WorldWideScience

Sample records for human neutrophils pmn

  1. Differential Use of Human Neutrophil Fcγ Receptors for Inducing Neutrophil Extracellular Trap Formation.

    Science.gov (United States)

    Alemán, Omar Rafael; Mora, Nancy; Cortes-Vieyra, Ricarda; Uribe-Querol, Eileen; Rosales, Carlos

    2016-01-01

    Neutrophils (PMN) are the most abundant leukocytes in the blood. PMN migrate from the circulation to sites of infection, where they are responsible for antimicrobial functions. PMN use phagocytosis, degranulation, and formation of neutrophil extracellular traps (NETs) to kill microbes. NETs are fibers composed of chromatin and neutrophil-granule proteins. Several pathogens, including bacteria, fungi, and parasites, and also some pharmacological stimuli such as phorbol 12-myristate 13-acetate (PMA) are efficient inducers of NETs. Antigen-antibody complexes are also capable of inducing NET formation. However the particular Fcγ receptor involved in triggering this function is a matter of controversy. In order to provide some insight into what Fcγ receptor is responsible for NET formation, each of the two human Fcγ receptors was stimulated individually by specific monoclonal antibodies and NET formation was evaluated. FcγRIIa cross-linking did not promote NET formation. Cross-linking other receptors such as integrins also did not promote NET formation. In contrast FcγRIIIb cross-linking induced NET formation similarly to PMA stimulation. NET formation was dependent on NADPH-oxidase, PKC, and ERK activation. These data show that cross-linking FcγRIIIb is responsible for NET formation by the human neutrophil.

  2. Differential Use of Human Neutrophil Fcγ Receptors for Inducing Neutrophil Extracellular Trap Formation

    Directory of Open Access Journals (Sweden)

    Omar Rafael Alemán

    2016-01-01

    Full Text Available Neutrophils (PMN are the most abundant leukocytes in the blood. PMN migrate from the circulation to sites of infection, where they are responsible for antimicrobial functions. PMN use phagocytosis, degranulation, and formation of neutrophil extracellular traps (NETs to kill microbes. NETs are fibers composed of chromatin and neutrophil-granule proteins. Several pathogens, including bacteria, fungi, and parasites, and also some pharmacological stimuli such as phorbol 12-myristate 13-acetate (PMA are efficient inducers of NETs. Antigen-antibody complexes are also capable of inducing NET formation. However the particular Fcγ receptor involved in triggering this function is a matter of controversy. In order to provide some insight into what Fcγ receptor is responsible for NET formation, each of the two human Fcγ receptors was stimulated individually by specific monoclonal antibodies and NET formation was evaluated. FcγRIIa cross-linking did not promote NET formation. Cross-linking other receptors such as integrins also did not promote NET formation. In contrast FcγRIIIb cross-linking induced NET formation similarly to PMA stimulation. NET formation was dependent on NADPH-oxidase, PKC, and ERK activation. These data show that cross-linking FcγRIIIb is responsible for NET formation by the human neutrophil.

  3. Solar ultraviolet irradiation induces decorin degradation in human skin likely via neutrophil elastase.

    Science.gov (United States)

    Li, Yong; Xia, Wei; Liu, Ying; Remmer, Henriette A; Voorhees, John; Fisher, Gary J

    2013-01-01

    Exposure of human skin to solar ultraviolet (UV) irradiation induces matrix metalloproteinase-1 (MMP-1) activity, which degrades type I collagen fibrils. Type I collagen is the most abundant protein in skin and constitutes the majority of skin connective tissue (dermis). Degradation of collagen fibrils impairs the structure and function of skin that characterize skin aging. Decorin is the predominant proteoglycan in human dermis. In model systems, decorin binds to and protects type I collagen fibrils from proteolytic degradation by enzymes such as MMP-1. Little is known regarding alterations of decorin in response to UV irradiation. We found that solar-simulated UV irradiation of human skin in vivo stimulated substantial decorin degradation, with kinetics similar to infiltration of polymorphonuclear (PMN) cells. Proteases that were released from isolated PMN cells degraded decorin in vitro. A highly selective inhibitor of neutrophil elastase blocked decorin breakdown by proteases released from PMN cells. Furthermore, purified neutrophil elastase cleaved decorin in vitro and generated fragments with similar molecular weights as those resulting from protease activity released from PMN cells, and as observed in UV-irradiated human skin. Cleavage of decorin by neutrophil elastase significantly augmented fragmentation of type I collagen fibrils by MMP-1. Taken together, these data indicate that PMN cell proteases, especially neutrophil elastase, degrade decorin, and this degradation renders collagen fibrils more susceptible to MMP-1 cleavage. These data identify decorin degradation and neutrophil elastase as potential therapeutic targets for mitigating sun exposure-induced collagen fibril degradation in human skin.

  4. Human neutrophils facilitate tumor cell transendothelial migration.

    LENUS (Irish Health Repository)

    Wu, Q D

    2012-02-03

    Tumor cell extravasation plays a key role in tumor metastasis. However, the precise mechanisms by which tumor cells migrate through normal vascular endothelium remain unclear. In this study, using an in vitro transendothelial migration model, we show that human polymorphonuclear neutrophils (PMN) assist the human breast tumor cell line MDA-MB-231 to cross the endothelial barrier. We found that tumor-conditioned medium (TCM) downregulated PMN cytocidal function, delayed PMN apoptosis, and concomitantly upregulated PMN adhesion molecule expression. These PMN treated with TCM attached to tumor cells and facilitated tumor cell migration through different endothelial monolayers. In contrast, MDA-MB-231 cells alone did not transmigrate. FACScan analysis revealed that these tumor cells expressed high levels of intercellular adhesion molecule-1 (ICAM-1) but did not express CD11a, CD11b, or CD18. Blockage of CD11b and CD18 on PMN and of ICAM-1 on MDA-MB-231 cells significantly attenuated TCM-treated, PMN-mediated tumor cell migration. These tumor cells still possessed the ability to proliferate after PMN-assisted transmigration. These results indicate that TCM-treated PMN may serve as a carrier to assist tumor cell transendothelial migration and suggest that tumor cells can exploit PMN and alter their function to facilitate their extravasation.

  5. Activated human neutrophils release hepatocyte growth factor/scatter factor.

    LENUS (Irish Health Repository)

    McCourt, M

    2012-02-03

    BACKGROUND: Hepatocyte growth factor or scatter factor (HGF\\/SF) is a pleiotropic cytokine that has potent angiogenic properties. We have previously demonstrated that neutrophils (PMN) are directly angiogenic by releasing vascular endothelial growth factor (VEGF). We hypothesized that the acute inflammatory response can stimulate PMN to release HGF. AIMS: To examine the effects of inflammatory mediators on PMN HGF release and the effect of recombinant human HGF (rhHGF) on PMN adhesion receptor expression and PMN VEGF release. METHODS: In the first experiment, PMN were isolated from healthy volunteers and stimulated with tumour necrosis factor-alpha (TNF-alpha), lipopolysaccharide (LPS), interleukin-8 (IL-8), and formyl methionyl-leucyl-phenylalanine (fMLP). Culture supernatants were assayed for HGF using ELISA. In the second experiment, PMN were lysed to measure total HGF release and HGF expression in the PMN was detected by Western immunoblotting. Finally, PMN were stimulated with rhHGF. PMN CD 11a, CD 11b, and CD 18 receptor expression and VEGF release was measured using flow cytometry and ELISA respectively. RESULTS: TNF-alpha, LPS and fMLP stimulation resulted in significantly increased release of PMN HGF (755+\\/-216, 484+\\/-221 and 565+\\/-278 pg\\/ml, respectively) compared to controls (118+\\/-42 pg\\/ml). IL-8 had no effect. Total HGF release following cell lysis and Western blot suggests that HGF is released from intracellular stores. Recombinant human HGF did not alter PMN adhesion receptor expression and had no effect on PMN VEGF release. CONCLUSIONS: This study demonstrates that pro-inflammatory mediators can stimulate HGF release from a PMN intracellular store and that activated PMN in addition to secreting VEGF have further angiogenic potential by releasing HGF.

  6. Platelet modulation of human neutrophil functions

    Energy Technology Data Exchange (ETDEWEB)

    McGarrity, S.T.; Hyers, T.M.; Webster, R.O.

    1986-03-01

    The combined presence of platelets (PLTS) and neutrophils (PMN) at inflammatory sites has led to examination of the hypothesis that interaction of these cells modulates their responses to stimuli. Gel-filtered human PLTS (GFP) were found to inhibit N-formyl-met-leu-phe (FMLP) and phorbol myristate acetate (PMA) stimulated PMN O/sub 2//sup -/ generation in a concentration-dependent fashion. The heat-stable inhibitory activity was present in the supernatants of GFP after incubation with FMLP (10/sup -7/M), thrombin (0.5 U/ml) or ADP (20 ..mu..M), suggesting a role for PLT release products. PLT lysates added to PMN produced up to 80% inhibition of O/sub 2//sup -/ generation for PMA and 40% for FMLP. Like GFP, lysates failed to scavenge O/sub 2/..pi.. produced by xanthine oxidase-hypoxanthine. The inhibitory activity could not be ascribed to serotonin or adenosine. PLT lysates failed to compete with /sup 3/H-FMLP for binding to PMN. Sephadex G-200 fractionation of PLT lysates releaved two peaks of inhibitory activity with apparent Mr > 200,000 and < 14,000 Daltons. Pretreatment of PMN with PLT lysates also results in a concentration-dependent inhibition of degranulation provoked by FMLP (2 x 10/sup -7/M) or PMA (2 ng/ml) and PMN chemotaxis to FMLP (10/sup -8/M). These studies indicate that preformed PLT mediator(s) released in response to physiological stimuli may limit tissue damage by PMN at sites of inflammation.

  7. Neutrophils are resistant to Yersinia YopJ/P-induced apoptosis and are protected from ROS-mediated cell death by the type III secretion system.

    Directory of Open Access Journals (Sweden)

    Justin L Spinner

    2010-02-01

    Full Text Available The human innate immune system relies on the coordinated activity of macrophages and polymorphonuclear leukocytes (neutrophils or PMNs for defense against bacterial pathogens. Yersinia spp. subvert the innate immune response to cause disease in humans. In particular, the Yersinia outer protein YopJ (Y. pestis and Y. pseudotuberculosis and YopP (Y. enterocolitica rapidly induce apoptosis in murine macrophages and dendritic cells. However, the effects of Yersinia Yop J/P on neutrophil fate are not clearly defined.In this study, we utilized wild-type and mutant strains of Yersinia to test the contribution of YopJ and YopP on induction of apoptosis in human monocyte-derived macrophages (HMDM and neutrophils. Whereas YopJ and YopP similarly induced apoptosis in HMDMs, interaction of human neutrophils with virulence plasmid-containing Yersinia did not result in PMN caspase activation, release of LDH, or loss of membrane integrity greater than PMN controls. In contrast, interaction of human PMNs with the virulence plasmid-deficient Y. pestis strain KIM6 resulted in increased surface exposure of phosphatidylserine (PS and cell death. PMN reactive oxygen species (ROS production was inhibited in a virulence plasmid-dependent but YopJ/YopP-independent manner. Following phagocytic interaction with Y. pestis strain KIM6, inhibition of PMN ROS production with diphenyleneiodonium chloride resulted in a reduction of PMN cell death similar to that induced by the virulence plasmid-containing strain Y. pestis KIM5.Our findings showed that Yersinia YopJ and/or YopP did not induce pronounced apoptosis in human neutrophils. Furthermore, robust PMN ROS production in response to virulence plasmid-deficient Yersinia was associated with increased PMN cell death, suggesting that Yersinia inhibition of PMN ROS production plays a role in evasion of the human innate immune response in part by limiting PMN apoptosis.

  8. Immunosenescence of Polymorphonuclear Neutrophils

    Directory of Open Access Journals (Sweden)

    Inga Wessels

    2010-01-01

    Full Text Available All immune cells are affected by aging, contributing to the high susceptibility to infections and increased mortality observed in the elderly. The effect of aging on cells of the adaptive immune system is well documented. In contrast, knowledge concerning age-related defects of polymorphonuclear neutrophils (PMN is limited. During the past decade, it has become evident that in addition to their traditional role as phagocytes, neutrophils are able to secrete a wide array of immunomodulating molecules. Their importance is underlined by the finding that genetic defects that lead to neutropenia increase susceptibility to infections. Whereas there is consistence about the constant circulating number of PMN throughout aging, the abilities of tissue infiltration, phagocytosis, and oxidative burst of PMN from aged donors are discussed controversially. Furthermore, there are numerous discrepancies between in vivo and in vitro results, as well as between results for murine and human PMN. Most of the reported functional changes can be explained by defective signaling pathways, but further research is required to get a detailed insight into the underlying molecular mechanisms. This could form the basis for drug development in order to prevent or treat age-related diseases, and thus to unburden the public health systems.

  9. Neutrophils kill the parasite Trichomonas vaginalis using trogocytosis

    Science.gov (United States)

    Mercer, Frances; Ng, Shek Hang; Brown, Taylor M.; Boatman, Grace; Johnson, Patricia J.

    2018-01-01

    T. vaginalis, a human-infective parasite, causes the most common nonviral sexually transmitted infection (STI) worldwide and contributes to adverse inflammatory disorders. The immune response to T. vaginalis is poorly understood. Neutrophils (polymorphonuclear cells [PMNs]) are the major immune cell present at the T. vaginalis–host interface and are thought to clear T. vaginalis. However, the mechanism of PMN clearance of T. vaginalis has not been characterized. We demonstrate that human PMNs rapidly kill T. vaginalis in a dose-dependent, contact-dependent, and neutrophil extracellular trap (NET)-independent manner. In contrast to phagocytosis, we observed that PMN killing of T. vaginalis involves taking “bites” of T. vaginalis prior to parasite death, using trogocytosis to achieve pathogen killing. Both trogocytosis and parasite killing are dependent on the presence of PMN serine proteases and human serum factors. Our analyses provide the first demonstration, to our knowledge, of a mammalian phagocyte using trogocytosis for pathogen clearance and reveal a novel mechanism used by PMNs to kill a large, highly motile target. PMID:29408891

  10. The influence of human neutrophils on N-nitrosodimethylamine (NDMA) synthesis.

    Science.gov (United States)

    Jabłoński, Jakub; Jabłońska, Ewa; Iwanowska, Jolanta; Marcińczyk, Magda; Moniuszko-Jakoniuk, Janina

    2006-01-01

    N-nitrozodimethyloamine (NDMA) is a carcinogenic compound that can be formed in vivo. NDMA is synthesized from precursors-amines and nitrosating agents. Nitrosating agents are formed through the reaction of oxide, reactive oxygen species and nitric oxide (NO). Human neutrophils (PMN) are an important source of the most reactive oxygen species as well as of the nitric oxide. The increase in oxygen metabolism of PMN can lead to the increase nitrosating agent and nitroso-forms. Inflammatory process is associated with locally decreased pH that may favor nitrosation reaction. In the present study, we estimated the NDMA synthesis by LPS-stimulated PMN in the presence of the iNOS inhibitor--N-nitro-L-arginine methyl ester (L-NAME). In the nitrosation reaction dimethylamine (DMA) was used as substrat. The viability of the cells was measured by cytometric method. NDMA concentrations the culture media was measured by GCMS method. NO production was estimated by Griess's method. Expression of iNOS was determined by western blotting. Results obtained showed that DMA nitrosation is most effective in pH between 3-4.5. Nonstimulated PMN produced lower concentrations of NO than LPS-stimulated cells (1.27 microg/cm3 and 1.57 microg/cm3, respectively). In the culture of nonstimulated PMN supplemented with DMA, there was NDMA (mean--0.99 ng/cm3). In the culture of LPS-stimulated PMN in the presence of DMA, the concentration of NDMA was higher than in the culture of nonstimulated PMN (median--1.45 ng/cm3). In the supernatants of cells incubated without DMA and with DMA, LPS and L-NAME, no NDMA was detected. These results indicate that PMN can be one of sources of nitrosating agents and can play a role in endogenous NDMA synthesis. Stimulation of PMN can lead to the increase of NDMA concentration following the increase of NO production. Different pathological conditions associated with PMN activation as well as the decreased pH may favor endogenous NDMA synthesis.

  11. Effect of the dimetilsulfoxido in the response chemiluminescent and the consumption of oxygen of neutrophils activated human

    International Nuclear Information System (INIS)

    Garcia, J.

    2001-01-01

    Dimethylsulfoxide (DMSO), a hydroxyl radical scavenger, exerted a dose dependent inhibition on the luminol and lucigenin-enhanced chemiluminescent responses of human neutrophils activated with soluble and particulate stimulants. DMSO inhibition of the luminol chemiluminescense induced by calcium ionophore A23187 was probably due to OH scavenging, whereas inhibition of the lucigenin chemiluminescence suggested DMSO negatively affects the NADPH-dependent membrane oxidase of neutrophils. In agreement with this, DMSO moderately inhibited O2 consumption in PMN suspensions stimulated with chemotactic peptide and opsonized zymosan-induced luminol chemiluminescense was observed only when added before or in conjunction with stimulants, whereas A23187-induced chemiluminescense was inhibited by DMSO regardless of time of addition. Washing of DMSO-treated PMN resulted in increased luminol enhanced chemiluminescense in response to chemotactic peptide and opsonized zymosan. This is consistent with the idea that DMSO may be interfering with activation of the membrane subunits of the oxidase by translocation and docking of the cytoplasmic, regulatory subunits. These data imply that DMSO inhibits neutrophil chemiluminescense both by OH scavenging and interfering with oxidase activation. Key words:Dimethylsulfoxide, chemiluminescent, luminol, lucigenin,neutrophils [es

  12. Bacterial lipoprotein delays apoptosis in human neutrophils through inhibition of caspase-3 activity: regulatory roles for CD14 and TLR-2.

    LENUS (Irish Health Repository)

    Power, Colm P

    2012-02-03

    The human sepsis syndrome resulting from bacterial infection continues to account for a significant proportion of hospital mortality. Neutralizing strategies aimed at individual bacterial wall products (such as LPS) have enjoyed limited success in this arena. Bacterial lipoprotein (BLP) is a major constituent of the wall of diverse bacterial forms and profoundly influences cellular function in vivo and in vitro, and has been implicated in the etiology of human sepsis. Delayed polymorphonuclear cell (PMN) apoptosis is a characteristic feature of human sepsis arising from Gram-negative or Gram-positive bacterial infection. Bacterial wall product ligation and subsequent receptor-mediated events upstream of caspase inhibition in neutrophils remain incompletely understood. BLP has been shown to exert its cellular effects primarily through TLR-2, and it is now widely accepted that lateral associations with the TLRs represent the means by which CD14 communicates intracellular messages. In this study, we demonstrate that BLP inhibits neutrophil mitochondrial membrane depolarization with a subsequent reduction in caspase-3 processing, ultimately leading to a significant delay in PMN apoptosis. Pretreatment of PMNs with an anti-TLR-2 mAb or anti-CD14 mAb prevented BLP from delaying PMN apoptosis to such a marked degree. Combination blockade using both mAbs completely prevented the effects of BLP (in 1 and 10 ng\\/ml concentrations) on PMN apoptosis. At higher concentrations of BLP, the antiapoptotic effects were observed, but were not as pronounced. Our findings therefore provide the first evidence of a crucial role for both CD14 and TLR-2 in delayed PMN apoptosis arising from bacterial infection.

  13. Human dental stem cells suppress PMN activity after infection with the periodontopathogens Prevotella intermedia and Tannerella forsythia

    Science.gov (United States)

    Hieke, Cathleen; Kriebel, Katja; Engelmann, Robby; Müller-Hilke, Brigitte; Lang, Hermann; Kreikemeyer, Bernd

    2016-01-01

    Periodontitis is characterized by inflammation associated with the colonization of different oral pathogens. We here aimed to investigate how bacteria and host cells shape their environment in order to limit inflammation and tissue damage in the presence of the pathogen. Human dental follicle stem cells (hDFSCs) were co-cultured with gram-negative P. intermedia and T. forsythia and were quantified for adherence and internalization as well as migration and interleukin secretion. To delineate hDFSC-specific effects, gingival epithelial cells (Ca9-22) were used as controls. Direct effects of hDFSCs on neutrophils (PMN) after interaction with bacteria were analyzed via chemotactic attraction, phagocytic activity and NET formation. We show that P. intermedia and T. forsythia adhere to and internalize into hDFSCs. This infection decreased the migratory capacity of the hDFSCs by 50%, did not disturb hDFSC differentiation potential and provoked an increase in IL-6 and IL-8 secretion while leaving IL-10 levels unaltered. These environmental modulations correlated with reduced PMN chemotaxis, phagocytic activity and NET formation. Our results suggest that P. intermedia and T. forsythia infected hDFSCs maintain their stem cell functionality, reduce PMN-induced tissue and bone degradation via suppression of PMN-activity, and at the same time allow for the survival of the oral pathogens. PMID:27974831

  14. Adenosine inhibits neutrophil vascular endothelial growth factor release and transendothelial migration via A2B receptor activation.

    LENUS (Irish Health Repository)

    Wakai, A

    2012-02-03

    The effects of adenosine on neutrophil (polymorphonuclear neutrophils; PMN)-directed changes in vascular permeability are poorly characterized. This study investigated whether adenosine modulates activated PMN vascular endothelial growth factor (vascular permeability factor; VEGF) release and transendothelial migration. PMN activated with tumour necrosis factor-alpha (TNF-alpha, 10 ng\\/mL) were incubated with adenosine and its receptor-specific analogues. Culture supernatants were assayed for VEGF. PMN transendothelial migration across human umbilical vein endothelial cell (HUVEC) monolayers was assessed in vitro. Adhesion molecule receptor expression was assessed flow cytometrically. Adenosine and some of its receptor-specific analogues dose-dependently inhibited activated PMN VEGF release. The rank order of potency was consistent with the affinity profile of human A2B receptors. The inhibitory effect of adenosine was reversed by 3,7-dimethyl-1-propargylxanthine, an A2 receptor antagonist. Adenosine (100 microM) or the A2B receptor agonist 5\\'-N-ethylcarboxamidoadenosine (NECA, 100 microM) significantly reduced PMN transendothelial migration. However, expression of activated PMN beta2 integrins and HUVEC ICAM-1 were not significantly altered by adenosine or NECA. Adenosine attenuates human PMN VEGF release and transendothelial migration via the A2B receptor. This provides a novel target for the modulation of PMN-directed vascular hyperpermeability in conditions such as the capillary leak syndrome.

  15. Proinflammatory mediators stimulate neutrophil-directed angiogenesis.

    LENUS (Irish Health Repository)

    McCourt, M

    2012-02-03

    BACKGROUND: Vascular endothelial growth factor (VEGF; vascular permeability factor) is one of the most potent proangiogenic cytokines, and it plays a central role in mediating the process of angiogenesis or new blood vessel formation. Neutrophils (PMNs) recently have been shown to produce VEGF. HYPOTHESIS: The acute inflammatory response is a potent stimulus for PMN-directed angiogenesis. METHODS: Neutrophils were isolated from healthy volunteers and stimulated with lipopolysaccharide (LPS), tumor necrosis factor alpha (TNF-alpha), interleukin 6 (IL-6), and anti-human Fas monoclonal antibody. Culture supernatants were assayed for VEGF using enzyme-linked immunosorbent assays. Culture supernatants from LPS- and TNF-alpha-stimulated PMNs were then added to human umbilical vein endothelial cells and human microvessel endothelial cells and assessed for endothelial cell proliferation using 5-bromodeoxyuridine labeling. Tubule formation was also assessed on MATRIGEL basement membrane matrix. Neutrophils were lysed to measure total VEGF release, and VEGF expression was detected using Western blot analysis. RESULTS: Lipopolysaccharide and TNF-alpha stimulation resulted in significantly increased release of PMN VEGF (532+\\/-49 and 484+\\/-80 pg\\/mL, respectively; for all, presented as mean +\\/- SEM) compared with control experiments (32+\\/-4 pg\\/mL). Interleukin 6 and Fas had no effect. Culture supernatants from LPS- and TNF-alpha-stimulated PMNs also resulted in significant increases (P<.005) in macrovascular and microvascular endothelial cell proliferation and tubule formation. Adding anti-human VEGF-neutralizing polyclonal antibody to stimulated PMN supernatant inhibited these effects. Total VEGF release following cell lysis and Western blot analysis suggests that the VEGF is released from an intracellular store. CONCLUSION: Activated human PMNs are directly angiogenic by releasing VEGF, and this has important implications for inflammation, capillary leak syndrome

  16. Neutrophil activation during acetaminophen hepatotoxicity and repair in mice and humans

    Energy Technology Data Exchange (ETDEWEB)

    Williams, C. David; Bajt, Mary Lynn [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States); Sharpe, Matthew R. [Department of Internal Medicine, University of Kansas Hospital, Kansas City, KS (United States); McGill, Mitchell R. [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States); Farhood, Anwar [Department of Pathology, St. David' s North Austin Medical Center, Austin, TX 78756 (United States); Jaeschke, Hartmut, E-mail: hjaeschke@kumc.edu [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States)

    2014-03-01

    Following acetaminophen (APAP) overdose there is an inflammatory response triggered by the release of cellular contents from necrotic hepatocytes into the systemic circulation which initiates the recruitment of neutrophils into the liver. It has been demonstrated that neutrophils do not contribute to APAP-induced liver injury, but their role and the role of NADPH oxidase in injury resolution are controversial. C57BL/6 mice were subjected to APAP overdose and neutrophil activation status was determined during liver injury and liver regeneration. Additionally, human APAP overdose patients (ALT: > 800 U/L) had serial blood draws during the injury and recovery phases for the determination of neutrophil activation. Neutrophils in the peripheral blood of mice showed an increasing activation status (CD11b expression and ROS priming) during and after the peak of injury but returned to baseline levels prior to complete injury resolution. Hepatic sequestered neutrophils showed an increased and sustained CD11b expression, but no ROS priming was observed. Confirming that NADPH oxidase is not critical to injury resolution, gp91{sup phox}−/− mice following APAP overdose displayed no alteration in injury resolution. Peripheral blood from APAP overdose patients also showed increased neutrophil activation status after the peak of liver injury and remained elevated until discharge from the hospital. In mice and humans, markers of activation, like ROS priming, were increased and sustained well after active liver injury had subsided. The similar findings between surviving patients and mice indicate that neutrophil activation may be a critical event for host defense or injury resolution following APAP overdose, but not a contributing factor to APAP-induced injury. - Highlights: • Neutrophil (PMN) function increases during liver repair after acetaminophen overdose. • Liver repair after acetaminophen (APAP)-overdose is not dependent on NADPH oxidase. • Human PMNs do not appear

  17. Sphingosine kinase inhibition alleviates endothelial permeability induced by thrombin and activated neutrophils.

    Science.gov (United States)

    Itagaki, Kiyoshi; Zhang, Qin; Hauser, Carl J

    2010-04-01

    Inflammation and microvascular thrombosis are interrelated causes of acute lung injury in the systemic inflammatory response syndrome. Neutrophils (polymorphonuclear neutrophil [PMN]) and endothelial cells (EC) activated by systemic inflammatory response syndrome interact to increase pulmonary vascular permeability, but the interactions between PMN and EC are difficult to study. Recently, we reported that sphingosine 1-phosphate is a second messenger eliciting store-operated calcium entry (SOCE) in response to inflammatory agonists in both PMN and EC. Store-operated calcium entry is therefore a target mechanism for the therapeutic modulation of inflammatory PMN-EC interactions. Here, we isolated, modeled, and studied the effects of pharmacologic SOCE inhibition using real-time systems to monitor EC permeability after exposure to activated PMN. We created systems to continuously assess permeability of human pulmonary artery endothelial cells and human microvascular endothelial cells from lung. Endothelial cells show increased permeability after challenge by activated PMN. Such permeability increases can be attenuated by exposure of the cocultures to sphingosine kinase (SK) inhibitors (SKI-2, N,N-dimethylsphingosine [DMS]) or Ca2+ entry inhibitors (Gd3+, MRS-1845). Human microvascular endothelial cells from lung pretreated with SKI-2 or DMS showed decreased permeability when later exposed to activated PMN. Likewise, when PMNs were activated with thapsigargin (TG) in the presence of SKI-2, DMS, Gd, or MRS-1845, their ability to cause EC permeability subsequently was reduced. SKI-2 also inhibited the activation of human pulmonary artery ECs by thrombin. These studies will provide a firm mechanistic foundation for understanding how systemic SOCE inhibition may be used to prevent acute lung injury in vivo.

  18. Proinflammatory effects of bacterial lipoprotein on human neutrophil activation status, function and cytotoxic potential in vitro.

    LENUS (Irish Health Repository)

    Power, C

    2012-02-03

    Bacterial lipoprotein (BLP) is the most abundant protein in gram-negative bacterial cell walls, heavily outweighing lipopolysaccharide (LPS). Herein we present findings demonstrating the potent in vitro effects of BLP on neutrophil (PMN) activation status, function, and capacity to transmigrate an endothelial monolayer. PMNs are the principal effectors of the initial host response to injury or infection and constitute a significant threat to invading bacterial pathogens. The systemic inflammatory response syndrome (SIRS) is characterised by significant host tissue injury mediated, in part, by uncontrolled regulation of PMN cytotoxic activity. We found that BLP-activated human PMN as evidenced by increased CD11b\\/CD18 (Mac-1) expression. Up-regulation of PMN Mac-1 in response to BLP occurred independently of membrane-bound CD14 (mCD14). A similar up-regulation of intercellular adhesion molecule-1 (ICAM-1) on endothelial cells was observed whilst E-Selectin expression was unaffected. PMN transmigration across a human umbilical vein endothelial cell (HUVEC) monolayer was markedly increased after treating either PMN\\'s or HUVEC independently with BLP. This increased transmigration did not occur as a result of any direct effect of BLP on HUVEC monolayer permeability, assessed objectively using the passage of FITC-labeled Dextran-70. BLP primed PMN for enhanced respiratory burst and superoxide anion production in response to PMA, but did not influence phagocytosis of opsonized Escherichia coli. BLP far exceeds LPS as a gram-negative bacterial wall component, these findings therefore implicate BLP as an additional putative mediator of SIRS arising from gram-negative infection.

  19. Chlamydia pneumoniae hides inside apoptotic neutrophils to silently infect and propagate in macrophages.

    Directory of Open Access Journals (Sweden)

    Jan Rupp

    Full Text Available BACKGROUND: Intracellular pathogens have developed elaborate strategies for silent infection of preferred host cells. Chlamydia pneumoniae is a common pathogen in acute infections of the respiratory tract (e.g. pneumonia and associated with chronic lung sequelae in adults and children. Within the lung, alveolar macrophages and polymorph nuclear neutrophils (PMN are the first line of defense against bacteria, but also preferred host phagocytes of chlamydiae. METHODOLOGY/PRINCIPAL FINDINGS: We could show that C. pneumoniae easily infect and hide inside neutrophil granulocytes until these cells become apoptotic and are subsequently taken up by macrophages. C. pneumoniae infection of macrophages via apoptotic PMN results in enhanced replicative activity of chlamydiae when compared to direct infection of macrophages, which results in persistence of the pathogen. Inhibition of the apoptotic recognition of C. pneumoniae infected PMN using PS- masking Annexin A5 significantly lowered the transmission of chlamydial infection to macrophages. Transfer of apoptotic C. pneumoniae infected PMN to macrophages resulted in an increased TGF-ss production, whereas direct infection of macrophages with chlamydiae was characterized by an enhanced TNF-alpha response. CONCLUSIONS/SIGNIFICANCE: Taken together, our data suggest that C. pneumoniae uses neutrophil granulocytes to be silently taken up by long-lived macrophages, which allows for efficient propagation and immune protection within the human host.

  20. Tamm-Horsfall Glycoprotein Enhances PMN Phagocytosis by Binding to Cell Surface-Expressed Lactoferrin and Cathepsin G That Activates MAP Kinase Pathway

    Directory of Open Access Journals (Sweden)

    Chia-Li Yu

    2011-03-01

    Full Text Available The molecular basis of polymorphonuclear neutrophil (PMN phagocytosis-enhancing activity (PEA by human purified urinary Tamm-Horsfall glyco- protein (THP has not been elucidated. In this study, we found human THP bound to lactoferrin (LF and cathepsin G (CG expressed on the surface of PMN, identified by a proteomic study with MALDI-TOF- LC/LC/mass spectrometric analysis. Pre-incubation of 10% SDS-PAGE electrophoresed PMN lysates with monoclonal anti-LF or anti-CG antibody reduced the binding with THP. To elucidate the signaling pathway of THP on PMN activation, we found THP enhanced ERK1/2 phosphorylation, reduced p38 MAP kinase phosphorylation, but had no effect on DNA binding of the five NF-kB family members in PMN. To further clarify whether the carbohydrate-side chains or protein-core structure in THP molecule is responsible for THP-PEA, THP was cleaved by different degrading enzymes with carbohydrate specificity (neuraminidase and β-galactosidase, protein specificity (V8 protease and proteinase K or glycoconjugate specificity (carboxylpeptidase Y and O-sialoglycoprotein endopeptidase. We clearly demonstrated that the intact protein-core structure in THP molecule was more important for THP-PEA than carbohydrate-side chains. Putting these results together, we conclude that THP adheres to surface-expressed LF and CG on PMN and transduces signaling via the MAP kinase pathway to enhance PMN phagocytosis.

  1. The effect of tumour necrosis factor-α (TNF-α muteins on human neutrophils in vitro

    Directory of Open Access Journals (Sweden)

    H. Tchorzewski

    1993-01-01

    Full Text Available Tumour necrosis factor-α (TNF-α has been implicated as an important inflammatory mediator. In vitro, TNF-α is reported to activate human polymorphonuclear neutrophils (PMN, inducing responses such as phagocytic activity, degranulation and oxidative metabolism. Biological responses to TNF-α are initiated by its binding to specific cell surface receptors, and various studies have shown that the major TNF receptor species on PMN is the 75 kDa receptor. To verify the suggestion that the receptor binding domain includes the region close to the N-terminus of the TNF-α molecule, four TNF-α derivatives termed muteins were constructed, using a synthetic cDNA fragment substituting the N-terminal 3–7 selected hydrophilic or hydrophobic amino acids in the original TNF-α genomic DNA. Binding of muteins to PMN was assessed using monoclonal antibodies recognizing either the 55 kDa (p55 or the 75 kDa (p75 TNF receptor subtypes. Blocking by muteins of anti-p75 antibody binding to PMN was as expected from their N-terminal amino acid composition and hydrophilic properties. Hydrophilic muteins competed well with anti-TNF receptor antibodies for binding to the p75 receptor. In contrast, hydrophobic muteins were unable to block anti-p75 binding. Similarly, degranulation, chemiluminescence or enhancement of the PMN response to specific stimuli by the muteins correlated with the hydrophilic properties of the muteins. The significance of these observations in relation to the molecular structure of TNF-α is discussed.

  2. A role for Toll-like receptor mediated signals in neutrophils in the pathogenesis of the anti-phospholipid syndrome.

    Directory of Open Access Journals (Sweden)

    Gerd Gladigau

    Full Text Available The anti-phospholipid syndrome (APS is characterized by recurrent thrombosis and occurrence of anti-phospholipid antibodies (aPL. aPL are necessary, but not sufficient for the clinical manifestations of APS. Growing evidence suggests a role of innate immune cells, in particular polymorphonuclear neutrophils (PMN and Toll-like receptors (TLR to be additionally involved. aPL activate endothelial cells and monocytes through a TLR4-dependent signalling pathway. Whether this is also relevant for PMN in a similar way is currently not known. To address this issue, we used purified PMN from healthy donors and stimulated them in the presence or absence of human monoclonal aPL and the TLR4 agonist LPS monitoring neutrophil effector functions, namely the oxidative burst, phagocytosis, L-Selectin shedding and IL-8 production. aPL alone were only able to induce minor activation of PMN effector functions at high concentrations. However, in the additional presence of LPS the activation threshold was markedly lower indicating a synergistic activation pathway of aPL and TLR in PMN. In summary, our results indicate that PMN effector functions are directly activated by aPL and boosted by the additional presence of microbial products. This highlights a role for PMN as important innate immune effector cells that contribute to the pathophysiology of APS.

  3. The effect of lipocortin 1 on neutrophil deformability

    Directory of Open Access Journals (Sweden)

    E. M. Drost

    1996-01-01

    Full Text Available Lipocortn 1 (Lc1 is an anti-inflammatory protein, which, given systemically, inhibits polymorphonuclear neutrophil (PMN emigration from the circulation to sites of inflammation; delivery of Lc1 to the inflamed site is ineffective. We have examined the effect of Lc1 on changes in PMN deformability, and observed a consistent improvement in the deformability of unstimulated PMN; N-formyl-methionyl-leucyl-phenylalanine (fMLP-activated cell deformability was unaltered. A Lc1-induced increase in cell deformability may reduce PMN sequestration so contributing to the anti-migratory effects of systemic Lc1 previously demonstrated in vivo.

  4. Pulmonary alveolar macrophages (PAM) engulf and regain elastin particles and do not respond to some stimuli of neutrophil (PMN) elastinolysis

    International Nuclear Information System (INIS)

    Tricomi, S.M.; Hyers, T.M.; Yu, S.Y.; Liao, J.J.

    1986-01-01

    Elastin degradation by PMN and by PAM differs in the proteinases produced and in the method of cellular attack on the substrate. To further characterize the elastinolytic mechanisms of these two cells, 14 C-labelled bovine ligament elastin was dried onto 24-well culture plates and live cells were placed on the substrate in culture medium. Incubation times were 4 hours for PMN and 20 hours for PAM. Elastinolytic activity was determined by counting 14 C-elastin peptides in the supernatant. By lidocaine release of PAM from the surface, 14 C-elastin retained by the cell was measured. Studies on rabbit PAM showed that 40% of dpm remain associated with the cell at 20 hours. Transmission electron microscopy of human PAM confirmed that PAM can engulf and retain elastin particles at 4 and 24 hours of incubation when in close contact with the substrate. Of the number of dpm released by PMN in 4 hours, PAM in 20 hours released only 23% of that number into supernatant and retained 17% closely associated with the cell after lidocaine treatment. Platelet factor 4, a protein released by platelets upon aggregation which stimulates activity of PMN elastase on elastin, was shown to enhance elastinolysis by whole PMN by 57% at 10 μg/ml in this assay. Platelet factor 4 did not enhance elastinolysis by PAM at concentrations up to 100 μg/ml

  5. Quantifying oral inflammatory load: oral neutrophil counts in periodontal health and disease.

    Science.gov (United States)

    Landzberg, M; Doering, H; Aboodi, G M; Tenenbaum, H C; Glogauer, M

    2015-06-01

    Neutrophils are the primary white blood cells that are recruited to fight the initial phases of microbial infections. While healthy norms have been determined for circulating blood neutrophil counts in order to identify patients with suspected systemic infections, the levels of oral neutrophils (oPMNs) in oral health and in the presence of periodontal diseases have not been described. It is important to address this deficiency in our knowledge as neutrophils are the primary immune cell present in the crevicular fluid and oral environment and previous work has suggested that they may be good indicators of overall oral inflammation and periodontal disease severity. The objective of this study was to measure oPMN counts obtained in a standardized oral rinse from healthy patients and from those with chronic periodontal disease in order to determine if oPMN levels have clinical relevance as markers of periodontal inflammation. A parallel goal of this investigation was to introduce the concept of 'oral inflammatory load', which constitutes the inflammatory burden experienced by the body as a consequence of oral inflammatory disease. Periodontal examinations of patients with a healthy periodontium and chronic periodontal disease were performed (n = 124). Two standardized consecutive saline rinses of 30 s each were collected before patient examination and instrumentation. Neutrophils were quantified in the rinse samples and correlated with the clinical parameters and periodontal diagnosis. Average oPMN counts were determined for healthy patients and for those with mild, moderate and severe chronic periodontal diseases. A statistically significant correlation was found between oPMN counts and deep periodontal probing, sites with bleeding on probing and overall severity of periodontal disease. oPMN counts obtained through a 30-s oral rinse are a good marker of oral inflammatory load and correlate with measures of periodontal disease severity. © 2014 John Wiley & Sons A

  6. Minocycline affects human neutrophil respiratory burst and transendothelial migration.

    Science.gov (United States)

    Parenti, Astrid; Indorato, Boris; Paccosi, Sara

    2017-02-01

    This study aimed at investigating the in vitro activity of minocycline and doxycycline on human polymorphonuclear (h-PMN) cell function. h-PMNs were isolated from whole venous blood of healthy subjects; PMN oxidative burst was measured by monitoring ROS-induced oxidation of luminol and transendothelial migration was studied by measuring PMN migration through a monolayer of human umbilical vein endothelial cells. Differences between multiple groups were determined by ANOVA followed by Tukey's multiple comparison test; Student's t test for unpaired data for two groups. Minocycline (1-300 µM) concentration dependently and significantly inhibited oxidative burst of h-PMNs stimulated with 100 nM fMLP. Ten micromolar concentrations, which are superimposable to C max following a standard oral dose of minocycline, promoted a 29.8 ± 4 % inhibition of respiratory burst (P minocycline impaired PMN transendothelial migration, with maximal effect at 100 µM (42.5 ± 7 %, inhibition, n = 5, P minocycline exerted on innate immune h-PMN cell function.

  7. Neutrophil-induced transmigration of tumour cells treated with tumour-conditioned medium is facilitated by granulocyte-macrophage colony-stimulating factor.

    LENUS (Irish Health Repository)

    Wu, Q D

    2012-02-03

    OBJECTIVE: To investigate the effect of different cytokines that are present in tumour-conditioned medium on human neutrophil (PMN)-induced tumour cell transmigration. DESIGN: Laboratory study. SETTING: University hospital, Ireland. MATERIAL: Isolated human PMN and cultured human breast tumour cell line, MDA-MB-231. Interventions: Human PMN treated with either tumour-conditioned medium or different media neutralised with monoclonal antibodies (MoAb), and MDA-MB-231 cells were plated on macrovascular and microvascular endothelial monolayers in collagen-coated transwells to assess migration of tumour cells. MAIN OUTCOME MEASURES: Cytokines present in tumour-conditioned medium, PMN cytocidal function and receptor expression, and tumour cell transmigration. RESULTS: tumour-conditioned medium contained high concentrations of granulocyte-macrophage colony-stimulating factor (GM-CSF), vascular endothelial growth factor (VEGF), and interleukin 8 (IL-8), but not granulocyte colony-stimulating factor (G-CSF) and interleukin 3 (IL-3). Anti-GM-CSF MoAb significantly reduced PMN-induced transmigration of tumour cells treated with tumour-conditioned medium (p < 0.05), whereas anti-VEGF and anti-IL-8 MoAbs did not affect their migration. In addition, anti-GM-CSF MoAb, but not anti-VEGF or anti-IL-8 MoAb, reduced PMN CD11b and CD18 overexpression induced by tumour-conditioned medium (p < 0.05). CONCLUSION: These results indicate that the GM-CSF that is present in tumour-conditioned medium may be involved, at least in part, in alterations in PMN function mediated by the medium and subsequently PMN-induced transmigration of tumour cells.

  8. Human neutrophils in auto-immunity.

    Science.gov (United States)

    Thieblemont, Nathalie; Wright, Helen L; Edwards, Steven W; Witko-Sarsat, Véronique

    2016-04-01

    Human neutrophils have great capacity to cause tissue damage in inflammatory diseases via their inappropriate activation to release reactive oxygen species (ROS), proteases and other tissue-damaging molecules. Furthermore, activated neutrophils can release a wide variety of cytokines and chemokines that can regulate almost every element of the immune system. In addition to these important immuno-regulatory processes, activated neutrophils can also release, expose or generate neoepitopes that have the potential to break immune tolerance and result in the generation of autoantibodies, that characterise a number of human auto-immune diseases. For example, in vasculitis, anti-neutrophil cytoplasmic antibodies (ANCA) that are directed against proteinase 3 or myeloperoxidase are neutrophil-derived autoantigens and activated neutrophils are the main effector cells of vascular damage. In other auto-immune diseases, these neutrophil-derived neoepitopes may arise from a number of processes that include release of granule enzymes and ROS, changes in the properties of components of their plasma membrane as a result of activation or apoptosis, and via the release of Neutrophil Extracellular Traps (NETs). NETs are extracellular structures that contain chromatin that is decorated with granule enzymes (including citrullinated proteins) that can act as neo-epitopes to generate auto-immunity. This review therefore describes the processes that can result in neutrophil-mediated auto-immunity, and the role of neutrophils in the molecular pathologies of auto-immune diseases such as vasculitis, rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). We discuss the potential role of NETs in these processes and some of the debate in the literature regarding the role of this phenomenon in microbial killing, cell death and auto-immunity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Cytoplasmic lipid bodies of human neutrophilic leukocytes

    International Nuclear Information System (INIS)

    Weller, P.F.; Ackerman, S.J.; Nicholson-Weller, A.; Dvorak, A.M.

    1989-01-01

    The morphology and function of cytoplasmic lipid bodies in human neutrophils were evaluated. By transmission electron microscopy, neutrophil lipid bodies were cytoplasmic inclusions, usually several microns in diameter, that occasionally coalesced to attain a diameter up to 7 microM. Neutrophil lipid bodies were not enveloped by membrane but were often surrounded by a more electron-dense shell at their periphery. Normal peripheral blood neutrophils contained an average of approximately one lipid body per cell. Lipid bodies appeared in greater numbers in neutrophils from inflammatory lesions. Perturbation of neutrophils during conventional methods of cell isolation and purification modestly increased lipid body numbers in neutrophils, whereas incubation of neutrophils with 1 microM oleic acid rapidly induced lipid body formation over 30 to 60 minutes. After granulocytes were incubated for 2 hours with 3H-fatty acids, including arachidonic, oleic, and palmitic acids, electron microscopic autoradiography demonstrated that lipid bodies represented the predominant intracellular sites of localization of each of the three 3H-fatty acids. There was lesser labeling noted in the perinuclear cisterna, but not in cell membranes. Virtually all of each of the three 3H-fatty acids incorporated by the neutrophils were esterified into chromatographically resolved classes of neutral lipids or phospholipids. These findings indicate that cytoplasmic lipid bodies are more prominent in neutrophils in vivo engaged in inflammatory responses and that these organelles in human neutrophils function as sites of deposition of esterified, incorporated fatty acids

  10. Effect of neutrophil depletion on gelatinase expression, edema formation and hemorrhagic transformation after focal ischemic stroke

    Directory of Open Access Journals (Sweden)

    Machado Livia S

    2005-08-01

    Full Text Available Abstract Background While gelatinase (MMP-2 and -9 activity is increased after focal ischemia/reperfusion injury in the brain, the relative contribution of neutrophils to the MMP activity and to the development of hemorrhagic transformation remains unknown. Results Anti-PMN treatment caused successful depletion of neutrophils in treated animals. There was no difference in either infarct volume or hemorrhage between control and PMN depleted animals. While there were significant increases in gelatinase (MMP-2 and MMP-9 expression and activity and edema formation associated with ischemia, neutrophil depletion failed to cause any change. Conclusion The main finding of this study is that, in the absence of circulating neutrophils, MMP-2 and MMP-9 expression and activity are still up-regulated following focal cerebral ischemia. Additionally, neutrophil depletion had no influence on indicators of ischemic brain damage including edema, hemorrhage, and infarct size. These findings indicate that, at least acutely, neutrophils are not a significant contributor of gelatinase activity associated with acute neurovascular damage after stroke.

  11. Brucella abortus Induces the Premature Death of Human Neutrophils through the Action of Its Lipopolysaccharide

    Science.gov (United States)

    Barquero-Calvo, Elías; Mora-Cartín, Ricardo; Arce-Gorvel, Vilma; de Diego, Juana L.; Chacón-Díaz, Carlos; Chaves-Olarte, Esteban; Guzmán-Verri, Caterina; Buret, Andre G.; Gorvel, Jean-Pierre; Moreno, Edgardo

    2015-01-01

    Most bacterial infections induce the activation of polymorphonuclear neutrophils (PMNs), enhance their microbicidal function, and promote the survival of these leukocytes for protracted periods of time. Brucella abortus is a stealthy pathogen that evades innate immunity, barely activates PMNs, and resists the killing mechanisms of these phagocytes. Intriguing clinical signs observed during brucellosis are the low numbers of Brucella infected PMNs in the target organs and neutropenia in a proportion of the patients; features that deserve further attention. Here we demonstrate that B. abortus prematurely kills human PMNs in a dose-dependent and cell-specific manner. Death of PMNs is concomitant with the intracellular Brucella lipopolysaccharide (Br-LPS) release within vacuoles. This molecule and its lipid A reproduce the premature cell death of PMNs, a phenomenon associated to the low production of proinflammatory cytokines. Blocking of CD14 but not TLR4 prevents the Br-LPS-induced cell death. The PMNs cell death departs from necrosis, NETosis and classical apoptosis. The mechanism of PMN cell death is linked to the activation of NADPH-oxidase and a modest but steadily increase of ROS mediators. These effectors generate DNA damage, recruitments of check point kinase 1, caspases 5 and to minor extent of caspase 4, RIP1 and Ca++ release. The production of IL-1β by PMNs was barely stimulated by B. abortus infection or Br-LPS treatment. Likewise, inhibition of caspase 1 did not hamper the Br-LPS induced PMN cell death, suggesting that the inflammasome pathway was not involved. Although activation of caspases 8 and 9 was observed, they did not seem to participate in the initial triggering mechanisms, since inhibition of these caspases scarcely blocked PMN cell death. These findings suggest a mechanism for neutropenia in chronic brucellosis and reveal a novel Brucella-host cross-talk through which B. abortus is able to hinder the innate function of PMN. PMID:25946018

  12. Uptake of antibiotics by human polymorphonuclear leukocyte cytoplasts

    International Nuclear Information System (INIS)

    Hand, W.L.; King-Thompson, N.L.

    1990-01-01

    Enucleated human polymorphonuclear leukocytes (PMN cytoplasts), which have no nuclei and only a few granules, retain many of the functions of intact neutrophils. To better define the mechanisms and intracellular sites of antimicrobial agent accumulation in human neutrophils, we studied the antibiotic uptake process in PMN cytoplasts. Entry of eight radiolabeled antibiotics into PMN cytoplasts was determined by means of a velocity gradient centrifugation technique. Uptakes of these antibiotics by cytoplasts were compared with our findings in intact PMN. Penicillin entered both intact PMN and cytoplasts poorly. Metronidazole achieved a concentration in cytoplasts (and PMN) equal to or somewhat less than the extracellular concentration. Chloramphenicol, a lipid-soluble drug, and trimethoprim were concentrated three- to fourfold by cytoplasts. An unusual finding was that trimethroprim, unlike other tested antibiotics, was accumulated by cytoplasts more readily at 25 degrees C than at 37 degrees C. After an initial rapid association with cytoplasts, cell-associated imipenem declined progressively with time. Clindamycin and two macrolide antibiotics (roxithromycin, erythromycin) were concentrated 7- to 14-fold by cytoplasts. This indicates that cytoplasmic granules are not essential for accumulation of these drugs. Adenosine inhibited cytoplast uptake of clindamycin, which enters intact phagocytic cells by the membrane nucleoside transport system. Roxithromycin uptake by cytoplasts was inhibited by phagocytosis, which may reduce the number of cell membrane sites available for the transport of macrolides. These studies have added to our understanding of uptake mechanisms for antibiotics which are highly concentrated in phagocytes

  13. A secreted Salmonella protein induces a proinflammatory response in epithelial cells, which promotes neutrophil migration

    OpenAIRE

    Lee, Catherine A.; Silva, Milton; Siber, Andrew M.; Kelly, Aaron J.; Galyov, Edouard; McCormick, Beth A.

    2000-01-01

    In response to Salmonella typhimurium, the intestinal epithelium generates an intense inflammatory response consisting largely of polymorphonuclear leukocytes (neutrophils, PMN) migrating toward and ultimately across the epithelial monolayer into the intestinal lumen. It has been shown that bacterial-epithelial cell interactions elicit the production of inflammatory regulators that promote transepithelial PMN migration. Although S. typhimurium can enter intestinal ...

  14. Characterization of the response chemiluminescence of neutrophils human beings to the hemolysin Escherichia coli alpha

    International Nuclear Information System (INIS)

    Garcia, J.

    2000-01-01

    Escherichia coli alpha hemolysin (AH) evoked a luminol-amplified chemiluminescence (CL) response from human polymorphonuclear leukocytes (PMN). Analysis of kinetic parameters of the PMN CL response to AH established similarities with that of PMN to the calcium ionophore A23187. PMN CL responses to both AH and A23187 were equally decreased by preincubating PMN with A63612, a hidroxamic acid derivative and lipooxigenase inhibitor, showing that the CL response to both hemolysin and ionophore share a common mechanism, probably activation of leukotriene synthesis, due to calcium entry into the cells brought about by AH and A23187. In addition, the CL response of PMN to AH was lowered by the hydroxyl radical scavenger dimethyl sulfoxide, further suggesting arachidonate metabolism is involved in CL response. (Author) [es

  15. Bottlenose dolphins (Tursiops truncatus do also cast neutrophil extracellular traps against the apicomplexan parasite Neospora caninum

    Directory of Open Access Journals (Sweden)

    R. Villagra-Blanco

    2017-12-01

    Full Text Available Neutrophil extracellular traps (NETs are web-like structures composed of nuclear DNA decorated with histones and cytoplasmic peptides which antiparasitic properties have not previously been investigated in cetaceans. Polymorphonuclear neutrophils (PMN were isolated from healthy bottlenose dolphins (Tursiops truncatus, and stimulated with Neospora caninum tachyzoites and the NETs-agonist zymosan. In vitro interactions of PMN with the tachyzoites resulted in rapid extrusion of NETs. For the demonstration and quantification of cetacean NETs, extracellular DNA was stained by using either Sytox Orange® or Pico Green®. Scanning electron microscopy (SEM and fluorescence analyses demonstrated PMN-derived release of NETs upon exposure to tachyzoites of N. caninum. Co-localization studies of N. caninum induced cetacean NETs proved the presence of DNA adorned with histones (H1, H2A/H2B, H3, H4, neutrophil elastase (NE, myeloperoxidase (MPO and pentraxin (PTX confirming the molecular properties of mammalian NETosis. Dolphin-derived N. caninum-NETosis were efficiently suppressed by DNase I and diphenyleneiodonium (DPI treatments. Our results indicate that cetacean-derived NETs represent an ancient, conserved and relevant defense effector mechanism of the host innate immune system against N. caninum and probably other related neozoan parasites circulating in the marine environment. Keywords: Tursiops truncatus, cetaceans, Neutrophil extracellular traps, Innate immunity, Neospora caninum.

  16. Effect of sevoflurane on human neutrophil apoptosis.

    LENUS (Irish Health Repository)

    Tyther, R

    2012-02-03

    BACKGROUND AND OBJECTIVE: Both chronic occupational exposure to volatile anaesthetic agents and acute in vitro exposure of neutrophils to isoflurane have been shown to inhibit the rate of apoptosis of human neutrophils. It is possible that inhibition of neutrophil apoptosis arises through delaying mitochondrial membrane potential collapse. We assessed mitochondrial depolarization and apoptosis in unexposed neutrophils and neutrophils exposed to sevoflurane in vivo. METHODS: A total of 20 mL venous blood was withdrawn pre- and postinduction of anaesthesia, the neutrophils isolated and maintained in culture. At 1, 12 and 24 h in culture, the percentage of neutrophil apoptosis was assessed by dual staining with annexin V-FITC and propidium iodide. Mitochondrial depolarization was measured using the dual emission styryl dye JC-1. RESULTS: Apoptosis was significantly inhibited in neutrophils exposed to sevoflurane in vivo at 24 (exposed: 38 (12)% versus control: 28 (11)%, P = 0.001), but not at 1 or 12 h, in culture. Mitochondrial depolarization was not delayed in neutrophils exposed to sevoflurane. CONCLUSIONS: The most important findings are that sevoflurane inhibits neutrophil apoptosis in vivo and that inhibition is not mediated primarily by an effect on mitochondrial depolarization.

  17. Induction of expression of iNOS by N-nitrosodimethylamine (NDMA) in human leukocytes.

    Science.gov (United States)

    Ratajczak-Wrona, Wioletta; Jablonska, Ewa; Jablonski, Jakub; Marcinczyk, Magdalena

    2009-01-01

    The aim of this study was to assess the influence of N-nitrosodimethylamine (NDMA) on expression of inducible nitric oxide synthase (iNOS), as well as production of nitric oxide (NO) and cyclic guanosine monophosphate (cGMP) by human neutrophils (PMN) and peripheral blood mononuclear cells (PBMC), and the participation of the p38 MAPK kinase in this process. Furthermore, the ability of neutrophils to release superoxide anion was determined. The influence of N-nitrosodimethylamine on iNOS expression was determined in isolated PMN and PBMC cells from peripheral blood of healthy individuals. The mononuclear cells showed higher sensitivity to NDMA. Moreover, cytotoxic effect of NDMA can be influenced in some way by the impact of this xenobiotic on nitric oxide and superoxide anion release from human leukocytes. Furthermore, increased generation of these radicals by human leukocytes suggest that neutrophils and mononuclear cells that are exposed to NDMA activity can play a key role in endogenous NDMA generation. However the relationship between iNOS expression and phospho-p38 MAPK in neutrophils and mononuclear cells shows that p38 MAPK pathway participates in induction of iNOS expression in the presence of NDMA.

  18. Lactoferrin release and interleukin-1, interleukin-6, and tumor necrosis factor production by human polymorphonuclear cells stimulated by various lipopolysaccharides: relationship to growth inhibition of Candida albicans.

    Science.gov (United States)

    Palma, C; Cassone, A; Serbousek, D; Pearson, C A; Djeu, J Y

    1992-11-01

    Lipopolysaccharides (LPSs) from Escherichia coli, Serratia marcescens, and Salmonella typhimurium, at doses from 1 to 100 ng/ml, strongly enhanced growth inhibition of Candida albicans by human polymorphonuclear leukocytes (PMN) in vitro. Flow cytometry analysis demonstrated that LPS markedly augmented phagocytosis of Candida cells by increasing the number of yeasts ingested per neutrophil as well as the number of neutrophils capable of ingesting fungal cells. LPS activation caused augmented release of lactoferrin, an iron-binding protein which itself could inhibit the growth of C. albicans in vitro. Antibodies against lactoferrin effectively and specifically reduced the anti-C. albicans activity of both LPS-stimulated and unstimulated PMN. Northern (RNA blot) analysis showed enhanced production of mRNAs for interleukin-1 beta, tumor necrosis factor alpha, and interleukin-6 and in neutrophils within 1 h of stimulation with LPS. The cytokines were also detected in the supernatant of the activated PMN, and their synthesis was prevented by pretreatment of LPS-stimulated PMN with protein synthesis inhibitors, such as emetine and cycloheximide. These inhibitors, however, did not block either lactoferrin release or the anti-Candida activity of LPS-stimulated PMN. These results demonstrate the ability of various bacterial LPSs to augment neutrophil function against C. albicans and suggest that the release of a candidastatic, iron-binding protein, lactoferrin, may contribute to the antifungal effect of PMN. Moreover, the ability to produce cytokines upon stimulation by ubiquitous microbial products such as the endotoxins points to an extraphagocytic, immunomodulatory role of PMN during infection.

  19. Characterization of Yersinia pestis Interactions with Human Neutrophils In vitro

    Directory of Open Access Journals (Sweden)

    Sophia C. Dudte

    2017-08-01

    Full Text Available Yersinia pestis is a gram-negative, zoonotic, bacterial pathogen, and the causative agent of plague. The bubonic form of plague occurs subsequent to deposition of bacteria in the skin by the bite of an infected flea. Neutrophils are recruited to the site of infection within the first few hours and interactions between neutrophils and Y. pestis have been demonstrated in vivo. In contrast to macrophages, neutrophils have been considered non-permissive to Y. pestis intracellular survival. Several studies have shown killing of the vast majority of Y. pestis ingested by human neutrophils. However, survival of 10–15% of Y. pestis after phagocytosis by neutrophils is consistently observed. Furthermore, these surviving bacteria eventually replicate within and escape from the neutrophils. We set out to further characterize the interactions between Y. pestis and human neutrophils by (1 determining the effects of known Y. pestis virulence factors on bacterial survival after uptake by neutrophils, (2 examining the mechanisms employed by the neutrophil to kill the majority of intracellular Y. pestis, (3 determining the activation phenotype of Y. pestis-infected neutrophils, and (4 characterizing the Y. pestis-containing phagosome in neutrophils. We infected human neutrophils in vitro with Y. pestis and assayed bacterial survival and uptake. Deletion of the caf1 gene responsible for F1 capsule production resulted in significantly increased uptake of Y. pestis. Surprisingly, while the two-component regulator PhoPQ system is important for survival of Y. pestis within neutrophils, pre-induction of this system prior to infection did not increase bacterial survival. We used an IPTG-inducible mCherry construct to distinguish viable from non-viable intracellular bacteria and determined the association of the Y. pestis-containing phagosome with neutrophil NADPH-oxidase and markers of primary, secondary and tertiary granules. Additionally, we show that inhibition of

  20. Comparison of the effect of timegadine, levamisole, and D-penicillamine on human neutrophil metabolism of endogenous arachidonic acid and chemotaxis

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, O.H.; Ahnfelt-Roenne, I. Department of Pharmacology, Leo Pharmaceutical Products, Ballerup; Elmgreen, J.

    1988-01-01

    The effect of timegadine, a novel experimental antirheumatic drug, on human neutrophil (PMN) 5-lipoxygenase activity and leukotriene B/sub 4/ (LTB/sub 4/) chemotaxis was compared with that of two second-line antiinflammatory drugs, D-penicillamine and levamisole. 1-/sup 14/C-Arachidonic acid (AA) was incorporated into the purified cells until steady state conditions were obtained. After preincubation with serial dilutions of the three drugs, AA release and metabolism was stimulated with calcium ionophore A23187. The radioactive eicosanoids released were extracted and separated by thinlayer chromatography, followed by autoradiography and quantitative laser densitometry. Chemotaxi of PMNs towards LTB/sub 4/ was measured in a modified Boyden chamber. Timegardine showed dose-dependent inhibition of both the 5-lipoxygenase pathway (IC50 3.4 x 10/sup -5/ M), and of chemotaxis (IC50 3 x 10/sup -4/ M). Inhibition of the release of AA from phospholipids, however, occurred only at therapeutically irrelevant doses (millimolar concentrations). Levamisole and D-penicillamine did not inhibit any of the cell functions investigated. Inhibition of both neutrophil motility and cellular synthesis of pro-inflammatory eicosanoids, may thus contribute to the clinical effects of timegadine in rheumatoid arthritis.

  1. Evasion of Human Neutrophil-Mediated Host Defense during Toxoplasma gondii Infection.

    Science.gov (United States)

    Lima, Tatiane S; Gov, Lanny; Lodoen, Melissa B

    2018-02-13

    Neutrophils are a major player in host immunity to infection; however, the mechanisms by which human neutrophils respond to the intracellular protozoan parasite Toxoplasma gondii are still poorly understood. In the current study, we found that, whereas primary human monocytes produced interleukin-1beta (IL-1β) in response to T. gondii infection, human neutrophils from the same blood donors did not. Moreover, T. gondii inhibited lipopolysaccharide (LPS)-induced IL-1β synthesis in human peripheral blood neutrophils. IL-1β suppression required active parasite invasion, since heat-killed or mycalolide B-treated parasites did not inhibit IL-1β release. By investigating the mechanisms involved in this process, we found that T. gondii infection of neutrophils treated with LPS resulted in reduced transcript levels of IL-1β and NLRP3 and reduced protein levels of pro-IL-1β, mature IL-1β, and the inflammasome sensor NLRP3. In T. gondii -infected neutrophils stimulated with LPS, the levels of MyD88, TRAF6, IKKα, IKKβ, and phosphorylated IKKα/β were not affected. However, LPS-induced IκBα degradation and p65 phosphorylation were reduced in T. gondii- infected neutrophils, and degradation of IκBα was reversed by treatment with the proteasome inhibitor MG-132. Finally, we observed that T. gondii inhibited the cleavage and activity of caspase-1 in human neutrophils. These results indicate that T. gondii suppression of IL-1β involves a two-pronged strategy whereby T. gondii inhibits both NF-κB signaling and activation of the NLRP3 inflammasome. These findings represent a novel mechanism of T. gondii evasion of human neutrophil-mediated host defense by targeting the production of IL-1β. IMPORTANCE Toxoplasma gondii is an obligate intracellular parasite that infects approximately one-third of humans worldwide and can invade virtually any nucleated cell in the human body. Although it is well documented that neutrophils infiltrate the site of acute T

  2. Phytoplankton Monitoring Network (PMN)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Phytoplankton Monitoring Network (PMN) is a part of the National Centers for Coastal Ocean Science (NCCOS). The PMN was created as an outreach program to connect...

  3. Epithelial-to-Mesenchymal Transition in Pancreatic Ductal Adenocarcinoma and Pancreatic Tumor Cell Lines: The Role of Neutrophils and Neutrophil-Derived Elastase

    Directory of Open Access Journals (Sweden)

    Thomas Große-Steffen

    2012-01-01

    Full Text Available Pancreatic ductal adenocarcinoma (PDAC is frequently associated with fibrosis and a prominent inflammatory infiltrate in the desmoplastic stroma. Moreover, in PDAC, an epithelial-to-mesenchymal transition (EMT is observed. To explore a possible connection between the infiltrating cells, particularly the polymorphonuclear neutrophils (PMN and the tumor cell transition, biopsies of patients with PDAC (n=115 were analysed with regard to PMN infiltration and nuclear expression of β-catenin and of ZEB1, well-established indicators of EMT. In biopsies with a dense PMN infiltrate, a nuclear accumulation of β-catenin and of ZEB1 was observed. To address the question whether PMN could induce EMT, they were isolated from healthy donors and were cocultivated with pancreatic tumor cells grown as monolayers. Rapid dyshesion of the tumor cells was seen, most likely due to an elastase-mediated degradation of E-cadherin. In parallel, the transcription factor TWIST was upregulated, β-catenin translocated into the nucleus, ZEB1 appeared in the nucleus, and keratins were downregulated. EMT was also induced when the tumor cells were grown under conditions preventing attachment to the culture plates. Here, also in the absence of elastase, E-cadherin was downmodulated. PMN as well as prevention of adhesion induced EMT also in liver cancer cell line. In conclusion, PMN via elastase induce EMT in vitro, most likely due to the loss of cell-to-cell contact. Because in pancreatic cancers the transition to a mesenchymal phenotype coincides with the PMN infiltrate, a contribution of the inflammatory response to the induction of EMT and—by implication—to tumor progression is possible.

  4. Vaginal Heparan Sulfate Linked to Neutrophil Dysfunction in the Acute Inflammatory Response Associated with Experimental Vulvovaginal Candidiasis.

    Science.gov (United States)

    Yano, Junko; Noverr, Mairi C; Fidel, Paul L

    2017-03-14

    Despite acute inflammation by polymorphonuclear neutrophils (PMNs) during vulvovaginal candidiasis (VVC), clearance of Candida fails to occur. The purpose of this study was to uncover the mechanism of vaginal PMN dysfunction. Designs included assessing PMN migration, proinflammatory mediators, and tissue damage (by analysis of the activity of lactate dehydrogenase [LDH]) in mice susceptible (C3H/HeN-C57BL/6) or resistant (CD-1) to chronic VVC (CVVC-S or CVVC-R) and testing morphology-specific Candida albicans strains under conditions of preinduced PMN migration (CVVC-S mice) or PMN depletion (CVVC-R mice). In vitro designs included evaluation of C. albicans killing by elicited vaginal or peritoneal PMNs in standard or vaginal conditioned medium (VCM). Results showed that despite significant migration of PMNs and high levels of vaginal beta interleukin-1 (IL-1β) and alarmin S100A8, CVVC-S mice failed to reduce vaginal fungal burden irrespective of morphology or whether PMNs were present pre- or postinoculation, and had high LDH levels. In contrast, CVVC-R mice had reduced fungal burden and low LDH levels following PMN recruitment and IL-1β/S100A8 production, but maintained colonization in the absence of PMNs. Elicited vaginal and peritoneal PMNs showed substantial killing activity in standard media or VCM from CVVC-R mice but not in VCM from CVVC-S mice. The inhibitory effect of VCM from CVVC-S mice was unaffected by endogenous or exogenous estrogen and was ablated following depletion/neutralization of Mac-1 ligands using Mac-1 +/+ PMNs or recombinant Mac-1. Heparan sulfate (HS) was identified as the putative inhibitor as evidenced by the rescue of PMN killing following heparanase treatment of VCM, as well as by inhibition of killing by purified HS. These results suggest that vaginal HS is linked to PMN dysfunction in CVVC-S mice as a competitive ligand for Mac-1. IMPORTANCE Vaginal candidiasis, caused by Candida albicans , affects a significant number of women

  5. Possible in vivo tolerance of human polymorphonuclear neutrophil to low-grade exercise-induced endotoxaemia

    Directory of Open Access Journals (Sweden)

    G. Camus

    1998-01-01

    Full Text Available To address the question of whether translocation of bacterial lipopolysaccharide (LPS into the blood could be involved in the process of exercise-induced polymorphonuclear neutrophil (PMN activation, 12 healthy male subjects who took part in a sprint triathlon (1.5 km river swim, 40 km bicycle race, 10 km road race were studied. While there was no detectable amount of endotoxin in the blood samples drawn at rest, exercise was followed by the appearance of circulating endotoxin molecules at the end of competition in four subjects, and after one and 24 h recovery in three and seven athletes, respectively. The concentrations of plasma granulocyte myeloperoxidase ([MPO], were significantly higher immediately after exercise and one hour later than baseline values (P<0.001. This variable returned to pre-race levels the day after exercise, despite the presence of detectable amounts of LPS, at that time, in seven athletes. The absence of significant correlation (r=0.26;P=0.383 and temporal association between [MPO]and plasma endotoxin levels led us to conclude that endotoxaemia was not involved in the process of exercise-induced PMN degranulation observed in our subjects.

