WorldWideScience

Sample records for human pancreatic ductal

  1. Organoid Models of Human and Mouse Ductal Pancreatic Cancer

    Science.gov (United States)

    Boj, Sylvia F.; Hwang, Chang-Il; Baker, Lindsey A.; Chio, Iok In Christine; Engle, Dannielle D.; Corbo, Vincenzo; Jager, Myrthe; Ponz-Sarvise, Mariano; Tiriac, Hervé; Spector, Mona S.; Gracanin, Ana; Oni, Tobiloba; Yu, Kenneth H.; van Boxtel, Ruben; Huch, Meritxell; Rivera, Keith D.; Wilson, John P.; Feigin, Michael E.; Öhlund, Daniel; Handly-Santana, Abram; Ardito-Abraham, Christine M.; Ludwig, Michael; Elyada, Ela; Alagesan, Brinda; Biffi, Giulia; Yordanov, Georgi N.; Delcuze, Bethany; Creighton, Brianna; Wright, Kevin; Park, Youngkyu; Morsink, Folkert H.M.; Molenaar, I. Quintus; Borel Rinkes, Inne H.; Cuppen, Edwin; Hao, Yuan; Jin, Ying; Nijman, Isaac J.; Iacobuzio-Donahue, Christine; Leach, Steven D.; Pappin, Darryl J.; Hammell, Molly; Klimstra, David S.; Basturk, Olca; Hruban, Ralph H.; Offerhaus, George Johan; Vries, Robert G.J.; Clevers, Hans; Tuveson, David A.

    2015-01-01

    SUMMARY Pancreatic cancer is one of the most lethal malignancies due to its late diagnosis and limited response to treatment. Tractable methods to identify and interrogate pathways involved in pancreatic tumorigenesis are urgently needed. We established organoid models from normal and neoplastic murine and human pancreas tissues. Pancreatic organoids can be rapidly generated from resected tumors and biopsies, survive cryopreservation and exhibit ductal- and disease stage-specific characteristics. Orthotopically transplanted neoplastic organoids recapitulate the full spectrum of tumor development by forming early-grade neoplasms that progress to locally invasive and metastatic carcinomas. Due to their ability to be genetically manipulated, organoids are a platform to probe genetic cooperation. Comprehensive transcriptional and proteomic analyses of murine pancreatic organoids revealed genes and pathways altered during disease progression. The confirmation of many of these protein changes in human tissues demonstrates that organoids are a facile model system to discover characteristics of this deadly malignancy. PMID:25557080

  2. Characterization of pancreatic ductal cells in human islet preparations.

    Science.gov (United States)

    Ichii, Hirohito; Miki, Atsushi; Yamamoto, Toshiyuki; Molano, Ruth D; Barker, Scott; Mita, Atsuyoshi; Rodriguez-Diaz, Rayner; Klein, Dagmar; Pastori, Ricardo; Alejandro, Rodolfo; Inverardi, Luca; Pileggi, Antonello; Ricordi, Camillo

    2008-11-01

    Substantial amounts of nonendocrine cells are implanted as part of human islet grafts, and a possible influence of nonendocrine cells on clinical islet transplantation outcome has been postulated. There are currently no product release criteria specific for nonendocrine cells due to lack of available methods. The aims of this study were to develop a method for the evaluation of pancreatic ductal cells (PDCs) for clinical islet transplantation and to characterize them regarding phenotype, viability, and function. We assessed 161 human islet preparations using laser scanning cytometry (LSC/iCys) for phenotypic analysis of nonendocrine cells and flow cytometry (FACS) for PDC viability. PDC and beta-cells obtained from different density fractions during the islet cell purification were compared in terms of viability. Furthermore, we examined PDC ability to produce proinflammatory cytokines/chemokines, vascular endothelial growth factor (VEGF) and tissue factor (TF) relevant to islet graft outcome. Phenotypic analysis by LSC/iCys indicated that single staining for CK19 or CA19-9 was not enough for identifying PDCs, and that double staining for amylase and CK19 or CA19-9 allowed for quantitative evaluation of acinar cells and PDC content in human islet preparation. PDC showed a significantly higher viability than beta-cells (PDC vs beta-cell: 75.5+/-13.9 and 62.7+/-18.7%; P<0.0001). Although beta-cell viability was independent of its density, that of PDCs was higher as the density from which they were recovered increased. There was no correlation between PDCs and beta-cell viability (R(2)=0.0078). PDCs sorted from high-density fractions produced significantly higher amounts of proinflammatory mediators and VEGF, but not TF. We conclude that PDCs isolated from different fractions had different viability and functions. The precise characterization and assessment of these cells in addition to beta-cells in human islet cell products may be of assistance in understanding

  3. Angiotensin converting enzyme-independent, local angiotensin II-generation in human pancreatic ductal cancer tissues.

    Science.gov (United States)

    Ohta, Tetsuo; Amaya, Kohji; Yi, Shuangqin; Kitagawa, Hirohisa; Kayahara, Masato; Ninomiya, Itasu; Fushida, Sachio; Fujimura, Takashi; Nishimura, Gen-Ichi; Shimizu, Koichi; Miwa, Koichi

    2003-09-01

    Hypovascularity is an outstanding characteristic of pancreatic ductal cancer by diagnostic imaging: most pancreatic ductal cancers are hypovascular or avascular, and tumor vessels are seldom seen on angiography. However, we found that the vasculature was not always poor on angiography of surgically resected specimens of locally advanced pancreatic ductal cancers. To elucidate these controversial findings, we focused on angiotensin II, a vasoconstrictor which is directly produced from angiotensinogen at acidic pH by active trypsin. We examined whether a local angiotensin II-generating system exists in pancreatic ductal cancer tissue. We measured angiotensin II concentration and angiotensin converting enzyme (ACE) activity in tissues from normal pancreas, pancreatic ductal cancers, colon cancers, and hepatocellular carcinomas. After surgically resected specimens were homogenized, angiotensin II concentration and ACE activity in tissues were measured using the florisil method and the Kasahara method, respectively. Tissue angiotensin II levels in pancreatic ductal cancer (n=13) were significantly higher than those of normal pancreas (n=7), colon cancers (n=7), or hepatocellular carcinomas (n=7). However, there was no significant difference in the ACE activity in tissue between them. This study provides in vivo evidence of an ACE-independent, angiotensin II-generating system in pancreatic ductal cancer tissues and suggests that locally formed angiotensin II may act on the pre-existing pancreatic arteries around the tumor, leading to formation of hypovascular or avascular regions.

  4. Modeling Cystic Fibrosis Using Pluripotent Stem Cell-Derived Human Pancreatic Ductal Epithelial Cells.

    Science.gov (United States)

    Simsek, Senem; Zhou, Ting; Robinson, Christopher L; Tsai, Su-Yi; Crespo, Miguel; Amin, Sadaf; Lin, Xiangyi; Hon, Jane; Evans, Todd; Chen, Shuibing

    2016-05-01

    We established an efficient strategy to direct human pluripotent stem cells, including human embryonic stem cells (hESCs) and an induced pluripotent stem cell (iPSC) line derived from patients with cystic fibrosis, to differentiate into pancreatic ductal epithelial cells (PDECs). After purification, more than 98% of hESC-derived PDECs expressed functional cystic fibrosis transmembrane conductance regulator (CFTR) protein. In addition, iPSC lines were derived from a patient with CF carrying compound frameshift and mRNA splicing mutations and were differentiated to PDECs. PDECs derived from Weill Cornell cystic fibrosis (WCCF)-iPSCs showed defective expression of mature CFTR protein and impaired chloride ion channel activity, recapitulating functional defects of patients with CF at the cellular level. These studies provide a new methodology to derive pure PDECs expressing CFTR and establish a "disease in a dish" platform to identify drug candidates to rescue the pancreatic defects of patients with CF. An efficient strategy was established to direct human pluripotent stem cells, including human embryonic stem cells (hESCs) and an induced pluripotent stem cell line derived from patients with cystic fibrosis (CF-iPSCs), to differentiate into pancreatic ductal epithelial cells (PDECs). After purification, more than 98% of hESC-PDECs derived from CF-iPSCs showed defective expression of mature cystic fibrosis transmembrane conductance regulator (CFTR) protein and impaired chloride ion channel activity, recapitulating functional pancreatic defects of patients with CF at the cellular level. These studies provide a new methodology for deriving pure PDECs expressing CFTR, and they establish a "disease-in-a-dish" platform for identifying drug candidates to rescue the pancreatic defects of these patients. ©AlphaMed Press.

  5. An iPSC Line from Human Pancreatic Ductal Adenocarcinoma Undergoes Early to Invasive Stages of Pancreatic Cancer Progression

    Directory of Open Access Journals (Sweden)

    Jungsun Kim

    2013-06-01

    Full Text Available Pancreatic ductal adenocarcinoma (PDAC carries a dismal prognosis and lacks a human cell model of early disease progression. When human PDAC cells are injected into immunodeficient mice, they generate advanced-stage cancer. We hypothesized that if human PDAC cells were converted to pluripotency and then allowed to differentiate back into pancreatic tissue, they might undergo early stages of cancer. Although most induced pluripotent stem cell (iPSC lines were not of the expected cancer genotype, one PDAC line, 10–22 cells, when injected into immunodeficient mice, generated pancreatic intraepithelial neoplasia (PanIN precursors to PDAC that progressed to the invasive stage. The PanIN-like cells secrete or release proteins from many genes that are known to be expressed in human pancreatic cancer progression and that predicted an HNF4α network in intermediate-stage lesions. Thus, rare events allow iPSC technology to provide a live human cell model of early pancreatic cancer and insights into disease progression.

  6. Human pancreatic stellate cells modulate 3D collagen alignment to promote the migration of pancreatic ductal adenocarcinoma cells.

    Science.gov (United States)

    Drifka, Cole R; Loeffler, Agnes G; Esquibel, Corinne R; Weber, Sharon M; Eliceiri, Kevin W; Kao, W John

    2016-12-01

    A hallmark of pancreatic ductal adenocarcinoma (PDAC) is the ability for cancer cells to aggressively infiltrate and navigate through a dense stroma during the metastatic process. Key features of the PDAC stroma include an abundant population of activated pancreatic stellate cells (PSCs) and highly aligned collagen fibers; however, important questions remain regarding how collagen becomes aligned and what the biological manifestations are. To better understand how PSCs, aligned collagen, and PDAC cells might cooperate during the transition to invasion, we utilized a microchannel-based in vitro tumor model and advanced imaging technologies to recreate and examine in vivo-like heterotypic interactions. We found that PSCs participate in a collaborative process with cancer cells by orchestrating the alignment of collagen fibers that, in turn, are permissive to enhanced cell migration. Additionally, direct contact between PSCs, collagen, and PDAC cells is critical to invasion and co-migration of both cell types. This suggests PSCs may accompany and assist in navigating PDAC cells through the stromal terrain. Together, our data provides a new role for PSCs in stimulating the metastatic process and underscores the importance of collagen alignment in cancer progression.

  7. Usp9x Promotes Survival in Human Pancreatic Cancer and Its Inhibition Suppresses Pancreatic Ductal Adenocarcinoma In Vivo Tumor Growth

    Directory of Open Access Journals (Sweden)

    Anupama Pal

    2018-02-01

    Full Text Available Usp9x has emerged as a potential therapeutic target in some hematologic malignancies and a broad range of solid tumors including brain, breast, and prostate. To examine Usp9x tumorigenicity and consequence of Usp9x inhibition in human pancreatic tumor models, we carried out gain- and loss-of-function studies using established human pancreatic tumor cell lines (PANC1 and MIAPACA2 and four spontaneously immortalized human pancreatic patient-derived tumor (PDX cell lines. The effect of Usp9x activity inhibition by small molecule deubiquitinase inhibitor G9 was assessed in 2D and 3D culture, and its efficacy was tested in human tumor xenografts. Overexpression of Usp9x increased 3D growth and invasion in PANC1 cells and up-regulated the expression of known Usp9x substrates Mcl-1 and ITCH. Usp9x inhibition by shRNA-knockdown or by G9 treatment reduced 3D colony formation in PANC1 and PDX cell lines, induced rapid apoptosis in MIAPACA2 cells, and associated with reduced Mcl-1 and ITCH protein levels. Although G9 treatment reduced human MIAPACA2 tumor burden in vivo, in mouse pancreatic cancer cell lines established from constitutive (8041 and doxycycline-inducible (4668 KrasG12D/Tp53R172H mouse pancreatic tumors, Usp9x inhibition increased and sustained the 3D colony growth and showed no significant effect on tumor growth in 8041-xenografts. Thus, Usp9x inhibition may be therapeutically active in human PDAC, but this activity was not predicted from studies of genetically engineered mouse pancreatic tumor models.

  8. Macrophages and pancreatic ductal adenocarcinoma.

    Science.gov (United States)

    Habtezion, Aida; Edderkaoui, Mouad; Pandol, Stephen J

    2016-10-10

    Monocytes and macrophages make up part of the innate immune system and provide one of the first defenses against variety of treats. Macrophages can also modulate the adaptive immune system. Efficient sensing and response to tissue environmental cues highlights the complexity and dynamic nature of macrophages and their plasticity. Macrophages may have divergent roles depending on their polarity and stimulus received. Accumulating evidence demonstrates the critical role played by macrophages in tumor initiation, development, and progression. In this review, we discuss the characteristics of tumor-associated macrophages (TAMs) and their role in pancreatic adenocarcinoma. In addition, we give an overview on recent advances related to the therapeutic implication associated with targeting TAMs in pancreas cancer. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. Pancreatic Ductal Adenocarcinoma: Current and Evolving Therapies

    Directory of Open Access Journals (Sweden)

    Aleksandra Adamska

    2017-06-01

    Full Text Available Pancreatic ductal adenocarcinoma (PDAC, which constitutes 90% of pancreatic cancers, is the fourth leading cause of cancer-related deaths in the world. Due to the broad heterogeneity of genetic mutations and dense stromal environment, PDAC belongs to one of the most chemoresistant cancers. Most of the available treatments are palliative, with the objective of relieving disease-related symptoms and prolonging survival. Currently, available therapeutic options are surgery, radiation, chemotherapy, immunotherapy, and use of targeted drugs. However, thus far, therapies targeting cancer-associated molecular pathways have not given satisfactory results; this is due in part to the rapid upregulation of compensatory alternative pathways as well as dense desmoplastic reaction. In this review, we summarize currently available therapies and clinical trials, directed towards a plethora of pathways and components dysregulated during PDAC carcinogenesis. Emerging trends towards targeted therapies as the most promising approach will also be discussed.

  10. THE SUBTYPES OF PANCREATIC DUCTAL ADENOCARCINOMAS

    Directory of Open Access Journals (Sweden)

    Apeksha Kakkar

    2016-12-01

    Full Text Available Being the 4th leading cause of cancer deaths in the U.S. and with a global increase in incidence, above 80% of pancreatic cancers are locally advanced or metastatic at the time of diagnosis. As surgical resection is the only hope for a cure, the answer is probably in early screening, proper classification and right therapy. The advancing research will likely lead to a better understanding of Pancreatic Ductal Adenocarcinoma (PDAC as well as enhance the techniques for screening, diagnosis, accurate subtyping and enable the use of targeted therapy. Thus, instead of clubbing together various subtypes of PDAC for trials, improving the subcategorization will ensure statistical significance for the academicians, and the clinicians would avoid administration of placebo drug to a vast number of patients.

  11. A panel of monoclonal antibodies against the prion protein proves that there is no prion protein in human pancreatic ductal epithelial cells.

    Science.gov (United States)

    Yang, Liheng; Zhang, Yan; Hu, Lipeng; Zhu, Ying; Sy, Man-Sun; Li, Chaoyang

    2014-08-01

    Prion diseases are a group of neurodegenerative diseases that are fatal. The study of these unique diseases in China is hampered by a lack of resources. Amongst the most important resources for biological study are monoclonal antibodies. Here, we characterize a panel of monoclonal antibodies specific for cellular prion protein by enzyme-linked immunosorbent assay (ELISA), immunofluorescent staining, flow cytometry, and western blotting. We identify several antibodies that can be used for specific applications and we demonstrate that there is no prion protein expression in human pancreatic ductal epithelial cells (HPDC).

  12. Pancreatic ductal bicarbonate secretion: challenge of the acinar acid load

    Directory of Open Access Journals (Sweden)

    Peter eHegyi

    2011-07-01

    Full Text Available Acinar and ductal cells of the exocrine pancreas form a close functional unit. Although most studies contain data either on acinar or ductal cells, an increasing number of evidence highlights the importance of the pancreatic acinar-ductal functional unit. One of the best examples for this functional unit is the regulation of luminal pH by both cell types. Protons co-released during exocytosis from acini cause significant acidosis, whereas, bicarbonate secreted by ductal cells cause alkalization in the lumen. This suggests that the first and probably one of the most important role of bicarbonate secretion by pancreatic ductal cells is not only to neutralize the acid chyme entering into the duodenum from the stomach, but to neutralize acidic content secreted by acinar cells. To accomplish this role, it is more than likely that ductal cells have physiological sensing mechanisms which would allow them to regulate luminal pH. To date, four different classes of acid-sensing ion channels have been identified in the gastrointestinal tract (transient receptor potential ion channels, two-pore domain potassium channel, ionotropic purinoceptor and acid-sensing ion channel, however, none of these have been studied in pancreatic ductal cells. In this mini-review, we summarize our current knowledge of these channels and urge scientists to characterize ductal acid-sensing mechanisms and also to investigate the challenge of the acinar acid load on ductal cells.

  13. Genetics and biology of pancreatic ductal adenocarcinoma

    Science.gov (United States)

    Ying, Haoqiang; Dey, Prasenjit; Yao, Wantong; Kimmelman, Alec C.; Draetta, Giulio F.; Maitra, Anirban; DePinho, Ronald A.

    2016-01-01

    With 5-year survival rates remaining constant at 6% and rising incidences associated with an epidemic in obesity and metabolic syndrome, pancreatic ductal adenocarcinoma (PDAC) is on track to become the second most common cause of cancer-related deaths by 2030. The high mortality rate of PDAC stems primarily from the lack of early diagnosis and ineffective treatment for advanced tumors. During the past decade, the comprehensive atlas of genomic alterations, the prominence of specific pathways, the preclinical validation of such emerging targets, sophisticated preclinical model systems, and the molecular classification of PDAC into specific disease subtypes have all converged to illuminate drug discovery programs with clearer clinical path hypotheses. A deeper understanding of cancer cell biology, particularly altered cancer cell metabolism and impaired DNA repair processes, is providing novel therapeutic strategies that show strong preclinical activity. Elucidation of tumor biology principles, most notably a deeper understanding of the complexity of immune regulation in the tumor microenvironment, has provided an exciting framework to reawaken the immune system to attack PDAC cancer cells. While the long road of translation lies ahead, the path to meaningful clinical progress has never been clearer to improve PDAC patient survival. PMID:26883357

  14. Role of the ductal transcription factors HNF6 and Sox9 in pancreatic acinar-to-ductal metaplasia

    Science.gov (United States)

    Prévot, Pierre-Paul; Simion, Alexandru; Grimont, Adrien; Colletti, Marta; Khalaileh, Abed; Van den Steen, Géraldine; Sempoux, Christine; Xu, Xiaobo; Roelants, Véronique; Hald, Jacob; Bertrand, Luc; Heimberg, Harry; Konieczny, Stephen F.; Dor, Yuval; Lemaigre, Frédéric P.; Jacquemin, Patrick

    2014-01-01

    Objective Growing evidence suggests that a phenotypic switch converting pancreatic acinar cells to duct-like cells can lead to pancreatic intraepithelial neoplasia (PanIN) and eventually to invasive pancreatic ductal adenocarcinoma. Histologically, the onset of this switch is characterised by the co-expression of acinar and ductal markers in acini, a lesion called acinar-to-ductal metaplasia (ADM). Transcriptional regulators required to initiate ADM still remain unknown, yet need to be identified to characterise the regulatory networks that drive ADM. Here we investigate the role of the ductal transcription factors Hepatocyte Nuclear Factor 6 (HNF6, also known as Onecut1)and SRY-related HMG box factor 9 (Sox9) in ADM. Design Expression of HNF6 and Sox9 is measured by immunostaining in normal and diseased human pancreas. The function of the factors is tested in cultured cells and in mouse models of ADM by a combination of gain- and loss-of-function experiments. Results Expression of HNF6 and Sox9 is ectopically induced in acinar cells in human ADM, as well as in mouse models of ADM. We show that these factors are required for repression of acinar genes, for modulation of ADM-associated changes in cell polarity, and for activation of ductal genes in metaplastic acinar cells. Conclusions HNF6 and Sox9 are new biomarkers of ADM and constitute candidate targets for preventive therapy in cases when ADM may lead to cancer. Our work also highlights that ectopic activation of transcription factors may underlie metaplastic processes occurring in other organs. PMID:22271799

  15. pH Regulatory Transporters in Pancreatic Ductal Adenocarcinoma

    DEFF Research Database (Denmark)

    Kong, Su Chii

    the expressions and functional roles of these pHregulating transporter in pancreatic ductal adenocarcinoma (PDAC), one of the deadliest human malignancies with an overall 5-year survival rate of only 6%. Herein we focus on two pH-regulating transporter families, monocarboxylate transporters (MCTs) and V......-ATPases. MCT isoforms 1 to -4 are the only proton-coupled isoforms transporting monocarboxylates such as L-lactate. We show that MCT1 and MCT4 are robustly expressed in all PDAC cell lines studied. These transporters were found localized on the plasma membrane of PDAC cells, colocalizing with MCT chaperone...... protein basigin. Lactate influx capacity was reduced upon siRNA-mediated silencing and pharmacological inhibition of MCT1 and/or MCT4. PDAC cell migration was not significantly affected by MCT1 inhibition with AR-C155858 and MCT1 silencing, yet was inhibited by the general MCT inhibitor 4-CIN...

  16. Interfacing polymeric scaffolds with primary pancreatic ductal adenocarcinoma cells to develop 3D cancer models

    NARCIS (Netherlands)

    Ricci, C.; Mota, C.M.; Moscato, S.; D' Alessandro, D.; Ugel, S.; Sartoris, S.; Bronte, V.; Boggi, U.; Campani, D.; Funel, N.; Moroni, Lorenzo; Danti, S.

    2014-01-01

    We analyzed the interactions between human primary cells from pancreatic ductal adenocarcinoma (PDAC) and polymeric scaffolds to develop 3D cancer models useful for mimicking the biology of this tumor. Three scaffold types based on two biocompatible polymeric formulations, such as poly(vinyl

  17. Metabolic imaging of pancreatic ductal adenocarcinoma detects altered choline metabolism.

    Science.gov (United States)

    Penet, Marie-France; Shah, Tariq; Bharti, Santosh; Krishnamachary, Balaji; Artemov, Dmitri; Mironchik, Yelena; Wildes, Flonné; Maitra, Anirban; Bhujwalla, Zaver M

    2015-01-15

    Pancreatic ductal adenocarcinoma (PDAC) is an aggressive and lethal disease that develops relatively symptom-free and is therefore advanced at the time of diagnosis. The absence of early symptoms and effective treatments has created a critical need for identifying and developing new noninvasive biomarkers and therapeutic targets. We investigated the metabolism of a panel of PDAC cell lines in culture and noninvasively in vivo with (1)H magnetic resonance spectroscopic imaging (MRSI) to identify noninvasive biomarkers and uncover potential metabolic targets. We observed elevated choline-containing compounds in the PDAC cell lines and tumors. These elevated choline-containing compounds were easily detected by increased total choline (tCho) in vivo, in spectroscopic images obtained from tumors. Principal component analysis of the spectral data identified additional differences in metabolites between immortalized human pancreatic cells and neoplastic PDAC cells. Molecular characterization revealed overexpression of choline kinase (Chk)-α, choline transporter 1 (CHT1), and choline transporter-like protein 1 (CTL1) in the PDAC cell lines and tumors. Collectively, these data identify new metabolic characteristics of PDAC and reveal potential metabolic targets. Total choline detected with (1)H MRSI may provide an intrinsic, imaging probe-independent biomarker to complement existing techniques in detecting PDAC. The expression of Chk-α, CHT1, and CTL1 may provide additional molecular markers in aspirated cytological samples. ©2014 American Association for Cancer Research.

  18. Targeted nanoparticles for imaging incipient pancreatic ductal adenocarcinoma.

    Directory of Open Access Journals (Sweden)

    Kimberly A Kelly

    2008-04-01

    Full Text Available Pancreatic ductal adenocarcinoma (PDAC carries an extremely poor prognosis, typically presenting with metastasis at the time of diagnosis and exhibiting profound resistance to existing therapies. The development of molecular markers and imaging probes for incipient PDAC would enable earlier detection and guide the development of interventive therapies. Here we sought to identify novel molecular markers and to test their potential as targeted imaging agents.Here, a phage display approach was used in a mouse model of PDAC to screen for peptides that specifically bind to cell surface antigens on PDAC cells. These screens yielded a motif that distinguishes PDAC cells from normal pancreatic duct cells in vitro, which, upon proteomics analysis, identified plectin-1 as a novel biomarker of PDAC. To assess their utility for in vivo imaging, the plectin-1 targeted peptides (PTP were conjugated to magnetofluorescent nanoparticles. In conjunction with intravital confocal microscopy and MRI, these nanoparticles enabled detection of small PDAC and precursor lesions in engineered mouse models.Our approach exploited a well-defined model of PDAC, enabling rapid identification and validation of PTP. The developed specific imaging probe, along with the discovery of plectin-1 as a novel biomarker, may have clinical utility in the diagnosis and management of PDAC in humans.

  19. The molecular and cellular heterogeneity of pancreatic ductal adenocarcinoma.

    Science.gov (United States)

    Samuel, Nardin; Hudson, Thomas J

    2011-12-20

    Current standard therapies for pancreatic ductal adenocarcinoma have failed to attenuate the aggressiveness of this disease or confer notable improvements in survival. Previous molecular research into pancreatic cancers, along with advances in sequencing technologies, have identified many altered genes in patients with pancreatic cancer and revealed the marked genetic heterogeneity of individual tumors. Thus, the lack of success of conventional empiric therapy can be partly attributed to the underlying heterogeneity of pancreatic tumors. The genetic alterations that have been detected in pancreatic cancer range from simple mutations at the level of base pairs to complex chromosomal structural changes and rearrangements. The identification of molecular changes that are unique to an individual patient's tumors, and the subsequent development of strategies to target the tumors in a personalized approach to therapeutics, is a necessary advance to improve therapy for patients with this disease.

  20. Yes-associated protein mediates immune reprogramming in pancreatic ductal adenocarcinoma.

    Science.gov (United States)

    Murakami, S; Shahbazian, D; Surana, R; Zhang, W; Chen, H; Graham, G T; White, S M; Weiner, L M; Yi, C

    2017-03-02

    Pancreatic ductal adenocarcinoma (PDAC) is characterized by a high degree of inflammation and profound immune suppression. Here we identify Yes-associated protein (Yap) as a critical regulator of the immunosuppressive microenvironment in both mouse and human PDAC. Within Kras:p53 mutant pancreatic ductal cells, Yap drives the expression and secretion of multiple cytokines/chemokines, which in turn promote the differentiation and accumulation of myeloid-derived suppressor cells (MDSCs) both in vitro and in vivo. Pancreas-specific knockout of Yap or antibody-mediated depletion of MDSCs promoted macrophage reprogramming, reactivation of T cells, apoptosis of Kras mutant neoplastic ductal cells and pancreatic regeneration after acute pancreatitis. In primary human PDAC, YAP expression levels strongly correlate with an MDSC gene signature, and high expression of YAP or MDSC-related genes predicts decreased survival in PDAC patients. These results reveal multifaceted roles of YAP in PDAC pathogenesis and underscore its promise as a therapeutic target for this deadly disease.

  1. Trypsin Reduces Pancreatic Ductal Bicarbonate Secretion by Inhibiting CFTR Cl- channel and Luminal Anion Exchangers

    Science.gov (United States)

    Pallagi, Petra; Venglovecz, Viktória; Rakonczay, Zoltán; Borka, Katalin; Korompay, Anna; Ózsvári, Béla; Judák, Linda; Sahin-Tóth, Miklós; Geisz, Andrea; Schnúr, Andrea; Maléth, József; Takács, Tamás; Gray, Mike A.; Argent, Barry E.; Mayerle, Julia; Lerch, Markus M.; Wittmann, Tibor; Hegyi, Péter

    2012-01-01

    Background & Aims The effects of trypsin on pancreatic ductal epithelial cells (PDEC) vary among species and depend on localization of proteinase-activated receptor-2 (PAR-2). Bicarbonate secretion is similar in human and guinea pig PDEC; we compared its localization in these cell types and isolated guinea pig ducts to study the effects of trypsin and a PAR-2 agonist on this process. Methods PAR-2 localization was analyzed by immunohistochemistry in guinea pig and human pancreatic tissue samples (from 15 patients with chronic pancreatitis and 15 without pancreatic disease). Functions of guinea pig PDEC were studied by microperfusion of isolated ducts, measurements of intracellular pH (pHi) and Ca2+ concentration [Ca2+]i, and patch clamp analysis. The effect of pH on trypsinogen autoactivation was assessed using recombinant human cationic trypsinogen. Results PAR-2 localized to the apical membrane of human and guinea pig PDEC. Trypsin increased [Ca2+]i and pHi, and inhibited secretion of bicarbonate by the luminal anion exchanger and the cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel. Autoactivation of human cationic trypsinogen accelerated when the pH was reduced from 8.5 to 6.0. PAR-2 expression was strongly down-regulated, at transcriptional and protein levels, in the ducts of patients with chronic pancreatitis, consistent with increased activity of intraductal trypsin. Importantly, in PAR-2 knockout mice, the effects of trypsin were PAR-2 dependent. Conclusions Trypsin reduces pancreatic ductal bicarbonate secretion via PAR-2–dependent inhibition of the apical anion exchanger and the CFTR Cl- channel. This could contribute to the development of chronic pancreatitis, decreasing luminal pH and promoting premature activation of trypsinogen in the pancreatic ducts. PMID:21893120

  2. A rapid in vivo screen for pancreatic ductal adenocarcinoma therapeutics

    Directory of Open Access Journals (Sweden)

    Ozhan Ocal

    2015-10-01

    Full Text Available Pancreatic ductal adenocarcinoma (PDA is the fourth leading cause of cancer-related deaths in the United States, and is projected to be second by 2025. It has the worst survival rate among all major cancers. Two pressing needs for extending life expectancy of affected individuals are the development of new approaches to identify improved therapeutics, addressed herein, and the identification of early markers. PDA advances through a complex series of intercellular and physiological interactions that drive cancer progression in response to organ stress, organ failure, malnutrition, and infiltrating immune and stromal cells. Candidate drugs identified in organ culture or cell-based screens must be validated in preclinical models such as KIC (p48Cre;LSL-KrasG12D;Cdkn2af/f mice, a genetically engineered model of PDA in which large aggressive tumors develop by 4 weeks of age. We report a rapid, systematic and robust in vivo screen for effective drug combinations to treat Kras-dependent PDA. Kras mutations occur early in tumor progression in over 90% of human PDA cases. Protein kinase and G-protein coupled receptor (GPCR signaling activates Kras. Regulators of G-protein signaling (RGS proteins are coincidence detectors that can be induced by multiple inputs to feedback-regulate GPCR signaling. We crossed Rgs16::GFP bacterial artificial chromosome (BAC transgenic mice with KIC mice and show that the Rgs16::GFP transgene is a KrasG12D-dependent marker of all stages of PDA, and increases proportionally to tumor burden in KIC mice. RNA sequencing (RNA-Seq analysis of cultured primary PDA cells reveals characteristics of embryonic progenitors of pancreatic ducts and endocrine cells, and extraordinarily high expression of the receptor tyrosine kinase Axl, an emerging cancer drug target. In proof-of-principle drug screens, we find that weanling KIC mice with PDA treated for 2 weeks with gemcitabine (with or without Abraxane plus inhibitors of Axl signaling

  3. The clinicopathological significance of forkhead box P1 and forkhead box O3a in pancreatic ductal adenocarcinomas.

    Science.gov (United States)

    Luo, Xin; Yang, Zhulin; Liu, Xiao; Liu, Ziru; Miao, Xiongying; Li, Daiqiang; Zou, Qiong; Yuan, Yuan

    2017-05-01

    Pancreatic ductal adenocarcinoma is a highly malignant tumor with poor prognosis, and the biomarkers for the early diagnosis, targeting therapy, and prognosis are still not clinically available. This study investigated the expression of forkhead box P1 and forkhead box O3a proteins in human pancreatic ductal adenocarcinoma tumor tissues and pancreatic tissues with and without benign lesions using immunohistochemical staining. Results showed that the positive rates of forkhead box P1 and forkhead box O3a protein expression were significantly lower in pancreatic ductal adenocarcinoma tumors compared to peritumoral tissues, benign pancreatic tissues, and normal pancreatic tissues (p box P1 and forkhead box O3a protein expression exhibited dysplasia or intraepithelial neoplasia. The positive rates of forkhead box P1 and forkhead box O3a expression were significantly lower in cases with tumor mass >5 cm, lymph node metastasis, invasion to surrounding tissues and organs, and tumor-node-metastasis III + IV stage disease compared to cases with tumor mass ⩽5 cm (p box P1 and forkhead box O3a expression survived significantly shorter than patients with positive forkhead box P1 and forkhead box O3a expression (p = 0.000). Cox multivariate analysis revealed that negative forkhead box P1 and forkhead box O3a expression was an independent poor prognosis factor in pancreatic ductal adenocarcinoma patients. The area under the curve of a receiver operating characteristic curve was 0.642 for forkhead box P1 (95% confidence interval: 0.553-0.730) and 0.655 for forkhead box O3a (95% confidence interval: 0.6568-0.742). Loss of forkhead box P1 and forkhead box O3a protein expression is associated with carcinogenesis, progression, and poor prognosis in patients with pancreatic ductal adenocarcinomas.

  4. Biomarker Based Therapy in Pancreatic Ductal Adenocarcinoma: An Emerging Reality?

    Science.gov (United States)

    Krantz, Benjamin A; O'Reilly, Eileen M

    2017-12-21

    Over the last decade many of the major solid organ cancers have seen improvements in survival due to development of novel therapeutics and corresponding biomarkers that predict treatment efficacy or resistance. In contrast, in pancreatic ductal adenocarcinoma (PDAC) favorable outcomes remain challenging, in part related to the lack of validated biomarkers for patient and treatment selection and thus optimal clinical decision-making. Nonetheless, increasingly therapeutic development for PDAC is accompanied by bioassays to evaluate response and study mechanism of actions with a corresponding increase in the number of trials in mid to late-stage with integrated biomarkers. Additionally, blood based biomarkers that provide a measure of disease activity and allow for minimally invasive tumor analyses are emerging, including circulating tumor DNA, exosomes and circulating tumor cells. In this article, we will review potential biomarkers for currently approved therapies as well as emerging biomarkers for therapeutics under development. Copyright ©2017, American Association for Cancer Research.

  5. Hypoxia inducible BHLHB2 is a novel and independent prognostic marker in pancreatic ductal adenocarcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Weibin; Reiser-Erkan, Carolin; Michalski, Christoph W.; Raggi, Matthias C. [Department of Surgery, Technische Universitaet Muenchen, Munich (Germany); Quan, Liao; Yupei, Zhao [Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Peking (China); Friess, Helmut [Department of Surgery, Technische Universitaet Muenchen, Munich (Germany); Erkan, Mert, E-mail: erkan@chir.med.tu-muenchen.de [Department of Surgery, Technische Universitaet Muenchen, Munich (Germany); Kleeff, Joerg [Department of Surgery, Technische Universitaet Muenchen, Munich (Germany)

    2010-10-22

    Research highlights: {yields} The expression and function of BHLHB2 (DEC1/SHARP2) in pancreatic cancer is unknown. {yields} Hypoxia and serum starvation induces BHLHB2 expression in pancreatic ductal adenocarcinoma. {yields} BHLHB2 inhibition in pancreatic cancer cell line SU86.86 increases ED50 of gemcitabine 2.8-fold. {yields} BHLHB2 is an independent prognostic factor in multivariable cox analysis with a hazard ratio of 2:4. -- Abstract: Aims: The cyclic adenosine monophosphate-inducible basic helix-loop-helix (bHLH) domain containing class-B2 transcriptional factor BHLHB2 is differentially expressed in a number of human malignancies. In the present study, the expression, regulation, functions and prognostic impact of BHLHB2 in pancreatic cancer were investigated. Methods: Expression analyses were carried out in tissues of the normal pancreas (n = 10) and pancreatic ductal adenocarcinoma (n = 77) as well as in eight pancreatic cancer cell lines using quantitative RT-PCR, semiquantitative immunohistochemistry, and immunoblot analyses. In vitro functional experiments were conducted using siRNA transfection, hypoxia, serum starvation, apoptosis induction with gemcitabine and actinomycin-D, and invasion assays. Survival analysis was performed using the Kaplan-Meier method. Prognostic factors were determined in a multivariable analysis using a Cox proportional hazards model. Results: BHLHB2 mRNA and protein expressions were strongly induced by hypoxia and by serum starvation in pancreatic cancer cell lines. BHLHB2 silencing with RNAi had no significant effects on growth and invasion but increased apoptosis resistance against gemcitabine by reducing caspace-3 cleavage. In BHLHB2 silenced cells the ED50 of gemcitabine increased from 13.95 {+-} 1.353 to 38.70 {+-} 5.262 nM (p < 0.05). Ex vivo, the weak/absent nuclear staining in normal pancreatic ducts and acinar cells was replaced by moderate to strong nuclear/cytoplasmic staining in PanIN lesions and pancreatic cancer

  6. Systematic review of peri-operative prognostic biomarkers in pancreatic ductal adenocarcinoma

    NARCIS (Netherlands)

    Petrushnko, W.; Gundara, J.S.; Reuver, P.R.; O'Grady, G.; Samra, J.S.; Mittal, A.

    2016-01-01

    BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) continues to be associated with a poor prognosis. This systematic review aimed to summarize the literature regarding potential prognostic biomarkers to facilitate validation studies and clinical application. METHODS: A systematic review was

  7. Overview of Pre-Clinical and Clinical Studies Targeting Angiogenesis in Pancreatic Ductal Adenocarcinoma

    Science.gov (United States)

    Craven, Kelly E.; Gore, Jesse; Korc, Murray

    2016-01-01

    The importance of angiogenesis in Pancreatic Ductal Adenocarcinoma (PDAC) and its therapeutic potential have been explored in both pre-clinical and clinical studies. Human PDACs overexpress a number of angiogenic factors and their cognate high-affinity receptors, and anti-angiogenic agents reduce tumor volume, metastasis, and microvessel density (MVD), and improve survival in subcutaneous and orthotopic pre-clinical models. Nonetheless, clinical trials using anti-angiogenic therapy have been overwhelmingly unsuccessful. This review will focus on these pre-clinical and clinical studies, the potential reasons for failure in the clinical setting, and ways these shortcomings could be addressed in future investigations of angiogenic mechanisms in PDAC. PMID:26723874

  8. Net expression inhibits the growth of pancreatic ductal adenocarcinoma cell PL45 in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Baiwen Li

    Full Text Available Pancreatic ductal adenocarcinoma has a poor prognosis due to late diagnosis and a lack of effective therapeutic options. Thus, it is important to better understand its molecular mechanisms and to develop more effective treatments for the disease. The ternary complex factor Net, which exerts its strong inhibitory function on transcription of proto-oncogene gene c-fos by forming ternary complexes with a second transcription factor, has been suspected of being involved in pancreatic cancer and other tumors biology. In this study, we found that the majority of pancreatic ductal adenocarcinoma tissues and cell lines had weak or no expression of Net, whereas significantly high level of Net expression occurred in paired adjacent normal tissues we studied. Furthermore, using in vitro and in vivo model systems, we found that overexpression of Net inhibited cell growth and survival and induced cell apoptosis in human pancreatic ductal adenocarcinoma cell PL45; the mechanisms by which Net inhibited the cell cycle progression were mainly through P21-Cyclin D1/CDK4 Pathway. Our data thus suggested that Net might play an important role in pancreatic carcinogenesis, possibly by acting as a tumor suppressor gene.

  9. Outcomes of robotic surgery for pancreatic ductal adenocarcinoma

    Science.gov (United States)

    Zhan, Qian; Deng, Xiaxing; Weng, Yuanchi; Jin, Jiabin; Wu, Zhichong; Li, Hongwei; Shen, Baiyong

    2015-01-01

    Background To explore the effectiveness, safety, and efficacy of the robot-assisted surgery in the radical resection of pancreatic ductal adenocarcinoma (PDAC). Methods The clinical data of 72 patients with PDAC who underwent radical resection using the da Vinci Surgical System from April 2010 to December 2014 were retrospectively analyzed. Results Among these 72 patients, three were converted to conventional laparotomy due to the vascular invasion or due to the difficulties in tissue isolation from the surrounding organs. Among 39 patients who underwent the pancreatoduodenectomy, the average operative time was 395.3±118.8 min, and the mean intra-operative blood loss was 447.3±269.9 mL. Among 31 patients who underwent the distal pancreatectomy (DP), the average operative time was 185.5±74.1 min, and the mean intra-operative blood loss was 267.1±305.3 mL. In two patients who received the middle pancreatectomy (MP), the average operative time was 225 min and mean intra-operative blood loss was 100 mL. Among all the 72 patients, an average of 4.2±2.6 lymph nodes were dissected, with an average hospital stay of 22.6±10.7 days. Complications were observed in 18 patients, which included pancreatic fistula (n=11), bile leak (n=5), anastomotic bleeding (n=2), pancreatic fistula complicated with portal vein thrombosis (n=1), and anastomotic bleeding complicated with acute renal failure (n=1). Except that one patient died due to post-operative bleeding and acute renal failure, all the other patients were cured after conservative treatment. These 72 patients were followed for 1-45 (15.6±5.8) months, during which 10 patients died. Eleven patients suffered from recurrence or metastasis, among which 6 had local recurrence, 4 had liver metastasis, and 1 had ascites accompnaied with incision site tumor metastasis. Conclusions Radical resection of PDAC by robotic surgical system is safe and feasible. It has less surgical trauma and enables faster post-operative recovery, and

  10. Acinar-to-ductal metaplasia accompanies c-myc-induced exocrine pancreatic cancer progression in transgenic rodents.

    Science.gov (United States)

    Grippo, Paul J; Sandgren, Eric P

    2012-09-01

    Several important characteristics of exocrine pancreatic tumor pathogenesis remain incompletely defined, including identification of the cell of origin. Most human pancreatic neoplasms are ductal adenocarcinomas. However, acinar cells have been proposed as the source of some ductal neoplasms through a process of acinar-to-ductal metaplasia. The oncogenic transcription factor c-myc is associated with human pancreatic neoplasms. Transgenic mice overexpressing c-myc under control of acinar cell-specific elastase (Ela) gene regulatory elements not only develop acinar cell carcinomas but also mixed neoplasms that display both acinar-like neoplastic cells and duct-like neoplastic cells. In this report, we demonstrate that, first, c-myc is sufficient to induce acinar hyperplasia, though neoplastic lesions develop focally. Second, cell proliferation remains elevated in the neoplastic duct cell compartment of mixed neoplasms. Third, the proliferation/apoptosis ratio in cells from all lesion types remains constant, suggesting that differential regulation of these processes is not a feature of cancer progression in this model. Fourth, before the development of mixed neoplasms, there is transcriptional activation of the duct cell-specific cytokeratin-19 gene promoter in multicellular foci of amylase-positive acinar neoplasms. This observation provides direct evidence for metaplasia as the mechanism underlying development of ductal neoplastic cells within the context of an acinar neoplasm and suggests that the stimulus for this transformation acts over a multicellular domain or field within a neoplasm. Finally, focal ductal elements develop in some acinar cell carcinomas in Ela-c-myc transgenic rats, indicating that myc-associated acinar-to-ductal metaplasia is not restricted to the mouse. Copyright © 2011 UICC.

  11. Outcomes of Distal Pancreatectomy for Pancreatic Ductal Adenocarcinoma in the Netherlands: A Nationwide Retrospective Analysis

    NARCIS (Netherlands)

    Rooij, T. de; Tol, J.A.; Eijck, C.H. van; Boerma, D.; Bonsing, B.A.; Bosscha, K.; Dam, R.M. van; Dijkgraaf, M.G.; Gerhards, M.F.; Goor, H. van; Harst, E. van der; Hingh, I.H. de; Kazemier, G.; Klaase, J.M.; Molenaar, I.Q.; Patijn, G.A.; Santvoort, H.C. van; Scheepers, J.J.; Schelling, G.P. van der; Sieders, E.; Busch, O.R.; Besselink, M.G.

    2016-01-01

    BACKGROUND: Large multicenter series on outcomes and predictors of survival after distal pancreatectomy (DP) for pancreatic ductal adenocarcinoma (PDAC) are scarce. METHODS: Adults who underwent DP for PDAC in 17 Dutch pancreatic centers between January 2005 and September 2013 were analyzed

  12. Outcomes of Distal Pancreatectomy for Pancreatic Ductal Adenocarcinoma in the Netherlands: A Nationwide Retrospective Analysis

    NARCIS (Netherlands)

    T. de Rooij (Thijs); J.A. Tol (Johanna A.); C.H.J. van Eijck (Casper); D. Boerma (Djamila); B.A. Bonsing (Bert); K. Bosscha (Koop); R. van Dam (Ronald); M.G.W. Dijkgraaf (Marcel); M.F. Gerhards (Michael); H. van Goor (Harry); E. van der Harst (Erwin); I.H.J.T. de Hingh (Ignace); G. Kazemier (Geert); J.M. Klaase (Joost); I.Q. Molenaar (I. Quintus); G.A. Patijn (Gijs A.); H.C. van Santvoort (Hjalmar); J.J. Scheepers (Joris J.); G. van der Schelling; E. Sieders (Egbert); O.R.C. Busch (Olivier); M.G. Besselink (Marc)

    2016-01-01

    textabstractBackground: Large multicenter series on outcomes and predictors of survival after distal pancreatectomy (DP) for pancreatic ductal adenocarcinoma (PDAC) are scarce. Methods: Adults who underwent DP for PDAC in 17 Dutch pancreatic centers between January 2005 and September 2013 were

  13. Selection of optimal molecular targets for tumor-specific imaging in pancreatic ductal adenocarcinoma

    NARCIS (Netherlands)

    Tummers, W.S. (Willemieke S.); A. Fariña-Sarasqueta (Arantza); M.C. Boonstra (M.); Prevoo, H.A. (Hendrica A.); C.F.M. Sier (Cornelis); J.S.D. Mieog (Sven); H. Morreau (Hans); C.H.J. van Eijck (Casper); P.J.K. Kuppen (P. J K); C.J.H. van de Velde (Cornelis); B.A. Bonsing (Bert); A.L. Vahrmeijer (Alexander L.); Swijnenburg, R.-J. (Rutger-Jan)

    2017-01-01

    textabstractDiscrimination of pancreatic ductal adenocarcinoma (PDAC) from chronic pancreatitis (CP) or peritumoral inflammation is challenging, both at preoperative imaging and during surgery, but it is crucial for proper therapy selection. Tumor-specific molecular imaging aims to enhance this

  14. Nuclear Position and Shape Deformation of Chromosome 8 Territories in Pancreatic Ductal Adenocarcinoma

    Directory of Open Access Journals (Sweden)

    Sylvia Timme

    2011-01-01

    Full Text Available Cell type specific radial positioning of chromosome territories (CTs and their sub-domains in the interphase seem to have functional relevance in non-neoplastic human nuclei, while much less is known about nuclear architecture in carcinoma cells and its development during tumor progression. We analyzed the 3D-architecture of the chromosome 8 territory (CT8 in carcinoma and corresponding non-neoplastic ductal pancreatic epithelium. Fluorescence-in-situ-hybridization (FISH with whole chromosome painting (WCP probes on sections from formalin-fixed, paraffin wax-embedded tissues from six patients with ductal adenocarcinoma of the pancreas was used. Radial positions and shape parameters of CT8 were analyzed by 3D-microscopy. None of the parameters showed significant inter-individual changes. CT8 was localized in the nuclear periphery in carcinoma cells and normal ductal epithelial cells. Normalized volume and surface of CT8 did not differ significantly. In contrast, the normalized roundness was significantly lower in carcinoma cells, implying an elongation of neoplastic cell nuclei. Unexpectedly, radial positioning of CT8, a dominant parameter of nuclear architecture, did not change significantly when comparing neoplastic with non-neoplastic cells. A significant deformation of CT8, however, accompanies nuclear atypia of carcinoma cells. This decreased roundness of CTs may reflect the genomic and transcriptional alterations in carcinoma.

  15. Functions of pancreatic stellate cell-derived soluble factors in the microenvironment of pancreatic ductal carcinoma.

    Science.gov (United States)

    Wu, Qi; Tian, Ying; Zhang, Jingqiu; Zhang, Hongpeng; Gu, Fengming; Lu, Yongdie; Zou, Shengnan; Chen, Yuji; Sun, Pengxiang; Xu, Mengyue; Sun, Xiaoming; Xia, Chao; Chi, Hao; Ying Zhu, A; Tang, Dong; Wang, Daorong

    2017-11-24

    Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal forms of cancer with poor prognosis because it is highly resistant to traditional chemotherapy and radiotherapy and it has a low rate of surgical resection eligibility. Pancreatic stellate cells (PSC) have become a research hotspot in recent years, and play a vital role in PDAC microenvironment by secreting soluble factors such as transforming growth factor β, interleukin-6, stromal cell-derived factor-1, hepatocyte growth factor and galectin-1. These PSC-derived cytokines and proteins contribute to PSC activation, participating in PDAC cell proliferation, migration, fibrosis, angiogenesis, immunosuppression, epithelial-mesenchymal transition, and chemoradiation resistance, leading to malignant outcome. Consequently, targeting these cytokines and proteins or their downstream signaling pathways is promising for treating PDAC.

  16. Paracrine Secretion of Transforming Growth Factor β by Ductal Cells Promotes Acinar-to-Ductal Metaplasia in Cultured Human Exocrine Pancreas Tissues.

    Science.gov (United States)

    Akanuma, Naoki; Liu, Jun; Liou, Geou-Yarh; Yin, Xue; Bejar, Kaitlyn R; Liu, Chengyang; Sun, Lu-Zhe; Storz, Peter; Wang, Pei

    2017-10-01

    We aimed to evaluate the contribution of acinar-to-ductal metaplasia (ADM) to the accumulation of cells with a ductal phenotype in cultured human exocrine pancreatic tissues and reveal the underlying mechanism. We sorted and cultured viable cell populations in human exocrine pancreatic tissues with a flow cytometry-based lineage tracing method to evaluate possible mechanisms of ADM. Cell surface markers, gene expression pattern, and sphere formation assay were used to examine ADM. A large proportion of acinar cells gained CD133 expression during the 2-dimensional culture and showed down-regulation of acinar markers and up-regulation of ductal markers, assuming an ADM phenotype. In a serum-free culture condition, ADM induction was mainly dependent on transforming growth factor β (TGF-β) secreted from cultured ductal cells. Human acinar cells when cultured alone for a week in a serum-free condition do not undergo ADM. However, serum may contain other factors besides TGF-β to induce ADM in human acinar cells. In addition, we found that TGF-β cannot induce ADM of murine acinar cells. Ductal cells are the major source of TGF-β that induces ADM in cultured human exocrine pancreatic tissues. This culture system might be a useful model to investigate the mechanism of ADM in human cells.

  17. PD2/Paf1 depletion in pancreatic acinar cells promotes acinar-to-ductal metaplasia.

    Science.gov (United States)

    Dey, Parama; Rachagani, Satyanarayana; Vaz, Arokia P; Ponnusamy, Moorthy P; Batra, Surinder K

    2014-06-30

    Pancreatic differentiation 2 (PD2), a PAF (RNA Polymerase II Associated Factor) complex subunit, is overexpressed in pancreatic cancer cells and has demonstrated potential oncogenic property. Here, we report that PD2/Paf1 expression was restricted to acinar cells in the normal murine pancreas, but its expression increased in the ductal cells of KrasG12D/Pdx1Cre (KC) mouse model of pancreatic cancer with increasing age, showing highest expression in neoplastic ductal cells of 50 weeks old mice. PD2/Paf1 was specifically expressed in amylase and CK19 double positive metaplastic ducts, representing intermediate structures during pancreatic acinar-to-ductal metaplasia (ADM). Similar PD2/Paf1 expression was observed in murine pancreas that exhibited ADM-like histology upon cerulein challenge. In normal mice, cerulein-mediated inflammation induced a decrease in PD2/Paf1 expression, which was later restored upon recovery of the pancreatic parenchyma. In KC mice, however, PD2/Paf1 mRNA level continued to decrease with progressive dysplasia and subsequent neoplastic transformation. Additionally, knockdown of PD2/Paf1 in pancreatic acinar cells resulted in the abrogation of Amylase, Elastase and Lipase (acinar marker) mRNA levels with simultaneous increase in CK19 and CAII (ductal marker) transcripts. In conclusion, our studies indicate loss of PD2/Paf1 expression during acinar transdifferentiation in pancreatic cancer initiation and PD2/Paf1 mediated regulation of lineage specific markers.

  18. Inflammatory cells contribute to the generation of an angiogenic phenotype in pancreatic ductal adenocarcinoma.

    Science.gov (United States)

    Esposito, I; Menicagli, M; Funel, N; Bergmann, F; Boggi, U; Mosca, F; Bevilacqua, G; Campani, D

    2004-06-01

    Inflammatory cells contribute to the growth and spread of human malignancies by producing molecules that enhance tumour invasiveness. To characterise the inflammatory infiltrate in pancreatic ductal adenocarcinoma and to analyse its contribution to angiogenesis and its prognostic relevance. Immunohistochemistry was used to identify inflammatory cells and evaluate the expression of proangiogenic and prolymphangiogenic molecules (vascular endothelial growth factor A (VEGF-A), VEGF-C, and basic fibroblast growth factor (bFGF)) by inflammatory and cancer cells in 137 pancreatic cancers. Intratumorous microvessel density (IMD) was assessed using CD34 as an endothelial cell marker. There were significantly more mast cells and macrophages in pancreatic cancers than in normal pancreas and the number of mast cells directly correlated with the presence of lymph node metastases. However, there was no relation between numbers of infiltrating inflammatory cells and the presence of chronic pancreatitis (CP)-like changes in the parenchyma surrounding the tumour. Double immunostaining revealed that both pancreatic mast cells and macrophages express VEGF-A, VEGF-C, and bFGF. These factors were also expressed in the tumour cells in many cases. The numbers of VEGF-A expressing tumour cells and bFGF expressing tumour and inflammatory cells significantly correlated with IMD. Moreover, tumours with higher IMD had higher numbers of infiltrating mast cells and macrophages. Mononuclear inflammatory cells of the non-specific immune response are recruited to pancreatic cancer tissues independent of the presence of CP-like changes, may influence the metastatic capacity of the cancer cells, and may contribute to the development of tumours with high angiogenic activity.

  19. Vesicular stomatitis virus as an oncolytic agent against pancreatic ductal adenocarcinoma.

    Science.gov (United States)

    Murphy, Andrea M; Besmer, Dahlia M; Moerdyk-Schauwecker, Megan; Moestl, Natascha; Ornelles, David A; Mukherjee, Pinku; Grdzelishvili, Valery Z

    2012-03-01

    Vesicular stomatitis virus (VSV) is a promising oncolytic agent against a variety of cancers. However, it has never been tested in any pancreatic cancer model. Pancreatic ductal adenocarcinoma (PDA) is the most common and aggressive form of pancreatic cancer. In this study, the oncolytic potentials of several VSV variants were analyzed in a panel of 13 clinically relevant human PDA cell lines and compared to conditionally replicative adenoviruses (CRAds), Sendai virus and respiratory syncytial virus. VSV variants showed oncolytic abilities superior to those of other viruses, and some cell lines that exhibited resistance to other viruses were successfully killed by VSV. However, PDA cells were highly heterogeneous in their susceptibility to virus-induced oncolysis, and several cell lines were resistant to all tested viruses. Resistant cells showed low levels of very early VSV RNA synthesis, indicating possible defects at initial stages of infection. In addition, unlike permissive PDA cell lines, most of the resistant cell lines were able to both produce and respond to interferon, suggesting that intact type I interferon responses contributed to their resistance phenotype. Four cell lines that varied in their permissiveness to VSV-ΔM51 and CRAd dl1520 were tested in mice, and the in vivo results closely mimicked those in vitro. While our results demonstrate that VSV is a promising oncolytic agent against PDA, further studies are needed to better understand the molecular mechanisms of resistance of some PDAs to oncolytic virotherapy.

  20. Tumor budding is an independent adverse prognostic factor in pancreatic ductal adenocarcinoma.

    Science.gov (United States)

    O'Connor, Kate; Li-Chang, Hector H; Kalloger, Steven E; Peixoto, Renata D; Webber, Douglas L; Owen, David A; Driman, David K; Kirsch, Richard; Serra, Stefano; Scudamore, Charles H; Renouf, Daniel J; Schaeffer, David F

    2015-04-01

    Tumor budding is a well-established adverse prognostic factor in colorectal cancer. However, the significance and diagnostic reproducibility of budding in pancreatic carcinoma requires further study. We aimed to assess the prognostic significance of tumor budding in pancreatic ductal adenocarcinoma, determine its relationship with other clinicopathologic features, and assess interobserver variability in its diagnosis. Tumor budding was assessed in 192 archival cases of pancreatic ductal adenocarcinoma using hematoxylin and eosin (H&E) sections; tumor buds were defined as single cells or nonglandular clusters composed of budding was determined through assessment of all tumor-containing slides, and associations with clinicopathologic features and outcomes were analyzed. Six gastrointestinal pathologists participated in an interobserver variability study of 120 images of consecutive tumor slides stained with H&E and cytokeratin. Budding was present in 168 of 192 cases and was associated with decreased overall survival (P=0.001). On multivariable analysis, tumor budding was prognostically significantly independent of stage, grade, tumor size, nodal status, lymphovascular invasion, and perineural invasion. There was substantial agreement among pathologists in assessing the presence of tumor budding using both H&E (K=0.63) and cytokeratin (K=0.63) stains. The presence of tumor budding is an independent adverse prognostic factor in pancreatic ductal carcinoma. The assessment of budding with H&E is reliable and could be used to better risk stratify patients with pancreatic ductal adenocarcinoma.

  1. Genotype tunes pancreatic ductal adenocarcinoma tissue tension to induce matricellular fibrosis and tumor progression

    DEFF Research Database (Denmark)

    Laklai, Hanane; Miroshnikova, Yekaterina A.; Pickup, Michael W.

    2016-01-01

    by increasing matricellular fibrosis and tissue tension. In contrast, epithelial STAT3 ablation attenuated tumor progression by reducing the stromal stiffening and epithelial contractility induced by loss of TGF-β signaling. In PDAC patient biopsies, higher matricellular protein and activated STAT3 were......Fibrosis compromises pancreatic ductal carcinoma (PDAC) treatment and contributes to patient mortality, yet antistromal therapies are controversial. We found that human PDACs with impaired epithelial transforming growth factor-β (TGF-β) signaling have high epithelial STAT3 activity and develop...... stiff, matricellular-enriched fibrosis associated with high epithelial tension and shorter patient survival. In several KRAS-driven mouse models, both the loss of TGF-β signaling and elevated β1-integrin mechanosignaling engaged a positive feedback loop whereby STAT3 signaling promotes tumor progression...

  2. CI- and K+ Channels in Pancreatic Ductal Adenocarcinoma (PDAC)

    DEFF Research Database (Denmark)

    Sauter, Daniel Rafael Peter

    Pancreatic ductal adenocarcinoma (PDAC) has one of the worst survival rates of all cancers with >95% of the affected dying from it. Despite of intensive efforts to develop new therapeutic strategies, only few drugs (e.g. gemcitabine, erlotinib) are currently approved for treatment, all exhibit only...

  3. Total pancreatectomy for pancreatic ductal adenocarcinoma: review of the National Cancer Data Base.

    Science.gov (United States)

    Johnston, W Cory; Hoen, Helena M; Cassera, Maria A; Newell, Pippa H; Hammill, Chet W; Hansen, Paul D; Wolf, Ronald F

    2016-01-01

    Total pancreatectomy is infrequently performed for pancreatic cancer. Perceived operative mortality and questionable survival benefit deter many surgeons. Clinical outcomes, described in single-center series, remain largely unknown. The National Cancer Database was queried for cases of pancreatic ductal adenocarcinoma undergoing total pancreatectomy (1998-2011). Univariate survival analyses were performed for 21 variables: demographic (8), tumor characteristics (5), surgery outcomes (6), and adjuvant therapy (2). The Log-rank test of differences in Kaplan-Meier survival curves was used for categorical variables. Variables with p total pancreatectomy is a reasonable option for selected patients with pancreatic ductal adenocarcinoma, survival of the entire group is limited. Operative mortality is improved from prior reports. Greater survival benefits were seen in younger patients with smaller, node negative tumors resected with negative margins in academic research centers. Copyright © 2015 International Hepato-Pancreato-Biliary Association Inc. Published by Elsevier Ltd. All rights reserved.

  4. KLF4 is a novel candidate tumor suppressor gene in pancreatic ductal carcinoma.

    Science.gov (United States)

    Zammarchi, Francesca; Morelli, Mariangela; Menicagli, Michele; Di Cristofano, Claudio; Zavaglia, Katia; Paolucci, Alessandra; Campani, Daniela; Aretini, Paolo; Boggi, Ugo; Mosca, Franco; Cavazzana, Andrea; Cartegni, Luca; Bevilacqua, Generoso; Mazzanti, Chiara Maria

    2011-01-01

    Ductal pancreatic carcinoma (DPC) is a deadly disease with an incidence of 9 cases in 100,000 people per year and a mortality rate close to 100%. Allelic losses in the long arm of chromosome 9 are commonly encountered in many human malignancies but no data are yet available about DPC. We screened 40 laser-microdissected DPC samples and 6 pre-invasive lesions for 9 microsatellite mapping markers of region 9q21.3 through 9q34.2. A small overlapping region of deletion, spanning 8 million base pairs, was identified between D9S127 and D9S105. Two genes, RSG3 and KLF4, mapped to 9q31.1 through 9q32, were further investigated. A highly significant association was found between KLF4 gene expression levels and genomic status. Similarly, absence of immunohistochemical expression of KLF4 protein was found in 86.8% cases of DPC (33/38). Overexpression of KLF4 in a human pancreatic carcinoma cell line induced a significant decrease in the proliferation associated with up-regulation of p21 and the down-regulation of cyclin D1. In conclusion, we identified a novel oncosuppressor region located at the 9q 31.1-3 locus that is lost in DPC at high frequency. Loss of KLF4 expression is closely related to the genomic loss, and its restoration inhibits cancer cell proliferation, suggesting a key suppressor role in pancreatic tumorigenesis. Copyright © 2011 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  5. Metformin Restrains Pancreatic Duodenal Homeobox-1 (PDX-1) Function by Inhibiting ERK Signaling in Pancreatic Ductal Adenocarcinoma.

    Science.gov (United States)

    Zhou, G; Yu, J; Wang, A; Liu, S-H; Sinnett-Smith, J; Wu, J; Sanchez, R; Nemunaitis, J; Ricordi, C; Rozengurt, E; Brunicardi, F C

    2016-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is one of the most potent and perilous diseases known, with a median survival rate of 3-5 months due to the combination of only advanced stage diagnosis and ineffective therapeutic options. Metformin (1,1-Dimethylbiguanide hydrochloride), the leading drug used for type 2 diabetes mellitus, emerges as a potential therapy for PDAC and other human cancers. Metformin exerts its anticancer action via a variety of adenosine monophosphate (AMP)-activated protein kinase (AMPK)- dependent and/or AMPK-independent mechanisms. We present data here showing that metformin downregulated pancreatic transcription factor pancreatic duodenal homeobox-1 (PDX-1), suggesting a potential novel mechanism by which metformin exerts its anticancer action. Metformin inhibited PDX-1 expression at both protein and mRNA levels and PDX-1 transactivity as well in PDAC cells. Extracellular signal-regulated kinase (ERK) was identified as a PDX-1-interacting protein by antibody array screening in GFP-PDX-1 stable HEK293 cells. Co-transfection of ERK1 with PDX-1 resulted in an enhanced PDX-1 expression in HEK293 cells in a dose-dependent manner. Immunoprecipitation/Western blotting analysis confirmed the ERK-PDX-1 interaction in PANC-1 cells stimulated by epidermal growth factor (EGF). EGF induced an enhanced PDX-1 expression in PANC-1 cells and this stimulation was inhibited by MEK inhibitor PD0325901. Metformin inhibited EGF-stimulated PDX-1 expression with an accompanied inhibition of ERK kinase activation in PANC- 1 cells. Taken together, our studies show that PDX-1 is a potential novel target for metformin in PDAC cells and that metformin may exert its anticancer action in PDAC by down-regulating PDX-1 via a mechanism involving inhibition of ERK signaling.

  6. Metformin Restrains Pancreatic Duodenal Homeobox-1 (PDX-1) Function by Inhibiting ERK Signaling in Pancreatic Ductal Adenocarcinoma

    Science.gov (United States)

    Zhou, G.; Yu, J.; Wang, A.; Liu, S.-H.; Sinnett-Smith, J.; Wu, J.; Sanchez, R.; Nemunaitis, J.; Ricordi, C.; Rozengurt, E.; Brunicardi, F.C.

    2016-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is one of the most potent and perilous diseases known, with a median survival rate of 3-5 months due to the combination of only advanced stage diagnosis and ineffective therapeutic options. Metformin (1,1-Dimethylbiguanide hydrochloride), the leading drug used for type 2 diabetes mellitus, emerges as a potential therapy for PDAC and other human cancers. Metformin exerts its anticancer action via a variety of adenosine monophosphate (AMP)-activated protein kinase (AMPK)- dependent and/or AMPK-independent mechanisms. We present data here showing that metformin down- regulated pancreatic transcription factor pancreatic duodenal homeobox-1 (PDX-1), suggesting a potential novel mechanism by which metformin exerts its anticancer action. Metformin inhibited PDX-1 expression at both protein and mRNA levels and PDX-1 transactivity as well in PDAC cells. Extracellular signal-regulated kinase (ERK) was identified as a PDX-1-interacting protein by antibody array screening in GFP-PDX-1 stable HEK293 cells. Co-transfection of ERK1 with PDX-1 resulted in an enhanced PDX-1 expression in HEK293 cells in a dose-dependent manner. Immunoprecipitation/Western blotting analysis confirmed the ERK-PDX-1 interaction in PANC-1 cells stimulated by epidermal growth factor (EGF). EGF induced an enhanced PDX-1 expression in PANC-1 cells and this stimulation was inhibited by MEK inhibitor PD0325901. Metformin inhibited EGF-stimulated PDX-1 expression with an accompanied inhibition of ERK kinase activation in PANC- 1 cells. Taken together, our studies show that PDX-1 is a potential novel target for metformin in PDAC cells and that metformin may exert its anticancer action in PDAC by down-regulating PDX-1 via a mechanism involving inhibition of ERK signaling. PMID:26695692

  7. Pancreatic ductal adenocarcinoma: risk factors, screening, and early detection.

    Science.gov (United States)

    Becker, Andrew E; Hernandez, Yasmin G; Frucht, Harold; Lucas, Aimee L

    2014-08-28

    Pancreatic cancer is the fourth most common cause of cancer-related deaths in the United States, with over 38000 deaths in 2013. The opportunity to detect pancreatic cancer while it is still curable is dependent on our ability to identify and screen high-risk populations before their symptoms arise. Risk factors for developing pancreatic cancer include multiple genetic syndromes as well as modifiable risk factors. Genetic conditions include hereditary breast and ovarian cancer syndrome, Lynch Syndrome, familial adenomatous polyposis, Peutz-Jeghers Syndrome, familial atypical multiple mole melanoma syndrome, hereditary pancreatitis, cystic fibrosis, and ataxia-telangiectasia; having a genetic predisposition can raise the risk of developing pancreatic cancer up to 132-fold over the general population. Modifiable risk factors, which include tobacco exposure, alcohol use, chronic pancreatitis, diet, obesity, diabetes mellitus, as well as certain abdominal surgeries and infections, have also been shown to increase the risk of pancreatic cancer development. Several large-volume centers have initiated such screening protocols, and consensus-based guidelines for screening high-risk groups have recently been published. The focus of this review will be both the genetic and modifiable risk factors implicated in pancreatic cancer, as well as a review of screening strategies and their diagnostic yields.

  8. Pancreatic ductal adenocarcinoma: Risk factors, screening, and early detection

    Science.gov (United States)

    Becker, Andrew E; Hernandez, Yasmin G; Frucht, Harold; Lucas, Aimee L

    2014-01-01

    Pancreatic cancer is the fourth most common cause of cancer-related deaths in the United States, with over 38000 deaths in 2013. The opportunity to detect pancreatic cancer while it is still curable is dependent on our ability to identify and screen high-risk populations before their symptoms arise. Risk factors for developing pancreatic cancer include multiple genetic syndromes as well as modifiable risk factors. Genetic conditions include hereditary breast and ovarian cancer syndrome, Lynch Syndrome, familial adenomatous polyposis, Peutz-Jeghers Syndrome, familial atypical multiple mole melanoma syndrome, hereditary pancreatitis, cystic fibrosis, and ataxia-telangiectasia; having a genetic predisposition can raise the risk of developing pancreatic cancer up to 132-fold over the general population. Modifiable risk factors, which include tobacco exposure, alcohol use, chronic pancreatitis, diet, obesity, diabetes mellitus, as well as certain abdominal surgeries and infections, have also been shown to increase the risk of pancreatic cancer development. Several large-volume centers have initiated such screening protocols, and consensus-based guidelines for screening high-risk groups have recently been published. The focus of this review will be both the genetic and modifiable risk factors implicated in pancreatic cancer, as well as a review of screening strategies and their diagnostic yields. PMID:25170203

  9. Lipocalin2 promotes invasion, tumorigenicity and gemcitabine resistance in pancreatic ductal adenocarcinoma.

    Directory of Open Access Journals (Sweden)

    Lisa Leung

    Full Text Available Lipocalin 2 (LCN2 is a small secreted protein and its elevated expression has been observed in pancreatic as well as other cancer types. LCN2 has been reported to promote resistance to drug-induced apoptosis, enhance invasion through its physical association with matrix metalloproteinase-9, and promote in vivo tumor growth. LCN2 was found to be commonly expressed in patient PDAC samples and its pattern of immunohistochemical staining intensified with increasing severity in high-grade precursor lesions. Downregulation of LCN2 in two pancreatic ductal adenocarcinoma cell lines (BxPC3 and HPAF-II with high LCN2 expression significantly reduced attachment, invasion, and tumour growth in vivo, but not proliferation or motility. Downregulation of LCN2 in two pancreatic ductal adenocarcinoma cell lines (BxPC3 and HPAF-II with high expression significantly reduced attachment, invasion, and tumour growth in vivo. In contrast, LCN2 overexpression in PANC1, with low endogenous expression, significantly increased invasion, attachment, and enhanced tumor growth. Suppression of LCN2 in BxPC3 and HPAF-II cells increased their sensitivity to gemcitabine in vitro, and in vivo when BxPC3 was tested. Furthermore, LCN2 promotes expression of VEGF and HIF1A which contribute to enhanced vascularity. These overall results demonstrate that LCN2 plays an important role in the malignant progression of pancreatic ductal carcinoma and is a potential therapeutic target for this disease.

  10. FEATURES OF ISLET-LIKE CLUSTERS GENERATION IN PANCREATIC DUCTAL CELL MOLOLAYER CULTURING

    Directory of Open Access Journals (Sweden)

    L. A. Kirsanova

    2012-01-01

    Full Text Available Newborn rabbit pancreatic cell monolayer was obtained as we described earlier.The cultivated epithelial cells were shown by immunofluorescence to express special ductal marker CK19 and were insulin-and glucagon- negative for 10–15 days. A few fusiforms of nestin-positive cells were found in monolayer. Over 2 weeks in serum-free medium the plaques of epithelial cells became crowded and formed 3-dimentional structures – islet- like clusters. Islet-like clusters contain some insulin- and glucagon-positive cells recognized by immunohysto- chemistry staining. Pancreatic endocrine cell generation in 3-dimentional structures is discussed. 

  11. Numb regulates acinar cell dedifferentiation and survival during pancreatic damage and acinar-to-ductal metaplasia.

    Science.gov (United States)

    Greer, Renee L; Staley, Binnaz K; Liou, Angela; Hebrok, Matthias

    2013-11-01

    Pancreatic ductal adenocarcinoma (PDA) is a leading cause of cancer-related death. Through the process of acinar-to-ductal metaplasia (ADM), pancreatic acinar cells give rise to pancreatic intraepithelial neoplasia (PanIN), the most common precursor of PDA. However, even when Kras is activated in a majority of acinar cells, ADM and subsequent development of PanINs is inefficient in the absence of additional stresses. Numb regulates cell junctions, integrins, and the activity of embryonic signaling pathways; therefore, we investigated its effects on acinar cell dedifferentiation, regeneration, and metaplasia. We used mouse models of pancreatic regeneration and PDA as well as mice with loss-of-function alleles of Numb (p48Cre/p48Cre(ER);Numb(f/f) and p48Cre/p48Cre(ER);Kras(G12D);Numb(f/f) mice) to study the roles of Numb in pancreatic regeneration and ADM. Loss of Numb resulted in premature dedifferentiation of acinar cells in response to injury due to administration of the cholecystokinin analogue cerulein and interfered with acinar cell regeneration. Numb was found to regulate multiple signaling pathways in acinar cells during cerulein-induced pancreatitis. Disruption of Numb accelerated and destabilized ADM in the context of oncogenic Kras (in p48Cre;Kras(G12D);Numb(f/f) and p48Cre(ER);Kras(G12D);Numb(f/f) mice). Numb is an important regulator of acinar cell differentiation and viability during metaplasia. In mice with pancreatitis or pancreatic injury, elimination of Numb causes dedifferentiated acinar cells to undergo apoptosis, and this is not mitigated by oncogenic Kras. Copyright © 2013 AGA Institute. Published by Elsevier Inc. All rights reserved.

  12. Identification of novel vascular projections with cellular trafficking abilities on the microvasculature of pancreatic ductal adenocarcinoma.

    Science.gov (United States)

    Hexige, Saiyin; Ardito-Abraham, Christine M; Wu, Yanhua; Wei, Youheng; Fang, Yuan; Han, Xu; Li, Jianang; Zhou, Ping; Yi, Qing; Maitra, Anirban; Liu, Jun O; Tuveson, David A; Lou, Wenhui; Yu, Long

    2015-06-01

    Pancreatic ductal adenocarcinoma (PDAC) is a nearly lethal neoplasm. It is a remarkably stroma-rich, vascular-poor and hypo-perfused tumour, which prevents efficient drug delivery. Paradoxically, the neoplastic cells have robust glucose uptake, suggesting that the microvasculature has adopted an alternative method for nutrient uptake and cellular trafficking. Using adapted thick tumour section immunostaining and three-dimensional (3D) construction imaging in human tissue samples, we identified an undiscovered feature of the mature microvasculature in advanced PDAC tumours; long, hair-like projections on the basal surface of microvessels that we refer to as 'basal microvilli'. Functionally, these basal microvilli have an actin-rich cytoskeleton and endocytic and exocytic properties, and contain glucose transporter-1 (GLUT-1)-positive vesicles. Clinically, as demonstrated by PET-CT, the tumour microvasculature with the longest and most abundant basal microvilli correlated with high glucose uptake of the PDAC tumour itself. In addition, these basal microvilli were found in regions of the tumour with low GLUT-1 expression, suggesting that their presence could be dependent upon the glucose concentration in the tumour milieu. Similar microvasculature features were also observed in a K-Ras-driven model of murine PDAC. Altogether, these basal microvilli mark a novel pathological feature of PDAC microvasculature. Because basal microvilli are pathological features with endo- and exocytic properties, they may provide a non-conventional method for cellular trafficking in PDAC tumours. Copyright © 2015 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  13. ATM Deficiency Generating Genomic Instability Sensitizes Pancreatic Ductal Adenocarcinoma Cells to Therapy-Induced DNA Damage.

    Science.gov (United States)

    Perkhofer, Lukas; Schmitt, Anna; Romero Carrasco, Maria Carolina; Ihle, Michaela; Hampp, Stephanie; Ruess, Dietrich Alexander; Hessmann, Elisabeth; Russell, Ronan; Lechel, André; Azoitei, Ninel; Lin, Qiong; Liebau, Stefan; Hohwieler, Meike; Bohnenberger, Hanibal; Lesina, Marina; Algül, Hana; Gieldon, Laura; Schröck, Evelin; Gaedcke, Jochen; Wagner, Martin; Wiesmüller, Lisa; Sipos, Bence; Seufferlein, Thomas; Reinhardt, Hans Christian; Frappart, Pierre-Olivier; Kleger, Alexander

    2017-10-15

    Pancreatic ductal adenocarcinomas (PDAC) harbor recurrent functional mutations of the master DNA damage response kinase ATM, which has been shown to accelerate tumorigenesis and epithelial-mesenchymal transition. To study how ATM deficiency affects genome integrity in this setting, we evaluated the molecular and functional effects of conditional Atm deletion in a mouse model of PDAC. ATM deficiency was associated with increased mitotic defects, recurrent genomic rearrangements, and deregulated DNA integrity checkpoints, reminiscent of human PDAC. We hypothesized that altered genome integrity might allow synthetic lethality-based options for targeted therapeutic intervention. Supporting this possibility, we found that the PARP inhibitor olaparib or ATR inhibitors reduced the viability of PDAC cells in vitro and in vivo associated with a genotype-selective increase in apoptosis. Overall, our results offered a preclinical mechanistic rationale for the use of PARP and ATR inhibitors to improve treatment of ATM-mutant PDAC. Cancer Res; 77(20); 5576-90. ©2017 AACR. ©2017 American Association for Cancer Research.

  14. Seven-Signal Proteomic Signature for Detection of Operable Pancreatic Ductal Adenocarcinoma and Their Discrimination from Autoimmune Pancreatitis

    Directory of Open Access Journals (Sweden)

    Kiyoshi Yanagisawa

    2012-01-01

    Full Text Available There is urgent need for biomarkers that provide early detection of pancreatic ductal adenocarcinoma (PDAC as well as discrimination of autoimmune pancreatitis, as current clinical approaches are not suitably accurate for precise diagnosis. We used mass spectrometry to analyze protein profiles of more than 300 plasma specimens obtained from PDAC, noncancerous pancreatic diseases including autoimmune pancreatitis patients and healthy subjects. We obtained 1063 proteomic signals from 160 plasma samples in the training cohort. A proteomic signature consisting of 7 mass spectrometry signals was used for construction of a proteomic model for detection of PDAC patients. Using the test cohort, we confirmed that this proteomic model had discrimination power equal to that observed with the training cohort. The overall sensitivity and specificity for detection of cancer patients were 82.6% and 90.9%, respectively. Notably, 62.5% of the stage I and II cases were detected by our proteomic model. We also found that 100% of autoimmune pancreatitis patients were correctly assigned as noncancerous individuals. In the present paper, we developed a proteomic model that was shown able to detect early-stage PDAC patients. In addition, our model appeared capable of discriminating patients with autoimmune pancreatitis from those with PDAC.

  15. Sirtuin-1 regulates acinar-to-ductal metaplasia and supports cancer cell viability in pancreatic cancer.

    Science.gov (United States)

    Wauters, Elke; Sanchez-Arévalo Lobo, Victor J; Pinho, Andreia V; Mawson, Amanda; Herranz, Daniel; Wu, Jianmin; Cowley, Mark J; Colvin, Emily K; Njicop, Erna Ngwayi; Sutherland, Rob L; Liu, Tao; Serrano, Manuel; Bouwens, Luc; Real, Francisco X; Biankin, Andrew V; Rooman, Ilse

    2013-04-01

    The exocrine pancreas can undergo acinar-to-ductal metaplasia (ADM), as in the case of pancreatitis where precursor lesions of pancreatic ductal adenocarcinoma (PDAC) can arise. The NAD(+)-dependent protein deacetylase Sirtuin-1 (Sirt1) has been implicated in carcinogenesis with dual roles depending on its subcellular localization. In this study, we examined the expression and the role of Sirt1 in different stages of pancreatic carcinogenesis, i.e. ADM models and established PDAC. In addition, we analyzed the expression of KIAA1967, a key mediator of Sirt1 function, along with potential Sirt1 downstream targets. Sirt1 was co-expressed with KIAA1967 in the nuclei of normal pancreatic acinar cells. In ADM, Sirt1 underwent a transient nuclear-to-cytoplasmic shuttling. Experiments where during ADM, we enforced repression of Sirt1 shuttling, inhibition of Sirt1 activity or modulation of its expression, all underscore that the temporary decrease of nuclear and increase of cytoplasmic Sirt1 stimulate ADM. Our results further underscore that important transcriptional regulators of acinar differentiation, that is, Pancreatic transcription factor-1a and β-catenin can be deacetylated by Sirt1. Inhibition of Sirt1 is effective in suppression of ADM and in reducing cell viability in established PDAC tumors. KIAA1967 expression is differentially downregulated in PDAC and impacts on the sensitivity of PDAC cells to the Sirt1/2 inhibitor Tenovin-6. In PDAC, acetylation of β-catenin is not affected, unlike p53, a well-characterized Sirt1-regulated protein in tumor cells. Our results reveal that Sirt1 is an important regulator and potential therapeutic target in pancreatic carcinogenesis. ©2012 AACR.

  16. [A Case of Invasive Ductal Carcinoma in the Fat Replacement of the Pancreatic Body and Tail].

    Science.gov (United States)

    Ebihara, Takeshi; Yamamoto, Tameyoshi; Hoshino, Hiromitsu; Yoshimura, Jumpei; Sasamatsu, Shingo; Hiraki, Yoko; Nishi, Hidemi; Shimizu, Katsushu; Kawada, Masahiro; Inoue, Toshiya; Kato, Fumitaka; Amano, Koji; Mikami, Jota; Yamamura, Jun; Makari, Yoichi; Nakata, Ken; Ikeda, Naoki; Kamigaki, Shunji; Tsujie, Masaki; Kimura, Yutaka; Nakata, Yasuki; Munakata, Satoru; Ohzato, Hiroki

    2015-11-01

    A 56 year-old woman with obesity (BMI3 2) and diabetes mellitus was diagnosed with right renal cell carcinoma. She underwent right nephrectomy 1 year ago. Seven months after surgery, CT revealed a rapidly growing mass near the spleen. The mass showed slight accumulation of FDG (SUVmax=2.4) on PET-CT. Since the lesion grew rapidly and was not enhanced in the early phase of enhanced CT, we diagnosed pancreatic cancer. Distal pancreatectomy and splenectomy were performed. The final pathological diagnosis was invasive ductal carcinoma in the fat replacement of the pancreatic body and tail. Postoperatively, the patient had no complications such as pancreatic fistula or aggravation of glucose intolerance. She received postoperative chemotherapy with gemcitabine. Since she developed pulmonary artery thrombosis, postoperative chemotherapy was interrupted after 8 courses. Thirty-two months after the surgery, she was still living without any recurrence. Acinar cells were absent in the fat replacement of the pancreas, but the pancreatic duct cells were still present. There was carcinoma in situ in the main pancreatic duct surrounding chronic inflammation. Fat replacement itself could be potentially precursor of the pancreatic cancer.

