that is susceptible to human serum. By evaluating the genetic variability of HpHbR in a comprehensive geographical and taxonomic context, we show that a single substitution that replaces leucine with serine at position 210 is conserved in the most widespread form of Tbg (Tbg group 1 and not found in related taxa, which are either human serum susceptible (Tbb or known to resist lysis via an alternative mechanism (Tbr and Tbg group 2. We hypothesize that this single substitution contributes to reduced uptake of TLF and thus may play a key role in conferring serum resistance to Tbg group 1. In contrast, similarity in HpHbR sequence among isolates of Tbg group 2 and Tbb/Tbr provides further evidence that human serum resistance in Tbg group 2 is likely independent of HpHbR function.

  12. First record of Trypanosoma chattoni in Brazil and occurrence of other Trypanosoma species in Brazilian frogs (Anura, Leptodactylidae).

    Science.gov (United States)

    Lemos, M; Morais, D H; Carvalho, V T; D'Agosto, M

    2008-02-01

    The present study provides the first record of Trypanosoma chattoni Mathis and Leger, 1911, in a new host, Leptodactylus fuscus Schneider, 1799 (Anura, Leptodactylidae), and the occurrence of Trypanosoma rotatorium-like species in Leptodactylus chaquensis Cei, 1950. The anurans were captured in the State of Mato Grosso, Brazil. Blood samples were obtained by cardiac puncture, and blood smears were examined for the presence of hemoparasites. The Trypanosoma rotatorium-like species in this study refers to a short-bodied trypomastigote that has a conspicuous undulating membrane but lacks a free flagellum; T. chattoni refers to a monomorphic parasite that has a rounded body, a kinetoplast adjacent to the nucleus, and a short flagellum.

  13. The prevalence and diversity of intestinal parasitic infections in humans and domestic animals in a rural Cambodian village.

    Science.gov (United States)

    Schär, Fabian; Inpankaew, Tawin; Traub, Rebecca J; Khieu, Virak; Dalsgaard, Anders; Chimnoi, Wissanuwat; Chhoun, Chamnan; Sok, Daream; Marti, Hanspeter; Muth, Sinuon; Odermatt, Peter

    2014-08-01

    In Cambodia, intestinal parasitic infections are prevalent in humans and particularly in children. Yet, information on potentially zoonotic parasites in animal reservoir hosts is lacking. In May 2012, faecal samples from 218 humans, 94 dogs and 76 pigs were collected from 67 households in Dong village, Preah Vihear province, Cambodia. Faecal samples were examined microscopically using sodium nitrate and zinc sulphate flotation methods, the Baermann method, Koga Agar plate culture, formalin-ether concentration technique and Kato Katz technique. PCR was used to confirm hookworm, Ascaris spp., Giardia spp. and Blastocystis spp. Major gastrointestinal parasitic infections found in humans included hookworms (63.3%), Entamoeba spp. (27.1%) and Strongyloides stercoralis (24.3%). In dogs, hookworm (80.8%), Spirometra spp. (21.3%) and Strongyloides spp. (14.9%) were most commonly detected and in pigs Isospora suis (75.0%), Oesophagostomum spp. (73.7%) and Entamoeba spp. (31.6%) were found. Eleven parasite species were detected in dogs (eight helminths and three protozoa), seven of which have zoonotic potential, including hookworm, Strongyloides spp., Trichuris spp., Toxocara canis, Echinostoma spp., Giardia duodenalis and Entamoeba spp. Five of the parasite species detected in pigs also have zoonotic potential, including Ascaris spp., Trichuris spp., Capillaria spp., Balantidium coli and Entamoeba spp. Further molecular epidemiological studies will aid characterisation of parasite species and genotypes and allow further insight into the potential for zoonotic cross transmission of parasites in this community. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  14. Regulation and spatial organization of PCNA in Trypanosoma brucei

    International Nuclear Information System (INIS)

    Kaufmann, Doris; Gassen, Alwine; Maiser, Andreas; Leonhardt, Heinrich; Janzen, Christian J.

    2012-01-01

    Highlights: ► Characterization of the proliferating cell nuclear antigen in Trypanosoma brucei (TbPCNA). ► TbPCNA is a suitable marker to detect replication in T. brucei. ► TbPCNA distribution and regulation is different compared to closely related parasites T. cruzi and Leishmania donovani. -- Abstract: As in most eukaryotic cells, replication is regulated by a conserved group of proteins in the early-diverged parasite Trypanosoma brucei. Only a few components of the replication machinery have been described in this parasite and regulation, sub-nuclear localization and timing of replication are not well understood. We characterized the proliferating cell nuclear antigen in T. brucei (TbPCNA) to establish a spatial and temporal marker for replication. Interestingly, PCNA distribution and regulation is different compared to the closely related parasites Trypanosoma cruzi and Leishmania donovani. TbPCNA foci are clearly detectable during S phase of the cell cycle but in contrast to T. cruzi they are not preferentially located at the nuclear periphery. Furthermore, PCNA seems to be degraded when cells enter G2 phase in T. brucei suggesting different modes of replication regulation or functions of PCNA in these closely related eukaryotes.

  15. Regulation and spatial organization of PCNA in Trypanosoma brucei

    Energy Technology Data Exchange (ETDEWEB)

    Kaufmann, Doris; Gassen, Alwine [University of Munich (LMU), Department Biology I, Genetics, Grosshaderner Str. 2-4, 82152 Martinsried (Germany); Maiser, Andreas; Leonhardt, Heinrich [University of Munich (LMU), Department Biology II, Grosshaderner Str. 2-4, 82152 Martinsried (Germany); Janzen, Christian J., E-mail: christian.janzen@uni-wuerzburg.de [University of Munich (LMU), Department Biology I, Genetics, Grosshaderner Str. 2-4, 82152 Martinsried (Germany)

    2012-03-23

    Highlights: Black-Right-Pointing-Pointer Characterization of the proliferating cell nuclear antigen in Trypanosoma brucei (TbPCNA). Black-Right-Pointing-Pointer TbPCNA is a suitable marker to detect replication in T. brucei. Black-Right-Pointing-Pointer TbPCNA distribution and regulation is different compared to closely related parasites T. cruzi and Leishmania donovani. -- Abstract: As in most eukaryotic cells, replication is regulated by a conserved group of proteins in the early-diverged parasite Trypanosoma brucei. Only a few components of the replication machinery have been described in this parasite and regulation, sub-nuclear localization and timing of replication are not well understood. We characterized the proliferating cell nuclear antigen in T. brucei (TbPCNA) to establish a spatial and temporal marker for replication. Interestingly, PCNA distribution and regulation is different compared to the closely related parasites Trypanosoma cruzi and Leishmania donovani. TbPCNA foci are clearly detectable during S phase of the cell cycle but in contrast to T. cruzi they are not preferentially located at the nuclear periphery. Furthermore, PCNA seems to be degraded when cells enter G2 phase in T. brucei suggesting different modes of replication regulation or functions of PCNA in these closely related eukaryotes.

  16. Multiple evolutionary origins of Trypanosoma evansi in Kenya.

    Directory of Open Access Journals (Sweden)

    Christine M Kamidi

    2017-09-01

    Full Text Available Trypanosoma evansi is the parasite causing surra, a form of trypanosomiasis in camels and other livestock, and a serious economic burden in Kenya and many other parts of the world. Trypanosoma evansi transmission can be sustained mechanically by tabanid and Stomoxys biting flies, whereas the closely related African trypanosomes T. brucei brucei and T. b. rhodesiense require cyclical development in tsetse flies (genus Glossina for transmission. In this study, we investigated the evolutionary origins of T. evansi. We used 15 polymorphic microsatellites to quantify levels and patterns of genetic diversity among 41 T. evansi isolates and 66 isolates of T. b. brucei (n = 51 and T. b. rhodesiense (n = 15, including many from Kenya, a region where T. evansi may have evolved from T. brucei. We found that T. evansi strains belong to at least two distinct T. brucei genetic units and contain genetic diversity that is similar to that in T. brucei strains. Results indicated that the 41 T. evansi isolates originated from multiple T. brucei strains from different genetic backgrounds, implying independent origins of T. evansi from T. brucei strains. This surprising finding further suggested that the acquisition of the ability of T. evansi to be transmitted mechanically, and thus the ability to escape the obligate link with the African tsetse fly vector, has occurred repeatedly. These findings, if confirmed, have epidemiological implications, as T. brucei strains from different genetic backgrounds can become either causative agents of a dangerous, cosmopolitan livestock disease or of a lethal human disease, like for T. b. rhodesiense.

  17. Species-specific escape of Plasmodium sporozoites from oocysts of avian, rodent, and human malarial parasites.

    Science.gov (United States)

    Orfano, Alessandra S; Nacif-Pimenta, Rafael; Duarte, Ana P M; Villegas, Luis M; Rodrigues, Nilton B; Pinto, Luciana C; Campos, Keillen M M; Pinilla, Yudi T; Chaves, Bárbara; Barbosa Guerra, Maria G V; Monteiro, Wuelton M; Smith, Ryan C; Molina-Cruz, Alvaro; Lacerda, Marcus V G; Secundino, Nágila F C; Jacobs-Lorena, Marcelo; Barillas-Mury, Carolina; Pimenta, Paulo F P

    2016-08-02

    Malaria is transmitted when an infected mosquito delivers Plasmodium sporozoites into a vertebrate host. There are many species of Plasmodium and, in general, the infection is host-specific. For example, Plasmodium gallinaceum is an avian parasite, while Plasmodium berghei infects mice. These two parasites have been extensively used as experimental models of malaria transmission. Plasmodium falciparum and Plasmodium vivax are the most important agents of human malaria, a life-threatening disease of global importance. To complete their life cycle, Plasmodium parasites must traverse the mosquito midgut and form an oocyst that will divide continuously. Mature oocysts release thousands of sporozoites into the mosquito haemolymph that must reach the salivary gland to infect a new vertebrate host. The current understanding of the biology of oocyst formation and sporozoite release is mostly based on experimental infections with P. berghei, and the conclusions are generalized to other Plasmodium species that infect humans without further morphological analyses. Here, it is described the microanatomy of sporozoite escape from oocysts of four Plasmodium species: the two laboratory models, P. gallinaceum and P. berghei, and the two main species that cause malaria in humans, P. vivax and P. falciparum. It was found that sporozoites have species-specific mechanisms of escape from the oocyst. The two model species of Plasmodium had a common mechanism, in which the oocyst wall breaks down before sporozoites emerge. In contrast, P. vivax and P. falciparum sporozoites show a dynamic escape mechanism from the oocyst via polarized propulsion. This study demonstrated that Plasmodium species do not share a common mechanism of sporozoite escape, as previously thought, but show complex and species-specific mechanisms. In addition, the knowledge of this phenomenon in human Plasmodium can facilitate transmission-blocking studies and not those ones only based on the murine and avian models.

  18. Isothermal microcalorimetry, a new tool to monitor drug action against Trypanosoma brucei and Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    Tanja Wenzler

    Full Text Available Isothermal microcalorimetry is an established tool to measure heat flow of physical, chemical or biological processes. The metabolism of viable cells produces heat, and if sufficient cells are present, their heat production can be assessed by this method. In this study, we investigated the heat flow of two medically important protozoans, Trypanosoma brucei rhodesiense and Plasmodium falciparum. Heat flow signals obtained for these pathogens allowed us to monitor parasite growth on a real-time basis as the signals correlated with the number of viable cells. To showcase the potential of microcalorimetry for measuring drug action on pathogenic organisms, we tested the method with three antitrypanosomal drugs, melarsoprol, suramin and pentamidine and three antiplasmodial drugs, chloroquine, artemether and dihydroartemisinin, each at two concentrations on the respective parasite. With the real time measurement, inhibition was observed immediately by a reduced heat flow compared to that in untreated control samples. The onset of drug action, the degree of inhibition and the time to death of the parasite culture could conveniently be monitored over several days. Microcalorimetry is a valuable element to be added to the toolbox for drug discovery for protozoal diseases such as human African trypanosomiasis and malaria. The method could probably be adapted to other protozoan parasites, especially those growing extracellularly.

  19. CD8+ T Cell-Mediated Immunity during Trypanosoma cruzi Infection: A Path for Vaccine Development?

    Directory of Open Access Journals (Sweden)

    Fernando dos Santos Virgilio

    2014-01-01

    Full Text Available MHC-restricted CD8+ T cells are important during infection with the intracellular protozoan parasite Trypanosoma cruzi, the causative agent of Chagas disease. Experimental studies performed in the past 25 years have elucidated a number of features related to the immune response mediated by these T cells, which are important for establishing the parasite/host equilibrium leading to chronic infection. CD8+ T cells are specific for highly immunodominant antigens expressed by members of the trans-sialidase family. After infection, their activation is delayed, and the cells display a high proliferative activity associated with high apoptotic rates. Although they participate in parasite control and elimination, they are unable to clear the infection due to their low fitness, allowing the parasite to establish the chronic phase when these cells then play an active role in the induction of heart immunopathology. Vaccination with a number of subunit recombinant vaccines aimed at eliciting specific CD8+ T cells can reverse this path, thereby generating a productive immune response that will lead to the control of infection, reduction of symptoms, and reduction of disease transmission. Due to these attributes, activation of CD8+ T lymphocytes may constitute a path for the development of a veterinarian or human vaccine.

  20. Look what the cat dragged in: do parasites contribute to human cultural diversity?

    Science.gov (United States)

    Lafferty, Kevin D.

    2005-01-01

    If human culture emerges from the modal personality of a population, can global variation in parasitism that affects personality lead to cultural diversity among nations? The answer could help explain why people seem to vary so much from one land to another. Thomas et al. (2005) review how parasites manipulate behaviour, including human behaviour. To quote them, “The rabies virus lives in the brain, affording the virus ample opportunity to directly affect host behaviour. Rabid animals do show changes in behaviour, including increased aggression and biting.” Rabies affects a wide range of mammals and the aggressive biting associated with furious rabies appears to increase transmission. The personality transformation of infected humans can be horrifying, transforming loved ones into thrashing, baying beasts. Not coincidentally, in Europe, past periods of rabies outbreaks correspond to increases in werewolf trials. Although rabies can have a dramatic effect, the present rarity of human rabies cases and the availability of a vaccine, means that the behavioural effects of rabies are primarily an illustrative curiosity.

  1. Flagellar Motility of Trypanosoma cruzi Epimastigotes

    Directory of Open Access Journals (Sweden)

    G. Ballesteros-Rodea

    2012-01-01

    Full Text Available The hemoflagellate Trypanosoma cruzi is the causative agent of American trypanosomiasis. Despite the importance of motility in the parasite life cycle, little is known about T. cruzi motility, and there is no quantitative description of its flagellar beating. Using video microscopy and quantitative vectorial analysis of epimastigote trajectories, we find a forward parasite motility defined by tip-to-base symmetrical flagellar beats. This motion is occasionally interrupted by base-to-tip highly asymmetric beats, which represent the ciliary beat of trypanosomatid flagella. The switch between flagellar and ciliary beating facilitates the parasite's reorientation, which produces a large variability of movement and trajectories that results in different distance ranges traveled by the cells. An analysis of the distance, speed, and rotational angle indicates that epimastigote movement is not completely random, and the phenomenon is highly dependent on the parasite behavior and is characterized by directed and tumbling parasite motion as well as their combination, resulting in the alternation of rectilinear and intricate motility paths.

  2. The Clp Chaperones and Proteases of the Human Malaria Parasite Plasmodium falciparum

    Energy Technology Data Exchange (ETDEWEB)

    Bakkouri, Majida El; Pow, Andre; Mulichak, Anne; Cheung, Kevin L.Y.; Artz, Jennifer D.; Amani, Mehrnaz; Fell, Stuart; de Koning-Ward, Tania F.; Goodman, C. Dean; McFadden, Geoffrey I.; Ortega, Joaquin; Hui, Raymond; Houry, Walid A. (McMaster U.); (Melbourne); (Toronto); (Deakin); (HWMRI)

    2015-02-09

    The Clp chaperones and proteases play an important role in protein homeostasis in the cell. They are highly conserved across prokaryotes and found also in the mitochondria of eukaryotes and the chloroplasts of plants. They function mainly in the disaggregation, unfolding and degradation of native as well as misfolded proteins. Here, we provide a comprehensive analysis of the Clp chaperones and proteases in the human malaria parasite Plasmodium falciparum. The parasite contains four Clp ATPases, which we term PfClpB1, PfClpB2, PfClpC and PfClpM. One PfClpP, the proteolytic subunit, and one PfClpR, which is an inactive version of the protease, were also identified. Expression of all Clp chaperones and proteases was confirmed in blood-stage parasites. The proteins were localized to the apicoplast, a non-photosynthetic organelle that accommodates several important metabolic pathways in P. falciparum, with the exception of PfClpB2 (also known as Hsp101), which was found in the parasitophorous vacuole. Both PfClpP and PfClpR form mostly homoheptameric rings as observed by size-exclusion chromatography, analytical ultracentrifugation and electron microscopy. The X-ray structure of PfClpP showed the protein as a compacted tetradecamer similar to that observed for Streptococcus pneumoniae and Mycobacterium tuberculosis ClpPs. Our data suggest the presence of a ClpCRP complex in the apicoplast of P. falciparum.

  3. Natural infection of Plasmodium brasilianum in humans: Man and monkey share quartan malaria parasites in the Venezuelan Amazon.

    Science.gov (United States)

    Lalremruata, Albert; Magris, Magda; Vivas-Martínez, Sarai; Koehler, Maike; Esen, Meral; Kempaiah, Prakasha; Jeyaraj, Sankarganesh; Perkins, Douglas Jay; Mordmüller, Benjamin; Metzger, Wolfram G

    2015-09-01

    The quartan malaria parasite Plasmodium malariae is the widest spread and best adapted human malaria parasite. The simian Plasmodium brasilianum causes quartan fever in New World monkeys and resembles P. malariae morphologically. Since the genetics of the two parasites are nearly identical, differing only in a range of mutations expected within a species, it has long been speculated that the two are the same. However, no naturally acquired infection with parasites termed as P. brasilianum has been found in humans until now. We investigated malaria cases from remote Yanomami indigenous communities of the Venezuelan Amazon and analyzed the genes coding for the circumsporozoite protein (CSP) and the small subunit of ribosomes (18S) by species-specific PCR and capillary based-DNA sequencing. Based on 18S rRNA gene sequencing, we identified 12 patients harboring malaria parasites which were 100% identical with P. brasilianum isolated from the monkey, Alouatta seniculus. Translated amino acid sequences of the CS protein gene showed identical immunodominant repeat units between quartan malaria parasites isolated from both humans and monkeys. This study reports, for the first time, naturally acquired infections in humans with parasites termed as P. brasilianum. We conclude that quartan malaria parasites are easily exchanged between humans and monkeys in Latin America. We hypothesize a lack of host specificity in mammalian hosts and consider quartan malaria to be a true anthropozoonosis. Since the name P. brasilianum suggests a malaria species distinct from P. malariae, we propose that P. brasilianum should have a nomenclatorial revision in case further research confirms our findings. The expansive reservoir of mammalian hosts discriminates quartan malaria from other Plasmodium spp. and requires particular research efforts.

  4. Subcellular localization of glycolytic enzymes and characterization of intermediary metabolism of Trypanosoma rangeli.

    Science.gov (United States)

    Rondón-Mercado, Rocío; Acosta, Héctor; Cáceres, Ana J; Quiñones, Wilfredo; Concepción, Juan Luis

    2017-09-01

    Trypanosoma rangeli is a hemoflagellate protist that infects wild and domestic mammals as well as humans in Central and South America. Although this parasite is not pathogenic for human, it is being studied because it shares with Trypanosoma cruzi, the etiological agent of Chagas' disease, biological characteristics, geographic distribution, vectors and vertebrate hosts. Several metabolic studies have been performed with T. cruzi epimastigotes, however little is known about the metabolism of T. rangeli. In this work we present the subcellular distribution of the T. rangeli enzymes responsible for the conversion of glucose to pyruvate, as determined by epifluorescense immunomicroscopy and subcellular fractionation involving either selective membrane permeabilization with digitonin or differential and isopycnic centrifugation. We found that in T. rangeli epimastigotes the first six enzymes of the glycolytic pathway, involved in the conversion of glucose to 1,3-bisphosphoglycerate are located within glycosomes, while the last four steps occur in the cytosol. In contrast with T. cruzi, where three isoenzymes (one cytosolic and two glycosomal) of phosphoglycerate kinase are expressed simultaneously, only one enzyme with this activity is detected in T. rangeli epimastigotes, in the cytosol. Consistent with this latter result, we found enzymes involved in auxiliary pathways to glycolysis needed to maintain adenine nucleotide and redox balances within glycosomes such as phosphoenolpyruvate carboxykinase, malate dehydrogenase, fumarate reductase, pyruvate phosphate dikinase and glycerol-3-phosphate dehydrogenase. Glucokinase, galactokinase and the first enzyme of the pentose-phosphate pathway, glucose-6-phosphate dehydrogenase, were also located inside glycosomes. Furthermore, we demonstrate that T. rangeli epimastigotes growing in LIT medium only consume glucose and do not excrete ammonium; moreover, they are unable to survive in partially-depleted glucose medium. The

  5. Taxonomy Icon Data: Trypanosoma brucei [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Trypanosoma brucei Trypanosoma brucei Trypanosoma_brucei_L.png Trypanosoma_brucei_NL.png Trypanoso...ma_brucei_S.png Trypanosoma_brucei_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Trypanoso...ma+brucei&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Trypanosoma+brucei&t=NL http://bioscie...ncedbc.jp/taxonomy_icon/icon.cgi?i=Trypanosoma+brucei&t=S http://biosciencedbc.jp.../taxonomy_icon/icon.cgi?i=Trypanosoma+brucei&t=NS http://togodb.biosciencedbc.jp/togodb/view/taxonomy_icon_comment_en?species_id=121 ...

  6. DNA typing of ancient parasite eggs from environmental samples identifies human and animal worm infections in Viking-age settlement

    DEFF Research Database (Denmark)

    Søe, Martin Jensen; Fredensborg, Brian Lund; Nejsum, Peter

    Human worm infections have, to a large extent, been eradicated in countries with high sanitary standards by preventing the fecal-oral transmission of infective eggs. It is possible to study parasite infections among past populations by retrieving and analyzing parasite eggs using paleoparasitolog......-age. Further, eggs of the Liver Fluke (Fasciola hepatica), whose primary hosts are cows and sheep, are identified indicating that grazing animals were kept in close proximity of the settlement....

  7. Study of the gastrointestinal parasitic fauna of captive non-human primates (Macaca fascicularis).

    Science.gov (United States)

    Zanzani, Sergio Aurelio; Gazzonis, Alessia Libera; Epis, Sara; Manfredi, Maria Teresa

    2016-01-01

    The aim of this study was to examine helminths and protozoans in cynomolgus macaques (Macaca fascicularis) imported from registered breeding facilities in China and their relation to health risks for non-human primate handlers in biomedical research centers and in breeding facilities. Fresh fecal samples were collected from a total of 443 M. fascicularis and analyzed by copromicroscopical analysis, immunoenzymatic, or molecular assays. As to helminths, whose eggs were shed in 2.03% of the samples, Trichuris and Oesophagostomum were the only two taxa found, with low prevalence and low eggs per gram (EPG) values. Protozoans were more frequently detected (87.40%), with Entamoeba coli (85.19%) and Endolimax nana (79.26%) as the most prevalent species shed. Other parasites found by fecal smear examination were uninucleated-cyst-producing Entamoebas (78.52%), Iodamoeba bütschlii (42.96%), and Chilomastix mesnili (24.44%), while cysts of Balantidium coli (22.2%) were only observed by sedimentation. No coproantigens of Giardia duodenalis, Cryptosporidium spp., and Entamoeba histolytica complex were detected. Blastocystis sp. infection was noticed in 87.63% of macaques by PCR. These cynomolgus monkeys were infected with many subtypes (ST1, ST2, ST3, ST5, and ST7), where the predominant Blastocystis sp. subtypes were ST2 (77.5%), followed by ST1 (63.5%). Data collected confirmed the presence of potentially zoonotic parasites and a high parasite diversity, suggesting the need for appropriate and sensitive techniques to adequately control them and related health risks for handlers of non-human primates in biomedical research centers and in breeding facilities.

  8. Leukocyte Lysis and Cytokine Induction by the Human Sexually Transmitted Parasite Trichomonas vaginalis.

    Directory of Open Access Journals (Sweden)

    Frances Mercer

    2016-08-01

    Full Text Available Trichomonas vaginalis (Tv is an extracellular protozoan parasite that causes the most common non-viral sexually transmitted infection: trichomoniasis. While acute symptoms in women may include vaginitis, infections are often asymptomatic, but can persist and are associated with medical complications including increased HIV susceptibility, infertility, pre-term labor, and higher incidence of cervical cancer. Heightened inflammation resulting from Tv infection could account for these complications. Effective cellular immune responses to Tv have not been characterized, and re-infection is common, suggesting a dysfunctional adaptive immune response. Using primary human leukocyte components, we have established an in vitro co-culture system to assess the interaction between Tv and the cells of the human immune system. We determined that in vitro, Tv is able to lyse T-cells and B-cells, showing a preference for B-cells. We also found that Tv lysis of lymphocytes was mediated by contact-dependent and soluble factors. Tv lysis of monocytes is far less efficient, and almost entirely contact-dependent. Interestingly, a common symbiont of Tv, Mycoplasma hominis, did not affect cytolytic activity of the parasite, but had a major impact on cytokine responses. M. hominis enabled more diverse inflammatory cytokine secretion in response to Tv and, of the cytokines tested, Tv strains cleared of M. hominis induced only IL-8 secretion from monocytes. The quality of the adaptive immune response to Tv is therefore likely influenced by Tv symbionts, commensals, and concomitant infections, and may be further complicated by direct parasite lysis of effector immune cells.

  9. Systematic analysis of FKBP inducible degradation domain tagging strategies for the human malaria parasite Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    Mauro Ferreira de Azevedo

    Full Text Available Targeted regulation of protein levels is an important tool to gain insights into the role of proteins essential to cell function and development. In recent years, a method based on mutated forms of the human FKBP12 has been established and used to great effect in various cell types to explore protein function. The mutated FKBP protein, referred to as destabilization domain (DD tag when fused with a native protein at the N- or C-terminus targets the protein for proteosomal degradation. Regulated expression is achieved via addition of a compound, Shld-1, that stabilizes the protein and prevents degradation. A limited number of studies have used this system to provide powerful insight into protein function in the human malaria parasite Plasmodium falciparum. In order to better understand the DD inducible system in P. falciparum, we studied the effect of Shld-1 on parasite growth, demonstrating that although development is not impaired, it is delayed, requiring the appropriate controls for phenotype interpretation. We explored the quantified regulation of reporter Green Fluorescent Protein (GFP and luciferase constructs fused to three DD variants in parasite cells either via transient or stable transfection. The regulation obtained with the original FKBP derived DD domain was compared to two triple mutants DD24 and DD29, which had been described to provide better regulation for C-terminal tagging in other cell types. When cloned to the C-terminal of reporter proteins, DD24 provided the strongest regulation allowing reporter activity to be reduced to lower levels than DD and to restore the activity of stabilised proteins to higher levels than DD29. Importantly, DD24 has not previously been applied to regulate proteins in P. falciparum. The possibility of regulating an exported protein was addressed by targeting the Ring-Infected Erythrocyte Surface Antigen (RESA at its C-terminus. The tagged protein demonstrated an important modulation of its

  10. Leukocyte Lysis and Cytokine Induction by the Human Sexually Transmitted Parasite Trichomonas vaginalis

    Science.gov (United States)

    Mercer, Frances; Diala, Fitz Gerald I.; Chen, Yi-Pei; Molgora, Brenda M.; Ng, Shek Hang; Johnson, Patricia J.

    2016-01-01

    Trichomonas vaginalis (Tv) is an extracellular protozoan parasite that causes the most common non-viral sexually transmitted infection: trichomoniasis. While acute symptoms in women may include vaginitis, infections are often asymptomatic, but can persist and are associated with medical complications including increased HIV susceptibility, infertility, pre-term labor, and higher incidence of cervical cancer. Heightened inflammation resulting from Tv infection could account for these complications. Effective cellular immune responses to Tv have not been characterized, and re-infection is common, suggesting a dysfunctional adaptive immune response. Using primary human leukocyte components, we have established an in vitro co-culture system to assess the interaction between Tv and the cells of the human immune system. We determined that in vitro, Tv is able to lyse T-cells and B-cells, showing a preference for B-cells. We also found that Tv lysis of lymphocytes was mediated by contact-dependent and soluble factors. Tv lysis of monocytes is far less efficient, and almost entirely contact-dependent. Interestingly, a common symbiont of Tv, Mycoplasma hominis, did not affect cytolytic activity of the parasite, but had a major impact on cytokine responses. M. hominis enabled more diverse inflammatory cytokine secretion in response to Tv and, of the cytokines tested, Tv strains cleared of M. hominis induced only IL-8 secretion from monocytes. The quality of the adaptive immune response to Tv is therefore likely influenced by Tv symbionts, commensals, and concomitant infections, and may be further complicated by direct parasite lysis of effector immune cells. PMID:27529696

  11. Prevalence of antibodies to Trypanosoma cruzi, Toxoplasma gondii, Encephalitozonn cuniculi, Sarcocystis neurona, Besnoitia darlingi, and Neospora caninum in North American opossum, Didelphis virginiana, from Southern Louisian

    Science.gov (United States)

    We examined the prevalence of antibodies to zoonotic protozoan parasites (Trypanosoma cruzi, Toxoplasma gondii, and Encephalitozoon cuniculi) and protozoan’s of veterinary importance (Neospora caninum, Sarcocystis neurona and Besnoitia darlingi) in a population of North American opossums (Didelphis...

  12. Characterization of a Novel Class I Transcription Factor A (CITFA) Subunit That Is Indispensable for Transcription by the Multifunctional RNA Polymerase I of Trypanosoma brucei

    KAUST Repository

    Nguyen, T. N.; Nguyen, B. N.; Lee, J. H.; Panigrahi, A. K.; Gunzl, A.

    2012-01-01

    Trypanosoma brucei is the only organism known to have evolved a multifunctional RNA polymerase I (pol I) system that is used to express the parasite's ribosomal RNAs, as well as its major cell surface antigens, namely, the variant surface

  13. A novel PCR-based system for the detection of four species of human malaria parasites and Plasmodium knowlesi.

    Directory of Open Access Journals (Sweden)

    Kanako Komaki-Yasuda

    Full Text Available A microscopy-based diagnosis is the gold standard for the detection and identification of malaria parasites in a patient's blood. However, the detection of cases involving a low number of parasites and the differentiation of species sometimes requires a skilled microscopist. Although PCR-based diagnostic methods are already known to be very powerful tools, the time required to apply such methods is still much longer in comparison to traditional microscopic observation. Thus, improvements to PCR systems are sought to facilitate the more rapid and accurate detection of human malaria parasites Plasmodium falciparum, P. vivax, P. ovale, and P. malariae, as well as P. knowlesi, which is a simian malaria parasite that is currently widely distributed in Southeast Asia. A nested PCR that targets the small subunit ribosomal RNA genes of malaria parasites was performed using a "fast PCR enzyme". In the first PCR, universal primers for all parasite species were used. In the second PCR, inner-specific primers, which targeted sequences from P. falciparum, P. vivax, P. ovale, P. malariae, and P. knowlesi, were used. The PCR reaction time was reduced with the use of the "fast PCR enzyme", with only 65 minutes required to perform the first and second PCRs. The specific primers only reacted with the sequences of their targeted parasite species and never cross-reacted with sequences from other species under the defined PCR conditions. The diagnoses of 36 clinical samples that were obtained using this new PCR system were highly consistent with the microscopic diagnoses.

  14. Cockroaches as carriers of human intestinal parasites in two localities in Ethiopia.

    Science.gov (United States)

    Kinfu, Addisu; Erko, Berhanu

    2008-11-01

    A study was undertaken to assess the role of cockroaches as potential carriers of human intestinal parasites in Addis Ababa and Ziway, Ethiopia. A total of 6480 cockroaches were trapped from the two localities from October 2006 to March 2007. All the cockroaches trapped in Addis Ababa (n=2240) and almost 50% (2100/4240) of those trapped in Ziway were identified as Blattella germanica. The rest of the cockroaches trapped in Ziway were identified as Periplaneta brunnea (24.52%), Pycnoscelus surinamensis (16.03%) and Supella longipalpa (9.90%). Microscopic examination of the external body washes of pooled cockroaches and individual gut contents revealed that cockroaches are carriers of Entamoeba coli and Entamoeba histolytica/dispar cysts as well as Enterobius vermicularis, Trichuris trichiura, Taenia spp. and Ascaris lumbricoides ova. Besides their role as a nuisance, the present study further confirms that cockroaches serve as carriers of human intestinal parasites. The possible association of cockroaches with allergic conditions such as asthma is also discussed. Hence, appropriate control measures should be taken particularly to make hotels and residential areas free of cockroaches as they represent a health risk.

  15. Successful Feeding of Amblyomma coelebs (Acari: Ixodidae) Nymphs on Humans in Brazil: Skin Reactions to Parasitism.

    Science.gov (United States)

    Garcia, Marcos V; Matias, Jaqueline; Aguirre, AndrÉ De A R; Csordas, Barbara G; SzabÓ, Matias P J; Andreotti, Renato

    2015-03-01

    Identifying the tick species that successfully feed on humans would increase knowledge of the epidemiology of several tick-borne diseases. These species salivate into the host, increasing the risk of pathogen transmission. However, there is a lack of data in the literature regarding the ticks that prefer to feed on humans. Herein, we describe the successful feeding of Amblyomma coelebs Neumann nymphs on two of the authors after accidental tick bites occurred during field surveys in two preserved areas of Mato Grosso do Sul, Brazil. One of the host-parasite interactions was closely monitored, and the tick development, gross host skin alterations, and related sensations are presented. © The Author 2015. Published by Oxford University Press on behalf of Entomological Society of America.

  16. Cell signaling during Trypanosoma cruzi invasion

    Directory of Open Access Journals (Sweden)

    Fernando Yukio Maeda

    2012-11-01

    Full Text Available Cell signaling is an essential requirement for mammalian cell invasion by Trypanosoma cruzi. Depending on the parasite strain and the parasite developmental form, distinct signaling pathways may be induced. In this short review, we focus on the data coming from studies with metacyclic trypomastigotes (MT generated in vitro and tissue culture-derived trypomastigotes (TCT, used as counterparts of insect-borne and bloodstream parasites respectively. During invasion of host cells by MT or TCT, intracellular Ca2+ mobilization and host cell lysosomal exocytosis are triggered. Invasion mediated by MT surface molecule gp82 requires the activation of mammalian target of rapamycin (mTOR, phosphatidylinositol 3-kinase (PI3K and protein kinase C (PKC in the host cell, associated with Ca2+-dependent disruption of the actin cytoskeleton. In MT, protein tyrosine kinase (PTK, PI3K, phospholipase C (PLC and PKC appear to be activated. TCT invasion, on the other hand, does not rely on mTOR activation, rather on target cell PI3K, and may involve the host cell autophagy for parasite internalization. Enzymes, such oligopeptidase B and the major T. cruzi cysteine proteinase cruzipain, have been shown to generate molecules that induce target cell Ca2+ signal. In addition, TCT may trigger host cell responses mediated by TGF-β receptor or integrin family member. Further investigations are needed for a more complete and detailed picture of T. cruzi invasion.

  17. Environmental risk and toxicology of human and veterinary waste pharmaceutical exposure to wild aquatic host-parasite relationships.

    Science.gov (United States)

    Morley, Neil J

    2009-03-01

    Pollution of the aquatic environment by human and veterinary waste pharmaceuticals is an increasing area of concern but little is known about their ecotoxicological effects on wildlife. In particular the interactions between pharmaceuticals and natural stressors of aquatic communities remains to be elucidated. A common natural stressor of freshwater and marine organisms are protozoan and metazoan parasites, which can have significant effects on host physiology and population structure, especially under the influence of many traditional kinds of toxic pollutants. However, little is known about the effects of waste pharmaceuticals to host-parasite dynamics. In order to assess the risk waste pharmaceuticals pose to aquatic wildlife it has been suggested the use of toxicological data derived from mammals during the product development of pharmaceuticals may be useful for predicting toxic effects. An additional similar source of information is the extensive clinical studies undertaken with numerous classes of drugs against parasites of human and veterinary importance. These studies may form the basis of preliminary risk assessments to aquatic populations and their interactions with parasitic diseases in pharmaceutical-exposed habitats. The present article reviews the effects of the most common classes of pharmaceutical medicines to host-parasite relationships and assesses the risk they may pose to wild aquatic organisms. In addition the effects of pharmaceutical mixtures, the importance of sewage treatment, and the risk of developing resistant strains of parasites are also assessed. Copyright © 2008 Elsevier B.V. All rights reserved.

  18. Parasites and fungi as risk factors for human and animal health.

    Science.gov (United States)

    Góralska, Katarzyna; Błaszkowska, Joanna

    2015-01-01

    Recent literature data suggests that parasitic and fungal diseases, which pose a threat to both human and animal health, remain a clinical, diagnostic and therapeutic problem. Attention is increasingly paid to the role played by natural microbiota in maintaining homeostasis in humans. A particular emphasis is placed on the possibility of manipulating the human microbiota (permanent, transient, pathogenic) and macrobiota (e.g., Trichuris suis) to support the treatment of selected diseases such as Crohn's disease, obesity, diabetes and cancer. Emphasis is placed on important medical species whose infections not only impair health but can also be life threatening, such as Plasmodium falciparum, Echinococcus multilocularis and Baylisascaris procyonis, which expand into areas which have so far been uninhabited. This article also presents the epidemiology, diagnosis and treatment of opportunistic parasitoses imported from the tropics, which spread across large groups of people through human-to-human transmission (Enterobius vermicularis, Sarcoptes scabiei). It also discusses the problem of environmentally-conditioned parasitoses, particularly their etiological factors associated with food contaminated with invasive forms (Trichinella sp., Toxoplasma gondii). The analysis also concerns the presence of developmental forms of geohelminths (Toxocara sp.) and ectoparasites (ticks), which are vectors of serious human diseases (Lyme borreliosis, anaplasmosis, babesiosis), in the environment. Mycological topics contains rare cases of mycoses environmentally conditioned (CNS aspergillosis) and transmissions of these pathogens in a population of hospitalized individuals, as well as seeking new methods used to treat mycoses.

  19. Perspectives on the Trypanosoma cruzi–host cell receptor interactions

    Science.gov (United States)

    Villalta, Fernando; Scharfstein, Julio; Ashton, Anthony W.; Tyler, Kevin M.; Guan, Fangxia; Mukherjee, Shankar; Lima, Maria F.; Alvarez, Sandra; Weiss, Louis M.; Huang, Huan; Machado, Fabiana S.

    2009-01-01

    Chagas disease is caused by the parasite Trypanosoma cruzi. The critical initial event is the interaction of the trypomastigote form of the parasite with host receptors. This review highlights recent observations concerning these interactions. Some of the key receptors considered are those for thromboxane, bradykinin, and for the nerve growth factor TrKA. Other important receptors such as galectin-3, thrombospondin, and laminin are also discussed. Investigation into the molecular biology and cell biology of host receptors for T. cruzi may provide novel therapeutic targets. PMID:19283409

  20. Genetic characterization of human-pathogenic Cyclospora cayetanensis parasites from three endemic regions at the 18S ribosomal RNA locus.

    Science.gov (United States)

    Sulaiman, Irshad M; Ortega, Ynes; Simpson, Steven; Kerdahi, Khalil

    2014-03-01

    Cyclospora cayetanensis is an apicocomplexan parasite that infects the gastrointestinal tract and causes acute diarrheal disease in humans. In recent years, this human-pathogenic parasite has led to several foodborne outbreaks in the United States and Canada, mostly associated with imported produce. Understanding the biology and epidemiology of C. cayetanensis is difficult because little is known about its origin, possible zoonotic reservoirs, and genetic relationships with other coccidian parasites. Recently, we developed a 70kDa heat shock protein (HSP70) gene based nested PCR protocol for detection of C. cayetanensis parasite and sequenced the PCR products of 16 human isolates from Nepal, Mexico, and Peru. In this study, we have characterized the regions of 18S ribosomal RNA (rRNA) gene of 17 human C. cayetanensis isolates for molecular detection, and also to ascertain the genetic diversity of this parasite. The 18S rRNA primer sets were further tested by PCR amplification followed by nucleotide sequencing of the PCR amplified products of previously characterized C. cayetanensis isolates from three endemic regions at HSP70 locus. Although no genetic polymorphism was observed at the regions of HSP70 locus characterized in our previous study, the data analysis of this study revealed a minor genetic diversity at the 18S rRNA locus among the C. cayetanensis isolates. The 18S rRNA gene-based nested PCR protocol provides a useful genetic marker for the detection of C. cayetanensis parasite and confirms it as a genetically distinct species in genus Cyclospora. The results also supported lack of geographic segregation and existence of genetically homogeneous population for the C. cayetanensis parasites both at the HSP70 as well as at the18S rRNA loci. Published by Elsevier B.V.

  1. The effect of Bulgarian propolis against Trypanosoma cruzi and during its interaction with host cells

    Directory of Open Access Journals (Sweden)

    Andréia Pires Dantas

    2006-03-01

    Full Text Available Propolis has shown activity against pathogenic microorganisms that cause diseases in humans and animals. The ethanol (Et-Blg and acetone (Ket-Blg extracts from a Bulgarian propolis, with known chemical compositions, presented similar activity against tissue culture-derived amastigotes. The treatment of Trypanosoma cruzi-infected skeletal muscle cells with Et-Blg led to a decrease of infection and of the intracellular proliferation of amastigotes, while damage to the host cell was observed only at concentration 12.5 times higher than those affecting the parasite. Ultrastructural analysis of the effect of both extracts in epimastigotes revealed that the main targets were the mitochondrion and reservosomes. Et-Blg also affected the mitochondrion-kinetoplast complex in trypomastigotes, offering a potential target for chemotherapeutic agents.

  2. Evidence that leishmania donovani utilizes a mannose receptor on human mononuclear phagocytes to establish intracellular parasitism

    International Nuclear Information System (INIS)

    Wilson, M.E.; Pearson, R.D.

    1986-01-01

    The pathogenic protozoan Leishmania donovani must gain entrance into mononuclear phagocytes to successfully parasitize man. The parasite's extracellular promastigote stage is ingested by human peripheral blood monocytes or monocyte-derived macrophages in the absence of serum, in a manner characteristic of receptor-mediated endocytosis. Remarkable similarities have been found between the macrophage receptor(s) for promastigotes and a previously characterized eucaryotic receptor system, the mannose/fucose receptor (MFR), that mediates the binding of zymosan particles and mannose- or fucose-terminal glycoconjugates to macrophages. Ingestion of promastigotes by monocyte-derived macrophages was inhibited by several MFR ligands; that is mannan, mannose-BSA and fucose-BSA. In contrast, promastigote ingestion by monocytes was unaffected by MFR ligands. Furthermore, attachment of promastigotes to macrophages, assessed by using cytochalasin D to prevent phagocytosis, was reduced 49.8% by mannan. Reorientation of the MFR to the ventral surface of the cell was achieved by plating macrophages onto mannan-coated coverslips, reducing MFR activity on the exposed cell surface by 94% as assessed by binding of 125 I-mannose-BSA. Under these conditions, ingestion of promastigotes was inhibited by 71.4%. Internalization of the MFR by exposure of macrophages to zymosan before infection with promastigotes resulted in a 62.3% decrease in parasite ingestion. Additionally, NH 4 Cl decreased macrophage ingestion of promastigotes by 38.2%. Subinhibitory concentration of NH 4 Cl (10 mM) and of mannan (0.25 mg/ml) together inhibited parsite ingestion by 76.4%

  3. Pets and Parasites

    Science.gov (United States)

    ... good news is that this rarely happens. Most pet-to-people diseases can be avoided by following a few ... your doctor Can a parasite cause death in people and pets? Can human disease from a parasite be treated ...

  4. Genome sequencing of chimpanzee malaria parasites reveals possible pathways of adaptation to human hosts

    KAUST Repository

    Otto, Thomas D.; Rayner, Julian C.; Bö hme, Ulrike; Pain, Arnab; Spottiswoode, Natasha; Sanders, Mandy; Quail, Michael; Ollomo, Benjamin; Renaud, Franç ois; Thomas, Alan W.; Prugnolle, Franck; Conway, David J.; Newbold, Chris; Berriman, Matthew

    2014-01-01

    related chimpanzee parasite species P. reichenowi, and obtaining partial sequence data from a more distantly related chimpanzee parasite (P. gaboni). The close relationship between P. reichenowi and P. falciparum is emphasized by almost complete

  5. Human intestinal parasites in crusader Acre: Evidence for migration with disease in the medieval period.

    Science.gov (United States)

    Mitchell, Piers D; Anastasiou, Evilena; Syon, Danny

    2011-12-01

    The aim of this research is to highlight the role of ancient parasites as evidence for human migration in past populations. The material analysed was soil sediment from the excavation of a medieval cesspool in the city of Acre, in Israel. Archaeological stratigraphy and radiocarbon dating of a fragment of animal bone from the cesspool confirm its use in the 13th century CE, during the crusader period. At that time Acre was located in the Frankish Kingdom of Jerusalem. Soil samples from the cesspool were analysed and eggs of the roundworm (Ascaris lumbricoides) and fish tapeworm (Diphyllobothrium latum) were identified. The fish tapeworm has only been found in the mainland Near East once before, in a latrine of the crusader Order of St. John (Knights Hospitaller). It has been absent in all earlier cesspools, latrines and coprolites so far studied in the region. In contrast to its rarity in the Levant, the fish tapeworm was common in northern Europe during the medieval period. The presence of fish tapeworm eggs in a crusader period cesspool in Acre suggests its use by crusaders or pilgrims from northern Europe who travelled to the Levant carrying these parasites in their intestines. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Proteolytic activity in the adult and larval stages of the human roundworm parasite Angiostrongylus costaricensis

    Directory of Open Access Journals (Sweden)

    Karina Mastropasqua Rebello

    2012-09-01

    Full Text Available Angiostrongylus costaricensis is a nematode that causes abdominal angiostrongyliasis, a widespread human parasitism in Latin America. This study aimed to characterize the protease profiles of different developmental stages of this helminth. First-stage larvae (L1 were obtained from the faeces of infected Sigmodon hispidus rodents and third-stage larvae (L3 were collected from mollusks Biomphalaria glabrata previously infected with L1. Adult worms were recovered from rodent mesenteric arteries. Protein extraction was performed after repeated freeze-thaw cycles followed by maceration of the nematodes in 40 mM Tris base. Proteolysis of gelatin was observed by zymography and found only in the larval stages. In L3, the gelatinolytic activity was effectively inhibited by orthophenanthroline, indicating the involvement of metalloproteases. The mechanistic class of the gelatinases from L1 could not be precisely determined using traditional class-specific inhibitors. Adult worm extracts were able to hydrolyze haemoglobin in solution, although no activity was observed by zymography. This haemoglobinolytic activity was ascribed to aspartic proteases following its effective inhibition by pepstatin, which also inhibited the haemoglobinolytic activity of L1 and L3 extracts. The characterization of protease expression throughout the A. costaricensis life cycle may reveal key factors influencing the process of parasitic infection and thus foster our understanding of the disease pathogenesis.