  6. Dopamine induces neutrophil apoptosis through a dopamine D-1 receptor-independent mechanism.

    LENUS (Irish Health Repository)

    Sookhai, S

    2012-02-03

    BACKGROUND: For the normal resolution of an acute inflammatory response, neutrophil (PMN) apoptosis is essential to maintain immune homeostasis and to limit inappropriate host tissue damage. A delay in PMN apoptosis has been implicated in the pathogenesis of the systemic inflammatory response syndrome (SIRS). Dopamine, a biogenic amine with known cardiovascular and neurotransmitter properties, is used in patients with SIRS to maintain hemodynamic stability. We sought to determine whether dopamine may also have immunoregulatory properties capable of influencing PMN apoptosis, function, and activation state in patients with SIRS. METHODS: PMNs were isolated from healthy volunteers and patients with SIRS and treated with varying doses of dopamine and a dopamine D-1 receptor agonist, fenoldopam. PMN apoptosis was assessed every 6 hours with use of propidium iodide DNA staining and PMN function was assessed with use of respiratory burst activity, phagocytosis ability, and CD11a, CD11b, and CD18 receptor expression as functional markers. RESULTS: There was a significant delay in PMN apotosis in patients with SIRS compared with controls. Treatment of isolated PMNs from both healthy controls and patients with SIRS with 10 and 100 mumol\\/L dopamine induced apoptosis. PMN ingestive and cytocidal capacity were both decreased in patients with SIRS compared with controls. Treatment with dopamine significantly increased phagocytic function. Fenoldopam did not induce PMN apoptosis. CONCLUSION: Our data demonstrate for the first time that dopamine induces PMN apoptosis and modulates PMN function both in healthy controls and in patients with SIRS. These results indicate that dopamine may be beneficial during SIRS through a nonhemodynamic PMN-dependent proapoptotic mechanism.

  7. Induction of hyperresponsiveness in human airway tissue by neutrophils--mechanism of action.

    Science.gov (United States)

    Anticevich, S Z; Hughes, J M; Black, J L; Armour, C L

    1996-05-01

    The two main features of asthma are bronchial hyperresponsiveness and inflammation. The inflammatory response in asthma consists of infiltration and activation of a variety of inflammatory cells including neutrophils. Our previous studies have shown that stimulated neutrophil supernatants cause hyperresponsiveness of human bronchial tissue in vitro. To investigate the effect of the sensitization status of the tissue and the albumin concentration used to prepare supernatants on the response of human bronchial tissue to stimulated neutrophil supernatants. Neutrophil supernatants were prepared from human isolated blood in the presence of varying concentrations of albumin (0%, 0.1% and 4%). Neutrophil supernatants were added to sensitized and non-sensitized human isolated bronchial tissue which was stimulated with electrical field stimulation (EFS) (20 s every 4 min). Receptor antagonists specific for the prostaglandin and thromboxane (10(-7) M GR32191), platelet activating factor (10(-6) M WEB 2086), leukotriene D4 (10(-6) M MK-679) and neurokinin A (10(-7) M SR48968) receptors were used to identify neutrophil products responsible for the effects observed in the bronchial tissue. In non-sensitized human bronchial tissue, stimulated neutrophil supernatants induced a direct contraction in the presence of 0% and 0.1% but not 4% albumin. This contraction was due to leukotriene D4 as MK-679 completely inhibited the contraction. In contrast, stimulated neutrophil supernatants increased responsiveness of sensitized human bronchial tissue to EFS. The increased responsiveness was observed only in the presence of 0.1% albumin, with the site of modulation likely to be prejunctional on the parasympathetic nerve. The increased responsiveness was not inhibited by any of the antagonists tested. Sensitization status of the tissue and albumin concentration effect the responsiveness of human bronchial tissue to stimulated neutrophil supernatant. Our results suggest a possible role for

  8. A secreted Salmonella protein induces a proinflammatory response in epithelial cells, which promotes neutrophil migration.

    Science.gov (United States)

    Lee, C A; Silva, M; Siber, A M; Kelly, A J; Galyov, E; McCormick, B A

    2000-10-24

    In response to Salmonella typhimurium, the intestinal epithelium generates an intense inflammatory response consisting largely of polymorphonuclear leukocytes (neutrophils, PMN) migrating toward and ultimately across the epithelial monolayer into the intestinal lumen. It has been shown that bacterial-epithelial cell interactions elicit the production of inflammatory regulators that promote transepithelial PMN migration. Although S. typhimurium can enter intestinal epithelial cells, bacterial internalization is not required for the signaling mechanisms that induce PMN movement. Here, we sought to determine which S. typhimurium factors and intestinal epithelial signaling pathways elicit the production of PMN chemoattractants by enterocytes. Our results suggest that S. typhimurium activates a protein kinase C-dependent signal transduction pathway that orchestrates transepithelial PMN movement. We show that the type III effector protein, SipA, is not only necessary but is sufficient to induce this proinflammatory response in epithelial cells. Our results force us to reconsider the long-held view that Salmonella effector proteins must be directly delivered into host cells from bacterial cells.

  9. Neutrophil Interactions with Epithelial Expressed ICAM-1 Enhances Intestinal Mucosal Wound Healing

    Science.gov (United States)

    Sumagin, R; Brazil, JC; Nava, P; Nishio, H; Alam, A; Luissint, AC; Weber, DA; Neish, AS; Nusrat, A; Parkos, CA

    2015-01-01

    A characteristic feature of gastrointestinal tract inflammatory disorders, such as inflammatory bowel disease, is polymorphonuclear neutrophil (PMN) transepithelial migration (TEM) and accumulation in the gut lumen. PMN accumulation within the intestinal mucosa contributes to tissue injury. While epithelial infiltration by large numbers of PMNs results in mucosal injury, we found that PMN interactions with luminal epithelial membrane receptors may also play a role in wound healing. Intercellular adhesion molecule-1 (ICAM-1) is a PMN ligand that is upregulated on apical surfaces of intestinal epithelial cells under inflammatory conditions. In our study, increased expression of ICAM-1 resulted in enhanced PMN binding to the apical epithelium, which was associated with reduced PMN apoptosis. Following TEM, PMN adhesion to ICAM-1 resulted in activation of Akt and β-catenin signaling, increased epithelial-cell proliferation, and wound healing. Such responses were ICAM-1 dependent as engagement of epithelial ICAM-1 by antibody-mediated cross-linking yielded similar results. Furthermore, using an in-vivo biopsy-based, colonic-mucosal-injury model, we demonstrated epithelial ICAM-1 plays an important role in activation of epithelial Akt and β-catenin signaling and wound healing. These findings suggest that post-migrated PMNs within the intestinal lumen can regulate epithelial homeostasis, thereby identifying ICAM-1 as a potential therapeutic target for promoting mucosal wound healing. PMID:26732677

  10. Neutrophil interactions with epithelial-expressed ICAM-1 enhances intestinal mucosal wound healing.

    Science.gov (United States)

    Sumagin, R; Brazil, J C; Nava, P; Nishio, H; Alam, A; Luissint, A C; Weber, D A; Neish, A S; Nusrat, A; Parkos, C A

    2016-09-01

    A characteristic feature of gastrointestinal tract inflammatory disorders, such as inflammatory bowel disease, is polymorphonuclear neutrophil (PMN) transepithelial migration (TEM) and accumulation in the gut lumen. PMN accumulation within the intestinal mucosa contributes to tissue injury. Although epithelial infiltration by large numbers of PMNs results in mucosal injury, we found that PMN interactions with luminal epithelial membrane receptors may also play a role in wound healing. Intercellular adhesion molecule-1 (ICAM-1) is a PMN ligand that is upregulated on apical surfaces of intestinal epithelial cells under inflammatory conditions. In our study, increased expression of ICAM-1 resulted in enhanced PMN binding to the apical epithelium, which was associated with reduced PMN apoptosis. Following TEM, PMN adhesion to ICAM-1 resulted in activation of Akt and β-catenin signaling, increased epithelial-cell proliferation, and wound healing. Such responses were ICAM-1 dependent as engagement of epithelial ICAM-1 by antibody-mediated cross-linking yielded similar results. Furthermore, using an in-vivo biopsy-based, colonic-mucosal-injury model, we demonstrated epithelial ICAM-1 has an important role in activation of epithelial Akt and β-catenin signaling and wound healing. These findings suggest that post-migrated PMNs within the intestinal lumen can regulate epithelial homeostasis, thereby identifying ICAM-1 as a potential therapeutic target for promoting mucosal wound healing.

  11. Regulation of calcium homeostasis in activated human neutrophils ...

    African Journals Online (AJOL)

    Objectives. The objectives of the current study were to: (i) present an integrated model for the restoration of calcium homeostasis in activated human neutrophils based on current knowledge and recent research; and (ii) identify potential targets for the modulation of calcium fluxes in activated neutrophils based on this model ...

  12. Swell activated chloride channel function in human neutrophils

    Energy Technology Data Exchange (ETDEWEB)

    Salmon, Michael D. [Leukocyte and Ion Channel Research Laboratory, School of Health and Biosciences, University of East London, Stratford Campus, London E15 4LZ (United Kingdom); Ahluwalia, Jatinder, E-mail: j.ahluwalia@uel.ac.uk [Leukocyte and Ion Channel Research Laboratory, School of Health and Biosciences, University of East London, Stratford Campus, London E15 4LZ (United Kingdom)

    2009-04-17

    Non-excitable cells such as neutrophil granulocytes are the archetypal inflammatory immune cell involved in critical functions of the innate immune system. The electron current generated (I{sub e}) by the neutrophil NADPH oxidase is electrogenic and rapidly depolarises the membrane potential. For continuous function of the NADPH oxidase, I{sub e} has to be balanced to preserve electroneutrality, if not; sufficient depolarisation would prevent electrons from leaving the cell and neutrophil function would be abrogated. Subsequently, the depolarisation generated by the neutrophil NADPH oxidase I{sub e} must be counteracted by ion transport. The finding that depolarisation required counter-ions to compensate electron transport was followed by the observation that chloride channels activated by swell can counteract the NADPH oxidase membrane depolarisation. In this mini review, we discuss the research findings that revealed the essential role of swell activated chloride channels in human neutrophil function.

  13. Chemotactic Activity on Human Neutrophils to Streptococcus mutans

    Directory of Open Access Journals (Sweden)

    Tetiana Haniastuti

    2013-07-01

    Full Text Available Objective: The aim of this study was to evaluate chemotactic activity o neutrophil to S. mutans. Chemotaxis assay was performed in blind well chambers. Materials and Methods: Hanks balanced salt solution (HBSS containing 106 S. mutans,  108 S. mutans, 10-8 M fMLP, or HBSS alone were placed in the lower wells of the chamber and covered with polycorbonate membrane filter. Neutrophils suspension (2x105 cells was then placed in the upper compartment. After incubation for 60 mins at 37ºC in a humidified atmosphere with 5% CO2, the filters were removed and stained with Giemsa. Result: ANOVA revealed statistically significant differences among groups (p<0.05, indicating that S. mutans induced neutrophils chemotaxis. The number of neutrophils migration in response to 108 S. mutans and 106 S. mutans were signifiantly greater compared to fMLP (p<0.05. Conclusion: S. mutans may activate human neutrophils, resulting in the chemotaxis of the neutrophils.DOI: 10.14693/jdi.v16i2.99

  14. Does defibrotide induce a delay to polymorphonuclear neutrophil engraftment after hematopoietic stem cell transplantation? Observation in a pediatric population.

    Science.gov (United States)

    Maximova, Natalia; Pizzol, Antonio; Giurici, Nagua; Granzotto, Marilena

    2015-04-01

    In recent years, defibrotide (DFT) has emerged as a promising therapy for veno-occlusive disease (VOD). The aim of this study was to investigate whether DFT prophylaxis affects neutrophil engraftment in patients undergoing hematopoietic stem cell transplantation (HSCT). A cohort of 44 consecutive pediatric patients who underwent HSCT was retrospectively analyzed to see the role of DFT on engraftment. Patients were assigned into two groups based on the use or non-use of prophylaxis with DFT. The mean time to engraftment was statistically different between the two groups for both polymorphonuclear neutrophils (PMN) and white blood cells. Our study supports the hypothesis that prophylaxis with DFT for VOD leads to a delay to the engraftment of PMN in pediatric patients that underwent HSCT.

  15. Superoxide anion production by human neutrophils activated by Trichomonas vaginalis.

    Science.gov (United States)

    Song, Hyun-Ouk; Ryu, Jae-Sook

    2013-08-01

    Neutrophils are the predominant inflammatory cells found in vaginal discharges of patients infected with Trichomonas vaginalis. In this study, we examined superoxide anion (O2 (.-)) production by neutrophils activated by T. vaginalis. Human neutrophils produced superoxide anions when stimulated with either a lysate of T. vaginalis, its membrane component (MC), or excretory-secretory product (ESP). To assess the role of trichomonad protease in production of superoxide anions by neutrophils, T. vaginalis lysate, ESP, and MC were each pretreated with a protease inhibitor cocktail before incubation with neutrophils. Superoxide anion production was significantly decreased by this treatment. Trichomonad growth was inhibited by preincubation with supernatants of neutrophils incubated for 3 hr with T. vaginalis lysate. Furthermore, myeloperoxidase (MPO) production by neutrophils was stimulated by live trichomonads. These results indicate that the production of superoxide anions and MPO by neutrophils stimulated with T. vaginalis may be a part of defense mechanisms of neutrophils in trichomoniasis.

  16. Phenotypic changes in neutrophils related to anti-inflammatory therapy.

    Science.gov (United States)

    Barton, A E; Bayley, D L; Mikami, M; Llewellyn-Jones, C G; Stockley, R A

    2000-01-03

    Previous work from the group has shown that non-steroidal anti-inflammatory agents given to volunteers and patients inhibit PMN function possibly by affecting the developing neutrophil during the differentiation process. In this study indomethacin treatment in vivo reduced neutrophil chemotaxis and proteolytic degradation of fibronectin, with a maximal effect after 14 days. Stimulated neutrophil adherence to fibronectin was also reduced but this was not due to quantitative changes in beta(2) integrin expression or function. L-Selectin expression on resting and stimulated neutrophils was increased after 14 days and there was a small decrease in plasma levels of soluble L-selectin. These effects, however, could not be reproduced by treatment of neutrophils with indomethacin in vitro, suggesting they are due to effects on differentiating/maturing PMNs. In an attempt to interpret these changes, studies were performed with dexamethasone, which is known to alter neutrophil function and kinetics. Dexamethasone treatment reduced chemotaxis and increased superoxide generation after 1 day and was associated with increased expression of activated beta(2) integrins and reduced L-selectin expression on resting neutrophils. This suggests the appearance of mainly 'activated' cells as a result of demargination and indicates that the effects of indomethacin are distinctive and not related to changes in compartmentalisation.

  17. Mechanisms and kinetics for platelet and neutrophil localization in immune complex nephritis

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, R.J.; Alpers, C.E.; Pruchno, C.; Schulze, M.; Baker, P.J.; Pritzl, P.; Couser, W.G. (Univ. of Washington, Seattle (USA))

    1989-11-01

    We have previously reported that both neutrophils (PMNs) and platelets mediate proteinuria in a model of subendothelial immune complex (IC) nephritis (GN) in the rat. In order to understand the interaction of PMNs and platelets in this model, we quantitated the uptake of {sup 111}In-labelled platelets in glomeruli and correlated this with the number of PMNs observed histologically at 10 and 30 minutes, 1, 4 and 24 hours following induction of GN. Platelet accumulation was biphasic with a major peak at 10 minutes and a minor peak at four hours. Early platelet accumulation was complement dependent, and PMN-independent. PMN accumulation occurred after the initial platelet influx, peaking at one and four hours, was complement dependent, but was not affected by platelet depletion. Complement depletion significantly reduced proteinuria. This is the first documentation that platelet accumulation in glomeruli in IC GN is complement dependent. In addition, the enhancement of PMN-mediated injury by the platelet in this model does not involve effects of platelets on PMN localization, thus implying a functional interaction between these cells within the glomerulus.

  18. HIF-1? Is Essential for Effective PMN Bacterial Killing, Antimicrobial Peptide Production and Apoptosis in Pseudomonas aeruginosa Keratitis

    OpenAIRE

    Berger, Elizabeth A.; McClellan, Sharon A.; Vistisen, Kerry S.; Hazlett, Linda D.

    2013-01-01

    Hypoxia-inducible factor (HIF)-1α, is a transcription factor that controls energy metabolism and angiogenesis under hypoxic conditions, and a potent regulator of innate immunity. The studies described herein examined the role of HIF-1α in disease resolution in BALB/c (resistant, cornea heals) mice after ocular infection with Pseudomonas (P.) aeruginosa. Furthermore, the current studies focused on the neutrophil (PMN), the predominant cell infiltrate in keratitis. Using both siRNA and an antag...

  19. Ascorbic acid transport and accumulation in human neutrophils

    International Nuclear Information System (INIS)

    Washko, P.; Rotrosen, D.; Levine, M.

    1989-01-01

    The transport, accumulation, and distribution of ascorbic acid were investigated in isolated human neutrophils utilizing a new ascorbic acid assay, which combined the techniques of high performance liquid chromatography and coulometric electrochemical detection. Freshly isolated human neutrophils contained 1.0-1.4 mM ascorbic acid, which was localized greater than or equal to 94% to the cytosol, was not protein bound, and was present only as ascorbic acid and not as dehydroascorbic acid. Upon addition of ascorbic acid to the extracellular medium in physiologic amounts, ascorbic acid was accumulated in neutrophils in millimolar concentrations. Accumulation was mediated by a high affinity and a low affinity transporter; both transporters were responsible for maintenance of concentration gradients as large as 50-fold. The high affinity transporter had an apparent Km of 2-5 microns by Lineweaver-Burk and Eadie-Hofstee analyses, and the low affinity transporter had an apparent Km of 6-7 mM by similar analyses. Each transporter was saturable and temperature dependent. In normal human blood the high affinity transporter should be saturated, whereas the low affinity transporter should be in its linear phase of uptake

  20. Evidence that polymorphonuclear neutrophils infiltrate into the developing corpus luteum and promote angiogenesis with interleukin-8 in the cow

    Directory of Open Access Journals (Sweden)

    Shimizu Takashi

    2011-06-01

    Full Text Available Abstract Background After ovulation in the cow, the corpus luteum (CL rapidly develops within a few days with angiogenesis and progesterone production. CL formation resembles an inflammatory response due to the influx of immune cells. Neutrophils play a role in host defense and inflammation, and secrete chemoattractants to stimulate angiogenesis. We therefore hypothesized that neutrophils infiltrate in the developing CL from just after ovulation and may play a role in angiogenesis of the CL. Methods and Results Polymorphonuclear neutrophils (PMN were detected in CL tissue by Pas-staining, and interleukin-8 (IL-8, a neutrophil-specific chemoattractant was measured in supernatant of the CL tissue culture: considerable amounts of PMNs and the high level of IL-8 were observed during the early luteal phase (days 1-4 of the estrous cycle. PMNs and IL-8 were low levels in the mid and late luteal phases, but IL-8 was increased during luteal regression. The PMN migration in vitro was stimulated by the supernatant from the early CL but not from the mid CL, and this activity was inhibited by neutralizing with an anti-IL-8 antibody, indicating the major role of IL-8 in inducing active PMN migration in the early CL. Moreover, IL-8 stimulated proliferation of CL-derived endothelial cells (LECs, and both the supernatant of activated PMNs and IL-8 stimulated formation of capillary-like structures of LECs. Conclusion PMNs migrate into the early CL partially due to its major chemoattractant IL-8 produced at high levels in the CL, and PMNs is a potential regulator of angiogenesis together with IL-8 in developing CL in the cow.

  1. Ceramics like PZT-PMN

    International Nuclear Information System (INIS)

    Droescher, R.E.; Sousa, V.C.; Bergman, C.P.

    2009-01-01

    The goal of this work was to achieve piezoelectric ceramics referring to the system PZT-PMN Pb(Mg 1 / 3 Nb 2 / 3 Zr 0 , 52 Ti 0 , 48 )O 3 . Have been analysed ceramics like 0,65PZT-0,35PMN ((Pb(Mg 0 , 1167 Nb 0 , 2300 Zr 0 , 3380 Ti 0 , 3120 )O 3 ), 0,75PZT-0,25PMN ((Pb(Mg 0 , 083 Nb 0 . 1675 Zr 0 , 3900 Ti 0 , 3600 )O3) and the 0,85PZT-0,15PMN ((Pb(Mg 0,0500 Nb 0 , 1000 Zr 0 , 4420 Ti 0 , 4080 )O 3 ). The influence of the calcination and concentration of PZT on the lattice phases, microstructure and density was evaluated. Then, the method used was the mixed-oxide method, the samples were taken under different temperatures of calcination before the final sinterizing. The DRX and SEM techniques were used to identify the phases formed and analyse the microstructure, respectively. The main result revealed that, the better way is to realize three burns before the final sinterizing at 1200 o C/4 h . Like that, on obtain for sure the average lattice phases, like: perovskite, pyrochlore and PbO and also tend to densify the samples. (author)

  2. Peptide secreted by human alveolar macrophages releases neutrophil granule contents

    International Nuclear Information System (INIS)

    MacArthur, C.K.; Miller, E.J.; Cohen, A.B.

    1987-01-01

    A monoclonal antibody was developed against an 8000-kDa enzyme-releasing peptide (ERP) released from human alveolar macrophages. ERP was isolated on an immunoaffinity column containing the antibody bound to staphylococcal protein A-Sepharose, and by autoradiography. Release of ERP from the macrophages is not changed by plastic adherence, phagocytosis, calcium ionophore, or phorbol esters. The peptide was not antigenically similar to interferon-γ, tumor necrosis factor, or interleukin lα or 1β. The release of constituents from azurophilic and specific granules was the main identified biologic function of ERP. ERP was a more effective secretagogue in the untreated neutrophils and f-met-leu-phe was more effective in the cytochalasin B-treated neutrophils. Absorption of ERP from macrophage-conditioned medium removed a small amount of the chemotactic activity; however, the immunopurified peptide was not chemotactic or chemokinetic for neutrophils, and at high concentrations, it suppressed base line chemokinesis. Treatment of washed macrophages with trypsin released active ERP of approximately the same m.w. of spontaneously secreted ERP. These studies showed that human alveolar macrophages release a peptide which is a secretagogue for human neutrophils under conditions which may be encountered in the lungs during certain disease states. Proteolytic enzymes which are free in the lungs may release the peptide and lead to the secretion of neutrophil enzymes

  3. Anti-Pseudomonas aeruginosa IgY antibodies promote bacterial opsonization and augment the phagocytic activity of polymorphonuclear neutrophils

    DEFF Research Database (Denmark)

    Thomsen, Kim; Christophersen, Lars; Jensen, Peter Østrup

    2016-01-01

    Moderation of polymorphonuclear neutrophils (PMNs) as part of a critical defense against invading pathogens may offer a promising therapeutic approach to supplement the antibiotic eradication of Pseudomonas aeruginosa infection in non-chronically infected cystic fibrosis (CF) patients. We have...... observed that egg yolk antibodies (IgY) harvested from White leghorn chickens that target P. aeruginosa opsonize the pathogen and enhance the PMN-mediated respiratory burst and subsequent bacterial killing in vitro. The effects on PMN phagocytic activity were observed in different Pseudomonas aeruginosa...

  4. Characterization of a receptor for human monocyte-derived neutrophil chemotactic factor/interleukin-8

    International Nuclear Information System (INIS)

    Grob, P.M.; David, E.; Warren, T.C.; DeLeon, R.P.; Farina, P.R.; Homon, C.A.

    1990-01-01

    Monocyte-derived neutrophil chemotactic factor/interleukin-8 (MDNCF/IL-8) is an 8,000-dalton protein produced by monocytes which exhibits activity as a chemoattractant for neutrophils with maximal activity achieved at a concentration of 50 ng/ml. This polypeptide has been iodinated by chloramine-T methodology (350 Ci/mM), and specific receptors for MDNCF/IL-8 have been detected on human neutrophils, U937 cells, THP-1 cells, and dimethyl sulfoxide-differentiated HL-60 cells. The binding of MDNCF/IL-8 to human neutrophils is not inhibited by interleukin-1 alpha, tumor necrosis factor-alpha, insulin, or epidermal growth factor. In addition, chemoattractants such as C5a, fMet-Leu-Phe, leukotriene B4, and platelet-activating factor fail to inhibit binding, suggesting that MDNCF/IL-8 utilizes a unique receptor. The receptor for MDNCF/IL-8 is apparently glycosylated since ligand binding is inhibited by the presence of wheat germ agglutinin, a lectin with a binding specificity for N-acetylglucosamine and neuraminic acid. Steady state binding experiments indicate Kd values of 4 and 0.5 nM and receptor numbers of 75,000 and 7,400 for human neutrophils and differentiated HL-60 cells, respectively. 125I-MDNCF/IL-8 bound to human neutrophils is rapidly internalized and subsequently released from cells as trichloroacetic acid-soluble radioactivity. Affinity labeling experiments suggest that the human neutrophil MDNCF/IL-8 receptor exhibits a mass of approximately 58,000 daltons

  5. X-band EPR studies of ferroelectric lead titanate (PT), piezoelectric lead magnesium niobate (PMN), and PMN/PT powders at 10 and 85 K

    International Nuclear Information System (INIS)

    Huang, J.; Fitzgerald, J.J.; Chasteen, N.D.

    1998-01-01

    X-band EPR spectra of lead titanate (PT) and lead magnesium niobate (PMN) powders prepared by different synthetic methods and a PMN/PT powder of the composition 0.9 PMN/01 PT were obtained at 85 and 10 K. Several EPR signals due to adventitious Fe 3+ ion impurities, a signal due to the Ti 3+ ion, and a signal due to the Pb 3+ ion are observed for PT, PMN, and PMN/PT powders. The EPR signals observed at g = 2.0 and 6.0 are assigned to Fe 3+ ions in the B-sites of the perovskite lattice structure of lad titanate with axial symmetry. The EPR signals observed at g = 1.99 and 4.25 are assigned to Fe 3+ ions in the B-sites of the perovskite lattice structure of PMN and 0.9 PMN/0.1 PT materials with cubic and rhombic symmetries, respectively. The sharp EPR signal observed at g = 1.94 is assigned to Ti 3= ion for PT and 0.9 PMN/0.1 PT powders. In addition, a broader EPR signal at g = 2.28--2.30 for PMN obtained by the molten salt method is assigned to axial Pb 3+ ion sites in this PMN material. EPR results obtained here for the e 3+ ions in the B-sites of the PMN materials, in particular, suggest that both cubic and rhombic symmetry sites corresponding to a range of Nb(OMg) x (ONb) 6-x site configurations exist in the PMN. These EPR results indicate that PMN likely exists with partial B-site cation (Mg/Nb) ordering in the perovskite lattice structure

  6. Dynamic Mechanical Properties of PMN/CNFs/EP Composites

    International Nuclear Information System (INIS)

    Shi Minxian; Huang Zhixiong; Qin Yan

    2011-01-01

    In this research, piezoelectric ceramic PMN(lead magnesium niobate-lead zirconate-lead titanate)/carbon nano-fibers(CNFs)/epoxy resin(EP) ccomposites were prepared and the dynamic mechanical properties and damping mechanism of PMN/CNFs/EP composites were investigated. The addition of CNFs into PMN/EP composite results in decrease of volume resistivity of the composite. When the concentration of CNFs is 0.6% weight of epoxy resin the volume resistivity of PMN/CNFs/EP composite is about 10 8 Ω·m. Dynamic mechanical analysis indicates that the loss factor, loss area, and damping temperature range of PMN/CNFs/EP composites increase with the CNFs content increasing till to 0.6% of weight of epoxy resin. When the CNFs content is more than 0.6% the damping properties of composites decrease oppositely. In PMN/CNFs/EP composites, the CNFs content 0.6% and the volume resistivity of PMN/CNFs/EP composites about 10 8 Ω·m just satisfy the practicing condition of piezo-damping, so the composites show optimal damping property.

  7. Neutrophil-induced human bronchial hyperresponsiveness in vitro--pharmacological modulation.

    Science.gov (United States)

    Hughes, J M; McKay, K O; Johnson, P R; Tragoulias, S; Black, J L; Armour, C L

    1993-04-01

    Although it has been postulated that inflammatory cells cause the bronchial hyperresponsiveness which is diagnostic of asthma, until recently there has been little direct evidence of such a link. We have recently shown that calcium ionophore-activated human neutrophils and eosinophils can induce a state of human airway hyperresponsiveness in vitro. In this study we have shown that the anti-inflammatory agent nedocromil sodium, 10(-7) M, inhibited the hyperresponsiveness induced by products released from ionophore activated neutrophils but did not inhibit the release of leukotriene B4 from the same cells. Neutrophil-induced bronchial hyperresponsiveness was also inhibited by pre-treatment of the bronchial tissues with a thromboxane A2 and prostaglandin receptor antagonist, GR32191, 10(-7) M. These findings indicate that cyclooxygenase products are involved in bronchial hyperresponsiveness induced by inflammatory cell products in vitro and that their release can be inhibited by nedocromil sodium.

  8. Low-level laser therapy to the mouse femur enhances the fungicidal response of neutrophils against Paracoccidioides brasiliensis.

    Directory of Open Access Journals (Sweden)

    Eva Burger

    2015-02-01

    Full Text Available Neutrophils (PMN play a central role in host defense against the neglected fungal infection paracoccidioidomycosis (PCM, which is caused by the dimorphic fungus Paracoccidioides brasiliensis (Pb. PCM is of major importance, especially in Latin America, and its treatment relies on the use of antifungal drugs. However, the course of treatment is lengthy, leading to side effects and even development of fungal resistance. The goal of the study was to use low-level laser therapy (LLLT to stimulate PMN to fight Pb in vivo. Swiss mice with subcutaneous air pouches were inoculated with a virulent strain of Pb or fungal cell wall components (Zymosan, and then received LLLT (780 nm; 50 mW; 12.5 J/cm2; 30 seconds per point, giving a total energy of 0.5 J per point on alternate days at two points on each hind leg. The aim was to reach the bone marrow in the femur with light. Non-irradiated animals were used as controls. The number and viability of the PMN that migrated to the inoculation site was assessed, as well as their ability to synthesize proteins, produce reactive oxygen species (ROS and their fungicidal activity. The highly pure PMN populations obtained after 10 days of infection were also subsequently cultured in the presence of Pb for trials of protein production, evaluation of mitochondrial activity, ROS production and quantification of viable fungi growth. PMN from mice that received LLLT were more active metabolically, had higher fungicidal activity against Pb in vivo and also in vitro. The kinetics of neutrophil protein production also correlated with a more activated state. LLLT may be a safe and non-invasive approach to deal with PCM infection.

  9. Computer-assisted image analysis assay of human neutrophil chemotaxis in vitro

    DEFF Research Database (Denmark)

    Jensen, P; Kharazmi, A

    1991-01-01

    We have developed a computer-based image analysis system to measure in-filter migration of human neutrophils in the Boyden chamber. This method is compared with the conventional manual counting techniques. Neutrophils from healthy individuals and from patients with reduced chemotactic activity were....... Another advantage of the assay is that it can be used to show the migration pattern of different populations of neutrophils from both healthy individuals and patients....

  10. Modulation of the heterogeneous membrane potential response of neutrophils to N-formyl-methionyl-leucyl-phenylalanine (FMLP) by leukotriene B4: evidence for cell recruitment

    International Nuclear Information System (INIS)

    Fletcher, M.P.

    1986-01-01

    Individual human neutrophils (PMN) isolated by Hypaque-Ficoll gradient sedimentation, dextran sedimentation, or buffy coat preparation were assessed for the effects of leukotriene B4 (5S,12R dihydroxy 6,14-cis-8, 10 trans eicosatetraenoic acid (LTB4)-pretreatment on N-formylmethionyl-leucyl-phenylalanine (FMLP)-mediated membrane potential or oxidative responses by using flow cytometry and a lipophilic probe of membrane potential (di-pentyl-oxacarbocyanine, di-O-C(5)3), or the nitroblue tetrazolium dye (NBT) reduction test, respectively. Although exposure to LTB4 (10(-7) M) had no effect on the membrane potential of resting PMN and little effect on oxidant production, pretreating PMN with LTB4 followed by FMLP (10(-6) M) demonstrated a significant enhancement in the proportion of depolarizing PMN over that seen with FMLP alone (p = 0.0014, N = 9). This recruitment of previously unresponsive cells by LTB4 was dose and time dependent, with the maximal relative increase in the proportion of depolarizing cells occurring at LTB4 concentrations of 10(-8) to 10(-7) M and within 1 min of LTB4 addition. The recruitment effect persisted despite vigorous washing of the cells. LTB4 also increased the proportion of NBT-positive PMN in response to FMLP. Although LTB4 alone did not depolarize PMN it did induce a light scatter shift indicative of cell activation. 3 H-FMLP binding studied at 0 degree C comparing buffer and LTB4-treated PMN indicated no significant change in the number or affinity of FMLP binding. The data provide evidence for the recruitment of a greater proportion of cells into a FMLP-responsive state as a mechanism for the enhanced functional response of PMN pretreated with LTB4, as well as for a dissociation of the membrane potential and light scattering responses of cells to this pro-inflammatory LT

  11. Neutrophil extracellular traps formation by bacteria causing endometritis in the mare.

    Science.gov (United States)

    Rebordão, M R; Carneiro, C; Alexandre-Pires, G; Brito, P; Pereira, C; Nunes, T; Galvão, A; Leitão, A; Vilela, C; Ferreira-Dias, G

    2014-12-01

    Besides the classical functions, neutrophils (PMNs) are able to release DNA in response to infectious stimuli, forming neutrophil extracellular traps (NETs) and killing pathogens. The pathogenesis of endometritis in the mare is not completely understood. The aim was to evaluate the in vitro capacity of equine PMNs to secrete NETs by chemical activation, or stimulated with Streptococcus equi subspecies zooepidemicus (Szoo), Escherichia coli (Ecoli) or Staphylococcus capitis (Scap) strains obtained from mares with endometritis. Ex vivo endometrial mucus from mares with bacterial endometritis were evaluated for the presence of NETs. Equine blood PMNs were used either without or with stimulation by phorbol-myristate-acetate (PMA), a strong inducer of NETs, for 1-3h. To evaluate PMN ability to produce NETs when phagocytosis was impaired, the phagocytosis inhibitor cytochalasin (Cyt) was added after PMA. After the addition of bacteria, a subsequent 1-h incubation was carried out in seven groups. NETs were visualized by 4',6-diamidino-2-phenylindole (DAPI) and anti-histone. Ex vivo samples were immunostained for myeloperoxidase and neutrophil elastase. A 3-h incubation period of PMN + PMA increased NETs (p Ecoli or Scap (p < 0.05). Ex vivo NETs were present in mares with endometritis. Scanning electron microscopy showed the spread of NETs formed by smooth fibers and globules that can be aggregated in thick bundles. Formation of NETs and the subsequent entanglement of bacteria suggest that equine NETs might be a complementary mechanism in fighting some of the bacteria causing endometritis in the mare. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  12. A Potential Role for Acrolein in Neutrophil-Mediated Chronic Inflammation.

    Science.gov (United States)

    Noerager, Brett D; Xu, Xin; Davis, Virginia A; Jones, Caleb W; Okafor, Svetlana; Whitehead, Alicia; Blalock, J Edwin; Jackson, Patricia L

    2015-12-01

    Neutrophils (PMNs) are key mediators of inflammatory processes throughout the body. In this study, we investigated the role of acrolein, a highly reactive aldehyde that is ubiquitously present in the environment and produced endogenously at sites of inflammation, in mediating PMN-mediated degradation of collagen facilitating proline-glycine-proline (PGP) production. We treated peripheral blood neutrophils with acrolein and analyzed cell supernatants and lysates for matrix metalloproteinase-9 (MMP-9) and prolyl endopeptidase (PE), assessed their ability to break down collagen and release PGP, and assayed for the presence of leukotriene A4 hydrolase (LTA4H) and its ability to degrade PGP. Acrolein treatment induced elevated production and functionality of collagen-degrading enzymes and generation of PGP fragments. Meanwhile, LTA4H levels and triaminopeptidase activity declined with increasing concentrations of acrolein thereby sparing PGP from enzymatic destruction. These findings suggest that acrolein exacerbates the acute inflammatory response mediated by neutrophils and sets the stage for chronic pulmonary and systemic inflammation.

  13. Effects of Acrolein on Leukotriene Biosynthesis in Human Neutrophils

    OpenAIRE

    Zemski Berry, Karin A.; Henson, Peter M.; Murphy, Robert C.

    2008-01-01

    Acrolein is a toxic, highly reactive α,β-unsaturated aldehyde that is present in high concentrations in cigarette smoke. In the current study, the effect of acrolein on eicosanoid synthesis in stimulated human neutrophils was examined. Eicosanoid synthesis in neutrophils was initiated by priming with granulocyte-macrophage colony-stimulating factor (GM-CSF) and subsequent stimulation with formyl-methionyl-leucyl-phenylalanine (fMLP) and 5-LO products in addition to small amounts of COX produc...

  14. Lactoferrin release and interleukin-1, interleukin-6, and tumor necrosis factor production by human polymorphonuclear cells stimulated by various lipopolysaccharides: relationship to growth inhibition of Candida albicans.

    OpenAIRE

    Palma, C; Cassone, A; Serbousek, D; Pearson, C A; Djeu, J Y

    1992-01-01

    Lipopolysaccharides (LPSs) from Escherichia coli, Serratia marcescens, and Salmonella typhimurium, at doses from 1 to 100 ng/ml, strongly enhanced growth inhibition of Candida albicans by human polymorphonuclear leukocytes (PMN) in vitro. Flow cytometry analysis demonstrated that LPS markedly augmented phagocytosis of Candida cells by increasing the number of yeasts ingested per neutrophil as well as the number of neutrophils capable of ingesting fungal cells. LPS activation caused augmented ...

  15. Cultured rat and purified human Pneumocystis carinii stimulate intra- but not extracellular free radical production in human neutrophils

    DEFF Research Database (Denmark)

    Jensen, T; Aliouat, E M; Lundgren, B

    1998-01-01

    The production of free radicals in human neutrophils was studied in both Pneumocystis carinii derived from cultures of L2 rat lung epithelial-like cells and Pneumocystis carinii purified from human lung. Using the cytochrome C technique, which selectively measured extracellular superoxide...... generation, hardly any free radical production was observed after stimulation with cultured rat-derived P. carinii. A chemiluminescence technique, which separately measured intra- and extracellular free radical production, was subsequently employed to differentiate the free radical generation....... It was established that 1) P. carinii stimulated intra- but not extracellular free radical production in human neutrophils, 2) opsonized cultured rat-derived P. carinii stimulated human neutrophils to a strong intracellular response of superoxide production, and 3) opsonized P. carinii, purified from human lung also...

  16. Neutrophil-Derived MMP-8 Drives AMPK-Dependent Matrix Destruction in Human Pulmonary Tuberculosis

    Science.gov (United States)

    Ong, Catherine W. M.; Elkington, Paul T.; Brilha, Sara; Ugarte-Gil, Cesar; Tome-Esteban, Maite T.; Tezera, Liku B.; Pabisiak, Przemyslaw J.; Moores, Rachel C.; Sathyamoorthy, Tarangini; Patel, Vimal; Gilman, Robert H.; Porter, Joanna C.; Friedland, Jon S.

    2015-01-01

    Pulmonary cavities, the hallmark of tuberculosis (TB), are characterized by high mycobacterial load and perpetuate the spread of M. tuberculosis. The mechanism of matrix destruction resulting in cavitation is not well defined. Neutrophils are emerging as key mediators of TB immunopathology and their influx are associated with poor outcomes. We investigated neutrophil-dependent mechanisms involved in TB-associated matrix destruction using a cellular model, a cohort of 108 patients, and in separate patient lung biopsies. Neutrophil-derived NF-kB-dependent matrix metalloproteinase-8 (MMP-8) secretion was up-regulated in TB and caused matrix destruction both in vitro and in respiratory samples of TB patients. Collagen destruction induced by TB infection was abolished by doxycycline, a licensed MMP inhibitor. Neutrophil extracellular traps (NETs) contain MMP-8 and are increased in samples from TB patients. Neutrophils lined the circumference of human pulmonary TB cavities and sputum MMP-8 concentrations reflected TB radiological and clinical disease severity. AMPK, a central regulator of catabolism, drove neutrophil MMP-8 secretion and neutrophils from AMPK-deficient patients secrete lower MMP-8 concentrations. AMPK-expressing neutrophils are present in human TB lung biopsies with phospho-AMPK detected in nuclei. These data demonstrate that neutrophil-derived MMP-8 has a key role in the immunopathology of TB and is a potential target for host-directed therapy in this infectious disease. PMID:25996154

  17. Neutrophil-Derived MMP-8 Drives AMPK-Dependent Matrix Destruction in Human Pulmonary Tuberculosis.

    Science.gov (United States)

    Ong, Catherine W M; Elkington, Paul T; Brilha, Sara; Ugarte-Gil, Cesar; Tome-Esteban, Maite T; Tezera, Liku B; Pabisiak, Przemyslaw J; Moores, Rachel C; Sathyamoorthy, Tarangini; Patel, Vimal; Gilman, Robert H; Porter, Joanna C; Friedland, Jon S

    2015-05-01

    Pulmonary cavities, the hallmark of tuberculosis (TB), are characterized by high mycobacterial load and perpetuate the spread of M. tuberculosis. The mechanism of matrix destruction resulting in cavitation is not well defined. Neutrophils are emerging as key mediators of TB immunopathology and their influx are associated with poor outcomes. We investigated neutrophil-dependent mechanisms involved in TB-associated matrix destruction using a cellular model, a cohort of 108 patients, and in separate patient lung biopsies. Neutrophil-derived NF-kB-dependent matrix metalloproteinase-8 (MMP-8) secretion was up-regulated in TB and caused matrix destruction both in vitro and in respiratory samples of TB patients. Collagen destruction induced by TB infection was abolished by doxycycline, a licensed MMP inhibitor. Neutrophil extracellular traps (NETs) contain MMP-8 and are increased in samples from TB patients. Neutrophils lined the circumference of human pulmonary TB cavities and sputum MMP-8 concentrations reflected TB radiological and clinical disease severity. AMPK, a central regulator of catabolism, drove neutrophil MMP-8 secretion and neutrophils from AMPK-deficient patients secrete lower MMP-8 concentrations. AMPK-expressing neutrophils are present in human TB lung biopsies with phospho-AMPK detected in nuclei. These data demonstrate that neutrophil-derived MMP-8 has a key role in the immunopathology of TB and is a potential target for host-directed therapy in this infectious disease.

  18. Enhancement by platelets of oxygen radical responses of human neutrophils

    International Nuclear Information System (INIS)

    McCulloch, K.K.; Powell, J.; Johnson, K.J.; Ward, P.A.

    1986-01-01

    When human blood neutrophils were incubated with immune complexes (consisting of IgG antibody) in the presence of platelets, there was a 2 to 10 fold enhancement in the generation of O- 2 and H 2 O 2 . This enhancement phenomenon was proportional to the dose of immune complex added and the number of platelets present. The response was not agonist specific since similar enhancement also occurred with the following agonists: phorbol myristate acetate, opsonized zymosan particles and the chemotactic peptide N-formyl-met-leu-phe. The platelet related phenomenon of enhanced O- 2 generation could not be reproduced by the addition of serotonin, histamine or platelet-derived growth factor and was not affected by prior treatment of platelets with cyclooxygenase inhibitors (indomethacin, piroxicam) or lipoxygenase inhibitors (nafazatrom, BW755C or nordihydroguaiaretic acid). However, activation of platelets by thrombin caused release into the platelet supernatant fluid of a factor that, only in the presence of immune complexes, caused enhanced O- 2 responses to neutrophils. These data indicate that platelets potentiate oxygen radical responses of human neutrophils and suggest a mechanisms by which platelets may participate in tissue injury which is mediated by oxygen radical products from activated neutrophils

  19. p21-Activated kinase (PAK regulates cytoskeletal reorganization and directional migration in human neutrophils.

    Directory of Open Access Journals (Sweden)

    Asako Itakura

    Full Text Available Neutrophils serve as a first line of defense in innate immunity owing in part to their ability to rapidly migrate towards chemotactic factors derived from invading pathogens. As a migratory function, neutrophil chemotaxis is regulated by the Rho family of small GTPases. However, the mechanisms by which Rho GTPases orchestrate cytoskeletal dynamics in migrating neutrophils remain ill-defined. In this study, we characterized the role of p21-activated kinase (PAK downstream of Rho GTPases in cytoskeletal remodeling and chemotactic processes of human neutrophils. We found that PAK activation occurred upon stimulation of neutrophils with f-Met-Leu-Phe (fMLP, and PAK accumulated at the actin-rich leading edge of stimulated neutrophils, suggesting a role for PAK in Rac-dependent actin remodeling. Treatment with the pharmacological PAK inhibitor, PF3758309, abrogated the integrity of RhoA-mediated actomyosin contractility and surface adhesion. Moreover, inhibition of PAK activity impaired neutrophil morphological polarization and directional migration under a gradient of fMLP, and was associated with dysregulated Ca(2+ signaling. These results suggest that PAK serves as an important effector of Rho-family GTPases in neutrophil cytoskeletal reorganization, and plays a key role in driving efficient directional migration of human neutrophils.

  20. Distinct Trypanosoma cruzi isolates induce activation and apoptosis of human neutrophils.

    Directory of Open Access Journals (Sweden)

    Luísa M D Magalhães

    Full Text Available Neutrophils are critical players in the first line of defense against pathogens and in the activation of subsequent cellular responses. We aimed to determine the effects of the interaction of Trypanosoma cruzi with human neutrophils, using isolates of the two major discrete type units (DTUs associated with Chagas' disease in Latin America (clone Col1.7G2 and Y strain, DTU I and II, respectively. Thus, we used CFSE-stained trypomastigotes to measure neutrophil-T. cruzi interaction, neutrophil activation, cytokine expression and death, after infection with Col1.7G2 and Y strain. Our results show that the frequency of CFSE+ neutrophils, indicative of interaction, and CFSE intensity on a cell-per-cell basis were similar when comparing Col1.7G2 and Y strains. Interaction with T. cruzi increased neutrophil activation, as measured by CD282, CD284, TNF and IL-12 expression, although at different levels between the two strains. No change in IL-10 expression was observed after interaction of neutrophils with either strain. We observed that exposure to Y and Col1.7G2 caused marked neutrophil death. This was specific to neutrophils, since interaction of either strain with monocytes did not cause death. Our further analysis showed that neutrophil death was a result of apoptosis, which was associated with an upregulation of TNF-receptor, TNF and FasLigand, but not of Fas. Induction of TNF-associated neutrophil apoptosis by the different T. cruzi isolates may act as an effective common mechanism to decrease the host's immune response and favor parasite survival.

  1. A novel bacterial transport mechanism of Acinetobacter baumannii via activated human neutrophils through interleukin-8.

    Science.gov (United States)

    Kamoshida, Go; Tansho-Nagakawa, Shigeru; Kikuchi-Ueda, Takane; Nakano, Ryuichi; Hikosaka, Kenji; Nishida, Satoshi; Ubagai, Tsuneyuki; Higashi, Shouichi; Ono, Yasuo

    2016-12-01

    Hospital-acquired infections as a result of Acinetobacter baumannii have become problematic because of high rates of drug resistance. Although neutrophils play a critical role in early protection against bacterial infection, their interactions with A. baumannii remain largely unknown. To elucidate the interactions between A. baumannii and human neutrophils, we cocultured these cells and analyzed them by microscopy and flow cytometry. We found that A. baumannii adhered to neutrophils. We next examined neutrophil and A. baumannii infiltration into Matrigel basement membranes by an in vitro transmigration assay. Neutrophils were activated by A. baumannii, and invasion was enhanced. More interestingly, A. baumannii was transported together by infiltrating neutrophils. Furthermore, we observed by live cell imaging that A. baumannii and neutrophils moved together. In addition, A. baumannii-activated neutrophils showed increased IL-8 production. The transport of A. baumannii was suppressed by inhibiting neutrophil infiltration by blocking the effect of IL-8. A. baumannii appears to use neutrophils for transport by activating these cells via IL-8. In this study, we revealed a novel bacterial transport mechanism that A. baumannii exploits human neutrophils by adhering to and inducing IL-8 release for bacterial portage. This mechanism might be a new treatment target. © Society for Leukocyte Biology.

  2. Enhancement by platelets of oxygen radical responses of human neutrophils

    Energy Technology Data Exchange (ETDEWEB)

    McCulloch, K.K.; Powell, J.; Johnson, K.J.; Ward, P.A.

    1986-03-01

    When human blood neutrophils were incubated with immune complexes (consisting of IgG antibody) in the presence of platelets, there was a 2 to 10 fold enhancement in the generation of O-/sub 2/ and H/sub 2/O/sub 2/. This enhancement phenomenon was proportional to the dose of immune complex added and the number of platelets present. The response was not agonist specific since similar enhancement also occurred with the following agonists: phorbol myristate acetate, opsonized zymosan particles and the chemotactic peptide N-formyl-met-leu-phe. The platelet related phenomenon of enhanced O-/sub 2/ generation could not be reproduced by the addition of serotonin, histamine or platelet-derived growth factor and was not affected by prior treatment of platelets with cyclooxygenase inhibitors (indomethacin, piroxicam) or lipoxygenase inhibitors (nafazatrom, BW755C or nordihydroguaiaretic acid). However, activation of platelets by thrombin caused release into the platelet supernatant fluid of a factor that, only in the presence of immune complexes, caused enhanced O-/sub 2/ responses to neutrophils. These data indicate that platelets potentiate oxygen radical responses of human neutrophils and suggest a mechanisms by which platelets may participate in tissue injury which is mediated by oxygen radical products from activated neutrophils.

  3. Effects of dietary supplementation with eicosapentaenoic acid or gamma-linolenic acid on neutrophil phospholipid fatty acid composition and activation responses.

    Science.gov (United States)

    Fletcher, M P; Ziboh, V A

    1990-10-01

    Previous data that alimentation with fish oil rich in eicosapentaenoic acid (EPA; 20:n-3) or vegetable oil rich in gamma-linolenic acid (GLA; 18:3n-6) can reduce symptoms of inflammatory skin disorders lead us to determine the effects of dietary supplements of oils rich in EPA or GLA on guinea pig (GP) neutrophil (PMN) membrane potential (delta gamma), secretion, and superoxide (O2-) responses. Weanling GPs were initially fed diets supplemented with olive oil (less than 0.1% EPA; less than 0.1% GLA) for 2 weeks, followed by a crossover by two sets of animals to diets supplemented with fish oil (19% EPA) or borage oil (25% GLA). At 4-week intervals, 12% sterile casein-elicited peritoneal neutrophils (PMN) were assessed for membrane polyunsaturated fatty acid (PUFA) profiles and FMLP-, LTB4-, and PMA-stimulated delta gamma changes, changes in flow cytometrically measured forward scatter (FWD-SC) (shape change), 90 degrees scatter (90 degrees -SC) in cytochalasin B-pretreated-PMN (secretion response), and superoxide responses, GP incorporated EPA and GLA (as the elongation product, dihomo-GLA or DGLA) into their PMN phospholipids by 4 weeks. The peritoneal PMN of all groups demonstrated broad resting FWD-SC and poor activation-related FWD-SC increases, suggesting in vivo activation. While secretion was comparable in the three groups in response to FMLP, there was a trend toward inhibition of LTB4-stimulated 90 degrees -SC loss in both fish and borage oil groups. This was significant only with borage oil (21.7 +/- 2.1 vs 15.3 +/- 1.2% loss of baseline 90 degrees -SC, olive vs borage: P = 0.03). PMN from borage- and fish oil-fed GPs showed a progressively lower O2- response to FMLP than the olive oil group (73.9 +/- 3.9 and 42.9 +/- 6.8% of olive oil response for borage and fish oils, respectively; P less than 0.005 and P less than 0.01, respectively, at 12 weeks), while PMA-stimulated O2- was inhibited only in the fish oil-fed group and only at 12 weeks (62.0 +/- 2

  4. Neutrophils to the ROScue: Mechanisms of NADPH Oxidase Activation and Bacterial Resistance

    Directory of Open Access Journals (Sweden)

    Giang T. Nguyen

    2017-08-01

    Full Text Available Reactive oxygen species (ROS generated by NADPH oxidase play an important role in antimicrobial host defense and inflammation. Their deficiency in humans results in recurrent and severe bacterial infections, while their unregulated release leads to pathology from excessive inflammation. The release of high concentrations of ROS aids in clearance of invading bacteria. Localization of ROS release to phagosomes containing pathogens limits tissue damage. Host immune cells, like neutrophils, also known as PMNs, will release large amounts of ROS at the site of infection following the activation of surface receptors. The binding of ligands to G-protein-coupled receptors (GPCRs, toll-like receptors, and cytokine receptors can prime PMNs for a more robust response if additional signals are encountered. Meanwhile, activation of Fc and integrin directly induces high levels of ROS production. Additionally, GPCRs that bind to the bacterial-peptide analog fMLP, a neutrophil chemoattractant, can both prime cells and trigger low levels of ROS production. Engagement of these receptors initiates intracellular signaling pathways, resulting in activation of downstream effector proteins, assembly of the NADPH oxidase complex, and ultimately, the production of ROS by this complex. Within PMNs, ROS released by the NADPH oxidase complex can activate granular proteases and induce the formation of neutrophil extracellular traps (NETs. Additionally, ROS can cross the membranes of bacterial pathogens and damage their nucleic acids, proteins, and cell membranes. Consequently, in order to establish infections, bacterial pathogens employ various strategies to prevent restriction by PMN-derived ROS or downstream consequences of ROS production. Some pathogens are able to directly prevent the oxidative burst of phagocytes using secreted effector proteins or toxins that interfere with translocation of the NADPH oxidase complex or signaling pathways needed for its activation

  5. Tasting Pseudomonas aeruginosa biofilms.Human neutrophils express the bitter receptor T2R38 as sensor for the quorum sensing molecule N-(3-oxododecanoyl-L-homoserine lactone

    Directory of Open Access Journals (Sweden)

    Susanne eMaurer

    2015-07-01

    Full Text Available Bacteria communicate with each other via specialized signalling molecules, known as quorum sensing molecules or autoinducers. The Pseudomonas aeruginosa-derived quorum sensing molecule N-(3-oxododecanoyl-L-homoserine lactone (AHL-12, however, also activates mammalian cells. As shown previously, AHL-12 induced chemotaxis, up-regulated CD11b expression, and enhanced phagocytosis of polymorphonuclear neutrophils (PMN. Circumstantial evidence concurred with a receptor for AHL-12, which so far has been elusive. We investigated the bitter receptor T2R38 as a potential candidate. Although identified as a taste receptor, cells outside the gustatory system express T2R38, for example epithelial cells in the lung. We now detected T2R38 in peripheral blood neutrophils, monocytes and lymphocytes on the cell membrane, but also intracellular. In neutrophils, T2R38 was located in vesicles with characteristics of lipid droplets, and super-resolution microscopy showed a co-localisation with the lipid droplet membrane. Neutrophils take up AHL-12, and it co-localized with T2R38 as seen by laser scan microscopy. Binding of AHL-12 to T2R28 was confirmed by pull-down assays using biotin-coupled AHL-12 as bait. A commercially available antibody to T2R38 inhibited binding of AHL-12 to neutrophils, and this antibody by itself stimulated neutrophils, similarly to AHL-12. In conclusion, our data provide evidence for expression of functional T2R38 on neutrophils, and are compatible with the notion that T2R38 is the receptor for AHL-12 on neutrophils.

  6. Formyl Met-Leu-Phe-Stimulated FPR1 Phosphorylation in Plate-Adherent Human Neutrophils: Enhanced Proteolysis but Lack of Inhibition by Platelet-Activating Factor

    Directory of Open Access Journals (Sweden)

    Algirdas J. Jesaitis

    2018-01-01

    Full Text Available N-formyl-Met-Leu-Phe (fMLF is a model PAMP/DAMP driving human PMN to sites of injury/infection utilizing the GPCR, FPR1. We examined a microtiter plate format for measurement of FPR1 phosphorylation in adherent PMN at high densities and found that a new phosphosensitive FPR1 fragment, 25K-FPR1, accumulates in SDS-PAGE extracts. 25K-FPR1 is fully inhibited by diisopropylfluorophosphate PMN pretreatment but is not physiologic, as its formation failed to be significantly perturbed by ATP depletion, time and temperature of adherence, or adherence mechanism. 25K-FPR1 was minimized by extracting fMLF-exposed PMN in lithium dodecylsulfate at 4°C prior to reduction/alkylation. After exposure of adherent PMN to a 5 log range of PAF before or after fMLF, unlike in suspension PMN, no inhibition of fMLF-induced FPR1 phosphorylation was observed. However, PAF induced the release of 40% of PMN lactate dehydrogenase, implying significant cell lysis. We infer that PAF-induced inhibition of fMLF-dependent FPR1 phosphorylation observed in suspension PMN does not occur in the unlysed adherent PMN. We speculate that although the conditions of the assay may induce PAF-stimulated necrosis, the cell densities on the plates may approach levels observed in inflamed tissues and provide for an explanation of PAF’s divergent effects on FPR1 phosphorylation as well as PMN function.

  7. CD177 modulates human neutrophil migration through activation-mediated integrin and chemoreceptor regulation.

    Science.gov (United States)

    Bai, Ming; Grieshaber-Bouyer, Ricardo; Wang, Junxia; Schmider, Angela B; Wilson, Zachary S; Zeng, Liling; Halyabar, Olha; Godin, Matthew D; Nguyen, Hung N; Levescot, Anaïs; Cunin, Pierre; Lefort, Craig T; Soberman, Roy J; Nigrovic, Peter A

    2017-11-09

    CD177 is a glycosylphosphatidylinositol (GPI)-anchored protein expressed by a variable proportion of human neutrophils that mediates surface expression of the antineutrophil cytoplasmic antibody antigen proteinase 3. CD177 associates with β2 integrins and recognizes platelet endothelial cell adhesion molecule 1 (PECAM-1), suggesting a role in neutrophil migration. However, CD177 pos neutrophils exhibit no clear migratory advantage in vivo, despite interruption of in vitro transendothelial migration by CD177 ligation. We sought to understand this paradox. Using a PECAM-1-independent transwell system, we found that CD177 pos and CD177 neg neutrophils migrated comparably. CD177 ligation selectively impaired migration of CD177 pos neutrophils, an effect mediated through immobilization and cellular spreading on the transwell membrane. Correspondingly, CD177 ligation enhanced its interaction with β2 integrins, as revealed by fluorescence lifetime imaging microscopy, leading to integrin-mediated phosphorylation of Src and extracellular signal-regulated kinase (ERK). CD177-driven cell activation enhanced surface β2 integrin expression and affinity, impaired internalization of integrin attachments, and resulted in ERK-mediated attenuation of chemokine signaling. We conclude that CD177 signals in a β2 integrin-dependent manner to orchestrate a set of activation-mediated mechanisms that impair human neutrophil migration. © 2017 by The American Society of Hematology.

  8. Preparation and properties of porous PMN-PZT ceramics doped with strontium

    International Nuclear Information System (INIS)

    Zeng Tao; Dong Xianlin; Mao Chaoliang; Chen Shutao; Chen Heng

    2006-01-01

    The piezoelectric and dielectric properties of lead magnesium niobate-lead zirconate titanate (PMN-PZT) ceramics were investigated as a function of density for transducer applications. A decrease in density increased elastic compliance and improved acoustic impedance matching between PMN-PZT ceramics and ambient media. The reduced dielectric constant (ε 33 ) and enhanced hydrostatic figure of merit (d h g h ) of PMN-PZT were observed with decreased density. The results showed the d h g h of PMN-PZT ceramic with density of about 5.4 g/cm 3 reached 4000 x 10 -15 m 2 /N, and the ε 33 was very close to 2000, which demonstrates that porous PMN-PZT ceramic is a promising material for transducer applications. Moreover, the low density PMN-PZT ceramics exhibited lower dielectric loss than high density PMN-PZT ceramics during the temperature from 250 deg. C to 500 deg. C

  9. Nucleobindin co-localizes and associates with cyclooxygenase (COX-2 in human neutrophils.

    Directory of Open Access Journals (Sweden)

    Patrick Leclerc

    2008-05-01

    Full Text Available The inducible cyclooxygenase isoform (COX-2 is associated with inflammation, tumorigenesis, as well as with physiological events. Despite efforts deployed in order to understand the biology of this multi-faceted enzyme, much remains to be understood. Nucleobindin (Nuc, a ubiquitous Ca(2+-binding protein, possesses a putative COX-binding domain. In this study, we investigated its expression and subcellular localization in human neutrophils, its affinity for COX-2 as well as its possible impact on PGE(2 biosynthesis. Complementary subcellular localization approaches including nitrogen cavitation coupled to Percoll fractionation, immunofluorescence, confocal and electron microscopy collectively placed Nuc, COX-2, and all of the main enzymes involved in prostanoid synthesis, in the Golgi apparatus and endoplasmic reticulum of human neutrophils. Immunoprecipitation experiments indicated a high affinity between Nuc and COX-2. Addition of human recombinant (hr Nuc to purified hrCOX-2 dose-dependently caused an increase in PGE(2 biosynthesis in response to arachidonic acid. Co-incubation of Nuc with COX-2-expressing neutrophil lysates also increased their capacity to produce PGE(2. Moreover, neutrophil transfection with hrNuc specifically enhanced PGE(2 biosynthesis. Together, these results identify a COX-2-associated protein which may have an impact in prostanoid biosynthesis.

  10. Evaluation of In-111 neutrophils in a model of the adult respiratory distress syndrome

    International Nuclear Information System (INIS)

    Cooper, J.A.; Solano, S.J.; Bizios, R.; Line, B.R.; Malik, A.B.

    1984-01-01

    Neutrophils (PMNs) have been implicated in the pathogenesis of the adult respiratory distress syndrome. To further define their role, the authors studied the kinetics of In-111 labeled PMNs in a sheep model of acute pulmonary vascular injury. PMNs isolated by Percoll-plasma gradient centrifugation, and labeled with 500 uCi of In-111-oxine. Following i.v. reinfusion of the labeled PMNs, lung activity was monitored with the labeled PMNs, lung activity was monitored with a gamma camera. After a two hour baseline, pulmonary vascular injury secondary to intravascular coagulation was induced by the i.v. infusion of 100 units/kg of thrombin (n=5). Pulmonary time activity curves demonstrated increases in pulmonary PMN activity averaging 14% over baseline following thrombin infusion. A portion of the uptake was transient, lasting about 20 to 30 min., but PMN activity remained above baseline for the remainder of the study. Following the infusion of gamma thrombin, a form of thrombin unable to cleave fibrinogen, increased PMN uptake was not observed. Inhibition of fibrinolysis with tranaxemic acid, reduced the PMN response to thrombin to less than a 3% increase over baseline (n=2). The findings demonstrate that PMNs are involved in acute pulmonary vascular injury, and suggest a potential role for labeled PMNs in the clinical investigation of the adult respiratory distress syndrome

  11. Effects of acrolein on leukotriene biosynthesis in human neutrophils.

    Science.gov (United States)

    Berry, Karin A Zemski; Henson, Peter M; Murphy, Robert C

    2008-12-01

    Acrolein is a toxic, highly reactive alpha,beta-unsaturated aldehyde that is present in high concentrations in cigarette smoke. In the current study, the effect of acrolein on eicosanoid synthesis in stimulated human neutrophils was examined. Eicosanoid synthesis in neutrophils was initiated by priming with granulocyte-macrophage colony-stimulating factor (GM-CSF) and subsequent stimulation with formyl-methionyl-leucyl-phenylalanine (fMLP) and 5-lipoxygenase (5-LO) products in addition to small amounts of cyclooxygenase (COX) products were detected using LC/MS/MS. A dose-dependent decrease in the formation of 5-LO products was observed in GM-CSF/fMLP-stimulated neutrophils when acrolein (0-50 microM) was present with almost complete inhibition at > or = 25 microM acrolein. The production of COX products was not affected by acrolein in these cells. The effect of acrolein was examined on key parts of the eicosanoid pathway, such as arachidonic acid release, intracellular calcium ion concentration, and adenosine production. In addition, the direct effect of acrolein on 5-LO enzymatic activity was probed using a recombinant enzyme. Some of these factors were affected by acrolein but did not completely explain the almost complete inhibition of 5-LO product formation in GM-CSF/fMLP-treated cells with acrolein. In addition, the effect of acrolein on different stimuli that initiate the 5-LO pathway [platelet-activating factor (PAF)/fMLP, GM-CSF/PAF, opsonized zymosan, and A23187] was examined. Acrolein had no significant effect on the leukotriene production in neutrophils stimulated with PAF/fMLP, GM-CSF/ PAF, or OPZ. Additionally, 50% inhibition of the 5-LO pathway was observed in A23187-stimulated neutrophils. Our results suggest that acrolein has a profound effect on the 5-LO pathway in neutrophils, which may have implications in disease states, such as chronic obstructive pulmonary disease and other pulmonary disease, where both activated neutrophils and acrolein are

  12. Pharmacological intervention with oxidative burst in human neutrophils

    Czech Academy of Sciences Publication Activity Database

    Nosál, R.; Drábiková, K.; Jančinová, V.; Mačičková, T.; Pečivová, J.; Perečko, T.; Harmatha, Juraj

    2017-01-01

    Roč. 10, č. 2 (2017), s. 56-60 ISSN 1337-6853 Institutional support: RVO:61388963 Keywords : human neutrophils * oxidative burst * tharapeutical drugs * natural antioxidants Subject RIV: FR - Pharmacology ; Medidal Chemistry OBOR OECD: Pharmacology and pharmacy https://www.degruyter.com/downloadpdf/j/intox.2017.10.issue-2/intox-2017-0009/intox-2017-0009.pdf

  13. Sol-gel preparation of lead magnesium niobate (PMN) powders and thin films

    Science.gov (United States)

    Boyle, T.J.

    1999-01-12

    A method of preparing a lead magnesium niobium oxide (PMN), Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}, precursor solution by a solvent method wherein a liquid solution of a lead-complex PMN precursor is combined with a liquid solution of a niobium-complex PMN precursor, the combined lead- and niobium-complex liquid solutions are reacted with a magnesium-alkyl solution, forming a PMN precursor solution and a lead-based precipitate, and the precipitate is separated from the reacted liquid PMN precursor solution to form a precipitate-free PMN precursor solution. This precursor solution can be processed to form both ferroelectric powders and thin films. 3 figs.

  14. Products of neutrophils and eosinophils increase the responsiveness of human isolated bronchial tissue.

    Science.gov (United States)

    Hallahan, A R; Armour, C L; Black, J L

    1990-05-01

    This study examines the possibility that products of neutrophils and eosinophils could increase the responsiveness of human isolated bronchial tissue. Neutrophils and eosinophils were isolated from the peripheral blood of healthy volunteers. The cells were incubated with 1 microM calcium ionophore A23187 for 10-15 min then centrifuged, the supernatant collected and stored at -70 degrees C. Human bronchial rings (2-3 mm diameter, 3-4 mm long) were prepared from specimens resected at thoracotomy. The tissues were suspended in organ baths under a 1 g load and changes in tension measured isometrically. Stable contractions to bolus doses of histamine (0.1-10 microM) or to electrical field stimulation (40-100 V, 4-16 Hz, 1 ms for 20 s) were established. Supernatant from 106 neutrophils or 105 eosinophils was then added and tissue responsiveness reassessed. Neutrophil supernatant increased tissue responsiveness to histamine and electrical field stimulation by 54 +/- 17% (n = 5, p less than 0.05) and 18 +/- 7% (n = 6, p less than 0.05), respectively. Eosinophil supernatant increased the histamine response by 60 +/- 23% (n = 8, p less than 0.05) while tissue responsiveness to electrical field stimulation was unchanged (n = 3). Thus, as neutrophils and eosinophils can change the responsiveness of human bronchus in vitro it is possible that they do this in vivo and may not simply be temporally related to the development of bronchial hyperresponsiveness.

  15. Neutrophil-mediated protection of cultured human vascular endothelial cells from damage by growing Candida albicans hyphae

    International Nuclear Information System (INIS)

    Edwards, J.E. Jr.; Rotrosen, D.; Fontaine, J.W.; Haudenschild, C.C.; Diamond, R.D.

    1987-01-01

    Interactions were studied between human neutrophils and cultured human umbilical vein endothelial cells invaded by Candida albicans. In the absence of neutrophils, progressive Candida germination and hyphal growth extensively damaged endothelial cell monolayers over a period of 4 to 6 hours, as determined both by morphological changes and release of 51 Cr from radiolabeled endothelial cells. Monolayers were completely destroyed and replaced by hyphae after 18 hours of incubation. In contrast, when added 2 hours after the monolayers had been infected with Candida, neutrophils selectively migrated toward and attached to hyphae at points of hyphal penetration into individual endothelial cells (observed by time-lapse video-microscopy). Attached neutrophils spread over hyphal surfaces both within and beneath the endothelial cells; neutrophil recruitment to initial sites of leukocyte-Candida-endothelial cell interactions continued throughout the first 60 minutes of observation. Neutrophil spreading and stasis were observed only along Candida hyphae and at sites of Candida-endothelial cell interactions. These events resulted in 58.0% killing of Candida at 2 hours and subsequent clearance of Candida from endothelial cell monolayers, as determined by microcolony counts and morphological observation. On introduction of additional neutrophils to yield higher ratios of neutrophils to endothelial cells (10 neutrophils:1 endothelial cell), neutrophil migration toward hyphal elements continued. Despite retraction or displacement of occasional endothelial cells by invading Candida and neutrophils, most endothelial cells remained intact, viable, and motile as verified both by morphological observations and measurement of 51 Cr release from radiolabeled monolayers

  16. The effects of beta 2-agonists and methylxanthines on neutrophil function in vitro.

    Science.gov (United States)

    Llewellyn-Jones, C G; Stockley, R A

    1994-08-01

    Therapeutic agents which affect polymorphonuclear neutrophil (PMN) functions have the potential to reduce or increase PMN activation and, hence, influence the progression of lung inflammation. We have assessed the effects of the beta 2-agonist, terbutaline, and the methylxanthine, aminophylline, on PMN functions in vitro at both therapeutic and higher concentrations. At therapeutic levels, both agents increased PMN chemotaxis to formyl-methionyl-leucyl-phenylalanine (FMLP) in a dose-dependent manner from a control value of 22.5 +/- 3.58 cells.field-1 to 26.1 +/- 4.73 cells.field-1 with 4 mg.l-1 terbutaline, and to 26.3 +/- 4.49 cells.field-1 with 20 mg.l-1 aminophylline. When the cells were preincubated with higher doses of the agents in separate experiments there was inhibition of chemotaxis from a control value of 31.1 +/- 2.06 cells.field-1 to 18.3 +/- 0.82 cells.field-1 at 160 mg.l-1 terbutaline, and to 16.1 +/- 0.77 cells.field-1 at 400 mg.l-1 aminophylline. A similar effect was seen when the PMNs were preincubated with terbutaline and aminophylline prior to assessment of superoxide anion generation, with stimulation of superoxide release at therapeutic levels of the drugs and inhibition at higher doses (19% increase from resting control cells at terbutaline 4 mg.l-1 and 53% reduction at 160 mg.l-1; 28% increase with aminophylline 20 mg.l-1 and 22% reduction at 400 mg.l-1). Both terbutaline and aminophylline had no effect on PMN degranulation, as assessed by the degradation of fibronectin.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. L-carnosine modulates respiratory burst and reactive oxygen species production in neutrophil biochemistry and function: may oral dosage form of non-hydrolized dipeptide L-carnosine complement anti-infective anti-influenza flu treatment, prevention and self-care as an alternative to the conventional vaccination?