  17. CT and US findings in pancreatic ductal tumours

    Energy Technology Data Exchange (ETDEWEB)

    Eresue, J.; Drouillard, J.; Philippe, J.C.; Guibert, J.L.; Roux, P.; Tavernier, J.

    1985-02-01

    Pancreatic cystadenomas and cystadenocarcinomas are rare tumours usually occurring in women. The first symptoms are pain, occasionally associated with a palpable tumour in the left upper quadrant, and in rare cases the clinical and laboratory findings are suggestive of a pseudocyst. US shows a cystic neoplasm with a wall enclosing several polypoid areas. CT allows the diagnosis of the type of septa within the cyst and shows the extension of the lesion and calcifications into the wall. It also permits the assessment of the probable pathological complications associated with the tumour; therefore CT cannot differentiate cystadenoma from cystadenocarcinoma. The analysis of these different phenomena is based on one observation and a review of the literature.

  18. Intercalated duct cell is starting point in development of pancreatic ductal carcinoma?

    Directory of Open Access Journals (Sweden)

    Yamaguchi Toshikazu

    2005-01-01

    Full Text Available Abstract Background Although it is well known that the pancreatic ductal carcinoma may develop having a relationship to the mucous gland hyperplasia (MGH with atypia (PanIN-1B by PanIN system, the starting point of this atypical MGH is unclear. To know it, we examined the pancreas tissue using many methods described below. Methods 1. Twenty-seven surgically resected pancreas tissue specimens, including pancreatic ductal carcinomas (PDC, chronic pancreatitis and normal pancreas, were investigated using immunohistochemical stainings for MUC1, MUC6, 45M1, Ki67 and p53. 2. DNA extraction and analysis of K-ras mutation at codon 12 using microdissection method: The paraffin blocks with 16 regions including the intercalated duct cell (IC adjacant to the atypical MGH were prepared for DNA extraction. Mutation of K-ras codon 12 was analized and compared in enriched polymerase chain reaction-enzyme-linked minisequence assay (PCR-ELMA. Results 1. In the normal pancreas, although no positive cell was seen in 45M1, p53, Ki67, the cytoplasm of IC were always positive for MUC1 and sometimes positive for MUC6. In the pancreas with fibrosis or inflammation, MGH was positive for MUC6 and 45M1. And atypical MGH was positive for MUC1, MUC6 and 45M1. Some IC adjacent to the atypical MGH was positive for Ki67 as well as atypical MGH. The carcinoma cells in all cases of PDC were diffusely positive for MUC1, 45M1, p53 and Ki67, and focally positive for MUC6. 2. In K-ras mutation, we examined the regions including IC adjacent to the atypical MGH, because the immunohistochemical apomucin stainings of these regions resembled those of PDC as decribed above. And K-ras mutation was confirmed in 12 of 16 regions (75%. All mutations were a single mutation, in 6 regions GTT was detected, in 4 regions GAT was detected and in 2 region AGT was detected. Conclusion Some intercalated duct cell may be the starting point of the pancreatic ductal carcinoma, because the exhibitions of

  19. Association of increased DNA methyltransferase expression with carcinogenesis and poor prognosis in pancreatic ductal adenocarcinoma.

    Science.gov (United States)

    Zhang, Jing-Jing; Zhu, Yi; Zhu, Yan; Wu, Jun-Li; Liang, Wen-Biao; Zhu, Rong; Xu, Ze-Kuan; Du, Qing; Miao, Yi

    2012-02-01

    Epigenetic modifications play an important role in multistage carcinogenesis. The role of the three functional DNA methyltransferases (DNMTs) in pancreatic carcinogenesis has not been fully understood. The main goal of this study was to examine DNMT expression in different stages of pancreatic ductal adenocarcinoma (PDAC), and evaluate their prognostic significance in PDAC. A large number of premalignant and malignant pancreatic lesions were obtained by manual microdissection. Quantitative real-time RT-PCR was used to detect DNMTs mRNA expression. Nonparametric test, logrank test and Cox regression analysis were used to evaluate the clinical significance of DNMT expression. The mRNA expression of the three DNMTs increased with the development of pancreatic cancer from normal duct to pancreatic intraductal neoplasia and further to PDAC, and were statistically correlated with each other. Expression of the three DNMTs was statistically correlated with TNM staging and history of chronic pancreatitis. DNMT3A and DNMT3B, but not DNMT1 expression, was statistically correlated with tumour size. Patients with higher levels of DNMT1, DNMT3A and/or DNMT3B expression had an overall lower survival than those with lower levels of expression. Univariate analysis showed that high expression levels of DNMTs, alcohol consumption, tumour differentiation and TNM staging were statistically significant risk factors. Multivariate analysis showed that high level of DNMT3B expression and tumour differentiation were statistically significant independent poor prognostic factors. These results suggested that pancreatic carcinogenesis involves an increased mRNA expression of three DNMTs, and they may become valuable diagnostic and prognostic markers as well as potential therapeutic targets for pancreatic cancer.

  20. ACR Appropriateness Criteria® Staging of Pancreatic Ductal Adenocarcinoma.

    Science.gov (United States)

    Qayyum, Aliya; Tamm, Eric P; Kamel, Ihab R; Allen, Peter J; Arif-Tiwari, Hina; Chernyak, Victoria; Gonda, Tamas A; Grajo, Joseph R; Hindman, Nicole M; Horowitz, Jeanne M; Kaur, Harmeet; McNamara, Michelle M; Noto, Richard B; Srivastava, Pavan K; Lalani, Tasneem

    2017-11-01

    Pancreatic adenocarcinoma is associated with poor overall prognosis. Complete surgical resection is the only possible option for cure. As such, increasingly complex surgical techniques including sophisticated vascular reconstruction are being used. Continued advances in surgical techniques, in conjunction with use of combination systemic therapies, and radiation therapy have been suggested to improve outcomes. A key aspect to surgical success is reporting of pivotal findings beyond absence of distant metastases, such as tumor size, location, and degree of tumor involvement of specific vessels associated with potential perineural tumor spread. Multiphase contrast-enhanced multidetector CT and MRI are the imaging modalities of choice for pretreatment staging and presurgical determination of resectability. Imaging modalities such as endoscopic ultrasound and fluorine-18-2-fluoro-2-deoxy-D-glucose imaging with PET/CT are indicated for specific scenarios such as biopsy guidance and confirmation of distant metastases, respectively. The American College of Radiology Appropriateness Criteria are evidence-based guidelines for specific clinical conditions that are reviewed annually by a multidisciplinary expert panel. The guideline development and revision include an extensive analysis of current medical literature from peer reviewed journals and the application of well-established methodologies (RAND/UCLA Appropriateness Method and Grading of Recommendations Assessment, Development, and Evaluation or GRADE) to rate the appropriateness of imaging and treatment procedures for specific clinical scenarios. In those instances where evidence is lacking or equivocal, expert opinion may supplement the available evidence to recommend imaging or treatment. Copyright © 2017 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  1. A Silent Asymptomatic Solid Pancreas Tumor in a Nonsmoking Athletic Female: Pancreatic Ductal Adenocarcinoma

    Directory of Open Access Journals (Sweden)

    Kyawzaw Lin

    2017-10-01

    Full Text Available A silent solid endocrine tumor of pancreas, intraductal adenocarcinoma of pancreas, is the fourth leading cancer-related death in the US. However, it is expected to become the third leading cause by 2030 owing to delayed diagnosis and slow progress in management. Chronic pancreatitis is at risk for pancreatic ductal adenocarcinoma (PDAC. PDAC is diagnostic with transabdominal sonogram, blood test such as carbohydrate antigen 19-9 (CA 19-9, and imaging. PDAC has a dismal prognosis. The survival rate in 5 years is barely 6%, while late detection rate is 80–85% with unresectable stage upon diagnosis. Here, we present a 51-year-old asymptomatic female with intermittent constipation and abdominal pain for 1 month with obstructive jaundice with PDAC with liver metastasis.

  2. Local Ablative Strategies for Ductal Pancreatic Cancer (Radiofrequency Ablation, Irreversible Electroporation): A Review

    Science.gov (United States)

    Paiella, Salvatore; Salvia, Roberto; Ramera, Marco; Girelli, Roberto; Frigerio, Isabella; Giardino, Alessandro; Allegrini, Valentina; Bassi, Claudio

    2016-01-01

    Pancreatic ductal adenocarcinoma (PDAC) has still a dismal prognosis. Locally advanced pancreatic cancer (LAPC) accounts for the 40% of the new diagnoses. Current treatment options are based on chemo- and radiotherapy regimens. Local ablative techniques seem to be the future therapeutic option for stage-III patients with PDAC. Radiofrequency Ablation (RFA) and Irreversible Electroporation (IRE) are actually the most emerging local ablative techniques used on LAPC. Initial clinical studies on the use of these techniques have already demonstrated encouraging results in terms of safety and feasibility. Unfortunately, few studies on their efficacy are currently available. Even though some reports on the overall survival are encouraging, randomized studies are still required to corroborate these findings. This study provides an up-to-date overview and a thematic summary of the current available evidence on the application of RFA and IRE on PDAC, together with a comparison of the two procedures. PMID:26981115

  3. Genetic Diversity of Pancreatic Ductal Adenocarcinoma and Opportunities for Precision Medicine.

    Science.gov (United States)

    Knudsen, Erik S; O'Reilly, Eileen M; Brody, Jonathan R; Witkiewicz, Agnieszka K

    2016-01-01

    Patients with pancreatic ductal adenocarcinoma (PDA) have a poor prognosis despite new treatments; approximately 7% survive for 5 years. Although there have been advances in systemic, primarily cytotoxic, therapies, it has been a challenge to treat patients with PDA using targeted therapies. Sequence analyses have provided a wealth of information about the genetic features of PDA and have identified potential therapeutic targets. Preclinical and early-phase clinical studies have found specific pathways could be rationally targeted; it might also be possible to take advantage of the genetic diversity of PDAs to develop therapeutic agents. The genetic diversity and instability of PDA cells have long been thought of as obstacles to treatment, but are now considered exploitable features. We review the latest findings in pancreatic cancer genetics and the promise of targeted approaches in PDA therapy. Copyright © 2016 AGA Institute. Published by Elsevier Inc. All rights reserved.

  4. Imaging and targeted therapy of pancreatic ductal adenocarcinoma using the theranostic sodium iodide symporter (NIS) gene.

    Science.gov (United States)

    Schmohl, Kathrin A; Gupta, Aayush; Grünwald, Geoffrey K; Trajkovic-Arsic, Marija; Klutz, Kathrin; Braren, Rickmer; Schwaiger, Markus; Nelson, Peter J; Ogris, Manfred; Wagner, Ernst; Siveke, Jens T; Spitzweg, Christine

    2017-05-16

    The theranostic sodium iodide symporter (NIS) gene allows detailed molecular imaging of transgene expression and application of therapeutic radionuclides. As a crucial step towards clinical application, we investigated tumor specificity and transfection efficiency of epidermal growth factor receptor (EGFR)-targeted polyplexes as systemic NIS gene delivery vehicles in an advanced genetically engineered mouse model of pancreatic ductal adenocarcinoma (PDAC) that closely reflects human disease. PDAC was induced in mice by pancreas-specific activation of constitutively active KrasG12D and deletion of Trp53. We used tumor-targeted polyplexes (LPEI-PEG-GE11/NIS) based on linear polyethylenimine, shielded by polyethylene glycol and coupled with the EGFR-specific peptide ligand GE11, to target a NIS-expressing plasmid to high EGFR-expressing PDAC. In vitro iodide uptake studies in cell explants from murine EGFR-positive and EGFR-ablated PDAC lesions demonstrated high transfection efficiency and EGFR-specificity of LPEI-PEG-GE11/NIS. In vivo 123I gamma camera imaging and three-dimensional high-resolution 124I PET showed significant tumor-specific accumulation of radioiodide after systemic LPEI-PEG-GE11/NIS injection. Administration of 131I in LPEI-PEG-GE11/NIS-treated mice resulted in significantly reduced tumor growth compared to controls as determined by magnetic resonance imaging, though survival was not significantly prolonged. This study opens the exciting prospect of NIS-mediated radionuclide imaging and therapy of PDAC after systemic non-viral NIS gene delivery.

  5. In vitro pancreas duodenal homeobox-1 enhances the differentiation of pancreatic ductal epithelial cells into insulin-producing cells

    Science.gov (United States)

    Liu, Tao; Wang, Chun-You; Yu, Feng; Gou, Shan-Miao; Wu, He-Shui; Xiong, Jiong-Xin; Zhou, Feng

    2007-01-01

    AIM: To observe whether pancreatic and duodenal homeobox factor-1 enhances the differentiation of pancreatic ductal epithelial cells into insulin-producing cells in vitro. METHODS: Rat pancreatic tissue was submitted to digestion by collagenase, ductal epithelial cells were separated by density gradient centrifugation and then cultured in RPMI1640 medium with 10% fetal bovine serum. After 3-5 passages, the cells were incubated in a six-well plate for 24 h before transfection of recombination plasmid XlHbox8VP16. Lightcycler quantitative real-time RT-PCR was used to detect the expression of PDX-1 and insulin mRNA in pancreatic epithelial cells. The expression of PDX-1 and insulin protein was analyzed by Western blotting. Insulin secretion was detected by radioimmunoassay. Insulin-producing cells were detected by dithizone-staining. RESULTS: XlHbox8 mRNA was expressed in pancreatic ductal epithelial cells. PDX-1 and insulin mRNA as well as PDX-1 and insulin protein were significantly increased in the transfected group. The production and insulin secretion of insulin-producing cells differentiated from pancreatic ductal epithelial cells were higher than those of the untransfected cells in vitro with a significant difference (1.32 ± 0.43 vs 3.48 ± 0.81, P < 0.01 at 5.6 mmol/L; 4.86 ± 1.15 vs 10.25 ± 1.32, P < 0.01 at 16.7 mmol/L). CONCLUSION: PDX-1 can differentiate rat pancreatic ductal epithelial cells into insulin-producing cells in vitro. In vitro PDX-1 transfection is a valuable strategy for increasing the source of insulin-producing cells. PMID:17876894

  6. Differential expression of aquaporin-3 and aquaporin-5 in pancreatic ductal adenocarcinoma.

    Science.gov (United States)

    Direito, Inês; Paulino, Jorge; Vigia, Emanuel; Brito, Maria Alexandra; Soveral, Graça

    2017-06-01

    Aquaporin-5 (AQP5) and -3 (AQP3) are protein channels that showed to be up-regulated in a variety of tumors. Our goal was to investigate the expression pattern of AQP5 and AQP3 in pancreatic ductal adenocarcinomas (PDA) and correlate with cell proliferation, tumor stage and progression, and clinical significance. 35 PDA samples in different stages of differentiation and locations were analyzed by immunohistochemistry for expression of AQP5, AQP3 and several markers of cell proliferation and tumorigenesis. In PDA samples AQP5 was overexpressed in the apical membrane of intercalated and intralobular ductal cells while AQP3 was expressed at the plasma membrane of ductal cells. AQP5 was also found in infiltrative cancer cells in duodenum. Simultaneous overexpression of EGFR, Ki-67, and CK7, with decreased E-cad and increased Vim that characterize epithelial mesenchymal transition, tumor formation and invasion, strongly suggest AQP3 and AQP5 involvement in cell proliferation and transformation. AQP3 overexpression is reinforced in late and more aggressive PDA stages whereas AQP5 is related with tumor differentiation, suggesting it may represent a novel marker for PDA aggressiveness and intestinal infiltration. These findings suggest AQP3 and AQP5 involvement in PDA development and the usefulness of AQP5 in early PDA diagnosis. © 2017 Wiley Periodicals, Inc.

  7. Duct- and Acinar-Derived Pancreatic Ductal Adenocarcinomas Show Distinct Tumor Progression and Marker Expression

    Directory of Open Access Journals (Sweden)

    Rute M.M. Ferreira

    2017-10-01

    Full Text Available The cell of origin of pancreatic ductal adenocarcinoma (PDAC has been controversial. Here, we show that identical oncogenic drivers trigger PDAC originating from both ductal and acinar cells with similar histology but with distinct pathophysiology and marker expression dependent on cell of origin. Whereas acinar-derived tumors exhibited low AGR2 expression and were preceded by pancreatic intraepithelial neoplasias (PanINs, duct-derived tumors displayed high AGR2 and developed independently of a PanIN stage via non-mucinous lesions. Using orthotopic transplantation and chimera experiments, we demonstrate that PanIN-like lesions can be induced by PDAC as bystanders in adjacent healthy tissues, explaining the co-existence of mucinous and non-mucinous lesions and highlighting the need to distinguish between true precursor PanINs and PanIN-like bystander lesions. Our results suggest AGR2 as a tool to stratify PDAC according to cell of origin, highlight that not all PanIN-like lesions are precursors of PDAC, and add an alternative progression route to the current model of PDAC development.

  8. Total laparoscopic pancreaticoduodenectomy for pancreatic ductal adenocarcinoma: oncologic advantages over open approaches?

    Science.gov (United States)

    Croome, Kristopher P; Farnell, Michael B; Que, Florencia G; Reid-Lombardo, K Marie; Truty, Mark J; Nagorney, David M; Kendrick, Michael L

    2014-10-01

    To directly compare the oncologic outcomes of TLPD and OPD in the setting of pancreatic ductal adenocarcinoma. Total laparoscopic pancreaticoduodenectomy (TLPD) has been demonstrated to be feasible and may have several potential advantages over open pancreaticoduodenectomy (OPD), including lower blood loss and shorter hospital stay. Whether potential advantages could allow patients to recover in a timelier manner and pursue adjuvant treatment options remains to be answered. We reviewed data for all patients undergoing TLPD (N = 108) or OPD (N = 214) for pancreatic ductal adenocarcinoma at our institution between January 2008 and July 2013. Neoadjuvant therapy, tumor size, node positivity, and margin-positive resection were not significantly different between the 2 groups. Median length of hospital stay was significantly longer in the OPD group (9 days; range, 5-73 days) than in the TLPD group (6 days; range, 4-118 days; P advantages such as shorter hospital stay and faster recovery, allowing patients to recover in a timelier manner and pursue adjuvant treatment options. This study also demonstrated a longer progression-free survival in patients undergoing TLPD than those undergoing OPD.

  9. Human pluripotent stem cell-derived acinar/ductal organoids generate human pancreas upon orthotopic transplantation and allow disease modelling.

    Science.gov (United States)

    Hohwieler, Meike; Illing, Anett; Hermann, Patrick C; Mayer, Tobias; Stockmann, Marianne; Perkhofer, Lukas; Eiseler, Tim; Antony, Justin S; Müller, Martin; Renz, Susanne; Kuo, Chao-Chung; Lin, Qiong; Sendler, Matthias; Breunig, Markus; Kleiderman, Susanne M; Lechel, André; Zenker, Martin; Leichsenring, Michael; Rosendahl, Jonas; Zenke, Martin; Sainz, Bruno; Mayerle, Julia; Costa, Ivan G; Seufferlein, Thomas; Kormann, Michael; Wagner, Martin; Liebau, Stefan; Kleger, Alexander

    2017-03-01

    The generation of acinar and ductal cells from human pluripotent stem cells (PSCs) is a poorly studied process, although various diseases arise from this compartment. We designed a straightforward approach to direct human PSCs towards pancreatic organoids resembling acinar and ductal progeny. Extensive phenotyping of the organoids not only shows the appropriate marker profile but also ultrastructural, global gene expression and functional hallmarks of the human pancreas in the dish. Upon orthotopic transplantation into immunodeficient mice, these organoids form normal pancreatic ducts and acinar tissue resembling fetal human pancreas without evidence of tumour formation or transformation. Finally, we implemented this unique phenotyping tool as a model to study the pancreatic facets of cystic fibrosis (CF). For the first time, we provide evidence that in vitro , but also in our xenograft transplantation assay, pancreatic commitment occurs generally unhindered in CF. Importantly, cystic fibrosis transmembrane conductance regulator (CFTR) activation in mutated pancreatic organoids not only mirrors the CF phenotype in functional assays but also at a global expression level. We also conducted a scalable proof-of-concept screen in CF pancreatic organoids using a set of CFTR correctors and activators, and established an mRNA-mediated gene therapy approach in CF organoids. Taken together, our platform provides novel opportunities to model pancreatic disease and development, screen for disease-rescuing agents and to test therapeutic procedures. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  10. Glycogen synthase kinase-3β ablation limits pancreatitis-induced acinar-to-ductal metaplasia.

    Science.gov (United States)

    Ding, Li; Liou, Geou-Yarh; Schmitt, Daniel M; Storz, Peter; Zhang, Jin-San; Billadeau, Daniel D

    2017-09-01

    Acinar-to-ductal metaplasia (ADM) is a reversible epithelial transdifferentiation process that occurs in the pancreas in response to acute inflammation. ADM can rapidly progress towards pre-malignant pancreatic intraepithelial neoplasia (PanIN) lesions in the presence of mutant KRas and ultimately pancreatic adenocarcinoma (PDAC). In the present work, we elucidate the role and related mechanism of glycogen synthase kinase-3beta (GSK-3β) in ADM development using in vitro 3D cultures and genetically engineered mouse models. We show that GSK-3β promotes TGF-α-induced ADM in 3D cultured primary acinar cells, whereas deletion of GSK-3β attenuates caerulein-induced ADM formation and PanIN progression in KrasG12D transgenic mice. Furthermore, we demonstrate that GSK-3β ablation influences ADM formation and PanIN progression by suppressing oncogenic KRas-driven cell proliferation. Mechanistically, we show that GSK-3β regulates proliferation by increasing the activation of S6 kinase. Taken together, these results indicate that GSK-3β participates in early pancreatitis-induced ADM and thus could be a target for the treatment of chronic pancreatitis and the prevention of PDAC progression. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  11. FDG PET imaging of Ela1-myc mice reveals major biological differences between pancreatic acinar and ductal tumours

    Energy Technology Data Exchange (ETDEWEB)

    Abasolo, Ibane [Institut Municipal d' Investigacio Medica-Hospital del Mar, Parc de Recerca Biomedica de Barcelona, Barcelona (Spain); Universitat Pompeu Fabra, Parc de Recerca Biomedica de Barcelona, Departament de Ciencies Experimentals i de la Salut, Barcelona (Spain); Institut d' Alta Tecnologia - CRC, Parc de Recerca Biomedica de Barcelona, Barcelona (Spain); Pujal, Judit; Navarro, Pilar [Institut Municipal d' Investigacio Medica-Hospital del Mar, Parc de Recerca Biomedica de Barcelona, Barcelona (Spain); Rabanal, Rosa M.; Serafin, Anna [Universitat Autonoma de Barcelona, Departament de Medicina i Cirurgia Animals, Barcelona (Spain); Millan, Olga [Institut d' Alta Tecnologia - CRC, Parc de Recerca Biomedica de Barcelona, Barcelona (Spain); Real, Francisco X. [Institut Municipal d' Investigacio Medica-Hospital del Mar, Parc de Recerca Biomedica de Barcelona, Barcelona (Spain); Universitat Pompeu Fabra, Parc de Recerca Biomedica de Barcelona, Departament de Ciencies Experimentals i de la Salut, Barcelona (Spain); Programa de Patologia Molecular, Centro Nacional de Investigaciones Oncologicas, Madrid (Spain)

    2009-07-15

    The aim was to evaluate FDG PET imaging in Ela1-myc mice, a pancreatic cancer model resulting in the development of tumours with either acinar or mixed acinar-ductal phenotype. Transversal and longitudinal FDG PET studies were conducted; selected tissue samples were subjected to autoradiography and ex vivo organ counting. Glucose transporter and hexokinase mRNA expression was analysed by quantitative reverse transcription polymerase chain reaction (RT-PCR); Glut2 expression was analysed by immunohistochemistry. Transversal studies showed that mixed acinar-ductal tumours could be identified by FDG PET several weeks before they could be detected by hand palpation. Longitudinal studies revealed that ductal - but not acinar - tumours could be detected by FDG PET. Autoradiographic analysis confirmed that tumour areas with ductal differentiation incorporated more FDG than areas displaying acinar differentiation. Ex vivo radioactivity measurements showed that tumours of solely acinar phenotype incorporated more FDG than pancreata of non-transgenic littermates despite the fact that they did not yield positive PET images. To gain insight into the biological basis of the differential FDG uptake, glucose transporter and hexokinase transcript expression was studied in microdissected tumour areas enriched for acinar or ductal cells and validated using cell-specific markers. Glut2 and hexokinase I and II mRNA levels were up to 20-fold higher in ductal than in acinar tumours. Besides, Glut2 protein overexpression was found in ductal neoplastic cells but not in the surrounding stroma. In Ela1-myc mice, ductal tumours incorporate significantly more FDG than acinar tumours. This difference likely results from differential expression of Glut2 and hexokinases. These findings reveal previously unreported biological differences between acinar and ductal pancreatic tumours. (orig.)

  12. Complete absence of M2-pyruvate kinase expression in benign pancreatic ductal epithelium and pancreaticobiliary and duodenal neoplasia

    Directory of Open Access Journals (Sweden)

    Rowlands Brian J

    2009-09-01

    Full Text Available Abstract Background Elevated serum concentrations of M2-pyruvate kinase (M2-PK correlate with poor prognosis in patients with pancreaticobiliary and duodenal cancer, but the expression of M2-PK in formalin-fixed pancreatic tissue is unknown. We aimed to characterise the immunohistochemical expression of M2-PK in archived specimens of pancreaticobiliary and duodenal cancers, premalignant lesions, chronic pancreatitis, and normal pancreas. Methods Immunohistochemical staining was performed with mouse anti-M2-PK monoclonal antibody (clone DF-4 at an optimal dilution of 1:25 on tissue microarrays constructed from formalin-fixed paraffin-embedded pancreatic tissue of 126 consecutive patients undergoing pancreatic resections between June 2001 and June 2006. 104 underwent resection for cancer and 22 for chronic pancreatitis. 78 specimens of chronic pancreatitis tissue were obtained adjacent to areas of cancer. Normal pancreatic tissue was obtained from the resection specimens in a total of 30 patients. Metastatic tumours in 61 regional lymph nodes from 61 patients were also studied. A further 11 premalignant pancreaticobiliary and duodenal lesions were studied. M2-PK expression was quantified with the immunohistochemical score (IHS; Range 0-12. Results Benign non-ductal tissue in chronic pancreatitis and normal pancreas showed variable expression of M2-PK (IHS = 1 in 25%, IHS = 2-3 in 40%, IHS>3 in 40%. Benign pancreatic ductal epithelium, all primary pancreaticobiliary and duodenal premalignant lesions and cancers (and lymph node metastasis showed complete lack of expression (IHS = 0. Conclusion Complete lack of M2-PK expression was observed in benign pancreatic ducts, premalignant lesions and cancer. M2-PK is present only in benign non-ductal epithelium in normal pancreas and peri-tumoural tissue.

  13. “Stealth dissemination” of macrophage-tumor cell fusions cultured from blood of patients with pancreatic ductal adenocarcinoma

    Science.gov (United States)

    Circulating tumor cells (CTCs) appear to be involved in early dissemination of many cancers, although which characteristics are important in metastatic spread are not clear. Here we describe isolation and characterization of macrophage-tumor cell fusions (MTFs) from the blood of pancreatic ductal a...

  14. Novel p21-Activated Kinase 4 (PAK4) Allosteric Modulators Overcome Drug Resistance and Stemness in Pancreatic Ductal Adenocarcinoma.

    Science.gov (United States)

    Aboukameel, Amro; Muqbil, Irfana; Senapedis, William; Baloglu, Erkan; Landesman, Yosef; Shacham, Sharon; Kauffman, Michael; Philip, Philip A; Mohammad, Ramzi M; Azmi, Asfar S

    2017-01-01

    The p21-activated kinase 4 (PAK4) is a key downstream effector of the Rho family GTPases and is found to be overexpressed in pancreatic ductal adenocarcinoma (PDAC) cells but not in normal human pancreatic ductal epithelia (HPDE). Gene copy number amplification studies in PDAC patient cohorts confirmed PAK4 amplification making it an attractive therapeutic target in PDAC. We investigated the antitumor activity of novel PAK4 allosteric modulators (PAM) on a panel of PDAC cell lines and chemotherapy-resistant flow-sorted PDAC cancer stem cells (CSC). The toxicity and efficacy of PAMs were evaluated in multiple subcutaneous mouse models of PDAC. PAMs (KPT-7523, KPT-7189, KPT-8752, KPT-9307, and KPT-9274) show antiproliferative activity in vitro against different PDAC cell lines while sparing normal HPDE. Cell growth inhibition was concurrent with apoptosis induction and suppression of colony formation in PDAC. PAMs inhibited proliferation and antiapoptotic signals downstream of PAK4. Co-immunoprecipitation experiments showed disruption of PAK4 complexes containing vimentin. PAMs disrupted CSC spheroid formation through suppression of PAK4. Moreover, PAMs synergize with gemcitabine and oxaliplatin in vitro KPT-9274, currently in a phase I clinical trial (clinicaltrials.gov; NCT02702492), possesses desirable pharmacokinetic properties and is well tolerated in mice with the absence of any signs of toxicity when 200 mg/kg daily is administered either intravenously or orally. KPT-9274 as a single agent showed remarkable antitumor activity in subcutaneous xenograft models of PDAC cell lines and CSCs. These proof-of-concept studies demonstrated the antiproliferative effects of novel PAMs in PDAC and warrant further clinical investigations. Mol Cancer Ther; 16(1); 76-87. ©2016 AACR. ©2016 American Association for Cancer Research.

  15. Predictors and Diagnostic Strategies for Early-Stage Pancreatic Ductal Adenocarcinoma: A Retrospective Study.

    Science.gov (United States)

    Kimura, Hideyo; Ohtsuka, Takao; Matsunaga, Taketo; Watanabe, Yusuke; Tamura, Koji; Ideno, Noboru; Aso, Teppei; Miyazaki, Tetsuyuki; Osoegawa, Takashi; Aishima, Shinichi; Miyasaka, Yoshihiro; Ueda, Junji; Ushijima, Yasuhiro; Igarashi, Hisato; Ito, Tetsuhide; Takahata, Shunichi; Oda, Yoshinao; Mizumoto, Kazuhiro; Tanaka, Masao

    2015-10-01

    As a strategy to diagnose early-stage pancreatic ductal adenocarcinoma (PDAC) is urgently needed, we aimed to clarify characteristics of early-stage PDAC. We retrospectively reviewed medical records of 299 consecutive patients who underwent R0 or R1 surgical resection for PDAC between 1994 and 2013 and compared clinical characteristics between patients with early-stage (stages 0-I by Japanese General Rules for Pancreatic Cancer) and advanced-stage (stages II-IV) disease. Diagnostic processes were also analyzed. Twenty-four patients (8%) had early-stage PDAC (stage 0: 11; stage I: 13). Univariate and multivariate analyses showed that presence or history of intraductal papillary mucinous neoplasm (P early-stage PDAC. Cytological examination during endoscopic retrograde pancreatography cytology was ∼65% sensitive in preoperative diagnosis of early-stage PDAC, whereas other imaging modalities were only 29% to 38% sensitive; 9 of 24 early-stage PDACs were diagnosed by endoscopic retrograde pancreatography cytology alone. Endoscopic retrograde pancreatography cytology for patients with intraductal papillary mucinous neoplasm or pancreatitis may help diagnose early-stage PDAC. Surveillance of extrapancreatic malignancies might also provide opportunities to detect early-stage PDAC as a second malignancy.

  16. Genetic ablation of Smoothened in pancreatic fibroblasts increases acinar-ductal metaplasia.

    Science.gov (United States)

    Liu, Xin; Pitarresi, Jason R; Cuitiño, Maria C; Kladney, Raleigh D; Woelke, Sarah A; Sizemore, Gina M; Nayak, Sunayana G; Egriboz, Onur; Schweickert, Patrick G; Yu, Lianbo; Trela, Stefan; Schilling, Daniel J; Halloran, Shannon K; Li, Maokun; Dutta, Shourik; Fernandez, Soledad A; Rosol, Thomas J; Lesinski, Gregory B; Shakya, Reena; Ludwig, Thomas; Konieczny, Stephen F; Leone, Gustavo; Wu, Jinghai; Ostrowski, Michael C

    2016-09-01

    The contribution of the microenvironment to pancreatic acinar-to-ductal metaplasia (ADM), a preneoplastic transition in oncogenic Kras-driven pancreatic cancer progression, is currently unclear. Here we show that disruption of paracrine Hedgehog signaling via genetic ablation of Smoothened (Smo) in stromal fibroblasts in a Kras(G12D) mouse model increased ADM. Smo-deleted fibroblasts had higher expression of transforming growth factor-α (Tgfa) mRNA and secreted higher levels of TGFα, leading to activation of EGFR signaling in acinar cells and increased ADM. The mechanism involved activation of AKT and noncanonical activation of the GLI family transcription factor GLI2. GLI2 was phosphorylated at Ser230 in an AKT-dependent fashion and directly regulated Tgfa expression in fibroblasts lacking Smo Additionally, Smo-deleted fibroblasts stimulated the growth of Kras(G12D)/Tp53(R172H) pancreatic tumor cells in vivo and in vitro. These results define a non-cell-autonomous mechanism modulating Kras(G12D)-driven ADM that is balanced by cross-talk between Hedgehog/SMO and AKT/GLI2 pathways in stromal fibroblasts. © 2016 Liu et al.; Published by Cold Spring Harbor Laboratory Press.

  17. A Phase I Safety, Pharmacokinetic, and Pharmacodynamic Presurgical Trial of Vitamin E δ-tocotrienol in Patients with Pancreatic Ductal Neoplasia

    Directory of Open Access Journals (Sweden)

    Gregory M. Springett

    2015-12-01

    Interpretation: VEDT from 200 to 1600 mg daily taken orally for 2 weeks before pancreatic surgery was well tolerated, reached bioactive levels in blood, and significantly induced apoptosis in the neoplastic cells of patients with pancreatic ductal neoplasia. These promising results warrant further clinical investigation of VEDT for chemoprevention and/or therapy of pancreatic cancer.

  18. Targeting the mRNA-binding protein HuR impairs malignant characteristics of pancreatic ductal adenocarcinoma cells

    Science.gov (United States)

    Jimbo, Masaya; Blanco, Fernando F.; Screnci, Brad A.; Cosma, Gabriela L.; Alexeev, Vitali; Gonye, Gregory E.; Yeo, Charles J.; Sawicki, Janet A.; Winter, Jordan M.; Brody, Jonathan R.

    2015-01-01

    Post-transcriptional regulation is a powerful mediator of gene expression, and can rapidly alter the expression of numerous transcripts involved in tumorigenesis. We have previously shown that the mRNA-binding protein HuR (ELAVL1) is elevated in human pancreatic ductal adenocarcinoma (PDA) specimens compared to normal pancreatic tissues, and its cytoplasmic localization is associated with increased tumor stage. To gain a better insight into HuR’s role in PDA biology and to assess it as a candidate therapeutic target, we altered HuR expression in PDA cell lines and characterized the resulting phenotype in preclinical models. HuR silencing by short hairpin and small interfering RNAs significantly decreased cell proliferation and anchorage-independent growth, as well as impaired migration and invasion. In comparison, HuR overexpression increased migration and invasion, but had no significant effects on cell proliferation and anchorage-independent growth. Importantly, two distinct targeted approaches to HuR silencing showed marked impairment in tumor growth in mouse xenografts. NanoString nCounter® analyses demonstrated that HuR regulates core biological processes, highlighting that HuR inhibition likely thwarts PDA viability through post-transcriptional regulation of diverse signaling pathways (e.g. cell cycle, apoptosis, DNA repair). Taken together, our study suggests that targeted inhibition of HuR may be a novel, promising approach to the treatment of PDA. PMID:26314962

  19. HDAC2 promotes loss of primary cilia in pancreatic ductal adenocarcinoma.

    Science.gov (United States)

    Kobayashi, Tetsuo; Nakazono, Kosuke; Tokuda, Mio; Mashima, Yu; Dynlacht, Brian David; Itoh, Hiroshi

    2017-02-01

    Loss of primary cilia is frequently observed in tumor cells, including pancreatic ductal adenocarcinoma (PDAC) cells, suggesting that the absence of this organelle may promote tumorigenesis through aberrant signal transduction and the inability to exit the cell cycle. However, the molecular mechanisms that explain how PDAC cells lose primary cilia are still ambiguous. In this study, we found that inhibition or silencing of histone deacetylase 2 (HDAC2) restores primary cilia formation in PDAC cells. Inactivation of HDAC2 results in decreased Aurora A expression, which promotes disassembly of primary cilia. We further showed that HDAC2 controls ciliogenesis independently of Kras, which facilitates Aurora A expression. These studies suggest that HDAC2 is a novel regulator of primary cilium formation in PDAC cells. © 2016 The Authors.

  20. E-cadherin expression in obesity-associated, Kras-initiated pancreatic ductal adenocarcinoma in mice.

    Science.gov (United States)

    Stark, Alexander P; Chang, Hui-Hua; Jung, Xiaoman; Moro, Aune; Hertzer, Kathleen; Xu, Mu; Schmidt, Andrea; Hines, O Joe; Eibl, Guido

    2015-12-01

    The epithelial-mesenchymal transition (EMT) is critical in the development of invasive epithelial malignancies. EMT is accelerated by inflammation and results in decreased E-cadherin expression. Diet-induced obesity is an inflammatory state that accelerates pancreatic carcinogenesis; its effect on EMT and E-cadherin expression in the development of pancreatic ductal adenocarcinoma is unclear. Conditional Kras(G12D) mice were fed a control diet or a high-fat, high-calorie diet for 3 or 9 months (n = 10 each). Immunohistochemistry with anti-E-cadherin antibody was performed. E-cadherin expression was characterized by staining intensity, location, and proportion of positive cells. In vitro expression of E-cadherin and Slug in primary pancreatic intraepithelial neoplasia (PanIN) and cancer cells was determined by Western blot. The HFCD led to increased weight gain in both 3- (15.8 vs 5.6 g, P cancer, E-cadherin expression was aberrant, with loss of membranous staining and prominent cytoplasmic staining, associated with strong, cytoplasmic expression of β-catenin. In vitro expression of E-cadherin was greatest in primary PanIN cells, accompanied by absent Slug expression. Cancer cell lines demonstrated significantly decreased E-cadherin expression in the presence of upregulated Slug. Despite increased pancreatic inflammation and accelerated carcinogenesis, the high-fat, high-calorie diet did not induce changes in E-cadherin expression in PanIN lesions of all stages. Invasive lesions demonstrated aberrant cytoplasmic E-cadherin staining. Loss of normal membranous localization may reflect a functional loss of E-cadherin. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Missed pancreatic ductal adenocarcinoma: Assessment of early imaging findings on prediagnostic magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Kyung Mi; Kim, Seong Hyun, E-mail: sh6453.kim@samsung.com; Kim, Young Kon; Song, Kyoung Doo; Lee, Soon Jin; Choi, Dongil

    2015-08-15

    Highlights: • MR imaging was superior to CT for the detection of early PDAC. • A focal lesion with no MPD interruption is common MR finding of early PDAC. • A mean volume doubling time of early PDAC was about five months. - Abstract: Objective: To investigate the early imaging findings and growth rate of pancreatic ductal adenocarcinoma (PDAC), and to assess whether MR imaging detects early PDAC better than CT. Materials and methods: The institutional review board approved this retrospective study and waived the requirement for informed consent. Twenty-two patients were included, and two radiologists, by consensus, assessed the presence of focal lesions, interruption of the main pancreatic duct (MPD), MPD dilatation, and pancreatitis, volume doubling time (VDT) of PDAC on prediagnostic MR imaging. Two other observers independently reviewed three image sets (CT images, unenhanced MR images, and unenhanced and contrast-enhanced MR images) for the detection of early PDAC. Paired Wilcoxon signed rank test and receiver operating characteristic (ROC) curve analysis were used for statistical analyses. Results: In 20 (90.9%) patients, prediagnostic MR exams showed abnormality, and all of them showed focal lesions on the first abnormal prediagnostic MR exams. Thirteen lesions (65%) showed no MPD interruption and one lesion (5%) was accompanied by pancreatitis. The mean VDT of PDAC was 151.7 days (range, 18.3–417.8 days). Diagnostic performance of unenhanced MR images (Az, 0.971–0.989) and combined unenhanced and contrast-enhanced MR images (Az, 0.956–0.963) was significantly better than that of CT images (Az, 0.565–0.583; p < 0.01) for both observers, Conclusion: The most common early imaging finding of PDAC on prediagnostic MR exams was a focal lesion with no MPD interruption with a mean volume doubling time of five months. MR imaging was superior to CT for the detection of early PDAC.

  2. A comparison study of pancreatic acinar cell carcinoma with ductal adenocarcinoma using computed tomography in Chinese patients

    Directory of Open Access Journals (Sweden)

    Wang Q

    2016-09-01

    Full Text Available Qingbing Wang,1,2 Xiaolin Wang,1,2 Rongfang Guo,2,3 Guoping Li1,2 1Department of Interventional Radiology, Zhongshan Hospital, Fudan University, 2Shanghai Institute of Medical Imaging, 3Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China Abstract: Pancreatic acinar cell carcinoma (ACC is a rare tumor that is difficult to diagnose preoperatively. The aim of this study was to evaluate and describe the computed tomography (CT features of ACC and compare the results with pancreatic ductal adenocarcinoma (DAC for improving preoperative diagnosis. The control group consisted of 34 patients with DAC collected from the pathology electronic database. The CT imaging from nine patients with pathologically confirmed ACC was retrospectively reviewed. Two radiologists independently assessed the tumor location, size, texture, and enhancement patterns. We found that 64.3% (9/14 of ACC tumors were homogeneous and 35.7% (5/14 had necrosis. The percentage of common bile duct and pancreatic ductal dilation was 14.3% (2/14 and 7.1% (1/14, respectively. The mean size of ACC was 50.1±24.2 mm. The mean attenuation of ACC was 35.4±3.9 Hounsfield unit (HU before enhancement, 73.1±42.9 HU in arterial phase, and 71.8±15.6 HU in port venous phase. It is difficult to distinguish ACC from DAC preoperatively only based on CT findings. However, compared with DAC, we found that ACC tumors are likely to be larger and contain more heterogeneous intratumoral necrotic hypovascular regions, and less pancreatic ductal and common biliary dilation. Keywords: acinar cell carcinoma, computed tomography, pancreatic ductal carcinoma, pancreas

  3. The Problems of Radiofrequency Ablation as an Approach for Advanced Unresectable Ductal Pancreatic Carcinoma

    Directory of Open Access Journals (Sweden)

    Raffaele Pezzilli

    2010-07-01

    Full Text Available Advanced ductal pancreatic carcinoma (PC remains a challenge for current surgical and medical approaches. It has recently been claimed that radiofrequency ablation (RFA may be beneficial for patients with locally advanced or metastatic PC. Using the MEDLINE database, we found seven studies involving 106 patients in which PC was treated using RFA. The PC was mainly located in the pancreatic head (66.9% with a median size of 4.6 cm. RFA was carried out in 85 patients (80.1% with locally advanced PC and in 21 (19.9% with metastatic disease. Palliative surgical procedures were carried out in 41.5% of the patients. The average temperature used was 90 °C (with a temperature range of 30–105 °C and the ratio between the number of passes of the probe and the size of the tumor in centimeters was 0.5 (range of 0.36–1. The median postoperative morbidity and mortality were 28.3% and 7.5%, respectively; the median survival was 6.5 months (range of 1–33 months. In conclusion, RFA is a feasible technique: however, its safety and long-term results are disappointing; Thus, the RFA procedure should not be recommended in clinical practice for a PC patient.

  4. A Multicenter Trial Defining a Serum Protein Signature Associated with Pancreatic Ductal Adenocarcinoma

    Directory of Open Access Journals (Sweden)

    Anna S. Gerdtsson

    2015-01-01

    Full Text Available Background. Pancreatic ductal adenocarcinoma (PDAC is an aggressive disease with rapid tumor progression and poor prognosis. This study was motivated by the lack of sensitive and specific PDAC biomarkers and aimed to identify a diagnostic, serum protein signature for PDAC. Methods. To mimic a real life test situation, a multicenter trial comprising a serum sample cohort, including 338 patients with either PDAC or other pancreatic diseases (OPD and controls with nonpancreatic conditions (NPC, was analyzed on 293-plex recombinant antibody microarrays targeting immunoregulatory and cancer-associated antigens. Results. Serum samples collected from different hospitals were analyzed and showed that (i sampling from five different hospitals could not be identified as a preanalytical variable and (ii a multiplexed biomarker signature could be identified, utilizing up to 10 serum markers that could discriminate PDAC from controls, with sensitivities and specificities in the 91–100% range. The first protein profiles associated with the location of the primary tumor in the pancreas could also be identified. Conclusions. The results demonstrate that robust enough serum signatures could be identified in a multicenter trial, potentially contributing to the development of a multiplexed biomarker immunoassay for improved PDAC diagnosis.

  5. Human pancreatic cancer-associated stellate cells remain activated after in vivo chemoradiation

    Directory of Open Access Journals (Sweden)

    Marina Carla Cabrera

    2014-05-01

    Full Text Available Pancreatic ductal adenocarcinoma (PDAC is characterized by an extensive fibrotic reaction or desmoplasia and complex involvement of the surrounding tumor microenvironment. Pancreatic stellate cells are a key mediator of the pancreatic matrix and they promote progression and invasion of pancreatic cancer by increasing cell proliferation and offering protection against therapeutic interventions. Our study utilizes human tumor-derived pancreatic stellate cells (HTPSCs isolated from fine needle aspirates of pancreatic cancer tissue from patients with locally advanced, unresectable pancreatic adenocarcinoma before and after treatment with full dose gemcitabine plus concurrent hypo-fractionated stereotactic radiosurgery. We show that HTPSCs survive in vivo chemotherapy and radiotherapy treatment and display a more activated phenotype post therapy. These data support the idea that stellate cells play an essential role in supporting and promoting pancreatic cancer and further research is needed to develop novel treatments targeting the pancreatic tumor microenvironment.

  6. Oncolytic Vesicular Stomatitis Virus in an Immunocompetent Model of MUC1-Positive or MUC1-Null Pancreatic Ductal Adenocarcinoma

    Science.gov (United States)

    Hastie, Eric; Besmer, Dahlia M.; Shah, Nirav R.; Murphy, Andrea M.; Moerdyk-Schauwecker, Megan; Molestina, Carlos; Roy, Lopamudra Das; Curry, Jennifer M.; Mukherjee, Pinku

    2013-01-01

    Vesicular stomatitis virus (VSV) is a promising oncolytic agent against various malignancies. Here, for the first time, we tested VSV in vitro and in vivo in a clinically relevant, immunocompetent mouse model of pancreatic ductal adenocarcinoma (PDA). Our system allows the study of virotherapy against PDA in the context of overexpression (80% of PDA patients) or no expression of human mucin 1 (MUC1), a major marker for poor prognosis in patients. In vitro, we tested three VSV recombinants, wild-type VSV, VSV-green fluorescent protein (VSV-GFP), and a safe oncolytic VSV-ΔM51-GFP, against five mouse PDA cell lines that either expressed human MUC1 or were MUC1 null. All viruses demonstrated significant oncolytic abilities independent of MUC1 expression, although VSV-ΔM51-GFP was somewhat less effective in two PDA cell lines. In vivo administration of VSV-ΔM51-GFP resulted in significant reduction of tumor growth for tested mouse PDA xenografts (+MUC1 or MUC1 null), and antitumor efficacy was further improved when the virus was combined with the chemotherapeutic drug gemcitabine. The antitumor effect was transient in all tested groups. The developed system can be used to study therapies involving various oncolytic viruses and chemotherapeutics, with the goal of inducing tumor-specific immunity while preventing premature virus clearance. PMID:23864625

  7. Oncolytic vesicular stomatitis virus in an immunocompetent model of MUC1-positive or MUC1-null pancreatic ductal adenocarcinoma.

    Science.gov (United States)

    Hastie, Eric; Besmer, Dahlia M; Shah, Nirav R; Murphy, Andrea M; Moerdyk-Schauwecker, Megan; Molestina, Carlos; Roy, Lopamudra Das; Curry, Jennifer M; Mukherjee, Pinku; Grdzelishvili, Valery Z

    2013-09-01

    Vesicular stomatitis virus (VSV) is a promising oncolytic agent against various malignancies. Here, for the first time, we tested VSV in vitro and in vivo in a clinically relevant, immunocompetent mouse model of pancreatic ductal adenocarcinoma (PDA). Our system allows the study of virotherapy against PDA in the context of overexpression (80% of PDA patients) or no expression of human mucin 1 (MUC1), a major marker for poor prognosis in patients. In vitro, we tested three VSV recombinants, wild-type VSV, VSV-green fluorescent protein (VSV-GFP), and a safe oncolytic VSV-ΔM51-GFP, against five mouse PDA cell lines that either expressed human MUC1 or were MUC1 null. All viruses demonstrated significant oncolytic abilities independent of MUC1 expression, although VSV-ΔM51-GFP was somewhat less effective in two PDA cell lines. In vivo administration of VSV-ΔM51-GFP resulted in significant reduction of tumor growth for tested mouse PDA xenografts (+MUC1 or MUC1 null), and antitumor efficacy was further improved when the virus was combined with the chemotherapeutic drug gemcitabine. The antitumor effect was transient in all tested groups. The developed system can be used to study therapies involving various oncolytic viruses and chemotherapeutics, with the goal of inducing tumor-specific immunity while preventing premature virus clearance.

  8. Pancreatic intraductal tubulopapillary neoplasm is genetically distinct from intraductal papillary mucinous neoplasm and ductal adenocarcinoma.

    Science.gov (United States)

    Basturk, Olca; Berger, Michael F; Yamaguchi, Hiroshi; Adsay, Volkan; Askan, Gokce; Bhanot, Umesh K; Zehir, Ahmet; Carneiro, Fatima; Hong, Seung-Mo; Zamboni, Giuseppe; Dikoglu, Esra; Jobanputra, Vaidehi; Wrzeszczynski, Kazimierz O; Balci, Serdar; Allen, Peter; Ikari, Naoki; Takeuchi, Shoko; Akagawa, Hiroyuki; Kanno, Atsushi; Shimosegawa, Tooru; Morikawa, Takanori; Motoi, Fuyuhiko; Unno, Michiaki; Higuchi, Ryota; Yamamoto, Masakazu; Shimizu, Kyoko; Furukawa, Toru; Klimstra, David S

    2017-12-01

    Intraductal tubulopapillary neoplasm is a relatively recently described member of the pancreatic intraductal neoplasm family. The more common member of this family, intraductal papillary mucinous neoplasm, often carries genetic alterations typical of pancreatic infiltrating ductal adenocarcinoma (KRAS, TP53, and CDKN2A) but additionally has mutations in GNAS and RNF43 genes. However, the genetic characteristics of intraductal tubulopapillary neoplasm have not been well characterized. Twenty-two intraductal tubulopapillary neoplasms were analyzed by either targeted next-generation sequencing, which enabled the identification of sequence mutations, copy number alterations, and selected structural rearrangements involving all targeted (≥300) genes, or whole-exome sequencing. Three of these intraductal tubulopapillary neoplasms were also subjected to whole-genome sequencing. All intraductal tubulopapillary neoplasms revealed the characteristic histologic (cellular intraductal nodules of back-to-back tubular glands lined by predominantly cuboidal cells with atypical nuclei and no obvious intracellular mucin) and immunohistochemical (immunolabeled with MUC1 and MUC6 but were negative for MUC2 and MUC5AC) features. By genomic analyses, there was loss of CDKN2A in 5/20 (25%) of these cases. However, the majority of the previously reported intraductal papillary mucinous neoplasm-related alterations were absent. Moreover, in contrast to most ductal neoplasms of the pancreas, MAP-kinase pathway was not involved. In fact, 2/22 (9%) of intraductal tubulopapillary neoplasms did not reveal any mutations in the tested genes. However, certain chromatin remodeling genes (MLL1, MLL2, MLL3, BAP1, PBRM1, EED, and ATRX) were found to be mutated in 7/22 (32%) of intraductal tubulopapillary neoplasms and 27% harbored phosphatidylinositol 3-kinase (PI3K) pathway (PIK3CA, PIK3CB, INPP4A, and PTEN) mutations. In addition, 4/18 (18%) of intraductal tubulopapillary neoplasms had FGFR2

  9. Hypoxia induces oncogene yes-associated protein 1 nuclear translocation to promote pancreatic ductal adenocarcinoma invasion via epithelial-mesenchymal transition.

    Science.gov (United States)

    Wei, Honglong; Xu, Zongzhen; Liu, Feng; Wang, Fuhai; Wang, Xin; Sun, Xueying; Li, Jie

    2017-05-01

    Pancreatic ductal adenocarcinoma is one of the most lethal cancers. The Hippo pathway is involved in tumorigenesis and remodeling of tumor microenvironments. Hypoxia exists in the microenvironment of solid tumors, including pancreatic ductal adenocarcinoma and plays a vital role in tumor progression and metastasis. However, it remains unclear how hypoxia interacts with the Hippo pathway to regulate these events. In this study, expressions of yes-associated protein 1 and hypoxia-inducible factor-1α were found to be elevated in pancreatic ductal adenocarcinoma samples compared with those in matched adjacent non-tumor samples. Moreover, hypoxia-inducible factor-1α expression was positively correlated with yes-associated protein 1 level in pancreatic ductal adenocarcinoma tissues. The higher expression of nuclear yes-associated protein 1 was associated with poor histological grade and prognosis for pancreatic ductal adenocarcinoma patients. In vitro, yes-associated protein 1 was highly expressed in pancreatic ductal adenocarcinoma cells. Depletion of yes-associated protein 1 inhibited the invasion of pancreatic ductal adenocarcinoma cells via downregulation of Vimentin, matrix metalloproteinase-2, and matrix metalloproteinase-13, and upregulation of E-cadherin. In addition, hypoxia promoted the invasion of pancreatic ductal adenocarcinoma cells via regulating the targeted genes. Hypoxia also deactivated the Hippo pathway and induced yes-associated protein 1 nuclear translocation. Furthermore, depletion of yes-associated protein 1 or hypoxia-inducible factor-1α suppressed the invasion of pancreatic ductal adenocarcinoma cells under hypoxia. Mechanism studies showed that nuclear yes-associated protein 1 interacted with hypoxia-inducible factor-1α and activated Snail transcription to participate in epithelial-mesenchymal transition-mediated and matrix metalloproteinase-mediated remodeling of tumor microenvironments. Collectively, yes-associated protein 1 is an

  10. CDDO-Me inhibits tumor growth and prevents recurrence of pancreatic ductal adenocarcinoma.

    Science.gov (United States)

    Gao, Xiaohua; Deeb, Dorrah; Liu, Yongbo; Liu, Patricia; Zhang, Yiguan; Shaw, Jiajiu; Gautam, Subhash C

    2015-12-01

    Methyl-2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oate (CDDO-Me) has shown potent antitumorigenic activity against a wide range of cancer cell lines in vitro and inhibited the growth of liver, lung and prostate cancer in vivo. In the present study, we examined the antitumor activity of CDDO-Me for pancreatic ductal adenocarcinoma (PDAC) cells with and without activating K-ras mutations. Treatment of K-ras mutant MiaPaCa-2 and K-ras normal BxPC-3 cells with CDDO-Me elicited strong antiproliferative and proapoptopic responses in both cell lines in culture. The inhibition of cell proliferation and induction of apoptosis was accompanied by the inhibition of antiapoptotic/prosurvival p-Akt, NF-кB and p-mTOR signaling proteins. For testing efficacy of CDDO-Me in vivo heterotopic and orthotopic xenografts were generated by implanting BxPC-3 and MiaPaCa-2 cells subcutaneously and in the pancreatic tail, respectively. Treatment with CDDO-Me significantly inhibited the growth of BxPC-3 xenografts and reduced the levels of p-Akt and p-mTOR in tumor tissue. In mice with orthotopic MiaPaCa-2 xenografts, treatment with CDDO-Me prolonged the survival of mice when administered following the surgical resection of tumors. The latter was attributed to the eradication of residual PDAC remaining after resection of tumors. These preclinical data demonstrate the potential of CDDO-Me for treating primary PDAC tumors and for preventing relapse/recurrence through the destruction of residual disease.

  11. Does Second Reader Opinion Affect Patient Management in Pancreatic Ductal Adenocarcinoma?

    Science.gov (United States)

    Corrias, Giuseppe; Huicochea Castellanos, Sandra; Merkow, Ryan; Langan, Russel; Balachandran, Vinod; Ragucci, Monica; Carollo, Gabriella; Mancini, Marcello; Saba, Luca; Mannelli, Lorenzo

    2018-01-16

    To determine the impact of second-opinion assessment on cancer staging and patient management in patients with pancreatic ductal adenocarcinoma. This retrospective study was approved by our institutional review board with a waiver of informed consent. Second-opinion reports between January 1, 2009 and December 31, 2013, alongside outside reports for 65 consecutive cases of biopsy-proven pancreatic adenocarcinomas, were presented in random order to two experienced abdominal surgeons who independently reviewed them blinded to the origin of the report, images of the examinations, and patient identifier. Each surgeon filled in a questionnaire for each report recommending cancer staging and patient management. Recommended patient management and staging were evaluated against reference standards (actual patient management at 6 months following second-opinion assessment, and pathology or other clinical and imaging reference standards at 6 months or longer, respectively) using Cohen kappa. Cancer staging differed in 13% (9 of 65) of cases for surgeon 1 and in 18.4% (12 of 65) for surgeon 2. Patient management changed in 38.4% (25 of 65) of cases for surgeon 1 and in 20% (13 of 65) for surgeon 2. When compared to the pathologic staging gold standard, second opinion was correct in 85.7% (six of seven) of the time for both surgeons. Recommended patient management from second-opinion reports showed good agreement with the reference standard (weighted k = 0.6467 [0.4014-0.892] and weighted k = 0.6262 [0.3954-0.857] for surgeon 2). Second-opinion review by subspecialized oncologic radiologists can impact patient care, specifically in terms of management decision. Copyright © 2017 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  12. Quantitative Proteomic Analysis of Differentially Expressed Protein Profiles Involved in Pancreatic Ductal Adenocarcinoma

    Science.gov (United States)

    Kuo, Kung-Kai; Kuo, Chao-Jen; Chiu, Chiang-Yen; Liang, Shih-Shin; Huang, Chun-Hao; Chi, Shu-Wen; Tsai, Kun-Bow; Chen, Chiao-Yun; Hsi, Edward; Cheng, Kuang-Hung; Chiou, Shyh-Horng

    2016-01-01

    Objectives The aim of this study was to identify differentially expressed proteins among various stages of pancreatic ductal adenocarcinoma (PDAC) by shotgun proteomics using nano-liquid chromatography coupled tandem mass spectrometry and stable isotope dimethyl labeling. Methods Differentially expressed proteins were identified and compared based on the mass spectral differences of their isotope-labeled peptide fragments generated from protease digestion. Results Our quantitative proteomic analysis of the differentially expressed proteins with stable isotope (deuterium/hydrogen ratio, ≥2) identified a total of 353 proteins, with at least 5 protein biomarker proteins that were significantly differentially expressed between cancer and normal mice by at least a 2-fold alteration. These 5 protein biomarker candidates include α-enolase, α-catenin, 14-3-3 β, VDAC1, and calmodulin with high confidence levels. The expression levels were also found to be in agreement with those examined by Western blot and histochemical staining. Conclusions The systematic decrease or increase of these identified marker proteins may potentially reflect the morphological aberrations and diseased stages of pancreas carcinoma throughout progressive developments leading to PDAC. The results would form a firm foundation for future work concerning validation and clinical translation of some identified biomarkers into targeted diagnosis and therapy for various stages of PDAC. PMID:26262590

  13. Antiproliferative effects and mechanisms of liver X receptor ligands in pancreatic ductal adenocarcinoma cells.

    Science.gov (United States)

    Candelaria, Nicholes R; Addanki, Sridevi; Zheng, Jine; Nguyen-Vu, Trang; Karaboga, Husna; Dey, Prasenjit; Gabbi, Chiara; Vedin, Lise-Lotte; Liu, Ka; Wu, Wanfu; Jonsson, Philip K; Lin, Jean Z; Su, Fei; Bollu, Lakshmi Reddy; Hodges, Sally E; McElhany, Amy L; Issazadeh, Mehdi A; Fisher, William E; Ittmann, Michael M; Steffensen, Knut R; Gustafsson, Jan-Åke; Lin, Chin-Yo

    2014-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is difficult to detect early and is often resistant to standard chemotherapeutic options, contributing to extremely poor disease outcomes. Members of the nuclear receptor superfamily carry out essential biological functions such as hormone signaling and are successfully targeted in the treatment of endocrine-related malignancies. Liver X receptors (LXRs) are nuclear receptors that regulate cholesterol homeostasis, lipid metabolism, and inflammation, and LXR agonists have been developed to regulate LXR function in these processes. Intriguingly, these compounds also exhibit antiproliferative activity in diverse types of cancer cells. In this study, LXR agonist treatments disrupted proliferation, cell-cycle progression, and colony-formation of PDAC cells. At the molecular level, treatments downregulated expression of proteins involved in cell cycle progression and growth factor signaling. Microarray experiments further revealed changes in expression profiles of multiple gene networks involved in biological processes and pathways essential for cell growth and proliferation following LXR activation. These results establish the antiproliferative effects of LXR agonists and potential mechanisms of action in PDAC cells and provide evidence for their potential application in the prevention and treatment of PDAC.

  14. Antiproliferative effects and mechanisms of liver X receptor ligands in pancreatic ductal adenocarcinoma cells.

    Directory of Open Access Journals (Sweden)

    Nicholes R Candelaria

    Full Text Available Pancreatic ductal adenocarcinoma (PDAC is difficult to detect early and is often resistant to standard chemotherapeutic options, contributing to extremely poor disease outcomes. Members of the nuclear receptor superfamily carry out essential biological functions such as hormone signaling and are successfully targeted in the treatment of endocrine-related malignancies. Liver X receptors (LXRs are nuclear receptors that regulate cholesterol homeostasis, lipid metabolism, and inflammation, and LXR agonists have been developed to regulate LXR function in these processes. Intriguingly, these compounds also exhibit antiproliferative activity in diverse types of cancer cells. In this study, LXR agonist treatments disrupted proliferation, cell-cycle progression, and colony-formation of PDAC cells. At the molecular level, treatments downregulated expression of proteins involved in cell cycle progression and growth factor signaling. Microarray experiments further revealed changes in expression profiles of multiple gene networks involved in biological processes and pathways essential for cell growth and proliferation following LXR activation. These results establish the antiproliferative effects of LXR agonists and potential mechanisms of action in PDAC cells and provide evidence for their potential application in the prevention and treatment of PDAC.

  15. Prognostic Fifteen-Gene Signature for Early Stage Pancreatic Ductal Adenocarcinoma.

    Directory of Open Access Journals (Sweden)

    Dung-Tsa Chen

    Full Text Available The outcomes of patients treated with surgery for early stage pancreatic ductal adenocarcinoma (PDAC are variable with median survival ranging from 6 months to more than 5 years. This challenge underscores an unmet need for developing personalized medicine strategies to refine the current treatment decision-making process. To derive a prognostic gene signature for patients with early stage PDAC, a PDAC cohort from Moffitt Cancer Center (n = 63 was used with overall survival (OS as the primary endpoint. This was further evaluated using an independent microarray cohort dataset (Stratford et al: n = 102. Technical validation was performed by NanoString platform. A prognostic 15-gene signature was developed and showed a statistically significant association with OS in the Moffitt cohort (hazard ratio [HR] = 3.26; p<0.001 and Stratford et al cohort (HR = 2.07; p = 0.02, and was independent of other prognostic variables. Moreover, integration of the signature with the TNM staging system improved risk prediction (p<0.01 in both cohorts. In addition, NanoString validation showed that the signature was robust with a high degree of reproducibility and the association with OS remained significant in the two cohorts. The gene signature could be a potential prognostic tool to allow risk-adapted stratification of PDAC patients into personalized treatment protocols; possibly improving the currently poor clinical outcomes of these patients.

  16. Highly aligned stromal collagen is a negative prognostic factor following pancreatic ductal adenocarcinoma resection.

    Science.gov (United States)

    Drifka, Cole R; Loeffler, Agnes G; Mathewson, Kara; Keikhosravi, Adib; Eickhoff, Jens C; Liu, Yuming; Weber, Sharon M; Kao, W John; Eliceiri, Kevin W

    2016-11-15

    Risk factors for pancreatic ductal adenocarcinoma (PDAC) progression after surgery are unclear, and additional prognostic factors are needed to inform treatment regimens and therapeutic targets. PDAC is characterized by advanced sclerosis of the extracellular matrix, and interactions between cancer cells, fibrillar collagen, and other stromal components play an integral role in progression. Changes in stromal collagen alignment have been shown to modulate cancer cell behavior and have important clinical value in other cancer types, but little is known about its role in PDAC and prognostic value. We hypothesized that the alignment of collagen is associated with PDAC patient survival. To address this, pathology-confirmed tissues from 114 PDAC patients that underwent curative-intent surgery were retrospectively imaged with Second Harmonic Generation (SHG) microscopy, quantified with fiber segmentation algorithms, and correlated to patient survival. The same tissue regions were analyzed for epithelial-to-mesenchymal (EMT), α-SMA, and syndecan-1 using complimentary immunohistostaining and visualization techniques. Significant inter-tumoral variation in collagen alignment was found, and notably high collagen alignment was observed in 12% of the patient cohort. Stratification of patients according to collagen alignment revealed that high alignment is an independent negative factor following PDAC resection (p = 0.0153, multivariate). We also found that epithelial expression of EMT and the stromal expression of α-SMA and syndecan-1 were positively correlated with collagen alignment. In summary, stromal collagen alignment may provide additional, clinically-relevant information about PDAC tumors and underscores the importance of stroma-cancer interactions.

  17. High expression of WISP-1 correlates with poor prognosis in pancreatic ductal adenocarcinoma.

    Science.gov (United States)

    Yang, Jian-Yu; Yang, Min-Wei; Huo, Yan-Miao; Liu, Wei; Liu, De-Jun; Li, Jiao; Zhang, Jun-Feng; Hua, Rong; Sun, Yong-Wei

    2015-01-01

    WNT1 inducible signaling pathway protein 1 (WISP-1) is a member of the CCN family of growth factors and reported to possess an important role in tumorigenesis by triggering downstream events via integrin signaling. However, the exact role of WISP-1 in cancer remains unclear. In this study, we examined the expression pattern of WISP-1 at both mRNA and protein levels and evaluated the prognostic value of WISP-1 in pancreatic ductal adenocarcinoma (PDA). Expression of WISP-1 at mRNA level was upregulated in 17/24 tumor tissues compared to the matched adjacent non-tumor tissues and the result was confirmed by western blotting at protein level. Immunohistochemical staining of 194 pairs of PDA specimens suggested that high expression of WISP-1 is strongly correlated with clinical stage (P=0.003), T classification (P=0.008) and liver metastasis (P=0.012). Consistently, Kaplan-Meier survival curves indicated that patients with high expression of WISP-1 had a shorter survival time independent of clinical stage and lymphatic metastasis status. Moreover, univariate and multivariate analysis confirmed WISP-1 expression, age, classification and liver metastasis as independent prognostic factors for overall survival of PDA patients. Taken together, these results suggest that WISP-1 may serve as a potential prognostic biomarker for PDA.

  18. Second pancreatectomy for recurrent pancreatic ductal adenocarcinoma in the remnant pancreas: A pooled analysis.

    Science.gov (United States)

    Zhou, Yanming; Song, Ailing; Wu, Lupeng; Si, Xiaoying; Li, Yumin

    The aim of this study was to examine the outcomes of second pancreatectomy for the treatment of recurrent pancreatic ductal adenocarcinoma (PDAC) in the remnant pancreas. Search of the PubMed database was undertaken to identify relevant English language studies. Pooled individually data were examined for clinical outcomes after second pancreatectomy for recurrent PDAC. A total of 19 articles involving 55 patients were eligible for inclusion. The median disease-free interval after initial resection was 33 (range 7-143) months. Of the 55 patients reported, 52 (94.5%) patients underwent completion total pancreatectomy in the second operation for recurrences, including 15 patients who developed recurrences more than 5 years after the initial operation. There was no perioperative death. The 1-, 3- and 5-year overall survival rate after the second pancreatectomy was 82.2%, 49.2% and 40.6% respectively. Second pancreatectomy for recurrent PDAC can be performed safely with long-term survival in selected patients. Copyright © 2016 IAP and EPC. Published by Elsevier B.V. All rights reserved.

  19. IL-8-Positive Tumor-Infiltrating Inflammatory Cells Are a Novel Prognostic Marker in Pancreatic Ductal Adenocarcinoma Patients.

    Science.gov (United States)

    Fang, Yuan; Saiyin, Hexige; Zhao, Xinping; Wu, Yanhua; Han, Xu; Lou, Wenhui

    2016-01-01

    Tumor-infiltrating inflammatory cells (TIICs) in pancreatic ductal adenocarcinoma (PDAC) are reported to initiate and exacerbate invasion and metastasis. Interleukin-8 (IL-8), a proinflammatory cytokine, is expressed in both neoplastic cells and TIICs in PDAC tissues and increased in patient serum. The aim of this study is to evaluate the values of IL-8 expression profiles in tumor tissues and predict the source of serum IL-8 in PDAC patients. We used 2 independent groups of PDAC patient samples that included 240 cases. Tissue expression profiles of cytokines were evaluated with immunohistochemistry and serum levels with human IL-8 assay. The prognostic values of the variables were assessed by Kaplan-Meier or Cox regression analysis. Higher levels of IL-8-positive TIICs but not tumor cells in PDAC patients correlated with worse prognosis (P = 0.009) and higher blood serum IL-8 levels (P = 0.002). Controlling other independent factors, the relative hazard ratio for PDAC with higher IL-8-positive TIIC levels compared with those with lower TIIC levels was 1.588 (95% confidence interval, 1.04-2.42). Higher IL-8-positive TIIC levels in PDAC tumors indicate poorer prognosis and positively correlate with serum IL-8 concentrations and vice versa. These data suggested that IL-8 might have a potential target for PDAC therapies.

  20. Loss of Raf-1 kinase inhibitor protein (RKIP) is strongly associated with high-grade tumor budding and correlates with an aggressive phenotype in pancreatic ductal adenocarcinoma (PDAC)

    Science.gov (United States)

    2013-01-01

    Background Raf-1 kinase inhibitor protein (RKIP) has emerged as a significant metastatic suppressor in a variety of human cancers and is known to inhibit Ras/Raf/MEK/ERK signaling. By suppressing the activation of the NFkB/SNAIL circuit, RKIP can regulate the induction of epithelial-mesenchymal transition (EMT). The aim of this study was to evaluate RKIP expression and to determine its association with clinicopathological features, including EMT in form of tumor budding in pancreatic ductal adenocarcinoma (PDAC). Methods Staining for RKIP was performed on a multipunch Tissue Microarray (TMA) of 114 well-characterized PDACs with clinico-pathological, follow-up and adjuvant therapy information. RKIP-expression was assessed separately in the main tumor body and in the tumor buds. Another 3 TMAs containing normal pancreatic tissue, precursor lesions (Pancreatic Intraepithelial Neoplasia, PanINs) and matched lymph node metastases were stained in parallel. Cut-off values were calculated by receiver operating characteristic (ROC) curve analysis. Results We found a significant progressive loss of RKIP expression between normal pancreatic ductal epithelia (average: 74%), precursor lesions (PanINs; average: 37%), PDAC (average 20%) and lymph node metastases (average 8%, p tumor buds (average: 6%) compared to the main tumor body (average 20%; p tumor body was marginally associated with advanced T-stage (p = 0.0599) as well as high-grade peritumoral (p = 0.0048) and intratumoral budding (p = 0.0373). RKIP loss in the buds showed a clear association with advanced T stage (p = 0.0089). Conclusions The progressive loss of RKIP seems to play a major role in the neoplastic transformation of pancreas, correlates with aggressive features in PDAC and is associated with the presence of EMT in form of tumor budding. PMID:24330423

  1. Oleic acid and glucose regulate glucagon-like peptide 1 receptor expression in a rat pancreatic ductal cell line

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Leshuai W.; McMahon Tobin, Grainne A.; Rouse, Rodney L., E-mail: rodney.rouse@fda.hhs.gov

    2012-10-15

    The glucagon-like peptide 1 receptor (GLP1R) plays a critical role in glucose metabolism and has become an important target for a growing class of drugs designed to treat type 2 diabetes. In vitro studies were designed to investigate the effect of the GLP1R agonist, exenatide (Ex4), in “on-target” RIN-5mF (islet) cells as well as in “off-target” AR42J (acinar) and DSL-6A/C1 (ductal) cells in a diabetic environment. Ex4 increased islet cell proliferation but did not affect acinar cells or ductal cells at relevant concentrations. A high caloric, high fat diet is a risk factor for impaired glucose tolerance and type-2 diabetes. An in vitro Oleic acid (OA) model was used to investigate the effect of Ex4 in a high calorie, high fat environment. At 0.1 and 0.4 mM, OA mildly decreased the proliferation of all pancreatic cell types. Ex4 did not potentiate the inhibitory effect of OA on cell proliferation. Akt phosphorylation in response to Ex4 was diminished in OA-treated ductal cells. GLP1R protein detected by western blot was time and concentration dependently decreased after glucose stimulation in OA-treated ductal cells. In ductal cells, OA treatment altered the intracellular localization of GLP1R and its co-localization with early endosome and recycling endosomes. Chloroquine (lysosomal inhibitor), N-acetyl-L-cysteine (reactive oxygen species scavenger) and wortmannin (a phosphatidylinositol-3-kinase inhibitor), fully or partially, rescued GLP1R protein in OA-pretreated, glucose-stimulated ductal cells. The impact of altered regulation on phenotype/function is presently unknown. However, these data suggest that GLP1R regulation in ductal cells can be altered by a high fat, high calorie environment. -- Highlights: ► Exenatide did not inhibit islet, acinar or ductal cell proliferation. ► GLP1R protein decreased after glucose stimulation in oleic acid-treated ductal cells. ► Oleic acid treatment altered localization of GLP1R with early and recycling

  2. Pancreatic duct replication is increased with obesity and type 2 diabetes in humans.

    Science.gov (United States)

    Butler, A E; Galasso, R; Matveyenko, A; Rizza, R A; Dry, S; Butler, P C

    2010-01-01

    In a high-fat-fed rat model of type 2 diabetes we noted increased exocrine duct replication. This is a predisposing factor for pancreatitis and pancreatic cancer, both of which are more common in type 2 diabetes. The aim of the study reported here was to establish if obesity and/or type 2 diabetes are associated with increased pancreatic ductal replication in humans. We obtained pancreas at autopsy from 45 humans, divided into four groups: lean (BMI obese (BMI >27 kg/m(2)); non-diabetic; and with type 2 diabetes. Pancreases were evaluated after immunostaining for the duct cell marker cytokeratin and Ki67 for replication. We show for the first time that both obesity and type 2 diabetes in humans are associated with increased pancreatic ductal replication. Specifically, we report that (1) replication of pancreatic duct cells is increased tenfold by obesity, and (2) lean subjects with type 2 diabetes demonstrate a fourfold increase in replication of pancreatic duct cells compared with their lean non-diabetic controls. Pancreatic duct cell replication is increased in humans in response to both obesity and type 2 diabetes, potentially providing a mechanism for the increased risk of pancreatitis and pancreatic cancer in those with obesity and/or type 2 diabetes.

  3. Clinical impact of sarcopenia on prognosis in pancreatic ductal adenocarcinoma: A retrospective cohort study.

    Science.gov (United States)

    Ninomiya, Go; Fujii, Tsutomu; Yamada, Suguru; Yabusaki, Norimitsu; Suzuki, Kojiro; Iwata, Naoki; Kanda, Mitsuro; Hayashi, Masamichi; Tanaka, Chie; Nakayama, Goro; Sugimoto, Hiroyuki; Koike, Masahiko; Fujiwara, Michitaka; Kodera, Yasuhiro

    2017-03-01

    To investigate the impact of the body composition such as skeletal muscle, visceral fat and body mass index (BMI) on patients with resected pancreatic ductal adenocarcinoma (PDAC). A total of 265 patients who underwent curative surgery for PDAC were examined in this study. The total skeletal muscle and fat tissue areas were evaluated in a single image obtained at the third lumber vertebra during a preoperative computed tomography (CT) scan. The patients were assigned to either the sarcopenia or non-sarcopenia group based on their skeletal muscle index (SMI) and classified into high visceral fat area (H-VFA) or low VFA (L-VFA) groups. The association of clinicopathological features and prognosis with the body composition were statistically analyzed. There were 170 patients (64.2%) with sarcopenia. The median survival time (MST) was 23.7 months for sarcopenia patients and 25.8 months for patients without sarcopenia. The MST was 24.4 months for H-VFA patients and 25.8 months for L-VFA patients. However, sarcopenia patients with BMI ≥22 exhibited significantly poorer survival than patients without sarcopenia (MST: 19.2 vs. 35.4 months, P = 0.025). There was a significant difference between patients with and without sarcopenia who did not receive chemotherapy (5-year survival rate: 0% vs. 68.3%, P = 0.003). The multivariate analysis revealed that tumor size, positive dissected peripancreatic tissue margin, and sarcopenia were independent prognostic factors. Sarcopenia is an independent prognostic factor in PDAC patients with a BMI ≥22. Therefore, evaluating skeletal muscle mass may be a simple and useful approach for predicting patient prognosis. Copyright © 2017 IJS Publishing Group Ltd. Published by Elsevier Ltd. All rights reserved.

  4. High expression of muscarinic acetylcholine receptor 3 predicts poor prognosis in patients with pancreatic ductal adenocarcinoma

    Directory of Open Access Journals (Sweden)

    Zhang L

    2016-10-01

    Full Text Available Lingfu Zhang,1 Dianrong Xiu,1 Jun Zhan,2,3 Xiaokun He,3 Limei Guo,4,5 Jilian Wang,1 Ming Tao,1 Wei Fu,1 Hongquan Zhang2,3 1Department of General Surgery, Peking University Third Hospital, 2Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, State Key Laboratory of Natural and Biomimetic Drugs, 3Laboratory of Molecular Cell Biology and Tumor Biology, Department of Anatomy, Histology and Embryology, 4Department of Pathology, Peking University Health Science Center, 5Department of Pathology, Peking University Third Hospital, Beijing, People’s Republic of China Aims: Recent studies showed that muscarinic acetylcholine receptor 3 (M3, as a muscarinic acetylcholine receptor family member that plays an important role in normal physiological function, is engaged in cancer progression. However, the role of M3 in pancreatic ductal adenocarcinoma (PDAC is not known. The aim of this study is to investigate the expression and prognostic value of M3 in patients with PDAC.Materials and methods: The localization and expression of M3 in PDAC were examined by immunohistochemistry. VAChT was employed to detect parasympathetic nerve fibers in the corresponding M3 PDAC tissues. The correlation between M3 expression and patients’ survival was assessed by Kaplan–Meier analysis.Results: M3 was discovered predominantly localized in the cell cytoplasm and expressed in all specimens of PDAC patients. Significant correlation was noted between increased M3 intensity and high grade of PDAC (P<0.01, more lymph node metastasis (P<0.01 as well as shorter patient overall survival (P<0.01. Morphologically, cells with high M3 expression were more frequently located at the invasive tumor front/tumor budding cells, metastatic lymph nodes and parasympathetic nerve fibers.Conclusion: High expression of M3 is a prognostic marker for PDAC. Keywords: PDAC, muscarinic acetylcholine receptor 3, M3, tumor budding, parasympathetic nerve fiber, prognosis

  5. Texture analysis for survival prediction of pancreatic ductal adenocarcinoma patients with neoadjuvant chemotherapy

    Science.gov (United States)

    Chakraborty, Jayasree; Langdon-Embry, Liana; Escalon, Joanna G.; Allen, Peter J.; Lowery, Maeve A.; O'Reilly, Eileen M.; Do, Richard K. G.; Simpson, Amber L.

    2016-03-01

    Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer-related death in the United States. The five-year survival rate for all stages is approximately 6%, and approximately 2% when presenting with distant disease.1 Only 10-20% of all patients present with resectable disease, but recurrence rates are high with only 5 to 15% remaining free of disease at 5 years. At this time, we are unable to distinguish between resectable PDAC patients with occult metastatic disease from those with potentially curable disease. Early classification of these tumor types may eventually lead to changes in initial management including the use of neoadjuvant chemotherapy or radiation, or in the choice of postoperative adjuvant treatments. Texture analysis is an emerging methodology in oncologic imaging for quantitatively assessing tumor heterogeneity that could potentially aid in the stratification of these patients. The present study derives several texture-based features from CT images of PDAC patients, acquired prior to neoadjuvant chemotherapy, and analyzes their performance, individually as well as in combination, as prognostic markers. A fuzzy minimum redundancy maximum relevance method with leave-one-image-out technique is included to select discriminating features from the set of extracted features. With a naive Bayes classifier, the proposed method predicts the 5-year overall survival of PDAC patients prior to neoadjuvant therapy and achieves the best results in terms of the area under the receiver operating characteristic curve of 0:858 and accuracy of 83:0% with four-fold cross-validation techniques.