  7. A New High-Throughput Approach to Genotype Ancient Human Gastrointestinal Parasites.

    Science.gov (United States)

    Côté, Nathalie M L; Daligault, Julien; Pruvost, Mélanie; Bennett, E Andrew; Gorgé, Olivier; Guimaraes, Silvia; Capelli, Nicolas; Le Bailly, Matthieu; Geigl, Eva-Maria; Grange, Thierry

    2016-01-01

    Human gastrointestinal parasites are good indicators for hygienic conditions and health status of past and present individuals and communities. While microscopic analysis of eggs in sediments of archeological sites often allows their taxonomic identification, this method is rarely effective at the species level, and requires both the survival of intact eggs and their proper identification. Genotyping via PCR-based approaches has the potential to achieve a precise species-level taxonomic determination. However, so far it has mostly been applied to individual eggs isolated from archeological samples. To increase the throughput and taxonomic accuracy, as well as reduce costs of genotyping methods, we adapted a PCR-based approach coupled with next-generation sequencing to perform precise taxonomic identification of parasitic helminths directly from archeological sediments. Our study of twenty-five 100 to 7,200 year-old archeological samples proved this to be a powerful, reliable and efficient approach for species determination even in the absence of preserved eggs, either as a stand-alone method or as a complement to microscopic studies.

  8. Autophagy-related Atg8 localizes to the apicoplast of the human malaria parasite Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    Kei Kitamura

    Full Text Available Autophagy is a membrane-mediated degradation process, which is governed by sequential functions of Atg proteins. Although Atg proteins are highly conserved in eukaryotes, protozoa possess only a partial set of Atg proteins. Nonetheless, almost all protozoa have the complete factors belonging to the Atg8 conjugation system, namely, Atg3, Atg4, Atg7, and Atg8. Here, we report the biochemical properties and subcellular localization of the Atg8 protein of the human malaria parasite Plasmodium falciparum (PfAtg8. PfAtg8 is expressed during intra-erythrocytic development and associates with membranes likely as a lipid-conjugated form. Fluorescence microscopy and immunoelectron microscopy show that PfAtg8 localizes to the apicoplast, a four membrane-bound non-photosynthetic plastid. Autophagosome-like structures are not observed in the erythrocytic stages. These data suggest that, although Plasmodium parasites have lost most Atg proteins during evolution, they use the Atg8 conjugation system for the unique organelle, the apicoplast.

  9. Host Mitochondrial Association Evolved in the Human Parasite Toxoplasma gondii via Neofunctionalization of a Gene Duplicate.

    Science.gov (United States)

    Adomako-Ankomah, Yaw; English, Elizabeth D; Danielson, Jeffrey J; Pernas, Lena F; Parker, Michelle L; Boulanger, Martin J; Dubey, Jitender P; Boyle, Jon P

    2016-05-01

    In Toxoplasma gondii, an intracellular parasite of humans and other animals, host mitochondrial association (HMA) is driven by a gene family that encodes multiple mitochondrial association factor 1 (MAF1) proteins. However, the importance of MAF1 gene duplication in the evolution of HMA is not understood, nor is the impact of HMA on parasite biology. Here we used within- and between-species comparative analysis to determine that the MAF1 locus is duplicated in T. gondii and its nearest extant relative Hammondia hammondi, but not another close relative, Neospora caninum Using cross-species complementation, we determined that the MAF1 locus harbors multiple distinct paralogs that differ in their ability to mediate HMA, and that only T. gondii and H. hammondi harbor HMA(+) paralogs. Additionally, we found that exogenous expression of an HMA(+) paralog in T. gondii strains that do not normally exhibit HMA provides a competitive advantage over their wild-type counterparts during a mouse infection. These data indicate that HMA likely evolved by neofunctionalization of a duplicate MAF1 copy in the common ancestor of T. gondii and H. hammondi, and that the neofunctionalized gene duplicate is selectively advantageous. Copyright © 2016 by the Genetics Society of America.

  10. Transcriptionally Driven DNA Replication Program of the Human Parasite Leishmania major.

    Science.gov (United States)

    Lombraña, Rodrigo; Álvarez, Alba; Fernández-Justel, José Miguel; Almeida, Ricardo; Poza-Carrión, César; Gomes, Fábia; Calzada, Arturo; Requena, José María; Gómez, María

    2016-08-09

    Faithful inheritance of eukaryotic genomes requires the orchestrated activation of multiple DNA replication origins (ORIs). Although origin firing is mechanistically conserved, how origins are specified and selected for activation varies across different model systems. Here, we provide a complete analysis of the nucleosomal landscape and replication program of the human parasite Leishmania major, building on a better evolutionary understanding of replication organization in Eukarya. We found that active transcription is a driving force for the nucleosomal organization of the L. major genome and that both the spatial and the temporal program of DNA replication can be explained as associated to RNA polymerase kinetics. This simple scenario likely provides flexibility and robustness to deal with the environmental changes that impose alterations in the genetic programs during parasitic life cycle stages. Our findings also suggest that coupling replication initiation to transcription elongation could be an ancient solution used by eukaryotic cells for origin maintenance. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  11. Natural infection of Plasmodium brasilianum in humans: Man and monkey share quartan malaria parasites in the Venezuelan Amazon

    Directory of Open Access Journals (Sweden)

    Albert Lalremruata

    2015-09-01

    Interpretation: This study reports, for the first time, naturally acquired infections in humans with parasites termed as P. brasilianum. We conclude that quartan malaria parasites are easily exchanged between humans and monkeys in Latin America. We hypothesize a lack of host specificity in mammalian hosts and consider quartan malaria to be a true anthropozoonosis. Since the name P. brasilianum suggests a malaria species distinct from P. malariae, we propose that P. brasilianum should have a nomenclatorial revision in case further research confirms our findings. The expansive reservoir of mammalian hosts discriminates quartan malaria from other Plasmodium spp. and requires particular research efforts.

  12. Trypanosoma brucei gambiense adaptation to different mammalian sera is associated with VSG expression site plasticity.

    Science.gov (United States)

    Cordon-Obras, Carlos; Cano, Jorge; González-Pacanowska, Dolores; Benito, Agustin; Navarro, Miguel; Bart, Jean-Mathieu

    2013-01-01

    Trypanosoma brucei gambiense infection is widely considered an anthroponosis, although it has also been found in wild and domestic animals. Thus, fauna could act as reservoir, constraining the elimination of the parasite in hypo-endemic foci. To better understand the possible maintenance of T. b. gambiense in local fauna and investigate the molecular mechanisms underlying adaptation, we generated adapted cells lines (ACLs) by in vitro culture of the parasites in different mammalian sera. Using specific antibodies against the Variant Surface Glycoproteins (VSGs) we found that serum ACLs exhibited different VSG variants when maintained in pig, goat or human sera. Although newly detected VSGs were independent of the sera used, the consistent appearance of different VSGs suggested remodelling of the co-transcribed genes at the telomeric Expression Site (VSG-ES). Thus, Expression Site Associated Genes (ESAGs) sequences were analysed to investigate possible polymorphism selection. ESAGs 6 and 7 genotypes, encoding the transferrin receptor (TfR), expressed in different ACLs were characterised. In addition, we quantified the ESAG6/7 mRNA levels and analysed transferrin (Tf) uptake. Interestingly, the best growth occurred in pig and human serum ACLs, which consistently exhibited a predominant ESAG7 genotype and higher Tf uptake than those obtained in calf and goat sera. We also detected an apparent selection of specific ESAG3 genotypes in the pig and human serum ACLs, suggesting that other ESAGs could be involved in the host adaptation processes. Altogether, these results suggest a model whereby VSG-ES remodelling allows the parasite to express a specific set of ESAGs to provide selective advantages in different hosts. Finally, pig serum ACLs display phenotypic adaptation parameters closely related to human serum ACLs but distinct to parasites grown in calf and goat sera. These results suggest a better suitability of swine to maintain T. b. gambiense infection supporting

  13. Zoonotic and Non-Zoonotic Diseases in Relation to Human Personality and Societal Values: Support for the Parasite-Stress Model

    Directory of Open Access Journals (Sweden)

    Randy Thornhill

    2010-04-01

    Full Text Available The parasite-stress model of human sociality proposes that humans' ontogenetic experiences with infectious diseases as well as their evolutionary historical interactions with these diseases exert causal influences on human psychology and social behavior. This model has been supported by cross-national relationships between parasite prevalence and human personality traits, and between parasite prevalence and societal values. Importantly, the parasite-stress model emphasizes the causal role of non-zoonotic parasites (which have the capacity for human-to-human transmission, rather than zoonotic parasites (which do not, but previous studies failed to distinguish between these conceptually distinct categories. The present investigation directly tested the differential predictive effects of zoonotic and non-zoonotic (both human-specific and multihost parasite prevalence on personality traits and societal values. Supporting the parasite-stress model, cross-national differences in personality traits (unrestricted sexuality, extraversion, openness to experiences and in societal values (individualism, collectivism, gender equality, democratization are predicted specifically by non-zoonotic parasite prevalence.

  14. Role of the Ubiquitin-Proteasome Systems in the Biology and Virulence of Protozoan Parasites

    Directory of Open Access Journals (Sweden)

    Christian Muñoz

    2015-01-01

    Full Text Available In eukaryotic cells, proteasomes perform crucial roles in many cellular pathways by degrading proteins to enforce quality control and regulate many cellular processes such as cell cycle progression, signal transduction, cell death, immune responses, metabolism, protein-quality control, and development. The catalytic heart of these complexes, the 20S proteasome, is highly conserved in bacteria, yeast, and humans. However, until a few years ago, the role of proteasomes in parasite biology was completely unknown. Here, we summarize findings about the role of proteasomes in protozoan parasites biology and virulence. Several reports have confirmed the role of proteasomes in parasite biological processes such as cell differentiation, cell cycle, proliferation, and encystation. Proliferation and cell differentiation are key steps in host colonization. Considering the importance of proteasomes in both processes in many different parasites such as Trypanosoma, Leishmania, Toxoplasma, and Entamoeba, parasite proteasomes might serve as virulence factors. Several pieces of evidence strongly suggest that the ubiquitin-proteasome pathway is also a viable parasitic therapeutic target. Research in recent years has shown that the proteasome is a valid drug target for sleeping sickness and malaria. Then, proteasomes are a key organelle in parasite biology and virulence and appear to be an attractive new chemotherapeutic target.

  15. Unique parasite aDNA in moa coprolites from New Zealand suggests mass parasite extinctions followed human-induced megafauna extinctions

    Science.gov (United States)

    Lafferty, Kevin D.; Hopkins, Skylar R.

    2018-01-01

    Having split early from Gondwana, Zealandia (now modern New Zealand) escaped discovery until the late 13th century, and therefore remains an important glimpse into a human-free world. Without humans or other land mammals, diverse and peculiar birds evolved in isolation, including several flightless moa species, the giant pouakai eagle (Harpagornis moorei), the kiwi (Apteryx mantelli), and the kakapo parrot (Strigops habroptila). This unique community has fascinated paleoecologists, who have spent almost two centuries devising new ways to glean information from ancient bird remains. In PNAS, Boast et al. (1) apply one recent technological advance, ancient DNA (aDNA) metabarcoding, to confirm previous discoveries and report new details about moa and kakapo diets, parasites, and niches. Their efforts confirm Zealandia was a lot different before humans arrived.

  16. Meiosis and haploid gametes in the pathogen Trypanosoma brucei.

    Science.gov (United States)

    Peacock, Lori; Bailey, Mick; Carrington, Mark; Gibson, Wendy

    2014-01-20

    In eukaryote pathogens, sex is an important driving force in spreading genes for drug resistance, pathogenicity, and virulence. For the parasitic trypanosomes that cause African sleeping sickness, mating occurs during transmission by the tsetse vector and involves meiosis, but haploid gametes have not yet been identified. Here, we show that meiosis is a normal part of development in the insect salivary glands for all subspecies of Trypanosoma brucei, including the human pathogens. By observing insect-derived trypanosomes during the window of peak expression of meiosis-specific genes, we identified promastigote-like (PL) cells that interacted with each other via their flagella and underwent fusion, as visualized by the mixing of cytoplasmic red and green fluorescent proteins. PL cells had a short, wide body, a very long anterior flagellum, and either one or two kinetoplasts, but only the anterior kinetoplast was associated with the flagellum. Measurement of nuclear DNA contents showed that PL cells were haploid relative to diploid metacyclics. Trypanosomes are among the earliest diverging eukaryotes, and our results support the hypothesis that meiosis and sexual reproduction are ubiquitous in eukaryotes and likely to have been early innovations. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Trypanosoma cruzi. Surface antigens of blood and culture forms

    International Nuclear Information System (INIS)

    Nogueira, N.; Chaplan, S.; Tydings, J.D.; Unkeless, J.; Cohn, Z.

    1981-01-01

    The surface polypeptides of both cultured and blood forms of Trypanosoma cruzi were iodinated by the glucose oxidase-lactoperoxidase technique. Blood-form trypomastigotes (BFT) isolated form infected mice displayed a major 90,000-Mr component. In contrast, both epimastigotes and trypomastigotes obtained form acellular cultures expressed a smaller 75,000-Mr peptide. Both major surface components were presumably glycoproteins in terms of their binding to concanavalin A-Sepharose 4B. Within a 3-h period, both blood and culture forms synthesized their respective surface glycoproteins (90,000 Mr and 75,000 Mr, respectively in vitro. [/sub 35/S]methionine-labeled surface peptides were immunoprecipitated with immune sera of both human and murine origin. A panel of sera form patients with chronic Chagas' disease and hyperimmunized mice recognized similar surface peptides. These immunogens were the same components as the major iodinated species. The major BFT surface peptide was readily removed by trypsin treatment of the parasites, although the procedure did not affect the 75,000-Mr peptide from the culture forms. Two-dimensional polyacrylamide gel electrophoresis revealed that the 90,000-Mr peptide found on BFT was an acidic protein of isoelectric point (pI) 5.0, whereas, the 75,000-Mr peptide form culture-form trypomastigotes has a pI of 7.2. The 90,000-Mr component is thought to be responsible for the anti-phagocytic properties of the BFT

  18. Domestic Pig (Sus scrofa) as an Animal Model for Experimental Trypanosoma cruzi Infection

    Science.gov (United States)

    Yauri, Verónica; Castro-Sesquen, Yagahira E.; Verastegui, Manuela; Angulo, Noelia; Recuenco, Fernando; Cabello, Ines; Malaga, Edith; Bern, Caryn; Gavidia, Cesar M.; Gilman, Robert H.

    2016-01-01

    Pigs were infected with a Bolivian strain of Trypanosoma cruzi (genotype I) and evaluated up to 150 days postinoculation (dpi) to determine the use of pigs as an animal model of Chagas disease. Parasitemia was observed in the infected pigs during the acute phase (15–40 dpi). Anti-T.cruzi immunoglobulin M was detected during 15–75 dpi; high levels of anti-T.cruzi immunoglobulin G were detected in all infected pigs from 75 to 150 dpi. Parasitic DNA was observed by western blot (58%, 28/48) and polymerase chain reaction (27%, 13/48) in urine samples, and in the brain (75%, 3/4), spleen (50%, 2/4), and duodenum (25%, 1/4), but no parasitic DNA was found in the heart, colon, and kidney. Parasites were not observed microscopically in tissues samples, but mild inflammation, vasculitis, and congestion was observed in heart, brain, kidney, and spleen. This pig model was useful for the standardization of the urine test because of the higher volume that can be obtained as compared with other small animal models. However, further experiments are required to observe pathological changes characteristic of Chagas disease in humans. PMID:26928841

  19. Decay-accelerating factor 1 deficiency exacerbates Trypanosoma cruzi-induced murine chronic myositis.

    Science.gov (United States)

    Solana, María E; Ferrer, María F; Novoa, María Mercedes; Song, Wen-Chao; Gómez, Ricardo M

    2012-10-01

    Murine infection with Trypanosoma cruzi (Tc) has been used to study the role of T-cells in the pathogenesis of human inflammatory idiopathic myositis. Absence of decay-accelerating factor 1 (Daf1) has been shown to enhance murine T-cell responses and autoimmunity. To determine whether Daf1 deficiency can exacerbate Tc-induced myositis, C57BL/6 DAF(+/+) and DAF(-/-) mice were inoculated with 5 × 10(4) trypomastigotes, and their morbidity, parasitemia, parasite burden, histopathology, and T-cell expansion were studied in the acute and chronic stages. DAF(-/-) mice had lower parasitemia and parasite burden but higher morbidity, muscle histopathology, and increased number of CD44(+) (activated/memory phenotype) splenic CD4(+) and CD8(+) T-cells. An enhanced CD8(+) T-cell immune-specific response may explain the lower parasitemia and parasite burden levels and the increase in histopathological lesions. We propose that Tc-inoculated DAF(-/-) mice are a useful model to study T-cell mediated immunity in skeletal muscle tissues. Copyright © 2012 Wiley Periodicals, Inc.

  20. Helminth parasites of cats from the Vientiane Province, Laos, as indicators of the occurrence of causative agents of human parasitoses

    Directory of Open Access Journals (Sweden)

    Scholz T.

    2003-12-01

    Full Text Available A total of 55 domestic cats (Felis calus f. domestico and one wild (Bengal cat (Prionailurus bengalensis from the Vientiane Province, central Laos, were examined for helminth parasites with emphasis given to potential human parasites. The following species were found (parasites infective to man marked with an asterisk: Opisthorchis viverrini*, Haplorchis pumilio*,H. laichui*,H. yokogawai*, Stellantchasmus falcatus* (Digenea; Spirometra sp.*, Dipylidium caninum*, Taenia taeniaeformis (Cestoda; Capillariidae gen. sp., Toxocara canis*, T. cati*, Ancylostoma ceylanicum*, A. tubaeforme, Gnathostoma spinigerum*, Physaloptera preputials (Nematoda; and Oncicola sp. (Acanthocephala. This study demonstrated that examination of cats may provide useful data on the occurrence of helminths which are potential causative agents of human diseases.

  1. Monocyte-Derived Signals Activate Human Natural Killer Cells in Response to Leishmania Parasites

    Science.gov (United States)

    Messlinger, Helena; Sebald, Heidi; Heger, Lukas; Dudziak, Diana; Bogdan, Christian; Schleicher, Ulrike

    2018-01-01

    Activated natural killer (NK) cells release interferon (IFN)-γ, which is crucial for the control of intracellular pathogens such as Leishmania. In contrast to experimental murine leishmaniasis, the human NK cell response to Leishmania is still poorly characterized. Here, we investigated the interaction of human blood NK cells with promastigotes of different Leishmania species (Leishmania major, Leishmania mexicana, Leishmania infantum, and Leishmania donovani). When peripheral blood mononuclear cells or purified NK cells and monocytes (all derived from healthy blood donors from Germany without a history of leishmaniasis) were exposed to promastigotes, NK cells showed increased surface expression of the activation marker CD69. The extent of this effect varied depending on the Leishmania species; differences between dermotropic and viscerotropic L. infantum strains were not observed. Upregulation of CD69 required direct contact between monocytes and Leishmania and was partly inhibitable by anti-interleukin (IL)-18. Unexpectedly, IL-18 was undetectable in most of the supernatants (SNs) of monocyte/parasite cocultures. Confocal fluorescence microscopy of non-permeabilized cells revealed that Leishmania-infected monocytes trans-presented IL-18 to NK cells. Native, but not heat-treated SNs of monocyte/Leishmania cocultures also induced CD69 on NK cells, indicating the involvement of a soluble heat-labile factor other than IL-18. A role for the NK cell-activating cytokines IL-1β, IL-2, IL-12, IL-15, IL-21, and IFN-α/β was excluded. The increase of CD69 was not paralleled by NK cell IFN-γ production or enhanced cytotoxicity. However, prior exposure of NK cells to Leishmania parasites synergistically increased their IFN-γ release in response to IL-12, which was dependent on endogenous IL-18. CD1c+ dendritic cells were identified as possible source of Leishmania-induced IL-12. Finally, we observed that direct contact between Leishmania and NK cells reduced the

  2. Monocyte-Derived Signals Activate Human Natural Killer Cells in Response to Leishmania Parasites

    Directory of Open Access Journals (Sweden)

    Helena Messlinger

    2018-01-01

    Full Text Available Activated natural killer (NK cells release interferon (IFN-γ, which is crucial for the control of intracellular pathogens such as Leishmania. In contrast to experimental murine leishmaniasis, the human NK cell response to Leishmania is still poorly characterized. Here, we investigated the interaction of human blood NK cells with promastigotes of different Leishmania species (Leishmania major, Leishmania mexicana, Leishmania infantum, and Leishmania donovani. When peripheral blood mononuclear cells or purified NK cells and monocytes (all derived from healthy blood donors from Germany without a history of leishmaniasis were exposed to promastigotes, NK cells showed increased surface expression of the activation marker CD69. The extent of this effect varied depending on the Leishmania species; differences between dermotropic and viscerotropic L. infantum strains were not observed. Upregulation of CD69 required direct contact between monocytes and Leishmania and was partly inhibitable by anti-interleukin (IL-18. Unexpectedly, IL-18 was undetectable in most of the supernatants (SNs of monocyte/parasite cocultures. Confocal fluorescence microscopy of non-permeabilized cells revealed that Leishmania-infected monocytes trans-presented IL-18 to NK cells. Native, but not heat-treated SNs of monocyte/Leishmania cocultures also induced CD69 on NK cells, indicating the involvement of a soluble heat-labile factor other than IL-18. A role for the NK cell-activating cytokines IL-1β, IL-2, IL-12, IL-15, IL-21, and IFN-α/β was excluded. The increase of CD69 was not paralleled by NK cell IFN-γ production or enhanced cytotoxicity. However, prior exposure of NK cells to Leishmania parasites synergistically increased their IFN-γ release in response to IL-12, which was dependent on endogenous IL-18. CD1c+ dendritic cells were identified as possible source of Leishmania-induced IL-12. Finally, we observed that direct contact between Leishmania and NK cells

  3. Structure of a two-CAP-domain protein from the human hookworm parasite Necator americanus

    Energy Technology Data Exchange (ETDEWEB)

    Asojo, Oluwatoyin A., E-mail: oasojo@unmc.edu [Pathology and Microbiology Department, 986495 Nebraska Medical Center, Omaha, NE 68198-6495 (United States)

    2011-05-01

    The first structure of a two-CAP-domain protein, Na-ASP-1, from the major human hookworm parasite N. americanus refined to a resolution limit of 2.2 Å is presented. Major proteins secreted by the infective larval stage hookworms upon host entry include Ancylostoma secreted proteins (ASPs), which are characterized by one or two CAP (cysteine-rich secretory protein/antigen 5/pathogenesis related-1) domains. The CAP domain has been reported in diverse phylogenetically unrelated proteins, but has no confirmed function. The first structure of a two-CAP-domain protein, Na-ASP-1, from the major human hookworm parasite Necator americanus was refined to a resolution limit of 2.2 Å. The structure was solved by molecular replacement (MR) using Na-ASP-2, a one-CAP-domain ASP, as the search model. The correct MR solution could only be obtained by truncating the polyalanine model of Na-ASP-2 and removing several loops. The structure reveals two CAP domains linked by an extended loop. Overall, the carboxyl-terminal CAP domain is more similar to Na-ASP-2 than to the amino-terminal CAP domain. A large central cavity extends from the amino-terminal CAP domain to the carboxyl-terminal CAP domain, encompassing the putative CAP-binding cavity. The putative CAP-binding cavity is a characteristic cavity in the carboxyl-terminal CAP domain that contains a His and Glu pair. These residues are conserved in all single-CAP-domain proteins, but are absent in the amino-terminal CAP domain. The conserved His residues are oriented such that they appear to be capable of directly coordinating a zinc ion as observed for CAP proteins from reptile venoms. This first structure of a two-CAP-domain ASP can serve as a template for homology modeling of other two-CAP-domain proteins.

  4. Structure of a two-CAP-domain protein from the human hookworm parasite Necator americanus

    International Nuclear Information System (INIS)

    Asojo, Oluwatoyin A.

    2011-01-01

    The first structure of a two-CAP-domain protein, Na-ASP-1, from the major human hookworm parasite N. americanus refined to a resolution limit of 2.2 Å is presented. Major proteins secreted by the infective larval stage hookworms upon host entry include Ancylostoma secreted proteins (ASPs), which are characterized by one or two CAP (cysteine-rich secretory protein/antigen 5/pathogenesis related-1) domains. The CAP domain has been reported in diverse phylogenetically unrelated proteins, but has no confirmed function. The first structure of a two-CAP-domain protein, Na-ASP-1, from the major human hookworm parasite Necator americanus was refined to a resolution limit of 2.2 Å. The structure was solved by molecular replacement (MR) using Na-ASP-2, a one-CAP-domain ASP, as the search model. The correct MR solution could only be obtained by truncating the polyalanine model of Na-ASP-2 and removing several loops. The structure reveals two CAP domains linked by an extended loop. Overall, the carboxyl-terminal CAP domain is more similar to Na-ASP-2 than to the amino-terminal CAP domain. A large central cavity extends from the amino-terminal CAP domain to the carboxyl-terminal CAP domain, encompassing the putative CAP-binding cavity. The putative CAP-binding cavity is a characteristic cavity in the carboxyl-terminal CAP domain that contains a His and Glu pair. These residues are conserved in all single-CAP-domain proteins, but are absent in the amino-terminal CAP domain. The conserved His residues are oriented such that they appear to be capable of directly coordinating a zinc ion as observed for CAP proteins from reptile venoms. This first structure of a two-CAP-domain ASP can serve as a template for homology modeling of other two-CAP-domain proteins

  5. Natural infection of the sand fly Phlebotomus kazeruni by Trypanosoma species in Pakistan

    Directory of Open Access Journals (Sweden)

    Iwata Hiroyuki

    2010-02-01

    Full Text Available Abstract The natural infection of phlebotomine sand flies by Leishmania parasites was surveyed in a desert area of Pakistan where cutaneous leishmaniasis is endemic. Out of 220 female sand flies dissected, one sand fly, Phlebotomus kazeruni, was positive for flagellates in the hindgut. Analyses of cytochrome b (cyt b, glycosomal glyceraldehyde phosphate dehydrogenase (gGAPDH and small subunit ribosomal RNA (SSU rRNA gene sequences identified the parasite as a Trypanosoma species of probably a reptile or amphibian. This is the first report of phlebotomine sand flies naturally infected with a Trypanosoma species in Pakistan. The possible infection of sand flies with Trypanosoma species should be taken into consideration in epidemiological studies of vector species in areas where leishmaniasis is endemic.

  6. Cynaropicrin targets the trypanothione redox system in Trypanosoma brucei.

    Science.gov (United States)

    Zimmermann, Stefanie; Oufir, Mouhssin; Leroux, Alejandro; Krauth-Siegel, R Luise; Becker, Katja; Kaiser, Marcel; Brun, Reto; Hamburger, Matthias; Adams, Michael

    2013-11-15

    In mice cynaropicrin (CYN) potently inhibits the proliferation of Trypanosoma brucei-the causative agent of Human African Trypanosomiasis-by a so far unknown mechanism. We hypothesized that CYNs α,β-unsaturated methylene moieties act as Michael acceptors for glutathione (GSH) and trypanothione (T(SH)2), the main low molecular mass thiols essential for unique redox metabolism of these parasites. The analysis of this putative mechanism and the effects of CYN on enzymes of the T(SH)2 redox metabolism including trypanothione reductase, trypanothione synthetase, glutathione-S-transferase, and ornithine decarboxylase are shown. A two step extraction protocol with subsequent UPLC-MS/MS analysis was established to quantify intra-cellular CYN, T(SH)2, GSH, as well as GS-CYN and T(S-CYN)2 adducts in intact T. b. rhodesiense cells. Within minutes of exposure to CYN, the cellular GSH and T(SH)2 pools were entirely depleted, and the parasites entered an apoptotic stage and died. CYN also showed inhibition of the ornithine decarboxylase similar to the positive control eflornithine. Significant interactions with the other enzymes involved in the T(SH)2 redox metabolism were not observed. Alongside many other biological activities sesquiterpene lactones including CYN have shown antitrypanosomal effects, which have been postulated to be linked to formation of Michael adducts with cellular nucleophiles. Here the interaction of CYN with biological thiols in a cellular system in general, and with trypanosomal T(SH)2 redox metabolism in particular, thus offering a molecular explanation for the antitrypanosomal activity is demonstrated. At the same time, the study provides a novel extraction and analysis protocol for components of the trypanosomal thiol metabolism. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Intestinal Parasitic Infections in Human Immunodeficiency Virus-Infected and Noninfected Persons in a High Human Immunodeficiency Virus Prevalence Region of Cameroon.

    Science.gov (United States)

    Nkenfou, Céline Nguefeu; Tchameni, Sandrine Mboula; Nkenfou, Carine Nguefeu; Djataou, Patrice; Simo, Ulrich Florian; Nkoum, Alexandre Benjamin; Estrin, William

    2017-09-01

    The problem of intestinal parasitic infection in human immunodeficiency virus (HIV)-infected people requires careful consideration in the developing world where poor nutrition is associated with poor hygiene and several coinfecting diseases. Studies have addressed this issue in Cameroon, especially in the low HIV prevalence area. The current study was conducted to determine the prevalence of intestinal parasitosis in people living with HIV (PLHIV) in Adamaoua and to identify associated risk factors. Stool and blood specimens from study participants were screened for intestinal parasites and anti-HIV antibodies, respectively. Of 235 participants, 68 (28.9%) were HIV positive, 38 of them on antiretroviral treatment (ART). The overall prevalence of intestinal parasites was 32.3%. Of 68 PLHIV, 32.3% (22/68) were infected with intestinal parasites, compared with 32.3% (54/167) of the HIV-negative patients. Univariate analysis showed no difference between the prevalence of intestinal parasites among PLHIV and HIV-negative patients ( P = 0.69). ART was not associated with the prevalence of intestinal parasites. Multivariate analysis showed that the quality of water and the personal hygiene were the major risk factors associated to intestinal parasitosis. The level of education was associated with HIV serostatus: the higher the level of education, the lower the risk of being infected with HIV ( P = 0.00). PLHIV and the general population should be screened routinely for intestinal parasites and treated if infected.

  8. Perturbation of the dimer interface of triosephosphate isomerase and its effect on Trypanosoma cruzi.

    Directory of Open Access Journals (Sweden)

    Vanesa Olivares-Illana

    2007-10-01

    Full Text Available Chagas disease affects around 18 million people in the American continent. Unfortunately, there is no satisfactory treatment for the disease. The drugs currently used are not specific and exert serious toxic effects. Thus, there is an urgent need for drugs that are effective. Looking for molecules to eliminate the parasite, we have targeted a central enzyme of the glycolytic pathway: triosephosphate isomerase (TIM. The homodimeric enzyme is catalytically active only as a dimer. Because there are significant differences in the interface of the enzymes from the parasite and humans, we searched for small molecules that specifically disrupt contact between the two subunits of the enzyme from Trypanosoma cruzi but not those of TIM from Homo sapiens (HTIM, and tested if they kill the parasite.Dithiodianiline (DTDA at nanomolar concentrations completely inactivates recombinant TIM of T. cruzi (TcTIM. It also inactivated HTIM, but at concentrations around 400 times higher. DTDA was also tested on four TcTIM mutants with each of its four cysteines replaced with either valine or alanine. The sensitivity of the mutants to DTDA was markedly similar to that of the wild type. The crystal structure of the TcTIM soaked in DTDA at 2.15 A resolution, and the data on the mutants showed that inactivation resulted from alterations of the dimer interface. DTDA also prevented the growth of Escherichia coli cells transformed with TcTIM, had no effect on normal E. coli, and also killed T. cruzi epimastigotes in culture.By targeting on the dimer interface of oligomeric enzymes from parasites, it is possible to discover small molecules that selectively thwart the life of the parasite. Also, the conformational changes that DTDA induces in the dimer interface of the trypanosomal enzyme are unique and identify a region of the interface that could be targeted for drug discovery.

  9. Studies on the virulence and attenuation of Trypanosoma cruzi using immunodeficient animals

    Directory of Open Access Journals (Sweden)

    Basombrío Miguel Ángel

    2000-01-01

    Full Text Available Tissue invasion and pathology by Trypanosoma cruzi result from an interaction between parasite virulence and host immunity. Successive in vivo generations of the parasite select populations with increasing ability to invade the host. Conversely, prolonged in vitro selection of the parasite produces attenuated sublines with low infectivity for mammals. One such subline (TCC clone has been extensively used in our laboratory as experimental vaccine and tested in comparative experiments with its virulent ancestor (TUL. The experiments here reviewed aimed at the use of immunodeficient mice for testing the infectivity of TCC parasites. It has not been possible to obtain virulent, revertant sublines by prolonged passaged in such mice.

  10. Molecular characterisation of Trypanosoma rangeli strains isolated from Rhodnius ecuadoriensis in Peru, R. colombiensis in Colombia and R. pallescens in Panama, supports a co-evolutionary association between parasites and vectors.

    Science.gov (United States)

    Urrea, D A; Carranza, J C; Cuba, C A Cuba; Gurgel-Gonçalves, R; Guhl, F; Schofield, C J; Triana, O; Vallejo, G A

    2005-03-01

    We present data on the molecular characterisation of strains of Trypanosoma rangeli isolated from naturally infected Rhodnius ecuadoriensis in Peru, from Rhodnius colombiensis, Rhodnius pallescens and Rhodnius prolixus in Colombia, and from Rhodnius pallescens in Panama. Strain characterisation involved a duplex PCR with S35/S36/KP1L primers. Mini-exon gene analysis was also carried out using TrINT-1/TrINT-2 oligonucleotides. kDNA and mini-exon amplification indicated dimorphism within both DNA sequences: (i) KP1, KP2 and KP3 or (ii) KP2 and KP3 products for kDNA, and 380 bp or 340 bp products for the mini-exon. All T. rangeli strains isolated from R. prolixus presented KP1, KP2 and KP3 products with the 340 bp mini-exon product. By contrast, all T. rangeli strains isolated from R. ecuadoriensis, R. pallescens and R. colombiensis, presented profiles with KP2 and KP3 kDNA products and the 380 bp mini-exon product. Combined with other studies, these results provide evidence of co-evolution of T. rangeli strains associated with different Rhodnius species groups east and west of the Andean mountains.

  11. The haemoculture of Trypanosoma minasense chagas, 1908

    Directory of Open Access Journals (Sweden)

    Mariangela Ziccardi

    1996-08-01

    Full Text Available Trypanosoma minasense was isolated for the first time in blood axenic culture from a naturally infected marmoset, Callithrix penicillata, from Brazil. The parasite grew profusely in an overlay of Roswell Park Memorial Institute medium plus 20% foetal bovine serum, on Novy, McNeal and Nicolle medium (NNN , at 27°C, with a peak around 168 hr. The morphometry of cultural forms of T. minasense, estimates of cell population size and comparative growth in four different media overlays always with NNN, were studied. The infectivity of cultural forms to marmosets (C. penicillata and C. jacchus and transformation of epimastigotes into metacyclic-like forms in axenic culture in the presence of chitin derivates (chitosan were evaluated.

  12. The effect of the diterpene 5-epi-icetexone on the cell cycle of Trypanosoma cruzi.

    NARCIS (Netherlands)

    Lozano, E.; Barrera, P.; Tonn, C.; Nieto, M.; Sartor, T.; Sosa, M.A.

    2012-01-01

    Numerous natural compounds have been used against Trypanosoma cruzi, the causative agent of Chagas' disease. Here, we studied the effect of the diterpene 5-epi-icetexone on growth and morphology of parasites synchronized with hydroxyurea, at different periods of time after removal of the nucleotide.

  13. Non-cytochrome mediated mitochondrial ATP production in bloodstream form Trypanosoma brucei brucei

    NARCIS (Netherlands)

    Bienen, E. J.; Maturi, R. K.; Pollakis, G.; Clarkson, A. B.

    1993-01-01

    The life cycle of Trypanosoma brucei brucei involves a series of differentiation steps characterized by marked changes in mitochondrial development and function. The bloodstream forms of this parasite completely lack cytochromes and have not been considered to have any Krebs cycle function. It has

  14. Procyclic Trypanosoma brucei do not use Krebs cycle activity for energy generation

    NARCIS (Netherlands)

    Weelden, van S.W.H.; Fast, B.; Vogt, A.; Meer, van der P.; Saas, J.; Hellemond, van J.J.; Tielens, A.G.M.; Boshart, M.

    2003-01-01

    The importance of a functional Krebs cycle for energy generation in the procyclic stage of Trypanosoma brucei was investigated under physiological conditions during logarithmic phase growth of a pleomorphic parasite strain. Wild type procyclic cells and mutants with targeted deletion of the gene

  15. Current progress in the development and use of artemether for chemoprophylaxis of major human schistosome parasites.

    Science.gov (United States)

    Utzinger, J; Xiao, S; Keiser, J; Chen, M; Zheng, J; Tanner, M

    2001-12-01

    Human schistosomiasis, a chronic and debilitating parasitic disease of the tropics, is ranked second after malaria in terms of public health importance. At present, there is no vaccine available, and chemotherapy is the cornerstone of schistosomiasis control. Praziquantel is the drug of choice. Oxamniquine has become difficult to obtain and metrifonate has recently been withdrawn from the market. Rapid re-infection following treatment and concern about praziquantel resistance called for the search of novel drugs for prevention and cure of schistosomiasis. Significant progress has been made with artemether, the methyl ether of dihydroartemisinin, already widely used for the treatment of malaria. The present article reviews the literature that led to the development of artemether for chemoprophylaxis in schistosomiasis, and it summarises the experiences so far obtained with its use to control schistosomiasis in different endemic settings. Topics covered include an overview of the global burden of schistosomiasis and approaches for its control; the nature and features of artemisinin and related derivatives, initially discovered as antimalarials, other bioactivities, and their recent discovery of antischistosomal properties; a historic account disclosing the antischistosomal activity of artemether; in vivo assessment of drug susceptibility of different developmental stages of schistosome parasites; artemether-induced pathology evidenced by scanning and transmission electron microscopy; the possible mechanism of action; in vivo studies with combination therapy of artemether and praziquantel; results of randomised controlled clinical trials of oral artemether for the prevention of patent infection and morbidity; and, ultimately the translation of this knowledge into public health action in different endemic settings towards a more integrated approach of schistosomiasis control.

  16. Draft genome of neurotropic nematode parasite Angiostrongylus cantonensis, causative agent of human eosinophilic meningitis.

    Science.gov (United States)

    Yong, Hoi-Sen; Eamsobhana, Praphathip; Lim, Phaik-Eem; Razali, Rozaimi; Aziz, Farhanah Abdul; Rosli, Nurul Shielawati Mohamed; Poole-Johnson, Johan; Anwar, Arif

    2015-08-01

    Angiostrongylus cantonensis is a bursate nematode parasite that causes eosinophilic meningitis (or meningoencephalitis) in humans in many parts of the world. The genomic data from A. cantonensis will form a useful resource for comparative genomic and chemogenomic studies to aid the development of diagnostics and therapeutics. We have sequenced, assembled and annotated the genome of A. cantonensis. The genome size is estimated to be ∼260 Mb, with 17,280 genomic scaffolds, 91X coverage, 81.45% for complete and 93.95% for partial score based on CEGMA analysis of genome completeness. The number of predicted genes of ≥300 bp was 17,482. A total of 7737 predicted protein-coding genes of ≥50 amino acids were identified in the assembled genome. Among the proteins of known function, kinases are the most abundant followed by transferases. The draft genome contains 34 excretory-secretory proteins (ES), a minimum of 44 Nematode Astacin (NAS) metalloproteases, 12 Homeobox (HOX) genes, and 30 neurotransmitters. The assembled genome size (260 Mb) is larger than those of Pristionchus pacificus, Caenorhabditis elegans, Necator americanus, Caenorhabditis briggsae, Trichinella spiralis, Brugia malayi and Loa loa, but smaller than Haemonchus contortus and Ascaris suum. The repeat content (25%) is similar to H. contortus. The GC content (41.17%) is lower compared to P. pacificus (42.7%) and H. contortus (43.1%) but higher compared to C. briggsae (37.69%), A. suum (37.9%) and N. americanus (40.2%) while the scaffold N50 is 42,191. This draft genome will facilitate the understanding of many unresolved issues on the parasite and the disorder it causes. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. A novel PCR-based system for the detection of four species of human malaria parasites and Plasmodium knowlesi

    Science.gov (United States)

    Komaki-Yasuda, Kanako; Vincent, Jeanne Perpétue; Nakatsu, Masami; Kato, Yasuyuki; Ohmagari, Norio

    2018-01-01

    A microscopy-based diagnosis is the gold standard for the detection and identification of malaria parasites in a patient’s blood. However, the detection of cases involving a low number of parasites and the differentiation of species sometimes requires a skilled microscopist. Although PCR-based diagnostic methods are already known to be very powerful tools, the time required to apply such methods is still much longer in comparison to traditional microscopic observation. Thus, improvements to PCR systems are sought to facilitate the more rapid and accurate detection of human malaria parasites Plasmodium falciparum, P. vivax, P. ovale, and P. malariae, as well as P. knowlesi, which is a simian malaria parasite that is currently widely distributed in Southeast Asia. A nested PCR that targets the small subunit ribosomal RNA genes of malaria parasites was performed using a “fast PCR enzyme”. In the first PCR, universal primers for all parasite species were used. In the second PCR, inner-specific primers, which targeted sequences from P. falciparum, P. vivax, P. ovale, P. malariae, and P. knowlesi, were used. The PCR reaction time was reduced with the use of the “fast PCR enzyme”, with only 65 minutes required to perform the first and second PCRs. The specific primers only reacted with the sequences of their targeted parasite species and never cross-reacted with sequences from other species under the defined PCR conditions. The diagnoses of 36 clinical samples that were obtained using this new PCR system were highly consistent with the microscopic diagnoses. PMID:29370297

  18. Key indicators for the monitoring and evaluation of control programmes of human African trypanosomiasis due to Trypanosoma brucei gambiense.

    Science.gov (United States)

    Bouchet, B; Legros, D; Lee, E

    1998-06-01

    Very little research has been devoted to the design of epidemiological tools for the monitoring and evaluation of National Human African Trypanosomiasis (HAT) Control Programmes and daily management decisions are made in the absence of accurate knowledge of the situation. This paper identifies key indicators necessary to make decisions in the field and constantly adjust control activities to changing situations. Examples are derived from the Médecins Sans Frontières (MSF) HAT Control Programme in Adjumani, Uganda. Based on the principles of quality assurance, the focus is placed on process indicators. A conceptual framework derived from a system view/planning cycle perspective is also described for the construction of indicators. Finally, some specific challenging aspects of the epidemiology of HAT are presented and the limitations of the interpretation of the indicators discussed.

  19. Non-biting cyclorrhaphan flies (Diptera) as carriers of intestinal human parasites in slum areas of Addis Ababa, Ethiopia.

    Science.gov (United States)

    Getachew, Sisay; Gebre-Michael, Teshome; Erko, Berhanu; Balkew, Meshesha; Medhin, Girmay

    2007-09-01

    A study was conducted to determine the role of non-biting cyclorrhaphan flies as carriers of intestinal parasites in slum areas of Addis Ababa from January 2004 to June 2004. A total of 9550 flies, comprising of at least seven species were collected from four selected sites and examined for human intestinal parasites using the formol-ether concentration method. The dominant fly species was Chrysomya rufifacies (34.9%) followed by Musca domestica (31%), Musca sorbens (20.5.%), Lucina cuprina (6.8%), Sarcophaga sp. (2.8%), Calliphora vicina (2.2%) and Wohlfahrtia sp. (1.8%). Six intestinal helminths (Ascaris lumbricoides, Trichuris trichiura, hookworms, Hymenolepis nana, Taenia spp. and Strongyloides stercoralis) and at least four protozoan parasites (Entamoeba histolytica/dispar, Entamoeba coli, Giardia lamblia and Cryptosporidium sp.) were isolated from both the external and gut contents of the flies. A. lumbricoides and T. trichiura among the helminths and E. histolytica/dispar and E. coli among the protozoans were the dominant parasites detected both on the external and in the gut contents of the flies, but occurring more in the latter. Among the flies, C. rufifacies and M. sorbens were the highest carriers of the helminth and protozoan parasites, respectively. The public health significance of these findings is highlighted.

  20. DNA typing of ancient parasite eggs from environmental samples identifies human and animal worm infections in Viking-age settlement.

    Science.gov (United States)

    Søe, Martin Jensen; Nejsum, Peter; Fredensborg, Brian Lund; Kapel, Christian Moliin Outzen

    2015-02-01

    Ancient parasite eggs were recovered from environmental samples collected at a Viking-age settlement in Viborg, Denmark, dated 1018-1030 A.D. Morphological examination identified Ascaris sp., Trichuris sp., and Fasciola sp. eggs, but size and shape did not allow species identification. By carefully selecting genetic markers, PCR amplification and sequencing of ancient DNA (aDNA) isolates resulted in identification of: the human whipworm, Trichuris trichiura , using SSUrRNA sequence homology; Ascaris sp. with 100% homology to cox1 haplotype 07; and Fasciola hepatica using ITS1 sequence homology. The identification of T. trichiura eggs indicates that human fecal material is present and, hence, that the Ascaris sp. haplotype 07 was most likely a human variant in Viking-age Denmark. The location of the F. hepatica finding suggests that sheep or cattle are the most likely hosts. Further, we sequenced the Ascaris sp. 18S rRNA gene in recent isolates from humans and pigs of global distribution and show that this is not a suited marker for species-specific identification. Finally, we discuss ancient parasitism in Denmark and the implementation of aDNA analysis methods in paleoparasitological studies. We argue that when employing species-specific identification, soil samples offer excellent opportunities for studies of human parasite infections and of human and animal interactions of the past.