    Science.gov (United States)

    Babizhayev, Mark A; Deyev, Anatoliy I; Yegorov, Yegor E

    2014-05-01

    compounds, and suggest important interactions between neutrophills and carnosine related compounds in the host response to viruses and bacteria. Carnosine and anserine were also found to reduce apoptosis of human neutrophils. In this way these histidine-containing compounds can modulate the Influenza virus release from neutrophills and reduce virus dissemination through the body of the organism. This review points the ability of therapeutic control of Influenza viral infections associated with modulation by oral nonhydrolized forms of carnosine and related histidine-containg compounds of PMN apoptosis which may be involved at least in part in the pathophysiology of the disease in animals and humans. The data presented in this article, overall, may have implications for global influenza surveillance and planning for pandemic influenza therapeutic prevention with oral forms of non-hydrolized natural L-carnosine as a suitable alternative to the conventional vaccination for various flu ailments.

  18. Energy scavenging based on a single-crystal PMN-PT nanobelt

    Science.gov (United States)

    Wu, Fan; Cai, Wei; Yeh, Yao-Wen; Xu, Shiyou; Yao, Nan

    2016-03-01

    Self-powered nanodevices scavenging mechanical energy require piezoelectric nanostructures with high piezoelectric coefficients. Here we report the fabrication of a single-crystal (1 - x)Pb(Mg1/3Nb2/3)O3 - xPbTiO3 (PMN-PT) nanobelt with a superior piezoelectric constant (d33 = ~550 pm/V), which is approximately ~150%, 430%, and 2100% of the largest reported values for previous PMN-PT, PZT and ZnO nanostructures, respectively. The high d33 of the single-crystalline PMN-PT nanobelt results from the precise orientation control during its fabrication. As a demonstration of its application in energy scavenging, a piezoelectric nanogenerator (PNG) is built on the single PMN-PT nanobelt, generating a maximum output voltage of ~1.2 V. This value is ~4 times higher than that of a single-CdTe PNG, ~13 times higher than that of a single-ZnSnO3 PNG, and ~26 times higher than that of a single-ZnO PNG. The profoundly increased output voltage of a lateral PNG built on a single PMN-PT nanobelt demonstrates the potential application of PMN-PT nanostructures in energy harvesting, thus enriching the material choices for PNGs.

  19. α-1 Antitrypsin regulates human neutrophil chemotaxis induced by soluble immune complexes and IL-8.

    LENUS (Irish Health Repository)

    Bergin, David A

    2010-12-01

    Hereditary deficiency of the protein α-1 antitrypsin (AAT) causes a chronic lung disease in humans that is characterized by excessive mobilization of neutrophils into the lung. However, the reason for the increased neutrophil burden has not been fully elucidated. In this study we have demonstrated using human neutrophils that serum AAT coordinates both CXCR1- and soluble immune complex (sIC) receptor-mediated chemotaxis by divergent pathways. We demonstrated that glycosylated AAT can bind to IL-8 (a ligand for CXCR1) and that AAT-IL-8 complex formation prevented IL-8 interaction with CXCR1. Second, AAT modulated neutrophil chemotaxis in response to sIC by controlling membrane expression of the glycosylphosphatidylinositol-anchored (GPI-anchored) Fc receptor FcγRIIIb. This process was mediated through inhibition of ADAM-17 enzymatic activity. Neutrophils isolated from clinically stable AAT-deficient patients were characterized by low membrane expression of FcγRIIIb and increased chemotaxis in response to IL-8 and sIC. Treatment of AAT-deficient individuals with AAT augmentation therapy resulted in increased AAT binding to IL-8, increased AAT binding to the neutrophil membrane, decreased FcγRIIIb release from the neutrophil membrane, and normalization of chemotaxis. These results provide new insight into the mechanism underlying the effect of AAT augmentation therapy in the pulmonary disease associated with AAT deficiency.

  20. On the Pharmacology of Oxidative Burst of Human Neutrophils

    Czech Academy of Sciences Publication Activity Database

    Nosáľ, R.; Drábiková, K.; Jančinová, V.; Mačičková, T.; Pečivová, J.; Perečko, T.; Harmatha, Juraj; Šmidrkal, J.

    2015-01-01

    Roč. 64, Suppl 4 (2015), S445-S452 ISSN 0862-8408 Institutional support: RVO:61388963 Keywords : human neutrophils * oxidative burst * chemiluminescence * protein kinase C * apoptosis Subject RIV: FR - Pharmacology ; Medidal Chemistry Impact factor: 1.643, year: 2015 http://www.biomed.cas.cz/physiolres/pdf/64/64_S445.pdf

  1. Attenuated, oncolytic, but not wild-type measles virus infection has pleiotropic effects on human neutrophil function.

    Science.gov (United States)

    Zhang, Yu; Patel, Bella; Dey, Aditi; Ghorani, Ehsan; Rai, Lena; Elham, Mohammed; Castleton, Anna Z; Fielding, Adele K

    2012-02-01

    We previously showed that neutrophils play a role in regression of human tumor xenografts in immunodeficient mice following oncolytic vaccine measles virus (MV-Vac) treatment. In this study, we sought, using normal human neutrophils, to identify potential neutrophil-mediated mechanisms for the attenuated MV-Vac induced effects seen in vivo, by comparison with those consequent on wild-type (WT-MV) infection. Both MV-Vac and WT-MV infected and replicated within neutrophils, despite lack of SLAM expression. In both cases, neutrophils survived longer ex vivo postinfection. Furthermore, MV-Vac (but not WT-MV) infection activated neutrophils and stimulated secretion of several specific antitumor cytokines (IL-8, TNF-α, MCP-1, and IFN-α) via induction of de novo RNA and protein synthesis. In addition, MV-Vac (but not WT-MV) infection caused TRAIL secretion in the absence of de novo synthesis by triggering release of prefabricated TRAIL, via a direct effect upon degranulation. The differences between the outcome of infection by MV-Vac and WT-MV were not entirely explained by differential infection and replication of the viruses within neutrophils. To our knowledge, this is the first demonstration of potential mechanisms of oncolytic activity of an attenuated MV as compared with its WT parent. Furthermore, our study suggests that neutrophils have an important role to play in the antitumor effects of oncolytic MV.

  2. Effects of sphingosine and sphingosine analogues on the free radical production by stimulated neutrophils: ESR and chemiluminescence studies

    Directory of Open Access Journals (Sweden)

    A. Mouithys-Mickalad

    1997-01-01

    Full Text Available Sphingolipids inhibit the activation of the neutrophil (PMN NADPH oxidase by protein kinase C pathway. By electron spin resonance spectroscopy (ESR and chemiluminescence (CL, we studied the effects of sphingosine (SPN and ceramide analogues on phorbol 12-myristate 13-acetate (PMA, 5 × 10-7M stimulated PMN (6 × 106 cells. By ESR with spin trapping (100 mM DMPO: 5,5-dimethyl-1-pyrroline-Noxide, we showed that SPN (5 to 8 × 10-6M, C2-ceramide (N-acetyl SPN and C6-ceramide (N-hexanoyl SPN at the final concentration of 2 × 10-5 and 2 × 10-4M inhibit the production of free radicals by stimulated PMN. The ESR spectrum of stimulated PMN was that of DMPO-superoxide anion spin adduct. Inhibition by 5 × 10-6M SPN was equivalent to that of 30 U/ml SOD. SPN (5 to 8 × 10-6M has no effect on in vitro systems generating superoxide anion (xanthine 50 mM/xanthine oxidase 110 mU/ml or hydroxyl radical (Fenton reaction: 88 mM H2O2, 0.01 mM Fe2+ and 0.01 mM EDTA. SPN and N-acetyl SPN also inhibited the CL of PMA stimulated PMN in a dose dependent manner (from 2 × 10-6 to 10-5M, but N-hexanoyl SPN was less active (from 2 × 10-5 to 2 × 10-4M. These effects were compared with those of known PMN inhibitors, superoxide dismutase, catalase and azide. SPN was a better inhibitor compared with these agents. The complete inhibition by SPN of ESR signal and CL of stimulated PMN confirms that this compound or one of its metabolites act at the level of NADPH-oxidase, the key enzyme responsible for production of oxygen-derived free radicals.

  3. Coccidioides Endospores and Spherules Draw Strong Chemotactic, Adhesive, and Phagocytic Responses by Individual Human Neutrophils.

    Directory of Open Access Journals (Sweden)

    Cheng-Yuk Lee

    Full Text Available Coccidioides spp. are dimorphic pathogenic fungi whose parasitic forms cause coccidioidomycosis (Valley fever in mammalian hosts. We use an innovative interdisciplinary approach to analyze one-on-one encounters between human neutrophils and two forms of Coccidioides posadasii. To examine the mechanisms by which the innate immune system coordinates different stages of the host response to fungal pathogens, we dissect the immune-cell response into chemotaxis, adhesion, and phagocytosis. Our single-cell technique reveals a surprisingly strong response by initially quiescent neutrophils to close encounters with C. posadasii, both from a distance (by complement-mediated chemotaxis as well as upon contact (by serum-dependent adhesion and phagocytosis. This response closely resembles neutrophil interactions with Candida albicans and zymosan particles, and is significantly stronger than the neutrophil responses to Cryptococcus neoformans, Aspergillus fumigatus, and Rhizopus oryzae under identical conditions. The vigorous in vitro neutrophil response suggests that C. posadasii evades in vivo recognition by neutrophils through suppression of long-range mobilization and recruitment of the immune cells. This observation elucidates an important paradigm of the recognition of microbes, i.e., that intact immunotaxis comprises an intricate spatiotemporal hierarchy of distinct chemotactic processes. Moreover, in contrast to earlier reports, human neutrophils exhibit vigorous chemotaxis toward, and frustrated phagocytosis of, the large spherules of C. posadasii under physiological-like conditions. Finally, neutrophils from healthy donors and patients with chronic coccidioidomycosis display subtle differences in their responses to antibody-coated beads, even though the patient cells appear to interact normally with C. posadasii endospores.

  4. HIF-1α is essential for effective PMN bacterial killing, antimicrobial peptide production and apoptosis in Pseudomonas aeruginosa keratitis.

    Directory of Open Access Journals (Sweden)

    Elizabeth A Berger

    Full Text Available Hypoxia-inducible factor (HIF-1α, is a transcription factor that controls energy metabolism and angiogenesis under hypoxic conditions, and a potent regulator of innate immunity. The studies described herein examined the role of HIF-1α in disease resolution in BALB/c (resistant, cornea heals mice after ocular infection with Pseudomonas (P. aeruginosa. Furthermore, the current studies focused on the neutrophil (PMN, the predominant cell infiltrate in keratitis. Using both siRNA and an antagonist (17-DMAG, the role of HIF-1α was assessed in P. aeruginosa-infected BALB/c mice. Clinical score and slit lamp photography indicated HIF-1α inhibition exacerbated disease and corneal destruction. Real time RT-PCR, immunohistochemistry, ELISA, Greiss and MPO assays, bacterial load, intracellular killing, phagocytosis and apoptosis assays further tested the regulatory role of HIF-1α. Despite increased pro-inflammatory cytokine expression and increased MPO levels after knocking down HIF-1α expression, in vivo studies revealed a decrease in NO production and higher bacterial load. In vitro studies using PMN provided evidence that although inhibition of HIF-1α did not affect phagocytosis, both bacterial killing and apoptosis were significantly affected, as was production of antimicrobial peptides. Overall, data provide evidence that inhibition of HIF-1α converts a normally resistant disease response to susceptible (corneal thinning and perforation after induction of bacterial keratitis. Although this inhibition does not appear to affect PMN transmigration or phagocytosis, both in vivo and in vitro approaches indicate that the transcriptional factor is essential for effective bacterial killing, apoptosis and antimicrobial peptide production.

  5. Extracellular traps are associated with human and mouse neutrophil and macrophage mediated killing of larval Strongyloides stercoralis.

    Science.gov (United States)

    Bonne-Année, Sandra; Kerepesi, Laura A; Hess, Jessica A; Wesolowski, Jordan; Paumet, Fabienne; Lok, James B; Nolan, Thomas J; Abraham, David

    2014-06-01

    Neutrophils are multifaceted cells that are often the immune system's first line of defense. Human and murine cells release extracellular DNA traps (ETs) in response to several pathogens and diseases. Neutrophil extracellular trap (NET) formation is crucial to trapping and killing extracellular pathogens. Aside from neutrophils, macrophages and eosinophils also release ETs. We hypothesized that ETs serve as a mechanism of ensnaring the large and highly motile helminth parasite Strongyloides stercoralis thereby providing a static target for the immune response. We demonstrated that S. stercoralis larvae trigger the release of ETs by human neutrophils and macrophages. Analysis of NETs revealed that NETs trapped but did not kill larvae. Induction of NETs was essential for larval killing by human but not murine neutrophils and macrophages in vitro. In mice, extracellular traps were induced following infection with S. stercoralis larvae and were present in the microenvironment of worms being killed in vivo. These findings demonstrate that NETs ensnare the parasite facilitating larval killing by cells of the immune system. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  6. Proteome profiling of human neutrophil granule subsets, secretory vesicles, and cell membrane

    DEFF Research Database (Denmark)

    Rørvig, Sara; Østergaard, Ole; Heegaard, Niels Henrik Helweg

    2013-01-01

    granules, SVs, and plasma membrane has been performed before. Here, we performed subcellular fractionation on freshly isolated human neutrophils by nitrogen cavitation and density centrifugation on a four-layer Percoll gradient. Granule subsets were pooled and subjected to SDS-PAGE, and gel pieces were in...... subcellular proteome profiles presented here may be used as a database in combination with the mRNA array database to predict and test the presence and localization of proteins in neutrophil granules and membranes....

  7. Staphylococcus epidermidis strategies to avoid killing by human neutrophils.

    Directory of Open Access Journals (Sweden)

    Gordon Y C Cheung

    2010-10-01

    Full Text Available Staphylococcus epidermidis is a leading nosocomial pathogen. In contrast to its more aggressive relative S. aureus, it causes chronic rather than acute infections. In highly virulent S. aureus, phenol-soluble modulins (PSMs contribute significantly to immune evasion and aggressive virulence by their strong ability to lyse human neutrophils. Members of the PSM family are also produced by S. epidermidis, but their role in immune evasion is not known. Notably, strong cytolytic capacity of S. epidermidis PSMs would be at odds with the notion that S. epidermidis is a less aggressive pathogen than S. aureus, prompting us to examine the biological activities of S. epidermidis PSMs. Surprisingly, we found that S. epidermidis has the capacity to produce PSMδ, a potent leukocyte toxin, representing the first potent cytolysin to be identified in that pathogen. However, production of strongly cytolytic PSMs was low in S. epidermidis, explaining its low cytolytic potency. Interestingly, the different approaches of S. epidermidis and S. aureus to causing human disease are thus reflected by the adaptation of biological activities within one family of virulence determinants, the PSMs. Nevertheless, S. epidermidis has the capacity to evade neutrophil killing, a phenomenon we found is partly mediated by resistance mechanisms to antimicrobial peptides (AMPs, including the protease SepA, which degrades AMPs, and the AMP sensor/resistance regulator, Aps (GraRS. These findings establish a significant function of SepA and Aps in S. epidermidis immune evasion and explain in part why S. epidermidis may evade elimination by innate host defense despite the lack of cytolytic toxin expression. Our study shows that the strategy of S. epidermidis to evade elimination by human neutrophils is characterized by a passive defense approach and provides molecular evidence to support the notion that S. epidermidis is a less aggressive pathogen than S. aureus.

  8. Porphyromonas gingivalis regulates TREM-1 in human polymorphonuclear neutrophils via its gingipains.

    Directory of Open Access Journals (Sweden)

    Nagihan Bostanci

    Full Text Available The Triggering Receptor Expressed on Myeloid cells 1 (TREM-1 is a cell surface receptor of the immunoglobulin superfamily, with the capacity to amplify pro-inflammatory cytokine production and regulate apoptosis. Polymorphonuclear neutrophils (PMNs are the first line of defence against infection, and a major source of TREM-1. Porphyromonas gingivalis is a Gram-negative anaerobe highly implicated in the inflammatory processes governing periodontal disease, which is characterized by the destruction of the tooth-supporting tissues. It expresses a number of virulence factors, including the cysteine proteinases (or gingipains. The aim of this in vitro study was to investigate the effect of P. gingivalis on TREM-1 expression and production by primary human PMNs, and to evaluate the role of its gingipains in this process. After 4 h of challenge, P. gingivalis enhanced TREM-1 expression as identified by quantitative real-time PCR. This was followed by an increase in soluble (sTREM-1 secretion over a period of 18 h, as determined by ELISA. At this time-point, the P. gingivalis-challenged PMNs exhibited diminished TREM-1 cell-membrane staining, as identified by flow cytometry and confocal laser scanning microscopy. Furthermore engagement of TREM-1, by means of anti-TREM-1 antibodies, enhanced the capacity of P. gingivalis to stimulate interleukin (IL-8 production. Conversely, antagonism of TREM-1 using a synthetic peptide resulted in reduction of IL-8 secretion. Using isogenic P. gingivalis mutant strains, we identified the Arg-gingipain to be responsible for shedding of sTREM-1 from the PMN surface, whereas the Lys-gingipain had the capacity to degrade TREM-1. In conclusion, the differential regulation of TREM-1 by the P. gingivalis gingipains may present a novel mechanism by which P. gingivalis manipulates the host innate immune response helping to establish chronic periodontal inflammation.

  9. Staphylococcus aureus panton-valentine leukocidin is a very potent cytotoxic factor for human neutrophils.

    Directory of Open Access Journals (Sweden)

    Bettina Löffler

    2010-01-01

    Full Text Available The role of the pore-forming Staphylococcus aureus toxin Panton-Valentine leukocidin (PVL in severe necrotizing diseases is debated due to conflicting data from epidemiological studies of community-associated methicillin-resistant S. aureus (CA-MRSA infections and various murine disease-models. In this study, we used neutrophils isolated from different species to evaluate the cytotoxic effect of PVL in comparison to other staphylococcal cytolytic components. Furthermore, to study the impact of PVL we expressed it heterologously in a non-virulent staphylococcal species and examined pvl-positive and pvl-negative clinical isolates as well as the strain USA300 and its pvl-negative mutant. We demonstrate that PVL induces rapid activation and cell death in human and rabbit neutrophils, but not in murine or simian cells. By contrast, the phenol-soluble modulins (PSMs, a newly identified group of cytolytic staphylococcal components, lack species-specificity. In general, after phagocytosis of bacteria different pvl-positive and pvl-negative staphylococcal strains, expressing a variety of other virulence factors (such as surface proteins, induced cell death in neutrophils, which is most likely associated with the physiological clearing function of these cells. However, the release of PVL by staphylococcal strains caused rapid and premature cell death, which is different from the physiological (and programmed cell death of neutrophils following phagocytosis and degradation of virulent bacteria. Taken together, our results question the value of infection-models in mice and non-human primates to elucidate the impact of PVL. Our data clearly demonstrate that PVL acts differentially on neutrophils of various species and suggests that PVL has an important cytotoxic role in human neutrophils, which has major implications for the pathogenesis of CA-MRSA infections.

  10. Recycling of CR1 by phorbol ester-activated polymorphonuclear leukocytes (PMN)

    International Nuclear Information System (INIS)

    Malbran, A.; Frank, M.M.; Fries, L.

    1986-01-01

    PMN CR1 is internalized when these cells are stimulated with phorbol esters. To elucidate the fate of these receptors and ligand bound to them, the authors studied the uptake and disposition of 125 I-C3b by phorbol dibutyrate (PDBu)-treated PMN. C3b monomers bind to PDBu-treated PMN with a K(d) of 4.75 +/- 1.06 x 1 -8 M at 0 0 C in reduced ionic strength. This C3b remains almost entirely dissociable by high ionic strength buffer unless the cells are warmed. At 37 0 C, PDBu-treated PMN internalize monomer C3b into a non-strippable pool, reaching a plateau level of approx. 50% of bound ligand. Exocytosis of the internalized C3b was studied by washing the PMN in cold PBS, then rewarming to 37 0 . A progressive release of internalized C3b is observed, with kinetics similar to internalization and reaching a plateau of 48 +/- 4.2% at 15 minutes. Released C3b is precipitable by 10% TCA, suggesting that release does not require passage through the lysosomal compartment. PMN preloaded with 1mM chloroquine behave identically in the exocytosis phase, supporting this hypothesis. The non-recycling pool of 125 I-C3b is stable for at least 30 minutes at 37 0 . Uptake of chemically cross-linked C3b dimers by PMN is followed by slower and less complete exocytosis of internal counts, suggesting diversion into the non-releaseable pool. Activated PMN CR1 is partially recycled via a prelysosomal compartment. Minimal cross-linking shifts receptor-ligand complexes into a non-recycling, possibly lysosomal, pool

  11. Medium-chain, triglyceride-containing lipid emulsions increase human neutrophil beta2 integrin expression, adhesion, and degranulation

    NARCIS (Netherlands)

    Wanten, G. J.; Geijtenbeek, T. B.; Raymakers, R. A.; van Kooyk, Y.; Roos, D.; Jansen, J. B.; Naber, A. H.

    2000-01-01

    BACKGROUND: To test the hypothesis that lipid emulsions with different triglyceride structures have distinct immunomodulatory properties, we analyzed human neutrophil adhesion and degranulation after lipid incubation. METHODS: Neutrophils, isolated from the blood of 10 healthy volunteers, were

  12. Transmigration of polymorphnuclear neutrophils and monocytes through the human blood-cerebrospinal fluid barrier after bacterial infection in vitro.

    Science.gov (United States)

    Steinmann, Ulrike; Borkowski, Julia; Wolburg, Hartwig; Schröppel, Birgit; Findeisen, Peter; Weiss, Christel; Ishikawa, Hiroshi; Schwerk, Christian; Schroten, Horst; Tenenbaum, Tobias

    2013-02-28

    Bacterial invasion through the blood-cerebrospinal fluid barrier (BCSFB) during bacterial meningitis causes secretion of proinflammatory cytokines/chemokines followed by the recruitment of leukocytes into the CNS. In this study, we analyzed the cellular and molecular mechanisms of polymorphonuclear neutrophil (PMN) and monocyte transepithelial transmigration (TM) across the BCSFB after bacterial infection. Using an inverted transwell filter system of human choroid plexus papilloma cells (HIBCPP), we studied leukocyte TM rates, the migration route by immunofluorescence, transmission electron microscopy and focused ion beam/scanning electron microscopy, the secretion of cytokines/chemokines by cytokine bead array and posttranslational modification of the signal regulatory protein (SIRP) α via western blot. PMNs showed a significantly increased TM across HIBCPP after infection with wild-type Neisseria meningitidis (MC58). In contrast, a significantly decreased monocyte transmigration rate after bacterial infection of HIBCPP could be observed. Interestingly, in co-culture experiments with PMNs and monocytes, TM of monocytes was significantly enhanced. Analysis of paracellular permeability and transepithelial electrical resistance confirmed an intact barrier function during leukocyte TM. With the help of the different imaging techniques we could provide evidence for para- as well as for transcellular migrating leukocytes. Further analysis of secreted cytokines/chemokines showed a distinct pattern after stimulation and transmigration of PMNs and monocytes. Moreover, the transmembrane glycoprotein SIRPα was deglycosylated in monocytes, but not in PMNs, after bacterial infection. Our findings demonstrate that PMNs and monoctyes differentially migrate in a human BCSFB model after bacterial infection. Cytokines and chemokines as well as transmembrane proteins such as SIRPα may be involved in this process.

  13. LukM/LukF'-PV is the most active Staphylococcus aureus leukotoxin on bovine neutrophils.

    Science.gov (United States)

    Barrio, Maria B; Rainard, Pascal; Prévost, Gilles

    2006-07-01

    Staphylococcus aureus is a ubiquitous pathogen causing infections in humans and domestic animals. It is often associated with bovine mastitis. Among secreted virulence factors, the leukotoxins constitute a family of toxins composed of two distinct subunits (class S and F proteins) which induce first Ca2+ influx and subsequent pore formation that allows ethidium entry. As mastitis-causing isolates harbor the genes of at least two, and often three leukotoxins, we compared the biological activities of the purified leukotoxins whose genes are found in mastitis-causing isolates on bovine polymorphonuclear neutrophils (PMN): spreading on a solid support, calcium influx and ethidium entry. In the spreading assay, the homologous pair LukM/LukF'-PV was the most active leukotoxin. Within each class, either S or F, subunits were interchangeable and generated leukotoxins with different specific activity. LukM was also very active when associated with heterologous F subunits. A similar ranking of homologous pairs was also found in the ethidium entry assay: LukM/LukF'-PV > HlgA/HlgB > HlgC/HlgB > LukE/LukD = LukEv/LukDv. In the Ca2+ flux assay, LukM/F'-PV was the most active pair, but gamma-hemolysin (Hlg) was also very efficient. LukEv/Dv was more active (twofold) than LukE/D in the spreading assay, but the two variants showed similar activities in the other two assays. Supposing that spreading and ethidium entry (pore formation) reflect toxic activities on bovine PMN, and Ca2+ influx cell activation, LukM/F'-PV was by far the most cytotoxic leukotoxin, but it was closely followed by gamma-hemolysin for PMN activation. These results suggest that LukM/F'-PV may constitute a particular virulence attribute of mastitis-causing S. aureus strains.

  14. Synchronisation of glycolytic oscillations in a suspension of human neutrophils

    DEFF Research Database (Denmark)

    Brasen, Jens Christian; Poulsen, Allan K.; Olsen, Lars Folke

    Neutrophils are known to be able to synchronize their production of superoxide. We show that glycolysis is also synchronized in human neutrophils being in suspension and suggest that oscillations in glycolysis are driving the pulsatile production of superoxide. The synchronising agent remains so...... far unknown, however, much evident points to that it might be hydrogen peroxide or an intermediate in glycolysis....

  15. Sulfur mustard primes human neutrophils for increased degranulation and stimulates cytokine release via TRPM2/p38 MAPK signaling

    Energy Technology Data Exchange (ETDEWEB)

    Ham, Hwa-Yong [Department of Pharmacology, Infectious Diseases Medical Research Center, College of Medicine, Hallym University, Chuncheon (Korea, Republic of); Hong, Chang-Won, E-mail: chyj7983@hallym.ac.kr [Department of Chemical and Biological Warfare Research, The Armed Forces Medical Research Institute, Daejeon (Korea, Republic of); Lee, Si-Nae [Department of Pharmacology, Infectious Diseases Medical Research Center, College of Medicine, Hallym University, Chuncheon (Korea, Republic of); Kwon, Min-Soo [Department of Pharmacology, School of Medicine, CHA University, Seongnam (Korea, Republic of); Kim, Yeon-Ja [Department of Pharmacology, Infectious Diseases Medical Research Center, College of Medicine, Hallym University, Chuncheon (Korea, Republic of); Song, Dong-Keun, E-mail: dksong@hallym.ac.kr [Department of Pharmacology, Infectious Diseases Medical Research Center, College of Medicine, Hallym University, Chuncheon (Korea, Republic of)

    2012-01-01

    Sulfur mustard (2,2′-bis-chloroethyl-sulfide; SM) has been a military threat since the World War I. The emerging threat of bioterrorism makes SM a major threat not only to military but also to civilian world. SM injury elicits an inflammatory response characterized by infiltration of neutrophils. Although SM was reported to prime neutrophils, the mechanism has not been identified yet. In the present study, we investigated the mechanism of SM-induced priming in human neutrophils. SM increased [Ca{sup 2+}]{sub i} in human neutrophils in a concentration-dependent fashion. Transient receptor potential melastatin (TRPM) 2 inhibitors (clotrimazole, econazole and flufenamic acid) and silencing of TRPM2 by shRNA attenuated SM-induced [Ca{sup 2+}]{sub i} increase. SM primed degranulation of azurophil and specific granules in response to activation by fMLP as previously reported. SB203580, an inhibitor of p38 MAPK, inhibited SM-induced priming. Neither PD98057, an ERK inhibitor, nor SP600215, a JNK inhibitor, inhibited SM-induced priming. In addition, SM enhanced phosphorylation of NF-kB p65 and release of TNF-α, interleukin (IL)-6 and IL-8. SB203580 inhibited SM-induced NF-kB phosphorylation and cytokine release. These results suggest the involvement of TRPM2/p38 MAPK pathway in SM-induced priming and cytokines release in neutrophils. -- Highlights: ► SM increased [Ca{sup 2+}]{sub i} in human neutrophils through TPRM2-mediated calcium influx. ► SM primed degranulation of azurophil and specific granules. ► SM enhanced p38 MAPK and NF-κB p65 phosphorylation in human neutrophils. ► SM enhanced release of TNF-α, interleukin (IL)-6 and IL-8 from human neutrophils. ► SB203580 inhibited SM-induced priming, NF-κB p65 phosphorylation and cytokine release.

  16. Anaplasma phagocytophilum inhibits human neutrophil apoptosis via upregulation of bfl-1, maintenance of mitochondrial membrane potential and prevention of caspase 3 activation.

    Science.gov (United States)

    Ge, Yan; Yoshiie, Kiyotaka; Kuribayashi, Futoshi; Lin, Mingqun; Rikihisa, Yasuko

    2005-01-01

    The inhibition of neutrophil apoptosis plays a central role in human granulocytic anaplasmosis. Intracellular signalling pathways through which the obligatory intracellular bacterium Anaplasma phagocytophilum inhibits the spontaneous apoptosis of human peripheral blood neutrophils were investigated. bfl-1 mRNA levels in uninfected neutrophils after 12 h in culture were reduced to approximately 5-25% of 0 h levels, but remained high in infected neutrophils. The eukaryotic RNA synthesis inhibitor, actinomycin D, prevented the maintenance of bfl-1 mRNA levels by A. phagocytophilum. Differences in mcl-1, bax, bcl-w, bad or bak mRNA levels in infected versus uninfected neutrophils were not remarkable. By using mitochondrial fluorescent dyes, Mitotracker Red and JC-1, it was found that most uninfected neutrophils lost mitochondrial membrane potential after 10-12 h incubation, whereas A. phagocytophilum-infected neutrophils maintained high membrane potential. Caspase 3 activity and the degree of apoptosis were lower in dose-dependent manner in A. phagocytophilum-infected neutrophils at 16 h post infection, as compared to uninfected neutrophils. Anti-active caspase 3 antibody labelling showed less positively stained population in infected neutrophils compared to those in uninfected neutrophils after 12 h incubation. These results suggest that A. phagocytophilum inhibits human neutrophil apoptosis via transcriptional upregulation of bfl-1 and inhibition of mitochondria-mediated activation of caspase 3.

  17. Flow Cytometric Evaluation of Human Neutrophil Apoptosis During Nitric Oxide Generation In Vitro: The Role of Exogenous Antioxidants

    Directory of Open Access Journals (Sweden)

    Zofia Sulowska

    2005-01-01

    in vitro. The effect of exogenous supply of NO donors such as SNP, SIN-1, and GEA-3162 on the course of human neutrophil apoptosis and the role of extracellular antioxidants in this process was investigated. Isolated from peripheral blood, neutrophils were cultured in the presence or absence of NO donor compounds and antioxidants for 8, 12, and 20 hours. Apoptosis of neutrophils was determined in vitro by flow cytometric analysis of cellular DNA content and Annexin V protein binding to the cell surface. Exposure of human neutrophils to GEA-3162 and SIN-1 significantly accelerates and enhances their apoptosis in vitro in a time-dependent fashion. In the presence of SNP, intensification of apoptosis has not been revealed until 12 hours after the culture. The inhibition of GEA-3162- and SIN-1-mediated neutrophil apoptosis by superoxide dismutase (SOD but not by catalase (CAT was observed. Our results show that SOD and CAT can protect neutrophils against NO-donors-induced apoptosis and suggest that the interaction of NO and oxygen metabolites signals may determine the destructive or protective role of NO donor compounds during apoptotic neutrophil death.

  18. Heterogeneity of Human Neutrophil CD177 Expression Results from CD177P1 Pseudogene Conversion.

    Directory of Open Access Journals (Sweden)

    Zuopeng Wu

    2016-05-01

    Full Text Available Most humans harbor both CD177neg and CD177pos neutrophils but 1-10% of people are CD177null, placing them at risk for formation of anti-neutrophil antibodies that can cause transfusion-related acute lung injury and neonatal alloimmune neutropenia. By deep sequencing the CD177 locus, we catalogued CD177 single nucleotide variants and identified a novel stop codon in CD177null individuals arising from a single base substitution in exon 7. This is not a mutation in CD177 itself, rather the CD177null phenotype arises when exon 7 of CD177 is supplied entirely by the CD177 pseudogene (CD177P1, which appears to have resulted from allelic gene conversion. In CD177 expressing individuals the CD177 locus contains both CD177P1 and CD177 sequences. The proportion of CD177hi neutrophils in the blood is a heritable trait. Abundance of CD177hi neutrophils correlates with homozygosity for CD177 reference allele, while heterozygosity for ectopic CD177P1 gene conversion correlates with increased CD177neg neutrophils, in which both CD177P1 partially incorporated allele and paired intact CD177 allele are transcribed. Human neutrophil heterogeneity for CD177 expression arises by ectopic allelic conversion. Resolution of the genetic basis of CD177null phenotype identifies a method for screening for individuals at risk of CD177 isoimmunisation.

  19. Electrophysical properties of PMN-PT-PS-PFN:Li ceramics

    Directory of Open Access Journals (Sweden)

    R. Skulski

    2013-01-01

    Full Text Available We present the technology of obtaining and the electrophysical properties of a multicomponent material 0.61PMN-0.20PT-0.09PS-0.1PFN:Li (PMN-PT-PS-PFN:Li. The addition of PFN into PMN-PT decreases the temperature of final sintering which is very important during technological process (addition of Li decreases electric conductivity of PFN. Addition of PS i.e., PbSnO3 (which is unstable in ceramic form permits to shift the temperature of the maximum of dielectric permittivity. One-step method of obtaining ceramic samples from oxides and carbonates has been used. XRD, microstructure, scanning calorimetry measurements and the main dielectric, ferroelectric and electromechanical properties have been investigated for the obtained samples.

  20. Critical role of non-muscle myosin light chain kinase in thrombin-induced endothelial cell inflammation and lung PMN infiltration.

    Science.gov (United States)

    Fazal, Fabeha; Bijli, Kaiser M; Murrill, Matthew; Leonard, Antony; Minhajuddin, Mohammad; Anwar, Khandaker N; Finkelstein, Jacob N; Watterson, D Martin; Rahman, Arshad

    2013-01-01

    The pathogenesis of acute lung injury (ALI) involves bidirectional cooperation and close interaction between inflammatory and coagulation pathways. A key molecule linking coagulation and inflammation is the procoagulant thrombin, a serine protease whose concentration is elevated in plasma and lavage fluids of patients with ALI and acute respiratory distress syndrome (ARDS). However, little is known about the mechanism by which thrombin contributes to lung inflammatory response. In this study, we developed a new mouse model that permits investigation of lung inflammation associated with intravascular coagulation. Using this mouse model and in vitro approaches, we addressed the role of non-muscle myosin light chain kinase (nmMLCK) in thrombin-induced endothelial cell (EC) inflammation and lung neutrophil (PMN) infiltration. Our in vitro experiments revealed a key role of nmMLCK in ICAM-1 expression by its ability to control nuclear translocation and transcriptional capacity of RelA/p65 in EC. When subjected to intraperitoneal thrombin challenge, wild type mice showed a marked increase in lung PMN infiltration via expression of ICAM-1. However, these responses were markedly attenuated in mice deficient in nmMLCK. These results provide mechanistic insight into lung inflammatory response associated with intravascular coagulation and identify nmMLCK as a critical target for modulation of lung inflammation.

  1. Investigating source confusion in PMN J1603-4904

    Science.gov (United States)

    Krauß, F.; Kreter, M.; Müller, C.; Markowitz, A.; Böck, M.; Burnett, T.; Dauser, T.; Kadler, M.; Kreikenbohm, A.; Ojha, R.; Wilms, J.

    2018-02-01

    PMN J1603-4904 is a likely member of the rare class of γ-ray emitting young radio galaxies. Only one other source, PKS 1718-649, has been confirmed so far. These objects, which may transition into larger radio galaxies, are a stepping stone to understanding AGN evolution. It is not completely clear how these young galaxies, seen edge-on, can produce high-energy γ rays. PMN J1603-4904 has been detected by TANAMI Very Long Baseline Interferometry (VLBI) observations and has been followed-up with multiwavelength observations. A Fermi Gamma-ray Space Telescope Large Area Telescope (Fermi-LAT) γ-ray source has been associated with this young galaxy in the LAT catalogs. We have obtained Chandra observations of the source to consider the possibility of source confusion due to the relatively large positional uncertainty of Fermi-LAT. The goal was to investigate the possibility of other X-ray bright sources in the vicinity of PMN J1603-4904 that could be counterparts to the γ-ray emission. With Chandra/ACIS, we find no other sources in the uncertainty ellipse of Fermi-LAT data, which includes an improved localization analysis of eight years of data. We further study the X-ray fluxes and spectra. We conclude that PMN J1603-4904 is indeed the second confirmed γ-ray bright young radio galaxy.

  2. Aspiration of human neutrophils: effects of shear thinning and cortical dissipation.

    Science.gov (United States)

    Drury, J L; Dembo, M

    2001-12-01

    It is generally accepted that the human neutrophil can be mechanically represented as a droplet of polymeric fluid enclosed by some sort of thin slippery viscoelastic cortex. Many questions remain however about the detailed rheology and chemistry of the interior fluid and the cortex. To address these quantitative issues, we have used a finite element method to simulate the dynamics of neutrophils during micropipet aspiration using various plausible assumptions. The results were then systematically compared with aspiration experiments conducted at eight different combinations of pipet size and pressure. Models in which the cytoplasm was represented by a simple Newtonian fluid (i.e., models without shear thinning) were grossly incapable of accounting for the effects of pressure on the general time scale of neutrophil aspiration. Likewise, models in which the cortex was purely elastic (i.e., models without surface viscosity) were unable to explain the effects of pipet size on the general aspiration rate. Such models also failed to explain the rapid acceleration of the aspiration rate during the final phase of aspiration nor could they account for the geometry of the neutrophil during various phases of aspiration. Thus, our results indicate that a minimal mechanical model of the neutrophil needs to incorporate both shear thinning and surface viscosity to remain valid over a reasonable range of conditions. At low shear rates, the surface dilatation viscosity of the neutrophil was found to be on the order of 100 poise-cm, whereas the viscosity of the interior cytoplasm was on the order of 1000 poise. Both the surface viscosity and the interior viscosity seem to decrease in a similar fashion when the shear rate exceeds approximately 0.05 s(-1). Unfortunately, even models with both surface viscosity and shear thinning studied are still not sufficient to fully explain all the features of neutrophil aspiration. In particular, the very high rate of aspiration during the

  3. The acute neutrophil response mediated by S100 alarmins during vaginal Candida infections is independent of the Th17-pathway.

    Science.gov (United States)

    Yano, Junko; Kolls, Jay K; Happel, Kyle I; Wormley, Floyd; Wozniak, Karen L; Fidel, Paul L

    2012-01-01

    Vulvovaginal candidiasis (VVC) caused by Candida albicans affects a significant number of women during their reproductive ages. Clinical observations revealed that a robust vaginal polymorphonuclear neutrophil (PMN) migration occurs in susceptible women, promoting pathological inflammation without affecting fungal burden. Evidence to date in the mouse model suggests that a similar acute PMN migration into the vagina is mediated by chemotactic S100A8 and S100A9 alarmins produced by vaginal epithelial cells in response to Candida. Based on the putative role for the Th17 response in mucosal candidiasis as well as S100 alarmin induction, this study aimed to determine whether the Th17 pathway plays a role in the S100 alarmin-mediated acute inflammation during VVC using the experimental mouse model. For this, IL-23p19(-/-), IL-17RA(-/-) and IL-22(-/-) mice were intravaginally inoculated with Candida, and vaginal lavage fluids were evaluated for fungal burden, PMN infiltration, the presence of S100 alarmins and inflammatory cytokines and chemokines. Compared to wild-type mice, the cytokine-deficient mice showed comparative levels of vaginal fungal burden and PMN infiltration following inoculation. Likewise, inoculated mice of all strains with substantial PMN infiltration exhibited elevated levels of vaginal S100 alarmins in both vaginal epithelia and secretions in the vaginal lumen. Finally, cytokine analyses of vaginal lavage fluid from inoculated mice revealed equivalent expression profiles irrespective of the Th17 cytokine status or PMN response. These data suggest that the vaginal S100 alarmin response to Candida does not require the cells or cytokines of the Th17 lineage, and therefore, the immunopathogenic inflammatory response during VVC occurs independently of the Th17-pathway.

  4. Relationship between chemical composition and biological function of Pseudomonas aeruginosa lipopolysaccharide: effect on human neutrophil chemotaxis and oxidative burst

    DEFF Research Database (Denmark)

    Kharazmi, A; Fomsgaard, A; Conrad, R S

    1991-01-01

    There are conflicting data on the effect of bacterial lipopolysaccharides (LPS) on the function of human neutrophils. The present study was designed to examine the relationship between chemical composition and the modulatory effect of LPS on human neutrophil function. LPS was extracted from five...

  5. Treatment with Rutin - A Therapeutic Strategy for Neutrophil-Mediated Inflammatory and Autoimmune Diseases - Anti-inflammatory Effects of Rutin on Neutrophils -

    Directory of Open Access Journals (Sweden)

    Bahareh Abd Nikfarjam

    2017-03-01

    Full Text Available Objectives: Neutrophils represent the front line of human defense against infections. Immediately after stimulation, neutrophilic enzymes are activated and produce toxic mediators such as pro-inflammatory cytokines, nitric oxide (NO and myeloperoxidase (MPO. These mediators can be toxic not only to infectious agents but also to host tissues. Because flavonoids exhibit antioxidant and anti-inflammatory effects, they are subjects of interest for pharmacological modulation of inflammation. In the present study, the effects of rutin on stimulus-induced NO and tumor necrosis factor (TNF-α productions and MPO activity in human neutrophils were investigated. Methods: Human peripheral blood neutrophils were isolated using Ficoll-Hypaque density gradient centrifugation coupled with dextran T500 sedimentation. The cell preparations containing > 98% granulocytes were determined by morphological examination through Giemsa staining. Neutrophils were cultured in complete Roswell Park Memorial Institute (RPMI medium, pre-incubated with or without rutin (25 μM for 45 minutes, and stimulated with phorbol 12-myristate 13-acetate (PMA. Then, the TNF-α, NO and MPO productions were analyzed using enzyme-linked immunosorbent assay (ELISA, Griess Reagent, and MPO assay kits, respectively. Also, the viability of human neutrophils was assessed using tetrazolium salt 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyl tetrazolium bromide (MTT, and neutrophils were treated with various concentrations of rutin (1 - 100 μM, after which MTT was appended and incubated at 37ºC for 4 hour. Results: Rutin at concentrations up to 100 μM did not affect neutrophil viability during the 4-hour incubation period. Rutin significantly decreased the NO and TNF-α productions in human peripheral blood neutrophils compared to PMA-control cells (P < 0.001. Also, MPO activity was significantly reduced by rutin (P < 0.001. Conclusion: In this in vitro study, rutin had an anti-inflammatory effect

  6. Human Neutrophils Use Different Mechanisms To Kill Aspergillus fumigatus Conidia and Hyphae: Evidence from Phagocyte Defects.

    Science.gov (United States)

    Gazendam, Roel P; van Hamme, John L; Tool, Anton T J; Hoogenboezem, Mark; van den Berg, J Merlijn; Prins, Jan M; Vitkov, Ljubomir; van de Veerdonk, Frank L; van den Berg, Timo K; Roos, Dirk; Kuijpers, Taco W

    2016-02-01

    Neutrophils are known to play a pivotal role in the host defense against Aspergillus infections. This is illustrated by the prevalence of Aspergillus infections in patients with neutropenia or phagocyte functional defects, such as chronic granulomatous disease. However, the mechanisms by which human neutrophils recognize and kill Aspergillus are poorly understood. In this work, we have studied in detail which neutrophil functions, including neutrophil extracellular trap (NET) formation, are involved in the killing of Aspergillus fumigatus conidia and hyphae, using neutrophils from patients with well-defined genetic immunodeficiencies. Recognition of conidia involves integrin CD11b/CD18 (and not dectin-1), which triggers a PI3K-dependent nonoxidative intracellular mechanism of killing. When the conidia escape from early killing and germinate, the extracellular destruction of the Aspergillus hyphae needs opsonization by Abs and involves predominantly recognition via Fcγ receptors, signaling via Syk, PI3K, and protein kinase C to trigger the production of toxic reactive oxygen metabolites by the NADPH oxidase and myeloperoxidase. A. fumigatus induces NET formation; however, NETs did not contribute to A. fumigatus killing. Thus, our findings reveal distinct killing mechanisms of Aspergillus conidia and hyphae by human neutrophils, leading to a comprehensive insight in the innate antifungal response. Copyright © 2016 by The American Association of Immunologists, Inc.

  7. Potent inhibition of human neutrophil activations by bractelactone, a novel chalcone from Fissistigma bracteolatum

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yang-Chang [Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan (China); Sureshbabu, Munisamy; Fang, Yao-Ching; Wu, Yi-Hsiu [Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan (China); Lan, Yu-Hsuan [School of Pharmacy, China Medical University, Taichung 404, Taiwan (China); Chang, Fang-Rong [Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Chang, Ya-Wen [Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan (China); Hwang, Tsong-Long, E-mail: htl@mail.cgu.edu.tw [Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan (China); Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Kweishan, Taoyuan 333, Taiwan (China)

    2013-02-01

    Fissistigma bracteolatum is widely used in traditional medicine to treat inflammatory diseases. However, its active components and mechanisms of action remain unclear. In this study, (3Z)-6,7-dihydroxy-4-methoxy-3-(phenylmethylidene)-5-(3-phenylpropanoyl) -1-benzofuran-2(3H) (bractelactone), a novel chalcone from F. bracteolatum, showed potent inhibitory effects against superoxide anion (O{sub 2}{sup ·−}) production, elastase release, and CD11b expression in formyl-L-methionyl-L-leucyl-L-phenylalanine (FMLP)-induced human neutrophils. However, bractelactone showed only weak inhibition of phorbol myristate acetate-caused O{sub 2}{sup ·−} production. The peak cytosolic calcium concentration ([Ca{sup 2+}]{sub i}) was unaltered by bractelactone in FMLP-induced neutrophils, but the decay time of [Ca{sup 2+}]{sub i} was significantly shortened. In a calcium-free solution, changes in [Ca{sup 2+}]{sub i} caused by the addition of extracellular Ca{sup 2+} were inhibited by bractelactone in FMLP-activated cells. In addition, bractelactone did not alter the phosphorylation of p38 MAPK, ERK, JNK, or AKT or the concentration of cAMP. These results suggest that bractelactone selectively inhibits store-operated calcium entry (SOCE). In agreement with this concept, bractelactone suppressed sustained [Ca{sup 2+}]{sub i} changes in thapsigargin-activated neutrophils. Furthermore, bractelactone did not alter FMLP-induced formation of inositol 1,4,5-triphosphate. Taken together, our results demonstrate that the anti-inflammatory effects of bractelactone, an active ingredient of F. bracteolatum, in human neutrophils are through the selective inhibition of SOCE. Highlights: ► Bractelactone isolated from Fissistigma bracteolatum. ► Bractelactone inhibited FMLP-induced human neutrophil activations. ► Bractelactone had no effect on IP3 formation. ► Bractelactone did not alter MAPKs, AKT, and cAMP pathways. ► Bractelactone inhibited store-operated calcium entry.

  8. Autophagy Mediates Interleukin-1β Secretion in Human Neutrophils

    Directory of Open Access Journals (Sweden)

    Leonardo Iula

    2018-02-01

    AEBSF reduced IL-1β secretion. Moreover, IL-1β could be also found colocalizing with elastase, suggesting both some vesicles containing IL-1β intersect azurophil granules content and that serine proteases also regulate IL-1β secretion. Altogether, our findings indicate that an unconventional autophagy-mediated secretory pathway mediates IL-1β secretion in human neutrophils.

  9. Candida albicans escapes from mouse neutrophils

    DEFF Research Database (Denmark)

    Ermert, David; Niemiec, Maria J; Röhm, Marc

    2013-01-01

    is the most widely used model organism. Neutrophils are essential immune cells to prevent opportunistic mycoses. To explore potential differences between the rodent infection model and the human host, we compared the interactions of C. albicans with neutrophil granulocytes from mice and humans. We revealed...

  10. Legionella phosphatase hydrolyzes phosphatidylinositol 4,5-bisphosphate and inosital triphosphate in human neutrophils

    International Nuclear Information System (INIS)

    Dowling, J.N.; Saha, A.K.; Glew, R.H.

    1987-01-01

    Legionella are facultative intracellular bacterial pathogens which multiply in host phagocytes. L. micdadei cells contain an acid phosphatase (ACP) that blocks superoxide anion production by human neutrophils stimulated with the formylated peptide, fMLP. The possibility that ACP acts by interefering with polyphosphoinositide metabolism and the production of the intracellular second messenger, inositol triphosphate (IP 3 ) was explored. When neutrophil phosphoinositides were labeled with 32 P, incubation of the cells with ACP caused an 85% loss of the labeled phosphatidylinositol-4,5-bisphosphate (PIP 2 ) over 2 h. Treatment of [ 3 H]inositol-labeled neutrophils with ACP for 30 min resulted in a 20% decrease of labeled PIP 2 . Following fMLP stimulation, the fractional reduction in PIP 2 and the fractional increase in IP 3 was the same in ACP-treated and untreated neutrophils, but the total quantity of IP 3 was reduced by ACP pre-treatment. The reduction in IP 3 generated following fMLP stimulation seems to be due primarily to the decreased amount of PIP 2 available for hydrolysis. However, some loss of IP 3 due to direct hydrolysis by ACP cannot be ruled out. The Legionella phosphatase may compromise neutrophil response to the bacteria by hydrolyzing PIP 2 , the prognitor of IP 3 , and by hydrolyzing IP 3 itself

  11. PMN-PT-PZT composite films for high frequency ultrasonic transducer applications.

    Science.gov (United States)

    Hsu, Hsiu-Sheng; Benjauthrit, Vatcharee; Zheng, Fan; Chen, Rumin; Huang, Yuhong; Zhou, Qifa; Shung, K Kirk

    2012-06-01

    We have successfully fabricated x (0.65PMN-0.35PT)-(1 - x )PZT ( x PMN-PT-(1 - x )PZT), where x is 0.1, 0.3, 0.5, 0.7 and 0.9, thick films with a thickness of approximately 9 µm on platinized silicon substrate by employing a composite sol-gel technique. X-ray diffraction analysis and scanning electron microscopy revealed that these films are dense and creak-free with well-crystallized perovskite phase in the whole composition range. The dielectric constant can be controllably adjusted by using different compositions. Higher PZT content of x PMN-PT-(1 - x )PZT films show better ferroelectric properties. A representative 0.9PMN-PT-0.1PZT thick film transducer is built. It has 200 MHz center frequency with a -6 dB bandwidth of 38% (76 MHz). The measured two-way insertion loss is 65 dB.

  12. Cytokine production by oral and peripheral blood neutrophils in adult periodontitis.

    Science.gov (United States)

    Galbraith, G M; Hagan, C; Steed, R B; Sanders, J J; Javed, T

    1997-09-01

    Proinflammatory cytokines such as tumor necrosis factor-alpha (TNF-alpha) and interleukin 1 beta (IL-1 beta) also possess bone-resorptive properties, and are generally considered to play a role in the pathogenesis of periodontal disease. In the present study, TNF-alpha and IL-1 beta production by oral and peripheral blood polymorphonuclear leukocytes (PMN) was examined in 40 patients with adult periodontitis and 40 orally healthy matched controls. Oral PMN released considerable amounts of both cytokines in unstimulated culture, and there was no difference between patients and controls when the cytokine levels were corrected for cell number. However, when the effect of disease activity was examined, cytokine release by oral PMN was found to be greatest in patients with advanced periodontitis. Within the healthy control group, IL-1 beta production by oral PMN was significantly higher in males (Mann-Whitney test, P = 0.0008). Examination of IL-1 beta production by peripheral blood PMN exposed to recombinant human granulocyte-macrophage colony stimulating factor revealed no difference between the patient and control groups. In contrast, IL-1 beta production by peripheral blood PMN was significantly reduced in patients with advanced disease (Mann-Whitney test, P = 0.02), and peripheral PMN IL-1 beta synthesis was greater in female controls (Mann-Whitney test, P = 0.054). No effect of race on cytokine production could be discerned in patients or controls. These results indicate that several factors influence cytokine production in oral health and disease, and that a dichotomy in cytokine gene expression exists between oral and peripheral blood PMN in adult periodontitis.

  13. Use of CFSE staining of borreliae in studies on the interaction between borreliae and human neutrophils

    Directory of Open Access Journals (Sweden)

    Hytönen Jukka

    2006-10-01

    Full Text Available Abstract Background Species of the tick-transmitted spirochete group Borrelia burgdorferi sensu lato (B. burgdorferi cause Lyme borreliosis. Acute borrelial infection of the skin has unusual characteristics with only a mild local inflammatory response suggesting that the interaction between borreliae and the cells of the first-line defence might differ from that of other bacteria. It has been reported that human neutrophils phagocytose motile borreliae through an unconventional mechanism (tube phagocytosis which is not observed with non-motile borreliae. Therefore, it would be of great interest to visualise the bacteria by a method not affecting motility and viability of borreliae to be able to study their interaction with the cells of the innate immunity. Carboxyfluorescein diacetate, succinimidyl ester (CFSE labelling has been previously used for studying the adhesion of labelled bacteria to host cells and the uptake of labelled substrates by various cells using flow cytometry. Results In this study, CFSE was shown to efficiently stain different genospecies of B. burgdorferi without affecting bacterial viability or motility. Use of CFSE staining allowed subsequent quantification of borreliae associated with human neutrophils with flow cytometry and confocal microscopy. As a result, no difference in association between different borrelial genospecies (Borrelia burgdorferi sensu stricto, Borrelia afzelii, Borrelia garinii, or between borreliae and the pyogenic bacterium Streptococcus pyogenes, with neutrophils could be detected. Borrelial virulence, on the other hand, affected association with neutrophils, with significantly higher association of a non-virulent mutant B. burgdorferi sensu stricto strain compared to the parental virulent wild type strain. Conclusion These results suggest that the flow cytometric assay using CFSE labelled borreliae is a valuable tool in the analysis of the interaction between borreliae and human neutrophils. The

  14. Quantitative proteomics reveals differential biological processes in healthy neonatal cord neutrophils and adult neutrophils

    KAUST Repository

    Zhu, Jiang; Zhang, Huoming; Guo, Tiannan; Li, Wenying; Li, Huiyu; Zhu, Yi; Huang, Shiang

    2014-01-01

    Neonatal neutrophils are characterized by the immaturity of bactericidal mechanisms that contributes largely to neonatal mortality. However, underlying molecular mechanism associated with the immaturity remains incompletely understood. In this study, we performed comparative proteomic analysis on neonatal neutrophils derived from human cord blood and adult peripheral neutrophils. A total of 1332 proteins were identified and quantified, and 127 proteins were characterized as differentially expressed between adult and cord neutrophils. The differentially expressed proteins are mapped in KEGG pathways into five clusters and indicated impaired functions of neonatal neutrophils in proteasome, lysosome, phagosome, and leukocyte transendothelial migration. In particular, many proteins associated with NETosis, a critical mechanism for antimicrobial process and auto-clearance, were also found to be downregulated in cord neutrophils. This study represents a first comparative proteome profiling of neonatal and adult neutrophils, and provides a global view of differentially expressed proteome for enhancing our understanding of their various functional difference. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Quantitative proteomics reveals differential biological processes in healthy neonatal cord neutrophils and adult neutrophils

    KAUST Repository

    Zhu, Jiang

    2014-06-11

    Neonatal neutrophils are characterized by the immaturity of bactericidal mechanisms that contributes largely to neonatal mortality. However, underlying molecular mechanism associated with the immaturity remains incompletely understood. In this study, we performed comparative proteomic analysis on neonatal neutrophils derived from human cord blood and adult peripheral neutrophils. A total of 1332 proteins were identified and quantified, and 127 proteins were characterized as differentially expressed between adult and cord neutrophils. The differentially expressed proteins are mapped in KEGG pathways into five clusters and indicated impaired functions of neonatal neutrophils in proteasome, lysosome, phagosome, and leukocyte transendothelial migration. In particular, many proteins associated with NETosis, a critical mechanism for antimicrobial process and auto-clearance, were also found to be downregulated in cord neutrophils. This study represents a first comparative proteome profiling of neonatal and adult neutrophils, and provides a global view of differentially expressed proteome for enhancing our understanding of their various functional difference. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Detection of effect cytotoxic of the alpha hemolysin of E. Coli (HLY A) in leukocytes polymorphonuclear neutrophils by means of cytometry of flow

    International Nuclear Information System (INIS)

    Garcia, J.

    2000-01-01

    Cell viability of Hly A exposed polymorphonuclear neutrophils (PMN) was assessed by propidium uptake, measured by flow cytometry. Hemolytic supernatant, but not the non hemolytic controls, caused a dose-dependent fluorescence signal in PMN. Cells exposed to low hemolytic activities (bellow 0.5 HU50/ml) did not fluoresce, although cell size, estimate by Forward Scatter (FSC), increased slightly, and returned to normal within 30-60 minutes suggesting both membrane damage in absence of propodium uptake and term cell recovery from the effects of Hly A. The fluorescent signal from permeated PMN decrease 15 minutes after exposure to Hly a, a decrease which was prevented by chelation ok extracellular Ca +2 with EGTA. Whereas Ca +2 entry into the cell is responsible for triggering mechanisms leading to loss of fluorescence, low or chelated extracelular Ca +2 facilitate propidium uptake, but the fluorescent signal does not decrease only when both intracellular and extracellular Ca +2 are chelated. The findings of this study, together whit data from other authors, are taken as basis to formulate a hypothetical sequence of events to explain the cytometric data obtained from Hly A exposed PMN, including the significance of increases in cell size without propidium uptake. (Author) [es

  17. Visceral leishmaniasis patients display altered composition and maturity of neutrophils as well as impaired neutrophil effector functions

    Directory of Open Access Journals (Sweden)

    Endalew Yizengaw

    2016-11-01

    Full Text Available Immunologically, active visceral leishmaniasis (VL is characterised by profound immunosuppression, severe systemic inflammatory responses and an impaired capacity to control parasite replication. Neutrophils are highly versatile cells, which play a crucial role in the induction as well as the resolution of inflammation, the control of pathogen replication and the regulation of immune responses. Neutrophil functions have been investigated in human cutaneous leishmaniasis, however, their role in human visceral leishmaniasis is poorly understood.In the present study we evaluated the activation status and effector functions of neutrophils in patients with active VL and after successful anti-leishmanial treatment. Our results show that neutrophils are highly activated and have degranulated; high levels of arginase, myeloperoxidase and elastase, all contained in neutrophils’ granules, were found in the plasma of VL patients. In addition, we show that a large proportion of these cells are immature. We also analysed effector functions of neutrophils that are essential for pathogen clearance and show that neutrophils have an impaired capacity to release neutrophil extracellular traps, produce reactive oxygen species and phagocytose bacterial particles, but not Leishmania parasites.Our results suggest that impaired effector functions, increased activation and immaturity of neutrophils play a key role in the pathogenesis of VL.

  18. PMN-PT–PZT composite films for high frequency ultrasonic transducer applications

    Science.gov (United States)

    Hsu, Hsiu-Sheng; Benjauthrit, Vatcharee; Zheng, Fan; Chen, Rumin; Huang, Yuhong; Zhou, Qifa; Shung, K. Kirk

    2013-01-01

    We have successfully fabricated x(0.65PMN-0.35PT)–(1 − x)PZT (xPMN-PT–(1 − x)PZT), where x is 0.1, 0.3, 0.5, 0.7 and 0.9, thick films with a thickness of approximately 9 µm on platinized silicon substrate by employing a composite sol–gel technique. X-ray diffraction analysis and scanning electron microscopy revealed that these films are dense and creak-free with well-crystallized perovskite phase in the whole composition range. The dielectric constant can be controllably adjusted by using different compositions. Higher PZT content of xPMN-PT–(1 − x)PZT films show better ferroelectric properties. A representative 0.9PMN-PT–0.1PZT thick film transducer is built. It has 200 MHz center frequency with a −6 dB bandwidth of 38% (76 MHz). The measured two-way insertion loss is 65 dB. PMID:23750072

  19. Alpha-1-antitrypsin is produced by human neutrophil granulocytes and their precursors and liberated during granule exocytosis

    DEFF Research Database (Denmark)

    Clemmensen, Stine N; Jacobsen, Lars C; Rørvig, Sara

    2011-01-01

    Alpha-1-antitrypsin (A1AT) is an important inhibitor of neutrophil proteases including elastase, cathepsin G, and proteinase 3. Transcription profiling data suggest that A1AT is expressed by human neutrophil granulocytes during all developmental stages. A1AT has hitherto only been found associate...... significantly to the antiprotease levels in tissues during inflammation. Impaired binding of neutrophil A1AT to serine proteases in patients with (PI)ZZ mutations may enhance their susceptibility to the development of emphysema....

  20. Periodontal bacteria in human carotid atherothrombosis as a potential trigger for neutrophil activation.

    Science.gov (United States)

    Rangé, Hélène; Labreuche, Julien; Louedec, Liliane; Rondeau, Philippe; Planesse, Cynthia; Sebbag, Uriel; Bourdon, Emmanuel; Michel, Jean-Baptiste; Bouchard, Philippe; Meilhac, Olivier

    2014-10-01

    Epidemiological, biological and clinical links between periodontal and cardiovascular diseases are now well established. Several human studies have detected bacterial DNA corresponding to periodontal pathogens in cardiovascular samples. Intraplaque hemorrhage has been associated with a higher risk of atherosclerotic plaque rupture, potentially mediated by neutrophil activation. In this study, we hypothesized that plaque composition may be related to periodontal pathogens. Carotid culprit plaque samples were collected from 157 patients. Macroscopic characterization was performed at the time of collection: presence of blood, lipid core, calcification and fibrosis. Markers of neutrophil activation released by carotid samples were quantified (myeloperoxidase or MPO, cell-free DNA and DNA-MPO complexes). PCR analysis using specific primers for Porphyromonas gingivalis, Aggregatibacter actinomycetemcommitans, Treponema denticola, Prevotella intermedia and Tannerella forsythia was used to detect DNA from periodontal pathogens in carotid tissues. In addition, bacterial lipopolysaccharide (LPS) and Immunoglobulins G against T. forsythia were quantified in atherosclerotic carotid conditioned medium. Intraplaque hemorrhage was present in 73/157 carotid samples and was associated with neutrophil activation, reflected by the release of MPO, cell-free DNA and MPO-DNA complexes. LPS levels were also linked to intraplaque hemorrhage but not with the neutrophil activation markers. Seventy-three percent of the carotid samples were positive for periodontal bacterial DNA. Furthermore, hemoglobin levels were associated with the detection of T. forsythia and neutrophil activation/inflammation markers. This study suggests a potential role of periodontal microorganisms, especially T. forsythia, in neutrophil activation within hemorrhagic atherosclerotic carotid plaques. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  1. Granulocyte-associated IgG in neutropenic disorders

    International Nuclear Information System (INIS)

    Cines, D.B.; Passero, F.; Guerry, D.; Bina, M.; Dusak, B.; Schreiber, A.D.

    1982-01-01

    We applied a radiolabeled antiglobulin test to a study of patients with a variety of neutropenic disorders. After defining the nature of the interaction of radiolabeled anti-IgG with the neutrophil, we studied 16 patients with neutropenia of uncertain etiology and adequate bone marrow granulocyte precursors. Twelve of these 16 patients had increased neutrophil-associated IgG (PMN-IgG). Patients with the highest levels of PMN-IgG had the lowest neutrophil counts. The majority of patients with neutropenia and increased PMN-IgG had an underlying immunologic disorder that included immune thrombocytopenic purpura in 5 patients and autoimmune hemolytic anemia in 1 patient. In some patients, elevated PMN-IgG preceded other evidence for immunologic disease. The direct antiglobulin test helped to distinguish neutropenic patients with increased PMN-IgG both from patients with neutropenia due to a known nonimmune disorder and from nonneutropenic patients with rheumatoid arthritis or systemic lupus erythematosis. Each of four patients with increased neutrophil-associated IgG treated with systemic corticosteroids responded clinically with an associated fall in neutrophil IgG and a rise in the circulating neutrophil count. The radiolabeled antiglobulin test appears useful in defining a subpopulation of patients with neutropenia due to an underlying immunologic disorder

  2. Lipopolysaccharide-induced expression of cell surface receptors and cell activation of neutrophils and monocytes in whole human blood

    Directory of Open Access Journals (Sweden)

    N.E. Gomes

    2010-09-01

    Full Text Available Lipopolysaccharide (LPS activates neutrophils and monocytes, inducing a wide array of biological activities. LPS rough (R and smooth (S forms signal through Toll-like receptor 4 (TLR4, but differ in their requirement for CD14. Since the R-form LPS can interact with TLR4 independent of CD14 and the differential expression of CD14 on neutrophils and monocytes, we used the S-form LPS from Salmonella abortus equi and the R-form LPS from Salmonella minnesota mutants to evaluate LPS-induced activation of human neutrophils and monocytes in whole blood from healthy volunteers. Expression of cell surface receptors and reactive oxygen species (ROS and nitric oxide (NO generation were measured by flow cytometry in whole blood monocytes and neutrophils. The oxidative burst was quantified by measuring the oxidation of 2',7'-dichlorofluorescein diacetate and the NO production was quantified by measuring the oxidation of 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate. A small increase of TLR4 expression by monocytes was observed after 6 h of LPS stimulation. Monocyte CD14 modulation by LPS was biphasic, with an initial 30% increase followed by a 40% decrease in expression after 6 h of incubation. Expression of CD11b was rapidly up-regulated, doubling after 5 min on monocytes, while down-regulation of CXCR2 was observed on neutrophils, reaching a 50% reduction after 6 h. LPS induced low production of ROS and NO. This study shows a complex LPS-induced cell surface receptor modulation on human monocytes and neutrophils, with up- and down-regulation depending on the receptor. R- and S-form LPS activate human neutrophils similarly, despite the low CD14 expression, if the stimulation occurs in whole blood.

  3. Gene transfer and expression in human neutrophils. The phox homology domain of p47phox translocates to the plasma membrane but not to the membrane of mature phagosomes

    Directory of Open Access Journals (Sweden)

    Brzezinska Agnieszka A

    2006-12-01

    Full Text Available Abstract Background Neutrophils are non-dividing cells with poor survival after isolation. Consequently, exogenous gene expression in neutrophils is challenging. We report here the transfection of genes and expression of active proteins in human primary peripheral neutrophils using nucleofection. Results Exogenous gene expression in human neutrophils was achieved 2 h post-transfection. We show that neutrophils transfected by nucleofection are functional cells, able to respond to soluble and particulate stimuli. They conserved the ability to undergo physiological processes including phagocytosis. Using this technique, we were able to show that the phox homology (PX domain of p47phox localizes to the plasma membrane in human neutrophils. We also show that RhoB, but not the PX domain of p47phox, is translocated to the membrane of mature phagosomes. Conclusion We demonstrated that cDNA transfer and expression of exogenous protein in human neutrophils is compatible with cell viability and is no longer a limitation for the study of protein function in human neutrophils.

  4. Localization and Functionality of the Inflammasome in Neutrophils

    DEFF Research Database (Denmark)

    Bakele, Martina; Joos, Melanie; Burdi, Sofia

    2014-01-01

    Neutrophils represent the major fraction of circulating immune cells and are rapidly recruited to sites of infection and inflammation. The inflammasome is a multiprotein complex that regulates the generation of IL-1 family proteins. The precise subcellular localization and functionality...... of the inflammasome in human neutrophils are poorly defined. Here we demonstrate that highly purified human neutrophils express key components of the NOD-like receptor family, pyrin domain containing 3 (NLRP3), and absent in melanoma 2 (AIM2) inflammasomes, particularly apoptosis-associated speck-like protein...... and released as protein, highly purified neutrophils neither expressed nor released IL-1α at baseline or upon stimulation. Upon inflammasome activation, highly purified neutrophils released substantially lower levels of IL-1β protein compared with partially purified neutrophils. Serine proteases and caspases...

  5. The effect of N-nitrosodimethylamine (NDMA) on Bax and Mcl-1 expression in human neutrophils.

    Science.gov (United States)

    Jablonski, Jakub; Jablonska, Ewa; Leonik, Agnieszka

    2011-12-01

    In the present study we examined a role of pro-apoptotic Bax and anti-apoptotic Mcl-1 proteins, participating in the regulation of intrinsic apoptosis pathway in human neutrophils (PMNs) exposed to N-nitrosodimethylamine (NDMA), the environmental xenobiotic. For the purpose comparison, the same studies were conducted in autologous peripheral blood mononuclear cells (PBMCs). The production of cytochrome c by PMNs was also determined. A deficit of anti-apoptotic Mcl-1 and overexpression of the pro-apoptotic protein Bax suggest that the apoptosis process in human neutrophils exposed to NDMA is dependent on changes in the expression of these proteins. PMNs were more sensitive to NDMA than PBMCs.

  6. The membrane attack complex of complement contributes to plasmin-induced synthesis of platelet-activating factor by endothelial cells and neutrophils.