  6. International consensus on definition and criteria of borderline resectable pancreatic ductal adenocarcinoma 2017.

    Science.gov (United States)

    Isaji, Shuji; Mizuno, Shugo; Windsor, John A; Bassi, Claudio; Fernández-Del Castillo, Carlos; Hackert, Thilo; Hayasaki, Aoi; Katz, Matthew H G; Kim, Sun-Whe; Kishiwada, Masashi; Kitagawa, Hirohisa; Michalski, Christoph W; Wolfgang, Christopher L

    2017-11-22

    This statement was developed to promote international consensus on the definition of borderline resectable pancreatic ductal adenocarcinoma (BR-PDAC) which was adopted by the National Comprehensive Cancer Network (NCCN) in 2006, but which has changed yearly and become more complicated. Based on a symposium held during the 20th meeting of the International Association of Pancreatology (IAP) in Sendai, Japan, in 2016, the presenters sought consensus on issues related to BR-PDAC. We defined patients with BR-PDAC according to the three distinct dimensions: anatomical (A), biological (B), and conditional (C). Anatomic factors include tumor contact with the superior mesenteric artery and/or celiac artery of less than 180° without showing stenosis or deformity, tumor contact with the common hepatic artery without showing tumor contact with the proper hepatic artery and/or celiac artery, and tumor contact with the superior mesenteric vein and/or portal vein including bilateral narrowing or occlusion without extending beyond the inferior border of the duodenum. Biological factors include potentially resectable disease based on anatomic criteria but with clinical findings suspicious for (but unproven) distant metastases or regional lymph nodes metastases diagnosed by biopsy or positron emission tomography-computed tomography. This also includes a serum carbohydrate antigen (CA) 19-9 level more than 500 units/ml. Conditional factors include the patients with potentially resectable disease based on anatomic and biologic criteria and with Eastern Cooperative Oncology Group (ECOG) performance status of 2 or more. The definition of BR-PDAC requires one or more positive dimensions (e.g. A, B, C, AB, AC, BC or ABC). The present definition acknowledges that resectability is not just about the anatomic relationship between the tumor and vessels, but that biological and conditional dimensions are also important. The aim in presenting this consensus definition is also to highlight

  7. Quantitative analysis of collagen and collagen subtypes I, III, and V in human pancreatic cancer, tumor-associated chronic pancreatitis, and alcoholic chronic pancreatitis.

    Science.gov (United States)

    Imamura, T; Iguchi, H; Manabe, T; Ohshio, G; Yoshimura, T; Wang, Z H; Suwa, H; Ishigami, S; Imamura, M

    1995-11-01

    The collagen content in human pancreatic cancer tissue, tissue of tumor-associated chronic pancreatitis (TACP), and normal pancreatic tissue was determined in 14 patients with pancreatic cancer by measuring the amount of 4-hydroxyproline. Four patients with alcoholic chronic pancreatitis (AlCP) were also analyzed. The mean collagen content in both pancreatic cancer tissue and TACP tissue was approximately threefold higher than in normal pancreatic tissue. Cyanogen bromide peptides of type I, III, and V collagens from invasive ductal carcinomatous tissue of the pancreas and from TACP tissue of eight patients were analyzed sequentially using high-performance liquid chromatography with ion-exchange and gel-permeation columns. No difference in the proportion of type I, III, and V collagens was detected between pancreatic cancer tissue and TACP tissue. The mean collagen content in AlCP tissue was significantly lower than that in TACP tissue, but no difference in the proportion of type I, III, and V collagens was detected between these two tissues. These results indicate a similar quantity and distribution pattern of fibrillar collagen in human pancreatic cancer and TACP.

  8. Inactivation of Brca2 cooperates with Trp53(R172H) to induce invasive pancreatic ductal adenocarcinomas in mice: a mouse model of familial pancreatic cancer.

    Science.gov (United States)

    Feldmann, Georg; Karikari, Collins; dal Molin, Marco; Duringer, Stephanie; Volkmann, Petra; Bartsch, Detlef K; Bisht, Savita; Koorstra, Jan-Bart; Brossart, Peter; Maitra, Anirban; Fendrich, Volker

    2011-06-01

    An inactivating germline mutation in BRCA2 is the most common known genetic basis for familial pancreatic cancer (FPC), accounting for 5-10% of inherited cases. A genetically engineered mouse model of pancreatic ductal adenocarcinoma (PDAC) arising on the backdrop of Brca2 deficiency is likely to elucidate valuable diagnostic and therapeutic insights for FPC. Both Brca2 alleles were conditionally deleted during development within the pancreatic epithelium by generating Pdx1-Cre; Brca2(f/f) (CB) mice; in addition, triple transgenic Pdx1-Cre; Brca2(f/f); LSL-Trp53(R172H) (CBP) mice were generated, in order to determine the impact of p53 deregulation on Brca2-deficient carcinogenesis. Both CB and CBP mice developed non-invasive ductal precursor lesions (murine pancreatic intraepithelial neoplasia or mPanIN), although these were observed at an earlier time point (5 versus 8 months) and with higher prevalence in CBP mice. A minority of CB mice (15%) developed invasive and metastatic PDAC at a latency of 15 months or greater; in contrast, CBP mice of comparable age uniformly developed PDAC with variable histological features. Mortality in the absence of neoplasia in CB and CBP mice was associated with profound loss of pancreatic parenchyma, consistent with progressive elimination of Brca2-deficient cells. Widespread DNA damage, as evidenced by overexpression of the phosphorylated histone H(2)AX(Ser139), was observed in the non-neoplastic exocrine pancreas, as well as in the mPanIN and PDAC lesions of Brca2-deficient mice, independent of p53 status. Loss of Brca2 function predisposes the exocrine pancreas to profound DNA damage, and the frequency of invasive neoplasia is accentuated by the concomitant deregulation of p53.

  9. Overexpression of Yes Associated Protein 1, an Independent Prognostic Marker in Patients With Pancreatic Ductal Adenocarcinoma, Correlated With Liver Metastasis and Poor Prognosis.

    Science.gov (United States)

    Salcedo Allende, Maria Teresa; Zeron-Medina, Jorge; Hernandez, Javier; Macarulla, Teresa; Balsells, Joaquim; Merino, Xavier; Allende, Helena; Tabernero, Josep; Ramon Y Cajal Agüeras, Santiago

    2017-08-01

    Pancreatic ductal adenocarcinoma (PDAC) is a lethal cancer. Overexpression of Yes associated protein 1 (YAP1), a downstream target of Hippo pathway, implicated in regulation of cell growth and apoptosis, has been reported in several human tumor types. The objective of this study was to investigate YAP1 expression in patients with PDAC and its prognostic values. We evaluated YAP1 expression in 64 PDAC and 15 chronic pancreatitis (CP) cases and its related pancreatic intraepithelial neoplasia (PanIN) lesions and in 5 control subjects. Yes associated protein 1 expression was determined by immunohistochemistry. Association of YAP1 with clinicopathologic features in PDAC, disease-free survival, and overall survival was analyzed. We found a higher positive rate of nuclear expression of YAP1 in PDAC than in CP (P = 0.000) and lower expression of YAP1 in PanIN lesions in CP in contrast with expression in PanIN lesions in PDAC. Nuclear overexpression of YAP1 in PDAC is associated with hepatic metastasis (P = 0.0280) and is a prognostic factor (P = 0.0320), as well as surgical margin involvement (P = 0.0013) and tumoral stage (P = 0.0109). Overexpression of YAP1 may occur as a part of tumorigenesis of PDAC. Yes associated protein 1 is an independent prognostic marker for overall survival of PDAC and associated with liver metastasis, being a potential therapeutic target.

  10. Transforming Growth Factor TGFβ Increases Levels of Microtubule-Associated Protein MAP1S and Autophagy Flux in Pancreatic Ductal Adenocarcinomas.

    Directory of Open Access Journals (Sweden)

    Kun Song

    Full Text Available Autophagy is a cellular process to regulate the turnover of misfolded/aggregated proteins or dysfunctional organelles such as damaged mitochondria. Microtubule-associated protein MAP1S (originally named C19ORF5 is a widely-distributed homologue of neuronal-specific MAP1A and MAP1B with which autophagy marker light chain 3 (LC3 was originally co-purified. MAP1S bridges autophagic components with microtubules and mitochondria through LC3 and positively regulates autophagy flux from autophagosomal biogenesis to degradation. The MAP1S-mediated autophagy suppresses tumorigenesis as suggested in a mouse liver cancer model and in prostate cancer patients. The TGFβ signaling pathway plays a central role in pancreatic tumorigenesis, and high levels of TGFβ suggest a tumor suppressive function and predict a better survival for some patients with resectable pancreatic ductal adenocarcinoma. In this study, we try to understand the relationship between TGFβ and MAP1S-mediated autophagy in pancreatic ductal adenocarcinoma.We collected the tumor and its adjacent normal tissues from 33 randomly selected patients of pancreatic ductal adenocarcinomas to test the association between TGFβ and autophagy markers MAP1S and LC3. Then we tested the cause and effect relation between TGFβ and autophagy markers in cultured pancreatic cancer cell lines.Here we show that levels of TGFβ and autophagy markers MAP1S and LC3 are dramatically elevated in tumor tissues from patients with pancreatic ductal adenocarcinomas. TGFβ increases levels of MAP1S protein and enhances autophagy flux.TGFβ may suppress the development of pancreatic ductal adenocarcinomas by enhancing MAP1S-mediated autophagy.

  11. Incremental value of secretin-enhanced magnetic resonance cholangiopancreatography in detecting ductal communication in a population with high prevalence of small pancreatic cysts

    Energy Technology Data Exchange (ETDEWEB)

    Rastegar, Neda; Matteoni-Athayde, Luciana G.; Eng, John [Departments of Medicine (Gastroenterology) and Radiology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions (United States); Takahashi, Naoki [Mayo Clinic (United States); Tamm, Eric P. [MD Anderson Cancer Center (United States); Mortele, Koenraad J. [Beth Israel Deaconess Medical Center (United States); Syngal, Sapna [Dana Farber Cancer Institute (United States); Margolis, Daniel [University of California, Los Angeles (United States); Lennon, Anne Marie; Wolfgang, Christopher L.; Fishman, Elliot K.; Hruban, Ralph H.; Goggins, Michael; Canto, Marcia I. [Departments of Medicine (Gastroenterology) and Radiology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions (United States); Kamel, Ihab R., E-mail: ikamel@jhmi.edu [Departments of Medicine (Gastroenterology) and Radiology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions (United States)

    2015-04-15

    Highlights: •Secretin improved visualization of ductal communication of a cystic pancreatic lesion. •No association between cysts and gender, ethnicity or type of high risk. •Incremental value of secretin could offset the added cost and time. -- Abstract: Purpose: We investigated the incremental diagnostic yield of S-MRCP in a population with high prevalence of small pancreatic cysts. Methods: Standard MRCP protocol was performed with and without secretin using 1.5 T units in subjects undergoing pancreatic screening because of a strong family history of pancreatic cancer as part of the multicenter Cancer of the Pancreas Screening-3 trial (CAPS 3). All studies were reviewed prospectively by two independent readers who recorded the presence and number of pancreatic cysts, the presence of visualized ductal communication before and after secretin, and the degree of confidence in the diagnoses. Result: Of 202 individuals enrolled (mean age 56 years, 46% males), 93 (46%) had pancreatic cysts detected by MRCP, and 64 of the 93 had pre-and post-secretin MRCP images available for comparison. Data from the 128 readings show that 6 (6/128 = 4.7%) had ductal communication visualized only on the secretin studies compared to pre-secretin studies (odds ratio 1.28, p = 0.04). In addition, there was a statistically significant increase in confidence in reporting ductal communication after secretin compared to before secretin (p < 0.0005). Conclusion: At 1.5 T MRI, the use of secretin can improve the visualization of ductal communication of cystic pancreatic lesions.

  12. [Pentamer guided HLA-restricted epitope identification for mucoprotein 4 antigen of pancreatic ductal adenocarcinoma].

    Science.gov (United States)

    Gao, Wen-tao; Zhang, Jing-jing; Zhu, Yi; Wei, Ji-shu; Meng, Kai; Chen, Jian-min; Wu, Jun-li; Miao, Yi

    2010-09-15

    To identify HLA-restricted epitope of mucoprotein 4 (MUC4) antigen as a tumor associated antigen of pancreatic ductal adenocarcinoma (PDAC), and to validate its natural presentation in PDAC patient peripheral blood. Two epitope prediction databases (SYFPEITHI and ProPred-I) were used to predict HLA-A*0201 restricted MUC4 epitope, T2 cell assay was used to determine the peptide binding affinity with HLA-A*0201 molecule. Dendritic cells (DCs) were induced from the HLA-A* 0201-positive healthy individuals' peripheral blood mononuclear cells (PBMC). Mature DCs were pulsed with synthesized peptides. Autologous CD8(+) T cells from the HLA-A* 0201 healthy donor were stimulated with the peptide-pulsed DCs as CTL. CTL activity was assessed by lactate dehydrogenase release assay and IFN-γ released by enzyme-linked immunospot assay. Pentamer was synthesized for HLA-A* 0201 restricted epitope P1126, then was used to detect specific CTL in PBMC of PDAC patients. Five candidate HLA-A*0201 epitopes were predicted, LLLGVGTFV (P1125) and LLGVGTFVV (P1126) were determined as the two with more HLA-A*0201 affinity. Mature DCs could be induced from PBMCs. CTL induced by peptide P1126 could lyses T2 cells pulsed with peptide P1126 and HCT-116 cells [MUC4(+), HLA-A2(+)]. The number of CTL induced by peptide P1126 which could secret IFN-γ (130.3 ± 6.6) was obviously higher than that in the negative group. By Pentamer assay, P1126-pentamer and CD8 double positive CTL could be detected in PBMC of PDAC patients with MUC4(+) than patients with MUC4(-), but no significant difference of CTL frequency between patients with HLA-A2(+) and with HLA-A2(-) in MUC4(+) PDAC patients. Tumor associated antigen MUC4-derived HLA-A* 0201-restrictive cytotoxic T lymphocyte (CTL) epitope P1126 can induce CTL reaction. The CTL can secret immunologic active material to induce the specific target cells lysis. P1126 epitope can be naturally presented in PBMC of PDAC patients, but its HLA-restriction may not be

  13. Coexpression of EGFR and CXCR4 predicts poor prognosis in resected pancreatic ductal adenocarcinoma.

    Directory of Open Access Journals (Sweden)

    Huanwen Wu

    Full Text Available Epidermal growth factor receptor (EGFR is highly expressed in pancreatic ductal adenocarcinoma (PDAC and is involved in tumorigenesis and development. However, EGFR expression alone has limited clinical and prognostic significance. Recently, the cross-talk between EGFR and G-protein-coupled chemokine receptor CXCR4 has become increasingly recognized.In the present study, immunohistochemical staining of EGFR and CXCR4 was performed on paraffin-embedded specimens from 131 patients with surgically resected PDAC. Subsequently, the associations between EGFR expression, CXCR4 expression, EGFR/CXCR4 coexpression and clinicopathologic factors were assessed, and survival analyses were performed.In total, 64 (48.9% patients expressed EGFR, 68 (51.9% expressed CXCR4, and 33 (25.2% coexpressed EGFR and CXCR4. No significant association between EGFR and CXCR4 expression was observed (P = 0.938. EGFR expression significantly correlated with tumor differentiation (P = 0.031, whereas CXCR4 expression significantly correlated with lymph node metastasis (P = 0.001. EGFR/CXCR4 coexpression was significantly associated with lymph node metastasis (P = 0.026, TNM stage (P = 0.048, and poor tumor differentiation (P = 0.004. By univariate survival analysis, both CXCR4 expression and EGFR/CXCR4 coexpression were significant prognostic factors for poor disease-free survival (DFS and overall survival (OS. Moreover, EGFR/CXCR4 coexpression significantly increased the hazard ratio for both recurrence and death compared with EGFR or CXCR4 protein expression alone. Multivariate survival analysis demonstrated that EGFR/CXCR4 coexpression was an independent prognostic factor for DFS (HR = 2.33, P<0.001 and OS (HR = 2.48, P = 0.001.In conclusion, our data indicate that although EGFR expression alone has limited clinical and prognostic significance, EGFR/CXCR4 coexpression identified a subset of PDAC patients with more aggressive tumor characteristics and a significantly worse

  14. Ablation of sensory neurons in a genetic model of pancreatic ductal adenocarcinoma slows initiation and progression of cancer.

    Science.gov (United States)

    Saloman, Jami L; Albers, Kathryn M; Li, Dongjun; Hartman, Douglas J; Crawford, Howard C; Muha, Emily A; Rhim, Andrew D; Davis, Brian M

    2016-03-15

    Pancreatic ductal adenocarcinoma (PDAC) is characterized by an exuberant inflammatory desmoplastic response. The PDAC microenvironment is complex, containing both pro- and antitumorigenic elements, and remains to be fully characterized. Here, we show that sensory neurons, an under-studied cohort of the pancreas tumor stroma, play a significant role in the initiation and progression of the early stages of PDAC. Using a well-established autochthonous model of PDAC (PKC), we show that inflammation and neuronal damage in the peripheral and central nervous system (CNS) occurs as early as the pancreatic intraepithelial neoplasia (PanIN) 2 stage. Also at the PanIN2 stage, pancreas acinar-derived cells frequently invade along sensory neurons into the spinal cord and migrate caudally to the lower thoracic and upper lumbar regions. Sensory neuron ablation by neonatal capsaicin injection prevented perineural invasion (PNI), astrocyte activation, and neuronal damage, suggesting that sensory neurons convey inflammatory signals from Kras-induced pancreatic neoplasia to the CNS. Neuron ablation in PKC mice also significantly delayed PanIN formation and ultimately prolonged survival compared with vehicle-treated controls (median survival, 7.8 vs. 4.5 mo; P = 0.001). These data establish a reciprocal signaling loop between the pancreas and nervous system, including the CNS, that supports inflammation associated with oncogenic Kras-induced neoplasia. Thus, pancreatic sensory neurons comprise an important stromal cell population that supports the initiation and progression of PDAC and may represent a potential target for prevention in high-risk populations.

  15. Curcuminoids and ω-3 fatty acids with anti-oxidants potentiate cytotoxicity of natural killer cells against pancreatic ductal adenocarcinoma cells and inhibit interferon γ production

    Directory of Open Access Journals (Sweden)

    Milan eFiala

    2015-05-01

    Full Text Available Pancreatic cancer has a poor prognosis attributed in part to immune suppression and deactivation of natural killer (NK cells. Curcuminoids have a potential for improving the therapy of pancreatic cancer given promising results in cancer models and a clinical trial, but their oral absorption is limited. Our objective in this study is to show curcuminoid anti-oncogenic effects alone and together with human NK cells. We tested curcuminoids in an emulsion of ω-3 fatty acids and anti-oxidants (Smartfish regarding their direct cytocidal effect and enhancement of the cytocidal activity of NK cells in pancreatic ductal adenocarcinoma (PDAC cells (Mia Paca 2 and L3.6. Curcuminoids (at > 10 microM with ω-3 fatty acids and anti-oxidants or with the lipidic mediator resolvin D1 (RvD1 (26 nM induced high caspase-3 activity in PDAC cells. Importantly, curcuminoids with ω-3 fatty acids and anti-oxidants or with RvD1 significantly potentiated NK cell cytocidal function and protected them against degradation. In a co-culture of cancer cells with NK cells, interferon-γ ( IFN-γ production by NK cells was not altered by ω-3 fatty acids with anti-oxidants or by RvD1 but was inhibited by curcuminoids. The inhibition was not eliminated by ω-3 fatty acids or RvD1 but was relieved by removing curcuminoids after adding NK cells. In conclusion, curcuminoids with ω-3 fatty acids and anti-oxidants or with RvD1 have increased cytotoxic activity on PDAC cells alone and with NK cells. The effects of curcuminoids with ω-3 fatty acids and anti-oxidants on pancreatic cancer will be investigated in a mouse model with humanized immune system.

  16. Differentiating Pancreatic Ductal Adenocarcinoma from Pancreatic Serous Cystadenoma, Mucinous Cystadenoma, and a Pseudocyst with Detailed Analysis of Cystic Features on CT Scans: a Preliminary Study

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Peijie; Mahyoub, Radfan; Lin, Xiaozhu; Chen, Kemin; Chai, Weimin; Xie, Jing [Rui Jin Hospital Shanghai Jiao Tong University School of Medicine, Shanghai (China)

    2011-04-15

    To determine whether or not detailed cystic feature analysis on CT scans can assist in the differential diagnosis of pancreatic ductal adenocarcinoma (PDAC) from serous cystadenoma (SCN), mucinous cystadenoma (MCN), and a pseudocyst. This study received Institutional Review Board approval and informed patient consent was waived. Electronic radiology and pathology databases were searched to identify patients with PDAC (n = 19), SCN (n = 26), MCN (n = 20) and a pseudocyst (n = 23) who underwent pancreatic CT imaging. The number, size, location, and contents of cysts, and the contour of the lesions were reviewed, in addition to the wall thickness, enhancement patterns, and other signs of pancreatic and peripancreatic involvement. Diagnosis was based on lesion resection (n = 82) or on a combination of cytological findings, biochemical markers, and tumor markers (n = 6). Fisher's exact test was used to analyze the results. A combination of the CT findings including irregular contour, multiple cysts, mural nodes, and localized thickening, had a relatively high sensitivity (74%) and specificity (75%) for differentiating PDAC from SCN, MCN, and pseudocysts (p < 0.05). Other CT findings such as location, greatest dimension, or the presence of calcification were not significantly different. The CT findings for PDAC are non-specific, but perhaps helpful for differentiation. PDAC should be included in the general differential diagnosis of pancreatic cystic neoplasms

  17. A pilot study of intraluminal brachytherapy using (125)I seed strand for locally advanced pancreatic ductal adenocarcinoma with obstructive jaundice.

    Science.gov (United States)

    Yang, MinJie; Yan, ZhiPing; Luo, JianJun; Liu, QingXin; Zhang, Wen; Ma, JinQing; Zhang, ZiHan; Yu, TianZhu; Zhao, Qian; Liu, LingXiao

    To investigate the safety and feasibility of intraluminal brachytherapy using (125)I seed strand for locally advanced pancreatic ductal adenocarcinoma with obstructive jaundice. From January 2010 to February 2015, 18 consecutive patients diagnosed with locally advanced, nonmetastatic, inoperable pancreatic ductal adenocarcinoma with obstructive jaundice were enrolled and underwent intraluminal brachytherapy using (125)I seed strand. Dose calculation was performed using a software. The procedure-related and radiation complications were assessed. Obstruction-free survival and overall survival were calculated using the Kaplan-Meier method. The technique successful rate of (125)I seed strand implantation was 100%. Successful bile drainage was achieved in all patients. The estimated mean accumulating dose (R = 5 mm, z = 0, 240 days) was 167.2 Gy, from 164.19 to 170.05 Gy. Two patients had adverse event of Grade 3, one of Grade 4. Stent dysfunction occurred in 1/18 (5.6%) patients. The mean and median obstruction-free survival time were 10.61 months (95% confidence interval [CI]: 7.04, 14.18) and 7.26 months (95% CI: 2.14, 12.38). The mean and median overall survival time were 11.91 months (95% CI: 7.39, 16.43) and 7.26 months (95% CI: 2.14, 12.38). Intraluminal brachytherapy using (125)I seed strand may be consider as a safe treatment option for the therapy of locally advanced pancreatic duct adenocarcinoma complicated by obstructive jaundice with acceptable complication rates. Copyright © 2016 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  18. Ethanol and the tobacco-specific carcinogen, NNK, contribute to signaling in immortalized human pancreatic duct epithelial cells.

    Science.gov (United States)

    Askari, Minoo D F; Tsao, Ming-Sound; Cekanova, Maria; Schuller, Hildegard M

    2006-07-01

    Smoking is a well-documented risk factor for pancreatic cancer. The tobacco-specific nitrosamine, NNK (4-[methylnitrosamino]-1-[3-pyridyl]-1-butanone), significantly induces pancreatic ductal adenocarcinomas in laboratory rodents. Recent observations suggest that ethanol enhances the tumorigenic effects of smoking. Ethanol consumption is associated with the development of chronic pancreatitis, also considered a predisposing factor for pancreatic ductal adenocarcinoma. Because the precise role of ethanol in pancreatic carcinogenesis is not known, this study sought to elucidate the cumulative effects of ethanol and NNK on particular signal transduction pathways that might play a role in cell proliferation in immortalized human pancreatic duct epithelial cells. The HPDE6-c7 cells are developed from pancreatic duct epithelial cells, which are the putative cells of origin of pancreatic ductal adenocarcinoma. Cell proliferation assays, Western blot, and cyclic adenosine monophosphate assays were used to demonstrate the effects of ethanol and NNK treatments on these cells. Ethanol cotreatments enhanced the NNK-induced proliferation of these cells. This response was inhibited by the adenylyl cyclase, protein kinase A, mitogen-activated protein kinase (p42/p44), and epidermal growth factor receptor-specific tyrosine kinase inhibitors. Cotreatments of NNK and ethanol also increased cyclic adenosine monophosphate accumulation, cAMP response element-binding family of proteins and mitogen-activated protein kinase phosphorylation, and protein kinase A activation. These findings suggest a potential role for these pathways contributing to the development of smoking- and alcohol-related pancreatic carcinogenesis.

  19. Association between the Risk Factors for Pancreatic Ductal Adenocarcinoma and Those for Malignant Intraductal Papillary Mucinous Neoplasm.

    Science.gov (United States)

    Kamata, Ken; Takenaka, Mamoru; Nakai, Atsushi; Omoto, Shunsuke; Miyata, Takeshi; Minaga, Kosuke; Matsuda, Tomohiro; Yamao, Kentaro; Imai, Hajime; Chiba, Yasutaka; Sakurai, Toshiharu; Watanabe, Tomohiro; Nishida, Naoshi; Chikugo, Takaaki; Matsumoto, Ippei; Takeyama, Yoshifumi; Kudo, Masatoshi

    2017-01-01

    Risk factors for pancreatic ductal adenocarcinoma (PDAC) include diabetes mellitus, chronic pancreatitis, obesity, a family history of pancreatic cancer, and a history of smoking or alcohol consumption. The aim of this study was to evaluate the association between risk factors for PDAC and malignant intraductal papillary mucinous neoplasm (IPMN). The study included 134 consecutive patients with IPMN who underwent surgical resection at Kindai University Hospital between April 2009 and March 2015. Data on the presence or absence of mural nodules (MNs) and risk factors for PDAC were evaluated. Multivariable logistic regression analysis was performed with malignant IPMN as the outcome variable and MNs and risk factors for PDAC as explanatory variables. The odds ratio of malignant IPMN to MNs was 3.88 (95% confidence interval [CI] 1.53-9.84; p = 0.004), whereas that of malignant IPMN to smoking history was 1.66 (95% CI 0.74-3.71; p = 0.22). When the presence of MNs was considered as a predictive factor for malignancy, the sensitivity and specificity were 88.5 and 32.1%, respectively, whereas when the presence of both smoking history and MNs was considered, the specificity improved to 73.2%, with a decrease in sensitivity to 42.3%. The presence of both a smoking history and MNs was a valuable predictive factor for malignant IPMN with high specificity. A smoking history should be considered before surgical resection in addition to the presence of MNs. © 2017 S. Karger AG, Basel.

  20. Clinicopathologic assessment of pancreatic ductal carcinoma located at the head of the pancreas, in relation to embryonic development.

    Science.gov (United States)

    Okamura, Yukiyasu; Fujii, Tsutomu; Kanzaki, Akiyuki; Yamada, Suguru; Sugimoto, Hiroyuki; Nomoto, Shuji; Takeda, Shin; Nakao, Akimasa

    2012-05-01

    Pancreaticoduodenectomy is performed for pancreatic head cancer that originated from the dorsal or ventral primordium. Although the extent of lymph node (LN) dissection is the same irrespective of the origin, the lymphatic continuities may differ between the 2 primordia. Between March 2003 and September 2010, 152 patients underwent pancreaticoduodenectomy for pancreatic cancer. One hundred six patients were assigned into 2 groups according to tumor location on preoperative computed tomography, and their clinical and pathological features were retrospectively analyzed in view of the embryonic development of the pancreas. Sixty of 106 patients were classified with tumors that were derived from the dorsal pancreas (D group) and 46 from the ventral pancreas (V group). The frequency of LN involvement around the middle colic artery (LN 15) in the D group was higher than in the V group (P = 0.008). The rate of additional resection of the pancreas tended to be higher in the D group (P = 0.067). The present study showed the detailed pattern of spread of pancreatic ductal carcinoma to the LNs and provided important information for determining the optimal surgical strategy.

  1. Survival variability of controls and definition of imaging endpoints for longitudinal follow-up of pancreatic ductal adenocarcinoma in rats.

    Science.gov (United States)

    Akladios, Cherif; Ignat, Mihaela; Mutter, Didier; Aprahamian, Marc

    2017-01-01

    The 3Rs guideline is the gold standard for ethics in animal experimentation. Two of those rules, namely refinement and reduction, require further improvement. The objective of this study was to define pathways to better compliance with these prerequisites. Two methods which move us in this direction are: (1) using small animal imaging techniques for pancreatic ductal adenocarcinoma (PDAC) follow-up and (2) reduction of the number of control animals included in a study of PDAC progression under treatment. Firstly, we used MicroCT scan to diagnose events showing PDAC progression prior to any clinical symptoms to thereby define more humane endpoints identifiable before any painful phenomenon is observed. Secondly, in order to test the hypothesis of using a reference control group in all preclinical studies of a new treatment of PDAC, we investigated the stability of the results obtained with the control groups in three successive identical studies comparing placebo and gemcitabine in tumor-bearing Lewis rats. Two imaging endpoints were found. The first was the observation of a liver metastasis assessing PDAC diffusion and, earlier than liver metastasis, the presence of bands of fluid along the flanks, with more or less a medial displacement of bowel and solid viscera, reflecting a peritoneal ascites. Results of the longitudinal follow-up of rats in the gemcitabine study revealed heterogeneity in the survival rate in the three control groups, as opposed to the survival rate in the three treated groups which did not differ statistically. As a result, the significance of improved survival with chemotherapy varied greatly according to the control group used for the comparison, ranging from no impact to a highly significant effect. The early detection by the means of animal imaging of one or more signs indicating the onset of a critical step in the development of the disease (e.g., ascites or/and metastasis) allows the researcher to prevent the occurrence of animal pain

  2. A high-fat diet activates oncogenic Kras and COX2 to induce development of pancreatic ductal adenocarcinoma in mice.

    Science.gov (United States)

    Philip, Bincy; Roland, Christina L; Daniluk, Jaroslaw; Liu, Yan; Chatterjee, Deyali; Gomez, Sobeyda B; Ji, Baoan; Huang, Haojie; Wang, Huamin; Fleming, Jason B; Logsdon, Craig D; Cruz-Monserrate, Zobeida

    2013-12-01

    Obesity is a risk factor for pancreatic ductal adenocarcinoma (PDAC), but it is not clear how obesity contributes to pancreatic carcinogenesis. The oncogenic form of KRAS is expressed during early stages of PDAC development and is detected in almost all of these tumors. However, there is evidence that mutant KRAS requires an additional stimulus to activate its full oncogenic activity and that this stimulus involves the inflammatory response. We investigated whether the inflammation induced by a high-fat diet, and the accompanying up-regulation of cyclooxygenase-2 (COX2), increases Kras activity during pancreatic carcinogenesis in mice. We studied mice with acinar cell-specific expression of KrasG12D (LSL-Kras/Ela-CreERT mice) alone or crossed with COX2 conditional knockout mice (COXKO/LSL-Kras/Ela-CreERT). We also studied LSL-Kras/PDX1-Cre mice. All mice were fed isocaloric diets with different amounts of fat, and a COX2 inhibitor was administered to some LSL-Kras/Ela-CreERT mice. Pancreata were collected from mice and analyzed for Kras activity, levels of phosphorylated extracellular-regulated kinase, inflammation, fibrosis, pancreatic intraepithelial neoplasia (PanIN), and PDACs. Pancreatic tissues from LSL-Kras/Ela-CreERT mice fed high-fat diets (HFDs) had increased Kras activity, fibrotic stroma, and numbers of PanINs and PDACs than LSL-Kras/Ela-CreERT mice fed control diets; the mice fed the HFDs also had shorter survival times than mice fed control diets. Administration of a COX2 inhibitor to LSL-Kras/Ela-CreERT mice prevented these effects of HFDs. We also observed a significant reduction in survival times of mice fed HFDs. COXKO/LSL-Kras/Ela-CreERT mice fed HFDs had no evidence for increased numbers of PanIN lesions, inflammation, or fibrosis, as opposed to the increases observed in LSL-Kras/Ela-CreERT mice fed HFDs. In mice, an HFD can activate oncogenic Kras via COX2, leading to pancreatic inflammation and fibrosis and development of PanINs and PDAC. This

  3. Role of epithelial mesenchymal transition (EMT in pancreatic ductal adenocarcinoma (PDAC: is tumor budding the missing link?

    Directory of Open Access Journals (Sweden)

    Eva eKaramitopoulou

    2013-09-01

    Full Text Available Pancreatic ductal adenocarcinoma (PDAC ranks as the fourth commonest cause of cancer death while its incidence is increasing worldwide. For all stages, survival at 5 years is <5%. The lethal nature of pancreatic cancer is attributed to its high metastatic potential to the lymphatic system and distant organs. Lack of effective therapeutic options contributes to the high mortality rates of PDAC. Recent evidence suggests that epithelial-mesenchymal transition (EMT plays an important role to the disease progression and development of drug resistance in PDAC. Tumor budding is thought to reflect the process of epithelial-mesenchymal transition (EMT which allows neoplastic epithelial cells to acquire a mesenchymal phenotype thus increasing their capacity for migration and invasion and help them become resistant to apoptotic signals. In a recent study by our own group the presence and prognostic significance of tumor budding in PDAC were investigated and an association between high-grade budding and aggressive clinicopathological features of the tumors as well as worse outcome of the patients was found. The identification of EMT phenotypic targets may help identifying new molecules so that future therapeutic strategies directed specifically against them could potentially have an impact on drug resistance and invasiveness and hence improve the prognosis of PDAC patients. The aim of this short review is to present an insight on the morphological and molecular aspects of EMT and on the factors that are involved in the induction of EMT in PDAC.

  4. Iontophoretic device delivery for the localized treatment of pancreatic ductal adenocarcinoma

    OpenAIRE

    Byrne, James D.; Jajja, Mohammad R. N.; Schorzman, Allison N.; Keeler, Amanda W.; Luft, J. Christopher; Zamboni, William C.; DeSimone, Joseph M.; Yeh, Jen Jen

    2016-01-01

    Drug delivery to pancreatic tumors is impaired by a unique desmoplastic response and poor tumor vascularization. A drug delivery device capable of overcoming these barriers could provide substantial benefit for patients with pancreatic cancer. In this study, we show that local iontophoretic delivery of folinic acid (leucovorin), fluorouracil, irinotecan, and oxaliplatin (FOLFIRINOX) resulted in better tumor response and tolerability compared with i.v. FOLFIRINOX. Given the low systemic exposu...

  5. [Expression and clinical significance of AHSG and complement C3 in pancreatic ductal adenocarcinoma].

    Science.gov (United States)

    Chen, Jiong; Wu, Wen; Chen, Longjiang; Ma, Xiaolei; Zhao, Yue; Zhou, Hangcheng; Yang, Renbao; Hu, Liwei

    2014-07-22

    To analyze serum proteins from pancreatic carcinoma patients, pancreatic benign tumor patients, chronic pancreatitis patients and normal controls to discover potential and specific biomarkers. Serum samples were collected from 40 pancreatic carcinoma patients, 10 pancreatic benign tumor patients, 10 chronic pancreatitis patients and 40 cancer-free controls from May 2009 to April 2011. The samples were compared with two-dimensional differential gel electrophoresis (2D-DIGE) and differentially expressed proteins were further identified by matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS). Then, two up-regulated proteins were further validated by real-time polymerase chain reaction (PCR), Western blot analysis and immunohistochemistry (IHC) from transcriptional and proteinic aspects. We identified 12 differently expressed proteins in pancreatic carcinoma group compared with normal control group, including complement component C3, hemopexin, alpha-2-HS-glycoprotein, apolipoprotein H, serotransferrin, haptoglobin, apolipoprotein E, transthyretin, serum amyloid P-component, vitronectin, prothrombin and isoform 2 of Ig mu chain C region. High level of C3 and AHSG were detected in cancerous tissues by real-time PCR, Western blot and immunohistochemisty. Western blot revealed that gray ratios of C3 and AHSG were 0.11 ± 0.01 and 0.26 ± 0.02 respectively. The Immunohistochemical results showed that positive rate of C3 and AHSG were 72.5% and 82.5% in cancerous group versus 32.5% and 25% respectively in normal control. C3 and AHSG may become pancreatic carcinoma-related biomarkers.

  6. Differential role of Hedgehog signaling in human pancreatic (patho-) physiology: An up to date review

    Science.gov (United States)

    Klieser, Eckhard; Swierczynski, Stefan; Mayr, Christian; Jäger, Tarkan; Schmidt, Johanna; Neureiter, Daniel; Kiesslich, Tobias; Illig, Romana

    2016-01-01

    Since the discovery of the Hedgehog (Hh) pathway in drosophila melanogaster, our knowledge of the role of Hh in embryonic development, inflammation, and cancerogenesis in humans has dramatically increased over the last decades. This is the case especially concerning the pancreas, however, real therapeutic breakthroughs are missing until now. In general, Hh signaling is essential for pancreatic organogenesis, development, and tissue maturation. In the case of acute pancreatitis, Hh has a protective role, whereas in chronic pancreatitis, Hh interacts with pancreatic stellate cells, leading to destructive parenchym fibrosis and atrophy, as well as to irregular tissue remodeling with potency of initiating cancerogenesis. In vitro and in situ analysis of Hh in pancreatic cancer revealed that the Hh pathway participates in the development of pancreatic precursor lesions and ductal adenocarcinoma including critical interactions with the tumor microenvironment. The application of specific inhibitors of components of the Hh pathway is currently subject of ongoing clinical trials (phases 1 and 2). Furthermore, a combination of Hh pathway inhibitors and established chemotherapeutic drugs could also represent a promising therapeutic approach. In this review, we give a structured survey of the role of the Hh pathway in pancreatic development, pancreatitis, pancreatic carcinogenesis and pancreatic cancer as well as an overview of current clinical trials concerning Hh pathway inhibitors and pancreas cancer. PMID:27190692

  7. Parasympathetic neurogenesis is strongly associated with tumor budding and correlates with an adverse prognosis in pancreatic ductal adenocarcinoma.

    Science.gov (United States)

    Zhang, Lingfu; Guo, Limei; Tao, Ming; Fu, Wei; Xiu, Dianrong

    2016-04-01

    To investigate the frequency of parasympathetic neurogenesis and determine its association with tumor budding and prognosis in pancreatic ductal adenocarcinoma (PDAC). Parasympathetic neurogenesis was defined as the distribution of abnormal parasympathetic nerves in the stroma tissue. Staining of vesicular acetylcholine transporter (VAChT), as a marker for parasympathetic neurogenesis, was performed on a representative specimen of the tumor for 59 PDAC patients with available clinical, pathologic, and follow-up information. Three specimens containing normal pancreatic tissues were stained in parallel. The number of parasympathetic nerve fibers was counted in five high-power microscopic fields (5×0.785 mm(2)). Cut-off values were calculated by receiver operating characteristic curve analysis. VAChT-positive parasympathetic nerve fibers were not seen in the stroma of 3 cases of normal pancreatic tissues. In 59 PDAC cases, the range of parasympathetic neurogenesis was 4-38 fibers/(5×0.785) mm(2), with a median of 18 fibers/(5×0.785) mm(2). Patients with parasympathetic neurogenesis >15 fibers/(5×0.785) mm(2) were defined as the high-density group (39 patients, 66.1%), and those with parasympathetic neurogenesis 15 fibers/(5×0.785) mm(2) as the low-density group (20 patients, 33.9%). The high-density group had a higher occurrence of tumor budding (P=0.001) and a higher rate of early recurrence (P=0.035). Parasympathetic neurogenesis appeared to be an independent adverse prognostic factor [hazard ratio (HR)=2.45, 95% confidence interval (95% CI): 1.25-4.81, P=0.009], in addition to American Joint Committee on Cancer (AJCC) stage (P=0.010) and tumor budding (P=0.009). Parasympathetic neurogenesis is strongly associated with tumor budding and correlates with an adverse prognosis in PDAC.

  8. Bicaudal C1 promotes pancreatic NEUROG3+ endocrine progenitor differentiation and ductal morphogenesis

    DEFF Research Database (Denmark)

    Lemaire, Laurence A; Goulley, Joan; Kim, Yung Hae

    2015-01-01

    that PKD2 functions downstream of BICC1 in preventing cyst formation in the pancreas. Moreover, the analysis highlights immune cell infiltration and stromal reaction developing early in the pancreas of Bicc1 knockout mice. In addition to these functions in duct morphogenesis, BICC1 regulates NEUROG3......(+) endocrine progenitor production. Its deletion leads to a late but sustained endocrine progenitor decrease, resulting in a 50% reduction of endocrine cells. We show that BICC1 functions downstream of ONECUT1 in the pathway controlling both NEUROG3(+) endocrine cell production and ductal morphogenesis...

  9. A Notch-dependent molecular circuitry initiates pancreatic endocrine and ductal cell differentiation

    DEFF Research Database (Denmark)

    Shih, Hung Ping; Kopp, Janel L; Sandhu, Manbir

    2012-01-01

    signaling promotes the expression of Sox9, which cell-autonomously activates the pro-endocrine gene Ngn3. However, at high Notch activity endocrine differentiation is blocked, as Notch also induces expression of the Ngn3 repressor Hes1. At the transition from high to intermediate Notch activity, only Sox9......, but not Hes1, is maintained, thus de-repressing Ngn3 and initiating endocrine differentiation. In the absence of Sox9 activity, endocrine and ductal cells fail to differentiate, resulting in polycystic ducts devoid of primary cilia. Although Sox9 is required for Ngn3 induction, endocrine differentiation...

  10. DCPP1 is the mouse ortholog of human PAUF that possesses functional analogy in pancreatic cancer.

    Science.gov (United States)

    Song, Hayne; Song, Jinhoi; Kim, Yeon Jeong; Jeong, Hyeon Hee; Min, Hye Jin; Koh, Sang Seok

    2017-12-02

    Pancreatic adenocarcinoma upregulated factor (PAUF) overexpressed in pancreatic ductal adenocarcinoma (PDAC) plays a major role in tumor progression and metastasis by autocrine and paracrine manners. However, underlying molecular mechanism of PAUF functioning in pancreatic cancer are not fully understood yet. The objective of this study was to evaluate the potential of demilune cell and parotid protein 1 (DCPP1) as a putative mouse ortholog of human PAUF by sequence alignment and functional studies. Overexpression of mouse DCPP1 in Chinese hamster ovary (CHO) cells or pancreatic cancer cells increased cell proliferation, migration, invasion, and adhesion ability in vitro. Treatment of human pancreatic cancer cells with recombinant mouse DCPP1 elevated cell growth, motility, invasiveness, and adhesiveness. Mouse DCPP1 exerted its function on pancreatic cancer cells by activating intracellular signaling pathways involved in aggressive cancer phenotype of human pancreatic cancer cells. Moreover, subcutaneous injection of mice with DCPP1-overexpressing CHO cells increased tumor sizes. Taken together, we conclude that mouse DCPP1 is a multifunctional promoter of tumor growth through functional activation of pancreatic cancer cells, suggesting it to be an ortholog of human PAUF. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Prognostic value of metastin expression in human pancreatic cancer

    Directory of Open Access Journals (Sweden)

    Kawaguchi Yoshiya

    2009-01-01

    Full Text Available Abstract Background KiSS-1 was identified as a metastasis-suppressing gene in melanoma cells. The KiSS-1 gene product (metastin was isolated from human placenta as the ligand of GPR54, a G-protein-coupled receptor. The role of metastin and GPR54 in tumor progression is not fully understood. Methods We investigated the clinical significance of metastin and GPR54 expression in pancreatic cancer. We evaluated immunohistochemical expression of metastin and GPR54 in pancreatic ductal adenocarcinoma tissues obtained from 53 consecutive patients who underwent resection between July 2003 and May 2007 at Kyoto University Hospital. In 23 consecutive patients, the plasma metastin level was measured before surgery by enzyme immunoassay. Results Strong immunohistochemical expression of metastin was detected in 13 tumors (24.5%, while strong expression of GPR54 was detected in 30 tumors (56.6%. Tumors that were negative for both metastin and GPR54 expression were significantly larger than tumors that were positive for either metastin or GPR54 (p = 0.047. Recurrence was less frequent in patients who had metastin-positive tumors compared with those who had metastin-negative tumors (38.5% versus 70.0%, p = 0.04. Strong expression of metastin and GPR54 was significantly correlated with longer survival (p = 0.02. Metastin expression by pancreatic cancer was an independent prognostic factor for longer survival (hazard ratio, 2.1; 95% confidence interval, 1.1–4.7; p = 0.03, and the patients with a high plasma metastin level (n = 6 did not die after surgical resection. Conclusion Strong expression of metastin and GPR54 by pancreatic cancer is associated with longer survival. Metastin expression is an independent prognostic factor for the survival of pancreatic cancer patients. The plasma metastin level could become a noninvasive prognostic factor for the assessment of pancreatic cancer.

  12. Prognostic value of metastin expression in human pancreatic cancer

    Science.gov (United States)

    Nagai, Kazuyuki; Doi, Ryuichiro; Katagiri, Fumihiko; Ito, Tatsuo; Kida, Atsushi; Koizumi, Masayuki; Masui, Toshihiko; Kawaguchi, Yoshiya; Tomita, Kenji; Oishi, Shinya; Fujii, Nobutaka; Uemoto, Shinji

    2009-01-01

    Background KiSS-1 was identified as a metastasis-suppressing gene in melanoma cells. The KiSS-1 gene product (metastin) was isolated from human placenta as the ligand of GPR54, a G-protein-coupled receptor. The role of metastin and GPR54 in tumor progression is not fully understood. Methods We investigated the clinical significance of metastin and GPR54 expression in pancreatic cancer. We evaluated immunohistochemical expression of metastin and GPR54 in pancreatic ductal adenocarcinoma tissues obtained from 53 consecutive patients who underwent resection between July 2003 and May 2007 at Kyoto University Hospital. In 23 consecutive patients, the plasma metastin level was measured before surgery by enzyme immunoassay. Results Strong immunohistochemical expression of metastin was detected in 13 tumors (24.5%), while strong expression of GPR54 was detected in 30 tumors (56.6%). Tumors that were negative for both metastin and GPR54 expression were significantly larger than tumors that were positive for either metastin or GPR54 (p = 0.047). Recurrence was less frequent in patients who had metastin-positive tumors compared with those who had metastin-negative tumors (38.5% versus 70.0%, p = 0.04). Strong expression of metastin and GPR54 was significantly correlated with longer survival (p = 0.02). Metastin expression by pancreatic cancer was an independent prognostic factor for longer survival (hazard ratio, 2.1; 95% confidence interval, 1.1–4.7; p = 0.03), and the patients with a high plasma metastin level (n = 6) did not die after surgical resection. Conclusion Strong expression of metastin and GPR54 by pancreatic cancer is associated with longer survival. Metastin expression is an independent prognostic factor for the survival of pancreatic cancer patients. The plasma metastin level could become a noninvasive prognostic factor for the assessment of pancreatic cancer. PMID:19154616

  13. Solid pseudopapillary tumor of the pancreas: A population-based comparison with pancreatic ductal adenocarcinoma

    Directory of Open Access Journals (Sweden)

    G. Paul Wright

    2016-09-01

    Conclusion: SPTP is a rare pancreatic neoplasm found more commonly in young women in the tail of the pancreas and is associated with a significantly more favorable prognosis than PDAC. [Arch Clin Exp Surg 2016; 5(3.000: 148-153

  14. Iontophoretic device delivery for the localized treatment of pancreatic ductal adenocarcinoma.

    Science.gov (United States)

    Byrne, James D; Jajja, Mohammad R N; Schorzman, Allison N; Keeler, Amanda W; Luft, J Christopher; Zamboni, William C; DeSimone, Joseph M; Yeh, Jen Jen

    2016-02-23

    Poor delivery and systemic toxicity of many cytotoxic agents, such as the recent promising combination chemotherapy regimen of folinic acid (leucovorin), fluorouracil, irinotecan, and oxaliplatin (FOLFIRINOX), restrict their full utility in the treatment of pancreatic cancer. Local delivery of chemotherapies has become possible using iontophoretic devices that are implanted directly onto pancreatic tumors. We have fabricated implantable iontophoretic devices and tested the local iontophoretic delivery of FOLFIRINOX for the treatment of pancreatic cancer in an orthotopic patient-derived xenograft model. Iontophoretic delivery of FOLFIRINOX was found to increase tumor exposure by almost an order of magnitude compared with i.v. delivery with substantially lower plasma concentrations. Mice treated for 7 wk with device FOLFIRINOX experienced significantly greater tumor growth inhibition compared with i.v. FOLFIRINOX. A marker of cell proliferation, Ki-67, was stained, showing a significant reduction in tumor cell proliferation. These data capitalize on the unique ability of an implantable iontophoretic device to deliver much higher concentrations of drug to the tumor compared with i.v. delivery. Local iontophoretic delivery of cytotoxic agents should be considered for the treatment of patients with unresectable nonmetastatic disease and for patients with the need for palliation of local symptoms, and may be considered as a neoadjuvant approach to improve resection rates and outcome in patients with localized and locally advanced pancreatic cancer.

  15. Potential predictive role of chemotherapy-induced changes of soluble CD40 ligand in untreated advanced pancreatic ductal adenocarcinoma

    Directory of Open Access Journals (Sweden)

    Azzariti A

    2016-07-01

    Full Text Available Amalia Azzariti,1,* Oronzo Brunetti,2,* Letizia Porcelli,1 Giusi Graziano,3 Rosa Maria Iacobazzi,1 Michele Signorile,2 Aldo Scarpa,4 Vito Lorusso,2 Nicola Silvestris2 1Preclinical and Clinical Pharmacology Unit, 2Medical Oncology Unit, 3Scientific Direction, National Cancer Research Centre, Istituto Tumouri “Giovanni Paolo II”, Bari, 4ARC-NET Research Centre, University of Verona, Verona, Italy *These authors contributed equally to this work Abstract: Pancreas ductal adenocarcinoma lacks predictive biomarkers. CD40 is a member of the tumor necrosis factor superfamily. CD40–sCD40L interaction is considered to contribute to the promotion of tumor cell growth and angiogenesis. The aim of the present study was to investigate the role of serum sCD40L as a predictor in metastatic pancreatic cancer. We evaluated 27 consecutive pancreatic cancer patients treated with FOLFIRINOX (21 patients or gemcitabine plus nab-paclitaxel combination (six patients. The sCD40L level was measured in serum by enzyme-linked immunosorbent assay at baseline, at first evaluation (all patients, and at time to progression (18 patients. The radiological response was evaluated according to the Response Evaluation Criteria in Solid Tumors, Version 1.1. The Wilcoxon signed-rank test was used to compare pre–post treatment sCD40L levels with respect to clinical response, while Pearson’s correlation coefficient was used for the correlation between sCD40L and CA19.9 pre- and post-treatment. The Kruskal–Wallis test was also conducted for further comparisons. We observed a statistically significant reduction in the sCD40L level after 3 months of treatment in patients with partial response (11,718.05±7,097.13 pg/mL vs 4,689.42±5,409.96 pg/mL; P<0.01. Conversely, in patients with progressive disease, the biomarker statistically increased in the same time (9,351.51±7,356.91 pg/mL vs 22,282.92±11,629.35 pg/mL; P<0.01. This trend of sCD40L was confirmed in 18 patients

  16. Effects of alcohol drinking and smoking on pancreatic ductal adenocarcinoma mortality: A retrospective cohort study consisting of 1783 patients.

    Science.gov (United States)

    Zhang, Shuisheng; Wang, Chengfeng; Huang, Huang; Jiang, Qinglong; Zhao, Dongbing; Tian, Yantao; Ma, Jie; Yuan, Wei; Sun, Yuemin; Che, Xu; Zhang, Jianwei; Chen, Haibo; Zhao, Yajie; Chu, Yunmian; Zhang, Yawei; Chen, Yingtai

    2017-08-29

    The effects of alcohol drinking and smoking on pancreatic ductal adenocarcinoma (PDAC) mortality are contradictory. Individuals who were diagnosed as PDAC and hospitalized at the China National Cancer Center between January 1999 and January 2016 were identified and included in the study. Ultimately, 1783 consecutive patients were included in the study. Patients were categorized as never, ex-drinkers/smokers or current drinkers/smokers. Hazard ratios (HRs) of all-cause mortality and 95% confidence intervals (CIs) were estimated using Cox proportional hazards models. Compared with never drinkers, the HRs were 1.25 for ever drinkers, 1.24 for current drinkers, and 1.33 for ex-drinkers (trend P = 0.031). Heavy drinking and smoking period of 30 or more years were positive prognostic factors for PDAC. For different smoking and alcohol drinking status, only subjects who are both current smokers and current drinkers (HR, 1.45; 95% CI, 1.03-2.05) were associated with reduced survival after PDAC compared to those who were never smokers and never drinkers. Patients who are alcohol drinkers and long-term smokers before diagnosis have a significantly higher risk of PDAC mortality. Compared to those who neither smoker nor drink, only patients who both smokers and drinkers were associated with reduced survival from PDAC.

  17. The extracellular matrix and focal adhesion kinase signaling regulate cancer stem cell function in pancreatic ductal adenocarcinoma.

    Directory of Open Access Journals (Sweden)

    Asma Begum

    Full Text Available Cancer stem cells (CSCs play an important role in the clonogenic growth and metastasis of pancreatic ductal adenocarcinoma (PDAC. A hallmark of PDAC is the desmoplastic reaction, but the impact of the tumor microenvironment (TME on CSCs is unknown. In order to better understand the mechanisms, we examined the impact of extracellular matrix (ECM proteins on PDAC CSCs. We quantified the effect of ECM proteins, β1-integrin, and focal adhesion kinase (FAK on clonogenic PDAC growth and migration in vitro and tumor initiation, growth, and metastasis in vivo in nude mice using shRNA and overexpression constructs as well as small molecule FAK inhibitors. Type I collagen increased PDAC tumor initiating potential, self-renewal, and the frequency of CSCs through the activation of FAK. FAK overexpression increased tumor initiation, whereas a dominant negative FAK mutant or FAK kinase inhibitors reduced clonogenic PDAC growth in vitro and in vivo. Moreover, the FAK inhibitor VS-4718 extended the anti-tumor response to gemcitabine and nab-paclitaxel in patient-derived PDAC xenografts, and the loss of FAK expression limited metastatic dissemination of orthotopic xenografts. Type I collagen enhances PDAC CSCs, and both kinase-dependent and independent activities of FAK impact PDAC tumor initiation, self-renewal, and metastasis. The anti-tumor impact of FAK inhibitors in combination with standard chemotherapy support the clinical testing of this combination.

  18. Lysyl oxidase family activity promotes resistance of pancreatic ductal adenocarcinoma to chemotherapy by limiting the intratumoral anticancer drug distribution.

    Science.gov (United States)

    Le Calvé, Benjamin; Griveau, Audrey; Vindrieux, David; Maréchal, Raphaël; Wiel, Clotilde; Svrcek, Magali; Gout, Johann; Azzi, Lamia; Payen, Léa; Cros, Jérôme; de la Fouchardière, Christelle; Dubus, Pierre; Guitton, Jérôme; Bartholin, Laurent; Bachet, Jean-Baptiste; Bernard, David

    2016-05-31

    Solid tumors often display chemotherapy resistance. Pancreatic ductal adenocarcinoma (PDAC) is the archetype of resistant tumors as current chemotherapies are inefficient. The tumor stroma and extracellular matrix (ECM) are key contributors to PDAC aggressiveness and to limiting the efficacy of chemotherapy. Lysyl oxidase (LOX) family members mediate collagen cross-linking and thus promote ECM stiffening. Our data demonstrate increased LOX, LOXL1, and LOXL2 expression in PDAC, and that the level of fibrillar collagen, which is directly dependent of LOX family activity, is an independent predictive biomarker of adjuvant "Gemcitabine-based chemotherapy" benefit. Experimentally in mice, increased LOX family activity through LOXL2 promotes chemoresistance. This effect of LOX family activity seems to be due to decreased gemcitabine intra-tumoral diffusion. This observation might be explained by increased fibrillar collagen and decreased vessel size observed in tumors with increased LOX family activity. In conclusion, our data support that LOX family activity is both a novel target to improve chemotherapy as well as a novel biomarker to predict gemcitabine benefit in PDAC. Beyond the PDAC, it is possible that targeting LOX family activity might improve efficacy of chemotherapies against different kinds of solid tumors.

  19. Significance of Glucose Transporter Type 1 (GLUT-1) Expression in the Therapeutic Strategy for Pancreatic Ductal Adenocarcinoma.

    Science.gov (United States)

    Kurahara, Hiroshi; Maemura, Kosei; Mataki, Yuko; Sakoda, Masahiko; Iino, Satoshi; Kawasaki, Yota; Arigami, Takaaki; Mori, Shinichiro; Kijima, Yuko; Ueno, Shinichi; Shinchi, Hiroyuki; Natsugoe, Shoji

    2018-02-05

    This study aimed to examine the prognostic relevance of glucose transporter type 1 (GLUT-1), which is a key regulator of the glucose metabolism. In particular, the study aimed to examine the association between GLUT-1 expression and the therapeutic effect of chemoradiotherapy (CRT) in pancreatic ductal adenocarcinoma (PDAC). Patients with PDAC were enrolled in the study. Patients with distant metastases and those who received only chemotherapy as treatment were excluded from the study. Specimens for immunohistochemical evaluations were obtained through surgical resection and endoscopic ultrasound-guided fine-needle aspiration (EUS-FNA) of the primary tumor before any treatment. This study included 197 patients. Of these 197 patients, 100 underwent upfront surgery, and 97 received neoadjuvant CRT (NACRT), which was performed mainly for patients with locally advanced tumors. Of the 97 patients who received NACRT, 21 later underwent surgical resection. For the patients who underwent upfront surgery, low GLUT-1 expression was an independent factor for a better prognosis. For the patients who underwent NACRT, low GLUT-1 expression was significantly associated with greater tumor size reduction, a higher resection rate, and a better prognosis. Additionally, GLUT-1 expression was significantly increased after NACRT treatment. Among the patients with PDAC, those with low GLUT-1 expression in the primary tumor had a better prognosis those with high GLUT-1 expression. Moreover, the patients with low GLUT-1 expression displayed a better therapeutic response to NACRT.

  20. Multidetector CT of pancreatic ductal adenocarcinoma: Effect of tube voltage and iodine load on tumour conspicuity and image quality

    Energy Technology Data Exchange (ETDEWEB)

    Loizou, L.; Leidner, B.; Axelsson, E.; Fischer, M.A.; Grigoriadis, A.; Kartalis, N. [Karolinska Institutet, Division of Medical Imaging and Technology, Department of Clinical Science, Intervention and Technology (CLINTEC), Stockholm (Sweden); C1-46 Karolinska University Hospital Huddinge, Department of Radiology, Stockholm (Sweden); Albiin, N. [Karolinska Institutet, Division of Medical Imaging and Technology, Department of Clinical Science, Intervention and Technology (CLINTEC), Stockholm (Sweden); Ersta Hospital, Department of Radiology, Stockholm (Sweden); Del Chiaro, M.; Segersvaerd, R. [Karolinska University Hospital Huddinge, Division of Surgery, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet and Center for Digestive Diseases, Stockholm (Sweden); Verbeke, C. [Karolinska Institutet and Karolinska University Hospital Huddinge, Division of Pathology, Department of Laboratory Medicine, Stockholm (Sweden); Sundin, A. [Uppsala University Hospital, Department of Surgical Sciences, Division of Radiology, Uppsala University and Department of Radiology, Uppsala (Sweden)

    2016-11-15

    To compare a low-tube-voltage with or without high-iodine-load multidetector CT (MDCT) protocol with a normal-tube-voltage, normal-iodine-load (standard) protocol in patients with pancreatic ductal adenocarcinoma (PDAC) with respect to tumour conspicuity and image quality. Thirty consecutive patients (mean age: 66 years, men/women: 14/16) preoperatively underwent triple-phase 64-channel MDCT examinations twice according to: (i) 120-kV standard protocol (PS; 0.75 g iodine (I)/kg body weight, n = 30) and (ii) 80-kV protocol A (PA; 0.75 g I/kg, n = 14) or protocol B (PB; 1 g I/kg, n = 16). Two independent readers evaluated tumour delineation and image quality blindly for all protocols. A third reader estimated the pancreas-to-tumour contrast-to-noise ratio (CNR). Statistical analysis was performed with the Chi-square test. Tumour delineation was significantly better in PB and PA compared with PS (P = 0.02). The evaluation of image quality was similar for the three protocols (all, P > 0.05). The highest CNR was observed with PB and was significantly better compared to PA (P = 0.02) and PS (P = 0.0002). In patients with PDAC, a low-tube-voltage, high-iodine-load protocol improves tumour delineation and CNR leading to higher tumour conspicuity compared to standard protocol MDCT. (orig.)

  1. The Role of 18F-FDG PET/CT and PET/MRI in Pancreatic Ductal Adenocarcinoma.

    Science.gov (United States)

    Yeh, Randy; Dercle, Laurent; Garg, Ishan; Wang, Zhen Jane; Hough, David M; Goenka, Ajit H

    2017-11-16

    Pancreatic ductal adenocarcinoma (PDAC) remains a difficult disease to treat and continues to portend a poor prognosis, as most patients are unresectable at diagnosis. 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) combined with CT (PET/CT) has been a cornerstone in oncological imaging of different cancers; however, the role of PET/CT in PDAC is continually evolving and currently not well established. Studies have shown the potential of PET/CT in guiding the management of patients with PDAC, with possible added benefit over anatomic imaging with CT or MRI in certain scenarios. PET/CT may be useful in diagnosis, initial staging, treatment response assessment, differentiation of recurrent tumor from post-treatment fibrosis, and radiotherapy planning. Additionally, PET/CT may be a cost-effective modality due to upstaging of patients originally deemed as surgical candidates. Recently, the advent of simultaneous PET/MRI represents an exciting advancement in hybrid functional imaging with potential applications in the imaging of PDAC. The advantages of PET/MRI include simultaneous acquisition to improve registration of fusion images, lower radiation dose, superior soft tissue contrast, and availability of multiparametric imaging. Studies are underway to evaluate the utility of PET/MRI in PDAC, including in initial staging and treatment response assessment and to determine the subgroup of patients that will benefit from PET/MRI. Further studies are warranted in both PET/CR and PET/MRI to better understand the role of these modalities in PDAC.

  2. Contrast-enhanced CT and diffusion-weighted MR imaging: Performance as a prognostic factor in patients with pancreatic ductal adenocarcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Fukukura, Yoshihiko, E-mail: fukukura@m.kufm.kagoshima-u.ac.jp [Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima City 890-8544 (Japan); Takumi, Koji [Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima City 890-8544 (Japan); Higashi, Michiyo [Department of Human Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima City 890-8544 (Japan); Shinchi, Hiroyuki [Department of Surgical Oncology and Digestive Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima City 890-8544 (Japan); Kamimura, Kiyohisa; Yoneyama, Tomohide; Tateyama, Akihiro [Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima City 890-8544 (Japan)

    2014-04-15

    Objective: To determine whether contrast enhancement of CT and apparent diffusion coefficient on diffusion-weighted MR imaging are important parameters that can predict outcomes for patients with pancreatic ductal adenocarcinoma. Materials and methods: Ninety-two patients with histologically confirmed pancreatic ductal adenocarcinoma who underwent quadriphasic CT (including unenhanced, pancreatic parenchymal, portal venous and delayed phases) and fat-suppressed single-shot echo-planar diffusion-weighted MR imaging at 3.0 T were retrospectively analyzed to investigate prognostic factors. Overall survival curves were drawn using the Kaplan–Meier method. Effects on survival of variables including age, sex, tumor location, tumor size, TNM stage, carbohydrate antigen 19-9, carcinoembryonic antigen, treatment, tumor contrast enhancement and apparent diffusion coefficient values were analyzed in univariate analysis using the log-rank test. Variables were analyzed in multivariate analyses using the Cox proportional hazards regression model. Results: Median survival for the entire patient population was 18.2 months. Higher contrast enhancement during all phases was associated with significantly longer overall survival (P < 0.001 for all phases). The difference in overall survival between groups divided by median apparent diffusion coefficient value was not significant (P = 0.672). TNM stage (P = 0.026) and tumor contrast enhancement on CT (P = 0.027) were significantly related to survival in multivariate analysis. Conclusions: Poor enhancement of pancreatic adenocarcinomas on enhanced CT is associated with reduced patient survival.

  3. Potential predictive role of chemotherapy-induced changes of soluble CD40 ligand in untreated advanced pancreatic ductal adenocarcinoma.

    Science.gov (United States)

    Azzariti, Amalia; Brunetti, Oronzo; Porcelli, Letizia; Graziano, Giusi; Iacobazzi, Rosa Maria; Signorile, Michele; Scarpa, Aldo; Lorusso, Vito; Silvestris, Nicola

    2016-01-01

    Pancreas ductal adenocarcinoma lacks predictive biomarkers. CD40 is a member of the tumor necrosis factor superfamily. CD40-sCD40L interaction is considered to contribute to the promotion of tumor cell growth and angiogenesis. The aim of the present study was to investigate the role of serum sCD40L as a predictor in metastatic pancreatic cancer. We evaluated 27 consecutive pancreatic cancer patients treated with FOLFIRINOX (21 patients) or gemcitabine plus nab-paclitaxel combination (six patients). The sCD40L level was measured in serum by enzyme-linked immunosorbent assay at baseline, at first evaluation (all patients), and at time to progression (18 patients). The radiological response was evaluated according to the Response Evaluation Criteria in Solid Tumors, Version 1.1. The Wilcoxon signed-rank test was used to compare pre-post treatment sCD40L levels with respect to clinical response, while Pearson's correlation coefficient was used for the correlation between sCD40L and CA19.9 pre- and post-treatment. The Kruskal-Wallis test was also conducted for further comparisons. We observed a statistically significant reduction in the sCD40L level after 3 months of treatment in patients with partial response (11,718.05±7,097.13 pg/mL vs 4,689.42±5,409.96 pg/mL; P<0.01). Conversely, in patients with progressive disease, the biomarker statistically increased in the same time (9,351.51±7,356.91 pg/mL vs 22,282.92±11,629.35 pg/mL; P<0.01). This trend of sCD40L was confirmed in 18 patients at time to progression after the first evaluation. No differences were recorded within the stable disease group. Moreover, there was a positive correlation between the sCD40L and CA19.9 pre-post treatment variation percentage (Pearson's correlation coefficient =0.52; P<0.05). Our data suggest a possible predictive role of sCD40L in pancreatic cancer patients, similar to CA19.9.

  4. Insulin resistance is associated with the aggressiveness of pancreatic ductal carcinoma.

    Science.gov (United States)

    Dugnani, Erica; Balzano, Gianpaolo; Pasquale, Valentina; Scavini, Marina; Aleotti, Francesca; Liberati, Daniela; Di Terlizzi, Gaetano; Gandolfi, Alessandra; Petrella, Giovanna; Reni, Michele; Doglioni, Claudio; Bosi, Emanuele; Falconi, Massimo; Piemonti, Lorenzo

    2016-12-01

    To study whether insulin resistance accelerates the development and/or the progression of pancreatic adenocarcinoma (PDAC), we hypothesized that patients with insulin resistance, compared with those without insulin resistance, show: (1) a younger age and more advanced PDAC stage at diagnosis and (2) a shorter disease-free and overall survival after PDAC diagnosis. Prospective observational study of patients admitted to a referral center for pancreatic disease. Insulin resistance was defined as a HOMA-IR value greater than the 66th percentile value of the patients included in this study. Survival was estimated according to Kaplan-Meier and by Cox regression. Of 296 patients with PDAC, 99 (33 %) met criteria for being classified as insulin resistant at diagnosis. Median follow-up time after diagnosis was 5.27 ± 0.23 years. Patients with insulin resistance received a diagnosis of PDAC at a similar age compared to patients without insulin resistance (67.1 ± 9 vs. 66.8 ± 10 years, p = 0.68), but were more likely to have a cancer stage ≥3 (23.2 vs. 14.2 %, p = 0.053) and a residual disease after surgery (R1 56.4 vs. 38 %; p = 0.007). The median overall survival was 1.3 ± 0.14 and 1.79 ± 0.11 years for the patients with and without insulin resistance, respectively (p = 0.016). Results did not change when patients with diabetes at PDAC diagnosis were excluded from the analysis. Multivariate analysis showed that insulin resistance was independently associated with overall survival. Insulin resistance is associated with the aggressiveness of PDAC.

  5. Subclinical focal Cholangitis mimicking liver metastasis in asymptomatic patients with history of pancreatic Ductal Adenocarcinoma and Biliary tree intervention.

    Science.gov (United States)

    Horvat, Natally; Godfrey, Edmund M; Sadler, Timothy J; Hechtman, Jaclyn F; Tang, Laura H; Sigel, Carlie S; Monti, Serena; Mannelli, Lorenzo

    2017-07-14

    Cholangitis is an inflammatory process of the biliary tract with a wide range of clinical manifestations and it is not always considered in the differential diagnosis in asymptomatic patients. To the best of our knowledge there is no previous report in the English literature of focal cholangitis manifesting exclusively as liver parenchymal changes mimicking liver metastasis in asymptomatic patients with pancreatic ductal adenocarcinoma (PDAC) and history of manipulation of the biliary tree. The purpose of this article is to present six cases of subclinical focal cholangitis mimicking liver metastasis in asymptomatic patients with history of PDAC and biliary tree intervention. There are six cases with new hepatic lesions detected on follow-up scans in asymptomatic patients with history of PDAC and manipulation of biliary tree. Overall seven lesions were detected, all of them were on the liver periphery, five were hypovascular and two were hypervascular. None of those patients had elevation of CA 19.9 compared with the previous exams. The three patients that had magnetic resonance imaging presented restriction on diffusion weighted imaging and high signal intensity on T2-weighted image. Two patients underwent liver biopsy, which showed only inflammatory changes. All patients were treated with antibiotics and underwent imaging follow-up, which demonstrated resolution of the lesions. None of the patients showed imaging or clinical signs of disease progression during this interval. Radiologists and oncologists need to be aware of the possibility of focal cholangitis causing hepatic lesions mimicking neoplasia in patients with history of biliary tree intervention, even in the absence of clinical symptoms.

  6. Differentiation of mass-forming focal pancreatitis from pancreatic ductal adenocarcinoma: value of characterizing dynamic enhancement patterns on contrast-enhanced MR images by adding signal intensity color mapping.

    Science.gov (United States)

    Kim, Mimi; Jang, Kyung Mi; Kim, Jae-Hun; Jeong, Woo Kyoung; Kim, Seong Hyun; Kang, Tae Wook; Kim, Young Kon; Cha, Dong Ik; Kim, Kyunga

    2017-04-01

    To evaluate the value of dynamic enhancement patterns on contrast-enhanced MR images by adding signal intensity colour mapping (SICM) to differentiate mass-forming focal pancreatitis (MFFP) from pancreatic ductal adenocarcinoma (PDAC). Forty-one clinicopathologically proven MFFPs and 144 surgically confirmed PDACs were enrolled. Laboratory and MR imaging parameters were used to differentiate MFFP from PDAC. In particular, enhancement patterns on MR images adding SICM were evaluated. By using classification tree analysis (CTA), we determined the predictors for the differentiation of MFFP from PDAC. In the CTA, with all parameters except enhancement pattern on SICM images, ductal obstruction grade and T1 hypointensity grade of the pancreatic lesion were the first and second splitting predictor for differentiation of MFFP from PDAC, in order. By adding an enhancement pattern on the SICM images to CTA, the enhancement pattern was the only splitting predictor to differentiate MFFP from PDAC. The CTA model including enhancement pattern on SICM images has sensitivity of 78.0 %, specificity of 99.3 %, and accuracy of 94.6 % for differentiating MFFP from PDAC. The characterization of enhancement pattern for pancreatic lesions on contrast-enhanced MR images adding SICM would be helpful to differentiate MFFP from PDAC. • SICM was useful to characterize enhancement pattern. • Enhancement pattern on SICM was the only splitting predictor on CTA. • This model may be useful for differentiating MFFP from PDAC.

  7. Differentiation of mass-forming focal pancreatitis from pancreatic ductal adenocarcinoma: value of characterizing dynamic enhancement patterns on contrast-enhanced MR images by adding signal intensity color mapping

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Mimi [Hanyang University College of Medicine, Department of Radiology, Hanyang Medical Center, Seoul (Korea, Republic of); Jang, Kyung Mi [Sungkyunkwan University School of Medicine, Department of Radiology, Samsung Medical Center, Seoul (Korea, Republic of); Sungkyunkwan University School of Medicine, Department of Radiology and Center for Imaging Science, Samsung Medical Center, Seoul (Korea, Republic of); Kim, Jae-Hun; Jeong, Woo Kyoung; Kim, Seong Hyun; Kang, Tae Wook; Kim, Young Kon; Cha, Dong Ik [Sungkyunkwan University School of Medicine, Department of Radiology, Samsung Medical Center, Seoul (Korea, Republic of); Kim, Kyunga [Samsung Medical Center, Biostatics and Clinical Epidemiology Center, Research Institute for Future Medicine, Seoul (Korea, Republic of)

    2017-04-15

    To evaluate the value of dynamic enhancement patterns on contrast-enhanced MR images by adding signal intensity colour mapping (SICM) to differentiate mass-forming focal pancreatitis (MFFP) from pancreatic ductal adenocarcinoma (PDAC). Forty-one clinicopathologically proven MFFPs and 144 surgically confirmed PDACs were enrolled. Laboratory and MR imaging parameters were used to differentiate MFFP from PDAC. In particular, enhancement patterns on MR images adding SICM were evaluated. By using classification tree analysis (CTA), we determined the predictors for the differentiation of MFFP from PDAC. In the CTA, with all parameters except enhancement pattern on SICM images, ductal obstruction grade and T1 hypointensity grade of the pancreatic lesion were the first and second splitting predictor for differentiation of MFFP from PDAC, in order. By adding an enhancement pattern on the SICM images to CTA, the enhancement pattern was the only splitting predictor to differentiate MFFP from PDAC. The CTA model including enhancement pattern on SICM images has sensitivity of 78.0 %, specificity of 99.3 %, and accuracy of 94.6 % for differentiating MFFP from PDAC. The characterization of enhancement pattern for pancreatic lesions on contrast-enhanced MR images adding SICM would be helpful to differentiate MFFP from PDAC. (orig.)

  8. Polycomb repressor complex 1 promotes gene silencing through H2AK119 mono-ubiquitination in acinar-to-ductal metaplasia and pancreatic cancer cells.

    Science.gov (United States)

    Benitz, Simone; Regel, Ivonne; Reinhard, Tobias; Popp, Anna; Schäffer, Isabell; Raulefs, Susanne; Kong, Bo; Esposito, Irene; Michalski, Christoph W; Kleeff, Jörg

    2016-03-08

    Acinar-to-ductal metaplasia (ADM) occurring in cerulein-mediated pancreatitis or in oncogenic Kras-driven pancreatic cancer development is accompanied by extensive changes in the transcriptional program. In this process, acinar cells shut down the expression of acinar specific differentiation genes and re-express genes usually found in embryonic pancreatic progenitor cells. Previous studies have demonstrated that a loss of acinar-specific transcription factors sensitizes the cells towards oncogenic transformation, ultimately resulting in cancer development. However, the mechanism behind the transcriptional silencing of acinar cell fate genes in ADM and pancreatic cancer is largely unknown. Here, we analyzed whether elevated levels of the polycomb repressor complex 1 (PRC1) components Bmi1 and Ring1b and their catalyzed histone modification H2AK119ub in ADMs and tumor cells, are responsible for the mediation of acinar gene silencing. Therefore, we performed chromatin-immunoprecipitation in in vitro generated ADMs and isolated murine tumor cells against the repressive histone modifications H3K27me3 and H2AK119ub. We established that the acinar transcription factor complex Ptf1-L is epigenetically silenced in ADMs as well as in pancreatic tumor cells. For the first time, this work presents a possible mechanism of acinar gene silencing, which is an important prerequisite in the initiation and maintenance of a dedifferentiated cell state in ADMs and tumor cells.

  9. Increased neutrophil-to-lymphocyte ratio after neoadjuvant therapy is associated with worse survival after resection of borderline resectable pancreatic ductal adenocarcinoma.

    Science.gov (United States)

    Glazer, Evan S; Rashid, Omar M; Pimiento, Jose M; Hodul, Pamela J; Malafa, Mokenge P

    2016-11-01

    The neutrophil-to-lymphocyte ratio (neutrophil count divided by lymphocyte count) is a marker of inflammation associated with poor cancer outcomes. The role of neutrophil-to-lymphocyte ratio in borderline resectable pancreatic ductal adenocarcinoma is unknown. We hypothesized that increased neutrophil-to-lymphocyte ratio in patients with borderline resectable pancreatic ductal adenocarcinoma after neoadjuvant therapy is inversely associated with survival. We used our borderline resectable pancreatic ductal adenocarcinoma database to identify patients who had completed neoadjuvant therapy and underwent resection. The neutrophil-to-lymphocyte ratio difference was calculated as the neutrophil-to-lymphocyte ratio after neoadjuvant therapy minus the neutrophil-to-lymphocyte ratio before neoadjuvant therapy. Patients were assigned to the increased neutrophil-to-lymphocyte ratio cohort if the difference was ≥2.5 units; all others were assigned to the stable neutrophil-to-lymphocyte ratio cohort. Statistical analyses were performed with t test and regression. Of 62 patients identified, 43 were assigned to the stable neutrophil-to-lymphocyte ratio cohort, and 19 to the increased neutrophil-to-lymphocyte ratio cohort. There were no differences in stage, age, or sex. The preneoadjuvant neutrophil-to-lymphocyte ratio was 3.1 ± 2.4, whereas the postneoadjuvant neutrophil-to-lymphocyte ratio was 4.4 ± 3.5 (P = .002). Overall survival was worse in the increased neutrophil-to-lymphocyte ratio cohort compared with the stable neutrophil-to-lymphocyte ratio cohort (P = .009) with a Cox hazard ratio of 2.9 (P = .02). N0 disease conferred a survival advantage over N1 disease (Cox hazard ratio = 0.3, P = .01). On multivariate Cox hazard regression analysis, both increased neutrophil-to-lymphocyte ratio and N1 stage were associated with worse survival (P ratio in patients with borderline resectable pancreatic ductal adenocarcinoma. These findings support exploring

  10. Semiquantitative immunohistochemistry for mucin (MUC1, MUC2, MUC3, MUC4, MUC5AC, and MUC6) profiling of pancreatic ductal cell adenocarcinoma improves diagnostic and prognostic performance.

    Science.gov (United States)

    Sierzega, Marek; Młynarski, Damian; Tomaszewska, Romana; Kulig, Jan

    2016-10-01

    Mucin (MUC) glycoproteins are involved in various steps of the carcinogenesis and progression of human malignancies. The aim of this study was to verify whether semiquantitative evaluation of MUC staining by immunohistochemistry may help to differentiate pancreatic ductal cell adenocarcinoma (PDAC) from chronic pancreatitis and normal pancreas. Mucin expression was examined by immunohistochemistry in surgical specimens resected from 101 patients with PDAC and 33 with chronic pancreatitis, and in 40 normal pancreatic tissue specimens. A quickscore (QS, range 0-300) was calculated by multiplying staining intensity by the percentage of positive cells. A diagnostic model was developed for MUC QS (MUC1, MUC2, MUC3, MUC4, MUC5AC, and MUC6), based on a receiver operating characteristic (ROC) curve and logistic regression analysis. Median QS values for MUC1 and MUC5AC were significantly higher for PDAC, whereas patients with non-malignant tissues had higher values for MUC3 and MUC6. The area under the curve for the ROC curve derived from the diagnostic model including MUC3, MUC5AC and MUC6 was 0.96 [95% confidence interval (CI) 0.91-0.98], with 85% sensitivity and 94% specificity. Median QS values for MUC2 were significantly higher in patients with less advanced tumours, whereas venous invasion was associated with a lower QS for MUC6. Moreover, multivariate survival analysis revealed that low MUC6 expression was a negative prognostic factor, with a hazard ratio of 1.73 (95% CI 1.07-2.81). The three-MUC diagnostic model (MUC3, MUC5AC, and MUC6) showed an excellent ability to discriminate pancreatic cancer from non-malignant tissues, and yielded information that may prove useful for the development of clinical applications. © 2016 John Wiley & Sons Ltd.

  11. MiR-143 Targeting TAK1 Attenuates Pancreatic Ductal Adenocarcinoma Progression via MAPK and NF-κB Pathway In Vitro.

    Science.gov (United States)

    Huang, Feng-Ting; Peng, Juan-Fei; Cheng, Wen-Jie; Zhuang, Yan-Yan; Wang, Ling-Yun; Li, Chu-Qiang; Tang, Jian; Chen, Wen-Ying; Li, Yuan-Hua; Zhang, Shi-Neng

    2017-04-01

    Transforming growth factor (TGF)-β-activated kinase 1 (TAK1) is one of the major regulators of inflammation-induced cancer cell growth and progression. MiR-143 dysregulation is a common event in a variety of human diseases including pancreatic ductal adenocarcinoma (PDA). To identify the interaction between TAK1 and miR-143 in PDA. Data mining of TAK1 expression in PDA patient gene profiling was conducted. QRT-PCR and western blot were performed to detect the expression of TAK1 in PDA tissues and cell lines. Ectopic miR-143 and TAK1 were introduced to PDA cells. Cell growth, apoptosis and migration were examined. Xenograft models were used to examine the function of TAK1 in vivo. Western blot and luciferase assay were carried out to investigate the direct target of miR-143. PDA patient gene profiling data (GSE15471 and GSE16515) showed that TAK1 mRNA was aberrantly up-regulated in PDA tissues. TAK1 protein levels were overexpressed in PDA tissues and cell lines. Overexpression of TAK1 was strongly associated with positive lymph node metastasis. Inhibition of TAK1 suppressed cell growth, migration, and induced cell apoptosis in vitro and in vivo. Further studies demonstrated that TAK1 was a direct target gene of miR-143. MiR-143 also inhibited PDA cells proliferation and migration, induced apoptosis and G1/S arrest. Moreover, TAK1 depletion inactivated MAPK and NF-κB pathway, mimicking the function of miR-143. The study highlights that miR-143 acts as a tumor suppressor in PDA through directly targeting TAK1, and their functional regulation may provide potential therapeutic strategies in clinics.

  12. A subset of metastatic pancreatic ductal adenocarcinomas depends quantitatively on oncogenic Kras/Mek/Erk-induced hyperactive mTOR signalling.