  1. Population genetics of Trypanosoma brucei rhodesiense: clonality and diversity within and between foci.

    Directory of Open Access Journals (Sweden)

    Craig W Duffy

    2013-11-01

    Full Text Available African trypanosomes are unusual among pathogenic protozoa in that they can undergo their complete morphological life cycle in the tsetse fly vector with mating as a non-obligatory part of this development. Trypanosoma brucei rhodesiense, which infects humans and livestock in East and Southern Africa, has classically been described as a host-range variant of the non-human infective Trypanosoma brucei that occurs as stable clonal lineages. We have examined T. b. rhodesiense populations from East (Uganda and Southern (Malawi Africa using a panel of microsatellite markers, incorporating both spatial and temporal analyses. Our data demonstrate that Ugandan T. b. rhodesiense existed as clonal populations, with a small number of highly related genotypes and substantial linkage disequilibrium between pairs of loci. However, these populations were not stable as the dominant genotypes changed and the genetic diversity also reduced over time. Thus these populations do not conform to one of the criteria for strict clonality, namely stability of predominant genotypes over time, and our results show that, in a period in the mid 1990s, the previously predominant genotypes were not detected but were replaced by a novel clonal population with limited genetic relationship to the original population present between 1970 and 1990. In contrast, the Malawi T. b. rhodesiense population demonstrated significantly greater diversity and evidence for frequent genetic exchange. Therefore, the population genetics of T. b. rhodesiense is more complex than previously described. This has important implications for the spread of the single copy T. b. rhodesiense gene that allows human infectivity, and therefore the epidemiology of the human disease, as well as suggesting that these parasites represent an important organism to study the influence of optional recombination upon population genetic dynamics.

  2. Lipid Synthesis in Protozoan Parasites: a Comparison Between Kinetoplastids and Apicomplexans

    Science.gov (United States)

    Ramakrishnan, Srinivasan; Serricchio, Mauro; Striepen, Boris; Bütikofer, Peter

    2013-01-01

    Lipid metabolism is of crucial importance for pathogens. Lipids serve as cellular building blocks, signalling molecules, energy stores, posttranslational modifiers, and pathogenesis factors. Parasites rely on a complex system of uptake and synthesis mechanisms to satisfy their lipid needs. The parameters of this system change dramatically as the parasite transits through the various stages of its life cycle. Here we discuss the tremendous recent advances that have been made in the understanding of the synthesis and uptake pathways for fatty acids and phospholipids in apicomplexan and kinetoplastid parasites, including Plasmodium, Toxoplasma, Cryptosporidium, Trypanosoma and Leishmania. Lipid synthesis differs in significant ways between parasites from both phyla and the human host. Parasites have acquired novel pathways through endosymbiosis, as in the case of the apicoplast, have dramatically reshaped substrate and product profiles, and have evolved specialized lipids to interact with or manipulate the host. These differences potentially provide opportunities for drug development. We outline the lipid pathways for key species in detail as they progress through the developmental cycle and highlight those that are of particular importance to the biology of the pathogens and/or are the most promising targets for parasite-specific treatment. PMID:23827884

  3. Parasitic diseases of camels in Iran (1931–2017 – a literature review

    Directory of Open Access Journals (Sweden)

    Sazmand Alireza

    2017-01-01

    Full Text Available Parasitic diseases of camels are major causes of impaired milk and meat production, decreases in performance or even death. Some camel parasites also represent a threat to human health. About 171,500 one-humped camels (Camelus dromedarius and 100–300 two-humped camels (Camelus bactrianus live in Iran. Knowledge of the biodiversity of their parasites is still limited. The present review covers all information about camel parasitic diseases in Iran published as dissertations and in both Iranian and international journals from 1931 to February 2017. Ten genera of Protozoa (Trypanosoma, Eimeria, Cryptosporidium, Toxoplasma, Neospora, Sarcocystis, Besnoitia, Theileria, Babesia and Balantidium, 48 helminth species detected in the digestive system, including three species of Trematoda, four species of Cestoda, and 41 species of Nematoda, as well as helminths from other organs – Echinococcus spp., Dictyocaulus filaria, Thelazia leesei, Dipetalonema evansi and Onchocerca fasciata – have so far been described in Iranian camels. Furthermore, 13 species of hard ticks, mange mites, the myiasis flies Cephalopina titillator and Wohlfahrtia magnifica, and immature stages of the Pentastomida Linguatula serrata have also been reported from camels of Iran. Camel parasitic diseases are a major issue in Iran in terms of economics and public health. The present review offers information for an integrated control programme against economically relevant parasites of camels.

  4. A core MRB1 complex component is indispensable for RNA editing in insect and human infective stages of Trypanosoma brucei.

    Directory of Open Access Journals (Sweden)

    Michelle L Ammerman

    Full Text Available Uridine insertion/deletion RNA editing is a unique and vital process in kinetoplastids, required for creation of translatable open reading frames in most mitochondrially-encoded RNAs. Emerging as a key player in this process is the mitochondrial RNA binding 1 (MRB1 complex. MRB1 comprises an RNA-independent core complex of at least six proteins, including the GAP1/2 guide RNA (gRNA binding proteins. The core interacts in an RNA-enhanced or -dependent manner with imprecisely defined TbRGG2 subcomplexes, Armadillo protein MRB10130, and additional factors that comprise the dynamic MRB1 complex. Towards understanding MRB1 complex function in RNA editing, we present here functional characterization of the pentein domain-containing MRB1 core protein, MRB11870. Inducible RNAi studies demonstrate that MRB11870 is essential for proliferation of both insect vector and human infective stage T. brucei. MRB11870 ablation causes a massive defect in RNA editing, affecting both pan-edited and minimally edited mRNAs, but does not substantially affect mitochondrial RNA stability or processing of precursor transcripts. The editing defect in MRB1-depleted cells occurs at the initiation stage of editing, as pre-edited mRNAs accumulate. However, the gRNAs that direct editing remain abundant in the knockdown cells. To examine the contribution of MRB11870 to MRB1 macromolecular interactions, we tagged core complexes and analyzed their composition and associated proteins in the presence and absence of MRB11870. These studies demonstrated that MRB11870 is essential for association of GAP1/2 with the core, as well as for interaction of the core with other proteins and subcomplexes. Together, these data support a model in which the MRB1 core mediates functional interaction of gRNAs with the editing machinery, having GAP1/2 as its gRNA binding constituents. MRB11870 is a critical component of the core, essential for its structure and function.

  5. Parasites of importance for human health in Nigerian dogs: high prevalence and limited knowledge of pet owners.

    Science.gov (United States)

    Ugbomoiko, Uade Samuel; Ariza, Liana; Heukelbach, Jorg

    2008-12-09

    Dogs are the most common pet animals worldwide. They may harbour a wide range of parasites with zoonotic potential, thus causing a health risk to humans. In Nigeria, epidemiological knowledge on these parasites is limited. In a community-based study, we examined 396 dogs in urban and rural areas of Ilorin (Kwara State, Central Nigeria) for ectoparasites and intestinal helminths. In addition, a questionnaire regarding knowledge and practices was applied to pet owners. Nine ectoparasite species belonging to four taxa and six intestinal helminth species were identified: fleas (Ctenocephalides canis, Pulex irritans, Tunga penetrans), mites (Demodex canis, Otodectes sp., Sarcoptes scabiei var. canis), ticks (Rhipicephalus sanguineus, Ixodes sp.), and lice (Trichodectes canis); and Toxocara canis, Ancylostoma sp., Trichuris vulpis, Dipylidium caninum, Taenidae and Strongyloides sp. Overall prevalence of ectoparasites was 60.4% and of intestinal helminths 68.4%. The occurrence of C. canis, R. sanguineus, T. canis, Ancylostoma sp. and T. vulpis was most common (prevalence 14.4% to 41.7%). Prevalence patterns in helminths were age-dependent, with T. canis showing a decreasing prevalence with age of host, and a reverse trend in other parasite species. Knowledge regarding zoonoses was very limited and the diseases not considered a major health problem. Treatment with antiparasitic drugs was more frequent in urban areas. Parasites of importance for human health were highly prevalent in Nigerian dogs. Interventions should include health education provided to dog owners and the establishment of a program focusing on zoonotic diseases.

  6. Lysophosphatidylcholine: A Novel Modulator of Trypanosoma cruzi Transmission

    Science.gov (United States)

    Silva-Neto, Mário A. C.; Carneiro, Alan B.; Silva-Cardoso, Livia; Atella, Georgia C.

    2012-01-01

    Lysophosphatidylcholine is a bioactive lipid that regulates a large number of cellular processes and is especially present during the deposition and infiltration of inflammatory cells and deposition of atheromatous plaque. Such molecule is also present in saliva and feces of the hematophagous organism Rhodnius prolixus, a triatominae bug vector of Chagas disease. We have recently demonstrated that LPC is a modulator of Trypanosoma cruzi transmission. It acts as a powerful chemoattractant for inflammatory cells at the site of the insect bite, which will provide a concentrated population of cells available for parasite infection. Also, LPC increases macrophage intracellular calcium concentrations that ultimately enhance parasite invasion. Finally, LPC inhibits NO production by macrophages stimulated by live T. cruzi, and thus interferes with the immune system of the vertebrate host. In the present paper, we discuss the main signaling mechanisms that are likely used by such molecule and their eventual use as targets to block parasite transmission and the pathogenesis of Chagas disease. PMID:22132309

  7. Blood parasites of penguins: a critical review.

    Science.gov (United States)

    Vanstreels, Ralph Eric Thijl; Braga, Érika Martins; Catão-Dias, José Luiz

    2016-07-01

    Blood parasites are considered some of the most significant pathogens for the conservation of penguins, due to the considerable morbidity and mortality they have been shown to produce in captive and wild populations of these birds. Parasites known to occur in the blood of penguins include haemosporidian protozoans (Plasmodium, Leucocytozoon, Haemoproteus), piroplamid protozoans (Babesia), kinetoplastid protozoans (Trypanosoma), spirochete bacteria (Borrelia) and nematode microfilariae. This review provides a critical and comprehensive assessment of the current knowledge on these parasites, providing an overview of their biology, host and geographic distribution, epidemiology, pathology and implications for public health and conservation.

  8. Trickle or clumped infection process? An analysis of aggregation in the weights of the parasitic roundworm of humans, Ascaris lumbricoides.

    Science.gov (United States)

    Walker, Martin; Hall, Andrew; Basáñez, María-Gloria

    2010-10-01

    Studying the distribution of parasitic helminth body size across a population of definitive hosts can advance our understanding of parasite population biology. Body size is typically correlated with egg production. Consequently, inequalities in body size have been frequently measured to infer variation in reproductive success (VRS). Body size is also related to parasite age (time since entering the definitive host) and potentially provides valuable information on the mode of acquisition and establishment of immature (larval) parasites within the host: whether parasites tend to establish singly or in aggregates. The mode of acquisition of soil-transmitted helminths has been a theoretical consideration in the parasitological literature but has eluded data-driven investigation. In this paper, we analyse individual Ascaris lumbricoides weight data collected from a cohort of human hosts before and after re-infection following curative treatment, and explore its distribution within and among individuals in the population. Lorenz curves and Gini coefficients indicate that levels of weight inequality (a proxy for VRS) in A.lumbricoides are lower than other published estimates from animal-helminth systems. We explore levels of intra-host weight aggregation using statistical models to estimate the intraclass correlation coefficient (ICC) while adjusting for covariates using a flexible fractional polynomial transformation approach capable of handling non-linear functional relationships. The estimated ICCs indicate that weights are aggregated within hosts both at equilibrium and after re-infection, suggesting that parasites may establish within the host in clumps. The implications of a clumped infection process are discussed in terms of ascariasis transmission dynamics, control and anthelmintic resistance. Copyright © 2010 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  9. A target-based high throughput screen yields Trypanosoma brucei hexokinase small molecule inhibitors with antiparasitic activity.

    Directory of Open Access Journals (Sweden)

    Elizabeth R Sharlow

    2010-04-01

    Full Text Available The parasitic protozoan Trypanosoma brucei utilizes glycolysis exclusively for ATP production during infection of the mammalian host. The first step in this metabolic pathway is mediated by hexokinase (TbHK, an enzyme essential to the parasite that transfers the gamma-phospho of ATP to a hexose. Here we describe the identification and confirmation of novel small molecule inhibitors of bacterially expressed TbHK1, one of two TbHKs expressed by T. brucei, using a high throughput screening assay.Exploiting optimized high throughput screening assay procedures, we interrogated 220,233 unique compounds and identified 239 active compounds from which ten small molecules were further characterized. Computation chemical cluster analyses indicated that six compounds were structurally related while the remaining four compounds were classified as unrelated or singletons. All ten compounds were approximately 20-17,000-fold more potent than lonidamine, a previously identified TbHK1 inhibitor. Seven compounds inhibited T. brucei blood stage form parasite growth (0.03parasite specificity of the compounds being demonstrated using insect stage T. brucei parasites, Leishmania promastigotes, and mammalian cell lines. Analysis of two structurally related compounds, ebselen and SID 17387000, revealed that both were mixed inhibitors of TbHK1 with respect to ATP. Additionally, both compounds inhibited parasite lysate-derived HK activity. None of the compounds displayed structural similarity to known hexokinase inhibitors or human African trypanosomiasis therapeutics.The novel chemotypes identified here could represent leads for future therapeutic development against the African trypanosome.

  10. Crystallization and preliminary X-ray analysis of Na-SAA-2 from the human hookworm parasite Necator americanus

    International Nuclear Information System (INIS)

    Asojo, Oluwatoyin A.; Goud, Gaddam N.; Zhan, Bin; Ordonez, Katherine; Sedlacek, Meghan; Homma, Kohei; Deumic, Vehid; Gupta, Richi; Brelsford, Jill; Price, Merelyn K.; Ngamelue, Michelle N.; Hotez, Peter J.

    2010-01-01

    The purification, crystallization and preliminary X-ray diffraction analysis of a surface-associated antigen from the major human hookworm N. americanus is presented. Human hookworms are among the most pathogenic soil-transmitted helminths. These parasitic nematodes have co-evolved with the host and are able to maintain a high worm burden for decades without killing the human host. However, it is possible to develop vaccines against laboratory-challenge hookworm infections using either irradiated third-state infective larvae (L3) or enzymes from the adult parasites. In an effort to control hookworm infection globally, the Human Hookworm Vaccine Initiative, a product-development partnership with the Sabin Vaccine Institute to develop new control tools including vaccines, has identified a battery of protein antigens, including surface-associated antigens (SAAs) from L3. SAA proteins are characterized by a 13 kDa conserved domain of unknown function. SAA proteins are found on the surface of infective L3 stages (and some adult stages) of different nematode parasites, suggesting that they may play important roles in these organisms. The atomic structures and function of SAA proteins remain undetermined and in an effort to remedy this situation recombinant Na-SAA-2 from the most prevalent human hookworm parasite Necator americanus has been expressed, purified and crystallized. Useful X-ray data have been collected to 2.3 Å resolution from a crystal that belonged to the monoclinic space group C2 with unit-cell parameters a = 73.88, b = 35.58, c = 42.75 Å, β = 116.1°

  11. The Echinococcus canadensis (G7) genome: a key knowledge of parasitic platyhelminth human diseases.

    Science.gov (United States)

    Maldonado, Lucas L; Assis, Juliana; Araújo, Flávio M Gomes; Salim, Anna C M; Macchiaroli, Natalia; Cucher, Marcela; Camicia, Federico; Fox, Adolfo; Rosenzvit, Mara; Oliveira, Guilherme; Kamenetzky, Laura

    2017-02-27

    The parasite Echinococcus canadensis (G7) (phylum Platyhelminthes, class Cestoda) is one of the causative agents of echinococcosis. Echinococcosis is a worldwide chronic zoonosis affecting humans as well as domestic and wild mammals, which has been reported as a prioritized neglected disease by the World Health Organisation. No genomic data, comparative genomic analyses or efficient therapeutic and diagnostic tools are available for this severe disease. The information presented in this study will help to understand the peculiar biological characters and to design species-specific control tools. We sequenced, assembled and annotated the 115-Mb genome of E. canadensis (G7). Comparative genomic analyses using whole genome data of three Echinococcus species not only confirmed the status of E. canadensis (G7) as a separate species but also demonstrated a high nucleotide sequences divergence in relation to E. granulosus (G1). The E. canadensis (G7) genome contains 11,449 genes with a core set of 881 orthologs shared among five cestode species. Comparative genomics revealed that there are more single nucleotide polymorphisms (SNPs) between E. canadensis (G7) and E. granulosus (G1) than between E. canadensis (G7) and E. multilocularis. This result was unexpected since E. canadensis (G7) and E. granulosus (G1) were considered to belong to the species complex E. granulosus sensu lato. We described SNPs in known drug targets and metabolism genes in the E. canadensis (G7) genome. Regarding gene regulation, we analysed three particular features: CpG island distribution along the three Echinococcus genomes, DNA methylation system and small RNA pathway. The results suggest the occurrence of yet unknown gene regulation mechanisms in Echinococcus. This is the first work that addresses Echinococcus comparative genomics. The resources presented here will promote the study of mechanisms of parasite development as well as new tools for drug discovery. The availability of a high

  12. Homologous Recombination in Protozoan Parasites and Recombinase Inhibitors

    Directory of Open Access Journals (Sweden)

    Andrew A. Kelso

    2017-09-01

    Full Text Available Homologous recombination (HR is a DNA double-strand break (DSB repair pathway that utilizes a homologous template to fully repair the damaged DNA. HR is critical to maintain genome stability and to ensure genetic diversity during meiosis. A specialized class of enzymes known as recombinases facilitate the exchange of genetic information between sister chromatids or homologous chromosomes with the help of numerous protein accessory factors. The majority of the HR machinery is highly conserved among eukaryotes. In many protozoan parasites, HR is an essential DSB repair pathway that allows these organisms to adapt to environmental conditions and evade host immune systems through genetic recombination. Therefore, small molecule inhibitors, capable of disrupting HR in protozoan parasites, represent potential therapeutic options. A number of small molecule inhibitors were identified that disrupt the activities of the human recombinase RAD51. Recent studies have examined the effect of two of these molecules on the Entamoeba recombinases. Here, we discuss the current understandings of HR in the protozoan parasites Trypanosoma, Leishmania, Plasmodium, and Entamoeba, and we review the small molecule inhibitors known to disrupt human RAD51 activity.

  13. Prevalence, Genetic Characterization, and 18S Small Subunit Ribosomal RNA Diversity of Trypanosoma rangeli in Triatomine and Mammal Hosts in Endemic Areas for Chagas Disease in Ecuador.

    Science.gov (United States)

    Ocaña-Mayorga, Sofia; Aguirre-Villacis, Fernanda; Pinto, C Miguel; Vallejo, Gustavo A; Grijalva, Mario J

    2015-12-01

    Trypanosoma rangeli is a nonpathogenic parasite for humans; however, its medical importance relies in its similarity and overlapping distribution with Trypanosoma cruzi, causal agent of Chagas disease in the Americas. The genetic diversity of T. rangeli and its association with host species (triatomines and mammals) has been identified along Central and the South America; however, it has not included data of isolates from Ecuador. This study reports infection with T. rangeli in 18 genera of mammal hosts and five species of triatomines in three environments (domestic, peridomestic, and sylvatic). Higher infection rates were found in the sylvatic environment, in close association with Rhodnius ecuadoriensis. The results of this study extend the range of hosts infected with this parasite and the geographic range of the T. rangeli genotype KP1(-)/lineage C in South America. It was not possible to detect variation on T. rangeli from the central coastal region and southern Ecuador with the analysis of the small subunit ribosomal RNA (SSU-rRNA) gene, even though these areas are ecologically different and a phenotypic subdivision of R. ecuadoriensis has been found. R. ecuadoriensis is considered one of the most important vectors for Chagas disease transmission in Ecuador due to its wide distribution and adaptability to diverse environments. An extensive knowledge of the trypanosomes circulating in this species of triatomine, and associated mammal hosts, is important for delineating transmission dynamics and preventive measures in the endemic areas of Ecuador and Northern Peru.

  14. Prevalence, Genetic Characterization, and 18S Small Subunit Ribosomal RNA Diversity of Trypanosoma rangeli in Triatomine and Mammal Hosts in Endemic Areas for Chagas Disease in Ecuador

    Science.gov (United States)

    Ocaña-Mayorga, Sofia; Aguirre-Villacis, Fernanda; Pinto, C. Miguel; Vallejo, Gustavo A.

    2015-01-01

    Abstract Trypanosoma rangeli is a nonpathogenic parasite for humans; however, its medical importance relies in its similarity and overlapping distribution with Trypanosoma cruzi, causal agent of Chagas disease in the Americas. The genetic diversity of T. rangeli and its association with host species (triatomines and mammals) has been identified along Central and the South America; however, it has not included data of isolates from Ecuador. This study reports infection with T. rangeli in 18 genera of mammal hosts and five species of triatomines in three environments (domestic, peridomestic, and sylvatic). Higher infection rates were found in the sylvatic environment, in close association with Rhodnius ecuadoriensis. The results of this study extend the range of hosts infected with this parasite and the geographic range of the T. rangeli genotype KP1(−)/lineage C in South America. It was not possible to detect variation on T. rangeli from the central coastal region and southern Ecuador with the analysis of the small subunit ribosomal RNA (SSU-rRNA) gene, even though these areas are ecologically different and a phenotypic subdivision of R. ecuadoriensis has been found. R. ecuadoriensis is considered one of the most important vectors for Chagas disease transmission in Ecuador due to its wide distribution and adaptability to diverse environments. An extensive knowledge of the trypanosomes circulating in this species of triatomine, and associated mammal hosts, is important for delineating transmission dynamics and preventive measures in the endemic areas of Ecuador and Northern Peru. PMID:26645579

  15. The origin and dispersion of human parasitic diseases in the old world (Africa, Europe and Madagascar).

    Science.gov (United States)

    Nozais, Jean-Pierre

    2003-01-01

    The ancestors of present-day man (Homo sapiens sapiens) appeared in East Africa some three and a half million years ago (Australopithecs), and then migrated to Europe, Asia, and later to the Americas, thus beginning the differentiation process. The passage from nomadic to sedentary life took place in the Middle East in around 8000 BC. Wars, spontaneous migrations and forced migrations (slave trade) led to enormous mixtures of populations in Europe and Africa and favoured the spread of numerous parasitic diseases with specific strains according to geographic area. The three human plasmodia (Plasmodium falciparum, P. vivax, and P. malariae) were imported from Africa into the Mediterranean region with the first human migrations, but it was the Neolithic revolution (sedentarisation, irrigation, population increase) which brought about actual foci for malaria. The reservoir for Leishmania infantum and L. donovani--the dog--has been domesticated for thousands of years. Wild rodents as reservoirs of L. major have also long been in contact with man and probably were imported from tropical Africa across the Sahara. L. tropica, by contrast, followed the migrations of man, its only reservoir. L. infantum and L. donovani spread with man and his dogs from West Africa. Likewise, for thousands of years, the dog has played an important role in the spread and the endemic character of hydatidosis through sheep (in Europe and North Africa) and dromadary (in the Sahara and North Africa). Schistosoma haematobium and S. mansoni have existed since prehistoric times in populations living in or passing through the Sahara. These populations then transported them to countries of Northern Africa where the specific, intermediary hosts were already present. Madagascar was inhabited by populations of Indonesian origin who imported lymphatic filariosis across the Indian Ocean (possibly of African origin since the Indonesian sailors had spent time on the African coast before reaching Madagascar

  16. The origin and dispersion of human parasitic diseases in the Old World (Africa, Europe and Madagascar

    Directory of Open Access Journals (Sweden)

    Jean-Pierre Nozais

    2003-01-01

    Full Text Available The ancestors of present-day man (Homo sapiens sapiens appeared in East Africa some three and a half million years ago (Australopithecs, and then migrated to Europe, Asia, and later to the Americas, thus beginning the differentiation process. The passage from nomadic to sedentary life took place in the Middle East in around 8000 BC. Wars, spontaneous migrations and forced migrations (slave trade led to enormous mixtures of populations in Europe and Africa and favoured the spread of numerous parasitic diseases with specific strains according to geographic area. The three human plasmodia (Plasmodium falciparum, P. vivax, and P. malariae were imported from Africa into the Mediterranean region with the first human migrations, but it was the Neolithic revolution (sedentarisation, irrigation, population increase which brought about actual foci for malaria. The reservoir for Leishmania infantum and L. donovani - the dog - has been domesticated for thousands of years. Wild rodents as reservoirs of L. major have also long been in contact with man and probably were imported from tropical Africa across the Sahara. L. tropica, by contrast, followed the migrations of man, its only reservoir. L. infantum and L. donovani spread with man and his dogs from West Africa. Likewise, for thousands of years, the dog has played an important role in the spread and the endemic character of hydatidosis through sheep (in Europe and North Africa and dromadary (in the Sahara and North Africa. Schistosoma haematobium and S. mansoni have existed since prehistoric times in populations living in or passing through the Sahara. These populations then transported them to countries of Northern Africa where the specific, intermediary hosts were already present. Madagascar was inhabited by populations of Indonesian origin who imported lymphatic filariosis across the Indian Ocean (possibly of African origin since the Indonesian sailors had spent time on the African coast before

  17. Trickle or clumped infection process? A stochastic model for the infection process of the parasitic roundworm of humans, Ascaris lumbricoides.

    Science.gov (United States)

    Walker, Martin; Hall, Andrew; Basáñez, María-Gloria

    2010-10-01

    The importance of the mode of acquisition of infectious stages of directly-transmitted parasitic helminths has been acknowledged in population dynamics models; hosts may acquire eggs/larvae singly in a "trickle" type manner or in "clumps". Such models have shown that the mode of acquisition influences the distribution and dynamics of parasite loads, the stability of host-parasite systems and the rate of emergence of anthelmintic resistance, yet very few field studies have allowed these questions to be explored with empirical data. We have analysed individual worm weight data for the parasitic roundworm of humans, Ascaris lumbricoides, collected from a three-round chemo-expulsion study in Dhaka, Bangladesh, with the aim of discerning whether a trickle or a clumped infection process predominates. We found that hosts tend to harbour female worms of a similar weight, indicative of a clumped infection process, but acknowledged that unmeasured host heterogeneities (random effects) could not be completely excluded as a cause. Here, we complement our previous statistical analyses using a stochastic infection model to simulate sizes of individual A. lumbricoides infecting a population of humans. We use the intraclass correlation coefficient (ICC) as a quantitative measure of similarity among simulated worm sizes and explore the behaviour of this statistic under assumptions corresponding to trickle or clumped infections and unmeasured host heterogeneities. We confirm that both mechanisms are capable of generating aggregates of similar-sized worms, but that the particular pattern of ICCs described pre- and post-anthelmintic treatment in the data is more consistent with aggregation generated by clumped infections than by host heterogeneities alone. This provides support to the notion that worms may be acquired in clumps. We discuss our results in terms of the population biology of A. lumbricoides and highlight the significance of our modelling approach for the study of the

  18. Foodborne parasites from wildlife

    DEFF Research Database (Denmark)

    Kapel, Christian Moliin Outzen; Fredensborg, Brian Lund

    2015-01-01

    The majority of wild foods consumed by humans are sourced from intensively managed or semi-farmed populations. Management practices inevitably affect wildlife density and habitat characteristics, which are key elements in the transmission of parasites. We consider the risk of transmission...... of foodborne parasites to humans from wildlife maintained under natural or semi-natural conditions. A deeper understanding will be useful in counteracting foodborne parasites arising from the growing industry of novel and exotic foods....

  19. Benznidazole induces in vitro anaerobic metabolism in Trypanosoma cruzi epimastigotes

    Directory of Open Access Journals (Sweden)

    Marina Clare Vinaud

    2017-11-01

    Full Text Available Objective: To determine the biochemical alterations of the energetic metabolism of Trypanosoma cruzi epimastigotes in vitro exposed to different concentrations of benzinidazole. Methods: Biochemical analyses were performed at 3, 6 (log phase, 9 and 12 (stationary phase days of culture. Parasites were exposed to five concentrations of benzinidazole. Glycolysis, tricarboxilic acid cycle and fatty acids oxidation pathways were quantified through chromatography. Glucose, urea and creatinine were quantified through spectrophotometric analysis. Results: Anaerobic fermentation and fatty acids oxidation were increased in the stationary phase of the culture. Benzinidazole at high concentrations induced anaerobic metabolism in the log phase of the culture while the parasites exposed to the lower concentrations preferred the citric acid cycle as energy production pathway. Benzinidazole did not influence on the proteins catabolism. Conclusions: It is possible to conclude that there are metabolic differences between evolutive forms of Trypanosoma cruzi and the main drug used for its treatment induces the anaerobic metabolism in the parasite, possibly impairing the mitochondrial pathways.

  20. Biochemical evaluation of a series of synthetic chalcone and hydrazide derivatives as novel inhibitors of cruzain from Trypanosoma cruzi

    Energy Technology Data Exchange (ETDEWEB)

    Borchhardt, Deise M.; Oliva, Glaucius; Andricopulo, Adriano D. [Universidade de Sao Paulo, Sao Carlos (USP), SP (Brazil). Centro de Biotecnologia Molecular Estrutural. Lab. de Quimica Medicinal e Computacional; Mascarello, Alessandra; Chiaradia, Louise Domeneghini; Nunes, Ricardo J.; Yunes, Rosendo A. [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Centro de Ciencias Fisicas e Matematicas. Lab. Estrutura e Atividade

    2010-07-01

    Chagas' disease, a parasitic infection widely distributed throughout Latin America, is a major public health problem with devastating consequences in terms of human morbidity and mortality. The enzyme cruzain is the major cysteine protease from Trypanosoma cruzi, the etiologic agent of American trypanosomiasis or Chagas' disease, and has been selected as an attractive target for the development of novel trypanocidal drugs. In the present work, we describe the synthesis and inhibitory effects of a series of thirty-three chalcone and seven hydrazide derivatives against the enzyme cruzain from T. cruzi. Most of the compounds showed promising in vitro inhibition (IC{sub 50} values in the range of 20-60 {mu}M), which suggest the potential of these compounds as lead candidates for further development. Twelve compounds have not been reported before, and four of them (7, 13, 16 e 18) are among the most potent inhibitors of the series. (author)

  1. Evaluation of In Vitro Activity of Essential Oils against Trypanosoma brucei brucei and Trypanosoma evansi

    Directory of Open Access Journals (Sweden)

    Nathan Habila

    2010-01-01

    Full Text Available Essential oils (EOs from Cymbopogon citratus (CC, Eucalyptus citriodora (EC, Eucalyptus camaldulensis (ED, and Citrus sinensis (CS were obtained by hydrodistillation process. The EOs were evaluated in vitro for activity against Trypanosoma brucei brucei (Tbb and Trypanosoma evansi (T. evansi. The EOs were found to possess antitrypanosomal activity in vitro in a dose-dependent pattern in a short period of time. The drop in number of parasite over time was achieved doses of 0.4 g/ml, 0.2 g/mL, and 0.1 g/mL for all the EOs. The concentration of 0.4 g/mL CC was more potent at 3 minutes and 2 minutes for Tbb and T. evansi, respectively. The GC-MS analysis of the EOs revealed presence of Cyclobutane (96.09% in CS, 6-octenal (77.11% in EC, Eucalyptol (75% in ED, and Citral (38.32% in CC among several other organic compounds. The results are discussed in relation to trypanosome chemotherapy.

  2. Molecular diagnosis of cattle trypanosomes in Venezuela: evidences of Trypanosoma evansi and Trypanosoma vivax infections.

    Science.gov (United States)

    Ramírez-Iglesias, J R; Eleizalde, M C; Reyna-Bello, A; Mendoza, M

    2017-06-01

    In South America Trypanosoma evansi has been determined by molecular methods in cattle from Bolivia, Brazil, Colombia and Peru, reason for which the presence of this parasite is not excluded in Venezuelan livestock. Therefore, the aim of this study was to perform parasitological and molecular diagnosis of cattle trypanosomosis in small livestock units from two regions in this country. The parasitological diagnosis was carried out by MHCT and the molecular by PCR using genus-specific ITS1 primers that differentiate T. vivax and T. evansi infections. 47 cattle were evaluated in the "Laguneta de la Montaña" sector, Miranda State, where 3 animals were diagnosed as positive (6.4 %) by MHCT and 14 (30 %) by PCR as Trypanosoma spp., out of which 9 animals resulted positive for T. vivax , 3 for T. evansi and 2 with double infections. Whilst in the "San Casimiro" sector, State of Aragua, out of the 38 cattle evaluated 7 animals were diagnosed as positive (18.4 %) by MHCT and 19 (50 %) by PCR, determining only the presence of T. evansi in this locality. The molecular diagnosis by PCR using ITS1 primers allowed T. evansi detection in cattle field populations, which suggests the possible role of these animals as reservoirs in the epidemiology of the disease caused by T. evansi in Venezuela.

  3. Human presence increases parasitic load in endangered lion-tailed macaques (Macaca silenus in its fragmented rainforest habitats in Southern India.

    Directory of Open Access Journals (Sweden)

    Shaik Hussain

    Full Text Available BACKGROUND: Understanding changes in the host-parasite relationship due to habitat fragmentation is necessary for better management and conservation of endangered species in fragmented landscapes. Pathogens and parasites can pose severe threat to species in restricted environments such as forest fragments where there is increased contact of wildlife with human and livestock populations. Environmental stress and reduced nutritional level in forest fragments can influence parasite infection and intensity on the native species. In this study, we examine the impact of habitat fragmentation on the prevalence of gastrointestinal parasites in lion-tailed macaques in a fragmented rainforest in Western Ghats. METHODS: The prevalence of different gastrointestinal parasites was estimated from 91 fecal samples collected from 9 lion-tailed macaque groups in nine forest fragments. The parasites were identified up to genus level on the basis of the morphology and coloration of the egg, larva and cyst. The covariates included forest fragment area, group size and the presence/absence of human settlements and livestock in proximity. We used a linear regression model to identify the covariates that significantly influenced the prevalence of different parasite taxa. RESULTS: Nine gastrointestinal parasite taxa were detected in lion-tailed macaque groups. The groups near human settlements had greater prevalence and number of taxa, and these variables also had significant positive correlations with group size. We found that these parameters were also greater in groups near human settlements after controlling for group size. Livestock were present in all five fragments that had human settlements in proximity. CONCLUSION: The present study suggests that high prevalence and species richness of gastrointestinal parasites in lion-tailed macaque groups are directly related to habitat fragmentation, high anthropogenic activities and high host density. The parasite load

  4. Defining the protein interaction network of human malaria parasite Plasmodium falciparum

    KAUST Repository

    Ramaprasad, Abhinay; Pain, Arnab; Ravasi, Timothy

    2012-01-01

    Malaria, caused by the protozoan parasite Plasmodium falciparum, affects around 225. million people yearly and a huge international effort is directed towards combating this grave threat to world health and economic development. Considerable

  5. SURVEY OF HOUSE RAT INTESTINAL PARASITES FROM SURABAYA DISTRICT, EAST JAVA, INDONESIA THAT CAN CAUSE OPPORTUNISTIC INFECTIONS IN HUMANS.

    Science.gov (United States)

    Prasetyo, R H

    2016-03-01

    The purpose of this study was to investigate the prevalence of house rat zoonotic intestinal parasites from Surabaya District, East Java, Indonesia that have the potential to cause opportunistic infection in humans. House rat fecal samples were collected from an area of Surabaya District with a dense rat population during May 2015. Intestinal parasites were detected microscopically using direct smear of feces stained with Lugol's iodine and modified Ziehl-Neelsen stains. The fecal samples were also cultured for Strongyloides stercoralis. Ninety-eight house rat fecal samples were examined. The potential opportunistic infection parasite densities found in those samples were Strongyloides stercoralis in 53%, Hymenolepis nana in 42%, Cryptosporidium spp in 33%, and Blastocystis spp in 6%. This is the first report of this kind in Surabaya District. Measures need to be taken to control the house rat population in the study area to reduce the risk of the public health problem. Keywords: zoonotic intestinal parasites, opportunistic infection, house rat, densely populated area, Indonesia

  6. [A national survey on current status of the important parasitic diseases in human population].

    Science.gov (United States)

    2005-10-30

    In order to understand the current status and trends of the important parasitic diseases in human population, to evaluate the effect of control activities in the past decade and provide scientific base for further developing control strategies, a national survey was carried out in the country (Taiwan, Hongkong and Macau not included) from June, 2001 to 2004 under the sponsorship of the Ministry of Health. The sample sizes of the nationwide survey and of the survey in each province (autonomous region and municipality, P/A/M) were determined following a calculating formula based on an estimation of the sample size of random sampling to the rate of population. A procedure of stratified cluster random sampling was conducted in each province based on geographical location and economical condition with three strata: county/city, township/town, and spot, each spot covered a sample of 500 people. Parasitological examinations were conducted for the infections of soil-transmitted nematodes, Taenia spp, and Clonorchis sinensis, including Kato-Katz thick smear method, scotch cellulose adhesive tape technique and test tube-filter paper culture (for larvae). At the same time, another sampled investigation for Clonorchis sinensis infection was carried out in the known endemic areas in 27 provinces. Serological tests combined with questionnaire and/or clinical diagnosis were applied for hydatid disease, cysticercosis, paragonimiasis, trichinosis, and toxoplasmosis. A total sampled population of 356 629 from the 31 P/A/M was examined by parasitological methods and 26 species of helminth were recorded. Among these helminth, human infections of Metorchis orientalis and Echinostoma aegypti were detected in Fujian Province which seemed to be the first report in the world, and Haplorchis taichui infection in Guangxi Region was the first human infection record in the country. The overall prevalence of helminth infections was 21.74%. The prevalence of soil-transmitted nematodes was 19

  7. Phylogenetic position of the giant anuran trypanosomes Trypanosoma chattoni, Trypanosoma fallisi, Trypanosoma mega, Trypanosoma neveulemairei, and Trypanosoma ranarum inferred from 18S rRNA gene sequences.

    Science.gov (United States)

    Martin, Donald S; Wright, André-Denis G; Barta, John R; Desser, Sherwin S

    2002-06-01

    Phylogenetic relationships within the kinetoplastid flagellates were inferred from comparisons of small-subunit ribosomal RNA gene sequences. These included 5 new gene sequences, Trypanosoma fallisi (2,239 bp), Trypanosoma chattoni (2,180 bp), Trypanosoma mega (2,211 bp), Trypanosoma neveulemairei (2,197 bp), and Trypanosoma ranarum (2,203 bp). Trees produced using maximum-parsimony and distance-matrix methods (least-squares, neighbor-joining, and maximum-likelihood), supported by strong bootstrap and quartet-puzzle analyses, indicated that the trypanosomes are a monophyletic group that divides into 2 major lineages, the salivarian trypanosomes and the nonsalivarian trypanosomes. The nonsalivarian trypanosomes further divide into 2 lineages, 1 containing trypanosomes of birds, mammals, and reptiles and the other containing trypanosomes of fish, reptiles, and anurans. Among the giant trypanosomes, T. chattoni is clearly shown to be distantly related to all the other anuran trypanosome species. Trypanosoma mega is closely associated with T. fallisi and T. ranarum, whereas T. neveulemairei and Trypanosoma rotatorium are sister taxa. The branching order of the anuran trypanosomes suggests that some toad trypanosomes may have evolved by host switching from frogs to toads.

  8. Natural infections of man-biting sand flies by Leishmania and Trypanosoma species in the northern Peruvian Andes.

    Science.gov (United States)

    Kato, Hirotomo; Gomez, Eduardo A; Cáceres, Abraham G; Vargas, Franklin; Mimori, Tatsuyuki; Yamamoto, Kento; Iwata, Hiroyuki; Korenaga, Masataka; Velez, Lenin; Hashiguchi, Yoshihisa

    2011-05-01

    The natural infection of sand flies by Leishmania species was studied in the Andean areas of Peru where cutaneous leishmaniasis caused by Leishmania (Viannia) peruviana is endemic. Sand flies were captured by human bait and Center for Disease Control (CDC) light trap catches at Nambuque and Padregual, Department of La Libertad, Peru, and morphologically identified. Among 377 female sand flies dissected, the two dominant man-biting species were Lutzomyia (Helcocyrtomyia) peruensis (211 flies) and Lutzomyia (Helcocyrtomyia) caballeroi (151 flies). Another sand fly species captured by light trap was Warileya phlebotomanica (15 flies). The natural infection of sand flies by flagellates was detected in 1.4% of Lu. (H.) peruensis and 2.6% of Lu. (H.) caballeroi, and the parasite species were identified as Le. (V.) peruviana and Trypanosoma avium, respectively, by molecular biological methods. The results indicated that the vector species responsible for the transmission of leishmaniasis in the study areas is Lu. (H.) peruensis. In addition, the presence of Trypanosoma in man-biting sand fly species means that more careful consideration is necessary for vector research in areas of Andean Peru where leishmaniasis is endemic.

  9. Human behavior and opportunities for parasite transmission in communities surrounding long-tailed macaque populations in Bali, Indonesia.

    Science.gov (United States)

    Lane-DeGraaf, Kelly E; Putra, I G A Arta; Wandia, I Nengah; Rompis, Aida; Hollocher, Hope; Fuentes, Agustin

    2014-02-01

    Spatial overlap and shared resources between humans and wildlife can exacerbate parasite transmission dynamics. In Bali, Indonesia, an agricultural-religious temple system provides sanctuaries for long-tailed macaques (Macaca fascicularis), concentrating them in areas in close proximity to humans. In this study, we interviewed individuals in communities surrounding 13 macaque populations about their willingness to participate in behaviors that would put them at risk of exposure to gastrointestinal parasites to understand if age, education level, or occupation are significant determinants of exposure behaviors. These exposure risk behaviors and attitudes include fear of macaques, direct contact with macaques, owning pet macaques, hunting and eating macaques, and overlapping water uses. We find that willingness to participate in exposure risk behaviors are correlated with an individual's occupation, age, and/or education level. We also found that because the actual risk of infection varies across populations, activities such as direct macaque contact and pet ownership, could be putting individuals at real risk in certain contexts. Thus, we show that human demographics and social structure can influence willingness to participate in behaviors putting them at increased risk for exposure to parasites. © 2013 Wiley Periodicals, Inc.

  10. Prevalence and Risk Factors of Human Intestinal Parasites in Roudehen, Tehran Province, Iran.

    Science.gov (United States)

    Hemmati, Nasrin; Razmjou, Elham; Hashemi-Hafshejani, Saeideh; Motevalian, Abbas; Akhlaghi, Lameh; Meamar, Ahmad Reza

    2017-01-01

    Intestinal parasitic infections are among the most common infections and health problems worldwide. Due to the lack of epidemiologic information of such infections, the prevalence of, and the risk factors for, enteric parasites were investigated in residents of Roudehen, Tehran Province, Iran. In this cross-sectional study, 561 triple fecal samples were collected through a two-stage cluster-sampling protocol from Jun to Dec 2014. The samples were examined by formalin-ether concentration, culture, and with molecular methods. The prevalence of enteric parasites was 32.7% (95% CI 27.3-38). Blastocystis sp. was the most common intestinal protozoan (28.4%; 95% CI 23.7-33.0). The formalin-ether concentration and culture methods detected Blastocystis sp., Entamoeba coli , Giardia intestinalis , Dientamoeba fragilis , Iodamoeba butschlii , Entamoeba complex cysts or trophozoite , Chilomastix mesnilii , and Enterobius vermicularis . Single-round PCR assay for Entamoeba complex were identified Entamoeba dispar and E. moshkovskii . E. histolytica was not observed in any specimen. Multivariate analysis showed a significant association of parasites with water source and close animal contact. There was no correlation between infections and gender, age, occupation, education, or travel history. Protozoan infections were more common than helminth infections. This study revealed a high prevalence of enteric protozoan parasite infection among citizens of Rodehen. As most of the species detected are transmitted through a water-resistant cyst, public and individual education on personal hygiene should be considered to reduce transmission of intestinal parasites in the population.

  11. Human-induced eutrophication maintains high parasite prevalence in breeding threespine stickleback populations.

    Science.gov (United States)

    Budria, Alexandre; Candolin, Ulrika

    2015-04-01

    Anthropogenic activities are having profound impacts on species interactions, with further consequences for populations and communities. We investigated the influence that anthropogenic eutrophication has on the prevalence of the parasitic tapeworm Schistocephalus solidus in threespine stickleback Gasterosteus aculeatus populations. We caught stickleback from four areas along the coast of Finland, and within each area from one undisturbed and one eutrophied habitat. We found the prevalence of the parasite to be lower in the eutrophied habitats at the start of the breeding season, probably because of fewer piscivorous birds that transmit the parasite. However, while the prevalence of the parasite declined across the season in the undisturbed habitat, it did less so in eutrophied habitats. We discuss different processes that could be behind the differences, such as lower predation rate on infected fish, higher food availability and less dispersal in eutrophied habitats. We found no effect of eutrophication on the proportion of infected stickleback that entered reproductive condition. Together with earlier findings, this suggests that eutrophication increases the proportion of infected stickleback that reproduce. This could promote the evolution of less parasite resistant populations, with potential consequences for the viability of the interacting parties of the host-parasite system.

  12. Bioenergetic profiling of Trypanosoma cruzi life stages using Seahorse extracellular flux technology.

    Science.gov (United States)

    Shah-Simpson, Sheena; Pereira, Camila F A; Dumoulin, Peter C; Caradonna, Kacey L; Burleigh, Barbara A

    2016-08-01

    Energy metabolism is an attractive target for the development of new therapeutics against protozoan pathogens, including Trypanosoma cruzi, the causative agent of human Chagas disease. Despite emerging evidence that mitochondrial electron transport is essential for the growth of intracellular T. cruzi amastigotes in mammalian cells, fundamental knowledge of mitochondrial energy metabolism in this parasite life stage remains incomplete. The Clark-type electrode, which measures the rate of oxygen consumption, has served as the traditional tool to study mitochondrial energetics and has contributed to our understanding of it in T. cruzi. Here, we evaluate the Seahorse XF(e)24 extracellular flux platform as an alternative method to assess mitochondrial bioenergetics in isolated T. cruzi parasites. We report optimized assay conditions used to perform mitochondrial stress tests with replicative life cycle stages of T. cruzi using the XF(e)24 instrument, and discuss the advantages and potential limitations of this methodology, as applied to T. cruzi and other trypanosomatids. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. [Entomological study of Trypanosoma cruzi vectors in the rural communities of Sucre state, Venezuela].