    Science.gov (United States)

    Lupia, Enrico; Del Sorbo, Lorenzo; Bergerone, Serena; Emanuelli, Giorgio; Camussi, Giovanni; Montrucchio, Giuseppe

    2003-08-01

    Thrombolytic agents, used to restore blood flow to ischaemic tissues, activate several enzymatic systems with pro-inflammatory effects, thus potentially contributing to the pathogenesis of ischaemia-reperfusion injury. Platelet-activating factor (PAF), a phospholipid mediator of inflammation, has been implicated in the pathogenesis of this process. We previously showed that the infusion of streptokinase (SK) induces the intravascular release of PAF in patients with acute myocardial infarction (AMI), and that cultured human endothelial cells (EC) synthesized PAF in response to SK and plasmin (PLN). In the present study, we investigated the role of the membrane attack complex (MAC) of complement in the PLN-induced synthesis of PAF. In vivo, we showed a correlation between the levels of soluble terminal complement components (sC5b-9) and the concentrations of PAF detected in blood of patients with AMI infused with SK. In vitro both EC and polymorphonuclear neutrophils (PMN), incubated in the presence of PLN and normal human serum, showed an intense staining for the MAC neoepitope, while no staining was detected when they were incubated with PLN in the presence of heat-inactivated normal human serum. Moreover, the insertion of MAC on EC and PMN plasmamembrane elicited the synthesis of PAF. In conclusion, our results elucidate the mechanisms involved in PAF production during the activation of the fibrinolytic system, showing a role for complement products in this setting. The release of PAF may increase the inflammatory response, thus limiting the beneficial effects of thrombolytic therapy. Moreover, it may have a pathogenic role in other pathological conditions, such as transplant rejection, tumoral angiogenesis, and septic shock, where fibrinolysis is activated.

  7. Vaginal epithelial cell-derived S100 alarmins induced by Candida albicans via pattern recognition receptor interactions are sufficient but not necessary for the acute neutrophil response during experimental vaginal candidiasis.

    Science.gov (United States)

    Yano, Junko; Palmer, Glen E; Eberle, Karen E; Peters, Brian M; Vogl, Thomas; McKenzie, Andrew N; Fidel, Paul L

    2014-02-01

    Vulvovaginal candidiasis (VVC), caused by Candida albicans, affects women worldwide. Animal and clinical studies suggest that the immunopathogenic inflammatory condition of VVC is initiated by S100 alarmins in response to C. albicans, which stimulate polymorphonuclear neutrophil (PMN) migration to the vagina. The purpose of this study was to extend previous in vitro data and determine the requirement for the alarmin S100A8 in the PMN response and to evaluate pattern recognition receptors (PRRs) that initiate the response. For the former, PMN migration was evaluated in vitro or in vivo in the presence or absence of S100 alarmins initiated by several approaches. For the latter, vaginal epithelial cells were evaluated for PRR expression and C. albicans-induced S100A8 and S100A9 mRNAs, followed by evaluation of the PMN response in inoculated PRR-deficient mice. Results revealed that, consistent with previously reported in vitro data, eukaryote-derived S100A8, but not prokaryote-derived recombinant S100A8, induced significant PMN chemotaxis in vivo. Conversely, a lack of biologically active S100A8 alarmin, achieved by antibody neutralization or by using S100A9(-/-) mice, had no effect on the PMN response in vivo. In PRR analyses, whereas Toll-like receptor 4 (TLR4)- and SIGNR1-deficient vaginal epithelial cells showed a dramatic reduction in C. albicans-induced S100A8/S100A9 mRNAs in vitro, inoculated mice deficient in these PRRs showed PMN migration similar to that in wild-type controls. These results suggest that S100A8 alarmin is sufficient, but not necessary, to induce PMN migration during VVC and that the vaginal PMN response to C. albicans involves PRRs in addition to SIGNR1 and TLR4, or other induction pathways.

  8. Increase in interleukin-8 production from circulating neutrophils upon antibiotic therapy in cystic fibrosis patients.

    Science.gov (United States)

    Montemurro, Pasqualina; Mariggiò, Maria A; Barbuti, Giovanna; Cassano, Amalia; Vincenti, Alessandra; Serio, Gabriella; Guerra, Lorenzo; Diana, Anna; Santostasi, Teresa; Polizzi, Angela; Fumarulo, Ruggiero; Casavola, Valeria; Manca, Antonio; Conese, Massimo

    2012-12-01

    It is not known whether antibiotic therapy for lung disease in cystic fibrosis (CF) has an influence on circulating polymorphonuclear neutrophil (PMN) function and apoptosis. Blood PMNs were obtained from 14 CF patients before and after antibiotic treatment for an acute exacerbation, and from 10 healthy controls. PMNs were evaluated for production of reactive oxygen species (ROS) by spectrophotometry, of cytokines in the conditioned medium by ELISA, and apoptotic response by cytofluorimetry. ROS and interleukin (IL)-8 were produced at higher levels by CF PMNs pre-therapy than control PMNs under basal conditions. IL-8 levels further increased after therapy. Early apoptotic response was higher in CF PMNs pre-therapy than in control PMNs, and this pattern did not change after antibiotic treatment. Circulating PMNs are primed in CF acute patients. Further studies are needed to consider PMN-produced IL-8 as a biomarker to evaluate response to antibiotic therapy in CF patients. Copyright © 2012 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.

  9. Applying label-free dynamic mass redistribution assay for studying endogenous FPR1 receptor signalling in human neutrophils

    DEFF Research Database (Denmark)

    Christensen, Hanna B; Gloriam, David E; Pedersen, Daniel Sejer

    2017-01-01

    INTRODUCTION: The label-free dynamic mass redistribution-based assay (DMR) is a powerful method for studying signalling pathways of G protein-coupled receptors (GPCRs). Herein we present the label-free DMR assay as a robust readout for pharmacological characterization of formyl peptide receptors...... (FPRs) in human neutrophils. METHODS: Neutrophils were isolated from fresh human blood and their responses to FPR1 and FPR2 agonists, i.e. compound 43, fMLF and WKYMVm were measured in a label-free DMR assay using Epic Benchtop System from Corning®. Obtained DMR traces were used to calculate agonist...... potencies. RESULTS: The potencies (pEC50) of fMLF, WKYMVm and compound 43, determined on human neutrophils using the label-free DMR assay were 8.63, 7.76 and 5.92, respectively. The DMR response to fMLF, but not WKYMVm and compound 43 could be blocked by the FPR1-specific antagonist cyclosporin H...

  10. Regulation of neutrophil senescence by microRNAs.

    Directory of Open Access Journals (Sweden)

    Jon R Ward

    2011-01-01

    Full Text Available Neutrophils are rapidly recruited to sites of tissue injury or infection, where they protect against invading pathogens. Neutrophil functions are limited by a process of neutrophil senescence, which renders the cells unable to respond to chemoattractants, carry out respiratory burst, or degranulate. In parallel, aged neutrophils also undergo spontaneous apoptosis, which can be delayed by factors such as GMCSF. This is then followed by their subsequent removal by phagocytic cells such as macrophages, thereby preventing unwanted inflammation and tissue damage. Neutrophils translate mRNA to make new proteins that are important in maintaining functional longevity. We therefore hypothesised that neutrophil functions and lifespan might be regulated by microRNAs expressed within human neutrophils. Total RNA from highly purified neutrophils was prepared and subjected to microarray analysis using the Agilent human miRNA microarray V3. We found human neutrophils expressed a selected repertoire of 148 microRNAs and that 6 of these were significantly upregulated after a period of 4 hours in culture, at a time when the contribution of apoptosis is negligible. A list of predicted targets for these 6 microRNAs was generated from http://mirecords.biolead.org and compared to mRNA species downregulated over time, revealing 83 genes targeted by at least 2 out of the 6 regulated microRNAs. Pathway analysis of genes containing binding sites for these microRNAs identified the following pathways: chemokine and cytokine signalling, Ras pathway, and regulation of the actin cytoskeleton. Our data suggest that microRNAs may play a role in the regulation of neutrophil senescence and further suggest that manipulation of microRNAs might represent an area of future therapeutic interest for the treatment of inflammatory disease.

  11. Differential Modulation of Annexin I Binding Sites on Monocytes and Neutrophils

    Directory of Open Access Journals (Sweden)

    H. S. Euzger

    1999-01-01

    Full Text Available Specific binding sites for the anti-inflammatory protein annexin I have been detected on the surface of human monocytes and polymorphonuclear leukocytes (PMN. These binding sites are proteinaceous in nature and are sensitive to cleavage by the proteolytic enzymes trypsin, collagenase, elastase and cathepsin G. When monocytes and PMN were isolated independently from peripheral blood, only the monocytes exhibited constitutive annexin I binding. However PMN acquired the capacity to bind annexin I following co-culture with monocytes. PMN incubation with sodium azide, but not protease inhibitors, partially blocked this process. A similar increase in annexin I binding capacity was also detected in PMN following adhesion to endothelial monolayers. We propose that a juxtacrine activation rather than a cleavage-mediated transfer is involved in this process. Removal of annexin I binding sites from monocytes with elastase rendered monocytes functionally insensitive to full length annexin I or to the annexin I-derived pharmacophore, peptide Ac2-26, assessed as suppression of the respiratory burst. These data indicate that the annexin I binding site on phagocytic cells may have an important function in the feedback control of the inflammatory response and their loss through cleavage could potentiate such responses.

  12. Monitoring human neutrophil granule secretion by flow cytometry: secretion and membrane potential changes assessed by light scatter and a fluorescent probe of membrane potential

    International Nuclear Information System (INIS)

    Fletcher, M.P.; Seligmann, B.E.

    1985-01-01

    Purified human peripheral blood polymorphonuclear neutrophils (PMN) were incubated at 37 degrees C with the fluorescent membrane potential sensitive cyanine dye di-O-C(5)(3) and exposed to a number of stimulatory agents (N-formylmethionylleucylphenylalanine (FMLP), cytochalasin B (cyto B) + FMLP, phorbol myristate acetate (PMA). Flow cytometry was utilized to measure changes in forward light scatter (FS), orthogonal light scatter (90 degrees-SC), and fluorescence intensity of individual cells over time. A saturating (10(-6) M) dose of FMLP lead to a significant increase in the cells' FS without a change in 90 degrees-SC as well as a heterogeneous loss of di-O-C(5)(3) fluorescence. PMA (100 ng/ml) also caused an increase in FS but a uniform loss of dye fluorescence by all cells (apparent depolarization). Cyto B + FMLP produced an increase in FS, a marked loss of 90 degrees-SC, and a uniform loss of fluorescence. Secretion experiments under identical incubation conditions indicated a significantly positive relationship between loss of enzyme markers or cell granularity and orthogonal light scatter (r . 0.959, 0.998, and 0.989 for loss of 90 degrees-SC vs lysozyme, beta-glucuronidase, and granularity index, respectively). Flow cytometric light scatter measurements may yield important information on the extent of prior cell degranulation or activation

  13. Severe exercise and exercise training exert opposite effects on human neutrophil apoptosis via altering the redox status.

    Directory of Open Access Journals (Sweden)

    Guan-Da Syu

    Full Text Available Neutrophil spontaneous apoptosis, a process crucial for immune regulation, is mainly controlled by alterations in reactive oxygen species (ROS and mitochondria integrity. Exercise has been proposed to be a physiological way to modulate immunity; while acute severe exercise (ASE usually impedes immunity, chronic moderate exercise (CME improves it. This study aimed to investigate whether and how ASE and CME oppositely regulate human neutrophil apoptosis. Thirteen sedentary young males underwent an initial ASE and were subsequently divided into exercise and control groups. The exercise group (n = 8 underwent 2 months of CME followed by 2 months of detraining. Additional ASE paradigms were performed at the end of each month. Neutrophils were isolated from blood specimens drawn at rest and immediately after each ASE for assaying neutrophil spontaneous apoptosis (annexin-V binding on the outer surface along with redox-related parameters and mitochondria-related parameters. Our results showed that i the initial ASE immediately increased the oxidative stress (cytosolic ROS and glutathione oxidation, and sequentially accelerated the reduction of mitochondrial membrane potential, the surface binding of annexin-V, and the generation of mitochondrial ROS; ii CME upregulated glutathione level, retarded spontaneous apoptosis and delayed mitochondria deterioration; iii most effects of CME were unchanged after detraining; and iv CME blocked ASE effects and this capability remained intact even after detraining. Furthermore, the ASE effects on neutrophil spontaneous apoptosis were mimicked by adding exogenous H(2O(2, but not by suppressing mitochondrial membrane potential. In conclusion, while ASE induced an oxidative state and resulted in acceleration of human neutrophil apoptosis, CME delayed neutrophil apoptosis by maintaining a reduced state for long periods of time even after detraining.

  14. Innate Defense against Influenza A Virus: Activity of Human Neutrophil Defensins and Interactions of Defensins with Surfactant Protein D

    DEFF Research Database (Denmark)

    Hartshorn, Kevan L.; White, Mitchell R.; Tecle, Tesfaldet

    2006-01-01

    Surfactant protein D (SP-D) plays important roles in innate host defense against influenza A virus (IAV) infection, in part by modifying interactions with neutrophils. Human neutrophil defensins (HNPs) inhibit infectivity of enveloped viruses, including IAV. Our goal in this study...

  15. Fabrication and properties of radially C textured PMN-PT cylinders for transducer applications

    Science.gov (United States)

    Poterala, Stephen F.; Meyer, Richard J.; Messing, Gary L.

    2012-07-01

    C Textured PMN-PT ceramics have electromechanical properties (d33 = 850-1050 pm/V, k33 = 0.79-0.83) between those of conventional PZT ceramics and relaxor PMN-PT crystals. In this work, we tailor crystallographic orientation in textured PMN-PT ceramics for transducer designs with non-planar poling surfaces. Specifically, omni-directional cylindrical transducer elements were fabricated using monolithic, radially C textured and poled PMN-PT ceramic. Texture was produced by templated grain growth using NBT-PT templates, which were oriented radially by wrapping green ceramic tapes around a cylindrical mandrel. Finished transducer elements measure ˜5 cm in diameter by ˜2.5 cm in height and demonstrate scalability of textured ceramic fabrication techniques. The fabricated cylinders are ˜50 vol. % textured and show high 31-mode electromechanical properties compared to PZT ceramics (d31 = -259 pm/V, k31 = 0.43, ɛT33 = 3000, and Qm = 350). Frequency bandwidth is related to the square of the hoop mode coupling coefficient kh2, which is ˜60% higher in textured PMN-PT cylinders compared to PZT 5H. Finite element simulations show that this parameter may be further increased by improving texture quality to ≥90 vol. %. Radially textured PMN-PT may thus improve performance in omni-directional cylindrical transducers while avoiding the need for segmented single crystal designs.

  16. Leishmania major surface protease Gp63 interferes with the function of human monocytes and neutrophils in vitro

    DEFF Research Database (Denmark)

    Sørensen, A L; Hey, A S; Kharazmi, A

    1994-01-01

    In the present study the effect of Leishmania major surface protease Gp63 on the chemotaxis and oxidative burst response of human peripheral blood monocytes and neutrophils was investigated. It was shown that prior incubation of cells with Gp63 inhibited chemotaxis of neutrophils but not monocytes...... towards the chemotactic peptide f-met-leu-phe. On the other hand, chemotaxis of both neutrophils and monocytes towards zymosan-activated serum containing C5a was inhibited by Gp63. Monocyte and neutrophil chemiluminescence response to opsonized zymosan was reduced by preincubation of the cells with Gp63...... in a concentration-dependent manner. Notably, monocytes were inhibited to a much greater degree than neutrophils by a given concentration of Gp63, and they were also inhibited at much lower concentrations of the protease. The inhibitory effect of Gp63 on chemotaxis and chemiluminescence was completely abolished...

  17. Inductive potential of recombinant human granulocyte colony-stimulating factor to mature neutrophils from X-irradiated human peripheral blood hematopoietic progenitor cells

    International Nuclear Information System (INIS)

    Katsumori, Takeo; Yoshino, Hironori; Hayashi, Masako; Takahashi, Kenji; Kashiwakura, Ikuo

    2009-01-01

    Recombinant human granulocyte colony-stimulating factor (rhG-CSF) has been used for treatment of neutropenia. Filgrastim, Nartograstim, and Lenograstim are clinically available in Japan. However, the differences in potential benefit for radiation-induced disorder between these types of rhG-CSFs remain unknown. Therefore, the effects of three different types of rhG-CSFs on granulocyte progenitor cells and expansion of neutrophils from nonirradiated or 2 Gy X-irradiated human CD34 + hematopoietic progenitor cells were examined. For analysis of granulocyte colony-forming units (CFU-G) and a surviving fraction of CFU-G, nonirradiated or X-irradiated CD34 + cells were cultured in methylcellulose containing rhG-CSF. These cells were cultured in serum-free medium supplemented with rhG-CSF, and the expansion and characteristics of neutrophils were analyzed. All three types of rhG-CSFs increased the number of CFU-G in a dose-dependent manner; however, Lenograstim is superior to others because of CFU-G-derived colony formation at relatively low doses. The surviving fraction of CFU-G was independent of the types of rhG-CSFs. Expansion of neutrophils by rhG-CSF was largely attenuated by X-irradiation, though no significant difference in neutrophil number was observed between the three types of rhG-CSFs under both nonirradiation and X-irradiation conditions. In terms of functional characteristics of neutrophils, Lenograstim-induced neutrophils produced high levels of reactive oxygen species compared to Filgrastim, when rhG-CSF was applied to nonirradiated CD34 + cells. In conclusion, different types of rhG-CSFs lead to different effects when rhG-CSF is applied to nonirradiated CD34 + cells, though Filgrastim, Nartograstim, and Lenograstim show equal effects on X-irradiated CD34 + cells. (author)

  18. Application of gelatin zymography for evaluating low levels of contaminating neutrophils in red blood cell samples.

    Science.gov (United States)

    Achilli, Cesare; Ciana, Annarita; Balduini, Cesare; Risso, Angela; Minetti, Giampaolo

    2011-02-15

    Supposedly "homogeneous" red blood cell (RBC) samples are commonly obtained by "washing" whole blood free of plasma, platelets, and white cells with physiological solutions, a procedure that does not result, however, in sufficient removal of polymorphonuclear neutrophils (PMNs), leading to possible artifactual results. Pure RBC samples can be obtained only by leukodepletion procedures. Proposed here is a version of gelatin zymography adapted to detect matrix metalloproteinase 9 (MMP-9), selectively expressed by PMNs, in heterogeneous mixtures of RBCs and PMNs that can reveal contamination at levels as low as 1 PMN/10⁶ RBCs. Copyright © 2010 Elsevier Inc. All rights reserved.

  19. Protectin DX, a double lipoxygenase product of DHA, inhibits both ROS production in human neutrophils and cyclooxygenase activities

    Science.gov (United States)

    Liu, Miao; Boussetta, Tarek; Makni-Maalej, Karama; Fay, Michèle; Driss, Fathi; El-Benna, Jamel; Lagarde, Michel; Guichardant, Michel

    2014-01-01

    Neutrophils play a major role in inflammation by releasing large amounts of reactive oxygen species (ROS) produced by NADPH oxidase (NOX) and myeloperoxidase (MPO). This ROS overproduction is mediated by phosphorylation of the NOX subunits with an uncontrolled manner. Therefore, targeting neutrophil subunits would represent a promising strategy to moderate NOX activity, lower ROS, and other inflammatory agents, such as cytokines and leukotrienes, produced by neutrophils. For this purpose, we investigated the effects of protectin DX (PDX) - a docosahexaenoic acid (DHA) di-hydroxylated product which inhibits blood platelet aggregation - on neutrophil activation in vitro. We found that PDX decreases ROS production, inhibits NOX activation and MPO release from neutrophils. We also confirm, that PDX is an anti-aggregatory and anti-inflammatory agent by inhibiting both cyclooxygenase-1 and -2 (COX-1 and COX-2, E.C. 1.14.99.1) as well as COX-2 in lipopolysaccharides (LPS)-treated human neutrophils. However, PDX has no effect on the 5-lipoxygenase pathway that produces the chemotactic agent leukotriene B4 (LTB4). Taken together, our results suggest that PDX could be a protective agent against neutrophil invasion in chronic inflammatory diseases. PMID:24254970

  20. GMP-140 binds to a glycoprotein receptor on human neutrophils: Evidence for a lectin-like interaction

    International Nuclear Information System (INIS)

    Moore, K.L.; Varki, A.; McEver, R.P.

    1991-01-01

    GMP-140 is a rapidly inducible receptor for neutrophils and monocytes expressed on activated platelets and endothelial cells. It is a member of the selectin family of lectin-like cell surface molecules that mediate leukocyte adhesion. We used a radioligand binding assay to characterize the interaction of purified GMP-140 with human neutrophils. Unstimulated neutrophils rapidly bound [125I]GMP-140 at 4 degrees C, reaching equilibrium in 10-15 min. Binding was Ca2+ dependent, reversible, and saturable at 3-6 nM free GMP-140 with half-maximal binding at approximately 1.5 nM. Receptor density and apparent affinity were not altered when neutrophils were stimulated with 4 beta-phorbol 12-myristate 13-acetate. Treatment of neutrophils with proteases abolished specific binding of [125I]GMP-140. Binding was also diminished when neutrophils were treated with neuraminidase from Vibrio cholerae, which cleaves alpha 2-3-, alpha 2-6-, and alpha 2-8-linked sialic acids, or from Newcastle disease virus, which cleaves only alpha 2-3- and alpha 2-8-linked sialic acids. Binding was not inhibited by an mAb to the abundant myeloid oligosaccharide, Lex (CD15), or by the neoglycoproteins Lex-BSA and sialyl-Lex-BSA. We conclude that neutrophils constitutively express a glycoprotein receptor for GMP-140, which contains sialic acid residues that are essential for function. These findings support the concept that GMP-140 interacts with leukocytes by a lectin-like mechanism

  1. Human neutrophil peptides and complement factor Bb in pathogenesis of acquired thrombotic thrombocytopenic purpura.

    Science.gov (United States)

    Cao, Wenjing; Pham, Huy P; Williams, Lance A; McDaniel, Jenny; Siniard, Rance C; Lorenz, Robin G; Marques, Marisa B; Zheng, X Long

    2016-11-01

    Acquired thrombotic thrombocytopenic purpura is primarily caused by the deficiency of plasma ADAMTS13 activity resulting from autoantibodies against ADAMTS13. However, ADAMTS13 deficiency alone is often not sufficient to cause acute thrombotic thrombocytopenic purpura. Infections or systemic inflammation may precede acute bursts of the disease, but the underlying mechanisms are not fully understood. Herein, 52 patients with acquired autoimmune thrombotic thrombocytopenic purpura and 30 blood donor controls were recruited for the study. The plasma levels of human neutrophil peptides 1-3 and complement activation fragments (i.e. Bb, iC3b, C4d, and sC5b-9) were determined by enzyme-linked immunosorbent assays. Univariate analyses were performed to determine the correlation between each biomarker and clinical outcomes. We found that the plasma levels of human neutrophil peptides 1-3 and Bb in patients with acute thrombotic thrombocytopenic purpura were significantly higher than those in the control (Ppurpura patients and the control. We conclude that innate immunity, i.e. neutrophil and complement activation via the alternative pathway, may play a role in the pathogenesis of acute autoimmune thrombotic thrombocytopenic purpura, and a therapy targeted at these pathways may be considered in a subset of these patients. Copyright© Ferrata Storti Foundation.

  2. Infection and cellular defense dynamics in a novel 17β-estradiol murine model of chronic human group B streptococcus genital tract colonization reveal a role for hemolysin in persistence and neutrophil accumulation.

    Science.gov (United States)

    Carey, Alison J; Tan, Chee Keong; Mirza, Shaper; Irving-Rodgers, Helen; Webb, Richard I; Lam, Alfred; Ulett, Glen C

    2014-02-15

    Genital tract carriage of group B streptococcus (GBS) is prevalent among adult women; however, the dynamics of chronic GBS genital tract carriage, including how GBS persists in this immunologically active host niche long term, are not well defined. To our knowledge, in this study, we report the first animal model of chronic GBS genital tract colonization using female mice synchronized into estrus by delivery of 17β-estradiol prior to intravaginal challenge with wild-type GBS 874391. Cervicovaginal swabs, which were used to measure bacterial persistence, showed that GBS colonized the vaginal mucosa of mice at high numbers (10(6)-10(7) CFU/swab) for at least 90 d. Cellular and histological analyses showed that chronic GBS colonization of the murine genital tract caused significant lymphocyte and PMN cell infiltrates, which were localized to the vaginal mucosal surface. Long-term colonization was independent of regular hormone cycling. Immunological analyses of 23 soluble proteins related to chemotaxis and inflammation showed that the host response to GBS in the genital tract comprised markers of innate immune activation including cytokines such as GM-CSF and TNF-α. A nonhemolytic isogenic mutant of GBS 874391, Δcyle9, was impaired for colonization and was associated with amplified local PMN responses. Induction of DNA neutrophil extracellular traps, which was observed in GBS-infected human PMNs in vitro in a hemolysin-dependent manner, appeared to be part of this response. Overall, this study defines key infection dynamics in a novel murine model of chronic GBS genital tract colonization and establishes previously unknown cellular and soluble defense responses to GBS in the female genital tract.

  3. Indomethacin increases the formation of lipoxygenase products in calcium ionophore stimulated human neutrophils.

    Science.gov (United States)

    Docherty, J C; Wilson, T W

    1987-10-29

    Arachidonic acid metabolism in human neutrophils stimulated in vitro with the calcium ionophore A23187 was studied using combined HPLC and radioimmunoassays. Indomethacin (0.1 and 1.0 microM) caused a 300% increase in LTB4 formation in neutrophils stimulated with A23187. 5-, 12- and 15-HETE levels were also increased. In the presence of exogenous arachidonic acid 1.0 microM Indomethacin caused a 37% increase in LTB4 formation. Acetyl Salicylic Acid and Ibuprofen had no effect on the formation of lipoxygenase metabolites. The effect of indomethacin on LTB4 formation does not appear to be due to a simple redirection of substrate arachidonic acid from the cyclooxygenase to the lipoxygenase pathways.

  4. Combined activity of post-exercise concentrations of NA and eHsp72 on human neutrophil function: role of cAMP.

    Science.gov (United States)

    Giraldo, Esther; Hinchado, María D; Ortega, Eduardo

    2013-09-01

    Extracellular heat shock proteins of 72 kDa (eHsp72) and noradrenaline (NA) can act as "danger signals" during exercise-induced stress by activating neutrophil function (chemotaxis, phagocytosis, and fungicidal capacity). In addition, post-exercise concentrations of NA increase the expression and release of Hsp72 by human neutrophils, and adrenoreceptors and cAMP are involved in the stimulation of neutrophils by eHsp72. This suggests an interaction between the two molecules in the modulation of neutrophils during exercise-induced stress. Given this context, the aim of the present investigation was to study the combined activity of post-exercise circulating concentrations of NA and eHsp72 on the neutrophil phagocytic process, and to evaluate the role of cAMP as intracellular signal in these effects. Results showed an accumulative stimulation of chemotaxis induced by NA and eHsp72. However, while NA and eHsp72, separately, stimulate the phagocytosis and fungicidal activity of neutrophils, when they act together they do not modify these capacities of neutrophils. Similarly, post-exercise concentrations of NA and eHsp72 separately increased the intracellular level of cAMP, but NA and eHsp72 acting together did not modify the intracellular concentration of cAMP. These results confirm that cAMP can be involved in the autocrine/paracrine physiological regulation of phagocytosis and fungicidal capacity of human neutrophils mediated by NA and eHsp72 in the context of exercise-induced stress. Copyright © 2013 Wiley Periodicals, Inc.

  5. Effects of ghrelin on the apoptosis of human neutrophils in vitro

    Science.gov (United States)

    Li, Bin; Zeng, Mian; Zheng, Haichong; Huang, Chunrong; He, Wanmei; Lu, Guifang; Li, Xia; Chen, Yanzhu; Xie, Ruijie

    2016-01-01

    Acute respiratory distress syndrome (ARDS) is characterized by lung inflammation and the diffuse infiltration of neutrophils into the alveolar space. Neutrophils are abundant, short-lived leukocytes that play a key role in immune defense against microbial infections. These cells die via apoptosis following the activation and uptake of microbes, and will also enter apoptosis spontaneously at the end of their lifespan if they do not encounter pathogens. Apoptosis is essential for the removal of neutrophils from inflamed tissues and for the timely resolution of neutrophilic inflammation. Ghrelin is an endogenous ligand for the growth hormone (GH) secretagogue receptor, produced and secreted mainly from the stomach. Previous studies have reported that ghrelin exerts anti-inflammatory effects in lung injury through the regulation of the apoptosis of different cell types; however, the ability of ghrelin to regulate alveolar neutrophil apoptosis remains largely undefined. We hypothesized that ghrelin may have the ability to modulate neutrophil apoptosis. In this study, to examine this hypothesis, we investigated the effects of ghrelin on freshly isolated neutrophils in vitro. Our findings demonstrated a decrease in the apoptotic ratio (as shown by flow cytometry), as well as in the percentage of cells with decreased mitochondrial membrane potential (ΔΨm) and in the terminal deoxynucleotidyl transferase (TdT)-mediated dUTP-biotin nick-end labeling-positive rate, accompanied by an increased B-cell lymphoma 2/Bax ratio and the downregulation of cleaved caspase-3 in neutrophils following exposure to lipopolysaccharide (100 ng/ml). However, pre-treatment with ghrelin at a physiological level (100 nM) did not have a notable influence on the neutrophils in all the aforementioned tests. Our findings suggest that ghrelin may not possess the ability to modulate the neutrophil lifespan in vitro. PMID:27431014

  6. Effects of gadolinium oxide nanoparticles on the oxidative burst from human neutrophil granulocytes

    International Nuclear Information System (INIS)

    Abrikossova, Natalia; Skoglund, Caroline; Ahrén, Maria; Uvdal, Kajsa; Bengtsson, Torbjörn

    2012-01-01

    We have previously shown that gadolinium oxide (Gd 2 O 3 ) nanoparticles are promising candidates to be used as contrast agents in magnetic resonance (MR) imaging applications. In this study, these nanoparticles were investigated in a cellular system, as possible probes for visualization and targeting intended for bioimaging applications. We evaluated the impact of the presence of Gd 2 O 3 nanoparticles on the production of reactive oxygen species (ROS) from human neutrophils, by means of luminol-dependent chemiluminescence. Three sets of Gd 2 O 3 nanoparticles were studied, i.e. as synthesized, dialyzed and both PEG-functionalized and dialyzed Gd 2 O 3 nanoparticles. In addition, neutrophil morphology was evaluated by fluorescent staining of the actin cytoskeleton and fluorescence microscopy. We show that surface modification of these nanoparticles with polyethylene glycol (PEG) is essential in order to increase their biocompatibility. We observed that the as synthesized nanoparticles markedly decreased the ROS production from neutrophils challenged with prey (opsonized yeast particles) compared to controls without nanoparticles. After functionalization and dialysis, more moderate inhibitory effects were observed at a corresponding concentration of gadolinium. At lower gadolinium concentration the response was similar to that of the control cells. We suggest that the diethylene glycol (DEG) present in the as synthesized nanoparticle preparation is responsible for the inhibitory effects on the neutrophil oxidative burst. Indeed, in the present study we also show that even a low concentration of DEG, 0.3%, severely inhibits neutrophil function. In summary, the low cellular response upon PEG-functionalized Gd 2 O 3 nanoparticle exposure indicates that these nanoparticles are promising candidates for MR-imaging purposes. (paper)

  7. Role of ERK1/2 kinase in the expression of iNOS by NDMA in human neutrophils.

    Science.gov (United States)

    Ratajczak-Wrona, Wioletta; Jablonska, Ewa; Garley, Marzena; Jablonski, Jakub; Radziwon, Piotr

    2013-01-01

    Potential role of ERK1/2 kinase in conjunction with p38 in the regulation of inducible nitric oxide synthase (iNOS) expression and nitric oxide (NO) production, and superoxide anion generation by human neutrophils (PMNs) exposed to N-nitrosodimethylamine (NDMA) was determined. Increased synthesis of NO due to the involvement of iNOS in neutrophils exposed to NDMA was observed. In addition, intensified activation of ERK1/2 and p38 kinases was determined in these cells. Inhibition of kinase regulated by extracellular signals (ERK1/2) pathway, in contrast to p38 pathway, led to an increased production of NO and expression of iNOS in PMNs. Moreover, as a result of inhibition of ERK1/2 pathway, a decreased activation of p38 kinase was observed in neutrophils, while inhibition of p38 kinase did not affect activation of ERK1/2 pathway in these cells. An increased ability to release superoxide anion by the studied PMNs was observed, which decreased after ERK1/2 pathway inhibition. In conclusion, in human neutrophils, ERK1/2 kinase is not directly involved in the regulation of iNOS and NO production induced by NDMA; however, the kinase participates in superoxide anion production in these cells.

  8. Innate Defense against Influenza A Virus: Activity of Human Neutrophil Defensins and Interactions of Defensins with Surfactant Protein D

    DEFF Research Database (Denmark)

    Hartshorn, Kevan L.; White, Mitchell R.; Tecle, Tesfaldet

    2006-01-01

    Surfactant protein D (SP-D) plays important roles in innate host defense against influenza A virus (IAV) infection, in part by modifying interactions with neutrophils. Human neutrophil defensins (HNPs) inhibit infectivity of enveloped viruses, including IAV. Our goal in this study was to characte......Surfactant protein D (SP-D) plays important roles in innate host defense against influenza A virus (IAV) infection, in part by modifying interactions with neutrophils. Human neutrophil defensins (HNPs) inhibit infectivity of enveloped viruses, including IAV. Our goal in this study...... was to characterize antiviral interactions between SP-D and HNPs. Recombinant and/or natural forms of SP-D and related collectins and HNPs were tested for antiviral activity against two different strains of IAV. HNPs 1 and 2 did not inhibit viral hemagglutination activity, but they interfered...... with the hemagglutination-inhibiting activity of SP-D. HNPs had significant viral neutralizing activity against divergent IAV strains. However, the HNPs generally had competitive effects when combined with SP-D in assays using an SP-D-sensitive IAV strain. In contrast, cooperative antiviral effects were noted in some...

  9. A stable aspirin-triggered lipoxin A4 analog blocks phosphorylation of leukocyte-specific protein 1 in human neutrophils.

    Science.gov (United States)

    Ohira, Taisuke; Bannenberg, Gerard; Arita, Makoto; Takahashi, Minoru; Ge, Qingyuan; Van Dyke, Thomas E; Stahl, Gregory L; Serhan, Charles N; Badwey, John A

    2004-08-01

    Lipoxins and their aspirin-triggered 15-epimers are endogenous anti-inflammatory agents that block neutrophil chemotaxis in vitro and inhibit neutrophil influx in several models of acute inflammation. In this study, we examined the effects of 15-epi-16-(p-fluoro)-phenoxy-lipoxin A(4) methyl ester, an aspirin-triggered lipoxin A(4)-stable analog (ATLa), on the protein phosphorylation pattern of human neutrophils. Neutrophils stimulated with the chemoattractant fMLP were found to exhibit intense phosphorylation of a 55-kDa protein that was blocked by ATLa (10-50 nM). This 55-kDa protein was identified as leukocyte-specific protein 1, a downstream component of the p38-MAPK cascade in neutrophils, by mass spectrometry, Western blotting, and immunoprecipitation experiments. ATLa (50 nM) also reduced phosphorylation/activation of several components of the p38-MAPK pathway in these cells (MAPK kinase 3/MAPK kinase 6, p38-MAPK, MAPK-activated protein kinase-2). These results indicate that ATLa exerts its anti-inflammatory effects, at least in part, by blocking activation of the p38-MAPK cascade in neutrophils, which is known to promote chemotaxis and other proinflammatory responses by these cells.

  10. Doxycycline induced photodamage to human neutrophils and tryptophan

    International Nuclear Information System (INIS)

    Sandberg, S.; Glette, J.; Hopen, G.; Solberg, C.O.

    1984-01-01

    Neutrophil function were studied following irradiation (340-380 nm) of the cells in the presence of 22 μM doxycycline. At increasing light fluence the locomotion, chemiluminescence and glucose oxidation (by the hexose monophosphate shunt) of the neutrophils steadily decreased. The photodamage increased with increasing preincubation temperature and time and was enhanced in D 2 O, reduced in azide and abolished in anaerobiosis. Superoxide dismutase, catalase or mannitol did not influence the photodamage. Photooxidation of tryptophan in the presence of doxycycline was increased 9-10-fold in D 2 O and nearly abolished in the presence of 0.25 mM NaN 3 , indicating that singlet oxygen is the most important reactive oxygen species in the doxycycline-induced photodamage. The results may explain some of the features of tetracycline-induced photosensitivity and why other authors have obtained diverging results when studying the influence of tetracyclines on neutrophil functions. (author)

  11. Monoclonal antibodies to antigens on human neutrophils, activated T lymphocytes, and acute leukemia blast cells

    International Nuclear Information System (INIS)

    Miterev, G.Yu.; Burova, G.F.; Puzhitskaya, M.S.; Danilevich, S.V.; Bulycheva, T.I.

    1987-01-01

    The authors describe the production of two mouse hybridomas secreting monoclonal antibodies to antigenic determinants of the surface membranes of human neutrophils, activated T lymphocytes, and acute leukemic blast cells. The degree of lymphocyte stimulation was estimated from incorporation of 3 H-thymidine with parallel microculture. Monoclonal antibodies of supernatants of hybridoma cultures shown here reacted in both immunofluorescence test and cytotoxicity test with surface membrane antigens on the majority of neutrophils and PHA-activated peripheral blood lymphocytes from healthy subjects, but did not give positive reactions with unactivated lymphocytes, adherent monocytes, erythrocytes, and alloantigen-stimulated lymphocytes

  12. Monoclonal antibodies to antigens on human neutrophils, activated T lymphocytes, and acute leukemia blast cells

    Energy Technology Data Exchange (ETDEWEB)

    Miterev, G.Yu.; Burova, G.F.; Puzhitskaya, M.S.; Danilevich, S.V.; Bulycheva, T.I.

    1987-11-01

    The authors describe the production of two mouse hybridomas secreting monoclonal antibodies to antigenic determinants of the surface membranes of human neutrophils, activated T lymphocytes, and acute leukemic blast cells. The degree of lymphocyte stimulation was estimated from incorporation of /sup 3/H-thymidine with parallel microculture. Monoclonal antibodies of supernatants of hybridoma cultures shown here reacted in both immunofluorescence test and cytotoxicity test with surface membrane antigens on the majority of neutrophils and PHA-activated peripheral blood lymphocytes from healthy subjects, but did not give positive reactions with unactivated lymphocytes, adherent monocytes, erythrocytes, and alloantigen-stimulated lymphocytes.

  13. Local anesthetic-induced inhibition of human neutrophil priming: the influence of structure, lipophilicity, and charge

    NARCIS (Netherlands)

    Picardi, Susanne; Cartellieri, Sibylle; Groves, Danja; Hahnenekamp, Klaus; Gerner, Peter; Durieux, Marcel E.; Stevens, Markus F.; Lirk, Philipp; Hollmann, Markus W.

    2013-01-01

    Local anesthetics (LAs) are widely known for inhibition of voltage-gated sodium channels underlying their antiarrhythmic and antinociceptive effects. However, LAs have significant immunomodulatory properties and were shown to affect human neutrophil functions independent of sodium-channel blockade.

  14. Nanoscale insight of high piezoelectricity in high-TC PMN-PH-PT ceramics

    Science.gov (United States)

    Zhu, Rongfeng; Zhang, Qihui; Fang, Bijun; Zhang, Shuai; Zhao, Xiangyong; Ding, Jianning

    2018-03-01

    The piezoelectric properties of the high-Curie temperature (high-TC) 0.15Pb(Mg1/3Nb2/3)O3-0.38PbHfO3-0.47PbTiO3 (0.15PMN-0.38PH-0.47PT) ceramics prepared by three different methods were compared. The 0.15PMN-0.38PH-0.47PT ceramics synthesized by the partial oxalate route exhibit the optimum properties, in which d33* = 845.3 pm/V, d33 = 456.2 pC/N, Kp = 67.2%, and TC = 291 °C. The nanoscale origin of the high piezoelectric response of the 0.15PMN-0.38PH-0.47PT ceramics was investigated by piezoresponse force microscopy (PFM) using the ceramics synthesized by the partial oxalate route. Large quantities of fine stripe submicron ferroelectric domains are observed, which form large island domains. In order to give further insights into the piezoelectric properties of the 0.15PMN-0.38PH-0.47PT ceramics from a microscopic point of view, the local poling experiments and local switching spectroscopy piezoresponse force microscopy (SS-PFM) were investigated, from which the local converse piezoelectric coefficient d33*(l) is calculated as 220 pm/V.

  15. Pathogenic Bacterium Acinetobacter baumannii Inhibits the Formation of Neutrophil Extracellular Traps by Suppressing Neutrophil Adhesion

    Science.gov (United States)

    Kamoshida, Go; Kikuchi-Ueda, Takane; Nishida, Satoshi; Tansho-Nagakawa, Shigeru; Ubagai, Tsuneyuki; Ono, Yasuo

    2018-01-01

    Hospital-acquired infections caused by Acinetobacter baumannii have become problematic because of high rates of drug resistance. A. baumannii is usually harmless, but it may cause infectious diseases in an immunocompromised host. Although neutrophils are the key players of the initial immune response against bacterial infection, their interactions with A. baumannii remain largely unknown. A new biological defense mechanism, termed neutrophil extracellular traps (NETs), has been attracting attention. NETs play a critical role in bacterial killing by bacterial trapping and inactivation. Many pathogenic bacteria have been reported to induce NET formation, while an inhibitory effect on NET formation is rarely reported. In the present study, to assess the inhibition of NET formation by A. baumannii, bacteria and human neutrophils were cocultured in the presence of phorbol 12-myristate 13-acetate (PMA), and NET formation was evaluated. NETs were rarely observed during the coculture despite neutrophil PMA stimulation. Furthermore, A. baumannii prolonged the lifespan of neutrophils by inhibiting NET formation. The inhibition of NET formation by other bacteria was also investigated. The inhibitory effect was only apparent with live A. baumannii cells. Finally, to elucidate the mechanism of this inhibition, neutrophil adhesion was examined. A. baumannii suppressed the adhesion ability of neutrophils, thereby inhibiting PMA-induced NET formation. This suppression of cell adhesion was partly due to suppression of the surface expression of CD11a in neutrophils. The current study constitutes the first report on the inhibition of NET formation by a pathogenic bacterium, A. baumannii, and prolonging the neutrophil lifespan. This novel pathogenicity to inhibit NET formation, thereby escaping host immune responses might contribute to a development of new treatment strategies for A. baumannii infections. PMID:29467765

  16. Pathogenic Bacterium Acinetobacter baumannii Inhibits the Formation of Neutrophil Extracellular Traps by Suppressing Neutrophil Adhesion

    Directory of Open Access Journals (Sweden)

    Go Kamoshida

    2018-02-01

    Full Text Available Hospital-acquired infections caused by Acinetobacter baumannii have become problematic because of high rates of drug resistance. A. baumannii is usually harmless, but it may cause infectious diseases in an immunocompromised host. Although neutrophils are the key players of the initial immune response against bacterial infection, their interactions with A. baumannii remain largely unknown. A new biological defense mechanism, termed neutrophil extracellular traps (NETs, has been attracting attention. NETs play a critical role in bacterial killing by bacterial trapping and inactivation. Many pathogenic bacteria have been reported to induce NET formation, while an inhibitory effect on NET formation is rarely reported. In the present study, to assess the inhibition of NET formation by A. baumannii, bacteria and human neutrophils were cocultured in the presence of phorbol 12-myristate 13-acetate (PMA, and NET formation was evaluated. NETs were rarely observed during the coculture despite neutrophil PMA stimulation. Furthermore, A. baumannii prolonged the lifespan of neutrophils by inhibiting NET formation. The inhibition of NET formation by other bacteria was also investigated. The inhibitory effect was only apparent with live A. baumannii cells. Finally, to elucidate the mechanism of this inhibition, neutrophil adhesion was examined. A. baumannii suppressed the adhesion ability of neutrophils, thereby inhibiting PMA-induced NET formation. This suppression of cell adhesion was partly due to suppression of the surface expression of CD11a in neutrophils. The current study constitutes the first report on the inhibition of NET formation by a pathogenic bacterium, A. baumannii, and prolonging the neutrophil lifespan. This novel pathogenicity to inhibit NET formation, thereby escaping host immune responses might contribute to a development of new treatment strategies for A. baumannii infections.

  17. Activation of Triggering Receptor Expressed on Myeloid Cells-1 on Human Neutrophils by Marburg and Ebola Viruses

    National Research Council Canada - National Science Library

    Mohamadzadeh, Mansour; Coberley, Sadie S; Olinger, Gene G; Kalina, Warren V; Ruthel, Gordon; Fullter, Claudette L; Swenson, Dana L; Pratt, William D; Kuhns, Douglas B; Schmaljohn, Alan L

    2006-01-01

    .... Here, we report that MARV and EBOV activate TREM-1 on human neutrophils, resulting in DAP12 phosphorylation, TREM-1 shedding, mobilization of intracellular calcium, secretion of proinflammatory...

  18. Comparison of PZN-PT, PMN-PT single crystals and PZT ceramic for vibration energy harvesting

    International Nuclear Information System (INIS)

    Yang, Zhengbao; Zu, Jean

    2016-01-01

    Highlights: • Systematic analysis of PMN-PT and PZN-PT single crystals for energy harvesters. • Performance analysis and comparison under various conditions. • Discussion of the effect of the SSHI technique on single crystal energy harvesters. • Efficiency analysis in both on-resonance and off-resonance conditions. - Abstract: Vibration energy harvesting has a great potential to achieve self-powered operations for wireless sensors, wearable devices and medical electronics, and thus has attracted much attention in academia and industry. The majority of research into this subject has focused on the piezoelectric effect of synthetic materials, especially the perovskite PZT ceramics. Recently the new-generation piezoelectric materials PMN-PT and PZN-PT single crystals have gained significant interest because of their outstanding piezoelectric properties. They can be used to replace the widely-adopted PZT ceramics for improving energy harvesters’ performance substantially. However, there is little research on comparing PMN-PT and PZN-PT energy harvesters against PZT harvesters. In this paper, we present a systematic comparison between vibration energy harvesters using the PMN-PT, PZN-PT single crystals and those using the PZT ceramics. Key properties of the three materials are summarized and compared. The performance of the PMN-PT and PZN-PT energy harvesters is characterized under different conditions (beam length, resistance, frequency, excitation strength, and backward coupling effect), and is quantitatively compared with the PZT counterpart. Furthermore, the effect of the synchronized switch harvesting on inductor (SSHI) circuit on the three harvesters is discussed. The experimental results indicate that energy harvesters using the PMN-PT and PZN-PT single crystals can significantly outperform those using the PZT ceramics. This study provides a strong base for future research on high-performance energy harvesters using the new PMN-PT and PZN-PT single

  19. Tamoxifen induces apoptotic neutrophil efferocytosis in horses.

    Science.gov (United States)

    Olave, C; Morales, N; Uberti, B; Henriquez, C; Sarmiento, J; Ortloff, A; Folch, H; Moran, G

    2018-03-01

    Macrophages and neutrophils are important cellular components in the process of acute inflammation and its subsequent resolution, and evidence increasingly suggests that they play important functions during the resolution of chronic, adaptive inflammatory processes. Exacerbated neutrophil activity can be harmful to surrounding tissues; this is important in a range of diseases, including allergic asthma and chronic obstructive pulmonary disease in humans, and equine asthma (also known as recurrent airway obstruction (RAO). Tamoxifen (TX) is a non-steroidal estrogen receptor modulator with effects on cell growth and survival. Previous studies showed that TX treatment in horses with induced acute pulmonary inflammation promoted early apoptosis of blood and BALF neutrophils, reduction of BALF neutrophils, and improvement in animals' clinical status. The aim of this study was to describe if TX induces in vitro efferocytosis of neutrophils by alveolar macrophages. Efferocytosis assay, myeloperoxidase (MPO) detection and translocation phosphatidylserine (PS) were performed on neutrophils isolated from peripheral blood samples from five healthy horses. In in vitro samples from heathy horses, TX treatment increases the phenomenon of efferocytosis of peripheral neutrophils by alveolar macrophages. Similar increases in supernatant MPO concentration and PS translocation were observed in TX-treated neutrophils, compared to control cells. In conclusion, these results confirm that tamoxifen has a direct effect on equine peripheral blood neutrophils, through stimulation of the engulfment of apoptotic neutrophils by alveolar macrophages.

  20. Targeting Neutrophilic Inflammation Using Polymersome-Mediated Cellular Delivery.

    Science.gov (United States)

    Robertson, James D; Ward, Jon R; Avila-Olias, Milagros; Battaglia, Giuseppe; Renshaw, Stephen A

    2017-05-01

    Neutrophils are key effector cells in inflammation and play an important role in neutralizing invading pathogens. During inflammation resolution, neutrophils undergo apoptosis before they are removed by macrophages, but if apoptosis is delayed, neutrophils can cause extensive tissue damage and chronic disease. Promotion of neutrophil apoptosis is a potential therapeutic approach for treating persistent inflammation, yet neutrophils have proven difficult cells to manipulate experimentally. In this study, we deliver therapeutic compounds to neutrophils using biocompatible, nanometer-sized synthetic vesicles, or polymersomes, which are internalized by binding to scavenger receptors and subsequently escape the early endosome through a pH-triggered disassembly mechanism. This allows polymersomes to deliver molecules into the cell cytosol of neutrophils without causing cellular activation. After optimizing polymersome size, we show that polymersomes can deliver the cyclin-dependent kinase inhibitor (R)-roscovitine into human neutrophils to promote apoptosis in vitro. Finally, using a transgenic zebrafish model, we show that encapsulated (R)-roscovitine can speed up inflammation resolution in vivo more efficiently than the free drug. These results show that polymersomes are effective intracellular carriers for drug delivery into neutrophils. This has important consequences for the study of neutrophil biology and the development of neutrophil-targeted therapeutics. Copyright © 2017 The Authors.

  1. Human neutrophil peptide-1 promotes alcohol-induced hepatic fibrosis and hepatocyte apoptosis.

    Directory of Open Access Journals (Sweden)

    Rie Ibusuki

    Full Text Available Neutrophil infiltration of the liver is a typical feature of alcoholic liver injury. Human neutrophil peptide (HNP-1 is an antimicrobial peptide secreted by neutrophils. The aim of this study was to determine if HNP-1 affects ethanol-induced liver injury and to examine the mechanism of liver injury induced by HNP-1.Transgenic (TG mice expressing HNP-1 under the control of a β-actin-based promoter were established. Ethanol was orally administered to HNP-1 TG or wild-type C57BL/6N (WT mice. SK-Hep1 hepatocellular carcinoma cells were used to investigate the effect of HNP-1 on hepatocytes in vitro.After 24 weeks of ethanol intake, hepatic fibrosis and hepatocyte apoptosis were significantly more severe in TG mice than in WT mice. Levels of CD14, TLR4, and IL-6 in liver tissues were higher in TG mice than in WT mice. Apoptosis was accompanied by higher protein levels of caspase-3, caspase-8, and cleaved PARP in liver tissue. In addition, phosphorylated ASK1, ASK1, phosphorylated JNK, JNK1, JNK2, Bax, Bak and Bim were all more abundant in TG mice than in WT mice. In contrast, the level of anti-apoptotic Bcl2 in the liver was significantly lower in TG mice than in WT mice. Analysis of microRNAs in liver tissue showed that miR-34a-5p expression was significantly higher in TG mice than in WT mice. Furthermore, in the presence of ethanol, HNP-1 increased the apoptosis with the decreased level of Bcl2 in a concentration-dependent manner in vitro.HNP-1 secreted by neutrophils may exacerbate alcohol-induced hepatic fibrosis and hepatocyte apoptosis with a decrease in Bcl2 expression and an increase in miR-34a-5p expression.

  2. Autophagy Primes Neutrophils for Neutrophil Extracellular Trap Formation during Sepsis.

    Science.gov (United States)

    Park, So Young; Shrestha, Sanjeeb; Youn, Young-Jin; Kim, Jun-Kyu; Kim, Shin-Yeong; Kim, Hyun Jung; Park, So-Hee; Ahn, Won-Gyun; Kim, Shin; Lee, Myung Goo; Jung, Ki-Suck; Park, Yong Bum; Mo, Eun-Kyung; Ko, Yousang; Lee, Suh-Young; Koh, Younsuck; Park, Myung Jae; Song, Dong-Keun; Hong, Chang-Won

    2017-09-01

    Neutrophils are key effectors in the host's immune response to sepsis. Excessive stimulation or dysregulated neutrophil functions are believed to be responsible for sepsis pathogenesis. However, the mechanisms regulating functional plasticity of neutrophils during sepsis have not been fully determined. We investigated the role of autophagy in neutrophil functions during sepsis in patients with community-acquired pneumonia. Neutrophils were isolated from patients with sepsis and stimulated with phorbol 12-myristate 13-acetate (PMA). The levels of reactive oxygen species generation, neutrophil extracellular trap (NET) formation, and granule release, and the autophagic status were evaluated. The effect of neutrophil autophagy augmentation was further evaluated in a mouse model of sepsis. Neutrophils isolated from patients who survived sepsis showed an increase in autophagy induction, and were primed for NET formation in response to subsequent PMA stimulation. In contrast, neutrophils isolated from patients who did not survive sepsis showed dysregulated autophagy and a decreased response to PMA stimulation. The induction of autophagy primed healthy neutrophils for NET formation and vice versa. In a mouse model of sepsis, the augmentation of autophagy improved survival via a NET-dependent mechanism. These results indicate that neutrophil autophagy primes neutrophils for increased NET formation, which is important for proper neutrophil effector functions during sepsis. Our study provides important insights into the role of autophagy in neutrophils during sepsis.

  3. Dynamic interactions of neutrophils and biofilms

    Directory of Open Access Journals (Sweden)

    Josefine Hirschfeld

    2014-12-01

    Full Text Available Background: The majority of microbial infections in humans are biofilm-associated and difficult to treat, as biofilms are highly resistant to antimicrobial agents and protect themselves from external threats in various ways. Biofilms are tenaciously attached to surfaces and impede the ability of host defense molecules and cells to penetrate them. On the other hand, some biofilms are beneficial for the host and contain protective microorganisms. Microbes in biofilms express pathogen-associated molecular patterns and epitopes that can be recognized by innate immune cells and opsonins, leading to activation of neutrophils and other leukocytes. Neutrophils are part of the first line of defense and have multiple antimicrobial strategies allowing them to attack pathogenic biofilms. Objective/design: In this paper, interaction modes of neutrophils with biofilms are reviewed. Antimicrobial strategies of neutrophils and the counteractions of the biofilm communities, with special attention to oral biofilms, are presented. Moreover, possible adverse effects of neutrophil activity and their biofilm-promoting side effects are discussed. Results/conclusion: Biofilms are partially, but not entirely, protected against neutrophil assault, which include the processes of phagocytosis, degranulation, and formation of neutrophil extracellular traps. However, virulence factors of microorganisms, microbial composition, and properties of the extracellular matrix determine whether a biofilm and subsequent microbial spread can be controlled by neutrophils and other host defense factors. Besides, neutrophils may inadvertently contribute to the physical and ecological stability of biofilms by promoting selection of more resistant strains. Moreover, neutrophil enzymes can degrade collagen and other proteins and, as a result, cause harm to the host tissues. These parameters could be crucial factors in the onset of periodontal inflammation and the subsequent tissue breakdown.

  4. Heterogeneity in Neutrophil Microparticles Reveals Distinct Proteome and Functional Properties*

    Science.gov (United States)

    Dalli, Jesmond; Montero-Melendez, Trinidad; Norling, Lucy V; Yin, Xiaoke; Hinds, Charles; Haskard, Dorian; Mayr, Manuel; Perretti, Mauro

    2013-01-01

    Altered plasma neutrophil microparticle levels have recently been implicated in a number of vascular and inflammatory diseases, yet our understanding of their actions is very limited. Herein, we investigate the proteome of neutrophil microparticles in order to shed light on their biological actions. Stimulation of human neutrophils, either in suspension or adherent to an endothelial monolayer, led to the production of microparticles containing >400 distinct proteins with only 223 being shared by the two subsets. For instance, postadherent microparticles were enriched in alpha-2 macroglobulin and ceruloplasmin, whereas microparticles produced by neutrophils in suspension were abundant in heat shock 70 kDa protein 1. Annexin A1 and lactotransferrin were expressed in both microparticle subsets. We next determined relative abundance of these proteins in three types of human microparticle samples: healthy volunteer plasma, plasma of septic patients and skin blister exudates finding that these proteins were differentially expressed on neutrophil microparticles from these samples reflecting in part the expression profiles we found in vitro. Functional assessment of the neutrophil microparticles subsets demonstrated that in response to direct stimulation neutrophil microparticles produced reactive oxygen species and leukotriene B4 as well as locomoted toward a chemotactic gradient. Finally, we investigated the actions of the two neutrophil microparticles subsets described herein on target cell responses. Microarray analysis with human primary endothelial cells incubated with either microparticle subset revealed a discrete modulation of endothelial cell gene expression profile. These findings demonstrate that neutrophil microparticles are heterogenous and can deliver packaged information propagating the activation status of the parent cell, potentially exerting novel and fundamental roles both under homeostatic and disease conditions. PMID:23660474

  5. Functional metabolomics reveals novel active products in the DHA metabolome

    Directory of Open Access Journals (Sweden)

    Masakazu eShinohara

    2012-04-01

    Full Text Available Endogenous mechanisms for successful resolution of an acute inflammatory response and the local return to homeostasis are of interest because excessive inflammation underlies many human diseases. In this review, we provide an update and overview of functional metabolomics that identified a new bioactive metabolome of docosahexaenoic acid (DHA. Systematic studies revealed that DHA was converted to DHEA-derived novel bioactive products as well as aspirin-triggered (AT forms of protectins. The new oxygenated DHEA derived products blocked PMN chemotaxis, reduced P-selectin expression and platelet-leukocyte adhesion, and showed organ protection in ischemia/reperfusion injury. These products activated cannabinoid receptor (CB2 receptor and not CB1 receptors. The AT-PD1 reduced neutrophil (PMN recruitment in murine peritonitis. With human cells, AT-PD1 decreased transendothelial PMN migration as well as enhanced efferocytosis of apoptotic human PMN by macrophages. The recent findings reviewed here indicate that DHEA oxidative metabolism and aspirin-triggered conversion of DHA produce potent novel molecules with anti-inflammatory and organ-protective properties, opening the DHA metabolome functional roles.

  6. Liver inflammation during monocrotaline hepatotoxicity

    International Nuclear Information System (INIS)

    Copple, Bryan L.; Ganey, Patricia E.; Roth, Robert A.

    2003-01-01

    Monocrotaline (MCT) is a pyrrolizidine alkaloid (PA) plant toxin that causes hepatotoxicity in humans and animals. Human exposure occurs from consumption of contaminated grains and herbal teas and medicines. Intraperitoneal injection (i.p.) of 300 mg/kg MCT in rats produced time-dependent hepatic parenchymal cell (HPC) injury beginning at 12 h. At this time, an inflammatory infiltrate consisting of neutrophils (PMNs) appeared in areas of hepatocellular injury, and activation of the coagulation system occurred. PMN accumulation was preceded by up-regulation of the PMN chemokines cytokine-induced neutrophil chemoattractant-1 (CINC-1) and macrophage inflammatory protein-2 (MIP-2) in the liver. The monocyte chemokine, monocyte chemoattractant protein-1 (MCP-1), was also upregulated. Inhibition of Kupffer cell function with gadolinium chloride (GdCl 3 ) significantly reduced CINC-1 protein in plasma after MCT treatment but had no effect on hepatic PMN accumulation. Since inflammation can contribute to either pathogenesis or resolution of tissue injury, we explored inflammatory factors as a contributor to MCT hepatotoxicity. To test the hypothesis that PMNs contribute to MCT-induced HPC injury, rats were depleted of PMNs with a rabbit anti-PMN serum prior to MCT treatment. Anti-PMN treatment reduced hepatic PMN accumulation by 80% but had no effect on MCT-induced HPC injury or activation of the coagulation system. To test the hypothesis that Kupffer cells and/or tumor necrosis factor-α (TNF-α) are required for MCT-induced HPC injury, rats were treated with either GdCl 3 to inhibit Kupffer cell function or pentoxifylline (PTX) to prevent synthesis of TNF-α. Neither treatment prevented MCT-induced HPC injury. Results from these studies suggest that PMNs, Kupffer cells and TNF-α are not critical mediators of MCT hepatotoxicity. Accordingly, although inflammation occurs in the liver after MCT treatment, it is not required for HPC injury and possibly occurs secondary to

  7. Selective inhibition of extracellular oxidants liberated from human neutrophils--A new mechanism potentially involved in the anti-inflammatory activity of hydroxychloroquine.

    Science.gov (United States)

    Jančinová, Viera; Pažoureková, Silvia; Lucová, Marianna; Perečko, Tomáš; Mihalová, Danica; Bauerová, Katarína; Nosáľ, Radomír; Drábiková, Katarína

    2015-09-01

    Hydroxychloroquine is used in the therapy of rheumatoid arthritis or lupus erythematosus. Although these diseases are often accompanied by activation of neutrophils, there are still few data relating to the impact of hydroxychloroquine on these cells. We investigated the effect of orally administered hydroxychloroquine on neutrophil oxidative burst in rats with adjuvant arthritis. In human neutrophils, extra- and intracellular formation of oxidants, mobilisation of intracellular calcium and the phosphorylation of proteins regulating NADPH oxidase assembly were analysed. Administration of hydroxychloroquine decreased the concentration of oxidants in blood of arthritic rats. The inhibition was comparable with the reference drug methotrexate, yet it was not accompanied by a reduction in neutrophil count. When both drugs were co-applied, the effect became more pronounced. In isolated human neutrophils, treatment with hydroxychloroquine resulted in reduced mobilisation of intracellular calcium, diminished concentration of external oxidants and in decreased phosphorylation of Ca(2+)-dependent protein kinase C isoforms PKCα and PKCβII, which regulate activation of NADPH oxidase on plasma membrane. On the other hand, no reduction was observed in intracellular oxidants or in the phosphorylation of p40(phox) and PKCδ, two proteins directing the oxidase assembly to intracellular membranes. Hydroxychloroquine reduced neutrophil-derived oxidants potentially involved in tissue damage and protected those capable to suppress inflammation. The observed effects may represent a new mechanism involved in the anti-inflammatory activity of this drug. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Extracellular lipase of Pseudomonas aeruginosa: biochemical characterization and effect on human neutrophil and monocyte function in vitro

    DEFF Research Database (Denmark)

    Jaeger, K E; Kharazmi, A; Høiby, N

    1991-01-01

    concentrations of this lipase preparation were preincubated with human peripheral blood neutrophils and monocytes. The chemotaxis and chemiluminescence of these cells were then determined. It was shown that lipase inhibited the monocyte chemotaxis and chemiluminescence, whereas it had no or very little effect...... on neutrophils. The inhibitory effect was concentration dependent and was abolished by heat treatment of the enzyme at 100 degrees C. Since monocytes are one of the important cells of the host defence system the inhibition of the function of these cells may contribute to the pathogenesis of infections caused...

  9. CARD9-Dependent Neutrophil Recruitment Protects against Fungal Invasion of the Central Nervous System.

    Directory of Open Access Journals (Sweden)

    Rebecca A Drummond

    2015-12-01

    Full Text Available Candida is the most common human fungal pathogen and causes systemic infections that require neutrophils for effective host defense. Humans deficient in the C-type lectin pathway adaptor protein CARD9 develop spontaneous fungal disease that targets the central nervous system (CNS. However, how CARD9 promotes protective antifungal immunity in the CNS remains unclear. Here, we show that a patient with CARD9 deficiency had impaired neutrophil accumulation and induction of neutrophil-recruiting CXC chemokines in the cerebrospinal fluid despite uncontrolled CNS Candida infection. We phenocopied the human susceptibility in Card9-/- mice, which develop uncontrolled brain candidiasis with diminished neutrophil accumulation. The induction of neutrophil-recruiting CXC chemokines is significantly impaired in infected Card9-/- brains, from both myeloid and resident glial cellular sources, whereas cell-intrinsic neutrophil chemotaxis is Card9-independent. Taken together, our data highlight the critical role of CARD9-dependent neutrophil trafficking into the CNS and provide novel insight into the CNS fungal susceptibility of CARD9-deficient humans.

  10. Structural health monitoring of glass/epoxy composite plates with MEMS PMN-PT sensors

    Science.gov (United States)

    Simon, Brenton R.; Tang, Hong-Yue; Horsley, David A.; La Saponara, Valeria; Lestari, Wahyu

    2009-03-01

    Sensors constructed with single-crystal PMN-PT, i.e. Pb(Mg1/3Nb2/3)O3-PbTiO3 or PMN, are developed in this paper for structural health monitoring of composite plates. To determine the potential of PMN-PT for this application, glass/epoxy composite specimens were created containing an embedded delamination-starter. Two different piezoelectric materials were bonded to the surface of each specimen: PMN-PT, the test material, was placed on one side of the specimen, while a traditional material, PZT-4, was placed on the other. A comparison of the ability of both materials to transmit and receive an ultrasonic pulse was conducted, with the received signal detected by both a second surface-bonded transducer constructed of the same material, as well as a laser Doppler vibrometer (LDV) analyzing the same location. The optimal frequency range of both sets of transducers is discussed and a comparison is presented of the experimental results to theory. The specimens will be fatigued until failure with further data collected every 3,000 cycles to characterize the ability of each material to detect the growing delamination in the composite structure. This additional information will be made available during the conference.

  11. Damage to Aspergillus fumigatus and Rhizopus oryzae Hyphae by Oxidative and Nonoxidative Microbicidal Products of Human Neutrophils In Vitro

    OpenAIRE

    Diamond, Richard D.; Clark, Robert A.

    1982-01-01

    Our previous studies established that human neutrophils could damage and probably kill hyphae of Aspergillus fumigatus and Rhizopus oryzae in vitro, primarily by oxygen-dependent mechanisms active at the cell surface. These studies were extended, again quantitating hyphal damage by reduction in uptake of 14C-labeled uracil or glutamine. Neither A. fumigatus nor R. oryzae hyphae were damaged by neutrophils from patients with chronic granulomatous disease, confirming the importance of oxidative...

  12. Aging and Barkhausen Noise in the Relaxor Ferroelectric SBN:La and PMN/PT

    Science.gov (United States)

    Chao, Lambert K.; Colla, Eugene V.; Weissman, M. B.

    2003-03-01

    Relaxor ferroelectrics form a diverse class of materials which exhibit frequency-dependent freezing into a disordered state. The relation to other cooperative glassy freezing, such as in spin glasses, remain uncertain. Previous aging investigations on several relaxors already indicate diverse behavior (E.V. Colla phet al., Phys. Rev. B 63, 134107 (2001)). We present results on aging behavior on PMN/PT (90/10) and SBN:La. SBN:La, believed to fit a random-field Ising model, exhibits complicated aging behavior with a low-temperature regime lacking the memory effects characteristic of spin-glass-like aging seen in the perovskites PMN and PMN/PT. Further information on the glassy freezing is provided via Barkhausen noise experiments using a balanced capacitance bridge technique capable of measuring random noise despite a large systematic background signal [E.V. Colla phet al., Phys. Rev. Lett. 88 017601 (2002).].

  13. Streptococcus sanguinis induces neutrophil cell death by production of hydrogen peroxide.

    Science.gov (United States)

    Sumioka, Ryuichi; Nakata, Masanobu; Okahashi, Nobuo; Li, Yixuan; Wada, Satoshi; Yamaguchi, Masaya; Sumitomo, Tomoko; Hayashi, Mikako; Kawabata, Shigetada

    2017-01-01

    Streptococcus is the dominant bacterial genus in the human oral cavity and a leading cause of infective endocarditis. Streptococcus sanguinis belongs to the mitis group of streptococci and produces hydrogen peroxide (H2O2) by the action of SpxB, a pyruvate oxidase. In this study, we investigated the involvement of SpxB in survival of S. sanguinis in human blood and whether bacterial H2O2 exhibits cytotoxicity against human neutrophils. Results of a bactericidal test with human whole blood revealed that the spxB mutation in S. sanguinis is detrimental to its survival in blood. When S. sanguinis strains were exposed to isolated neutrophils, the bacterial survival rate was significantly decreased by spxB deletion. Furthermore, human neutrophils exposed to the S. sanguinis wild-type strain, in contrast to those exposed to an spxB mutant strain, underwent cell death with chromatin de-condensation and release of web-like extracellular DNA, reflecting induction of neutrophil extracellular traps (NETs). Since reactive oxygen species-mediated NET induction requires citrullination of arginine residues in histone proteins and subsequent chromatin de-condensation, we examined citrullination levels of histone in infected neutrophils. It is important to note that the citrullinated histone H3 was readily detected in neutrophils infected with the wild-type strain, as compared to infection with the spxB mutant strain. Moreover, decomposition of streptococcal H2O2 with catalase reduced NET induction. These results suggest that H2O2 produced by S. sanguinis provokes cell death of neutrophils and NET formation, thus potentially affecting bacterial survival in the bloodstream.

  14. Streptococcus sanguinis induces neutrophil cell death by production of hydrogen peroxide.

    Directory of Open Access Journals (Sweden)

    Ryuichi Sumioka

    Full Text Available Streptococcus is the dominant bacterial genus in the human oral cavity and a leading cause of infective endocarditis. Streptococcus sanguinis belongs to the mitis group of streptococci and produces hydrogen peroxide (H2O2 by the action of SpxB, a pyruvate oxidase. In this study, we investigated the involvement of SpxB in survival of S. sanguinis in human blood and whether bacterial H2O2 exhibits cytotoxicity against human neutrophils. Results of a bactericidal test with human whole blood revealed that the spxB mutation in S. sanguinis is detrimental to its survival in blood. When S. sanguinis strains were exposed to isolated neutrophils, the bacterial survival rate was significantly decreased by spxB deletion. Furthermore, human neutrophils exposed to the S. sanguinis wild-type strain, in contrast to those exposed to an spxB mutant strain, underwent cell death with chromatin de-condensation and release of web-like extracellular DNA, reflecting induction of neutrophil extracellular traps (NETs. Since reactive oxygen species-mediated NET induction requires citrullination of arginine residues in histone proteins and subsequent chromatin de-condensation, we examined citrullination levels of histone in infected neutrophils. It is important to note that the citrullinated histone H3 was readily detected in neutrophils infected with the wild-type strain, as compared to infection with the spxB mutant strain. Moreover, decomposition of streptococcal H2O2 with catalase reduced NET induction. These results suggest that H2O2 produced by S. sanguinis provokes cell death of neutrophils and NET formation, thus potentially affecting bacterial survival in the bloodstream.