    Science.gov (United States)

    Kong, Bo; Wu, Weiwei; Cheng, Tao; Schlitter, Anna Melissa; Qian, Chengjia; Bruns, Philipp; Jian, Ziying; Jäger, Carsten; Regel, Ivonne; Raulefs, Susanne; Behler, Nora; Irmler, Martin; Beckers, Johannes; Friess, Helmut; Erkan, Mert; Siveke, Jens T; Tannapfel, Andrea; Hahn, Stephan A; Theis, Fabian J; Esposito, Irene; Kleeff, Jörg; Michalski, Christoph W

    2016-04-01

    Oncogenic Kras-activated robust Mek/Erk signals phosphorylate to the tuberous sclerosis complex (Tsc) and deactivates mammalian target of rapamycin (mTOR) suppression in pancreatic ductal adenocarcinoma (PDAC); however, Mek and mTOR inhibitors alone have demonstrated minimal clinical antitumor activity. We generated transgenic mouse models in which mTOR was hyperactivated either through the Kras/Mek/Erk cascade, by loss of Pten or through Tsc1 haploinsufficiency. Primary cancer cells were isolated from mouse tumours. Oncogenic signalling was assessed in vitro and in vivo, with and without single or multiple targeted molecule inhibition. Transcriptional profiling was used to identify biomarkers predictive of the underlying pathway alterations and of therapeutic response. Results from the preclinical models were confirmed on human material. Reduction of Tsc1 function facilitated activation of Kras/Mek/Erk-mediated mTOR signalling, which promoted the development of metastatic PDACs. Single inhibition of mTOR or Mek elicited strong feedback activation of Erk or Akt, respectively. Only dual inhibition of Mek and PI3K reduced mTOR activity and effectively induced cancer cell apoptosis. Analysis of downstream targets demonstrated that oncogenic activity of the Mek/Erk/Tsc/mTOR axis relied on Aldh1a3 function. Moreover, in clinical PDAC samples, ALDH1A3 specifically labelled an aggressive subtype. These results advance our understanding of Mek/Erk-driven mTOR activation and its downstream targets in PDAC, and provide a mechanistic rationale for effective therapeutic matching for Aldh1a3-positive PDACs. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  13. Acinar-to-Ductal Metaplasia Induced by Transforming Growth Factor Beta Facilitates KRASG12D-driven Pancreatic TumorigenesisSummary

    Directory of Open Access Journals (Sweden)

    Nicolas Chuvin

    2017-09-01

    Full Text Available Background & Aims: Transforming growth factor beta (TGFβ acts either as a tumor suppressor or as an oncogene, depending on the cellular context and time of activation. TGFβ activates the canonical SMAD pathway through its interaction with the serine/threonine kinase type I and II heterotetrameric receptors. Previous studies investigating TGFβ-mediated signaling in the pancreas relied either on loss-of-function approaches or on ligand overexpression, and its effects on acinar cells have so far remained elusive. Methods: We developed a transgenic mouse model allowing tamoxifen-inducible and Cre-mediated conditional activation of a constitutively active type I TGFβ receptor (TβRICA in the pancreatic acinar compartment. Results: We observed that TβRICA expression induced acinar-to-ductal metaplasia (ADM reprogramming, eventually facilitating the onset of KRASG12D-induced pre-cancerous pancreatic intraepithelial neoplasia. This phenotype was characterized by the cellular activation of apoptosis and dedifferentiation, two hallmarks of ADM, whereas at the molecular level, we evidenced a modulation in the expression of transcription factors such as Hnf1β, Sox9, and Hes1. Conclusions: We demonstrate that TGFβ pathway activation plays a crucial role in pancreatic tumor initiation through its capacity to induce ADM, providing a favorable environment for KRASG12D-dependent carcinogenesis. Such findings are highly relevant for the development of early detection markers and of potentially novel treatments for pancreatic cancer patients. Keywords: Pancreas, Cancer, TGFβ, Acinar-to-Ductal Metaplasia, KRASG12D

  14. Association between genetic subgroups of pancreatic ductal adenocarcinoma defined by high density 500 K SNP-arrays and tumor histopathology.

    Directory of Open Access Journals (Sweden)

    María Laura Gutiérrez

    Full Text Available The specific genes and genetic pathways associated with pancreatic ductal adenocarcinoma are still largely unknown partially due to the low resolution of the techniques applied so far to their study. Here we used high-density 500 K single nucleotide polymorphism (SNP-arrays to define those chromosomal regions which most commonly harbour copy number (CN alterations and loss of heterozygozity (LOH in a series of 20 PDAC tumors and we correlated the corresponding genetic profiles with the most relevant clinical and histopathological features of the disease. Overall our results showed that primary PDAC frequently display (>70% extensive gains of chromosomes 1q, 7q, 8q and 20q, together with losses of chromosomes 1p, 9p, 12q, 17p and 18q, such chromosomal regions harboring multiple cancer- and PDAC-associated genes. Interestingly, these alterations clustered into two distinct genetic profiles characterized by gains of the 2q14.2, 3q22.1, 5q32, 10q26.13, 10q26.3, 11q13.1, 11q13.3, 11q13.4, 16q24.1, 16q24.3, 22q13.1, 22q13.31 and 22q13.32 chromosomal regions (group 1; n = 9 versus gains at 1q21.1 and losses of the 1p36.11, 6q25.2, 9p22.1, 9p24.3, 17p13.3 and Xp22.33 chromosomal regions (group 2; n = 11. From the clinical and histopathological point of view, group 1 cases were associated with smaller and well/moderately-differentiated grade I/II PDAC tumors, whereas and group 2 PDAC displayed a larger size and they mainly consisted of poorly-differentiated grade III carcinomas. These findings confirm the cytogenetic complexity and heterozygozity of PDAC and provide evidence for the association between tumor cytogenetics and its histopathological features. In addition, we also show that the altered regions identified harbor multiple cancer associate genes that deserve further investigation to determine their relevance in the pathogenesis of PDAC.

  15. Differentially expressed genes in pancreatic ductal adenocarcinomas identified through serial analysis of gene expression

    DEFF Research Database (Denmark)

    Hustinx, Steven R; Cao, Dengfeng; Maitra, Anirban

    2004-01-01

    Serial analysis of gene expression (SAGE) is a powerful tool for the discovery of novel tumor markers. The publicly available online SAGE libraries of normal and neoplastic tissues (http://www.ncbi.nlm.nih.gov/SAGE/) have recently been expanded; in addition, a more complete annotation of the human...... 16 additional differentially expressed genes. The differential expression of seven genes, involved in multiple cellular processes such as signal transduction (MIC-1), differentiation (DMBT1 and Neugrin), immune response (CD74), inflammation (CXCL2), cell cycle (CEB1) and enzymatic activity...... of this program. Novel differentially expressed genes in a cancer type can be identified by revisiting updated and expanded SAGE databases. TAGmapper should prove to be a powerful tool for the discovery of novel tumor markers through assignment of uncharacterized SAGE tags....

  16. The Proteomes of Human Parotid and Submandibular/Sublingual Gland Salivas Collected as the Ductal Secretions

    OpenAIRE

    Denny, Paul; Hagen, Fred K.; Hardt, Markus; Liao, Lujian; Yan, Weihong; Arellanno, Martha; Bassilian, Sara; Bedi, Gurrinder S.; Boontheung, Pinmannee; Cociorva, Daniel; Delahunty, Claire M.; Denny, Trish; Dunsmore, Jason; Faull, Kym F.; Gilligan, Joyce

    2008-01-01

    Saliva is a body fluid with important functions in oral and general health. A consortium of three research groups catalogued the proteins in human saliva collected as the ductal secretions: 1166 identifications—914 in parotid and 917 in submandibular/sublingual saliva—were made. The results showed that a high proportion of proteins that are found in plasma and/or tears are also present in saliva along with unique components. The proteins identified are involved in numerous molecular processes...

  17. Long-Term Culture of Self-renewing Pancreatic Progenitors Derived from Human Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Jamie Trott

    2017-06-01

    Full Text Available Pluripotent stem cells have been proposed as an unlimited source of pancreatic β cells for studying and treating diabetes. However, the long, multi-step differentiation protocols used to generate functional β cells inevitably exhibit considerable variability, particularly when applied to pluripotent cells from diverse genetic backgrounds. We have developed culture conditions that support long-term self-renewal of human multipotent pancreatic progenitors, which are developmentally more proximal to the specialized cells of the adult pancreas. These cultured pancreatic progenitor (cPP cells express key pancreatic transcription factors, including PDX1 and SOX9, and exhibit transcriptomes closely related to their in vivo counterparts. Upon exposure to differentiation cues, cPP cells give rise to pancreatic endocrine, acinar, and ductal lineages, indicating multilineage potency. Furthermore, cPP cells generate insulin+ β-like cells in vitro and in vivo, suggesting that they offer a convenient alternative to pluripotent cells as a source of adult cell types for modeling pancreatic development and diabetes.

  18. Comparative proteomic analysis of human pancreatic juice : Methodological study

    NARCIS (Netherlands)

    Zhou, Lu; Lu, ZhaoHui; Yang, AiMing; Deng, RuiXue; Mai, CanRong; Sang, XinTing; Faber, Klaas Nico; Lu, XingHua

    Pancreatic cancer is the most lethal of all the common malignancies. Markers for early detection of this disease are urgently needed. Here, we optimized and applied a proteome analysis of human pancreatic juice to identify biomarkers for pancreatic cancer. Pancreatic juice samples, devoid of blood

  19. Experimental Animal Models of Pancreatic Carcinogenesis for Prevention Studies and Their Relevance to Human Disease

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Mami, E-mail: mtakahas@ncc.go.jp; Hori, Mika; Mutoh, Michihiro [Division of Cancer Development System, Carcinogenesis Research Group, National Cancer Center Research Institute, 1-1, Tsukiji 5-chome, Chuo-ku, Tokyo 104-0045 (Japan); Wakabayashi, Keiji [Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Yada 52-1, Suruga-ku, Shizuoka 422-8526 (Japan); Nakagama, Hitoshi [Division of Cancer Development System, Carcinogenesis Research Group, National Cancer Center Research Institute, 1-1, Tsukiji 5-chome, Chuo-ku, Tokyo 104-0045 (Japan)

    2011-02-09

    Pancreatic cancer is difficult to cure, so its prevention is very important. For this purpose, animal model studies are necessary to develop effective methods. Injection of N-nitrosobis(2-oxopropyl)amine (BOP) into Syrian golden hamsters is known to induce pancreatic ductal adenocarcinomas, the histology of which is similar to human tumors. Moreover, K-ras activation by point mutations and p16 inactivation by aberrant methylation of 5′ CpG islands or by homozygous deletions have been frequently observed in common in both the hamster and humans. Thus, this chemical carcinogenesis model has an advantage of histopathological and genetic similarity to human pancreatic cancer, and it is useful to study promotive and suppressive factors. Syrian golden hamsters are in a hyperlipidemic state even under normal dietary conditions, and a ligand of peroxizome proliferator-activated receptor gamma was found to improve the hyperlipidemia and suppress pancreatic carcinogenesis. Chronic inflammation is a known important risk factor, and selective inhibitors of inducible nitric oxide synthase and cyclooxygenase-2 also have protective effects against pancreatic cancer development. Anti-inflammatory and anti-hyperlipidemic agents can thus be considered candidate chemopreventive agents deserving more attention.

  20. Effects of combination therapy with vesnarinone, 5-FU and radiation on growth of human pancreatic cancer xenografts in nude mice

    Energy Technology Data Exchange (ETDEWEB)

    Takamura, Michio; Nio, Yoshinori; Minari, Yoshimitsu; Iguchi, Chikage; Sasaki, Susumu; Hirahara, Noriyuki; Tamura, Katsuhiro [Shimane Medical Univ., Izumo (Japan)

    1999-01-01

    We examined the combination effect of Vesnarinone (AZ, 5 mg/day), 5-FU (40 mg/kg) and radiation (RT, 8 Gy/body) for human pancreatic cancer lines which were subcutaneously xenografted in nude mice. AZ alone did not inhibit their growth, but a combination of AZ, 5-FU and RT showed a significant inhibition. Pathological study demonstrated that the ductal structure became more prominent in the poorly differentiated tumors after Vesnarinone treatment. In conclusion, vesnarinone may be a beneficial agent for the differentiation therapy of pancreatic cancer, especially in combination with 5-FU and/or RT. (author)

  1. Multimodal Treatment Eliminates Cancer Stem Cells and Leads to Long-Term Survival in Primary Human Pancreatic Cancer Tissue Xenografts.

    Directory of Open Access Journals (Sweden)

    Patrick C Hermann

    Full Text Available In spite of intense research efforts, pancreatic ductal adenocarcinoma remains one of the most deadly malignancies in the world. We and others have previously identified a subpopulation of pancreatic cancer stem cells within the tumor as a critical therapeutic target and additionally shown that the tumor stroma represents not only a restrictive barrier for successful drug delivery, but also serves as a paracrine niche for cancer stem cells. Therefore, we embarked on a large-scale investigation on the effects of combining chemotherapy, hedgehog pathway inhibition, and mTOR inhibition in a preclinical mouse model of pancreatic cancer.Prospective and randomized testing in a set of almost 200 subcutaneous and orthotopic implanted whole-tissue primary human tumor xenografts.The combined targeting of highly chemoresistant cancer stem cells as well as their more differentiated progenies, together with abrogation of the tumor microenvironment by targeting the stroma and enhancing tissue penetration of the chemotherapeutic agent translated into significantly prolonged survival in preclinical models of human pancreatic cancer. Most pronounced therapeutic effects were observed in gemcitabine-resistant patient-derived tumors. Intriguingly, the proposed triple therapy approach could be further enhanced by using a PEGylated formulation of gemcitabine, which significantly increased its bioavailability and tissue penetration, resulting in a further improved overall outcome.This multimodal therapeutic strategy should be further explored in the clinical setting as its success may eventually improve the poor prognosis of patients with pancreatic ductal adenocarcinoma.

  2. Endogenous n-3 Polyunsaturated Fatty Acids Delay Progression of Pancreatic Ductal Adenocarcinoma in Fat-1-p48Cre/+-LSL-KrasG12D/+ Mice

    Directory of Open Access Journals (Sweden)

    Altaf Mohammed

    2012-12-01

    Full Text Available Preclinical studies suggest that diets rich in omega-3 polyunsaturated fatty acids (n-3 PUFAs may be beneficial for prevention of pancreatic cancer. Nutritional intervention studies are often complex, and there is no clear evidence, without potential confounding factors, on whether conversion of n-6 PUFAs to n-3 PUFAs in pancreatic tissues would provide protection. Experiments were designed using n-3 fatty acid desaturase (Fat-1 transgenic mice, which can convert n-6 PUFA to n-3 FAs endogenously, to determine the impact of n-3 PUFAs on pancreatic intraepithelial neoplasms (PanINs and their progression to pancreatic ductal adenocarcinoma (PDAC. Six-weekold female p48Cre/+-LSL-KrasG12D/+ andcompoundFat-1-p48Cre/+-LSL-KrasG12D/+ mice were fed (AIN-76A diets containing 10% safflower oil for 35 weeks. Pancreata were evaluated histopathologically for PanINs and PDAC. Results showed a dramatic reduction in incidence of PDAC (84%; P 85%; P < .05–0.01 in pancreas of compound transgenic mice than in those of p48Cre/+-LSL-KrasG12D/+ mice. Molecular analysis of the pancreas showed a significant down-regulation of proliferating cell nuclear antigen, cyclooxygenase-2, 5-lipoxygenase (5-LOX, 5-LOX-activating protein, Bcl-2, and cyclin D1 expression levels in Fat-1-p48Cre/+-LSL-KrasG12D/+ mice compared to p48Cre/+-LSL-KrasG12D/+ mice. These data highlight the promise of dietary n-3 FAs for chemoprevention of pancreatic cancer in high-risk individuals.

  3. Inhibitors of ORAI1 Prevent Cytosolic Calcium-Associated Injury of Human Pancreatic Acinar Cells and Acute Pancreatitis in 3 Mouse Models.

    Science.gov (United States)

    Wen, Li; Voronina, Svetlana; Javed, Muhammad A; Awais, Muhammad; Szatmary, Peter; Latawiec, Diane; Chvanov, Michael; Collier, David; Huang, Wei; Barrett, John; Begg, Malcolm; Stauderman, Ken; Roos, Jack; Grigoryev, Sergey; Ramos, Stephanie; Rogers, Evan; Whitten, Jeff; Velicelebi, Gonul; Dunn, Michael; Tepikin, Alexei V; Criddle, David N; Sutton, Robert

    2015-08-01

    Sustained activation of the cytosolic calcium concentration induces injury to pancreatic acinar cells and necrosis. The calcium release-activated calcium modulator ORAI1 is the most abundant Ca(2+) entry channel in pancreatic acinar cells; it sustains calcium overload in mice exposed to toxins that induce pancreatitis. We investigated the roles of ORAI1 in pancreatic acinar cell injury and the development of acute pancreatitis in mice. Mouse and human acinar cells, as well as HEK 293 cells transfected to express human ORAI1 with human stromal interaction molecule 1, were hyperstimulated or incubated with human bile acid, thapsigargin, or cyclopiazonic acid to induce calcium entry. GSK-7975A or CM_128 were added to some cells, which were analyzed by confocal and video microscopy and patch clamp recordings. Acute pancreatitis was induced in C57BL/6J mice by ductal injection of taurolithocholic acid 3-sulfate or intravenous' administration of cerulein or ethanol and palmitoleic acid. Some mice then were given GSK-7975A or CM_128, which inhibit ORAI1, at different time points to assess local and systemic effects. GSK-7975A and CM_128 each separately inhibited toxin-induced activation of ORAI1 and/or activation of Ca(2+) currents after Ca(2+) release, in a concentration-dependent manner, in mouse and human pancreatic acinar cells (inhibition >90% of the levels observed in control cells). The ORAI1 inhibitors also prevented activation of the necrotic cell death pathway in mouse and human pancreatic acinar cells. GSK-7975A and CM_128 each inhibited all local and systemic features of acute pancreatitis in all 3 models, in dose- and time-dependent manners. The agents were significantly more effective, in a range of parameters, when given at 1 vs 6 hours after induction of pancreatitis. Cytosolic calcium overload, mediated via ORAI1, contributes to the pathogenesis of acute pancreatitis. ORAI1 inhibitors might be developed for the treatment of patients with pancreatitis

  4. A human cancer xenograft model utilizing normal pancreatic duct epithelial cells conditionally transformed with defined oncogenes.

    Science.gov (United States)

    Inagawa, Yuki; Yamada, Kenji; Yugawa, Takashi; Ohno, Shin-ichi; Hiraoka, Nobuyoshi; Esaki, Minoru; Shibata, Tatsuhiro; Aoki, Kazunori; Saya, Hideyuki; Kiyono, Tohru

    2014-08-01

    Pancreatic ductal adenocarcinomas (PDACs) are considered to arise through neoplastic transformation of human pancreatic duct epithelial cells (HPDECs). In order to evaluate the biological significance of genetic and epigenetic alterations in PDACs, we isolated primary HPDECs and established an in vitro carcinogenesis model. Firstly, lentivirus-mediated transduction of KRAS(G12V), MYC and human papillomavirus 16 (HPV16) E6/E7 under the control of a tetracyclin-inducible promoter efficiently immortalized and transformed primary HPDECs, which gave rise to adenocarcinomas subcutaneously in an immune-deficient mouse xenograft model, depending on expression of the four genes. The tumors regressed promptly upon shutting-off the oncogenes, and the remaining tissues showed histological features corresponding to normal ductal structures with simple columnar epithelium. Reexpression of the oncogenes resulted in development of multiple PDACs through pancreatic intraepithelial neoplasia-like structures. We also succeeded in efficient immortalization of primary HPDECs with transduction of mutant CDK4, cyclin D1 and TERT. The cells maintained a normal diploid status and formed duct-like structures in a three-dimensional culture. In combination with p53 silencing, KRAS(G12V) alone was sufficient to fully transform the immortalized HPDECs, and MYC markedly accelerated the development of tumors. Our PDAC model supports critical roles of KRAS mutations, inactivation of the p53 and p16-pRB pathways, active telomerase and MYC expression in pancreatic carcinogenesis and thus recapitulates many features of human PDAC development. The present system with reversible control of oncogene expression enabled de novo development of PDAC from quasinormal human tissues preformed subcutaneously in mice and might be applicable to carcinogenesis models in many organ sites. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. A Novel Ras Inhibitor (MDC-1016 Reduces Human Pancreatic Tumor Growth in Mice

    Directory of Open Access Journals (Sweden)

    Gerardo G Mackenzie

    2013-10-01

    Full Text Available Pancreatic cancer has one of the poorest prognoses among all cancers partly because of its persistent resistance to chemotherapy. The currently limited treatment options for pancreatic cancer underscore the need for more efficient agents. Because activating Kras mutations initiate and maintain pancreatic cancer, inhibition of this pathway should have a major therapeutic impact. We synthesized phospho-farnesylthiosalicylic acid (PFTS; MDC-1016 and evaluated its efficacy, safety, and metabolism in preclinical models of pancreatic cancer. PFTS inhibited the growth of human pancreatic cancer cells in culture in a concentration- and time-dependent manner. In an MIA PaCa-2 xenograft mouse model, PFTS at a dose of 50 and 100 mg/kg significantly reduced tumor growth by 62% and 65% (P < .05 vs vehicle control. Furthermore, PFTS prevented pancreatitis-accelerated acinar-to-ductal metaplasia in mice with activated Kras. PFTS appeared to be safe, with the animals showing no signs of toxicity during treatment. Following oral administration, PFTS was rapidly absorbed, metabolized to FTS and FTS glucuronide, and distributed through the blood to body organs. Mechanistically, PFTS inhibited Ras-GTP, the active form of Ras, both in vitro and in vivo, leading to the inhibition of downstream effector pathways c-RAF/mitogen-activated protein-extracellular signal-regulated kinase (ERK kinase (MEK/ERK1/2 kinase and phosphatidylinositol 3-kinase/AKT. In addition, PFTS proved to be a strong combination partner with phospho-valproic acid, a novel signal transducer and activator of transcription 3 (STAT3 inhibitor, displaying synergy in the inhibition of pancreatic cancer growth. In conclusion, PFTS, a direct Ras inhibitor, is an efficacious agent for the treatment of pancreatic cancer in preclinical models, deserving further evaluation.

  6. Inactivation of TGFβ receptor II signalling in pancreatic epithelial cells promotes acinar cell proliferation, acinar-to-ductal metaplasia and fibrosis during pancreatitis.

    Science.gov (United States)

    Grabliauskaite, Kamile; Saponara, Enrica; Reding, Theresia; Bombardo, Marta; Seleznik, Gitta M; Malagola, Ermanno; Zabel, Anja; Faso, Carmen; Sonda, Sabrina; Graf, Rolf

    2016-02-01

    Determining signalling pathways that regulate pancreatic regeneration following pancreatitis is critical for implementing therapeutic interventions. In this study we elucidated the molecular mechanisms underlying the effects of transforming growth factor-β (TGFβ) in pancreatic epithelial cells during tissue regeneration. To this end, we conditionally inactivated TGFβ receptor II (TGFβ-RII) using a Cre-LoxP system under the control of pancreas transcription factor 1a (PTF1a) promoter, specific for the pancreatic epithelium, and evaluated the molecular and cellular changes in a mouse model of cerulein-induced pancreatitis. We show that TGFβ-RII signalling does not mediate the initial acinar cell damage observed at the onset of pancreatitis. However, TGFβ-RII signalling not only restricts acinar cell replication during the regenerative phase of the disease but also limits ADM formation in vivo and in vitro in a cell-autonomous manner. Analyses of molecular mechanisms underlying the observed phenotype revealed that TGFβ-RII signalling stimulates the expression of cyclin-dependent kinase inhibitors and intersects with the EGFR signalling axis. Finally, TGFβ-RII ablation in epithelial cells resulted in increased infiltration of inflammatory cells in the early phases of pancreatitis and increased activation of pancreatic stellate cells in the later stages of pancreatitis, thus highlighting a TGFβ-based crosstalk between epithelial and stromal cells regulating the development of pancreatic inflammation and fibrosis. Collectively, our data not only contribute to clarifying the cellular processes governing pancreatic tissue regeneration, but also emphasize the conserved role of TGFβ as a tumour suppressor, both in the regenerative process following pancreatitis and in the initial phases of pancreatic cancer. Copyright © 2015 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  7. Portal vein resection and reconstruction with artificial blood vessels is safe and feasible for pancreatic ductal adenocarcinoma patients with portal vein involvement: Chinese center experience.

    Science.gov (United States)

    Xie, Zhi-Bo; Gu, Ji-Chun; Zhang, Yi-Fan; Yao, Lie; Jin, Chen; Jiang, Yong-Jian; Li, Ji; Yang, Feng; Zou, Cai-Feng; Fu, De-Liang

    2017-09-29

    Evidence shows that portal vein resection (PVR) increase the resectability but does little benefit to overall survival in all pancreatic ductal adenocarcinoma (PDAC) patients. But for patients with portal vein involvement, PVR is the only radical choice. But whether the PDAC patients with portal vein involvement would benefit from radical pancreaticoduodenectomy with PVR or not is controversial. All 204 PDAC patients with portal vein involvement were enrolled in this study [PVR group, n=106; surgical bypass (SB) group, n=52; chemotherapy group, n=46]. Overall survival and prognostic factors were analyzed among three groups. Moreover, a literature review of 13 studies were also conducted. Among 3 groups, patients in PVR group achieved a significant longer survival (median survival: PVR group, 22.83 months; SB group, 7.26 months; chemotherapy group, 10.64 months). Therapy choice [hazard ratio (HR) =1.593, 95% confidence interval (CI) 1.323 to 1.918, Pportal vein involvement.

  8. Reappraisal of Total Pancreatectomy in 45 Patients With Pancreatic Ductal Adenocarcinoma in the Modern Era Using Matched-Pairs Analysis: Multicenter Study Group of Pancreatobiliary Surgery in Japan.

    Science.gov (United States)

    Satoi, Sohei; Murakami, Yoshiaki; Motoi, Fuyuhiko; Sho, Masayuki; Matsumoto, Ippei; Uemura, Kenichiro; Kawai, Manabu; Kurata, Masanao; Yanagimoto, Hiroaki; Yamamoto, Tomohisa; Mizuma, Masamichi; Unno, Michiaki; Kinoshita, Shoichi; Akahori, Takahiro; Shinzeki, Makoto; Fukumoto, Takumi; Hashimoto, Yasushi; Hirono, Seiko; Yamaue, Hiroki; Honda, Goro; Kwon, Masanori

    2016-08-01

    The aim of this study was to reappraise the clinical role of total pancreatectomy with curative intent in patients with pancreatic ductal adenocarcinoma (PDAC). In 2001 to 2011 database from 7 institutions in Japan, 45 (3.1%) of 1451 patients with PDAC underwent total pancreatectomy (TP group), and 885 patients underwent pancreaticoduodenectomy (PD group). A matched-pairs group consisted of 45 patients matched for age, sex, year, resectability status, and neoadjuvant therapy (matched-PD group). Clinicopathological data, overall survival, and disease-free survival were compared between groups. Clinical features of the TP group revealed higher-stage disease, greater surgical stress, a higher frequency of lymph node metastasis, and a lower adjuvant chemotherapy completion rate compared with the PD group (P total pancreatectomy for patients with PDAC is acceptable. When margin-negative resection is expected, total pancreatectomy should not be abandoned in the modern era.

  9. Human pancreatic islet progenitor cells demonstrate phenotypic ...

    Indian Academy of Sciences (India)

    2009-04-24

    Apr 24, 2009 ... Phenotypic plasticity is a phenomenon that describes the occurrence of 2 or more distinct phenotypes under diverse conditions. This article discusses the work carried out over the past few years in understanding the potential of human pancreatic islet-derived progenitors for cell replacement therapy in ...

  10. Oxidative stress and NO generation in the rat pancreatitis induced by pancreatic duct ligation.

    Science.gov (United States)

    Buchwalow, Igor; Schnekenburger, Jürgen; Atiakshin, Dmitri; Samoilova, Vera; Wolf, Eduard; Boecker, Werner; Tiemann, Katharina

    2017-04-01

    The interaction between nitric oxide (NO) and superoxides is critical in the development of an acute pancreatitis. Previously, we reported that the expression of superoxides and of the NO-generating enzyme (NO synthase, NOS) was up-regulated in the human pancreatitis, especially within the exocrine compartment indicating an exceptional susceptibility of the exocrine parenchyma to oxidative stress. The aim of the present study was to compare the regulation of NO signalling pathways in the human pancreatitis and in an animal model of an acute pancreatitis induced by pancreatic duct ligation (PDL) in rats. In the PDL-induced rat pancreatitis, we revealed a similar pattern of oxidative stress and NOS up-regulation in acinar and in ductal compartments, like in the human pancreatitis. This demonstrates that the PDL-induced rat pancreatitis is a proper model for further studies of acute pancreatitis development in humans. Copyright © 2017 Elsevier GmbH. All rights reserved.

  11. Clinical Studies of Human Pancreatic Enzyme Synthesis

    Science.gov (United States)

    O'Keefe, Stephen J.D.

    1997-01-01

    Very little is known of the effects of diet and disease on panceratic enzyme syntheis in humans as conventional tests measure the secretory response to secreagogues, such as CCK, and secretion may be unrelated to synthesis because of the masking effect of a large intracellular pool of stored enzymes (zymogens). In order to obtain information on enzyme synthesis, as well as secretion, we have measured the incorporation characteristics of isotopically labelled amino acids (e.g., 14C or 13C leucine tracer) into amylase and trypsin protein, extracted by affinity chromatography from duodenal secretions during pancreatic stimulation with CCK-8 The results of our studies in healthy volunteers and patients have suggested that (a) it takes between 75 and 101 min for the participation of newly synthesized pancreatic enzymes in the digestive process, and that zymogen stores are replaced at a rate of between 12 percent and 47 percent per hour in normal healthy subjects, (b) the synthesis and production rates of trypsin and amylase are parallel in healthy subjects, but can diverge under stressful conditions such as hypersecretory states, post-acute pancreatitis and protein malnutrition, (c) hyperphagia stimulates the synthesis of enzymes whilst malnutrition diminishes the synthesis of trypsin to a greater extent than amylase, (d) intravenous glucose and amino acids exert negative feedback control on the synthesis and release of amylase and trypsin, and (e) the decreased secretion of pancreatic enzymes in Type 1 insulin-dependent diabetics is more a consequence of defective enzyme release from zymogen stores than defective synthesis. In conclusion, our results indicate that changes in pancreatic enzyme secretion noted in patients do not always reflect changes in enzyme synthesis, and that the production of individual enzymes may diverge under certain circumstances. Based on the methodology described, it should be possible to develop more sensitive clinical tests of pancreatic

  12. Structural imaging of the pancreas in rat using micro-CT: application to a non-invasivelongitudinal evaluation of pancreatic ductal carcinoma monitoring

    Directory of Open Access Journals (Sweden)

    Akladios CY

    2013-04-01

    Full Text Available The aim of the study was to evaluate the feasibility of a longitudinal non-invasive monitoring of rat pancreatic ductal adenocarcinoma (PDAC using microCTscans (μCT. The identification of the pancreatic gland on (μCT was performed at first using contrast products (Fenestra LC and VC, v/v at a dosage of 0.5 ml/Kg of body weight. Then orthotopic PDAC developed in adult Lewis rat was detected and monitored. In vivo μCT measurement of tumor was compared to actual size ex vivo in 12 rats. Gemcitabine treatment of PDAC was monitored at two week intervals until defined endpoints (liver metastasis or ascitis in 10 rats versus 10 controls. μCT had a 100% positive predictive value in the detection of orthotropic PDAC. Regression analysis showed a linear correlation between ex vivo and in vivo μCT tumor measurements. Longitudinal evaluation of tumor progression showed a reduction in tumor growth (P<0.05 at 8 weeks and a slightly prolonged survival (P=0.15 under gemcitabine treatment. In conclusion μCT appears to be a cost-effective mean for preclinical study of PDAC saving time, animals, while respecting animal welfare. It could be considered as an efficient tool in anticancer drug research and development.

  13. Development of novel anti-Kv 11.1 antibody-conjugated PEG-TiO2 nanoparticles for targeting pancreatic ductal adenocarcinoma cells

    Science.gov (United States)

    Sette, Angelica; Spadavecchia, Jolanda; Landoulsi, Jessem; Casale, Sandra; Haye, Bernard; Crociani, Olivia; Arcangeli, Annarosa

    2013-12-01

    Titanium dioxide (TiO2) has been widely used in many nanotechnology areas including nanomedicine, where it could be proposed for the photodynamic and sonodynamic cancer therapies. However, TiO2 nanoformulations have been shown to be toxic for living cells. In this article, we report the development of a new delivery system, based on nontoxic TiO2 nanoparticles, further conjugated with a monoclonal antibody against a novel and easily accessible tumor marker, e.g., the Kv 11.1 potassium channel. We synthesized, by simple solvothermal method, dicarboxylic acid-terminated PEG TiO2 nanocrystals (PEG-TiO2 NPs). Anti-Kv 11.1 monoclonal antibodies (Kv 11.1-Mab) were further linked to the terminal carboxylic acid groups. Proper conjugation was confirmed by X-ray photoelectron spectroscopy analysis. Kv 11.1-Mab-PEG-TiO2 NPs efficiently recognized the specific Kv 11.1 antigen, both in vitro and in pancreatic ductal adenocarcinoma (PDAC) cells, which express the Kv 11.1 channel onto the plasma membrane. Both PEG TiO2 and Kv 11.1-Mab-PEG-TiO2 NPs were not cytotoxic, but only Kv 11.1-Mab-PEG-TiO2 NPs were efficiently internalized into PDAC cells. Data gathered from this study may have further applications for the chemical design of nanostructures to be applied for therapeutic purposes in pancreatic cancer.

  14. Detailed analysis of epithelial-mesenchymal transition and tumor budding identifies predictors of long-term survival in pancreatic ductal adenocarcinoma.

    Science.gov (United States)

    Kohler, Ilona; Bronsert, Peter; Timme, Sylvia; Werner, Martin; Brabletz, Thomas; Hopt, Ulrich Theodor; Schilling, Oliver; Bausch, Dirk; Keck, Tobias; Wellner, Ulrich Friedrich

    2015-03-01

    Pancreatic ductal adenocarcinoma (PDAC) is characterized by aggressive biology and poor prognosis even after resection. Long-term survival is very rare and cannot be reliably predicted. Experimental data suggest an important role of epithelial-mesenchymal transition (EMT) in invasion and metastasis of PDAC. Tumor budding is regarded as the morphological correlate of local invasion and cancer cell dissemination. The aim of this study was to evaluate the biological and prognostic implications of EMT and tumor budding in PDAC of the pancreatic head. Patients were identified from a prospectively maintained database, and baseline, operative, histopathological, and follow-up data were extracted. Serial tissue slices stained for Pan-Cytokeratin served for analysis of tumor budding, and E-Cadherin, Beta-Catenin, and Vimentin staining for analysis of EMT. Baseline, operative, standard pathology, and immunohistochemical parameters were evaluated for prediction of long-term survival (≥ 30 months) in uni- and multivariate analysis. Intra- and intertumoral patterns of EMT marker expression and tumor budding provide evidence of partial EMT induction at the tumor-host interface. Lymph node ratio and E-Cadherin expression in tumor buds were independent predictors of long-term survival in multivariate analysis. Detailed immunohistochemical assessment confirms a relationship between EMT and tumor budding at the tumor-host interface. A small group of patients with favorable prognosis can be identified by combined assessment of lymph node ratio and EMT in tumor buds. © 2015 Journal of Gastroenterology and Hepatology Foundation and Wiley Publishing Asia Pty Ltd.

  15. Risk factors for latent distant organ metastasis detected by staging laparoscopy in patients with radiologically defined locally advanced pancreatic ductal adenocarcinoma.

    Science.gov (United States)

    Karabicak, Ilhan; Satoi, Sohei; Yanagimoto, Hiroaki; Yamamoto, Tomohisa; Hirooka, Satoshi; Yamaki, So; Kosaka, Hisashi; Inoue, Kentaro; Matsui, Yoichi; Kon, Masanori

    2016-12-01

    We aimed to identify risk factors for latent distant organ metastasis in patients with radiographically defined locally advanced (RDLA) pancreatic ductal adenocarcinoma (PDAC). RDLA disease was defined as unresectable disease without distant organ metastasis based on resectability status by NCCN guidelines. Between January 2005 and November 2015, 110 consecutive patients underwent staging laparoscopy to rule out latent distant metastasis. Univariate and multivariate analyses were performed to identify risk factors for latent distant organ metastasis or peritoneal metastasis (PM), defined as peritoneal dissemination and/or positive peritoneal lavage cytology (PPC). Latent distant organ metastasis was diagnosed by staging laparoscopy in 62 patients. PPC was found in 23%, peritoneal dissemination in 19%, and liver metastasis in 15%. Univariate analysis showed tumor location, preoperative CA 19-9 level and tumor size, and multivariate analysis revealed tumor size >55 mm and CA 19-9 level >60 IU/ml as risk factors for latent distant metastasis. Multivariate analysis showed pancreas body-tail tumors and tumor size >42 mm as risk factors for PM; 65.4% of pancreas body-tail tumors >42 mm had PM. Patients with large pancreas body-tail tumors and high CA 19-9 level are at greater risk for latent distant organ metastasis or PM, and should undergo staging laparoscopy routinely for accurate diagnosis (UMIN000023125). © 2016 Japanese Society of Hepato-Biliary-Pancreatic Surgery.

  16. The neurotensin receptor-1 pathway contributes to human ductal breast cancer progression.

    Directory of Open Access Journals (Sweden)

    Sandra Dupouy

    Full Text Available BACKGROUND: The neurotensin (NTS and its specific high affinity G protein coupled receptor, the NT1 receptor (NTSR1, are considered to be a good candidate for one of the factors implicated in neoplastic progression. In breast cancer cells, functionally expressed NT1 receptor coordinates a series of transforming functions including cellular migration and invasion. METHODS AND RESULTS: we investigated the expression of NTS and NTSR1 in normal human breast tissue and in invasive ductal breast carcinomas (IDCs by immunohistochemistry and RT-PCR. NTS is expressed and up-regulated by estrogen in normal epithelial breast cells. NTS is also found expressed in the ductal and invasive components of IDCs. The high expression of NTSR1 is associated with the SBR grade, the size of the tumor, and the number of metastatic lymph nodes. Furthermore, the NTSR1 high expression is an independent factor of prognosis associated with the death of patients. CONCLUSION: these data support the activation of neurotensinergic deleterious pathways in breast cancer progression.

  17. Cyclooxygenase-2 Expression in Hamster and Human Pancreatic Neoplasia1

    Science.gov (United States)

    Yip-Schneider, Michele T; Savage, Jesse J; Hertzler, Dean A; Cummings, William O

    2006-01-01

    Abstract Cyclooxygenase-2 (COX-2) has been implicated in the development of gastrointestinal malignancies. The aim of the present study was to determine COX-2 expression/activity throughout stages of experimental and human pancreatic neoplasia. COX-2 immunohistochemistry was performed in pancreata of hamsters subjected to the carcinogen N-nitrosobis-(2-oxopropyl)amine (BOP) and in human pancreatic tumors. COX-2 activity was determined by prostaglandin E2 assay in tumor versus matched normal pancreatic tissues. The activity of the COX inhibitor sulindac was tested in the PC-1 hamster pancreatic cancer model. COX-2 expression was elevated in all pancreatic intraepithelial neoplasias (PanINs) and adenocarcinomas. In BOP-treated hamsters, there were significant progressive elevations in COX-2 expression throughout pancreatic tumorigenesis. In human samples, peak COX-2 expression occurred in PanIN2 lesions and remained moderately elevated in PanIN3 and adenocarcinoma tissues. COX-2 activity was significantly elevated in hamster and human pancreatic cancers compared to pair-matched normal pancreas. Furthermore, hamster pancreatic tumor engraftment/formation in the PC-1 hamster pancreatic cancer model was reduced 4.9-fold by oral administration of sulindac. Increased COX-2 expression is an early event in pancreatic carcinogeneses. The BOP-induced hamster carcinogenesis model is a representative model used to study the role of COX-2 in well-differentiated pancreatic tumorigenesis. COX inhibitors may have a role in preventing tumor engraftment/formation. PMID:16820089

  18. The pancreatic and duodenal homeobox protein PDX-1 regulates the ductal specific keratin 19 through the degradation of MEIS1 and DNA binding.

    Directory of Open Access Journals (Sweden)

    Johannes von Burstin

    Full Text Available BACKGROUND: Pancreas organogenesis is the result of well-orchestrated and balanced activities of transcription factors. The homeobox transcription factor PDX-1 plays a crucial role in the development and function of the pancreas, both in the maintenance of progenitor cells and in determination and maintenance of differentiated endocrine cells. However, the activity of homeobox transcription factors requires coordination with co-factors, such as PBX and MEIS proteins. PBX and MEIS proteins belong to the family of three amino acid loop extension (TALE homeodomain proteins. In a previous study we found that PDX-1 negatively regulates the transcriptional activity of the ductal specific keratin 19 (Krt19. In this study, we investigate the role of different domains of PDX-1 and elucidate the functional interplay of PDX-1 and MEIS1 necessary for Krt19 regulation. METHODOLOGY/PRINCIPAL FINDINGS: Here, we demonstrate that PDX-1 exerts a dual manner of regulation of Krt19 transcriptional activity. Deletion studies highlight that the NH(2-terminus of PDX-1 is functionally relevant for the down-regulation of Krt19, as it is required for DNA binding of PDX-1 to the Krt19 promoter. Moreover, this effect occurs independently of PBX. Second, we provide insight on how PDX-1 regulates the Hox co-factor MEIS1 post-transcriptionally. We find specific binding of MEIS1 and MEIS2 to the Krt19 promoter using IP-EMSA, and siRNA mediated silencing of Meis1, but not Meis2, reduces transcriptional activation of Krt19 in primary pancreatic ductal cells. Over-expression of PDX-1 leads to a decreased level of MEIS1 protein, and this decrease is prevented by inhibition of the proteasome. CONCLUSIONS/SIGNIFICANCE: Taken together, our data provide evidence for a dual mechanism of how PDX-1 negatively regulates Krt19 ductal specific gene expression. These findings imply that transcription factors may efficiently regulate target gene expression through diverse, non

  19. Profile of MMP and TIMP Expression in Human Pancreatic Stellate Cells: Regulation by IL-1α and TGFβ and Implications for Migration of Pancreatic Cancer Cells.

    Science.gov (United States)

    Tjomsland, Vegard; Pomianowska, Eva; Aasrum, Monica; Sandnes, Dagny; Verbeke, Caroline Sophie; Gladhaug, Ivar Prydz

    2016-07-01

    Pancreatic ductal adenocarcinoma is characterized by a prominent fibroinflammatory stroma with both tumor-promoting and tumor-suppressive functions. The pancreatic stellate cell (PSC) is the major cellular stromal component and the main producer of extracellular matrix proteins, including collagens, which are degraded by metalloproteinases (MMPs). PSCs interact with cancer cells through various factors, including transforming growth factor (TGF)β and interleukin (IL)-1α. The role of TGFβ in the dual nature of tumor stroma, i.e., protumorigenic or tumor suppressive, is not clear. We aimed to investigate the roles of TGFβ and IL-1α in the regulation of MMP profiles in PSCs and the subsequent effects on cancer cell migration. Human PSCs isolated from surgically resected specimens were cultured in the presence of pancreatic cancer cell lines, as well as IL-1α or TGFβ. MMP production and activities in PSCs were quantified by gene array transcripts, mRNA measurements, fluorescence resonance energy transfer-based activity assay, and zymography. PSC-conditioned media and pancreatic cancer cells were included in a collagen matrix cell migration model. We found that production of IL-1α by pancreatic cancer cells induced alterations in MMP and tissue inhibitors of matrix metalloproteinase (TIMP) profiles and activities in PSCs, upregulated expression and activation of MMP1 and MMP3, and enhanced migration of pancreatic cancer cells in the collagen matrix model. TGFβ counteracted the effects of IL-1α on PSCs, reestablished PSC MMP and TIMP profiles and activities, and inhibited migration of cancer cells. This suggests that tumor TGFβ has a role as a suppressor of stromal promotion of tumor progression through alterations in PSC MMP profiles with subsequent inhibition of pancreatic cancer cell migration. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Targeting Trypsin-Inflammation Axis for Pancreatitis Therapy in a Humanized Pancreatitis Model

    Science.gov (United States)

    2016-10-01

    supraphysiological concentrations. CCK is a hormone that at physiological concentrations induces the release of digestive enzymes by pancreatic...death. We observed, that compared to WT cells, R122H cells display in basal conditions similar morphology and protein levels of digestive enzymes ...Award Number: W81XWH-15-1-0258 TITLE: Targeting Trypsin-Inflammation Axis for Pancreatitis Therapy in a Humanized Pancreatitis Model PRINCIPAL

  1. Aberrant methylation of MUC1 and MUC4 promoters are potential prognostic biomarkers for pancreatic ductal adenocarcinomas

    Science.gov (United States)

    Yokoyama, Seiya; Higashi, Michiyo; Kitamoto, Sho; Oeldorf, Monika; Knippschild, Uwe; Kornmann, Marko; Maemura, Kosei; Kurahara, Hiroshi; Wiest, Edwin; Hamada, Tomofumi; Kitazono, Ikumi; Goto, Yuko; Tasaki, Takashi; Hiraki, Tsubasa; Hatanaka, Kazuhito; Mataki, Yuko; Taguchi, Hiroki; Hashimoto, Shinichi; Batra, Surinder K.; Tanimoto, Akihide; Yonezawa, Suguru; Hollingsworth, Michael A.

    2016-01-01

    Pancreatic cancer is still a disease of high mortality despite availability of diagnostic techniques. Mucins (MUC) play crucial roles in carcinogenesis and tumor invasion in pancreatic neoplasms. MUC1 and MUC4 are high molecular weight transmembrane mucins. These are overexpressed in many carcinomas, and high expression of these molecules is a risk factor associated with poor prognosis. We evaluated the methylation status of MUC1 and MUC4 promoter regions in pancreatic tissue samples from 169 patients with various pancreatic lesions by the methylation specific electrophoresis (MSE) method. These results were compared with expression of MUC1 and MUC4, several DNA methylation/demethylation factors (e.g. ten-eleven translocation or TET, and activation-induced cytidine deaminase or AID) and CAIX (carbonic anhydrase IX, as a hypoxia biomarker). These results were also analyzed with clinicopathological features including time of overall survival of PDAC patients. We show that the DNA methylation status of the promoters of MUC1 and MUC4 in pancreatic tissue correlates with the expression of MUC1 and MUC4 mRNA. In addition, the expression of several DNA methylation/demethylation factors show a significant correlation with MUC1 and MUC4 methylation status. Furthermore, CAIX expression significantly correlates with the expression of MUC1 and MUC4. Interestingly, our results indicate that low methylation of MUC1 and/or MUC4 promoters correlates with decreased overall survival. This is the first report to show a relationship between MUC1 and/or MUC4 methylation status and prognosis. Analysis of epigenetic changes in mucin genes may be of diagnostic utility and one of the prognostic predictors for patients with PDAC. PMID:27283771

  2. Survival benefit of intravenous and intraperitoneal paclitaxel with S-1 in pancreatic ductal adenocarcinoma patients with peritoneal metastasis: a retrospective study in a single institution.

    Science.gov (United States)

    Satoi, Sohei; Yanagimoto, Hiroaki; Yamamoto, Tomohisa; Hirooka, Satoshi; Yamaki, So; Kosaka, Hisashi; Inoue, Kentaro; Hashimoto, Yuki; Matsui, Yoichi; Kon, Masanori

    2017-05-01

    We evaluated the clinical efficacy of intravenous (i.v.) and intraperitoneal (i.p.) paclitaxel (PTX) combined with S-1 in patients with chemotherapy-naïve pancreatic ductal adenocarcinoma (PDAC) with peritoneal metastasis. Forty-nine patients were diagnosed with peritoneal metastasis during 2007-2014; 29 received gemcitabine or S-1-based chemo(radio)therapy from 2007 to 2011 (control group), and the remaining 20 received i.v. (50 mg/m(2) ) and i.p. (20 mg/m(2) ) PTX on days 1 and 8, and S-1 at 80 mg/m(2) per day for 14 consecutive days, followed by 7 days of rest from 2012 to 2014 (study group). The median survival time in the study group was significantly longer than that in the control group (20 vs. 10 months, respectively; P = 0.004). At 1 year after initial treatment, a significant difference in ascites development on CT was found between the study (5/20 patients) and the control group (18/29 patients, P = 0.009). The frequency of objective response (9/20 patients) and conversion surgery (6/20 patients) in the study group was higher than those in the control group (8/29 and 2/29, respectively). Patients who underwent conversion surgery had improved survival in both groups. Implementation of the S-1+i.v./i.p. PTX regimen was closely associated with improved overall survival in PDAC patients with peritoneal metastasis. © 2017 Japanese Society of Hepato-Biliary-Pancreatic Surgery.

  3. Intraductal papillary mucinous neoplasm (IPMN) with high-grade dysplasia is a risk factor for the subsequent development of pancreatic ductal adenocarcinoma.

    Science.gov (United States)

    Rezaee, Neda; Barbon, Carlotta; Zaki, Ahmed; He, Jin; Salman, Bulent; Hruban, Ralph H; Cameron, John L; Herman, Joseph M; Ahuja, Nita; Lennon, Anne Marie; Weiss, Matthew J; Wood, Laura D; Wolfgang, Christopher L

    2016-03-01

    Non-invasive intraductal papillary mucinous neoplasm (IPMN) with high-grade dysplasia and IPMN-associated invasive pancreatic ductal adenocarcinoma (PDAC) are frequently included under the term "malignancy". The goal of this study is to clarify the difference between these two entities. From 1996 to 2013, data of 616 patients who underwent pancreatic resection for an IPMN were reviewed. The median overall survival for patients with IPMN with high-grade dysplasia (92 months) was similar to survival for patients with IPMN with low/intermediate-grade dysplasia (118 months, p = 0.081), and superior to that of patients with IPMN-associated PDAC (29 months, p < 0.001). IPMN-associated PDAC had lymph node metastasis in 53%, perineural invasion in 58%, and vascular invasion in 33%. In contrast, no lymph node metastasis, perineural or vascular invasion was observed with high-grade dysplasia. None of the patients with IPMN with high-grade dysplasia developed recurrence outside the remnant pancreas. In stark contrast 58% of patients with IPMN-associated PDAC recurred outside the remnant pancreas. The rate of progression within the remnant pancreas was significant in patients with IPMN with high-grade (24%) and with low/intermediate dysplasia (22%, p = 0.816). Non-invasive IPMN with high-grade dysplasia should not be considered a malignant entity. Compared to patients with IPMN with low/intermediate-grade dysplasia, those with high-grade dysplasia have an increased risk of subsequent development of PDAC in the remnant pancreas. Copyright © 2015 International Hepato-Pancreato-Biliary Association Inc. Published by Elsevier Ltd. All rights reserved.

  4. Genome-wide DNA methylation patterns in pancreatic ductal adenocarcinoma reveal epigenetic deregulation of SLIT-ROBO, ITGA2 and MET signaling.

    Science.gov (United States)

    Nones, Katia; Waddell, Nic; Song, Sarah; Patch, Ann-Marie; Miller, David; Johns, Amber; Wu, Jianmin; Kassahn, Karin S; Wood, David; Bailey, Peter; Fink, Lynn; Manning, Suzanne; Christ, Angelika N; Nourse, Craig; Kazakoff, Stephen; Taylor, Darrin; Leonard, Conrad; Chang, David K; Jones, Marc D; Thomas, Michelle; Watson, Clare; Pinese, Mark; Cowley, Mark; Rooman, Ilse; Pajic, Marina; Butturini, Giovanni; Malpaga, Anna; Corbo, Vincenzo; Crippa, Stefano; Falconi, Massimo; Zamboni, Giuseppe; Castelli, Paola; Lawlor, Rita T; Gill, Anthony J; Scarpa, Aldo; Pearson, John V; Biankin, Andrew V; Grimmond, Sean M

    2014-09-01

    The importance of epigenetic modifications such as DNA methylation in tumorigenesis is increasingly being appreciated. To define the genome-wide pattern of DNA methylation in pancreatic ductal adenocarcinomas (PDAC), we captured the methylation profiles of 167 untreated resected PDACs and compared them to a panel of 29 adjacent nontransformed pancreata using high-density arrays. A total of 11,634 CpG sites associated with 3,522 genes were significantly differentially methylated (DM) in PDAC and were capable of segregating PDAC from non-malignant pancreas, regardless of tumor cellularity. As expected, PDAC hypermethylation was most prevalent in the 5' region of genes (including the proximal promoter, 5'UTR and CpG islands). Approximately 33% DM genes showed significant inverse correlation with mRNA expression levels. Pathway analysis revealed an enrichment of aberrantly methylated genes involved in key molecular mechanisms important to PDAC: TGF-β, WNT, integrin signaling, cell adhesion, stellate cell activation and axon guidance. Given the recent discovery that SLIT-ROBO mutations play a clinically important role in PDAC, the role of epigenetic perturbation of axon guidance was pursued in more detail. Bisulfite amplicon deep sequencing and qRT-PCR expression analyses confirmed recurrent perturbation of axon guidance pathway genes SLIT2, SLIT3, ROBO1, ROBO3, ITGA2 and MET and suggests epigenetic suppression of SLIT-ROBO signaling and up-regulation of MET and ITGA2 expression. Hypomethylation of MET and ITGA2 correlated with high gene expression, which was associated with poor survival. These data suggest that aberrant methylation plays an important role in pancreatic carcinogenesis affecting core signaling pathways with potential implications for the disease pathophysiology and therapy. The Authors. Published by Wiley Periodicals, Inc. on behalf of UICC.

  5. Upstream and Downstream Co-inhibition of Mitogen-Activated Protein Kinase and PI3K/Akt/mTOR Pathways in Pancreatic Ductal Adenocarcinoma

    Directory of Open Access Journals (Sweden)

    Matthew H. Wong

    2016-07-01

    Full Text Available BACKGROUND: Extensive cross talk exists between PI3K/Akt/mTOR and mitogen-activated protein kinase (MAPK pathways, and both are upregulated in pancreatic ductal adenocarcinoma (PDAC. Our previous study suggested that epidermal growth factor receptor inhibitor erlotinib which acts upstream of these pathways acts synergistically with PI3K inhibitors in PDAC. Horizontal combined blockade upstream and downstream of these two pathways is therefore explored. METHODS: Erlotinib paired with PI3K inhibitor (BYL719 was tested against erlotinib plus dual PI3K/mTOR inhibitor BEZ-235, and MEK inhibitor (PD98059 plus BEZ235, on five primary PDAC cell lines and on two pairs of parent and erlotinib-resistant (ER cell lines. A range of in vitro assays including cell proliferation, Western blotting, migration, clonogenic, cell cycle, and apopotic assays was used to test for the efficacy of combined blockade. RESULTS: Dual downstream blockade of the MAPK and PAM pathways was more effective in attenuating downstream molecular signals. Synergy was demonstrated for erlotinib and BEZ235 and for PD-98059 and BEZ-235. This resulted in a trend of increased growth cell cycle arrest, apoptosis, cell proliferation, and colony and migration suppression. This combination showed more efficacy in cell lines with acquired resistance to erlotinib. CONCLUSIONS: The additional mTOR blockade provided by BEZ235 in combined blockade resulted in increased anticancer effect. The hypersensitivity of ER cell lines to additional mTOR blockade suggested PAM pathway oncogenic dependence via mTOR. Dual downstream combined blockade of MAPK and PAM pathways with MEK and PI3K/mTOR inhibitor appeared most effective and represents an attractive therapeutic strategy against pancreatic cancer and its associated drug resistance.

  6. Differential diagnosis between intraductal papillary mucinous neoplasm with an associated invasive carcinoma and pancreatic ductal adenocarcinoma on ultrasonography: the utility of echo intensity and contrast enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Masato [Dept. of Radiology, Sapporo Teishinkai Hospital, Sapporo (Japan); Hirokawa, Naoki; Usami, Yoko; Someya, Masanori; Sakata, Kohichi [Dept. of Radiology, Sapporo Medical University School of Medicine, Sapporo (Japan)

    2017-07-15

    The aim of this study was to investigate the utility of echo intensity and contrast enhancement in the differential diagnosis between intraductal papillary mucinous neoplasm with an associated invasive carcinoma (IPMN-IC) and pancreatic ductal adenocarcinoma (PDAC) on ultrasonography. This study included eight and 37 patients who had pathologically confirmed IPMN-IC and PDAC, respectively, and were enrolled for a comparative analysis of the sonographic features of the tumors. In the quantitative echo intensity evaluation, the two groups were compared with respect to the difference between the tumor intensity and the pancreatic intensity (TI-PI) and between the tumor intensity and the vascular intensity (TI-VI). In the quantitative contrast enhancement evaluation, the increase in echo intensity (ΔTI) and increase in echo intensity per unit of time (slope) were compared between the groups. The echo intensity and contrast enhancement were also compared between the two groups in patients with T3-T4 disease. In addition, the correlations of the histological type, tumor size, stromal type, and T factor with echogenicity and contrast enhancement were analyzed. IPMN-IC had significantly greater echo intensity and contrast enhancement than PDAC (TI-PI, P=0.004; TI-VI, P=0.001; ΔTI, P=0.012; slope, P=0.002). In T3-T4 disease, IPMN-IC also showed greater echo intensity and faster enhancement than PDAC. Echo intensity and contrast enhancement were correlated with histological type (TI-PI, P=0.003; TI-VI, P<0.001; ΔTI, P=0.007; slope, P<0.001). IPMN-IC and PDAC can be differentiated by the quantitative evaluation of echo intensity and contrast enhancement.

  7. Simvastatin attenuates macrophage-mediated gemcitabine resistance of pancreatic ductal adenocarcinoma by regulating the TGF-β1/Gfi-1 axis.

    Science.gov (United States)

    Xian, Guozhe; Zhao, Juan; Qin, Chengkun; Zhang, Zhenhai; Lin, Yanliang; Su, Zhongxue

    2017-01-28

    Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy with an intrinsic resistance to almost all chemotherapeutic drugs, including gemcitabine. An abundance of tumor-associated macrophages (TAMs), which can promote the resistance of PDAC to gemcitabine, has been observed in the microenvironments of several tumors. In this study, we confirmed that incubation in TAM-conditioned medium (TAM-CM) reduces the gemcitabine-induced apoptosis of PDAC cells. Simvastatin attenuated the TAM-mediated resistance of PDAC cells to gemcitabine. Further investigation found that simvastatin reversed the TAM-mediated down-regulation of Gfi-1 and up-regulation of CTGF and HMGB1. Simvastatin induced Gfi-1 expression, which increased the sensitivity of PDAC cells to gemcitabine by decreasing TGF-β1 secretion by TAMs. A luciferase reporter assay and ChIP assay revealed that Gfi-1 directly repressed the transcription of CTGF and HMGB1. Simvastatin also reversed the effects of gemcitabine on the expression of TGF-β1 and Gfi-1 and reduced the resistance of PDAC to gemcitabine in vivo. These results provide the first evidence that simvastatin attenuates the TAM-mediated gemcitabine resistance of PDAC by blocking the TGF-β1/Gfi-1 axis. These findings suggest the TGF-β1/Gfi-1 axis as a novel therapeutic target for treating PDAC. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Validation of a Proposed Tumor Regression Grading Scheme for Pancreatic Ductal Adenocarcinoma After Neoadjuvant Therapy as a Prognostic Indicator for Survival.

    Science.gov (United States)

    Lee, Sun Mi; Katz, Matthew H G; Liu, Li; Sundar, Manonmani; Wang, Hua; Varadhachary, Gauri R; Wolff, Robert A; Lee, Jeffrey E; Maitra, Anirban; Fleming, Jason B; Rashid, Asif; Wang, Huamin

    2016-12-01

    Neoadjuvant therapy has been increasingly used to treat patients with potentially resectable pancreatic ductal adenocarcinoma (PDAC). Although the College of American Pathologists (CAP) grading scheme for tumor response in posttherapy specimens has been used, its clinical significance has not been validated. Previously, we proposed a 3-tier histologic tumor regression grading (HTRG) scheme (HTRG 0, no viable tumor; HTRG 1, scheme correlated with prognosis. In this study, we sought to validate our proposed HTRG scheme in a new cohort of 167 consecutive PDAC patients who completed neoadjuvant therapy and pancreaticoduodenectomy. We found that patients with HTRG 0 or 1 were associated with a lower frequency of lymph node metastasis (P=0.004) and recurrence (P=0.01), lower ypT (P0.05). In multivariate analysis, HTRG grade 0 or 1 was an independent prognostic factor for better DFS (P=0.03), but not OS. Therefore we validated the proposed HTRG scheme from our previous study. The proposed HTRG scheme is simple and easy to apply in practice by pathologists and might be used as a successful surrogate for longer DFS in patients with potentially resectable PDAC who completed neoadjuvant therapy and surgery.

  9. An increased expression of long non-coding RNA PANDAR promotes cell proliferation and inhibits cell apoptosis in pancreatic ductal adenocarcinoma.

    Science.gov (United States)

    Jiang, Yuehong; Feng, Enhang; Sun, Lifang; Jin, Wei; You, Yuhong; Yao, Yue; Xu, Yi

    2017-11-01

    Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive malignancies worldwide. Emerging evidence indicates that aberrantly expressed long non-coding RNAs (lncRNAs) act as imperative roles in tumorigenesis and progression. PANDAR (promoter of CDKN1A antisense DNA damage activated RNA) is a novel lncRNA that contributes to the development of various cancers. However, its clinical significance and potential effects on PDAC remains unknown. In the present study, qRT-PCR was performed to explore the expression levels of PANDAR in PDAC tissues and corresponding non-tumor tissues, the correlation between PANDAR expression and clinicopathological characteristics was also analyzed. The functional roles of lncRNA PANDAR in PDAC cells were evaluated both in vitro and in vivo. The results indicated that PANDAR was aberrantly overexpressed in PDAC tissues and cell lines, and this overexpression was closely associated with tumor stage and vascular invasion in PDAC patients. Besides, silencing of PANDAR exerted tumor suppressive effect via reducing cell proliferation, colony-forming ability, inducing cell cycle G0/G1 arrest and apoptosis in PANC1 and Capan-2 cells. Further in vivo study confirmed the oncogenesis role of PANDAR in PDAC cells. Overall, our findings may help to develop a potential therapeutic target for the patients with PDAC. Copyright © 2017. Published by Elsevier Masson SAS.

  10. Animal Models of Chronic Pancreatitis

    Directory of Open Access Journals (Sweden)

    Makoto Otsuki

    2010-01-01

    Full Text Available Animal models for CP in rats can be classified into 2 groups: one is noninvasive or nonsurgical models and the other is invasive or surgical models. Pancreatic injury induced by repetitive injections of supramaximal stimulatory dose of caerulein (Cn or by intraductal infusion of sodium taurocholate (NaTc recovered within 14 days, whereas that caused by repetitive injection of arginine or by intraductal infusion of oleic acid was persistent. However, the destroyed acinar tissues were replaced by fatty tissues without fibrosis. Transient stasis of pancreatic fluid flow by 0.01% agarose and minimum injury of the pancreatic duct by 0.1% NaTc solution induced progressive pancreatic injury although one alone is insufficient to cause persistent pancreatic injury. However, the damaged tissue was replaced by fatty tissue without fibrosis. Continuous pancreatic ductal hypertension (PDH caused diffuse interlobular and intralobular fibrosis closely resembling human CP.

  11. The Role of ARX in Human Pancreatic Endocrine Specification.

    Science.gov (United States)

    Gage, Blair K; Asadi, Ali; Baker, Robert K; Webber, Travis D; Wang, Rennian; Itoh, Masayuki; Hayashi, Masaharu; Miyata, Rie; Akashi, Takumi; Kieffer, Timothy J

    2015-01-01

    The in vitro differentiation of human embryonic stem cells (hESCs) offers a model system to explore human development. Humans with mutations in the transcription factor Aristaless Related Homeobox (ARX) often suffer from the syndrome X-linked lissencephaly with ambiguous genitalia (XLAG), affecting many cell types including those of the pancreas. Indeed, XLAG pancreatic islets lack glucagon and pancreatic polypeptide-positive cells but retain somatostatin, insulin, and ghrelin-positive cells. To further examine the role of ARX in human pancreatic endocrine development, we utilized genomic editing in hESCs to generate deletions in ARX. ARX knockout hESCs retained pancreatic differentiation capacity and ARX knockout endocrine cells were biased toward somatostatin-positive cells (94% of endocrine cells) with reduced pancreatic polypeptide (rarely detected), glucagon (90% reduced) and insulin-positive (65% reduced) lineages. ARX knockout somatostatin-positive cells shared expression patterns with human fetal and adult δ-cells. Differentiated ARX knockout cells upregulated PAX4, NKX2.2, ISL1, HHEX, PCSK1, PCSK2 expression while downregulating PAX6 and IRX2. Re-expression of ARX in ARX knockout pancreatic progenitors reduced HHEX and increased PAX6 and insulin expression following differentiation. Taken together these data suggest that ARX plays a key role in pancreatic endocrine fate specification of pancreatic polypeptide, somatostatin, glucagon and insulin positive cells from hESCs.

  12. Translating Discovery in Zebrafish Pancreatic Development to Human Pancreatic Cancer: Biomarkers, Targets, Pathogenesis, and Therapeutics

    Science.gov (United States)

    Kazi, Abid A.; Yee, Rosemary K.

    2013-01-01

    Abstract Experimental studies in the zebrafish have greatly facilitated understanding of genetic regulation of the early developmental events in the pancreas. Various approaches using forward and reverse genetics, chemical genetics, and transgenesis in zebrafish have demonstrated generally conserved regulatory roles of mammalian genes and discovered novel genetic pathways in exocrine pancreatic development. Accumulating evidence has supported the use of zebrafish as a model of human malignant diseases, including pancreatic cancer. Studies have shown that the genetic regulators of exocrine pancreatic development in zebrafish can be translated into potential clinical biomarkers and therapeutic targets in human pancreatic adenocarcinoma. Transgenic zebrafish expressing oncogenic K-ras and zebrafish tumor xenograft model have emerged as valuable tools for dissecting the pathogenetic mechanisms of pancreatic cancer and for drug discovery and toxicology. Future analysis of the pancreas in zebrafish will continue to advance understanding of the genetic regulation and biological mechanisms during organogenesis. Results of those studies are expected to provide new insights into how aberrant developmental pathways contribute to formation and growth of pancreatic neoplasia, and hopefully generate valid biomarkers and targets as well as effective and safe therapeutics in pancreatic cancer. PMID:23682805

  13. The Proteomes of Human Parotid and Submandibular/Sublingual Gland Salivas Collected as the Ductal Secretions

    Science.gov (United States)

    Denny, Paul; Hagen, Fred K.; Hardt, Markus; Liao, Lujian; Yan, Weihong; Arellanno, Martha; Bassilian, Sara; Bedi, Gurrinder S.; Boontheung, Pinmannee; Cociorva, Daniel; Delahunty, Claire M.; Denny, Trish; Dunsmore, Jason; Faull, Kym F.; Gilligan, Joyce; Gonzalez-Begne, Mireya; Halgand, Frédéric; Hall, Steven C.; Han, Xuemei; Henson, Bradley; Hewel, Johannes; Hu, Shen; Jeffrey, Sherry; Jiang, Jiang; Loo, Joseph A.; Ogorzalek Loo, Rachel R.; Malamud, Daniel; Melvin, James E.; Miroshnychenko, Olga; Navazesh, Mahvash; Niles, Richard; Park, Sung Kyu; Prakobphol, Akraporn; Ramachandran, Prasanna; Richert, Megan; Robinson, Sarah; Sondej, Melissa; Souda, Puneet; Sullivan, Mark A.; Takashima, Jona; Than, Shawn; Wang, Jianghua; Whitelegge, Julian P.; Witkowska, H. Ewa; Wolinsky, Lawrence; Xie, Yongming; Xu, Tao; Yu, Weixia; Ytterberg, Jimmy; Wong, David T.; Yates, John R.; Fisher, Susan J.

    2009-01-01

    Saliva is a body fluid with important functions in oral and general health. A consortium of three research groups catalogued the proteins in human saliva collected as the ductal secretions: 1166 identifications—914 in parotid and 917 in submandibular/sublingual saliva—were made. The results showed that a high proportion of proteins that are found in plasma and/or tears are also present in saliva along with unique components. The proteins identified are involved in numerous molecular processes ranging from structural functions to enzymatic/catalytic activities. As expected, the majority mapped to the extracellular and secretory compartments. An immunoblot approach was used to validate the presence in saliva of a subset of the proteins identified by mass spectrometric approaches. These experiments focused on novel constituents and proteins for which the peptide evidence was relatively weak. Ultimately, information derived from the work reported here and related published studies can be used to translate blood-based clinical laboratory tests into a format that utilizes saliva. Additionally, a catalogue of the salivary proteome of healthy individuals allows future analyses of salivary samples from individuals with oral and systemic diseases, with the goal of identifying biomarkers with diagnostic and/or prognostic value for these conditions; another possibility is the discovery of therapeutic targets. PMID:18361515

  14. Spatial distribution of mast cells and macrophages around tumor glands in human breast ductal carcinoma.

    Science.gov (United States)

    Tamma, Roberto; Guidolin, Diego; Annese, Tiziana; Tortorella, Cinzia; Ruggieri, Simona; Rega, Serena; Zito, Francesco A; Nico, Beatrice; Ribatti, Domenico

    2017-10-01

    Macrophages and mast cells are usually present in the tumor microenvironment and play an important role as regulators of inflammation, immunological response and angiogenesis in the tumor microenvironment. In this study, we have evaluated macrophage, mast cell, and microvessel density in a selected group of different grade of invasive breast carcinoma tumor specimens. Furthermore, we have investigated the pattern of distribution of CD68-positive macrophages and tryptase-positive mast cells around tumor glands. Results have shown that: A) Macrophages are more numerous in G2 and G3 breast cancer stages respect to controls, the per cent of macrophages in G1 samples was comparable to the controls, and the spatial relationship between macrophages and glands (as indicated by the mean cell-to-gland distance) correlated with CD31-positive vessels. B) Mast cells in G2 and G3 tumor specimens show a significant increase in their number as compared to control samples, and their spatial distribution around the glands did not show any significant difference among groups. Overall, the results of this study confirm the important role of macrophages and mast cells in tumor progression and angiogenesis in human ductal breast cancer, and pointed out the spatial relationship between tumor macrophages and glands, and its correlation with microvascular density. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. CXCL12 chemokine expression suppresses human pancreatic cancer growth and metastasis.

    Directory of Open Access Journals (Sweden)

    Ishan Roy

    Full Text Available Pancreatic ductal adenocarcinoma is an unsolved health problem with nearly 75% of patients diagnosed with advanced disease and an overall 5-year survival rate near 5%. Despite the strong link between mortality and malignancy, the mechanisms behind pancreatic cancer dissemination and metastasis are poorly understood. Correlative pathological and cell culture analyses suggest the chemokine receptor CXCR4 plays a biological role in pancreatic cancer progression. In vivo roles for the CXCR4 ligand CXCL12 in pancreatic cancer malignancy were investigated. CXCR4 and CXCR7 were consistently expressed in normal and cancerous pancreatic ductal epithelium, established cell lines, and patient-derived primary cancer cells. Relative to healthy exocrine ducts, CXCL12 expression was pathologically repressed in pancreatic cancer tissue specimens and patient-derived cell lines. To test the functional consequences of CXCL12 silencing, pancreatic cancer cell lines stably expressingthe chemokine were engineered. Consistent with a role for CXCL12 as a tumor suppressor, cells producing the chemokine wereincreasingly adherent and migration deficient in vitro and poorly metastatic in vivo, compared to control cells. Further, CXCL12 reintroduction significantly reduced tumor growth in vitro, with significantly smaller tumors in vivo, leading to a pronounced survival advantage in a preclinical model. Together, these data demonstrate a functional tumor suppressive role for the normal expression of CXCL12 in pancreatic ducts, regulating both tumor growth andcellulardissemination to metastatic sites.

  16. Epithelial-to-mesenchymal transition in pancreatic ductal adenocarcinoma: Characterization in a 3D-cell culture model.

    Science.gov (United States)

    Gagliano, Nicoletta; Celesti, Giuseppe; Tacchini, Lorenza; Pluchino, Stefano; Sforza, Chiarella; Rasile, Marco; Valerio, Vincenza; Laghi, Luigi; Conte, Vincenzo; Procacci, Patrizia

    2016-05-14

    To analyze the effect of three-dimensional (3D)-arrangement on the expression of epithelial-to-mesenchymal transition markers in pancreatic adenocarcinoma (PDAC) cells. HPAF-II, HPAC, and PL45 PDAC cells were cultured in either 2D-monolayers or 3D-spheroids. Ultrastructure was analyzed by transmission electron microscopy. The expression of E-cadherin, β-catenin, N-cadherin, collagen type I (COL-I), vimentin, α-smooth muscle actin (αSMA), and podoplanin was assayed by confocal microscopy in cells cultured on 12-mm diameter round coverslips and in 3D-spheroids. Gene expression for E-cadherin, Snail, Slug, Twist, Zeb1, and Zeb2 was quantified by real-time PCR. E-cadherin protein level and its electrophoretic pattern were studied by Western blot in cell lysates obtained from cells grown in 2D-monolayers and 3D-spheroids. The E-cadherin/β-catenin complex was expressed in a similar way in plasma membrane cell boundaries in both 2D-monolayers and 3D-spheroids. E-cadherin increased in lysates obtained from 3D-spheroids, while cleavage fragments were more evident in 2D-monolayers. N-cadherin expression was observed in very few PDAC cells grown in 2D-monolayers, but was more evident in 3D-spheroids. Some cells expressing COL-I were observed in 3D-spheroids. Podoplanin, expressed in collectively migrating cells, and αSMA were similarly expressed in both experimental conditions. The concomitant maintenance of the E-cadherin/β-catenin complex at cell boundaries supports the hypothesis of a collective migration for these cells, which is consistent with podoplanin expression. We show that a 3D-cell culture model could provide deeper insight into understanding the biology of PDAC and allow for the detection of marked differences in the phenotype of PDAC cells grown in 3D-spheroids.

  17. BMP-7 Induces Adult Human Pancreatic Exocrine-to-Endocrine Conversion.

    Science.gov (United States)

    Klein, Dagmar; Álvarez-Cubela, Silvia; Lanzoni, Giacomo; Vargas, Nancy; Prabakar, Kamalaveni R; Boulina, Maria; Ricordi, Camillo; Inverardi, Luca; Pastori, Ricardo L; Domínguez-Bendala, Juan

    2015-12-01

    The exocrine pancreas can give rise to endocrine insulin-producing cells upon ectopic expression of key transcription factors. However, the need for genetic manipulation remains a translational hurdle for diabetes therapy. Here we report the conversion of adult human nonendocrine pancreatic tissue into endocrine cell types by exposure to bone morphogenetic protein 7. The use of this U.S. Food and Drug Administration-approved agent, without any genetic manipulation, results in the neogenesis of clusters that exhibit high insulin content and glucose responsiveness both in vitro and in vivo. In vitro lineage tracing confirmed that BMP-7-induced insulin-expressing cells arise mainly from extrainsular PDX-1(+), carbonic anhydrase II(-) (mature ductal), elastase 3a (acinar)(-) , and insulin(-) subpopulations. The nongenetic conversion of human pancreatic exocrine cells to endocrine cells is novel and represents a safer and simpler alternative to genetic reprogramming. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  18. Endoscopic transpapillary stenting or conservative treatment for pancreatic fistulas in necrotizing pancreatitis: multicenter series and literature review

    NARCIS (Netherlands)

    Bakker, O.J.; Baal, M.C. van; Santvoort, H.C. van; Besselink, M.G.; Poley, J.W.; Heisterkamp, J.; Bollen, T.L.; Gooszen, H.G.; Eijck, C.H. van

    2011-01-01

    OBJECTIVE: Endoscopic transpapillary stenting (ETS) of the pancreatic duct facilitates ductal outflow and may reduce time to pancreatic fistula closure. However, data on the feasibility of ETS in patients with necrotizing pancreatitis are scarce. BACKGROUND: Pancreatic fistulas often occur after

  19. Expression of melatonin receptor MT1 in cells of human invasive ductal breast carcinoma.

    Science.gov (United States)

    Jablonska, Karolina; Pula, Bartosz; Zemla, Agata; Owczarek, Tomasz; Wojnar, Andrzej; Rys, Janusz; Ambicka, Aleksandra; Podhorska-Okolow, Marzena; Ugorski, Maciej; Dziegiel, Piotr

    2013-04-01

    In humans, two main types of membrane melatonin receptors have been identified, MT1 and MT2. Expression of MT1 in neoplastic cells seems to increase the efficacy of melatonin's oncostatic activity. The purpose of this study was to determine the distribution and the intensity of MT1 expression in breast cancer cells and to correlate it with clinicopathological factors. Immunohistochemical studies (IHC) were conducted on 190 cases of invasive ductal breast carcinomas (IDC) and molecular studies were performed on 29 cases of frozen tumor fragments and selected breast cancer cell lines. Most of the studied tumors manifested a membranous/cytoplasmic IHC expression of MT1. In IDC, the MT1 expression was higher than in fibrocystic breast disease. MT1 expression was higher in estrogen receptor positive (ER+) and HER2 positive (HER2+) tumors. Triple negative tumors (TN) manifested the lowest MT1 expression level. The lowest MT1 protein expression level was noted in the TN breast cancer cell line MDA-MB-231 compared with ER+ cell lines MCF-7 and SK-BR-3. MT1 mRNA expression was negatively correlated with the malignancy grade of the studied IDC cases. Moreover, higher MT1 expression was associated with patients' longer overall survival (OS) in the group of ER+ breast cancers and treated with tamoxifen. Multivariate analysis indicated that MT1 was an independent prognostic factor in the ER+ tumors for OS and event-free survival in the ER+ tumors. The results of this study may point to a potential prognostic and therapeutic significance of MT1 in IDC. © 2013 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.

  20. Conditionally immortalized human pancreatic stellate cell lines demonstrate enhanced proliferation and migration in response to IGF-I

    Energy Technology Data Exchange (ETDEWEB)

    Rosendahl, Ann H., E-mail: ann.rosendahl@med.lu.se [Lund University, Department of Clinical Sciences Lund, Division of Surgery, Lund (Sweden); Lund University and Skåne University Hospital, Department of Clinical Sciences Lund, Division of Oncology and Pathology, Lund (Sweden); Gundewar, Chinmay; Said Hilmersson, Katarzyna [Lund University, Department of Clinical Sciences Lund, Division of Surgery, Lund (Sweden); Ni, Lan; Saleem, Moin A. [University of Bristol, School of Clinical Sciences, Children' s Renal Unit and Academic Renal Unit, Bristol (United Kingdom); Andersson, Roland [Lund University, Department of Clinical Sciences Lund, Division of Surgery, Lund (Sweden)

    2015-01-15

    Pancreatic stellate cells (PSCs) play a key role in the dense desmoplastic stroma associated with pancreatic ductal adenocarcinoma. Studies on human PSCs have been minimal due to difficulty in maintaining primary PSC in culture. We have generated the first conditionally immortalized human non-tumor (NPSC) and tumor-derived (TPSC) pancreatic stellate cells via transformation with the temperature-sensitive SV40 large T antigen and human telomerase (hTERT). These cells proliferate at 33°C. After transfer to 37°C, the SV40LT is switched off and the cells regain their primary PSC phenotype and growth characteristics. NPSC contained cytoplasmic vitamin A-storing lipid droplets, while both NPSC and TPSC expressed the characteristic markers αSMA, vimentin, desmin and GFAP. Proteome array analysis revealed that of the 55 evaluated proteins, 27 (49%) were upregulated ≥3-fold in TPSC compared to NPSC, including uPA, pentraxin-3, endoglin and endothelin-1. Two insulin-like growth factor binding proteins (IGFBPs) were inversely expressed. Although discordant IGFBP-2 and IGFBP-3 levels, IGF-I was found to stimulate proliferation of both NPSC and TPSC. Both basal and IGF-I stimulated motility was significantly enhanced in TPSC compared to NPSC. In conclusion, these cells provide a unique resource that will facilitate further study of the active stroma compartment associated with pancreatic cancer. - Highlights: • Generation of human conditionally immortalized human pancreatic stellate cell lines. • Temperature-sensitive SV40LT allows switch to primary PSC phenotype characteristics. • Proteome profiling revealed distinct expression patterns between TPSC and NPSC. • Enhanced IGF-I-stimulated proliferation and motility by TPSC compared to NPSC.

  1. The P2X7 receptor regulates cell survival, migration and invasion of pancreatic ductal adenocarcinoma cells

    DEFF Research Database (Denmark)

    Giannuzzo, Andrea; Pedersen, Stine Helene Falsig; Novak, Ivana

    2015-01-01

    of the ATP receptors, the P2X7 receptor (P2X7R) could be an important player in PDAC behaviour. METHODS: We determined the expression (real time PCR and Western blot) and localization (immunofluorescence) of P2X7R in human PDAC cell lines (AsPC-1, BxPC-3, Capan-1, MiaPaCa-2, Panc-1) and a "normal" human...... by necrosis. Moreover, the P2X7R-pore antagonist, A438079, prevented ATP-induced pore formation and cell death. Second, in basal conditions and with low concentrations of ATP/BzATP, the P2X7R allosteric inhibitor AZ10606120 reduced proliferation in all PDAC cell lines. P2X7R also affected other key...

  2. A Phase 1/2 and Biomarker Study of Preoperative Short Course Chemoradiation With Proton Beam Therapy and Capecitabine Followed By Early Surgery for Resectable Pancreatic Ductal Adenocarcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Theodore S., E-mail: tshong1@partners.org [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (United States); Ryan, David P.; Borger, Darrell R.; Blaszkowsky, Lawrence S.; Yeap, Beow Y. [Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (United States); Ancukiewicz, Marek [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (United States); Deshpande, Vikram; Shinagare, Shweta [Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (United States); Wo, Jennifer Y.; Boucher, Yves [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (United States); Wadlow, Raymond C.; Kwak, Eunice L.; Allen, Jill N.; Clark, Jeffrey W.; Zhu, Andrew X. [Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (United States); Ferrone, Cristina R. [Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (United States); Mamon, Harvey J. [Department of Radiation Oncology, Brigham and Women' s Hospital/Dana-Farber Cancer Institute, Boston, Massachusetts (United States); Adams, Judith; Winrich, Barbara; Grillo, Tarin [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (United States); and others

    2014-07-15

    Purpose: To evaluate the safety, efficacy and biomarkers of short-course proton beam radiation and capecitabine, followed by pancreaticoduodenectomy in a phase 1/2 study in pancreatic ductal adenocarcinoma (PDAC) patients. Methods and Materials: Patients with radiographically resectable, biopsy-proven PDAC were treated with neoadjuvant short-course (2-week) proton-based radiation with capecitabine, followed by surgery and adjuvant gemcitabine. The primary objective was to demonstrate a rate of toxicity grade ≥3 of <20%. Exploratory biomarker studies were performed using surgical specimen tissues and peripheral blood. Results: The phase 2 dose was established at 5 daily doses of 5 GyE. Fifty patients were enrolled, of whom 35 patients were treated in the phase 2 portion. There were no grade 4 or 5 toxicities, and only 2 of 35 patients (4.1%) experienced a grade 3 toxicity event (chest wall pain grade 1, colitis grade 1). Of 48 patients eligible for analysis, 37 underwent pancreaticoduodenectomy. Thirty of 37 (81%) had positive nodes. Locoregional failure occurred in 6 of 37 resected patients (16.2%), and distant recurrence occurred in 35 of 48 patients (72.9%). With median follow-up of 38 months, the median progression-free survival for the entire group was 10 months, and overall survival was 17 months. Biomarker studies showed significant associations between worse survival outcomes and the KRAS point mutation change from glycine to aspartic acid at position 12, stromal CXCR7 expression, and circulating biomarkers CEA, CA19-9, and HGF (all, P<.05). Conclusions: This study met the primary endpoint by showing a rate of 4.1% grade 3 toxicity for neoadjuvant short-course proton-based chemoradiation. Treatment was associated with favorable local control. In exploratory analyses, KRAS{sup G12D} status and high CXCR7 expression and circulating CEA, CA19-9, and HGF levels were associated with poor survival.