    Science.gov (United States)

    García-Jordán, Noris; Berrizbeitia, Mariolga; Concepción, Juan Luis; Aldana, Elis; Cáceres, Ana; Quiñones, Wilfredo

    2015-01-01

    The ecological niche of Reduvidae vectors has been modified due to environmental changes and human encroachment into the rural areas. This study evaluates the current entomological indices of triatomines responsible for Trypanosoma cruzi infection in Sucre State, Venezuela. A cross-sectional and prospective study was conducted in 95 towns and 577 dwellings in the 15 municipalities of the state of Sucre, Venezuela, from August to November, 2008. Triatomine bugs were identified on the basis of morphological characteristics, and their feces examined for T. cruzi infection through direct microscopy. Positive slides were stained with Giemsa and parasites were identified by morphologic characterization. The entomological indices expressing the highest values were dispersion (16.67%) and household colonization (33.33%). The triatomine species captured were: Rhodnius prolixus , Rhodnius main intradomiciliary vector. Despite the low index of vector infection (1.72%), the existence of species with domiciliary and peridomiciliary reproductive success ensures the persistence of the epidemiological chain both for the disease and the parasite.

  14. Relationship between Trypanosoma brucei rhodesiense genetic diversity and clinical spectrum among sleeping sickness patients in Uganda.

    Science.gov (United States)

    Kato, Charles D; Mugasa, Claire M; Nanteza, Ann; Matovu, Enock; Alibu, Vincent P

    2017-10-27

    Human African trypanosomiasis (HAT) due to Trypanosoma brucei rhodesiense in East and southern Africa is reported to be clinically diverse. We tested the hypothesis that this clinical diversity is associated with a variation in trypanosome genotypes. Trypanosome DNA isolated from HAT patients was genotyped using 7 microsatellite markers directly from blood spotted FTA cards following a whole genome amplification. All markers were polymorphic and identified 17 multi-locus genotypes with 56% of the isolates having replicate genotypes. We did not observe any significant clustering between isolates and bootstrap values across major tree nodes were insignificant. When genotypes were compared among patients with varying clinical presentation or outcome, replicate genotypes were observed at both extremes showing no significant association between genetic diversity and clinical outcome. Our study shows that T. b. rhodesiense isolates are homogeneous within a focus and that observed clinical diversity may not be associated with parasite genetic diversity. Other factors like host genetics and environmental factors might be involved in determining clinical diversity. Our study may be important in designing appropriate control measures that target the parasite.

  15. The adipocyte as an important target cell for Trypanosoma cruzi infection.

    Science.gov (United States)

    Combs, Terry P; Nagajyothi; Mukherjee, Shankar; de Almeida, Cecilia J G; Jelicks, Linda A; Schubert, William; Lin, Ying; Jayabalan, David S; Zhao, Dazhi; Braunstein, Vicki L; Landskroner-Eiger, Shira; Cordero, Aisha; Factor, Stephen M; Weiss, Louis M; Lisanti, Michael P; Tanowitz, Herbert B; Scherer, Philipp E

    2005-06-24

    Adipose tissue plays an active role in normal metabolic homeostasis as well as in the development of human disease. Beyond its obvious role as a depot for triglycerides, adipose tissue controls energy expenditure through secretion of several factors. Little attention has been given to the role of adipocytes in the pathogenesis of Chagas disease and the associated metabolic alterations. Our previous studies have indicated that hyperglycemia significantly increases parasitemia and mortality in mice infected with Trypanosoma cruzi. We determined the consequences of adipocyte infection in vitro and in vivo. Cultured 3T3-L1 adipocytes can be infected with high efficiency. Electron micrographs of infected cells revealed a large number of intracellular parasites that cluster around lipid droplets. Furthermore, infected adipocytes exhibited changes in expression levels of a number of different adipocyte-specific or adipocyte-enriched proteins. The adipocyte is therefore an important target cell during acute Chagas disease. Infection of adipocytes by T. cruzi profoundly influences the pattern of adipokines. During chronic infection, adipocytes may represent an important long-term reservoir for parasites from which relapse of infection can occur. We have demonstrated that acute infection has a unique metabolic profile with a high degree of local inflammation in adipose tissue, hypoadiponectinemia, hypoglycemia, and hypoinsulinemia but with relatively normal glucose disposal during an oral glucose tolerance test.

  16. High Trypanosoma cruzi infection prevalence associated with minimal cardiac pathology among wild carnivores in central Texas

    Directory of Open Access Journals (Sweden)

    Rachel Curtis-Robles

    2016-08-01

    Full Text Available Infection with the zoonotic vector-borne protozoal parasite Trypanosoma cruzi causes Chagas disease in humans and dogs throughout the Americas. Despite the recognized importance of various wildlife species for perpetuating Trypanosoma cruzi in nature, relatively little is known about the development of cardiac disease in infected wildlife. Using a cross-sectional study design, we collected cardiac tissue and blood from hunter-donated wildlife carcasses- including raccoon (Procyon lotor, coyote (Canis latrans, gray fox (Urocyon cinereoargenteus, and bobcat (Lynx rufus – from central Texas, a region with established populations of infected triatomine vectors and increasing diagnoses of Chagas disease in domestic dogs. Based on PCR analysis, we found that 2 bobcats (14.3%, 12 coyotes (14.3%, 8 foxes (13.8%, and 49 raccoons (70.0% were positive for T. cruzi in at least one sample (right ventricle, apex, and/or blood clot. Although a histologic survey of right ventricles showed that 21.1% of 19 PCR-positive hearts were characterized by mild lymphoplasmocytic infiltration, no other lesions and no amastigotes were observed in any histologic section. DNA sequencing of the TcSC5D gene revealed that raccoons were infected with T. cruzi strain TcIV, and a single racoon harbored a TcI/TcIV mixed infection. Relative to other wildlife species tested here, our data suggest that raccoons may be important reservoirs of TcIV in Texas and a source of infection for indigenous triatomine bugs. The overall high level of infection in this wildlife community likely reflects high levels of vector contact, including ingestion of bugs. Although the relationship between the sylvatic cycle of T. cruzi transmission and human disease risk in the United States has yet to be defined, our data suggest that hunters and wildlife professionals should take precautions to avoid direct contact with potentially infected wildlife tissues.

  17. Molecular characterisation of protist parasites in human-habituated mountain gorillas (Gorilla beringei beringei), humans and livestock, from Bwindi impenetrable National Park, Uganda.

    Science.gov (United States)

    Nolan, Matthew J; Unger, Melisa; Yeap, Yuen-Ting; Rogers, Emma; Millet, Ilary; Harman, Kimberley; Fox, Mark; Kalema-Zikusoka, Gladys; Blake, Damer P

    2017-07-18

    Over 60 % of human emerging infectious diseases are zoonotic, and there is growing evidence of the zooanthroponotic transmission of diseases from humans to livestock and wildlife species, with major implications for public health, economics, and conservation. Zooanthroponoses are of relevance to critically endangered species; amongst these is the mountain gorilla (Gorilla beringei beringei) of Uganda. Here, we assess the occurrence of Cryptosporidium, Cyclospora, Giardia, and Entamoeba infecting mountain gorillas in the Bwindi Impenetrable National Park (BINP), Uganda, using molecular methods. We also assess the occurrence of these parasites in humans and livestock species living in overlapping/adjacent geographical regions. Diagnostic PCR detected Cryptosporidium parvum in one sample from a mountain gorilla (IIdA23G2) and one from a goat (based on SSU). Cryptosporidium was not detected in humans or cattle. Cyclospora was not detected in any of the samples analysed. Giardia was identified in three human and two cattle samples, which were linked to assemblage A, B and E of G. duodenalis. Sequences defined as belonging to the genus Entamoeba were identified in all host groups. Of the 86 sequence types characterised, one, seven and two have been recorded previously to represent genotypes of Cryptosporidium, Giardia, and Entamoeba, respectively, from humans, other mammals, and water sources globally. This study provides a snapshot of the occurrence and genetic make-up of selected protists in mammals in and around BINP. The genetic analyses indicated that 54.6% of the 203 samples analysed contained parasites that matched species, genotypes, or genetic assemblages found globally. Seventy-six new sequence records were identified here for the first time. As nothing is known about the zoonotic/zooanthroponotic potential of the corresponding parasites, future work should focus on wider epidemiological investigations together with continued surveillance of all parasites in

  18. Electrocardiographic findings in Mexican chagasic subjects living in high and low endemic regions of Trypanosoma cruzi infection

    Directory of Open Access Journals (Sweden)

    Francisca Sosa-Jurado

    2003-07-01

    Full Text Available In México the first human chronic chagasic case was recognized in 1940. In spite of an increasing number of cases detected since that time, Chagas disease in México has been poorly documented. In the present work we studied 617 volunteers subjects living in high and low endemic regions of Trypanosoma cruzi infection with seroprevalence of 22% and 4% respectively. Hemoculture performed in those seropositive subjects failed to demonstrate circulating parasites, however polymerase chain reaction identified up to 60% of them as positives. A higher level of anti-T. cruzi antibodies was observed in seropositive residents in high endemic region, in spite of similar parasite persistence (p < 0.05. On standard 12 leads electrocardiogram (ECG 20% to 22% seropositive individuals from either region showed right bundle branch block or ventricular extrasystoles which were more prevalent in seropositive than in seronegative individuals (p < 0.05. In conclusion, the frequency or type of ECG abnormality was influenced by serologic status but not by endemicity or parasite persistence. Furthermore, Mexican indeterminate patients have a similar ECG pattern to those reported in South America.

  19. Lysophosphatidylcholine Regulates Sexual Stage Differentiation in the Human Malaria Parasite Plasmodium falciparum.

    Science.gov (United States)

    Brancucci, Nicolas M B; Gerdt, Joseph P; Wang, ChengQi; De Niz, Mariana; Philip, Nisha; Adapa, Swamy R; Zhang, Min; Hitz, Eva; Niederwieser, Igor; Boltryk, Sylwia D; Laffitte, Marie-Claude; Clark, Martha A; Grüring, Christof; Ravel, Deepali; Blancke Soares, Alexandra; Demas, Allison; Bopp, Selina; Rubio-Ruiz, Belén; Conejo-Garcia, Ana; Wirth, Dyann F; Gendaszewska-Darmach, Edyta; Duraisingh, Manoj T; Adams, John H; Voss, Till S; Waters, Andrew P; Jiang, Rays H Y; Clardy, Jon; Marti, Matthias

    2017-12-14

    Transmission represents a population bottleneck in the Plasmodium life cycle and a key intervention target of ongoing efforts to eradicate malaria. Sexual differentiation is essential for this process, as only sexual parasites, called gametocytes, are infective to the mosquito vector. Gametocyte production rates vary depending on environmental conditions, but external stimuli remain obscure. Here, we show that the host-derived lipid lysophosphatidylcholine (LysoPC) controls P. falciparum cell fate by repressing parasite sexual differentiation. We demonstrate that exogenous LysoPC drives biosynthesis of the essential membrane component phosphatidylcholine. LysoPC restriction induces a compensatory response, linking parasite metabolism to the activation of sexual-stage-specific transcription and gametocyte formation. Our results reveal that malaria parasites can sense and process host-derived physiological signals to regulate differentiation. These data close a critical knowledge gap in parasite biology and introduce a major component of the sexual differentiation pathway in Plasmodium that may provide new approaches for blocking malaria transmission. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  20. Methodology and application of flow cytometry for investigation of human malaria parasites.

    Science.gov (United States)

    Grimberg, Brian T

    2011-03-31

    Historically, examinations of the inhibition of malaria parasite growth/invasion, whether using drugs or antibodies, have relied on the use of microscopy or radioactive hypoxanthine uptake. These are considered gold standards for measuring the effectiveness of antimalarial treatments, however, these methods have well known shortcomings. With the advent of flow cytometry coupled with the use of fluorescent DNA stains allowed for increased speed, reproducibility, and qualitative estimates of the effectiveness of antibodies and drugs to limit malaria parasite growth which addresses the challenges of traditional techniques. Because materials and machines available to research facilities are so varied, different methods have been developed to investigate malaria parasites by flow cytometry. This review is intended to serve as a reference guide for advanced users and importantly, as a primer for new users, to support expanded use and improvements to malaria flow cytometry, particularly in endemic countries. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Parasites of importance for human health in Nigerian dogs: high prevalence and limited knowledge of pet owners

    Directory of Open Access Journals (Sweden)

    Heukelbach Jorg

    2008-12-01

    Full Text Available Abstract Background Dogs are the most common pet animals worldwide. They may harbour a wide range of parasites with zoonotic potential, thus causing a health risk to humans. In Nigeria, epidemiological knowledge on these parasites is limited. Methods In a community-based study, we examined 396 dogs in urban and rural areas of Ilorin (Kwara State, Central Nigeria for ectoparasites and intestinal helminths. In addition, a questionnaire regarding knowledge and practices was applied to pet owners. Results Nine ectoparasite species belonging to four taxa and six intestinal helminth species were identified: fleas (Ctenocephalides canis, Pulex irritans, Tunga penetrans, mites (Demodex canis, Otodectes sp., Sarcoptes scabiei var. canis, ticks (Rhipicephalus sanguineus, Ixodes sp., and lice (Trichodectes canis; and Toxocara canis, Ancylostoma sp., Trichuris vulpis, Dipylidium caninum, Taenidae and Strongyloides sp. Overall prevalence of ectoparasites was 60.4% and of intestinal helminths 68.4%. The occurrence of C. canis, R. sanguineus, T. canis, Ancylostoma sp. and T. vulpis was most common (prevalence 14.4% to 41.7%. Prevalence patterns in helminths were age-dependent, with T. canis showing a decreasing prevalence with age of host, and a reverse trend in other parasite species. Knowledge regarding zoonoses was very limited and the diseases not considered a major health problem. Treatment with antiparasitic drugs was more frequent in urban areas. Conclusion Parasites of importance for human health were highly prevalent in Nigerian dogs. Interventions should include health education provided to dog owners and the establishment of a program focusing on zoonotic diseases.

  2. Prevalence and Risk Factors of Human Intestinal Parasites in Roudehen, Tehran Province, Iran

    Directory of Open Access Journals (Sweden)

    Nasrin HEMMATI

    2017-09-01

    Full Text Available Background: Intestinal parasitic infections are among the most common infections and health problems worldwide. Due to the lack of epidemiologic information of such infections, the prevalence of, and the risk factors for, enteric parasites were investigated in residents of Roudehen, Tehran Province, Iran.Methods: In this cross-sectional study, 561 triple fecal samples were collected through a two-stage cluster-sampling protocol from Jun to Dec 2014. The samples were examined by formalin-ether concentration, culture, and with molecular methods.Results: The prevalence of enteric parasites was 32.7% (95% CI 27.3–38. Blastocystis sp. was the most common intestinal protozoan (28.4%; 95% CI 23.7–33.0. The formalin-ether concentration and culture methods detected Blastocystis sp., Entamoeba coli, Giardia intestinalis, Dientamoeba fragilis, Iodamoeba butschlii, Entamoeba complex cysts or trophozoite, Chilomastix mesnilii, and Enterobius vermicularis. Single-round PCR assay for Entamoeba complex were identified Entamoeba dispar and E. moshkovskii. E. histolytica was not observed in any specimen. Multivariate analysis showed a significant association of parasites with water source and close animal contact. There was no correlation between infections and gender, age, occupation, education, or travel history. Protozoan infections were more common than helminth infections.Conclusion: This study revealed a high prevalence of enteric protozoan parasite infection among citizens of Rodehen. As most of the species detected are transmitted through a water-resistant cyst, public and individual education on personal hygiene should be considered to reduce transmission of intestinal parasites in the population. 

  3. Reconstructing Colonization Dynamics of the Human Parasite Schistosoma mansoni following Anthropogenic Environmental Changes in Northwest Senegal

    Science.gov (United States)

    Van den Broeck, Frederik; Maes, Gregory E.; Larmuseau, Maarten H. D.; Rollinson, David; Sy, Ibrahima; Faye, Djibril; Volckaert, Filip A. M.; Polman, Katja; Huyse, Tine

    2015-01-01

    Background Anthropogenic environmental changes may lead to ecosystem destabilization and the unintentional colonization of new habitats by parasite populations. A remarkable example is the outbreak of intestinal schistosomiasis in Northwest Senegal following the construction of two dams in the ‘80s. While many studies have investigated the epidemiological, immunological and geographical patterns of Schistosoma mansoni infections in this region, little is known about its colonization history. Methodology/Principal Findings Parasites were collected at several time points after the disease outbreak and genotyped using a 420 bp fragment of the mitochondrial cytochrome c oxidase subunit 1 gene (cox1) and nine nuclear DNA microsatellite markers. Phylogeographic and population genetic analyses revealed the presence of (i) many genetically different haplotypes at the non-recombining mitochondrial marker and (ii) one homogenous S. mansoni genetic group at the recombining microsatellite markers. These results suggest that the S. mansoni population in Northwest Senegal was triggered by intraspecific hybridization (i.e. admixture) between parasites that were introduced from different regions. This would comply with the extensive immigration of infected seasonal agricultural workers from neighboring regions in Senegal, Mauritania and Mali. The spatial and temporal stability of the established S. mansoni population suggests a swift local adaptation of the parasite to the local intermediate snail host Biomphalaria pfeifferi at the onset of the epidemic. Conclusions/Significance Our results show that S. mansoni parasites are very successful in colonizing new areas without significant loss of genetic diversity. Maintaining high levels of diversity guarantees the adaptive potential of these parasites to cope with selective pressures such as drug treatment, which might complicate efforts to control the disease. PMID:26275049

  4. Parasites, Plants, and People.

    Science.gov (United States)

    Johnson, Marion; Moore, Tony

    2016-06-01

    Anthelminthic resistance is acknowledged worldwide and is a major problem in Aotearoa New Zealand, thus alternative parasite management strategies are imperative. One Health is an initiative linking animal, human, and environmental health. Parasites, plants, and people illustrate the possibilities of providing diverse diets for stock thereby lowering parasite burdens, improving the cultural wellbeing of a local community, and protecting the environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Trypanosoma Infection Favors Brucella Elimination via IL-12/IFNγ-Dependent Pathways

    Directory of Open Access Journals (Sweden)

    Arnaud Machelart

    2017-07-01

    Full Text Available This study develops an original co-infection model in mice using Brucella melitensis, the most frequent cause of human brucellosis, and Trypanosoma brucei, the agent of African trypanosomiasis. Although the immunosuppressive effects of T. brucei in natural hosts and mice models are well established, we observed that the injection of T. brucei in mice chronically infected with B. melitensis induces a drastic reduction in the number of B. melitensis in the spleen, the main reservoir of the infection. Similar results are obtained with Brucella abortus- and Brucella suis-infected mice and B. melitensis-infected mice co-infected with Trypanosoma cruzi, demonstrating that this phenomenon is not due to antigenic cross-reactivity. Comparison of co-infected wild-type and genetically deficient mice showed that Brucella elimination required functional IL-12p35/IFNγ signaling pathways and the presence of CD4+ T cells. However, the impact of wild type and an attenuated mutant of T. brucei on B. melitensis were similar, suggesting that a chronic intense inflammatory reaction is not required to eliminate B. melitensis. Finally, we also tested the impact of T. brucei infection on the course of Mycobacterium tuberculosis infection. Although T. brucei strongly increases the frequency of IFNγ+CD4+ T cells, it does not ameliorate the control of M. tuberculosis infection, suggesting that it is not controlled by the same effector mechanisms as Brucella. Thus, whereas T. brucei infections are commonly viewed as immunosuppressive and pathogenic, our data suggest that these parasites can specifically affect the immune control of Brucella infection, with benefits for the host.

  6. Insight into the exoproteome of the tissue-derived trypomastigote form of trypanosoma cruzi

    DEFF Research Database (Denmark)

    Queiroz, Rayner M L; Ricart, Carlos A O; Machado, Mara O

    2016-01-01

    The protozoan parasite Trypanosoma cruzi causes Chagas disease, one of the major neglected infectious diseases. It has the potential to infect any nucleated mammalian cell. The secreted/excreted protein repertoire released by T. cruzi trypomastigotes is crucial in host-pathogen interactions...

  7. Protein export marks the early phase of gametocytogenesis of the human malaria parasite Plasmodium falciparum.

    NARCIS (Netherlands)

    Silvestrini, F.; Lasonder, E.; Olivieri, A.; Camarda, G.; Schaijk, B.C.L. van; Sanchez, M.; Younis Younis, S.; Sauerwein, R.W.; Alano, P.

    2010-01-01

    Despite over a century of study of malaria parasites, parts of the Plasmodium falciparum life cycle remain virtually unknown. One of these is the early gametocyte stage, a round shaped cell morphologically similar to an asexual trophozoite in which major cellular transformations ensure subsequent

  8. Mosaic VSGs and the scale of Trypanosoma brucei antigenic variation.

    Directory of Open Access Journals (Sweden)

    James P J Hall

    Full Text Available A main determinant of prolonged Trypanosoma brucei infection and transmission and success of the parasite is the interplay between host acquired immunity and antigenic variation of the parasite variant surface glycoprotein (VSG coat. About 0.1% of trypanosome divisions produce a switch to a different VSG through differential expression of an archive of hundreds of silent VSG genes and pseudogenes, but the patterns and extent of the trypanosome diversity phenotype, particularly in chronic infection, are unclear. We applied longitudinal VSG cDNA sequencing to estimate variant richness and test whether pseudogenes contribute to antigenic variation. We show that individual growth peaks can contain at least 15 distinct variants, are estimated computationally to comprise many more, and that antigenically distinct 'mosaic' VSGs arise from segmental gene conversion between donor VSG genes or pseudogenes. The potential for trypanosome antigenic variation is probably much greater than VSG archive size; mosaic VSGs are core to antigenic variation and chronic infection.

  9. [Antagonistic interactions between saprotrophic fungi and geohelminths. 2. Saprotrophic fungi in biocontrol of parasitic geohelminths of humans and animals].

    Science.gov (United States)

    Jaborowska-Jarmoluk, Magdalena; Mazurkiewicz-Zapałowicz, Kinga; Kołodziejczyk, Lidia

    2009-01-01

    The soils ecosystem plays an important role in the epidemiology of geohelminth diseases of humans and animals. Soil contamination with ova of the parasitic geohelminths represents a global public health-hazard issue. Biological agents have been thought to control the infective forms of parasites present in the soil. Biocontrol of geohelminths represents an alternative to pesticides (i.e., nematicides), which are not efficient in killing infective nematode forms and, additionally, result in the environment pollution and long-term disturbances in the soil ecosystem homeostasis. The degree of the inhibiting effect of soil saprotrophic fungi on geohelminth embryonic development varies and depends on the species. A number of fungi cause various morphological disorders in the embryos of developing parasitic nematodes, but also have an ovicidal effect. Although the nature of the antagonism between fungi and other living organisms has not been fully explained, it is certain that mycotoxins and fungal enzymes constitute its important components. Considering the studies carried out so far, the antagonistic effect of mold fungi against the infective stages of geohelminths can be fully recommended as a real control factor, especially as these saprotrophs represent a natural factor within the soil environment, that is of particular biochemical activity.

  10. Expression of senescent antigen on erythrocytes infected with a knobby variant of the human malaria parasite Plasmodium falciparum

    International Nuclear Information System (INIS)

    Winograd, E.; Greenan, J.R.T.; Sherman, I.W.

    1987-01-01

    Erythrocytes infected with a knobby variant of Plasmodium falciparum selectively bind IgG autoantibodies in normal human serum. Quantification of membrane-bound IgG, by use of 125 I-labeled protein A, revealed that erythrocytes infected with the knobby variant bound 30 times more protein A than did noninfected erythrocytes; infection with a knobless variant resulted in less than a 2-fold difference compared with noninfected erythrocytes. IgG binding to knobby erythrocytes appeared to be related to parasite development, since binding of 125 I-labeled protein A to cells bearing young trophozoites (less than 20 hr after parasite invasion) was similar to binding to uninfected erythrocytes. By immunoelectron microscopy, the membrane-bound IgG on erythrocytes infected with the knobby variant was found to be preferentially associated with the protuberances (knobs) of the plasma membrane. The removal of aged or senescent erythrocytes from the peripheral circulation is reported to involve the binding of specific antibodies to an antigen (senescent antigen) related to the major erythrocyte membrane protein band 3. Since affinity-purified autoantibodies against band 3 specifically bound to the plasma membrane of erythrocytes infected with the knobby variant of P. falciparum, it is clear that the malaria parasite induces expression of senescent antigen

  11. Neural Damage in Experimental Trypanosoma brucei gambiense Infection: The Suprachiasmatic Nucleus

    Directory of Open Access Journals (Sweden)

    Chiara Tesoriero

    2018-02-01

    Full Text Available Trypanosoma brucei (T. b. gambiense is the parasite subspecies responsible for most reported cases of human African trypanosomiasis (HAT or sleeping sickness. This severe infection leads to characteristic disruption of the sleep-wake cycle, recalling attention on the circadian timing system. Most animal models of the disease have been hitherto based on infection of laboratory rodents with the T. b. brucei subspecies, which is not infectious to humans. In these animal models, functional, rather than structural, alterations of the master circadian pacemaker, the hypothalamic suprachiasmatic nucleus (SCN, have been reported. Information on the SCN after infection with the human pathogenic T. b. gambiense is instead lacking. The present study was aimed at the examination of the SCN after T. b. gambiense infection of a susceptible rodent, the multimammate mouse, Mastomys natalensis, compared with T. b. brucei infection of the same host species. The animals were examined at 4 and 8 weeks post-infection, when parasites (T. b. gambiense or T. b. brucei were detected in the brain parenchyma, indicating that the disease was in the encephalitic stage. Neuron and astrocyte changes were examined with Nissl staining, immunophenotyping and quantitative analyses. Interestingly, significant neuronal loss (about 30% reduction was documented in the SCN during the progression of T. b. gambiense infection. No significant neuronal density changes were found in the SCN of T. b. brucei-infected animals. Neuronal cell counts in the hippocampal dentate gyrus of T. b. gambiense-infected M. natalensis did not point out significant changes, indicating that no widespread neuron loss had occurred in the brain. Marked activation of astrocytes was detected in the SCN after both T. b. gambiense and T. b. brucei infections. Altogether the findings reveal that neurons of the biological clock are highly susceptible to the infection caused by human pathogenic African trypanosomes

  12. Blood protozoan parasites of rodents in Jos, Plateau State, Nigerai ...

    African Journals Online (AJOL)

    One hundred and thirty rodents, comprising nine different species caught from seven different locations in Jos, Nigeria, were examined for blood protozoan parasites, and 82(63.08%) were positive, with Plasmodium 63(48.46%), Trypanosoma 4(3.08%), Toxoplasma 6(4.62%), Babesia 7(5.38%) and Anaplasma 2(1.54%).

  13. Biochemical characterization of trans-sialidase TS1 variants from Trypanosoma congolense

    Directory of Open Access Journals (Sweden)

    Dietz Frank

    2011-07-01

    Full Text Available Abstract Background Animal African trypanosomiasis, sleeping sickness in humans and Nagana in cattle, is a resurgent disease in Africa caused by Trypanosoma parasites. Trans-sialidases expressed by trypanosomes play an important role in the infection cycle of insects and mammals. Whereas trans-sialidases of other trypanosomes like the American T. cruzi are well investigated, relatively little research has been done on these enzymes of T. congolense. Results Based on a partial sequence and an open reading frame in the WTSI database, DNA sequences encoding for eleven T. congolense trans-sialidase 1 variants with 96.3% overall amino acid identity were amplified. Trans-sialidase 1 variants were expressed as recombinant proteins, isolated and assayed for trans-sialylation activity. The purified proteins produced α2,3-sialyllactose from lactose by desialylating fetuin, clearly demonstrating their trans-sialidase activity. Using an HPLC-based assay, substrate specificities and kinetic parameters of two variants were characterized in detail indicating differences in substrate specificities for lactose, fetuin and synthetic substrates. Both enzymes were able to sialylate asialofetuin to an extent, which was sufficient to reconstitute binding sites for Siglec-4. A mass spectrometric analysis of the sialylation pattern of glycopeptides from fetuin revealed clear but generally similar changes in the sialylation pattern of the N-glycans on fetuin catalyzed by the trans-sialidases investigated. Conclusions The identification and characterization of a trans-sialidase gene family of the African parasite T. congolense has opened new perspectives for investigating the biological role of these enzymes in Nagana and sleeping sickness. Based on this study it will be interesting to address the expression pattern of these genes and their activities in the different stages of the parasite in its infection cycle. Furthermore, these trans-sialidases have the

  14. DNA typing of ancient parasite eggs from environmental samples identifies human and animal worm infections in viking-age settlement

    DEFF Research Database (Denmark)

    Søe, Martin Jensen; Nejsum, Peter; Fredensborg, Brian Lund

    2015-01-01

    Ancient parasite eggs were recovered from environmental samples collected at a Viking-age settlement in Viborg, Denmark, dated 1018-1030 A.D. Morphological examination identified Ascaris sp., Trichuris sp., and Fasciola sp. eggs, but size and shape did not allow species identification. By carefully...... selecting genetic markers, PCR amplification and sequencing of ancient DNA (aDNA) isolates resulted in identification of: the human whipworm, Trichuris trichiura, using SSUrRNA sequence homology; Ascaris sp. with 100% homology to cox1 haplotype 07; and Fasciola hepatica using ITS1 sequence homology...

  15. Crystallization and preliminary crystallographic studies of a cysteine protease inhibitor from the human nematode parasite Ascaris lumbricoides

    International Nuclear Information System (INIS)

    Liu, Sanling; Dong, Jianmei; Mei, Guoqiang; Liu, Guiyun; Xu, Wei; Su, Zhong; Liu, Jinsong

    2011-01-01

    A recombinant cysteine protease inhibitor from the human nematode parasite A. lumbricoides has been overexpressed in E. coli, purified and crystallized. Diffraction data were collected to 2.1 Å resolution. The cysteine protease inhibitor from Ascaris lumbricoides, a roundworm that lives in the human intestine, may be involved in the suppression of human immune responses. Here, the molecular cloning, protein expression and purification, preliminary crystallization and crystallographic characterization of the cysteine protease inhibitor from A. lumbricoides are reported. The rod-shaped crystal belonged to space group C2, with unit-cell parameters a = 99.40, b = 37.52, c = 62.92 Å, β = 118.26°. The crystal diffracted to 2.1 Å resolution and contained two molecules in the asymmetric unit

  16. Analytical Validation of Quantitative Real-Time PCR Methods for Quantification of Trypanosoma cruzi DNA in Blood Samples from Chagas Disease Patients.

    Science.gov (United States)

    Ramírez, Juan Carlos; Cura, Carolina Inés; da Cruz Moreira, Otacilio; Lages-Silva, Eliane; Juiz, Natalia; Velázquez, Elsa; Ramírez, Juan David; Alberti, Anahí; Pavia, Paula; Flores-Chávez, María Delmans; Muñoz-Calderón, Arturo; Pérez-Morales, Deyanira; Santalla, José; Marcos da Matta Guedes, Paulo; Peneau, Julie; Marcet, Paula; Padilla, Carlos; Cruz-Robles, David; Valencia, Edward; Crisante, Gladys Elena; Greif, Gonzalo; Zulantay, Inés; Costales, Jaime Alfredo; Alvarez-Martínez, Miriam; Martínez, Norma Edith; Villarroel, Rodrigo; Villarroel, Sandro; Sánchez, Zunilda; Bisio, Margarita; Parrado, Rudy; Maria da Cunha Galvão, Lúcia; Jácome da Câmara, Antonia Cláudia; Espinoza, Bertha; Alarcón de Noya, Belkisyole; Puerta, Concepción; Riarte, Adelina; Diosque, Patricio; Sosa-Estani, Sergio; Guhl, Felipe; Ribeiro, Isabela; Aznar, Christine; Britto, Constança; Yadón, Zaida Estela; Schijman, Alejandro G

    2015-09-01

    An international study was performed by 26 experienced PCR laboratories from 14 countries to assess the performance of duplex quantitative real-time PCR (qPCR) strategies on the basis of TaqMan probes for detection and quantification of parasitic loads in peripheral blood samples from Chagas disease patients. Two methods were studied: Satellite DNA (SatDNA) qPCR and kinetoplastid DNA (kDNA) qPCR. Both methods included an internal amplification control. Reportable range, analytical sensitivity, limits of detection and quantification, and precision were estimated according to international guidelines. In addition, inclusivity and exclusivity were estimated with DNA from stocks representing the different Trypanosoma cruzi discrete typing units and Trypanosoma rangeli and Leishmania spp. Both methods were challenged against 156 blood samples provided by the participant laboratories, including samples from acute and chronic patients with varied clinical findings, infected by oral route or vectorial transmission. kDNA qPCR showed better analytical sensitivity than SatDNA qPCR with limits of detection of 0.23 and 0.70 parasite equivalents/mL, respectively. Analyses of clinical samples revealed a high concordance in terms of sensitivity and parasitic loads determined by both SatDNA and kDNA qPCRs. This effort is a major step toward international validation of qPCR methods for the quantification of T. cruzi DNA in human blood samples, aiming to provide an accurate surrogate biomarker for diagnosis and treatment monitoring for patients with Chagas disease. Copyright © 2015 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  17. Helminth allergens, parasite-specific IgE and its protective role in human immunity

    Directory of Open Access Journals (Sweden)

    Colin Matthew Fitzsimmons

    2014-02-01

    Full Text Available The Th2 immune response, culminating in eosinophilia and IgE production, is not only characteristic of allergy but also of infection by parasitic worms (helminths. Anti-parasite IgE has been associated with immunity against a range of helminth infections and many believe that IgE and its receptors evolved to help counter metazoan parasites. Allergens (IgE-antigens are present in only a small minority of protein families and known IgE targets in helminths belong to these same families (e.g. EF-hand proteins, tropomyosin, and PR-1 proteins.During some helminth infection, especially with the well adapted hookworm, the Th2 response is moderated by parasite-expressed molecules. This has been associated with reduced allergy in helminth endemic areas and worm infection or products have been proposed as treatments for allergic conditions. However some infections (especially Ascaris are associated with increased allergy and this has been linked to cross-reactivity between worm proteins (e.g., tropomyosins and highly similar molecules in dust mites and insects. The overlap between allergy and helminth infection is best illustrated in Anisakis simplex, a nematode that when consumed in under-cooked fish can be both an infective helminth and a food allergen. Nearly 20 molecular allergens have been isolated from this species, including tropomyosin (Ani s3 and the EF-hand protein, Ani s troponin.In this review, we highlight aspects of the biology and biochemistry of helminths that may have influenced the evolution of the IgE response. We compare dominant IgE antigens in worms with clinically important environmental allergens and suggest that arrays of such molecules will provide important information on anti-worm immunity as well as allergy.

  18. Does Magnetic Field Affect Malaria Parasite Replication in Human Red Blood Cells?

    Science.gov (United States)

    Chanturiya, Alexandr N.; Glushakova, Svetlana; Yin, Dan; Zimmerberg, Joshua

    2004-01-01

    Digestion of red blood cell (RBC) hemoglobin by the malaria parasite results in the formation of paramagnetic hemazoin crystals inside the parasite body. A number of reports suggest that magnetic field interaction with hamazoin crystals significantly reduces the number of infected cells in culture, and thus magnetic field can be used to combat malaria. We studies the effects of magnetic filed on the Plasmodium falciparum asexual life cycle inside RBCs under various experimental conditions. No effect was found during prolonged exposure of infected RBCs to constant magnetic fields up to 6000 Gauss. Infected RBCs were also exposed, under temperature-controlled conditions, to oscillating magnetic fields with frequencies in the range of 500-20000 kHz, and field strength 30-600 Gauss. This exposure often changed the proportion of different parasite stages in treated culture compared to controls. However, no significant effect on parasitemia was observed in treated cultures. This result indicates that the magnetic field effect on Plasmodium falciparum is negligible, or that hypothetical negative and positive effects on different stages within one 48-hour compensate each other.

  19. Human parasites in the Roman World: health consequences of conquering an empire.

    Science.gov (United States)

    Mitchell, Piers D

    2017-01-01

    The archaeological evidence for parasites in the Roman era is presented in order to demonstrate the species present at that time, and highlight the health consequences for people living under Roman rule. Despite their large multi-seat public latrines with washing facilities, sewer systems, sanitation legislation, fountains and piped drinking water from aqueducts, we see the widespread presence of whipworm (Trichuris trichiura), roundworm (Ascaris lumbricoides) and Entamoeba histolytica that causes dysentery. This would suggest that the public sanitation measures were insufficient to protect the population from parasites spread by fecal contamination. Ectoparasites such as fleas, head lice, body lice, pubic lice and bed bugs were also present, and delousing combs have been found. The evidence fails to demonstrate that the Roman culture of regular bathing in the public baths reduced the prevalence of these parasites. Fish tapeworm was noted to be widely present, and was more common than in Bronze and Iron Age Europe. It is possible that the Roman enthusiasm for fermented, uncooked fish sauce (garum) may have facilitated the spread of this helminth. Roman medical practitioners such as Galen were aware of intestinal worms, explaining their existence and planning treatment using the humoural theory of the period.

  20. Epidemiology of bovine hemoprotozoa parasites in cattle and water buffalo in Vietnam

    OpenAIRE

    WEERASOORIYA, Gayani; SIVAKUMAR, Thillaiampalam; LAN, Dinh Thi Bich; LONG, Phung Thang; TAKEMAE, Hitoshi; IGARASHI, Ikuo; INOUE, Noboru; YOKOYAMA, Naoaki

    2016-01-01

    A PCR-based survey of hemoprotozoa parasites detected Babesia bigemina, Theileria orientalis and Trypanosoma theileri among cattle and water buffalo in Vietnam, and a new Babesia sp. closely related to Babesia ovata was detected in cattle only. In addition, Theileria annulata and Trypanosoma evansi were not detected in both cattle and water buffalo. Phylogenetic analysis detected T. orientalis MPSP genotypes 3, 5, 7 and N3 in cattle and 5, 7, N1 and N2 in water buffalo. Additionally, water bu...

  1. Neural Damage in Experimental Trypanosoma brucei gambiense Infection: Hypothalamic Peptidergic Sleep and Wake-Regulatory Neurons

    Directory of Open Access Journals (Sweden)

    Claudia Laperchia

    2018-02-01

    Full Text Available Neuron populations of the lateral hypothalamus which synthesize the orexin (OX/hypocretin or melanin-concentrating hormone (MCH peptides play crucial, reciprocal roles in regulating wake stability and sleep. The disease human African trypanosomiasis (HAT, also called sleeping sickness, caused by extracellular Trypanosoma brucei (T. b. parasites, leads to characteristic sleep-wake cycle disruption and narcoleptic-like alterations of the sleep structure. Previous studies have revealed damage of OX and MCH neurons during systemic infection of laboratory rodents with the non-human pathogenic T. b. brucei subspecies. No information is available, however, on these peptidergic neurons after systemic infection with T. b. gambiense, the etiological agent of 97% of HAT cases. The present study was aimed at the investigation of immunohistochemically characterized OX and MCH neurons after T. b. gambiense or T. b. brucei infection of a susceptible rodent, the multimammate mouse, Mastomysnatalensis. Cell counts and evaluation of OX fiber density were performed at 4 and 8 weeks post-infection, when parasites had entered the brain parenchyma from the periphery. A significant decrease of OX neurons (about 44% reduction and MCH neurons (about 54% reduction was found in the lateral hypothalamus and perifornical area at 8 weeks in T. b. gambiense-infected M. natalensis. A moderate decrease (21% and 24% reduction, respectively, which did not reach statistical significance, was found after T. b. brucei infection. In two key targets of diencephalic orexinergic innervation, the peri-suprachiasmatic nucleus (SCN region and the thalamic paraventricular nucleus (PVT, densitometric analyses showed a significant progressive decrease in the density of orexinergic fibers in both infection paradigms, and especially during T. b. gambiense infection. Altogether the findings provide novel information showing that OX and MCH neurons are highly vulnerable to chronic

  2. Genome-wide diversity and differentiation in New World populations of the human malaria parasite Plasmodium vivax.

    Directory of Open Access Journals (Sweden)

    Thais C de Oliveira

    2017-07-01

    Full Text Available The Americas were the last continent colonized by humans carrying malaria parasites. Plasmodium falciparum from the New World shows very little genetic diversity and greater linkage disequilibrium, compared with its African counterparts, and is clearly subdivided into local, highly divergent populations. However, limited available data have revealed extensive genetic diversity in American populations of another major human malaria parasite, P. vivax.We used an improved sample preparation strategy and next-generation sequencing to characterize 9 high-quality P. vivax genome sequences from northwestern Brazil. These new data were compared with publicly available sequences from recently sampled clinical P. vivax isolates from Brazil (BRA, total n = 11 sequences, Peru (PER, n = 23, Colombia (COL, n = 31, and Mexico (MEX, n = 19.We found that New World populations of P. vivax are as diverse (nucleotide diversity π between 5.2 × 10-4 and 6.2 × 10-4 as P. vivax populations from Southeast Asia, where malaria transmission is substantially more intense. They display several non-synonymous nucleotide substitutions (some of them previously undescribed in genes known or suspected to be involved in antimalarial drug resistance, such as dhfr, dhps, mdr1, mrp1, and mrp-2, but not in the chloroquine resistance transporter ortholog (crt-o gene. Moreover, P. vivax in the Americas is much less geographically substructured than local P. falciparum populations, with relatively little between-population genome-wide differentiation (pairwise FST values ranging between 0.025 and 0.092. Finally, P. vivax populations show a rapid decline in linkage disequilibrium with increasing distance between pairs of polymorphic sites, consistent with very frequent outcrossing. We hypothesize that the high diversity of present-day P. vivax lineages in the Americas originated from successive migratory waves and subsequent admixture between parasite lineages from geographically

  3. Genome-wide diversity and differentiation in New World populations of the human malaria parasite Plasmodium vivax.

    Science.gov (United States)

    de Oliveira, Thais C; Rodrigues, Priscila T; Menezes, Maria José; Gonçalves-Lopes, Raquel M; Bastos, Melissa S; Lima, Nathália F; Barbosa, Susana; Gerber, Alexandra L; Loss de Morais, Guilherme; Berná, Luisa; Phelan, Jody; Robello, Carlos; de Vasconcelos, Ana Tereza R; Alves, João Marcelo P; Ferreira, Marcelo U

    2017-07-01

    The Americas were the last continent colonized by humans carrying malaria parasites. Plasmodium falciparum from the New World shows very little genetic diversity and greater linkage disequilibrium, compared with its African counterparts, and is clearly subdivided into local, highly divergent populations. However, limited available data have revealed extensive genetic diversity in American populations of another major human malaria parasite, P. vivax. We used an improved sample preparation strategy and next-generation sequencing to characterize 9 high-quality P. vivax genome sequences from northwestern Brazil. These new data were compared with publicly available sequences from recently sampled clinical P. vivax isolates from Brazil (BRA, total n = 11 sequences), Peru (PER, n = 23), Colombia (COL, n = 31), and Mexico (MEX, n = 19). We found that New World populations of P. vivax are as diverse (nucleotide diversity π between 5.2 × 10-4 and 6.2 × 10-4) as P. vivax populations from Southeast Asia, where malaria transmission is substantially more intense. They display several non-synonymous nucleotide substitutions (some of them previously undescribed) in genes known or suspected to be involved in antimalarial drug resistance, such as dhfr, dhps, mdr1, mrp1, and mrp-2, but not in the chloroquine resistance transporter ortholog (crt-o) gene. Moreover, P. vivax in the Americas is much less geographically substructured than local P. falciparum populations, with relatively little between-population genome-wide differentiation (pairwise FST values ranging between 0.025 and 0.092). Finally, P. vivax populations show a rapid decline in linkage disequilibrium with increasing distance between pairs of polymorphic sites, consistent with very frequent outcrossing. We hypothesize that the high diversity of present-day P. vivax lineages in the Americas originated from successive migratory waves and subsequent admixture between parasite lineages from geographically diverse sites

  4. Genome-wide diversity and differentiation in New World populations of the human malaria parasite Plasmodium vivax

    Science.gov (United States)

    de Oliveira, Thais C.; Rodrigues, Priscila T.; Menezes, Maria José; Gonçalves-Lopes, Raquel M.; Bastos, Melissa S.; Lima, Nathália F.; Barbosa, Susana; Gerber, Alexandra L.; Loss de Morais, Guilherme; Berná, Luisa; Phelan, Jody; Robello, Carlos; de Vasconcelos, Ana Tereza R.

    2017-01-01

    Background The Americas were the last continent colonized by humans carrying malaria parasites. Plasmodium falciparum from the New World shows very little genetic diversity and greater linkage disequilibrium, compared with its African counterparts, and is clearly subdivided into local, highly divergent populations. However, limited available data have revealed extensive genetic diversity in American populations of another major human malaria parasite, P. vivax. Methods We used an improved sample preparation strategy and next-generation sequencing to characterize 9 high-quality P. vivax genome sequences from northwestern Brazil. These new data were compared with publicly available sequences from recently sampled clinical P. vivax isolates from Brazil (BRA, total n = 11 sequences), Peru (PER, n = 23), Colombia (COL, n = 31), and Mexico (MEX, n = 19). Principal findings/Conclusions We found that New World populations of P. vivax are as diverse (nucleotide diversity π between 5.2 × 10−4 and 6.2 × 10−4) as P. vivax populations from Southeast Asia, where malaria transmission is substantially more intense. They display several non-synonymous nucleotide substitutions (some of them previously undescribed) in genes known or suspected to be involved in antimalarial drug resistance, such as dhfr, dhps, mdr1, mrp1, and mrp-2, but not in the chloroquine resistance transporter ortholog (crt-o) gene. Moreover, P. vivax in the Americas is much less geographically substructured than local P. falciparum populations, with relatively little between-population genome-wide differentiation (pairwise FST values ranging between 0.025 and 0.092). Finally, P. vivax populations show a rapid decline in linkage disequilibrium with increasing distance between pairs of polymorphic sites, consistent with very frequent outcrossing. We hypothesize that the high diversity of present-day P. vivax lineages in the Americas originated from successive migratory waves and subsequent admixture between

  5. Troglitazone induces differentiation in Trypanosoma brucei

    International Nuclear Information System (INIS)

    Denninger, Viola; Figarella, Katherine; Schoenfeld, Caroline; Brems, Stefanie; Busold, Christian; Lang, Florian; Hoheisel, Joerg; Duszenko, Michael

    2007-01-01

    Trypanosoma brucei, a protozoan parasite causing sleeping sickness, is transmitted by the tsetse fly and undergoes a complex lifecycle including several defined stages within the insect vector and its mammalian host. In the latter, differentiation from the long slender to the short stumpy form is induced by a yet unknown factor of trypanosomal origin. Here we describe that some thiazolidinediones are also able to induce differentiation. In higher eukaryotes, thiazolidinediones are involved in metabolism and differentiation processes mainly by binding to the intracellular receptor peroxisome proliferator activated receptor γ. Our studies focus on the effects of troglitazone on bloodstream form trypanosomes. Differentiation was monitored using mitochondrial markers (membrane potential, succinate dehydrogenase activity, inhibition of oxygen uptake by KCN, amount of cytochrome transcripts), morphological changes (Transmission EM and light microscopy), and transformation experiments (loss of the Variant Surface Glycoprotein coat and increase of dihydroliponamide dehydrogenase activity). To further investigate the mechanisms responsible for these changes, microarray analyses were performed, showing an upregulation of expression site associated gene 8 (ESAG8), a potential differentiation regulator

  6. Trypanosoma cruzi IV causing outbreaks of acute Chagas disease and infections by different haplotypes in the Western Brazilian Amazonia.