  15. GROUP B STREPTOCOCCUS CIRCUMVENTS NEUTROPHILS AND NEUTROPHIL EXTRACELLULAR TRAPS DURING AMNIOTIC CAVITY INVASION AND PRETERM LABOR

    Science.gov (United States)

    Boldenow, Erica; Gendrin, Claire; Ngo, Lisa; Bierle, Craig; Vornhagen, Jay; Coleman, Michelle; Merillat, Sean; Armistead, Blair; Whidbey, Christopher; Alishetti, Varchita; Santana-Ufret, Veronica; Ogle, Jason; Gough, Michael; Srinouanprachanh, Sengkeo; MacDonald, James W; Bammler, Theo K; Bansal, Aasthaa; Liggitt, H. Denny; Rajagopal, Lakshmi; Waldorf, Kristina M Adams

    2016-01-01

    Preterm birth is a leading cause of neonatal morbidity and mortality. Although microbial invasion of the amniotic cavity (MIAC) is associated with the majority of early preterm births, the temporal events that occur during MIAC and preterm labor are not known. Group B Streptococci (GBS) are β-hemolytic, gram-positive bacteria, which commonly colonize the vagina but have been recovered from the amniotic fluid in preterm birth cases. To understand temporal events that occur during MIAC, we utilized a unique chronically catheterized nonhuman primate model that closely emulates human pregnancy. This model allows monitoring of uterine contractions, timing of MIAC and immune responses during pregnancy-associated infections. Here, we show that adverse outcomes such as preterm labor, MIAC, and fetal sepsis were observed more frequently during infection with hemolytic GBS when compared to nonhemolytic GBS. Although MIAC was associated with systematic progression in chorioamnionitis beginning with chorionic vasculitis and progressing to neutrophilic infiltration, the ability of the GBS hemolytic pigment toxin to induce neutrophil cell death and subvert killing by neutrophil extracellular traps (NETs) in placental membranes in vivo facilitated MIAC and fetal injury. Furthermore, compared to maternal neutrophils, fetal neutrophils exhibit decreased neutrophil elastase activity and impaired phagocytic functions to GBS. Collectively, our studies demonstrate how a unique bacterial hemolytic lipid toxin enables GBS to circumvent neutrophils and NETs in placental membranes to induce fetal injury and preterm labor. PMID:27819066

  16. Regulation of Endothelial Cell Inflammation and Lung PMN Infiltration by Transglutaminase 2

    Science.gov (United States)

    Bijli, Kaiser M.; Kanter, Bryce G.; Minhajuddin, Mohammad; Leonard, Antony; Xu, Lei; Fazal, Fabeha; Rahman, Arshad

    2014-01-01

    We addressed the role of transglutaminase2 (TG2), a calcium-dependent enzyme that catalyzes crosslinking of proteins, in the mechanism of endothelial cell (EC) inflammation and lung PMN infiltration. Exposure of EC to thrombin, a procoagulant and proinflammatory mediator, resulted in activation of the transcription factor NF-κB and its target genes, VCAM-1, MCP-1, and IL-6. RNAi knockdown of TG2 inhibited these responses. Analysis of NF-κB activation pathway showed that TG2 knockdown was associated with inhibition of thrombin-induced DNA binding as well as serine phosphorylation of RelA/p65, a crucial event that controls transcriptional capacity of the DNA-bound RelA/p65. These results implicate an important role for TG2 in mediating EC inflammation by promoting DNA binding and transcriptional activity of RelA/p65. Because thrombin is released in high amounts during sepsis and its concentration is elevated in plasma and lavage fluids of patients with Acute Respiratory Distress Syndrome (ARDS), we determined the in vivo relevance of TG2 in a mouse model of sepsis-induced lung PMN recruitment. A marked reduction in NF-κB activation, adhesion molecule expression, and lung PMN sequestration was observed in TG2 knockout mice compared to wild type mice exposed to endotoxemia. Together, these results identify TG2 as an important mediator of EC inflammation and lung PMN sequestration associated with intravascular coagulation and sepsis. PMID:25057925

  17. Noradrenaline increases the expression and release of Hsp72 by human neutrophils.

    Science.gov (United States)

    Giraldo, E; Multhoff, G; Ortega, E

    2010-05-01

    The blood concentration of extracellular 72kDa heat shock protein (eHsp72) increases under conditions of stress, including intense exercise. However, the signal(s), source(s), and secretory pathways in its release into the bloodstream have yet to be clarified. The aim of the present study was to evaluate the role of noradrenaline (NA) as a stress signal on the expression and release of Hsp72 by circulating neutrophils (as a source), all within a context of the immunophysiological regulation during exercise-induced stress in sedentary and healthy young (21-26years) women. The expression of Hsp72 on the surface of isolated neutrophils was determined by flow cytometry, and its release by cultured isolated neutrophils was determined by ELISA. Incubation with cmHsp70-FITC showed that neutrophils express Hsp72 on their surface under basal conditions. In addition, cultured isolated neutrophils (37 degrees C and 5% CO(2)) also released Hsp72 under basal conditions, with this release increasing from 10min to 24h in the absence of cell damage. NA at 10(-9)-10(-5)M doubled the percentage of neutrophils expressing Hsp72 after 60min and 24h incubation. NA also stimulated (by about 20%) the release of Hsp72 after 10min of incubation. (1) Hsp72 is expressed on the surface of isolated neutrophils under basal conditions, and this expression is augmented by NA. (2) Isolated neutrophils can also release Hsp72 under cultured basal conditions in the absence of cell death, and NA can increase this release. These results may contribute to confirming the hypothesis that NA can act as a "stress signal" for the increased eHsp72 in the context of exercise stress, with a role for neutrophils as a source for the expression and, to a lesser degree, the release of Hsp72 after activation by NA. Copyright 2010 Elsevier Inc. All rights reserved.

  18. Mycobacterium tuberculosis Cell Wall Fragments Released upon Bacterial Contact with the Human Lung Mucosa Alter the Neutrophil Response to Infection.

    Science.gov (United States)

    Scordo, Julia M; Arcos, Jesús; Kelley, Holden V; Diangelo, Lauren; Sasindran, Smitha J; Youngmin, Ellie; Wewers, Mark D; Wang, Shu-Hua; Balada-Llasat, Joan-Miquel; Torrelles, Jordi B

    2017-01-01

    In 2016, the World Health Organization reported that one person dies of tuberculosis (TB) every 21 s. A host environment that Mycobacterium tuberculosis ( M.tb ) finds during its route of infection is the lung mucosa bathing the alveolar space located in the deepest regions of the lungs. We published that human lung mucosa, or alveolar lining fluid (ALF), contains an array of hydrolytic enzymes that can significantly alter the M.tb surface during infection by cleaving off parts of its cell wall. This interaction results in two different outcomes: modifications on the M.tb cell wall surface and release of M.tb cell wall fragments into the environment. Typically, one of the first host immune cells at the site of M.tb infection is the neutrophil. Neutrophils can mount an extracellular and intracellular innate immune response to M.tb during infection. We hypothesized that exposure of neutrophils to ALF-induced M.tb released cell wall fragments would prime neutrophils to control M.tb infection better. Our results show that ALF fragments activate neutrophils leading to an increased production of inflammatory cytokines and oxidative radicals. However, neutrophil exposure to these fragments reduces production of chemoattractants (i.e., interleukin-8), and degranulation, with the subsequent reduction of myeloperoxidase release, and does not induce cytotoxicity. Unexpectedly, these ALF fragment-derived modulations in neutrophil activity do not further, either positively or negatively, contribute to the intracellular control of M.tb growth during infection. However, secreted products from neutrophils primed with ALF fragments are capable of regulating the activity of resting macrophages. These results indicate that ALF-induced M.tb fragments could further contribute to the control of M.tb growth and local killing by resident neutrophils by switching on the total oxidative response and limiting migration of neutrophils to the infection site.

  19. Raman selection rules and tensor elements for PMN-0.3PT single crystal

    International Nuclear Information System (INIS)

    Ge, Wanyin; Zhu, Wenliang; Pezzotti, Giuseppe

    2009-01-01

    Selection rules were put forward theoretically and Raman tensor elements experimentally determined for PMN-0.3PT single-crystal. Such a body of information was then employed to evaluate local domain orientation in a relaxor-based PMN-0.3PT material by means of polarized microprobe Raman spectroscopy. The dependence of Raman spectra upon crystal rotation under different polarized probe configurations was experimentally confirmed by collecting the intensity variation of selected Raman modes on Euler's angle rotation in a poled single-crystal. The periodicity of relative Raman intensity of selected Raman bands revealed symmetry properties. Upon exploiting such properties and with the knowledge of the Raman tensor elements from the A g and E g vibrational modes, a viable path becomes available to determine domain texture in relaxor-based PMN-PT materials with high spatial resolution. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Features of dielectric response in PMN-PT ferroelectric ceramics

    International Nuclear Information System (INIS)

    Guerra, J D S; Araujo, E B; Guarany, C A; Reis, R N; Lima, E C

    2008-01-01

    In this paper, electrical and structural properties were reported for pyrochlore free (1 - x)[Pb(Mg 1/3 Nb 2/3 )O 3 ] - xPbTiO 3 (PMN-PT) (with 35 mol% PbTiO 3 ) ceramics obtained from fine powders. Dielectric studies were focused on the investigation of the complex dielectric permittivity (ε' - iε'') as a function of frequency and temperature. The effects of the dc applied electric field on dielectric response were also investigated. Results revealed a field dependence dielectric anomaly in the dielectric permittivity curves (ε(T)) in the low dc electric field region, which in turn prevails in the whole analysed frequency interval. To the best of our knowledge, these properties for the PMN-PT ceramic system have not been reported before as in this work. The results were analysed within the framework of the current models found in the literature.

  1. Activation of bovine neutrophils by Brucella spp.

    Science.gov (United States)

    Keleher, Lauren L; Skyberg, Jerod A

    2016-09-01

    Brucellosis is a globally important zoonotic infectious disease caused by gram negative bacteria of the genus Brucella. While many species of Brucella exist, Brucella melitensis, Brucella abortus, and Brucella suis are the most common pathogens of humans and livestock. The virulence of Brucella is largely influenced by its ability to evade host factors, including phagocytic killing mechanisms, which are critical for the host response to infection. The aim of this study was to characterize the bovine neutrophil response to virulent Brucella spp. Here, we found that virulent strains of smooth B. abortus, B. melitensis, B. suis, and virulent, rough, strains of Brucella canis possess similar abilities to resist killing by resting, or IFN-γ-activated, bovine neutrophils. Bovine neutrophils responded to infection with a time-dependent oxidative burst that varied little between Brucella spp. Inhibition of TAK1, or SYK kinase blunted the oxidative burst of neutrophils in response to Brucella infection. Interestingly, Brucella spp. did not induce robust death of bovine neutrophils. These results indicate that bovine neutrophils respond similarly to virulent Brucella spp. In addition, virulent Brucella spp., including naturally rough strains of B. canis, have a conserved ability to resist killing by bovine neutrophils. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. The effect of cigarette smoking on neutrophil kinetics in human lungs [see comments

    International Nuclear Information System (INIS)

    MacNee, W.; Wiggs, B.; Belzberg, A.S.; Hogg, J.C.

    1989-01-01

    Neutrophils may play a part in the pathogenesis of the centrilobular emphysema associated with cigarette smoking. The capillary bed of the lungs concentrates neutrophils approximately 100-fold with respect to erythrocytes, producing a large pool of marginated cells. We examined the effect of cigarette smoking on the kinetics of this pool of cells, using 99mTc-labeled erythrocytes to measure regional blood velocity and 111In-labeled neutrophils to measure the removal of neutrophils during the first passage through the pulmonary circulation, their subsequent washout from the lungs, and the effect of local blood velocity on the number of neutrophils retained in each lung region. We observed no difference in these measurements between subjects who had never smoked (n = 6) and smokers who did not smoke during the study (n = 12). However, subjects who did smoke during the study (n = 12) had a significantly slower rate of washout of radiolabeled neutrophils from the lung (0.08 +/- 0.04 of the total per minute, as compared with 0.13 +/- 0.06 in smokers who did not smoke during the experiment and 0.14 +/- 0.08 in non-smokers) (P = 0.02). We also observed an increase in the regional retention of labeled neutrophils with respect to blood velocity in 5 of the 12 subjects who smoked during the study, but in none of the other subjects. We conclude that the presence of cigarette smoke in the lungs of some subjects increases the local concentration of neutrophils, and suggest that the lesions that characterize emphysema may be a result of the destruction of lung tissue by neutrophils that remain within pulmonary microvessels

  3. Effect of a 2.45-GHz radiofrequency electromagnetic field on neutrophil chemotaxis and phagocytosis in differentiated human HL-60 cells.

    Science.gov (United States)

    Koyama, Shin; Narita, Eijiro; Suzuki, Yoshihisa; Taki, Masao; Shinohara, Naoki; Miyakoshi, Junji

    2015-01-01

    The potential public health risks of radiofrequency (RF) fields have been discussed at length, especially with the use of mobile phones spreading extensively throughout the world. In order to investigate the properties of RF fields, we examined the effect of 2.45-GHz RF fields at the specific absorption rate (SAR) of 2 and 10 W/kg for 4 and 24 h on neutrophil chemotaxis and phagocytosis in differentiated human HL-60 cells. Neutrophil chemotaxis was not affected by RF-field exposure, and subsequent phagocytosis was not affected either compared with that under sham exposure conditions. These studies demonstrated an initial immune response in the human body exposed to 2.45-GHz RF fields at the SAR of 2 W/kg, which is the maximum value recommended by the International Commission for Non-Ionizing Radiation Protection (ICNIRP) guidelines. The results of our experiments for RF-field exposure at an SAR under 10 W/kg showed very little or no effects on either chemotaxis or phagocytosis in neutrophil-like human HL-60 cells. © The Author 2014. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  4. Pneumovirus-Induced Lung Disease in Mice Is Independent of Neutrophil-Driven Inflammation

    NARCIS (Netherlands)

    Cortjens, Bart; Lutter, René; Boon, Louis; Bem, Reinout A.; van Woensel, Job B. M.

    2016-01-01

    The human pneumovirus respiratory syncytial virus (RSV) is the most common pathogen causing lower respiratory tract disease in young children worldwide. A hallmark of severe human RSV infection is the strong neutrophil recruitment to the airways and lungs. Massive neutrophil activation has been

  5. Toll-like receptor-4 (TLR-4) expression on polymorphonuclear ...

    African Journals Online (AJOL)

    To establish a foundation for further researches on the improvement of polymorphonuclear neutrophil leukocytes (PMN) functions in dairy cow during perinatal period, the counting of PMN, as well as the mRNA and protein expression of toll-like receptor-4 (TLR-4) on PMN was studied during this critical period.

  6. High resolution of heterogeneity among human neutrophil granules: physical, biochemical, and ultrastructural properties of isolated fractions.

    Science.gov (United States)

    Rice, W G; Kinkade, J M; Parmley, R T

    1986-08-01

    Previous studies on the fractionation of human neutrophil granules have identified two major populations: myeloperoxidase (MPO)-containing azurophil, or primary, granules and MPO-deficient specific, or secondary, granules. Peripheral blood neutrophils from individual donors were lysed in sucrose-free media by either hypotonic shock or nitrogen cavitation. Using a novel two-gradient Percoll density centrifugation system, the granule-rich postnuclear supernatant was rapidly (ten minutes) and reproducibly resolved into 13 granule fractions (L1 through L8 and H1 through H5). Granule flotation and recentrifugation experiments on both continuous, self-generated and multiple-step gradients using individual and mixed isolated fractions demonstrated that the banding patterns were isopycnic and nonartifactual. Isolated granules were intact based on the findings that biochemical latency of several granule enzymes was greater than 95%, and thin-sectioned electron micrographs demonstrated intact granule profiles. Biochemical analyses of the granule marker proteins MPO, beta-glucuronidase, lysozyme, and lactoferrin indicated that a number of the fractions were related to the major azurophil and specific granule populations. Lactoferrin was found in ten of 13 fractions (L1 through L8, H1 to H2), whereas MPO was found in every fraction. Consistent with these biochemical data, all fractions exhibited varying degrees of heterogeneity based on ultrastructural morphology and cytochemistry, including diaminobenzidine (DAB) reactivity for peroxidase and periodate-thiocarbohydrazide-silver proteinate (PA-TCH-SP) staining for complex glycoconjugates. A variable but significant percentage (23% to 70%) of the granules in fractions L1 through L8 and H1 and H2 showed DAB reactivity, while about 90% of the granules in fractions H3 through H5 were peroxidase positive. These results demonstrated that DAB-reactive granules spanned the entire range of granule size and density. Ultrastructural PA

  7. Effect of manganese doping on PIN-PMN-PT single crystals for high power applications

    Science.gov (United States)

    Sahul, Raffi

    Single crystals based on relaxor-lead titanate (relaxor-PT) solid solutions have advanced the world of piezoelectric materials for the past two decades with their giant piezoelectric properties achieved by domain engineered configurations. When single crystals of lead magnesium niobate-lead titanate (PMN-PT) solid solution in the rhombohedral phase were poled along [001]c direction with "4R" domain configuration, they exhibited high piezoelectric charge coefficient (d33 >2000 pC/N) and high electromechanical coupling (k33 >0.9) which led to their widespread use in advanced medical imaging systems and underwater acoustic devices. However, PMN-PT crystals suffer from low phase transition temperature (Trt ˜85-95 °C) and lower coercive field (depolarizing electric field, Ec ˜2-3 kV/cm). Lead indium niobate - lead magnesium niobate - lead titanate (PIN-PMN-PT) ternary single crystals formed by adding indium as another constituent exhibit higher coercive field (E c ˜5kV/cm) and higher Curie temperature (Tc >210 °C) than the binary PMN-PT crystals (Ec ˜2.5 kV/cm and Tc high mechanical Q-factor (Qm >600) compared to the undoped binary crystals (Qm of PMN-PT 2000 pC/N for PMN-PT) occurs in the [001]c poled crystals, which is attributed to the polarization rotation mechanisms. Hence, domain engineering configurations induced by poling these crystals in orientations other than their polarization axis are critical for achieving large piezoelectric effects. Based on the phase diagram of these solid solutions, with the increase in PT content beyond the rhombohedral phase region, orthorhombic/monoclinic and tetragonal phases are formed. In the orthorhombic and tetragonal phases, the spontaneous polarization directions are in the [011]c and [001] c directions respectively. Similar to the "4R" domain configuration achieved in [001]c poled rhombohedral crystals, other domain configurations can be achieved by poling the single crystals in different orientations, leading to

  8. Neutrophils are not less sensitive than other blood leukocytes to the genomic effects of glucocorticoids.

    Directory of Open Access Journals (Sweden)

    Gaelle Hirsch

    Full Text Available Neutrophils are generally considered less responsive to glucocorticoids compared to other inflammatory cells. The reported increase in human neutrophil survival mediated by these drugs partly supports this assertion. However, it was recently shown that dexamethasone exerts potent anti-inflammatory effects in equine peripheral blood neutrophils. Few comparative studies of glucocorticoid effects in neutrophils and other leukocytes have been reported and a relative insensitivity of neutrophils to these drugs could not be ruled out.We assessed glucocorticoid-responsiveness in equine and human peripheral blood neutrophils and neutrophil-depleted leukocytes.Blood neutrophils and neutrophil-depleted leukocytes were isolated from 6 healthy horses and 4 human healthy subjects. Cells were incubated for 5 h with or without LPS (100 ng/mL alone or combined with hydrocortisone, prednisolone or dexamethasone (10(-8 M and 10(-6 M. IL-1β, TNF-α, IL-8, glutamine synthetase and GR-α mRNA expression was quantified by qPCR. Equine neutrophils were also incubated for 20 h with or without the three glucocorticoids and cell survival was assessed by flow cytometry and light microscopy on cytospin preparations.We found that glucocorticoids down-regulated LPS-induced pro-inflammatory mRNA expression in both cell populations and species. These drugs also significantly increased glutamine synthetase gene expression in both equine cell populations. The magnitude of glucocorticoid response between cell populations was generally similar in both species. We also showed that dexamethasone had a comparable inhibitory effect on pro-inflammatory gene expression in both human and equine neutrophils. As reported in other species, glucocorticoids significantly increase the survival in equine neutrophils.Glucocorticoids exert genomic effects of similar magnitude on neutrophils and on other blood leukocytes. We speculate that the poor response to glucocorticoids observed in some

  9. Neutrophils Are Not Less Sensitive Than Other Blood Leukocytes to the Genomic Effects of Glucocorticoids

    Science.gov (United States)

    Hirsch, Gaelle; Lavoie-Lamoureux, Anouk; Beauchamp, Guy; Lavoie, Jean-Pierre

    2012-01-01

    Background Neutrophils are generally considered less responsive to glucocorticoids compared to other inflammatory cells. The reported increase in human neutrophil survival mediated by these drugs partly supports this assertion. However, it was recently shown that dexamethasone exerts potent anti-inflammatory effects in equine peripheral blood neutrophils. Few comparative studies of glucocorticoid effects in neutrophils and other leukocytes have been reported and a relative insensitivity of neutrophils to these drugs could not be ruled out. Objective We assessed glucocorticoid-responsiveness in equine and human peripheral blood neutrophils and neutrophil-depleted leukocytes. Methods Blood neutrophils and neutrophil-depleted leukocytes were isolated from 6 healthy horses and 4 human healthy subjects. Cells were incubated for 5 h with or without LPS (100 ng/mL) alone or combined with hydrocortisone, prednisolone or dexamethasone (10−8 M and 10−6 M). IL-1β, TNF-α, IL-8, glutamine synthetase and GR-α mRNA expression was quantified by qPCR. Equine neutrophils were also incubated for 20 h with or without the three glucocorticoids and cell survival was assessed by flow cytometry and light microscopy on cytospin preparations. Results We found that glucocorticoids down-regulated LPS-induced pro-inflammatory mRNA expression in both cell populations and species. These drugs also significantly increased glutamine synthetase gene expression in both equine cell populations. The magnitude of glucocorticoid response between cell populations was generally similar in both species. We also showed that dexamethasone had a comparable inhibitory effect on pro-inflammatory gene expression in both human and equine neutrophils. As reported in other species, glucocorticoids significantly increase the survival in equine neutrophils. Conclusions Glucocorticoids exert genomic effects of similar magnitude on neutrophils and on other blood leukocytes. We speculate that the poor response to

  10. The selective estrogen receptor modulator raloxifene inhibits neutrophil extracellular trap formation.

    Directory of Open Access Journals (Sweden)

    Roxana Flores

    2016-12-01

    Full Text Available Raloxifene is a selective estrogen receptor modulator typically prescribed for the prevention/treatment of osteoporosis in postmenopausal women. Although raloxifene is known to have anti-inflammatory properties, its effect on human neutrophils, the primary phagocytic leukocytes of the immune system, remain poorly understood. Here, through a screen of pharmacologically active small molecules, we find that raloxifene prevents neutrophil cell death in response to the classical activator phorbol 12-myristate 13-acetate (PMA, a compound known to induce formation of DNA-based neutrophil extracellular traps (NETs. Inhibition of PMA-induced NET production by raloxifene was confirmed using quantitative and imaging-based assays. Human neutrophils from both male and female donors express the nuclear estrogen receptors ERα and ERβ, known targets of raloxifene. Like raloxifene, selective antagonists of these receptors inhibit PMA-induced NET production. Furthermore, raloxifene inhibited PMA-induced ERK phosphorylation but not reactive oxygen species (ROS production, pathways known to be key modulators of NET production. Finally, we found that raloxifene inhibited PMA-induced, NET-based killing of the leading human bacterial pathogen, methicillin-resistant Staphylococcus aureus (MRSA. Our results reveal that raloxifene is a potent modulator of neutrophil function and NET production.

  11. Endogenous acute phase serum amyloid A lacks pro-inflammatory activity, contrasting the two recombinant variants that activate human neutrophils through different receptors

    Directory of Open Access Journals (Sweden)

    Karin eChristenson

    2013-04-01

    Full Text Available Most notable among the acute phase proteins is serum amyloid A (SAA, levels of which can increase 1000-fold during infections, aseptic inflammation, and/or trauma. Chronically elevated SAA levels are associated with a wide variety of pathological conditions, including obesity and rheumatic diseases. Using a recombinant hybrid of the two human SAA isoforms (SAA1 and 2 that does not exist in vivo, numerous in vitro studies have given rise to the notion that acute phase SAA is a pro-inflammatory molecule with cytokine-like properties. It is however unclear whether endogenous acute phase SAA per se mediates pro-inflammatory effects. We tested this in samples from patients with inflammatory arthritis and in a transgenic mouse model that expresses human SAA1. Endogenous human SAA did not drive production of pro-inflammatory IL-8/KC in either of these settings. Human neutrophils derived from arthritis patients displayed no signs of activation, despite being exposed to severely elevated SAA levels in circulation, and SAA-rich sera also failed to activate cells in vitro. In contrast, two recombinant SAA variants (the hybrid SAA and SAA1 both activated human neutrophils, inducing L-selectin shedding, production of reactive oxygen species, and production of IL-8. The hybrid SAA was approximately 100-fold more potent than recombinant SAA1. Recombinant hybrid SAA and SAA1 activated neutrophils through different receptors, with recombinant SAA1 being a ligand for formyl peptide receptor 2 (FPR2. We conclude that even though recombinant SAAs can be valuable tools for studying neutrophil activation, they do not reflect the nature of the endogenous protein.

  12. Postprandial triglyceride-rich lipoproteins promote lipid accumulation and apolipoprotein B-48 receptor transcriptional activity in human circulating and murine bone marrow neutrophils in a fatty acid-dependent manner.

    Science.gov (United States)

    Ortega-Gómez, Almudena; Varela, Lourdes M; López, Sergio; Montserrat de la Paz, Sergio; Sánchez, Rosario; Muriana, Francisco J G; Bermúdez, Beatriz; Abia, Rocío

    2017-09-01

    Postprandial triglyceride-rich lipoproteins (TRLs) promote atherosclerosis. Recent research points the bone marrow (BM) as a primary site in atherosclerosis. We elucidated how the acute administration of monounsaturated fatty acids (MUFAs) MUFAs, omega-3 polyunsaturated fatty acids (PUFAs) PUFAs and saturated fatty acids (SFAs) affects human circulating and murine BM neutrophil lipid accumulation and functionality. Postprandial hypertriglyceridemia was induced in healthy subjects and Apoe -/- mice by the acute administration of dietary fats enriched in MUFAs, PUFAs, or SFAs. Postprandial hypertriglyceridemia increased apolipoprotein-B48 receptor (ApoB48R) transcriptional activity that was linearly correlated with intracellular triglycerides (TGs) TGs accumulation in human circulating and murine BM neutrophils. MUFA and omega-3 PUFAs attenuated ApoB48R gene expression and intracellular TG accumulation compared to SFAs. TRLs induced apoB48R-dependent TG accumulation in human neutrophils ex vivo. Murine BM neutrophils showed a decrease in surface L-selectin and an increase in TNF-α and IL-1β mRNA expressions only after SFAs administration. TRLs enriched in SFAs induced BM neutrophil degranulation ex vivo suggesting cell priming/activation. Postprandial TRLs disrupts the normal biology and function of circulating and BM neutrophils. MUFA- and omega-3 PUFA-rich dietary fats such as virgin olive oil or fish oil has the potential to prevent excessive neutrophil lipid accumulation and activation by targeting the fatty acid composition of TRLs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Cytotoxicity towards human endothelial cells, induced by neutrophil myeloperoxidase: protection by ceftazidime

    Directory of Open Access Journals (Sweden)

    M. Mathy-Hartert

    1995-01-01

    Full Text Available We investigated the effects of the antibiotic ceftazidime (CAZ on the cytolytic action of the neutrophil myeloperoxidase–hydrogen peroxide–chloride anion system (MPO/H2O2/Cl−. In this system, myeloperoxidase catalyses the conversion of H2O2 and CI− to the cytotoxic agent HOCl. Stimulated neutrophils can release MPO into the extracellular environment and then may cause tissue injury through direct endothelial cells lysis. We showed that human umbilical vein endothelial cells (HUVEC were capable of taking up active MPO. In presence of H2O2 (10−4 M, this uptake was accompanied by cell lysis. The cytolysis was estimated by the release of 51Cr from HUVEC and expressed as an index of cytotoxicity (IC. Dose dependent protection was obtained for CAZ concentrations ranging from 10−5 to 10−3 M;this can be attributed to inactivation of HOCl by the drug. This protection is comparable to that obtained with methionine and histidine, both of which are known to neutralize HOCl. This protection by CAZ could also be attributed to inactivation of H2O2, but when cytolysis was achieved with H2O2 or O2− generating enzymatic systems, no protection by CAZ was observed. Moreover, the peroxidation activity of MPO (action on H2O2 was not affected by CAZ, while CAZ prevented the chlorination activity of MPO (chlorination of monochlorodimedon. So, we concluded that CAZ acts via HOCl inactivation. These antioxidant properties of CAZ may be clinically useful in pathological situations where excessive activation of neutrophils occurs, such as in sepsis.

  14. Attenuation of pancreatitis-induced pulmonary injury by aerosolized hypertonic saline.

    LENUS (Irish Health Repository)

    Shields, C J

    2012-02-03

    BACKGROUND: The immunomodulatory effects of hypertonic saline (HTS) provide potential strategies to attenuate inappropriate inflammatory reactions. This study tested the hypothesis that administration of intratracheal aerosolized HTS modulates the development of lung injury in pancreatitis. METHODS: Pancreatitis was induced in 24 male Sprague-Dawley rats by intraperitoneal injection of 20% L-arginine (500 mg\\/100 g body weight). At 24 and 48 h, intratracheal aerosolized HTS (7.5% NaCl, 0.5 mL) was administered to 8 rats, while a further 8 received 0.5 mL of aerosolized normal saline (NS). At 72 hours, pulmonary neutrophil infiltration (myeloperoxidase activity) and endothelial permeability (bronchoalveolar lavage and wet:dry weight ratios) were assessed. In addition, histological assessment of representative lung tissue was performed by a blinded assessor. In a separate experiment, polymorphonucleocytes (PMN) were isolated from human donors, and exposed to increments of HTS. Neutrophil transmigration across an endothelial cell layer, VEGF release, and apoptosis at 1, 6, 12, 18, and 24 h were assessed. RESULTS: Histopathological lung injury scores were significantly reduced in the HTS group (4.78 +\\/- 1.43 vs. 8.64 +\\/- 0.86); p < 0.001). Pulmonary neutrophil sequestration (1.40 +\\/- 0.2) and increased endothelial permeability (6.77 +\\/- 1.14) were evident in the animals resuscitated with normal saline when compared with HTS (0.70 +\\/- 0.1 and 3.57 +\\/- 1.32), respectively; p < 0.04). HTS significantly reduced PMN transmigration (by 97.1, p = 0.002, and induced PMN apoptosis (p < 0.03). HTS did not impact significantly upon neutrophil VEGF release (p > 0.05). CONCLUSIONS: Intratracheal aerosolized HTS attenuates the neutrophil-mediated pulmonary insult subsequent to pancreatitis. This may represent a novel therapeutic strategy.

  15. Neutrophil formyl-peptide receptors. Relationship to peptide-induced responses and emphysema.

    Science.gov (United States)

    Stockley, R A; Grant, R A; Llewellyn-Jones, C G; Hill, S L; Burnett, D

    1994-02-01

    A reproducible assay was established to assess the number of formyl-peptide receptors expressed on the surface of human polymorphonuclear leukocytes (PMN). Using this assay the number of receptors was shown to demonstrate wide within- and between-subject variability. However, the receptor numbers were related to the chemotactic response (r = 0.572) and degranulation response (r = 0.512) to the peptide formyl-methionyl-leucyl-phenylalanine. Subsequent studies showed increased receptor numbers on PMN from patients with emphysema (median, 459 x 10(3)/cell; range, 207 to 1,080) as compared with age-matched control subjects (median, 288; range, 168 to 519; p < 0.02), which may explain the increased chemotactic response of the PMN to formyl peptides. This difference was not observed in patients with bronchiectasis, suggesting that the increased receptor number is a feature of emphysema. Furthermore, the increase was largely a feature of smokers with emphysema (median, 463; range, 362 to 1,080), whereas age-matched smokers without emphysema had lower numbers of receptors (p < 0.001; median, 332; range, 243 to 411). This observation suggests a mechanism that may explain the susceptibility of some smokers to the development of emphysema.

  16. A possible scenario for two soft branches in PMN

    Czech Academy of Sciences Publication Activity Database

    Kempa, Martin; Hlinka, Jiří

    2011-01-01

    Roč. 84, 9-10 (2011), s. 784-788 ISSN 0141-1594 R&D Projects: GA ČR GAP204/10/0616 Institutional research plan: CEZ:AV0Z10100520 Keywords : PMN relaxor * waterfall phenomenon * phonon dispersions * inelastic scattering Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.006, year: 2011

  17. Amburanins A and B from Amburana cearensis: daphnodorin-type biflavonoids that modulate human neutrophil degranulation

    Energy Technology Data Exchange (ETDEWEB)

    Canuto, Kirley M.; Silveira, Edilberto R., E-mail: edil@ufc.br [Universidade Federal do Ceara (UFCE), Fortaleza, CE (Brazil). Departamento de Quimica Organica e Inorganica; Leal, Luzia K.A.M.; Lopes, Amanda A. [Universidade Federal do Ceara (CEFAC/UFCE), Fortaleza, CE (Brazil). Centro de Estudos Farmaceuticos e Cosmeticos. Departamento de Farmacia; Coleman, Christina M.; Ferreira, Daneel [Department of Pharmacognosy and the Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, MS (United States)

    2014-04-15

    Two new biflavonoids 3,5,7,4'-tetrahydroxyflavanone-(2→O→4':3→3')-2',4',6',4- tetrahydroxydihydrochalcone (1) and 3,5,7,4'-tetrahydroxyflavanone-(2→O→7:3→8)-3,4',5,7-tetrahydroxyflavone (2), named as amburanin A and amburanin B, respectively, were isolated from the trunk bark of Amburana cearensis, and their structures elucidated on the basis of spectroscopic analysis and by comparison with literature data. The effects of 1 and 2 on the pro-inflammatory response of human neutrophils were investigated (0.1; 1; 25; 50 e 100 μg mL{sup -1}). At concentration higher than 25 μg mL{sup -1}, both compounds suppressed nearly 92% of the neutrophil degranulation and 53% of myeloperoxidase activity, thus indicating that they are potential anti-inflammatory lead compounds. (author)

  18. Amburanins A and B from Amburana cearensis: daphnodorin-type biflavonoids that modulate human neutrophil degranulation

    International Nuclear Information System (INIS)

    Canuto, Kirley M.; Silveira, Edilberto R.

    2014-01-01

    Two new biflavonoids 3,5,7,4'-tetrahydroxyflavanone-(2→O→4':3→3')-2',4',6',4- tetrahydroxydihydrochalcone (1) and 3,5,7,4'-tetrahydroxyflavanone-(2→O→7:3→8)-3,4',5,7-tetrahydroxyflavone (2), named as amburanin A and amburanin B, respectively, were isolated from the trunk bark of Amburana cearensis, and their structures elucidated on the basis of spectroscopic analysis and by comparison with literature data. The effects of 1 and 2 on the pro-inflammatory response of human neutrophils were investigated (0.1; 1; 25; 50 e 100 μg mL -1 ). At concentration higher than 25 μg mL -1 , both compounds suppressed nearly 92% of the neutrophil degranulation and 53% of myeloperoxidase activity, thus indicating that they are potential anti-inflammatory lead compounds. (author)

  19. Anti-neutrophil cytoplasmic antibodies stimulate release of neutrophil microparticles.

    LENUS (Irish Health Repository)

    Hong, Ying

    2012-01-01

    The mechanisms by which anti-neutrophil cytoplasmic antibodies (ANCAs) may contribute to the pathogenesis of ANCA-associated vasculitis are not well understood. In this study, both polyclonal ANCAs isolated from patients and chimeric proteinase 3-ANCA induced the release of neutrophil microparticles from primed neutrophils. These microparticles expressed a variety of markers, including the ANCA autoantigens proteinase 3 and myeloperoxidase. They bound endothelial cells via a CD18-mediated mechanism and induced an increase in endothelial intercellular adhesion molecule-1 expression, production of endothelial reactive oxygen species, and release of endothelial IL-6 and IL-8. Removal of the neutrophil microparticles by filtration or inhibition of reactive oxygen species production with antioxidants abolished microparticle-mediated endothelial activation. In addition, these microparticles promoted the generation of thrombin. In vivo, we detected more neutrophil microparticles in the plasma of children with ANCA-associated vasculitis compared with that in healthy controls or those with inactive vasculitis. Taken together, these results support a role for neutrophil microparticles in the pathogenesis of ANCA-associated vasculitis, potentially providing a target for future therapeutics.

  20. Chronic neutrophilic leukemia.

    Science.gov (United States)

    Bredeweg, Arthur; Burch, Micah; Krause, John R

    2018-01-01

    Chronic neutrophilic leukemia is a rare myeloproliferative disorder characterized by a sustained peripheral blood neutrophilia, absence of the BCR/ABL oncoprotein, bone marrow hypercellularity with less than 5% myeloblasts and normal neutrophil maturation, and no dysplasia. This leukemia has been associated with mutations in the colony-stimulating factor 3 receptor (CSF3R) that may activate this receptor, leading to the proliferation of neutrophils that are the hallmark of chronic neutrophilic leukemia. We present a case of chronic neutrophilic leukemia and discuss the criteria for diagnosis and the significance of mutations found in this leukemia.

  1. Biomaterial-induced alterations of neutrophil superoxide production.

    Science.gov (United States)

    Kaplan, S S; Basford, R E; Mora, E; Jeong, M H; Simmons, R L

    1992-08-01

    Because periprosthetic infection remains a vexing problem for patients receiving implanted devices, we evaluated the effect of several materials on neutrophil free radical production. Human peripheral blood neutrophils were incubated with several sterile, lipopolysaccharide (LPS)-free biomaterials used in surgically implantable prosthetic devices: polyurethane, woven dacron, and velcro. Free radical formation as the superoxide (O2-) anion was evaluated by cytochrome c reduction in neutrophils that were exposed to the materials and then removed and in neutrophils allowed to remain in association with the materials. Neutrophils exposed to polyurethane or woven dacron for 30 or 60 min and then removed consistently exhibited an enhanced release of O2- after simulation via receptor engagement with formyl methionyl-leucyl-phenylalanine. Enhanced reactivity to stimulation via protein kinase C with phorbol myristate acetate, however, was not consistently observed. The cells evaluated for O2- release during continuous association with the biomaterials showed enhanced metabolic activity during short periods of association (especially with polyurethane and woven dacron). Although O2- release by neutrophils in association with these materials decreased with longer periods of incubation, it was not obliterated. These studies, therefore, show that several commonly used biomaterials activate neutrophils soon after exposure and that this activated state diminishes with prolonged exposure but nevertheless remains measurable. The diminishing level of activity with prolonged exposure, however, suggests that ultimately a depletion of reactivity may occur and may result in increased susceptibility to periprosthetic infection.

  2. Neutrophilic dermatosis resembling pyoderma gangrenosum in a dog with polyarthritis.

    Science.gov (United States)

    Bardagí, M; Lloret, A; Fondati, A; Ferrer, L

    2007-04-01

    This report describes a case of neutrophilic dermatosis in a dog, with a number of clinical and pathological similarities to human pyoderma gangrenosum. A seven-year-old, female German shepherd dog with a history of non-erosive idiopathic polyarthritis was presented with severe facial swelling, bilateral erosivoulcerative lesions on the muzzle and multiple, eroded, dermal-subcutaneous nodules on the cranial trunk. Histopathological examination of skin biopsies revealed a necrotising neutrophilic dermatitis. No infectious agents could be detected using specific stains, immunohistochemistry, serology and bacterial aerobic, anaerobic or fungal cultures. A sterile neutrophilic dermatosis resembling human pyoderma gangrenosum was presumptively diagnosed, and the patient showed an excellent response to treatment with prednisone and ciclosporin.

  3. Study of liquid scintillator in detecting the PMN-CL, Ly-CL and extracellular matrix in liver fibrosis

    International Nuclear Information System (INIS)

    Li Tianxing; Cao Rui; Liang Qizhong; Zou Xiaowei

    1997-01-01

    Chemiluminescence (CL) of polymorphonuclear (PMN) and lymphocyte(Ly) in blood of patients with cirrhosis has two peaks. Basic peak value of PMN-CL and Ly-CL is increased, the maximal peak values of Zym-PMN and PHA-Ly are decreased, phagolyosis and opsonic function is also decreased, extracellular matrix (ECM) is all increased, HA is positively correlated with 'child' sort (r = 0.96, A>B>C). It suggests that OR is produced and released during CL and superoxide phosphatides is produced by OR in ECM of cirrhosis. It injures the membrane of cells and tissue. Analysis of CL is aided to study the development mechanism of liver fibrosis

  4. Functional characterization of mitochondria in neutrophils: a role restricted to apoptosis

    NARCIS (Netherlands)

    Maianski, N. A.; Geissler, J.; Srinivasula, S. M.; Alnemri, E. S.; Roos, D.; Kuijpers, T. W.

    2004-01-01

    Mitochondria are known to combine life-supporting functions with participation in apoptosis by controlling caspase activity. Here, we report that in human blood neutrophils the mitochondria are different, because they preserve mainly death-mediating abilities. Neutrophil mitochondria hardly

  5. TLR9 and NF-κB are partially involved in activation of human neutrophils by Helicobacter pylori and its purified DNA.

    Directory of Open Access Journals (Sweden)

    Lourdes Alvarez-Arellano

    Full Text Available Helicobacter pylori infection represents one of the most common bacterial infections worldwide. The inflammatory response to this bacterium involves a large influx of neutrophils to the lamina propria of the gastric mucosa. However, little is known about the receptors and molecular mechanisms involved in activation of these neutrophils. In this study, we aimed to determine the role of toll-like receptor 9 (TLR9 in the response of human neutrophils to H. pylori and purified H. pylori DNA (Hp-DNA. Neutrophils were isolated from the blood of adult volunteers and challenged with either H. pylori or Hp-DNA. We found that both, H. pylori and Hp-DNA induced increased expression and release of IL-8. Furthermore, we showed that TLR9 is involved in the induction of IL-8 production by H. pylori and Hp-DNA. IL-8 production induced by H. pylori but not by Hp-DNA was partially mediated by NF-κB. In conclusion, this study showed for first time that both, H. pylori and Hp-DNA activate TLR9 and induce a different inflammatory response that leads to activation of neutrophils.

  6. Divergent effects of tumor necrosis factor alpha on apoptosis of human neutrophils

    NARCIS (Netherlands)

    van den Berg, J. M.; Weyer, S.; Weening, J. J.; Roos, D.; Kuijpers, T. W.

    2001-01-01

    Apoptosis of neutrophils is a key mechanism to control the intensity of the acute inflammatory response. Previously, the cytokine tumor necrosis factor alpha (TNF-alpha) was reported by some to have pro-apoptotic and by others to have antiapoptotic effects on neutrophils. The aim of this study was

  7. Amburanins A and B from Amburana cearensis: daphnodorin-type biflavonoids that modulate human neutrophil degranulation

    Energy Technology Data Exchange (ETDEWEB)

    Canuto, Kirley M.; Silveira, Edilberto R., E-mail: edil@ufc.br [Universidade Federal do Ceara (UFCE), Fortaleza, CE (Brazil). Departamento de Quimica Organica e Inorganica; Leal, Luzia K.A.M.; Lopes, Amanda A. [Universidade Federal do Ceara (CEFAC/UFCE), Fortaleza, CE (Brazil). Centro de Estudos Farmaceuticos e Cosmeticos. Departamento de Farmacia; Coleman, Christina M.; Ferreira, Daneel [Department of Pharmacognosy and the Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, MS (United States)

    2014-04-15

    Two new biflavonoids 3,5,7,4'-tetrahydroxyflavanone-(2→O→4':3→3')-2',4',6',4- tetrahydroxydihydrochalcone (1) and 3,5,7,4'-tetrahydroxyflavanone-(2→O→7:3→8)-3,4',5,7-tetrahydroxyflavone (2), named as amburanin A and amburanin B, respectively, were isolated from the trunk bark of Amburana cearensis, and their structures elucidated on the basis of spectroscopic analysis and by comparison with literature data. The effects of 1 and 2 on the pro-inflammatory response of human neutrophils were investigated (0.1; 1; 25; 50 e 100 μg mL{sup -1}). At concentration higher than 25 μg mL{sup -1}, both compounds suppressed nearly 92% of the neutrophil degranulation and 53% of myeloperoxidase activity, thus indicating that they are potential anti-inflammatory lead compounds. (author)

  8. Immune modulation by neutrophil subsets

    NARCIS (Netherlands)

    Kamp, V.M.

    2013-01-01

    We show that human neutrophils can suppress T-cell proliferation in acute systemic inflammation and thus have anti-inflammatory functions, next to their well-known pro-inflammatory functions. The suppression is mediated by ROS production and integrin MAC-1, which are also important for the

  9. Human neutrophil clearance of bacterial pathogens triggers anti-microbial γδ T cell responses in early infection.

    Directory of Open Access Journals (Sweden)

    Martin S Davey

    2011-05-01

    Full Text Available Human blood Vγ9/Vδ2 T cells, monocytes and neutrophils share a responsiveness toward inflammatory chemokines and are rapidly recruited to sites of infection. Studying their interaction in vitro and relating these findings to in vivo observations in patients may therefore provide crucial insight into inflammatory events. Our present data demonstrate that Vγ9/Vδ2 T cells provide potent survival signals resulting in neutrophil activation and the release of the neutrophil chemoattractant CXCL8 (IL-8. In turn, Vγ9/Vδ2 T cells readily respond to neutrophils harboring phagocytosed bacteria, as evidenced by expression of CD69, interferon (IFN-γ and tumor necrosis factor (TNF-α. This response is dependent on the ability of these bacteria to produce the microbial metabolite (E-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMB-PP, requires cell-cell contact of Vγ9/Vδ2 T cells with accessory monocytes through lymphocyte function-associated antigen-1 (LFA-1, and results in a TNF-α dependent proliferation of Vγ9/Vδ2 T cells. The antibiotic fosmidomycin, which targets the HMB-PP biosynthesis pathway, not only has a direct antibacterial effect on most HMB-PP producing bacteria but also possesses rapid anti-inflammatory properties by inhibiting γδ T cell responses in vitro. Patients with acute peritoneal-dialysis (PD-associated bacterial peritonitis--characterized by an excessive influx of neutrophils and monocytes into the peritoneal cavity--show a selective activation of local Vγ9/Vδ2 T cells by HMB-PP producing but not by HMB-PP deficient bacterial pathogens. The γδ T cell-driven perpetuation of inflammatory responses during acute peritonitis is associated with elevated peritoneal levels of γδ T cells and TNF-α and detrimental clinical outcomes in infections caused by HMB-PP positive microorganisms. Taken together, our findings indicate a direct link between invading pathogens, neutrophils, monocytes and microbe-responsive γδ T cells in

  10. Human Neutrophil Clearance of Bacterial Pathogens Triggers Anti-Microbial γδ T Cell Responses in Early Infection

    Science.gov (United States)

    Roberts, Gareth W.; Heuston, Sinéad; Brown, Amanda C.; Chess, James A.; Toleman, Mark A.; Gahan, Cormac G. M.; Hill, Colin; Parish, Tanya; Williams, John D.; Davies, Simon J.; Johnson, David W.; Topley, Nicholas; Moser, Bernhard; Eberl, Matthias

    2011-01-01

    Human blood Vγ9/Vδ2 T cells, monocytes and neutrophils share a responsiveness toward inflammatory chemokines and are rapidly recruited to sites of infection. Studying their interaction in vitro and relating these findings to in vivo observations in patients may therefore provide crucial insight into inflammatory events. Our present data demonstrate that Vγ9/Vδ2 T cells provide potent survival signals resulting in neutrophil activation and the release of the neutrophil chemoattractant CXCL8 (IL-8). In turn, Vγ9/Vδ2 T cells readily respond to neutrophils harboring phagocytosed bacteria, as evidenced by expression of CD69, interferon (IFN)-γ and tumor necrosis factor (TNF)-α. This response is dependent on the ability of these bacteria to produce the microbial metabolite (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMB-PP), requires cell-cell contact of Vγ9/Vδ2 T cells with accessory monocytes through lymphocyte function-associated antigen-1 (LFA-1), and results in a TNF-α dependent proliferation of Vγ9/Vδ2 T cells. The antibiotic fosmidomycin, which targets the HMB-PP biosynthesis pathway, not only has a direct antibacterial effect on most HMB-PP producing bacteria but also possesses rapid anti-inflammatory properties by inhibiting γδ T cell responses in vitro. Patients with acute peritoneal-dialysis (PD)-associated bacterial peritonitis – characterized by an excessive influx of neutrophils and monocytes into the peritoneal cavity – show a selective activation of local Vγ9/Vδ2 T cells by HMB-PP producing but not by HMB-PP deficient bacterial pathogens. The γδ T cell-driven perpetuation of inflammatory responses during acute peritonitis is associated with elevated peritoneal levels of γδ T cells and TNF-α and detrimental clinical outcomes in infections caused by HMB-PP positive microorganisms. Taken together, our findings indicate a direct link between invading pathogens, neutrophils, monocytes and microbe-responsive γδ T cells in early

  11. N-Formyl-Perosamine Surface Homopolysaccharides Hinder the Recognition of Brucella abortus by Mouse Neutrophils.

    Science.gov (United States)

    Mora-Cartín, Ricardo; Chacón-Díaz, Carlos; Gutiérrez-Jiménez, Cristina; Gurdián-Murillo, Stephany; Lomonte, Bruno; Chaves-Olarte, Esteban; Barquero-Calvo, Elías; Moreno, Edgardo

    2016-06-01

    Brucella abortus is an intracellular pathogen of monocytes, macrophages, dendritic cells, and placental trophoblasts. This bacterium causes a chronic disease in bovines and in humans. In these hosts, the bacterium also invades neutrophils; however, it fails to replicate and just resists the killing action of these leukocytes without inducing significant activation or neutrophilia. Moreover, B. abortus causes the premature cell death of human neutrophils. In the murine model, the bacterium is found within macrophages and dendritic cells at early times of infection but seldom in neutrophils. Based on this observation, we explored the interaction of mouse neutrophils with B. abortus In contrast to human, dog, and bovine neutrophils, naive mouse neutrophils fail to recognize smooth B. abortus bacteria at early stages of infection. Murine normal serum components do not opsonize smooth Brucella strains, and neutrophil phagocytosis is achieved only after the appearance of antibodies. Alternatively, mouse normal serum is capable of opsonizing rough Brucella mutants. Despite this, neutrophils still fail to kill Brucella, and the bacterium induces cell death of murine leukocytes. In addition, mouse serum does not opsonize Yersinia enterocolitica O:9, a bacterium displaying the same surface polysaccharide antigen as smooth B. abortus Therefore, the lack of murine serum opsonization and absence of murine neutrophil recognition are specific, and the molecules responsible for the Brucella camouflage are N-formyl-perosamine surface homopolysaccharides. Although the mouse is a valuable model for understanding the immunobiology of brucellosis, direct extrapolation from one animal system to another has to be undertaken with caution. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  12. Neutrophils at work

    DEFF Research Database (Denmark)

    Nauseef, William M; Borregaard, Niels

    2014-01-01

    In this Review we discuss data demonstrating recently recognized aspects of neutrophil homeostasis in the steady state, granulopoiesis in 'emergency' conditions and interactions of neutrophils with the adaptive immune system. We explore in vivo observations of the recruitment of neutrophils from ...

  13. Neutrophils in critical illness.

    Science.gov (United States)

    McDonald, Braedon

    2018-03-01

    During critical illness, dramatic alterations in neutrophil biology are observed including abnormalities of granulopoeisis and lifespan, cell trafficking and antimicrobial effector functions. As a result, neutrophils transition from powerful antimicrobial protectors into dangerous mediators of tissue injury and organ dysfunction. In this article, the role of neutrophils in the pathogenesis of critical illness (sepsis, trauma, burns and others) will be explored, including pathological changes to neutrophil function during critical illness and the utility of monitoring aspects of the neutrophil phenotype as biomarkers for diagnosis and prognostication. Lastly, we review findings from clinical trials of therapies that target the harmful effects of neutrophils, providing a bench-to-bedside perspective on neutrophils in critical illness.

  14. Disentangling the effects of tocilizumab on neutrophil survival and function.

    Science.gov (United States)

    Gaber, Timo; Hahne, Martin; Strehl, Cindy; Hoff, Paula; Dörffel, Yvonne; Feist, Eugen; Burmester, Gerd-Rüdiger; Buttgereit, Frank

    2016-06-01

    The synovial tissue in rheumatoid arthritis (RA) represents a hypoxic environment with up-regulated pro-inflammatory cytokines and cellular infiltrates including neutrophils. Although inhibition of the interleukin (IL)6 receptor pathway by tocilizumab is a potent treatment option for RA, it may also cause adverse effects such as an occasionally high-grade neutropenia. We analysed the impact of tocilizumab on survival, mediator secretion, oxidative burst, phagocytosis and energy availability of high-dose toll-like receptor (TLR)2/4-stimulated neutrophils (to mimic an arthritis flare) under normoxic versus hypoxic conditions. Human neutrophils were purified, pre-treated with varying doses of tocilizumab, dexamethasone or human IgG1 and high-dose-stimulated with lipopolysaccharide (LPS) alone-triggering TLR2/4-, LPS plus IL6, or left unstimulated. Cells were then incubated under normoxic (18 % O2) or hypoxic (1 % O2) conditions and subsequently analysed. Neutrophil survival and energy availability were significantly decreased by tocilizumab in a dose-dependent manner in high-dose TLR2/4-stimulated cells, but to a greater extent under normoxia as compared to hypoxia. We also found high-dose LPS-stimulated oxidative burst and phagocytosis of neutrophils to be higher under hypoxic versus normoxic conditions, but this difference was reduced by tocilizumab. Finally, we observed that tocilizumab affected neutrophil mediator secretion as a function of oxygen availability. Tocilizumab is known for both beneficial effects and a higher incidence of neutropenia when treating RA patients. Our results suggest that both effects can at least in part be explained by a reduction in neutrophil survival, a dose-dependent inhibition of hypoxia-induced NADPH oxidase-mediated oxidative burst and phagocytosis of infiltrating hypoxic neutrophils and an alteration of mediator secretion.

  15. Membrane Transfer from Mononuclear Cells to Polymorphonuclear Neutrophils Transduces Cell Survival and Activation Signals in the Recipient Cells via Anti-Extrinsic Apoptotic and MAP Kinase Signaling Pathways.

    Science.gov (United States)

    Li, Ko-Jen; Wu, Cheng-Han; Shen, Chieh-Yu; Kuo, Yu-Min; Yu, Chia-Li; Hsieh, Song-Chou

    2016-01-01

    The biological significance of membrane transfer (trogocytosis) between polymorphonuclear neutrophils (PMNs) and mononuclear cells (MNCs) remains unclear. We investigated the biological/immunological effects and molecular basis of trogocytosis among various immune cells in healthy individuals and patients with active systemic lupus erythematosus (SLE). By flow cytometry, we determined that molecules in the immunological synapse, including HLA class-I and-II, CD11b and LFA-1, along with CXCR1, are exchanged among autologous PMNs, CD4+ T cells, and U937 cells (monocytes) after cell-cell contact. Small interfering RNA knockdown of the integrin adhesion molecule CD11a in U937 unexpectedly enhanced the level of total membrane transfer from U937 to PMN cells. Functionally, phagocytosis and IL-8 production by PMNs were enhanced after co-culture with T cells. Total membrane transfer from CD4+ T to PMNs delayed PMN apoptosis by suppressing the extrinsic apoptotic molecules, BAX, MYC and caspase 8. This enhancement of activities of PMNs by T cells was found to be mediated via p38- and P44/42-Akt-MAP kinase pathways and inhibited by the actin-polymerization inhibitor, latrunculin B, the clathrin inhibitor, Pitstop-2, and human immunoglobulin G, but not by the caveolin inhibitor, methyl-β-cyclodextrin. In addition, membrane transfer from PMNs enhanced IL-2 production by recipient anti-CD3/anti-CD28 activated MNCs, and this was suppressed by inhibitors of mitogen-activated protein kinase (PD98059) and protein kinase C (Rottlerin). Of clinical significance, decreased total membrane transfer from PMNs to MNCs in patients with active SLE suppressed mononuclear IL-2 production. In conclusion, membrane transfer from MNCs to PMNs, mainly at the immunological synapse, transduces survival and activation signals to enhance PMN functions and is dependent on actin polymerization, clathrin activation, and Fcγ receptors, while membrane transfer from PMNs to MNCs depends on MAP kinase and

  16. Membrane Transfer from Mononuclear Cells to Polymorphonuclear Neutrophils Transduces Cell Survival and Activation Signals in the Recipient Cells via Anti-Extrinsic Apoptotic and MAP Kinase Signaling Pathways.

    Directory of Open Access Journals (Sweden)

    Ko-Jen Li

    Full Text Available The biological significance of membrane transfer (trogocytosis between polymorphonuclear neutrophils (PMNs and mononuclear cells (MNCs remains unclear. We investigated the biological/immunological effects and molecular basis of trogocytosis among various immune cells in healthy individuals and patients with active systemic lupus erythematosus (SLE. By flow cytometry, we determined that molecules in the immunological synapse, including HLA class-I and-II, CD11b and LFA-1, along with CXCR1, are exchanged among autologous PMNs, CD4+ T cells, and U937 cells (monocytes after cell-cell contact. Small interfering RNA knockdown of the integrin adhesion molecule CD11a in U937 unexpectedly enhanced the level of total membrane transfer from U937 to PMN cells. Functionally, phagocytosis and IL-8 production by PMNs were enhanced after co-culture with T cells. Total membrane transfer from CD4+ T to PMNs delayed PMN apoptosis by suppressing the extrinsic apoptotic molecules, BAX, MYC and caspase 8. This enhancement of activities of PMNs by T cells was found to be mediated via p38- and P44/42-Akt-MAP kinase pathways and inhibited by the actin-polymerization inhibitor, latrunculin B, the clathrin inhibitor, Pitstop-2, and human immunoglobulin G, but not by the caveolin inhibitor, methyl-β-cyclodextrin. In addition, membrane transfer from PMNs enhanced IL-2 production by recipient anti-CD3/anti-CD28 activated MNCs, and this was suppressed by inhibitors of mitogen-activated protein kinase (PD98059 and protein kinase C (Rottlerin. Of clinical significance, decreased total membrane transfer from PMNs to MNCs in patients with active SLE suppressed mononuclear IL-2 production. In conclusion, membrane transfer from MNCs to PMNs, mainly at the immunological synapse, transduces survival and activation signals to enhance PMN functions and is dependent on actin polymerization, clathrin activation, and Fcγ receptors, while membrane transfer from PMNs to MNCs depends on

  17. Metabolism of isoniazid by neutrophil myeloperoxidase leads to isoniazid-NAD(+) adduct formation: A comparison of the reactivity of isoniazid with its known human metabolites.

    Science.gov (United States)

    Khan, Saifur R; Morgan, Andrew G M; Michail, Karim; Srivastava, Nutan; Whittal, Randy M; Aljuhani, Naif; Siraki, Arno G

    2016-04-15

    The formation of isonicotinyl-nicotinamide adenine dinucleotide (INH-NAD(+)) via the mycobacterial catalase-peroxidase enzyme, KatG, has been described as the major component of the mode of action of isoniazid (INH). However, there are numerous human peroxidases that may catalyze this reaction. The role of neutrophil myeloperoxidase (MPO) in INH-NAD(+) adduct formation has never been explored; this is important, as neutrophils are recruited at the site of tuberculosis infection (granuloma) through infected macrophages' cell death signals. In our studies, we showed that neutrophil MPO is capable of INH metabolism using electron paramagnetic resonance (EPR) spin-trapping and UV-Vis spectroscopy. MPO or activated human neutrophils (by phorbol myristate acetate) catalyzed the oxidation of INH and formed several free radical intermediates; the inclusion of superoxide dismutase revealed a carbon-centered radical which is considered to be the reactive metabolite that binds with NAD(+). Other human metabolites, including N-acetyl-INH, N-acetylhydrazine, and hydrazine did not show formation of carbon-centered radicals, and either produced no detectable free radicals, N-centered free radicals, or superoxide, respectively. A comparison of these free radical products indicated that only the carbon-centered radical from INH is reducing in nature, based on UV-Vis measurement of nitroblue tetrazolium reduction. Furthermore, only INH oxidation by MPO led to a new product (λmax=326nm) in the presence of NAD(+). This adduct was confirmed to be isonicotinyl-NAD(+) using LC-MS analysis where the intact adduct was detected (m/z=769). The findings of this study suggest that neutrophil MPO may also play a role in INH pharmacological activity. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. The role of MAP kinases in the induction of iNOS expression in neutrophils exposed to NDMA: the involvement transcription factors.

    Science.gov (United States)

    Ratajczak-Wrona, W; Jablonska, E; Garley, M; Jablonski, J; Radziwon, P; Iwaniuk, A

    2013-01-01

    The role of MAP kinases in the activation of AP-1 (c-Jun, c-Fos) and NF-κB p65 engaged in the regulation of iNOS expression in human neutrophils (PMNs) exposed to N-nitrosodimethylamine (NDMA) was analyzed in the study. The study included a group of 20 healthy individuals. Isolated human PMN were incubated in the presence of NDMA. Selective MAP kinases inhibitors were used. The expression of proteins in the cytoplasmic and nuclear fractions was assessed using Western blot method. The results show that NDMA intensifies iNOS, c-Jun, NF-κB p65 and IκB-α expression in the analyzed PMNs. The blocking of the p38 pathway led to lower iNOS expression, and higher expression of c-Jun and c-Fos in the cytoplasmic fraction, and also lower c-Jun expression in the nuclear fraction of PMNs exposed to NDMA. A decrease in iNOS expression in the cytoplasmic fraction, and also c-Jun in both fractions of the examined cells, was observed as a result of JNK pathway inhibition. The blocking of the ERK5 pathway led to higher iNOS, c-Jun and c-Fos expression in the cytoplasmic fraction, and higher c-Jun expression in the nuclear fraction of PMNs exposed to NDMA. The study also demonstrated that blocking of the p38 and JNK pathways resulted in higher expression of NF-κB p65 and IκB-α in the cytoplasmic fraction and their lower expression in the nuclear fraction of these cells. Our data indicate the role of MAP kinases p38 and JNK in the activation of c-Jun and NF-κB p65 transcription factors engaged in the regulation of iNOS expression in human neutrophils exposed to NDMA. However ERK5 kinase is not involved in the regulation of iNOS and NO production by those cells.

  19. Oxidative burst of circulating neutrophils following traumatic brain injury in human.

    Directory of Open Access Journals (Sweden)

    Yiliu Liao

    Full Text Available Besides secondary injury at the lesional site, Traumatic brain injury (TBI can cause a systemic inflammatory response, which may cause damage to initially unaffected organs and potentially further exacerbate the original injury. Here we investigated plasma levels of important inflammatory mediators, oxidative activity of circulating leukocytes, particularly focusing on neutrophils, from TBI subjects and control subjects with general trauma from 6 hours to 2 weeks following injury, comparing with values from uninjured subjects. We observed increased plasma level of inflammatory cytokines/molecules TNF-α, IL-6 and CRP, dramatically increased circulating leukocyte counts and elevated expression of TNF-α and iNOS in circulating leukocytes from TBI patients, which suggests a systemic inflammatory response following TBI. Our data further showed increased free radical production in leukocyte homogenates and elevated expression of key oxidative enzymes iNOS, COX-2 and NADPH oxidase (gp91(phox in circulating leukocytes, indicating an intense induction of oxidative burst following TBI, which is significantly greater than that in control subjects with general trauma. Furthermore, flow cytometry assay proved neutrophils as the largest population in circulation after TBI and showed significantly up-regulated oxidative activity and suppressed phagocytosis rate for circulating neutrophils following brain trauma. It suggests that the highly activated neutrophils might play an important role in the secondary damage, even outside the injured brain. Taken together, the potent systemic inflammatory response induced by TBI, especially the intensively increase oxidative activity of circulating leukocytes, mainly neutrophils, may lead to a systemic damage, dysfunction/damage of bystander tissues/organs and even further exacerbate secondary local damage. Controlling these pathophysiological processes may be a promising therapeutic strategy and will protect unaffected

  20. In-plane electric field controlled ferromagnetism and anisotropic magnetoresistance in an LSMO/PMN-PT heterostructure

    Science.gov (United States)

    Guo, Qi; Xu, Xiaoguang; Wang, Fang; Lu, Yunhao; Chen, Jikun; Wu, Yanjun; Meng, Kangkang; Wu, Yong; Miao, Jun; Jiang, Yong

    2018-06-01

    We report the in-plane electric field controlled ferromagnetism of La2/3Sr1/3MnO3 (LSMO) films epitaxially deposited on [Pb(Mg1/3Nb2/3)O3]0.7-(PbTiO3)0.3 (PMN-PT) (001), (011) and (111) single crystal substrates. The in-plane coercivities (H c∥) and remanences of the LSMO films greatly depend on the in-plane electric field applied on the PMN-PT (001) and (011) substrates. The experimental change of H c∥ is consistent with the Stoner–Wohlfarth model and first principle calculation with the electric field varying from ‑10 to 10 kV cm‑1. Moreover, the Curie temperature and anisotropic magnetoresistance of the LSMO films can also be manipulated by an in-plane electric field. Finally, the LSMO/PMN-PT (001) heterostructure is designed to be a new kind of magnetic signal generator with the source of electric field.

  1. Neutrophil extracellular traps - the dark side of neutrophils

    DEFF Research Database (Denmark)

    Sørensen, Ole E.; Borregaard, Niels

    2016-01-01

    Neutrophil extracellular traps (NETs) were discovered as extracellular strands of decondensed DNA in complex with histones and granule proteins, which were expelled from dying neutrophils to ensnare and kill microbes. NETs are formed during infection in vivo by mechanisms different from those ori...

  2. Tumor Associated Neutrophils in Human Lung Cancer

    Science.gov (United States)

    2016-10-01

    tumor innate immune response. anti-tumor adaptive immune response, neutrophil and T cell interaction. ACCOMPLISHMENTS There were no significant...and by producing factors to recruit and acti- vate cells of the innate and adaptive immune system (Mantovani et al., 2011). Given these varying effects...vivo effects on neutro- phil activation (Figure 2, A and B) and cleavage of myeloid and lymphoid cell markers (Supplemental Figure 1, C–G). Once opti

  3. Cofiring behavior and interfacial structure of NiCuZn ferrite/PMN ferroelectrics composites for multilayer LC filters

    International Nuclear Information System (INIS)

    Miao Chunlin; Zhou Ji; Cui Xuemin; Wang Xiaohui; Yue Zhenxing; Li Longtu

    2006-01-01

    The cofiring behavior, interfacial structure and cofiring migration between NiCuZn ferrite and lead magnesium niobate (PMN)-based relaxor ferroelectric materials were investigated via thermomechanical analyzer (TMA), X-ray diffractometer (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). Mismatched sintering shrinkage between NiCuZn ferrite and PMN was modified by adding an appropriate amount of sintering aids, Bi 2 O 3 , into NiCuZn ferrite. Pyrochlore phase appeared in the mixture of NiCuZn ferrite and PMN, which is detrimental to the final electric properties of LC filters. EDS results indicated that the interdiffusion at the heterogeneous interfaces in the composites, such as Fe, Pb, Zn, existed which can strengthen combinations between ferrite layers and ferroelectrics layers

  4. Metabolism of 1-acyl-2-acetyl-sn-glycero-3-phosphocholine in the human neutrophil

    International Nuclear Information System (INIS)

    Triggiani, M.; D'Souza, D.M.; Chilton, F.H.

    1991-01-01

    The biosynthesis of 1-acyl-2-acetyl-sn-glycero-3-phosphocholine (1-acyl-2-acetyl-GPC) together with that of 1-alkyl-2-acetyl-GPC (platelet-activating factor) has been demonstrated in a variety of inflammatory cells and tissues. It has been hypothesized that the relative proportion of these phospholipids produced upon cell activation may be influenced by their rates of catabolism. We studied the catabolism of 1-acyl-2-acetyl-GPC in resting and activated human neutrophils and compared it to that of 1-alkyl-2-acetyl-GPC. Neutrophils rapidly catabolize both 1-alkyl-2-acetyl-GPC and 1-acyl-2-acetyl-GPC; however, the rate of catabolism of 1-acyl-2-acetyl-GPC is approximately 2-fold higher than that of 1-alkyl-2-acetyl-GPC. In addition, most of 1-acyl-2-acetyl-GPC is catabolized through a pathway different from that of 1-alkyl-2-acetyl-GPC. The main step in the catabolism of 1-acyl-2-acetyl-GPC is the removal of the long chain at the sn-1 position; the long chain residue is subsequently incorporated either into triglycerides or into phosphatidylcholine. The 1-lyso-2-acetyl-GPC formed in this reaction is then further degraded to glycerophosphocholine, choline, or phosphocholine. 1-Acyl-2-acetyl-GPC is also catabolized, to a lesser extent, through deacetylation at the sn-2 position and reacylation with a long chain fatty acid. Stimulation of neutrophils by A23187 results in a higher rate of catabolism of 1-acyl-2-acetyl-GPC by increasing both the removal of the long chain at the sn-1 position and the deacetylation-reacylation at the sn-2 position. In a broken cell preparation, the cytosolic fraction of the neutrophil was shown to contain an enzyme activity which cleaved the sn-1 position of 1-acyl-2-acetyl-GPC and 1-acyl-2-lyso-GPC but not of 1,2-diacyl-GPC

  5. Canine neutrophil extracellular traps release induced by the apicomplexan parasite Neospora Caninum in vitro

    Directory of Open Access Journals (Sweden)

    Zhengkai Wei

    2016-10-01

    Full Text Available Neosporosis is considered as one of the main causes of abortion and severe economic losses in dairy industry. The Canis genus serving as one of the confirmed definitive hosts of the apicomplexan parasite Neospora caninum (N. caninum plays a critical role in its life cycle. However, the effects of N. caninum on its definitive hosts of neutrophils extracellular traps (NETs formation remain unclear. In the present study, N. caninum tachyzoite-induced canine NETs formation was observed by scanning electron microscopy (SEM. Visualization of DNA decorated with H3, NE and MPO within N. caninum tachyzoite-induced NETs were examined using fluorescence confocal microscopy analyses. Furthermore, the formation of canine NETs was quantified using Sytox Green staining, and the LDH levels in supernatants were examined by an LDH Cytotoxicity Assay® kit. The results clearly showed that NETs-like structures were induced by N. caninum tachyzoites, and the major components within these structures induced by N. caninum tachyzoite were further confirmed by fluorescence confocal microscopy visualization. These results suggest that N. caninum tachyzoites strongly induced NETs formation in canine PMN. In functional inhibition assays, the blockings of NADPH oxidase, NE, MPO, SOCE, ERK 1/2 and p38 MAPK signaling pathways significantly inhibited N. caninum tachyzoite-induced NETs formation, which suggests that N. caninum tachyzoite-induced NETs formation is a NADPH oxidase-, NE-, MPO-, SOCE-, ERK 1/2- and p38 MAPK-dependent cell death process. To our knowledge, this study is the first to report the formation of NETs in canine PMN against N. caninum infection.