  3. Phase 1 trial evaluating cisplatin, gemcitabine, and veliparib in 2 patient cohorts: Germline BRCA mutation carriers and wild-type BRCA pancreatic ductal adenocarcinoma.

    Science.gov (United States)

    O'Reilly, Eileen M; Lee, Jonathan W; Lowery, Maeve A; Capanu, Marinela; Stadler, Zsofia K; Moore, Malcolm J; Dhani, Neesha; Kindler, Hedy L; Estrella, Hayley; Maynard, Hannah; Golan, Talia; Segal, Amiel; Salo-Mullen, Erin E; Yu, Kenneth H; Epstein, Andrew S; Segal, Michal; Brenner, Robin; Do, Richard K; Chen, Alice P; Tang, Laura H; Kelsen, David P

    2018-01-16

    A phase 1 trial was used to evaluate a combination of cisplatin, gemcitabine, and escalating doses of veliparib in patients with untreated advanced pancreatic ductal adenocarcinoma (PDAC) in 2 cohorts: a germline BRCA1/2-mutated (BRCA+) cohort and a wild-type BRCA (BRCA-) cohort. The aims were to determine the safety, dose-limiting toxicities (DLTs), maximum tolerated dose, and recommended phase 2 dose (RP2D) of veliparib combined with cisplatin and gemcitabine and to assess the antitumor efficacy (Response Evaluation Criteria in Solid Tumors, version 1.1) and overall survival. Gemcitabine and cisplatin were dosed at 600 and 25 mg/m 2 , respectively, over 30 minutes on days 3 and 10 of a 21-day cycle. Four dose levels of veliparib were evaluated: 20 (dose level 0), 40 (dose level 1), and 80 mg (dose level 2) given orally twice daily on days 1 to 12 and 80 mg given twice daily on days 1 to 21 (dose level 2A [DL2A]). Seventeen patients were enrolled: 9 BRCA+ patients, 7 BRCA- patients, and 1 patient with an unknown status. DLTs were reached at DL2A (80 mg twice daily on days 1 to 21). Two of the 5 patients in this cohort (40%) experienced grade 4 neutropenia and thrombocytopenia. Two grade 5 events occurred on protocol. The objective response rate in the BRCA+ cohort was 7 of 9 (77.8%). The median overall survival for BRCA+ patients was 23.3 months (95% confidence interval [CI], 3.8-30.2 months). The median overall survival for BRCA- patients was 11 months (95% CI, 1.5-12.1 months). The RP2D of veliparib was 80 mg by mouth twice daily on days 1 to 12 in combination with cisplatin and gemcitabine; the DLT was myelosuppression. Substantial antitumor activity was seen in BRCA+ PDAC. A randomized phase 2 trial is currently evaluating cisplatin and gemcitabine with and without veliparib for BRCA+ PDAC (NCT01585805). Cancer 2018. © 2018 American Cancer Society. © 2018 American Cancer Society.

  4. Adult stromal cells derived from human adipose tissue provoke pancreatic cancer cell death both in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Beatrice Cousin

    Full Text Available BACKGROUND: Normal tissue homeostasis is maintained by dynamic interactions between epithelial cells and their microenvironment. Disrupting this homeostasis can induce aberrant cell proliferation, adhesion, function and migration that might promote malignant behavior. Indeed, aberrant stromal-epithelial interactions contribute to pancreatic ductal adenocarcinoma (PDAC spread and metastasis, and this raises the possibility that novel stroma-targeted therapies represent additional approaches for combating this malignant disease. The aim of the present study was to determine the effect of human stromal cells derived from adipose tissue (ADSC on pancreatic tumor cell proliferation. PRINCIPAL FINDINGS: Co-culturing pancreatic tumor cells with ADSC and ADSC-conditioned medium sampled from different donors inhibited cancer cell viability and proliferation. ADSC-mediated inhibitory effect was further extended to other epithelial cancer-derived cell lines (liver, colon, prostate. ADSC conditioned medium induced cancer cell necrosis following G1-phase arrest, without evidence of apoptosis. In vivo, a single intra-tumoral injection of ADSC in a model of pancreatic adenocarcinoma induced a strong and long-lasting inhibition of tumor growth. CONCLUSION: These data indicate that ADSC strongly inhibit PDAC proliferation, both in vitro and in vivo and induce tumor cell death by altering cell cycle progression. Therefore, ADSC may constitute a potential cell-based therapeutic alternative for the treatment of PDAC for which no effective cure is available.

  5. Angiotensin II activates MAP kinase and NF-kappaB through angiotensin II type I receptor in human pancreatic cancer cells.

    Science.gov (United States)

    Amaya, Koji; Ohta, Tetsuo; Kitagawa, Hirohisa; Kayahara, Masato; Takamura, Hiroyuki; Fujimura, Takashi; Nishimura, Gen-Ichi; Shimizu, Koichi; Miwa, Koichi

    2004-10-01

    Pancreatic ductal cancer has higher angiotensin II concentrations compared with normal pancreas or other solid tumors. This study examined angiotensin II type 1 (AT1) receptor expression and the role of angiotensin II in proliferation and survival of human pancreatic cancer cells. All three pancreatic cancer cell lines studied, from well to poorly-differentiated types, HPAF-II, AsPC-1, and Panc-1, showed strong expression of AT1 receptor. In contrast, HT-29 human colon cancer cells showed extremely weak expression. Angiotensin II stimulated the growth of pancreatic cancer cells through MAP kinase activation but had no significant effect on proliferation of HT-29 colon cancer cells. In addition, angiotensin II significantly prevented cisplatin (CDDP)-induced apoptosis through NF-kappaB activation and the subsequent production of anti-apoptotic molecules, including survivin and Bcl-XL, in pancreatic cancer cells. These findings suggest that angiotensin II plays a role in the growth and chemoresistance of AT1-positive pancreatic cancer cells through its action as a potent mitogen and anti-apoptotic molecule.

  6. Clinical significance and revisiting the meaning of CA 19-9 blood level before and after the treatment of pancreatic ductal adenocarcinoma: analysis of 1,446 patients from the pancreatic cancer cohort in a single institution.

    Directory of Open Access Journals (Sweden)

    Joo Kyung Park

    Full Text Available BACKGROUND: Life expectancy of pancreatic ductal adenocarcinoma (PDAC patients is usually short and selection of the most appropriate treatment is crucial. The aim of this study was to investigate the usefulness of serum CA 19-9 as a surrogate marker under no impress excluding other factors affecting CA 19-9 level other than tumor itself. METHODS: We recruited 1,446 patients with PDACs and patients with Lewis antigen both negative or obstructive jaundice were excluded to eliminate the false effects on CA 19-9 level. The clinicopathologic factors were reviewed including initial and post-treatment CA 19-9, and statistical analysis was done to evaluate the association of clinicopathologic factors with overall survival (OS. RESULTS: The total of 944 patients was enrolled, and205 patients (22% underwent operation with curative intention and 541 patients (57% received chemotherapy and/or radiotherapy. The median CA 19-9 levels of initial and post-treatment were 670 IU/ml and 147 IU/ml respectively. The prognostic factors affecting OS were performance status, AJCC stage and post-treatment CA 19-9 level in multivariate analysis. Subgroup analysis was done for the patients who underwent R0 and R1 resection, and patients with normalized post-operative CA 19-9 (≤37 IU/mL had significantly longer OS and DFS regardless of initial CA 19-9 level; 32 vs. 18 months, P<0.001, 16 vs. 9 months, P = 0.004 respectively. CONCLUSIONS: Post-treatment CA 19-9 and normalized post-operative CA 19-9 (R0 and R1 resected tumors were independent factors associated with OS and DFS, however, initial CA 19-9 level was not statistically significant in multivariate analysis.

  7. Pancreatitis

    Science.gov (United States)

    ... the hormones insulin and glucagon into the bloodstream. Pancreatitis is inflammation of the pancreas. It happens when digestive enzymes start digesting the pancreas itself. Pancreatitis can be acute or chronic. Either form is ...

  8. Loss of canonical Smad4 signaling promotes KRAS driven malignant transformation of human pancreatic duct epithelial cells and metastasis.

    Directory of Open Access Journals (Sweden)

    Lisa Leung

    Full Text Available Pancreatic ductal adenocarcinoma (PDAC is the fourth most common cause of cancer death in North America. Activating KRAS mutations and Smad4 loss occur in approximately 90% and 55% of PDAC, respectively. While their roles in the early stages of PDAC development have been confirmed in genetically modified mouse models, their roles in the multistep malignant transformation of human pancreatic duct cells have not been directly demonstrated. Here, we report that Smad4 represents a barrier in KRAS-mediated malignant transformation of the near normal immortalized human pancreatic duct epithelial (HPDE cell line model. Marked Smad4 downregulation by shRNA in KRAS (G12V expressing HPDE cells failed to cause tumorigenic transformation. However, KRAS-mediated malignant transformation occurred in a new HPDE-TGF-β resistant (TβR cell line that completely lacks Smad4 protein expression and is resistant to the mito-inhibitory activity of TGF-β. This transformation resulted in tumor formation and development of metastatic phenotype when the cells were implanted orthotopically into the mouse pancreas. Smad4 restoration re-established TGF-β sensitivity, markedly increased tumor latency by promoting apoptosis, and decreased metastatic potential. These results directly establish the critical combination of the KRAS oncogene and complete Smad4 inactivation in the multi-stage malignant transformation and metastatic progression of normal human HPDE cells.

  9. Pancreatitis

    Science.gov (United States)

    ... be present. How is pancreatitis diagnosed? How is pancreatitis treated? Treatment mainly consists of putting the pancreas to rest ( ... not as a definitive basis for diagnosis or treatment in any particular case. It is very ... pancreatitis is suspected, laboratory tests search for higher than ...

  10. High Volume Washing of the Abdomen in Increasing Survival After Surgery in Patients With Pancreatic Cancer That Can Be Removed by Surgery

    Science.gov (United States)

    2017-10-25

    Acinar Cell Carcinoma; Ampulla of Vater Adenocarcinoma; Cholangiocarcinoma; Duodenal Adenocarcinoma; Pancreatic Adenocarcinoma; Pancreatic Ductal Adenocarcinoma; Pancreatic Intraductal Papillary Mucinous Neoplasm, Pancreatobiliary-Type; Periampullary Adenocarcinoma

  11. Intraislet Pancreatic Ducts Can Give Rise to Insulin-Positive Cells.

    Science.gov (United States)

    El-Gohary, Yousef; Wiersch, John; Tulachan, Sidhartha; Xiao, Xiangwei; Guo, Ping; Rymer, Christopher; Fischbach, Shane; Prasadan, Krishna; Shiota, Chiyo; Gaffar, Iljana; Song, Zewen; Galambos, Csaba; Esni, Farzad; Gittes, George K

    2016-01-01

    A key question in diabetes research is whether new β-cells can be derived from endogenous, nonendocrine cells. The potential for pancreatic ductal cells to convert into β-cells is a highly debated issue. To date, it remains unclear what anatomical process would result in duct-derived cells coming to exist within preexisting islets. We used a whole-mount technique to directly visualize the pancreatic ductal network in young wild-type mice, young humans, and wild-type and transgenic mice after partial pancreatectomy. Pancreatic ductal networks, originating from the main ductal tree, were found to reside deep within islets in young mice and humans but not in mature mice or humans. These networks were also not present in normal adult mice after partial pancreatectomy, but TGF-β receptor mutant mice demonstrated formation of these intraislet duct structures after partial pancreatectomy. Genetic and viral lineage tracings were used to determine whether endocrine cells were derived from pancreatic ducts. Lineage tracing confirmed that pancreatic ductal cells can typically convert into new β-cells in normal young developing mice as well as in adult TGF-β signaling mutant mice after partial pancreatectomy. Here the direct visual evidence of ducts growing into islets, along with lineage tracing, not only represents strong evidence for duct cells giving rise to β-cells in the postnatal pancreas but also importantly implicates TGF-β signaling in this process.

  12. Comprehensive proteomic analysis of human pancreatic juice

    DEFF Research Database (Denmark)

    Grønborg, Mads; Bunkenborg, Jakob; Kristiansen, Troels Zakarias

    2004-01-01

    Proteomic technologies provide an excellent means for analysis of body fluids for cataloging protein constituents and identifying biomarkers for early detection of cancers. The biomarkers currently available for pancreatic cancer, such as CA19-9, lack adequate sensitivity and specificity contribu......Proteomic technologies provide an excellent means for analysis of body fluids for cataloging protein constituents and identifying biomarkers for early detection of cancers. The biomarkers currently available for pancreatic cancer, such as CA19-9, lack adequate sensitivity and specificity...

  13. FGF-2b and h-PL Transform Duct and Non-Endocrine Human Pancreatic Cells into Endocrine Insulin Secreting Cells by Modulating Differentiating Genes

    Directory of Open Access Journals (Sweden)

    Giulia Donadel

    2017-10-01

    Full Text Available Background: Diabetes mellitus (DM is a multifactorial disease orphan of a cure. Regenerative medicine has been proposed as novel strategy for DM therapy. Human fibroblast growth factor (FGF-2b controls β-cell clusters via autocrine action, and human placental lactogen (hPL-A increases functional β-cells. We hypothesized whether FGF-2b/hPL-A treatment induces β-cell differentiation from ductal/non-endocrine precursor(s by modulating specific genes expression. Methods: Human pancreatic ductal-cells (PANC-1 and non-endocrine pancreatic cells were treated with FGF-2b plus hPL-A at 500 ng/mL. Cytofluorimetry and Immunofluorescence have been performed to detect expression of endocrine, ductal and acinar markers. Bromodeoxyuridine incorporation and annexin-V quantified cells proliferation and apoptosis. Insulin secretion was assessed by RIA kit, and electron microscopy analyzed islet-like clusters. Results: Increase in PANC-1 duct cells de-differentiation into islet-like aggregates was observed after FGF-2b/hPL-A treatment showing ultrastructure typical of islets-aggregates. These clusters, after stimulation with FGF-2b/hPL-A, had significant (p < 0.05 increase in insulin, C-peptide, pancreatic and duodenal homeobox 1 (PDX-1, Nkx2.2, Nkx6.1, somatostatin, glucagon, and glucose transporter 2 (Glut-2, compared with control cells. Markers of PANC-1 (Cytokeratin-19, MUC-1, CA19-9 were decreased (p < 0.05. These aggregates after treatment with FGF-2b/hPL-A significantly reduced levels of apoptosis. Conclusions: FGF-2b and hPL-A are promising candidates for regenerative therapy in DM by inducing de-differentiation of stem cells modulating pivotal endocrine genes.

  14. Myxoma virus is oncolytic for human pancreatic adenocarcinoma cells.

    Science.gov (United States)

    Woo, Yanghee; Kelly, Kaitlyn J; Stanford, Marianne M; Galanis, Charles; Chun, Yun Shin; Fong, Yuman; McFadden, Grant

    2008-08-01

    Viral oncolytic therapy, which seeks to exploit the use of live viruses to treat cancer, has shown promise in the treatment of cancers resistant to conventional anticancer therapies. Among the most difficult to treat cancers is advanced pancreatic adenocarcinoma. Our study investigates the ability of a novel oncolytic agent, myxoma virus, to infect, productively replicate in, and kill human pancreatic cancer cells in vitro. The myxoma virus vMyxgfp was tested against a panel of human pancreatic adenocarcinoma cell lines. Infectivity, viral proliferation, and tumor cell kill were assessed. Infection of tumor cells was assessed by expression of the marker gene enhanced green fluorescent protein (e-GFP). vMyxgfp had the ability to infect all pancreatic cancer cell lines tested. Killing of tumor cells varied among the 6 cell lines tested, ranging from >90% cell kill at 7 days for the most sensitive Panc-1 cells, to 39% in the most resistant cell line Capan-2. Sensitivity correlated to replication of virus, and was found to maximally exhibit a four-log increase in foci-forming units for the most sensitive Panc-1 cells within 72 h. Our study demonstrates for the first time the ability of the myxoma virus to productively infect, replicate in, and lyse human pancreatic adenocarcinoma cells in vitro. These data encourage further investigation of this virus, which is pathogenic only in rabbits, for treatment of this nearly uniformly fatal cancer.

  15. Genetic and pharmacological inhibition of TTK impairs pancreatic cancer cell line growth by inducing lethal chromosomal instability

    OpenAIRE

    Stratford, Jeran K.; Yan, Feng; Hill, Rebecca A.; Major, Michael B.; Lee M Graves; Der, Channing J.; Yeh, Jen Jen

    2017-01-01

    Pancreatic ductal adenocarcinoma, which accounts for the majority of pancreatic cancers, is a lethal disease with few therapeutic options. Genomic profiling of pancreatic ductal adenocarcinoma has identified a complex and heterogeneous landscape. Understanding the molecular characteristics of pancreatic ductal adenocarcinoma will facilitate the identification of potential therapeutic strategies. We analyzed the gene expression profiles of primary tumors from patients compared to normal pancre...

  16. Evaluation of a gene-directed enzyme-product therapy (GDEPT in human pancreatic tumor cells and their use as in vivo models for pancreatic cancer.

    Directory of Open Access Journals (Sweden)

    Juraj Hlavaty

    Full Text Available BACKGROUND: Gene-directed enzyme prodrug therapy (GDEPT is a two-step treatment protocol for solid tumors that involves the transfer of a gene encoding a prodrug-activating enzyme followed by administration of the inactive prodrug that is subsequently activated by the enzyme to its tumor toxic form. However, the establishment of such novel treatment regimes to combat pancreatic cancer requires defined and robust animal model systems. METHODS: Here, we comprehensively compared six human pancreatic cancer cell lines (PaCa-44, PANC-1, MIA PaCa-2, Hs-766T, Capan-2, and BxPc-3 in subcutaneous and orthotopical mouse models as well as in their susceptibility to different GDEPTs. RESULTS: Tumor uptake was 83% to 100% in the subcutaneous model and 60% to 100% in the orthotopical mouse model, except for Hs-766T cells, which did not grow orthotopically. Pathohistological analyses of the orthotopical models revealed an infiltrative growth of almost all tumors into the pancreas; however, the different cell lines gave rise to tumors with different morphological characteristics. All of the resultant tumors were positive for MUC-1 staining indicating their origin from glandular or ductal epithelium, but revealed scattered pan-cytokeratin staining. Transfer of the cytochrome P450 and cytosine deaminase suicide gene, respectively, into the pancreatic cancer cell lines using retroviral vector technology revealed high level infectibility of these cell lines and allowed the analysis of the sensitivity of these cells to the chemotherapeutic drugs ifosfamide and 5-fluorocytosine, respectively. CONCLUSION: These data qualify the cell lines as part of valuable in vitro and in vivo models for the use in defined preclinical studies for pancreas tumor therapy.

  17. Mouse Model of Human Hereditary Pancreatitis

    Science.gov (United States)

    2016-09-01

    trypsin-dependent pathway in pancreatitis and to begin testing therapeutic and preventive approaches. Mutations in the digestive enzyme trypsinogen...expression of mutant trypsinogens at the protein level, we will perform chromatographic analysis of the total trypsinogen fraction isolated from mouse...pancreata (Subtask 4a). This subtask has been delayed until homozygous animals could be generated. Homozygous animals are now available and chromatographic

  18. Ablation of 5-lipoxygenase mitigates pancreatic lesion development.

    Science.gov (United States)

    Knab, Lawrence M; Schultz, Michelle; Principe, Daniel R; Mascarinas, Windel E; Gounaris, Elias; Munshi, Hidayatullah G; Grippo, Paul J; Bentrem, David J

    2015-04-01

    Pancreatic ductal adenocarcinoma (PDAC), which continues to have a dismal prognosis, is associated with a pronounced fibroinflammatory response. Inflammation in vivo can be mediated by 5-lipoxygenase (5LO), an enzyme that converts omega-6 fatty acids (FA) to eicosanoids, including leukotriene B4 (LTB4). We have previously shown that diets rich in omega-6 FA increase pancreatic lesions and mast cell infiltration in EL-Kras mice. In this study, we evaluated the role of 5LO in generating higher levels of LTB4 from human cells and in mediating lesion development and mast cell infiltration in EL-Kras mice. Human pancreatic ductal epithelial and cancer cells were treated with omega-6 FA in vitro. EL-Kras mice lacking 5LO (EL-Kras/5LO(-/-)) mice were generated and fed standard chow or omega-6 FA diets. Pancreatic lesion frequency and mast cell infiltration were compared with EL-Kras/5LO(+/+) mice. Human PDAC tumors were evaluated for 5LO expression and mast cells. Human pancreatic ductal epithelial and pancreatic cancer cells treated with omega-6 FA generated increased LTB4 levels in vitro. EL-Kras/5LO(-/-) mice developed fewer pancreatic lesions and had decreased mast cell infiltration when compared with EL-Kras/5LO(+/+) mice. Human PDAC tumors with increased 5LO expression demonstrate increased mast cell infiltration. Additionally, diets rich in omega-6 FA failed to increase pancreatic lesion development and mast cell infiltration in EL-Kras/5LO(-/-) mice. The expansion of mutant Kras-induced lesions via omega-6 FA is dependent on 5LO, and 5LO functions downstream of mutant Kras to mediate inflammation, suggesting that 5LO may be a potential chemopreventive and therapeutic target in pancreatic cancer. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Involvement of cytochrome c and caspases in apoptotic cell death of human submandibular gland ductal cells induced by concanamycin A.

    Science.gov (United States)

    Aiko, Katsuya; Tsujisawa, Toshiyuki; Koseki, Takeyoshi; Hashimoto, Shinichi; Morimoto, Yasuhiro; Amagasa, Teruo; Nishihara, Tatsuji

    2002-08-01

    In the present study, we found that a specific inhibitor of vacuolar type H+-ATPase (V-ATPase), concanamycin A, induced apoptosis in a human submandibular gland ductal cancer cell line, HSG. Immunoblot analysis revealed that cytochrome c was released from mitochondria into the cytoplasm when HSG cells were cultured with concanamycin A for 6 h. The maximum activities of caspase-3 and -9 were reached in HSG cells after 18 and 12 h culture of concanamycin A, respectively. Both caspase-3 and -9 were cleaved to an active form in HSG cells cultured with concanamycin A. Interestingly, concanamycin A decreased the level of heat shock protein 27 (HSP27) in HSG cells. Taken together, these findings suggest that apoptosis in HSG cells induced by concanamycin A is regulated by cytochrome c released from mitochondria into cytoplasm and the subsequent activation of caspases, and that HSP27 may interfere with caspase-dependent apoptotic cell death induced by concanamycin A.

  20. Measurement of pancreatic enzyme synthesis in humans. Problems in patients with calcific pancreatitis.

    Science.gov (United States)

    O'Keefe, S J; Ogden, J M; Young, G O; Dicker, J; Girdwood, A H; Marks, I N

    1989-02-01

    Earlier studies have suggested that the rate of incorporation of labeled amino acids into duodenal juice proteins during pancreatic stimulation may be used to calculate pancreatic enzyme synthesis and function. In the present study, a pulse/4 h continuous intravenous infusion of 14C labeled leucine was used to compare synthesis rates in 6 patients with chronic calcific pancreatis(CP) to 4 controls. Analysis of duodenal juice protein demonstrated a delay of approximately 1 h in the appearance of labeled proteins, followed by a linear increase in specific activity, allowing calculation of synthesis that varied between 2.6-2.8 h in controls and 6-48 h in CP. The protein in controls was representative of enzyme protein, but that of CP was not, since it was heavily contaminated with albumin (up to 50%). The results indicate that enzyme secreted during the first hour of stimulation is derived from pancreatic stores and that the synthesis rate of enzymes secreted thereafter is approximately 2.7 h in normal humans. The method was, however, unable to determine rates in patients with CP owing to heavy contamination of enzymes with exudative proteins.

  1. Human Equilibrative Nucleoside Transporter 1, as a Predictor of 5-Fluorouracil Resistance in Human Pancreatic Cancer

    National Research Council Canada - National Science Library

    MASANORI TSUJIE; SHOJI NAKAMORI; SHIN NAKAHIRA; YUJI TAKAHASHI; NOBUYASU HAYASHI; JIRO OKAMI; HIROAKI NAGANO; KEIZO DONO; KOJI UMESHITA; MASATO SAKON; MORITO MONDEN

    2007-01-01

    ...€²-difluoro-deoxycytidine) sensitivity in pancreatic cancer. Materials and Methods: The relationship between 5-FU and gemcitabine sensitivity and the mRNA levels of human equilibrative nucleoside transporter 1 (hENT1...

  2. Functional assessment of pancreatic beta-cell area in humans.

    Science.gov (United States)

    Meier, Juris J; Menge, Bjoern A; Breuer, Thomas G K; Müller, Christophe A; Tannapfel, Andrea; Uhl, Waldemar; Schmidt, Wolfgang E; Schrader, Henning

    2009-07-01

    beta-Cell mass declines progressively during the course of diabetes, and various antidiabetic treatment regimens have been suggested to modulate beta-cell mass. However, imaging methods allowing the monitoring of changes in beta-cell mass in vivo have not yet become available. We address whether pancreatic beta-cell area can be assessed by functional test of insulin secretion in humans. A total of 33 patients with chronic pancreatitis (n = 17), benign pancreatic adenomas (n = 13), and tumors of the ampulla of Vater (n = 3) at various stages of glucose tolerance were examined with an oral glucose load before undergoing pancreatic surgery. Indexes of insulin secretion were calculated and compared with the fractional beta-cell area of the pancreas. beta-Cell area was related to fasting glucose concentrations in an inverse linear fashion (r = -0.53, P = 0.0014) and to 120-min postchallenge glycemia in an inverse exponential fashion (r = -0.89). beta-Cell area was best predicted by a C-peptide-to-glucose ratio determined 15 min after the glucose drink (r = 0.72, P fasting C-peptide-to-glucose ratio already yielded a reasonably close correlation (r = 0.63, P fasting measures, such as the HOMA index.

  3. Animal models of pancreatitis: Can it be translated to human pain study?

    Science.gov (United States)

    Zhao, Jing-Bo; Liao, Dong-Hua; Nissen, Thomas Dahl

    2013-01-01

    Chronic pancreatitis affects many individuals around the world, and the study of the underlying mechanisms leading to better treatment possibilities are important tasks. Therefore, animal models are needed to illustrate the basic study of pancreatitis. Recently, animal models of acute and chronic pancreatitis have been thoroughly reviewed, but few reviews address the important aspect on the translation of animal studies to human studies. It is well known that pancreatitis is associated with epigastric pain, but the understanding regarding to mechanisms and appropriate treatment of this pain is still unclear. Using animal models to study pancreatitis associated visceral pain is difficult, however, these types of models are a unique way to reveal the mechanisms behind pancreatitis associated visceral pain. In this review, the animal models of acute, chronic and un-common pancreatitis are briefly outlined and animal models related to pancreatitis associated visceral pain are also addressed. PMID:24259952

  4. Human pancreatic cancer progression: an anarchy among CCN-siblings

    National Research Council Canada - National Science Library

    Banerjee, Sushanta K; Maity, Gargi; Haque, Inamul; Ghosh, Arnab; Sarkar, Sandipto; Gupta, Vijayalaxmi; Campbell, Donald R; Von Hoff, Daniel; Banerjee, Snigdha

    2016-01-01

    Decades of basic and translational studies have identified the mechanisms by which pancreatic cancer cells use molecular pathways to hijack the normal homeostasis of the pancreas, promoting pancreatic...

  5. Spatial distribution of B cells predicts prognosis in human pancreatic adenocarcinoma.

    Science.gov (United States)

    Castino, Giovanni Francesco; Cortese, Nina; Capretti, Giovanni; Serio, Simone; Di Caro, Giuseppe; Mineri, Rossana; Magrini, Elena; Grizzi, Fabio; Cappello, Paola; Novelli, Francesco; Spaggiari, Paola; Roncalli, Massimo; Ridolfi, Cristina; Gavazzi, Francesca; Zerbi, Alessandro; Allavena, Paola; Marchesi, Federica

    2016-04-01

    B-cell responses are emerging as critical regulators of cancer progression. In this study, we investigated the role of B lymphocytes in the microenvironment of human pancreatic ductal adenocarcinoma (PDAC), in a retrospective consecutive series of 104 PDAC patients and in PDAC preclinical models. Immunohistochemical analysis revealed that B cells occupy two histologically distinct compartments in human PDAC, either scatteringly infiltrating (CD20-TILs), or organized in tertiary lymphoid tissue (CD20-TLT). Only when retained within TLT, high density of B cells predicted longer survival (median survival 16.9 mo CD20-TLThi vs. 10.7 mo CD20-TLTlo; p = 0.0085). Presence of B cells within TLT associated to a germinal center (GC) immune signature, correlated with CD8-TIL infiltration, and empowered their favorable prognostic value. Immunotherapeutic vaccination of spontaneously developing PDAC (KrasG12D-Pdx1-Cre) mice with α-enolase (ENO1) induced formation of TLT with active GCs and correlated with increased recruitment of T lymphocytes, suggesting induction of TLT as a strategy to favor mobilization of immune cells in PDAC. In contrast, in an implanted tumor model devoid of TLT, depletion of B cells with an anti-CD20 antibody reinstated an antitumor immune response. Our results highlight B cells as an essential element of the microenvironment of PDAC and identify their spatial organization as a key regulator of their antitumor function. A mindfully evaluation of B cells in human PDAC could represent a powerful prognostic tool to identify patients with distinct clinical behaviors and responses to immunotherapeutic strategies.

  6. Membrane Drug Transporters and Chemoresistance in Human Pancreatic Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Hagmann, Wolfgang, E-mail: w.hagmann@dkfz.de; Faissner, Ralf [Clinical Cooperation Unit of Molecular Gastroenterology, DKFZ, Im Neuenheimer Feld 280, D-69120 Heidelberg (Germany); Schnolzer, Martina [Functional Proteome Analysis, DKFZ, Im Neuenheimer Feld 280, D-69120 Heidelberg (Germany); Lohr, Matthias [Clinical Cooperation Unit of Molecular Gastroenterology, DKFZ, Im Neuenheimer Feld 280, D-69120 Heidelberg (Germany); Department of Surgical Gastroenterology, CLINTEC, K53, Karolinska Institute, SE-14186 Stockholm (Sweden); Jesnowski, Ralf [Clinical Cooperation Unit of Molecular Gastroenterology, DKFZ, Im Neuenheimer Feld 280, D-69120 Heidelberg (Germany); Department of Medicine II, Medical Faculty of Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim (Germany)

    2010-12-30

    Pancreatic cancer ranks among the tumors most resistant to chemotherapy. Such chemoresistance of tumors can be mediated by various cellular mechanisms including dysregulated apoptosis or ineffective drug concentration at the intracellular target sites. In this review, we highlight recent advances in experimental chemotherapy underlining the role of cellular transporters in drug resistance. Such contribution to the chemoresistant phenotype of tumor cells or tissues can be conferred both by uptake and export transporters, as demonstrated by in vivo and in vitro data. Our studies used human pancreatic carcinoma cells, cells stably transfected with human transporter cDNAs, or cells in which a specific transporter was knocked down by RNA interference. We have previously shown that 5-fluorouracil treatment affects the expression profile of relevant cellular transporters including multidrug resistance proteins (MRPs), and that MRP5 (ABCC5) influences chemoresistance of these tumor cells. Similarly, cell treatment with the nucleoside drug gemcitabine or a combination of chemotherapeutic drugs can variably influence the expression pattern and relative amount of uptake and export transporters in pancreatic carcinoma cells or select for pre-existing subpopulations. In addition, cytotoxicity studies with MRP5-overexpressing or MRP5-silenced cells demonstrate a contribution of MRP5 also to gemcitabine resistance. These data may lead to improved strategies of future chemotherapy regimens using gemcitabine and/or 5-fluorouracil.

  7. Bactericidal activity engineered on human pancreatic ribonuclease and onconase.

    Science.gov (United States)

    Torrent, Gerard; Ribó, Marc; Benito, Antoni; Vilanova, Maria

    2009-01-01

    Ribonucleases belonging to the pancreatic-type family exhibit a variety of biological activities that make them potential candidates as chemotherapeutic agents. Among them are remarkable the selective cytotoxicity against tumor cells, exhibited by onconase, and the bactericidal activity presented by the eosinophil cationic protein (ECP). In the past years, based on what is known about the cytotoxic mechanism of ribonucleases, a lot of work has been performed to switch non-naturally cytotoxic ribonucleases to potent toxins. Most of the efforts have been devoted to the production of ribonucleases endowed with selective cytotoxicity against tumor cells. In the present paper, however, we have used two nonbactericidal ribonucleases, onconase and the human pancreatic ribonuclease, as scaffolds onto which to engineer bactericidal activity. To this end, the main bactericidal determinant described for ECP (YRWR) has been introduced to these proteins either in an internal position or as an extension of the C-terminal end. The ribonucleolytic activity, thermostability, cytotoxicity against eukaryotic cells and the antibacterial activity against Gram-positive and Gram-negative strains have been determined for all the variants produced. The results show that we have endowed both ribonucleases with antibacterial activity against Gram-negative and Gram-positive bacteria. In addition, we show that this activity is, at least in part, dependent on the ribonucleolytic activity of the enzymes. Remarkably, we have developed a human pancreatic ribonuclease variant with de novo acquired selective antibacterial which is not cytotoxic to mammalian cells.

  8. Ductal-lobar organisation of human breast tissue, its relevance in disease and a research objective: vector mapping of parenchyma in complete breasts (the Astley Cooper project)

    OpenAIRE

    Going, James J.

    2006-01-01

    A human breast has many lobes, which are highly variable in size and shape, each with one central duct, its peripheral branches and their associated glandular tissues. Realising the potential of new endoductal approaches to breast diagnosis and improving our understanding of breast cancer precursors will require greatly improved knowledge of this ductal-lobar anatomy and the distribution of cancer precursors within it. This architecture is very challenging to study in its entirety: whole-brea...

  9. A New Surgical Technique of Pancreaticoduodenectomy with Splenic Artery Resection for Ductal Adenocarcinoma of the Pancreatic Head and/or Body Invading Splenic Artery: Impact of the Balance between Surgical Radicality and QOL to Avoid Total Pancreatectomy

    Directory of Open Access Journals (Sweden)

    Ryosuke Desaki

    2014-01-01

    Full Text Available For pancreatic ductal adenocarcinoma (PDAC of the head and/or body invading the splenic artery (SA, we developed a new surgical technique of proximal subtotal pancreatectomy with splenic artery and vein resection, so-called pancreaticoduodenectomy with splenic artery resection (PD-SAR. We retrospectively reviewed a total of 84 patients with curative intent pancreaticoduodenectomy (PD for PDAC of the head and/or body. These 84 patients were classified into the two groups: conventional PD (n=66 and PD-SAR (n=18. Most patients were treated by preoperative chemoradiotherapy (CRT. Postoperative MDCT clearly demonstrated enhancement of the remnant pancreas at 1 and 6 months in all patients examined. Overall survival rates were very similar between PD and PD-SAR (3-year OS: 23.7% versus 23.1%, P=0.538, despite the fact that the tumor size and the percentages of UICC-T4 determined before treatment were higher in PD-SAR. Total daily insulin dose was significantly higher in PD-SAR than in PD at 1 month, while showing no significant differences between the two groups thereafter. PD-SAR with preoperative CRT seems to be promising surgical strategy for PDAC of head and/or body with invasion of the splenic artery, in regard to the balance between operative radicality and postoperative QOL.

  10. Pancreatic cell tracing, lineage tagging and targeted genetic manipulations in multiple cell types using pancreatic ductal infusion of adeno-associated viral vectors and/or cell-tagging dyes.

    Science.gov (United States)

    Xiao, Xiangwei; Guo, Ping; Prasadan, Krishna; Shiota, Chiyo; Peirish, Lauren; Fischbach, Shane; Song, Zewen; Gaffar, Iljana; Wiersch, John; El-Gohary, Yousef; Husain, Sohail Z; Gittes, George K

    2014-12-01

    Genetic manipulations, with or without lineage tracing for specific pancreatic cell types, are very powerful tools for studying diabetes, pancreatitis and pancreatic cancer. Nevertheless, the use of Cre/loxP systems to conditionally activate or inactivate the expression of genes in a cell type- and/or temporal-specific manner is not applicable to cell tracing and/or gene manipulations in more than one lineage at a time. Here we report a technique that allows efficient delivery of dyes for cell tagging into the mouse pancreas through the duct system, and that also delivers viruses carrying transgenes or siRNA under a specific promoter. When this technique is applied in genetically modified mice, it enables the investigator to perform either double lineage tracing or cell lineage tracing combined with gene manipulation in a second lineage. The technique requires <40 min.

  11. Metformin targets the metabolic achilles heel of human pancreatic cancer stem cells.

    Directory of Open Access Journals (Sweden)

    Enza Lonardo

    Full Text Available Pancreatic ductal adenocarcinomas contain a subset of exclusively tumorigenic cancer stem cells (CSCs, which are capable of repopulating the entire heterogeneous cancer cell populations and are highly resistant to standard chemotherapy. Here we demonstrate that metformin selectively ablated pancreatic CSCs as evidenced by diminished expression of pluripotency-associated genes and CSC-associated surface markers. Subsequently, the ability of metformin-treated CSCs to clonally expand in vitro was irreversibly abrogated by inducing apoptosis. In contrast, non-CSCs preferentially responded by cell cycle arrest, but were not eliminated by metformin treatment. Mechanistically, metformin increased reactive oxygen species production in CSC and reduced their mitochondrial transmembrane potential. The subsequent induction of lethal energy crisis in CSCs was independent of AMPK/mTOR. Finally, in primary cancer tissue xenograft models metformin effectively reduced tumor burden and prevented disease progression; if combined with a stroma-targeting smoothened inhibitor for enhanced tissue penetration, while gemcitabine actually appeared dispensable.

  12. Human Mena+11a isoform serves as a marker of epithelial phenotype and sensitivity to epidermal growth factor receptor inhibition in human pancreatic cancer cell lines.

    Science.gov (United States)

    Pino, Maria S; Balsamo, Michele; Di Modugno, Francesca; Mottolese, Marcella; Alessio, Massimo; Melucci, Elisa; Milella, Michele; McConkey, David J; Philippar, Ulrike; Gertler, Frank B; Natali, Pier Giorgio; Nisticò, Paola

    2008-08-01

    hMena, member of the enabled/vasodilator-stimulated phosphoprotein family, is a cytoskeletal protein that is involved in the regulation of cell motility and adhesion. The aim of this study was to determine whether or not the expression of hMena isoforms correlated with sensitivity to EGFR tyrosine kinase inhibitors and could serve as markers with potential clinical use. Human pancreatic ductal adenocarcinoma cell lines were characterized for in vitro sensitivity to erlotinib, expression of HER family receptors, markers of epithelial to mesenchymal transition, and expression of hMena and its isoform hMena(+11a). The effects of epidermal growth factor (EGF) and erlotinib on hMena expression as well as the effect of hMena knockdown on cell proliferation were also evaluated. hMena was detected in all of the pancreatic tumor cell lines tested as well as in the majority of the human tumor samples [primary (92%) and metastatic (86%)]. Intriguingly, in vitro hMena(+11a) isoform was specifically associated with an epithelial phenotype, EGFR dependency, and sensitivity to erlotinib. In epithelial BxPC3 cells, epidermal growth factor up-regulated hMena/hMena(+11a) and erlotinib down-regulated expression. hMena knockdown reduced cell proliferation and mitogen-activated protein kinase and AKT activation in BxPC3 cells, and promoted the growth inhibitory effects of erlotinib. Collectively, our data indicate that the hMena(+11a) isoform is associated with an epithelial phenotype and identifies EGFR-dependent cell lines that are sensitive to the EGFR inhibitor erlotinib. The availability of anti-hMena(+11a)-specific probes may offer a new tool in pancreatic cancer management if these results can be verified prospectively in cancer patients.

  13. Beta-cell function in isolated human pancreatic islets in long-term tissue culture

    DEFF Research Database (Denmark)

    Nielsen, Jens Høiriis

    1981-01-01

    Human pancreatic islets were isolated by collagenase treatment of pancreatic tissue obtained from 27 individuals aged 12 to 69 years. The islets were maintained free floating in tissue culture medium RPMI 1640 supplemented with calf or human serum. In two cases the insulin production was followed...

  14. Heme oxygenase-1 accelerates tumor angiogenesis of human pancreatic cancer.

    Science.gov (United States)

    Sunamura, Makoto; Duda, Dan G; Ghattas, Maivel H; Lozonschi, Lucian; Motoi, Fuyuhiko; Yamauchi, Jun-Ichiro; Matsuno, Seiki; Shibahara, Shigeki; Abraham, Nader G

    2003-01-01

    Angiogenesis is necessary for the continued growth of solid tumors, invasion and metastasis. Several studies clearly showed that heme oxygenase-1 (HO-1) plays an important role in angiogenesis. In this study, we used the vital microscope system, transparent skinfold model, lung colonization model and transduced pancreatic cancer cell line (Panc-1)/human heme oxygenase-1 (hHO-1) cells, to precisely analyze, for the first time, the effect of hHO-1 gene on tumor growth, angiogenesis and metastasis. Our results revealed that HO-1 stimulates angiogenesis of pancreatic carcinoma in severe combined immune deficient mice. Overexpression of human hHO-1 after its retroviral transfer into Panc-1 cells did not interfere with tumor growth in vitro. While in vivo the development of tumors was accelerated upon transfection with hHO-1. On the other hand, inhibition of heme oxygenase (HO) activity by stannous mesoporphyrin was able transiently to delay tumor growth in a dose dependent manner. Tumor angiogenesis was markedly increased in Panc-1/hHO-1 compared to mock transfected and wild type. Lectin staining and Ki-67 proliferation index confirmed these results. In addition hHO-1 stimulated in vitro tumor angiogenesis and increased endothelial cell survival. In a lung colonization model, overexpression of hHO-1 increased the occurrence of metastasis, while inhibition of HO activity by stannous mesoporphyrin completely inhibited the occurrence of metastasis. In conclusion, overexpression of HO-1 genes potentiates pancreatic cancer aggressiveness, by increasing tumor growth, angiogenesis and metastasis and that the inhibition of the HO system may be of useful benefit for the future treatment of the disease.

  15. Pancreatic enzyme synthesis and turnover in human subjects.

    Science.gov (United States)

    O'Keefe, S J; Bennet, W M; Zinsmeister, A R; Haymond, M W

    1994-05-01

    Animal studies have shown that pancreatic enzyme secretion is independent of enzyme synthesis. To investigate this relationship in humans, we have coinfused 14C-labeled leucine tracer with cholecystokinin octapeptide in nine healthy adults for 4 h and measured the rate of appearance of secreted and newly labeled enzymes in the duodenum. Enzyme secretion was well maintained throughout, but newly labeled enzymes only appeared in juice between 75 and 101 min (median time, 86 min), indicating that initial secretion was dependent on the release of zymogen stores and that the median production time for new enzymes was 86 min. Between 85 and 225 min there was a curvilinear increase in the enrichment of secreted enzymes with newly synthesized enzymes, suggesting a median turnover rate of zymogen stores of 29%/h (range 12-47%/h). In conclusion, our results suggest that in healthy humans, postprandial pancreatic enzyme secretion is maintained by the export of a large stored pool and is not rate limited by enzyme synthesis, since it takes approximately 86 min for newly synthesized enzymes to take part in the digestive process.

  16. Smad4-dependent suppressor pituitary homeobox 2 promotes PPP2R2A-mediated inhibition of Akt pathway in pancreatic cancer

    OpenAIRE

    Wang, Qi; Li, Juanjuan; Wu, Wei; Shen, Ruizhe; Jiang, He; Qian, Yuting; Tang, Yanping; Bai, Tingting; Wu, Sheng; Wei, Lumin; Zang, Yi; Zhang, Ji; Wang, Lifu

    2016-01-01

    The importance of Pituitary homeobox 2 (Pitx2) in malignancy remains enigmatic, and Pitx2 has not been previously implicated in pancreatic ductal adenocarcinoma (PDAC). In this study, we performed gene expression profiling of human PDAC tissues and identified Pitx2 as a promising candidate. Pitx2 expression was decreased from 2.6- to 19-fold in human PDAC tissues from microarray units. Immunochemistry staining showed that Pitx2 expression was moderate to intense in normal pancreatic and pancr...

  17. The antagonistic regulation of human MUC4 and ErbB-2 genes by the Ets protein PEA3 in pancreatic cancer cells: implications for the proliferation/differentiation balance in the cells.

    Science.gov (United States)

    Fauquette, Valérie; Perrais, Michael; Cerulis, Sylvain; Jonckheere, Nicolas; Ducourouble, Marie-Paule; Aubert, Jean-Pierre; Pigny, Pascal; Van Seuningen, Isabelle

    2005-02-15

    The human transmembrane mucin MUC4 is aberrantly expressed in 75% of pancreatic ductal adenocarcinomas, whereas no expression is found in normal pancreas. Therefore MUC4 appears as a useful biological marker for the diagnosis of ductal adenocarcinomas. Since rat Muc4 was shown to interact with ErbB-2 tyrosine kinase receptor and to either promote cell survival and differentiation or cell proliferation, it is postulated that MUC4 may also participate in pancreatic carcinogenesis. Our aim was to investigate in parallel the role of the Ets factor PEA3 in MUC4 and ErbB-2 transcriptional regulation in pancreatic cancer cells. Two MUC4-expressing WD (well-differentiated) (CAPAN-1 and -2) and one MUC4-non-expressing poorly differentiated (PANC-1) cell lines were used. The three cell lines express ErbB-2 at different levels. By co-transfection and site-directed mutagenesis, we show that PEA3 is a transactivator of the MUC4 promoter and that the -216 and -2368 PEA3 binding sites of the MUC4 promoter are essential. We also demonstrate that PEA3 acts in synergy with c-Jun and specificity protein 1 to transactivate the proximal region of the MUC4 promoter and increase MUC4 mRNA levels in WD cells. These results suggest that MUC4 is a new target gene of the Ets factor PEA3 in pancreatic cancer cells. In contrast, PEA3 represses the transcriptional activity of two fragments of the ErbB-2 promoter in a dose-dependent manner and decreases the endogenous ErbB-2 mRNA levels in WD cell lines. Thus, PEA3, by its capacity to up-regulate the epithelial marker MUC4 and to down-regulate the ErbB-2 oncogene, appears as a key regulator of the differentiation/proliferation balance in pancreatic cancer cells.

  18. Number of evaluated lymph nodes and positive lymph nodes, lymph node ratio, and log odds evaluation in early-stage pancreatic ductal adenocarcinoma: numerology or valid indicators of patient outcome?

    Science.gov (United States)

    Lahat, G; Lubezky, N; Gerstenhaber, F; Nizri, E; Gysi, M; Rozenek, M; Goichman, Y; Nachmany, I; Nakache, R; Wolf, I; Klausner, J M

    2016-09-29

    We evaluated the prognostic significance and universal validity of the total number of evaluated lymph nodes (ELN), number of positive lymph nodes (PLN), lymph node ratio (LNR), and log odds of positive lymph nodes (LODDS) in a relatively large and homogenous cohort of surgically treated pancreatic ductal adenocarcinoma (PDAC) patients. Prospectively accrued data were retrospectively analyzed for 282 PDAC patients who had pancreaticoduodenectomy (PD) at our institution. Long-term survival was analyzed according to the ELN, PLN, LNR, and LODDS. Of these patients, 168 patients (59.5 %) had LN metastasis (N1). Mean ELN and PLN were 13.5 and 1.6, respectively. LN positivity correlated with a greater number of evaluated lymph nodes; positive lymph nodes were identified in 61.4 % of the patients with ELN ≥ 13 compared with 44.9 % of the patients with ELN < 13 (p = 0.014). Median overall survival (OS) and 5-year OS rate were higher in N0 than in N1 patients, 22.4 vs. 18.7 months and 35 vs. 11 %, respectively (p = 0.008). Mean LNR was 0.12; 91 patients (54.1 %) had LNR < 0.3. Among the N1 patients, median OS was comparable in those with LNR ≥ 0.3 vs. LNR < 0.3 (16.7 vs. 14.1 months, p = 0.950). Neither LODDS nor various ELN and PLN cutoff values provided more discriminative information within the group of N1 patients. Our data confirms that lymph node positivity strongly reflects PDAC biology and thus patient outcome. While a higher number of evaluated lymph nodes may provide a more accurate nodal staging, it does not have any prognostic value among N1 patients. Similarly, PLN, LNR, and LODDS had limited prognostic relevance.

  19. Identification and manipulation of biliary metaplasia in pancreatic tumors.

    Science.gov (United States)

    Delgiorno, Kathleen E; Hall, Jason C; Takeuchi, Kenneth K; Pan, Fong Cheng; Halbrook, Christopher J; Washington, M Kay; Olive, Kenneth P; Spence, Jason R; Sipos, Bence; Wright, Christopher V E; Wells, James M; Crawford, Howard C

    2014-01-01

    Metaplasias often have characteristics of developmentally related tissues. Pancreatic metaplastic ducts are usually associated with pancreatitis and pancreatic ductal adenocarcinoma. The tuft cell is a chemosensory cell that responds to signals in the extracellular environment via effector molecules. Commonly found in the biliary tract, tuft cells are absent from normal murine pancreas. Using the aberrant appearance of tuft cells as an indicator, we tested if pancreatic metaplasia represents transdifferentiation to a biliary phenotype and what effect this has on pancreatic tumorigenesis. We analyzed pancreatic tissue and tumors that developed in mice that express an activated form of Kras (Kras(LSL-G12D/+);Ptf1a(Cre/+) mice). Normal bile duct, pancreatic duct, and tumor-associated metaplasias from the mice were analyzed for tuft cell and biliary progenitor markers, including SOX17, a transcription factor that regulates biliary development. We also analyzed pancreatic tissues from mice expressing transgenic SOX17 alone (ROSA(tTa/+);Ptf1(CreERTM/+);tetO-SOX17) or along with activated Kras (ROSAtT(a/+);Ptf1a(CreERTM/+);tetO-SOX17;Kras(LSL-G12D;+)). Tuft cells were frequently found in areas of pancreatic metaplasia, decreased throughout tumor progression, and absent from invasive tumors. Analysis of the pancreatobiliary ductal systems of mice revealed tuft cells in the biliary tract but not the normal pancreatic duct. Analysis for biliary markers revealed expression of SOX17 in pancreatic metaplasia and tumors. Pancreas-specific overexpression of SOX17 led to ductal metaplasia along with inflammation and collagen deposition. Mice that overexpressed SOX17 along with Kras(G12D) had a greater degree of transformed tissue compared with mice expressing only Kras(G12D). Immunofluorescence analysis of human pancreatic tissue arrays revealed the presence of tuft cells in metaplasia and early-stage tumors, along with SOX17 expression, consistent with a biliary phenotype

  20. Identification of distinct phenotypes of locally advanced pancreatic adenocarcinoma.

    LENUS (Irish Health Repository)

    Teo, Minyuen

    2013-03-01

    A significant number of pancreatic ductal adenocarcinoma present as locally advanced disease. Optimal treatment remains controversial. We sought to analyze the clinical course of locally advanced pancreatic adenocarcinoma (LAPC) in order to identify potential distinct clinical phenotypes.

  1. Endoscopic management of pancreatic pseudocysts and necrosis.

    Science.gov (United States)

    Law, Ryan; Baron, Todd H

    2015-02-01

    Over the last several years, there have been refinements in the understanding and nomenclature regarding the natural history of acute pancreatitis. Patients with acute pancreatitis frequently develop acute pancreatic collections that, over time, may evolve into pancreatic pseudocysts or walled-off necrosis. Endoscopic management of these local complications of acute pancreatitis continues to evolve. Treatment strategies range from simple drainage of liquefied contents to repeated direct endoscopic necrosectomy of a complex necrotic collection. In patients with chronic pancreatitis, pancreatic pseudocysts may arise as a consequence of pancreatic ductal obstruction that then leads to pancreatic ductal disruption. In this review, we focus on the indications, techniques and outcomes for endoscopic therapy of pancreatic pseudocysts and walled-off necrosis.

  2. [Autoimmune pancreatitis].

    Science.gov (United States)

    Beyer, G; Menzel, J; Krüger, P-C; Ribback, S; Lerch, M M; Mayerle, J

    2013-11-01

    Autoimmune pancreatitis is a relatively rare form of chronic pancreatitis which is characterized by a lymphoplasmatic infiltrate with a storiform fibrosis and often goes along with painless jaundice and discrete discomfort of the upper abdomen. Clinically we distinguish between two subtypes, which differ in terms of their histology, clinical picture and prognosis. Type 1 autoimmune pancreatitis is the pancreatic manifestation of the IgG4-associated syndrome which also involves other organs. About one third of the patients can only be diagnosed after either histological prove or a successful steroid trail. Type 2 is IgG4-negative with the histological picture of an idiopathic duct centric pancreatitis and is to higher degree associated with inflammatory bowel disease. A definitive diagnosis can only be made using biopsy. Usually both forms show response to steroid treatment, but in type 1 up to 50 % of the patients might develop a relapse. The biggest challenge and most important differential diagnosis remains the discrimination of AIP from pancreatic cancer, because also AIP can cause mass of the pancreatic head, lymphadenopathy and ductal obstruction. This article summarizes recent advances on epidemiology, clinical presentation, diagnostic strategy, therapy and differential diagnosis in this relatively unknown disease. © Georg Thieme Verlag KG Stuttgart · New York.

  3. Cyclic AMP regulates the migration and invasion potential of human pancreatic cancer cells.

    Science.gov (United States)

    Zimmerman, Noah P; Roy, Ishan; Hauser, Andrew D; Wilson, Jessica M; Williams, Carol L; Dwinell, Michael B

    2015-03-01

    Aggressive dissemination and metastasis of pancreatic ductal adenocarcinoma (PDAC) results in poor prognosis and marked lethality. Rho monomeric G protein levels are increased in pancreatic cancer tissue. As the mechanisms underlying PDAC malignancy are little understood, we investigated the role for cAMP in regulating monomeric G protein regulated invasion and migration of pancreatic cancer cells. Treatment of PDAC cells with cAMP elevating agents that activate adenylyl cyclases, forskolin, protein kinase A (PKA), 6-Bnz-cAMP, or the cyclic nucleotide phosphodiesterase inhibitor cilostamide significantly decreased migration and Matrigel invasion of PDAC cell lines. Inhibition was dose-dependent and not significantly different between forskolin or cilostamide treatment. cAMP elevating drugs not only blocked basal migration, but similarly abrogated transforming-growth factor-β-directed PDAC cell migration and invasion. The inhibitory effects of cAMP were prevented by the pharmacological blockade of PKA. Drugs that increase cellular cAMP levels decreased levels of active RhoA or RhoC, with a concomitant increase in phosphorylated RhoA. Diminished Rho signaling was correlated with the appearance of thickened cortical actin bands along the perimeter of non-motile forskolin or cilostamide-treated cells. Decreased migration did not reflect alterations in cell growth or programmed cell death. Collectively these data support the notion that increased levels of cAMP specifically hinder PDAC cell motility through F-actin remodeling. © 2013 Wiley Periodicals, Inc.

  4. Pancreatic Pseudocyst Pleural Fistula in Gallstone Pancreatitis

    Directory of Open Access Journals (Sweden)

    Sala Abdalla

    2016-01-01

    Full Text Available Extra-abdominal complications of pancreatitis such as pancreaticopleural fistulae are rare. A pancreaticopleural fistula occurs when inflammation of the pancreas and pancreatic ductal disruption lead to leakage of secretions through a fistulous tract into the thorax. The underlying aetiology in the majority of cases is alcohol-induced chronic pancreatitis. The diagnosis is often delayed given that the majority of patients present with pulmonary symptoms and frequently have large, persistent pleural effusions. The diagnosis is confirmed through imaging and the detection of significantly elevated amylase levels in the pleural exudate. Treatment options include somatostatin analogues, thoracocentesis, endoscopic retrograde cholangiopancreatography (ERCP with pancreatic duct stenting, and surgery. The authors present a case of pancreatic pseudocyst pleural fistula in a woman with gallstone pancreatitis presenting with recurrent pneumonias and bilateral pleural effusions.

  5. Molecular characteristics of pancreatic carcinogenesis

    NARCIS (Netherlands)

    Koorstra, J.M.

    2010-01-01

    Ductal adenocarcinoma of the pancreas is a very aggressive disease with a high mortality rate. Pancreatic carcinoma is the fourth leading cause of cancer-related death in Western countries, despite the fact this cancer accounts for only about 3% of all malignant tumors. Most pancreatic cancers

  6. Evaluation of islets derived from human fetal pancreatic progenitor cells in diabetes treatment.

    Science.gov (United States)

    Zhang, Wen-Jian; Xu, Shi-Qing; Cai, Han-Qing; Men, Xiu-Li; Wang, Zai; Lin, Hua; Chen, Li; Jiang, Yong-Wei; Liu, Hong-Lin; Li, Cheng-Hui; Sui, Wei-Guo; Deng, Hong-Kui; Lou, Jin-Ning

    2013-01-01

    With the shortage of donor organs for islet transplantation, insulin-producing cells have been generated from different types of stem cell. Human fetal pancreatic stem cells have a better self-renewal capacity than adult stem cells and can readily differentiate into pancreatic endocrine cells, making them a potential source for islets in diabetes treatment. In the present study, the functions of pancreatic islets derived from human fetal pancreatic progenitor cells were evaluated in vitro and in vivo. Human pancreatic progenitor cells isolated from the fetal pancreas were expanded and differentiated into islet endocrine cells in culture. Markers for endocrine and exocrine functions as well as those for alpha and beta cells were analyzed by immunofluorescent staining and enzyme-linked immunosorbent assay (ELISA). To evaluate the functions of these islets in vivo, the islet-like structures were transplanted into renal capsules of diabetic nude mice. Immunohistochemical staining for human C-peptide and human mitochondrion antigen was applied to confirm the human origin and the survival of grafted islets. Human fetal pancreatic progenitor cells were able to expand in medium containing basic fibroblast growth factor (bFGF) and leukemia inhibitor factor (LIF), and to differentiate into pancreatic endocrine cells with high efficiency upon the actions of glucagon-like peptide-1 and activin-A. The differentiated cells expressed insulin, glucagon, glucose transporter-1 (GLUT1), GLUT2 and voltage-dependent calcium channel (VDCC), and were able to aggregate into islet-like structures containing alpha and beta cells upon suspension. These structures expressed and released a higher level of insulin than adhesion cultured cells, and helped to maintain normoglycemia in diabetic nude mice after transplantation. Human fetal pancreatic progenitor cells have good capacity for generating insulin producing cells and provide a promising potential source for diabetes treatment.

  7. Inhibition of human pancreatic and biliary output but not intestinal motility by physiological intraileal lipid loads

    DEFF Research Database (Denmark)

    Keller, Jutta; Holst, Jens Juul; Layer, Peter

    2005-01-01

    Lipid perfusion into the distal ileal lumen at supraphysiological loads inhibits pancreatic exocrine secretion and gastrointestinal motility in humans. In the present study, we sought to determine the effects of physiological postprandial intraileal lipid concentrations on endogenously stimulated....... Physiological postprandial ileal lipid concentrations dose dependently inhibited human digestive pancreatic protease and bile acid output, but not intestinal motor activity. Thus physiological postprandial ileal nutrient exposure may be of importance for the termination of digestive secretory responses...

  8. Spontaneous Pancreatitis Caused by Tissue-Specific Gene Ablation of Hhex in MiceSummary

    Directory of Open Access Journals (Sweden)

    Mark J. Ferreira

    2015-09-01

    Full Text Available Background & Aims: Perturbations in pancreatic ductal bicarbonate secretion cause chronic pancreatitis. The physiologic mechanism of ductal secretion is known, but its transcriptional control is not. We determine the role of the transcription factor hematopoietically expressed homeobox protein (Hhex in ductal secretion and pancreatitis. Methods: We derived mice with pancreas-specific, Cre-mediated Hhex gene ablation to determine the requirement of Hhex in the pancreatic duct in early life and in adult stages. Histologic and immunostaining analyses were used to detect the presence of pathology. Pancreatic primary ductal cells were isolated to discover differentially expressed transcripts upon acute Hhex ablation on a cell autonomous level. Results: Hhex protein was detected throughout the embryonic and adult ductal trees. Ablation of Hhex in pancreatic progenitors resulted in postnatal ductal ectasia associated with acinar-to-ductal metaplasia, a progressive phenotype that ultimately resulted in chronic pancreatitis. Hhex ablation in adult mice, however, did not cause any detectable pathology. Ductal ectasia in young mice did not result from perturbation of expression of Hnf6, Hnf1β, or the primary cilia genes. RNA-seq analysis of Hhex-ablated pancreatic primary ductal cells showed mRNA levels of the G-protein coupled receptor natriuretic peptide receptor 3 (Npr3, implicated in paracrine signaling, up-regulated by 4.70-fold. Conclusions: Although Hhex is dispensable for ductal cell function in the adult, ablation of Hhex in pancreatic progenitors results in pancreatitis. Our data highlight the critical role of Hhex in maintaining ductal homeostasis in early life and support ductal hypersecretion as a novel etiology of pediatric chronic pancreatitis. Keywords: Npr3, Pancreatic Ducts, Primary Cilia

  9. Dual prognostic significance of tumour-associated macrophages in human pancreatic adenocarcinoma treated or untreated with chemotherapy.

    Science.gov (United States)

    Di Caro, Giuseppe; Cortese, Nina; Castino, Giovanni Francesco; Grizzi, Fabio; Gavazzi, Francesca; Ridolfi, Cristina; Capretti, Giovanni; Mineri, Rossana; Todoric, Jelena; Zerbi, Alessandro; Allavena, Paola; Mantovani, Alberto; Marchesi, Federica

    2016-10-01

    Tumour-associated macrophages (TAMs) play key roles in tumour progression. Recent evidence suggests that TAMs critically modulate the efficacy of anticancer therapies, raising the prospect of their targeting in human cancer. In a large retrospective cohort study involving 110 patients with pancreatic ductal adenocarcinoma (PDAC), we assessed the density of CD68-TAM immune reactive area (%IRA) at the tumour-stroma interface and addressed their prognostic relevance in relation to postsurgical adjuvant chemotherapy (CTX). In vitro, we dissected the synergism of CTX and TAMs. In human PDAC, TAMs predominantly exhibited an immunoregulatory profile, characterised by expression of scavenger receptors (CD206, CD163) and production of interleukin 10 (IL-10). Surprisingly, while the density of TAMs associated to worse prognosis and distant metastasis, CTX restrained their protumour prognostic significance. High density of TAMs at the tumour-stroma interface positively dictated prognostic responsiveness to CTX independently of T-cell density. Accordingly, in vitro, gemcitabine-treated macrophages became tumoricidal, activating a cytotoxic gene expression programme, inhibiting their protumoural effect and switching to an antitumour phenotype. In patients with human PDAC, neoadjuvant CTX was associated to a decreased density of CD206(+) and IL-10(+) TAMs at the tumour-stroma interface. Overall, our data highlight TAMs as critical determinants of prognostic responsiveness to CTX and provide clinical and in vitro evidence that CTX overall directly re-educates TAMs to restrain tumour progression. These results suggest that the quantification of TAMs could be exploited to select patients more likely to respond to CTX and provide the basis for novel strategies aimed at re-educating macrophages in the context of CTX. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  10. hMena+11a Isoform Serves as a Marker of Epithelial Phenotype and Sensitivity to EGFR Inhibition in Human Pancreatic Cancer Cell Lines

    Science.gov (United States)

    Pino, Maria S.; Balsamo, Michele; Di Modugno, Francesca; Mottolese, Marcella; Alessio, Massimo; Melucci, Elisa; Milella, Michele; McConkey, David J.; Philippar, Ulrike; Gertler, Frank B.; Natali, Pier Giorgio; Nistico, Paola

    2008-01-01

    Purpose hMena, member of the Ena/VASP protein family, is a cytoskeletal protein that is involved in the regulation of cell motility and adhesion. The aim of this study was to determine whether or not the expression of hMena isoforms correlated with sensitivity to EGFR tyrosine kinase inhibitors and could serve as markers with potential clinical use. Experimental design Human pancreatic ductal adenocarcinoma (PDAC) cell lines were characterized for in vitro sensitivity to erlotinib, expression of HER family receptors, markers of epithelial to mesenchymal transition (EMT), and expression of hMena and its isoform hMena+11a. The effects of EGF and erlotinib on hMena expression as well as the effect of hMena knock-down on cell proliferation were also evaluated. Results hMena was detected in all of the pancreatic tumor cell lines tested as well as in the majority of the human tumor samples [primary (92%) and metastatic (86%)]. Intriguingly, in vitro hMena+11a isoform was specifically associated with an epithelial phenotype, EGFR dependency and sensitivity to erlotinib. In epithelial BxPC3 cells EGF upregulated hMena/hMena+11a and erlotinib downregulated expression. hMena knock-down reduced cell proliferation and MAPK and AKT activation in BxPC3 cells and promoted the growth inhibitory effects of erlotinib. Conclusions Collectively, our data indicate that the hMena+11a isoform is associated with an epithelial phenotype and identifies EGFR dependent cell lines that are sensitive to the EGFR inhibitor erlotinib. The availability of anti-hMena+11a specific probes may offer a new tool in pancreatic cancer management if these results can be verified prospectively in cancer patients. PMID:18676769

  11. Human equilibrative nucleoside transporter 1, as a predictor of 5-fluorouracil resistance in human pancreatic cancer.

    Science.gov (United States)

    Tsujie, Masanori; Nakamori, Shoji; Nakahira, Shin; Takahashi, Yuji; Hayashi, Nobuyasu; Okami, Jiro; Nagano, Hiroaki; Dono, Keizo; Umeshita, Koji; Sakon, Masato; Monden, Morito

    2007-01-01

    The purpose of this study was to find a novel biomarker to predict 5-fluorouracil (5-FU) or gemcitabine (2',2'-difluoro-deoxycytidine) sensitivity in pancreatic cancer. The relationship between 5-FU and gemcitabine sensitivity and the mRNA levels of human equilibrative nucleoside transporter 1 (hENT1), thymidylate synthase (TS) and dihydropyrimidine dehydrogenase (DPD) was investigated using seven types of human pancreatic carcinoma cell line (AsPC1, BxPC3, MiaPaCa-2, PSN1, Panc1, PCI6, and KMP-4). Quantitative mRNA expression was measured by LightCycler. A [3H] gemcitabine cellular uptake assay was performed to examine the inhibition of hENT1 by nitrobenzylmercaptoprine ribonucleoside (NBMPR). The expression levels of hENT1 mRNA significantly correlated with the IC50 value of 5-FU in all seven lines and also correlated with gemcitabine resistance in six lines (except AsPC1). No significant association was observed between TS or DPD mRNA levels and 5-FU sensitivity. In the PSN1 cells, [3H] gemcitabine uptake via hENT1 was significantly inhibited by NBMPR, and 5-FU sensitivity was significantly increased when the cells were pretreated with NBMPR. Our results suggest that hENT1 plays an important role in 5-FU resistance and that hENT1 mRNA levels might be a useful marker to predict 5-FU sensitivity in pancreatic cancer.

  12. αv integrin: a new gastrin target in human pancreatic cancer cells.

    Science.gov (United States)

    Cayrol, Celine; Bertrand, Claudine; Kowalski-Chauvel, Aline; Daulhac, Laurence; Cohen-Jonathan-Moyal, Elizabeth; Ferrand, Audrey; Seva, Catherine

    2011-10-28

    To analyse αv integrin expression induced by gastrin in pancreatic cancer models. αv integrin mRNA expression in human pancreatic cancer cells was analysed using a "cancer genes" array and confirmed by real-time reverse transcription-polymerase chain reaction (PCR). Western blotting and semi-quantitative immunohistochemistry were used to examine protein levels in human pancreatic cancer cell lines and pancreatic tissues, respectively. The role of αv integrin on gastrin-induced cell adhesion was examined using blocking anti-αv integrin monoclonal antibodies. Adherent cells were quantified by staining with crystal violet. Using a "cancer genes" array we identified αv integrin as a new gastrin target gene in human pancreatic cancer cells. A quantitative real-time PCR approach was used to confirm αv integrin gene expression. We also demonstrate that Src family kinases and the PI 3-kinase, two signalling pathways specifically activated by the CCK-2 receptor (CCK2R), are involved in gastrin-mediated αv integrin expression. In contrast, inhibition of the ERK pathway was without any effect on αv integrin expression induced by gastrin. Our results also show that gastrin modulates cell adhesion via αv integrins. Indeed, in vitro adhesion assays performed on fibronectin show that gastrin significantly increases adhesion of pancreatic cancer cells. The use of blocking anti-αv integrin monoclonal antibodies completely reversed the increase in cell-substrate adhesion induced by gastrin. In addition, we showed in vivo that the targeted CCK2R expression in the pancreas of Elas-CCK2 mice, leads to the overexpression of αv integrin. This process may contribute to pancreatic tumour development observed in these transgenic animals. αv integrin is a new gastrin target in pancreatic cancer models and contributes to gastrin effects on cell adhesion.

  13. Production of Secretory Leucocyte Protease Inhibitor (SLPI in Human Pancreatic β-Cells

    Directory of Open Access Journals (Sweden)

    Max Nyström

    1999-01-01

    Full Text Available Secretory leucocyte protease inhibitor (SLPI is a potent inhibitor of granulocyte elastase and cathepsin G, and also an inhibitor of pancreatic enzymes like trypsin, chymotrypsin and pancreatic elastase. SLPI has also been shown to inhibit HIV-1 infections by blocking viral DNA synthesis. Since SLPI is an inhibitor of pancreatic proteases we wished to investigate whether SLPI was also actually produced in the pancreas. M-RNA from human pancreatic tissue showed evidence of SLPI production using the reverse transcriptase polymer chain reaction technique (RTPCR. Using immunohistochemical methods SLPI was demonstrated in the β-ce1ls of the islets of Langerhans. The function could be local protease/antiprotease regulation or antiviral/antibacterial defence in the close vicinity of the cell surface, or even inside the β-cell itself.

  14. Lacrimal gland ductal carcinomas

    DEFF Research Database (Denmark)

    Andreasen, Simon; Grauslund, Morten; Heegaard, Steffen

    2017-01-01

    PURPOSE: Ductal carcinomas (DCs) of the lacrimal gland are very rare but aggressive malignancies. We investigated DC of the lacrimal gland for potentially clinically actionable targets in the search for new therapeutic options. METHODS: Case 1: A 77-year-old man, presented with diplopia...... HER2 amplification was found in cases 2 and 3. CONCLUSION: This study identified a spectrum of genetic events and pattern of protein expression in DC of the lacrimal gland similar to a subset of carcinomas of the breast and ductal carcinomas of the salivary glands. For therapeutic purposes...

  15. Production of engineered human pancreatic ribonucleases, solving expression and purification problems, and enhancing thermostability.

    Science.gov (United States)

    Canals, A; Ribó, M; Benito, A; Bosch, M; Mombelli, E; Vilanova, M

    1999-10-01

    Human pancreatic ribonuclease, the homolog of bovine pancreatic ribonuclease, has a significant therapeutic potential. Its study has been hindered by the difficulty of obtaining the enzyme in a pure and homogeneous form, either from human source or using heterologous expression. Engineering of different variants of human pancreatic ribonuclease has allowed us to study and overcome some problems encountered during its heterologous production in an Escherichia coli system and its purification from inclusion bodies. The 5'-end region of the mRNA that encodes the enzyme is critical for obtaining high expression levels. The results also suggest the importance of the proline 50 residue in the recovery yields of human pancreatic ribonuclease. All the variants produced are pure and homogeneous. Their homogeneity has been demonstrated by cation-exchange and reversed-phase chromatography and by mass spectrometry analysis. Moreover, enhancement of human pancreatic ribonuclease thermal stability is observed when residues R4, K6, Q9, D16, and S17 are changed to the corresponding residues of bovine seminal ribonuclease. Copyright 1999 Academic Press.

  16. Danish Pancreatic Cancer Database

    DEFF Research Database (Denmark)

    Fristrup, Claus; Detlefsen, Sönke; Palnæs Hansen, Carsten

    2016-01-01

    AIM OF DATABASE: The Danish Pancreatic Cancer Database aims to prospectively register the epidemiology, diagnostic workup, diagnosis, treatment, and outcome of patients with pancreatic cancer in Denmark at an institutional and national level. STUDY POPULATION: Since May 1, 2011, all patients......, and survival. The results are published annually. CONCLUSION: The Danish Pancreatic Cancer Database has registered data on 2,217 patients with microscopically verified ductal adenocarcinoma of the pancreas. The data have been obtained nationwide over a period of 4 years and 2 months. The completeness...

  17. Pancreatic Cancer Genetics.

    Science.gov (United States)

    Amundadottir, Laufey T

    2016-01-01

    Although relatively rare, pancreatic tumors are highly lethal [1]. In the United States, an estimated 48,960 individuals will be diagnosed with pancreatic cancer and 40,560 will die from this disease in 2015 [1]. Globally, 337,872 new pancreatic cancer cases and 330,391 deaths were estimated in 2012 [2]. In contrast to most other cancers, mortality rates for pancreatic cancer are not improving; in the US, it is predicted to become the second leading cause of cancer related deaths by 2030 [3, 4]. The vast majority of tumors arise in the exocrine pancreas, with pancreatic ductal adenocarcinoma (PDAC) accounting for approximately 95% of tumors. Tumors arising in the endocrine pancreas (pancreatic neuroendocrine tumors) represent less than 5% of all pancreatic tumors [5]. Smoking, type 2 diabetes mellitus (T2D), obesity and pancreatitis are the most consistent epidemiological risk factors for pancreatic cancer [5]. Family history is also a risk factor for developing pancreatic cancer with odds ratios (OR) ranging from 1.7-2.3 for first-degree relatives in most studies, indicating that shared genetic factors may play a role in the etiology of this disease [6-9]. This review summarizes the current knowledge of germline pancreatic cancer risk variants with a special emphasis on common susceptibility alleles identified through Genome Wide Association Studies (GWAS).

  18. Hereditary pancreatitis for the endoscopist

    Science.gov (United States)

    Patel, Milan R.; Eppolito, Amanda L.

    2013-01-01

    Hereditary pancreatitis shares a majority of clinical and morphologic features with chronic alcoholic pancreatitis, but may present at an earlier age. The term hereditary pancreatitis has primarily been associated with mutations in the serine protease 1 gene (PRSS1) which encodes for cationic trypsinogen. PRSS1 mutations account for approximately 68–81% of hereditary pancreatitis. Mutations in other genes, primarily serine protease inhibitor Kazal type 1 (SPINK1) and the cystic fibrosis transmembrane conductance regulator (CFTR) are also associated with hereditary pancreatitis. While chronic alcoholic pancreatitis may develop in the fourth or fifth decades, patients with hereditary pancreatitis may develop symptoms in the first or second decades of life. Hereditary pancreatitis is diagnosed either by detecting a causative gene mutation or by the presence of chronic pancreatitis in two first-degree or three second-degree relatives, in two or more generations, without precipitating factors and with a negative workup for known causes. Patients with hereditary pancreatitis may have recurrent acute pancreatitis and may develop pancreatic exocrine and endocrine insufficiency. Hereditary pancreatitis may involve premature trypsinogen activation or decreased control of trypsin. Recurrent inflammation can lead to acute pancreatitis and subsequently to chronic pancreatitis with parenchymal calcification. There is a markedly increased risk of pancreatic carcinoma compared with the general population. Patients are often referred for evaluation of pancreatitis, biliary or pancreatic ductal dilatation, jaundice, biliary obstruction, pancreatic duct stone or stricture, pancreatic pseudocysts, and for evaluation for malignancy. Medical treatment includes pancreatic enzyme supplementation, nutritional supplementation, diabetes management, and palliation of pain. Patients should avoid tobacco use and alcohol exposure. Hereditary pancreatitis is reviewed and recommendations for

  19. Hepatobiliary and pancreatic ascariasis

    Science.gov (United States)

    Khuroo, Mohammad S; Rather, Ajaz A; Khuroo, Naira S; Khuroo, Mehnaaz S

    2016-01-01

    Hepatobiliary and pancreatic ascariasis (HPA) was described as a clinical entity from Kashmir, India in 1985. HPA is caused by invasion and migration of nematode, Ascaris lumbricoides, in to the biliary tract and pancreatic duct. Patients present with biliary colic, cholangitis, cholecystitis, hepatic abscesses and acute pancreatitis. Ascarides traverse the ducts repeatedly, get trapped and die, leading to formation of hepatolithiasis. HPA is ubiquitous in endemic regions and in Kashmir, one such region, HPA is the etiological factor for 36.7%, 23%, 14.5% and 12.5% of all biliary diseases, acute pancreatitis, liver abscesses and biliary lithiasis respectively. Ultrasonography is an excellent diagnostic tool in visualizing worms in gut lumen and ductal system. The rational treatment for HPA is to give appropriate treatment for clinical syndromes along with effective anthelmintic therapy. Endotherapy in HPA is indicated if patients continue to have symptoms on medical therapy or when worms do not move out of ductal lumen by 3 wk or die within the ducts. The worms can be removed from the ductal system in most of the patients and such patients get regression of symptoms of hepatobiliary and pancreatic disease. PMID:27672273

  20. Lithotripsy of Pancreatic Stones in a Patient with Cystic Fibrosis: Successful Treatment of Abdominal Pain

    Directory of Open Access Journals (Sweden)

    AA Weiss

    1992-01-01

    Full Text Available Endoscopic pancreatic sphincteroromy and removal of pancreatic stones has been helpful in selected cases of patients with chronic pancreatitis. This article reports the case of an 18-year-old native Indian woman with cystic fibrosis who was experiencing pain related to pancreatitis, complicated by pancreatic duct stricture and lithiasis. Subsequent dilation of the pancreatic stricture and lithotripsy of the pancreatic ductal stones successfully eliminated the abdominal pain

  1. Lithotripsy of Pancreatic Stones in a Patient with Cystic Fibrosis: Successful Treatment of Abdominal Pain

    OpenAIRE

    Weiss, AA; Greig, JM; Fache, S

    1992-01-01

    Endoscopic pancreatic sphincteroromy and removal of pancreatic stones has been helpful in selected cases of patients with chronic pancreatitis. This article reports the case of an 18-year-old native Indian woman with cystic fibrosis who was experiencing pain related to pancreatitis, complicated by pancreatic duct stricture and lithiasis. Subsequent dilation of the pancreatic stricture and lithotripsy of the pancreatic ductal stones successfully eliminated the abdominal pain

  2. GNAS(R201H) and Kras(G12D) cooperate to promote murine pancreatic tumorigenesis recapitulating human intraductal papillary mucinous neoplasm.

    Science.gov (United States)

    Taki, K; Ohmuraya, M; Tanji, E; Komatsu, H; Hashimoto, D; Semba, K; Araki, K; Kawaguchi, Y; Baba, H; Furukawa, T

    2016-05-05

    Intraductal papillary mucinous neoplasm (IPMN), the most common pancreatic cystic neoplasm, is known to progress to invasive ductal adenocarcinoma. IPMNs commonly harbor activating somatic mutations in GNAS and KRAS, primarily GNAS(R201H) and KRAS(G12D). GNAS encodes the stimulatory G-protein α subunit (Gsα) that mediates a stimulatory signal to adenylyl cyclase to produce cyclic adenosine monophosphate (cAMP), subsequently activating cAMP-dependent protein kinase A. The GNAS(R201H) mutation results in constitutive activation of Gsα. To study the potential role of GNAS in pancreatic tumorigenesis in vivo, we generated lines of transgenic mice in which the transgene consisted of Lox-STOP-Lox (LSL)-GNAS(R201H) under the control of the CAG promoter (Tg(CAG-LSL-GNAS)). These mice were crossed with pancreatic transcription factor 1a (Ptf1a)-Cre mice (Ptf1a(Cre/+)), generating Tg(CAG-LSL-GNAS);Ptf1a(Cre/+) mice. This mouse line showed elevated cAMP levels, small dilated tubular complex formation, loss of acinar cells and fibrosis in the pancreas; however, no macroscopic tumorigenesis was apparent by 2 months of age. We then crossed Tg(CAG-LSL-GNAS);Ptf1a(Cre/+) mice with LSL-Kras(G12D) mice, generating Tg(CAG-LSL-GNAS);LSL-Kras(G12D);Ptf1a(Cre/+) mice. We used these mice to investigate a possible cooperative effect of GNAS(R201H) and Kras(G12D) in pancreatic tumorigenesis. Within 5 weeks, Tg(CAG-LSL-GNAS);LSL-Kras(G12D);Ptf1a(Cre/+) mice developed a cystic tumor consisting of marked dilated ducts lined with papillary dysplastic epithelia in the pancreas, which closely mimicked the human IPMN. Our data strongly suggest that activating mutations in GNAS and Kras cooperatively promote murine pancreatic tumorigenesis, which recapitulates IPMN. Our mouse model may serve as a unique in vivo platform to find biomarkers and effective drugs for diseases associated with GNAS mutations.

  3. Demonstration of pepsinogen C in human pancreatic islets

    DEFF Research Database (Denmark)

    Poulsen, Steen Seier

    1987-01-01

    Pancreatic tissue from 16 post mortem kidney donors have been examined for the content of pepsinogens. A zymogen with electrophoretic mobility, isoelectric point and molecular weight equal to that of pepsinogen C of gastric origin was found in all specimens. A comparison between pepsinogen C extr...

  4. Nintedanib, a triple angiokinase inhibitor, enhances cytotoxic therapy response in pancreatic cancer

    OpenAIRE

    Awasthi, Niranjan; Hinz, Stefan; Brekken, Rolf A.; Schwarz, Margaret A; Schwarz, Roderich E.

    2014-01-01

    Angiogenesis remains a sensible target for pancreatic ductal adenocarcinoma (PDAC) therapy. VEGF, PDGF, FGF and their receptors are expressed at high levels and correlate with poor prognosis in human PDAC. Nintedanib is a triple angiokinase inhibitor that targets VEGFR1/2/3, FGFR1/2/3 and PDGFRα/β signaling. We investigated the antitumor activity of nintedanib alone or in combination with the cytotoxic agent gemcitabine in experimental PDAC. Nintedanib inhibited proliferation of cells from mu...