    Directory of Open Access Journals (Sweden)

    Wuelton Marcelo Monteiro

    Full Text Available BACKGROUND: Chagas disease is an emergent tropical disease in the Brazilian Amazon Region, with an increasing number of cases in recent decades. In this region, the sylvatic cycle of Trypanosoma cruzi transmission, which constitutes a reservoir of parasites that might be associated with specific molecular, epidemiological and clinical traits, has been little explored. The objective of this work is to genetically characterize stocks of T. cruzi from human cases, triatomines and reservoir mammals in the State of Amazonas, in the Western Brazilian Amazon. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed 96 T. cruzi samples from four municipalities in distant locations of the State of Amazonas. Molecular characterization of isolated parasites from cultures in LIT medium or directly from vectors or whole human blood was performed by PCR of the non-transcribed spacer of the mini-exon and of the 24 S alfa ribosomal RNA gene, RFLP and sequencing of the mitochondrial cytochrome c oxidase subunit II (COII gene, and by sequencing of the glucose-phosphate isomerase gene. The T. cruzi parasites from two outbreaks of acute disease were all typed as TcIV. One of the outbreaks was triggered by several haplotypes of the same DTU. TcIV also occurred in isolated cases and in Rhodnius robustus. Incongruence between mitochondrial and nuclear phylogenies is likely to be indicative of historical genetic exchange events resulting in mitochondrial introgression between TcIII and TcIV DTUs from Western Brazilian Amazon. TcI predominated among triatomines and was the unique DTU infecting marsupials. CONCLUSION/SIGNIFICANCE: DTU TcIV, rarely associated with human Chagas disease in other areas of the Amazon basin, is the major strain responsible for the human infections in the Western Brazilian Amazon, occurring in outbreaks as single or mixed infections by different haplotypes.

  7. The Streamlined Genome of Phytomonas spp. Relative to Human Pathogenic Kinetoplastids Reveals a Parasite Tailored for Plants

    Czech Academy of Sciences Publication Activity Database

    Porcel, B. M.; Denoeud, F.; Opperdoes, F.; Noel, B.; Madoui, M.-A.; Hammarton, T.C.; Field, M.C.; Da Silva, C.; Couloux, A.; Poulain, J.; Katinka, M.; Jabbari, K.; Aury, J. M.; Campbell, D. A.; Cintron, R.; Dickens, N. J.; Docampo, R.; Sturm, N. R.; Koumandou, V.L.; Fabre, S.; Flegontov, Pavel; Lukeš, Julius; Michaeli, S.; Mottram, J.C.; Szoor, B.; Zilberstein, D.; Bringaud, F.; Wincker, P.; Dollet, M.

    2014-01-01

    Roč. 10, č. 2 (2014), e1004007 ISSN 1553-7404 R&D Projects: GA ČR(CZ) GAP305/11/2179 Institutional support: RVO:60077344 Keywords : horizontal gene-transfer * guide RNA genes * Trypanosoma cruzi Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 8.167, year: 2013

  8. In-depth comparative analysis of malaria parasite genomes reveals protein-coding genes linked to human disease in Plasmodium falciparum genome.

    Science.gov (United States)

    Liu, Xuewu; Wang, Yuanyuan; Liang, Jiao; Wang, Luojun; Qin, Na; Zhao, Ya; Zhao, Gang

    2018-05-02

    Plasmodium falciparum is the most virulent malaria parasite capable of parasitizing human erythrocytes. The identification of genes related to this capability can enhance our understanding of the molecular mechanisms underlying human malaria and lead to the development of new therapeutic strategies for malaria control. With the availability of several malaria parasite genome sequences, performing computational analysis is now a practical strategy to identify genes contributing to this disease. Here, we developed and used a virtual genome method to assign 33,314 genes from three human malaria parasites, namely, P. falciparum, P. knowlesi and P. vivax, and three rodent malaria parasites, namely, P. berghei, P. chabaudi and P. yoelii, to 4605 clusters. Each cluster consisted of genes whose protein sequences were significantly similar and was considered as a virtual gene. Comparing the enriched values of all clusters in human malaria parasites with those in rodent malaria parasites revealed 115 P. falciparum genes putatively responsible for parasitizing human erythrocytes. These genes are mainly located in the chromosome internal regions and participate in many biological processes, including membrane protein trafficking and thiamine biosynthesis. Meanwhile, 289 P. berghei genes were included in the rodent parasite-enriched clusters. Most are located in subtelomeric regions and encode erythrocyte surface proteins. Comparing cluster values in P. falciparum with those in P. vivax and P. knowlesi revealed 493 candidate genes linked to virulence. Some of them encode proteins present on the erythrocyte surface and participate in cytoadhesion, virulence factor trafficking, or erythrocyte invasion, but many genes with unknown function were also identified. Cerebral malaria is characterized by accumulation of infected erythrocytes at trophozoite stage in brain microvascular. To discover cerebral malaria-related genes, fast Fourier transformation (FFT) was introduced to extract

  9. Inter-relation of sylvatic and domestic transmission of Trypanosoma cruzi in areas with and without domestic vectorial transmission in Minas Gerais, Brazil

    Directory of Open Access Journals (Sweden)

    L. Diotaiuti

    1995-08-01

    Full Text Available During the period 1980-1986, we captured triatomine bugs and mammalian reservoir hosts from sylvatic and domestic situations in different municipalities of the State of Minas Gerais. Trypanosoma cruzi was isolated from captured bugs, mammals and patients. After cultivation in LIT medium, the electrophoretic enzyme profiles were determined. We obtained atotal of 32 parasite isolates from regions with active domestic transmission, and 24 isolates form areas under control. For the first areas the results suggest introduction of T. cruzi from sylvatic habitats, through incursion of infected opossums and/or sylvatic T. sordida, which appears to have given rise to at least one acute human infection. Of particular interest is the finding of sylvatic opossums and a T. sordida nymph infected with ZB, that could indicate return of parasites from chronic human infections to sylvatic transmission cycles. For the areas under control we also interpret the results as interaction between sylvatic and domestic cycles of transmission, here through the invasion of houses by bugs carrying the Z1 zymodeme from the sylvatic environment. The Multivariate Correspondence Analysis gives a spatial description between the different parasite isolates and confirms the existence of a bridge in the opposite direction in the region with active vectorial transmission including the exporting of Z2 through the peridomestic environment into the sylvatic cycle. For the others areas this bridge corresponds especially to Panstrongylus megistus, importing Z1 into the domestic environment.

  10. A novel progesterone receptor membrane component (PGRMC) in the human and swine parasite Taenia solium: implications to the host-parasite relationship.

    Science.gov (United States)

    Aguilar-Díaz, Hugo; Nava-Castro, Karen E; Escobedo, Galileo; Domínguez-Ramírez, Lenin; García-Varela, Martín; Del Río-Araiza, Víctor H; Palacios-Arreola, Margarita I; Morales-Montor, Jorge

    2018-03-09

    We have previously reported that progesterone (P 4 ) has a direct in vitro effect on the scolex evagination and growth of Taenia solium cysticerci. Here, we explored the hypothesis that the P 4 direct effect on T. solium might be mediated by a novel steroid-binding parasite protein. By way of using immunofluorescent confocal microscopy, flow cytometry analysis, double-dimension electrophoresis analysis, and sequencing the corresponding protein spot, we detected a novel PGRMC in T. solium. Molecular modeling studies accompanied by computer docking using the sequenced protein, together with phylogenetic analysis and sequence alignment clearly demonstrated that T. solium PGRMC is from parasite origin. Our results show that P 4 in vitro increases parasite evagination and scolex size. Using immunofluorescent confocal microscopy, we detected that parasite cells showed expression of a P 4 -binding like protein exclusively located at the cysticercus subtegumental tissue. Presence of the P 4 -binding protein in cyst cells was also confirmed by flow cytometry. Double-dimension electrophoresis analysis, followed by sequencing the corresponding protein spot, revealed a protein that was previously reported in the T. solium genome belonging to a membrane-associated progesterone receptor component (PGRMC). Molecular modeling studies accompanied by computer docking using the sequenced protein showed that PGRMC is potentially able to bind steroid hormones such as progesterone, estradiol, testosterone and dihydrodrotestosterone with different affinities. Phylogenetic analysis and sequence alignment clearly demonstrated that T. solium PGRMC is related to a steroid-binding protein of Echinoccocus granulosus, both of them being nested within a cluster including similar proteins present in platyhelminths such as Schistocephalus solidus and Schistosoma haematobium. Progesterone may directly act upon T. solium cysticerci probably by binding to PGRMC. This research has implications in the

  11. Probability of Transmission of Malaria from Mosquito to Human Is Regulated by Mosquito Parasite Density in Naïve and Vaccinated Hosts.

    Directory of Open Access Journals (Sweden)

    Thomas S Churcher

    2017-01-01

    Full Text Available Over a century since Ronald Ross discovered that malaria is caused by the bite of an infectious mosquito it is still unclear how the number of parasites injected influences disease transmission. Currently it is assumed that all mosquitoes with salivary gland sporozoites are equally infectious irrespective of the number of parasites they harbour, though this has never been rigorously tested. Here we analyse >1000 experimental infections of humans and mice and demonstrate a dose-dependency for probability of infection and the length of the host pre-patent period. Mosquitoes with a higher numbers of sporozoites in their salivary glands following blood-feeding are more likely to have caused infection (and have done so quicker than mosquitoes with fewer parasites. A similar dose response for the probability of infection was seen for humans given a pre-erythrocytic vaccine candidate targeting circumsporozoite protein (CSP, and in mice with and without transfusion of anti-CSP antibodies. These interventions prevented infection more efficiently from bites made by mosquitoes with fewer parasites. The importance of parasite number has widespread implications across malariology, ranging from our basic understanding of the parasite, how vaccines are evaluated and the way in which transmission should be measured in the field. It also provides direct evidence for why the only registered malaria vaccine RTS,S was partially effective in recent clinical trials.

  12. Asexual populations of the human malaria parasite, Plasmodium falciparum, use a two-step genomic strategy to acquire accurate, beneficial DNA amplifications.

    Directory of Open Access Journals (Sweden)

    Jennifer L Guler

    Full Text Available Malaria drug resistance contributes to up to a million annual deaths. Judicious deployment of new antimalarials and vaccines could benefit from an understanding of early molecular events that promote the evolution of parasites. Continuous in vitro challenge of Plasmodium falciparum parasites with a novel dihydroorotate dehydrogenase (DHODH inhibitor reproducibly selected for resistant parasites. Genome-wide analysis of independently-derived resistant clones revealed a two-step strategy to evolutionary success. Some haploid blood-stage parasites first survive antimalarial pressure through fortuitous DNA duplications that always included the DHODH gene. Independently-selected parasites had different sized amplification units but they were always flanked by distant A/T tracks. Higher level amplification and resistance was attained using a second, more efficient and more accurate, mechanism for head-to-tail expansion of the founder unit. This second homology-based process could faithfully tune DNA copy numbers in either direction, always retaining the unique DNA amplification sequence from the original A/T-mediated duplication for that parasite line. Pseudo-polyploidy at relevant genomic loci sets the stage for gaining additional mutations at the locus of interest. Overall, we reveal a population-based genomic strategy for mutagenesis that operates in human stages of P. falciparum to efficiently yield resistance-causing genetic changes at the correct locus in a successful parasite. Importantly, these founding events arise with precision; no other new amplifications are seen in the resistant haploid blood stage parasite. This minimizes the need for meiotic genetic cleansing that can only occur in sexual stage development of the parasite in mosquitoes.

  13. Cell Death of Gamma Interferon-Stimulated Human Fibroblasts upon Toxoplasma gondii Infection Induces Early Parasite Egress and Limits Parasite Replication

    NARCIS (Netherlands)

    Niedelman, Wendy; Sprokholt, Joris K.; Clough, Barbara; Frickel, Eva-Maria; Saeij, Jeroen P. J.

    2013-01-01

    The intracellular protozoan parasite Toxoplasma gondii is a major food-borne illness and opportunistic infection for the immunosuppressed. Resistance to Toxoplasma is dependent on gamma interferon (IFN-γ) activation of both hematopoietic and nonhematopoietic cells. Although IFN-γ-induced innate

  14. Cell death of gamma interferon-stimulated human fibroblasts upon toxoplasma gondii infection induces early parasite egress and limits parasite replication

    NARCIS (Netherlands)

    Niedelman, W.; Sprokholt, J.K.; Clough, B.; Frickel, E.; Saeij, J.P.J.

    2013-01-01

    The intracellular protozoan parasite Toxoplasma gondii is a major food-borne illness and opportunistic infection for the immunosuppressed. Resistance to Toxoplasma is dependent on gamma interferon (IFN-¿) activation of both hematopoietic and nonhematopoietic cells. Although IFN-¿-induced innate

  15. Infections of Hypostomus spp. by Trypanosoma spp. and leeches: a study of hematology and record of these hirudineans as potential vectors of these hemoflagellates

    Directory of Open Access Journals (Sweden)

    Lincoln Lima Corrêa

    Full Text Available Abstract Among Kinetoplastida, the Trypanosoma is the genus with the highest occurrence infecting populations of marine fish and freshwater in the world, with high levels of prevalence, causing influences fish health and consequent economic losses, mainly for fish populations in situation stress. This study investigated infections of Hypostomus spp. by Trypanosoma spp. and leeches, as well as blood parameters of this host in the network of tributaries of the Tapajós River in the state of Pará, in the eastern Amazon region in Brazil. Of the 47 hosts examined, 89.4% were parasitized by Trypanosoma spp. and 55.4% also had leeches attached around the mouth. The intensity of Trypanosoma spp. increased with the size of the host, but the body conditions were not influenced by the parasitism. The number of red blood cells, and hemoglobin, mean corpuscular volume (MCV, mean corpuscular hemoglobin concentration (MCHC, mean corpuscular hemoglobin (MCH, total number of leukocytes and thrombocytes showed variations and negative correlation with the intensity of Trypanosoma spp. in the blood of the hosts. The results suggest that the leeches were vectors of Trypanosoma spp. in Hypostomus spp.

  16. Sialoglycoconjugates in Trypanosoma cruzi-host cell interaction: possible biological model - a review

    Directory of Open Access Journals (Sweden)

    Alane Beatriz Vermelho

    1994-03-01

    Full Text Available A number of glycoconjugates, including glycolipids and glycoproteins, participate in the process of host-cell invasion by Trypanosoma cruzi and one of the most important carbohydrates involved on this interaction is sialic acid. It is known that parasite trans-sialidase participates with sialic acid in a coordinated fashion in the initial stages of invasion. Given the importance of these sialogycoconjugates, this review sets out various possible biological models for the interaction between the parasite and mammalian cells that possess a sialylated receptor/ligand system.

  17. Metabolic reprogramming during the Trypanosoma brucei life cycle [version 2; referees: 4 approved

    Directory of Open Access Journals (Sweden)

    Terry K. Smith

    2017-05-01

    Full Text Available Cellular metabolic activity is a highly complex, dynamic, regulated process that is influenced by numerous factors, including extracellular environmental signals, nutrient availability and the physiological and developmental status of the cell. The causative agent of sleeping sickness, Trypanosoma brucei, is an exclusively extracellular protozoan parasite that encounters very different extracellular environments during its life cycle within the mammalian host and tsetse fly insect vector. In order to meet these challenges, there are significant alterations in the major energetic and metabolic pathways of these highly adaptable parasites. This review highlights some of these metabolic changes in this early divergent eukaryotic model organism.

  18. Metabolic reprogramming during the Trypanosoma brucei life cycle [version 1; referees: 4 approved

    Directory of Open Access Journals (Sweden)

    Terry K. Smith

    2017-05-01

    Full Text Available Cellular metabolic activity is a highly complex, dynamic, regulated process that is influenced by numerous factors, including extracellular environmental signals, nutrient availability and the physiological and developmental status of the cell. The causative agent of sleeping sickness, Trypanosoma brucei, is an exclusively extracellular protozoan parasite that encounters very different extracellular environments during its life cycle within the mammalian host and tsetse fly insect vector. In order to meet these challenges, there are significant alterations in the major energetic and metabolic pathways of these highly adaptable parasites. This review highlights some of these metabolic changes in this early divergent eukaryotic model organism.

  19. Inositol metabolism in Trypanosoma cruzi: potential target for chemotherapy against Chagas' disease

    Directory of Open Access Journals (Sweden)

    MECIA M. OLIVEIRA

    2000-09-01

    Full Text Available Chagas' disease is a debilitating and often fatal disease caused by the protozoan parasite Trypanosoma cruzi. The great majority of surface molecules in trypanosomes are either inositol-containing phospholipids or glycoproteins that are anchored into the plasma membrane by glycosylphosphatidylinositol anchors. The polyalcohol myo-inositol is the precursor for the biosynthesis of these molecules. In this brief review, recent findings on some aspects of the molecular and cellular fate of inositol in T. cruzi life cycle are discussed and identified some points that could be targets for the development of parasite-specific therapeutic agents.

  20. Parasites: Water

    Science.gov (United States)

    ... Consultations, and General Public. Contact Us Parasites Home Water Language: English Español (Spanish) Recommend on Facebook Tweet Share Compartir Parasites can live in natural water sources. When outdoors, treat your water before drinking ...

  1. Detection of different Leishmania spp. and Trypanosoma cruzi antibodies in cats from the Yucatan Peninsula (Mexico) using an iron superoxide dismutase excreted as antigen.

    Science.gov (United States)

    Longoni, Silvia S; López-Cespedes, Angeles; Sánchez-Moreno, Manuel; Bolio-Gonzalez, Manuel E; Sauri-Arceo, Carlos H; Rodríguez-Vivas, Roger I; Marín, Clotilde

    2012-09-01

    Although human leishmaniasis has been reported in 20 states in Mexico, no case of leishmaniasis has been reported in cats to date. In the Yucatan Peninsula, it has been found that dogs may act as reservoirs for at least three Leishmania species (Leishmania mexicana, Leishmania braziliensis, and Leishmania panamensis). In this study we identified specific antibodies against these three Leishmania spp. and Trypanosoma cruzi in the sera from 95 cats from two States on the Yucatan Peninsula, namely Quintana Roo and Yucatan, by ELISA and Western blot techniques using whole extract and an iron superoxide dismutase excreted by the parasites as antigens. As well as demonstrating the presence of trypanosomatid antibodies in the feline population on the Yucatan Peninsula, we were also able to confirm the high sensitivity and specificity of the iron superoxide dismutase antigen secreted by them, which may prove to be very useful in epidemiological studies. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. The Plasmodium PHIST and RESA-Like Protein Families of Human and Rodent Malaria Parasites

    Science.gov (United States)

    Moreira, Cristina K.; Naissant, Bernina; Coppi, Alida; Bennett, Brandy L.; Aime, Elena; Franke-Fayard, Blandine; Janse, Chris J.; Coppens, Isabelle; Sinnis, Photini; Templeton, Thomas J.

    2016-01-01

    The phist gene family has members identified across the Plasmodium genus, defined by the presence of a domain of roughly 150 amino acids having conserved aromatic residues and an all alpha-helical structure. The family is highly amplified in P. falciparum, with 65 predicted genes in the genome of the 3D7 isolate. In contrast, in the rodent malaria parasite P. berghei 3 genes are identified, one of which is an apparent pseudogene. Transcripts of the P. berghei phist genes are predominant in schizonts, whereas in P. falciparum transcript profiles span different asexual blood stages and gametocytes. We pursued targeted disruption of P. berghei phist genes in order to characterize a simplistic model for the expanded phist gene repertoire in P. falciparum. Unsuccessful attempts to disrupt P. berghei PBANKA_114540 suggest that this phist gene is essential, while knockout of phist PBANKA_122900 shows an apparent normal progression and non-essential function throughout the life cycle. Epitope-tagging of P. falciparum and P. berghei phist genes confirmed protein export to the erythrocyte cytoplasm and localization with a punctate pattern. Three P. berghei PEXEL/HT-positive exported proteins exhibit at least partial co-localization, in support of a common vesicular compartment in the cytoplasm of erythrocytes infected with rodent malaria parasites. PMID:27022937

  3. Trypanosoma cruzi Necrotizing Meningoencephalitis in a Venezuelan HIV+-AIDS Patient: Pathological Diagnosis Confirmed by PCR Using Formalin-Fixed- and Paraffin-Embedded-Tissues

    Directory of Open Access Journals (Sweden)

    Marcello Salvatore Rossi Spadafora

    2014-01-01

    Full Text Available Coinfections with human immunodeficiency virus (HIV and infectious agents have been recognized since the early 90s. In the central nervous system (CNS of HIV+ patients, parasitic protozoans like Toxoplasma gondii have been described as responsible for the space occupying lesions (SOL developed. However, the involvement of Trypanosoma cruzi is also described but appears to be less frequent in acquired immunodeficiency syndrome (AIDS and transplant recipients, associated with necrotizing myocarditis and neurological symptoms related to the occurrence of necrotizing pseudotumoral encephalitis (NPE and meningoencephalitis (NME. The present work aims to present a Venezuelan case of NME associated with the coinfection of HIV and a T. cruzi-like trypanosomatid as well as its evolution and diagnosis by histopathological techniques, electron microscopy, and PCR methods using formalin-fixed- (FF- and paraffin-embedded- (PE- tissues. Postmortem cytological studies of leptomeninges imprints reveal the presence of trypomastigotes of Trypanosoma sp. Histopathological and electron microscopy studies allowed us to identify an amastigote stage and to reject the involvement of other opportunistic microorganisms as the etiological agent of the SOL. The definitive confirmation of T. cruzi as the etiological agent was achieved by PCR suggesting that the NME by T. cruzi was due to a reactivation of Chagas’ disease.

  4. Trypanosoma cruzi Necrotizing Meningoencephalitis in a Venezuelan HIV+-AIDS Patient: Pathological Diagnosis Confirmed by PCR Using Formalin-Fixed- and Paraffin-Embedded-Tissues

    Science.gov (United States)

    Rossi Spadafora, Marcello Salvatore; Céspedes, Ghislaine; Romero, Sandra; Fuentes, Isabel; Boada-Sucre, Alpidio A.; Cañavate, Carmen; Flores-Chávez, María

    2014-01-01

    Coinfections with human immunodeficiency virus (HIV) and infectious agents have been recognized since the early 90s. In the central nervous system (CNS) of HIV+ patients, parasitic protozoans like Toxoplasma gondii have been described as responsible for the space occupying lesions (SOL) developed. However, the involvement of Trypanosoma cruzi is also described but appears to be less frequent in acquired immunodeficiency syndrome (AIDS) and transplant recipients, associated with necrotizing myocarditis and neurological symptoms related to the occurrence of necrotizing pseudotumoral encephalitis (NPE) and meningoencephalitis (NME). The present work aims to present a Venezuelan case of NME associated with the coinfection of HIV and a T. cruzi-like trypanosomatid as well as its evolution and diagnosis by histopathological techniques, electron microscopy, and PCR methods using formalin-fixed- (FF-) and paraffin-embedded- (PE-) tissues. Postmortem cytological studies of leptomeninges imprints reveal the presence of trypomastigotes of Trypanosoma sp. Histopathological and electron microscopy studies allowed us to identify an amastigote stage and to reject the involvement of other opportunistic microorganisms as the etiological agent of the SOL. The definitive confirmation of T. cruzi as the etiological agent was achieved by PCR suggesting that the NME by T. cruzi was due to a reactivation of Chagas' disease. PMID:25763312

  5. Chronic Chagas disease: PCR-xenodiagnosis without previous microscopic observation is a useful tool to detect viable Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    Miguel Saavedra

    2013-01-01

    Full Text Available We evaluate the elimination of the microscopic stage of conventional xenodiagnosis (XD to optimize the parasitological diagnosis of Trypanosoma cruzi in chronic Chagas disease. To this purpose we applied under informed consent two XD cages to 150 Chilean chronic chagasic patients. The fecal samples (FS of the triatomines at 30, 60 and 90 days post feeding were divided into two parts: in one a microscopic search for mobile trypomastigote and/or epimastigote forms was performed. In the other part, DNA extraction-purification for PCR directed to the conserved region of kDNA minicircles of trypanosomes (PCR-XD, without previous microscopic observation was done. An XD was considered positive when at least one mobile T. cruzi parasite in any one of three periods of incubation was observed, whereas PCR-XD was considered positive when the 330 bp band specific for T. cruzi was detected. 25 of 26 cases with positive conventional XD were PCR-XD positive (concordance 96.2%, whereas 85 of 124 cases with negative conventional XD were positive by PCR-XD (68.5%. Human chromosome 12 detected by Real-time PCR used as exogenous internal control of PCR-XD reaction allowed to discounting of PCR inhibition and false negative in 40 cases with negative PCR-XD. Conclusion: PCR-XD performed without previous microscopic observation is a useful tool for detection of viable parasites with higher efficiency then conventional XD.

  6. Chronic Chagas disease: PCR-xenodiagnosis without previous microscopic observation is a useful tool to detect viable Trypanosoma cruzi.

    Science.gov (United States)

    Saavedra, Miguel; Zulantay, Inés; Apt, Werner; Martínez, Gabriela; Rojas, Antonio; Rodríguez, Jorge

    2013-01-01

    We evaluate the elimination of the microscopic stage of conventional xenodiagnosis (XD) to optimize the parasitological diagnosis of Trypanosoma cruzi in chronic Chagas disease. To this purpose we applied under informed consent two XD cages to 150 Chilean chronic chagasic patients. The fecal samples (FS) of the triatomines at 30, 60 and 90 days post feeding were divided into two parts: in one a microscopic search for mobile trypomastigote and/or epimastigote forms was performed. In the other part, DNA extraction-purification for PCR directed to the conserved region of kDNA minicircles of trypanosomes (PCR-XD), without previous microscopic observation was done. An XD was considered positive when at least one mobile T. cruzi parasite in any one of three periods of incubation was observed, whereas PCR-XD was considered positive when the 330 bp band specific for T. cruzi was detected. 25 of 26 cases with positive conventional XD were PCR-XD positive (concordance 96.2%), whereas 85 of 124 cases with negative conventional XD were positive by PCR-XD (68.5%). Human chromosome 12 detected by Real-time PCR used as exogenous internal control of PCR-XD reaction allowed to discounting of PCR inhibition and false negative in 40 cases with negative PCR-XD. PCR-XD performed without previous microscopic observation is a useful tool for detection of viable parasites with higher efficiency then conventional XD.

  7. Developmentally regulated expression by Trypanosoma cruzi of molecules that accelerate the decay of complement C3 convertases

    International Nuclear Information System (INIS)

    Rimoldi, M.T.; Sher, A.; Heiny, A.; Lituchy, A.; Hammer, C.H.; Joiner, K.

    1988-01-01

    The authors recently showed that culture-derived metacyclic trypomastigotes (CMT), but not epimastigotes (Epi), of the Miranda 99 strain of Trypanosoma cruzi evade lysis by the human alternative complement pathway because of inefficient binding of factor B to complement component C3b on the parasite surface. These results suggested that CMT and tissue-culture-derived trypomastigotes (TCT), which also activate the alternative pathway poorly, might produce a molecule capable of interfering with factor B binding to C3b. They now demonstrate that CMT and TCT lysates, as well as molecules spontaneously shed from CMT and TCT but not Epi, accelerate decay of 125 I-labeled factor Bb from the alternative-pathway C3 convertase (C3bBb) assembled on zymosan or Epi and also accelerate decay of the classical-pathway C3 convertase (C4b2a) on sheep erythrocytes. Parasites metabolically labeled with [ 35 S]methionine spontaneously shed a limited number of radioactive components, ranging in molecular mass from 86 to 155 kDa for trypomastigotes and 25 to 80 kDa for Epi. Decay-accelerating activity within supernatants is inactivated by papain and is coeluted with 35 S-containing polypeptides on FPLC anion-exchange chromatography, suggesting that the active constituents are protein molecules. Molecules with decay-accelerating activity may explain the developmentally regulated resistance to complement-mediated lysis in infective and vertebrate stages for T. cruzi life cycle

  8. Crystallization and preliminary crystallographic analysis of orotidine 5′-monophosphate decarboxylase from the human malaria parasite Plasmodium falciparum

    International Nuclear Information System (INIS)

    Krungkrai, Sudaratana R.; Tokuoka, Keiji; Kusakari, Yukiko; Inoue, Tsuyoshi; Adachi, Hiroaki; Matsumura, Hiroyoshi; Takano, Kazufumi; Murakami, Satoshi; Mori, Yusuke; Kai, Yasushi; Krungkrai, Jerapan; Horii, Toshihiro

    2006-01-01

    Orotidine 5′-monophosphate decarboxylase of human malaria parasite P. falciparum was crystallized by the seeding method in a hanging drop using PEG 3000 as a precipitant. A complete set of diffraction data from a native crystal was collected to 2.7 Å resolution at 100 K using synchrotron radiation. Orotidine 5′-monophosphate (OMP) decarboxylase (OMPDC; EC 4.1.1.23) catalyzes the final step in the de novo synthesis of uridine 5′-monophosphate (UMP) and defects in the enzyme are lethal in the malaria parasite Plasmodium falciparum. Active recombinant P. falciparum OMPDC (PfOMPDC) was crystallized by the seeding method in a hanging drop using PEG 3000 as a precipitant. A complete set of diffraction data from a native crystal was collected to 2.7 Å resolution at 100 K using synchrotron radiation at the Swiss Light Source. The crystal exhibits trigonal symmetry (space group R3), with hexagonal unit-cell parameters a = b = 201.81, c = 44.03 Å. With a dimer in the asymmetric unit, the solvent content is 46% (V M = 2.3 Å 3 Da −1 )

  9. Host-seeking behaviors of mosquitoes experimentally infected with sympatric field isolates of the human malaria parasite Plasmodium falciparum: no evidence for host manipulation

    Directory of Open Access Journals (Sweden)

    Amélie eVantaux

    2015-08-01

    Full Text Available Previous studies have shown that Plasmodium parasites can manipulate mosquito feeding behaviours such as motivation and avidity to feed on vertebrate hosts, in ways that increase the probability of parasite transmission. These studies, however, have been mainly carried out on non-natural and/or laboratory based model systems and hence may not reflect what occurs in the field. We now need to move closer to the natural setting, if we are to fully capture the ecological and evolutionary consequences of these parasite-induced behavioral changes. As part of this effort, we conducted a series of experiments to investigate the long and short-range behavioural responses to human stimuli in the mosquito Anopheles coluzzii during different stages of infection with sympatric field isolates of the human malaria parasite Plasmodium falciparum in Burkina Faso. First, we used a dual-port olfactometer designed to take advantage of the whole body odor to gauge mosquito long-range host-seeking behaviors. Second, we used a locomotor activity monitor system to assess mosquito short-range behaviors. Compared to control uninfected mosquitoes, P. falciparum infection had no significant effect neither on long-range nor on short-range behaviors both at the immature and mature stages. This study, using a natural mosquito-malaria parasite association, indicates that manipulation of vector behavior may not be a general phenomenon. We speculate that the observed contrasting phenotypes with model systems might result from coevolution of the human parasite and its natural vector. Future experiments, using other sympatric malaria mosquito populations or species are required to test this hypothesis. In conclusion, our results highlight the importance of following up discoveries in laboratory model systems with studies on natural parasite–mosquito interactions to accurately predict the epidemiological, ecological and evolutionary consequences of parasite manipulation of vector

  10. Dysfunctions at human intestinal barrier by water-borne protozoan parasites: lessons from cultured human fully differentiated colon cancer cell lines.

    Science.gov (United States)

    Liévin-Le Moal, Vanessa

    2013-06-01

    Some water-borne protozoan parasites induce diseases through their membrane-associated functional structures and virulence factors that hijack the host cellular molecules and signalling pathways leading to structural and functional lesions in the intestinal barrier. In this Microreview we analyse the insights on the mechanisms of pathogenesis of Entamoeba intestinalis, Giardia and Cryptosporidium observed in the human colon carcinoma fully differentiated colon cancer cell lines, cell subpopulations and clones expressing the structural and functional characteristics of highly specialized fully differentiated epithelial cells lining the intestinal epithelium and mimicking structurally and functionally an intestinal barrier. © 2013 John Wiley & Sons Ltd.

  11. Vitamin B6-Dependent Enzymes in the Human Malaria Parasite Plasmodium falciparum: A Druggable Target?

    Directory of Open Access Journals (Sweden)

    Thales Kronenberger

    2014-01-01

    Full Text Available Malaria is a deadly infectious disease which affects millions of people each year in tropical regions. There is no effective vaccine available and the treatment is based on drugs which are currently facing an emergence of drug resistance and in this sense the search for new drug targets is indispensable. It is well established that vitamin biosynthetic pathways, such as the vitamin B6 de novo synthesis present in Plasmodium, are excellent drug targets. The active form of vitamin B6, pyridoxal 5-phosphate, is, besides its antioxidative properties, a cofactor for a variety of essential enzymes present in the malaria parasite which includes the ornithine decarboxylase (ODC, synthesis of polyamines, the aspartate aminotransferase (AspAT, involved in the protein biosynthesis, and the serine hydroxymethyltransferase (SHMT, a key enzyme within the folate metabolism.

  12. Defining the protein interaction network of human malaria parasite Plasmodium falciparum

    KAUST Repository

    Ramaprasad, Abhinay

    2012-02-01

    Malaria, caused by the protozoan parasite Plasmodium falciparum, affects around 225. million people yearly and a huge international effort is directed towards combating this grave threat to world health and economic development. Considerable advances have been made in malaria research triggered by the sequencing of its genome in 2002, followed by several high-throughput studies defining the malaria transcriptome and proteome. A protein-protein interaction (PPI) network seeks to trace the dynamic interactions between proteins, thereby elucidating their local and global functional relationships. Experimentally derived PPI network from high-throughput methods such as yeast two hybrid (Y2H) screens are inherently noisy, but combining these independent datasets by computational methods tends to give a greater accuracy and coverage. This review aims to discuss the computational approaches used till date to construct a malaria protein interaction network and to catalog the functional predictions and biological inferences made from analysis of the PPI network. © 2011 Elsevier Inc.

  13. Defects of mtDNA Replication Impaired Mitochondrial Biogenesis During Trypanosoma cruzi Infection in Human Cardiomyocytes and Chagasic Patients: The Role of Nrf1/2 and Antioxidant Response

    Science.gov (United States)

    Wan, Xianxiu; Gupta, Shivali; Zago, Maria P.; Davidson, Mercy M.; Dousset, Pierre; Amoroso, Alejandro; Garg, Nisha Jain

    2012-01-01

    Background Mitochondrial dysfunction is a key determinant in chagasic cardiomyopathy development in mice; however, its relevance in human Chagas disease is not known. We determined if defects in mitochondrial biogenesis and dysregulation of peroxisome proliferator-activated receptor gamma (PPARγ) coactivator-1 (PGC-1)–regulated transcriptional pathways constitute a mechanism or mechanisms underlying mitochondrial oxidative-phosphorylation (OXPHOS) deficiency in human Chagas disease. Methods and Results We utilized human cardiomyocytes and left-ventricular tissue from chagasic and other cardiomyopathy patients and healthy donors (n>6/group). We noted no change in citrate synthase activity, yet mRNA and/or protein levels of subunits of the respiratory complexes were significantly decreased in Trypanosoma cruzi–infected cardiomyocytes (0 to 24 hours) and chagasic hearts. We observed increased mRNA and decreased nuclear localization of PGC-1-coactivated transcription factors, yet the expression of genes for PPARγ-regulated fatty acid oxidation and nuclear respiratory factor (NRF1/2)–regulated mtDNA replication and transcription machinery was enhanced in infected cardiomyocytes and chagasic hearts. The D-loop formation was normal or higher, but mtDNA replication and mtDNA content were decreased by 83% and 40% to 65%, respectively. Subsequently, we noted that reactive oxygen species (ROS), oxidative stress, and mtDNA oxidation were significantly increased, yet NRF1/2-regulated antioxidant gene expression remained compromised in infected cardiomyocytes and chagasic hearts. Conclusions The replication of mtDNA was severely compromised, resulting in a significant loss of mtDNA and expression of OXPHOS genes in T cruzi–infected cardiomyocytes and chagasic hearts. Our data suggest increased ROS generation and selective functional incapacity of NRF2-mediated antioxidant gene expression played a role in the defects in mtDNA replication and unfitness of mtDNA for

  14. Parasitic Nematode Interactions with Mammals and Plants

    NARCIS (Netherlands)

    Jasmer, D.P.; Goverse, A.; Smant, G.

    2003-01-01

    Parasitic nematodes that infect humans, animals, and plants cause serious diseases that are deleterious to human health and agricultural productivity. Chemical and biological control methods have reduced the impact of these parasites. However, surviving environmental stages lead to persistent

  15. Modulation of Trypanosoma cruzi-specific T-cell responses after chemotherapy for chronic Chagas disease

    Directory of Open Access Journals (Sweden)

    María Cecilia Albareda

    2015-05-01

    Full Text Available The aim of this review is to describe the contributions of the knowledge of T-cell responses to the understanding of the physiopathology and the responsiveness to etiological treatment during the chronic phase of Chagas disease. T-helper (Th1 and interleukin (IL-10 Trypanosoma cruzi-specific T-cells have been linked to the asymptomatic phase or to severe clinical forms of the disease, respectively or vice versa, depending on the T. cruzi antigen source, the patient’s location and the performed immunological assays. Parasite-specific T-cell responses are modulated after benznidazole (BZ treatment in chronically T. cruzi-infected subjects in association with a significant decrease in T. cruzi-specific antibodies. Accumulating evidence has indicated that treatment efficacy during experimental infection with T. cruzi results from the combined action of BZ and the activation of appropriate immune responses in the host. However, strong support of this interaction in T. cruzi-infected humans remains lacking. Overall, the quality of T-cell responses might be a key factor in not only disease evolution, but also chemotherapy responsiveness. Immunological parameters are potential indicators of treatment response regardless of achievement of cure. Providing tools to monitor and provide early predictions of treatment success will allow the development of new therapeutic options.

  16. Risk factors for gastrointestinal parasite infections of dogs living around protected areas of the Atlantic Forest: implications for human and wildlife health.

    Science.gov (United States)

    Curi, N H A; Paschoal, A M O; Massara, R L; Santos, H A; Guimarães, M P; Passamani, M; Chiarello, A G

    2017-01-01

    Despite the ubiquity of domestic dogs, their role as zoonotic reservoirs and the large number of studies concerning parasites in urban dogs, rural areas in Brazil, especially those at the wildlife-domestic animal-human interface, have received little attention from scientists and public health managers. This paper reports a cross-sectional epidemiological survey of gastrointestinal parasites of rural dogs living in farms around Atlantic Forest fragments. Through standard parasitological methods (flotation and sedimentation), 13 parasite taxa (11 helminths and two protozoans) were found in feces samples from dogs. The most prevalent were the nematode Ancylostoma (47%) followed by Toxocara (18%) and Trichuris (8%). Other less prevalent (dogs younger than one year were more likely to be infected with Toxocara, and purebred dogs with Trichuris. The number of cats in the households was positively associated with Trichuris infection, while male dogs and low body scores were associated with mixed infections. The lack of associations with dog free-ranging behavior and access to forest or villages indicates that infections are mostly acquired around the households. The results highlight the risk of zoonotic and wildlife parasite infections from dogs and the need for monitoring and controlling parasites of domestic animals in human-wildlife interface areas.

  17. Trypanocidal Effect of Isotretinoin through the Inhibition of Polyamine and Amino Acid Transporters in Trypanosoma cruzi.

    Directory of Open Access Journals (Sweden)

    Chantal Reigada

    2017-03-01

    Full Text Available Polyamines are essential compounds to all living organisms and in the specific case of Trypanosoma cruzi, the causative agent of Chagas disease, they are exclusively obtained through transport processes since this parasite is auxotrophic for polyamines. Previous works reported that retinol acetate inhibits Leishmania growth and decreases its intracellular polyamine concentration. The present work describes a combined strategy of drug repositioning by virtual screening followed by in vitro assays to find drugs able to inhibit TcPAT12, the only polyamine transporter described in T. cruzi. After a screening of 3000 FDA-approved drugs, 7 retinoids with medical use were retrieved and used for molecular docking assays with TcPAT12. From the docked molecules, isotretinoin, a well-known drug used for acne treatment, showed the best interaction score with TcPAT12 and was selected for further in vitro studies. Isotretinoin inhibited the polyamine transport, as well as other amino acid transporters from the same protein family (TcAAAP, with calculated IC50 values in the range of 4.6-10.3 μM. It also showed a strong inhibition of trypomastigote burst from infected cells, with calculated IC50 of 130 nM (SI = 920 being significantly less effective on the epimastigote stage (IC50 = 30.6 μM. The effect of isotretinoin on the parasites plasma membrane permeability and on mammalian cell viability was tested, and no change was observed. Autophagosomes and apoptotic bodies were detected as part of the mechanisms of isotretinoin-induced death indicating that the inhibition of transporters by isotretinoin causes nutrient starvation that triggers autophagic and apoptotic processes. In conclusion, isotretinoin is a promising trypanocidal drug since it is a multi-target inhibitor of essential metabolites transporters, in addition to being an FDA-approved drug largely used in humans, which could reduce significantly the requirements for its possible application in the

  18. Handling uncertainty in dynamic models: the pentose phosphate pathway in Trypanosoma brucei.

    Directory of Open Access Journals (Sweden)

    Eduard J Kerkhoven

    Full Text Available Dynamic models of metabolism can be useful in identifying potential drug targets, especially in unicellular organisms. A model of glycolysis in the causative agent of human African trypanosomiasis, Trypanosoma brucei, has already shown the utility of this approach. Here we add the pentose phosphate pathway (PPP of T. brucei to the glycolytic model. The PPP is localized to both the cytosol and the glycosome and adding it to the glycolytic model without further adjustments leads to a draining of the essential bound-phosphate moiety within the glycosome. This phosphate "leak" must be resolved for the model to be a reasonable representation of parasite physiology. Two main types of theoretical solution to the problem could be identified: (i including additional enzymatic reactions in the glycosome, or (ii adding a mechanism to transfer bound phosphates between cytosol and glycosome. One example of the first type of solution would be the presence of a glycosomal ribokinase to regenerate ATP from ribose 5-phosphate and ADP. Experimental characterization of ribokinase in T. brucei showed that very low enzyme levels are sufficient for parasite survival, indicating that other mechanisms are required in controlling the phosphate leak. Examples of the second type would involve the presence of an ATP:ADP exchanger or recently described permeability pores in the glycosomal membrane, although the current absence of identified genes encoding such molecules impedes experimental testing by genetic manipulation. Confronted with this uncertainty, we present a modeling strategy that identifies robust predictions in the context of incomplete system characterization. We illustrate this strategy by exploring the mechanism underlying the essential function of one of the PPP enzymes, and validate it by confirming the model predictions experimentally.

  19. Effect of ionizing radiation exposure on Trypanosoma cruzi ubiquitin-proteasome system.

    Science.gov (United States)

    Cerqueira, Paula G; Passos-Silva, Danielle G; Vieira-da-Rocha, João P; Mendes, Isabela Cecilia; de Oliveira, Karla A; Oliveira, Camila F B; Vilela, Liza F F; Nagem, Ronaldo A P; Cardoso, Joseane; Nardelli, Sheila C; Krieger, Marco A; Franco, Glória R; Macedo, Andrea M; Pena, Sérgio D J; Schenkman, Sérgio; Gomes, Dawidson A; Guerra-Sá, Renata; Machado, Carlos R

    2017-03-01

    In recent years, proteasome involvement in the damage response induced by ionizing radiation (IR) became evident. However, whether proteasome plays a direct or indirect role in IR-induced damage response still unclear. Trypanosoma cruzi is a human parasite capable of remarkable high tolerance to IR, suggesting a highly efficient damage response system. Here, we investigate the role of T. cruzi proteasome in the damage response induced by IR. We exposed epimastigotes to high doses of gamma ray and we analyzed the expression and subcellular localization of several components of the ubiquitin-proteasome system. We show that proteasome inhibition increases IR-induced cell growth arrest and proteasome-mediated proteolysis is altered after parasite exposure. We observed nuclear accumulation of 19S and 20S proteasome subunits in response to IR treatments. Intriguingly, the dynamic of 19S particle nuclear accumulation was more similar to the dynamic observed for Rad51 nuclear translocation than the observed for 20S. In the other hand, 20S increase and nuclear translocation could be related with an increase of its regulator PA26 and high levels of proteasome-mediated proteolysis in vitro. The intersection between the opposed peaks of 19S and 20S protein levels was marked by nuclear accumulation of both 20S and 19S together with Ubiquitin, suggesting a role of ubiquitin-proteasome system in the nuclear protein turnover at the time. Our results revealed the importance of proteasome-mediated proteolysis in T. cruzi IR-induced damage response suggesting that proteasome is also involved in T. cruzi IR tolerance. Moreover, our data support the possible direct/signaling role of 19S in DNA damage repair. Based on these results, we speculate that spatial and temporal differences between the 19S particle and 20S proteasome controls proteasome multiple roles in IR damage response. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Complete in vitro life cycle of Trypanosoma congolense: development of genetic tools.