  6. Antimicrobial Peptide Human Neutrophil Peptide 1 as a Potential Link Between Chronic Inflammation and Ductal Adenocarcinoma of the Pancreas.

    Science.gov (United States)

    Pausch, Thomas; Adolph, Sarah; Felix, Klaus; Bauer, Andrea S; Bergmann, Frank; Werner, Jens; Hartwig, Werner

    Defensins are antimicrobial peptides playing a role in innate immunity, in epithelial cell regeneration, and in carcinogenesis of inflammation-triggered malignancies. We analyzed this role in pancreatic ductal adenocarcinoma (PDAC) in the context of its association with chronic pancreatitis (CP). Human tissue of healthy pancreas, CP, and PDAC was screened for defensins by immunohistochemistry. Defensin α 1 (human neutrophil peptide 1 [HNP-1]) expression was validated using mass spectrometry and microarray analysis. Human neutrophil peptide 1 expression and influences of proinflammatory cytokines (tumor necrosis factor α, interleukin 1β, and interferon γ) were studied in human pancreatic cancer cells (Colo 357, T3M4, PANC-1) and normal human pancreatic duct epithelial cells (HPDE). Accumulation of HNP-1 in malignant pancreatic ductal epithelia was seen. Spectrometry showed increased expression of HNP-1 in CP and even more in PDAC. At RNA level, no significant regulation was found. In cancer cells, HNP-1 expression was significantly higher than in HPDE. Proinflammatory cytokines significantly led to increased HNP-1 levels in culture supernatants and decreased levels in lysates of cancer cells. In HPDE cytokines significantly decreased HNP-1 levels. Inflammatory regulation of HNP-1 in PDAC tissue and cells indicates that HNP-1 may be a link between chronic inflammation and malignant transformation in the pancreas.

  7. Growth factors G-CSF and GM-CSF differentially preserve chemotaxis of neutrophils aging in vitro

    NARCIS (Netherlands)

    Wolach, Baruch; van der Laan, Luc J. W.; Maianski, Nikolai A.; Tool, Anton T. J.; van Bruggen, Robin; Roos, Dirk; Kuijpers, Taco W.

    2007-01-01

    OBJECTIVE: The ability of human neutrophils to migrate was studied during culture in vitro. METHODS: Neutrophils were isolated from human blood and cultured at 37 degrees C. Apoptosis was determined by Annexin-V fluorescein isothiocyanate binding. Receptor expression was measured by fluorescence in

  8. Combined wet-chemical process to synthesize 65PMN-35PT nanosized powders

    International Nuclear Information System (INIS)

    Santos, Luis P.S.; Longo, Elson; Leite, Edson R.; Camargo, Emerson R.

    2004-01-01

    Columbite MgNb 2 O 6 precursors were synthesized by a wet-chemical method by means of the dissolution of Nb 2 O 5 .5H 2 O and magnesium carbonate in a solution of oxalic acid. Pure 65PMN-35PT powders could be obtained by the columbite method with the use of the partial oxalate and oxidant peroxo methods. Powders were characterized by X-ray diffraction and FT-Raman spectroscopy showing that pure 65PMN-35PT are obtained when the powders are calcined up to 800 deg. C, without any trace of Pb-Nb pyrochlore. Cubic Pb 1,86 Mg 0.24 Nb 1.76 O 6.5 pyrochlore phase is formed by lead loss in the powders calcined at 900 deg. C and higher temperatures as undoubtedly characterized by Raman spectroscopy

  9. Aspirin-triggered lipoxin A4 and lipoxin A4 up-regulate transcriptional corepressor NAB1 in human neutrophils.

    Science.gov (United States)

    Qiu, F H; Devchand, P R; Wada, K; Serhan, C N

    2001-12-01

    Aspirin-triggered 15-epi-lipoxin A4 (ATL) is an endogenous lipid mediator that mimics the actions of native lipoxin A4, a putative "stop signal" involved in regulating resolution of inflammation. A metabolically more stable analog of ATL, 15-epi-16-(para-fluoro)-phenoxy-lipoxin A4 analog (ATLa), inhibits neutrophil recruitment in vitro and in vivo and displays potent anti-inflammatory actions. ATLa binds with high affinity to the lipoxin A4 receptor, a G protein-coupled receptor on the surface of leukocytes. In this study, we used freshly isolated human neutrophils to examine ATLa's potential for initiating rapid nuclear responses. Using differential display reverse transcription polymerase chain reaction, we identified a subset of genes that was selectively up-regulated upon short exposure of polymorphonuclear leukocytes to ATLa but not to the chemoattractant leukotriene B4 or vehicle alone. We further investigated ATLa regulation of one of the genes, NAB1, a transcriptional corepressor identified previously as a glucocorticoid-responsive gene in hamster smooth muscle cells. Treatment of human neutrophils with pertussis toxin blocked ATLa up-regulation of NAB1. In addition, ATLa stimulated NAB1 gene expression in murine lung vascular smooth muscle in vivo. These findings provide evidence for rapid transcriptional induction of a cassette of genes via an ATLa-stimulated G protein-coupled receptor pathway that is potentially protective and overlaps with the anti-inflammatory glucocorticoid regulatory circuit.

  10. Targeting neutrophilic inflammation in severe neutrophilic asthma : can we target the disease-relevant neutrophil phenotype?

    NARCIS (Netherlands)

    Bruijnzeel, Piet L B; Uddin, Mohib; Koenderman, Leo

    2015-01-01

    In severe, neutrophilic asthma, neutrophils are thought to have an important role in both the maintenance of the disease and during exacerbations. These patients often display excessive, mucosal airway inflammation with unresolving neutrophilia. Because this variant of asthma is poorly controlled by

  11. Spectral Variation of NLS1 Galaxy PMN J0948+0022

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Four well-sampled Spectral Energy Distributions (SEDs) of PMN J0948+0022 are fitted with the syn+SSC+EC model to derive the physical parameters of its jets and to investigate the spectral variations of its SEDs. A tentative correlation between the peak luminosity (c) and peak frequency (c) of its ...

  12. Impairment of Neutrophil Migration to Remote Inflammatory Site during Lung Histoplasmosis

    Directory of Open Access Journals (Sweden)

    Alexandra I. Medeiros

    2015-01-01

    Full Text Available Histoplasma capsulatum (Hc induces a pulmonary disease in which leukotrienes promote activation and recruitment of effectors cells. It is also well-recognized that leukotriene B4 (LTB4 and platelet-activating factor (PAF induce leukocyte recruitment to inflammatory sites. We investigated the impact of pulmonary Hc infection on PMN migration to a remote inflammatory site. Our results show that pulmonary Hc infection impairs LTB4- or PAF-stimulated PMN recruitment to air pouch. Yet, remote inflammation did not modify PMN numbers in the bronchoalveolar lavage fluid (BALF of Hc-infected mice. Interestingly, the concomitant administration of PAF and LTB4 receptor antagonists inhibited PMN recruitment to both BALF and the remote site, demonstrating cooperation between both mediators. Along that line, our results show that PAF-elicited PMN chemotaxis was abrogated in 5-lipoxygenase-deficient animals. These results suggest caution in the indiscriminate use of anti-inflammatory drugs during infectious diseases.

  13. Suppression of polymorphonuclear (PMN) and monocyte-mediated inhibition of Candida albicans growth by delta-9-tetrahydrocannabinol

    International Nuclear Information System (INIS)

    Djeu, J.Y.; Parapanios, A.; Halkias, D.; Friedman, H.

    1986-01-01

    This study was an in vitro attempt to identify the effector cells responsible for growth inhibition of the opportunistic fungus, candida albicans, and to determine if THC or another marijuana derivatives, 11-hydroxyTHC, would adversely affect their function. Using a 24h radiolabel assay, the authors found that growth inhibition of C. albicans was primarily mediated by PMN and monocytes that could be isolated normal human peripheral blood. Both effector cell types caused almost complete inhibition of Candida growth at effector/target ratio of 300/1 and inhibition was often still seen at 30/1-. Incubation of PMN, PBL, or monocytes for 1 hr at 37C with THC or 11-hydroxyTHC caused a marked suppression of function in all 3 cell populations. Maximal suppression was obtained with 7.5-10μg/ml of the drugs in medium containing 10% fetal bovine serum (FBS) or with 2-4μg/ml in 1% FBS. These drug concentrations did not affect lymphoid cell viability or candida growth in the absence of lymphoid effector cells. Marijuana derivatives, therefore, are doubly dangerous in that opportunistic fungi such as C. albicans can grow in their presence while the effector cells that control fungal growth are readily inactivated

  14. Regulation of apoptosis and priming of neutrophil oxidative burst by diisopropyl fluorophosphate

    Directory of Open Access Journals (Sweden)

    Tsang Jennifer LY

    2010-07-01

    Full Text Available Abstract Background Diisopropyl fluorophosphate (DFP is a serine protease inhibitor that is widely used as an inhibitor of endogenous proteases in in vitro neutrophil studies. Its effects on neutrophil function are unclear. We sought to determine the biological effects of DFP on human neutrophil apoptosis and oxidative burst. Methods We isolated neutrophils from healthy volunteers, incubated them with DFP (2.5 mM, and evaluated neutrophil elastase (NE activity, neutrophil degranulation, apoptosis as reflected in hypodiploid DNA formation and exteriorization of phosphatidylserine (PS, processing and activity of caspases-3 and -8, oxidative burst activity and hydrogen peroxide release. Results Consistent with its activity as a serine protease inhibitor, DFP significantly inhibited NE activity but not the degranulation of azurophilic granules. DFP inhibited constitutive neutrophil apoptosis as reflected in DNA fragmentation, and the processing and activity of caspases-3 and -8. DFP also inhibited priming of neutrophils for oxidative burst activity and hydrogen peroxide release. However, DFP enhanced the exteriorization of PS in a dose-dependent manner. Conclusion We conclude that DFP exerts significant effects on neutrophil inflammatory function that may confound the interpretation of studies that use it for its antiprotease activity. We further conclude that endogenous proteases play a role in the biology of constitutive neutrophil apoptosis.

  15. Comparison effects of interleukin-2 and interleukin-4 on the ...

    African Journals Online (AJOL)

    Bahaa Kenawy Abuel-Hussien Abdel-Salam

    Introduction. Polymorphonuclear neutrophils (PMN) possess a very short half-life in the circulation because they constitutively undergo apoptosis [1,2]. Under certain conditions PMN play an impor- tant role in the effectors arm of host immune defense through the clearance of immune complexes, phagocytosis of opsonized.

  16. Swimming Motility Mediates the Formation of Neutrophil Extracellular Traps Induced by Flagellated Pseudomonas aeruginosa.

    Directory of Open Access Journals (Sweden)

    Madison Floyd

    2016-11-01

    Full Text Available Pseudomonas aeruginosa is an opportunistic pathogen causing severe infections often characterized by robust neutrophilic infiltration. Neutrophils provide the first line of defense against P. aeruginosa. Aside from their defense conferred by phagocytic activity, neutrophils also release neutrophil extracellular traps (NETs to immobilize bacteria. Although NET formation is an important antimicrobial process, the details of its mechanism are largely unknown. The identity of the main components of P. aeruginosa responsible for triggering NET formation is unclear. In this study, our focus was to identify the main bacterial factors mediating NET formation and to gain insight into the underlying mechanism. We found that P. aeruginosa in its exponential growth phase promoted strong NET formation in human neutrophils while its NET-inducing ability dramatically decreased at later stages of bacterial growth. We identified the flagellum as the primary component of P. aeruginosa responsible for inducing NET extrusion as flagellum-deficient bacteria remained seriously impaired in triggering NET formation. Purified P. aeruginosa flagellin, the monomeric component of the flagellum, does not stimulate NET formation in human neutrophils. P. aeruginosa-induced NET formation is independent of the flagellum-sensing receptors TLR5 and NLRC4 in both human and mouse neutrophils. Interestingly, we found that flagellar motility, not flagellum binding to neutrophils per se, mediates NET release induced by flagellated bacteria. Immotile, flagellar motor-deficient bacterial strains producing paralyzed flagella did not induce NET formation. Forced contact between immotile P. aeruginosa and neutrophils restored their NET-inducing ability. Both the motAB and motCD genetic loci encoding flagellar motor genes contribute to maximal NET release; however the motCD genes play a more important role. Phagocytosis of P. aeruginosa and superoxide production by neutrophils were also

  17. Electric-field tunable spin diode FMR in patterned PMN-PT/NiFe structures

    Energy Technology Data Exchange (ETDEWEB)

    Ziętek, Slawomir, E-mail: zietek@agh.edu.pl; Skowroński, Witold; Stobiecki, Tomasz [AGH University of Science and Technology, Department of Electronics, Al. Mickiewicza 30, 30-059 Kraków (Poland); Ogrodnik, Piotr, E-mail: piotrogr@if.pw.edu.pl [AGH University of Science and Technology, Department of Electronics, Al. Mickiewicza 30, 30-059 Kraków (Poland); Faculty of Physics, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warszawa (Poland); Stobiecki, Feliks [Institute of Molecular Physics, Polish Academy of Sciences, ul. Smoluchowskiego 17, 60-179 Poznań (Poland); Dijken, Sebastiaan van [NanoSpin, Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, FI-00076 Aalto (Finland); Barnaś, Józef [Faculty of Physics, Adam Mickiewicz University, ul. Umultowska 85, 61-614 Poznań (Poland); Institute of Molecular Physics, Polish Academy of Sciences, ul. Smoluchowskiego 17, 60-179 Poznań (Poland)

    2016-08-15

    Dynamic properties of NiFe thin films on PMN-PT piezoelectric substrate are investigated using the spin-diode method. Ferromagnetic resonance (FMR) spectra of microstrips with varying width are measured as a function of magnetic field and frequency. The FMR frequency is shown to depend on the electric field applied across the substrate, which induces strain in the NiFe layer. Electric field tunability of up to 100 MHz per 1 kV/cm is achieved. An analytical model based on total energy minimization and the Landau-Lifshitz-Gilbert equation, taking into account the magnetostriction effect, is used to explain the measured dynamics. Based on this model, conditions for optimal electric-field tunable spin diode FMR in patterned NiFe/PMN-PT structures are derived.

  18. SiMA: A simplified migration assay for analyzing neutrophil migration.

    Science.gov (United States)

    Weckmann, Markus; Becker, Tim; Nissen, Gyde; Pech, Martin; Kopp, Matthias V

    2017-07-01

    In lung inflammation, neutrophils are the first leukocytes migrating to an inflammatory site, eliminating pathogens by multiple mechanisms. The term "migration" describes several stages of neutrophil movement to reach the site of inflammation, of which the passage of the interstitium and basal membrane of the airway are necessary to reach the site of bronchial inflammation. Currently, several methods exist (e.g., Boyden Chamber, under-agarose assay, or microfluidic systems) to assess neutrophil mobility. However, these methods do not allow for parameterization on single cell level, that is, the individual neutrophil pathway analysis is still considered challenging. This study sought to develop a simplified yet flexible method to monitor and quantify neutrophil chemotaxis by utilizing commercially available tissue culture hardware, simple video microscopic equipment and highly standardized tracking. A chemotaxis 3D µ-slide (IBIDI) was used with different chemoattractants [interleukin-8 (IL-8), fMLP, and Leukotriene B4 (LTB 4 )] to attract neutrophils in different matrices like Fibronectin (FN) or human placental matrix. Migration was recorded for 60 min using phase contrast microscopy with an EVOS ® FL Cell Imaging System. The images were normalized and texture based image segmentation was used to generate neutrophil trajectories. Based on these spatio-temporal information a comprehensive parameter set is extracted from each time series describing the neutrophils motility, including velocity and directness and neutrophil chemotaxis. To characterize the latter one, a sector analysis was employed enabling the quantification of the neutrophils response to the chemoattractant. Using this hard- and software framework we were able to identify typical migration profiles of the chemoattractants IL-8, fMLP, and LTB 4 , the effect of the matrices FN versus HEM as well as the response to different medications (Prednisolone). Additionally, a comparison of four asthmatic and

  19. Structural analysis of the receptors for granulocyte colony-stimulating factor on neutrophils

    International Nuclear Information System (INIS)

    Hanazono, Y.; Hosoi, T.; Kuwaki, T.; Matsuki, S.; Miyazono, K.; Miyagawa, K.; Takaku, F.

    1990-01-01

    We investigated granulocyte colony-stimulating factor (G-CSF) receptors on neutrophils from three patients with chronic myelogenous leukemia (CML) in the chronic phase, in comparison with four normal volunteers. Because we experienced some difficulties in radioiodinating intact recombinant human G-CSF, we developed a new derivative of human G-CSF termed YPY-G-CSF. It was easy to iodinate this protein using the lactoperoxidase method because of two additional tyrosine residues, and its radioactivity was higher than that previously reported. The biological activity of YPY-G-CSF as G-CSF was fully retained. Scatchard analysis demonstrated that CML neutrophils had a single class of binding sites (1400 +/- 685/cell) with a dissociation constant (Kd) of 245 +/- 66 pM. The number of sites and Kd value of CML neutrophils were not significantly different from those of normal neutrophils (p greater than 0.9). Cross-linking studies revealed two specifically labeled bands of [125I]YPY-G-CSF-receptor complexes with apparent molecular masses of 160 and 110 kd on both normal and CML neutrophils. This is the first report describing two receptor proteins on neutrophils. According to the analyses of the proteolytic process of these cross-linked complexes and proteolytic mapping, we assume that alternative splicing or processing from a single gene may generate two distinct receptor proteins that bind specifically to G-CSF but have different fates in intracellular metabolism

  20. The Natural Stilbenoid Piceatannol Decreases Activity and Accelerates Apoptosis of Human Neutrophils: Involvement of Protein Kinase C

    Directory of Open Access Journals (Sweden)

    Viera Jancinova

    2013-01-01

    Full Text Available Neutrophils are able to release cytotoxic substances and inflammatory mediators, which, along with their delayed apoptosis, have a potential to maintain permanent inflammation. Therefore, treatment of diseases associated with chronic inflammation should be focused on neutrophils; formation of reactive oxygen species and apoptosis of these cells represent two promising targets for pharmacological intervention. Piceatannol, a naturally occurring stilbenoid, has the ability to reduce the toxic action of neutrophils. This substance decreased the amount of oxidants produced by neutrophils both extra- and intracellularly. Radicals formed within neutrophils (fulfilling a regulatory role were reduced to a lesser extent than extracellular oxidants, potentially dangerous for host tissues. Moreover, piceatannol did not affect the phosphorylation of p40phox—a component of NADPH oxidase, responsible for the assembly of functional oxidase in intracellular (granular membranes. The stilbenoid tested elevated the percentage of early apoptotic neutrophils, inhibited the activity of protein kinase C (PKC—the main regulatory enzyme in neutrophils, and reduced phosphorylation of PKC isoforms α, βII, and δ on their catalytic region. The results indicated that piceatannol may be useful as a complementary medicine in states associated with persisting neutrophil activation and with oxidative damage of tissues.

  1. Activated Protein C Attenuates Severe Inflammation by Targeting VLA-3high Neutrophil Subpopulation in Mice.

    Science.gov (United States)

    Sarangi, Pranita P; Lee, Hyun-Wook; Lerman, Yelena V; Trzeciak, Alissa; Harrower, Eric J; Rezaie, Alireza R; Kim, Minsoo

    2017-10-15

    The host injury involved in multiorgan system failure during severe inflammation is mediated, in part, by massive infiltration and sequestration of hyperactive neutrophils in the visceral organ. A recombinant form of human activated protein C (rhAPC) has shown cytoprotective and anti-inflammatory functions in some clinical and animal studies, but the direct mechanism is not fully understood. Recently, we reported that, during endotoxemia and severe polymicrobial peritonitis, integrin VLA-3 (CD49c/CD29) is specifically upregulated on hyperinflammatory neutrophils and that targeting the VLA-3 high neutrophil subpopulation improved survival in mice. In this article, we report that rhAPC binds to human neutrophils via integrin VLA-3 (CD49c/CD29) with a higher affinity compared with other Arg-Gly-Asp binding integrins. Similarly, there is preferential binding of activated protein C (PC) to Gr1 high CD11b high VLA-3 high cells isolated from the bone marrow of septic mice. Furthermore, specific binding of rhAPC to human neutrophils via VLA-3 was inhibited by an antagonistic peptide (LXY2). In addition, genetically modified mutant activated PC, with a high affinity for VLA-3, shows significantly improved binding to neutrophils compared with wild-type activated PC and significantly reduced neutrophil infiltration into the lungs of septic mice. These data indicate that variants of activated PC have a stronger affinity for integrin VLA-3, which reveals novel therapeutic possibilities. Copyright © 2017 by The American Association of Immunologists, Inc.

  2. The Beta-2-Adrenoreceptor Agonists, Formoterol and Indacaterol, but Not Salbutamol, Effectively Suppress the Reactivity of Human Neutrophils In Vitro

    Directory of Open Access Journals (Sweden)

    Ronald Anderson

    2014-01-01

    Full Text Available The clinical relevance of the anti-inflammatory properties of beta-2 agonists remains contentious possibly due to differences in their molecular structures and agonist activities. The current study has compared the effects of 3 different categories of β2-agonists, namely, salbutamol (short-acting, formoterol (long-acting and indacaterol (ultra-long-acting, at concentrations of 1–1000 nM, with human blood neutrophils in vitro. Neutrophils were activated with either N-formyl-L-methionyl-L-leucyl-L-phenylalanine (fMLP, 1 µM or platelet-activating factor (PAF, 200 nM in the absence and presence of the β2-agonists followed by measurement of the generation of reactive oxygen species and leukotriene B4, release of elastase, and expression of the β2-integrin, CR3, using a combination of chemiluminescence, ELISA, colorimetric, and flow cytometric procedures respectively. These were correlated with alterations in the concentrations of intracellular cyclic-AMP and cytosolic Ca2+. At the concentrations tested, formoterol and indacaterol caused equivalent, significant (P<0.05 at 1–10 nM dose-related inhibition of all of the pro-inflammatory activities tested, while salbutamol was much less effective (P<0.05 at 100 nM and higher. Suppression of neutrophil reactivity was accompanied by elevations in intracellular cAMP and accelerated clearance of Ca2+ from the cytosol of activated neutrophils. These findings demonstrate that β2-agonists vary with respect to their suppressive effects on activated neutrophils.

  3. Neutrophil evasion strategies by Streptococcus pneumoniae and Staphylococcus aureus.

    Science.gov (United States)

    Lewis, Megan L; Surewaard, Bas G J

    2018-03-01

    Humans are well equipped to defend themselves against bacteria. The innate immune system employs diverse mechanisms to recognize, control and initiate a response that can destroy millions of different microbes. Microbes that evade the sophisticated innate immune system are able to escape detection and could become pathogens. The pathogens Streptococcus pneumoniae and Staphylococcus aureus are particularly successful due to the development of a wide variety of virulence strategies for bacterial pathogenesis and they invest significant efforts towards mechanisms that allow for neutrophil evasion. Neutrophils are a primary cellular defense and can rapidly kill invading microbes, which is an indispensable function for maintaining host health. This review compares the key features of Streptococcus pneumoniae and Staphylococcus aureus in epidemiology, with a specific focus on virulence mechanisms utilized to evade neutrophils in bacterial pathogenesis. It is important to understand the complex interactions between pathogenic bacteria and neutrophils so that we can disrupt the ability of pathogens to cause disease.

  4. In vitro permissiveness of bovine neutrophils and monocyte derived macrophages to Leishmania donovani of Ethiopian isolate.

    Science.gov (United States)

    Tasew, Geremew; Gadisa, Endalamaw; Abera, Adugna; Zewude, Aboma; Chanyalew, Menberework; Aseffa, Abraham; Abebe, Markos; Ritter, Uwe; van Zandbergen, Ger; Laskay, Tamás; Tafess, Ketema

    2016-04-18

    Epidemiological studies in Ethiopia have documented that the risk of visceral leishmaniasis (VL, Kala-azar) is higher among people living with domestic animals. The recent report on isolation of Leishmania donovani complex DNA and the detected high prevalence of anti-leishmanial antibodies in the blood of domestic animals further strengthen the potential role of domestic animals in the epidemiology of VL in Ethiopia. In mammalian hosts polymorphonuclear cells (PMN) and macrophages are the key immune cells influencing susceptibility or control of Leishmania infection. Thus to substantiate the possible role of cattle in VL transmission we investigate the permissiveness of bovine PMN and monocyte derived macrophages (MDM) for Leishmania (L.) donovani infection. Whole blood was collected from pure Zebu (Boss indicus) and their cross with Holstein Friesian cattle. L. donovani (MHOM/ET/67/HU3) wild and episomal green fluorescent protein (eGFP) labelled stationary stage promastigotes were co-incubated with whole blood and MDM to determine infection of these cells. Engulfment of promastigotes by the cells and their transformation to amastigote forms in MDM was studied with direct microscopy. Microscopy and flow cytometry were used to measure the infection rate while PCR-RLFP was used to confirm the infecting parasite. L. donovani infected bovine whole blood PMN in the presence of plasma factors and all cellular elements. Morphological examinations of stained cytospin smears revealed that PMN engulfed promastigotes. Similarly, we were able to show that bovine MDM can be infected by L. donovani, which transformed to amastigote forms in the cells. The in vitro infection of bovine PMN and MDM by L. donovani further strengthens the possibility that cattle might serve as source of L. donovani infection for humans.

  5. The emerging role of neutrophils in thrombosis – The journey of TF through NETs

    Directory of Open Access Journals (Sweden)

    Konstantinos eKambas

    2012-12-01

    Full Text Available The production of TF by neutrophils and their contribution in thrombosis was until recently a matter of scientific debate. Experimental data suggested the de novo TF production by neutrophils under inflammatory stimuli, while others proposed that these cells acquired microparticle-derived TF. Recent experimental evidence revealed the critical role of neutrophils in thrombotic events. Neutrophil derived TF has been implicated in this process in several human and animal models. Additionally, neutrophil extracellular trap (NET release has emerged as a major contributor in neutrophil-driven thrombogenicity in disease models including sepsis, deep venous thrombosis and malignancy. It is suggested that NETs provide the scaffold for fibrin deposition and platelet entrapment and subsequent activation. The recently reported autophagy-dependent extracellular delivery of TF in NETs further supports the involvement of neutrophils in thrombosis. Herein, we seek to review novel data regarding the role of neutrophils in thrombosis, emphasizing the implication of TF and NETs.

  6. Cathepsin G-dependent modulation of platelet thrombus formation in vivo by blood neutrophils.

    Directory of Open Access Journals (Sweden)

    Nauder Faraday

    Full Text Available Neutrophils are consistently associated with arterial thrombotic morbidity in human clinical studies but the causal basis for this association is unclear. We tested the hypothesis that neutrophils modulate platelet activation and thrombus formation in vivo in a cathepsin G-dependent manner. Neutrophils enhanced aggregation of human platelets in vitro in dose-dependent fashion and this effect was diminished by pharmacologic inhibition of cathepsin G activity and knockdown of cathepsin G expression. Tail bleeding time in the mouse was prolonged by a cathepsin G inhibitor and in cathepsin G knockout mice, and formation of neutrophil-platelet conjugates in blood that was shed from transected tails was reduced in the absence of cathepsin G. Bleeding time was highly correlated with blood neutrophil count in wildtype but not cathepsin G deficient mice. In the presence of elevated blood neutrophil counts, the anti-thrombotic effect of cathepsin G inhibition was greater than that of aspirin and additive to it when administered in combination. Both pharmacologic inhibition of cathepsin G and its congenital absence prolonged the time for platelet thrombus to form in ferric chloride-injured mouse mesenteric arterioles. In a vaso-occlusive model of ischemic stroke, inhibition of cathepsin G and its congenital absence improved cerebral blood flow, reduced histologic brain injury, and improved neurobehavioral outcome. These experiments demonstrate that neutrophil cathepsin G is a physiologic modulator of platelet thrombus formation in vivo and has potential as a target for novel anti-thrombotic therapies.

  7. Oral neutrophil responses to acute prolonged exercise may not be representative of blood neutrophil responses.

    Science.gov (United States)

    Davison, Glen; Jones, Arwel Wyn

    2015-03-01

    Neutrophil numbers and function (oxidative burst) were assessed in peripheral blood and oral samples before and after prolonged exercise. Blood neutrophil count increased (∼3.5-fold, P < 0.001) and function decreased (30% ± 19% decrease, P = 0.005) postexercise. Oral neutrophil count (P = 0.392) and function (P = 0.334) were unchanged. Agreement between oral and blood neutrophil function responses to exercise was poor. These findings highlight the importance of studying neutrophils within various compartments/sample types.

  8. Medium-chain, triglyceride-containing lipid emulsions increase human neutrophil beta2 integrin expression, adhesion, and degranulation.

    Science.gov (United States)

    Wanten, G J; Geijtenbeek, T B; Raymakers, R A; van Kooyk, Y; Roos, D; Jansen, J B; Naber, A H

    2000-01-01

    To test the hypothesis that lipid emulsions with different triglyceride structures have distinct immunomodulatory properties, we analyzed human neutrophil adhesion and degranulation after lipid incubation. Neutrophils, isolated from the blood of 10 healthy volunteers, were incubated in medium or physiologic (2.5 mmol/L) emulsions containing long-chain (LCT), medium-chain (MCT), mixed LCT/MCT, or structured (SL) triglycerides. Expression of adhesion molecules and degranulation markers was evaluated by flow cytometry. Also, functional adhesion was investigated by means of a flow cytometric assay using fluorescent beads coated with the integrin ligand intercellular adhesion molecule (ICAM)-1. Although LCT and SL had no effect, LCT/MCT significantly increased expression of the beta2 integrins lymphocyte-function-associated antigen 1 (+18%), macrophage antigen 1 (+387%), p150,95 (+82%), and (alphaDbeta2 (+230%). Degranulation marker expression for azurophilic (CD63, +210%) and specific granules (CD66b, +370%) also significantly increased, whereas L-selectin (CD62L, -70%) decreased. The effects of LCT/MCT were mimicked by the MCT emulsion. ICAM-1 adhesion (% beads bound) was increased by LCT/MCT (34% +/- 4%), whereas LCT (19% +/-3%) and SL (20% +/- 2%) had no effect compared with medium (17% +/- 3%). LCT/MCT and MCT, contrary to LCT and SL emulsions, increased neutrophil beta2 integrin expression, adhesion, and degranulation. Apart from other emulsion constituents, triglyceride chain length might therefore be a key feature in the interaction of lipid emulsions and the phagocyte immune system.

  9. Spontaneous neutrophil activation in HTLV-1 infected patients

    Directory of Open Access Journals (Sweden)

    Jaqueline B. Guerreiro

    Full Text Available Human T cell lymphotropic Virus type-1 (HTLV-1 induces lymphocyte activation and proliferation, but little is known about the innate immune response due to HTLV-1 infection. We evaluated the percentage of neutrophils that metabolize Nitroblue tetrazolium (NBT to formazan in HTLV-1 infected subjects and the association between neutrophil activation and IFN-gamma and TNF-alpha levels. Blood was collected from 35 HTLV-1 carriers, from 8 patients with HAM/TSP (HTLV-1- associated myelopathy; 22 healthy individuals were evaluated for spontaneous and lipopolysaccharide (LPS-stimulated neutrophil activity (reduction of NBT to formazan. The production of IFN-gamma and TNF-alpha by unstimulated mononuclear cells was determined by ELISA. Spontaneous NBT levels, as well as spontaneous IFN-gamma and TNF-alpha production, were significantly higher (p<0.001 in HTLV-1 infected subjects than in healthy individuals. A trend towards a positive correlation was noted, with increasing percentage of NBT positive neutrophils and levels of IFN-gamma. The high IFN-gamma producing HTLV-1 patient group had significantly greater NBT than healthy controls, 43±24% and 17±4.8% respectively (p< 0.001, while no significant difference was observed between healthy controls and the low IFN-gamma-producing HTLV-1 patient group (30±20%. Spontaneous neutrophil activation is another marker of immune perturbation resulting from HTLV-1 infection. In vivo activation of neutrophils observed in HTLV-1 infected subjects is likely to be the same process that causes spontaneous IFN-gamma production, or it may partially result from direct IFN-gamma stimulation.

  10. Heterogeneity of neutrophil antibodies in patients with primary Sjögren's syndrome.

    Science.gov (United States)

    Lamour, A; Le Corre, R; Pennec, Y L; Cartron, J; Youinou, P

    1995-11-01

    Our aims were to determine the prevalence of neutrophil antibodies in patients with primary Sjögren's syndrome (pSS), identify their target antigen(s), and evaluate their functional significance. Neutrophil antibodies were detected using an indirect immunofluorescence (IIIF) test and an enzyme-linked immunosorbent assay (ELISA), using recombinant human Fc-gamma receptor (Fc gamma RIIIb) as a capture agent. Luminol-dependent chemiluminescence was then measured by an established technique. Antibodies to neutrophils were detected in 30 of 66 patients (45%) and categorized on the basis of positivity for the two assays: IIF+/ELISA+ (group A: five patients), IIF+/ELISA- (group B: five patients), and IFF-/ELISA+ (group C: 20 patients). All positive sera contained antibodies directed to the neutrophil specific Fc gamma RIIIb, and none of them bound to NAnull neutrophils. The titer of neutrophil-reactive antibodies (groups A and B) showed no correlation with the neutrophil count, but these autoantibodies did reduce the cell ability to generate a respiratory burst. Thus, neutrophil antibodies are common in patients with pSS. Their main target appears to be Fc gamma RIII, and this may partly account for the dysfunction in Fc gamma R-mediated clearance by the reticuloendothelial system reported in these patients.

  11. Zinc and magnesium ions synergistically inhibit superoxide generation by cultured human neutrophils--a promising candidate formulation for amnioinfusion fluid.

    Science.gov (United States)

    Uchida, Toshiyuki; Itoh, Hiroaki; Nakamura, Yuki; Kobayashi, Yukiko; Hirai, Kyuya; Suzuki, Kazunao; Sugihara, Kazuhiro; Kanayama, Naohiro; Hiramatsu, Mitsuo

    2010-06-01

    Oligohydramnios is often caused by the premature rupturing of membranes and subsequent intrauterine infections, such as chorioamnionitis, in which event oxidative stress is hypothesized to be closely associated with the damage to the fetal organs. The clinical efficiency of amnioinfusion using warmed saline in cases of premature rupture of membranes is still controversial, especially concerning the prognosis for the fetus. In the present study, we found that human amniotic fluid per se suppresses the release of superoxide from cultured human neutrophils, suggesting an acute or chronic shortage of amniotic fluid in cases of premature rupture of membranes can affect the shielding of intrauterine organs from oxidative stress. The aim of this study was to propose a formula of zinc and magnesium ions in saline for amnioinfusion, by assessing antioxidative activities. A combination of 5 microM zinc and 5mM magnesium in saline synergistically inhibited superoxide production by cultured human neutrophils, equivalent to human amniotic fluid. The intraperitoneal administration of this formula significantly improved the survival rate in a rat model of peritonitis compared to the saline control (46.7% vs. 10%). The combination of these metals with saline may thus be a promising formula for an amnioinfusion fluid with the capacity to protect fetal organs from oxidative stress. Copyright (c) 2010 Elsevier Ireland Ltd. All rights reserved.

  12. Dopamine attenuates the chemoattractant effect of interleukin-8: a novel role in the systemic inflammatory response syndrome.

    LENUS (Irish Health Repository)

    Sookhai, S

    2012-02-03

    Activated neutrophil (PMN) adherence to vascular endothelium comprises a key step for both transendothelial migration and initiation of potentially deleterious release of PMN products. The biogenic amine, dopamine (DA), has been used for several decades in patients to maintain hemodynamic stability. The effect of dopamine on PMN transendothelial migration and adhesion receptor expression and on the endothelial molecules, E-selectin and ICAM-1, was evaluated. PMN were isolated from healthy controls, stimulated with lipopolysaccharide (LPS), and tumor necrosis factor-alpha (TNF-alpha) and treated with dopamine. CD 11b and CD 18 PMN adhesion receptor expression were assessed flow cytometrically. In a separate experiment, the chemoattractant peptide, IL-8, was placed in the lower chamber of transwells, and PMN migration was assessed. Human umbilical vein endothelial cells (HUVEC) were stimulated with LPS\\/TNF-alpha and incubated with dopamine. ICAM-1 and E-selectin endothelial molecule expression were assessed flow cytometrically. There was a significant increase in transendothelial migration in stimulated PMN compared with normal PMN (40 vs. 14%, P < 0.001). In addition, PMN CD11b\\/CD18 was significantly upregulated in stimulated PMN compared with normal PMN (252.4\\/352.4 vs. 76.7\\/139.4, P < 0.001) as were endothelial E-selectin\\/ICAM-1 expression compared with normal EC (8.1\\/9 vs. 3.9\\/3.8, P < 0.05). After treatment with dopamine, PMN transmigration was significantly decreased compared with stimulated PMN (8% vs. 40%, P < 0.001). Furthermore, dopamine also attenuated PMN CD11b\\/CD18 and the endothelial molecules E-selectin and ICAM-1 compared with stimulated PMN\\/EC that were not treated dopamine (174\\/240 vs. 252\\/352, P < 0.05 and 4\\/4.4 vs. 8.1\\/9, P < 0.05. respectively). The chemoattractant effect of IL-8 was also attenuated. These results identify for the first time that dopamine attenuates the initial interaction between PMN and the endothelium

  13. Recruitment of classical monocytes can be inhibited by disturbing heteromers of neutrophil HNP1 and platelet CCL5

    NARCIS (Netherlands)

    Alard, Jean-Eric; Ortega-Gomez, Almudena; Wichapong, Kanin; Bongiovanni, Dario; Horckmans, Michael; Megens, Remco T. A.; Leoni, Giovanna; Ferraro, Bartolo; Rossaint, Jan; Paulin, Nicole; Ng, Judy; Ippel, Hans; Suylen, Dennis; Hinkel, Rabea; Blanchet, Xavier; Gaillard, Fanny; D'Amico, Michele; von Hundelshausen, Phillipp; Zarbock, Alexander; Scheiermann, Christoph; Hackeng, Tilman M.; Steffens, Sabine; Kupatt, Christian; Nicolaes, Gerry A. F.; Weber, Christian; Soehnlein, Oliver

    2015-01-01

    In acute and chronic inflammation, neutrophils and platelets, both of which promote monocyte recruitment, are often activated simultaneously. We investigated how secretory products of neutrophils and platelets synergize to enhance the recruitment of monocytes. We found that neutrophil-borne human

  14. Uncoupling of the beta-adrenergic receptor as a mechanism of in vitro neutrophil desensitization

    International Nuclear Information System (INIS)

    Galant, S.P.; Britt, S.

    1984-01-01

    Human leukocytes have been useful in studying desensitization phenomena to beta-adrenergic agonists in a number of clinical conditions. In the present in vitro study the authors have explored the mechanism for beta-adrenergic desensitization and have compared conditions for homologous and heterologous desensitization, using the intact PMN model. PMN preincubated with isoproterenol (10 -4 M), washed thoroughly, then restimulated, desensitized rapidly so that within 10 min 80% of control isoproterenol-induced cyclic AMP stimulation is lost. Cells washed free of isoproterenol recover full responsiveness in 1 to 2 hr. The estimated isoproterenol desensitization EC 50 in cells washed and then restimulated is 1 x 10 -5 M, and EC 50 in unwashed cells that are restimulated is 9 x 10 -8 M. Rank-order potency studies of catecholamine desensitization show isoproterenol > epinephrine > norepinephrine, a beta-2 pattern. Isoproterenol-induced desensitization results in a small reduction in [ 3 H]DHA binding sites, which becomes statistically significant (p 50 of 6.6 +/- 2.6 x 10 - (M, which is significantly different (p 50 of 38.1 +/- 9.1 x 10 -1 M found when cells are previously desensitized with isoproterenol for 10 min. GTP does not affect the EC 50 of desensitized cells. Finally, prolonged (3 hr) isoproterenol preincubation results in a small but significant (p 1 (59.3% +/- 7.4), suggesting heterologous desensitization. These studies suggest that the human PMN is a suitable model to study both homologous and heterologous desensitization in vitro. 22 references. 6 figures. 3 tables

  15. The lipidated peptidomimetic Lau-[(S)-Aoc]-(Lys-βNphe)6-NH2 is a novel formyl peptide receptor 2 agonist that activates both human and mouse neutrophil NADPH-oxidase

    DEFF Research Database (Denmark)

    Holdfeldt, Andre; Skovbakke, Sarah Line; Winther, Malene

    2016-01-01

    Neutrophils expressing formyl peptide receptor 2 (FPR2) play key roles in host defense, immune regulation, and resolution of inflammation. Consequently, the search for FPR2-specific modulators has attracted much attention due to its therapeutic potential. Earlier described agonists......2 (F2M2), showing comparable potency in activating human and mouse neutrophils by inducing a rise in intracellular Ca2+ concentration and assembly of the superoxide-generating NADPH oxidase. This FPR2/Fpr2 agonist contains a headgroup consisting of a 2-aminooctanoic acid (Aoc) residue acylated......2 signaling as well as for development of prophylactic immunomodulatory therapy. This novel class of cross-species FPR2/Fpr2 agonists should enable translation of results obtained with mouse neutrophils (and disease models) into enhanced understanding of human inflammatory and immune diseases....

  16. Regulation of Discrete Functional Responses by Syk and Src Family Tyrosine Kinases in Human Neutrophils

    Directory of Open Access Journals (Sweden)

    Thornin Ear

    2017-01-01

    Full Text Available Neutrophils play a critical role in innate immunity and also influence adaptive immune responses. This occurs in good part through their production of inflammatory and immunomodulatory cytokines, in conjunction with their prolonged survival at inflamed foci. While a picture of the signaling machinery underlying these neutrophil responses is now emerging, much remains to be uncovered. In this study, we report that neutrophils constitutively express various Src family isoforms (STKs, as well as Syk, and that inhibition of these protein tyrosine kinases selectively hinders inflammatory cytokine generation by acting posttranscriptionally. Accordingly, STK or Syk inhibition decreases the phosphorylation of signaling intermediates (e.g., eIF-4E, S6K, and MNK1 involved in translational control. By contrast, delayed apoptosis appears to be independent of either STKs or Syk. Our data therefore significantly extend our understanding of which neutrophil responses are governed by STKs and Syk and pinpoint some signaling intermediates that are likely involved. In view of the foremost role of neutrophils in several chronic inflammatory conditions, our findings identify potential molecular targets that could be exploited for future therapeutic intervention.

  17. Oxidative burst of human neutrophils is suppressed by N-feruloylserotonin isolated from seeds of Leuzea carthamoides (Wild) DC

    Czech Academy of Sciences Publication Activity Database

    Nosáľ, R.; Perečko, T.; Jančinová, V.; Drábiková, K.; Harmatha, Juraj; Sviteková, K.

    2010-01-01

    Roč. 3, č. 3 (2010), A70-A71 ISSN 1337-6853. [Toxcon 2010, Borderless Toxicology. 15th Interdisciplinary Toxicological Conference & Advanced Toxicological Course. 06.09.-10.09.2010, Stará Lesná - Hotel Academia] R&D Projects: GA ČR(CZ) GA203/07/1227 Institutional research plan: CEZ:AV0Z40550506 Keywords : N-feruloylserotonin * human neutrophils * Leuzea carthamoides Subject RIV: CC - Organic Chemistry

  18. Localized Subcutaneous Acute Febrile Neutrophilic Dermatosis in a Dog

    Directory of Open Access Journals (Sweden)

    Karolin Schoellhorn

    2012-01-01

    Full Text Available A two-year-old spayed female mixed-breed dog was presented with a five-day history of hemorrhagic gastroenteritis and fever. On physical examination, the dog was lethargic and clinically dehydrated. The skin of the entire ventral abdomen extending to both flanks was erythematous, swollen and painful on palpation. Histopathological examination of skin biopsies revealed a severe diffuse neutrophilic dermatitis and panniculitis, resembling the subcutaneous form of Sweet’s syndrome in humans. A large part of the skin lesion developed full-thickness necrosis. After intensive care, three surgical wound debridements and wound adaptations, the wound healed by secondary intention within ten weeks. In the absence of infection of the skin or neoplasia, a diagnosis of neutrophilic dermatosis and panniculitis, resembling the subcutaneous form of acute febrile neutrophilic dermatosis, was made.

  19. PMN-Portuguese Meteor Network and OLA-Observatório do Lago Alqueva agreement

    Science.gov (United States)

    Saraiva, C.

    2018-01-01

    The PMN-Portuguese Meteor Network has two new video meteor detecting systems at OLA- Observartório do Lago Alqueva, situated at the South East Portuguese territory with a pristine night sky and more than 290 clear nights each year.

  20. Effect of progesterone receptor status on maspin synthesis via nitric oxide production in neutrophils in human breast cancer.

    Science.gov (United States)

    Ganguly Bhattacharjee, Karabi; Bhattacharyya, Mau; Halder, Umesh Chandra; Jana, Pradipta; Sinha, Asru K

    2014-09-01

    Although progesterone receptor (PR) status, similarly to estrogen receptor status, is of prognostic importance in breast cancer, the involvement of the PR in breast cancer remains obscure. Studies were conducted to determine the function of the PR in neutrophils in the nitric oxide-induced synthesis of maspin, an anti-breast-cancer protein produced in nonmalignant mammary cells and in neutrophils in the circulation. PR status was determined by immunohistochemistry. Maspin synthesis was determined by in-vitro translation of messenger RNA and quantified by enzyme-linked immunosorbent assay. Nitric oxide was determined by the methemoglobin method. It was found that PR status in neutrophils was identical with that in malignant breast tissues. A Scatchard plot for progesterone binding to normal and PR-positive (PR+) neutrophils revealed that whereas normal neutrophils had 11.5 × 10(10) PR sites/cell with K d = 47.619 nM, PR+ neutrophils had 6.6 × 10(10) PR sites/cell with K d = 47.619 nM. The progesterone negative (PR-) neutrophils failed to bind to progesterone. Incubation of normal and PR+ neutrophils with 25 nM progesterone produced 1.317 μM NO and 2.329 nM maspin; the PR+ neutrophils produced 0.72 μM NO and 1.138 nM maspin. The PR- neutrophils failed to produce any NO or maspin in the presence of progesterone. Inhibition of progesterone-induced NO synthesis led to complete inhibition of maspin synthesis in all neutrophils. These results suggest that estrogen and progesterone complement each other in NO-induced maspin synthesis, and do not necessarily antagonize in the synthesis of the anti-breast-cancer protein.

  1. Complement Activation Induces Neutrophil Adhesion and Neutrophil-Platelet Aggregate Formation on Vascular Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Magdalena Riedl

    2017-01-01

    Discussion: Therefore, our findings of (i neutrophils adhering to complement-activated endothelial cells, (ii the formation of neutrophil-platelet aggregates on endothelial cells, and (iii the ability of aHUS serum to induce similar effects identify a possible role for neutrophils in aHUS manifestation.

  2. Overhauser-enhanced MRI of elastase activity from in vitro human neutrophil degranulation.

    Directory of Open Access Journals (Sweden)

    Elodie Parzy

    Full Text Available Magnetic resonance imaging can reveal exquisite anatomical details. However several diseases would benefit from an imaging technique able to specifically detect biochemical alterations. In this context protease activity imaging is one of the most promising areas of research.We designed an elastase substrate by grafting stable nitroxide free radicals on soluble elastin. This substrate generates a high Overhauser magnetic resonance imaging (OMRI contrast upon digestion by the target proteases through the modulation of its rotational correlation time. The sensitivity is sufficient to generate contrasted images of the degranulation of neutrophils induced by a calcium ionophore from 2×10(4 cells per milliliter, well under the physiological neutrophils concentrations.These ex-vivo experiments give evidence that OMRI is suitable for imaging elastase activity from neutrophil degranulation. Provided that a fast protease-substrate is used these results open the door to better diagnoses of a number of important pathologies (cystic fibrosis, inflammation, pancreatitis by OMRI or Electron Paramagnetic Resonance Imaging in vivo. It also provides a long-expected method to monitor anti-protease treatments efficiency and help pharmaceutical research.

  3. In vivo and in vitro evidences that carotenoids could modulate the neutrophil respiratory burst during dietary manipulation.

    Science.gov (United States)

    Walrand, Stéphane; Farges, Marie-Chantal; Dehaese, Olivier; Cardinault, Nicolas; Minet-Quinard, Régine; Grolier, Pascal; Bouteloup-Demange, Corinne; Ribalta, Josep; Winklhofer-Roob, Brigitte M; Rock, Edmond; Vasson, Marie-Paule

    2005-03-01

    The primary role of polymorphonuclear neutrophils (PMNs) is to destroy pathogenic microorganisms after phagocytosis by producing reactive oxygen species (ROS) and toxic molecules. However, PMNs produce sufficient amounts of ROS during an oxidative burst to be autotoxic and detrimental to their own functions and to possibly cause DNA damage, protein and lipid oxidation and cell membrane destructuration. The aim of this study was to investigate in vivo the role of the antioxidant capacities of carotenoids in modulating ROS content in PMNs during oxidative burst. Moreover to investigate the direct or indirect effect of carotenoids, the modification of PMN ROS content was explored after in vitro supplementation with beta-carotene or lycopene, chosen taking account of their vitamin A and no vitamin A precursor effect, respectively. In vivo study: Venous blood was collected from 10 healthy male volunteers and ROS production from phorbol myristate acetate (PMA)-stimulated PMNs was determined, by flow cytometry using the fluorescent dye dihydrorhodamine 123, at baseline, after 3 weeks of carotenoid depletion (carotenoid intake limited to 25% of usual intake) and after 5 weeks of carotenoid repletion (30 mg beta-carotene, 15 mg lycopene and 9 mg lutein per day). In vitro study: ROS content in PMA-stimulated PMNs isolated from carotenoid depleted subjects and controls was quantified after an in vitro enrichment with beta-carotene (1 micromol/L) or lycopene (0.3 micromol/L). In vivo carotenoid depletion increased PMN H2O2 content after PMA activation by 38% (p burst. Moreover, these effects appear independent from the metabolic conversion of carotenoids to vitamin A.

  4. Detection of extracellular neutrophil elastase in hamster lungs after intratracheal instillation of E. coli lipopolysaccharide using a fluorogenic, elastase-specific, synthetic substrate.

    Science.gov (United States)

    Rudolphus, A.; Stolk, J.; van Twisk, C.; van Noorden, C. J.; Dijkman, J. H.; Kramps, J. A.

    1992-01-01

    Repeated intratracheal instillations of E. coli lipopolysaccharide (LPS) in hamster lungs cause an influx of polymorphonuclear leukocytes (PMNs) into the alveolar walls, with concomitant development of severe emphysema. It has been suggested that elastase, released by these PMNs, is involved in the development of emphysema. This study demonstrates the release of elastase from recruited PMNs in cryostat sections of hamster lungs, after being treated once, twice, or thrice with LPS, intratracheally. Elastase activity was visualized using two elastase-specific synthetic substrates, to which a methoxynaphthylamine (MNA) group had been bound covalently. Liberated MNA, when made insoluble by coupling with 5-nitrosalicylaldehyde, fluoresces strongly. The authors observed that the interval between start of incubation and appearance of fluorescence and the intensity of fluorescence correlated with the number of LPS administrations. Fluorescence was observed to be located in or in close vicinity to alveolar walls. No fluorescence was observed in sections of untreated hamsters. Liberation of MNA from synthetic substrates was delayed strongly by the addition of a recombinant secretory leukocyte proteinase inhibitor or a substituted cephalosporin neutrophil elastase inhibitor. The authors conclude that LPS-mediated PMN influx into the lung is accompanied by release of elastase from these cells and speculate that this PMN-elastase is involved in the development of LPS-mediated emphysema. Images Figure 1 Figure 2 Figure 3 PMID:1632460

  5. Imaging neutrophil migration dynamics using micro-optical coherence tomography (Conference Presentation)

    Science.gov (United States)

    Chu, Kengyeh K.; Yonker, Lael; Som, Avira; Pazos, Michael; Kusek, Mark E.; Hurley, Bryan P.; Tearney, Guillermo J.

    2016-03-01

    Neutrophils are immune cells that undergo chemotaxis, detecting and migrating towards a chemical signal gradient. Neutrophils actively migrate across epithelial boundaries, interacting with the epithelium to selectively permit passage without compromising the epithelial barrier. In many inflammatory disorders, excessive neutrophil migration can cause damage to the epithelium itself. The signaling pathways and mechanisms that facilitate trans-epithelial migration are not fully characterized. Our laboratory has developed micro-optical coherence tomography (μOCT), which has 2 μm lateral resolution and 1 μm axial resolution. As a high-resolution native contrast modality, μOCT can directly visualize individual neutrophils as they interact with a cell layer cultured on a transwell filter. A chemoattractant can be applied to the apical side of inverted monolayer, and human neutrophils placed in the basolateral compartment, while μOCT captures 3D images of the chemotaxis. μOCT images can also generate quantitative metrics of migration volume to study the dependence of chemotaxis on monolayer cell type, chemoattractant type, and disease state of the neutrophils. For example, a disease known as leukocyte adhesion deficiency (LAD) can be simulated by treating neutrophils with antibodies that interfere with the CD18 receptor, a facilitator of trans-epithelial migration. We conducted a migration study of anti-CD18 treated and control neutrophils using T84 intestinal epithelium as a barrier. After one hour, μOCT time-lapse imaging indicated a strong difference in the fraction of neutrophils that remain attached to the epithelium after migration (0.67 +/- 0.12 attached anti-CD18 neutrophils, 0.23 +/- 0.08 attached control neutrophils, n = 6, p < 0.05), as well as a modest but non-significant decrease in total migration volume for treated neutrophils. We can now integrate μOCT-derived migration metrics with simultaneously acquired measurements of transepithelial electrical

  6. Obesity is associated with more activated neutrophils in African American male youth.

    Science.gov (United States)

    Xu, X; Su, S; Wang, X; Barnes, V; De Miguel, C; Ownby, D; Pollock, J; Snieder, H; Chen, W; Wang, X

    2015-01-01

    There is emerging evidence suggesting the role of peripheral blood leukocytes in the pathogenesis of obesity and related diseases. However, few studies have taken a genome-wide approach to investigating gene expression profiles in peripheral leukocytes between obese and lean individuals with the consideration of obesity-related shifts in leukocyte types. We conducted this study in 95 African Americans (AAs) of both genders (age 14-20 years, 46 lean and 49 obese). Complete blood count with differential test (CBC) was performed in whole blood. Genome-wide gene expression analysis was obtained using the Illumina HumanHT-12 V4 Beadchip with RNA extracted from peripheral leukocytes. Out of the 95 participants, 64 had neutrophils stored. The validation study was based on real-time PCR with RNA extracted from purified neutrophils. CBC test suggested that, in males, obesity was associated with increased neutrophil percentage (P=0.03). Genome-wide gene expression analysis showed that, in males, the majority of the most differentially expressed genes were related to neutrophil activation. Validation of the gene expression levels of ELANE (neutrophil elastase) and MPO (myeloperoxidase) in purified neutrophils demonstrated that the expression of these two genes--important biomarkers of neutrophils activation--were significantly elevated in obese males (P=0.01 and P=0.02, respectively). The identification of increased neutrophil percentage and activation in obese AA males suggests that neutrophils have an essential role in the pathogenesis of obesity-related disease. Further functional and mechanistic studies on neutrophils may contribute to the development of novel intervention strategies reducing the burden associated with obesity-related health problems.

  7. Interleukin-17 Promotes Neutrophil-Mediated Immunity by Activating Microvascular Pericytes and Not Endothelium

    Science.gov (United States)

    Liu, Rebecca; Lauridsen, Holly M.; Amezquita, Robert A.; Pierce, Richard W.; Jane-wit, Dan; Fang, Caodi; Pellowe, Amanda S.; Kirkiles-Smith, Nancy C.; Gonzalez, Anjelica L.; Pober, Jordan S.

    2016-01-01

    A classical hallmark of acute inflammation is neutrophil infiltration of tissues, a multi-step process that involves sequential cell-cell interactions of circulating leukocytes with interleukin (IL)-1- or tumor necrosis factor-α (TNF)-activated microvascular endothelial cells (ECs) and pericytes (PCs) that form the wall of the postcapillary venules. The initial infiltrating cells accumulate perivascularly in close proximity to PCs. IL-17, a pro-inflammatory cytokine that acts on target cells via a heterodimeric receptor formed by IL-17RA and IL-17RC subunits, also promotes neutrophilic inflammation but its effects on vascular cells are less clear. We report that both cultured human ECs and PCs strongly express IL-17RC and, while neither cell type expresses much IL-17RA, PCs express significantly more than ECs. IL-17, alone or synergistically with TNF, significantly alters inflammatory gene expression in cultured human PCs but not ECs. RNA-seq analysis identifies many IL-17-induced transcripts in PCs encoding proteins known to stimulate neutrophil-mediated immunity. Conditioned media (CM) from IL-17-activated PCs, but not ECs, induce pertussis toxin-sensitive neutrophil polarization, likely mediated by PC-secreted chemokines, and also stimulate neutrophil production of pro-inflammatory molecules, including TNF, IL-1α, IL-1β, and IL-8. Furthermore, IL-17-activated PCs but not ECs can prolong neutrophil survival by producing G-CSF and GM-CSF, delaying the mitochondria outer membrane permeabilization and caspase 9 activation. Importantly, neutrophils exhibit enhanced phagocytic capacity after activation by CM from IL-17-treated PCs. We conclude that PCs, not ECs, are the major target of IL-17 within the microvessel wall and that IL-17-activated PCs can modulate neutrophil functions within the perivascular tissue space. PMID:27534549

  8. fMLP-Induced IL-8 Release Is Dependent on NADPH Oxidase in Human Neutrophils

    Directory of Open Access Journals (Sweden)

    María A. Hidalgo

    2015-01-01

    Full Text Available N-Formyl-methionyl-leucyl-phenylalanine (fMLP and platelet-activating factor (PAF induce similar intracellular signalling profiles; but only fMLP induces interleukin-8 (IL-8 release and nicotinamide adenine dinucleotide phosphate reduced (NADPH oxidase activity in neutrophils. Because the role of ROS on IL-8 release in neutrophils is until now controversial, we assessed if NADPH oxidase is involved in the IL-8 secretions and PI3K/Akt, MAPK, and NF-κB pathways activity induced by fMLP. Neutrophils were obtained from healthy volunteers. IL-8 was measured by ELISA, IL-8 mRNA by qPCR, and ROS production by luminol-amplified chemiluminescence, reduction of ferricytochrome c, and FACS. Intracellular pH changes were detected by spectrofluorescence. ERK1/2, p38 MAPK, and Akt phosphorylation were analysed by immunoblotting and NF-κB was analysed by immunocytochemistry. Hydroxy-3-methoxyaceto-phenone (HMAP, diphenyleneiodonium (DPI, and siRNA Nox2 reduced the ROS and IL-8 release in neutrophils treated with fMLP. HMAP, DPI, and amiloride (a Na+/H+ exchanger inhibitor inhibited the Akt phosphorylation and did not affect the p38 MAPK and ERK1/2 activity. DPI and HMAP reduced NF-κB translocation induced by fMLP. We showed that IL-8 release induced by fMLP is dependent on NADPH oxidase, and ROS could play a redundant role in cell signalling, ultimately activating the PI3K/Akt and NF-κB pathways in neutrophils.

  9. Nimesulide inhibits platelet-activating factor synthesis in activated human neutrophils

    NARCIS (Netherlands)

    Verhoeven, A. J.; Tool, A. T.; Kuijpers, T. W.; Roos, D.

    1993-01-01

    In an inflammatory locus, products of activated neutrophils may be toxic both to the micro-organisms to be eliminated and to the surrounding tissue. In several models of inflammation, nimesulide possesses marked anti-inflammatory properties. The present study was undertaken to further investigate

  10. Epithelial Cell-Neutrophil Interactions in the Alimentary Tract: A Complex Dialog in Mucosal Surveillance and Inflammation

    Directory of Open Access Journals (Sweden)

    Sean P. Colgan

    2002-01-01

    Full Text Available Inflammatory diseases of mucosal organs as diverse as the lung, kidney, and intestine, inevitably require the intimate interactions of neutrophils with columnar epithelia. The physiologic consequences of such interactions often determine endpoint organ function, and for this reason, much recent interest has developed in identifying mechanisms and novel targets for the treatment of mucosal inflammation. Elegant in vitro model systems incorporating purified human neutrophils and human epithelial cells grown in physiologic orientations have aided in discovery of new and insightful pathways to define basic inflammatory pathways. Here, we will review the recent literature regarding the interactions between columnar epithelial cells and neutrophils, with an emphasis on intestinal epithelial cells, structural aspects of neutrophil transepithelial migration, molecular determinants of neutrophil-epithelial cell interactions, as well as modulation of these pathways. These recent studies highlight the dynamic nature of these pathways and lend insight into the complexity of treating mucosal inflammation.

  11. Effect of free-base cacaine consumption (basuca on phagocytic and microbicidal functions of polymorphonuclear neutrophils Efecto del consumo de basuca sobre las función fagocítica y microbicida de los polimorfonucleares neutrófilos

    Directory of Open Access Journals (Sweden)

    Lavive Rebage

    1990-01-01

    Full Text Available

    The effect of free.base cocaine consumption on the phagocytic and microbicidal capabilities of polymorphonuclear neutrophils (PMN was studied in habitual users and in ex-users of this substance. The opsonic capability of their sera was also determined. Results showed a normal response in all these activities when compared with cells and sera of healthy non-users. Mean percentages of bacteria associated with PMNs of users and controls, using sera of with PMNs of users, 52.9 with those of ex-users, and 49.7 and 53.8 with cells of the respective controls. Percentages of destruction of bacteria associated with PMNs in normal serum were as follows: 47.2 for users; 50.5 for ex-users, and 44.5 and 51.6 for their respective controls.

     

    Although the habitual consumption of free-base cocaine did not affect the phagocytic and microbicidal capabilities of peripheral blood PMNs, it is important to determine the effects of this substance on neutrophils and macrophages of the bronchoalveolar region, since these are the cells that receive maximum exposure to the drug during consumption.

    Se Investigó el efecto del consumo de basuca sobre la capacidad fagocitica y mcrobicida de los polimorfonucleares neutrófilos (PMN en Individuos consumidores y ex-consumidores habituales de esta sustancia y se determinó, además, la capacidad opsónica de sus sueros. Los resultados mostraron una respuesta normal en todas estas actividades, en comparación con células y sueros de individuos controles sanos, no consumidores de drogas de ningún tipo. Los promedios de los porcentajes de bacterias asociadas a los PMN de los consumidores y de sus controles, utilizando sueros de

  12. Identification and Characterization of Roseltide, a Knottin-type Neutrophil Elastase Inhibitor Derived from Hibiscus sabdariffa

    Science.gov (United States)

    Loo, Shining; Kam, Antony; Xiao, Tianshu; Nguyen, Giang K. T.; Liu, Chuan Fa; Tam, James P.

    2016-01-01

    Plant knottins are of therapeutic interest due to their high metabolic stability and inhibitory activity against proteinases involved in human diseases. The only knottin-type proteinase inhibitor against porcine pancreatic elastase was first identified from the squash family in 1989. Here, we report the identification and characterization of a knottin-type human neutrophil elastase inhibitor from Hibiscus sabdariffa of the Malvaceae family. Combining proteomic and transcriptomic methods, we identified a panel of novel cysteine-rich peptides, roseltides (rT1-rT8), which range from 27 to 39 residues with six conserved cysteine residues. The 27-residue roseltide rT1 contains a cysteine spacing and amino acid sequence that is different from the squash knottin-type elastase inhibitor. NMR analysis demonstrated that roseltide rT1 adopts a cystine-knot fold. Transcriptome analyses suggested that roseltides are bioprocessed by asparagine endopeptidases from a three-domain precursor. The cystine-knot structure of roseltide rT1 confers its high resistance against degradation by endopeptidases, 0.2 N HCl, and human serum. Roseltide rT1 was shown to inhibit human neutrophil elastase using enzymatic and pull-down assays. Additionally, roseltide rT1 ameliorates neutrophil elastase-stimulated cAMP accumulation in vitro. Taken together, our findings demonstrate that roseltide rT1 is a novel knottin-type neutrophil elastase inhibitor with therapeutic potential for neutrophil elastase associated diseases. PMID:27991569

  13. Serum and glucocorticoid-regulated kinase 1 regulates neutrophil clearance during inflammation resolution.

    Science.gov (United States)

    Burgon, Joseph; Robertson, Anne L; Sadiku, Pranvera; Wang, Xingang; Hooper-Greenhill, Edward; Prince, Lynne R; Walker, Paul; Hoggett, Emily E; Ward, Jonathan R; Farrow, Stuart N; Zuercher, William J; Jeffrey, Philip; Savage, Caroline O; Ingham, Philip W; Hurlstone, Adam F; Whyte, Moira K B; Renshaw, Stephen A

    2014-02-15

    The inflammatory response is integral to maintaining health by functioning to resist microbial infection and repair tissue damage. Large numbers of neutrophils are recruited to inflammatory sites to neutralize invading bacteria through phagocytosis and the release of proteases and reactive oxygen species into the extracellular environment. Removal of the original inflammatory stimulus must be accompanied by resolution of the inflammatory response, including neutrophil clearance, to prevent inadvertent tissue damage. Neutrophil apoptosis and its temporary inhibition by survival signals provides a target for anti-inflammatory therapeutics, making it essential to better understand this process. GM-CSF, a neutrophil survival factor, causes a significant increase in mRNA levels for the known anti-apoptotic protein serum and glucocorticoid-regulated kinase 1 (SGK1). We have characterized the expression patterns and regulation of SGK family members in human neutrophils and shown that inhibition of SGK activity completely abrogates the antiapoptotic effect of GM-CSF. Using a transgenic zebrafish model, we have disrupted sgk1 gene function and shown this specifically delays inflammation resolution, without altering neutrophil recruitment to inflammatory sites in vivo. These data suggest SGK1 plays a key role in regulating neutrophil survival signaling and thus may prove a valuable therapeutic target for the treatment of inflammatory disease.

  14. (±)-2-Chloropropionic acid elevates reactive oxygen species formation in human neutrophil granulocytes

    International Nuclear Information System (INIS)

    Aam, B.B.; Fonnum, F.

    2006-01-01

    (±)-2-Chloropropionic acid (2-CPA) is a neurotoxic compound which kills cerebellar granule cells in vivo, and makes cerebellar granule cells in vitro produce reactive oxygen species (ROS). We have studied the effect of 2-CPA on ROS formation in human neutrophil granulocytes in vitro. We found an increased formation of ROS after 2-CPA exposure using three different methods; the fluorescent probe DCFH-DA and the chemiluminescent probes lucigenin and luminol. Four different inhibitors of ROS formation were tested on the cells in combination with 2-CPA to characterize the signalling pathways. The spin-trap s-PBN, the ERK1/2 inhibitor U0126 and the antioxidant Vitamin E inhibited the 2-CPA-induced ROS formation completely, while the mitochondrial transition permeability pore blocker cyclosporine A inhibited the ROS formation partly. We also found that 2-CPA induced an increased nitric oxide production in the cells by using the Griess reagent. The level of reduced glutathione, measured with the DTNB assay, was decreased after exposure to high concentrations of 2-CPA. Western blotting analysis showed that 2-CPA exposure led to an elevated phosphorylation of ERK MAP kinase. This phosphorylation was inhibited by U0126. Based on these experiments it seems like the mechanisms for 2-CPA induced toxicity involves ROS formation and is similar in neutrophil granulocytes as earlier shown in cerebellar granule cells. This also implies that 2-CPA may be immunotoxic

  15. Prolonged pharmacological inhibition of cathepsin C results in elimination of neutrophil serine proteases

    DEFF Research Database (Denmark)

    Guarino, Carla; Hamon, Yveline; Croix, Cécile

    2017-01-01

    cyclopropyl nitrile CatC inhibitor almost totally lack elastase. We confirmed the elimination of neutrophil elastase-like proteases by prolonged inhibition of CatC in a non-human primate. We also showed that neutrophils lacking elastase-like protease activities were still recruited to inflammatory sites....... These preclinical results demonstrate that the disappearance of neutrophil elastase-like proteases as observed in PLS patients can be achieved by pharmacological inhibition of bone marrow CatC. Such a transitory inhibition of CatC might thus help to rebalance the protease load during chronic inflammatory diseases...