  5. Notch signaling pathway targeted therapy suppresses tumor progression and metastatic spread in pancreatic cancer

    OpenAIRE

    Yabuuchi, Shinichi; Pai, Shweta G; Campbell, Nathaniel R.; de F. Wilde, Roeland; Oliveira,Elizabeth de; Korangath, Preethi; Streppel, Mirte; Rasheed, Zeshaan A.; Hidalgo, Manuel; Maitra, Anirban; Rajeshkumar, N.V.

    2013-01-01

    Pancreatic ductal adenocarcinoma (PDA) remains a lethal human malignancy with historically limited success in treatment. The role of aberrant Notch signaling, which requires the constitutive activation of γ-secretase, in the initiation and progression of PDA is well defined and inhibitors of this pathway are currently in clinical trials. Here we investigated the in vivo therapeutic effect of PF-03084014, a selective γ-secretase inhibitor, alone and in combination with gemcitabine in pancreati...

  6. Adenosine receptors in rat and human pancreatic ducts stimulate chloride transport

    DEFF Research Database (Denmark)

    Novak, Ivana; Hede, Susanne; Hansen, Mette

    2007-01-01

    these could be involved in secretory processes, which involve cystic fibrosis transmembrane regulator (CFTR) Cl(-) channels or Ca(2+)-activated Cl(-) channels and [Formula: see text] transporters. Reverse transcriptase polymerase chain reaction analysis on rat pancreatic ducts and human duct cell......, it was found that 58% of PANC-1 cells responded to adenosine, whereas only 9% of CFPAC-1 cells responded. Adenosine elicited Ca(2+) signals only in a few rat and human duct cells, which did not seem to correlate with Cl(-) signals. A(2A) receptors were localized in the luminal membranes of rat pancreatic ducts...

  7. Autoimmune Pancreatitis.

    Science.gov (United States)

    Majumder, Shounak; Takahashi, Naoki; Chari, Suresh T

    2017-07-01

    Autoimmune pancreatitis (AIP) is a chronic fibroinflammatory disease of the pancreas that belongs to the spectrum of immunoglobulin G-subclass4-related diseases (IgG4-RD) and typically presents with obstructive jaundice. Idiopathic duct-centric pancreatitis (IDCP) is a closely related but distinct disease that mimics AIP radiologically but manifests clinically most commonly as recurrent acute pancreatitis in young individuals with concurrent inflammatory bowel disease. IgG4 levels are often elevated in AIP and normal in IDCP. Histologically, lymphoplasmacytic acinar inflammation and storiform fibrosis are seen in both. In addition, the histologic hallmark of IDCP is the granulocyte epithelial lesion: intraluminal and intraepithelial neutrophils in medium-sized and small ducts with or without granulocytic acinar inflammation often associated with destruction of ductal architecture. Initial treatment of both AIP and IDCP is with oral corticosteroids for duration of 4 weeks followed by a gradual taper. Relapses are common in AIP and relatively uncommon in IDCP, a relatively rare disease for which the natural history is not well understood. For patients with relapsing AIP, treatment with immunomodulators and more recently rituximab has been recommended. Although rare instances of pancreaticobiliary malignancy has been reported in patients with AIP, overall the lifetime risk of developing pancreatic cancer does not appear to be elevated.

  8. Hereditary pancreatic cancer: related syndromes and clinical perspective

    OpenAIRE

    Carrera, Sergio; Sancho, Aintzane; Azkona, Eider; Azkuna, Josune; Lopez-Vivanco, Guillermo

    2017-01-01

    Pancreatic cancer is a very aggressive disease with a poor prognosis. The majority of them are attributed to sporadic causes, especially to many modifiable risk factors such as tobacco or alcohol abuse. The principal histologic subtype of pancreatic cancer is ductal adenocarcinoma. Pancreatic neuroendocrine tumors, which constitute a more indolent entity, represent second type of pancreatic cancer in terms of incidence. Individuals with a family history of pancreatic cancer carry an increased...

  9. Characterization of primary cilia and Hedgehog signaling during development of the human pancreas and in human pancreatic duct cancer cell lines

    DEFF Research Database (Denmark)

    Nielsen, Sonja K; Møllgård, Kjeld; Clement, Christian A

    2008-01-01

    Hedgehog (Hh) signaling controls pancreatic development and homeostasis; aberrant Hh signaling is associated with several pancreatic diseases. Here we investigated the link between Hh signaling and primary cilia in the human developing pancreatic ducts and in cultures of human pancreatic duct...... adenocarcinoma cell lines, PANC-1 and CFPAC-1. We show that the onset of Hh signaling from human embryogenesis to fetal development is associated with accumulation of Hh signaling components Smo and Gli2 in duct primary cilia and a reduction of Gli3 in the duct epithelium. Smo, Ptc, and Gli2 localized to primary...

  10. Ductal-lobar organisation of human breast tissue, its relevance in disease and a research objective: vector mapping of parenchyma in complete breasts (the Astley Cooper project)

    Science.gov (United States)

    Going, James J

    2006-01-01

    A human breast has many lobes, which are highly variable in size and shape, each with one central duct, its peripheral branches and their associated glandular tissues. Realising the potential of new endoductal approaches to breast diagnosis and improving our understanding of breast cancer precursors will require greatly improved knowledge of this ductal-lobar anatomy and the distribution of cancer precursors within it. This architecture is very challenging to study in its entirety: whole-breast lobe mapping has only been achieved for two human breasts. Clearly, much more efficient techniques are required. Streamlined data capture and visualisation of breast parenchymal anatomy from thin and thick sections in a vector format would allow integrated mapping of whole-breast structure with conventional histology and molecular data. The 'Astley Cooper digital breast mapping project' is proposed as a name for this achievable research objective. Success would offer new insights into the development of breast cancer precursor lesions, allow testing of the important 'sick lobe' hypothesis, improve correlation with imaging studies and provide 'ground truth' for mathematical modelling of breast growth. PMID:16879731

  11. Morphological study of pancreatic duct in red jungle fowl | Kadhim ...

    African Journals Online (AJOL)

    Neither goblet cells nor ductal glands were found in the pancreatic ducts. Secretion of both neutral and sulfated materials by the epithelial lining the pancreatic ducts, suggesting that they are acting not only to facilitate the transport of the pancreatic juice, but also as a protective barrier to protect the gland from autodigestion.

  12. GLP-1 receptor localization in monkey and human tissue

    DEFF Research Database (Denmark)

    Pyke, Charles; Heller, R Scott; Kirk, Rikke Kaae

    2014-01-01

    and increase heart rate. Using a new monoclonal antibody for immunohistochemistry, we detected GLP-1 receptor (GLP-1R) in important target organs in humans and monkeys. In the pancreas, GLP-1R was predominantly localized in β-cells with a markedly weaker expression in acinar cells. Pancreatic ductal epithelial...

  13. Surgical treatment of pain in chronic pancreatitis

    Directory of Open Access Journals (Sweden)

    Stefanović Dejan

    2006-01-01

    Full Text Available INTRODUCTION: The principal indication for surgical intervention in chronic pancreatitis is intractable pain. Depending upon the presence of dilated pancreatic ductal system, pancreatic duct drainage procedures and different kinds of pancreatic resections are applied. OBJECTIVE: The objective of the study was to show the most appropriate procedure to gain the most possible benefits in dependence of type of pathohistological process in chronic pancreatitis. METHOD: Our study included 58 patients with intractable pain caused by chronic pancreatitis of alcoholic genesis. The first group consisted of 30 patients with dilated pancreatic ductal system more than 10 mm. The second group involved 28 patients without dilated pancreatic ductal system. Pain relief, weight gain and glucose tolerance were monitored. RESULTS: All patients of Group I (30 underwent latero-lateral pancreaticojejunal - Puestow operation. 80% of patients had no pain after 6 month, 13.6% had rare pain and 2 patients, i.e. 6.4%, who continued to consume alcohol, had strong pain. Group II consisting of 28 patients was without dilated pancreatic ductal system. This group was subjected to various types of pancreatic resections. Whipple procedure (W was done in 6 patients, pylorus preserving Whipple (PPW in 7 cases, and duodenum preserving cephalic pancreatectomy (DPCP was performed in 15 patients. Generally, 89.2% of patients had no pain 6 month after the operation. An average weight gain was 1.9 kg in W group, 2.8 kg in PPW group and 4.1 kg in DPCP group. Insulin-dependent diabetes was recorded in 66.6% in W group, 57.1% in PPW group and 0% in DPCP group. CONCLUSION: According to our opinion, DPCP may be considered the procedure of choice for surgical treatment of pain in chronic pancreatitis in patients without dilatation of pancreas ductal system because of no serious postoperative metabolic consequences.

  14. Differential diagnosis of small solid pancreatic lesions

    DEFF Research Database (Denmark)

    Dietrich, Christoph Frank; Sahai, Anand Vasante; D'Onofrio, Mirko

    2016-01-01

    BACKGROUND AND AIMS: Pancreatic ductal adenocarcinoma (PDAC) is typically diagnosed at a late stage. Little is known about the incidental finding of early-stage PDAC. The aim of the current study was to determine the etiology of small solid pancreatic lesions (≤15 mm) to optimize clinical managem...

  15. GEMMs as preclinical models for testing pancreatic cancer therapies.

    Science.gov (United States)

    Gopinathan, Aarthi; Morton, Jennifer P; Jodrell, Duncan I; Sansom, Owen J

    2015-10-01

    Pancreatic ductal adenocarcinoma is the most common form of pancreatic tumour, with a very limited survival rate and currently no available disease-modifying treatments. Despite recent advances in the production of genetically engineered mouse models (GEMMs), the development of new therapies for pancreatic cancer is still hampered by a lack of reliable and predictive preclinical animal models for this disease. Preclinical models are vitally important for assessing therapies in the first stages of the drug development pipeline, prior to their transition to the clinical arena. GEMMs carry mutations in genes that are associated with specific human diseases and they can thus accurately mimic the genetic, phenotypic and physiological aspects of human pathologies. Here, we discuss different GEMMs of human pancreatic cancer, with a focus on the Lox-Stop-Lox (LSL)-Kras(G12D); LSL-Trp53(R172H); Pdx1-cre (KPC) model, one of the most widely used preclinical models for this disease. We describe its application in preclinical research, highlighting its advantages and disadvantages, its potential for predicting clinical outcomes in humans and the factors that can affect such outcomes, and, finally, future developments that could advance the discovery of new therapies for pancreatic cancer. © 2015. Published by The Company of Biologists Ltd.

  16. GEMMs as preclinical models for testing pancreatic cancer therapies

    Directory of Open Access Journals (Sweden)

    Aarthi Gopinathan

    2015-10-01

    Full Text Available Pancreatic ductal adenocarcinoma is the most common form of pancreatic tumour, with a very limited survival rate and currently no available disease-modifying treatments. Despite recent advances in the production of genetically engineered mouse models (GEMMs, the development of new therapies for pancreatic cancer is still hampered by a lack of reliable and predictive preclinical animal models for this disease. Preclinical models are vitally important for assessing therapies in the first stages of the drug development pipeline, prior to their transition to the clinical arena. GEMMs carry mutations in genes that are associated with specific human diseases and they can thus accurately mimic the genetic, phenotypic and physiological aspects of human pathologies. Here, we discuss different GEMMs of human pancreatic cancer, with a focus on the Lox-Stop-Lox (LSL-KrasG12D; LSL-Trp53R172H; Pdx1-cre (KPC model, one of the most widely used preclinical models for this disease. We describe its application in preclinical research, highlighting its advantages and disadvantages, its potential for predicting clinical outcomes in humans and the factors that can affect such outcomes, and, finally, future developments that could advance the discovery of new therapies for pancreatic cancer.

  17. Curcumin Inhibits Tumor Growth and Angiogenesis in an Orthotopic Mouse Model of Human Pancreatic Cancer

    Directory of Open Access Journals (Sweden)

    Sabrina Bimonte

    2013-01-01

    Full Text Available Pancreatic cancer is a malignant neoplasm originating from transformed cells arising in tissues forming the pancreas. The best chemotherapeutic agent used to treat pancreatic cancer is the gemcitabine. However, gemcitabine treatment is associated with many side effects. Thus novel strategies involving less toxic agents for treatment of pancreatic cancer are necessary. Curcumin is one such agent that inhibits the proliferation and angiogenesis of a wide variety of tumor cells, through the modulation of many cell signalling pathways. In this study, we investigated whether curcumin plays antitumor effects in MIA PaCa-2 cells. In vitro studies showed that curcumin inhibits the proliferation and enhances apoptosis of MIA PaCa-2 cells. To test whether the antitumor activity of curcumin is also observed in vivo, we generated an orthotopic mouse model of pancreatic cancer by injection of MIA PaCa-2 cells in nude mice. We placed mice on diet containing curcumin at 0.6% for 6 weeks. In these treated mice tumors were smaller with respect to controls and showed a downregulation of the transcription nuclear factor NF-κB and NF-κB-regulated gene products. Overall, our data indicate that curcumin has a great potential in treatment of human pancreatic cancer through the modulation of NF-κB pathway.

  18. Involvement of Endoplasmic Reticulum Stress in Capsaicin-Induced Apoptosis of Human Pancreatic Cancer Cells

    Directory of Open Access Journals (Sweden)

    Shengzhang Lin

    2013-01-01

    Full Text Available Capsaicin, main pungent ingredient of hot chilli peppers, has been shown to have anticarcinogenic effect on various cancer cells through multiple mechanisms. In this study, we investigated the apoptotic effect of capsaicin on human pancreatic cancer cells in both in vitro and in vivo systems, as well as the possible mechanisms involved. In vitro, treatment of both the pancreatic cancer cells (PANC-1 and SW1990 with capsaicin resulted in cells growth inhibition, G0/G1 phase arrest, and apoptosis in a dose-dependent manner. Knockdown of growth arrest- and DNA damage-inducible gene 153 (GADD153, a marker of the endoplasmic-reticulum-stress- (ERS- mediated apoptosis pathway, by specific siRNA attenuated capsaicin-induced apoptosis both in PANC-1 and SW1990 cells. Moreover, in vivo studies capsaicin effectively inhibited the growth and metabolism of pancreatic cancer and prolonged the survival time of pancreatic cancer xenograft tumor-induced mice. Furthermore, capsaicin increased the expression of some key ERS markers, including glucose-regulated protein 78 (GRP78, phosphoprotein kinase-like endoplasmic reticulum kinase (phosphoPERK, and phosphoeukaryotic initiation factor-2α (phospho-eIF2α, activating transcription factor 4 (ATF4 and GADD153 in tumor tissues. In conclusion, we for the first time provide important evidence to support the involvement of ERS in the induction of apoptosis in pancreatic cancer cells by capsaicin.

  19. Concomitant targeting of multiple key transcription factors effectively disrupts cancer stem cells enriched in side population of human pancreatic cancer cells.

    Directory of Open Access Journals (Sweden)

    Xiyan Wang

    Full Text Available A major challenge in the treatment of pancreatic ductal adenocarcinoma is the failure of chemotherapy, which is likely due to the presence of the cancer stem cells (CSCs.To identify side population (SP cells and characterize s-like properties in human pancreatic cancer cell lines (h-PCCLs and to exploit the efficacy of concomitant targeting of multiple key transcription factors governing the stemness of pancreatic CSCs in suppressing CSC-like phenotypes.Flow cytometry and Hoechst 33342 DNA-binding dye efflux assay were used to sort SP and non-SP (NSP cells from three h-PCCLs: PANC-1, SW1990, and BxPc-3. The self-renewal ability, invasiveness, migration and drug resistance of SP cells were evaluated. Expression of CSC marker genes was analyzed. Tumorigenicity was assessed using a xenograft model in nude mice. Effects of a complex decoy oligonucleotide (cdODN-SCO designed to simultaneously targeting Sox2, Oct4 and c-Myc were assessed.CSCs were enriched in the side proportion (SP cells contained in the h-PCCLs and they possessed aggressive growth, invasion, migration and drug-resistance properties, compared with NSP cells. SP cells overexpressed stem cell markers CD133 and ALDH1, pluripotency maintaining factors Nanog, Sox2 and Oct4, oncogenic transcription factor c-Myc, signaling molecule Notch1, and drug resistant gene ABCG2. Moreover, SP cells consistently demonstrated significantly greater tumorigenicity than NSP cells in xenograft model of nude mice. CdODN-SOC efficiently suppressed all CSC properties and phenotypes, and minimized the tumorigenic capability of the SP cells and the resistance to chemotherapy. By comparison, the negative control failed to do so.The findings indicate that targeting the key genes conferring the stemness of CSCs can efficiently eliminate CSC-like phenotypes, and thus may be considered a new approach for cancer therapy. Specifically, the present study establishes the combination of Sox2/Oct4/c-Myc targeting as a

  20. Data-Driven Prioritization and Review of Targets for Molecular-Based Theranostic Approaches in Pancreatic Cancer

    NARCIS (Netherlands)

    Koller, Marjory; Hartmans, Elmire; de Groot, Derk Jan A.; Zhao, Xiao Juan; van Dam, Gooitzen M.; Nagengast, Wouter B.; Fehrmann, Rudolf S. N.

    2017-01-01

    Molecularly targeted therapeutic and imaging strategies directed at aberrant signaling pathways in pancreatic tumor cells may improve the poor outcome of pancreatic ductal adenocarcinoma (PDA). Therefore, relevant molecular targets need to be identified.  Methods: We collected publicly available

  1. Towards consistent generation of pancreatic lineage progenitors from human pluripotent stem cells.

    Science.gov (United States)

    Rostovskaya, Maria; Bredenkamp, Nicholas; Smith, Austin

    2015-10-19

    Human pluripotent stem cells can in principle be used as a source of any differentiated cell type for disease modelling, drug screening, toxicology testing or cell replacement therapy. Type I diabetes is considered a major target for stem cell applications due to the shortage of primary human beta cells. Several protocols have been reported for generating pancreatic progenitors by in vitro differentiation of human pluripotent stem cells. Here we first assessed one of these protocols on a panel of pluripotent stem cell lines for capacity to engender glucose sensitive insulin-producing cells after engraftment in immunocompromised mice. We observed variable outcomes with only one cell line showing a low level of glucose response. We, therefore, undertook a systematic comparison of different methods for inducing definitive endoderm and subsequently pancreatic differentiation. Of several protocols tested, we identified a combined approach that robustly generated pancreatic progenitors in vitro from both embryo-derived and induced pluripotent stem cells. These findings suggest that, although there are intrinsic differences in lineage specification propensity between pluripotent stem cell lines, optimal differentiation procedures may consistently direct a substantial fraction of cells into pancreatic specification. © 2015 The Authors.

  2. Nanotopography Promotes Pancreatic Differentiation of Human Embryonic Stem Cells and Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Kim, Jong Hyun; Kim, Hyung Woo; Cha, Kyoung Je; Han, Jiyou; Jang, Yu Jin; Kim, Dong Sung; Kim, Jong-Hoon

    2016-03-22

    Although previous studies suggest that nanotopographical features influence properties and behaviors of stem cells, only a few studies have attempted to derive clinically useful somatic cells from human pluripotent stem cells using nanopatterned surfaces. In the present study, we report that polystyrene nanopore-patterned surfaces significantly promote the pancreatic differentiation of human embryonic and induced pluripotent stem cells. We compared different diameters of nanopores and showed that 200 nm nanopore-patterned surfaces highly upregulated the expression of PDX1, a critical transcription factor for pancreatic development, leading to an approximately 3-fold increase in the percentage of differentiating PDX1(+) pancreatic progenitors compared with control flat surfaces. Furthermore, in the presence of biochemical factors, 200 nm nanopore-patterned surfaces profoundly enhanced the derivation of pancreatic endocrine cells producing insulin, glucagon, or somatostatin. We also demonstrate that nanopore-patterned surface-induced upregulation of PDX1 is associated with downregulation of TAZ, suggesting the potential role of TAZ in nanopore-patterned surface-mediated mechanotransduction. Our study suggests that appropriate cytokine treatments combined with nanotopographical stimulation could be a powerful tool for deriving a high purity of desired cells from human pluripotent stem cells.

  3. Pancreatic Cancer: Molecular Characterization, Clonal Evolution and Cancer Stem Cells

    Science.gov (United States)

    Pelosi, Elvira; Castelli, Germana

    2017-01-01

    Pancreatic Ductal Adenocarcinoma (PDAC) is the fourth most common cause of cancer-related death and is the most lethal of common malignancies with a five-year survival rate of pancreatic intraepithelial neoplasia. The genetic landscape of PDAC is characterized by the presence of four frequently-mutated genes: KRAS, CDKN2A, TP53 and SMAD4. The development of mouse models of PDAC has greatly contributed to the understanding of the molecular and cellular mechanisms through which driver genes contribute to pancreatic cancer development. Particularly, oncogenic KRAS-driven genetically-engineered mouse models that phenotypically and genetically recapitulate human pancreatic cancer have clarified the mechanisms through which various mutated genes act in neoplasia induction and progression and have led to identifying the possible cellular origin of these neoplasias. Patient-derived xenografts are increasingly used for preclinical studies and for the development of personalized medicine strategies. The studies of the purification and characterization of pancreatic cancer stem cells have suggested that a minority cell population is responsible for initiation and maintenance of pancreatic adenocarcinomas. The study of these cells could contribute to the identification and clinical development of more efficacious drug treatments. PMID:29156578

  4. Identification of markers for quiescent pancreatic stellate cells in the normal human pancreas.

    Science.gov (United States)

    Nielsen, Michael Friberg Bruun; Mortensen, Michael Bau; Detlefsen, Sönke

    2017-10-01

    Pancreatic stellate cells (PSCs) play a central role as source of fibrogenic cells in pancreatic cancer and chronic pancreatitis. In contrast to quiescent hepatic stellate cells (qHSCs), a specific marker for quiescent PSCs (qPSCs) that can be used in formalin-fixed and paraffin embedded (FFPE) normal human pancreatic tissue has not been identified. The aim of this study was to identify a marker enabling the identification of qPSCs in normal human FFPE pancreatic tissue. Immunohistochemical (IHC), double-IHC, immunofluorescence (IF) and double-IF analyses were carried out using a tissue microarray consisting of cores with normal human pancreatic tissue. Cores with normal human liver served as control. Antibodies directed against adipophilin, α-SMA, CD146, CRBP-1, cytoglobin, desmin, GFAP, nestin, S100A4 and vinculin were examined, with special emphasis on their expression in periacinar cells in the normal human pancreas and perisinusoidal cells in the normal human liver. The immunolabelling capacity was evaluated according to a semiquantitative scoring system. Double-IF of the markers of interest together with markers for other periacinar cells was performed. Moreover, the utility of histochemical stains for the identification of human qPSCs was examined, and their ultrastructure was revisited by electron microscopy. Adipophilin, CRBP-1, cytoglobin and vinculin were expressed in qHSCs in the liver, whereas cytoglobin and adipophilin were expressed in qPSCs in the pancreas. Adipophilin immunohistochemistry was highly dependent on the preanalytical time interval (PATI) from removal of the tissue to formalin fixation. Cytoglobin, S100A4 and vinculin were expressed in periacinar fibroblasts (FBs). The other examined markers were negative in human qPSCs. Our data indicate that cytoglobin and adipophilin are markers of qPSCs in the normal human pancreas. However, the use of adipophilin as a qPSC marker may be limited due to its high dependence on optimal PATI

  5. Serum Metabolomic Profiles for Human Pancreatic Cancer Discrimination

    Directory of Open Access Journals (Sweden)

    Takao Itoi

    2017-04-01

    Full Text Available This study evaluated the clinical use of serum metabolomics to discriminate malignant cancers including pancreatic cancer (PC from malignant diseases, such as biliary tract cancer (BTC, intraductal papillary mucinous carcinoma (IPMC, and various benign pancreaticobiliary diseases. Capillary electrophoresismass spectrometry was used to analyze charged metabolites. We repeatedly analyzed serum samples (n = 41 of different storage durations to identify metabolites showing high quantitative reproducibility, and subsequently analyzed all samples (n = 140. Overall, 189 metabolites were quantified and 66 metabolites had a 20% coefficient of variation and, of these, 24 metabolites showed significant differences among control, benign, and malignant groups (p < 0.05; Steel–Dwass test. Four multiple logistic regression models (MLR were developed and one MLR model clearly discriminated all disease patients from healthy controls with an area under receiver operating characteristic curve (AUC of 0.970 (95% confidential interval (CI, 0.946–0.994, p < 0.0001. Another model to discriminate PC from BTC and IPMC yielded AUC = 0.831 (95% CI, 0.650–1.01, p = 0.0020 with higher accuracy compared with tumor markers including carcinoembryonic antigen (CEA, carbohydrate antigen 19-9 (CA19-9, pancreatic cancer-associated antigen (DUPAN2 and s-pancreas-1 antigen (SPAN1. Changes in metabolomic profiles might be used to screen for malignant cancers as well as to differentiate between PC and other malignant diseases.

  6. Critical evaluation of pancreatic masses

    Directory of Open Access Journals (Sweden)

    John DeWitt

    2012-01-01

    Full Text Available Evaluation of a patient with a pancreatic mass on a CT or MRI requires consideration of the gender and age of the patient, presenting symptoms, quality of the imaging study performed and relevant medical history. CT is generally preferred over MRI for suspected pancreatic cancer but MRI is best considered for evaluation of ductal anatomy and possible cystic neoplasms. EUS should be considered when further characterization of morphology or tissue sampling is required.

  7. Transferrin receptor regulates pancreatic cancer growth by modulating mitochondrial respiration and ROS generation

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Seung Min, E-mail: smjeong@catholic.ac.kr [Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 137-701 (Korea, Republic of); Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul 137-701 (Korea, Republic of); Hwang, Sunsook; Seong, Rho Hyun [School of Biological Sciences and Institute of Molecular Biology and Genetics, Seoul National University, Seoul 151-742 (Korea, Republic of)

    2016-03-11

    The transferrin receptor (TfR1) is upregulated in malignant cells and its expression is associated with cancer progression. Because of its pre-eminent role in cell proliferation, TfR1 has been an important target for the development of cancer therapy. Although TfR1 is highly expressed in pancreatic cancers, what it carries out in these refractory cancers remains poorly understood. Here we report that TfR1 supports mitochondrial respiration and ROS production in human pancreatic ductal adenocarcinoma (PDAC) cells, which is required for their tumorigenic growth. Elevated TfR1 expression in PDAC cells contributes to oxidative phosphorylation, which allows for the generation of ROS. Importantly, mitochondrial-derived ROS are essential for PDAC growth. However, exogenous iron supplement cannot rescue the defects caused by TfR1 knockdown. Moreover, we found that TfR1 expression determines PDAC cells sensitivity to oxidative stress. Together, our findings reveal that TfR1 can contribute to the mitochondrial respiration and ROS production, which have essential roles in growth and survival of pancreatic cancer. - Highlights: • Pancreatic ductal adenocarcinoma (PDAC) exhibits an elevated transferrin receptor (TfR1) expression in comparison with non-transformed pancreatic cells. • TfR1 is required for PDAC growth by regulating mitochondrial respiration and ROS production. • TfR1 functions as a determinant of cell viability to oxidative stress in PDAC cells.

  8. Pancreatitis - slideshow

    Science.gov (United States)

    ... gov/ency/presentations/100149.htm Pancreatitis - series—Normal anatomy To use the sharing features on this page, ... Bethesda, MD 20894 U.S. Department of Health and Human Services National Institutes of Health Page last updated: ...

  9. [Pancreatic acinar neoplasms : Comparative molecular characterization].

    Science.gov (United States)

    Bergmann, F

    2016-11-01

    Pancreatic acinar cell carcinomas are biologically aggressive neoplasms for which treatment options are very limited. The molecular mechanisms of tumor initiation and progression are largely not understood and precursor lesions have not yet been identified. In this study, pancreatic acinar cell carcinomas were cytogenetically characterized as well as by molecular and immunohistochemical analyses. Corresponding investigations were carried out on pancreatic ductal adenocarcinomas and pancreatic neuroendocrine neoplasms augmented by functional analyses. We show that pancreatic acinar cell carcinomas display a microsatellite stable, chromosomal unstable genotype, characterized by recurrent chromosomal imbalances that clearly discriminate them from pancreatic ductal adenocarcinomas and neuroendocrine neoplasms. Based on findings obtained from comparative genomic hybridization, candidate genes could be identified, such as deleted in colorectal cancer (DCC) and c-MYC. Furthermore, several therapeutic targets were identified in acinar cell carcinomas and other pancreatic neoplasms, including epidermal growth factor receptor (EGFR), L1 cell adhesion molecule (L1CAM) and heat shock protein 90 (HSP90). Moreover, L1CAM was shown to play a significant role in the tumorigenesis of pancreatic ductal adenocarcinoma. Functional analyses in cell lines derived from pancreatic neuroendocrine neoplasms revealed promising anti-tumorigenic effects using EGFR and HSP90 inhibitors affecting the cell cycle and in the case of HSP90, regulating several other oncogenes. Finally, based on mutational analyses of mitochondrial DNA, molecular evidence is provided that acinar cell cystadenomas (or better cystic acinar transformation) represent non-clonal lesions, suggesting an inflammatory reactive non-neoplastic nature.

  10. Epidemiology and potential mechanisms of tobacco smoking and heavy alcohol consumption in pancreatic cancer.

    Science.gov (United States)

    Duell, Eric J

    2012-01-01

    Tobacco smoking represents an important known cause of ductal pancreatic adenocarcinoma. Recent data from pooled analyses in consortia involving multiple case-control and cohort studies suggest that heavy (but not moderate or light) alcohol consumption also may increase pancreatic cancer risk. Animal and human evidence indicate that tobacco carcinogens and metabolites may act in concert and have both genetic and epigenetic effects at early and later stages in pancreatic tumorigenesis. One of the more important tobacco-related carcinogens, NNK, probably acts via multiple pathways. Heavy alcohol consumption may increase pancreatic cancer risk by potentiating the effects of other risk factors such as tobacco smoking, poor nutrition, and inflammatory pathways related to chronic pancreatitis, but also may have independent genetic and epigenetic effects. Animal and human studies of tobacco- and alcohol-related pancreatic carcinogenesis suggest multi-modal, overlapping mechanistic pathways. Tobacco smoking and heavy alcohol consumption are preventable exposures, and their avoidance would substantially decrease the burden of pancreatic cancer worldwide. Copyright © 2011 Wiley Periodicals, Inc.

  11. Distinct internalization pathways of human amylin monomers and its cytotoxic oligomers in pancreatic cells.

    Directory of Open Access Journals (Sweden)

    Saurabh Trikha

    Full Text Available Toxic human amylin oligomers and aggregates are implicated in the pathogenesis of type 2 diabetes mellitus (TTDM. Although recent studies have shown that pancreatic cells can recycle amylin monomers and toxic oligomers, the exact uptake mechanism and trafficking routes of these molecular forms and their significance for amylin toxicity are yet to be determined. Using pancreatic rat insulinoma (RIN-m5F beta (β-cells and human islets as model systems we show that monomers and oligomers cross the plasma membrane (PM through both endocytotic and non-endocytotic (translocation mechanisms, the predominance of which is dependent on amylin concentrations and incubation times. At low (≤ 100 nM concentrations, internalization of amylin monomers in pancreatic cells is completely blocked by the selective amylin-receptor (AM-R antagonist, AC-187, indicating an AM-R dependent mechanism. In contrast at cytotoxic (µM concentrations monomers initially (1 hour enter pancreatic cells by two distinct mechanisms: translocation and macropinocytosis. However, during the late stage (24 hours monomers internalize by a clathrin-dependent but AM-R and macropinocytotic independent pathway. Like monomers a small fraction of the oligomers initially enter cells by a non-endocytotic mechanism. In contrast a majority of the oligomers at both early (1 hour and late times (24 hours traffic with a fluid-phase marker, dextran, to the same endocytotic compartments, the uptake of which is blocked by potent macropinocytotic inhibitors. This led to a significant increase in extra-cellular PM accumulation, in turn potentiating amylin toxicity in pancreatic cells. Our studies suggest that macropinocytosis is a major but not the only clearance mechanism for both amylin's molecular forms, thereby serving a cyto-protective role in these cells.

  12. Chronic pancreatitis

    Science.gov (United States)

    Chronic pancreatitis - chronic; Pancreatitis - chronic - discharge; Pancreatic insufficiency - chronic; Acute pancreatitis - chronic ... abuse over many years. Repeated episodes of acute pancreatitis can lead to chronic pancreatitis. Genetics may be ...

  13. Acute Suppuration of the Pancreatic Duct in a Patient with Tropical Pancreatitis

    Directory of Open Access Journals (Sweden)

    Liliane S. Deeb

    2008-01-01

    Full Text Available Background/Aim: Pancreatic sepsis secondary to infected necrosis, pseudocyst, or pancreatic abscess is a well-known clinical entity. Acute suppuration of the pancreatic duct (ASPD in the setting of chronic calcific pancreatitis and pancreatic ductal obstruction with septicemia is a rare complication that is seldom reported. It is our aim to report a case of ASPD with Klebsiella ornithinolytica, in the absence of pancreatic abscess or infected necrosis. Case Report: A 46-year-old Asian-Indian man with chronic tropical pancreatitis who was admitted with recurrent epigastric pain that rapidly evolved into septic shock. A CT scan of abdomen revealed a dilated pancreatic duct with a large calculus. Broad-spectrum antibiotics, vasopressors and activated recombinant protein C were initiated. Emergency ERCP showed the papilla of Vater spontaneously expelling pus. Probing and stenting was instantly performed until pus drainage ceased. Repeat CT scan confirmed the absence of pancreatic necrosis or fluid collection, and decreasing ductal dilatation. Dramatic clinical improvement was observed within 36 hours after intervention. Blood cultures grew Klebsiella ornithinolytica. The patient completed his antibiotic course and was discharged. Conclusion: ASPD without pancreatic abscess or infected necrosis is an exceptional clinical entity that should be included in the differential diagnosis of pancreatic sepsis. A chronically diseased pancreas and diabetes may have predisposed to the uncommon pathogen. The presence of intraductal pancreatic stones obstructing outflow played a major role in promoting bacterial growth, suppuration and septicemia. Immediate drainage of the pancreatic duct with endoscopic intervention is critical and mandatory.

  14. Growth Factor Independence-1 (Gfi1) Is Required for Pancreatic Acinar Unit Formation and Centroacinar Cell Differentiation

    DEFF Research Database (Denmark)

    Qu, Xiaoling; Nyeng, Pia; Xiao, Fan

    2015-01-01

    BACKGROUND & AIMS: The genetic specification of the compartmentalized pancreatic acinar/centroacinar unit is poorly understood. Growth factor independence-1 (Gfi1) is a zinc finger transcriptional repressor that regulates hematopoietic stem cell maintenance, pre-T-cell differentiation, formation...... of pancreatic acinar cells as well as the centroacinar cells (CACs) in Gfi1(-/-) mice when compared with wild-type littermates. Pancreatic endocrine differentiation, islet architecture, and function were unaffected. Organ domain patterning and the formation of ductal cells occurred normally during the murine...... of granulocytes, inner ear hair cells, and the development of secretory cell types in the intestine. As GFI1/Gfi1 is expressed in human and rodent pancreas, we characterized the potential function of Gfi1 in mouse pancreatic development. METHODS: Gfi1 knockout mice were analyzed at histological and molecular...

  15. Human pancreatic islet-derived extracellular vesicles modulate insulin expression in 3D-differentiating iPSC clusters.

    Directory of Open Access Journals (Sweden)

    Diana Ribeiro

    Full Text Available It has been suggested that extracellular vesicles (EVs can mediate crosstalk between hormones and metabolites within pancreatic tissue. However, the possible effect of pancreatic EVs on stem cell differentiation into pancreatic lineages remains unknown. Herein, human islet-derived EVs (h-Islet-EVs were isolated, characterized and subsequently added to human induced pluripotent stem cell (iPSC clusters during pancreatic differentiation. The h-islet-EVs had a mean size of 117±7 nm and showed positive expression of CD63 and CD81 EV markers as measured by ELISA. The presence of key pancreatic transcription factor mRNA, such as NGN3, MAFA and PDX1, and pancreatic hormone proteins such as C-peptide and glucagon, were confirmed in h-Islet-EVs. iPSC clusters were differentiated in suspension and at the end stages of the differentiation protocol, the mRNA expression of the main pancreatic transcription factors and pancreatic hormones was increased. H-Islet-EVs were supplemented to the iPSC clusters in the later stages of differentiation. It was observed that h-Islet-EVs were able to up-regulate the intracellular levels of C-peptide in iPSC clusters in a concentration-dependent manner. The effect of h-Islet-EVs on the differentiation of iPSC clusters cultured in 3D-collagen hydrogels was also assessed. Although increased mRNA expression for pancreatic markers was observed when culturing the iPSC clusters in 3D-collagen hydrogels, delivery of EVs did not affect the insulin or C-peptide intracellular content. Our results provide new information on the role of h-Islet-EVs in the regulation of insulin expression in differentiating iPSC clusters, and are highly relevant for pancreatic tissue engineering applications.

  16. Frequencies and prognostic role of KRAS and BRAF mutations in patients with localized pancreatic and ampullary adenocarcinomas

    DEFF Research Database (Denmark)

    Schultz, Nicolai Aagaard; Roslind, Anne; Christensen, Ib J

    2012-01-01

    The frequencies and prognostic role of KRAS and BRAF mutations in patients operated on for pancreatic ductal adenocarcinomas (PDACs) and ampullary adenocarcinomas (A-ACs) are scantily studied.......The frequencies and prognostic role of KRAS and BRAF mutations in patients operated on for pancreatic ductal adenocarcinomas (PDACs) and ampullary adenocarcinomas (A-ACs) are scantily studied....

  17. Type 3c (pancreatogenic) diabetes mellitus secondary to chronic pancreatitis and pancreatic cancer

    Science.gov (United States)

    Hart, Phil A; Bellin, Melena D; Andersen, Dana K; Bradley, David; Cruz-Monserrate, Zobeida; Forsmark, Christopher E; Goodarzi, Mark O; Habtezion, Aida; Korc, Murray; Kudva, Yogish C; Pandol, Stephen J; Yadav, Dhiraj; Chari, Suresh T

    2017-01-01

    Diabetes mellitus is a group of diseases defined by persistent hyperglycaemia. Type 2 diabetes, the most prevalent form, is characterised initially by impaired insulin sensitivity and subsequently by an inadequate compensatory insulin response. Diabetes can also develop as a direct consequence of other diseases, including diseases of the exocrine pancreas. Historically, diabetes due to diseases of the exocrine pancreas was described as pancreatogenic or pancreatogenous diabetes mellitus, but recent literature refers to it as type 3c diabetes. It is important to note that type 3c diabetes is not a single entity; it occurs because of a variety of exocrine pancreatic diseases with varying mechanisms of hyperglycaemia. The most commonly identified causes of type 3c diabetes are chronic pancreatitis, pancreatic ductal adenocarcinoma, haemochromatosis, cystic fibrosis, and previous pancreatic surgery. In this Review, we discuss the epidemiology, pathogenesis, and clinical relevance of type 3c diabetes secondary to chronic pancreatitis and pancreatic ductal adenocarcinoma, and highlight several important knowledge gaps. PMID:28404095

  18. HUMAN PANCREATIC POLYPEPTIDE IN A PHOSPHOLIPID BASED MICELLAR FORMULATION

    Science.gov (United States)

    Banerjee, Amrita; Onyuksel, Hayat

    2012-01-01

    Purpose Pancreatic polypeptide (PP) has important glucoregulatory functions and thereby holds significance in the treatment of diabetes and obesity. However, short plasma half-life and aggregation propensity of PP in aqueous solution, limits its therapeutic application. To address these issues, we prepared and characterized a formulation of PP in sterically stabilized micelles (SSM) that protects and stabilizes PP in its active conformation. Methods PP-SSM was prepared by incubating PP with SSM dispersion in buffer. Peptide-micelle association and freeze-drying efficacy of the formulation was characterized in phosphate buffers with or without sodium chloride using dynamic light scattering, fluorescence spectroscopy and circular dichroism. The degradation kinetics of PP-SSM in presence of proteolytic enzyme was determined using HPLC and bioactivity of the formulation was evaluated by in vitro cAMP inhibition. Results PP self-associated with SSM and this interaction was influenced by presence/absence of sodium chloride in the buffer. The formulation was effectively lyophilized, demonstrating feasibility for its long-term storage. The stability of peptide against proteolytic degradation was significantly improved and PP in SSM retained its bioactivity in vitro. Conclusions Self-association of PP with phospholipid micelles addressed the delivery issues of the peptide. This PP nanomedicine should be further developed for the treatment of diabetes. PMID:22399387

  19. Purinergic regulation of CFTR and Ca2+ -activated Cl- channels and K+ channels in human pancreatic duct epithelium

    DEFF Research Database (Denmark)

    Wang, Jing; Haanes, Kristian A; Novak, Ivana

    2013-01-01

    pancreatic secretion. In the present study we aim to identify Cl(-) and K(+) channels in human pancreatic ducts and their regulation by purinergic receptors. Human pancreatic duct epithelia formed by Capan-1 or CFPAC-1 cells were studied in open-circuit Ussing chambers. In Capan-1 cells, ATP/UTP effects were.......1). The apical effects of ATP/UTP were greatly potentiated by the IK channel opener DC-EBIO. Determination of RNA and protein levels revealed that Capan-1 cells have high expression of TMEM16A (ANO1), a likely CaCC candidate. We conclude that in human pancreatic duct cells ATP/UTP regulates via purinergic...... dependent on intracellular Ca(2+). Apically applied ATP/UTP stimulated CF transmembrane conductance regulator (CFTR) and Ca(2+)-activated Cl(-) (CaCC) channels, which were inhibited by CFTRinh-172 and niflumic acid, respectively. The basolaterally applied ATP stimulated CFTR. In CFPAC-1 cells, which have...

  20. Increased levels of 3-hydroxykynurenine parallel disease severity in human acute pancreatitis

    OpenAIRE

    Christos Skouras; Xiaozhong Zheng; Margaret Binnie; Homer, Natalie Z.M.; Murray, Toby B. J.; Darren Robertson; Lesley Briody; Finny Paterson; Heather Spence; Lisa Derr; Hayes, Alastair J; Andreas Tsoumanis; Dawn Lyster; Parks, Rowan W; O. James Garden

    2016-01-01

    Inhibition of kynurenine 3-monooxygenase (KMO) protects against multiple organ dysfunction (MODS) in experimental acute pancreatitis (AP). We aimed to precisely define the kynurenine pathway activation in relation to AP and AP-MODS in humans, by carrying out a prospective observational study of all persons presenting with a potential diagnosis of AP for 90 days. We sampled peripheral venous blood at 0, 3, 6, 12, 24, 48, 72 and 168 hours post-recruitment. We measured tryptophan metabolite conc...

  1. Involvement of ribonucleotide reductase M1 subunit overexpression in gemcitabine resistance of human pancreatic cancer.

    Science.gov (United States)

    Nakahira, Shin; Nakamori, Shoji; Tsujie, Masanori; Takahashi, Yuji; Okami, Jiro; Yoshioka, Shinichi; Yamasaki, Makoto; Marubashi, Shigeru; Takemasa, Ichiro; Miyamoto, Atsushi; Takeda, Yutaka; Nagano, Hiroaki; Dono, Keizo; Umeshita, Koji; Sakon, Masato; Monden, Morito

    2007-03-15

    Pancreatic cancer is the most lethal of all solid tumors partially because of its chemoresistance. Although gemcitabine is widely used as a first selected agent for the treatment of this disease despite low response rate, molecular mechanisms of gemcitabine resistance in pancreatic cancer still remain obscure. The aim of this study is to elucidate the mechanisms of gemcitabine resistance. The 81-fold gemcitabine resistant variant MiaPaCa2-RG was selected from pancreatic cancer cell line MiaPaCa2. By microarray analysis between MiaPaCa2 and MiaPaCa2-RG, 43 genes (0.04%) were altered expression of more than 2-fold. The most upregulated gene in MiaPaCa2-RG was ribonucleotide reductase M1 subunit (RRM1) with 4.5-fold up-regulation. Transfection with RRM1-specific RNAi suppressed more than 90% of RRM1 mRNA and protein expression. After RRM1-specific RNAi transfection, gemcitabine chemoresistance of MiaPaCa2-RG was reduced to the same level of MiaPaCa2. The 18 recurrent pancreatic cancer patients treated by gemcitabine were divided into 2 groups by RRM1 levels. There was a significant association between gemcitabine response and RRM1 expression (p = 0.018). Patients with high RRM1 levels had poor survival after gemcitabine treatment than those with low RRM1 levels (p = 0.016). RRM1 should be a key molecule in gemcitabine resistance in human pancreatic cancer through both in vitro and clinical models. RRM1 may have the potential as predictor and modulator of gemcitabine treatment. (c) 2006 Wiley-Liss, Inc.

  2. A Scalable System for Production of Functional Pancreatic Progenitors from Human Embryonic Stem Cells

    Science.gov (United States)

    Schulz, Thomas C.; Young, Holly Y.; Agulnick, Alan D.; Babin, M. Josephine; Baetge, Emmanuel E.; Bang, Anne G.; Bhoumik, Anindita; Cepa, Igor; Cesario, Rosemary M.; Haakmeester, Carl; Kadoya, Kuniko; Kelly, Jonathan R.; Kerr, Justin; Martinson, Laura A.; McLean, Amanda B.; Moorman, Mark A.; Payne, Janice K.; Richardson, Mike; Ross, Kelly G.; Sherrer, Eric S.; Song, Xuehong; Wilson, Alistair Z.; Brandon, Eugene P.; Green, Chad E.; Kroon, Evert J.; Kelly, Olivia G.; D’Amour, Kevin A.; Robins, Allan J.

    2012-01-01

    Development of a human embryonic stem cell (hESC)-based therapy for type 1 diabetes will require the translation of proof-of-principle concepts into a scalable, controlled, and regulated cell manufacturing process. We have previously demonstrated that hESC can be directed to differentiate into pancreatic progenitors that mature into functional glucose-responsive, insulin-secreting cells in vivo. In this study we describe hESC expansion and banking methods and a suspension-based differentiation system, which together underpin an integrated scalable manufacturing process for producing pancreatic progenitors. This system has been optimized for the CyT49 cell line. Accordingly, qualified large-scale single-cell master and working cGMP cell banks of CyT49 have been generated to provide a virtually unlimited starting resource for manufacturing. Upon thaw from these banks, we expanded CyT49 for two weeks in an adherent culture format that achieves 50–100 fold expansion per week. Undifferentiated CyT49 were then aggregated into clusters in dynamic rotational suspension culture, followed by differentiation en masse for two weeks with a four-stage protocol. Numerous scaled differentiation runs generated reproducible and defined population compositions highly enriched for pancreatic cell lineages, as shown by examining mRNA expression at each stage of differentiation and flow cytometry of the final population. Islet-like tissue containing glucose-responsive, insulin-secreting cells was generated upon implantation into mice. By four- to five-months post-engraftment, mature neo-pancreatic tissue was sufficient to protect against streptozotocin (STZ)-induced hyperglycemia. In summary, we have developed a tractable manufacturing process for the generation of functional pancreatic progenitors from hESC on a scale amenable to clinical entry. PMID:22623968

  3. A scalable system for production of functional pancreatic progenitors from human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Thomas C Schulz

    Full Text Available Development of a human embryonic stem cell (hESC-based therapy for type 1 diabetes will require the translation of proof-of-principle concepts into a scalable, controlled, and regulated cell manufacturing process. We have previously demonstrated that hESC can be directed to differentiate into pancreatic progenitors that mature into functional glucose-responsive, insulin-secreting cells in vivo. In this study we describe hESC expansion and banking methods and a suspension-based differentiation system, which together underpin an integrated scalable manufacturing process for producing pancreatic progenitors. This system has been optimized for the CyT49 cell line. Accordingly, qualified large-scale single-cell master and working cGMP cell banks of CyT49 have been generated to provide a virtually unlimited starting resource for manufacturing. Upon thaw from these banks, we expanded CyT49 for two weeks in an adherent culture format that achieves 50-100 fold expansion per week. Undifferentiated CyT49 were then aggregated into clusters in dynamic rotational suspension culture, followed by differentiation en masse for two weeks with a four-stage protocol. Numerous scaled differentiation runs generated reproducible and defined population compositions highly enriched for pancreatic cell lineages, as shown by examining mRNA expression at each stage of differentiation and flow cytometry of the final population. Islet-like tissue containing glucose-responsive, insulin-secreting cells was generated upon implantation into mice. By four- to five-months post-engraftment, mature neo-pancreatic tissue was sufficient to protect against streptozotocin (STZ-induced hyperglycemia. In summary, we have developed a tractable manufacturing process for the generation of functional pancreatic progenitors from hESC on a scale amenable to clinical entry.

  4. Intraductal delivery of adenoviruses targets pancreatic tumors in transgenic Ela-myc mice and orthotopic xenografts.

    Science.gov (United States)

    José, Anabel; Sobrevals, Luciano; Miguel Camacho-Sánchez, Juan; Huch, Meritxell; Andreu, Núria; Ayuso, Eduard; Navarro, Pilar; Alemany, Ramon; Fillat, Cristina

    2013-01-01

    Gene-based anticancer therapies delivered by adenoviruses are limited by the poor viral distribution into the tumor. In the current work we have explored the feasibility of targeting pancreatic tumors through a loco-regional route. We have taken advantage of the ductal network in the pancreas to retrogradelly inject adenoviruses through the common bile duct in two different mouse models of pancreatic carcinogenesis: The transgenic Ela-myc mice that develop mixed neoplasms displaying both acinar-like and duct-like neoplastic cells affecting the whole pancreas; and mice bearing PANC-1 and BxPC-3 orthotopic xenografts that constitute a model of localized human neoplastic tumors. We studied tumor targeting and the anticancer effects of newly thymidine kinase-engineered adenoviruses both in vitro and in vivo, and conducted comparative studies between intraductal or intravenous administration. Our data indicate that the intraductal delivery of adenovirus efficiently targets pancreatic tumors in the two mouse models. The in vivo application of AduPARTKT plus ganciclovir (GCV) treatment induced tumor regression in Ela-myc mice. Moreover, the intraductal injection of ICOVIR15-TKT oncolytic adenoviruses significantly improved mean survival of mice bearing PANC-1 and BxPC-3 pancreatic xenografts from 30 to 52 days and from 20 to 68 days respectively (p less than 0.0001) when combined with GCV. Of notice, both AduPARTKT and ICOVIR15-TKT antitumoral responses were stronger by ductal viral application than intravenously, in line with the 38-fold increase in pancreas transduction observed upon ductal administration. In summary our data show that cytotoxic adenoviruses retrogradelly injected to the pancreas can be a feasible approach to treat localized pancreatic tumors.

  5. Nm23/nucleoside diphosphate kinase-A as a potent prognostic marker in invasive pancreatic ductal carcinoma identified by proteomic analysis of laser micro-dissected formalin-fixed paraffin-embedded tissue

    Directory of Open Access Journals (Sweden)

    Takadate Tatsuyuki

    2012-06-01

    Full Text Available Abstract Background Pancreatic cancer is among the most lethal malignancies worldwide. This study aimed to identify a novel prognostic biomarker, facilitating treatment selection, using mass spectrometry (MS-based proteomic analysis with formalin-fixed paraffin-embedded (FFPE tissue. Results The two groups with poor prognosis (n = 4 and with better prognosis (n = 4 had been carefully chosen among 96 resected cases of pancreatic cancer during 1998 to 2007 in Tohoku University Hospital. Although those 2 groups had adjusted background (UICC-Stage IIB, Grade2, R0, gemcitabine adjuvant, there was a significant difference in postoperative mean survival time (poor 21.0 months, better 58.1 months, P = 0.0067. Cancerous epithelial cells collected from FFPE tissue sections by laser micro-dissection (LMD were processed for liquid chromatography-tandem mass spectrometry (LC-MS/MS. In total, 1099 unique proteins were identified and 6 proteins showed different expressions in the 2 groups by semi-quantitative comparison. Among these 6 proteins, we focused on Nm23/Nucleoside Diphosphate Kinase A (NDPK-A and immunohistochemically confirmed its expression in the cohort of 96 cases. Kaplan-Meier analysis showed high Nm23/NDPK-A expression to correlate with significantly worse overall survival (P = 0.0103. Moreover, in the multivariate Cox regression model, Nm23/NDPK-A over-expression remained an independent predictor of poor survival with a hazard ratio of 1.97 (95% CI 1.16-3.56, P = 0.0110. Conclusions We identified 6 candidate prognostic markers for postoperative pancreatic cancer using FFPE tissues and immunohistochemically demonstrated high Nm23/NDPK-A expression to be a useful prognostic marker for pancreatic cancer.

  6. Neural plasticity in pancreatitis and pancreatic cancer.

    Science.gov (United States)

    Demir, Ihsan Ekin; Friess, Helmut; Ceyhan, Güralp O

    2015-11-01

    Pancreatic nerves undergo prominent alterations during the evolution and progression of human chronic pancreatitis and pancreatic cancer. Intrapancreatic nerves increase in size (neural hypertrophy) and number (increased neural density). The proportion of autonomic and sensory fibres (neural remodelling) is switched, and are infiltrated by perineural inflammatory cells (pancreatic neuritis) or invaded by pancreatic cancer cells (neural invasion). These neuropathic alterations also correlate with neuropathic pain. Instead of being mere histopathological manifestations of disease progression, pancreatic neural plasticity synergizes with the enhanced excitability of sensory neurons, with Schwann cell recruitment toward cancer and with central nervous system alterations. These alterations maintain a bidirectional interaction between nerves and non-neural pancreatic cells, as demonstrated by tissue and neural damage inducing neuropathic pain, and activated neurons releasing mediators that modulate inflammation and cancer growth. Owing to the prognostic effects of pain and neural invasion in pancreatic cancer, dissecting the mechanism of pancreatic neuroplasticity holds major translational relevance. However, current in vivo models of pancreatic cancer and chronic pancreatitis contain many discrepancies from human disease that overshadow their translational value. The present Review discusses novel possibilities for mechanistically uncovering the role of the nervous system in pancreatic disease progression.

  7. Increased expression of gap junction protein--connexin 32 in lymph node metastases of human ductal breast cancer.

    Directory of Open Access Journals (Sweden)

    Mariola Sulkowska

    2008-04-01

    Full Text Available Gap junctions are specialized cell membrane channels composed of connexins (Cxs, which mediate the direct passage of small molecules between adjacent cells. They are involved in the regulation of cell cycle, cell signaling and differentiation as well as probably invasion and metastasis. Up to now, Cx32 status in human breast cancer has not been studied. Consequently, the aim of the present study was the evaluation of the expression of connexin 32 (Cx32 in primary breast tumors (PTs and matched-paired metastases to lymph nodes (MLNs in correlation with selected clinicopathological features. Tissue samples from 79 women were examined by immunohistochemistry, using the streptavidin-biotin-peroxidase complex technique for Cx32. Cytoplasmic expression of Cx32 was detected in 31 of 79 breast cancers (39.2%. Both epithelial and myoepithelial cells of normal ducts adjacent to the tumor did not express Cx32. Increased expression of studied Cx was observed in metastases to lymph nodes relative to primary tumors. Additionally, Cx32-negative primary tumors developed Cx32-positive metastases. Statistical comparisons of Cx32 expression in the matched pairs indicate that this protein significantly increased in lymph node metastases compared to primary tumors (p<0.001. The expression of Cx32 in primary breast cancer was not statistically associated with age of patients, tumor size, lymph node status, but we observed a tendency toward association between Cx32 expression and histological differentiation. In conclusion, transformed cells may have an ability to produce Cxs also atypical for normal cells. Increased expression of Cx32 in metastases to the lymph nodes might reflect alteration in connexin gene transcription during breast carcinogenesis and finally, it may be a sign of more malignant phenotype of cancerous cells.

  8. Embelin suppresses growth of human pancreatic cancer xenografts, and pancreatic cancer cells isolated from KrasG12D mice by inhibiting Akt and Sonic hedgehog pathways.

    Directory of Open Access Journals (Sweden)

    Minzhao Huang

    Full Text Available Pancreatic cancer is a deadly disease, and therefore effective treatment and/or prevention strategies are urgently needed. The objectives of this study were to examine the molecular mechanisms by which embelin inhibited human pancreatic cancer cell growth in vitro, and xenografts in Balb C nude mice, and pancreatic cancer cell growth isolated from KrasG12D transgenic mice. XTT assays were performed to measure cell viability. AsPC-1 cells were injected subcutaneously into Balb c nude mice and treated with embelin. Cell proliferation and apoptosis were measured by Ki67 and TUNEL staining, respectively. The expression of Akt, and Sonic Hedgehog (Shh and their target gene products were measured by the immunohistochemistry, and Western blot analysis. The effects of embelin on pancreatic cancer cells isolated from 10-months old KrasG12D mice were also examined. Embelin inhibited cell viability in pancreatic cancer AsPC-1, PANC-1, MIA PaCa-2 and Hs 766T cell lines, and these inhibitory effects were blocked either by constitutively active Akt or Shh protein. Embelin-treated mice showed significant inhibition in tumor growth which was associated with reduced expression of markers of cell proliferation (Ki67, PCNA and Bcl-2 and cell cycle (cyclin D1, CDK2, and CDK6, and induction of apoptosis (activation of caspase-3 and cleavage of PARP, and increased expression of Bax. In addition, embelin inhibited the expression of markers of angiogenesis (COX-2, VEGF, VEGFR, and IL-8, and metastasis (MMP-2 and MMP-9 in tumor tissues. Antitumor activity of embelin was associated with inhibition of Akt and Shh pathways in xenografts, and pancreatic cancer cells isolated from KrasG12D mice. Furthermore, embelin also inhibited epithelial-to-mesenchymal transition (EMT by up-regulating E-cadherin and inhibiting the expression of Snail, Slug, and ZEB1. These data suggest that embelin can inhibit pancreatic cancer growth, angiogenesis and metastasis by suppressing Akt and

  9. Mechanisms of disease: chronic inflammation and cancer in the pancreas--a potential role for pancreatic stellate cells?

    Science.gov (United States)

    Algül, Hana; Treiber, Matthias; Lesina, Marina; Schmid, Roland M

    2007-08-01

    Late diagnosis and ineffective therapeutic options mean that pancreatic ductal adenocarcinoma (PDA) is one of the most lethal forms of human cancer. The identification of genetic alterations facilitated the launch of the Pancreatic Intraepithelial Neoplasm nomenclature, a standardized classification system for pancreatic duct lesions, but the factors that contribute to the development of such lesions and their progression to high-grade neoplasia remain obscure. Age, smoking, obesity and diabetes confer increased risk of PDA, and the presence of chronic pancreatitis is a consistent risk factor for pancreatic cancer. It is hypothesized that chronic inflammation generates a microenvironment that contributes to malignant transformation in the pancreas, as is known to occur in other organs. Pancreatic stellate cells (PSCs) are the main mediator of fibrogenesis during chronic pancreatitis, but their contribution to the development of PDA has not been elucidated. Data now suggest that PSCs might assume a linking role in inflammation-associated carcinogenesis through their ability to communicate with inflammatory cells, acinar cells, and pancreatic cancer cells in a complicated network of interactions. In this Review, the role of PSCs in the process of inflammation-associated carcinogenesis is discussed and new potential treatment options evaluated.

  10. Knowledge Gaps in Rodent Pancreas Biology: Taking Human Pluripotent Stem Cell-Derived Pancreatic Beta Cells into Our Own Hands.

    Science.gov (United States)

    Santosa, Munirah Mohamad; Low, Blaise Su Jun; Pek, Nicole Min Qian; Teo, Adrian Kee Keong

    2015-01-01

    In the field of stem cell biology and diabetes, we and others seek to derive mature and functional human pancreatic β cells for disease modeling and cell replacement therapy. Traditionally, knowledge gathered from rodents is extended to human pancreas developmental biology research involving human pluripotent stem cells (hPSCs). While much has been learnt from rodent pancreas biology in the early steps toward Pdx1(+) pancreatic progenitors, much less is known about the transition toward Ngn3(+) pancreatic endocrine progenitors. Essentially, the later steps of pancreatic β cell development and maturation remain elusive to date. As a result, the most recent advances in the stem cell and diabetes field have relied upon combinatorial testing of numerous growth factors and chemical compounds in an arbitrary trial-and-error fashion to derive mature and functional human pancreatic β cells from hPSCs. Although this hit-or-miss approach appears to have made some headway in maturing human pancreatic β cells in vitro, its underlying biology is vaguely understood. Therefore, in this mini-review, we discuss some of these late-stage signaling pathways that are involved in human pancreatic β cell differentiation and highlight our current understanding of their relevance in rodent pancreas biology. Our efforts here unravel several novel signaling pathways that can be further studied to shed light on unexplored aspects of rodent pancreas biology. New investigations into these signaling pathways are expected to advance our knowledge in human pancreas developmental biology and to aid in the translation of stem cell biology in the context of diabetes treatments.

  11. Expression of the Novel Costimulatory Molecule B7-H5 in Pancreatic Cancer.

    Science.gov (United States)

    Byers, Joshua T; Paniccia, Alessandro; Kaplan, Jeffrey; Koenig, Michelle; Kahn, Nate; Wilson, Lora; Chen, Lieping; Schulick, Richard D; Edil, Barish H; Zhu, Yuwen

    2015-12-01

    This study investigated how the B7-H5 protein, a new member of the B7 family, is expressed in normal human pancreas tissues and examined its expression changes in pancreatic cancer. In this analysis, B7-H5 expression was examined by immunohistochemical staining of frozen specimens from patients undergoing pancreatic resection. Membranous B7-H5 protein was expressed on normal ductal epithelium within the pancreas. Other cell types from the normal pancreas, such as acinar cells and islet cells, did not express B7-H5. In adenocarcinoma, B7-H5 staining was decreased or absent. Interestingly, B7-H5 expression in intraductal papillary mucinous neoplasms varied with grade. No B7-H5 expression was found with other cancer types such as neuroendocrine tumors, but normal ducts adjacent to tumors were highly positive. The findings showed that B7-H5 expression was restricted to ductal cells in the normal pancreas and the expression was downregulated in pancreatic adenocarcinomas. In addition, the findings showed that B7-H5 expression changes within different stages of dysplasia. The study suggests that loss of the B7-H5 signal may contribute to immune evasion of pancreatic adenocarcinoma. However future studies are needed.

  12. Long-acting lipidated analogue of human pancreatic polypeptide is slowly released into circulation

    DEFF Research Database (Denmark)

    Bellmann-Sickert, Kathrin; Elling, Christian E; Madsen, Andreas N

    2011-01-01

    The main disadvantages of peptide pharmaceuticals are their rapid degradation and excretion, their low hydrophilicity, and low shelf lifes. These bottlenecks can be circumvented by acylation with fatty acids (lipidation) or polyethylene glycol (PEGylation). Here, we describe the modification...... of a human pancreatic polypeptide analogue specific for the human (h)Y(2) and hY(4) receptor with PEGs of different size and palmitic acid. Receptor specificity was demonstrated by competitive binding studies. Modifications had only a small influence on binding affinities and no influence on secondary...

  13. Dietary energy balance modulation of Kras- and Ink4a/Arf+/--driven pancreatic cancer: the role of insulin-like growth factor-I.

    Science.gov (United States)

    Lashinger, Laura M; Harrison, Lauren M; Rasmussen, Audrey J; Logsdon, Craig D; Fischer, Susan M; McArthur, Mark J; Hursting, Stephen D

    2013-10-01

    New molecular targets and intervention strategies for breaking the obesity-pancreatic cancer link are urgently needed. Using relevant spontaneous and orthotopically transplanted murine models of pancreatic cancer, we tested the hypothesis that dietary energy balance modulation impacts pancreatic cancer development and progression through an insulin-like growth factor (IGF)-I-dependent mechanism. In LSL-Kras(G12D)/Pdx-1-Cre/Ink4a/Arf(lox/+) mice, calorie restriction versus overweight- or obesity-inducing diet regimens decreased serum IGF-I, tumoral Akt/mTOR signaling, pancreatic desmoplasia, and progression to pancreatic ductal adenocarcinoma (PDAC), and increased pancreatic tumor-free survival. Serum IGF-I, Akt/mTOR signaling, and orthotopically transplanted PDAC growth were decreased in liver-specific IGF-I-deficient mice (vs. wild-type mice), and rescued with IGF-I infusion. Thus, dietary energy balance modulation impacts spontaneous pancreatic tumorigenesis induced by mutant Kras and Ink4a deficiency, the most common genetic alterations in human pancreatic cancer. Furthermore, IGF-I and components of its downstream signaling pathway are promising mechanistic targets for breaking the obesity-pancreatic cancer link.

  14. Targeting of the P2X7 receptor in pancreatic cancer and stellate cells

    DEFF Research Database (Denmark)

    Giannuzzo, Andrea; Saccomano, Mara; Napp, Joanna

    2016-01-01

    The ATP-gated receptor P2X7 (P2X7R) is involved in regulation of cell survival and has been of interest in cancer field. Pancreatic ductal adenocarcinoma (PDAC) is a deadly cancer and new markers and therapeutic targets are needed. PDAC is characterized by a complex tumour microenvironment, which...... includes cancer and pancreatic stellate cells (PSCs), and potentially high nucleotide/side turnover. Our aim was to determine P2X7R expression and function in human pancreatic cancer cells in vitro as well as to perform in vivo efficacy study applying P2X7R inhibitor in an orthotopic xenograft mouse model...... into nude mice and tumour growth was followed noninvasively by bioluminescence imaging. AZ10606120-treated mice showed reduced bioluminescence compared to saline-treated mice. Immunohistochemical analysis confirmed P2X7R expression in cancer and PSC cells, and in metaplastic/neoplastic acinar and duct...

  15. Epithelial NEMO/IKKγ limits fibrosis and promotes regeneration during pancreatitis.

    Science.gov (United States)

    Chan, Lap Kwan; Gerstenlauer, Melanie; Konukiewitz, Björn; Steiger, Katja; Weichert, Wilko; Wirth, Thomas; Maier, Harald Jakob

    2017-11-01

    Inhibitory κB kinase (IKK)/nuclear factor κB (NF-κB) signalling has been implicated in the pathogenesis of pancreatitis, but its precise function has remained controversial. Here, we analyse the contribution of IKK/NF-κB signalling in epithelial cells to the pathogenesis of pancreatitis by targeting the IKK subunit NF-κB essential modulator (NEMO) (IKKγ), which is essential for canonical NF-κB activation. Mice with a targeted deletion of NEMO in the pancreas were subjected to caerulein pancreatitis. Pancreata were examined at several time points and analysed for inflammation, fibrosis, cell death, cell proliferation, as well as cellular differentiation. Human samples were used to corroborate findings established in mice. In acute pancreatitis, NEMO deletion in the pancreatic parenchyma resulted in minor changes during the early phase but led to the persistence of inflammatory and fibrotic foci in the recovery phase. In chronic pancreatitis, NEMO deletion aggravated inflammation and fibrosis, inhibited compensatory acinar cell proliferation, and enhanced acinar atrophy and acinar-ductal metaplasia. Gene expression analysis revealed sustained activation of profibrogenic genes and the CXCL12/CXCR4 axis in the absence of epithelial NEMO. In human chronic pancreatitis samples, the CXCL12/CXCR4 axis was activated as well, with CXCR4 expression correlating with the degree of fibrosis. The aggravating effects of NEMO deletion were attenuated by the administration of the CXCR4 antagonist AMD3100. Our results suggest that NEMO in epithelial cells exerts a protective effect during pancreatitis by limiting inflammation and fibrosis and improving acinar cell regeneration. The CXCL12/CXCR4 axis is an important mediator of that effect and may also be of importance in human chronic pancreatitis. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  16. Pancreatitis - discharge

    Science.gov (United States)

    Chronic pancreatitis - discharge; Pancreatitis - chronic - discharge; Pancreatic insufficiency - discharge; Acute pancreatitis - discharge ... You were in the hospital because you have pancreatitis. This is a swelling of the pancreas. You ...

  17. Hereditary Pancreatitis

    Science.gov (United States)

    ... E-News Sign-Up Home Hereditary Pancreatitis Hereditary Pancreatitis Hereditary Pancreatitis (HP) is a rare genetic condition characterized by ... of pancreatic attacks, which can progress to chronic pancreatitis . Symptoms include abdominal pain, nausea, and vomiting. Onset ...

  18. Pancreatic Enzymes

    Science.gov (United States)

    ... NOW HONOR/MEMORIAL GENERAL DONATION MONTHLY PURPLESTRIDE Pancreatic enzymes Home Facing Pancreatic Cancer Living with Pancreatic Cancer ... and see a registered dietitian. What are pancreatic enzymes? Pancreatic enzymes help break down fats, proteins and ...

  19. Pancreatitis and pancreatic trauma.

    Science.gov (United States)

    Stringer, Mark D

    2005-11-01

    Many pancreatic disorders in children benefit from a multidisciplinary approach. This is especially true for acute and chronic pancreatitis which has numerous and diverse etiologies. The current management of pancreatitis is reviewed, focusing on recent advances. Children with pancreatitis must be fully investigated, not least to select out those who benefit from specific surgical interventions. The treatment of pancreas divisum, pseudocysts, and fibrosing pancreatitis deserve particular consideration. Management of pancreatic injuries involving the main pancreatic duct is both variable and controversial. Treatment should be individualized depending on the site of injury, timing of referral, presence of associated injuries, and institutional expertise.

  20. Antitumor effect of Kanglaite® injection in human pancreatic cancer xenografts

    Science.gov (United States)

    2014-01-01

    Background Kanglaite® injection (KLT), with a main ingredient of Coix seed oil (a traditional Chinese medicine), has been widely used for cancer treatment in China. KLT has an inhibitory effect on many kinds of tumors and PI3K/Akt/mTOR signaling promotes cell survival, proliferation, and progression in cancer cells. Therefore, targeting this pathway may lead to the development of novel therapeutic approaches for human cancers. Methods Here, we examined the effects of KLT on the PI3K/Akt/mTOR pathway in pancreatic cancer xenografts in mice, and assessed its therapeutic potential. Growth and apoptosis of tumor xenografts were examined, and the expression levels of genes and proteins involved in the PI3K/Akt/mTOR pathway were measured by RT-PCR and western blotting, respectively. Results Our results revealed that KLT dramatically inhibited the growth of pancreatic cancer xenografts and induced apoptosis simultaneously. Furthermore, it downregulated the expression of phospho-Akt and phospho-mTOR. Conclusions These results suggest that KLT can suppress growth and induce apoptosis of pancreatic cancer xenografts. Moreover, KLT can downregulate the expression of phospho-Akt and phospho-mTOR to modulate the PI3K/Akt/mTOR signaling pathway. PMID:25005526

  1. Efficient Generation of Glucose-Responsive Beta Cells from Isolated GP2+ Human Pancreatic Progenitors

    DEFF Research Database (Denmark)

    Ameri, Jacqueline; Borup, Rehannah; Prawiro, Christy

    2017-01-01

    Stem cell-based therapy for type 1 diabetes would benefit from implementation of a cell purification step at the pancreatic endoderm stage. This would increase the safety of the final cell product, allow the establishment of an intermediate-stage stem cell bank, and provide a means for upscaling ...... results contribute tools and concepts toward the isolation and use of PECs as a source for the safe production of hPSC-derived β cells.......Stem cell-based therapy for type 1 diabetes would benefit from implementation of a cell purification step at the pancreatic endoderm stage. This would increase the safety of the final cell product, allow the establishment of an intermediate-stage stem cell bank, and provide a means for upscaling β...... cell manufacturing. Comparative gene expression analysis revealed glycoprotein 2 (GP2) as a specific cell surface marker for isolating pancreatic endoderm cells (PECs) from differentiated hESCs and human fetal pancreas. Isolated GP2+ PECs efficiently differentiated into glucose responsive insulin...

  2. Mutant K-RAS Promotes Invasion and Metastasis in Pancreatic Cancer Through GTPase Signaling Pathways

    Science.gov (United States)

    Padavano, Julianna; Henkhaus, Rebecca S; Chen, Hwudaurw; Skovan, Bethany A; Cui, Haiyan; Ignatenko, Natalia A

    2015-01-01

    Pancreatic ductal adenocarcinoma is one of the most aggressive malignancies, characterized by the local invasion into surrounding tissues and early metastasis to distant organs. Oncogenic mutations of the K-RAS gene occur in more than 90% of human pancreatic cancers. The goal of this study was to investigate the functional significance and downstream effectors of mutant K-RAS oncogene in the pancreatic cancer invasion and metastasis. We applied the homologous recombination technique to stably disrupt K-RAS oncogene in the human pancreatic cell line MiaPaCa-2, which carries the mutant K-RASG12C oncogene in both alleles. Using in vitro assays, we found that clones with disrupted mutant K-RAS gene exhibited low RAS activity, reduced growth rates, increased sensitivity to the apoptosis inducing agents, and suppressed motility and invasiveness. In vivo assays showed that clones with decreased RAS activity had reduced tumor formation ability in mouse xenograft model and increased survival rates in the mouse orthotopic pancreatic cancer model. We further examined molecular pathways downstream of mutant K-RAS and identified RhoA GTP activating protein 5, caveolin-1, and RAS-like small GTPase A (RalA) as key effector molecules, which control mutant K-RAS-dependent migration and invasion in MiaPaCa-2 cells. Our study provides rational for targeting RhoA and RalA GTPase signaling pathways for inhibition of pancreatic cancer metastasis. PMID:26512205

  3. Interdependence of Gemcitabine Treatment, Transporter Expression, and Resistance in Human Pancreatic Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    Wolfgang Hagmann

    2010-09-01

    Full Text Available Gemcitabine is widely used as first-line chemotherapeutic drug in the treatment of pancreatic cancer. Our previous experimental chemotherapy studies have shown that treatment of human pancreatic carcinoma cells with 5-fluorouracil (5-FU alters the cellular transporter expression profile and that modulation of the expression of multidrug resistance protein 5 (MRP5; ABCC5 influences the chemoresistance of these tumor cells. Here, we studied the influence of acute and chronic gemcitabine treatment on the expression of relevant uptake and export transporters in pancreatic carcinoma cells by reverse transcription-polymerase chain reaction (RT-PCR, quantitative RT-PCR, and immunoblot analyses. The specific role of MRP5 in cellular gemcitabine sensitivity was studied by cytotoxicity assays using MRP5-overexpressing and MRP5-silenced cells. Exposure to gemcitabine (12 nM for 3 days did not alter the messenger RNA (mRNA expression of MRP1, MRP3, MRP5, and equilibrative nucleoside transporter 1 (ENT1, whereas high dosages of the drug (20 µM for 1 hour elicited up-regulation of these transporters in most cell lines studied. In cells with acquired gemcitabine resistance (up to 160 nM gemcitabine, the mRNA or protein expression of the gemcitabine transporters MRP5 and ENT1 was upregulated in several cell lines. Combined treatment with 5-FU and gemcitabine caused a 5- to 40-fold increase in MRP5 and ENT1 expressions. Cytotoxicity assays using either MRP5-overexpressing (HEK and PANC-1 or MRP5-silenced (PANC1/shMRP5 cells indicated that MRP5 contributes to gemcitabine resistance. Thus, our novel data not only on drug-induced alterations of transporter expression relevant for gemcitabine uptake and export but also on the link between gemcitabine sensitivity and MRP5 expression may lead to improved strategies of future chemotherapy regimens using gemcitabine in pancreatic carcinoma patients.

  4. Transplantation of human fetal pancreatic progenitor cells ameliorates renal injury in streptozotocin-induced diabetic nephropathy.

    Science.gov (United States)

    Jiang, Yongwei; Zhang, Wenjian; Xu, Shiqing; Lin, Hua; Sui, Weiguo; Liu, Honglin; Peng, Liang; Fang, Qing; Chen, Li; Lou, Jinning

    2017-06-27

    Diabetic nephropathy (DN) is a severe complication of diabetes mellitus (DM). Pancreas or islet transplantation has been reported to prevent the development of DN lesions and ameliorate or reverse existing glomerular lesions in animal models. Shortage of pancreas donor is a severe problem. Islets derived from stem cells may offer a potential solution to this problem. To evaluate the effect of stem cell-derived islet transplantation on DN in a rat model of streptozotocin-induced DM. Pancreatic progenitor cells were isolated from aborted fetuses of 8 weeks of gestation. And islets were prepared by suspension culture after a differentiation of progenitor cells in medium containing glucagon-like peptide-1 (Glp-1) and nicotinamide. Then islets were transplanted into the liver of diabetic rats via portal vein. Blood glucose, urinary volume, 24 h urinary protein and urinary albumin were measured once biweekly for 16 weeks. Graft survival was evaluated by monitoring human C-peptide level in rat sera and by immunohistochemical staining for human mitochondrial antigen and human C-peptide in liver tissue. The effect of progenitor-derived islets on filtration membrane was examined by electron microscopy and real-time polymerase chain reaction (PCR). Immunohistochemical staining, real-time PCR and western blot were employed for detecting fibronectin, protein kinase C beta (PKCβ), protein kinase A (PKA), inducible nitric oxide synthase (iNOS) and superoxide dismutase (SOD). Islet-like clusters derived from 8th gestational-week human fetal pancreatic progenitors survived in rat liver. And elevated serum level of human C-peptide was detected. Blood glucose, 24 h urinary protein and urinary albumin were lower in progenitor cell group than those in DN or insulin treatment group. Glomerular basement membrane thickness and fibronectin accumulation decreased significantly while podocytes improved morphologically in progenitor cell group. Furthermore, receptor of advanced glycation

  5. The pancreatitis-associated protein VMP1, a key regulator of inducible autophagy, promotes KrasG12D-mediated pancreatic cancer initiation

    Science.gov (United States)

    Loncle, C; Molejon, M I; Lac, S; Tellechea, J I; Lomberk, G; Gramatica, L; Fernandez Zapico, M F; Dusetti, N; Urrutia, R; Iovanna, J L

    2016-01-01

    Both clinical and experimental evidence have firmly established that chronic pancreatitis, in particular in the context of Kras oncogenic mutations, predisposes to pancreatic ductal adenocarcinoma (PDAC). However, the repertoire of molecular mediators of pancreatitis involved in Kras-mediated initiation of pancreatic carcinogenesis remains to be fully defined. In this study we demonstrate a novel role for vacuole membrane protein 1 (VMP1), a pancreatitis-associated protein critical for inducible autophagy, in the regulation of Kras-induced PDAC initiation. Using a newly developed genetically engineered model, we demonstrate that VMP1 increases the ability of Kras to give rise to preneoplastic lesions, pancreatic intraepithelial neoplasias (PanINs). This promoting effect of VMP1 on PanIN formation is due, at least in part, by an increase in cell proliferation combined with a decrease in apoptosis. Using chloroquine, an inhibitor of autophagy, we show that this drug antagonizes the effect of VMP1 on PanIN formation. Thus, we conclude that VMP1-mediated autophagy cooperate with Kras to promote PDAC initiation. These findings are of significant medical relevance, molecules targeting autophagy are currently being tested along chemotherapeutic agents to treat PDAC and other tumors in human trials. PMID:27415425

  6. Applied Developmental Biology: Making Human Pancreatic Beta Cells for Diabetics.

    Science.gov (United States)

    Melton, Douglas A

    2016-01-01

    Understanding the genes and signaling pathways that determine the differentiation and fate of a cell is a central goal of developmental biology. Using that information to gain mastery over the fates of cells presents new approaches to cell transplantation and drug discovery for human diseases including diabetes. © 2016 Elsevier Inc. All rights reserved.

  7. Biotin uptake by mouse and human pancreatic beta cells/islets: a regulated, lipopolysaccharide-sensitive carrier-mediated process.

    Science.gov (United States)

    Ghosal, Abhisek; Sekar, Thillai V; Said, Hamid M

    2014-08-01

    Biotin is essential for the normal function of pancreatic beta cells. These cells obtain biotin from their surroundings via transport across their cell membrane. Little is known about the uptake mechanism involved, how it is regulated, and how it is affected by internal and external factors. We addressed these issues using the mouse-derived pancreatic beta-TC-6 cells and freshly isolated mouse and human primary pancreatic beta cells as models. The results showed biotin uptake by pancreatic beta-TC-6 cells occurs via a Na(+)-dependent, carrier-mediated process, that is sensitive to desthiobiotin, as well as to pantothenic acid and lipoate; the process is also saturable as a function of concentration (apparent Km = 22.24 ± 5.5 μM). These cells express the sodium-dependent multivitamin transporter (SMVT), whose knockdown (with doxycycline-inducible shRNA) led to a sever inhibition in biotin uptake. Similarly, uptake of biotin by mouse and human primary pancreatic islets is Na(+)-dependent and carrier-mediated, and both cell types express SMVT. Biotin uptake by pancreatic beta-TC-6 cells is also adaptively regulated (via transcriptional mechanism) by extracellular substrate level. Chronic treatment of pancreatic beta-TC-6 cells with bacterial lipopolysaccharides (LPS) leads to inhibition in biotin uptake. This inhibition is mediated via a Toll-Like receptor 4-mediated process and involves a decrease in membrane expression of SMVT. These findings show, for the first time, that pancreatic beta cells/islets take up biotin via a specific and regulated carrier-mediated process, and that the process is sensitive to the effect of LPS. Copyright © 2014 the American Physiological Society.

  8. Specific transduction and labeling of pancreatic ducts by targeted recombinant viral infusion into mouse pancreatic ducts.

    Science.gov (United States)

    Guo, Ping; Xiao, Xiangwei; El-Gohary, Yousef; Criscimanna, Angela; Prasadan, Krishna; Rymer, Christopher; Shiota, Chiyo; Wiersch, John; Gaffar, Iliana; Esni, Farzad; Gittes, George K

    2013-11-01

    Specific labeling of pancreatic ducts has proven to be quite difficult. Such labeling has been highly sought after because of the power it would confer to studies of pancreatic ductal carcinogenesis, as well as studies of the source of new insulin-producing β-cells. Cre-loxp recombination could, in theory, lineage-tag pancreatic ducts, but results have been conflicting, mainly due to low labeling efficiencies. Here, we achieved a high pancreatic duct labeling efficiency using a recombinant adeno-associated virus (rAAV) with a duct-specific sox9 promoter infused into the mouse common biliary/pancreatic duct. We saw rapid, diffuse duct-specific labeling, with 50 and 89% labeling in the pancreatic tail and head region, respectively. This highly specific labeling of ducts should greatly enhance our ability to study the role of pancreatic ducts in numerous aspects of pancreatic growth, development and function.