    Directory of Open Access Journals (Sweden)

    Virginie Coustou

    Full Text Available BACKGROUND: Animal African trypanosomosis, a disease mainly caused by the protozoan parasite Trypanosoma congolense, is a major constraint to livestock productivity and has a significant impact in the developing countries of Africa. RNA interference (RNAi has been used to study gene function and identify drug and vaccine targets in a variety of organisms including trypanosomes. However, trypanosome RNAi studies have mainly been conducted in T. brucei, as a model for human infection, largely ignoring livestock parasites of economical importance such as T. congolense, which displays different pathogenesis profiles. The whole T. congolense life cycle can be completed in vitro, but this attractive model displayed important limitations: (i genetic tools were currently limited to insect forms and production of modified infectious BSF through differentiation was never achieved, (ii in vitro differentiation techniques lasted several months, (iii absence of long-term bloodstream forms (BSF in vitro culture prevented genomic analyses. METHODOLOGY/PRINCIPAL FINDINGS: We optimized culture conditions for each developmental stage and secured the differentiation steps. Specifically, we devised a medium adapted for the strenuous development of stable long-term BSF culture. Using Amaxa nucleofection technology, we greatly improved the transfection rate of the insect form and designed an inducible transgene expression system using the IL3000 reference strain. We tested it by expression of reporter genes and through RNAi. Subsequently, we achieved the complete in vitro life cycle with dramatically shortened time requirements for various wild type and transgenic strains. Finally, we established the use of modified strains for experimental infections and underlined a host adaptation phase requirement. CONCLUSIONS/SIGNIFICANCE: We devised an improved T. congolense model, which offers the opportunity to perform functional genomics analyses throughout the whole life

  1. Functional characterisation and drug target validation of a mitotic kinesin-13 in Trypanosoma brucei.

    Directory of Open Access Journals (Sweden)

    Kuan Yoow Chan

    2010-08-01

    Full Text Available Mitotic kinesins are essential for faithful chromosome segregation and cell proliferation. Therefore, in humans, kinesin motor proteins have been identified as anti-cancer drug targets and small molecule inhibitors are now tested in clinical studies. Phylogenetic analyses have assigned five of the approximately fifty kinesin motor proteins coded by Trypanosoma brucei genome to the Kinesin-13 family. Kinesins of this family have unusual biochemical properties because they do not transport cargo along microtubules but are able to depolymerise microtubules at their ends, therefore contributing to the regulation of microtubule length. In other eukaryotic genomes sequenced to date, only between one and three Kinesin-13s are present. We have used immunolocalisation, RNAi-mediated protein depletion, biochemical in vitro assays and a mouse model of infection to study the single mitotic Kinesin-13 in T. brucei. Subcellular localisation of all five T. brucei Kinesin-13s revealed distinct distributions, indicating that the expansion of this kinesin family in kinetoplastids is accompanied by functional diversification. Only a single kinesin (TbKif13-1 has a nuclear localisation. Using active, recombinant TbKif13-1 in in vitro assays we experimentally confirm the depolymerising properties of this kinesin. We analyse the biological function of TbKif13-1 by RNAi-mediated protein depletion and show its central role in regulating spindle assembly during mitosis. Absence of the protein leads to abnormally long and bent mitotic spindles, causing chromosome mis-segregation and cell death. RNAi-depletion in a mouse model of infection completely prevents infection with the parasite. Given its essential role in mitosis, proliferation and survival of the parasite and the availability of a simple in vitro activity assay, TbKif13-1 has been identified as an excellent potential drug target.

  2. 3D Architecture of the Trypanosoma brucei Flagella Connector, a Mobile Transmembrane Junction.

    Directory of Open Access Journals (Sweden)

    Johanna L Höög

    2016-01-01

    Full Text Available Cellular junctions are crucial for the formation of multicellular organisms, where they anchor cells to each other and/or supportive tissue and enable cell-to-cell communication. Some unicellular organisms, such as the parasitic protist Trypanosoma brucei, also have complex cellular junctions. The flagella connector (FC is a three-layered transmembrane junction that moves with the growing tip of a new flagellum and attaches it to the side of the old flagellum. The FC moves via an unknown molecular mechanism, independent of new flagellum growth. Here we describe the detailed 3D architecture of the FC suggesting explanations for how it functions and its mechanism of motility.We have used a combination of electron tomography and cryo-electron tomography to reveal the 3D architecture of the FC. Cryo-electron tomography revealed layers of repetitive filamentous electron densities between the two flagella in the interstitial zone. Though the FC does not change in length and width during the growth of the new flagellum, the interstitial zone thickness decreases as the FC matures. This investigation also shows interactions between the FC layers and the axonemes of the new and old flagellum, sufficiently strong to displace the axoneme in the old flagellum. We describe a novel filament, the flagella connector fibre, found between the FC and the axoneme in the old flagellum.The FC is similar to other cellular junctions in that filamentous proteins bridge the extracellular space and are anchored to underlying cytoskeletal structures; however, it is built between different portions of the same cell and is unique because of its intrinsic motility. The detailed description of its structure will be an important tool to use in attributing structure / function relationships as its molecular components are discovered in the future. The FC is involved in the inheritance of cell shape, which is important for the life cycle of this human parasite.

  3. Role of parasites in cancer.

    Science.gov (United States)

    Mandong, B M; Ngbea, J A; Raymond, Vhriterhire

    2013-01-01

    In areas of parasitic endemicity, the occurrence of cancer that is not frequent may be linked with parasitic infection. Epidemiological correlates between some parasitic infections and cancer is strong, suggesting a strong aetiological association. The common parasites associated with human cancers are schistosomiasis, malaria, liver flukes (Clonorchis sinenses, Opistorchis viverrini). To review the pathology, literature and methods of diagnosis. Literature review from peer reviewed Journals cited in PubMed and local journals. Parasites may serve as promoters of cancer in endemic areas of infection.

  4. Glycomic Analysis of Life Stages of the Human Parasite Schistosoma mansoni Reveals Developmental Expression Profiles of Functional and Antigenic Glycan Motifs

    NARCIS (Netherlands)

    Smit, C.H.; van Diepen, A.; Nguyen, D.L.; Wuhrer, M.; Hoffmann, K.F.; Deelder, A.M.; Hokke, C.H.

    2015-01-01

    Glycans present on glycoproteins and glycolipids of the major human parasite Schistosoma mansoni induce innate as well as adaptive immune responses in the host. To be able to study the molecular characteristics of schistosome infections it is therefore required to determine the expression profiles

  5. Parasites and other infectious agents in marine finfish and shellfish species posing a hazard to human health (ToR b)

    DEFF Research Database (Denmark)

    Alfjorden, A.; Podolska, M.; Karaseva, T.

    2015-01-01

    Several parasites and other infectious agents frequently reported by the WGPDMO in the annual update of disease trends (ICES WGPDMO reports 1999–2015) have the potential to be harmful to human health if ingested in unprocessed or inadequate-ly/partly processed seafood. These include, but are not ...

  6. Trypanosoma cruzi reservoir—triatomine vector co-occurrence networks reveal meta-community effects by synanthropic mammals on geographic dispersal

    Directory of Open Access Journals (Sweden)

    Carlos N. Ibarra-Cerdeña

    2017-04-01

    Full Text Available Contemporary patterns of land use and global climate change are modifying regional pools of parasite host species. The impact of host community changes on human disease risk, however, is difficult to assess due to a lack of information about zoonotic parasite host assemblages. We have used a recently developed method to infer parasite-host interactions for Chagas Disease (CD from vector-host co-occurrence networks. Vector-host networks were constructed to analyze topological characteristics of the network and ecological traits of species’ nodes, which could provide information regarding parasite regional dispersal in Mexico. Twenty-eight triatomine species (vectors and 396 mammal species (potential hosts were included using a data-mining approach to develop models to infer most-likely interactions. The final network contained 1,576 links which were analyzed to calculate centrality, connectivity, and modularity. The model predicted links of independently registered Trypanosoma cruzi hosts, which correlated with the degree of parasite-vector co-occurrence. Wiring patterns differed according to node location, while edge density was greater in Neotropical as compared to Nearctic regions. Vectors with greatest public health importance (i.e., Triatoma dimidiata, T. barberi, T. pallidipennis, T. longipennis, etc, did not have stronger links with particular host species, although they had a greater frequency of significant links. In contrast, hosts classified as important based on network properties were synanthropic mammals. The latter were the most common parasite hosts and are likely bridge species between these communities, thereby integrating meta-community scenarios beneficial for long-range parasite dispersal. This was particularly true for rodents, >50% of species are synanthropic and more than 20% have been identified as T. cruzi hosts. In addition to predicting potential host species using the co-occurrence networks, they reveal regions with

  7. Imaging of parasitic diseases

    International Nuclear Information System (INIS)

    Haddad, Maurice C.

    2008-01-01

    This book provides an overview of the imaging findings of parasitic diseases using modern imaging equipment. The chapters consist of short descriptions of causative pathogens, epidemiology, modes of transmission, pathology, clinical manifestations, laboratory tests, and imaging findings, with illustrative examples of parasitic diseases that can affect various systems of the human body. Tables summarizing key diagnostic features and clinical data pertinent to diagnosis are also included. This book is intended for radiologists worldwide. (orig.)

  8. Imaging of parasitic diseases

    Energy Technology Data Exchange (ETDEWEB)

    Haddad, Maurice C. [American Univ. of Beirut Medical Center (Lebanon). Dept. of Diagnostic Radiology; Abd El Bagi, Mohamed E. [Riyadh Military Hospital (Saudi Arabia). Radiology and Imaging Dept. 920W; Tamraz, Jean C. (eds.) [CHU Hotel-Dieu de France, Beirut (Lebanon)

    2008-07-01

    This book provides an overview of the imaging findings of parasitic diseases using modern imaging equipment. The chapters consist of short descriptions of causative pathogens, epidemiology, modes of transmission, pathology, clinical manifestations, laboratory tests, and imaging findings, with illustrative examples of parasitic diseases that can affect various systems of the human body. Tables summarizing key diagnostic features and clinical data pertinent to diagnosis are also included. This book is intended for radiologists worldwide. (orig.)

  9. Pathoecology of Chiribaya parasitism

    Directory of Open Access Journals (Sweden)

    Martinson Elizabeth

    2003-01-01

    Full Text Available The excavations of Chiribaya culture sites in the Osmore drainage of southern Peru focused on the recovery of information about prehistoric disease, including parasitism. The archaeologists excavated human, dog, guinea pig, and llama mummies. These mummies were analyzed for internal and external parasites. The results of the analysis and reconstruction of prehistoric life from the excavations allows us to interpret the pathoecology of the Chiribaya culture.

  10. Diverse inhibitor chemotypes targeting Trypanosoma cruzi CYP51.

    Directory of Open Access Journals (Sweden)

    Shamila S Gunatilleke

    Full Text Available Chagas Disease, a WHO- and NIH-designated neglected tropical disease, is endemic in Latin America and an emerging infection in North America and Europe as a result of population moves. Although a major cause of morbidity and mortality due to heart failure, as well as inflicting a heavy economic burden in affected regions, Chagas Disease elicits scant notice from the pharmaceutical industry because of adverse economic incentives. The discovery and development of new routes to chemotherapy for Chagas Disease is a clear priority.The similarity between the membrane sterol requirements of pathogenic fungi and those of the parasitic protozoon Trypanosoma cruzi, the causative agent of Chagas human cardiopathy, has led to repurposing anti-fungal azole inhibitors of sterol 14α-demethylase (CYP51 for the treatment of Chagas Disease. To diversify the therapeutic pipeline of anti-Chagasic drug candidates we exploited an approach that included directly probing the T. cruzi CYP51 active site with a library of synthetic small molecules. Target-based high-throughput screening reduced the library of ∼104,000 small molecules to 185 hits with estimated nanomolar K(D values, while cross-validation against T. cruzi-infected skeletal myoblast cells yielded 57 active hits with EC(50 <10 µM. Two pools of hits partially overlapped. The top hit inhibited T. cruzi with EC(50 of 17 nM and was trypanocidal at 40 nM.The hits are structurally diverse, demonstrating that CYP51 is a rather permissive enzyme target for small molecules. Cheminformatic analysis of the hits suggests that CYP51 pharmacology is similar to that of other cytochromes P450 therapeutic targets, including thromboxane synthase (CYP5, fatty acid ω-hydroxylases (CYP4, 17α-hydroxylase/17,20-lyase (CYP17 and aromatase (CYP19. Surprisingly, strong similarity is suggested to glutaminyl-peptide cyclotransferase, which is unrelated to CYP51 by sequence or structure. Lead compounds developed by pharmaceutical

  11. Use of Full-Length Recombinant Calflagin and Its C Fragment for Improvement of Diagnosis of Trypanosoma cruzi Infection†

    Science.gov (United States)

    Marcipar, Iván S.; Roodveldt, Cintia; Corradi, Gerardo; Cabeza, María L.; Brito, Maria Edileuza F.; Winter, Lucile M. Floeter; Marcipar, Alberto J.; Silber, Ariel M.

    2005-01-01

    Serological diagnosis of Trypanosoma cruzi infection is hampered by issues related to test specificity due to the cross-reactivity of most antigens with proteins of related parasites such as Leishmania spp. The recombinant calflagins are considered relevant antigens for the diagnosis of infection by Trypanosoma cruzi. In the present work, we describe two genes coding for putative calflagins in Leishmania major with the N-terminal moieties presenting high similarity with T. cruzi genes. This fact raised questions about their role in some cross-recognition of this antigen by sera from Leishmania spp.-infected individuals. The complete T. cruzi calflagin and two fragments of the protein, consisting of 146 amino acids of the N-terminal and 65 amino acids of the C-terminal regions, were expressed and evaluated against a panel of sera, which included well-characterized samples from T. cruzi, and Leishmania-infected patients. We were able to show that sera from Leishmania (Viannia) braziliensis-infected individuals recognized the recombinant full-length calflagin. Both the N-terminal and the complete protein presented the same high sensitivity (98.5% of sera from T. cruzi-infected patients was detected) but different specificities (94% and 98%, respectively, when evaluated against sera from people not infected by T. cruzi, including 15 sera from people infected with L. braziliensis). The C-terminal fragment presented low sensitivity (70%) but 100% specificity. We propose the use of these antigens in two sequential assays to optimize the serological diagnosis of T. cruzi infection in humans in geographic areas where Leishmania spp. infection is coendemic. PMID:16272476

  12. Lysophosphatidylcholine: A Novel Modulator of Trypanosoma cruzi Transmission

    Directory of Open Access Journals (Sweden)

    Mário A. C. Silva-Neto

    2012-01-01

    Full Text Available Lysophosphatidylcholine is a bioactive lipid that regulates a large number of cellular processes and is especially present during the deposition and infiltration of inflammatory cells and deposition of atheromatous plaque. Such molecule is also present in saliva and feces of the hematophagous organism Rhodnius prolixus, a triatominae bug vector of Chagas disease. We have recently demonstrated that LPC is a modulator of Trypanosoma cruzi transmission. It acts as a powerful chemoattractant for inflammatory cells at the site of the insect bite, which will provide a concentrated population of cells available for parasite infection. Also, LPC increases macrophage intracellular calcium concentrations that ultimately enhance parasite invasion. Finally, LPC inhibits NO production by macrophages stimulated by live T. cruzi, and thus interferes with the immune system of the vertebrate host. In the present paper, we discuss the main signaling mechanisms that are likely used by such molecule and their eventual use as targets to block parasite transmission and the pathogenesis of Chagas disease.

  13. Heme-induced Trypanosoma cruzi proliferation is mediated by CaM kinase II

    International Nuclear Information System (INIS)

    Souza, C.F.; Carneiro, A.B.; Silveira, A.B.; Laranja, G.A.T.; Silva-Neto, M.A.C.; Costa, S.C. Goncalves da; Paes, M.C.

    2009-01-01

    Trypanosoma cruzi, the etiologic agent of Chagas disease, is transmitted through triatomine vectors during their blood-meal on vertebrate hosts. These hematophagous insects usually ingest approximately 10 mM of heme bound to hemoglobin in a single meal. Blood forms of the parasite are transformed into epimastigotes in the crop which initiates a few hours after parasite ingestion. In a previous work, we investigated the role of heme in parasite cell proliferation and showed that the addition of heme significantly increased parasite proliferation in a dose-dependent manner . To investigate whether the heme effect is mediated by protein kinase signalling pathways, parasite proliferation was evaluated in the presence of several protein kinase (PK) inhibitors. We found that only KN-93, a classical inhibitor of calcium-calmodulin-dependent kinases (CaMKs), blocked heme-induced cell proliferation. KN-92, an inactive analogue of KN-93, was not able to block this effect. A T. cruzi CaMKII homologue is most likely the main enzyme involved in this process since parasite proliferation was also blocked when Myr-AIP, an inhibitory peptide for mammalian CaMKII, was included in the cell proliferation assay. Moreover, CaMK activity increased in parasite cells with the addition of heme as shown by immunological and biochemical assays. In conclusion, the present results are the first strong indications that CaMKII is involved in the heme-induced cell signalling pathway that mediates parasite proliferation.

  14. Heme-induced Trypanosoma cruzi proliferation is mediated by CaM kinase II

    Energy Technology Data Exchange (ETDEWEB)

    Souza, C.F. [Laboratorio de Imunomodulacao e Protozoologia, Instituto Oswaldo Cruz, Fiocruz (Brazil); Carneiro, A.B.; Silveira, A.B. [Laboratorio de Sinalizacao Celular, Instituto de Bioquimica Medica, UFRJ (Brazil); Laranja, G.A.T. [Laboratorio de Interacao Tripanosomatideos e Vetores, Departamento de Bioquimica, IBRAG, UERJ, 20551-030 Rio de Janeiro (Brazil); Silva-Neto, M.A.C. [Laboratorio de Sinalizacao Celular, Instituto de Bioquimica Medica, UFRJ (Brazil); INCT, Entomologia Molecular (Brazil); Costa, S.C. Goncalves da [Laboratorio de Imunomodulacao e Protozoologia, Instituto Oswaldo Cruz, Fiocruz (Brazil); Paes, M.C., E-mail: mcpaes@uerj.br [Laboratorio de Interacao Tripanosomatideos e Vetores, Departamento de Bioquimica, IBRAG, UERJ, 20551-030 Rio de Janeiro (Brazil); INCT, Entomologia Molecular (Brazil)

    2009-12-18

    Trypanosoma cruzi, the etiologic agent of Chagas disease, is transmitted through triatomine vectors during their blood-meal on vertebrate hosts. These hematophagous insects usually ingest approximately 10 mM of heme bound to hemoglobin in a single meal. Blood forms of the parasite are transformed into epimastigotes in the crop which initiates a few hours after parasite ingestion. In a previous work, we investigated the role of heme in parasite cell proliferation and showed that the addition of heme significantly increased parasite proliferation in a dose-dependent manner . To investigate whether the heme effect is mediated by protein kinase signalling pathways, parasite proliferation was evaluated in the presence of several protein kinase (PK) inhibitors. We found that only KN-93, a classical inhibitor of calcium-calmodulin-dependent kinases (CaMKs), blocked heme-induced cell proliferation. KN-92, an inactive analogue of KN-93, was not able to block this effect. A T. cruzi CaMKII homologue is most likely the main enzyme involved in this process since parasite proliferation was also blocked when Myr-AIP, an inhibitory peptide for mammalian CaMKII, was included in the cell proliferation assay. Moreover, CaMK activity increased in parasite cells with the addition of heme as shown by immunological and biochemical assays. In conclusion, the present results are the first strong indications that CaMKII is involved in the heme-induced cell signalling pathway that mediates parasite proliferation.

  15. First report of Trypanosoma vegrandis in koalas (Phascolarctos cinereus).

    Science.gov (United States)

    Barbosa, Amanda; Austen, Jill; Gillett, Amber; Warren, Kristin; Paparini, Andrea; Irwin, Peter; Ryan, Una

    2016-08-01

    The present study describes the first report of Trypanosoma vegrandis in koalas using morphology and sequence analysis of the 18S rRNA gene. The prevalence of T. vegrandis in koalas was 13.6% (6/44). It is likely that the small size of T. vegrandis (<10μm in length), coupled with the difficulties in amplifying DNA of this parasite in mixed infections using trypanosome generic primers, are the reason why this organism has not been identified in koalas until now. This study highlights the importance of further research comprising a larger sample size to determine the prevalence of T. vegrandis in koalas as well as its potential impacts upon this marsupial species' health. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. The magnitude and risk factors of intestinal parasitic infection in relation to Human Immunodeficiency Virus infection and immune status, at ALERT Hospital, Addis Ababa, Ethiopia.

    Science.gov (United States)

    Taye, Biruhalem; Desta, Kassu; Ejigu, Selamawit; Dori, Geme Urge

    2014-06-01

    Human Immunodeficiency Virus (HIV) and intestinal parasitic infections are among the main health problems in developing countries like Ethiopia. Particularly, co-infections of these diseases would worsen the progression of HIV to Acquired Immunodeficiency Syndrome (AIDS). The purpose of this study was to determine the magnitude and risk factors for intestinal parasites in relation to HIV infection and immune status. The study was conducted in (1) HIV positive on antiretroviral therapy (ART) and (2) ART naïve HIV positive patients, and (3) HIV-negative individuals, at All African Leprosy and Tuberculosis (TB) Eradication and Rehabilitation Training Center (ALERT) hospital in Addis Ababa, Ethiopia. Study participants were interviewed using structured questionnaires to obtain socio-demographic characteristics and assess risk factors associated with intestinal parasitic infection. Intestinal parasites were identified from fecal samples by direct wet mount, formol ether concentration, and modified Ziehl-Neelsen staining techniques. The immune status was assessed by measuring whole blood CD4 T-cell count. The overall magnitude of intestinal parasite was 35.08%. This proportion was different among study groups with 39.2% (69/176), 38.83% (40/103) and 27.14% (38/140) in ART naïve HIV positives patients, in HIV negatives, and in HIV positive on ART patients respectively. HIV positive patients on ART had significantly lower magnitude of intestinal parasitic infection compared to HIV negative individuals. Intestinal helminths were significantly lower in HIV positive on ART and ART naïve patients than HIV negatives. Low monthly income, and being married, divorced or widowed were among the socio-demographic characteristics associated with intestinal parasitic infection. No association was observed between the magnitude of intestinal parasites and CD4 T-cell count. However, Cryptosporidium parvum, and Isospora belli were exclusively identified in individuals with CD4 T

  17. Mammalian cell invasion and intracellular trafficking by Trypanosoma cruzi infective forms

    Directory of Open Access Journals (Sweden)

    Renato A. Mortara

    2005-03-01

    Full Text Available Trypanosoma cruzi, the etiological agent of Chagas’ disease, occurs as different strains or isolates that may be grouped in two major phylogenetic lineages: T. cruzi I, associated with the sylvatic cycle and T. cruzi II, linked to the human disease. In the mammalian host the parasite has to invade cells and many studies implicated the flagellated trypomastigotes in this process. Several parasite surface components and some of host cell receptors with which they interact have been identified. Our work focused on how amastigotes, usually found growing in the cytoplasm, can invade mammalian cells with infectivities comparable to that of trypomastigotes. We found differences in cellular responses induced by amastigotes and trypomastigotes regarding cytoskeletal components and actin-rich projections. Extracellularly generated amastigotes of T. cruzi I strains may display greater infectivity than metacyclic trypomastigotes towards cultured cell lines as well as target cells that have modified expression of different classes of cellular components. Cultured host cells harboring the bacterium Coxiella burnetii allowed us to gain new insights into the trafficking properties of the different infective forms of T. cruzi, disclosing unexpected requirements for the parasite to transit between the parasitophorous vacuole to its final destination in the host cell cytoplasm.O agente etiológico da doença de Chagas, Trypanosoma cruzi, ocorre como cepas ou isolados que podem ser agrupados em duas grandes linhagens filogenéticas: T. cruzi I associada ao ciclo silvestre e T. cruzi II ligada à doençahumana. No hospedeiro mamífero o parasita tem que invadir células, e vários estudos relacionam as formas flageladas tripomastigotas neste processo. Diferentes componentes de superfície dos parasitas e alguns dos respectivos receptores foram identificados. Em nosso trabalho temos procurado compreender como amastigotas, que normalmente são encontrados crescendo

  18. Substituted 2-Phenyl-Imidazopyridines: A New Class of Drug Leads for Human African Trypanosomiasis

    Science.gov (United States)

    Tatipaka, Hari Babu; Gillespie, J. Robert; Chatterjee, Arnab K.; Norcross, Neil R.; Hulverson, Matthew A.; Ranade, Ranae M.; Nagendar, Pendem; Creason, Sharon A.; McQueen, Joshua; Duster, Nicole A.; Nagle, Advait; Supek, Frantisek; Molteni, Valentina; Wenzler, Tanja; Brun, Reto; Glynne, Richard; Buckner, Frederick S.; Gelb, Michael H.

    2014-01-01

    A phenotypic screen of a compound library for antiparasitic activity on Trypanosoma brucei, the causative agent of human African trypanosomiasis, led to the identification of substituted 2-(3-aminophenyl) oxazolopyridines as a starting point for hit-to-lead medicinal chemistry. A total of 110 analogues were prepared, which led to the identification of 64, a substituted 2-(3-aminophenyl) imidazopyridine. This compound showed antiparasitic activity in vitro with an EC50 of 2 nM and displayed reasonable drug-like properties when tested in a number of in vitro assays. The compound was orally bioavailable and displayed good plasma and brain exposure in mice. Compound 64 cured mice infected with Trypanosoma brucei when dosed orally down to 2.5 mg/kg. Given its potent anti-parasitic properties and its ease of synthesis, compound 64 represents a new lead for the development of drugs to treat human African trypanosomiasis. PMID:24354316

  19. A draft genome of the honey bee trypanosomatid parasite Crithidia mellificae.

    Directory of Open Access Journals (Sweden)

    Charles Runckel

    Full Text Available Since 2006, honey bee colonies in North America and Europe have experienced increased annual mortality. These losses correlate with increased pathogen incidence and abundance, though no single etiologic agent has been identified. Crithidia mellificae is a unicellular eukaryotic honey bee parasite that has been associated with colony losses in the USA and Belgium. C. mellificae is a member of the family Trypanosomatidae, which primarily includes other insect-infecting species (e.g., the bumble bee pathogen Crithidia bombi, as well as species that infect both invertebrate and vertebrate hosts including human pathogens (e.g.,Trypanosoma cruzi, T. brucei, and Leishmania spp.. To better characterize C. mellificae, we sequenced the genome and transcriptome of strain SF, which was isolated and cultured in 2010. The 32 megabase draft genome, presented herein, shares a high degree of conservation with the related species Leishmania major. We estimate that C. mellificae encodes over 8,300 genes, the majority of which are orthologs of genes encoded by L. major and other Leishmania or Trypanosoma species. Genes unique to C. mellificae, including those of possible bacterial origin, were annotated based on function and include genes putatively involved in carbohydrate metabolism. This draft genome will facilitate additional investigations of the impact of C. mellificae infection on honey bee health and provide insight into the evolution of this unique family.

  20. Interaction between the flagellar pocket collar and the hook complex via a novel microtubule-binding protein in Trypanosoma brucei.

    Directory of Open Access Journals (Sweden)

    Anna Albisetti

    2017-11-01

    Full Text Available Trypanosoma brucei belongs to a group of unicellular, flagellated parasites that are responsible for human African trypanosomiasis. An essential aspect of parasite pathogenicity is cytoskeleton remodelling, which occurs during the life cycle of the parasite and is accompanied by major changes in morphology and organelle positioning. The flagellum originates from the basal bodies and exits the cell body through the flagellar pocket (FP but remains attached to the cell body via the flagellum attachment zone (FAZ. The FP is an invagination of the pellicular membrane and is the sole site for endo- and exocytosis. The FAZ is a large complex of cytoskeletal proteins, plus an intracellular set of four specialised microtubules (MtQ that elongate from the basal bodies to the anterior end of the cell. At the distal end of the FP, an essential, intracellular, cytoskeletal structure called the flagellar pocket collar (FPC circumvents the flagellum. Overlapping the FPC is the hook complex (HC (a sub-structure of the previously named bilobe that is also essential and is thought to be involved in protein FP entry. BILBO1 is the only functionally characterised FPC protein and is necessary for FPC and FP biogenesis. Here, we used a combination of in vitro and in vivo approaches to identify and characterize a new BILBO1 partner protein-FPC4. We demonstrate that FPC4 localises to the FPC, the HC, and possibly to a proximal portion of the MtQ. We found that the C-terminal domain of FPC4 interacts with the BILBO1 N-terminal domain, and we identified the key amino acids required for this interaction. Interestingly, the FPC4 N-terminal domain was found to bind microtubules. Over-expression studies highlight the role of FPC4 in its association with the FPC, HC and FPC segregation. Our data suggest a tripartite association between the FPC, the HC and the MtQ.

  1. ATG24 Represses Autophagy and Differentiation and Is Essential for Homeostasy of the Flagellar Pocket in Trypanosoma brucei.

    Directory of Open Access Journals (Sweden)

    Ana Brennand

    Full Text Available We have previously identified homologs for nearly half of the approximately 30 known yeast Atg's in the genome database of the human sleeping sickness parasite Trypanosoma brucei. So far, only a few of these homologs have their role in autophagy experimentally confirmed. Among the candidates was the ortholog of Atg24 that is involved in pexophagy in yeast. In T. brucei, the peroxisome-like organelles named glycosomes harbor core metabolic processes, especially glycolysis. In the autotrophic yeast, autophagy is essential for adaptation to different nutritional environments by participating in the renewal of the peroxisome population. We hypothesized that autophagic turnover of the parasite's glycosomes plays a role in differentiation during its life cycle, which demands adaptation to different host environments and associated dramatic changes in nutritional conditions. We therefore characterized T. brucei ATG24, the T. brucei ortholog of yeast Atg24 and mammalian SNX4, and found it to have a regulatory role in autophagy and differentiation as well as endocytic trafficking. ATG24 partially localized on endocytic membranes where it was recruited via PI3-kinase III/VPS34. ATG24 silencing severely impaired receptor-mediated endocytosis of transferrin, but not adsorptive uptake of a lectin, and caused a major enlargement of the flagellar pocket. ATG24 silencing approximately doubled the number of autophagosomes, suggesting a role in repressing autophagy, and strongly accelerated differentiation, in accordance with a role of autophagy in parasite differentiation. Overexpression of the two isoforms of T. brucei ATG8 fused to GFP slowed down differentiation, possibly by a dominant-negative effect. This was overcome by ATG24 depletion, further supporting its regulatory role.

  2. A European network for food-borne parasites (Euro-FBP: meeting report on ‘Analytical methods for food-borne parasites in human and veterinary diagnostics and in food matrices’

    Directory of Open Access Journals (Sweden)

    Christian Klotz

    2017-11-01

    Full Text Available Abstract Food-borne parasites (FBPs are a neglected topic in food safety, partly due to a lack of awareness of their importance for public health, especially as symptoms tend not to develop immediately after exposure. In addition, methodological difficulties with both diagnosis in infected patients and detection in food matrices result in under-detection and therefore the potential for underestimation of their burden on our societies. This, in consequence, leads to lower prioritization for basic research, e.g. for development new and more advanced detection methods for different food matrices and diagnostic samples, and thus a vicious circle of neglect and lack of progress is propagated. The COST Action FA1408, A European Network for Foodborne Parasites (Euro-FBP aims to combat the impact of FBP on public health by facilitating the multidisciplinary cooperation and partnership between groups of researchers and between researchers and stakeholders. The COST Action TD1302, the European Network for cysticercosis/taeniosis, CYSTINET, has a specific focus on Taenia solium and T. saginata, two neglected FBPs, and aims to advance knowledge and understanding of these zoonotic disease complexes via collaborations in a multidisciplinary scientific network. This report summarizes the results of a meeting within the Euro-FBP consortium entitled ‘Analytical methods for food-borne parasites in human and veterinary diagnostics and in food matrices’ and of the joined Euro-FBP and CYSTINET meeting.

  3. Trypanosoma cruzi: Transporte de metabolitos esenciales obtenidos del hospedador Trypanosoma cruzi: Transport of essential metabolites acquired from the host

    Directory of Open Access Journals (Sweden)

    Claudio A. Pereira

    2008-10-01

    Full Text Available El Trypanosoma cruzi es el agente causal de la enfermedad de Chagas, endémica en Argentina y en toda América Latina. Presenta numerosas características metabólicas diferenciales respecto a sus hospedadores insectos y mamíferos. Algunas de estas diferencias fueron consecuencia de millones de años de adaptación al parasitismo en los cuales estos organismos protozoarios reemplazaron, a lo largo de su evolución, muchas rutas metabólicas de biosíntesis por sistemas de transporte de metabolitos desde el hospedador. En esta revisión se describen los avances en el conocimiento de los sistemas de transporte tanto bioquímicos como también de las moléculas involucradas en dichos procesos. Se aborda con especial énfasis los transportadores de aminoácidos y poliaminas de T. cruzi de la familia AAAP (Amino Acid/Auxin Permeases ya que parece ser exclusiva de los tripanosomátidos. Teniendo en cuenta que estas moléculas se encuentran completamente ausentes en mamíferos podrían ser consideradas como potenciales blancos contra el Trypanosoma cruzi.Trypanosoma cruzi is the etiological agent of Chagas disease, a disease endemic not only in Argentina but also in all of Latinamerica. T. cruzi presents several metabolic characteristics which are completely absent in its insect vectors and in mammalian hosts. Some of these differences were acquired after millions of years of adaptation to parasitism, during which this protozoan replaced many biosynthetic routes for transport systems. In the present review, we describe the advances in the knowledge of T. cruzi transport processes and the molecules involved. In particular, we focus on aminoacid and polyamine transporters from the AAAP family (Amino Acid/Auxin Permeases, because they seem to be exclusive transporters from trypanosomatids. Taking into account that these permeases are completely absent in mammals, they could be considered as a potential target against Trypanosoma cruzi.

  4. Risk factors for gastrointestinal parasite infections of dogs living around protected areas of the Atlantic Forest: implications for human and wildlife health

    Directory of Open Access Journals (Sweden)

    N. H. A. Curi

    Full Text Available Abstract Despite the ubiquity of domestic dogs, their role as zoonotic reservoirs and the large number of studies concerning parasites in urban dogs, rural areas in Brazil, especially those at the wildlife-domestic animal-human interface, have received little attention from scientists and public health managers. This paper reports a cross-sectional epidemiological survey of gastrointestinal parasites of rural dogs living in farms around Atlantic Forest fragments. Through standard parasitological methods (flotation and sedimentation, 13 parasite taxa (11 helminths and two protozoans were found in feces samples from dogs. The most prevalent were the nematode Ancylostoma (47% followed by Toxocara (18% and Trichuris (8%. Other less prevalent (<2% parasites found were Capillaria, Ascaridia, Spirocerca, Taeniidae, Acantocephala, Ascaris, Dipylidium caninum, Toxascaris, and the protozoans Cystoisospora and Eimeria. Mixed infections were found in 36% of samples, mostly by Ancylostoma and Toxocara. Previous deworming had no association with infections, meaning that this preventive measure is being incorrectly performed by owners. Regarding risk factors, dogs younger than one year were more likely to be infected with Toxocara, and purebred dogs with Trichuris. The number of cats in the households was positively associated with Trichuris infection, while male dogs and low body scores were associated with mixed infections. The lack of associations with dog free-ranging behavior and access to forest or villages indicates that infections are mostly acquired around the households. The results highlight the risk of zoonotic and wildlife parasite infections from dogs and the need for monitoring and controlling parasites of domestic animals in human-wildlife interface areas.

  5. Fish parasites

    DEFF Research Database (Denmark)

    This book contains 22 chapters on some of the most important parasitic diseases in wild and farmed fish. International experts give updated reviews and provide solutions to the problems......This book contains 22 chapters on some of the most important parasitic diseases in wild and farmed fish. International experts give updated reviews and provide solutions to the problems...

  6. Parasitic diseases

    International Nuclear Information System (INIS)

    Rozenshtraukh, L.S.

    1983-01-01

    Foundations of roentgenological semiotics of parasitic diseases of lungs, w hich are of the greatest practical value, are presented. Roentgenological pictu res of the following parasitic diseases: hydatid and alveolar echinococcosis, pa ragonimiasis, toxoplasmosis, ascariasis, amebiasis, bilharziasis (Schistosomias is) of lungs, are considered

  7. Comprehensive glycoprofiling of the epimastigote and trypomastigote stages of Trypanosoma cruzi

    DEFF Research Database (Denmark)

    Alves, Maria Julia Manso; Kawahara, Rebeca; Viner, Rosa

    2017-01-01

    Trypanosoma cruzi, the protozoan that causes Chagas disease, has a complex life cycle involving insect and mammalian hosts and distinct developmental stages. During T. cruzi developmental stages, glycoproteins play important role in the host-parasite interaction, such as cellular recognition, host...... the significant T. cruzi stage-specific expression of glycoproteins that can help to better understand the T. cruzi phenotype and response caused by the interaction with different hosts during its complex life cycle. BIOLOGICAL SIGNIFICANCE: Chagas disease caused by the protozoan Trypanosoma cruzi is a neglected...... disease which affects millions of people especially in Latin America. The absence of efficient drugs and vaccines against Chagas disease stimulates the search for novel targets. Glycoproteins are very attractive therapeutic candidate targets since they mediate key processes in the host...

  8. A case of Trypanosoma congolense savannah type infection and its management in a dog

    Directory of Open Access Journals (Sweden)

    Peter Kimeli

    2014-12-01

    Full Text Available A case of Trypanosoma congolense savannah type infection in a 4-year old German shepherd dog weighing 26-kg was presented to the Small Animal Clinic, University of Nairobi, Kenya, with the history of anorexia and difficulty in breathing. The clinical manifestations were fever, pale mucous membrane, dyspnea and wasting. Blood examination revealed the existence of trypanosome parasites, and showed mild anemia. Internal Transcribed Spacer (ITS based polymerase chain reaction confirmed the presence of Trypanosoma congolense savannah type. Along with supporting therapy, the case was successfully managed using diminazene aceturate injection (dosed at 3.5 mg/kg body weight through intramuscular route. Complete recovery of the case was observed on day 6 of post-treatment.

  9. Hygiene pests as vectors for parasitic and bacterial diseases in humans

    Science.gov (United States)

    Cholewiński, Marcin; Derda, Monika; Hadaś, Edward

    Diseases transmitted by hygiene pests remain a very serious problem in spite of fast developments in science and medicine. The present study focuses on pests carrying germs that pose a threat to human health and life. The quick pace of life, the need to satisfy human needs and mass production of food sometimes result in flagrant sanitary, hygienic and epidemiological deficiencies. These irregularities are conducive to hygiene pests, which, when not held in check by proper control measures, may act more efficiently and quickly.

  10. Leishmania infantum Asparagine Synthetase A Is Dispensable for Parasites Survival and Infectivity.

    Science.gov (United States)

    Faria, Joana; Loureiro, Inês; Santarém, Nuno; Macedo-Ribeiro, Sandra; Tavares, Joana; Cordeiro-da-Silva, Anabela

    2016-01-01

    A growing interest in asparagine (Asn) metabolism has currently been observed in cancer and infection fields. Asparagine synthetase (AS) is responsible for the conversion of aspartate into Asn in an ATP-dependent manner, using ammonia or glutamine as a nitrogen source. There are two structurally distinct AS: the strictly ammonia dependent, type A, and the type B, which preferably uses glutamine. Absent in humans and present in trypanosomatids, AS-A was worthy of exploring as a potential drug target candidate. Appealingly, it was reported that AS-A was essential in Leishmania donovani, making it a promising drug target. In the work herein we demonstrate that Leishmania infantum AS-A, similarly to Trypanosoma spp. and L. donovani, is able to use both ammonia and glutamine as nitrogen donors. Moreover, we have successfully generated LiASA null mutants by targeted gene replacement in L. infantum, and these parasites do not display any significant growth or infectivity defect. Indeed, a severe impairment of in vitro growth was only observed when null mutants were cultured in asparagine limiting conditions. Altogether our results demonstrate that despite being important under asparagine limitation, LiAS-A is not essential for parasite survival, growth or infectivity in normal in vitro and in vivo conditions. Therefore we exclude AS-A as a suitable drug target against L. infantum parasites.

  11. Leishmania infantum Asparagine Synthetase A Is Dispensable for Parasites Survival and Infectivity.

    Directory of Open Access Journals (Sweden)

    Joana Faria

    2016-01-01

    Full Text Available A growing interest in asparagine (Asn metabolism has currently been observed in cancer and infection fields. Asparagine synthetase (AS is responsible for the conversion of aspartate into Asn in an ATP-dependent manner, using ammonia or glutamine as a nitrogen source. There are two structurally distinct AS: the strictly ammonia dependent, type A, and the type B, which preferably uses glutamine. Absent in humans and present in trypanosomatids, AS-A was worthy of exploring as a potential drug target candidate. Appealingly, it was reported that AS-A was essential in Leishmania donovani, making it a promising drug target. In the work herein we demonstrate that Leishmania infantum AS-A, similarly to Trypanosoma spp. and L. donovani, is able to use both ammonia and glutamine as nitrogen donors. Moreover, we have successfully generated LiASA null mutants by targeted gene replacement in L. infantum, and these parasites do not display any significant growth or infectivity defect. Indeed, a severe impairment of in vitro growth was only observed when null mutants were cultured in asparagine limiting conditions. Altogether our results demonstrate that despite being important under asparagine limitation, LiAS-A is not essential for parasite survival, growth or infectivity in normal in vitro and in vivo conditions. Therefore we exclude AS-A as a suitable drug target against L. infantum parasites.

  12. Associations between common intestinal parasites and bacteria in humans as revealed by qPCR

    DEFF Research Database (Denmark)

    O'Brien Andersen, L.; Karim, A. B.; Roager, Henrik Munch

    2016-01-01

    Several studies have shown associations between groups of intestinal bacterial or specific ratios between bacterial groups and various disease traits. Meanwhile, little is known about interactions and associations between eukaryotic and prokaryotic microorganisms in the human gut. In this work, we...

  13. The human malaria parasite Pfs47 gene mediates evasion of the mosquito immune system

    NARCIS (Netherlands)

    Molina-Cruz, A.; Garver, L.S.; Alabaster, A.; Bangiolo, L.; Haile, A.; Winikor, J.; Ortega, C.; Schaijk, B.C.L. van; Sauerwein, R.W.; Taylor-Salmon, E.; Barillas-Mury, C.

    2013-01-01

    Plasmodium falciparum transmission by Anopheles gambiae mosquitoes is remarkably efficient, resulting in a very high prevalence of human malaria infection in sub-Saharan Africa. A combination of genetic mapping, linkage group selection, and functional genomics was used to identify Pfs47 as a P.

  14. 3-H-[1,2]Dithiole as a New Anti-Trypanosoma cruzi Chemotype: Biological and Mechanism of Action Studies

    Directory of Open Access Journals (Sweden)

    Marcos Couto

    2015-08-01

    Full Text Available The current pharmacological Chagas disease treatments, using Nifurtimox or Benznidazole, show limited therapeutic results and are associated with potential side effects, like mutagenicity. Using random screening we have identified new chemotypes that were able to inhibit relevant targets of the Trypanosoma cruzi. We found 3H-[1,2]dithioles with the ability to inhibit Trypanosoma cruzi triosephosphate isomerase (TcTIM. Herein, we studied the structural modifications of this chemotype to analyze the influence of volume, lipophilicity and electronic properties in the anti-T. cruzi activity. Their selectivity to parasites vs. mammalian cells was also examined. To get insights into a possible mechanism of action, the inhibition of the enzymatic activity of TcTIM and cruzipain, using the isolated enzymes, and the inhibition of membrane sterol biosynthesis and excreted metabolites, using the whole parasite, were achieved. We found that this structural framework is interesting for the generation of innovative drugs for the treatment of Chagas disease.

  15. Characterization of recombinant Trypanosoma brucei gambiense Translationally Controlled Tumor Protein (rTbgTCTP) and its interaction with Glossina midgut bacteria.

    Science.gov (United States)

    Bossard, Géraldine; Bartoli, Manon; Fardeau, Marie-Laure; Holzmuller, Philippe; Ollivier, Bernard; Geiger, Anne

    2017-09-03

    In humans, sleeping sickness (i.e. Human African Trypanosomiasis) is caused by the protozoan parasites Trypanosoma brucei gambiense (Tbg) in West and Central Africa, and T. b. rhodesiense in East Africa. We previously showed in vitro that Tbg is able to excrete/secrete a large number of proteins, including Translationally Controlled Tumor Protein (TCTP). Moreover, the tctp gene was described previously to be expressed in Tbg-infected flies. Aside from its involvement in diverse cellular processes, we have investigated a possible alternative role within the interactions occurring between the trypanosome parasite, its tsetse fly vector, and the associated midgut bacteria. In this context, the Tbg tctp gene was synthesized and cloned into the baculovirus vector pAcGHLT-A, and the corresponding protein was produced using the baculovirus Spodoptera frugicola (strain 9) / insect cell system. The purified recombinant protein rTbgTCTP was incubated together with bacteria isolated from the gut of tsetse flies, and was shown to bind to 24 out of the 39 tested bacteria strains belonging to several genera. Furthermore, it was shown to affect the growth of the majority of these bacteria, especially when cultivated under microaerobiosis and anaerobiosis. Finally, we discuss the potential for TCTP to modulate the fly microbiome composition toward favoring trypanosome survival.

  16. Development of an aptamer-based concentration method for the detection of Trypanosoma cruzi in blood.

    Directory of Open Access Journals (Sweden)

    Rana Nagarkatti

    Full Text Available Trypanosoma cruzi, a blood-borne parasite, is the etiological agent of Chagas disease. T. cruzi trypomastigotes, the infectious life cycle stage, can be detected in blood of infected individuals using PCR-based methods. However, soon after a natural infection, or during the chronic phase of Chagas disease, the number of parasites in blood may be very low and thus difficult to detect by PCR. To facilitate PCR-based detection methods, a parasite concentration approach was explored. A whole cell SELEX strategy was utilized to develop serum stable RNA aptamers that bind to live T. cruzi trypomastigotes. These aptamers bound to the parasite with high affinities (8-25 nM range. The highest affinity aptamer, Apt68, also demonstrated high specificity as it did not interact with the insect stage epimastigotes of T. cruzi nor with other related trypanosomatid parasites, L. donovani and T. brucei, suggesting that the target of Apt68 was expressed only on T. cruzi trypomastigotes. Biotinylated Apt68, immobilized on a solid phase, was able to capture live parasites. These captured parasites were visible microscopically, as large motile aggregates, formed when the aptamer coated paramagnetic beads bound to the surface of the trypomastigotes. Additionally, Apt68 was also able to capture and aggregate trypomastigotes from several isolates of the two major genotypes of the parasite. Using a magnet, these parasite-bead aggregates could be purified from parasite-spiked whole blood samples, even at concentrations as low as 5 parasites in 15 ml of whole blood, as detected by a real-time PCR assay. Our results show that aptamers can be used as pathogen specific ligands to capture and facilitate PCR-based detection of T. cruzi in blood.