  16. Neutrophil extracellular traps in patients with pulmonary tuberculosis

    NARCIS (Netherlands)

    van der Meer, Anne Jan; Zeerleder, Sacha; Blok, Dana C.; Kager, Liesbeth M.; Lede, Ivar O.; Rahman, Wahid; Afroz, Rumana; Ghose, Aniruddha; Visser, Caroline E.; Zahed, Abu Shahed Md; Husain, Md Anwar; Alam, Khan Mashrequl; Barua, Pravat Chandra; Hassan, Mahtabuddin; Tayab, Md Abu; Dondorp, Arjen M.; van der Poll, Tom

    2017-01-01

    Tuberculosis is a devastating infectious disease causing many deaths worldwide. Recent investigations have implicated neutrophil extracellular traps (NETs) in the host response to tuberculosis. The aim of the current study was to obtain evidence for NETs release in the circulation during human

  17. The alpha hemolysin of Escherichia Coli power the metabolism oxidative of neutrophils human beings in response to the peptide chemotactic FMLP: comparison with the ionophore of calcium A23187

    International Nuclear Information System (INIS)

    Garcia, J.

    2000-01-01

    The calcium ionophore ionomycin primes polymorphonuclear leukocytes (PMN) for increased superoxide production upon stimulation with the chemotactic peptide FMLP (Helman Finkel, T. et al J Biol Chem 1987; 262: 12589-12596) In this investigation we assessed the effect of PMN priming with either alpha hemolysin (AH) or the calcium ionophore A23187, both of which increase intracellular calcium, on the oxidative metabolism of PMN (as measured by chemiluminescence) in response to secondary stimulation with FMLP. Both A23187 and AH priming increased, the luminol-enhanced chemiluminescence in response to secondary stimulation with FMLP, indicating overstimulation of PMLP oxidative metabolism. Additional experiments using lucigenin as chemiluminescence enhancer showed that A23187, but not AH priming of PMN, increased superoxide release in a manner similar to that reported for ionomycin. These results are discussed in reference to infectious processes involving hemolytic E. coli (Author) [es

  18. Targeting Neutrophil Protease-Mediated Degradation of Tsp-1 to Induce Metastatic Dormancy

    Science.gov (United States)

    2017-10-01

    AWARD NUMBER: W81XWH-16-1-0615 TITLE: Targeting Neutrophil Protease-Mediated Degradation of Tsp-1 to Induce Metastatic Dormancy PRINCIPAL...29 Sep 2017 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Targeting Neutrophil Protease-Mediated Degradation of Tsp-1 to Induce Metastatic Dormancy...infection or cigarette smoke enhanced pulmonary metastasis from breast cancer in humans and mice. Similarly, autoimmune arthritis, characterized by

  19. A 17-kDa Fragment of Lactoferrin Associates With the Termination of Inflammation and Peptides Within Promote Resolution

    Directory of Open Access Journals (Sweden)

    Aviv Lutaty

    2018-03-01

    Full Text Available During the resolution of inflammation, macrophages engulf apoptotic polymorphonuclear cells (PMN and can accumulate large numbers of their corpses. Here, we report that resolution phase macrophages acquire the neutrophil-derived glycoprotein lactoferrin (Lf and fragments thereof in vivo and ex vivo. During the onset and resolving phases of inflammation in murine peritonitis and bovine mastitis, Lf fragments of 15 and 17 kDa occurred in various body fluids, and the murine fragmentation, accumulation, and release were mediated initially by neutrophils and later by efferocytic macrophages. The 17-kDa fragment contained two bioactive tripeptides, FKD and FKE that promoted resolution phase macrophage conversion to a pro-resolving phenotype. This resulted in a reduction in peritoneal macrophage numbers and an increase in the CD11blow subset of these cells. Moreover, FKE, but not FKD, peptides enhanced efferocytosis of apoptotic PMN, reduced TNFα and interleukin (IL-6, and increased IL-10 secretion by lipopolysaccharide-stimulated macrophages ex vivo. In addition, FKE promoted neutrophil-mediated resolution at high concentrations (100 µM by enhancing the formation of cytokine-scavenging aggregated NETs (tophi at a low cellular density. Thus, PMN Lf is processed, acquired, and “recycled” by neutrophils and macrophages during inflammation resolution to generate fragments and peptides with paramount pro-resolving activities.

  20. Inhibition of neutrophil elastase and metalloprotease-9 of human adenocarcinoma gastric cells by chamomile (Matricaria recutita L.) infusion.

    Science.gov (United States)

    Bulgari, Michela; Sangiovanni, Enrico; Colombo, Elisa; Maschi, Omar; Caruso, Donatella; Bosisio, Enrica; Dell'Agli, Mario

    2012-12-01

    This study investigated whether the antiinflammatory effect of chamomile infusion at gastric level could be ascribed to the inhibition of metalloproteinase-9 and elastase. The infusions from capitula and sifted flowers (250-1500 µg/mL) and individual flavonoids (10 µM) were tested on phorbol 12-myristate 13-acetate-stimulated AGS cells and human neutrophil elastase. The results indicate that the antiinflammatory activity associated with chamomile infusions from both the capitula and sifted flowers is most likely due to the inhibition of neutrophil elastase and gastric metalloproteinase-9 activity and secretion; the inhibition occurring in a concentration dependent manner. The promoter activity was inhibited as well and the decrease of metalloproteinase-9 expression was found to be associated with the inhibition of NF-kB driven transcription. The results further indicate that the flavonoid-7-glycosides, major constituents of chamomile flowers, may be responsible for the antiinflammatory action of the chamomile infusion observed here. Copyright © 2012 John Wiley & Sons, Ltd.

  1. DioxolaneA3-phosphatidylethanolamines are generated by human platelets and stimulate neutrophil integrin expression

    Directory of Open Access Journals (Sweden)

    Maceler Aldrovandi

    2017-04-01

    Full Text Available Activated platelets generate an eicosanoid proposed to be 8-hydroxy-9,10-dioxolane A3 (DXA3. Herein, we demonstrate that significant amounts of DXA3 are rapidly attached to phosphatidylethanolamine (PE forming four esterified eicosanoids, 16:0p, 18:0p, 18:1p and 18:0a/DXA3-PEs that can activate neutrophil integrin expression. These lipids comprise the majority of DXA3 generated by platelets, are formed in ng amounts (24.3±6.1 ng/2×108 and remain membrane bound. Pharmacological studies revealed DXA3-PE formation involves cyclooxygenase-1 (COX, protease-activated receptors (PAR 1 and 4, cytosolic phospholipase A2 (cPLA2, phospholipase C and intracellular calcium. They are generated primarily via esterification of newly formed DXA3, but can also be formed in vitro via co-oxidation of PE during COX-1 co-oxidation of arachidonate. All four DXA3-PEs were detected in human clots. Purified platelet DXA3-PE activated neutrophil Mac-1 expression, independently of its hydrolysis to the free eicosanoid. This study demonstrates the structures and cellular synthetic pathway for a family of leukocyte-activating platelet phospholipids generated on acute activation, adding to the growing evidence that enzymatic PE oxidation is a physiological event in innate immune cells.

  2. Inhibition of PAF-induced expression of CD11b and shedding of L-selectin on human neutrophils and eosinophils by the type IV selective PDE inhibitor, rolipram

    NARCIS (Netherlands)

    Dijkhuizen, B; deMonchy, JGR; Dubois, AEJ; Gerritsen, J; Kauffman, HF

    We quantitatively determined whether the selective phosphodiesterase (PDE) inhibitor, rolipram, inhibits changes in the adhesion molecules CD11b and L-selectin on platelet-activating factor (PAF)-stimulated human neutrophils and eosinophils in vitro. Incubations were performed in human whole blood

  3. Formation of neutrophil extracellular traps under low oxygen level

    Directory of Open Access Journals (Sweden)

    Katja Branitzki-Heinemann

    2016-11-01

    Full Text Available Since their discovery, neutrophil extracellular traps (NETs have been characterized as a fundamental host innate immune defense mechanism. Conversely, excessive NET release may have a variety of detrimental consequences for the host. A fine balance between NET formation and elimination is necessary to sustain a protective effect during an infectious challenge. Our own recently published data revealed that stabilization of hypoxia inducible factor 1α (HIF-1α by the iron chelating HIF-1α-agonist desferoxamine or AKB-4924 enhanced the release of phagocyte extracellular traps. Since HIF-1α is a global regulator of the cellular response to low oxygen, we hypothesized that NET formation may be similarly increased under low oxygen conditions. Hypoxia occurs in tissues during infection or inflammation, mostly due to overconsumption of oxygen by pathogens and recruited immune cells. Therefore, experiments were performed to characterize the formation of NETs under hypoxic oxygen conditions compared to normoxia. Human blood-derived neutrophils were isolated and incubated under normoxic (21% oxygen level and compared to hypoxic (1% conditions. Dissolved oxygen levels were monitored in the primary cell culture using a Fibox4-PSt3 measurement system. The formation of NETs was quantified by fluorescence microscopy in response to the known NET-inducer phorbol 12-myristate 13-acetate (PMA or S. aureus wildtype and a nuclease-deficient mutant. In contrast to our hypothesis, spontaneous NET formation of neutrophils incubated under hypoxia was distinctly reduced compared to control neutrophils incubated under normoxia. Furthermore, neutrophils incubated under hypoxia showed significantly reduced formation of NETs in response to PMA. Gene expression analysis revealed that mRNA level of hif-1α as well as hif-1α target genes was not altered. However, in good correlation to the decreased NET formation under hypoxia, the cholesterol content of the neutrophils was

  4. Hydrogen sulfide reduces neutrophil recruitment in hind-limb ischemia-reperfusion injury in an L-selectin and ADAM-17 dependent manner

    Science.gov (United States)

    Ball, Carissa J.; Reiffel, Alyssa J.; Chintalapani, Sathvika; Kim, Minsoo; Spector, Jason A.; King, Michael R.

    2012-01-01

    Background Reperfusion following ischemia leads to neutrophil recruitment injured tissue. Selectins and β2 integrins regulate neutrophil interaction with the endothelium during neutrophil rolling and firm adhesion. Excessive neutrophil infiltration into tissue is thought to contribute to IRI damage. NaHS mitigates the damage caused by ischemia-reperfusion injury (IRI). This study's objective was to determine the effect of hydrogen sulfide (NaHS) on neutrophil adhesion receptor expression. Methods Human neutrophils were either left untreated or incubated in 20 μM NaHS, and/or 50 μg/mL pharmacological ADAM-17 inhibitor TAPI-0; activated by IL-8, fMLP, or TNF-α; and labeled against PSGL-1, LFA-1, Mac-1 α, L-selectin and β2 integrin epitopes CBRM1/5 or KIM127 for flow cytometry. Cohorts of 3 C57BL/6 mice received an intravenous dose of saline vehicle, or 20 μM NaHS with or without 50 μg/mL TAPI-0 before unilateral tourniquet induced hind-limb ischemia for 3 hours followed by 3 hours of reperfusion. Bilateral gastrocnemius muscles were processed for histology before neutrophil infiltration quantification. Results NaHS treatment significantly increased L-selectin shedding from human neutrophils following activation by fMLP and IL-8 in an ADAM-17 dependent manner. Mice treated with NaHS to raise bloodstream concentration by 20 μM prior to ischemia or reperfusion showed a significant reduction in neutrophil recruitment into skeletal muscle tissue following tourniquet-induced hindlimb IRI. Conclusions NaHS administration results in the downregulation of L-selectin expression in activated human neutrophils. This leads to a reduction in neutrophil extravasation and tissue infiltration and may partially account for the protective effects of NaHS seen in the setting of IRI. PMID:23446563

  5. Reversible electrical-field control of magnetization and anomalous Hall effect in Co/PMN-PT hybrid heterostructures

    Science.gov (United States)

    Wang, J.; Huang, Q. K.; Lu, S. Y.; Tian, Y. F.; Chen, Y. X.; Bai, L. H.; Dai, Y.; Yan, S. S.

    2018-04-01

    Room-temperature reversible electrical-field control of the magnetization and the anomalous Hall effect was reported in hybrid multiferroic heterojunctions based on Co/Pb(Mg1/3Nb2/3)0.7Ti0.3O3 (PMN-PT). We demonstrate herein that electrical-field-induced strain and oxygen-ion migration in ZnO/Co/PMN-PT junctions exert opposing effects on the magnetic properties of the Co sublayer, and the competition between these effects determines the final magnitude of magnetization. This proof-of-concept investigation opens an alternative way to optimize and enhance the electrical-field effect on magnetism through the combination of multiple electrical manipulation mechanisms in hybrid multiferroic devices.

  6. YKL-40, a mammalian member of the chitinase family, is a matrix protein of specific granules in human neutrophils

    DEFF Research Database (Denmark)

    Volck, B; Price, P A; Johansen, J S

    1998-01-01

    YKL-40, also called human cartilage glycoprotein-39 (HC gp-39), is a member of family 18 glycosyl hydrolases. YKL-40 is secreted by chondrocytes, synovial cells, and macrophages, and recently it has been reported that YKL-40 has a role as an autoantigen in rheumatoid arthritis (RA). The function...... of patients with RA, and the cells are assumed to play a role in joint destruction in that disorder. Therefore, we examined whether neutrophils are a source of YKL-40. YKL-40 was found to colocalize and comobilize with lactoferrin (the most abundant protein of specific granules) but not with gelatinase...... YKL-40 at the myelocyte-metamyelocyte stage, the stage of maturation at which other specific granule proteins are formed. Assuming that YKL-40 has a role as an autoantigen in RA by inducing T cell-mediated autoimmune response, YKL-40 released from neutrophils in the inflamed joint could be essential...

  7. Selective kallikrein inhibitors alter human neutrophil elastase release during extracorporeal circulation

    NARCIS (Netherlands)

    Wachtfogel, Y.T.; Hack, C.E.; Nuijens, J.H; Kettner, C.; Reilly, T.M.; Knabb, R.M.; Bischoff, Rainer; Tschesche, H.; Wenzel, H.; Kucich, U.

    1995-01-01

    Cardiopulmonary bypass causes hemorrhagic complications and initiates a biochemical and cellular "whole body inflammatory response." This study investigates whether a variety of selective inhibitors of the contact pathway of intrinsic coagulation modulate complement and neutrophil activation during

  8. Phagocytosis and killing of Candida albicans by human neutrophils after exposure to structurally different lipid emulsions.

    NARCIS (Netherlands)

    Wanten, G.J.A.; Curfs, J.H.A.J.; Meis, J.F.G.M.; Naber, A.H.J.

    2001-01-01

    BACKGROUND: To test the hypothesis that structurally different lipid emulsions have distinct immune-modulating properties, we analyzed the elimination of Candida albicans by neutrophils after exposure to various emulsions. METHODS: Neutrophils from 8 volunteers were incubated in physiologic 5 mmol/L

  9. Neutrophil Extracellular Traps in Ulcerative Colitis

    DEFF Research Database (Denmark)

    Bjerg Bennike, Tue; Carlsen, Thomas Gelsing; Ellingsen, Torkell

    2015-01-01

    microscopy and confocal microscopy. RESULTS: We identified and quantified 5711 different proteins with proteomics. The abundance of the proteins calprotectin and lactotransferrin in the tissue correlated with the degree of tissue inflammation as determined by histology. However, fecal calprotectin did...... not correlate. Forty-six proteins were measured with a statistically significant differences in abundances between the UC colon tissue and controls. Eleven of the proteins with increased abundances in the UC biopsies were associated with neutrophils and neutrophil extracellular traps. The findings were...... validated by microscopy, where an increased abundance of neutrophils and the presence of neutrophil extracellular traps by extracellular DNA present in the UC colon tissue were confirmed. CONCLUSIONS: Neutrophils, induced neutrophil extracellular traps, and several proteins that play a part in innate...

  10. The proteolytically stable peptidomimetic Pam-(Lys-βNSpe)6-NH2 selectively inhibits human neutrophil activation via formyl peptide receptor 2.

    Science.gov (United States)

    Skovbakke, Sarah Line; Heegaard, Peter M H; Larsen, Camilla J; Franzyk, Henrik; Forsman, Huamei; Dahlgren, Claes

    2015-01-15

    Immunomodulatory host defense peptides (HDPs) are considered to be lead compounds for novel anti-sepsis and anti-inflammatory agents. However, development of drugs based on HDPs has been hampered by problems with toxicity and low bioavailability due to in vivo proteolysis. Here, a subclass of proteolytically stable HDP mimics consisting of lipidated α-peptide/β-peptoid oligomers was investigated for their effect on neutrophil function. The most promising compound, Pam-(Lys-βNSpe)6-NH2, was shown to inhibit formyl peptide receptor 2 (FPR2) agonist-induced neutrophil granule mobilization and release of reactive oxygen species. The potency of Pam-(Lys-βNSpe)6-NH2 was comparable to that of PBP10, the most potent FPR2-selective inhibitor known. The immunomodulatory effects of structural analogs of Pam-(Lys-βNSpe)6-NH2 emphasized the importance of both the lipid and peptidomimetic parts. By using imaging flow cytometry in primary neutrophils and FPR-transfected cell lines, we found that a fluorescently labeled analog of Pam-(Lys-βNSpe)6-NH2 interacted selectively with FPR2. Furthermore, the interaction between Pam-(Lys-βNSpe)6-NH2 and FPR2 was found to prevent binding of the FPR2-specific activating peptide agonist Cy5-WKYMWM, while the binding of an FPR1-selective agonist was not inhibited. To our knowledge, Pam-(Lys-βNSpe)6-NH2 is the first HDP mimic found to inhibit activation of human neutrophils via direct interaction with FPR2. Hence, we consider Pam-(Lys-βNSpe)6-NH2 to be a convenient tool in the further dissection of the role of FPR2 in inflammation and homeostasis as well as for investigation of the importance of neutrophil stimulation in anti-infective therapy involving HDPs. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Limited role of polymorphonuclear neutrophils in a pregnant mouse model of secondary infection by Chlamydophila abortus (Chlamydia psittaci serotype 1).

    Science.gov (United States)

    Montes de Oca, R; Buendía, A J; Sánchez, J; Del Río, L; Seva, J; Navarro, J A; Salinas, J

    2000-12-01

    The aim of this work was to study the role of polymorphonuclear neutrophils (PMNs) in the clearance of infection, and in the development of specific immunity against Chlamydophila abortus (Chlamydia psittaci serotype 1) secondary infection. A pregnant mouse model depleted of neutrophils by the RB6-8C5 monoclonal antibody was used. No clinical signs were observed in depleted or non-depleted mice after secondary infection and no significant differences were observed in the litter size between the infected and control groups. In PMN-depleted mice C. abortus was not detected in the materno-fetal unit but merely produced low, persistent levels of infection in spleen and liver. In the non-depleted mice the level of infection was significantly lower, being resolved during the first few days post-reinfection. In both infected mice groups the immune response in the liver was quickly established and was seen to be composed mainly of CD4(+)T lymphocytes and macrophages. A Th1 response characterized by the presence of IFN-gamma and TNF-alpha in serum was observed during early infection, with significantly higher levels in the non-depleted animals. Our results suggest that PMNs have little influence on the control of C. abortus secondary infection, although they are a first line of defense and may influence the early production of TNF-alpha and IFN-gamma. Copyright 2000 Academic Press.

  12. Neutrophils: potential therapeutic targets in tularemia?

    Directory of Open Access Journals (Sweden)

    Lee-Ann H Allen

    2013-12-01

    Full Text Available The central role of neutrophils in innate immunity and host defense has long been recognized, and the ability of these cells to efficiently engulf and kill invading bacteria has been extensively studied, as has the role of neutrophil apoptosis in resolution of the inflammatory response. In the past few years additional immunoregulatory properties of neutrophils were discovered, and it is now clear that these cells play a much greater role in control of the immune response than was previously appreciated. In this regard, it is noteworthy that Francisella tularensis is one of relatively few pathogens that can successfully parasitize neutrophils as well as macrophages, DC and epithelial cells. Herein we will review the mechanisms used by F. tularensis to evade elimination by neutrophils. We will also reprise effects of this pathogen on neutrophil migration and lifespan as compared with other infectious and inflammatory disease states. In addition, we will discuss the evidence which suggests that neutrophils contribute to disease progression rather than effective defense during tularemia, and consider whether manipulation of neutrophil migration or turnover may be suitable adjunctive therapeutic strategies.

  13. Omega-oxidation is the major pathway for the catabolism of leukotriene B4 in human polymorphonuclear leukocytes.

    Science.gov (United States)

    Shak, S; Goldstein, I M

    1984-08-25

    Leukotriene B4 (LTB4), formed by the 5-lipoxygenase pathway in human polymorphonuclear leukocytes (PMN), may be an important mediator of inflammation. Recent studies suggest that human leukocytes can convert LTB4 to products that are less biologically active. To examine the catabolism of LTB4, we developed (using high performance liquid chromatography) a sensitive, reproducible assay for this mediator and its omega-oxidation products (20-OH- and 20-COOH-LTB4). With this assay, we have found that human PMN (but not human monocytes, lymphocytes, or platelets) convert exogenous LTB4 almost exclusively to 20-OH- and 20-COOH-LTB4 (identified by gas chromatography-mass spectrometry). Catabolism of exogenous LTB4 by omega-oxidation is rapid (t1/2 approximately 4 min at 37 degrees C in reaction mixtures containing 1.0 microM LTB4 and 20 X 10(6) PMN/ml), temperature-dependent (negligible at 0 degrees C), and varies with cell number as well as with initial substrate concentration. The pathway for omega-oxidation in PMN is specific for LTB4 and 5(S),12(S)-dihydroxy-6,8,10,14-eicosatetraenoic acid (only small amounts of other dihydroxylated-derivatives of arachidonic acid are converted to omega-oxidation products). Even PMN that are stimulated by phorbol myristate acetate to produce large amounts of superoxide anion radicals catabolize exogenous leukotriene B4 primarily by omega-oxidation. Finally, LTB4 that is generated when PMN are stimulated with the calcium ionophore, A23187, is rapidly catabolized by omega-oxidation. Thus, human PMN not only generate and respond to LTB4, but also rapidly and specifically catabolize this mediator by omega-oxidation.

  14. Comparative evaluation of levels of C-reactive protein and PMN in periodontitis patients related to cardiovascular disease.

    Science.gov (United States)

    Anitha, G; Nagaraj, M; Jayashree, A

    2013-05-01

    Numerous cross-sectional studies have suggested that chronic periodontitis is a risk factor for cardiovascular diseases. There is evidence that periodontitis and cardiovascular diseases are linked by inflammatory factors including C-reactive protein. The purpose of the study was to investigate the levels of CRP and PNM cells as a marker of inflammatory host response in the serum of chronic periodontitis patients and in patients with CVD. Study population included 75 patients; both male and female above 35 years were included for the study. The patients were divided into three groups of 25 each - Group I: Chronic periodontitis patients with CVD, Group II: Chronic periodontitis patients without CVD and Group III: Control subjects (without chronic periodontitis and CVD). Patients with chronic periodontitis had ≥8 teeth involved with probing depth (PD) ≥5 mm involved. The control group had PD ≤ 3 mm and no CVD. Venous blood was collected from the patients and C-reactive protein levels were analyzed by immunoturbidimetry. PMN was recorded by differential count method. On comparison, OHI-S Index, GI, mean PD, CRP and PMN values showed significant difference from Group I to III. CRP level was highly significant in Group I when compared with Group II and Group III. PMN level was highly significant in Group I when compared with Group III PMN level which was not significant. This study indicated that periodontitis may add the inflammation burden of the individual and may result in increased levels of CVD based on serum CRP levels. Thus, controlled prospective trials with large sample size should be carried out to know the true nature of the relationship if indeed one exists.

  15. Electric-field tunable spin waves in PMN-PT/NiFe heterostructure: Experiment and micromagnetic simulations

    Energy Technology Data Exchange (ETDEWEB)

    Ziȩtek, Slawomir, E-mail: zietek@agh.edu.pl [AGH University of Science and Technology, Department of Electronics, Al. Mickiewicza 30, 30-059 Kraków (Poland); Chȩciński, Jakub [AGH University of Science and Technology, Department of Electronics, Al. Mickiewicza 30, 30-059 Kraków (Poland); AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Al. Mickiewicza 30, 30-059 Kraków (Poland); Frankowski, Marek; Skowroński, Witold; Stobiecki, Tomasz [AGH University of Science and Technology, Department of Electronics, Al. Mickiewicza 30, 30-059 Kraków (Poland)

    2017-04-15

    We present a comprehensive theoretical and experimental study of voltage-controlled standing spin waves resonance (SSWR) in PMN-PT/NiFe multiferroic heterostructures patterned into microstrips. A spin-diode technique was used to observe ferromagnetic resonance (FMR) mode and SSWR in NiFe strip mechanically coupled with a piezoelectric substrate. Application of an electric field to a PMN-PT creates a strain in permalloy and thus shifts the FMR and SSWR fields due to the magnetostriction effect. The experimental results are compared with micromagnetic simulations and a good agreement between them is found for dynamics of FMR and SSWR with and without electric field. Moreover, micromagnetic simulations enable us to discuss the amplitude and phase spatial distributions of FMR and SSWR modes, which are not directly observable by means of spin diode detection technique.

  16. Protective effects of an aptamer inhibitor of neutrophil elastase in lung inflammatory injury

    DEFF Research Database (Denmark)

    Bless, N M; Smith, D; Charlton, J

    1997-01-01

    Neutrophils play an important part in the development of acute inflammatory injury. Human neutrophils contain high levels of the serine protease elastase, which is stored in azurophilic granules and is secreted in response to inflammatory stimuli. Elastase is capable of degrading many components...... of extracellular matrix [1-4] and has cytotoxic effects on endothelial cells [5-7] and airway epithelial cells. Three types of endogenous protease inhibitors control the activity of neutrophil elastase, including alpha-1 protease inhibitor (alpha-1PI), alpha-2 macroglobulin and secreted leukoproteinase inhibitor...... (SLPI) [8-10]. A disturbed balance between neutrophil elastase and these inhibitors has been found in various acute clinical conditions (such as adult respiratory syndrome and ischemia-reperfusion injury) and in chronic diseases. We investigated the effect of NX21909, a selected oligonucleotide (aptamer...

  17. PARTICIPATION OF TLR4 IN ENGULFMENT OF ESCHERICHIA COLI BY HUMAN BLOOD NEUTROPHILS IN PRESENCE OF LIPOPOLYSACCHARIDES

    Directory of Open Access Journals (Sweden)

    S. V. Zubova

    2012-01-01

    Full Text Available Abstract. TLR4 is a key player in signaling system of host cells. Possible role of TLR4 is actively discussed, e.g. its significance for phagocytosis. A capacity of neutrophils to engulf FITC-labeled E. coli bacteria upon activation with LPS of different origin was studied in presence of anti-TLR4 Mab’s (HTA125 clone. It was shown that, in whole blood, TLR4 does not play any essential role in engulfment of bacteria by the neutrophils. Phagocytic activity of neutrophils in blood increases increased after their priming with E. coli endotoxins. LPS from Rb. сapsulatus did not affect phagocytosis. In presence of endotoxins, the degree of TLR4 involvement in neutrophil phagocytosis depends on LPS structure.

  18. The endocytic receptor megalin binds the iron transporting neutrophil-gelatinase-associated lipocalin with high affinity and mediates its cellular uptake

    DEFF Research Database (Denmark)

    Hvidberg, Vibeke; Jacobsen, Christian; Strong, Roland K

    2005-01-01

    Neutrophil-gelatinase-associated lipocalin (NGAL) is a prominent protein of specific granules of human neutrophils also synthesized by epithelial cells during inflammation. NGAL binds bacterial siderophores preventing bacteria from retrieving iron from this source. Also, NGAL may be important in ...... by surface plasmon resonance analysis. Furthermore, a rat yolk sac cell line known to express high levels of megalin, endocytosed NGAL by a mechanism completely blocked by an antibody against megalin.......Neutrophil-gelatinase-associated lipocalin (NGAL) is a prominent protein of specific granules of human neutrophils also synthesized by epithelial cells during inflammation. NGAL binds bacterial siderophores preventing bacteria from retrieving iron from this source. Also, NGAL may be important...

  19. Neutrophil programming dynamics and its disease relevance.

    Science.gov (United States)

    Ran, Taojing; Geng, Shuo; Li, Liwu

    2017-11-01

    Neutrophils are traditionally considered as first responders to infection and provide antimicrobial host defense. However, recent advances indicate that neutrophils are also critically involved in the modulation of host immune environments by dynamically adopting distinct functional states. Functionally diverse neutrophil subsets are increasingly recognized as critical components mediating host pathophysiology. Despite its emerging significance, molecular mechanisms as well as functional relevance of dynamically programmed neutrophils remain to be better defined. The increasing complexity of neutrophil functions may require integrative studies that address programming dynamics of neutrophils and their pathophysiological relevance. This review aims to provide an update on the emerging topics of neutrophil programming dynamics as well as their functional relevance in diseases.

  20. Activated prostaglandin D2 receptors on macrophages enhance neutrophil recruitment into the lung

    Science.gov (United States)

    Jandl, Katharina; Stacher, Elvira; Bálint, Zoltán; Sturm, Eva Maria; Maric, Jovana; Peinhaupt, Miriam; Luschnig, Petra; Aringer, Ida; Fauland, Alexander; Konya, Viktoria; Dahlen, Sven-Erik; Wheelock, Craig E.; Kratky, Dagmar; Olschewski, Andrea; Marsche, Gunther; Schuligoi, Rufina; Heinemann, Akos

    2016-01-01

    Background Prostaglandin (PG) D2 is an early-phase mediator in inflammation, but its action and the roles of the 2 D-type prostanoid receptors (DPs) DP1 and DP2 (also called chemoattractant receptor–homologous molecule expressed on TH2 cells) in regulating macrophages have not been elucidated to date. Objective We investigated the role of PGD2 receptors on primary human macrophages, as well as primary murine lung macrophages, and their ability to influence neutrophil action in vitro and in vivo. Methods In vitro studies, including migration, Ca2+ flux, and cytokine secretion, were conducted with primary human monocyte-derived macrophages and neutrophils and freshly isolated murine alveolar and pulmonary interstitial macrophages. In vivo pulmonary inflammation was assessed in male BALB/c mice. Results Activation of DP1, DP2, or both receptors on human macrophages induced strong intracellular Ca2+ flux, cytokine release, and migration of macrophages. In a murine model of LPS-induced pulmonary inflammation, activation of each PGD2 receptor resulted in aggravated airway neutrophilia, tissue myeloperoxidase activity, cytokine contents, and decreased lung compliance. Selective depletion of alveolar macrophages abolished the PGD2-enhanced inflammatory response. Activation of PGD2 receptors on human macrophages enhanced the migratory capacity and prolonged the survival of neutrophils in vitro. In human lung tissue specimens both DP1 and DP2 receptors were located on alveolar macrophages along with hematopoietic PGD synthase, the rate-limiting enzyme of PGD2 synthesis. Conclusion For the first time, our results show that PGD2 markedly augments disease activity through its ability to enhance the proinflammatory actions of macrophages and subsequent neutrophil activation. PMID:26792210

  1. Characterisation of Neutropenia-Associated Neutrophil Elastase Mutations in a Murine Differentiation Model In Vitro and In Vivo.

    Directory of Open Access Journals (Sweden)

    Michael Wiesmeier

    Full Text Available Severe congenital neutropenia (SCN is characterised by a differentiation block in the bone marrow and low neutrophil numbers in the peripheral blood, which correlates with increased risk of bacterial infections. Several underlying gene defects have been identified in SCN patients. Mutations in the neutrophil elastase (ELANE gene are frequently found in SCN and cyclic neutropenia. Both mislocalization and misfolding of mutant neutrophil elastase protein resulting in ER stress and subsequent induction of the unfolded protein response (UPR have been proposed to be responsible for neutrophil survival and maturation defects. However, the detailed molecular mechanisms still remain unclear, in part due to the lack of appropriate in vitro and in vivo models. Here we used a system of neutrophil differentiation from immortalised progenitor lines by conditional expression of Hoxb8, permitting the generation of mature near-primary neutrophils in vitro and in vivo. NE-deficient Hoxb8 progenitors were reconstituted with murine and human forms of typical NE mutants representative of SCN and cyclic neutropenia, and differentiation of the cells was analysed in vitro and in vivo. ER stress induction by NE mutations could be recapitulated during neutrophil differentiation in all NE mutant-reconstituted Hoxb8 cells. Despite ER stress induction, no change in survival, maturation or function of differentiating cells expressing either murine or human NE mutants was observed. Further analysis of in vivo differentiation of Hoxb8 cells in a murine model of adoptive transfer did not reveal any defects in survival or differentiation in the mouse. Although the Hoxb8 system has been found to be useful for dissection of defects in neutrophil development, our findings indicate that the use of murine systems for analysis of NE-mutation-associated pathogenesis is complicated by differences between humans and mice in the physiology of granulopoiesis, which may go beyond possible

  2. Assessment of antioxidant activity of spray dried extracts of Psidium guajava leaves by DPPH and chemiluminescence inhibition in human neutrophils.

    Science.gov (United States)

    Fernandes, M R V; Azzolini, A E C S; Martinez, M L L; Souza, C R F; Lucisano-Valim, Y M; Oliveira, W P

    2014-01-01

    This work evaluated the physicochemical properties and antioxidant activity of spray dried extracts (SDE) from Psidium guajava L. leaves. Different drying carriers, namely, maltodextrin, colloidal silicon dioxide, Arabic gum, and β -cyclodextrin at concentrations of 40 and 80% relative to solids content, were added to drying composition. SDE were characterized through determination of the total phenolic, tannins, and flavonoid content. Antioxidant potential of the SDE was assessed by two assays: cellular test that measures the luminol-enhanced chemiluminescence (LumCL) produced by neutrophils stimulated with phorbol myristate acetate (PMA) and the DPPH radical scavenging (DPPH∗ method). In both assays the antioxidant activity of the SDE occurred in a concentration-dependent manner and showed no toxicity to the cells. Using the CLlum method, the IC50 ranged from 5.42 to 6.50 µg/mL. The IC50 of the SDE ranged from 7.96 to 8.11 µg/mL using the DPPH(•) method. Psidium guajava SDE presented significant antioxidant activity; thus they show high potential as an active phytopharmaceutical ingredient. Our findings in human neutrophils are pharmacologically relevant since they indicate that P. guajava SDE is a potential antioxidant and anti-inflammatory agent in human cells.

  3. Physiology of polymorphonuclear neutrophils Fisiología de los polimorfonucleares neutrófilos

    Directory of Open Access Journals (Sweden)

    Diana García de Olarte

    1991-02-01

    Full Text Available

    Phagocytic cells. particularly neutrophils. are a fundamental part of the host response against aggression by infectious as well as non-infectious agents. and they are Involved In the generation of tissue damage during Inflammatory response. Cell responses of neutrophils depend on a series of closely related events like adherence to and diapedesis through endothelial cells. migration toward the sites of inflammation. phagocytósis and destruction of opsonized particles. All these actions are performed through the perfect integration between the systems of cellular activation and microbicidal mechanisms. Both oxygen-dependent and independent. A large portion of the biochemical. molecular and genetic mechanisms that lead to the physiologic response of neutrophils has been elucidated which permits the identification and understanding of the pathogenesis of disorders affecting these cells.

    Las células fagocíticas, en particular los neutrófilos son una pieza fundamental en la respuesta del huésped contra la agresión por diversos agentes, Infecciosos O no y están Involucradas en la generación de daño tisular durante la inflamación. Las respuestas celulares de los PMN dependen de una serie de hechos íntimamente relacionados, como la adherencia al endotelio vascular, la diapedesis a través de las células endoteliales, la migración hacia los sitios de Inflamación y la fagocitosis y ulterior destrucción de las partículas opsonizadas. Todo esto se logra mediante la integración perfecta entre los sistemas de activación celular y los mecanismos microbicidas, dependientes O no del oxígeno. Se ha esclarecido una gran parte de los mecanismos bioquímicos, moleculares y genéticos que llevan a la respuesta fisiológica de los neutrófilos lo cual ha permitido Identificar y entender la patogénesis de

  4. Biomaterial associated impairment of local neutrophil function.

    Science.gov (United States)

    Kaplan, S S; Basford, R E; Kormos, R L; Hardesty, R L; Simmons, R L; Mora, E M; Cardona, M; Griffith, B L

    1990-01-01

    The effect of biomaterials on neutrophil function was studied in vitro to determine if these materials activated neutrophils and to determine the subsequent response of these neutrophils to further stimulation. Two biomaterials--polyurethane, a commonly used substance, and Velcro pile (used in the Jarvik 7 heart)--were evaluated. Two control substances, polyethylene and serum-coated polystyrene, were used for comparison. Neutrophil superoxide release was measured following incubation with these materials for 10, 30, and 120 min in the absence of additional stimulation and after stimulation with formylmethionylleucylphenylalanine (fMLP) or phorbol myristate acetate (PMA). The authors observed that the incubation of neutrophils on both polyurethane and Velcro resulted in substantially increased superoxide release that was greater after the 10 min than after the 30 or 120 min association. These activated neutrophils exhibited a poor additional response to fMLP but responded well to PMA. The effect of implantation of the Novacor left ventricular assist device on peripheral blood neutrophil function was also evaluated. The peripheral blood neutrophils exhibited normal superoxide release and chemotaxis. These studies suggest that biomaterials may have a profound local effect on neutrophils, which may predispose the patient to periprosthetic infection, but that the reactivity of circulating neutrophils is unimpaired.

  5. Neutrophils Compromise Retinal Pigment Epithelial Barrier Integrity

    Directory of Open Access Journals (Sweden)

    Jiehao Zhou

    2010-01-01

    Full Text Available We hypothesized that neutrophils and their secreted factors mediate breakdown of the integrity of the outer blood-retina-barrier by degrading the apical tight junctions of the retinal pigment epithelium (RPE. The effect of activated neutrophils or neutrophil cell lysate on apparent permeability of bovine RPE-Choroid explants was evaluated by measuring [H] mannitol flux in a modified Ussing chamber. The expression of matrix metalloproteinase- (MMP- 9 in murine peritoneal neutrophils, and the effects of neutrophils on RPE tight-junction protein expression were assessed by confocal microscopy and western blot. Our results revealed that basolateral incubation of explants with neutrophils decreased occludin and ZO-1 expression at 1 and 3 hours and increased the permeability of bovine RPE-Choroid explants by >3-fold (P<.05. Similarly, basolateral incubation of explants with neutrophil lysate decreased ZO-1 expression at 1 and 3 hours (P<.05 and increased permeability of explants by 75%. Further, we found that neutrophils prominently express MMP-9 and that incubation of explants with neutrophils in the presence of anti-MMP-9 antibody inhibited the increase in permeability. These data suggest that neutrophil-derived MMP-9 may play an important role in disrupting the integrity of the outer blood-retina barrier.

  6. Ursolic acid inhibits superoxide production in activated neutrophils and attenuates trauma-hemorrhage shock-induced organ injury in rats.

    Directory of Open Access Journals (Sweden)

    Tsong-Long Hwang

    Full Text Available Neutrophil activation is associated with the development of organ injury after trauma-hemorrhagic shock. In the present study, ursolic acid inhibited the superoxide anion generation and elastase release in human neutrophils. Administration of ursolic acid attenuated trauma-hemorrhagic shock-induced hepatic and lung injuries in rats. In addition, administration of ursolic acid attenuated the hepatic malondialdehyde levels and reduced the plasma aspartate aminotransferase and alanine aminotransferase levels after trauma-hemorrhagic shock. In conclusion, ursolic acid, a bioactive natural compound, inhibits superoxide anion generation and elastase release in human neutrophils and ameliorates trauma-hemorrhagic shock-induced organ injury in rats.

  7. Bid truncation, Bid/Bax targeting to the mitochondria, and caspase activation associated with neutrophil apoptosis are inhibited by granulocyte colony-stimulating factor

    NARCIS (Netherlands)

    Maianski, Nikolai A.; Roos, Dirk; Kuijpers, Taco W.

    2004-01-01

    Neutrophil apoptosis constitutes a way of managing neutrophil-mediated reactions. It allows coping with infections, but avoiding overt bystander tissue damage. Using digitonin-based subcellular fractionation and Western blotting, we found that spontaneous apoptosis of human neutrophils (after

  8. Chemokine receptor Ccr1 drives neutrophil-mediated kidney immunopathology and mortality in invasive candidiasis.

    Directory of Open Access Journals (Sweden)

    Michail S Lionakis

    Full Text Available Invasive candidiasis is the 4(th leading cause of nosocomial bloodstream infection in the US with mortality that exceeds 40% despite administration of antifungal therapy; neutropenia is a major risk factor for poor outcome after invasive candidiasis. In a fatal mouse model of invasive candidiasis that mimics human bloodstream-derived invasive candidiasis, the most highly infected organ is the kidney and neutrophils are the major cellular mediators of host defense; however, factors regulating neutrophil recruitment have not been previously defined. Here we show that mice lacking chemokine receptor Ccr1, which is widely expressed on leukocytes, had selectively impaired accumulation of neutrophils in the kidney limited to the late phase of the time course of the model; surprisingly, this was associated with improved renal function and survival without affecting tissue fungal burden. Consistent with this, neutrophils from wild-type mice in blood and kidney switched from Ccr1(lo to Ccr1(high at late time-points post-infection, when Ccr1 ligands were produced at high levels in the kidney and were chemotactic for kidney neutrophils ex vivo. Further, when a 1∶1 mixture of Ccr1(+/+ and Ccr1(-/- donor neutrophils was adoptively transferred intravenously into Candida-infected Ccr1(+/+ recipient mice, neutrophil trafficking into the kidney was significantly skewed toward Ccr1(+/+ cells. Thus, neutrophil Ccr1 amplifies late renal immunopathology and increases mortality in invasive candidiasis by mediating excessive recruitment of neutrophils from the blood to the target organ.

  9. Surface acoustic load sensing using a face-shear PIN-PMN-PT single-crystal resonator.

    Science.gov (United States)

    Kim, Kyungrim; Zhang, Shujun; Jiang, Xiaoning

    2012-11-01

    Pb(In(0.5)Nb(0.5))O(3)-Pb(Mg(1/3)Nb(2/3))O(3)-PbTiO(3) (PIN-PMN-PT) resonators for surface acoustic load sensing are presented in this paper. Different acoustic loads are applied to thickness mode, thickness-shear mode, and face-shear mode resonators, and the electrical impedances at resonance and anti-resonance frequencies are recorded. More than one order of magnitude higher sensitivity (ratio of electrical impedance change to surface acoustic impedance change) at the resonance is achieved for the face-shear-mode resonator compared with other resonators with the same dimensions. The Krimholtz, Leedom, and Matthaei (KLM) model is used to verify the surface acoustic loading effect on the electrical impedance spectrum of face-shear PIN-PMN-PT single-crystal resonators. The demonstrated high sensitivity of face-shear mode resonators to surface loads is promising for a broad range of applications, including artificial skin, biological and chemical sensors, touch screens, and other touch-based sensors.

  10. PMN-PT single crystal, high-frequency ultrasonic needle transducers for pulsed-wave Doppler application.

    Science.gov (United States)

    Zhou, Qifa; Xu, Xiaochen; Gottlieb, Emanuel J; Sun, Lei; Cannata, Jonathan M; Ameri, Hossein; Humayun, Mark S; Han, Pengdi; Shung, K Kirk

    2007-03-01

    High-frequency needle ultrasound transducers with an aperture size of 0.4 mm were fabricated using lead magnesium niobate-lead titanate (PMN-33% PT) as the active piezoelectric material. The active element was bonded to a conductive silver particle matching layer and a conductive epoxy backing through direct contact curing. An outer matching layer of parylene was formed by vapor deposition. The active element was housed within a polyimide tube and a 20-gauge needle housing. The magnitude and phase of the electrical impedance of the transducer were 47 omega and -38 degrees, respectively. The measured center frequency and -6 dB fractional bandwidth of the PMN-PT needle transducer were 44 MHz and 45%, respectively. The two-way insertion loss was approximately 15 dB. In vivo high-frequency, pulsed-wave Doppler patterns of blood flow in the posterior portion and in vitro ultrasonic backscatter microscope (UBM) images of the rabbit eye were obtained with the 44-MHz needle transducer.

  11. Leukotriene B4-Neutrophil Elastase Axis Drives Neutrophil Reverse Transendothelial Cell Migration In Vivo.

    Science.gov (United States)

    Colom, Bartomeu; Bodkin, Jennifer V; Beyrau, Martina; Woodfin, Abigail; Ody, Christiane; Rourke, Claire; Chavakis, Triantafyllos; Brohi, Karim; Imhof, Beat A; Nourshargh, Sussan

    2015-06-16

    Breaching endothelial cells (ECs) is a decisive step in the migration of leukocytes from the vascular lumen to the extravascular tissue, but fundamental aspects of this response remain largely unknown. We have previously shown that neutrophils can exhibit abluminal-to-luminal migration through EC junctions within mouse cremasteric venules and that this response is elicited following reduced expression and/or functionality of the EC junctional adhesion molecule-C (JAM-C). Here we demonstrate that the lipid chemoattractant leukotriene B4 (LTB4) was efficacious at causing loss of venular JAM-C and promoting neutrophil reverse transendothelial cell migration (rTEM) in vivo. Local proteolytic cleavage of EC JAM-C by neutrophil elastase (NE) drove this cascade of events as supported by presentation of NE to JAM-C via the neutrophil adhesion molecule Mac-1. The results identify local LTB4-NE axis as a promoter of neutrophil rTEM and provide evidence that this pathway can propagate a local sterile inflammatory response to become systemic. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  12. The Effect of a combination of 12% spirulina and 20% chitosan on macrophage, PMN, and lymphocyte cell expressions in post extraction wound

    Directory of Open Access Journals (Sweden)

    Nike Hendrijantini

    2017-06-01

    Full Text Available Background: Tooth extraction is the ultimate treatment option for defective teeth followed by the need for dentures. Inflammation is one phase of the healing process that should be minimized in order to preserve alveolar bone for denture support. Macrophage, PMN and lymphocyte cells are indicators of acute inflammation. Spirulina and chitosan are natural compounds with the potential to be anti-inflammatory agents. Purpose: This research aimed to determine macrophage, PMN and lymphocyte cells of animal models treated with a combination of 12% spirulina and 20% chitosan on the 1st, 2nd and 3rd post-extraction day. Methods: Animal models were randomly divided into control (K and treatment (P groups. Each group was further divided into three subgroups (KI, KII, KIII and PI, PII, PIII. The post-extraction sockets of the control group animals were then filled with CMC Na 3%. Meanwhile, the post-extraction sockets of the treatment group members were filled with a combination of 12% spirulina and 20% chitosan. Subsequently, the number of PMN, macrophage and lymphocyte cells was analyzed by means of HE analysis on the 1st., 2nd. and 3rd. days. Statistical analysis was then performed using a T-test. Results: There was a decrease in PMN cells and an increase in macrophage and lymphocyte cells on Days 1, 2, and 3. Conclusion: It can be concluded that a combination of 12% spirulina and 20% chitosan can not only decrease PMN cells, but can also increase macrophage and lymphocyte cells on Days 1, 2 and 3 after tooth extraction.

  13. [Establishment and evaluation of an in vitro method for neutrophil extracellular trap generation and degradation].

    Science.gov (United States)

    Li, Jinlong; Zhang, Yidan; Zhou, Xin; Ji, Wenjie; Zhao, Jihong; Wei, Luqing; Li, Yuming

    2014-09-01

    To evaluate a novel method for in vitro generation and degradation of neutrophil extracellular traps (NETs), which are a newly recognized structure that is involved in the pathogenesis of autoimmune diseases and thrombosis. Neutrophils from peripheral blood of healthy donors were obtained by Ficoll-Histopaque gradient separation. NET release was initiated by phorbol myristate acetate (PMA) and validated by immunofluorescence staining and agarose gel electrophoresis. NETs degraded by DNase I and healthy human plasma were quantified by fluorescence spectrometry after staining with PicoGreen. HE staining showed that the purity of neutrophils was up to 95% after Ficoll-Histopaque gradient separation. NET immunofluorescent staining revealed that the network structure was mainly composed of DNA and histones, with molecular length more than 10 kb as demonstrated by agarose gel electrophoresis. Moreover, both DNase and healthy human plasma could induce the degradation of NETs, in varying degrees. This work established an efficient method for in vitro generation and degradation of human NETs.

  14. Mitochondria in neutrophil apoptosis

    NARCIS (Netherlands)

    van Raam, B. J.; Verhoeven, A. J.; Kuijpers, T. W.

    2006-01-01

    Central in the regulation of the short life span of neutrophils are their mitochondria. These organelles hardly contribute to the energy status of neutrophils but play a vital role in the apoptotic process. Not only do the mitochondria contain cytotoxic proteins that are released during apoptosis

  15. Neutrophil Responses to Sterile Implant Materials.

    Directory of Open Access Journals (Sweden)

    Siddharth Jhunjhunwala

    Full Text Available In vivo implantation of sterile materials and devices results in a foreign body immune response leading to fibrosis of implanted material. Neutrophils, one of the first immune cells to be recruited to implantation sites, have been suggested to contribute to the establishment of the inflammatory microenvironment that initiates the fibrotic response. However, the precise numbers and roles of neutrophils in response to implanted devices remains unclear. Using a mouse model of peritoneal microcapsule implantation, we show 30-500 fold increased neutrophil presence in the peritoneal exudates in response to implants. We demonstrate that these neutrophils secrete increased amounts of a variety of inflammatory cytokines and chemokines. Further, we observe that they participate in the foreign body response through the formation of neutrophil extracellular traps (NETs on implant surfaces. Our results provide new insight into neutrophil function during a foreign body response to peritoneal implants which has implications for the development of biologically compatible medical devices.

  16. Linear Thermal Expansion Measurements of Lead Magnesium Niobate (PMN) Electroceramic Material for the Terrestrial Planet Finder Coronagraph

    Science.gov (United States)

    Karlmann, Paul B.; Halverson, Peter G.; Peters, Robert D.; Levine, Marie B.; VanBuren, David; Dudik, Matthew J.

    2005-01-01

    Linear thermal expansion measurements of nine samples of Lead Magnesium Niobate (PMN) electroceramic material were recently performed in support of NASA's Terrestrial Planet Finder Coronagraph (TPF-C) mission. The TPF-C mission is a visible light coronagraph designed to look at roughly 50 stars pre- selected as good candidates for possessing earth-like planets. Upon detection of an earth-like planet, TPF-C will analyze the visible-light signature of the planet's atmosphere for specific spectroscopic indicators that life may exist there. With this focus, the project's primary interest in PMN material is for use as a solid-state actuator for deformable mirrors or compensating optics. The nine test samples were machined from three distinct boules of PMN ceramic manufactured by Xinetics Inc. Thermal expansion measurements were performed in 2005 at NASA Jet Propulsion Laboratory (JPL) in their Cryogenic Dilatometer Facility. All measurements were performed in vacuum with sample temperature actively controlled over the range of 270K to 3 10K. Expansion and contraction of the test samples with temperature was measured using a JPL developed interferometric system capable of sub-nanometer accuracy. Presented in this paper is a discussion of the sample configuration, test facilities, test method, data analysis, test results, and future plans.

  17. Serum and Glucocorticoid Regulated Kinase 1 (SGK1) Regulates Neutrophil Clearance During Inflammation Resolution

    Science.gov (United States)

    Burgon, Joseph; Robertson, Anne L.; Sadiku, Pranvera; Wang, Xingang; Hooper-Greenhill, Edward; Prince, Lynne R.; Walker, Paul; Hoggett, Emily E.; Ward, Jonathan R.; Farrow, Stuart N.; Zuercher, William J.; Jeffrey, Philip; Savage, Caroline O.; Ingham, Philip W.; Hurlstone, Adam F.; Whyte, Moira K. B.; Renshaw, Stephen A.

    2013-01-01

    The inflammatory response is integral to maintaining health, by functioning to resist microbial infection and repair tissue damage. Large numbers of neutrophils are recruited to inflammatory sites to neutralise invading bacteria through phagocytosis and the release of proteases and reactive oxygen species into the extracellular environment. Removal of the original inflammatory stimulus must be accompanied by resolution of the inflammatory response, including neutrophil clearance, to prevent inadvertent tissue damage. Neutrophil apoptosis and its temporary inhibition by survival signals provides a target for anti-inflammatory therapeutics, making it essential to better understand this process. GM-CSF, a neutrophil survival factor, causes a significant increase in mRNA levels for the known anti-apoptotic protein Serum and Glucocorticoid Regulated Kinase 1 (SGK1). We have characterised the expression patterns and regulation of SGK family members in human neutrophils, and shown that inhibition of SGK activity completely abrogates the anti-apoptotic effect of GM-CSF. Using a transgenic zebrafish model, we have disrupted sgk1 gene function and shown this specifically delays inflammation resolution, without altering neutrophil recruitment to inflammatory sites in vivo. These data suggest SGK1 plays a key role in regulating neutrophil survival signalling, and thus may prove a valuable therapeutic target for the treatment of inflammatory disease. PMID:24431232

  18. Osthol attenuates neutrophilic oxidative stress and hemorrhagic shock-induced lung injury via inhibition of phosphodiesterase 4.

    Science.gov (United States)

    Tsai, Yung-Fong; Yu, Huang-Ping; Chung, Pei-Jen; Leu, Yann-Lii; Kuo, Liang-Mou; Chen, Chun-Yu; Hwang, Tsong-Long

    2015-12-01

    Oxidative stress caused by neutrophils is an important pathogenic factor in trauma/hemorrhagic (T/H)-induced acute lung injury (ALI). Osthol, a natural coumarin found in traditional medicinal plants, has therapeutic potential in various diseases. However, the pharmacological effects of osthol in human neutrophils and its molecular mechanism of action remain elusive. In this study, our data showed that osthol potently inhibited the production of superoxide anion (O2(•-)) and reactive oxidants derived therefrom as well as expression of CD11b in N-formylmethionylleucylphenylalanine (FMLP)-activated human neutrophils. However, osthol inhibited neutrophil degranulation only slightly and it failed to inhibit the activity of subcellular NADPH oxidase. FMLP-induced phosphorylation of extracellular signal-regulated kinase (ERK) and protein kinase B (Akt) was inhibited by osthol. Notably, osthol increased the cAMP concentration and protein kinase A (PKA) activity in activated neutrophils. PKA inhibitors reversed the inhibitory effects of osthol, suggesting that these are mediated through cAMP/PKA-dependent inhibition of ERK and Akt activation. Furthermore, the activity of cAMP-specific phosphodiesterase (PDE) 4, but not PDE3 or PDE7, was significantly reduced by osthol. In addition, osthol reduced myeloperoxidase activity and pulmonary edema in rats subjected to T/H shock. In conclusion, our data suggest that osthol has effective anti-inflammatory activity in human neutrophils through the suppression of PDE4 and protects significantly against T/H shock-induced ALI in rats. Osthol may have potential for future clinical application as a novel adjunct therapy to treat lung inflammation caused by adverse circulatory conditions. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Neutrophil migration under normal and sepsis conditions.

    Science.gov (United States)

    Lerman, Yelena V; Kim, Minsoo

    2015-01-01

    Neutrophil migration is critical for pathogen clearance and host survival during severe sepsis. Interaction of neutrophil adhesion receptors with ligands on endothelial cells results in firm adhesion of the circulating neutrophils, followed by neutrophil activation and directed migration to sites of infection through the basement membrane and interstitial extracellular matrix. Proteolytic enzymes and reactive oxygen species are produced and released by neutrophils in response to a variety of inflammatory stimuli. Although these mediators are important for host defense, they also promote tissue damage. Excessive neutrophil migration during the early stages of sepsis may lead to an exaggerated inflammatory response with associated tissue damage and subsequent organ dysfunction. On the other hand, dysregulation of migration and insufficient migratory response that occurs during the latter stages of severe sepsis contributes to neutrophils' inability to contain and control infection and impaired wound healing. This review discusses the major steps and associated molecules involved in the balance of neutrophil trafficking, the precise regulation of which during sepsis spells life or death for the host.

  20. Inactivation of transferrin iron binding capacity by the neutrophil myeloperoxidase system

    International Nuclear Information System (INIS)

    Clark, R.A.; Pearson, D.W.

    1989-01-01

    Human serum apotransferrin was exposed to the isolated myeloperoxidase-H2O2-halide system or to phorbol ester-activated human neutrophils. Such treatment resulted in a marked loss in transferrin iron binding capacity as well as concomitant iodination of transferrin. Each component of the cell-free system (myeloperoxidase, H2O2, iodide) or neutrophil system (neutrophils, phorbol ester, iodide) was required in order to observe these changes. In the cell-free system, the H2O2 requirement was fulfilled by either reagent H2O2 or the peroxide-generating system glucose oxidase plus glucose. Both loss of iron binding capacity and transferrin iodination by either the myeloperoxidase system or activated neutrophils were blocked by azide or catalase. The isolated peroxidase system had an acidic pH optimum, whereas the intact cell system was more efficient at neutral pH. The kinetics of changes in iron binding capacity and iodination closely paralleled one another, exhibiting t1/2 values of less than 1 min for the myeloperoxidase-H2O2 system, 3-4 min for the myeloperoxidase-glucose oxidase system, and 8 min for the neutrophil system. That the occupied binding site is protected from the myeloperoxidase system was suggested by (1) a failure to mobilize iron from iron-loaded transferrin, (2) an inverse correlation between initial iron saturation and myeloperoxidase-mediated loss of iron binding capacity, and (3) decreased myeloperoxidase-mediated iodination of iron-loaded versus apotransferrin. Since as little as 1 atom of iodide bound per molecule of transferrin was associated with substantial losses in iron binding capacity, there appears to be a high specificity of myeloperoxidase-catalyzed iodination for residues at or near the iron binding sites. Amino acid analysis of iodinated transferrin (approximately 2 atoms/molecule) demonstrated that iodotyrosine was the predominant iodinated species

  1. CD177: A member of the Ly-6 gene superfamily involved with neutrophil proliferation and polycythemia vera

    Directory of Open Access Journals (Sweden)

    Bettinotti Maria

    2004-03-01

    Full Text Available Abstract Genes in the Leukocyte Antigen 6 (Ly-6 superfamily encode glycosyl-phosphatidylinositol (GPI anchored glycoproteins (gp with conserved domains of 70 to 100 amino acids and 8 to 10 cysteine residues. Murine Ly-6 genes encode important lymphocyte and hematopoietic stem cell antigens. Recently, a new member of the human Ly-6 gene superfamily has been described, CD177. CD177 is polymorphic and has at least two alleles, PRV-1 and NB1. CD177 was first described as PRV-1, a gene that is overexpressed in neutrophils from approximately 95% of patients with polycythemia vera and from about half of patients with essential thrombocythemia. CD177 encodes NB1 gp, a 58–64 kD GPI gp that is expressed by neutrophils and neutrophil precursors. NB1 gp carries Human Neutrophil Antigen (HNA-2a. Investigators working to identify the gene encoding NB1 gp called the CD177 allele they described NB1. NB1 gp is unusual in that neutrophils from some healthy people lack the NB1 gp completely and in most people NB1 gp is expressed by a subpopulation of neutrophils. The function of NB1 gp and the role of CD177 in the pathogenesis and clinical course of polycythemia vera and essential thrombocythemia are not yet known. However, measuring neutrophil CD177 mRNA levels has become an important marker for diagnosing the myeloproliferative disorders polycythemia vera and essential thrombocythemia.

  2. Air-Coupled Ultrasonic Receivers with High Electromechanical Coupling PMN-32%PT Strip-Like Piezoelectric Elements

    Directory of Open Access Journals (Sweden)

    Rymantas J. Kazys

    2017-10-01

    Full Text Available For improvement of the efficiency of air-coupled ultrasonic transducers PMN-32%PT piezoelectric crystals which possess very high piezoelectric properties may be used. The electromechanical coupling factor of such crystals for all main vibration modes such as the thickness extension and transverse extension modes is more than 0.9. Operation of ultrasonic transducers with such piezoelectric elements in transmitting and receiving modes is rather different. Therefore, for transmission and reception of ultrasonic signals, separate piezoelectric elements with different dimensions must be used. The objective of this research was development of novel air-coupled ultrasonic receivers with PMN-32%PT strip-like piezoelectric elements vibrating in a transverse-extension mode with electromechanically controlled operation and suitable for applications in ultrasonic arrays. Performance of piezoelectric receivers made of the PMN-32%PT strip-like elements vibrating in this mode may be efficiently controlled by selecting geometry of the electrodes covering side surfaces of the piezoelectric element. It is equivalent to introduction of electromechanical damping which does not require any additional backing element. For this purpose; we have proposed the continuous electrodes to divide into two pairs of electrodes. The one pair is used to pick up the electric signal; another one is exploited for electromechanical damping. Two types of electrodes may be used—rectangular or non-rectangular—with a gap between them directed at some angle, usually 45°. The frequency bandwidth is wider (up to 9 kHz in the case of non-rectangular electrodes. The strip-like acoustic matching element bonded to the tip of the PMN-32%PT crystal may significantly enhance the performance of the ultrasonic receiver. It was proposed to use for this purpose AIREX T10.110 rigid polymer foam, the acoustic impedance of which is close to the optimal value necessary for matching with air. It was

  3. The effect of supportive E. coli mastitis treatment on PMN chemiluminescence and subpopulations of T lymphocytes.

    Science.gov (United States)

    Markiewicz, H; Krumrych, W; Gehrke, M

    2013-01-01

    The aim of this field study was to assess the impact of a single i.m. injection of lysozyme dimer and flunixin meglumine in combination with intramammary and systemic antibiotic on chemiluminescence of PMN (polymorphonuclear leucocytes) and subpopulations of lymphocyte T in blood of cows with E. coli mastitis. Examinations were performed on 30 dairy cows affected with naturally occurring acute form of E. coli mastitis. Cows were randomly divided into three groups according to the method of treatment. The first group was treated with approved intramammary antibiotic product, the same antibiotic in i.m. injection and one injection of flunixin meglumine on the first day of therapy. Next group was treated with the same antibiotic and additionally one injection of lysozyme dimer on the first day of therapy. The third one was treated only with an antibiotic and served as a control group. Blood samples were taken before treatment and on days 3 and 7. In samples haematology indices were determined, spontaneous and opsonised zymosan stimulated CL and PMA measurements were performed and the subpopulations of T lymphocyte (CD2(+), CD4(+), CD8(+)) were assayed in whole blood. There was no effect of the applied supportive treatment on the value of morphological blood indices. A significant influence of the time of sample collection on the level of CL and dynamics of lymphocytes T subpopulation was demonstrated. A single injection of flunixin meglumine or lysozyme dimer on the day of the beginning of treatment of E. coli mastitis, does not affect the level of neutrophil chemiluminescence and the percentage of T lymphocytes in the blood of mastitic cows in the analysed period of time.

  4. Ensemble models of neutrophil trafficking in severe sepsis.

    Directory of Open Access Journals (Sweden)

    Sang Ok Song

    Full Text Available A hallmark of severe sepsis is systemic inflammation which activates leukocytes and can result in their misdirection. This leads to both impaired migration to the locus of infection and increased infiltration into healthy tissues. In order to better understand the pathophysiologic mechanisms involved, we developed a coarse-grained phenomenological model of the acute inflammatory response in CLP (cecal ligation and puncture-induced sepsis in rats. This model incorporates distinct neutrophil kinetic responses to the inflammatory stimulus and the dynamic interactions between components of a compartmentalized inflammatory response. Ensembles of model parameter sets consistent with experimental observations were statistically generated using a Markov-Chain Monte Carlo sampling. Prediction uncertainty in the model states was quantified over the resulting ensemble parameter sets. Forward simulation of the parameter ensembles successfully captured experimental features and predicted that systemically activated circulating neutrophils display impaired migration to the tissue and neutrophil sequestration in the lung, consequently contributing to tissue damage and mortality. Principal component and multiple regression analyses of the parameter ensembles estimated from survivor and non-survivor cohorts provide insight into pathologic mechanisms dictating outcome in sepsis. Furthermore, the model was extended to incorporate hypothetical mechanisms by which immune modulation using extracorporeal blood purification results in improved outcome in septic rats. Simulations identified a sub-population (about 18% of the treated population that benefited from blood purification. Survivors displayed enhanced neutrophil migration to tissue and reduced sequestration of lung neutrophils, contributing to improved outcome. The model ensemble presented herein provides a platform for generating and testing hypotheses in silico, as well as motivating further experimental

  5. Neutrophil Reverse Migration Becomes Transparent with Zebrafish

    Directory of Open Access Journals (Sweden)

    Taylor W. Starnes

    2012-01-01

    Full Text Available The precise control of neutrophil-mediated inflammation is critical for both host defense and the prevention of immunopathology. In vivo imaging studies in zebrafish, and more recently in mice, have made the novel observation that neutrophils leave a site of inflammation through a process called neutrophil reverse migration. The application of advanced imaging techniques to the genetically tractable, optically transparent zebrafish larvae was critical for these advances. Still, the mechanisms underlying neutrophil reverse migration and its effects on the resolution or priming of immune responses remain unclear. Here, we review the current knowledge of neutrophil reverse migration, its potential roles in host immunity, and the live imaging tools that make zebrafish a valuable model for increasing our knowledge of neutrophil behavior in vivo.

  6. Chemokine Receptor Ccr1 Drives Neutrophil-Mediated Kidney Immunopathology and Mortality in Invasive Candidiasis

    Science.gov (United States)

    Lionakis, Michail S.; Swamydas, Muthulekha; Wan, Wuzhou; Richard Lee, Chyi-Chia; Cohen, Jeffrey I.; Scheinberg, Phillip; Gao, Ji-Liang; Murphy, Philip M.

    2012-01-01

    Invasive candidiasis is the 4th leading cause of nosocomial bloodstream infection in the US with mortality that exceeds 40% despite administration of antifungal therapy; neutropenia is a major risk factor for poor outcome after invasive candidiasis. In a fatal mouse model of invasive candidiasis that mimics human bloodstream-derived invasive candidiasis, the most highly infected organ is the kidney and neutrophils are the major cellular mediators of host defense; however, factors regulating neutrophil recruitment have not been previously defined. Here we show that mice lacking chemokine receptor Ccr1, which is widely expressed on leukocytes, had selectively impaired accumulation of neutrophils in the kidney limited to the late phase of the time course of the model; surprisingly, this was associated with improved renal function and survival without affecting tissue fungal burden. Consistent with this, neutrophils from wild-type mice in blood and kidney switched from Ccr1lo to Ccr1high at late time-points post-infection, when Ccr1 ligands were produced at high levels in the kidney and were chemotactic for kidney neutrophils ex vivo. Further, when a 1∶1 mixture of Ccr1+/+ and Ccr1−/− donor neutrophils was adoptively transferred intravenously into Candida-infected Ccr1+/+ recipient mice, neutrophil trafficking into the kidney was significantly skewed toward Ccr1+/+ cells. Thus, neutrophil Ccr1 amplifies late renal immunopathology and increases mortality in invasive candidiasis by mediating excessive recruitment of neutrophils from the blood to the target organ. PMID:22916017

  7. Assessment of Antioxidant Activity of Spray Dried Extracts of Psidium guajava Leaves by DPPH and Chemiluminescence Inhibition in Human Neutrophils

    Directory of Open Access Journals (Sweden)

    M. R. V. Fernandes

    2014-01-01

    Full Text Available This work evaluated the physicochemical properties and antioxidant activity of spray dried extracts (SDE from Psidium guajava L. leaves. Different drying carriers, namely, maltodextrin, colloidal silicon dioxide, Arabic gum, and β-cyclodextrin at concentrations of 40 and 80% relative to solids content, were added to drying composition. SDE were characterized through determination of the total phenolic, tannins, and flavonoid content. Antioxidant potential of the SDE was assessed by two assays: cellular test that measures the luminol-enhanced chemiluminescence (LumCL produced by neutrophils stimulated with phorbol myristate acetate (PMA and the DPPH radical scavenging (DPPH* method. In both assays the antioxidant activity of the SDE occurred in a concentration-dependent manner and showed no toxicity to the cells. Using the CLlum method, the IC50 ranged from 5.42 to 6.50 µg/mL. The IC50 of the SDE ranged from 7.96 to 8.11 µg/mL using the DPPH• method. Psidium guajava SDE presented significant antioxidant activity; thus they show high potential as an active phytopharmaceutical ingredient. Our findings in human neutrophils are pharmacologically relevant since they indicate that P. guajava SDE is a potential antioxidant and anti-inflammatory agent in human cells.

  8. Soluble CD40 ligand stimulates CD40-dependent activation of the β2 integrin Mac-1 and protein kinase C zeda (PKCζ in neutrophils: implications for neutrophil-platelet interactions and neutrophil oxidative burst.

    Directory of Open Access Journals (Sweden)

    Rong Jin

    Full Text Available Recent work has revealed an essential involvement of soluble CD40L (sCD40L in inflammation and vascular disease. Activated platelets are the major source of sCD40L, which has been implicated in platelet and leukocyte activation, although its exact functional impact on leukocyte-platelet interactions and the underlying mechanisms remain undefined. We aimed to determine the impact and the mechanisms of sCD40L on neutrophils. We studied neutrophil interactions with activated, surface-adherent platelets as a model for leukocyte recruitment to the sites of injury. Our data show that CD40L contributes to neutrophil firm adhesion to and transmigration across activated surface-adherent platelets, possibly through two potential mechanisms. One involves the direct interaction of ligand-receptor (CD40L-CD40, i.e., platelet surface CD40L interaction with neutrophil CD40; another involves an indirect mechanism, i.e. soluble CD40L stimulates activation of the leukocyte-specific β2 integrin Mac-1 in neutrophils and thereby further promotes neutrophil adhesion and migration. Activation of the integrin Mac-1 is known to be critical for mediating neutrophil adhesion and migration. sCD40L activated Mac-1 in neutrophils and enhanced neutrophil-platelet interactions in wild-type neutrophils, but failed to elicit such responses in CD40-deficient neutrophils. Furthermore, our data show that the protein kinase C zeta (PKCζ is critically required for sCD40L-induced Mac-1 activation and neutrophil adhesive function. sCD40L strongly stimulated the focal clustering of Mac-1 (CD11b and the colocalization of Mac-1 with PKCζ in wild-type neutrophils, but had minimal effect in CD40-deficient neutrophils. Blocking PKCζ completely inhibited sCD40L-induced neutrophil firm adhesion. Moreover, sCD40L strongly stimulates neutrophil oxidative burst via CD40-dependent activation of PI3K/NF-KB, but independent of Mac-1 and PKCζ. These findings may contribute to a better

  9. The effect of in-vivo interleukin-1 on recruitment of immune cells into the lung

    Energy Technology Data Exchange (ETDEWEB)

    Bice, D E; King-Herbert, A P; Morris, M J; Hanna, N; Haley, P J

    1988-12-01

    The mechanisms responsible for recruitment of lymphocytes into the lung are not known. Data suggest that interleukin-1 (IL-1) is chemotactic for neutrophils (PMN), macrophages, and lymphocytes. Therefore, the release of IL-1 in the lung in response to antigen exposure might be important in lymphocyte recruitment. The data from this study indicate that the instillation of a low dose of human IL-lb (50 ng) into lung lobes of dogs recruited only PMN with no increase in lymphocytes. A dose of 2000 ng recruited large numbers of PMN, with a slightly increased number of lymphocytes. The instillation of 2000 ny of IL-1 into the lungs of dogs that were immunized with sheep red blood cells did not result in the recruitment of antibody-forming cells (AFC) into the treated lung lobe. These data do not support the hypothesis that IL-1 by itself is chemotactic for lymphocytes in vivo, or that inflammation induced by IL-1 alone allows the entry of APC and antibody at the same level as in lung lobes instilled with antigen. (author)

  10. Increased FasL expression correlates with apoptotic changes in granulocytes cultured with oxidized clozapine

    International Nuclear Information System (INIS)

    Husain, Zaheed; Almeciga, Ingrid; Delgado, Julio C.; Clavijo, Olga P.; Castro, Januario E.; Belalcazar, Viviana; Pinto, Clara; Zuniga, Joaquin; Romero, Viviana; Yunis, Edmond J.