  9. Acinar injury and early cytokine response in human acute biliary pancreatitis.

    Science.gov (United States)

    Jakkampudi, Aparna; Jangala, Ramaiah; Reddy, Ratnakar; Mitnala, Sasikala; Rao, G Venkat; Pradeep, Rebala; Reddy, D Nageshwar; Talukdar, Rupjyoti

    2017-11-10

    Clinical acute pancreatitis (AP) is marked by an early phase of systemic inflammatory response syndrome (SIRS) with multiorgan dysfunction (MODS), and a late phase characterized by sepsis with MODS. However, the mechanisms of acinar injury in human AP and the associated systemic inflammation are not clearly understood. This study, for the first time, evaluated the early interactions of bile acid induced human pancreatic acinar injury and the resulting cytokine response. We exposed freshly procured resected human pancreata to taurolithocolic acid (TLCS) and evaluated for acinar injury, cytokine release and interaction with peripheral blood mononuclear cells (PBMCs). We observed autophagy in acinar cells in response to TLCS exposure. There was also time-dependent release of IL-6, IL-8 and TNF-α from the injured acini that resulted in activation of PBMCs. We also observed that cytokines secreted by activated PBMCs resulted in acinar cell apoptosis and further cytokine release from them. Our data suggests that the earliest immune response in human AP originates within the acinar cell itself, which subsequently activates circulating PBMCs leading to SIRS. These findings need further detailed evaluation so that specific therapeutic targets to curb SIRS and resulting early adverse outcomes could be identified and tested.

  10. Human pancreatic tumors grown in mice release tissue factor-positive microvesicles that increase venous clot size.

    Science.gov (United States)

    Hisada, Y; Ay, C; Auriemma, A C; Cooley, B C; Mackman, N

    2017-11-01

    Essentials Tumor-bearing mice have larger venous clots than controls. Human tissue factor is present in clots in tumor-bearing mice. Inhibition of human tissue factor reduces clot size in tumor-bearing mice. This new mouse model may be useful to study mechanisms of cancer-associated thrombosis. Background Pancreatic cancer patients have a high rate of venous thromboembolism. Human pancreatic tumors and cell lines express high levels of tissue factor (TF), and release TF-positive microvesicles (TF+ MVs). In pancreatic cancer patients, tumor-derived TF+ MVs are present in the blood, and increased levels are associated with venous thromboembolism and decreased survival. Previous studies have shown that mice with orthotopic human or murine pancreatic tumors have circulating tumor-derived TF+ MVs, an activated clotting system, and increased incidence and mean clot weight in an inferior vena cava stenosis model. These results suggest that TF+ MVs contribute to thrombosis. However, the specific role of tumor-derived TF+ MVs in venous thrombosis in mice has not been determined. Objectives To test the hypothesis that tumor-derived TF+ MVs enhance thrombosis in mice. Methods We determined the contribution of TF+ MVs derived from human pancreatic tumors grown orthotopically in nude mice to venous clot formation by using an anti-human TF mAb. We used an inferior vena cava stasis model of venous thrombosis. Results Tumor-bearing mice had significantly larger clots than control mice. Clots from tumor-bearing mice contained human TF, suggesting the incorporation of tumor-derived MVs. Importantly, administration of an anti-human TF mAb reduced clot size in tumor-bearing mice but did not affect clot size in control mice. Conclusions Our results indicate that TF+ MVs released from orthotopic pancreatic tumors increase venous thrombosis in mice. This new model may be useful for evaluating the roles of different factors in cancer-associated thrombosis. © 2017 International Society on

  11. Imaging in the diagnosis of chronic pancreatitis

    Directory of Open Access Journals (Sweden)

    Vasile D. Balaban

    2014-12-01

    Full Text Available Chronic pancreatitis is characterised by progressive and irreversible damage of the pancreatic parenchyma and ductal system, which leads to chronic pain, loss of endocrine and exocrine functions. Clinically, pancreatic exocrine insufficiency becomes apparent only after 90% of the parenchima has been lost. Despite the simple definition, diagnosing chronic pancreatitis remains a challenge, especially for early stage disease. Because pancreatic function tests can be normal until late stages and have significant limitations, there is an incresing interest in the role of imaging techniques for the diagnosis of chronic pancreatitis. In this article we review the utility and accuracy of different imaging methods in the diagnosis of chronic pancreatitis, focusing on the role of advanced imaging (magnetic resonance imaging, endoscopic retrograde cholangiopancreatography and endoscopic ultrasound.

  12. Maintenance of fetal human pancreatic beta cells in tissue culture.

    Science.gov (United States)

    McEvoy, R C; Thomas, N M; Bowers, C; Ginsberg-Fellner, F

    1986-01-01

    Large quantities of viable human islet tissue (beta cells) are required for transplant and for investigations of the autoimmune basis of Type I diabetes. Fetal pancreas offers a potential advantage over other possible sources of beta cells in that it retains some capacity for growth in vitro. We have cultured a total of 45 human pancreata from fetuses of gestational ages from 18 to 23 weeks. Each pancreas was obtained within minutes after delivery and usually cultured within 30 minutes. Pancreata were dispersed and cultured for up to 32 days. Maintenance and growth of the beta cells was assessed by the content of insulin in extracts of cultured tissue. As has been reported by others, fetal human beta cells survived in vitro for over 4 weeks. In three experiments in which a direct comparison was made, collagenase digestion of the fetal pancreas resulted in a significantly greater loss of insulin content compared to minced tissue cultured without digestion. Storage of three pancreata in medium overnight at 4 degrees C significantly reduced the insulin content of the pancreas compared to pancreata cultured immediately. During culture, the majority of the beta cells (based on insulin content) were found in small, macroscopic clumps attached to the surface of the culture dish, and surrounded by a nearly confluent monolayer of fibroblastoid cells. There was a marked decrease in the insulin content of the tissue during culture, most of it (to less than 25% of the original) occurring over the first 4-6 days of culture.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Impact of Global Fxr Deficiency on Experimental Acute Pancreatitis and Genetic Variation in the FXR Locus in Human Acute Pancreatitis

    NARCIS (Netherlands)

    Nijmeijer, R.M.; Schaap, F.G.; Smits, A.J.A.; Kremer, A.E.; Akkermans, L.M.; Kroese, A.B.A.; Rijkers, G.T.; Schipper, M.E.; Verheem, A.; Wijmenga, C.; Gooszen, H.G.; Erpecum, K.J. van

    2014-01-01

    BACKGROUND: Infectious complications often occur in acute pancreatitis, related to impaired intestinal barrier function, with prolonged disease course and even mortality as a result. The bile salt nuclear receptor farnesoid X receptor (FXR), which is expressed in the ileum, liver and other organs

  14. Impact of Global Fxr Deficiency on Experimental Acute Pancreatitis and Genetic Variation in the FXR Locus in Human Acute Pancreatitis

    NARCIS (Netherlands)

    Nijmeijer, Rian M.; Schaap, Frank G.; Smits, Alexander J. J.; Kremer, Andreas E.; Akkermans, Louis M. A.; Kroese, Alfons B. A.; Rijkers, Ger. T.; Schipper, Marguerite E. I.; Verheem, Andre; Wijmenga, Cisca; Gooszen, Hein G.; van Erpecum, Karel J.

    2014-01-01

    Background: Infectious complications often occur in acute pancreatitis, related to impaired intestinal barrier function, with prolonged disease course and even mortality as a result. The bile salt nuclear receptor farnesoid X receptor (FXR), which is expressed in the ileum, liver and other organs

  15. The pancreatic beta cells in human type 2 diabetes.

    Science.gov (United States)

    Marchetti, Piero; Bugliani, Marco; Boggi, Ugo; Masini, Matilde; Marselli, Lorella

    2012-01-01

    Bell-cell (beta-cell) impairment is central to the development and progression of human diabetes, as a result of the combined effects of genetic and acquired factors. Reduced islet number and/or reduced beta cells amount in the pancreas of individuals with Type 2 diabetes have been consistently reported. This is mainly due to increased beta cell death, not adequately compensated for by regeneration. In addition, several quantitative and/or qualitative defects of insulin secretion have been observed in Type 2 diabetes, both in vivo and ex vivo with isolated islets. All this is associated with modifications of islet cell gene and protein expression. With the identification of several susceptible Type 2 diabetes loci, the role of genotype in affecting beta-cell function and survival has been addressed in a few studies and the relationships between genotype and beta-cell phenotype investigated. Among acquired factors, the importance of metabolic insults (in particular glucotoxicity and lipotoxicity) in the natural history of beta-cell damage has been widely underlined. Continuous improvements in our knowledge of the beta cells in human Type 2 diabetes will lead to more targeted and effective strategies for the prevention and treatment of the disease.

  16. Apoptosis of human fetal pancreatic islets during short-term culture

    Directory of Open Access Journals (Sweden)

    Đorđević P.B.

    2009-01-01

    Full Text Available We investigated the influence of short-term culture in vitro on the appearance of apoptosis of human fetal pancreatic islets (HFIs and its effect on the mass and insulin-secretory capacity (ISC of β-cells. It was found that apoptosis was present from the end of the culture period, increasing as a function of time and leading to decrease of β-cell mass. At the same time, ISC decreased. The decrease of β-cell mass and ISC may influence significantly the clinical outcome of HFIs transplantation in type 1 diabetic patients.

  17. Unique splicing pattern of the TCF7L2 gene in human pancreatic islets

    DEFF Research Database (Denmark)

    Osmark, P; Hansson, O; Jonsson, Anna Elisabet

    2009-01-01

    Intronic variation in the TCF7L2 gene exhibits the strongest association to type 2 diabetes observed to date, but the mechanism whereby this genetic variation translates into altered biological function is largely unknown. A possible explanation is a genotype-dependent difference in the complex s...... splicing pattern; however, this has not previously been characterised in pancreatic or insulin target tissues. Here, the detailed TCF7L2 splicing pattern in five human tissues is described and dependence on risk genotype explored....

  18. Neurotransmitters act as paracrine signals to regulate insulin secretion from the human pancreatic islet

    Science.gov (United States)

    Rodriguez-Diaz, Rayner; Menegaz, Danusa; Caicedo, Alejandro

    2014-01-01

    In this symposium review we discuss the role of neurotransmitters as paracrine signals that regulate pancreatic islet function. A large number of neurotransmitters and their receptors has been identified in the islet, but relatively little is known about their involvement in islet biology. Interestingly, neurotransmitters initially thought to be present in autonomic axons innervating the islet are also present in endocrine cells of the human islet. These neurotransmitters can thus be released as paracrine signals to help control hormone release. Here we propose that the role of neurotransmitters may extend beyond controlling endocrine cell function to work as signals modulating vascular flow and immune responses within the islet. PMID:24591573

  19. Enhancer Reprogramming Promotes Pancreatic Cancer Metastasis.

    Science.gov (United States)

    Roe, Jae-Seok; Hwang, Chang-Il; Somerville, Tim D D; Milazzo, Joseph P; Lee, Eun Jung; Da Silva, Brandon; Maiorino, Laura; Tiriac, Hervé; Young, C Megan; Miyabayashi, Koji; Filippini, Dea; Creighton, Brianna; Burkhart, Richard A; Buscaglia, Jonathan M; Kim, Edward J; Grem, Jean L; Lazenby, Audrey J; Grunkemeyer, James A; Hollingsworth, Michael A; Grandgenett, Paul M; Egeblad, Mikala; Park, Youngkyu; Tuveson, David A; Vakoc, Christopher R

    2017-08-24

    Pancreatic ductal adenocarcinoma (PDA) is one of the most lethal human malignancies, owing in part to its propensity for metastasis. Here, we used an organoid culture system to investigate how transcription and the enhancer landscape become altered during discrete stages of disease progression in a PDA mouse model. This approach revealed that the metastatic transition is accompanied by massive and recurrent alterations in enhancer activity. We implicate the pioneer factor FOXA1 as a driver of enhancer activation in this system, a mechanism that renders PDA cells more invasive and less anchorage-dependent for growth in vitro, as well as more metastatic in vivo. In this context, FOXA1-dependent enhancer reprogramming activates a transcriptional program of embryonic foregut endoderm. Collectively, our study implicates enhancer reprogramming, FOXA1 upregulation, and a retrograde developmental transition in PDA metastasis. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Plasticity of adult human pancreatic duct cells by neurogenin3-mediated reprogramming.

    Directory of Open Access Journals (Sweden)

    Nathalie Swales

    Full Text Available AIMS/HYPOTHESIS: Duct cells isolated from adult human pancreas can be reprogrammed to express islet beta cell genes by adenoviral transduction of the developmental transcription factor neurogenin3 (Ngn3. In this study we aimed to fully characterize the extent of this reprogramming and intended to improve it. METHODS: The extent of the Ngn3-mediated duct-to-endocrine cell reprogramming was measured employing genome wide mRNA profiling. By modulation of the Delta-Notch signaling or addition of pancreatic endocrine transcription factors Myt1, MafA and Pdx1 we intended to improve the reprogramming. RESULTS: Ngn3 stimulates duct cells to express a focused set of genes that are characteristic for islet endocrine cells and/or neural tissues. This neuro-endocrine shift however, is incomplete with less than 10% of full duct-to-endocrine reprogramming achieved. Transduction of exogenous Ngn3 activates endogenous Ngn3 suggesting auto-activation of this gene. Furthermore, pancreatic endocrine reprogramming of human duct cells can be moderately enhanced by inhibition of Delta-Notch signaling as well as by co-expressing the transcription factor Myt1, but not MafA and Pdx1. CONCLUSIONS/INTERPRETATION: The results provide further insight into the plasticity of adult human duct cells and suggest measurable routes to enhance Ngn3-mediated in vitro reprogramming protocols for regenerative beta cell therapy in diabetes.

  1. Cyclin C stimulates β-cell proliferation in rat and human pancreatic β-cells

    Science.gov (United States)

    Jiménez-Palomares, Margarita; López-Acosta, José Francisco; Villa-Pérez, Pablo; Moreno-Amador, José Luis; Muñoz-Barrera, Jennifer; Fernández-Luis, Sara; Heras-Pozas, Blanca; Perdomo, Germán; Bernal-Mizrachi, Ernesto

    2015-01-01

    Activation of pancreatic β-cell proliferation has been proposed as an approach to replace reduced functional β-cell mass in diabetes. Quiescent fibroblasts exit from G0 (quiescence) to G1 through pRb phosphorylation mediated by cyclin C/cdk3 complexes. Overexpression of cyclin D1, D2, D3, or cyclin E induces pancreatic β-cell proliferation. We hypothesized that cyclin C overexpression would induce β-cell proliferation through G0 exit, thus being a potential therapeutic target to recover functional β-cell mass. We used isolated rat and human islets transduced with adenovirus expressing cyclin C. We measured multiple markers of proliferation: [3H]thymidine incorporation, BrdU incorporation and staining, and Ki67 staining. Furthermore, we detected β-cell death by TUNEL, β-cell differentiation by RT-PCR, and β-cell function by glucose-stimulated insulin secretion. Interestingly, we have found that cyclin C increases rat and human β-cell proliferation. This augmented proliferation did not induce β-cell death, dedifferentiation, or dysfunction in rat or human islets. Our results indicate that cyclin C is a potential target for inducing β-cell regeneration. PMID:25564474

  2. Effect of alcohol on insulin secretion and viability of human pancreatic islets

    Directory of Open Access Journals (Sweden)

    Nikolić Dragan

    2017-01-01

    Full Text Available Introduction/Objective. There are controversial data in the literature on the topic of effects of alcohol on insulin secretion, apoptosis, and necrosis of the endocrine and exocrine pancreas. The goal of this research was to determine how alcohol affects the insulin secretion and viability of human adult pancreatic islets in vitro during a seven-day incubation. Methods. Human pancreatic tissue was digested with Collagenase XI, using a non-automated method. Cultures were incubated in Roswell Park Memorial Institute (RPMI medium containing alcohol (10 μl of alcohol in 100 ml of medium. Insulin stimulation index (SI and viability of the islets were determined on the first, third, and seventh day of cultivation. Results. Analysis of the viability of the islets showed that there wasn’t significant difference between the control and the test group. In the test group, viability of the cultures declined with the time of incubation. SI of the test group was higher compared to the control group, by 50% and 25% on the first and third day of cultivation, respectively. On the seventh day, insulin secretion was reduced by 25%. The difference was not statistically significant (p > 0.05. In the test group, significant decline in insulin secretion was found on the third and seventh day of incubation (p ≤ 0.05. Conclusion. Alcohol can increase or decrease insulin secretion of islets cultures, which may result in an inadequate response of pancreatic β-cells to blood glucose, leading to insulin resistance, and increased risk of developing type 2 diabetes. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. 41002

  3. In vitro effects of proteases in human pancreatic juice on stability of liquid and carrier-bound fibrin sealants.

    Science.gov (United States)

    Adelmeijer, J; Porte, R J; Lisman, T

    2013-10-01

    Fibrin sealants are used in pancreatic surgery to prevent leakage of pancreatic fluid and reduce associated complications. The efficacy of this approach is unclear. Fibrin clots were generated in vitro from two commercially available liquid fibrin sealants (Tissucol Duo® and Evicel®) and the carrier-bound fibrin sealant Tachosil®, and exposed to normal saline or human pancreatic fluid. Stability of the sealants was assessed by release of the fibrin and collagen degradation products, D-dimer and hydroxyproline. The effect of protease inhibitors on sealant breakdown was assessed. Clots generated from liquid fibrin sealants degraded rapidly in pancreatic fluid, but not in normal saline. D-dimer release from fibrin clots by pancreatic fluid was approximately 1700 µg/ml after 24 h and less than 20 µg/ml by saline. Pancreatic fluid, but not normal saline, degraded both the fibrin and collagen component of Tachosil®. After 6 h, mean(s.e.m.) D-dimer levels in pancreatic fluid exposed to Tachosil® were 850(183) ng/ml, compared with 60(6) ng/ml in normal saline. The mean(s.e.m.) hydroxyproline concentration in pancreatic fluid was 497(17) µg/ml after a 24-h exposure to Tachosil®, compared with 26(12) µg/ml in normal saline. Protease inhibitors significantly inhibited breakdown of liquid sealants (D-dimer levels less than 50 µg/ml after 24 h) and Tachosil® (D-dimer release 179(12) ng/ml at 6 h; hydroxyproline release 181(29) µg/ml at 24 h). Proteases in pancreatic juice effectively degrade both liquid and carrier-bound fibrin sealants in vitro. The use of these products in pancreatic surgery with the aim of preventing leakage of pancreatic fluid is not supported by this experimental study. © 2013 British Journal of Surgery Society Ltd. Published by John Wiley & Sons Ltd.

  4. Liraglutide Compromises Pancreatic β Cell Function in a Humanized Mouse Model.

    Science.gov (United States)

    Abdulreda, Midhat H; Rodriguez-Diaz, Rayner; Caicedo, Alejandro; Berggren, Per-Olof

    2016-03-08

    Incretin mimetics are frequently used in the treatment of type 2 diabetes because they potentiate β cell response to glucose. Clinical evidence showing short-term benefits of such therapeutics (e.g., liraglutide) is abundant; however, there have been several recent reports of unexpected complications in association with incretin mimetic therapy. Importantly, clinical evidence on the potential effects of such agents on the β cell and islet function during long-term, multiyear use remains lacking. We now show that prolonged daily liraglutide treatment of >200 days in humanized mice, transplanted with human pancreatic islets in the anterior chamber of the eye, is associated with compromised release of human insulin and deranged overall glucose homeostasis. These findings raise concern about the chronic potentiation of β cell function through incretin mimetic therapy in diabetes. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. In vivo gene transfer targeting in pancreatic adenocarcinoma with cell surface antigens

    Directory of Open Access Journals (Sweden)

    Lafitte Marie

    2012-10-01

    Full Text Available Abstract Background Pancreatic ductal adenocarcinoma is a deadly malignancy resistant to current therapies. It is critical to test new strategies, including tumor-targeted delivery of therapeutic agents. This study tested the possibility to target the transfer of a suicide gene in tumor cells using an oncotropic lentiviral vector. Results Three cell surface markers were evaluated to target the transduction of cells by lentiviruses pseudotyped with a modified glycoprotein from Sindbis virus. Only Mucin-4 and the Claudin-18 proteins were found efficient for targeted lentivirus transductions in vitro. In subcutaneous xenografts of human pancreatic cancer cells models, Claudin-18 failed to achieve efficient gene transfer but Mucin-4 was found very potent. Human pancreatic tumor cells were modified to express a fluorescent protein detectable in live animals by bioimaging, to perform a direct non invasive and costless follow up of the tumor growth. Targeted gene transfer of a bicistronic transgene bearing a luciferase gene and the herpes simplex virus thymidine kinase gene into orthotopic grafts was carried out with Mucin-4 oncotropic lentiviruses. By contrast to the broad tropism VSV-G carrying lentivirus, this oncotropic lentivirus was found to transduce specifically tumor cells, sparing normal pancreatic cells in vivo. Transduced cells disappeared after ganciclovir treatment while the orthotopic tumor growth was slowed down. Conclusion This work considered for the first time three aspect of pancreatic adenocarcinoma targeted therapy. First, lentiviral transduction of human pancreatic tumor cells was possible when cells were grafted orthotopically. Second, we used a system targeting the tumor cells with cell surface antigens and sparing the normal cells. Finally, the TK/GCV anticancer system showed promising results in vivo. Importantly, the approach presented here appeared to be a safer, much more specific and an as efficient way to perform gene

  6. Deleterious effect of dithizone-DMSO staining on insulin secretion in rat and human pancreatic islets.

    Science.gov (United States)

    Conget, J I; Sarri, Y; González-Clemente, J M; Casamitjana, R; Vives, M; Gomis, R

    1994-03-01

    Dithizone (DTZ) is a selective stain for pancreatic islets which facilitates their identification, being of special interest in human islet isolation assessment. Nevertheless, there are few studies concerning its potential toxic effects on islet function. In our study, we have evaluated the effects of DTZ (dissolved in dimethyl sulfoxide [DMSO] 1% w/v) at three different concentrations (2, 10, and 100 micrograms/ml) on insulin response to glucose in human and rat islets. Likewise, we studied the effect of incubation time, in the presence of DTZ at the above-mentioned concentrations, on insulin release. Only when DTZ was employed at low concentrations and for a short period of incubation (10 min) was there no impairment of pancreatic islet function. Moreover, even at this low concentration, DTZ became deleterious for islet function when the incubation period with the dye was prolonged for 30 min. Culture (24 h) of previously stained islets produced a partial recovery of insulin response. In conclusion, our findings indicate (a) DTZ should not be employed to collect islets for functional studies because of its deleterious effect on beta-cell function, (b) DTZ's deleterious effects on beta-cell function should be considered if this dye is used to purify islets by fluorescence-activated cell sorting for transplantation.

  7. Protease-activated receptor 2 agonist increases cell proliferation and invasion of human pancreatic cancer cells

    Science.gov (United States)

    XIE, LIQUN; DUAN, ZEXING; LIU, CAIJU; ZHENG, YANMIN; ZHOU, JING

    2015-01-01

    The aim of this study was to determine the expression of protease-activated receptor 2 (PAR-2) in the human pancreatic cancer cell line SW1990, and to evaluate its effect on cell proliferation and invasion. The expression of PAR-2 protein and mRNA in SW1990 cells was determined by immunocytochemistry and reverse transcription polymerase chain reaction (PCR), respectively. MTT and cell invasion and migration assays, as well as semi-quantitative PCR and zymography analysis, were additionally performed. PAR-2 mRNA was significantly upregulated in the cells treated with trypsin or the PAR-2 activating peptide Ser-Leu-Ile-Gly-Lys-Val (SLIGKV) (P0.05). Trypsin and SLIGKV significantly promoted SW1990 cell proliferation in a dose- and time-dependent manner (P<0.05). Compared with the control group, trypsin and SLIGKV significantly increased the mRNA expression (P<0.01) and gelatinolytic activity (P<0.01) of matrix metalloproteinase (MMP)-2. In conclusion, PAR-2 is expressed in SW1990 cells. PAR-2 activation may promote the invasion and migration of human pancreatic cancer cells by increasing MMP-2 expression. PMID:25452809

  8. [Effect of pectin substances on activity of human pancreatic alpha-amylase in vitro].

    Science.gov (United States)

    Chelpanova, T I; Vitiazev, F V; Mikhaleva, N Ia; Efimtseva, É A

    2012-06-01

    Pectin substances were extracted from food plants: sweet pepper Capsicum annuum L., carrot sowing Daucus sativus L., bulb onion Allium cepa L., white cabbage Brassica oleracea L. by two methods with acid solutions similar to gastric environment. The pectins that were extracted were characterized by Monosaccharide composition and quantitative contents of uronic acids, neutral monosaccharides, methoxy groups, protein. The inhibitory effect of all extracted pectin-protein complexes on activity of pharmaceutical drugs of human pancreatic alpha-amylase was detected. It was found that the inhibitory effect of isolated pectin substances was dependent upon the species of plant source, the manner of pectin substance extraction, the chemical composition and acting concentrations. The ability of pectin substances to suppress enzyme activity was found in a range of pectin concentrations from 0.5 up to 1.5 %. It was revealed that extracted pectin substances from bulb onion and white cabbage by acid solution with pepsin had a 2.4-3.4 times greater inhibiting effect on the human pancreatic alpha-amylase activity in comparison with pectin substances extracted by solution without pepsin from the same plant sources in high concentrations.

  9. Adenoviral vectors stimulate glucagon transcription in human mesenchymal stem cells expressing pancreatic transcription factors

    National Research Council Canada - National Science Library

    Zaldumbide, Arnaud; Carlotti, Françoise; Gonçalves, Manuel A; Knaän-Shanzer, Shoshan; Cramer, Steve J; Roep, Bart O; Wiertz, Emmanuel J H J; Hoeben, Rob C

    2012-01-01

    .... Forced expression of key regulators of pancreatic differentiation in stem cells, liver cells, pancreatic duct cells, or cells from the exocrine pancreas, can lead to the initiation of endocrine...

  10. Accumulation of FOXP3+T-cells in the tumor microenvironment is associated with an epithelial-mesenchymal-transition-type tumor budding phenotype and is an independent prognostic factor in surgically resected pancreatic ductal adenocarcinoma

    Science.gov (United States)

    Wartenberg, Martin; Zlobec, Inti; Perren, Aurel; Koelzer, Viktor Hendrik; Gloor, Beat; Lugli, Alessandro; Eva, Karamitopoulou

    2015-01-01

    Here we explore the role of the interplay between host immune response and epithelial-mesenchymal-transition (EMT)-Type tumor-budding on the outcome of pancreatic adenocarcinoma (PDAC). CD4+, CD8+, and FOXP3+T-cells as well as iNOS+ (M1) and CD163+-macrophages (M2) were assessed on multipunch tissue-microarrays containing 120 well-characterized PDACs, precursor lesions (PanINs) and corresponding normal tissue. Counts were normalized for the percentage of tumor/spot and associated with the clinico-pathological features, including peritumoral (PTB) and intratumoral (ITB) EMT-Type tumor-budding and outcome. Increased FOXP3+T-cell-counts and CD163-macrophages and decreased CD8+T-cell-counts were observed in PDACs compared with normal tissues and PanINs (p tumor-favoring immune-cell composition especially in the immediate environment of the tumor-buds that promotes further growth and indicates a close interaction of the immune response with the EMT-process. Increased peritumoral FOXP3+T-cell density is identified as an independent adverse prognostic factor in PDAC. Patients with phenotypically aggressive PDACs may profit from targeted immunotherapy against FOXP3. PMID:25669968

  11. Pancreatic duct cells as a source of VEGF in mice.

    Science.gov (United States)

    Xiao, Xiangwei; Prasadan, Krishna; Guo, Ping; El-Gohary, Yousef; Fischbach, Shane; Wiersch, John; Gaffar, Iljana; Shiota, Chiyo; Gittes, George K

    2014-05-01

    Vascular endothelial growth factor (VEGF) is essential for proper pancreatic development, islet vascularisation and insulin secretion. In the adult pancreas, VEGF is thought to be predominantly secreted by beta cells. Although human duct cells have previously been shown to secrete VEGF at angiogenic levels in culture, an analysis of the kinetics of VEGF synthesis and secretion, as well as elucidation of an in vivo role for this ductal VEGF in affecting islet function and physiology, has been lacking. We analysed purified duct cells independently prepared by flow cytometry, surgical isolation or laser-capture microdissection. We infected duct cells in vivo with Vegf (also known as Vegfa) short hairpin RNA (shRNA) in an intrapancreatic ductal infusion system and examined the effect of VEGF knockdown in duct cells in vitro and in vivo. Pancreatic duct cells express high levels of Vegf mRNA. Compared with beta cells, duct cells had a much higher ratio of secreted to intracellular VEGF. As a bioassay, formation of tubular structures by human umbilical vein endothelial cells was essentially undetectable when cultured alone and was substantially increased when co-cultured with pancreatic duct cells but significantly reduced when co-cultured with duct cells pretreated with Vegf shRNA. Compared with islets transplanted alone, improved vascularisation and function was detected in the islets co-transplanted with duct cells but not in islets co-transplanted with duct cells pretreated with Vegf shRNA. Human islet preparations for transplantation typically contain some contaminating duct cells and our findings suggest that the presence of duct cells in the islet preparation may improve transplantation outcomes.

  12. Evaluation of Traditional Indian Antidiabetic Medicinal Plants for Human Pancreatic Amylase Inhibitory Effect In Vitro

    Directory of Open Access Journals (Sweden)

    Sudha Ponnusamy

    2011-01-01

    Full Text Available Pancreatic α-amylase inhibitors offer an effective strategy to lower the levels of post prandial hyperglycemia via control of starch breakdown. Eleven Ayurvedic Indian medicinal plants with known hypoglycemic properties were subjected to sequential solvent extraction and tested for α-amylase inhibition, in order to assess and evaluate their inhibitory potential on pancreatic α-amylase. Analysis of 91 extracts, showed that 10 exhibited strong Human Pancreatic Amylase (HPA inhibitory potential. Of these, 6 extracts showed concentration dependent inhibition with IC50 values, namely, cold and hot water extracts from Ficus bengalensis bark (4.4 and 125 μgmL-1, Syzygium cumini seeds (42.1 and 4.1 μgmL-1, isopropanol extracts of Cinnamomum verum leaves (1.0 μgmL-1 and Curcuma longa rhizome (0.16 μgmL-1. The other 4 extracts exhibited concentration independent inhibition, namely, methanol extract of Bixa orellana leaves (49 μgmL-1, isopropanol extract from Murraya koenigii leaves (127 μgmL-1, acetone extracts from C. longa rhizome (7.4 μgmL-1 and Tribulus terrestris seeds (511 μgmL-1. Thus, the probable mechanism of action of the above fractions is due to their inhibitory action on HPA, thereby reducing the rate of starch hydrolysis leading to lowered glucose levels. Phytochemical analysis revealed the presence of alkaloids, proteins, tannins, cardiac glycosides, flavonoids, saponins and steroids as probable inhibitory compounds.

  13. Evaluation of Traditional Indian Antidiabetic Medicinal Plants for Human Pancreatic Amylase Inhibitory Effect In Vitro

    Science.gov (United States)

    Ponnusamy, Sudha; Ravindran, Remya; Zinjarde, Smita; Bhargava, Shobha; Ravi Kumar, Ameeta

    2011-01-01

    Pancreatic α-amylase inhibitors offer an effective strategy to lower the levels of post prandial hyperglycemia via control of starch breakdown. Eleven Ayurvedic Indian medicinal plants with known hypoglycemic properties were subjected to sequential solvent extraction and tested for α-amylase inhibition, in order to assess and evaluate their inhibitory potential on pancreatic α-amylase. Analysis of 91 extracts, showed that 10 exhibited strong Human Pancreatic Amylase (HPA) inhibitory potential. Of these, 6 extracts showed concentration dependent inhibition with IC50 values, namely, cold and hot water extracts from Ficus bengalensis bark (4.4 and 125 μgmL−1), Syzygium cumini seeds (42.1 and 4.1 μgmL−1), isopropanol extracts of Cinnamomum verum leaves (1.0 μgmL−1) and Curcuma longa rhizome (0.16 μgmL−1). The other 4 extracts exhibited concentration independent inhibition, namely, methanol extract of Bixa orellana leaves (49 μgmL−1), isopropanol extract from Murraya koenigii leaves (127 μgmL−1), acetone extracts from C. longa rhizome (7.4 μgmL−1) and Tribulus terrestris seeds (511 μgmL−1). Thus, the probable mechanism of action of the above fractions is due to their inhibitory action on HPA, thereby reducing the rate of starch hydrolysis leading to lowered glucose levels. Phytochemical analysis revealed the presence of alkaloids, proteins, tannins, cardiac glycosides, flavonoids, saponins and steroids as probable inhibitory compounds. PMID:20953430

  14. Assignment of the human pancreatic regenerating (REG) gene to chromosome 2p12

    Energy Technology Data Exchange (ETDEWEB)

    Perfetti, R.; Egan, J.M.; Zenilman, M.E.; Shuldiner, A.R.; Hawkins, A.L.; Griffin, C.A. (Johns Hopkins Univ. School of Medicine, Baltimore, MD (United States))

    1994-03-15

    A cDNA termed reg (for regenerating gene) has been isolated and characterized from a rat pancreatic library. Expression of reg is markedly increased in regenerating islets and decreased when insulin gene expression is inhibited. These findings have led to the hypothesis that reg may be involved in the expansion [beta]-cell function. The human reg gene has a high degree of similarity to the rat reg gene. To determine the chromosomal location of the human reg gene, the authors analyzed two panels of mouse- or hamster-human hybrid cell lines containing a single human chromosome or several different human chromosomes. DNA extracts from these cell lines were analyzed for the presence of the human reg gene by polymerase chain reaction. In addition, human metaphase chromosomes were used for fluorescence in situ hybridization to further confirm the chromosomal assignment and to determine the subchromosomal localization. With these approaches, they show that the human reg gene is located on the short arm of chromosome 2 near the centromere at band 2p12. 17 refs., 2 figs.

  15. Bioinformatic analysis reveals pancreatic cancer molecular subtypes specific to the tumor and the microenvironment

    NARCIS (Netherlands)

    Le Large, Tessa Y. S.; Mato Prado, Mireia; Krell, Jonathan; Bijlsma, Maarten F.; Meijer, Laura L.; Kazemier, Geert; Frampton, Adam E.; Giovannetti, Elisa

    2016-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease characterized by a dense desmoplastic reaction surrounding malignant epithelial cells. Interaction between the epithelial and stromal compartments is suggested to enhance its aggressive nature. Indeed, therapies targeting the stroma, as

  16. Protein kinase D1 drives pancreatic acinar cell reprogramming and progression to intraepithelial neoplasia

    Science.gov (United States)

    Liou, Geou-Yarh; Döppler, Heike; Braun, Ursula B.; Panayiotou, Richard; Scotti Buzhardt, Michele; Radisky, Derek C.; Crawford, Howard C.; Fields, Alan P.; Murray, Nicole R.; Wang, Q. Jane; Leitges, Michael; Storz, Peter

    2015-02-01

    The transdifferentiation of pancreatic acinar cells to a ductal phenotype (acinar-to-ductal metaplasia, ADM) occurs after injury or inflammation of the pancreas and is a reversible process. However, in the presence of activating Kras mutations or persistent epidermal growth factor receptor (EGF-R) signalling, cells that underwent ADM can progress to pancreatic intraepithelial neoplasia (PanIN) and eventually pancreatic cancer. In transgenic animal models, ADM and PanINs are initiated by high-affinity ligands for EGF-R or activating Kras mutations, but the underlying signalling mechanisms are not well understood. Here, using a conditional knockout approach, we show that protein kinase D1 (PKD1) is sufficient to drive the reprogramming process to a ductal phenotype and progression to PanINs. Moreover, using 3D explant culture of primary pancreatic acinar cells, we show that PKD1 acts downstream of TGFα and Kras, to mediate formation of ductal structures through activation of the Notch pathway.

  17. Targeting the LOX/hypoxia axis reverses many of the features that make pancreatic cancer deadly

    DEFF Research Database (Denmark)

    Miller, Bryan W; Morton, Jennifer P; Pinese, Mark

    2015-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is one of the leading causes of cancer-related mortality. Despite significant advances made in the treatment of other cancers, current chemotherapies offer little survival benefit in this disease. Pancreaticoduodenectomy offers patients the possibility...

  18. Aberrant over-expression of TRPM7 ion channels in pancreatic cancer: required for cancer cell invasion and implicated in tumor growth and metastasis

    Directory of Open Access Journals (Sweden)

    Nelson S. Yee

    2015-03-01

    Full Text Available Our previous studies in zebrafish development have led to identification of the novel roles of the transient receptor potential melastatin-subfamily member 7 (TRPM7 ion channels in human pancreatic cancer. However, the biological significance of TRPM7 channels in pancreatic neoplasms was mostly unexplored. In this study, we determined the expression levels of TRPM7 in pancreatic tissue microarrays and correlated these measurements in pancreatic adenocarcinoma with the clinicopathological features. We also investigated the role of TRPM7 channels in pancreatic cancer cell invasion using the MatrigelTM-coated transwell assay. In normal pancreas, TRPM7 is expressed at a discernable level in the ductal cells and centroacinar cells and at a relatively high level in the islet endocrine cells. In chronic pancreatitis, pre-malignant tissues, and malignant neoplasms, there is variable expression of TRPM7. In the majority of pancreatic adenocarcinoma specimens examined, TRPM7 is expressed at either moderate-level or high-level. Anti-TRPM7 immunoreactivity in pancreatic adenocarcinoma significantly correlates with the size and stages of tumors. In human pancreatic adenocarcinoma cells in which TRPM7 is highly expressed, short hairpin RNA-mediated suppression of TRPM7 impairs cell invasion. The results demonstrate that TRPM7 channels are over-expressed in a proportion of the pre-malignant lesions and malignant tumors of the pancreas, and they are necessary for invasion by pancreatic cancer cells. We propose that TRPM7 channels play important roles in development and progression of pancreatic neoplasm, and they may be explored as clinical biomarkers and targets for its prevention and treatment.

  19. Initial cell seeding density influences pancreatic endocrine development during in vitro differentiation of human embryonic stem cells.

    Science.gov (United States)

    Gage, Blair K; Webber, Travis D; Kieffer, Timothy J

    2013-01-01

    Human embryonic stem cells (hESCs) have the ability to form cells derived from all three germ layers, and as such have received significant attention as a possible source for insulin-secreting pancreatic beta-cells for diabetes treatment. While considerable advances have been made in generating hESC-derived insulin-producing cells, to date in vitro-derived glucose-responsive beta-cells have remained an elusive goal. With the objective of increasing the in vitro formation of pancreatic endocrine cells, we examined the effect of varying initial cell seeding density from 1.3 x 10(4) cells/cm(2) to 5.3 x 10(4) cells/cm(2) followed by a 21-day pancreatic endocrine differentiation protocol. Low density-seeded cells were found to be biased toward the G2/M phases of the cell cycle and failed to efficiently differentiate into SOX17-CXCR4 co-positive definitive endoderm cells leaving increased numbers of OCT4 positive cells in day 4 cultures. Moderate density cultures effectively formed definitive endoderm and progressed to express PDX1 in approximately 20% of the culture. High density cultures contained approximately double the numbers of PDX1 positive pancreatic progenitor cells and also showed increased expression of MNX1, PTF1a, NGN3, ARX, and PAX4 compared to cultures seeded at moderate density. The cultures seeded at high density displayed increased formation of polyhormonal pancreatic endocrine cell populations co-expressing insulin, glucagon and somatostatin. The maturation process giving rise to these endocrine cell populations followed the expected cascade of pancreatic progenitor marker (PDX1 and MNX1) expression, followed by pancreatic endocrine specification marker expression (BRN4, PAX4, ARX, NEUROD1, NKX6.1 and NKX2.2) and then pancreatic hormone expression (insulin, glucagon and somatostatin). Taken together these data suggest that initial cell seeding density plays an important role in both germ layer specification and pancreatic progenitor commitment, which

  20. Direct effects of cyclosporin A on human pancreatic beta-cells

    DEFF Research Database (Denmark)

    Mandrup-Poulsen, T; Nerup, J; Nielsen, Jens Høiriis

    1986-01-01

    Cyclosporin A (CyA) may induce clinical remission in newly diagnosed insulin-dependent diabetes mellitus patients. Recently, however, adverse effects of high doses of CyA on rodent islets have been reported in vivo and in vitro. The possible direct effects of CyA on the human endocrine pancreas...... h after removal of the drug. We concluded that CyA has a direct inhibitory effect on insulin release from human pancreatic islets with a concomitant increase in the residual insulin content. If applicable to the in vivo condition, CyA may therefore, in addition to its immunosuppressive effect, have...... by 59% (range 3-268%). The glucagon content was not affected. Cyclosporin G inhibited the insulin release, whereas dihydrocyclosporin D had no consistent effects. Glucose-stimulated insulin release from perifused islets was markedly depressed in CyA-treated islets. This effect was not fully reversed 48...

  1. Pancreatic Cysts - Part 2: Should We Be Less Cyst Centric?

    Science.gov (United States)

    Lennon, Anne Marie; Canto, Marcia Irene

    2017-07-01

    The management of pancreatic cysts is a common problem faced by physicians and surgeons. Pancreatic cysts are important because some of them are mucin-producing cysts (MPCs), which may harbor or develop pancreatic ductal adenocarcinoma. Thus, accurate classification of pancreatic cysts and diagnosis of MPCs offer a potential for the prevention or early detection of pancreatic cancer. However, the diagnosis and management of asymptomatic pancreatic cysts are complicated by 2 factors. First, incidentally detected pancreatic cysts are often misdiagnosed as branch duct intraductal papillary mucinous neoplasms. Although most are MPCs, there are other types of cysts, such as serous cystadenomas, which are managed differently. Second, only a minority of MPCs will ultimately develop into invasive pancreatic ductal adenocarcinoma. Thus, on the one hand, pancreatic cysts offer a unique opportunity to identify precursors to pancreatic cancer and improve outcomes. On the other hand, misdiagnosis and overzealous testing or unnecessary surgery may lead to high cost and harm to patients. Several guidelines have been developed by various groups for the management of pancreatic cysts. In this article, we review the strengths and weaknesses of the American Gastroenterology Association guidelines, highlight key recommendations requiring further validation, and provide our balanced approach to diagnosing and managing pancreatic cysts.

  2. Parp-1 genetic ablation in Ela-myc mice unveils novel roles for Parp-1 in pancreatic cancer.

    Science.gov (United States)

    Martínez-Bosch, Neus; Iglesias, Mar; Munné-Collado, Jessica; Martínez-Cáceres, Carlos; Moreno, Mireia; Guerra, Carmen; Yélamos, Jose; Navarro, Pilar

    2014-10-01

    Pancreatic cancer has a dismal prognosis and is currently the fourth leading cause of cancer-related death in developed countries. The inhibition of poly(ADP-ribose) polymerase-1 (Parp-1), the major protein responsible for poly(ADP-ribosy)lation in response to DNA damage, has emerged as a promising treatment for several tumour types. Here we aimed to elucidate the involvement of Parp-1 in pancreatic tumour progression. We assessed Parp-1 protein expression in normal, preneoplastic and pancreatic tumour samples from humans and from K-Ras- and c-myc-driven mouse models of pancreatic cancer. Parp-1 was highly expressed in acinar cells in normal and cancer tissues. In contrast, ductal cells expressed very low or undetectable levels of this protein, both in a normal and in a tumour context. The Parp-1 expression pattern was similar in human and mouse samples, thereby validating the use of animal models for further studies. To determine the in vivo effects of Parp-1 depletion on pancreatic cancer progression, Ela-myc-driven pancreatic tumour development was analysed in a Parp-1 knock-out background. Loss of Parp-1 resulted in increased tumour necrosis and decreased proliferation, apoptosis and angiogenesis. Interestingly, Ela-myc:Parp-1(-/-) mice displayed fewer ductal tumours than their Ela-myc:Parp-1(+/+) counterparts, suggesting that Parp-1 participates in promoting acinar-to-ductal metaplasia, a key event in pancreatic cancer initiation. Moreover, impaired macrophage recruitment can be responsible for the ADM blockade found in the Ela-myc:Parp-1(-/-) mice. Finally, molecular analysis revealed that Parp-1 modulates ADM downstream of the Stat3-MMP7 axis and is also involved in transcriptional up-regulation of the MDM2, VEGFR1 and MMP28 cancer-related genes. In conclusion, the expression pattern of Parp-1 in normal and cancer tissue and the in vivo functional effects of Parp-1 depletion point to a novel role for this protein in pancreatic carcinogenesis and shed light

  3. Autoantibodies in chronic pancreatitis

    DEFF Research Database (Denmark)

    Rumessen, J J; Marner, B; Pedersen, N T

    1985-01-01

    In 60 consecutive patients clinically suspected of having chronic pancreatitis the serum concentration of the immunoglobulins (IgA, IgG, IgM), the IgG- and IgA-type non-organ-specific autoantibodies against nuclear material (ANA), smooth and striated muscle, mitochondria, basal membrane, and reti......In 60 consecutive patients clinically suspected of having chronic pancreatitis the serum concentration of the immunoglobulins (IgA, IgG, IgM), the IgG- and IgA-type non-organ-specific autoantibodies against nuclear material (ANA), smooth and striated muscle, mitochondria, basal membrane......, and reticulin, and the IgG- and IgA-type pancreas-specific antibodies against islet cells, acinus cells, and ductal cells (DA) were estimated blindly. In 23 of the patients chronic pancreatitis was verified, whereas chronic pancreatitis was rejected in 37 patients (control group). IgG and IgA were found...... in significantly higher concentrations in the patients with chronic pancreatitis than in the control group but within the normal range. ANA and DA occurred very frequently in both groups but with no statistical difference. Other autoantibodies only occurred sporadically. The findings of this study do not support...

  4. Direct long-term effects of L-asparaginase on rat and human pancreatic islets

    DEFF Research Database (Denmark)

    Clausen, Niels; Nielsen, Jens Høiriis

    1989-01-01

    L-Asparaginase, an effective agent in the treatment of acute lymphoblastic leukemia, may induce a diabetic state. The pathogenesis of the diabetogenic effect was studied in cultured pancreatic islets. Mean serum concentrations in three children with acute lymphoblastic leukemia were 2.4 U/mL (range...... 1.4-4.5) before and 31.5 U/mL (range 18.6-51.8) immediately after an intravenous injection of 1000 U/kg L-asparaginase. Glucose-induced insulin release from pancreatic islets of rat and man was measured after 3 and 7 days of culture in media with or without clinically relevant concentrations...... of Escherichia coli L-asparaginase (0.01-100 U/mL). After culture, the remaining insulin, glucagon, and DNA in the islets were determined. After 7 days of culture of adult rat or human islets, both the accumulation of insulin in the medium and the content of insulin and glucagon in the islets were significantly...

  5. Purinergic receptors and calcium signalling in human pancreatic duct cell lines

    DEFF Research Database (Denmark)

    Hansen, Mette R; Krabbe, Simon; Novak, Ivana

    2008-01-01

    pancreatic duct cell lines PANC-1 and CFPAC-1. Expression of P2 receptors was examined using RT-PCR and immunocytochemistry. Both cell lines, and also Capan-1 cells, express RNA transcripts for the following receptors: P2Y1, P2Y2, P2Y4, P2Y6, P2Y11-14 and P2X1, P2X2, P2X4, P2X5, P2X6 and P2X7. Using Fura-2......ATP, commonly used to stimulate P2X7 receptors, elicited non-oscillatory and transient Ca(2+) responses. Ivermectin, a potentiator of P2X4 receptors, increased Ca(2+) signals evoked by ATP. The single cell Ca(2+) measurements indicated functional expression of P2Y2 and other P2Y receptors, and notably...... expression of P2X4 and P2X7 receptors. Expression of P2Y2, P2X4 and P2X7 receptors was confirmed by immunocytochemistry. This fingerprint of P2 receptors in human pancreatic duct models forms the basis for studying effect of nucleotides on ion and fluid secretion, as well as on Ca(2+) and tissue homeostasis...

  6. Molecular mechanisms of resveratrol-induced apoptosis in human pancreatic cancer cells

    Directory of Open Access Journals (Sweden)

    Napaporn Kaewdoungdee

    2014-10-01

    Full Text Available Resveratrol is a polyphenolic phytoalexin found at high concentrations in grapes, nuts, fruits and red wine with reported anti -carcinogenic effects. In this study, the molecular mechanism of resveratrol -induced apoptosis in human pancreatic cancer (Panc 2.03 cells is investigated. Resveratrol treatment of Panc 2.03 cells results in dose-dependent inhibition of cell growth and cells accumulated at the S phase transition of the cell cycle. The anti -proliferative effect of resveratrol is due to apoptosis as seen by the appearance of chrom atin condensation, nuclear fragmentation, DNA ladder formation and increased annexin V-stained cells. The apoptotic process is induced by decreased Bcl-2 expression concomitant with increased Bax expression, leading to an increase in the Bax/Bcl-2 ratio and subsequent activation of caspase-9 and caspase-3. In addition, resveratrol treatment also decreases the survivin level and increases the apoptosis-inducing factor level in a dose-dependent manner. These results suggest that resveratrol induces apoptosis of Panc 2.03 cells, at least in part through a mitochondrial -associated intrinsic pathway in both caspasedependent and independent manners. The present findings suggest that resveratrol has potential as a chemopreventive agent, and possibly as a therapeutic one against pancreatic cancer.

  7. Efficient Generation of Glucose-Responsive Beta Cells from Isolated GP2+ Human Pancreatic Progenitors

    Directory of Open Access Journals (Sweden)

    Jacqueline Ameri

    2017-04-01

    Full Text Available Stem cell-based therapy for type 1 diabetes would benefit from implementation of a cell purification step at the pancreatic endoderm stage. This would increase the safety of the final cell product, allow the establishment of an intermediate-stage stem cell bank, and provide a means for upscaling β cell manufacturing. Comparative gene expression analysis revealed glycoprotein 2 (GP2 as a specific cell surface marker for isolating pancreatic endoderm cells (PECs from differentiated hESCs and human fetal pancreas. Isolated GP2+ PECs efficiently differentiated into glucose responsive insulin-producing cells in vitro. We found that in vitro PEC proliferation declines due to enhanced expression of the cyclin-dependent kinase (CDK inhibitors CDKN1A and CDKN2A. However, we identified a time window when reducing CDKN1A or CDKN2A expression increased proliferation and yield of GP2+ PECs. Altogether, our results contribute tools and concepts toward the isolation and use of PECs as a source for the safe production of hPSC-derived β cells.

  8. Comparison of Oct4, Sox2 and Nanog Expression in Pancreatic Cancer Cell Lines and Human Pancreatic Tumor

    Directory of Open Access Journals (Sweden)

    Vahideh Assadollahi

    2015-12-01

    Full Text Available Background: Genes are involved in the control of stem cell self-renewal as a new class of molecular markers of cancer. Objectives: In this study, the expression of Oct4, Nanog and Sox2 in cell lines MIA Paca-2, PA-TU-8902 and AsPC-1 and pancreatic cancer tissue were examined. Materials and Methods: In this experimental study, cell lines, MIA Paca-2, PA-TU-8902 and AsPC-1, were cultured in DMEM (Dulbecco’s Modified Eagles Medium and RPMI-1640 (Roswell Park Memorial Institute containing FBS 10% (fetal bovine serum in a 37°C incubator containing Co2 5% and humidity 90%. Samples of tumor and non-cancer pancreatic tumor were purchased Iran tumor bank. Extraction of RNA and synthesis of cDNA was performed. Expression levels of Oct4, Nanog and Sox2 were determined using Real-time PCR. The protein expression levels of target genes in the cell lines were studied by flow cytometry and immunocytochemistry. Results: The expression rate of Oct4, Nanog and Sox2 is more in the cancer cell lines than those in the control (normal tissue samples. The protein expression levels of target genes in the cell lines were confirmed by flow cytometry and immunocytochemistry. Conclusions: The genes are involved in stem cell self-renewal as a new class of molecular markers of cancer that detected in the pancreatic cell lines. Maybe, these genes play important role in the uncontrolled proliferation of cancer cells.

  9. The adenosine A2B receptor is involved in anion secretion in human pancreatic duct Capan-1 epithelial cells

    DEFF Research Database (Denmark)

    Hayashi, M.; Inagaki, A.; Novak, Ivana

    2016-01-01

    − channels important for anion secretion, we herein performed experiments on Capan-1, a human pancreatic duct cell line, using open-circuit Ussing chamber and gramicidin-perforated patch-clamp techniques. The luminal addition of adenosine increased the negative transepithelial potential difference (Vte...... antagonist, PSB 603, inhibited the response of Isc to adenosine. Immunohistochemical analysis showed that the A2A and A2B receptors colocalized with Ezrin in the luminal membranes of Capan-1 monolayers and in rat pancreatic ducts. Adenosine elicited the whole-cell Cl− currents in guinea pig duct cells...

  10. The novel mTORC1/2 dual inhibitor INK-128 suppresses survival and proliferation of primary and transformed human pancreatic cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Lou, Hai-zhou [Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou 310016 (China); Weng, Xiao-chuan [Department of Anesthesiology, Hangzhou Xia-sha Hospital, Hangzhou 310018 (China); Pan, Hong-ming; Pan, Qin [Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou 310016 (China); Sun, Peng [Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou 510060 (China); Liu, Li-li [Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou 310016 (China); Chen, Bin, E-mail: chenbinhangzhou126@126.com [Department of Hepatopancreatobiliary Surgery, First People’s Hospital of Hangzhou, Hangzhou 310006 (China)

    2014-07-25

    Highlights: • INK-128 inhibits the survival and growth of human pancreatic cancer cells. • INK-128 induced pancreatic cancer cell apoptosis and necrosis simultaneously. • INK-128 blocks mTORC1/2 activation simultaneously in pancreatic cancer cells. • INK-128 down-regulates cyclin D1 and causes pancreatic cancer cell cycle arrest. • INK-128 significantly increases sensitivity of pancreatic cancer cells to gemcitabine. - Abstract: Pancreatic cancer has one of worst prognosis among all human malignancies around the world, the development of novel and more efficient anti-cancer agents against this disease is urgent. In the current study, we tested the potential effect of INK-128, a novel mammalian target of rapamycin (mTOR) complex 1 and 2 (mTORC1/2) dual inhibitor, against pancreatic cancer cells in vitro. Our results demonstrated that INK-128 concentration- and time-dependently inhibited the survival and growth of pancreatic cancer cells (both primary cells and transformed cells). INK-128 induced pancreatic cancer cell apoptosis and necrosis simultaneously. Further, INK-128 dramatically inhibited phosphorylation of 4E-binding protein 1 (4E-BP1), ribosomal S6 kinase 1 (S6K1) and Akt at Ser 473 in pancreatic cancer cells. Meanwhile, it downregulated cyclin D1 expression and caused cell cycle arrest. Finally, we found that a low concentration of INK-128 significantly increased the sensitivity of pancreatic cancer cells to gemcitabine. Together, our in vitro results suggest that INK-128 might be further investigated as a novel anti-cancer agent or chemo-adjuvant for pancreatic cancer treatment.

  11. Pancreatic intraepithelial neoplasia and ductal adenocarcinoma induced by DMBA in mice: effects of alcohol and caffeine Neoplasia pancreática intraepithelial e adenocarcinoma ductal induzidos pelo DMBA em camundongos: efeitos do álcool e da cafeína

    Directory of Open Access Journals (Sweden)

    Luiz Roberto Wendt

    2007-06-01

    Full Text Available PURPOSE: To evaluate the effects of alcohol and caffeine in a pancreatic carcinogenesis mouse model induced by 7,12-dimethylbenzantracene (DMBA, according to the PanIN classification system. METHODS: 120 male, Mus musculus, CF-1 mice were divided into four groups. Animals received either water or caffeine or alcohol or alcohol + caffeine in their drinking water. In all animals, 1 mg of DMBA was implanted into the head of the pancreas. After 30 days, euthanasia was performed; excised pancreata were then fixed in formalin, stained with hematoxylin-eosin and categorized as follows: normal ducts, reactive hyperplasia, PanIN-1A, PanIN-1B, PanIN-2, PanIN-3 or adenocarcinoma. RESULTS: PanIN lesions were verified in all groups. Adenocarcinoma was detected in 15% of animals in the caffeine group, 16.6% in the water group, 23.8% in the alcohol + caffeine group and 52.9% in the alcohol group (POBJETIVO: Avaliar os efeitos do álcool e da cafeína na carcinogênese pancreática induzida pelo 7,12-dimetilbenzantraceno (DMBA em camundongos, descrevendo as lesões de acordo com a classificação das neoplasias pacreáticas intraepiteliais (PanIN. MÉTODOS: 120 camundogos machos, Mus musculus, CF-1 foram divididos em quatro grupos. Animais receberam água ou cafeína ou álcool ou álcool + cafeína para beber. Em todos animais, 1 mg de DMBA foi implantado na cabeça do pâncreas. Após 30 dias, eutanásia foi realizada, o pâncreas foi removido, fixado em formalina e corado com hematoxilina e eosina sendo classificado em: ductos normais, hiperplasia reativa, PanIN-1A, PanIN-1B, PanIN-2, PanIN-3 ou adenocarcinoma. RESULTADOS: Neoplasias pancreáticas intraepiteliais foram encontradas em todos grupos. Adenocarcinoma foi detectado em 15% dos animais do grupo cafeína, 16,6% do grupo água, 23,8% do grupo álcool + cafeína e 52,9% do grupo álcool (P<0,05. CONCLUSÕES: O modelo experimental de carcinogênese pancreática em camundongos utilizando DMBA induz

  12. Neurotransmitters act as paracrine signals to regulate insulin secretion from the human pancreatic islet.

    Science.gov (United States)

    Rodriguez-Diaz, Rayner; Menegaz, Danusa; Caicedo, Alejandro

    2014-08-15

    In this symposium review we discuss the role of neurotransmitters as paracrine signals that regulate pancreatic islet function. A large number of neurotransmitters and their receptors has been identified in the islet, but relatively little is known about their involvement in islet biology. Interestingly, neurotransmitters initially thought to be present in autonomic axons innervating the islet are also present in endocrine cells of the human islet. These neurotransmitters can thus be released as paracrine signals to help control hormone release. Here we propose that the role of neurotransmitters may extend beyond controlling endocrine cell function to work as signals modulating vascular flow and immune responses within the islet. © 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society.

  13. A nuclear-directed human pancreatic ribonuclease (PE5) targets the metabolic phenotype of cancer cells.

    Science.gov (United States)

    Vert, Anna; Castro, Jessica; Ribó, Marc; Benito, Antoni; Vilanova, Maria

    2016-04-05

    Ribonucleases represent a new class of antitumor RNA-damaging drugs. However, many wild-type members of the vertebrate secreted ribonuclease family are not cytotoxic because they are not able to evade the cytosolic ribonuclease inhibitor. We previously engineered the human pancreatic ribonuclease to direct it to the cell nucleus where the inhibitor is not present. The best characterized variant is PE5 that kills cancer cells through apoptosis mediated by the p21(WAF1/CIP1) induction and the inactivation of JNK. Here, we have used microarray-derived transcriptional profiling to identify PE5 regulated genes on the NCI/ADR-RES ovarian cancer cell line. RT-qPCR analyses have confirmed the expression microarray findings. The results show that PE5 cause pleiotropic effects. Among them, it is remarkable the down-regulation of multiple genes that code for enzymes involved in deregulated metabolic pathways in cancer cells.

  14. Protection of Human Pancreatic Islets from Lipotoxicity by Modulation of the Translocon.

    Directory of Open Access Journals (Sweden)

    R Cassel

    Full Text Available Type 2 diabetes is characterized by peripheral insulin resistance and pancreatic beta cell dysfunction. Elevated free fatty acids (FFAs may impair beta cell function and mass (lipotoxicity. Altered calcium homeostasis may be involved in defective insulin release. The endoplasmic reticulum (ER is the major intracellular calcium store. Lipotoxicity induces ER stress and in parallel an ER calcium depletion through unknown ER calcium leak channels. The main purposes of this study is first to identify one of these channels and secondly, to check the opportunity to restore beta cells function (i.e., insulin secretion after pharmacological inhibition of ER calcium store depletion. We investigated the functionality of translocon, an ER calcium leak channel and its involvement on FFAs-induced alterations in MIN6B1 cells and in human pancreatic islets. We evidenced that translocon acts as a functional ER calcium leak channel in human beta cells using anisomycin and puromycin (antibiotics, respectively blocker and opener of this channel. Puromycin induced a significant ER calcium release, inhibited by anisomycin pretreatment. Palmitate treatment was used as FFA model to induce a mild lipotoxic effect: ER calcium content was reduced, ER stress but not apoptosis were induced and glucose induced insulin secretion was decreased in our beta cells. Interestingly, translocon inhibition by chronic anisomycin treatment prevented dysfunctions induced by palmitate, avoiding reticular calcium depletion, ER stress and restoring insulin secretion. Our results provide for the first time compelling evidence that translocon actively participates to the palmitate-induced ER calcium leak and insulin secretion decrease in beta cells. Its inhibition reduces these lipotoxic effects. Taken together, our data indicate that TLC may be a new potential target for the treatment of type 2 diabetes.

  15. Glucose-stimulated insulin release: Parallel perifusion studies of free and hydrogel encapsulated human pancreatic islets.

    Science.gov (United States)

    Buchwald, Peter; Tamayo-Garcia, Alejandro; Manzoli, Vita; Tomei, Alice A; Stabler, Cherie L

    2018-01-01

    To explore the effects immune-isolating encapsulation has on the insulin secretion of pancreatic islets and to improve our ability to quantitatively describe the glucose-stimulated insulin release (GSIR) of pancreatic islets, we conducted dynamic perifusion experiments with isolated human islets. Free (unencapsulated) and hydrogel encapsulated islets were perifused, in parallel, using an automated multi-channel system that allows sample collection with high temporal resolution. Results indicated that free human islets secrete less insulin per unit mass or islet equivalent (IEQ) than murine islets and with a less pronounced first-phase peak. While small microcapsules (d = 700 µm) caused only a slightly delayed and blunted first-phase insulin response compared to unencapsulated islets, larger capsules (d = 1,800 µm) completely blunted the first-phase peak and decreased the total amount of insulin released. Experimentally obtained insulin time-profiles were fitted with our complex insulin secretion computational model. This allowed further fine-tuning of the hormone-release parameters of this model, which was implemented in COMSOL Multiphysics to couple hormone secretion and nutrient consumption kinetics with diffusive and convective transport. The results of these GSIR experiments, which were also supported by computational modeling, indicate that larger capsules unavoidably lead to dampening of the first-phase insulin response and to a sustained-release type insulin secretion that can only slowly respond to changes in glucose concentration. Bioartificial pancreas type devices can provide long-term and physiologically desirable solutions only if immunoisolation and biocompatibility considerations are integrated with optimized nutrient diffusion and insulin release characteristics by design. © 2017 Wiley Periodicals, Inc.

  16. A gene expression signature of epithelial tubulogenesis and a role for ASPM in pancreatic tumor progression.

    Science.gov (United States)

    Wang, Wei-Yu; Hsu, Chung-Chi; Wang, Ting-Yun; Li, Chi-Rong; Hou, Ya-Chin; Chu, Jui-Mei; Lee, Chung-Ta; Liu, Ming-Sheng; Su, Jimmy J-M; Jian, Kuan-Ying; Huang, Shenq-Shyang; Jiang, Shih-Sheng; Shan, Yan-Shen; Lin, Pin-Wen; Shen, Yin-Ying; Lee, Michael T-L; Chan, Tze-Sian; Chang, Chun-Chao; Chen, Chung-Hsing; Chang, I-Shou; Lee, Yen-Ling; Chen, Li-Tzong; Tsai, Kelvin K

    2013-11-01

    Many patients with pancreatic ductal adenocarcinoma (PDAC) develop recurrent or metastatic diseases after surgery, so it is important to identify those most likely to benefit from aggressive therapy. Disruption of tissue microarchitecture is an early step in pancreatic tumorigenesis and a parameter used in pathology grading of glandular tumors. We investigated whether changes in gene expression during pancreatic epithelial morphogenesis were associated with outcomes of patients with PDAC after surgery. We generated architectures of human pancreatic duct epithelial cells in a 3-dimensional basement membrane matrix. We identified gene expression profiles of the cells during different stages of tubular morphogenesis (tubulogenesis) and of PANC-1 cells during spheroid formation. Differential expression of genes was confirmed by immunoblot analysis. We compared the gene expression profile associated with pancreatic epithelial tubulogenesis with that of PDAC samples from 27 patients, as well as with their outcomes after surgery. We identified a gene expression profile associated with tubulogenesis that resembled the profile of human pancreatic tissue with differentiated morphology and exocrine function. Patients with PDACs with this profile fared well after surgery. Based on this profile, we established a 6-28 gene tubulogenesis-specific signature that accurately determined the prognosis of independent cohorts of patients with PDAC (total n = 128; accuracy = 81.2%-95.0%). One gene, ASPM, was down-regulated during tubulogenesis but up-regulated in human PDAC cell lines and tumor samples; up-regulation correlated with patient outcomes (Cox regression P = .0028). Bioinformatic, genetic, biochemical, functional, and clinical correlative studies showed that ASPM promotes aggressiveness of PDAC by maintaining Wnt-β-catenin signaling and stem cell features of PDAC cells. We identified a gene expression profile associated with pancreatic epithelial tubulogenesis and a

  17. Class I and class II histone deacetylases are potential therapeutic targets for treating pancreatic cancer.

    Science.gov (United States)

    Wang, Guan; He, Jing; Zhao, Jianyun; Yun, Wenting; Xie, Chengzhi; Taub, Jeffrey W; Azmi, Asfar; Mohammad, Ramzi M; Dong, Yan; Kong, Wei; Guo, Yingjie; Ge, Yubin

    2012-01-01

    Pancreatic cancer is a highly malignant disease with an extremely poor prognosis. Histone deacetylase inhibitors (HDACIs) have shown promising antitumor activities against preclinical models of pancreatic cancer, either alone or in combination with chemotherapeutic agents. In this study, we sought to identify clinically relevant histone deacetylases (HDACs) to guide the selection of HDAC inhibitors (HDACIs) tailored to the treatment of pancreatic cancer. HDAC expression in seven pancreatic cancer cell lines and normal human pancreatic ductal epithelial cells was determined by Western blotting. Antitumor interactions between class I- and class II-selective HDACIs were determined by MTT assays and standard isobologram/CompuSyn software analyses. The effects of HDACIs on cell death, apoptosis and cell cycle progression, and histone H4, alpha-tubulin, p21, and γH2AX levels were determined by colony formation assays, flow cytometry analysis, and Western blotting, respectively. The majority of classes I and II HDACs were detected in the pancreatic cancer cell lines, albeit at variable levels. Treatments with MGCD0103 (a class I-selective HDACI) resulted in dose-dependent growth arrest, cell death/apoptosis, and cell cycle arrest in G2/M phase, accompanied by induction of p21 and DNA double-strand breaks (DSBs). In contrast, MC1568 (a class IIa-selective HDACI) or Tubastatin A (a HDAC6-selective inhibitor) showed minimal effects. When combined simultaneously, MC1568 significantly enhanced MGCD0103-induced growth arrest, cell death/apoptosis, and G2/M cell cycle arrest, while Tubastatin A only synergistically enhanced MGCD0103-induced growth arrest. Although MC1568 or Tubastatin A alone had no obvious effects on DNA DSBs and p21 expression, their combination with MGCD0103 resulted in cooperative induction of p21 in the cells. Our results suggest that classes I and II HDACs are potential therapeutic targets for treating pancreatic cancer. Accordingly, treating pancreatic

  18. Activated wnt signaling in stroma contributes to development of pancreatic mucinous cystic neoplasms.

    Science.gov (United States)

    Sano, Makoto; Driscoll, David R; De Jesus-Monge, Wilfredo E; Klimstra, David S; Lewis, Brian C

    2014-01-01

    Pancreatic mucinous cystic neoplasm (MCN), a cystic tumor of the pancreas that develops most frequently in women, is a potential precursor to pancreatic ductal adenocarcinoma. MCNs develop primarily in the body and tail of the pancreas and are characterized by the presence of a mucinous epithelium and ovarian-like subepithelial stroma. We investigated the involvement of Wnt signaling in KRAS-mediated pancreatic tumorigenesis and development of MCN in mice, and Wnt activation in human MCN samples. LSL-Kras(G12D), Ptf1a-cre mice were crossed with elastase-tva mice to allow for introduction of genes encoded by the replication-competent avian sarcoma-leukosis virus long-terminal repeat with splice acceptor viruses to pancreatic acinar cells and acinar cell progenitors, postnatally and sporadically. Repeat with splice acceptor viruses that expressed Wnt1 were delivered to the pancreatic epithelium of these mice; pancreatic lesions were analyzed by histopathology and immunohistochemical analyses. We analyzed levels of factors in Wnt signaling pathways in 19 MCN samples from patients. Expression of Wnt1 in the pancreatic acinar cells and acinar cell progenitors of female mice led to development of unilocular or multilocular epithelial cysts in the pancreas body and tail, similar to MCN. The cystic lesions resembled the estrogen receptor- and progesterone receptor-positive ovarian-like stroma of MCN, but lacked the typical mucinous epithelium. Activated Wnt signaling, based on nuclear localization of β-catenin, was detected in the stroma but not cyst epithelium. Wnt signaling to β-catenin was found to be activated in MCN samples from patients, within the ovarian-like stroma, consistent with the findings in mice. Based on studies of mice and pancreatic MCN samples from patients, the canonical Wnt signaling pathway becomes activated and promotes development of the ovarian-like stroma to contribute to formation of MCNs. Copyright © 2014 AGA Institute. Published by Elsevier

  19. Transplantation of Human Pancreatic Endoderm Cells Reverses Diabetes Post Transplantation in a Prevascularized Subcutaneous Site.

    Science.gov (United States)

    Pepper, Andrew R; Pawlick, Rena; Bruni, Antonio; Wink, John; Rafiei, Yasmin; O'Gorman, Doug; Yan-Do, Richard; Gala-Lopez, Boris; Kin, Tatsuya; MacDonald, Patrick E; Shapiro, A M James

    2017-06-06

    Beta-cell replacement therapy is an effective means to restore glucose homeostasis in select humans with autoimmune diabetes. The scarcity of "healthy" human donor pancreata restricts the broader application of this effective curative therapy. "β-Like" cells derived from human embryonic stem cells (hESC), with the capacity to secrete insulin in a glucose-regulated manner, have been developed in vitro, with limitless capacity for expansion. Here we report long-term diabetes correction in mice transplanted with hESC-derived pancreatic endoderm cells (PECs) in a prevascularized subcutaneous site. This advancement mitigates chronic foreign-body response, utilizes a device- and growth factor-free approach, facilitates in vivo differentiation of PECs into glucose-responsive insulin-producing cells, and reliably restores glycemic control. Basal and stimulated human C-peptide secretion was detected throughout the study, which was abolished upon graft removal. Recipient mice demonstrated physiological clearance of glucose in response to metabolic challenge and safely retrieved grafts contained viable glucose regulatory cells. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Transplantation of Human Pancreatic Endoderm Cells Reverses Diabetes Post Transplantation in a Prevascularized Subcutaneous Site

    Directory of Open Access Journals (Sweden)

    Andrew R. Pepper

    2017-06-01

    Full Text Available Beta-cell replacement therapy is an effective means to restore glucose homeostasis in select humans with autoimmune diabetes. The scarcity of “healthy” human donor pancreata restricts the broader application of this effective curative therapy. “β-Like” cells derived from human embryonic stem cells (hESC, with the capacity to secrete insulin in a glucose-regulated manner, have been developed in vitro, with limitless capacity for expansion. Here we report long-term diabetes correction in mice transplanted with hESC-derived pancreatic endoderm cells (PECs in a prevascularized subcutaneous site. This advancement mitigates chronic foreign-body response, utilizes a device- and growth factor-free approach, facilitates in vivo differentiation of PECs into glucose-responsive insulin-producing cells, and reliably restores glycemic control. Basal and stimulated human C-peptide secretion was detected throughout the study, which was abolished upon graft removal. Recipient mice demonstrated physiological clearance of glucose in response to metabolic challenge and safely retrieved grafts contained viable glucose regulatory cells.

  1. A modular and flexible ESC-based mouse model of pancreatic cancer.

    Science.gov (United States)

    Saborowski, Michael; Saborowski, Anna; Morris, John P; Bosbach, Benedikt; Dow, Lukas E; Pelletier, Jerry; Klimstra, David S; Lowe, Scott W

    2014-01-01

    Genetically engineered mouse models (GEMMs) have greatly expanded our knowledge of pancreatic ductal adenocarcinoma (PDAC) and serve as a critical tool to identify and evaluate new treatment strategies. However, the cost and time required to generate conventional pancreatic cancer GEMMs limits their use for investigating novel genetic interactions in tumor development and maintenance. To address this problem, we developed flexible embryonic stem cell (ESC)-based GEMMs that facilitate the rapid generation of genetically defined multiallelic chimeric mice without further strain intercrossing. The ESCs harbor a latent Kras mutant (a nearly ubiquitous feature of pancreatic cancer), a homing cassette, and other genetic elements needed for rapid insertion and conditional expression of tetracycline-controlled transgenes, including fluorescence-coupled shRNAs capable of efficiently silencing gene function by RNAi. This system produces a disease that recapitulates the progression of pancreatic cancer in human patients and enables the study and visualization of the impact of gene perturbation at any stage of pancreas cancer progression. We describe the use of this approach to dissect temporal roles for the tumor suppressor Pten and the oncogene c-Myc in pancreatic cancer development and maintenance.

  2. The Role of nAChR and Calcium Signaling in Pancreatic Cancer Initiation and Progression

    Directory of Open Access Journals (Sweden)

    Courtney Schaal

    2015-07-01

    Full Text Available Pancreatic cancer shows a strong correlation with smoking and the current therapeutic strategies have been relatively ineffective in improving the survival of patients. Efforts have been made over the past many years to understand the molecular events that drive the initiation and progression of pancreatic cancer, especially in the context of smoking. It has become clear that components of tobacco smoke not only initiate these cancers, especially pancreatic ductal adenocarcinomas (PDACs through their mutagenic properties, but can also promote the growth and metastasis of these tumors by stimulating cell proliferation, angiogenesis, invasion and epithelial-mesenchymal transition. Studies in cell culture systems, animal models and human samples have shown that nicotinic acetylcholine receptor (nAChR activation enhances these tumor-promoting events by channeling signaling through multiple pathways. In this context, signaling through calcium channels appear to facilitate pancreatic cancer growth by itself or downstream of nAChRs. This review article highlights the role of nAChR downstream signaling events and calcium signaling in the growth, metastasis as well as drug resistance of pancreatic cancer.

  3. EVI1 oncogene promotes KRAS pathway through suppression of microRNA-96 in pancreatic carcinogenesis.

    Science.gov (United States)

    Tanaka, M; Suzuki, H I; Shibahara, J; Kunita, A; Isagawa, T; Yoshimi, A; Kurokawa, M; Miyazono, K; Aburatani, H; Ishikawa, S; Fukayama, M

    2014-05-08

    Despite frequent KRAS mutation, the early molecular mechanisms of pancreatic ductal adenocarcinoma (PDAC) development have not been fully elucidated. By tracking a potential regulator of another feature of PDAC precursors, acquisition of foregut or gastric epithelial gene signature, we herein report that aberrant overexpression of ecotropic viral integration site 1 (EVI1) oncoprotein, which is usually absent in normal pancreatic duct, is a widespread marker across the full spectrum of human PDAC precursors and PDAC. In pancreatic cancer cells, EVI1 depletion caused remarkable inhibition of cell growth and migration, indicating its oncogenic roles. Importantly, we found that EVI1 upregulated KRAS expression through suppression of a potent KRAS suppressor, miR-96, in pancreatic cancer cells. Collectively, the present findings suggest that EVI1 overexpression and KRAS mutation converge on activation of the KRAS pathway in early phases of pancreatic carcinogenesis and propose EVI1 and/or miR-96 as early markers and therapeutic targets in this dismal disease.

  4. The Role of nAChR and Calcium Signaling in Pancreatic Cancer Initiation and Progression

    Energy Technology Data Exchange (ETDEWEB)

    Schaal, Courtney [Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612 (United States); Padmanabhan, Jaya [Department of Molecular Medicine and USF Health Byrd Alzheimer’s Institute, University of South Florida, 4001 E. Fletcher Ave., Tampa, FL 33612 (United States); Chellappan, Srikumar, E-mail: Srikumar.Chellappan@moffitt.org [Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612 (United States)

    2015-07-31

    Pancreatic cancer shows a strong correlation with smoking and the current therapeutic strategies have been relatively ineffective in improving the survival of patients. Efforts have been made over the past many years to understand the molecular events that drive the initiation and progression of pancreatic cancer, especially in the context of smoking. It has become clear that components of tobacco smoke not only initiate these cancers, especially pancreatic ductal adenocarcinomas (PDACs) through their mutagenic properties, but can also promote the growth and metastasis of these tumors by stimulating cell proliferation, angiogenesis, invasion and epithelial-mesenchymal transition. Studies in cell culture systems, animal models and human samples have shown that nicotinic acetylcholine receptor (nAChR) activation enhances these tumor-promoting events by channeling signaling through multiple pathways. In this context, signaling through calcium channels appear to facilitate pancreatic cancer growth by itself or downstream of nAChRs. This review article highlights the role of nAChR downstream signaling events and calcium signaling in the growth, metastasis as well as drug resistance of pancreatic cancer.

  5. Are pancreatic calcifications specific for the diagnosis of chronic pancreatitis? A multidetector-row CT analysis

    Energy Technology Data Exchange (ETDEWEB)

    Campisi, A. [Department of Radiology, University of Palermo, via del Vespro 127, 90127 Palermo (Italy); Brancatelli, G. [Department of Radiology, University of Palermo, via del Vespro 127, 90127 Palermo (Italy); Department of Radiology, University of Pittsburgh School of Medicine, 200 Lothrop street, 15213, Pittsburgh, PA (United States); Radiology Unit, La Maddalena hospital, 90146, Palermo (Italy)], E-mail: gbranca@yahoo.com; Vullierme, M.-P.; Levy, P.; Ruzniewski, P. [Universite Paris 7 Denis Diderot, Paris, F-75018 (France); AP-HP, Hopital Beaujon, Department of Radiology, Clichy F-92100 (France); Vilgrain, V. [Universite Paris 7 Denis Diderot, Paris, F-75018 (France); AP-HP, Hopital Beaujon, Department of Radiology, Clichy F-92100 (France); INSERM, U773, Centre de recherche biomedicale Bichat-Beaujon, CRB3, Paris F-75018 (France)

    2009-09-15

    Aim: To retrospectively establish the most frequently encountered diagnoses in patients with pancreatic calcifications and to investigate whether the association of certain findings could be helpful for diagnosis. Materials and methods: One hundred and three patients were included in the study. The location and distribution of calcifications; presence, nature, and enhancement pattern of pancreatic lesions; pancreatic atrophy and ductal dilatation were recorded. Differences between patients with chronic pancreatitis and patients with other entities were compared by using Fisher's exact test. Results: Patients had chronic pancreatitis (n = 70), neuroendocrine tumours (n = 14), intraductal papillary mucinous neoplasm (n = 11), pancreatic adenocarcinoma (n = 4), serous cystadenoma (n = 4). Four CT findings had a specificity of over 60% for the diagnosis of chronic pancreatitis: parenchymal calcifications, intraductal calcifications, parenchymal atrophy, and cystic lesions. When at least two of these four criteria were used in combination, 54 of 70 (77%) patients with chronic pancreatitis could be identified, but only 17 of 33 (51%) patients with other diseases. When at least three of these four criteria were present, a specificity of 79% for the diagnosis of chronic pancreatitis was achieved. Conclusion: Certain findings are noted more often in chronic pancreatitis than in other pancreatic diseases. The presence of a combination of CT findings can suggest chronic pancreatitis and be helpful in diagnosis.

  6. MicroRNA expression in alpha and beta cells of human pancreatic islets.

    Directory of Open Access Journals (Sweden)

    Dagmar Klein

    Full Text Available microRNAs (miRNAs play an important role in pancreatic development and adult β-cell physiology. Our hypothesis is based on the assumption that each islet cell type has a specific pattern of miRNA expression. We sought to determine the profile of miRNA expression in α-and β-cells, the main components of pancreatic islets, because this analysis may lead to a better understanding of islet gene regulatory pathways. Highly enriched (>98% subsets of human α-and β-cells were obtained by flow cytometric sorting after intracellular staining with c-peptide and glucagon antibody. The method of sorting based on intracellular staining is possible because miRNAs are stable after fixation. MiRNA expression levels were determined by quantitative high throughput PCR-based miRNA array platform screening. Most of the miRNAs were preferentially expressed in β-cells. From the total of 667 miRNAs screened, the Significant Analysis of Microarray identified 141 miRNAs, of which only 7 were expressed more in α-cells (α-miRNAs and 134 were expressed more in β-cells (β-miRNAs. Bioinformatic analysis identified potential targets of β-miRNAs analyzing the Beta Cell Gene Atlas, described in the T1Dbase, the web platform, supporting the type 1 diabetes (T1D community. cMaf, a transcription factor regulating glucagon expression expressed selectively in α-cells (TFα is targeted by β-miRNAs; miR-200c, miR-125b and miR-182. Min6 cells treated with inhibitors of these miRNAs show an increased expression of cMaf RNA. Conversely, over expression of miR-200c, miR-125b or miR-182 in the mouse alpha cell line αTC6 decreases the level of cMAF mRNA and protein. MiR-200c also inhibits the expression of Zfpm2, a TFα that inhibits the PI3K signaling pathway, at both RNA and protein levels.In conclusion, we identified miRNAs differentially expressed in pancreatic α- and β-cells and their potential transcription factor targets that could add new insights into different

  7. Bcl-xL inhibition by molecular-targeting drugs sensitizes human pancreatic cancer cells to TRAIL

    Science.gov (United States)

    Hari, Yoko; Harashima, Nanae; Tajima, Yoshitsugu; Harada, Mamoru

    2015-01-01

    Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) induces apoptosis in various types of cancer cells without damaging normal cells. However, in terms of pancreatic cancer, not all cancer cells are sensitive to TRAIL. In this study, we examined a panel of human pancreatic cancer cell lines for TRAIL sensitivity and investigated the effects of Bcl-2 family inhibitors on their response to TRAIL. Both ABT-263 and ABT-737 inhibited the function of Bcl-2, Bcl-xL, and Bcl-w. Of the nine pancreatic cancer cell lines tested, six showed no or low sensitivity to TRAIL, which correlated with protein expression of Bcl-xL. ABT-263 significantly sensitized four cell lines (AsPC-1, Panc-1, CFPAC-1, and Panc10.05) to TRAIL, with reduced cell viability and increased apoptosis. Knockdown of Bcl-xL, but not Bcl-2, by siRNA transfection increased the sensitivity of AsPC-1 and Panc-1 cells to TRAIL. ABT-263 treatment had no effect on protein expression of Bcl-2, Bcl-xL, or c-FLIPs. In Panc-1 cells, ABT-263 increased the surface expression of death receptor (DR) 5; the NF-κB pathway, but not endoplasmic reticulum stress, participated in the increase. In xenograft mouse models, the combination of TRAIL and ATB-737 suppressed the in vivo tumor growth of AsPC-1 and Panc-1 cells. These results indicate that Bcl-xL is responsible for TRAIL resistance in human pancreatic cancer cells, and that Bcl-2 family inhibitors could represent promising reagents to sensitize human pancreatic cancers in DR-targeting therapy. PMID:26506422

  8. Pancreatitis in hyperlipemic mink (Mustela vison).

    Science.gov (United States)

    Nordstoga, K; Sørby, R; Olivecrona, G; Smith, A J; Christophersen, B

    2012-05-01

    In both man and animals, inflammatory changes in the pancreas often occur with disturbances in lipid metabolism, including hypertriglyceridemia and an excess of free fatty acids. Hyperlipoproteinemia type I is a human condition caused by a deficiency of lipoprotein lipase. A similar metabolic disturbance that occurs in mink is of considerable comparative interest, as it is also followed by pancreatitis. Pancreatic lesions in hyperlipoproteinemic mink included overt variably sized nodules with hemorrhage and necrosis. These lesions began as intralobular necrosis of exocrine cells and progressed to total lobular destruction, with eventual involvement of interlobular tissue. Remnants of epithelial cells and lipid-filled macrophages were seen in necrotic areas, along with other types of inflammatory cells scattered in a lipid-rich exudate. Granulation tissue developed rapidly in necrotic areas. Additional observations included ductal proliferation, replacement of epithelial cells with fat, and mural arterial thickening, most conspicuously with vacuolated cells and endothelial proliferation. Extravasation of lipid-rich plasma is thought to be a major intensifier of the inflammatory response.