  17. Trypanosoma evansi isolated from capybara (Hidrochaeris hidrochaeris

    Directory of Open Access Journals (Sweden)

    Karina Muñoz

    2001-10-01

    Full Text Available A study was conducted to determine the morphological and biometric characteristics of Trypanosoma isolated from 50 capybaras animals, raised in captivity in the Peruvian Amazon. Trypanosoma was found in 14 blood samples using the microhaematocrit, wide drop, and Giemsa-stain methods and T. evansi was identified through morphological details in all 14 positive samples (the subterminal kinetoplast, the developed undulating membrane, and a long free flagellum were used for the identification of the agent.

  18. Detection of human filarial parasite Brugia malayi in dogs by histochemical staining and molecular techniques.

    Science.gov (United States)

    Ambily, V R; Pillai, Usha Narayana; Arun, R; Pramod, S; Jayakumar, K M

    2011-09-27

    Human filariasis caused by Brugia malayi is still a public health problem in many countries of Asia including India, Indonesia, Malaysia and Thailand. The World Health Organization (WHO) has targeted to eliminate filariasis by the year 2020 by Mass annual single dose Diethylcarbamazine Administration (MDA). Results of the MDA programme after the first phase was less satisfactory than expected. Malayan filariasis caused by B. malayi is endemic in the south of Thailand where domestic cat serves as the major reservoir host. There is no report about the occurrence of B. malayi in dogs. The present work was carried out to find out the incidence of microfilariasis in dogs and also to detect the presence of human filarial infection in dogs, if any. One hundred dogs above 6 months of age presented to the veterinary college Hospital, Mannuthy, Kerala, with clinical signs suggestive of microfilariasis - fever, anorexia, conjunctivitis, limb and scrotal oedema - were screened for microfilariae by wet film examination. Positive cases were subjected to Giemsa staining, histochemical staining and molecular techniques. Results of the study showed that 80% of dogs had microfilariasis; out of which 20% had sheathed microfilaria. Giemsa and histochemical staining character, PCR and sequencing confirmed it as B. malayi. High prevalence of B. malayi in dogs in this study emphasized the possible role of dogs in transmission of human filariasis. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Effect of Clinoptilolite and Sepiolite Nanoclays on Human and Parasitic Highly Phagocytic Cells

    Directory of Open Access Journals (Sweden)

    Yanis Toledano-Magaña

    2015-01-01

    Full Text Available Nanoclays have potential applications in biomedicine raising the need to evaluate their toxicity in in vitro models as a first approach to its biocompatibility. In this study, in vitro toxicity of clinoptilolite and sepiolite nanoclays (NC was analyzed in highly phagocytic cultures of amoebas and human and mice macrophages. While amebic viability was significantly affected only by sepiolite NC at concentrations higher than 0.1 mg/mL, the effect on macrophage cultures was dependent on the origin of the cells. Macrophages derived from human peripheral blood monocytes were less affected in viability (25% decrease at 48 h, followed by the RAW 264.7 cell line (40%, and finally, macrophages derived from mice bone marrow monocytes (98%. Moreover, the cell line and mice macrophages die mainly by necrosis, whereas human macrophages exhibit increased apoptosis. Cytokine expression analysis in media of sepiolite NC treated cultures showed a proinflammatory profile (INFγ, IL-1α, IL-8, and IL-6, in contrast with clinoptilolite NC that induced lees cytokines with concomitant production of IL-10. The results show that sepiolite NC is more toxic to amoebas and macrophages than clinoptilolite NC, mostly in a time and dose-dependent manner. However, the effect of sepiolite NC was comparable with talc powder suggesting that both NC have low cytotoxicity in vitro.

  20. Blood parasites of amphibians from Sichuan Province, People's Republic of China.

    Science.gov (United States)

    Werner, J K

    1993-06-01

    Two hundred forty-six amphibians from Sichuan Province, People's Republic of China, were examined for blood parasites between April and June 1990. Six trypanosome species were found, 2 of which were not identified because of poor material. Trypanosoma rotatorium (sensu Mayer, 1843) was found in Rana limnocharis and Rana nigromaculata. Trypanosoma chattoni and a T. rotatorium-like species were found in Bufo gargarizans. A sphaeromastigote similar to Trypanosoma tsunezomiyatai was seen in R. limnocharis. The relationship of this parasite to T. chattoni is unclear. Dactylosoma ranarum, Lankesterella minima, and Aegyptianella bacterifera were identified in ranids. Frog erythrocytic virus (FEV) was found in 2 ranids and a bufonid. Differences in shape of FEV and its assumed effect on the host-cell nucleus suggest that different kinds of viruses may be involved.

  1. Channel-forming activities in the glycosomal fraction from the bloodstream form of Trypanosoma brucei.

    Directory of Open Access Journals (Sweden)

    Melisa Gualdron-López

    Full Text Available BACKGROUND: Glycosomes are a specialized form of peroxisomes (microbodies present in unicellular eukaryotes that belong to the Kinetoplastea order, such as Trypanosoma and Leishmania species, parasitic protists causing severe diseases of livestock and humans in subtropical and tropical countries. The organelles harbour most enzymes of the glycolytic pathway that is responsible for substrate-level ATP production in the cell. Glycolysis is essential for bloodstream-form Trypanosoma brucei and enzymes comprising this pathway have been validated as drug targets. Glycosomes are surrounded by a single membrane. How glycolytic metabolites are transported across the glycosomal membrane is unclear. METHODS/PRINCIPAL FINDINGS: We hypothesized that glycosomal membrane, similarly to membranes of yeast and mammalian peroxisomes, contains channel-forming proteins involved in the selective transfer of metabolites. To verify this prediction, we isolated a glycosomal fraction from bloodstream-form T. brucei and reconstituted solubilized membrane proteins into planar lipid bilayers. The electrophysiological characteristics of the channels were studied using multiple channel recording and single channel analysis. Three main channel-forming activities were detected with current amplitudes 70-80 pA, 20-25 pA, and 8-11 pA, respectively (holding potential +10 mV and 3.0 M KCl as an electrolyte. All channels were in fully open state in a range of voltages ±150 mV and showed no sub-conductance transitions. The channel with current amplitude 20-25 pA is anion-selective (P(K+/P(Cl-∼0.31, while the other two types of channels are slightly selective for cations (P(K+/P(Cl- ratios ∼1.15 and ∼1.27 for the high- and low-conductance channels, respectively. The anion-selective channel showed an intrinsic current rectification that may suggest a functional asymmetry of the channel's pore. CONCLUSIONS/SIGNIFICANCE: These results indicate that the membrane of glycosomes

  2. Identification of human intestinal parasites affecting an asymptomatic peri-urban Argentinian population using multi-parallel quantitative real-time polymerase chain reaction.

    Science.gov (United States)

    Cimino, Rubén O; Jeun, Rebecca; Juarez, Marisa; Cajal, Pamela S; Vargas, Paola; Echazú, Adriana; Bryan, Patricia E; Nasser, Julio; Krolewiecki, Alejandro; Mejia, Rojelio

    2015-07-17

    In resource-limited countries, stool microscopy is the diagnostic test of choice for intestinal parasites (soil-transmitted helminths and/or intestinal protozoa). However, sensitivity and specificity is low. Improved diagnosis of intestinal parasites is especially important for accurate measurements of prevalence and intensity of infections in endemic areas. The study was carried out in Orán, Argentina. A total of 99 stool samples from a local surveillance campaign were analyzed by concentration microscopy and McMaster egg counting technique compared to the analysis by multi-parallel quantitative real-time polymerase chain reaction (qPCR). This study compared the performance of qPCR assay and stool microscopy for 8 common intestinal parasites that infect humans including the helminths Ascaris lumbricoides, Ancylostoma duodenale, Necator americanus, Strongyloides stercoralis, Trichuris trichiura, and the protozoa Giardia lamblia, Cryptosporidium parvum/hominis, and Entamoeba histolytica, and investigated the prevalence of polyparasitism in an endemic area. qPCR showed higher detection rates for all parasites as compared to stool microscopy except T. trichiura. Species-specific primers and probes were able to distinguish between A. duodenale (19.1%) and N. americanus (36.4%) infections. There were 48.6% of subjects co-infected with both hookworms, and a significant increase in hookworm DNA for A. duodenale versus N. americanus (119.6 fg/μL: 0.63 fg/μL, P parasites in an endemic area that has improved diagnostic accuracy compared to stool microscopy. This first time use of multi-parallel qPCR in Argentina has demonstrated the high prevalence of intestinal parasites in a peri-urban area. These results will contribute to more accurate epidemiological survey, refined treatment strategies on a public scale, and better health outcomes in endemic settings.

  3. Prevalence and Transmission of Trypanosoma cruzi in People of Rural Communities of the High Jungle of Northern Peru.

    Science.gov (United States)

    Alroy, Karen A; Huang, Christine; Gilman, Robert H; Quispe-Machaca, Victor R; Marks, Morgan A; Ancca-Juarez, Jenny; Hillyard, Miranda; Verastegui, Manuela; Sanchez, Gerardo; Cabrera, Lilia; Vidal, Elisa; Billig, Erica M W; Cama, Vitaliano A; Náquira, César; Bern, Caryn; Levy, Michael Z

    2015-05-01

    Vector-borne transmission of Trypanosoma cruzi is seen exclusively in the Americas where an estimated 8 million people are infected with the parasite. Significant research in southern Peru has been conducted to understand T. cruzi infection and vector control, however, much less is known about the burden of infection and epidemiology in northern Peru. A cross-sectional study was conducted to estimate the seroprevalence of T. cruzi infection in humans (n=611) and domestic animals [dogs (n=106) and guinea pigs (n=206)] in communities of Cutervo Province, Peru. Sampling and diagnostic strategies differed according to species. An entomological household study (n=208) was conducted to identify the triatomine burden and species composition, as well as the prevalence of T. cruzi in vectors. Electrocardiograms (EKG) were performed on a subset of participants (n=90 T. cruzi infected participants and 170 age and sex-matched controls). The seroprevalence of T. cruzi among humans, dogs, and guinea pigs was 14.9% (95% CI: 12.2-18.0%), 19.8% (95% CI: 12.7-28.7%) and 3.3% (95% CI: 1.4-6.9%) respectively. In one community, the prevalence of T. cruzi infection was 17.2% (95% CI: 9.6-24.7%) among participants Peru.

  4. Prevalence and Transmission of Trypanosoma cruzi in People of Rural Communities of the High Jungle of Northern Peru

    Science.gov (United States)

    Alroy, Karen A.; Huang, Christine; Gilman, Robert H.; Quispe-Machaca, Victor R.; Marks, Morgan A.; Ancca-Juarez, Jenny; Hillyard, Miranda; Verastegui, Manuela; Sanchez, Gerardo; Cabrera, Lilia; Vidal, Elisa; Billig, Erica M. W.; Cama, Vitaliano A.; Náquira, César; Bern, Caryn; Levy, Michael Z.

    2015-01-01

    Background Vector-borne transmission of Trypanosoma cruzi is seen exclusively in the Americas where an estimated 8 million people are infected with the parasite. Significant research in southern Peru has been conducted to understand T. cruzi infection and vector control, however, much less is known about the burden of infection and epidemiology in northern Peru. Methodology A cross-sectional study was conducted to estimate the seroprevalence of T. cruzi infection in humans (n=611) and domestic animals [dogs (n=106) and guinea pigs (n=206)] in communities of Cutervo Province, Peru. Sampling and diagnostic strategies differed according to species. An entomological household study (n=208) was conducted to identify the triatomine burden and species composition, as well as the prevalence of T. cruzi in vectors. Electrocardiograms (EKG) were performed on a subset of participants (n=90 T. cruzi infected participants and 170 age and sex-matched controls). The seroprevalence of T. cruzi among humans, dogs, and guinea pigs was 14.9% (95% CI: 12.2 – 18.0%), 19.8% (95% CI: 12.7- 28.7%) and 3.3% (95% CI: 1.4 – 6.9%) respectively. In one community, the prevalence of T. cruzi infection was 17.2% (95% CI: 9.6 - 24.7%) among participants Peru. PMID:26000770

  5. Cryo-EM structures of the 80S ribosomes from human parasites Trichomonas vaginalis and Toxoplasma gondii

    Institute of Scientific and Technical Information of China (English)

    Zhifei Li; Qiang Guo; Lvqin Zheng; Yongsheng Ji; Yi-Ting Xie; De-Hua Lai; Zhao-Rong Lun; Xun Suo; Ning Gao

    2017-01-01

    As an indispensable molecular machine universal in all living organisms,the ribosome has been selected by evolution to be the natural target of many antibiotics and small-molecule inhibitors.High-resolution structures of pathogen ribosomes are crucial for understanding the general and unique aspects of translation control in disease-causing microbes.With cryo-electron microscopy technique,we have determined structures of the cytosolic ribosomes from two human parasites,Trichomonas vaginalis and Toxoplasma gondii,at resolution of 3.2-3.4,(A).Although the ribosomal proteins from both pathogens are typical members of eukaryotic families,with a co-evolution pattern between certain species-specific insertions/extensions and neighboring ribosomal RNA (rRNA) expansion segments,the sizes of their rRNAs are sharply different.Very interestingly,rRNAs of T.vaginalis are in size comparable to prokaryotic counterparts,with nearly all the eukaryote-specific rRNA expansion segments missing.These structures facilitate the dissection of evolution path for ribosomal proteins and RNAs,and may aid in design of novel translation inhibitors.

  6. Encapsulation of metalloporphyrins improves their capacity to block the viability of the human malaria parasite Plasmodium falciparum.

    Science.gov (United States)

    Alves, Eduardo; Iglesias, Bernardo A; Deda, Daiana K; Budu, Alexandre; Matias, Tiago A; Bueno, Vânia B; Maluf, Fernando V; Guido, Rafael V C; Oliva, Glaucius; Catalani, Luiz H; Araki, Koiti; Garcia, Celia R S

    2015-02-01

    Several synthetic metallated protoporphyrins (M-PPIX) were tested for their ability to block the cell cycle of the lethal human malaria parasite Plasmodium falciparum. After encapsulating the porphyrin derivatives in micro- and nanocapsules of marine atelocollagen, their effects on cultures of red blood cells infected (RBC) with P. falciparum were verified. RBCs infected with synchronized P. falciparum incubated for 48 h showed a toxic effect over a micromolar range. Strikingly, the IC50 of encapsulated metalloporphyrins reached nanomolar concentrations, where Zn-PPIX showed the best antimalarial effect, with an IC50=330 nM. This value is an 80-fold increase in the antimalarial activity compared to the antimalarial effect of non-encapsulated Zn-PPIX. These findings reveal that the incubation of P. falciparum infected-RBCs with 20 μM Zn-PPIX reduced the size of hemozoin crystal by 34%, whereas a 28% reduction was noticed with chloroquine, confirming the importance of heme detoxification pathway in drug therapy. In this study, synthetic metalloporphyrins were tested as therapeutics that target Plasmodium falciparum. The IC50 of encapsulated metalloporphyrins was found to be in the nanomolar concentration range, with encapsulated Zn-PPIX showing an 80-fold increase in its antimalarial activity compared to the non-encapsulated form. Copyright © 2015. Published by Elsevier Inc.

  7. The regulation of autophagy differentially affects Trypanosoma cruzi metacyclogenesis.

    Directory of Open Access Journals (Sweden)

    María Cristina Vanrell

    2017-11-01

    Full Text Available Autophagy is a cellular process required for the removal of aged organelles and cytosolic components through lysosomal degradation. All types of eukaryotic cells from yeasts to mammalian cells have the machinery to activate autophagy as a result of many physiological and pathological situations. The most frequent stimulus of autophagy is starvation and the result, in this case, is the fast generation of utilizable food (e.g. amino acids and basic nutrients to maintain the vital biological processes. In some organisms, starvation also triggers other associated processes such as differentiation. The protozoan parasite Trypanosoma cruzi undergoes a series of differentiation processes throughout its complex life cycle. Although not all autophagic genes have been identified in the T. cruzi genome, previous works have demonstrated the presence of essential autophagic-related proteins. Under starvation conditions, TcAtg8, which is the parasite homolog of Atg8/LC3 in other organisms, is located in autophagosome-like vesicles. In this work, we have characterized the autophagic pathway during T. cruzi differentiation from the epimastigote to metacyclic trypomastigote form, a process called metacyclogenesis. We demonstrated that autophagy is stimulated during metacyclogenesis and that the induction of autophagy promotes this process. Moreover, with exception of bafilomycin, other classical autophagy modulators have similar effects on T. cruzi autophagy. We also showed that spermidine and related polyamines can positively regulate parasite autophagy and differentiation. We concluded that both polyamine metabolism and autophagy are key processes during T. cruzi metacyclogenesis that could be exploited as drug targets to avoid the parasite cycle progression.

  8. Prevalence of Parasitic Contamination

    Science.gov (United States)

    Ismail, Yazan

    2016-01-01

    One of the main ways in transmitting parasites to humans is through consuming contaminated raw vegetables. The aim of this study was to evaluate the prevalence of parasitological contamination (helminthes eggs, Giardia and Entamoeba histolytica cysts) of salad vegetables sold at supermarkets and street vendors in Amman and Baqa’a – Jordan. A total of 133 samples of salad vegetables were collected and examined for the prevalence of parasites. It was found that 29% of the samples were contaminated with different parasites. Of the 30 lettuce, 33 tomato, 42 parsley and 28 cucumber samples examined the prevalence of Ascaris spp. eggs was 43%, 15%, 21% and 4%; Toxocara spp. eggs was 30%, 0%, 0% and 4%; Giardia spp. cysts was 23%, 6%, 0% and 0%; Taenia/Echinococcus eggs was 20%, 0%, 5% and 0%; Fasciola hepatica eggs was 13%, 3%, 2% and 0%; and E. histolytica cysts was 10%, 6%, 0% and 0%, respectively. There was no significant difference in the prevalence of parasite in salad vegetables either between supermarkets and street vendors, or between Amman and Baqa’a, Ascaris spp. was found to be the highest prevalent parasite in salad vegetables from supermarkets and street vendors and from Amman and Baqa’a. Our results pointed out that, the parasitic contamination of salad vegetables found in our study might be caused by irrigating crops with faecal contaminated water. We concluded that salad vegetables sold in Amman and Baqa’a may cause a health risk to consumers.

  9. 21 CFR 866.3870 - Trypanosoma spp. serological reagents.

    Science.gov (United States)

    2010-04-01

    ... (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3870 Trypanosoma... consist of antigens and antisera used in serological tests to identify antibodies to Trypanosoma spp. in...

  10. Blood parasites in northern goshawk (Accipiter gentilis) with an emphasis to Leucocytozoon toddi

    Czech Academy of Sciences Publication Activity Database

    Hanel, J.; Doležalová, J.; Stehlíková, Š.; Modrý, David; Chudoba, J.; Synek, P.; Votýpka, Jan

    2016-01-01

    Roč. 115, č. 1 (2016), s. 263-270 ISSN 0932-0113 Institutional support: RVO:60077344 Keywords : avian blood parasites * Haemosporida * Trypanosoma * PCR detection * birds of prey * raptors * mixed infection Subject RIV: EG - Zoology Impact factor: 2.329, year: 2016

  11. Comparative Metabolism of Free-living Bodo saltans and Parasitic Trypanosomatids

    Czech Academy of Sciences Publication Activity Database

    Opperdoes, F. R.; Butenko, A.; Flegontov, P.; Yurchenko, V.; Lukeš, Julius

    2016-01-01

    Roč. 63, č. 5 (2016), s. 657-678 ISSN 1066-5234 R&D Projects: GA ČR(CZ) GA14-23986S Grant - others:EU COST Action CM1307 Institutional support: RVO:60077344 Keywords : adaptation * Leishmania * Leptomonas * lateral gene transfer * parasitism * Phytomonas * Trypanosoma Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.692, year: 2016

  12. The orthologue of Sjögren's syndrome nuclear autoantigen 1 (SSNA1 in Trypanosoma brucei is an immunogenic self-assembling molecule.

    Directory of Open Access Journals (Sweden)

    Helen P Price

    Full Text Available Primary Sjögren's Syndrome (PSS is a highly prevalent autoimmune disease, typically manifesting as lymphocytic infiltration of the exocrine glands leading to chronically impaired lacrimal and salivary secretion. Sjögren's Syndrome nuclear autoantigen 1 (SSNA1 or NA14 is a major specific target for autoantibodies in PSS but the precise function and clinical relevance of this protein are largely unknown. Orthologues of the gene are absent from many of the commonly used model organisms but are present in Chlamyodomonas reinhardtii (in which it has been termed DIP13 and most protozoa. We report the functional characterisation of the orthologue of SSNA1 in the kinetoplastid parasite, Trypanosoma brucei. Both TbDIP13 and human SSNA1 are small coiled-coil proteins which are predicted to be remote homologues of the actin-binding protein tropomyosin. We use comparative proteomic methods to identify potential interacting partners of TbDIP13. We also show evidence that TbDIP13 is able to self-assemble into fibril-like structures both in vitro and in vivo, a property which may contribute to its immunogenicity. Endogenous TbDIP13 partially co-localises with acetylated α-tubulin in the insect procyclic stage of the parasite. However, deletion of the DIP13 gene in cultured bloodstream and procyclic stages of T. brucei has little effect on parasite growth or morphology, indicating either a degree of functional redundancy or a function in an alternative stage of the parasite life cycle.

  13. A subset of group A-like var genes encodes the malaria parasite ligands for binding to human brain endothelial cells

    DEFF Research Database (Denmark)

    Claessens, Antoine; Adams, Yvonne; Ghumra, Ashfaq

    2012-01-01

    Cerebral malaria is the most deadly manifestation of infection with Plasmodium falciparum. The pathology of cerebral malaria is characterized by the accumulation of infected erythrocytes (IEs) in the microvasculature of the brain caused by parasite adhesins on the surface of IEs binding to human...... receptors on microvascular endothelial cells. The parasite and host molecules involved in this interaction are unknown. We selected three P. falciparum strains (HB3, 3D7, and IT/FCR3) for binding to a human brain endothelial cell line (HBEC-5i). The whole transcriptome of isogenic pairs of selected.......029) but not by antibodies from controls with uncomplicated malaria (Mann-Whitney test, P = 0.58). This work describes a binding phenotype for virulence-associated group A P. falciparum erythrocyte membrane protein 1 variants and identifies targets for interventions to treat or prevent cerebral malaria....

  14. Ravuconazole self-emulsifying delivery system: in vitro activity against Trypanosoma cruzi amastigotes and in vivo toxicity

    Directory of Open Access Journals (Sweden)

    Spósito PA

    2017-05-01

    , ravuconazole–SEDDS and each excipient were evaluated in vitro at equivalent ravuconazole concentrations needed to inhibit 50% or 90% (IC50 and IC90, respectively of the intracellular amastigote form of the parasite in a cardiomyocyte cell line. The results showed a clear improvement of the ravuconazole anti-T. cruzi activity when associated with SEDDS. Based on our results, the repurposing of ravuconazole in SEDDS dosage form is a strategy that deserves further in vivo investigation in preclinical studies for the treatment of human T. cruzi infections. Keywords: ravuconazole, self-emulsifying drug delivery, asymmetric flow field-flow fractionation, Trypanosoma cruzi, Chagas disease, in vitro activity

  15. Characterization of plasma menbrane polypeptides of trypanosoma from bats

    OpenAIRE

    Pinho,R. T.; Simone,Giovanni de

    1989-01-01

    Cell surface proteins of Trypanosoma dionisii, Trypanosoma vespertilionis and Trypanosoma sp. (M238) were radiodinated and their distribution both in the detergent-poor (DPP) and dertergent-enriched phase (DRP) was studied using a phase separation technique in Triton X-114 as well as polyacrylamide gel electrophoresis in sodium dodecyl sulphate (SDS-PAGE). Significant differences were observed in the proteins present in the DRP when the three species of trypanosoma were compared. Two major ba...

  16. Repetitive elements in parasitic protozoa

    Directory of Open Access Journals (Sweden)

    Clayton Christine

    2010-05-01

    Full Text Available Abstract A recent paper published in BMC Genomics suggests that retrotransposition may be active in the human gut parasite Entamoeba histolytica. This adds to our knowledge of the various types of repetitive elements in parasitic protists and the potential influence of such elements on pathogenicity. See research article http://www.biomedcentral.com/1471-2164/11/321

  17. Kinetoplast adaptations in American strains from Trypanosoma vivax

    Energy Technology Data Exchange (ETDEWEB)

    Greif, Gonzalo [Unidad de Biología Molecular, Institut Pasteur de Montevideo (Uruguay); Rodriguez, Matías [Sección Biomatemática, Facultad de Ciencias, Universidad de la Republica (Uruguay); Reyna-Bello, Armando [Departamento de Ciencias de la Vida, Carrera en Ingeniería en Biotecnología, Universidad de las Fuerzas Armadas (Ecuador); Centro de Estudios Biomédicos y Veterinarios, Universidad Nacional Experimental Simón Rodríguez-IDECYT, Caracas (Venezuela, Bolivarian Republic of); Robello, Carlos [Unidad de Biología Molecular, Institut Pasteur de Montevideo (Uruguay); Departamento de Bioquímica, Facultad de Medicina, Universidad de la República Uruguay (Uruguay); Alvarez-Valin, Fernando, E-mail: falvarez@fcien.edu.uy [Sección Biomatemática, Facultad de Ciencias, Universidad de la Republica (Uruguay)

    2015-03-15

    Highlights: • American T. vivax strains exhibit a drastic process of mitochondrial genome degradation. • T. vivax mitochondrial genes have among the fastest evolutionary rates in eukaryotes. • High rates of kDNA evolution are associated with relaxation of selective constrains. • Relaxed selective pressures are the result of mechanical transmission. • The evolutionary strategy of T. vivax differs from that of T. brucei-species complex. - Abstract: The mitochondrion role changes during the digenetic life cycle of African trypanosomes. Owing to the low abundance of glucose in the insect vector (tsetse flies) the parasites are dependent upon a fully functional mitochondrion, capable of performing oxidative phosphorylation. Nevertheless, inside the mammalian host (bloodstream forms), which is rich in nutrients, parasite proliferation relies on glycolysis, and the mitochondrion is partially redundant. In this work we perform a comparative study of the mitochondrial genome (kinetoplast) in different strains of Trypanosoma vivax. The comparison was conducted between a West African strain that goes through a complete life cycle and two American strains that are mechanically transmitted (by different vectors) and remain as bloodstream forms only. It was found that while the African strain has a complete and apparently fully functional kinetoplast, the American T. vivax strains have undergone a drastic process of mitochondrial genome degradation, in spite of the recent introduction of these parasites in America. Many of their genes exhibit different types of mutations that are disruptive of function such as major deletions, frameshift causing indels and missense mutations. Moreover, all but three genes (A6-ATPase, RPS12 and MURF2) are not edited in the American strains, whereas editing takes place normally in all (editable) genes from the African strain. Two of these genes, A6-ATPase and RPS12, are known to play an essential function during bloodstream stage

  18. Kinetoplast adaptations in American strains from Trypanosoma vivax

    International Nuclear Information System (INIS)

    Greif, Gonzalo; Rodriguez, Matías; Reyna-Bello, Armando; Robello, Carlos; Alvarez-Valin, Fernando

    2015-01-01

    Highlights: • American T. vivax strains exhibit a drastic process of mitochondrial genome degradation. • T. vivax mitochondrial genes have among the fastest evolutionary rates in eukaryotes. • High rates of kDNA evolution are associated with relaxation of selective constrains. • Relaxed selective pressures are the result of mechanical transmission. • The evolutionary strategy of T. vivax differs from that of T. brucei-species complex. - Abstract: The mitochondrion role changes during the digenetic life cycle of African trypanosomes. Owing to the low abundance of glucose in the insect vector (tsetse flies) the parasites are dependent upon a fully functional mitochondrion, capable of performing oxidative phosphorylation. Nevertheless, inside the mammalian host (bloodstream forms), which is rich in nutrients, parasite proliferation relies on glycolysis, and the mitochondrion is partially redundant. In this work we perform a comparative study of the mitochondrial genome (kinetoplast) in different strains of Trypanosoma vivax. The comparison was conducted between a West African strain that goes through a complete life cycle and two American strains that are mechanically transmitted (by different vectors) and remain as bloodstream forms only. It was found that while the African strain has a complete and apparently fully functional kinetoplast, the American T. vivax strains have undergone a drastic process of mitochondrial genome degradation, in spite of the recent introduction of these parasites in America. Many of their genes exhibit different types of mutations that are disruptive of function such as major deletions, frameshift causing indels and missense mutations. Moreover, all but three genes (A6-ATPase, RPS12 and MURF2) are not edited in the American strains, whereas editing takes place normally in all (editable) genes from the African strain. Two of these genes, A6-ATPase and RPS12, are known to play an essential function during bloodstream stage

  19. Exosome secretion affects social motility in Trypanosoma brucei.

    Directory of Open Access Journals (Sweden)

    Dror Eliaz

    2017-03-01

    Full Text Available Extracellular vesicles (EV secreted by pathogens function in a variety of biological processes. Here, we demonstrate that in the protozoan parasite Trypanosoma brucei, exosome secretion is induced by stress that affects trans-splicing. Following perturbations in biogenesis of spliced leader RNA, which donates its spliced leader (SL exon to all mRNAs, or after heat-shock, the SL RNA is exported to the cytoplasm and forms distinct granules, which are then secreted by exosomes. The exosomes are formed in multivesicular bodies (MVB utilizing the endosomal sorting complexes required for transport (ESCRT, through a mechanism similar to microRNA secretion in mammalian cells. Silencing of the ESCRT factor, Vps36, compromised exosome secretion but not the secretion of vesicles derived from nanotubes. The exosomes enter recipient trypanosome cells. Time-lapse microscopy demonstrated that cells secreting exosomes or purified intact exosomes affect social motility (SoMo. This study demonstrates that exosomes are delivered to trypanosome cells and can change their migration. Exosomes are used to transmit stress signals for communication between parasites.

  20. Production of amastigotes from metacyclic trypomastigotes of Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    Víctor T Contreras

    2002-12-01

    Full Text Available Attempts to recreate all the developmental stages of Trypanosoma cruzi in vitro have thus far been met with partial success. It is possible, for instance, to produce trypomastigotes in tissue culture and to obtain metacyclic trypomastigotes in axenic conditions. Even though T. cruzi amastigotes are known to differentiate from trypomastigotes and metacyclic trypomastigotes, it has only been possible to generate amastigotes in vitro from the tissue-culture-derived trypomastigotes. The factors and culture conditions required to trigger the transformation of metacyclic trypomastigotes into amastigotes are as yet undetermined. We show here that pre-incubation of metacyclic trypomastigotes in culture (MEMTAU medium at 37°C for 48 h is sufficient to commit the parasites to the transformation process. After 72 h of incubation in fresh MEMTAU medium, 90% of the metacyclic parasites differentiate into forms that are morphologically indistinguishable from normal amastigotes. SDS-PAGE, Western blot and PAABS analyses indicate that the transformation of axenic metacyclic trypomastigotes to amastigotes is associated with protein, glycoprotein and antigenic modifications. These data suggest that (a T. cruzi amastigotes can be obtained axenically in large amounts from metacyclic trypomastigotes, and (b the amastigotes thus obtained are morphological, biological and antigenically similar to intracellular amastigotes. Consequently, this experimental system may facilitate a direct, in vitro assessment of the mechanisms that enable T. cruzi metacyclic trypomastigotes to transform into amastigotes in the cells of mammalian hosts.

  1. Optimising Controlled Human Malaria Infection Studies Using Cryopreserved P. falciparum Parasites Administered by Needle and Syringe.

    Directory of Open Access Journals (Sweden)

    Susanne H Sheehy

    Full Text Available Controlled human malaria infection (CHMI studies have become a routine tool to evaluate efficacy of candidate anti-malarial drugs and vaccines. To date, CHMI trials have mostly been conducted using the bite of infected mosquitoes, restricting the number of trial sites that can perform CHMI studies. Aseptic, cryopreserved P. falciparum sporozoites (PfSPZ Challenge provide a potentially more accurate, reproducible and practical alternative, allowing a known number of sporozoites to be administered simply by injection.We sought to assess the infectivity of PfSPZ Challenge administered in different dosing regimens to malaria-naive healthy adults (n = 18. Six participants received 2,500 sporozoites intradermally (ID, six received 2,500 sporozoites intramuscularly (IM and six received 25,000 sporozoites IM.Five out of six participants receiving 2,500 sporozoites ID, 3/6 participants receiving 2,500 sporozoites IM and 6/6 participants receiving 25,000 sporozoites IM were successfully infected. The median time to diagnosis was 13.2, 17.8 and 12.7 days for 2,500 sporozoites ID, 2,500 sporozoites IM and 25,000 sporozoites IM respectively (Kaplan Meier method; p = 0.024 log rank test.2,500 sporozoites ID and 25,000 sporozoites IM have similar infectivities. Given the dose response in infectivity seen with IM administration, further work should evaluate increasing doses of PfSPZ Challenge IM to identify a dosing regimen that reliably infects 100% of participants.ClinicalTrials.gov NCT01465048.

  2. Multiple Zoonotic Parasites Identified in Dog Feces Collected in Ponte de Lima, Portugal — A Potential Threat to Human Health

    Science.gov (United States)

    Letra Mateus, Teresa; Castro, António; Niza Ribeiro, João; Vieira-Pinto, Madalena

    2014-01-01

    Dogs play many roles and their presence within people’s houses has increased. In rural settings dog faeces are not removed from the streets, representing an environmental pollution factor. Our aim was to evaluate the occurrence of environmental contamination with zoonotic intestinal parasites of three groups of dogs in Ponte de Lima, Portugal, with a particular emphasis on Echinococcus granulosus. We collected 592 dog faecal samples from the environment, farm and hunting dogs. Qualitative flotation coprological analysis was performed and the frequency in the positive samples ranged between 57.44% and 81.19% in different groups. We isolated up to four different parasites in one sample and detected seven intestinal parasitic species, genera or families overall. Ancylostomatidae was the most prevalent parasite, followed by Trichuris spp., Toxocara spp., Isospora spp., Dipylidium caninum, Taeniidae and Toxascaris leonina. Taeniidae eggs were analyzed with the PCR technique and revealed not to be from Echinococcus. The parasite prevalence and the diversity of zoonotic parasites found were high, which calls for a greater awareness of the problem among the population, especially hunters. Promoting research at the local level is important to plan control strategies. Health education should be developed with regard to farmers and hunters, and a closer collaboration between researchers, practitioners and public health authorities is needed. PMID:25257358

  3. Multiple Zoonotic Parasites Identified in Dog Feces Collected in Ponte de Lima, Portugal—A Potential Threat to Human Health

    Directory of Open Access Journals (Sweden)

    Teresa Letra Mateus

    2014-09-01

    Full Text Available Dogs play many roles and their presence within people’s houses has increased. In rural settings dog faeces are not removed from the streets, representing an environmental pollution factor. Our aim was to evaluate the occurrence of environmental contamination with zoonotic intestinal parasites of three groups of dogs in Ponte de Lima, Portugal, with a particular emphasis on Echinococcus granulosus. We collected 592 dog faecal samples from the environment, farm and hunting dogs. Qualitative flotation coprological analysis was performed and the frequency in the positive samples ranged between 57.44% and 81.19% in different groups. We isolated up to four different parasites in one sample and detected seven intestinal parasitic species, genera or families overall. Ancylostomatidae was the most prevalent parasite, followed by Trichuris spp., Toxocara spp., Isospora spp., Dipylidium caninum, Taeniidae and Toxascaris leonina. Taeniidae eggs were analyzed with the PCR technique and revealed not to be from Echinococcus. The parasite prevalence and the diversity of zoonotic parasites found were high, which calls for a greater awareness of the problem among the population, especially hunters. Promoting research at the local level is important to plan control strategies. Health education should be developed with regard to farmers and hunters, and a closer collaboration between researchers, practitioners and public health authorities is needed.

  4. TcI, TcII and TcVI Trypanosoma cruzi samples from Chagas disease patients with distinct clinical forms and critical analysis of in vitro and in vivo behavior, response to treatment and infection evolution in murine model.

    Science.gov (United States)

    Oliveira, Maykon Tavares de; Branquinho, Renata Tupinambá; Alessio, Gláucia Diniz; Mello, Carlos Geraldo Campos; Nogueira-de-Paiva, Nívia Carolina; Carneiro, Cláudia Martins; Toledo, Max Jean de Ornelas; Reis, Alexandre Barbosa; Martins-Filho, Olindo Assis Martins; Lana, Marta de

    2017-03-01

    The clonal evolution of Trypanosoma cruzi sustains scientifically the hypothesis of association between parasite's genetic, biological behavior and possibly the clinical aspects of Chagas disease in patients from whom they were isolated. This study intended to characterize a range of biological properties of TcI, TcII and TcVI T. cruzi samples in order to verify the existence of these associations. Several biological features were evaluated, including in vitro epimastigote-growth, "Vero"cells infectivity and growth, along with in vivo studies of parasitemia, polymorphism of trypomastigotes, cardiac inflammation, fibrosis and response to treatment by nifurtimox during the acute and chronic murine infection. The global results showed that the in vitro essays (acellular and cellular cultures) TcII parasites showed higher values for all parameters (growth and infectivity) than TcVI, followed by TcI. In vivo TcII parasites were more virulent and originated from patients with severe disease. Two TcII isolates from patients with severe pathology were virulent in mice, while the isolate from a patient with the indeterminate form of the disease caused mild infection. The only TcVI sample, which displayed low values in all parameters evaluated, was also originated of an indeterminate case of Chagas disease. Response to nifurtimox was not associated to parasite genetic and biology, as well as to clinical aspects of human disease. Although few number of T. cruzi samples have been analyzed, a discreet correlation between parasite genetics, biological behavior in vitro and in vivo (murine model) and the clinical form of human disease from whom the samples were isolated was verified. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Vector-borne transmission of Trypanosoma cruzi among captive Neotropical primates in a Brazilian zoo.

    Science.gov (United States)

    Minuzzi-Souza, Thaís Tâmara Castro; Nitz, Nadjar; Knox, Monique Britto; Reis, Filipe; Hagström, Luciana; Cuba, César A Cuba; Hecht, Mariana Machado; Gurgel-Gonçalves, Rodrigo

    2016-01-26

    Neotropical primates are important sylvatic hosts of Trypanosoma cruzi, the etiological agent of Chagas disease. Infection is often subclinical, but severe disease has been described in both free-ranging and captive primates. Panstrongylus megistus, a major T. cruzi vector, was found infesting a small-primate unit at Brasília zoo (ZooB), Brazil. ZooB lies close to a gallery-forest patch where T. cruzi circulates naturally. Here, we combine parasitological and molecular methods to investigate a focus of T. cruzi infection involving triatomine bugs and Neotropical primates at a zoo located in the Brazilian Savannah. We assessed T. cruzi infection in vectors using optical microscopy (n = 34) and nested PCR (n = 50). We used quantitative PCR (qPCR) to examine blood samples from 26 primates and necropsy samples from two primates that died during the study. We determined parasite lineages in five vectors and two primates by comparing glucose-6-phosphate isomerase (G6pi) gene sequences. Trypanosoma cruzi was found in 44 vectors and 17 primates (six genera and eight species); one Mico chrysoleucus and one Saguinus niger had high parasitaemias. Trypanosoma cruzi DNA was detected in three primates born to qPCR-negative mothers at ZooB and in the two dead specimens. One Callithrix geoffroyi became qPCR-positive over a two-year follow-up. All G6pi sequences matched T. cruzi lineage TcI. Our findings strongly suggest vector-borne T. cruzi transmission within a small-primate unit at ZooB - with vectors, and perhaps also parasites, presumably coming from nearby gallery forest. Periodic checks for vectors and parasites would help eliminate T. cruzi transmission foci in captive-animal facilities. This should be of special importance for captive-breeding programs involving endangered mammals, and would reduce the risk of accidental T. cruzi transmission to keepers and veterinarians.

  6. Molecular Diversity of Trypanosoma cruzi Detected in the Vector Triatoma protracta from California, USA.

    Directory of Open Access Journals (Sweden)

    Lisa A Shender

    2016-01-01

    Full Text Available Trypanosoma cruzi, causative agent of Chagas disease in humans and dogs, is a vector-borne zoonotic protozoan parasite that can cause fatal cardiac disease. While recognized as the most economically important parasitic infection in Latin America, the incidence of Chagas disease in the United States of America (US may be underreported and even increasing. The extensive genetic diversity of T. cruzi in Latin America is well-documented and likely influences disease progression, severity and treatment efficacy; however, little is known regarding T. cruzi strains endemic to the US. It is therefore important to expand our knowledge on US T. cruzi strains, to improve upon the recognition of and response to locally acquired infections.We conducted a study of T. cruzi molecular diversity in California, augmenting sparse genetic data from southern California and for the first time investigating genetic sequences from northern California. The vector Triatoma protracta was collected from southern (Escondido and Los Angeles and northern (Vallecito California regions. Samples were initially screened via sensitive nuclear repetitive DNA and kinetoplast minicircle DNA PCR assays, yielding an overall prevalence of approximately 28% and 55% for southern and northern California regions, respectively. Positive samples were further processed to identify discrete typing units (DTUs, revealing both TcI and TcIV lineages in southern California, but only TcI in northern California. Phylogenetic analyses (targeting COII-ND1, TR and RB19 genes were performed on a subset of positive samples to compare Californian T. cruzi samples to strains from other US regions and Latin America. Results indicated that within the TcI DTU, California sequences were similar to those from the southeastern US, as well as to several isolates from Latin America responsible for causing Chagas disease in humans.Triatoma protracta populations in California are frequently infected with T. cruzi

  7. Dihydroquinazolines as a novel class of Trypanosoma brucei trypanothione reductase inhibitors: discovery, synthesis, and characterization of their binding mode by protein crystallography.

    Science.gov (United States)

    Patterson, Stephen; Alphey, Magnus S; Jones, Deuan C; Shanks, Emma J; Street, Ian P; Frearson, Julie A; Wyatt, Paul G; Gilbert, Ian H; Fairlamb, Alan H

    2011-10-13

    Trypanothione reductase (TryR) is a genetically validated drug target in the parasite Trypanosoma brucei , the causative agent of human African trypanosomiasis. Here we report the discovery, synthesis, and development of a novel series of TryR inhibitors based on a 3,4-dihydroquinazoline scaffold. In addition, a high resolution crystal structure of TryR, alone and in complex with substrates and inhibitors from this series, is presented. This represents the first report of a high resolution complex between a noncovalent ligand and this enzyme. Structural studies revealed that upon ligand binding the enzyme undergoes a conformational change to create a new subpocket which is occupied by an aryl group on the ligand. Therefore, the inhibitor, in effect, creates its own small binding pocket within the otherwise large, solvent exposed active site. The TryR-ligand structure was subsequently used to guide the synthesis of inhibitors, including analogues that challenged the induced subpocket. This resulted in the development of inhibitors with improved potency against both TryR and T. brucei parasites in a whole cell assay.

  8. Fishing drives declines in fish parasite diversity and has variable effects on parasite abundance.

    Science.gov (United States)

    Wood, Chelsea L; Sandin, Stuart A; Zgliczynski, Brian; Guerra, Ana Sofía; Micheli, Fiorenza

    2014-07-01

    Despite the ubiquity and ecological importance of parasites, relatively few studies have assessed their response to anthropogenic environmental change. Heuristic models have predicted both increases and decreases in parasite abundance in response to human disturbance, with empirical support for both. However, most studies focus on one or a few selected parasite species. Here, we assess the abundance of parasites of seven species of coral reef fishes collected from three fished and three unfished islands of the Line Islands archipelago in the central equatorial Pacific. Because we chose fish hosts that spanned different trophic levels, taxonomic groups, and body sizes, we were able to compare parasite responses across a broad cross section of the total parasite community in the presence and absence of fishing, a major human impact on marine ecosystems. We found that overall parasite species richness was substantially depressed on fished islands, but that the response of parasite abundance varied among parasite taxa: directly transmitted parasites were significantly more abundant on fished than on unfished islands, while the reverse was true for trophically transmitted parasites. This probably arises because trophically transmitted parasites require multiple host species, some of which are the top predators most sensitive to fishing impacts. The increase in directly transmitted parasites appeared to be due to fishing-driven compensatory increases in the abundance of their hosts. Together, these results provide support for the predictions of both heuristic models, and indicate that the direction of fishing's impact on parasite abundance is mediated by parasite traits, notably parasite transmission strategies.

  9. Trypanosoma cruzi I genotypes in different geographic regions and transmission cycles based on a microsatellite motif of the intergenic spacer of spliced leader genes✯

    Science.gov (United States)

    Cura, Carolina I.; Mejía-Jaramillo, Ana M.; Duffy, Tomás; Burgos, Juan M.; Rodriguero, Marcela; Cardinal, Marta V.; Kjos, Sonia; Gurgel-Gonçalves, Rodrigo; Blanchet, Denis; De Pablos, Luis M.; Tomasini, Nicolás; Silva, Alex Da; Russomando, Graciela; Cuba Cuba, Cesar A.; Aznar, Christine; Abate, Teresa; Levin, Mariano J.; Osuna, Antonio; Gürtler, Ricardo E.; Diosque, Patricio; Solari, Aldo; Triana-Chávez, Omar; Schijman, Alejandro G.