  9. Total pancreatectomy for metachronous mixed acinar-ductal carcinoma in a remnant pancreas.

    Science.gov (United States)

    Shonaka, Tatsuya; Inagaki, Mitsuhiro; Akabane, Hiromitsu; Yanagida, Naoyuki; Shomura, Hiroki; Yanagawa, Nobuyuki; Oikawa, Kensuke; Nakano, Shiro

    2014-09-07

    In October 2009, a 71-year-old female was diagnosed with a cystic tumor in the tail of the pancreas with an irregular dilatation of the main pancreatic duct in the body and tail of the pancreas. A distal pancreatectomy with splenectomy, and partial resection of the duodenum, jejunum and transverse colon was performed. In March 2011, a follow-up computed tomography scan showed a low density mass at the head of the remnant pancreas. We diagnosed it as a recurrence of the tumor and performed a total pancreatectomy for the remnant pancreas. In the histological evaluation of the resected specimen of the distal pancreas, the neoplastic cells formed an acinar and papillary structure that extended into the main pancreatic duct. Mucin5AC, α1-antitrypsin (α-AT) and carcinoembryonic antigen (CEA) were detected in the tumor cells by immunohistochemistry. In the resected head of the pancreas, the tumor was composed of both acinar and ductal elements with a mottled pattern. The proportions of each element were approximately 40% and 60%, respectively. Strongly positive α-AT cells were detected in the acinar element. Some tumor cells were also CEA positive. However, the staining for synaptophysin and chromogranin A was negative in the tumor cells. Ultimately, we diagnosed the tumor as a recurrence of mixed acinar-ductal carcinoma in the remnant pancreas. In conclusion, we report here a rare case of repeated pancreatic resection for multicentric lesions of mixed acinar-ductal carcinoma of the pancreas.

  10. Structure of Human Pancreatic Lipase-Related Protein 2 with the Lid in an Open Conformation

    Energy Technology Data Exchange (ETDEWEB)

    Eydoux, Cecilia; Spinelli, Silvia; Davis, Tara L.; Walker, John R.; Seitova, Alma; Dhe-Paganon, Sirano; De Caro, Alain; Cambillau, Christian; Carriere, Frederic (CNRS-UMR); (Toronto)

    2008-10-02

    Access to the active site of pancreatic lipase (PL) is controlled by a surface loop, the lid, which normally undergoes conformational changes only upon addition of lipids or amphiphiles. Structures of PL with their lids in the open and functional conformation have required cocrystallization with amphiphiles. Here we report two crystal structures of wild-type and unglycosylated human pancreatic lipase-related protein 2 (HPLRP2) with the lid in an open conformation in the absence of amphiphiles. These structures solved independently are strikingly similar, with some residues of the lid being poorly defined in the electron-density map. The open conformation of the lid is however different from that previously observed in classical liganded PL, suggesting different kinetic properties for HPLRP2. Here we show that the HPLRP2 is directly inhibited by E600, does not present interfacial activation, and acts preferentially on substrates forming monomers or small aggregates (micelles) dispersed in solution like monoglycerides, phospholipids and galactolipids, whereas classical PL displays reverse properties and a high specificity for unsoluble substrates like triglycerides and diglycerides forming oil-in-water interfaces. These biochemical properties imply that the lid of HPLRP2 is likely to spontaneously adopt in solution the open conformation observed in the crystal structure. This open conformation generates a large cavity capable of accommodating the digalactose polar head of galactolipids, similar to that previously observed in the active site of the guinea pig PLRP2, but absent from the classical PL. Most of the structural and kinetic properties of HPLRP2 were found to be different from those of rat PLRP2, the structure of which was previously obtained with the lid in a closed conformation. Our findings illustrate the essential role of the lid in determining the substrate specificity and the mechanism of action of lipases.

  11. Pancreatic beta-cell failure in obese mice with human-like CMP-Neu5Ac hydroxylase deficiency.

    Science.gov (United States)

    Kavaler, Sarah; Morinaga, Hidetaka; Jih, Alice; Fan, WuQiang; Hedlund, Maria; Varki, Ajit; Kim, Jane J

    2011-06-01

    Type 2 diabetes is highly prevalent in human populations, particularly in obese individuals, and is characterized by progressive pancreatic β-cell dysfunction and insulin resistance. Most mammals, including Old World primates, express two major kinds of sialic acids, N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc), typically found at the distal ends of glycoconjugate chains at the cell surface. Humans are uniquely unable to produce endogenous Neu5Gc due to an inactivating mutation in the CMP-Neu5Ac hydroxylase (CMAH) gene. The CMAH enzyme catalyzes the generation of CMP-Neu5Gc by the transfer of a single oxygen atom to the acyl group of CMP-Neu5Ac. Here, we show that mice bearing a human-like deletion of the Cmah gene exhibit fasting hyperglycemia and glucose intolerance following a high-fat diet. This phenotype is caused not by worsened insulin resistance but by compromised pancreatic β-cell function associated with a 65% decrease in islet size and area and 50% decrease in islet number. Obese Cmah-null mice also show an ∼40% reduction in response to insulin secretagogues in vivo. These findings show that human evolution-like changes in sialic acid composition impair pancreatic β-cell function and exacerbate glucose intolerance in mice. This may lend insight into the pathogenesis of type 2 diabetes in obese humans.

  12. Gamma-amino butyric acid (GABA) prevents the induction of nicotinic receptor-regulated signaling by chronic ethanol in pancreatic cancer cells and normal duct epithelia.

    Science.gov (United States)

    Al-Wadei, Mohammed H; Al-Wadei, Hussein A N; Schuller, Hildegard M

    2013-02-01

    Pancreatic cancer has a high mortality rate and alcoholism is a risk factor independent of smoking. We have shown that nicotinic acetylcholine receptors (nAChR) regulate pancreatic ductal epithelia and pancreatic ductal adenocarcinoma (PDAC) cells in an autocrine fashion by stimulating their production of the stress neurotransmitters noradrenaline and adrenaline that signal through β-adrenergic receptors (β-AR). Our current study has investigated the modulation of this autocrine regulatory loop by chronic ethanol and explored the potential prevention of these effects by γ-amino butyric acid (GABA). Using MTT assays, cell migration assays, Western blotting, immunoassays, and gene knockdown of individual nAChRs in two PDAC cell lines and in immortalized human pancreatic duct epithelial cells, our data show that treatment for seven days with ethanol induced the protein expression and sensitivity of nAChRs α3, α5, and α7 resulting in increased production of noradrenaline and adrenaline, which drive proliferation and migration via cyclic AMP (cAMP)-dependent signaling downstream of β-ARs. Treatment with GABA prevented all of these responses to chronic ethanol, reducing cell proliferation and migration below base levels in untreated cells. Our findings suggest that alcoholism induces multiple cAMP-dependent PDAC stimulating signaling pathways by upregulating the protein expression and sensitivity of nAChRs that regulate stress neurotransmitter production. Moreover, our data identify GABA as a promising agent for the prevention of PDAC in individuals at risk due to chronic alcohol consumption.

  13. Gamma-amino butyric acid (GABA) prevents the induction of nicotinic receptor-regulated signaling by chronic ethanol in pancreatic cancer cells and normal duct epithelia

    Science.gov (United States)

    Al-Wadei, Mohammed H.; Al-Wadei, Hussein A.N.; Schuller, Hildegard M.

    2012-01-01

    Pancreatic cancer has a high mortality rate and alcoholism is a risk factor independent of smoking. We have shown that nicotinic acetylcholine receptors (nAChRs) regulate pancreatic ductal epithelia and pancreatic ductal adenocarcinoma (PDAC) cells in an autocrine fashion by stimulating their production of the stress neurotransmitters noradrenaline and adrenaline that signal through beta-adrenergic receptors (β-ARs). Our current study has investigated the modulation of this autocrine regulatory loop by chronic ethanol and explored the potential prevention of these effects by γ-amino butyric acid (GABA). Using MTT assays, cell migration assays, western blotting, immunoassays, and gene knockdown of individual nAChRs in two PDAC cell lines and in immortalized human pancreatic duct epithelial cells, our data show that treatment for seven days with ethanol induced the protein expression and sensitivity of nAChRs α3, α5 and α7 resulting in increased production of noradrenaline and adrenaline which drive proliferation and migration via cAMP-dependent signaling downstream of β-ARs. Treatment with GABA prevented all of these responses to chronic ethanol, reducing cell proliferation and migration below base levels in untreated cells. Our findings suggest that alcoholism induces multiple cAMP-dependent PDAC stimulating signaling pathways by up-regulating the protein expression and sensitivity of nAChRs that regulate stress neurotransmitter production. Moreover, our data identify GABA as a promising agent for the prevention of PDAC in individuals at risk due to chronic alcohol consumption. PMID:23213073

  14. The effect of Nrf2 pathway activation on human pancreatic islet cells.

    Science.gov (United States)

    Masuda, Yuichi; Vaziri, Nosratola D; Li, Shiri; Le, Aimee; Hajighasemi-Ossareh, Mohammad; Robles, Lourdes; Foster, Clarence E; Stamos, Michael J; Al-Abodullah, Ismail; Ricordi, Camillo; Ichii, Hirohito

    2015-01-01

    Pancreatic islets are known to contain low level of antioxidants that renders them vulnerable to oxidative stress. Nrf2 is the master regulator of numerous genes, encoding antioxidant, detoxifying, and cytoprotective molecules. Activation of Nrf2 pathway induces up-regulation of numerous genes encoding antioxidant and phase II detoxifying enzymes and related proteins. However, little is known regarding the role of this pathway in human islet cells. The aim was to investigate the effect of Nrf2 activator (dh404, CDDO-9,11-dihydro-trifluoroethyl amide) on human islet cells. Human islets were obtained from cadaveric donors. After dh404 treatment, Nrf2 translocation, mRNA expression, and protein abundance of its key target gene products were examined. The proportion of dh404-treated or non-treated viable islet beta cells was analyzed using flowcytemetry. The cytoprotective effects against oxidative stress and production of inflammatory mediators, and in vivo islet function after transplantation were determined. Nrf2 nuclear translocation was confirmed by con-focal microscope within 2 hours after treatment, which was associated with a dose-dependent increase in mRNA expression of anti-oxidants, including NQO1, HO-1, and GCLC. Enhanced HO-1 expression in dh404 treated islets was confirmed by Western Blot assay. Islet function after transplantation (2000 IEQ/mouse) to diabetic nude mice was not affected with or without dh404 treatment. After induction of oxidative stress with hydrogen peroxide (200 μM) the proportion of dh404-treated viable islet cells was significantly higher in the dh404-treated than untreated islets (74% vs.57%; P<0.05). Dh404 significantly decreased production of cytokines/chemokines including IL-1β, IL-6, IFN-γ and MCP-1. Treatment of human pancreatic islets with the potent synthetic Nrf2 activator, dh404, significantly increased expression of the key anti-oxidants enzymes, decreased inflammatory mediators in islets and conferred protection

  15. The effect of Nrf2 pathway activation on human pancreatic islet cells.

    Directory of Open Access Journals (Sweden)

    Yuichi Masuda

    Full Text Available Pancreatic islets are known to contain low level of antioxidants that renders them vulnerable to oxidative stress. Nrf2 is the master regulator of numerous genes, encoding antioxidant, detoxifying, and cytoprotective molecules. Activation of Nrf2 pathway induces up-regulation of numerous genes encoding antioxidant and phase II detoxifying enzymes and related proteins. However, little is known regarding the role of this pathway in human islet cells. The aim was to investigate the effect of Nrf2 activator (dh404, CDDO-9,11-dihydro-trifluoroethyl amide on human islet cells.Human islets were obtained from cadaveric donors. After dh404 treatment, Nrf2 translocation, mRNA expression, and protein abundance of its key target gene products were examined. The proportion of dh404-treated or non-treated viable islet beta cells was analyzed using flowcytemetry. The cytoprotective effects against oxidative stress and production of inflammatory mediators, and in vivo islet function after transplantation were determined.Nrf2 nuclear translocation was confirmed by con-focal microscope within 2 hours after treatment, which was associated with a dose-dependent increase in mRNA expression of anti-oxidants, including NQO1, HO-1, and GCLC. Enhanced HO-1 expression in dh404 treated islets was confirmed by Western Blot assay. Islet function after transplantation (2000 IEQ/mouse to diabetic nude mice was not affected with or without dh404 treatment. After induction of oxidative stress with hydrogen peroxide (200 μM the proportion of dh404-treated viable islet cells was significantly higher in the dh404-treated than untreated islets (74% vs.57%; P<0.05. Dh404 significantly decreased production of cytokines/chemokines including IL-1β, IL-6, IFN-γ and MCP-1.Treatment of human pancreatic islets with the potent synthetic Nrf2 activator, dh404, significantly increased expression of the key anti-oxidants enzymes, decreased inflammatory mediators in islets and conferred

  16. Localization of dipeptidyl peptidase-4 (CD26) to human pancreatic ducts and islet alpha cells.

    Science.gov (United States)

    Augstein, Petra; Naselli, Gaetano; Loudovaris, Thomas; Hawthorne, Wayne J; Campbell, Peter; Bandala-Sanchez, Esther; Rogers, Kelly; Heinke, Peter; Thomas, Helen E; Kay, Thomas W; Harrison, Leonard C

    2015-12-01

    DPP-4/CD26 degrades the incretins GLP-1 and GIP. The localization of DPP-4 within the human pancreas is not well documented but is likely to be relevant for understanding incretin function. We aimed to define the cellular localization of DPP-4 in the human pancreas from cadaveric organ donors with and without diabetes. Pancreas was snap-frozen and immunoreactive DPP-4 detected in cryosections using the APAAP technique. For co-localization studies, pancreas sections were double-stained for DPP-4 and proinsulin or glucagon and scanned by confocal microscopy. Pancreata were digested and cells in islets and in islet-depleted, duct-enriched digests analyzed for expression of DPP-4 and other markers by flow cytometry. DPP-4 was expressed by pancreatic duct and islet cells. In pancreata from donors without diabetes or with type 2 diabetes, DPP-4-positive cells in islets had the same location and morphology as glucagon-positive cells, and the expression of DPP-4 and glucagon overlapped. In donors with type 1 diabetes, the majority of residual cells in islets were DPP-4-positive. In the human pancreas, DPP-4 expression is localized to duct and alpha cells. This finding is consistent with the view that DPP-4 regulates exposure to incretins of duct cells directly and of beta cells indirectly in a paracrine manner. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. IN VIVO EFFECT OF FK506 ON HUMAN PANCREATIC ISLETS1

    Science.gov (United States)

    Ricordi, Camillo; Zeng, Yijun; Alejandro, Rodolfo; Tzakis, Andreas; Venkataramanan, Raman; Fung, John; Bereiter, Debora; Mintz, Daniel H.; Starzl, Thomas E.

    2010-01-01

    The purpose of this study was to evaluate the in vivo effect of FK506 on human pancreatic islets. Twenty-five nude mice were made diabetic by one intravenous injection of streptozotocin. Approximately 600 islets were administered in the renal subcapsular space 3–5 days following streptozotocin administration. One week after transplantation, the mice were divided in four groups. In group 1, the animals received 1 injection of 0.5 ml of diluent i.p. daily for one week. In groups 2, 3, and 4 the treatments were daily i.p. injection of 0.3, 1, and 3 mg/kg FK506, respectively. After treatment, the functional integrity of the transplanted human islets was tested by measuring the plasma glucose and human C-peptide response to intraperitoneal glucose injection in groups 1 and 4. IPGTT alone was assessed in groups 2 and 3. The results indicate that i.p. administration of FK506 for one week at a dose 0.3 mg/kg/day did not result in any significant alteration of glucose disappearance and C-peptide response to IPGTT. Higher doses of FK506 produced a significant delay in glucose disappearance in groups 3 and 4, and a significant inhibition of glucose-mediated C-peptide response in group 4. PMID:1716797

  18. Downregulation of tight junction-associated MARVEL protein marvelD3 during epithelial-mesenchymal transition in human pancreatic cancer cells.

    Science.gov (United States)

    Kojima, Takashi; Takasawa, Akira; Kyuno, Daisuke; Ito, Tatsuya; Yamaguchi, Hiroshi; Hirata, Koichi; Tsujiwaki, Mitsuhiro; Murata, Masaki; Tanaka, Satoshi; Sawada, Norimasa

    2011-10-01

    The novel tight junction protein marvelD3 contains a conserved MARVEL (MAL and related proteins for vesicle trafficking and membrane link) domain like occludin and tricellulin. However, little is yet known about the detailed role and regulation of marvelD3 in normal epithelial cells and cancer cells, including pancreatic cancer. In the present study, we investigated marvelD3 expression in well and poorly differentiated human pancreatic cancer cell lines and normal pancreatic duct epithelial cells in which the hTERT gene was introduced into human pancreatic duct epithelial cells in primary culture, and the changes of marvelD3 during Snail-induced epithelial-mesenchymal transition (EMT) under hypoxia, TGF-β treatment and knockdown of FOXA2 in well differentiated pancreatic cancer HPAC cells. MarvelD3 was transcriptionally downregulated in poorly differentiated pancreatic cancer cells and during Snail-induced EMT of pancreatic cancer cells in which Snail was highly expressed and the fence function downregulated, whereas it was maintained in well differentiated human pancreatic cancer cells and normal pancreatic duct epithelial cells. Depletion of marvelD3 by siRNAs in HPAC cells resulted in downregulation of barrier functions indicated as a decrease in transepithelial electric resistance and an increase of permeability to fluorescent dextran tracers, whereas it did not affect fence function of tight junctions. In conclusion, marvelD3 is transcriptionally downregulated in Snail-induced EMT during the progression for the pancreatic cancer. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Plac8 Links Oncogenic Mutations to Regulation of Autophagy and Is Critical to Pancreatic Cancer Progression

    Directory of Open Access Journals (Sweden)

    Conan Kinsey

    2014-05-01

    Full Text Available Mutations in p53 and RAS potently cooperate in oncogenic transformation, and correspondingly, these genetic alterations frequently coexist in pancreatic ductal adenocarcinoma (PDA and other human cancers. Previously, we identified a set of genes synergistically activated by combined RAS and p53 mutations as frequent downstream mediators of tumorigenesis. Here, we show that the synergistically activated gene Plac8 is critical for pancreatic cancer growth. Silencing of Plac8 in cell lines suppresses tumor formation by blocking autophagy, a process essential for maintaining metabolic homeostasis in PDA, and genetic inactivation in an engineered mouse model inhibits PDA progression. We show that Plac8 is a critical regulator of the autophagic machinery, localizing to the lysosomal compartment and facilitating lysosome-autophagosome fusion. Plac8 thus provides a mechanistic link between primary oncogenic mutations and the induction of autophagy, a central mechanism of metabolic reprogramming, during PDA progression.

  20. A classification of ductal plate malformations based on distinct pathogenic mechanisms of biliary dysmorphogenesis.

    Science.gov (United States)

    Raynaud, Peggy; Tate, Joshua; Callens, Céline; Cordi, Sabine; Vandersmissen, Patrick; Carpentier, Rodolphe; Sempoux, Christine; Devuyst, Olivier; Pierreux, Christophe E; Courtoy, Pierre; Dahan, Karin; Delbecque, Katty; Lepreux, Sébastien; Pontoglio, Marco; Guay-Woodford, Lisa M; Lemaigre, Frédéric P

    2011-06-01

    Ductal plate malformations (DPMs) are developmental anomalies considered to result from lack of ductal plate remodeling during bile duct morphogenesis. In mice, bile duct development is initiated by the formation of primitive ductal structures lined by two cell types, namely ductal plate cells and hepatoblasts. During ductal plate remodeling, the primitive ductal structures mature to ducts as a result from differentiation of the ductal plate cells and hepatoblasts to cholangiocytes. Here, we report this process is conserved in human fetal liver. These findings prompted us to evaluate how DPMs develop in three mouse models, namely mice with livers deficient in hepatocyte nuclear factor 6 (HNF6), HNF1β, or cystin-1 (cpk [congenital polycystic kidney] mice). Human liver from a patient with a HNF1B/TCF2 mutation, and from fetuses affected with autosomal recessive polycystic kidney disease (ARPKD) were also analyzed. Despite the epistatic relationship between HNF6, HNF1β, and cystin-1, the three mouse models displayed distinct morphogenic mechanisms of DPM. They all developed biliary cysts lined by cells with abnormal apicobasal polarity. However, the absence of HNF6 led to an early defect in ductal plate cell differentiation. In HNF1β-deficient liver, maturation of the primitive ductal structures was impaired. Normal differentiation and maturation but abnormal duct expansion was apparent in cpk mouse livers and in human fetal ARPKD. DPM is the common endpoint of distinct defects initiated at distinct stages of bile duct morphogenesis. Our observations provide a new pathogenic classification of DPM. Copyright © 2011 American Association for the Study of Liver Diseases.

  1. Effect of prolonged exposure to sublethal concentrations of DDT and DDE on protein expression in human pancreatic beta cells.

    Science.gov (United States)

    Pavlikova, Nela; Smetana, Pavel; Halada, Petr; Kovar, Jan

    2015-10-01

    Pollution of the environment represents one of less explored potential reasons for the worldwide epidemic of type 2 diabetes. One of the most prevalent organochlorine pollutants remains the pesticide DDT and its degradation product DDE. Despite some epidemiologic correlations between levels of DDT and DDE in human organism and the prevalence of diabetes, there is almost no information about the exact targets of these compounds inside pancreatic beta cells. To detect functional areas of pancreatic beta cells that could be affected by exposure to DDT and DDE, we analyzed changes in protein expression in the NES2Y human pancreatic beta cell line exposed to three sublethal concentrations (0.1 μM, 1 μM, 10 μM) of DDT and DDE for 1 month. Protein separation and identification was achieved using high-resolution 2D-electrophoresis, computer analysis and mass spectrometry. With these techniques, four proteins were found downregulated after exposure to 10 μM DDT: three cytoskeletal proteins (cytokeratin 8, cytokeratin 18 and actin) and one protein involved in glycolysis (alpha-enolase). Two proteins were downregulated after exposure to 10 μM DDE: cytokeratin 18 and heterogenous nuclear ribonucleoprotein H1 (HNRH1). These changes correlate with previously described effects of other stress conditions (e.g. exposure to palmitate, hyperglycemia, imidazoline derivative, and cytokines) on protein expression in pancreatic beta cells. We conclude that cytoskeletal proteins and their processing, glucose metabolism, and mRNA processing may represent targets affected by exposure to conditions hostile to pancreatic beta cells, including exposure to DDT and DDE. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Examining the effects of hyperglycemia on pancreatic endocrine function in humans

    DEFF Research Database (Denmark)

    Solomon, Thomas P J; Knudsen, Sine H; Karstoft, Kristian

    2012-01-01

    Investigating the impact of hyperglycemia on pancreatic endocrine function promotes our understanding of the pathophysiology of hyperglycemia-related disease.......Investigating the impact of hyperglycemia on pancreatic endocrine function promotes our understanding of the pathophysiology of hyperglycemia-related disease....

  3. Pancreatic Cancer

    Science.gov (United States)

    ... hormones that help control blood sugar levels. Pancreatic cancer usually begins in the cells that produce the juices. Some risk factors for developing pancreatic cancer include Smoking Long-term diabetes Chronic pancreatitis Certain ...

  4. Metabolomics Study of the Effects of Inflammation, Hypoxia, and High Glucose on Isolated Human Pancreatic Islets.

    Science.gov (United States)

    Garcia-Contreras, Marta; Tamayo-Garcia, Alejandro; Pappan, Kirk L; Michelotti, Gregory A; Stabler, Cherie L; Ricordi, Camillo; Buchwald, Peter

    2017-06-02

    The transplantation of human pancreatic islets is a therapeutic possibility for a subset of type 1 diabetic patients who experience severe hypoglycemia. Pre- and post-transplantation loss in islet viability and function, however, is a major efficacy-limiting impediment. To investigate the effects of inflammation and hypoxia, the main obstacles hampering the survival and function of isolated, cultured, and transplanted islets, we conducted a comprehensive metabolomics evaluation of human islets in parallel with dynamic glucose-stimulated insulin release (GSIR) perifusion studies for functional evaluation. Metabolomics profiling of media and cell samples identified a total of 241 and 361 biochemicals, respectively. Metabolites that were altered in highly significant manner in both included, for example, kynurenine, kynurenate, citrulline, and mannitol/sorbitol under inflammation (all elevated) plus lactate (elevated) and N-formylmethionine (depressed) for hypoxia. Dynamic GSIR experiments, which capture both first- and second-phase insulin release, found severely depressed insulin-secretion under hypoxia, whereas elevated baseline and stimulated insulin-secretion was measured for islet exposed to the inflammatory cytokine cocktail (IL-1β, IFN-γ, and TNF-α). Because of the uniquely large changes observed in kynurenine and kynurenate, they might serve as potential biomarkers of islet inflammation, and indoleamine-2,3-dioxygenase on the corresponding pathway could be a worthwhile therapeutic target to dampen inflammatory effects.

  5. Acute recurrent pancreatitis: Etiopathogenesis, diagnosis and treatment.

    Science.gov (United States)

    Testoni, Pier Alberto

    2014-12-07

    Acute recurrent pancreatitis (ARP) refers to a clinical entity characterized by episodes of acute pancreatitis which occurs on more than one occasion. Recurrence of pancreatitis generally occurs in a setting of normal morpho-functional gland, however, an established chronic disease may be found either on the occasion of the first episode of pancreatitis or during the follow-up. The aetiology of ARP can be identified in the majority of patients. Most common causes include common bile duct stones or sludge and bile crystals; sphincter of oddi dysfunction; anatomical ductal variants interfering with pancreatic juice outflow; obstruction of the main pancreatic duct or pancreatico-biliary junction; genetic mutations; alcohol consumption. However, despite diagnostic technologies, the aetiology of ARP still remains unknown in up to 30% of cases: in these cases the term "idiopathic" is used. Because occult bile stone disease and sphincter of oddi dysfunction account for the majority of cases, cholecystectomy, and eventually the endoscopic biliary and/or pancreatic sphincterotomy are curative in most of cases. Endoscopic biliary sphincterotomy appeared to be a curative procedure per se in about 80% of patients. Ursodeoxycholic acid oral treatment alone has also been reported effective for treatment of biliary sludge. In uncertain cases toxin botulin injection may help in identifying some sphincter of oddi dysfunction, but this treatment is not widely used. In the last twenty years, pancreatic endotherapy has been proven effective in cases of recurrent pancreatitis depending on pancreatic ductal obstruction, independently from the cause of obstruction, and has been widely used instead of more aggressive approaches.

  6. Acute recurrent pancreatitis: Etiopathogenesis, diagnosis and treatment

    Science.gov (United States)

    Testoni, Pier Alberto

    2014-01-01

    Acute recurrent pancreatitis (ARP) refers to a clinical entity characterized by episodes of acute pancreatitis which occurs on more than one occasion. Recurrence of pancreatitis generally occurs in a setting of normal morpho-functional gland, however, an established chronic disease may be found either on the occasion of the first episode of pancreatitis or during the follow-up. The aetiology of ARP can be identified in the majority of patients. Most common causes include common bile duct stones or sludge and bile crystals; sphincter of oddi dysfunction; anatomical ductal variants interfering with pancreatic juice outflow; obstruction of the main pancreatic duct or pancreatico-biliary junction; genetic mutations; alcohol consumption. However, despite diagnostic technologies, the aetiology of ARP still remains unknown in up to 30% of cases: in these cases the term “idiopathic” is used. Because occult bile stone disease and sphincter of oddi dysfunction account for the majority of cases, cholecystectomy, and eventually the endoscopic biliary and/or pancreatic sphincterotomy are curative in most of cases. Endoscopic biliary sphincterotomy appeared to be a curative procedure per se in about 80% of patients. Ursodeoxycholic acid oral treatment alone has also been reported effective for treatment of biliary sludge. In uncertain cases toxin botulin injection may help in identifying some sphincter of oddi dysfunction, but this treatment is not widely used. In the last twenty years, pancreatic endotherapy has been proven effective in cases of recurrent pancreatitis depending on pancreatic ductal obstruction, independently from the cause of obstruction, and has been widely used instead of more aggressive approaches. PMID:25493002

  7. Suppression of FAT/CD36 mRNA by human growth hormone in pancreatic ß-cells

    DEFF Research Database (Denmark)

    Dalgaard, Louise Torp; Thams, Peter Grevsen; Gaarn, Louise Winkel

    2011-01-01

    of this study was to examine the effect of human growth hormone (hGH) on mRNAs of fatty acid transport and binding proteins expressed in pancreatic ß-cells, and to examine this in relation to ß-cell survival after exposure to fatty acids. hGH decreased mRNA levels of FAT/CD36, whereas mRNAs of GPR40, FASN, FABP...

  8. Suppression of FAT/CD36 mRNA by human growth hormone in pancreatic β-cells

    DEFF Research Database (Denmark)

    Dalgaard, Louise Torp; Thams, Peter Grevsen; Gaarn, Louise Winkel

    2011-01-01

    of this study was to examine the effect of human growth hormone (hGH) on mRNAs of fatty acid transport and binding proteins expressed in pancreatic β-cells, and to examine this in relation to β-cell survival after exposure to fatty acids. hGH decreased mRNA levels of FAT/CD36, whereas mRNAs of GPR40, FASN, FABP...

  9. Danish Pancreatic Cancer Database.

    Science.gov (United States)

    Fristrup, Claus; Detlefsen, Sönke; Hansen, Carsten Palnæs; Ladekarl, Morten

    2016-01-01

    The Danish Pancreatic Cancer Database aims to prospectively register the epidemiology, diagnostic workup, diagnosis, treatment, and outcome of patients with pancreatic cancer in Denmark at an institutional and national level. Since May 1, 2011, all patients with microscopically verified ductal adenocarcinoma of the pancreas have been registered in the database. As of June 30, 2014, the total number of patients registered was 2,217. All data are cross-referenced with the Danish Pathology Registry and the Danish Patient Registry to ensure the completeness of registrations. The main registered variables are patient demographics, performance status, diagnostic workup, histological and/or cytological diagnosis, and clinical tumor stage. The following data on treatment are registered: type of operation, date of first adjuvant, neoadjuvant, and first palliative chemo- or chemoradiation therapy, and dates for milestones in referrals, diagnostic workup, treatment decisions, and treatment. For patients undergoing resection, data on operative evaluation of tumor stage, histological diagnosis, and duration of hospital stay are registered. Death is monitored using data from the Danish Civil Registry. This registry monitors the survival status of the Danish population, and the registration is virtually complete. All data in the database are audited by all participating institutions, with respect to baseline characteristics, key indicators, and survival. The results are published annually. The Danish Pancreatic Cancer Database has registered data on 2,217 patients with microscopically verified ductal adenocarcinoma of the pancreas. The data have been obtained nationwide over a period of 4 years and 2 months. The completeness of registration was 82%. The observed overall 3-year survival after diagnosis was 6%.

  10. Expression of multiple forms of 3'-end variant CCK2 receptor mRNAs in human pancreatic adenocarcinomas

    Directory of Open Access Journals (Sweden)

    Monstein Hans-Jürg

    2011-04-01

    Full Text Available Abstract Background Two main types of receptors for gastrin and cholecystokinin (CCK have been cloned and identified. CCK1 (CCK-A receptors are expressed in the pancreas, the gallbladder, and parts of the brain, while CCK2 (CCK-B/gastrin receptors (CCK2R are expressed in gastric glands and in most of the brain. A splice variant of the CCK2R designated CCKRi4sv (CCK-C, which is constitutively expressed in human pancreatic cancer cells, has also been described. The purpose of the present investigation was to study CCK2R, CCK2i4svR, and gastrin mRNA expression in human pancreatic adenocarcinoma on the assumption that co-expression of CCK2R and gastrin or constitutive CCK2i4svR mRNA expression plays a pivotal role in the progression of pancreatic cancer. Findings PCR amplification using CCK2R specific primer-pairs, followed by ethidium-bromide stained agarose gel electrophoresis revealed the expression of wild-type CCK2R mRNA in 12 of 17 biopsy specimens. A CCK2R intron 4 specific nested PCR assay revealed that CCK2i4svR mRNA was expressed in only one of the biopsy specimen. The authenticity of PCR amplicons was confirmed by cloning of selected amplicons and DNA sequence analysis. Moreover, we found that hitherto undescribed multiple forms of 3'-end variant CCK2R mRNAs with various deletions in the retained intron 4 and exon 5, tentatively generating truncated proteins, were expressed in the pancreatic adenocarcinomas. Conclusion Cloning and DNA sequencing of selected amplicons revealed that CCK2R and multiple CCK2i4svR-like mRNAs are expressed in human pancreatic adenocarcinoma. The originally described CCK2i4svR mRNA was only expressed in one of 17 tumours and appears to be rarely expressed in pancreatic adenocarcinoma. We report that CCK2R- and gastrin mRNA co-expression may play a role in a portion, but not in all of these tumours, and that aberrant splicing takes places in these tissues generating multiple forms of 3'-end variant CCK2R mRNAs.

  11. RAN GTPase and Osteopontin in Pancreatic Cancer.

    Science.gov (United States)

    Saxena, Shivam; Gandhi, Ankit; Lim, Pei-Wen; Relles, Daniel; Sarosiek, Konrad; Kang, Christopher; Chipitsyna, Galina; Sendecki, Jocelyn; Yeo, Charles J; Arafat, Hwyda A

    2013-04-01

    Pancreatic ductal adenocarcinoma (PDA) has the worst prognosis among cancers, mainly due to the high incidence of early metastases. RAN small GTPase (RAN) is a protein that plays physiological roles in the regulation of nuclear transport and microtubule spindle assembly. RAN was recently shown to mediate the invasive functions of the prometastatic protein osteopontin (OPN) in breast cancer cells. We and others have shown previously that high levels of OPN are present in PDA. In this study, we analyzed the expression and correlation of RAN with OPN in human pancreatic lesions, and explored their regulation in PDA cell lines. Real time PCR was used to analyze RAN and OPN mRNA levels in PDA, adjacent non-malignant, and benign pancreatic tissues. Expression levels were correlated with survival and different clinicopathological parameters using different statistical methods. Transient transfection studies using OPN and RAN plasmids, and knockdown experiments using siRNA were used to examine their mutual regulation. OPN and RAN levels highly correlated with each other (pobesity, T stage, BMI, or survival. However, we found a significant association between RAN levels and perineural invasion (HR=0.79, 95% CI 0.59, 1.07; p=0.0378.). OPN and RAN colocalized in PDA tissues and cell lines. Increasing RAN expression in PDA cells induced OPN transcription and RAN silencing reduced total OPN levels. OPN did not have any significant effect on RAN transcription. The high levels of RAN in PDA and its correlation with OPN and with perineural invasion suggest that RAN may contribute to PDA metastasis and progression through the induction of OPN. RAN's role in the regulation of OPN in PDA is unique and could provide potential novel therapeutic strategies to combat PDA aggressiveness.

  12. Adenovirus vector-mediated Gli1 siRNA induces growth inhibition and apoptosis in human pancreatic cancer with Smo-dependent or Smo-independent Hh pathway activation in vitro and in vivo.

    Science.gov (United States)

    Guo, Jiefang; Gao, Jun; Li, Zhaoshen; Gong, Yanfang; Man, Xiaohua; Jin, Jing; Wu, Hongyu

    2013-10-10

    Activation of Hedgehog (Hh) signaling pathway is a core molecular mechanism in pancreatic carcinogenesis. However, the inhibition of upstream Hh signals does not inhibit the growth of a subset of pancreatic cancer (PC). This study was to examine the effect of siRNA targeting Gli1, the downstream component of Hh pathway, on PC cells and to provide some insight into the underlying mechanisms. A Gli1siRNA-expressing adenovirus (Ad-U6-Gli1siRNA) was constructed, and its effect on PC cells was investigated in vitro and in vivo. Gli1 was expressed in 83.3% (20/24) PC tissues, whereas no expression was found in normal pancreatic ductal epithelium. Gli1 was expressed in SW1990 and CFPAC cells in which Smo was completely absent, as well as in PaTu8988, Panc-1 and BxPC-3 cells in which Smo was concomitantly present. Ad-U6-Gli1siRNA induced cell growth inhibition, strong G0/G1 cell cycle arrest and apoptosis in all five human PC cell lines. Meanwhile, Ad-U6-Gli1siRNA significantly suppressed the expression of Gli1, Ptch1 and two target genes, Cyclin D2 and Bcl-2, in all five lines. Furthermore, two tumor xenograft nude mice models were established by subcutaneously injecting Smo-positive Panc-1 cells or Smo-negative SW1990 cells. The in vivo experimental results demonstrated that Ad-U6-Gli1siRNA inhibited the growth of both Panc1-derived and SW1990-derived tumors and induced cell apoptosis. Our study indicates that Gli1-targeting siRNA could induce growth inhibition and apoptosis in PC through knockdown of Gli1 and its target genes; and this method may represent a more effective therapeutic strategy for PC with Smo-dependent or Smo-independent Hh pathway activation. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  13. Acute Pancreatitis and Pregnancy

    Science.gov (United States)

    ... Pancreatitis Acute Pancreatitis and Pregnancy Acute Pancreatitis and Pregnancy Timothy Gardner, MD Acute pancreatitis is defined as ... pancreatitis in pregnancy. Reasons for Acute Pancreatitis and Pregnancy While acute pancreatitis is responsible for almost 1 ...

  14. New insights into alcoholic pancreatitis and pancreatic cancer.

    Science.gov (United States)

    Apte, Minoti; Pirola, Romano; Wilson, Jeremy

    2009-10-01

    Pancreatitis and pancreatic cancer represent two major diseases of the exocrine pancreas. Pancreatitis exhibits both acute and chronic manifestations. The commonest causes of acute pancreatitis are gallstones and alcohol abuse; the latter is also the predominant cause of chronic pancreatitis. Recent evidence indicates that endotoxinemia, which occurs in alcoholics due to increased gut permeability, may trigger overt necroinflammation of the pancreas in alcoholics and one that may also play a critical role in progression to chronic pancreatitis (acinar atrophy and fibrosis) via activation of pancreatic stellate cells (PSCs). Chronic pancreatitis is a major risk factor for the development of pancreatic cancer, which is the fourth leading cause of cancer-related deaths in humans. Increasing attention has been paid in recent years to the role of the stroma in pancreatic cancer progression. It is now well established that PSCs play a key role in the production of cancer stroma and that they interact closely with cancer cells to create a tumor facilitatory environment that stimulates local tumor growth and distant metastasis. This review summarizes recent advances in our understanding of the pathogenesis of alcoholic pancreatitis and pancreatic cancer, with particular reference to the central role played by PSCs in both diseases. An improved knowledge of PSC biology has the potential to provide an insight into pathways that may be therapeutically targeted to inhibit PSC activation, thereby inhibiting the development of fibrosis in chronic pancreatitis and interrupting stellate cell-cancer cell interactions so as to retard cancer progression.

  15. Functional proteomics screen enables enrichment of distinct cell types from human pancreatic islets.

    Directory of Open Access Journals (Sweden)

    Revital Sharivkin

    Full Text Available The current world-wide epidemic of diabetes has prompted attempts to generate new sources of insulin-producing cells for cell replacement therapy. An inherent challenge in many of these strategies is the lack of cell-surface markers permitting isolation and characterization of specific cell types from differentiating stem cell populations. Here we introduce an iterative proteomics procedure allowing tag-free isolation of cell types based on their function. Our method detects and associates specific cell-surface markers with particular cell functionality by coupling cell capture on antibody arrays with immunofluorescent labeling. Using this approach in an iterative manner, we discovered marker combinations capable of enriching for discrete pancreatic cell subtypes from human islets of Langerhans: insulin-producing beta cells (CD9high/CD56+, glucagon-producing alpha cells (CD9-/CD56+ and trypsin-producing acinar cells (CD9-/CD56-. This strategy may assist future beta cell research and the development of diagnostic tools for diabetes. It can also be applied more generally for function-based purification of desired cell types from other limited and heterogeneous biological samples.

  16. [Toxicity of cationic liposome Lipofectamine 2000 in human pancreatic cancer Capan-2 cells].

    Science.gov (United States)

    Zhong, Ying-Qiang; Wei, Jing; Fu, Yu-Ru; Shao, Jing; Liang, Yi-Wen; Lin, Yan-Hua; Liu, Juan; Zhu, Zhao-Hua

    2008-11-01

    To investigate the toxicity of cationic liposome Lipofectamine 2000 (Lipo) in human pancreatic cancer Capan-2 cells. Capan-2 cells were cultured in the presence of Lipo at toxic concentrations, and the cell growth, apoptosis and cell cycle changes were evaluated by cell counting and flow cytometry. The concentrations of both Lipo and siRNA affected the transfection efficiency. In a transfection volume of 2 ml, the presence of 5 microl Lipo resulted in slowed growth of Capan-2 cells, which was especially obvious after 3 days (P<0.001). Prolonged culture of the transfected cells caused significant increases in early apoptotic cells (P<0.05) and in the damaged or necrotic cells (P<0.001), and resulted in reduced viable cells (P<0.01); these changes became obvious after a 48-hour culture, which also increased the ratio of G(0)/G(1) phase cells (P<0.05) and decreased those of G(2)/M phase cells (P<0.01), S phase cells (P<0.01), and the late apoptotic cells (P<0.05). Toxic concentrations of Lipo can affect the growth, apoptosis and cell cycles of Capan-2 cells in vitro, and this urges careful concentration selection when using Lipo for gene transfer into different cells.

  17. Increased levels of 3-hydroxykynurenine parallel disease severity in human acute pancreatitis.

    Science.gov (United States)

    Skouras, Christos; Zheng, Xiaozhong; Binnie, Margaret; Homer, Natalie Z M; Murray, Toby B J; Robertson, Darren; Briody, Lesley; Paterson, Finny; Spence, Heather; Derr, Lisa; Hayes, Alastair J; Tsoumanis, Andreas; Lyster, Dawn; Parks, Rowan W; Garden, O James; Iredale, John P; Uings, Iain J; Liddle, John; Wright, Wayne L; Dukes, George; Webster, Scott P; Mole, Damian J

    2016-09-27

    Inhibition of kynurenine 3-monooxygenase (KMO) protects against multiple organ dysfunction (MODS) in experimental acute pancreatitis (AP). We aimed to precisely define the kynurenine pathway activation in relation to AP and AP-MODS in humans, by carrying out a prospective observational study of all persons presenting with a potential diagnosis of AP for 90 days. We sampled peripheral venous blood at 0, 3, 6, 12, 24, 48, 72 and 168 hours post-recruitment. We measured tryptophan metabolite concentrations and analysed these in the context of clinical data and disease severity indices, cytokine profiles and C-reactive protein (CRP) concentrations. 79 individuals were recruited (median age: 59.6 years; 47 males, 59.5%). 57 met the revised Atlanta definition of AP: 25 had mild, 23 moderate, and 9 severe AP. Plasma 3-hydroxykynurenine concentrations correlated with contemporaneous APACHE II scores (R2 = 0.273; Spearman rho = 0.581; P < 0.001) and CRP (R2 = 0.132; Spearman rho = 0.455, P < 0.001). Temporal profiling showed early tryptophan depletion and contemporaneous 3-hydroxykynurenine elevation. Furthermore, plasma concentrations of 3-hydroxykynurenine paralleled systemic inflammation and AP severity. These findings support the rationale for investigating early intervention with a KMO inhibitor, with the aim of reducing the incidence and severity of AP-associated organ dysfunction.

  18. pH Regulatory Transporters in Pancreatic Ductal Adenocarcinoma

    DEFF Research Database (Denmark)

    Kong, Su Chii

    The abnormal features of hypoxia and altered metabolisms in solid tumours lead to an increased glycolysis that is uncoupled from oxidative phosphorylation in the TCA cycle. Tumoural cells often exhibit dysregulated expressions and activities of various membrane pH regulatory transporters to cope...... with the elevated acid production from this glycolysis, as well as from cellular ATP hydrolysis, sequentially creating a favourable intracellular pH and hostile acidic tumour microenvironment, fortify the tumour cells with highly invasive, metastatic and drug resistant phenotype. In current work, we study...... proliferation was found to be decreased while apoptosis was increased with concanamycin A treatment, indicative of V-ATPases being involved in PDAC cell survival mechanisms as well. Comprehending pH regulation in tumour cells might provide insights in preventing tumourigenesis by pH disruptions. Data presented...

  19. Obesity, autophagy and the pathogenesis of liver and pancreatic cancers.

    Science.gov (United States)

    Aghajan, Mariam; Li, Ning; Karin, Michael

    2012-03-01

    Liver and pancreatic cancers are both highly lethal diseases with limited to no therapeutic options for patients. Recent studies suggest that deregulated autophagy plays a role in the pathogenesis of these diseases by perturbing cellular homeostasis and laying the foundation for disease development. While accumulation of p62 upon impaired autophagy has been implicated in hepatocellular carcinoma, its role in pancreatic ductal adenocarcinoma remains less clear. This review will focus on recent studies illustrating the role of autophagy in liver and pancreatic cancers. The relationships between autophagy, nuclear factor-κB signaling and obesity in hepatocellular carcinoma will be discussed, as well as the dual role of autophagy in pancreatic ductal adenocarcinoma. © 2012 Journal of Gastroenterology and Hepatology Foundation and Blackwell Publishing Asia Pty Ltd.

  20. [Pancreatic trauma: analysis of 29 cases].

    Science.gov (United States)

    Nadal, S R; Duarte Júnior, E; Speranzini, M B

    1991-01-01

    To investigate the relationship between complications and the kind of pancreatic lesion and surgery performed. KIND OF STUDY: Retrospective. The patients were operated on at the Pronto Socorro--Mandaqui Hospital Complex, from January 1987 to January 1990. The authors analyzed 29 patients victims of penetrating or blunt abdominal trauma who were operated on in that period. 27 of them were male. 20 (69%) were shotgun victims; 5 (17.2%) were victims of cold steels; and 4 (13.8%) were victims of blunt trauma. In pancreatic head lesions (5 cases), hemostasis and drainage were performed in three cases; duodenopancreatectomy in one case; and suture in one case. In traumas to the pancreatic body (13 cases), six pancreatectomies, five drainages, and two sutures were performed. In traumas to the pancreatic tail (11 cases), six pancreatectomies, four sutures and one drainage were performed. Complications occurred in all patients with pancreatic head lesions, in eight patients with trauma to the pancreatic body, and in five patients trauma to the pancreatic tail. The most frequent complications were intracavitary abscesses (seven cases), and pancreatic fistulae (five cases). Morbidity rate was 72.4% and mortality rate was 17.2%. The authors conclude that indication of pancreatectomy in ductal lesions should be done, exception being made to cases of pancreatic head trauma, for which a suture or simple drainage can be used in superficial lesions. In doubt, an expert surgeon may be called.

  1. Irofulven (6-hydroxymethylacylfulvene, MGI 114) induces caspase 8 and 9-mediated apoptosis in human pancreatic adenocarcinoma cells.

    Science.gov (United States)

    Wang, W; Waters, S J; MacDonald, J R; Von Hoff, D D; Strodel, W E; Miller, A R

    2001-01-01

    Irofulven (MGI 114) is a novel, clinically active sesquiterpene whose mechanism of action is not fully understood. We sought to identify apoptotic effectors induced by this agent in human pancreatic cancer cells. MTT assay was used to assess IC50-Apoptosis was quantitated by flow cytometry and DAPI staining. Caspase activation was identified by western blot analysis. Irofulven was cytotoxic against all pancreatic cancer cell lines tested (IC50 1-18 microM), and induced 10-fold (4%+/- 2, vs. 41% +/- 5) induction of apoptosis. Irofulven-treated cells also demonstrated PARP3 cleavage and DAPI staining. Apoptosis was reduced to baseline levels by Z-VAD-FMK, a broad-spectrum caspase inhibitor. Western blot analysis revealed that caspases-3, -7, -8, and -9 were activated by irofulven. Time course evaluation demonstrated that caspases-8 and -9 were the initial species activated. Our data demonstrate that the cytotoxicity of irofulven in human pancreatic carcinoma cell lines is mediated by caspase-induced apoptosis.

  2. "Ductal adenocarcinoma in anular pancreas".

    Science.gov (United States)

    Benassai, Giacomo; Perrotta, Stefano; Furino, Ermenegildo; De Werra, Carlo; Aloia, Sergio; Del Giudice, Roberto; Amato, Bruno; Vigliotti, Gabriele; Limite, Gennaro; Quarto, Gennaro

    2015-09-01

    The annular pancreas is a congenital anomaly in which pancreatic tissue partially or completely surrounds the second portion of the duodenum. Its often located above of papilla of Vater (85%), rarely below (15%). This pancreatic tissue is often easily dissociable to the duodenum but there is same cases where it the tissue is into the muscolaris wall of the duodenum. We describe three case of annular pancreas hospitalized in our facility between January 2004 and January 2009. There were 2 male 65 and 69 years old respectively and 1 female of 60 years old, presented complaining of repeated episodes of mild epigastric pain. Laboratory tests (including tumor markers), a direct abdomen X-ray with enema, EGDS and total body CT scan were performed to study to better define the diagnosis. EUS showed the presence of tissue infiltrating the muscle layer all around the first part of duodenum. Biopsies performed found the presence of pancreatic tissue with focal areas of adenocarcinoma. Subtotal gastrectomy with Roux was performed. The histological examinations shows an annular pancreas of D1 with multiple focal area of adenocarcinoma. (T1aN0M0). We performed a follow up at 5 years. One patients died after 36 months for cardiovascular hit. Two patients, one male and one female, was 5-years disease-free. Annular pancreas is an uncommon congenital anomaly which usually presents itself in infants and newborn. Rarely it can present in late adult life with wide range of clinical severities thereby making its diagnosis difficult. Pre-operative diagnosis is often difficult. CT scan can illustrate the pancreatic tissue encircling the duodenum. ERCP and MRCP are useful in outlining the annular pancreatic duct. Surgery still remains necessary to confirm diagnosis and bypassing the obstructed segment. Copyright © 2015 IJS Publishing Group Limited. Published by Elsevier Ltd. All rights reserved.

  3. Solanine Induces Mitochondria-Mediated Apoptosis in Human Pancreatic Cancer Cells

    OpenAIRE

    Hongwei Sun; Chongqing Lv; Longlong Yang; Yingxiu Wang; Qingshun Zhang; Suhui Yu; Hongru Kong; Meng Wang; Jianming Xie; Chunwu Zhang; Mengtao Zhou

    2014-01-01

    Steroid alkaloids have been suggested as potential anticancer compounds. However, the underlying mechanisms of how steroid alkaloids inhibit the tumor growth are largely unknown. Here, we reported that solanine, a substance of steroid alkaloids, has a positive effect on the inhibition of pancreatic cancer cell growth in vitro and in vivo. In pancreatic cancer cells and nu/nu nude mice model, we found that solanine inhibited cancer cells growth through caspase-3 dependent mitochondrial apoptos...

  4. Beer and its Non-Alcoholic Compounds: Role in Pancreatic Exocrine Secretion, Alcoholic Pancreatitis and Pancreatic Carcinoma

    Directory of Open Access Journals (Sweden)

    Peter Feick

    2010-03-01

    Full Text Available : In this article we provide an overview of the newest data concerning the effect of non-alcoholic constituents of alcoholic beverages, especially of beer, on pancreatic secretion, and their possible role in alcoholic pancreatitis and pancreatic carcinoma. The data indicate that non-alcoholic constituents of beer stimulate pancreatic enzyme secretion in humans and rats, at least in part, by direct action on pancreatic acinar cells. Some non-alcoholic compounds of beer, such as quercetin, resveratrol, ellagic acid or catechins, have been shown to be protective against experimentally induced pancreatitis by inhibiting pancreatic secretion, stellate cell activation or by reducing oxidative stress. Quercetin, ellagic acid and resveratrol also show anti-carcinogenic potential in vitro and in vivo. However, beer contains many more non-alcoholic ingredients. Their relevance in beer-induced functional alterations of pancreatic cells leading to pancreatitis and pancreatic cancer in humans needs to be further evaluated.

  5. Beer and its Non-Alcoholic Compounds: Role in Pancreatic Exocrine Secretion, Alcoholic Pancreatitis and Pancreatic Carcinoma

    Science.gov (United States)

    Gerloff, Andreas; Singer, Manfred V; Feick, Peter

    2010-01-01

    In this article we provide an overview of the newest data concerning the effect of non-alcoholic constituents of alcoholic beverages, especially of beer, on pancreatic secretion, and their possible role in alcoholic pancreatitis and pancreatic carcinoma. The data indicate that non-alcoholic constituents of beer stimulate pancreatic enzyme secretion in humans and rats, at least in part, by direct action on pancreatic acinar cells. Some non-alcoholic compounds of beer, such as quercetin, resveratrol, ellagic acid or catechins, have been shown to be protective against experimentally induced pancreatitis by inhibiting pancreatic secretion, stellate cell activation or by reducing oxidative stress. Quercetin, ellagic acid and resveratrol also show anti-carcinogenic potential in vitro and in vivo. However, beer contains many more non-alcoholic ingredients. Their relevance in beer-induced functional alterations of pancreatic cells leading to pancreatitis and pancreatic cancer in humans needs to be further evaluated. PMID:20617020

  6. Plectin-1 Targeted AAV Vector for the Molecular Imaging of Pancreatic Cancer.

    Science.gov (United States)

    Konkalmatt, Prasad R; Deng, Defeng; Thomas, Stephanie; Wu, Michael T; Logsdon, Craig D; French, Brent A; Kelly, Kimberly A

    2013-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is highly malignant disease that is the fourth leading cause of cancer-related death in the US. Gene therapy using AAV vectors to selectively deliver genes to PDAC cells is an attractive treatment option for pancreatic cancer. However, most AAV serotypes display a broad spectrum of tissue tropism and none of the existing serotypes specifically target PDAC cells. This study tests the hypothesis that AAV2 can be genetically re-engineered to specifically target PDAC cells by modifying the capsid surface to display a peptide that has previously been shown to bind plectin-1. Toward this end, a Plectin-1 Targeting Peptide (PTP) was inserted into the loop IV region of the AAV2 capsid, and the resulting capsid (AAV-PTP) was used in a series of in vitro and in vivo experiments. In vitro, AAV-PTP was found to target all five human PDAC cell lines tested (PANC-1, MIA PaCa-2, HPAC, MPanc-96, and BxPC-3) preferentially over two non-neoplastic human pancreatic cell lines (human pancreatic ductal epithelial and human pancreatic stellate cells). In vivo, mice bearing subcutaneous tumor xenografts were generated using the PANC-1 cell line. Once tumors reached a size of ∼1-2 mm in diameter, the mice were injected intravenously with luciferase reporter vectors packaged in the either AAV-PTP or wild type AAV2 capsids. Luciferase expression was then monitored by bioluminescence imaging on days 3, 7, and 14 after vector injection. The results indicate that the AAV-PTP capsid displays a 37-fold preference for PANC-1 tumor xenographs over liver and other tissues; whereas the wild type AAV2 capsid displays a complementary preference for liver over tumors and other tissues. Together, these results establish proof-of-principle for the ability of PTP-modified AAV capsids to selectively target gene delivery to PDAC cells in vivo, which opens promising new avenues for the early detection, diagnosis, and treatment of pancreatic cancer.

  7. Pancreatic Cancer: Molecular Characterization, Clonal Evolution and Cancer Stem Cells

    OpenAIRE

    Elvira Pelosi; Germana Castelli; Ugo Testa

    2017-01-01

    Pancreatic Ductal Adenocarcinoma (PDAC) is the fourth most common cause of cancer-related death and is the most lethal of common malignancies with a five-year survival rate of <10%. PDAC arises from different types of non-invasive precursor lesions: intraductal papillary mucinous neoplasms, mucinous cystic neoplasms and pancreatic intraepithelial neoplasia. The genetic landscape of PDAC is characterized by the presence of four frequently-mutated genes: KRAS, CDKN2A, TP53 and SMAD4. The dev...

  8. Proteins differentially expressed in human beta-cells-enriched pancreatic islet cultures and human insulinomas

    DEFF Research Database (Denmark)

    Terra, Letícia F; Teixeira, Priscila C; Wailemann, Rosangela A M

    2013-01-01

    In view of the great demand for human beta-cells for physiological and medical studies, we generated cell lines derived from human insulinomas which secrete insulin, C-peptide and express neuroendocrine and islet markers. In this study, we set out to characterize their proteomes, comparing them...... to those of primary beta-cells using DIGE followed by MS. The results were validated by Western blotting. An average of 1800 spots was detected with less than 1% exhibiting differential abundance. Proteins more abundant in human islets, such as Caldesmon, are involved in the regulation of cell......, a molecular snapshot of the orchestrated changes in expression of proteins involved in key processes which could be correlated with the altered phenotype of human beta-cells. Collectively our observations prompt research towards the establishment of bioengineered human beta-cells providing a new and needed...

  9. Metabolism of benzo(a)pyrene and 7,12-dimethylbenz(a)anthracene in cultured human bronchus and pancreatic duct

    DEFF Research Database (Denmark)

    Harris, Curtis C.; Autrup, Herman; Stoner, Gary

    1977-01-01

    cochromatographed with both the 9,10-diol and a triol of BP. 7,12-Dimethylbenz[a]anthracene was bound to the DMA of cultured human bronchial cells at higher levels than was BP. Binding of 7,12-dimethylbenz[a]anthracene to DMA in human pancreatic duct was consistently less than that in cultured bronchi in the 5......The metabolism of two carcinogenic polynuclear aro matic hydrocarbons, benzo[a]pyrene (BP) and 7,12-dimethylbenz[a]anthracene, was studied in expiants of human pancreatic duct and bronchus cultured in a chemically defined medium. In cultured human bronchial mucosa, activity of aryl hydrocarbon...

  10. An unexpected inhibition of antiviral signaling by virus-encoded tumor suppressor p53 in pancreatic cancer cells

    Science.gov (United States)

    Hastie, Eric; Cataldi, Marcela; Steuerwald, Nury; Grdzelishvili, Valery Z.

    2015-01-01

    Virus-encoded tumor suppressor p53 transgene expression has been successfully used in vesicular stomatitis virus (VSV) and other oncolytic viruses (OVs) to enhance their anticancer activities. However, p53 is also known to inhibit virus replication via enhanced type I interferon (IFN) antiviral responses. To examine whether p53 transgenes enhance antiviral signaling in human pancreatic ductal adenocarcinoma (PDAC) cells, we engineered novel VSV recombinants encoding human p53 or the previously described chimeric p53-CC, which contains the coiled-coil (CC) domain from breakpoint cluster region (BCR) protein and evades the dominant-negative activities of endogenously expressed mutant p53. Contrary to an expected enhancement of antiviral signaling by p53, our global analysis of gene expression in PDAC cells showed that both p53 and p53-CC dramatically inhibited type I IFN responses. Our data suggest that this occurs through p53-mediated inhibition of the NF-κB pathway. Importantly, VSV-encoded p53 or p53-CC did not inhibit antiviral signaling in non-malignant human pancreatic ductal cells, which retain their resistance to all VSV recombinants. To the best of our knowledge, this is the first report of p53-mediated inhibition of antiviral signaling, and it suggests that OV-encoded p53 can simultaneously produce anticancer activities while assisting, rather than inhibiting, virus replication in cancer cells. PMID:25965802

  11. An unexpected inhibition of antiviral signaling by virus-encoded tumor suppressor p53 in pancreatic cancer cells.

    Science.gov (United States)

    Hastie, Eric; Cataldi, Marcela; Steuerwald, Nury; Grdzelishvili, Valery Z

    2015-09-01

    Virus-encoded tumor suppressor p53 transgene expression has been successfully used in vesicular stomatitis virus (VSV) and other oncolytic viruses (OVs) to enhance their anticancer activities. However, p53 is also known to inhibit virus replication via enhanced type I interferon (IFN) antiviral responses. To examine whether p53 transgenes enhance antiviral signaling in human pancreatic ductal adenocarcinoma (PDAC) cells, we engineered novel VSV recombinants encoding human p53 or the previously described chimeric p53-CC, which contains the coiled-coil (CC) domain from breakpoint cluster region (BCR) protein and evades the dominant-negative activities of endogenously expressed mutant p53. Contrary to an expected enhancement of antiviral signaling by p53, our global analysis of gene expression in PDAC cells showed that both p53 and p53-CC dramatically inhibited type I IFN responses. Our data suggest that this occurs through p53-mediated inhibition of the NF-κB pathway. Importantly, VSV-encoded p53 or p53-CC did not inhibit antiviral signaling in non-malignant human pancreatic ductal cells, which retained their resistance to all tested VSV recombinants. To the best of our knowledge, this is the first report of p53-mediated inhibition of antiviral signaling, and it suggests that OV-encoded p53 can simultaneously produce anticancer activities while assisting, rather than inhibiting, virus replication in cancer cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. MIF Drives Pancreatic Cancer Aggressiveness by Downregulating NR3C2 | Center for Cancer Research

    Science.gov (United States)

    Pancreatic cancer, while relatively rare, is an aggressive disease ranked as the fourth leading cause of cancer-related death in the US. Because most patients are diagnosed at an advanced stage and their tumors resist available treatments, novel therapeutic targets are urgently needed. Macrophage Migration Inhibitory Factor (MIF) is a proinflammatory cytokine that is elevated in pancreatic ductal adenocarcinoma (PDAC), the most common form of pancreatic cancer, and may provide a molecular link between inflammation and cancer, though the mechanism is unknown.

  13. Pancreatic metastasis from invasive pleomorphic lobular carcinoma of the breast: a rare case report.

    Science.gov (United States)

    Sun, Xiangjie; Zuo, Ke; Huang, Dan; Yu, Baohua; Cheng, Yufan; Yang, Wentao

    2017-07-11

    Invasive pleomorphic lobular carcinoma (PLC) is an aggressive subtype of invasive lobular carcinoma of the breast, which has its own histopathological and biological features. The metastatic patterns for PLC are distinct from those of invasive ductal carcinoma. In addition, pancreatic metastasis from PLC is extremely rare. We report a rare case of a 48-year-old woman presenting with clinical gastrointestinal symptoms and pancreatic metastasis of PLC. The pancreatic tumor was composed of pleomorphic tumor cells arranged in the form of solid sheets and nests and as single files, with frequent mitotic figures, nucleolar prominence, high nuclear to cytoplasmic ratio and loss of cohesion. The malignant cells were positive for p120 (cytoplasmic) and GATA3 and negative for estrogen receptor, progesterone receptor, human epidermal growth factor receptor 2, E-cadherin, gross cystic disease fluid protein 15 and mammaglobin, which indicated a lobular carcinoma phenotype of the breast. To the best of our knowledge, this is one of the few reported cases in the literature of pancreatic metastasis of invasive lobular carcinoma of the breast, of which the definitive diagnosis was obtained only after surgery. Rare metastasis sites should be considered, particularly, when a patient has a medical history of PLC.

  14. Basal cytokeratin as a potential marker of low risk of invasion in ductal carcinoma in situ

    Directory of Open Access Journals (Sweden)

    Fernando N. Aguiar

    2013-05-01

    Full Text Available OBJECTIVES: Biological markers that predict the development of invasive breast cancer are needed to improve personalized therapy for patients diagnosed with ductal carcinoma in situ. We investigated the role of basal cytokeratin 5/6 in the risk of invasion in breast ductal carcinoma in situ. METHODS: We constructed tissue microarrays using 236 ductal carcinoma in situ samples: 90 pure samples (group 1 and 146 samples associated with invasive carcinoma (group 2. Both groups had similar nuclear grades and were obtained from patients of similar ages. The groups were compared in terms of estrogen (ER and progesterone receptor (PR status, human epidermal growth factor receptor 2 (HER2 expression, cytokeratin 5/6 immunostaining, human epidermal growth factor receptor 1 (EGFR membrane staining and molecular subtype, as indicated by their immunohistochemistry profiles. RESULTS: ER/PR-negative status was predictive of invasion, whereas HER2 superexpression and cytokeratin 5/6-positive status were negatively associated with invasion. Among the high-grade ductal carcinoma in situ cases, a triple-positive profile (positive for estrogen receptor, progesterone receptor, and HER2 and cytokeratin 5/6 expression by neoplastic cells were negatively associated with invasion. In the low-grade ductal carcinoma in situ subgroup, only cytokeratin 5/6 expression exhibited a negative association with the probability of invasion. CONCLUSION: The immunohistochemical expression of cytokeratin 5/6 by ductal carcinoma in situ epithelial cells may provide clinically useful information regarding the risk of progression to invasive disease.

  15. Pancreatic Adenocarcinoma Therapeutic Targets Revealed by Tumor-Stroma Cross-Talk Analyses in Patient-Derived Xenografts

    Directory of Open Access Journals (Sweden)

    Rémy Nicolle

    2017-11-01

    Full Text Available Preclinical models based on patient-derived xenografts have remarkable specificity in distinguishing transformed human tumor cells from non-transformed murine stromal cells computationally. We obtained 29 pancreatic ductal adenocarcinoma (PDAC xenografts from either resectable or non-resectable patients (surgery and endoscopic ultrasound-guided fine-needle aspirate, respectively. Extensive multiomic profiling revealed two subtypes with distinct clinical outcomes. These subtypes uncovered specific alterations in DNA methylation and transcription as well as in signaling pathways involved in tumor-stromal cross-talk. The analysis of these pathways indicates therapeutic opportunities for targeting both compartments and their interactions. In particular, we show that inhibiting NPC1L1 with Ezetimibe, a clinically available drug, might be an efficient approach for treating pancreatic cancers. These findings uncover the complex and diverse interplay between PDAC tumors and the stroma and demonstrate the pivotal role of xenografts for drug discovery and relevance to PDAC.

  16. Treating Diet-Induced Diabetes and Obesity with Human Embryonic Stem Cell-Derived Pancreatic Progenitor Cells and Antidiabetic Drugs

    Directory of Open Access Journals (Sweden)

    Jennifer E. Bruin

    2015-04-01

    Full Text Available Human embryonic stem cell (hESC-derived pancreatic progenitor cells effectively reverse hyperglycemia in rodent models of type 1 diabetes, but their capacity to treat type 2 diabetes has not been reported. An immunodeficient model of type 2 diabetes was generated by high-fat diet (HFD feeding in SCID-beige mice. Exposure to HFDs did not impact the maturation of macroencapsulated pancreatic progenitor cells into glucose-responsive insulin-secreting cells following transplantation, and the cell therapy improved glucose tolerance in HFD-fed transplant recipients after 24 weeks. However, since diet-induced hyperglycemia and obesity were not fully ameliorated by transplantation alone, a second cohort of HFD-fed mice was treated with pancreatic progenitor cells combined with one of three antidiabetic drugs. All combination therapies rapidly improved body weight and co-treatment with either sitagliptin or metformin improved hyperglycemia after only 12 weeks. Therefore, a stem cell-based therapy may be effective for treating type 2 diabetes, particularly in combination with antidiabetic drugs.

  17. Protease-activated receptor-2 expression and the role of trypsin in cell proliferation in human pancreatic cancers.

    Science.gov (United States)

    Ohta, Tetsuo; Shimizu, Koichi; Yi, Shuangqin; Takamura, Hiroyuki; Amaya, Kohji; Kitagawa, Hirohisa; Kayahara, Masato; Ninomiya, Itasu; Fushida, Sachio; Fujimura, Takashi; Nishimura, Gen-Ichi; Miwa, Koichi

    2003-07-01

    Protease-activated receptor (PAR)-2 is a G protein-coupled receptor that is activated by trypsin. The purpose of this study was to examine PAR-2 expression and the role of trypsin in cell proliferation in human pancreatic cancer cells. All four pancreatic cancer cell lines studied, from well to undifferentiated types, AsPC-1, BxPC-3, Panc-1, and MIAPaCa-2, had significant levels of PAR-2 mRNA detected by reverse transcription-polymerase chain reaction, and showed a band of about 55 kDa corresponding to the known molecular weight of PAR-2: AsPC-1, BxPC-3 and Panc-1 showed a strong band, and MIAPaCa-2 showed a weak one. Immunocytochemically, AsPC-1, BxPC-3, and Panc-1 showed intense immunostaining for PAR-2, predominantly in the plasma membrane, while in MIAPaCa-2, immunostaining was weak. Proliferative activity of AsPC-1 cells was increased by concentrations of trypsin as low as 10 nM, and activity peaked at a concentration of 100 nM, representing almost 60% of that induced by 10% fetal bovine serum. In contrast, trypsin had no significant effect on proliferation of MIAPaCa-2 cells. These findings suggest that trypsin plays a role in the growth of PAR-2-positive pancreatic cancer cells and serves as a potent mitogen in vitro, functioning as a growth factor.

  18. Loss of WISP-2/CCN5 signaling in human pancreatic cancer: a potential mechanism for epithelial-mesenchymal-transition.

    Science.gov (United States)

    Dhar, Gopal; Mehta, Smita; Banerjee, Snigdha; Gardner, Ashleigh; McCarty, Bryan M; Mathur, Sharad C; Campbell, Donald R; Kambhampati, Suman; Banerjee, Sushanta K

    2007-08-28

    The objective of this study was to explore the pathophysiological relevance of WISP-2/CCN5 in progression of human pancreatic adenocarcinoma (PAC). We found WISP-2/CCN5 mRNA and protein expression was faint and sporadic in PAC and detected in only 8.7-20% of the samples with varying grades as compared to adjacent normal and chronic pancreatitis samples where expression was very high in the ducts and acini. Colocalization studies in tissue-microarray slides revealed WISP-2/CCN5 mRNA loss was associated with p53 overexpression in PAC. Like tissue samples, p53 mutant-PAC cell lines show loss of WISP-2/CCN5. Moreover, functional analysis studies demonstrate exposure of pancreatic cancer cells to WISP-2/CCN5 recombinant protein enhances mesenchymal-epithelial-transition (MET). Collectively, we suggest WISP-2/CCN5 silencing may be a critical event during differentiation and progression of PAC and mutant p53 is possibly an important player in pursuing this episode.

  19. Histological advantages of the tumor graft: a murine model involving transplantation of human pancreatic cancer tissue fragments.

    Science.gov (United States)

    Akashi, Yoshimasa; Oda, Tatsuya; Ohara, Yusuke; Miyamoto, Ryoichi; Hashimoto, Shinji; Enomoto, Tsuyoshi; Yamada, Keiichi; Kobayashi, Akihiko; Fukunaga, Kiyoshi; Ohkochi, Nobuhiro

    2013-11-01

    Experimental data based on cell line-derived xenograft models (cell xenograft) seldom reproduce the clinical situation, and therefore we demonstrated here the superiority of a murine model involving transplantation of human pancreatic cancer tissue fragments (tumor graft), focusing on the histological features and drug delivery characteristics. Tumor pieces from 10 pancreatic cancer patients were transplanted into SCID (severe combined immunodeficient) mice. Histological characteristics of tumor grafts, including morphology, desmoplastic reaction, and vascularization, were compared with those of cell xenografts. Drug delivery was evaluated by quantifying the concentrations of injected drug, and the results were compared with its histological features. Eight of the 10 transplanted tumors successfully engrafted. Histological comparisons between tumor grafts and cell xenografts revealed the following: the amount of stroma was more (22.9% ± 11.8% vs 10.8% ± 5.4%; P cancer cell distance was longer (35.3 ± 39.0 vs 3.9 ± 3.1 μm; P Pancreatic tumor grafts better reproduce the histological nature of clinical cancer and thus provide a more realistic model that is applicable for pharmacokinetic studies.

  20. Prognostic relevance of pancreatic uptake of technetium-99m labelled human polyclonal immunoglobulins in patients with type 1 diabetes

    Energy Technology Data Exchange (ETDEWEB)

    Barone, R.; Procaccini, E.; Chianelli, M.; Annovazzi, A.; Fiore, V.; Nardi, G.; Ronga, G.; Signore, A. [Servizio Medicina Nucleare, II Clinica Medica, University ``La Sapienza``, Rome (Italy); Hawa, M. [Department of Diabetes and Metabolism, St. Bartholomew`s Hospital, London (United Kingdom); Pozzilli, P. [Department of Diabetes and Metabolism, St. Bartholomew`s Hospital, London (United Kingdom)]|[Libero Istituto Universitario Campus Bio-Medico, Rome (Italy); IMDIAB Study Group

    1998-05-01

    Insulin-dependent type 1 diabetes (IDDM) is caused by the autoimmune destruction of insulin-producing beta cells. Approximately 10%-20% of patients may benefit from adjuvant immunotherapy upon diagnosis of the disease in order to protect residual beta-cell function. It has been suggested that this subgroup of patients differs from others by virtue of the presence of residual pancreatic inflammation and beta-cell function. In this study we have investigated to what extent technetium-99m-labelled human polyclonal immunoglobulins ({sup 99m}Tc-HIG) accumulate in the pancreas of IDDM patients at the time of diagnosis and 1 year thereafter, with a view to ascertaining whether HIG scintigraphy is useful for the identification of IDDM patients with residual pancreatic inflammation. Patients with recent-onset IDDM (n=15) were investigated at the time of diagnosis and 1 year later, and ten age- and sex-matched normal subjects were also studied. Gamma camera imaging and target to background ratio, analysed blind by three independent readers, were used to quantify the radioactivity in the pancreatic region and findings were correlated with metabolic, immunological and clinical parameters. Seven out of 15 newly diagnosed IDDM patients showed a significant accumulation of radiolabelled HIG in the pancreas (pancreas/bone ratio higher than the mean +2SD of normal subjects). One year after diagnosis, pancreatic accumulation of HIG was still detectable in most IDDM patients who were positive at the time of diagnosis. Six out of seven patients with positive scintigraphy had a partial clinical remission. These results indicate that HIG scintigraphy at the time of onset of diabetes identifies a subset of patients with residual beta-cell function who may benefit from adjuvant immunotherapy. (orig.) With 2 figs., 20 tabs., 23 refs.

  1. Early to Late Endosome Trafficking Controls Secretion and Zymogen Activation in Rodent and Human Pancreatic Acinar Cells.

    Science.gov (United States)

    Messenger, Scott W; Thomas, Diana Dh; Cooley, Michelle M; Jones, Elaina K; Falkowski, Michelle A; August, Benjamin K; Fernandez, Luis A; Gorelick, Fred S; Groblewski, Guy E

    2015-11-01

    Pancreatic acinar cells have an expanded apical endosomal system, the physiological and pathophysiological significance of which is still emerging. Phosphatidylinositol-3,5-bisphosphate (PI(3,5)P 2 ) is an essential phospholipid generated by PIKfyve, which phosphorylates phosphatidylinositol-3-phosphate (PI(3)P). PI(3,5)P 2 is necessary for maturation of early endosomes (EE) to late endosomes (LE). Inhibition of EE to LE trafficking enhances anterograde endosomal trafficking and secretion at the plasma membrane by default through a recycling endosome (RE) intermediate. We assessed the effects of modulating PIKfyve activity on apical trafficking and pancreatitis responses in pancreatic acinar cells. Inhibition of EE to LE trafficking was achieved using pharmacological inhibitors of PIKfyve, expression of dominant negative PIKfyve K1877E, or constitutively active Rab5-GTP Q79L. Anterograde endosomal trafficking was manipulated by expression of constitutively active and dominant negative Rab11a mutants. The effects of these agents on secretion, endolysosomal exocytosis of lysosome associated membrane protein (LAMP1), and trypsinogen activation in response to high-dose CCK-8, bile acids and cigarette toxin was determined. PIKfyve inhibition increased basal and stimulated secretion. Adenoviral overexpression of PIKfyve decreased secretion leading to cellular death. Expression of Rab5-GTP Q79L or Rab11a-GTP Q70L enhanced secretion. Conversely, dominant-negative Rab11a-GDP S25N reduced secretion. High-dose CCK inhibited endolysosomal exocytosis that was reversed by PIKfyve inhibition. PIKfyve inhibition blocked intracellular trypsin accumulation and cellular damage responses to high CCK-8, tobacco toxin, and bile salts in both rodent and human acini. These data demonstrate that EE-LE trafficking acutely controls acinar secretion and the intracellular activation of zymogens leading to the pathogenicity of acute pancreatitis.

  2. Escin Chemosensitizes Human Pancreatic Cancer Cells and Inhibits the Nuclear Factor-kappaB Signaling Pathway

    Directory of Open Access Journals (Sweden)

    A. Rimmon

    2013-01-01

    Full Text Available Background. There is an urgent need to develop new treatment strategies and drugs for pancreatic cancer that is highly resistant to radio-chemotherapy. Aesculus hippocastanum (the horse chestnut known in Chinese medicine as a plant with anti-inflammatory, antiedema, antianalgesic, and antipyretic activities. The main active compound of this plant is Escin (C54H84O23. Objective. To evaluate the effect of Escin alone and combined with chemotherapy on pancreatic cancer cell survival and to unravel mechanism(s of Escin anticancer activity. Methods. Cell survival was measured by XTT colorimetric assay. Synergistic effect of combined therapy was determined by CalcuSyn software. Cell cycle and induction of apoptosis were evaluated by FACS analysis. Expression of NF-κB-related proteins (p65, IκBα, and p-IκBα and cyclin D was evaluated by western blot analysis. Results. Escin decreased the survival of pancreatic cancer cells with IC50 = 10–20 M. Escin combined with gemcitabine showed only additive effect, while its combination with cisplatin resulted in a significant synergistic cytotoxic effect in Panc-1 cells. High concentrations of Escin induced apoptosis and decreased NF-κB-related proteins and cyclin D expression. Conclusions. Escin decreased pancreatic cancer cell survival, induced apoptosis, and downregulated NF-κB signaling pathway. Moreover, Escin sensitized pancreatic cancer cells to chemotherapy. Further translational research is required.

  3. Is screening for pancreatic cancer in high-risk groups cost-effective?

    DEFF Research Database (Denmark)

    Jørgensen, Maiken Thyregod; Gerdes, Anne-Marie; Sørensen, Jan

    2016-01-01

    OBJECTIVE: Pancreatic cancer (PC) is the fourth leading cause of cancer death worldwide, symptoms are few and diffuse, and when the diagnosis has been made only 10-15% would benefit from resection. Surgery is the only potentially curable treatment for pancreatic cancer, and the prognosis seems...... with Hereditary pancreatitis or with a disposition of HP and 40 first-degree relatives of patients with Familial Pancreatic Cancer (FPC) were screened for development of Pancreatic Ductal Adenocarcinoma (PDAC) with yearly endoscopic ultrasound. The cost-effectiveness of screening in comparison with no...

  4. Mediastinal Pseudocyst in Acute on Chronic Pancreatitis.

    Science.gov (United States)

    Mishra, Sushil Kumar; Jain, Pawan Kumar; Gupta, Sukhdev

    2016-03-01

    Pseudocyst is a common complication of Acute and chronic pancreatitis. However, its extension into the mediastinum is a rare entity. We present a case of 52 years male with acute on chronic pancreatitis (alcohol related) who presented with dysphagia and dyspnoea and was found to have a pancreatic pseudocyst extending upto the neck. Ultrasound fails to pick up mediastinal pseudocysts and requires additional imaging modalities - CT and MRI. Management of Mediastinal pseudocyst depends upon underlying etiology, ductal anatomy, size of the pseudocyst, and availability of expertise. Small pseudocysts in asymptomatic patients may resolve spontaneously, but requires prolonged conservative therapy with somatostatin or its analogue and Total Parenteral Nutrition. Ruptured pseudocyst in a symptomatic unstable patient requires surgical resection. Endoscopic ultrasound guided drainage (transmural or transpapillary) and Main Pancreatic Duct stenting are safe and effective treatment modality. © Journal of the Association of Physicians of India 2011.

  5. Exosomal lipids impact notch signaling and induce death of human pancreatic tumoral SOJ-6 cells.

    Directory of Open Access Journals (Sweden)

    Sadia Beloribi

    Full Text Available Exosomes are of increasing interest as alternative mode of cell-to-cell communication. We previously reported that exosomes secreted by human SOJ-6 pancreatic tumor cells induce (glycoprotein ligand-independent cell death and inhibit Notch-1 pathway, this latter being particularly active during carcinogenesis and in cancer stem cells. Therefore, we asked whether exosomal lipids were key-elements for cell death and hypothesized that cholesterol-rich membrane microdomains were privileged sites of exosome interactions with tumor cells. To address these questions and based on the lipid composition of exosomes from SOJ-6 cells (Ristorcelli et al. (2008 FASEB J. 22; 3358-3369 enriched in cholesterol and sphingomyelin (lipids forming liquid-ordered phase, Lo and depleted in phospholipids (lipids forming liquid-disordered phase, Ld, we designed Synthetic Exosome-Like Nanoparticles (SELN with ratios Lo/Ld from 3.0 to 6.0 framing that of SOJ-6 cell exosomes. SELN decreased tumor cell survival, the higher the Lo/Ld ratio, the lower the cell survival. This decreased survival was due to activation of cell death with inhibition of Notch pathway. FRET analyses indicated fusions/exchanges of SELN with cell membranes. Fluorescent SELN co-localized with the ganglioside GM1 then with Rab5A, markers of lipid microdomains and of early endosomes, respectively. These interactions occurred at lipid microdomains of plasma and/or endosome membranes where the Notch-1 pathway matures. We thus demonstrated a major role for lipids in interactions between SELN and tumor cells, and in the ensued cell death. To our knowledge this is the first report on such effects of lipidic nanoparticles on tumor cell behavior. This may have implications in tumor progression.