    2011-01-01

    The intergenic region of spliced-leader (SL-IR) genes from 105 Trypanosoma cruzi I (Tc I) infected biological samples, culture isolates and stocks from 11 endemic countries, from Argentina to the USA were characterised, allowing identification of 76 genotypes with 54 polymorphic sites from 123 aligned sequences. On the basis of the microsatellite motif proposed by Herrera et al. (2007) to define four haplotypes in Colombia, we could classify these genotypes into four distinct Tc I SL-IR groups, three corresponding to the former haplotypes Ia (11 genotypes), Ib (11 genotypes) and Id (35 genotypes); and one novel group, Ie (19 genotypes). Genotypes harboring the Tc Ic motif were not detected in our study. Tc Ia was associated with domestic cycles in southern and northern South America and sylvatic cycles in Central and North America. Tc Ib was found in all transmission cycles from Colombia. Tc Id was identified in all transmission cycles from Argentina and Colombia, including Chagas cardiomyopathy patients, sylvatic Brazilian samples and human cases from French Guiana, Panama and Venezuela. Tc Ie gathered five samples from domestic Triatoma infestans from northern Argentina, nine samples from wild Mepraia spinolai and Mepraia gajardoi and two chagasic patients from Chile and one from a Bolivian patient with chagasic reactivation. Mixed infections by Tc Ia + Tc Id, Tc Ia + Tc Ie and Tc Id + Tc Ie were detected in vector faeces and isolates from human and vector samples. In addition, Tc Ia and Tc Id were identified in different tissues from a heart transplanted Chagas cardiomyopathy patient with reactivation, denoting histotropism. Trypanosoma cruzi I SL-IR genotypes from parasites infecting Triatoma gerstaeckeri and Didelphis virginiana from USA, T. infestans from Paraguay, Rhodnius nasutus and Rhodnius neglectus from Brazil and M. spinolai and M. gajardoi from Chile are to our knowledge described for the first time. PMID:20670628

  10. The capybara (Hydrochoerus hydrochaeris) as a reservoir host for Trypanosoma evansi.

    Science.gov (United States)

    Morales, G A; Wells, E A; Angel, D

    1976-10-01

    Discovery of two ill horses and three dogs naturally infected with Trypanosoma evansi near an experimental station in the Eastern Plains of Colombia led to a search for reservoir hosts of the parasite. Infection was detected in 8/33 healthy capybaras (Hydrochoerus hydrochaeris), none of the remaining 14 horses, and none of 32 Zebu cattle (Bos indicus), 18 paca (Cuniculus paca) and 20 spiny rats (Proechimys sp.). Contrary to common opinion, the results indicated a carrier state in the capybara. Diagnosis was based on morphology, behaviour in albino rats, and pathogenicity and host range in domestic animals.

  11. Metabolic labeling with (14C)-glucose of bloodstream and cell culture trypanosoma cruzi trypomastigotes:

    International Nuclear Information System (INIS)

    Lederkremer, R.M. de; Groisman, J.F.; Lima, C.; Katzin, A.

    1990-01-01

    Trypomastigote forms of Trypanosoma cruzi from infected mouse blood and from cell culture were metabolically labeled by incubation with D-( 14 C)-glucose. Analysis by polyacrylamide gel electrophoresis of lysates from parasites of two strains (RA and CA 1 ) showed a significantly different pattern. The difference was mainly quantitative when the blood and cell culture trypomastigotes of the RA strain were compared. Analysis of the culture medium by paper electrophoresis showed an anionic exometabolite only in the blood forms of both strains. (Author) [es

  12. Drug discovery for Chagas disease should consider Trypanosoma cruzi strain diversity

    Directory of Open Access Journals (Sweden)

    Bianca Zingales

    2014-09-01

    Full Text Available This opinion piece presents an approach to standardisation of an important aspect of Chagas disease drug discovery and development: selecting Trypanosoma cruzi strains for in vitro screening. We discuss the rationale for strain selection representing T. cruzi diversity and provide recommendations on the preferred parasite stage for drug discovery, T. cruzi discrete typing units to include in the panel of strains and the number of strains/clones for primary screens and lead compounds. We also consider experimental approaches for in vitro drug assays. The Figure illustrates the current Chagas disease drug-discovery and development landscape.

  13. Similarities and differences between helminth parasites and cancer cell lines in shaping human monocytes: Insights into parallel mechanisms of immune evasion.

    Directory of Open Access Journals (Sweden)

    Prakash Babu Narasimhan

    2018-04-01

    Full Text Available A number of features at the host-parasite interface are reminiscent of those that are also observed at the host-tumor interface. Both cancer cells and parasites establish a tissue microenvironment that allows for immune evasion and may reflect functional alterations of various innate cells. Here, we investigated how the phenotype and function of human monocytes is altered by exposure to cancer cell lines and if these functional and phenotypic alterations parallel those induced by exposure to helminth parasites. Thus, human monocytes were exposed to three different cancer cell lines (breast, ovarian, or glioblastoma or to live microfilariae (mf of Brugia malayi-a causative agent of lymphatic filariasis. After 2 days of co-culture, monocytes exposed to cancer cell lines showed markedly upregulated expression of M1-associated (TNF-α, IL-1β, M2-associated (CCL13, CD206, Mreg-associated (IL-10, TGF-β, and angiogenesis associated (MMP9, VEGF genes. Similar to cancer cell lines, but less dramatically, mf altered the mRNA expression of IL-1β, CCL13, TGM2 and MMP9. When surface expression of the inhibitory ligands PDL1 and PDL2 was assessed, monocytes exposed to both cancer cell lines and to live mf significantly upregulated PDL1 and PDL2 expression. In contrast to exposure to mf, exposure to cancer cell lines increased the phagocytic ability of monocytes and reduced their ability to induce T cell proliferation and to expand Granzyme A+ CD8+ T cells. Our data suggest that despite the fact that helminth parasites and cancer cell lines are extraordinarily disparate, they share the ability to alter the phenotype of human monocytes.

  14. Similarities and differences between helminth parasites and cancer cell lines in shaping human monocytes: Insights into parallel mechanisms of immune evasion.

    Science.gov (United States)

    Narasimhan, Prakash Babu; Akabas, Leor; Tariq, Sameha; Huda, Naureen; Bennuru, Sasisekhar; Sabzevari, Helen; Hofmeister, Robert; Nutman, Thomas B; Tolouei Semnani, Roshanak

    2018-04-01

    A number of features at the host-parasite interface are reminiscent of those that are also observed at the host-tumor interface. Both cancer cells and parasites establish a tissue microenvironment that allows for immune evasion and may reflect functional alterations of various innate cells. Here, we investigated how the phenotype and function of human monocytes is altered by exposure to cancer cell lines and if these functional and phenotypic alterations parallel those induced by exposure to helminth parasites. Thus, human monocytes were exposed to three different cancer cell lines (breast, ovarian, or glioblastoma) or to live microfilariae (mf) of Brugia malayi-a causative agent of lymphatic filariasis. After 2 days of co-culture, monocytes exposed to cancer cell lines showed markedly upregulated expression of M1-associated (TNF-α, IL-1β), M2-associated (CCL13, CD206), Mreg-associated (IL-10, TGF-β), and angiogenesis associated (MMP9, VEGF) genes. Similar to cancer cell lines, but less dramatically, mf altered the mRNA expression of IL-1β, CCL13, TGM2 and MMP9. When surface expression of the inhibitory ligands PDL1 and PDL2 was assessed, monocytes exposed to both cancer cell lines and to live mf significantly upregulated PDL1 and PDL2 expression. In contrast to exposure to mf, exposure to cancer cell lines increased the phagocytic ability of monocytes and reduced their ability to induce T cell proliferation and to expand Granzyme A+ CD8+ T cells. Our data suggest that despite the fact that helminth parasites and cancer cell lines are extraordinarily disparate, they share the ability to alter the phenotype of human monocytes.

  15. The transcriptome of Trichuris suis--first molecular insights into a parasite with curative properties for key immune diseases of humans.

    Directory of Open Access Journals (Sweden)

    Cinzia Cantacessi

    Full Text Available Iatrogenic infection of humans with Trichuris suis (a parasitic nematode of swine is being evaluated or promoted as a biological, curative treatment of immune diseases, such as inflammatory bowel disease (IBD and ulcerative colitis, in humans. Although it is understood that short-term T. suis infection in people with such diseases usually induces a modified Th2-immune response, nothing is known about the molecules in the parasite that induce this response.As a first step toward filling the gaps in our knowledge of the molecular biology of T. suis, we characterised the transcriptome of the adult stage of this nematode employing next-generation sequencing and bioinformatic techniques. A total of ∼65,000,000 reads were generated and assembled into ∼20,000 contiguous sequences ( = contigs; ∼17,000 peptides were predicted and classified based on homology searches, protein motifs and gene ontology and biological pathway mapping.These analyses provided interesting insights into a number of molecular groups, particularly predicted excreted/secreted molecules (n = 1,288, likely to be involved in the parasite-host interactions, and also various molecules (n = 120 linked to chemokine, T-cell receptor and TGF-β signalling as well as leukocyte transendothelial migration and natural killer cell-mediated cytotoxicity, which are likely to be immuno-regulatory or -modulatory in the infected host. This information provides a conceptual framework within which to test the immunobiological basis for the curative effect of T. suis infection in humans against some immune diseases. Importantly, the T. suis transcriptome characterised herein provides a curated resource for detailed studies of the immuno-molecular biology of this parasite, and will underpin future genomic and proteomic explorations.

  16. Proteome remodelling during development from blood to insect-form Trypanosoma brucei quantified by SILAC and mass spectrometry

    Directory of Open Access Journals (Sweden)

    Gunasekera Kapila

    2012-10-01

    Full Text Available Abstract Background Trypanosoma brucei is the causative agent of human African sleeping sickness and Nagana in cattle. In addition to being an important pathogen T. brucei has developed into a model system in cell biology. Results Using Stable Isotope Labelling of Amino acids in Cell culture (SILAC in combination with mass spectrometry we determined the abundance of >1600 proteins in the long slender (LS, short stumpy (SS mammalian bloodstream form stages relative to the procyclic (PC insect-form stage. In total we identified 2645 proteins, corresponding to ~30% of the total proteome and for the first time present a comprehensive overview of relative protein levels in three life stages of the parasite. Conclusions We can show the extent of pre-adaptation in the SS cells, especially at the level of the mitochondrial proteome. The comparison to a previously published report on monomorphic in vitro grown bloodstream and procyclic T. brucei indicates a loss of stringent regulation particularly of mitochondrial proteins in these cells when compared to the pleomorphic in vivo situation. In order to better understand the different levels of gene expression regulation in this organism we compared mRNA steady state abundance with the relative protein abundance-changes and detected moderate but significant correlation indicating that trypanosomes possess a significant repertoire of translational and posttranslational mechanisms to regulate protein abundance.

  17. THE USE OF MULTIPLE DISPLACEMENT AMPLIFICATION TO INCREASE THE DETECTION AND GENOTYPING OF TRYPANOSOMA SPECIES SAMPLES IMMOBILISED ON FTA FILTERS

    Science.gov (United States)

    MORRISON, LIAM J.; McCORMACK, GILLIAN; SWEENEY, LINDSAY; LIKEUFACK, ANNE C. L.; TRUC, PHILIPPE; TURNER, C. MICHAEL; TAIT, ANDY; MacLEOD, ANNETTE

    2007-01-01

    Whole genome amplification methods are a recently developed tool for amplifying DNA from limited template. We report its application in trypanosome infections, characterised by low parasitaemias. Multiple Displacement Amplification (MDA) amplifies DNA with a simple in vitro step, and was evaluated on mouse blood samples on FTA filter cards with known numbers of Trypanosoma brucei parasites. The data showed a twenty-fold increase in the number of PCRs possible per sample, using primers diagnostic for the multi-copy ribosomal ITS region or 177 bp repeats, and a twenty-fold increase in sensitivity over nested PCR against a single copy microsatellite. Using MDA for microsatellite genotyping caused allele dropout at low DNA concentrations, which was overcome by pooling multiple MDA reactions. The validity of using MDA was established with samples from Human African Trypanosomiasis patients. The use of MDA allows maximal use of finite DNA samples and may prove a valuable tool in studies where multiple reactions are necessary, such as population genetic analyses. PMID:17556624

  18. IL-6 is Upregulated in Late-Stage Disease in Monkeys Experimentally Infected with Trypanosoma brucei rhodesiense

    Directory of Open Access Journals (Sweden)

    Dawn Nyawira Maranga

    2013-01-01

    Full Text Available The management of human African trypanosomiasis (HAT is constrained by lack of simple-to-use diagnostic, staging, and treatment tools. The search for novel biomarkers is, therefore, essential in the fight against HAT. The current study aimed at investigating the potential of IL-6 as an adjunct parameter for HAT stage determination in vervet monkey model. Four adult vervet monkeys (Chlorocebus aethiops were experimentally infected with Trypanosoma brucei rhodesiense and treated subcuratively at 28 days after infection (dpi to induce late stage disease. Three noninfected monkeys formed the control group. Cerebrospinal fluid (CSF and blood samples were obtained at weekly intervals and assessed for various biological parameters. A typical HAT-like infection was observed. The late stage was characterized by significant (P<0.05 elevation of CSF IL-6, white blood cell count, and total protein starting 35 dpi with peak levels of these parameters coinciding with relapse parasitaemia. Brain immunohistochemical staining revealed an increase in brain glial fibrillary acidic protein expression indicative of reactive astrogliosis in infected animals which were euthanized in late-stage disease. The elevation of IL-6 in CSF which accompanied other HAT biomarkers indicates onset of parasite neuroinvasion and show potential for use as an adjunct late-stage disease biomarker in the Rhodesian sleeping sickness.

  19. Probing the metabolic network in bloodstream-form Trypanosoma brucei using untargeted metabolomics with stable isotope labelled glucose.

    Directory of Open Access Journals (Sweden)

    Darren J Creek

    2015-03-01

    Full Text Available Metabolomics coupled with heavy-atom isotope-labelled glucose has been used to probe the metabolic pathways active in cultured bloodstream form trypomastigotes of Trypanosoma brucei, a parasite responsible for human African trypanosomiasis. Glucose enters many branches of metabolism beyond glycolysis, which has been widely held to be the sole route of glucose metabolism. Whilst pyruvate is the major end-product of glucose catabolism, its transamination product, alanine, is also produced in significant quantities. The oxidative branch of the pentose phosphate pathway is operative, although the non-oxidative branch is not. Ribose 5-phosphate generated through this pathway distributes widely into nucleotide synthesis and other branches of metabolism. Acetate, derived from glucose, is found associated with a range of acetylated amino acids and, to a lesser extent, fatty acids; while labelled glycerol is found in many glycerophospholipids. Glucose also enters inositol and several sugar nucleotides that serve as precursors to macromolecule biosynthesis. Although a Krebs cycle is not operative, malate, fumarate and succinate, primarily labelled in three carbons, were present, indicating an origin from phosphoenolpyruvate via oxaloacetate. Interestingly, the enzyme responsible for conversion of phosphoenolpyruvate to oxaloacetate, phosphoenolpyruvate carboxykinase, was shown to be essential to the bloodstream form trypanosomes, as demonstrated by the lethal phenotype induced by RNAi-mediated downregulation of its expression. In addition, glucose derivatives enter pyrimidine biosynthesis via oxaloacetate as a precursor to aspartate and orotate.

  20. Abietane-Type Diterpenoid Amides with Highly Potent and Selective Activity against Leishmania donovani and Trypanosoma cruzi.

    Science.gov (United States)

    Pirttimaa, Minni; Nasereddin, Abedelmajeed; Kopelyanskiy, Dmitry; Kaiser, Marcel; Yli-Kauhaluoma, Jari; Oksman-Caldentey, Kirsi-Marja; Brun, Reto; Jaffe, Charles L; Moreira, Vânia M; Alakurtti, Sami

    2016-02-26

    Dehydroabietylamine (1) was used as a starting material to synthesize a small library of dehydroabietyl amides by simple and facile methods, and their activities against two disease-causing trypanosomatids, namely, Leishmania donovani and Trypanosoma cruzi, were assayed. The most potent compound, 10, an amide of dehydroabietylamine and acrylic acid, was found to be highly potent against these parasites, displaying an IC50 value of 0.37 μM against L. donovani axenic amastigotes and an outstanding selectivity index of 63. Moreover, compound 10 fully inhibited the growth of intracellular amastigotes in Leishmania donovani-infected human macrophages with a low IC50 value of 0.06 μM. This compound was also highly effective against T. cruzi amastigotes residing in L6 cells with an IC50 value of 0.6 μM and high selectivity index of 58, being 3.5 times more potent than the reference compound benznidazole. The potent activity of this compound and its relatively low cytotoxicity make it attractive for further development in pursuit of better drugs for patients suffering from leishmaniasis and Chagas disease.

  1. Transcriptome-wide analysis of the Trypanosoma cruzi proliferative cycle identifies the periodically expressed mRNAs and their multiple levels of control.

    Directory of Open Access Journals (Sweden)

    Santiago Chávez

    Full Text Available Trypanosoma cruzi is the protozoan parasite causing American trypanosomiasis or Chagas disease, a neglected parasitosis with important human health impact in Latin America. The efficacy of current therapy is limited, and its toxicity is high. Since parasite proliferation is a fundamental target for rational drug design, we sought to progress into its understanding by applying a genome-wide approach. Treating a TcI linage strain with hydroxyurea, we isolated epimastigotes in late G1, S and G2/M cell cycle stages at 70% purity. The sequencing of each phase identified 305 stage-specific transcripts (1.5-fold change, p≤0.01, coding for conserved cell cycle regulated proteins and numerous proteins whose cell cycle dependence has not been recognized before. Comparisons with the parasite T. brucei and the human host reveal important differences. The meta-analysis of T. cruzi transcriptomic and ribonomic data indicates that cell cycle regulated mRNAs are subject to sub-cellular compartmentalization. Compositional and structural biases of these genes- including CAI, GC content, UTR length, and polycistron position- may contribute to their regulation. To discover nucleotide motifs responsible for the co-regulation of cell cycle regulated genes, we looked for overrepresented motifs at their UTRs and found a variant of the cell cycle sequence motif at the 3' UTR of most of the S and G2 stage genes. We additionally identified hairpin structures at the 5' UTRs of a high proportion of the transcripts, suggesting that periodic gene expression might also rely on translation initiation in T. cruzi. In summary, we report a comprehensive list of T. cruzi cell cycle regulated genes, including many previously unstudied proteins, we show evidence favoring a multi-step control of their expression, and we identify mRNA motifs that may mediate their regulation. Our results provide novel information of the T. cruzi proliferative proteins and the integrated levels of

  2. Rapid, Selection-Free, High-Efficiency Genome Editing in Protozoan Parasites Using CRISPR-Cas9 Ribonucleoproteins

    Directory of Open Access Journals (Sweden)

    Lia Carolina Soares Medeiros

    2017-11-01

    Full Text Available Trypanosomatids (order Kinetoplastida, including the human pathogens Trypanosoma cruzi (agent of Chagas disease, Trypanosoma brucei, (African sleeping sickness, and Leishmania (leishmaniasis, affect millions of people and animals globally. T. cruzi is considered one of the least studied and most poorly understood tropical disease-causing parasites, in part because of the relative lack of facile genetic engineering tools. This situation has improved recently through the application of clustered regularly interspaced short palindromic repeats–CRISPR-associated protein 9 (CRISPR-Cas9 technology, but a number of limitations remain, including the toxicity of continuous Cas9 expression and the long drug marker selection times. In this study, we show that the delivery of ribonucleoprotein (RNP complexes composed of recombinant Cas9 from Staphylococcus aureus (SaCas9, but not from the more routinely used Streptococcus pyogenes Cas9 (SpCas9, and in vitro-transcribed single guide RNAs (sgRNAs results in rapid gene edits in T. cruzi and other kinetoplastids at frequencies approaching 100%. The highly efficient genome editing via SaCas9/sgRNA RNPs was obtained for both reporter and endogenous genes and observed in multiple parasite life cycle stages in various strains of T. cruzi, as well as in T. brucei and Leishmania major. RNP complex delivery was also used to successfully tag proteins at endogenous loci and to assess the biological functions of essential genes. Thus, the use of SaCas9 RNP complexes for gene editing in kinetoplastids provides a simple, rapid, and cloning- and selection-free method to assess gene function in these important human pathogens.

  3. Melatonin-Induced Temporal Up-Regulation of Gene Expression Related to Ubiquitin/Proteasome System (UPS in the Human Malaria Parasite Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Fernanda C. Koyama

    2014-12-01

    Full Text Available There is an increasing understanding that melatonin and the ubiquitin/ proteasome system (UPS interact to regulate multiple cellular functions. Post-translational modifications such as ubiquitination are important modulators of signaling processes, cell cycle and many other cellular functions. Previously, we reported a melatonin-induced upregulation of gene expression related to ubiquitin/proteasome system (UPS in Plasmodium falciparum, the human malaria parasite, and that P. falciparum protein kinase 7 influences this process. This implies a role of melatonin, an indolamine, in modulating intraerythrocytic development of the parasite. In this report we demonstrate by qPCR analysis, that melatonin induces gene upregulation in nine out of fourteen genes of the UPS, consisting of the same set of genes previously reported, between 4 to 5 h after melatonin treatment. We demonstrate that melatonin causes a temporally controlled gene expression of UPS members.

  4. Sialic Acid Glycobiology Unveils Trypanosoma cruzi Trypomastigote Membrane Physiology.

    Directory of Open Access Journals (Sweden)

    Andrés B Lantos

    2016-04-01

    Full Text Available Trypanosoma cruzi, the flagellate protozoan agent of Chagas disease or American trypanosomiasis, is unable to synthesize sialic acids de novo. Mucins and trans-sialidase (TS are substrate and enzyme, respectively, of the glycobiological system that scavenges sialic acid from the host in a crucial interplay for T. cruzi life cycle. The acquisition of the sialyl residue allows the parasite to avoid lysis by serum factors and to interact with the host cell. A major drawback to studying the sialylation kinetics and turnover of the trypomastigote glycoconjugates is the difficulty to identify and follow the recently acquired sialyl residues. To tackle this issue, we followed an unnatural sugar approach as bioorthogonal chemical reporters, where the use of azidosialyl residues allowed identifying the acquired sugar. Advanced microscopy techniques, together with biochemical methods, were used to study the trypomastigote membrane from its glycobiological perspective. Main sialyl acceptors were identified as mucins by biochemical procedures and protein markers. Together with determining their shedding and turnover rates, we also report that several membrane proteins, including TS and its substrates, both glycosylphosphatidylinositol-anchored proteins, are separately distributed on parasite surface and contained in different and highly stable membrane microdomains. Notably, labeling for α(1,3Galactosyl residues only partially colocalize with sialylated mucins, indicating that two species of glycosylated mucins do exist, which are segregated at the parasite surface. Moreover, sialylated mucins were included in lipid-raft-domains, whereas TS molecules are not. The location of the surface-anchored TS resulted too far off as to be capable to sialylate mucins, a role played by the shed TS instead. Phosphatidylinositol-phospholipase-C activity is actually not present in trypomastigotes. Therefore, shedding of TS occurs via microvesicles instead of as a fully

  5. Functional characterization of 8-oxoguanine DNA glycosylase of Trypanosoma cruzi.

    Directory of Open Access Journals (Sweden)

    Carolina Furtado

    Full Text Available The oxidative lesion 8-oxoguanine (8-oxoG is removed during base excision repair by the 8-oxoguanine DNA glycosylase 1 (Ogg1. This lesion can erroneously pair with adenine, and the excision of this damaged base by Ogg1 enables the insertion of a guanine and prevents DNA mutation. In this report, we identified and characterized Ogg1 from the protozoan parasite Trypanosoma cruzi (TcOgg1, the causative agent of Chagas disease. Like most living organisms, T. cruzi is susceptible to oxidative stress, hence DNA repair is essential for its survival and improvement of infection. We verified that the TcOGG1 gene encodes an 8-oxoG DNA glycosylase by complementing an Ogg1-defective Saccharomyces cerevisiae strain. Heterologous expression of TcOGG1 reestablished the mutation frequency of the yeast mutant ogg1(-/- (CD138 to wild type levels. We also demonstrate that the overexpression of TcOGG1 increases T. cruzi sensitivity to hydrogen peroxide (H(2O(2. Analysis of DNA lesions using quantitative PCR suggests that the increased susceptibility to H(2O(2 of TcOGG1-overexpressor could be a consequence of uncoupled BER in abasic sites and/or strand breaks generated after TcOgg1 removes 8-oxoG, which are not rapidly repaired by the subsequent BER enzymes. This hypothesis is supported by the observation that TcOGG1-overexpressors have reduced levels of 8-oxoG both in the nucleus and in the parasite mitochondrion. The localization of TcOgg1 was examined in parasite transfected with a TcOgg1-GFP fusion, which confirmed that this enzyme is in both organelles. Taken together, our data indicate that T. cruzi has a functional Ogg1 ortholog that participates in nuclear and mitochondrial BER.

  6. Internal parasites of reptiles.

    Science.gov (United States)

    Raś-Noryńska, Małgorzata; Sokół, Rajmund

    2015-01-01

    Nowadays a growing number of exotic reptiles are kept as pets. The aim of this study was to determine the species of parasites found in reptile patients of veterinary practices in Poland. Fecal samples obtained from 76 lizards, 15 turtles and 10 snakes were examined by flotation method and direct smear stained with Lugol's iodine. In 63 samples (62.4%) the presence of parasite eggs and oocysts was revealed. Oocysts of Isospora spp. (from 33% to 100% of the samples, depending on the reptilian species) and Oxyurids eggs (10% to 75%) were predominant. In addition, isolated Eimeria spp. oocysts and Giardia intestinalis cysts were found, as well as Strongylus spp. and Hymenolepis spp. eggs. Pet reptiles are often infected with parasites, some of which are potentially dangerous to humans. A routine parasitological examination should be done in such animals.

  7. Gastrointestinal helminth parasites of pet and stray dogs as a potential risk for human health in Bahir Dar town, north-western Ethiopia

    Directory of Open Access Journals (Sweden)

    Tadiwos Abere

    Full Text Available Aim: A cross-sectional study was carried out from November 2011 to April 2012 to determine the prevalence and species of gastrointestinal (GI helminth parasites in pet and stray dogs as a potential risk for human health in Bahir Dar town, northwestern Ethiopia. Materials and Methods: A total of 384 and 46 faecal samples were collected from pet and stray dogs, respectively and xamined by using standard coprologic techniques. Results: The overall prevalence of GI helminth infection in pet and stray dogs was 75.26 and 84.78%, respectively. The detected parasites with their frequencies in pet dogs were Ancylostoma caninum (78.89%, Toxocara canis (39.79%, Dipylidium caninum (29.75%, Strongyloides stercoralis (29.06%, Taeniidae (23.87% and Trichuris vulpis (7.95%. Stray dogs were found more likely to be polyparasitized and presented higher prevalence of A. caninum, T. canis, S. stercoralis, Trichuris vulpis and Taeniidae (P < 0.05 than domiciled ones. Diphyllobothrium latum was detected only in 10.25% of stray dogs. Toxocara canis and A. caninum (P < 0.05 were detected more frequently in dogs with less than 6 months of age (P <0.05 than old age dogs. The sex or breed groups didn't significantly affect the prevalence of parasites. A significant variation was recorded (P < 0.05 between different feeding systems where higher prevalence was observed in uncontrolled feeding group (82.18% compared to controlled feeding (32.08%. Conclusion: Different gastrointestinal parasites in pet and stray dogs were identified in the study area that can potentially infect humans and cause serious public-health problems. Thus, concerted efforts should therefore be made to educate dog owners to embrace modern dog disease control programs and measures have to be taken on stray dogs. [Vet World 2013; 6(7.000: 388-392

  8. Infection rates and genotypes of Trypanosoma rangeli and T. cruzi infecting free-ranging Saguinus bicolor (Callitrichidae), a critically endangered primate of the Amazon Rainforest.

    Science.gov (United States)

    Maia da Silva, F; Naiff, R D; Marcili, A; Gordo, M; D'Affonseca Neto, J A; Naiff, M F; Franco, A M R; Campaner, M; Valente, V; Valente, S A; Camargo, E P; Teixeira, M M G; Miles, M A

    2008-08-01

    Parasites of wild primates are important for conservation biology and human health due to their high potential to infect humans. In the Amazon region, non-human primates are commonly infected by Trypanosoma cruzi and T. rangeli, which are also infective to man and several mammals. This is the first survey of trypanosomiasis in a critically endangered species of tamarin, Saguinus bicolor (Callitrichidae), from the Brazilian Amazon Rainforest. Of the 96 free-ranging specimens of S. bicolor examined 45 (46.8%) yielded blood smears positive for trypanosomes. T. rangeli was detected in blood smears of 38 monkeys (39.6%) whereas T. cruzi was never detected. Seven animals (7.3%) presented trypanosomes of the subgenus Megatrypanum. Hemocultures detected 84 positive tamarins (87.5%). Seventy-two of 84 (85.7%) were morphologically diagnosed as T. rangeli and 3 (3.1%) as T. cruzi. Nine tamarins (9.4%) yielded mixed cultures of these two species, which after successive passages generated six cultures exclusively of T. cruzi and two of T. rangeli, with only one culture remaining mixed. Of the 72 cultures positive for T. rangeli, 62 remained as established cultures and were genotyped: 8 were assigned to phylogenetic lineage A (12.9%) and 54 to lineage B (87.1%). Ten established cultures of T. cruzi were genotyped as TCI lineage (100%). Transmission of both trypanosome species, their potential risk to this endangered species and the role of wild primates as reservoirs for trypanosomes infective to humans are discussed.

  9. Ethyl Pyruvate Emerges as a Safe and Fast Acting Agent against Trypanosoma brucei by Targeting Pyruvate Kinase Activity.

    Directory of Open Access Journals (Sweden)

    Netsanet Worku

    Full Text Available Human African Trypanosomiasis (HAT also called sleeping sickness is an infectious disease in humans caused by an extracellular protozoan parasite. The disease, if left untreated, results in 100% mortality. Currently available drugs are full of severe drawbacks and fail to escape the fast development of trypanosoma resistance. Due to similarities in cell metabolism between cancerous tumors and trypanosoma cells, some of the current registered drugs against HAT have also been tested in cancer chemotherapy. Here we demonstrate for the first time that the simple ester, ethyl pyruvate, comprises such properties.The current study covers the efficacy and corresponding target evaluation of ethyl pyruvate on T. brucei cell lines using a combination of biochemical techniques including cell proliferation assays, enzyme kinetics, phasecontrast microscopic video imaging and ex vivo toxicity tests. We have shown that ethyl pyruvate effectively kills trypanosomes most probably by net ATP depletion through inhibition of pyruvate kinase (Ki = 3.0±0.29 mM. The potential of ethyl pyruvate as a trypanocidal compound is also strengthened by its fast acting property, killing cells within three hours post exposure. This has been demonstrated using video imaging of live cells as well as concentration and time dependency experiments. Most importantly, ethyl pyruvate produces minimal side effects in human red cells and is known to easily cross the blood-brain-barrier. This makes it a promising candidate for effective treatment of the two clinical stages of sleeping sickness. Trypanosome drug-resistance tests indicate irreversible cell death and a low incidence of resistance development under experimental conditions.Our results present ethyl pyruvate as a safe and fast acting trypanocidal compound and show that it inhibits the enzyme pyruvate kinase. Competitive inhibition of this enzyme was found to cause ATP depletion and cell death. Due to its ability to easily cross

  10. Genetic and structural study of DNA-directed RNA polymerase II of Trypanosoma brucei, towards the designing of novel antiparasitic agents

    Directory of Open Access Journals (Sweden)

    Louis Papageorgiou

    2017-03-01

    Full Text Available Trypanosoma brucei brucei (TBB belongs to the unicellular parasitic protozoa organisms, specifically to the Trypanosoma genus of the Trypanosomatidae class. A variety of different vertebrate species can be infected by TBB, including humans and animals. Under particular conditions, the TBB can be hosted by wild and domestic animals; therefore, an important reservoir of infection always remains available to transmit through tsetse flies. Although the TBB parasite is one of the leading causes of death in the most underdeveloped countries, to date there is neither vaccination available nor any drug against TBB infection. The subunit RPB1 of the TBB DNA-directed RNA polymerase II (DdRpII constitutes an ideal target for the design of novel inhibitors, since it is instrumental role is vital for the parasite’s survival, proliferation, and transmission. A major goal of the described study is to provide insights for novel anti-TBB agents via a state-of-the-art drug discovery approach of the TBB DdRpII RPB1. In an attempt to understand the function and action mechanisms of this parasite enzyme related to its molecular structure, an in-depth evolutionary study has been conducted in parallel to the in silico molecular designing of the 3D enzyme model, based on state-of-the-art comparative modelling and molecular dynamics techniques. Based on the evolutionary studies results nine new invariant, first-time reported, highly conserved regions have been identified within the DdRpII family enzymes. Consequently, those patches have been examined both at the sequence and structural level and have been evaluated in regard to their pharmacological targeting appropriateness. Finally, the pharmacophore elucidation study enabled us to virtually in silico screen hundreds of compounds and evaluate their interaction capabilities with the enzyme. It was found that a series of chlorine-rich set of compounds were the optimal inhibitors for the TBB DdRpII RPB1 enzyme. All

  11. Experimental infection of two South American reservoirs with four distinct strains of Trypanosoma cruzi

    Science.gov (United States)

    Roellig, Dawn M.; McMillan, Katherine; Ellis, Angela E.; Vandeberg, John L.; Champagne, Donald E.; Yabsley, Michael J.

    2010-01-01

    SUMMARY Trypanosoma cruzi (Tc), the causative agent of Chagas disease, is a diverse species with 2 primary genotypes, TcI and TcII, with TcII further subdivided into 5 subtypes (IIa–e). This study evaluated infection dynamics of 4 genetically and geographically diverse T. cruzi strains in 2 South American reservoirs, degus (Octodon degus) and grey short-tailed opossums (Monodelphis domestica). Based on prior suggestions of a genotype-host association, we hypothesized that degus (placental) would more readily become infected with TcII strains while short-tailed opossums (marsupial) would be a more competent reservoir for a TcI strain. Individuals (n = 3) of each species were intraperitoneally inoculated with T. cruzi trypomastigotes of TcIIa [North America (NA)-raccoon (Procyon lotor) origin], TcI [NA-Virginia opossum (Didelphis virginiana)], TcIIb [South America (SA)-human], TcIIe (SA-Triatoma infestans), or both TcI and TcIIa. Parasitaemias in experimentally infected degus peaked earlier (7–14 days post-inoculation (p.i.)) compared with short-tailed opossums (21–84 days p.i.). Additionally, peak parasitaemias were higher in degus; however, the duration of detectable parasitaemias for all strains, except TcIIa, was greater in short-tailed opossums. Infections established in both host species with all genotypes, except for TcIIa, which did not establish a detectable infection in short-tailed opossums. These results indicate that both South American reservoirs support infections with these isolates from North and South America; however, infection dynamics differed with host and parasite strain. PMID:20128943

  12. Association of Trypanosoma cruzi infection with risk factors and electrocardiographic abnormalities in northeast Mexico

    Science.gov (United States)

    2014-01-01

    Background American trypanosomiasis is a major disease and public health issue, caused by the protozoan parasite Trypanosoma cruzi. The prevalence of T. cruzi has not been fully documented, and there are few reports of this issue in Nuevo Leon. The aim of this study was to update the seroprevalence rate of T. cruzi infection, including an epidemiological analysis of the risk factors associated with this infection and an electrocardiographic (ECG) evaluation of those infected. Methods Sera from 2,688 individuals from 10 municipalities in the state of Nuevo Leon, Mexico, were evaluated using an enzyme-linked immunosorbent assay and an indirect hemagglutination assay. An ECG case–control study was performed in subjects seropositive for T. cruzi and the results were matched by sex and age to seronegative residents of the same localities. A univariate analysis with χ2 and Fisher’s exact tests was used to determine the association between seropositivity and age (years), sex, and ECG changes. A multivariate analysis was then performed to calculate the odd ratios between T. cruzi seropositivity and the risk factors. Results The seropositive rate was 1.93% (52/2,688). In the ECG study, 22.85% (8/35) of the infected individuals exhibited ECG abnormalities. Triatoma gerstaeckeri was the only vector reported. The main risk factors were ceiling construction material (P ≤ 0.0024), domestic animals (P ≤ 0.0001), and living in rural municipalities (P ≤ 0.0025). Conclusions These findings demonstrate a 10-fold higher prevalence of Chagas disease than previously reported (0.2%), which implies a serious public health threat in northeastern Mexico. The epidemiological profile established in this study differs from that found in the rest of Mexico, where human populations live in close proximity to domiciliary triatomines. PMID:24580840

  13. Temporizin and Temporizin-1 Peptides as Novel Candidates for Eliminating Trypanosoma cruzi.

    Directory of Open Access Journals (Sweden)

    André L A Souza

    Full Text Available Tropical diseases caused by parasitic infections continue to cause socioeconomic distress worldwide. Among these, Chagas disease has become a great concern because of globalization. Caused by Trypanosoma cruzi, there is an increasing need to discover new, more effective methods to manage infections that minimize disease onset. Antimicrobial peptides represent a possible solution to this challenge. As effector molecules of the innate immune response against pathogens, they are the first line of defense found in all multi-cellular organisms. In amphibians, temporins are a large family of antimicrobial peptides found in skin secretions. Their functional roles and modes of action present unique properties that indicate possible candidates for therapeutic applications. Here, we investigated the trypanocide activity of temporizin and temporizin-1. Temporizin is an artificial, hybrid peptide containing the N-terminal region of temporin A, the pore-forming region of gramicidin and a C-terminus consisting of alternating leucine and lysine. Temporizin-1 is a modification of temporizin with a reduction in the region responsible for insertion into membranes. Their activities were evaluated in a cell permeabilization assay by flow cytometry, an LDH release assay, electron microscopy, an MTT assay and patch clamp experiments. Both temporizin and temporizin-1 demonstrated toxicity against T. cruzi with temporizin displaying slightly more potency. At concentrations up to 100 μg/ ml, both peptides exhibited low toxicity in J774 cells, a macrophage lineage cell line, and no toxicity was observed in mouse primary peritoneal macrophages. In contrast, the peptides showed some toxicity in rat adenoma GH3 cells and Jurkat human lymphoma cells with temporizin-1 displaying lower toxicity. In summary, a shortened form of the hybrid temporizin peptide, temporizin-1, was efficient at killing T. cruzi and it has low toxicity in wild-type mammalian cells. These data suggest

  14. Crystal Structures of Trypanosoma cruzi UDP-Galactopyranose Mutase Implicate Flexibility of the Histidine Loop in Enzyme Activation

    Energy Technology Data Exchange (ETDEWEB)

    Dhatwalia, Richa; Singh, Harkewal; Oppenheimer, Michelle; Sobrado, Pablo; Tanner, John J. (Virginia Tech); (UMC)

    2012-11-01

    Chagas disease is a neglected tropical disease caused by the protozoan parasite Trypanosoma cruzi. Here we report crystal structures of the galactofuranose biosynthetic enzyme UDP-galactopyranose mutase (UGM) from T. cruzi, which are the first structures of this enzyme from a protozoan parasite. UGM is an attractive target for drug design because galactofuranose is absent in humans but is an essential component of key glycoproteins and glycolipids in trypanosomatids. Analysis of the enzyme-UDP noncovalent interactions and sequence alignments suggests that substrate recognition is exquisitely conserved among eukaryotic UGMs and distinct from that of bacterial UGMs. This observation has implications for inhibitor design. Activation of the enzyme via reduction of the FAD induces profound conformational changes, including a 2.3 {angstrom} movement of the histidine loop (Gly60-Gly61-His62), rotation and protonation of the imidazole of His62, and cooperative movement of residues located on the si face of the FAD. Interestingly, these changes are substantially different from those described for Aspergillus fumigatus UGM, which is 45% identical to T. cruzi UGM. The importance of Gly61 and His62 for enzymatic activity was studied with the site-directed mutant enzymes G61A, G61P, and H62A. These mutations lower the catalytic efficiency by factors of 10-50, primarily by decreasing k{sub cat}. Considered together, the structural, kinetic, and sequence data suggest that the middle Gly of the histidine loop imparts flexibility that is essential for activation of eukaryotic UGMs. Our results provide new information about UGM biochemistry and suggest a unified strategy for designing inhibitors of UGMs from the eukaryotic pathogens.

  15. Crystal structures of Trypanosoma cruzi UDP-galactopyranose mutase implicate flexibility of the histidine loop in enzyme activation.

    Science.gov (United States)

    Dhatwalia, Richa; Singh, Harkewal; Oppenheimer, Michelle; Sobrado, Pablo; Tanner, John J

    2012-06-19

    Chagas disease is a neglected tropical disease caused by the protozoan parasite Trypanosoma cruzi. Here we report crystal structures of the galactofuranose biosynthetic enzyme UDP-galactopyranose mutase (UGM) from T. cruzi, which are the first structures of this enzyme from a protozoan parasite. UGM is an attractive target for drug design because galactofuranose is absent in humans but is an essential component of key glycoproteins and glycolipids in trypanosomatids. Analysis of the enzyme-UDP noncovalent interactions and sequence alignments suggests that substrate recognition is exquisitely conserved among eukaryotic UGMs and distinct from that of bacterial UGMs. This observation has implications for inhibitor design. Activation of the enzyme via reduction of the FAD induces profound conformational changes, including a 2.3 Å movement of the histidine loop (Gly60-Gly61-His62), rotation and protonation of the imidazole of His62, and cooperative movement of residues located on the si face of the FAD. Interestingly, these changes are substantially different from those described for Aspergillus fumigatus UGM, which is 45% identical to T. cruzi UGM. The importance of Gly61 and His62 for enzymatic activity was studied with the site-directed mutant enzymes G61A, G61P, and H62A. These mutations lower the catalytic efficiency by factors of 10-50, primarily by decreasing k(cat). Considered together, the structural, kinetic, and sequence data suggest that the middle Gly of the histidine loop imparts flexibility that is essential for activation of eukaryotic UGMs. Our results provide new information about UGM biochemistry and suggest a unified strategy for designing inhibitors of UGMs from the eukaryotic pathogens.

  16. Assembly of highly repetitive genomes using short reads: the genome of discrete typing unit III Trypanosoma cruzi strain 231.

    Science.gov (United States)

    Baptista, Rodrigo P; Reis-Cunha, Joao Luis; DeBarry, Jeremy D; Chiari, Egler; Kissinger, Jessica C; Bartholomeu, Daniella C; Macedo, Andrea M

    2018-02-14

    Next-generation sequencing (NGS) methods are low-cost high-throughput technologies that produce thousands to millions of sequence reads. Despite the high number of raw sequence reads, their short length, relative to Sanger, PacBio or Nanopore reads, complicates the assembly of genomic repeats. Many genome tools are available, but the assembly of highly repetitive genome sequences using only NGS short reads remains challenging. Genome assembly of organisms responsible for important neglected diseases such as Trypanosoma cruzi, the aetiological agent of Chagas disease, is known to be challenging because of their repetitive nature. Only three of six recognized discrete typing units (DTUs) of the parasite have their draft genomes published and therefore genome evolution analyses in the taxon are limited. In this study, we developed a computational workflow to assemble highly repetitive genomes via a combination of de novo and reference-based assembly strategies to better overcome the intrinsic limitations of each, based on Illumina reads. The highly repetitive genome of the human-infecting parasite T. cruzi 231 strain was used as a test subject. The combined-assembly approach shown in this study benefits from the reference-based assembly ability to resolve highly repetitive sequences and from the de novo capacity to assemble genome-specific regions, improving the quality of the assembly. The acceptable confidence obtained by analyzing our results showed that our combined approach is an attractive option to assemble highly repetitive genomes with NGS short reads. Phylogenomic analysis including the 231 strain, the first representative of DTU III whose genome was sequenced, was also performed and provides new insights into T. cruzi genome evolution.

  17. Functional and structural insights revealed by molecular dynamics simulations of an essential RNA editing ligase in Trypanosoma brucei.

    Directory of Open Access Journals (Sweden)

    Rommie E Amaro

    2007-11-01

    Full Text Available RNA editing ligase 1 (TbREL1 is required for the survival of both the insect and bloodstream forms of Trypanosoma brucei, the parasite responsible for the devastating tropical disease African sleeping sickness. The type of RNA editing that TbREL1 is involved in is unique to the trypanosomes, and no close human homolog is known to exist. In addition, the high-resolution crystal structure revealed several unique features of the active site, making this enzyme a promising target for structure-based drug design. In this work, two 20 ns atomistic molecular dynamics (MD simulations are employed to investigate the dynamics of TbREL1, both with and without the ATP substrate present. The flexibility of the active site, dynamics of conserved residues and crystallized water molecules, and the interactions between TbREL1 and the ATP substrate are investigated and discussed in the context of TbREL1's function. Differences in local and global motion upon ATP binding suggest that two peripheral loops, unique to the trypanosomes, may be involved in interdomain signaling events. Notably, a significant structural rearrangement of the enzyme's active site occurs during the apo simulations, opening an additional cavity adjacent to the ATP binding site that could be exploited in the development of effective inhibitors directed against this protozoan parasite. Finally, ensemble averaged electrostatics calculations over the MD simulations reveal a novel putative RNA binding site, a discovery that has previously eluded scientists. Ultimately, we use the insights gained through the MD simulations to make several predictions and recommendations, which we anticipate will help direct future experimental studies and structure-based drug discovery efforts against this vital enzyme.

  18. Sleep and rhythm changes at the time of Trypanosoma brucei invasion of the brain parenchyma in the rat.

    Science.gov (United States)

    Seke Etet, Paul F; Palomba, Maria; Colavito, Valeria; Grassi-Zucconi, Gigliola; Bentivoglio, Marina; Bertini, Giuseppe

    2012-05-01

    Human African trypanosomiasis (HAT), or sleeping sickness, is a severe disease caused by Trypanosoma brucei (T.b.). The disease hallmark is sleep alterations. Brain involvement in HAT is a crucial pathogenetic step for disease diagnosis and therapy. In this study, a rat model of African trypanosomiasis was used to assess changes of sleep-wake, rest-activity, and body temperature rhythms in the time window previously shown as crucial for brain parenchyma invasion by T.b. to determine potential biomarkers of this event. Chronic radiotelemetric monitoring in Sprague-Dawley rats was used to continuously record electroencephalogram, electromyogram, rest-activity, and body temperature in the same animals before (baseline recording) and after infection. Rats were infected with T.b. brucei. Data were acquired from 1 to 20 d after infection (parasite neuroinvasion initiates at 11-13 d post-infection in this model), and were compared to baseline values. Sleep parameters were manually scored from electroencephalographic-electromyographic tracings. Circadian rhythms of sleep time, slow-wave activity, rest-activity, and body temperature were studied using cosinor rhythmometry. Results revealed alterations of most of the analyzed parameters. In particular, sleep pattern and sleep-wake organization plus rest-activity and body temperature rhythms exhibi