    2006-01-01

    Clozapine has been associated with a 1% incidence of agranulocytosis. The formation of an oxidized intermediate clozapine metabolite has been implicated in direct polymorphonuclear (PMN) toxicity. We utilized two separate systems to analyze the role of oxidized clozapine in inducing apoptosis in treated cells. Human PMN cells incubated with clozapine (0-10 μM) in the presence of 0.1 mM H 2 O 2 demonstrated a progressive decrease of surface CD16 expression along with increased apoptosis. RT-PCR analysis showed decreased CD16 but increased FasL gene expression in clozapine-treated PMN cells. No change in constitutive Fas expression was observed in treated cells. In HL-60 cells induced to differentiate with retinoic acid (RA), a similar increase in FasL expression, but no associated changes in CD16 gene expression, was observed following clozapine treatments. Our results demonstrate increased FasL gene expression in oxidized clozapine-induced apoptotic neutrophils suggesting that apoptosis in granulocytes treated with clozapine involves Fas/FasL interaction that initiates a cascade of events leading to clozapine-induced agranulocytosis

  11. The effect of in-vivo interleukin-1 on recruitment of immune cells into the lung

    International Nuclear Information System (INIS)

    Bice, D.E.; King-Herbert, A.P.; Morris, M.J.; Hanna, N.; Haley, P.J.

    1988-01-01

    The mechanisms responsible for recruitment of lymphocytes into the lung are not known. Data suggest that interleukin-1 (IL-1) is chemotactic for neutrophils (PMN), macrophages, and lymphocytes. Therefore, the release of IL-1 in the lung in response to antigen exposure might be important in lymphocyte recruitment. The data from this study indicate that the instillation of a low dose of human IL-lb (50 ng) into lung lobes of dogs recruited only PMN with no increase in lymphocytes. A dose of 2000 ng recruited large numbers of PMN, with a slightly increased number of lymphocytes. The instillation of 2000 ny of IL-1 into the lungs of dogs that were immunized with sheep red blood cells did not result in the recruitment of antibody-forming cells (AFC) into the treated lung lobe. These data do not support the hypothesis that IL-1 by itself is chemotactic for lymphocytes in vivo, or that inflammation induced by IL-1 alone allows the entry of APC and antibody at the same level as in lung lobes instilled with antigen. (author)

  12. Data on human neutrophil activation induced by pepducins with amino acid sequences derived from β2AR and CXCR4

    Directory of Open Access Journals (Sweden)

    André Holdfeldt

    2016-09-01

    Full Text Available The data described here is related to the research article titled (Gabl et al., 2016 [1]. Pepducins with peptide sequence derived from one of the intracellular domains of a given G-protein coupled receptor (GPCR can either activate or inhibit cell functions. Here we include data on human neutrophil function induced by pepducins derived from β2AR (ICL3-8 and CXCR4 (ATI-2341, respectively. ICL3-8 exerts neither direct activating effect on the NADPH-oxidase as measured by superoxide release nor inhibitory effect on FPR signaling. ATI-2341 dose-dependently triggers neutrophil activation and these cells were subsequently desensitized in their response to FPR2 specific agonists F2Pal10 and WKYMVM. Moreover, the ATI-2341 response is inhibited by PBP10 and the peptidomimetic Pam-(Lys-betaNSpe6-NH2 (both are FPR2 specific inhibitors, but not to the FPR1 specific inhibitor cyclosporine H.

  13. Targeting Neutrophilic Inflammation using Polymersome-Mediated Cellular Delivery

    OpenAIRE

    Robertson, J.D.; Ward, J.R.; Avila-Olias, M.; Battaglia, G.; Renshaw, S.A.

    2017-01-01

    Neutrophils are key effector cells in inflammation and play an important role in neutralizing invading pathogens. During inflammation resolution, neutrophils undergo apoptosis before they are removed by macrophages, but if apoptosis is delayed, neutrophils can cause extensive tissue damage and chronic disease. Promotion of neutrophil apoptosis is a potential therapeutic approach for treating persistent inflammation, yet neutrophils have proven difficult cells to manipulate experimentally. In ...

  14. Leukotriene B4-Neutrophil Elastase Axis Drives Neutrophil Reverse Transendothelial Cell Migration In Vivo

    Science.gov (United States)

    Colom, Bartomeu; Bodkin, Jennifer V.; Beyrau, Martina; Woodfin, Abigail; Ody, Christiane; Rourke, Claire; Chavakis, Triantafyllos; Brohi, Karim; Imhof, Beat A.; Nourshargh, Sussan

    2015-01-01

    Summary Breaching endothelial cells (ECs) is a decisive step in the migration of leukocytes from the vascular lumen to the extravascular tissue, but fundamental aspects of this response remain largely unknown. We have previously shown that neutrophils can exhibit abluminal-to-luminal migration through EC junctions within mouse cremasteric venules and that this response is elicited following reduced expression and/or functionality of the EC junctional adhesion molecule-C (JAM-C). Here we demonstrate that the lipid chemoattractant leukotriene B4 (LTB4) was efficacious at causing loss of venular JAM-C and promoting neutrophil reverse transendothelial cell migration (rTEM) in vivo. Local proteolytic cleavage of EC JAM-C by neutrophil elastase (NE) drove this cascade of events as supported by presentation of NE to JAM-C via the neutrophil adhesion molecule Mac-1. The results identify local LTB4-NE axis as a promoter of neutrophil rTEM and provide evidence that this pathway can propagate a local sterile inflammatory response to become systemic. PMID:26047922

  15. Cxcl8b and Cxcr2 Regulate Neutrophil Migration through Bloodstream in Zebrafish

    Directory of Open Access Journals (Sweden)

    Constanza Zuñiga-Traslaviña

    2017-01-01

    Full Text Available Neutrophils play an essential role during an inflammatory response, which is dependent on their rapid recruitment from the bone marrow to the vasculature. However, there is no information about the molecular signals that regulate neutrophil entry to circulation during an inflammatory process in humans. This is mainly due to the lack of a suitable model of study that contains similar set of molecules and that allows in vivo analyses. In this study, we used the zebrafish to assess the role of Cxcl8a, Cxcl8b, and Cxcr2 in neutrophil migration to blood circulation after injury. Using Tg(BACmpx:GFPi114 transgenic embryos and two damage models (severe and mild, we developed in vivo lack of function assays. We found that the transcription levels of cxcl8a, cxcl8b, and cxcr2 were upregulated in the severe damage model. In contrast, only cxcr2 and cxcl8a mRNA levels were increased during mild damage. After knocking down Cxcl8a, neutrophil quantity decreased at the injury site, while Cxcl8b decreased neutrophils in circulation. When inhibiting Cxcr2, we observed a decrease in neutrophil entry to the bloodstream. In conclusion, we identified different functions for both Cxcl8 paralogues, being the Cxcl8b/Cxcr2 axis that regulates neutrophil entry to the bloodstream, while Cxcl8a/Cxcr2 regulates the migration to the affected area.

  16. Equol Effectively Inhibits Toxic Activity of Human Neutrophils without Influencing Their Viability

    Czech Academy of Sciences Publication Activity Database

    Pažoureková, S.; Lucová, M.; Nosál, R.; Drábiková, K.; Harmatha, Juraj; Šmidrkal, J.; Jančinová, V.

    2016-01-01

    Roč. 97, 3/4 (2016), s. 138-145 ISSN 0031-7012 Institutional support: RVO:61388963 Keywords : neutrophils * equol * chemiluminescence * reactive oxygen species * p40(phox) * apoptosis Subject RIV: FR - Pharmacology ; Medidal Chemistry Impact factor: 1.442, year: 2016

  17. Neutrophil labeling with [99mTc]-technetium stannous colloid is complement receptor 3-mediated and increases the neutrophil priming response to lipopolysaccharide

    International Nuclear Information System (INIS)

    Gallagher, Hayley; Ramsay, Stuart C.; Barnes, Jodie; Maggs, Jacqueline; Cassidy, Nathan; Ketheesan, Natkunam

    2006-01-01

    Introduction: [ 99m Tc]-technetium stannous colloid (TcSnC)-labeled white cells are used to image inflammation. Neutrophil labeling with TcSnC is probably phagocytic, but the phagocytic receptor involved is not known. We hypothesised that complement receptor 3 (CR3) plays a key role. Phagocytic labeling could theoretically result in neutrophil activation or priming, affecting the behaviour of labeled cells. Fluorescence-activated cell sorter (FACS) analysis side scatter measurements can assess neutrophil activation and priming. Methods: We tested whether TcSnC neutrophil labeling is CR3-mediated by assessing if neutrophil uptake of TcSnC was inhibited by a monoclonal antibody (mAb) directed at the CD11b component of CR3. We tested if TcSnC-labeled neutrophils show altered activation or priming status, comparing FACS side scatter in labeled and unlabeled neutrophils and examining the effect of lipopolysaccharide (LPS), a known priming agent. Results: Anti-CD11b mAb reduced neutrophil uptake of TcSnC in a dose-dependent fashion. Labeled neutrophils did not show significantly increased side scatter compared to controls. LPS significantly increased side scatter in control cells and labeled neutrophils. However, the increase was significantly greater in labeled neutrophils than unlabeled cells. Conclusions: Neutrophil labeling with TcSnC is related to the function of CR3, a receptor which plays a central role in phagocytosis. TcSnC labeling did not significantly activate or prime neutrophils. However, labeled neutrophils showed a greater priming response to LPS. This could result in labeled neutrophils demonstrating increased adhesion on activated endothelium at sites of infection

  18. The Vi capsular polysaccharide enables Salmonella enterica serovar typhi to evade microbe-guided neutrophil chemotaxis.

    Directory of Open Access Journals (Sweden)

    Tamding Wangdi

    2014-08-01

    Full Text Available Salmonella enterica serovar Typhi (S. Typhi causes typhoid fever, a disseminated infection, while the closely related pathogen S. enterica serovar Typhimurium (S. Typhimurium is associated with a localized gastroenteritis in humans. Here we investigated whether both pathogens differ in the chemotactic response they induce in neutrophils using a single-cell experimental approach. Surprisingly, neutrophils extended chemotactic pseudopodia toward Escherichia coli and S. Typhimurium, but not toward S. Typhi. Bacterial-guided chemotaxis was dependent on the presence of complement component 5a (C5a and C5a receptor (C5aR. Deletion of S. Typhi capsule biosynthesis genes markedly enhanced the chemotactic response of neutrophils in vitro. Furthermore, deletion of capsule biosynthesis genes heightened the association of S. Typhi with neutrophils in vivo through a C5aR-dependent mechanism. Collectively, these data suggest that expression of the virulence-associated (Vi capsular polysaccharide of S. Typhi obstructs bacterial-guided neutrophil chemotaxis.

  19. A role for protein phosphatase-2A in p38 mitogen-activated protein kinase-mediated regulation of the c-Jun NH(2)-terminal kinase pathway in human neutrophils.

    Science.gov (United States)

    Avdi, Natalie J; Malcolm, Kenneth C; Nick, Jerry A; Worthen, G Scott

    2002-10-25

    Human neutrophil accumulation in inflammatory foci is essential for the effective control of microbial infections. Although exposure of neutrophils to cytokines such as tumor necrosis factor-alpha (TNFalpha), generated at sites of inflammation, leads to activation of MAPK pathways, mechanisms responsible for the fine regulation of specific MAPK modules remain unknown. We have previously demonstrated activation of a TNFalpha-mediated JNK pathway module, leading to apoptosis in adherent human neutrophils (Avdi, N. J., Nick, J. A., Whitlock, B. B., Billstrom, M. A., Henson, P. M., Johnson, G. L., and Worthen, G. S. (2001) J. Biol. Chem. 276, 2189-2199). Herein, evidence is presented linking regulation of the JNK pathway to p38 MAPK and the Ser/Thr protein phosphatase-2A (PP2A). Inhibition of p38 MAPK by SB 203580 and M 39 resulted in significant augmentation of TNFalpha-induced JNK and MKK4 (but not MKK7 or MEKK1) activation, whereas prior exposure to a p38-activating agent (platelet-activating factor) diminished the TNFalpha-induced JNK response. TNFalpha-induced apoptosis was also greatly enhanced upon p38 inhibition. Studies with a reconstituted cell-free system indicated the absence of a direct inhibitory effect of p38 MAPK on the JNK module. Neutrophil exposure to the Ser/Thr phosphatase inhibitors okadaic acid and calyculin A induced JNK activation. Increased phosphatase activity following TNFalpha stimulation was shown to be PP2A-associated and p38-dependent. Furthermore, PP2A-induced dephosphorylation of MKK4 resulted in its inactivation. Thus, in neutrophils, p38 MAPK, through a PP2A-mediated mechanism, regulates the JNK pathway, thus determining the extent and nature of subsequent responses such as apoptosis.

  20. Increase in neutrophil Fc gamma receptor I expression following interferon gamma treatment in rheumatoid arthritis.

    Science.gov (United States)

    Goulding, N J; Knight, S M; Godolphin, J L; Guyre, P M

    1992-04-01

    The therapeutic potential of interferon gamma (IFN gamma) in a number of disease states is still being explored, but progress is hampered by the lack of a suitable measure of in vivo biological activity. To assess the in vivo biological effects of recombinant human IFN gamma (rhIFN gamma), 14 patients were studied in a randomised, prospective, double blind, placebo controlled trial of this cytokine for the treatment of rheumatoid arthritis. The levels of Fc gamma receptors on peripheral blood neutrophils were measured at baseline and after 21 days of once daily, subcutaneous injections of rhIFN gamma or placebo. An induction of neutrophil Fc gamma receptor type I (Fc gamma RI) was seen in the group of patients receiving recombinant human rhIFN gamma but not in those receiving placebo. No change in the expression of Fc gamma RII or Fc gamma RIII was detected. The amount of induction of Fc gamma RI detected on the neutrophils of patients receiving rhIFN gamma did not correlate with clinical measures of response at either 21 days or at the end of the study (24 weeks). No significant clinical responses were observed in the rhIFN gamma group at these times. These data confirm that the reported in vitro effect of IFN gamma on human neutrophil Fc receptor expression can be reproduced in vivo.

  1. Sexy again: the renaissance of neutrophils in psoriasis.

    Science.gov (United States)

    Schön, Michael P; Broekaert, Sigrid M C; Erpenbeck, Luise

    2017-04-01

    Notwithstanding their prominent presence in psoriatic skin, the functional role of neutrophilic granulocytes still remains somewhat enigmatic. Sparked by exciting scientific discoveries regarding neutrophil functions within the last years, the interest in these short-lived cells of the innate immune system has been boosted recently. While it had been known for some time that neutrophils produce and respond to a number of inflammatory mediators, recent research has linked neutrophils with the pathogenic functions of IL-17, possibly in conjunction with the formation of NETs (neutrophil extracellular traps). Antipsoriatic therapies exert their effects, at least in part, through interference with neutrophils. Neutrophils also appear to connect psoriasis with comorbid diseases. However, directly tampering with neutrophil functions is not trivial as evinced by the failure of therapeutic approaches targeting redundantly regulated cellular communication networks. It has also become apparent that neutrophils link important pathogenic functions of the innate and the adaptive immune system and that they are intricately involved in regulatory networks underlying the pathophysiology of psoriasis. In order to advocate intensified research into the role of this interesting cell population, we here highlight some features of neutrophils and put them into perspective with our current view of the pathophysiology of psoriasis. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. NUSTAR, SWIFT, and GROND Observations of the Flaring MEV Blazar PMN J0641-0320

    DEFF Research Database (Denmark)

    Ajello, M.; Ghisellini, G.; Paliya, V. S.

    2016-01-01

    Area Telescope and subsequent follow-up observations with NuSTAR, Swift, and GROND of a new member of the MeV blazar family: PMN J0641-0320. Our optical spectroscopy provides confirmation that this is a flat-spectrum radio quasar located at a redshift of z = 1.196. Its very hard NuSTAR spectrum (power...

  3. Hyperglycemia Impairs Neutrophil-Mediated Bacterial Clearance in Mice Infected with the Lyme Disease Pathogen.

    Directory of Open Access Journals (Sweden)

    Ashkan Javid

    Full Text Available Insulin-insufficient type 1 diabetes is associated with attenuated bactericidal function of neutrophils, which are key mediators of innate immune responses to microbes as well as pathological inflammatory processes. Neutrophils are central to immune responses to the Lyme pathogen Borrelia burgdorferi. The effect of hyperglycemia on host susceptibility to and outcomes of B. burgdorferi infection has not been examined. The present study investigated the impact of sustained obesity-independent hyperglycemia in mice on bacterial clearance, inflammatory pathology and neutrophil responses to B. burgdorferi. Hyperglycemia was associated with reduced arthritis incidence but more widespread tissue colonization and reduced clearance of bacterial DNA in multiple tissues including brain, heart, liver, lung and knee joint. B. burgdorferi uptake and killing were impaired in neutrophils isolated from hyperglycemic mice. Thus, attenuated neutrophil function in insulin-insufficient hyperglycemia was associated with reduced B. burgdorferi clearance in target organs. These data suggest that investigating the effects of comorbid conditions such as diabetes on outcomes of B. burgdorferi infections in humans may be warranted.

  4. Thrombin Production and Human Neutrophil Elastase Sequestration by Modified Cellulosic Dressings and Their Electrokinetic Analysis

    Directory of Open Access Journals (Sweden)

    Nicolette Prevost

    2011-12-01

    Full Text Available Wound healing is a complex series of biochemical and cellular events. Optimally, functional material design addresses the overlapping acute and inflammatory stages of wound healing based on molecular, cellular, and bio-compatibility issues. In this paper the issues addressed are uncontrolled hemostasis and inflammation which can interfere with the orderly flow of wound healing. In this regard, we review the serine proteases thrombin and elastase relative to dressing functionality that improves wound healing and examine the effects of charge in cotton/cellulosic dressing design on thrombin production and elastase sequestration (uptake by the wound dressing. Thrombin is central to the initiation and propagation of coagulation, and elastase is released from neutrophils that can function detrimentally in a stalled inflammatory phase characteristic of chronic wounds. Electrokinetic fiber surface properties of the biomaterials of this study were determined to correlate material charge and polarity with function relative to thrombin production and elastase sequestration. Human neutrophil elastase sequestration was assessed with an assay representative of chronic wound concentration with cotton gauze cross-linked with three types of polycarboxylic acids and one phosphorylation finish; thrombin production, which was assessed in a plasma-based assay via a fluorogenic peptide substrate, was determined for cotton, cotton-grafted chitosan, chitosan, rayon/polyester, and two kaolin-treated materials including a commercial hemorrhage control dressing (QuickClot Combat Gauze. A correlation in thrombin production to zeta potential was found. Two polycarboxylic acid cross linked and a phosphorylated cotton dressing gave high elastase sequestration.

  5. The pro-inflammatory effects of platelet contamination in plasma and mitigation strategies for avoidance

    Science.gov (United States)

    Bercovitz, R. S.; Kelher, M. R.; Khan, S. Y.; Land, K. J.; Berry, T. H.; Silliman, C. C.

    2013-01-01

    Background and Objectives Plasma and platelet concentrates are disproportionately implicated in transfusion-related acute lung injury (TRALI). Platelet-derived pro-inflammatory mediators, including soluble CD40 ligand (sCD40L), accumulate during storage. We hypothesized that platelet contamination induces sCD40L generation that causes neutrophil [polymorphonuclear leucocyte (PMN)] priming and PMN-mediated cytotoxicity. Materials and Methods Plasma was untreated, centrifuged (12 500 g) or separated from leucoreduced whole blood (WBLR) prior to freezing. Platelet counts and sCD40L concentrations were measured 1–5 days post-thaw. The plasma was assayed for PMN priming activity and was used in a two-event in vitro model of PMN-mediated human pulmonary microvascular endothelial cell (HMVEC) cytotoxicity. Results Untreated plasma contained 42 ± 4.2 × 103/μl platelets, which generated sCD40L accumulation (1.6-eight-fold vs. controls). Priming activity and HMVEC cytotoxicity were directly proportional to sCD40L concentration. WBLR and centrifugation reduced platelet and sCD40L contamination, abrogating the pro-inflammatory potential. Conclusion Platelet contamination causes sCD40L accumulation in stored plasma that may contribute to TRALI. Platelet reduction is potentially the first TRALI mitigation effort in plasma manufacturing. PMID:22092073

  6. Shear piezoelectric coefficients of PZT, LiNbO3 and PMN-PT at cryogenic temperatures

    International Nuclear Information System (INIS)

    Bukhari, Syed; Islam, Md; Haziot, Ariel; Beamish, John

    2014-01-01

    Piezoelectric transducers are used to detect stress and to generate nanometer scale displacements but their piezoelectric coefficients decrease with temperature, limiting their performance in cryogenic applications. We have developed a capacitive technique and directly measured the temperature dependence of the shear coefficient d 15 for ceramic lead zirconium titanate (PZT), 41° X-cut lithium niobate (LiNbO 3 ) and single crystal lead magnesium niobium-lead titanate (PMN-PT). In PZT, d 15 decreases nearly linearly with temperature, dropping by factor of about 4 by 1.3 K. LiNbO3 has the smallest room temperature d15, but its value decreased by only 6% at the lowest temperatures. PMN-PT had the largest value of d15 at room temperature (2.9 × 10 −9 m/V, about 45 times larger than for LiNbO 3 ) but it decreased rapidly below 75 K; at 1.3 K, d 15 was only about 8% of its room temperature value

  7. ADAM9 Is a Novel Product of Polymorphonuclear Neutrophils

    DEFF Research Database (Denmark)

    Roychaudhuri, Robin; Hergrueter, Anja H; Polverino, Francesca

    2014-01-01

    A disintegrin and a metalloproteinase domain (ADAM) 9 is known to be expressed by monocytes and macrophages. In this study, we report that ADAM9 is also a product of human and murine polymorphonuclear neutrophils (PMNs). ADAM9 is not synthesized de novo by circulating PMNs. Rather, ADAM9 protein...

  8. Unsaturated long-chain fatty acids induce the respiratory burst of human neutrophils and monocytes in whole blood

    Directory of Open Access Journals (Sweden)

    Osthaus Wilhelm A

    2008-07-01

    Full Text Available Abstract Background It is increasingly recognized that infectious complications in patients treated with total parenteral nutrition (TPN may be caused by altered immune responses. Neutrophils and monocytes are the first line of defence against bacterial and fungal infection through superoxide anion production during the respiratory burst. To characterize the impact of three different types of lipid solutions that are applied as part of TPN formulations, we investigated the unstimulated respiratory burst activation of neutrophils and monocytes in whole blood. Methods Whole blood samples were incubated with LCT (Intralipid®, LCT/MCT (Lipofundin® and LCT-MUFA (ClinOleic® in three concentrations (0.06, 0.3 and 0.6 mg ml-1 for time periods up to one hour. Hydrogen peroxide production during the respiratory burst of neutrophils and monocytes was measured by flow cytometry. Results LCT and LCT-MUFA induced a hydrogen peroxide production in neutrophils and monocytes without presence of a physiological stimulus in contrast to LCT/MCT. Conclusion We concluded that parenteral nutrition containing unsaturated oleic (C18:1 and linoleic (C18:2 acid can induce respiratory burst of neutrophils and monocytes, resulting in an elevated risk of tissue damage by the uncontrolled production of reactive oxygen species. Contradictory observations reported in previous studies may in part be the result of different methods used to determine hydrogen peroxide production.

  9. The effect of the anaesthetic agent isoflurane on the rate of neutrophil apoptosis in vitro.

    LENUS (Irish Health Repository)

    Tyther, R

    2012-02-03

    BACKGROUND: Volatile anaesthetic agents influence neutrophil function, and potentially, the inflammatory response to surgery. AIM: The objective of this study was to determine the effect of isoflurane (1-4%) on human polymorphonuclear neutrophil apoptosis in vitro. METHODS: Venous blood from 12 healthy volunteers was exposed to 0, 1, and 4% isoflurane delivered via a 14G Wallace flexihub internal jugular cannula, at a fresh gas flow of 0.51\\/min for 5 minutes. Isolated neutrophils were assessed for apoptosis at 1, 12, and 24 hours in culture using dual staining with annexin V-FITC and propidium iodide (Annexin-V FITC assay). Data were analysed using paired, one-tailed Student\\'s t-tests. p<0.05 was considered significant. RESULTS: At 1 hour apoptosis was inhibited in the 1% (5.1 [6.8]%; p=0.017) and 4% (4.8 [4.5]%; p=0.008) isoflurane groups compared to control (11.3 [6.9]%). At 12 and 24 hours, a dose-dependent inhibition of apoptosis was demonstrated, i.e. 4% > 1% > 0%. CONCLUSION: Human neutrophil apoptosis is inhibited in a concentration-dependent manner in vitro by isoflurane in clinical concentrations.

  10. Neutrophil-Derived Proteases Escalate Inflammation through Activation of IL-36 Family Cytokines

    Directory of Open Access Journals (Sweden)

    Conor M. Henry

    2016-02-01

    Full Text Available Recent evidence has strongly implicated the IL-1 family cytokines IL-36α, IL-36β, and IL-36γ as key initiators of skin inflammation. Similar to the other members of the IL-1 family, IL-36 cytokines are expressed as inactive precursors and require proteolytic processing for activation; however, the responsible proteases are unknown. Here, we show that IL-36α, IL-36β, and IL-36γ are activated differentially by the neutrophil granule-derived proteases cathepsin G, elastase, and proteinase-3, increasing their biological activity ∼500-fold. Active IL-36 promoted a strong pro-inflammatory signature in primary keratinocytes and was sufficient to perturb skin differentiation in a reconstituted 3D human skin model, producing features resembling psoriasis. Furthermore, skin eluates from psoriasis patients displayed significantly elevated cathepsin G-like activity that was sufficient to activate IL-36β. These data identify neutrophil granule proteases as potent IL-36-activating enzymes, adding to our understanding of how neutrophils escalate inflammatory reactions. Inhibition of neutrophil-derived proteases may therefore have therapeutic benefits in psoriasis.

  11. Neutrophils in Cancer: Two Sides of the Same Coin.

    Science.gov (United States)

    Uribe-Querol, Eileen; Rosales, Carlos

    2015-01-01

    Neutrophils are the most abundant leukocytes in blood and are considered to be the first line of defense during inflammation and infections. In addition, neutrophils are also found infiltrating many types of tumors. Tumor-associated neutrophils (TANs) have relevant roles in malignant disease. Indeed neutrophils may be potent antitumor effector cells. However, increasing clinical evidence shows TANs correlate with poor prognosis. The tumor microenvironment controls neutrophil recruitment and in turn TANs help tumor progression. Hence, TANs can be beneficial or detrimental to the host. It is the purpose of this review to highlight these two sides of the neutrophil coin in cancer and to describe recent studies that provide some light on the mechanisms for neutrophil recruitment to the tumor, for neutrophils supporting tumor progression, and for neutrophil activation to enhance their antitumor functions.

  12. Activation of human leukocytes on tantalum trabecular metal in comparison to commonly used orthopedic metal implant materials.

    Science.gov (United States)

    Schildhauer, T A; Peter, E; Muhr, G; Köller, M

    2009-02-01

    We analyzed leukocyte functions and cytokine response of human leukocytes toward porous tantalum foam biomaterial (Trabecular Metaltrade mark, TM) in comparison to equally sized solid orthopedic metal implant materials (pure titanium, titanium alloy, stainless steel, pure tantalum, and tantalum coated stainless steel). Isolated peripheral blood mononuclear cells (PBMC) and polymorphonuclear neutrophil leukocytes (PMN) were cocultured with equally sized metallic test discs for 24 h. Supernatants were analyzed for cytokine content by enzyme-linked immunosorbent assay. Compared to the other used test materials there was a significant increase in the release of IL (interleukin)-1ra and IL-8 from PMN, and of IL-1ra, IL-6, and TNF-alpha from PBMC in response to the TM material. The cytokine release correlated with surface roughness of the materials. In contrast, the release of IL-2 was not induced showing that mainly myeloid leukocytes were activated. In addition, supernatants of these leukocyte/material interaction (conditioned media, CM) were subjected to whole blood cell function assays (phagocytosis, chemotaxis, bacterial killing). There was a significant increase in the phagocytotic capacity of leukocytes in the presence of TM-conditioned media. The chemotactic response of leukocytes toward TM-conditioned media was significantly higher compared to CM obtained from other test materials. Furthermore, the bactericidal capacity of whole blood was enhanced in the presence of TM-conditioned media. These results indicate that leukocyte activation at the surface of TM material induces a microenvironment, which may enhance local host defense mechanisms.

  13. Identification of glutathione adducts of α-chlorofatty aldehydes produced in activated neutrophils

    Science.gov (United States)

    Duerr, Mark A.; Aurora, Rajeev; Ford, David A.

    2015-01-01

    α-Chlorofatty aldehydes (α-ClFALDs) are produced by hypochlorous acid targeting plasmalogens during neutrophil activation. This study investigated the reaction of the α-chlorinated carbon of α-ClFALD with the nucleophile, GSH. Utilizing ESI/MS/MS, the reaction product of GSH and the 16-carbon α-ClFALD, 2-chlorohexadecanal (2-ClHDA), was characterized. The resulting conjugate of 2-ClHDA and GSH (HDA-GSH) has an intact free aldehyde, and the chlorine at the α-carbon is ejected. Stable isotope-labeled [d4]HDA-GSH was synthesized, which further confirmed the structure, and was used to quantify natural α-ClFALD conjugates of GSH (FALD-GSH) using reverse-phase LC with detection by ESI/MS/MS using selected reaction monitoring. HDA-GSH is elevated in RAW 264.7 cells treated with physiologically relevant concentrations of exogenous 2-ClHDA. Furthermore, PMA-treated primary human neutrophils have elevated levels of HDA-GSH and the conjugate of 2-chlorooctadecanal (2-ClODA) and GSH (ODA-GSH), as well as elevated levels of 2-ClHDA and 2-ClODA. Production of both conjugates in PMA-stimulated neutrophils was reduced by 3-aminotriazole pretreatment, which also blocks endogenous α-ClFALD production. Additionally, plasma FALD-GSH levels were elevated in the K/BxN mouse arthritis model. Taken together, these studies demonstrate novel peptidoaldehydes derived from GSH and α-ClFALD in activated human neutrophils and in vivo in K/BxN mice. PMID:25814023

  14. Mitochondrial membrane potential in human neutrophils is maintained by complex III activity in the absence of supercomplex organisation

    NARCIS (Netherlands)

    van Raam, Bram J.; Sluiter, Wim; de Wit, Elly; Roos, Dirk; Verhoeven, Arthur J.; Kuijpers, Taco W.

    2008-01-01

    BACKGROUND: Neutrophils depend mainly on glycolysis for their energy provision. Their mitochondria maintain a membrane potential (Deltapsi(m)), which is usually generated by the respiratory chain complexes. We investigated the source of Deltapsi(m) in neutrophils, as compared to peripheral blood

  15. Neutrophils in Cancer: Two Sides of the Same Coin

    Directory of Open Access Journals (Sweden)

    Eileen Uribe-Querol

    2015-01-01

    Full Text Available Neutrophils are the most abundant leukocytes in blood and are considered to be the first line of defense during inflammation and infections. In addition, neutrophils are also found infiltrating many types of tumors. Tumor-associated neutrophils (TANs have relevant roles in malignant disease. Indeed neutrophils may be potent antitumor effector cells. However, increasing clinical evidence shows TANs correlate with poor prognosis. The tumor microenvironment controls neutrophil recruitment and in turn TANs help tumor progression. Hence, TANs can be beneficial or detrimental to the host. It is the purpose of this review to highlight these two sides of the neutrophil coin in cancer and to describe recent studies that provide some light on the mechanisms for neutrophil recruitment to the tumor, for neutrophils supporting tumor progression, and for neutrophil activation to enhance their antitumor functions.

  16. Neutrophilic respiratory tract inflammation and peripheral blood neutrophilia after grain sorghum dust extract challenge.

    Science.gov (United States)

    Von Essen, S G; O'Neill, D P; McGranaghan, S; Olenchock, S A; Rennard, S I

    1995-11-01

    To determine if inhalation of grain sorghum dust in the laboratory would cause neutrophilic upper and lower respiratory tract inflammation in human volunteers, as well as systemic signs of illness. Prospective. University of Nebraska Medical Center. Thirty normal volunteers. Inhalation challenge with 20 mL of a nebulized solution of filter-sterilized grain sorghum dust extract (GSDE). One group received prednisone, 20 mg for 2 days, prior to the challenge. Bronchoscopy with bronchoalveolar lavage (BAL) was performed 24 h after challenge, with samples collected as bronchial and alveolar fractions. Findings included visible signs of airways inflammation, quantified as the bronchitis index. The percentage of bronchial neutrophils was significantly increased in those challenged with GSDE vs the control solution, Hanks' balanced salt solution (40.3 +/- 4.5% vs 14.3 +/- 5.1%, p grain dust extract. To explain the increase in peripheral blood neutrophil counts, the capacity of the peripheral blood neutrophils to migrate in chemotaxis experiments was examined. The results demonstrate an increase in peripheral blood neutrophils and an increase in chemotactic responsiveness. Inhalation challenge with a grain dust extract causes respiratory tract inflammation and a peripheral blood neutrophilia. One reason for this may be an increase in activated peripheral blood neutrophils.

  17. NR4A orphan nuclear receptor family members, NR4A2 and NR4A3, regulate neutrophil number and survival.

    Science.gov (United States)

    Prince, Lynne R; Prosseda, Svenja D; Higgins, Kathryn; Carlring, Jennifer; Prestwich, Elizabeth C; Ogryzko, Nikolay V; Rahman, Atiqur; Basran, Alexander; Falciani, Francesco; Taylor, Philip; Renshaw, Stephen A; Whyte, Moira K B; Sabroe, Ian

    2017-08-24

    The lifespan of neutrophils is plastic and highly responsive to factors that regulate cellular survival. Defects in neutrophil number and survival are common to both hematologic disorders and chronic inflammatory diseases. At sites of inflammation, neutrophils respond to multiple signals that activate protein kinase A (PKA) signaling, which positively regulates neutrophil survival. The aim of this study was to define transcriptional responses to PKA activation and to delineate the roles of these factors in neutrophil function and survival. In human neutrophil gene array studies, we show that PKA activation upregulates a significant number of apoptosis-related genes, the most highly regulated of these being NR4A2 and NR4A3 Direct PKA activation by the site-selective PKA agonist pair N6/8-AHA (8-AHA-cAMP and N6-MB-cAMP) and treatment with endogenous activators of PKA, including adenosine and prostaglandin E2, results in a profound delay of neutrophil apoptosis and concomitant upregulation of NR4A2/3 in a PKA-dependent manner. NR4A3 expression is also increased at sites of neutrophilic inflammation in a human model of intradermal inflammation. PKA activation also promotes survival of murine neutrophil progenitor cells, and small interfering RNA to NR4A2 decreases neutrophil production in this model. Antisense knockdown of NR4A2 and NR4A3 homologs in zebrafish larvae significantly reduces the absolute neutrophil number without affecting cellular migration. In summary, we show that NR4A2 and NR4A3 are components of a downstream transcriptional response to PKA activation in the neutrophil, and that they positively regulate neutrophil survival and homeostasis. © 2017 by The American Society of Hematology.

  18. Mycobacteria attenuate nociceptive responses by formyl peptide receptor triggered opioid peptide release from neutrophils.

    Directory of Open Access Journals (Sweden)

    Heike L Rittner

    2009-04-01

    Full Text Available In inflammation, pain is regulated by a balance of pro- and analgesic mediators. Analgesic mediators include opioid peptides which are secreted by neutrophils at the site of inflammation, leading to activation of opioid receptors on peripheral sensory neurons. In humans, local opioids and opioid peptides significantly downregulate postoperative as well as arthritic pain. In rats, inflammatory pain is induced by intraplantar injection of heat inactivated Mycobacterium butyricum, a component of complete Freund's adjuvant. We hypothesized that mycobacterially derived formyl peptide receptor (FPR and/or toll like receptor (TLR agonists could activate neutrophils, leading to opioid peptide release and inhibition of inflammatory pain. In complete Freund's adjuvant-induced inflammation, thermal and mechanical nociceptive thresholds of the paw were quantified (Hargreaves and Randall-Selitto methods, respectively. Withdrawal time to heat was decreased following systemic neutrophil depletion as well as local injection of opioid receptor antagonists or anti-opioid peptide (i.e. Met-enkephalin, beta-endorphin antibodies indicating an increase in pain. In vitro, opioid peptide release from human and rat neutrophils was measured by radioimmunoassay. Met-enkephalin release was triggered by Mycobacterium butyricum and formyl peptides but not by TLR-2 or TLR-4 agonists. Mycobacterium butyricum induced a rise in intracellular calcium as determined by FURA loading and calcium imaging. Opioid peptide release was blocked by intracellular calcium chelation as well as phosphoinositol-3-kinase inhibition. The FPR antagonists Boc-FLFLF and cyclosporine H reduced opioid peptide release in vitro and increased inflammatory pain in vivo while TLR 2/4 did not appear to be involved. In summary, mycobacteria activate FPR on neutrophils, resulting in tonic secretion of opioid peptides from neutrophils and in a decrease in inflammatory pain. Future therapeutic strategies may aim

  19. Modulation of IgE-dependent COX-2 gene expression by reactive oxygen species in human neutrophils.

    Science.gov (United States)

    Vega, Antonio; Chacón, Pedro; Alba, Gonzalo; El Bekay, Rajaa; Martín-Nieto, José; Sobrino, Francisco

    2006-07-01

    Cyclooxygenase (COX) is a key enzyme in prostaglandin (PG) synthesis. Up-regulation of its COX-2 isoform is responsible for the increased PG release, taking place under inflammatory conditions, and also, is thought to be involved in allergic and inflammatory diseases. In the present work, we demonstrate that COX-2 expression becomes highly induced by anti-immunoglobulin E (IgE) antibodies and by antigens in human neutrophils from allergic patients. This induction was detected at mRNA and protein levels and was accompanied by a concomitant PGE(2) and thromboxane A(2) release. We also show evidence that inhibitors of reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, such as 4-(2-aminoethyl)benzenesulphonyl fluoride and 4-hydroxy-3-methoxyaceto-phenone, completely cancelled anti-IgE-induced COX-2 protein up-regulation, suggesting that this process is mediated by reactive oxygen species (ROS) derived from NADPH oxidase activity. Moreover, the mitogen-activated protein kinases (MAPKs), p38 and extracellular signal-regulated kinase, and also, the transcription factor, nuclear factor (NF)-kappaB, are involved in the up-regulation of COX-2 expression, as specific chemical inhibitors of these two kinases, such as SB203580 and PD098059, and of the NF-kappaB pathway, such as N(alpha)-benzyloxycarbonyl-l-leucyl-l-leucyl-l-leucinal, abolished IgE-dependent COX-2 induction. Evidence is also presented, using Fe(2)(+)/Cu(2)(+) ions, that hydroxyl radicals generated from hydrogen peroxide through Fenton reactions could constitute candidate modulators able to directly trigger anti-IgE-elicited COX-2 expression through MAPK and NF-kappaB pathways. Present results underscore a new role for ROS as second messengers in the modulation of COX-2 expression by human neutrophils in allergic conditions.

  20. Radiation-induced muscositis and neutrophil granulocytes in oral mucosa; Strahleninduzierte Mukositis und neutrophile Granulozyten in der Mundschleimhaut

    Energy Technology Data Exchange (ETDEWEB)

    Schmidberger, H.; Rave-Fraenk, M.; Kim, S.; Hille, A.; Pradier, O.; Hess, C.F. [Klinik fuer Strahlentherapie und Radioonkologie, Univ. Goettingen (Germany)

    2003-10-01

    Background: Chemotherapy-induced mucositis can be related to a decrease in oral neutrophils. We tested the relationship between radiation-induced mucositis and oral neutrophil counts. Patients and Methods: Oral neutrophil counts were obtained for ten patients with head and neck cancer who received radiotherapy of the pharynx and oral cavity. Four patients received additional chemotherapy (5-FU, Mitomycin). Counts were obtained before and during treatment; four healthy volunteers were included in the study as well. For evaluation, a quantitative mouth rinse assay, including neutrophil-staining with acridin-orange, was applied. Results: We observed large inter-individual variations with respect to neutrophil counts for patients and control persons (Table 1). During treatment (irradiation or chemoirradiation), large intra-individual variations were seen additionally (Figure 1). We found a correlation between neutrophil counts and clinical reaction grade. Neutrophil counts increased with increasing mucositis (Figure 2). This increase was more pronounced for patients treated with chemoirradiation compared to radiation alone. Treatment breaks at weekends had no clear influence on neutrophil counts. Conclusions: We observed a weak correlation between neutrophil counts and clinical reaction grade. However, the variations in neutrophil counts are too large to utilize this parameter as a surrogate for clinical mucositis grading. The assumption that a decrease in oral neutrophils is associated with radiation-induced mucositis was clearly negated. (orig.) [German] Hintergrund: Die chemotherapieinduzierte Mukositis kann mit einer Verarmung der Mundschleimhaut an neutrophilen Granulozyten vergesellschaftet sein. Wir ueberprueften den Zusammenhang zwischen der radiogenen Mukositis und der Anzahl neutrophiler Granulozyten. Patienten und Methoden: Bei zehn Patienten mit Tumoren der Kopf-Hals-Region, die sich einer Strahlentherapie unterzogen, wurde die Anzahl enoraler neutrophiler

  1. Neutrophil labeling with [{sup 99m}Tc]-technetium stannous colloid is complement receptor 3-mediated and increases the neutrophil priming response to lipopolysaccharide

    Energy Technology Data Exchange (ETDEWEB)

    Gallagher, Hayley [School of Veterinary and Biomedical Sciences, James Cook University, Townsville, Queensland 4811 (Australia); Ramsay, Stuart C. [School of Medicine, James Cook University, Townsville, Queensland (Australia) and Townsville Nuclear Medicine, Mater Hospital, Townsville, Queensland 4812 (Australia)]. E-mail: stuart.ramsey@jcu.edu.au; Barnes, Jodie [School of Veterinary and Biomedical Sciences, James Cook University, Townsville, Queensland 4811 (Australia); Maggs, Jacqueline [Department of Nuclear Medicine, Townsville Hospital, Townsville, Queensland 4814 (Australia); Cassidy, Nathan [Townsville Nuclear Medicine, Mater Hospital, Townsville, Queensland 4812 (Australia); Ketheesan, Natkunam [School of Veterinary and Biomedical Sciences, James Cook University, Townsville, Queensland 4811 (Australia); School of Medicine, James Cook University, Townsville, Queensland (Australia)

    2006-04-15

    Introduction: [{sup 99m}Tc]-technetium stannous colloid (TcSnC)-labeled white cells are used to image inflammation. Neutrophil labeling with TcSnC is probably phagocytic, but the phagocytic receptor involved is not known. We hypothesised that complement receptor 3 (CR3) plays a key role. Phagocytic labeling could theoretically result in neutrophil activation or priming, affecting the behaviour of labeled cells. Fluorescence-activated cell sorter (FACS) analysis side scatter measurements can assess neutrophil activation and priming. Methods: We tested whether TcSnC neutrophil labeling is CR3-mediated by assessing if neutrophil uptake of TcSnC was inhibited by a monoclonal antibody (mAb) directed at the CD11b component of CR3. We tested if TcSnC-labeled neutrophils show altered activation or priming status, comparing FACS side scatter in labeled and unlabeled neutrophils and examining the effect of lipopolysaccharide (LPS), a known priming agent. Results: Anti-CD11b mAb reduced neutrophil uptake of TcSnC in a dose-dependent fashion. Labeled neutrophils did not show significantly increased side scatter compared to controls. LPS significantly increased side scatter in control cells and labeled neutrophils. However, the increase was significantly greater in labeled neutrophils than unlabeled cells. Conclusions: Neutrophil labeling with TcSnC is related to the function of CR3, a receptor which plays a central role in phagocytosis. TcSnC labeling did not significantly activate or prime neutrophils. However, labeled neutrophils showed a greater priming response to LPS. This could result in labeled neutrophils demonstrating increased adhesion on activated endothelium at sites of infection.

  2. Correlation between the neutrophil-lymphocyte count ratio and bacterial infection in patient with human immunodeficiency virus

    Science.gov (United States)

    Kusnadi, D.; Liwang, M. N. I.; Katu, S.; Mubin, A. H.; Halim, R.

    2018-03-01

    Parameters for starting antibiotic therapy such as CRP andleukocytosis are considered non-specific. Previous studies have shown the Neutrophil-Lymphocyte Count Ratio (NLCR) can serve as the basis of bacterial infection, the level of infection, and the basis of antibiotic therapy. Compared with the Procalcitonin parameter, this NLCR is rapid, an inexpensive and requires no additional sampling. To determine the correlation between The Neutrophil-LymphocyteCount Ratio to bacterial infection in HIV patients. This study was a cross-sectional observational approach to HIV subject at Wahidin Sudirohusodo and Hasanuddin University Hospital. The subjects performed routine blood, microbiology test,and blood Procalcitonin levels tests. Then performed NLCR calculations based on routine blood results. The subjects then grouped the presence or absence of bacterial infection.In 146 study subjects, there were 78 (53.4%) with bacterial infections and 68 (46.6%) without bacterial infection as controls. Subjects with bacterial infections had higher total neutrophils (84.83) compared with non-bacterial infections. Subjects with bacterial infections had total lymphocytes with an average of 8.51 lower than non-bacterial infections. Subjects with bacterial infections had higher NLCR values with an average of 12.80. The Neutrophil-Lymphocyte Count Ratio can become a marker of bacterial infection in HIV patients.

  3. Estudio de la adición de K+ y LiNbO3 en las propiedades finales del Relaxor PMN procesado por mezcla de polvos

    Directory of Open Access Journals (Sweden)

    Fernández, J. F.

    2004-06-01

    Full Text Available PMN ceramic relaxor has been investigated by several researchers and many aspects of this material, like powder morphology, phase decomposition, weight loss during sintering process, densification, between others, still are investigated. PMN powder preparation has been shown more efficient when synthesized by columbite route, however lead addition stage for the PMN powder synthesis remains problematical. Therefore, this work proposes a new association of methodologies, using columbite route and the hydroxide precipitation method. Through use of the powder mixture technique, which permitted to obtain good green and sintered densities, was possible to observe K+ y Li+ dopants reduce weight loss in sintering process and change significantly the dielectric properties. Addition of LiNbO3 seeds in conformation stage, which react in a distinct way as a function of the particle size, promotes the formation of differenced grains in the ceramic bulk. Consequently, very different dielectrics properties from conventional PMN ceramic were obtained.El relaxor cerámico PMN ha sido investigado por un gran número de investigadores en el transcurso del tiempo y muchos aspectos de este material, como la morfología de los polvos, descomposición de fases, pérdida de peso en el proceso de sinterización, densificación, entre otras, siguen siendo objetos de investigación. La preparación de polvos de PMN se ha mostrado más efectiva cuando son sintetizados por la ruta de la columbita, pero la etapa de adición de plomo para la síntesis de polvos de PMN todavía sigue problemática. Por lo tanto, este trabajo propone una nueva asociación de metodologías, utilizando la ruta de la columbita y el método de precipitación por hidróxidos. Mediante la utilización de una técnica de mezcla de polvos, la cual permitió lograr buenas densidades en verde y sinterizadas, fue posible observar que los dopantes K+ y Li+ reducen las pérdidas de peso en el proceso de

  4. Neutrophils in Tuberculosis: Heterogeneity Shapes the Way?

    Science.gov (United States)

    2017-01-01

    Infection with M. tuberculosis remains one of the most common infections in the world. The outcome of the infection depends on host ability to mount effective protection and balance inflammatory responses. Neutrophils are innate immune cells implicated in both processes. Accordingly, during M. tuberculosis infection, they play a dual role. Particularly, they contribute to the generation of effector T cells, participate in the formation of granuloma, and are directly involved in tissue necrosis, destruction, and infection dissemination. Neutrophils have a high bactericidal potential. However, data on their ability to eliminate M. tuberculosis are controversial, and the results of neutrophil depletion experiments are not uniform. Thus, the overall roles of neutrophils during M. tuberculosis infection and factors that determine these roles are not fully understood. This review analyzes data on neutrophil defensive and pathological functions during tuberculosis and considers hypotheses explaining the dualism of neutrophils during M. tuberculosis infection and tuberculosis disease. PMID:28626346

  5. Leukotriene B4 omega-hydroxylase in human polymorphonuclear leukocytes. Suicidal inactivation by acetylenic fatty acids.

    Science.gov (United States)

    Shak, S; Reich, N O; Goldstein, I M; Ortiz de Montellano, P R

    1985-10-25

    Human polymorphonuclear leukocytes (PMN) not only generate and respond to leukotriene B4 (LTB4), but also catabolize this mediator of inflammation rapidly and specifically by omega-oxidation (probably due to the action of a cytochrome P-450 enzyme). To develop pharmacologically useful inhibitors of the LTB4 omega-hydroxylase in human PMN, we devised a general scheme for synthesizing terminal acetylenic fatty acids based on the "acetylenic zipper" reaction. We found that the LTB4 omega-hydroxylase in intact PMN and in PMN sonicates is inactivated in a concentration-dependent fashion by terminal acetylenic analogues of lauric, palmitic, and stearic acids (i.e. 11-dodecynoic, 15-hexadecynoic, and 17-octadecynoic acids). Consistent with a suicidal process, inactivation of the LTB4 omega-hydroxylase requires molecular oxygen and NADPH, is time-dependent, and follows pseudo-first-order kinetics. Inactivation of the omega-hydroxylase by acetylenic fatty acids also is dependent on the terminal acetylenic moiety and the carbon chain length. Saturated fatty acids lacking a terminal acetylenic moiety do not inactivate the omega-hydroxylase. In addition, the two long-chain (C16, C18) acetylenic fatty acids inactivate the omega-hydroxylase at much lower concentrations (less than 5.0 microM) than those required for inactivation by the short-chain (C12) terminal acetylenic fatty acid (100 microM). Potent suicidal inhibitors of the LTB4 omega-hydroxylase in human PMN will help elucidate the roles played by LTB4 and its omega-oxidation products in regulating PMN function and in mediating inflammation.

  6. Neutrophil Extracellular Traps are Involved in the Innate Immune Response to Infection with Leptospira

    Science.gov (United States)

    Scharrig, Emilia; Carestia, Agostina; Ferrer, María F.; Cédola, Maia; Pretre, Gabriela; Drut, Ricardo; Picardeau, Mathieu; Schattner, Mirta; Gómez, Ricardo M.

    2015-01-01

    NETosis is a process by which neutrophils extrude their DNA together with bactericidal proteins that trap and/or kill pathogens. In the present study, we evaluated the ability of Leptospira spp. to induce NETosis using human ex vivo and murine in vivo models. Microscopy and fluorometric studies showed that incubation of human neutrophils with Leptospira interrogans serovar Copenhageni strain Fiocruz L1-130 (LIC) resulted in the release of DNA extracellular traps (NETs). The bacteria number, pathogenicity and viability were relevant factors for induction of NETs, but bacteria motility was not. Entrapment of LIC in the NETs resulted in LIC death; however, pathogenic but not saprophytic Leptospira sp. exerted nuclease activity and degraded DNA. Mice infected with LIC showed circulating NETs after 2 days post-infection (dpi). Depletion of neutrophils with mAb1A8 significantly reduced the amount of intravascular NETs in LIC-infected mice, increasing bacteremia at 3 dpi. Although there was a low bacterial burden, scarce neutrophils and an absence of inflammation in the early stages of infection in the kidney and liver, at the beginning of the leptospiruric phase, the bacterial burden was significantly higher in kidneys of neutrophil-depleted-mice compared to non-depleted and infected mice. Surprisingly, interstitial nephritis was of similar intensity in both groups of infected mice. Taken together, these data suggest that LIC triggers NETs, and that the intravascular formation of these DNA traps appears to be critical not only to prevent early leptospiral dissemination but also to preclude further bacterial burden. PMID:26161745

  7. Mitochondrial membrane potential in human neutrophils is maintained by complex III activity in the absence of supercomplex organisation

    NARCIS (Netherlands)

    B.J. van Raam (Bram); W.J. Sluiter (Wim); F.R.C. de Wit (Frank); D. Roos (Dirk); A.J. Verhoeven (Arthur); T.W. Kuijpers (Taco W.)

    2008-01-01

    textabstractBackground: Neutrophils depend mainly on glycolysis for their enegry provision. Their mitochondria maintain a membrace potential (ΔΨm), which is usually generated by the repiratory chain complexes. We investigated the source of ΔΨm in neutrophils, as compared to peripheral blood

  8. Rapid Sequestration of Leishmania mexicana by Neutrophils Contributes to the Development of Chronic Lesion.

    Directory of Open Access Journals (Sweden)

    Benjamin P Hurrell

    2015-05-01

    Full Text Available The protozoan Leishmania mexicana parasite causes chronic non-healing cutaneous lesions in humans and mice with poor parasite control. The mechanisms preventing the development of a protective immune response against this parasite are unclear. Here we provide data demonstrating that parasite sequestration by neutrophils is responsible for disease progression in mice. Within hours of infection L. mexicana induced the local recruitment of neutrophils, which ingested parasites and formed extracellular traps without markedly impairing parasite survival. We further showed that the L. mexicana-induced recruitment of neutrophils impaired the early recruitment of dendritic cells at the site of infection as observed by intravital 2-photon microscopy and flow cytometry analysis. Indeed, infection of neutropenic Genista mice and of mice depleted of neutrophils at the onset of infection demonstrated a prominent role for neutrophils in this process. Furthermore, an increase in monocyte-derived dendritic cells was also observed in draining lymph nodes of neutropenic mice, correlating with subsequent increased frequency of IFNγ-secreting T helper cells, and better parasite control leading ultimately to complete healing of the lesion. Altogether, these findings show that L. mexicana exploits neutrophils to block the induction of a protective immune response and impairs the control of lesion development. Our data thus demonstrate an unanticipated negative role for these innate immune cells in host defense, suggesting that in certain forms of cutaneous leishmaniasis, regulating neutrophil recruitment could be a strategy to promote lesion healing.

  9. Semi-Automatic Rating Method for Neutrophil Alkaline Phosphatase Activity.

    Science.gov (United States)

    Sugano, Kanae; Hashi, Kotomi; Goto, Misaki; Nishi, Kiyotaka; Maeda, Rie; Kono, Keigo; Yamamoto, Mai; Okada, Kazunori; Kaga, Sanae; Miwa, Keiko; Mikami, Taisei; Masauzi, Nobuo

    2017-01-01

    The neutrophil alkaline phosphatase (NAP) score is a valuable test for the diagnosis of myeloproliferative neoplasms, but it has still manually rated. Therefore, we developed a semi-automatic rating method using Photoshop ® and Image-J, called NAP-PS-IJ. Neutrophil alkaline phosphatase staining was conducted with Tomonaga's method to films of peripheral blood taken from three healthy volunteers. At least 30 neutrophils with NAP scores from 0 to 5+ were observed and taken their images. From which the outer part of neutrophil was removed away with Image-J. These were binarized with two different procedures (P1 and P2) using Photoshop ® . NAP-positive area (NAP-PA) and granule (NAP-PGC) were measured and counted with Image-J. The NAP-PA in images binarized with P1 significantly (P < 0.05) differed between images with NAP scores from 0 to 3+ (group 1) and those from 4+ to 5+ (group 2). The original images in group 1 were binarized with P2. NAP-PGC of them significantly (P < 0.05) differed among all four NAP score groups. The mean NAP-PGC with NAP-PS-IJ indicated a good correlation (r = 0.92, P < 0.001) to results by human examiners. The sensitivity and specificity of NAP-PS-IJ were 60% and 92%, which might be considered as a prototypic method for the full-automatic rating NAP score. © 2016 Wiley Periodicals, Inc.

  10. Endogenous adenosine produced during hypoxia attenuates neutrophil accumulation: coordination by extracellular nucleotide metabolism.

    Science.gov (United States)

    Eltzschig, Holger K; Thompson, Linda F; Karhausen, Jorn; Cotta, Richard J; Ibla, Juan C; Robson, Simon C; Colgan, Sean P

    2004-12-15

    Hypoxia is a well-documented inflammatory stimulus and results in tissue polymorphonuclear leukocyte (PMN) accumulation. Likewise, increased tissue adenosine levels are commonly associated with hypoxia, and given the anti-inflammatory properties of adenosine, we hypothesized that adenosine production via adenine nucleotide metabolism at the vascular surface triggers an endogenous anti-inflammatory response during hypoxia. Initial in vitro studies indicated that endogenously generated adenosine, through activation of PMN adenosine A(2A) and A(2B) receptors, functions as an antiadhesive signal for PMN binding to microvascular endothelia. Intravascular nucleotides released by inflammatory cells undergo phosphohydrolysis via hypoxia-induced CD39 ectoapyrase (CD39 converts adenosine triphosphate/adenosine diphosphate [ATP/ADP] to adenosine monophosphate [AMP]) and CD73 ecto-5'-nucleotidase (CD73 converts AMP to adenosine). Extensions of our in vitro findings using cd39- and cd73-null animals revealed that extracellular adenosine produced through adenine nucleotide metabolism during hypoxia is a potent anti-inflammatory signal for PMNs in vivo. These findings identify CD39 and CD73 as critical control points for endogenous adenosine generation and implicate this pathway as an innate mechanism to attenuate excessive tissue PMN accumulation.

  11. 18F-fluoro-2-deoxyglucose PET informs neutrophil accumulation and activation in lipopolysaccharide-induced acute lung injury.

    Science.gov (United States)

    Rodrigues, Rosana S; Bozza, Fernando A; Hanrahan, Christopher J; Wang, Li-Ming; Wu, Qi; Hoffman, John M; Zimmerman, Guy A; Morton, Kathryn A

    2017-05-01

    Molecular imaging of the earliest events related to the development of acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) could facilitate therapeutic development and patient management. We previously reported that 18 F-fluoro-2-deoxyglucose ( 18 F-FDG) PET identifies ALI/ARDS prior to radiographic abnormalities. The purpose of this study was to establish the time courses of 18 F-FDG uptake, edema and neutrophil recruitment in an endotoxin-induced acute lung injury model and to examine molecular events required for 14 C-2DG uptake in activated neutrophils. Lung uptake of 18 F-FDG was measured by PET in control male Sprague Dawley rats and at 2, 6 and 24h following the intraperitoneal injection of 10mg/kg LPS. Lung edema (attenuation) was measured by microCT. Neutrophil influx into the lungs was measured by myeloperoxidase assay. Control and activated human donor neutrophils were compared for uptake of 14 C-2DG, transcription and content of hexokinase and GLUT isoforms and for hexokinase (HK) activity. Significant uptake of 18 F-FDG occurred by 2h following LPS, and progressively increased to 24h. Lung uptake of 18 F-FDG preceded increased CT attenuation (lung edema). Myeloperoxidase activity in the lungs, supporting neutrophil influx, paralleled 18 F-FDG uptake. Activation of isolated human neutrophils resulted in increased uptake of 14 C-2DG, expression of GLUT 3 and GLUT 4 and expression and increased HK1 activity. Systemic endotoxin-induced ALI results in very early and progressive uptake of 18 F-FDG, parallels neutrophil accumulation and occurs earlier than lung injury edema. Activated neutrophils show increased uptake of 14 C-2DG, expression of specific GLUT3, GLUT4 and HK1 protein and HK activity. ADVANCES IN KNOWLEDGE AND IMPLICATIONS FOR PATIENT CARE: 18 F-FDG pulmonary uptake is an early biomarker of neutrophil recruitment in ALI and is associated with specific molecular events that mediate 14 C-2DG uptake in activated neutrophils. 18 F

  12. Angiogenic activity of bFGF and VEGF suppressed by proteolytic cleavage by neutrophil elastase

    International Nuclear Information System (INIS)

    Ai, Shingo; Cheng Xianwu; Inoue, Aiko; Nakamura, Kae; Okumura, Kenji; Iguchi, Akihisa; Murohara, Toyoaki; Kuzuya, Masafumi

    2007-01-01

    Neutrophil elastase (NE), a serine protease released from the azurophil granules of activated neutrophil, proteolytically cleaves multiple cytokines, and cell surface proteins. In the present study, we examined whether NE affects the biological abilities of angiogenic growth factors such as basic-fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF). NE degraded bFGF and VEGF in a time- and concentration-dependent manner, and these degradations were suppressed by sivelestat, a synthetic inhibitor of NE. The bFGF- or VEGF-mediated proliferative activity of human umbilical vein endothelial cells was inhibited by NE, and the activity was recovered by sivelestat. Furthermore, NE reduced the bFGF- or VEGF-induced tubulogenic response of the mice aortas, ex vivo angiogenesis assay, and these effects were also recovered by sivelestat. Neutrophil-derived NE degraded potent angiogenic factors, resulting in loss of their angiogenic activity. These findings provide additional insight into the role played by neutrophils in the angiogenesis process at sites of inflammation

  13. Interleukin-17A and Neutrophils in a Murine Model of Bird-Related Hypersensitivity Pneumonitis.

    Directory of Open Access Journals (Sweden)

    Masahiro Ishizuka

    Full Text Available Hypersensitivity pneumonitis (HP is an immune mediated lung disease induced by the repeated inhalation of a wide variety of antigens. Bird-related hypersensitivity pneumonitis (BRHP is one of the most common forms of HP in human and results from the inhalation of avian antigens. The findings of a recent clinical analysis suggest that in addition to Th1 factors, the levels of interleukin(IL-17 and IL-17-associated transcripts are increased in the setting of HP, and that both IL-17A and neutrophils are crucial for the development of pulmonary inflammation in murine models of HP. Our objectives were to investigate the roles of IL-17A and neutrophils in granuloma-forming inflammation in an acute HP model. We developed a mouse model of acute BRHP using pigeon dropping extract. We evaluated the process of granuloma formation and the roles of both IL-17A and neutrophils in a model. We found that the neutralization of IL-17A by the antibody attenuated granuloma formation and the recruitment of neutrophils, and also decreased the expression level of chemokine(C-X-C motif ligand 5 (CXCL5 in the acute HP model. We confirmed that most of the neutrophils in the acute HP model exhibited immunoreactivity to the anti-IL-17 antibody. We have identified the central roles of both IL-17A and neutrophils in the pathogenesis of granuloma formation in acute HP. We have also assumed that neutrophils are an important source of IL-17A in an acute HP model, and that the IL-17A-CXCL5 pathway may be responsible for the recruitment of neutrophils.

  14. The complex interplay between neutrophils and cancer.

    Science.gov (United States)

    Rakic, Andrea; Beaudry, Paul; Mahoney, Douglas J

    2018-03-01

    Neutrophils are the most abundant type of white blood cell, and are an essential component of the innate immune system. They characteristically arrive rapidly at sites of infection and injury, and release a variety of cytokines and toxic molecules to eliminate pathogens and elicit an acute inflammatory response. Research into the function of neutrophils in cancer suggest they have divergent roles. Indeed, while most studies have found neutrophils to be associated with cancer progression, others have also documented anticancer effects. In this review, we describe the investigations into neutrophil populations that have been implicated in promoting tumor growth and metastasis as well those demonstrating antitumor functions. The collective research suggests a complex role for neutrophils in cancer biology, which raises the prospect of their targeting for the treatment of cancer.

  15. Identification of glutathione adducts of α-chlorofatty aldehydes produced in activated neutrophils.

    Science.gov (United States)

    Duerr, Mark A; Aurora, Rajeev; Ford, David A

    2015-05-01

    α-Chlorofatty aldehydes (α-ClFALDs) are produced by hypochlorous acid targeting plasmalogens during neutrophil activation. This study investigated the reaction of the α-chlorinated carbon of α-ClFALD with the nucleophile, GSH. Utilizing ESI/MS/MS, the reaction product of GSH and the 16-carbon α-ClFALD, 2-chlorohexadecanal (2-ClHDA), was characterized. The resulting conjugate of 2-ClHDA and GSH (HDA-GSH) has an intact free aldehyde, and the chlorine at the α-carbon is ejected. Stable isotope-labeled [d4]HDA-GSH was synthesized, which further confirmed the structure, and was used to quantify natural α-ClFALD conjugates of GSH (FALD-GSH) using reverse-phase LC with detection by ESI/MS/MS using selected reaction monitoring. HDA-GSH is elevated in RAW 264.7 cells treated with physiologically relevant concentrations of exogenous 2-ClHDA. Furthermore, PMA-treated primary human neutrophils have elevated levels of HDA-GSH and the conjugate of 2-chlorooctadecanal (2-ClODA) and GSH (ODA-GSH), as well as elevated levels of 2-ClHDA and 2-ClODA. Production of both conjugates in PMA-stimulated neutrophils was reduced by 3-aminotriazole pretreatment, which also blocks endogenous α-ClFALD production. Additionally, plasma FALD-GSH levels were elevated in the K/BxN mouse arthritis model. Taken together, these studies demonstrate novel peptidoaldehydes derived from GSH and α-ClFALD in activated human neutrophils and in vivo in K/BxN mice. Copyright © 2015 by the American Society for Biochemistry and Molecular Biology, Inc.

  16. Spontaneous neutrophil migration patterns during sepsis after major burns.

    Science.gov (United States)

    Jones, Caroline N; Moore, Molly; Dimisko, Laurie; Alexander, Andrew; Ibrahim, Amir; Hassell, Bryan A; Warren, H Shaw; Tompkins, Ronald G; Fagan, Shawn P; Irimia, Daniel

    2014-01-01

    Finely tuned to respond quickly to infections, neutrophils have amazing abilities to migrate fast and efficiently towards sites of infection and inflammation. Although neutrophils ability to migrate is perturbed in patients after major burns, no correlations have yet been demonstrated between altered migration and higher rate of infections and sepsis in these patients when compared to healthy individuals. To probe if such correlations exist, we designed microfluidic devices to quantify the neutrophil migration phenotype with high precision. Inside these devices, moving neutrophils are confined in channels smaller than the neutrophils and forced to make directional decisions at bifurcations and around posts. We employed these devices to quantify neutrophil migration across 18 independent parameters in 74 blood samples from 13 patients with major burns and 3 healthy subjects. Blinded, retrospective analysis of clinical data and neutrophil migration parameters revealed that neutrophils isolated from blood samples collected during sepsis migrate spontaneously inside the microfluidic channels. The spontaneous neutrophil migration is a unique phenotype, typical for patients with major burns during sepsis and often observed one or two days before the diagnosis of sepsis is confirmed. The spontaneous neutrophil migration phenotype is rare in patients with major burns in the absence of sepsis, and is not encountered in healthy individuals. Our findings warrant further studies of neutrophils and their utility for early diagnosing and monitoring sepsis in patients after major burns.

  17. Pathophysiology of neutrophil-mediated extracellular redox reactions.

    Science.gov (United States)

    Jaganjac, Morana; Cipak, Ana; Schaur, Rudolf Joerg; Zarkovic, Neven

    2016-01-01

    Neutrophil granulocyte leukocytes (neutrophils) play fundamental role in the innate immune response. In the presence of adequate stimuli, neutrophils release excessive amount of reactive oxygen species (ROS) that may induce cell and tissue injury. Oxidative burst of neutrophils acts as a double-edged sword. It may contribute to the pathology of atherosclerosis and brain injury but is also necessary in resolving infections. Moreover, neutrophil-derived ROS may also have both a tumor promoting and tumor suppressing role. ROS have a specific activities and diffusion distance, which is related to their short lifetime. Therefore, the manner in which ROS will act depends on the cells targeted and the intra- and extracellular levels of individual ROS, which can further cause production of reactive aldehydes like 4-hydroxynonenal (HNE) that act as a second messengers of ROS. In this review we discuss the influence of neutrophil mediated extracellular redox reactions in ischemia reperfusion injury, transplant rejection and chronic diseases (atherosclerosis, inflammatory bowel diseases and cancer). At the end a brief overview of cellular mechanisms to maintain ROS homeostasis is given.

  18. Modulation of neutrophil and monocyte function by recombinant human granulocyte macrophage colony-stimulating factor in patients with lymphoma

    DEFF Research Database (Denmark)

    Kharazmi, A; Nielsen, H; Hovgaard, D

    1991-01-01

    by up to 43-fold. rhGM-CSF treatment did not affect degranulation of the neutrophils as measured by release of vitamin B12 binding protein. Degree of modulation of neutrophil and monocyte function by rhGM-CSF was independent of rhGM-CSF dosages administered. These data suggest that phagocytic defence...... and chemiluminescence responses to f-Met-Leu-Phe, zymosan activated serum (ZAS) and opsonized zymosan (OZ) were determined. It was observed that chemotactic response of neutrophils to f-Met-Leu-Phe and ZAS was reduced, whereas the chemiluminescence response of both cell types to f-Met-Leu-Phe and zymosan was enhanced...

  19. Neutrophil-Derived Proteases Escalate Inflammation through Activation of IL-36 Family Cytokines.

    Science.gov (United States)

    Henry, Conor M; Sullivan, Graeme P; Clancy, Danielle M; Afonina, Inna S; Kulms, Dagmar; Martin, Seamus J

    2016-02-02

    Recent evidence has strongly implicated the IL-1 family cytokines IL-36α, IL-36β, and IL-36γ as key initiators of skin inflammation. Similar to the other members of the IL-1 family, IL-36 cytokines are expressed as inactive precursors and require proteolytic processing for activation; however, the responsible proteases are unknown. Here, we show that IL-36α, IL-36β, and IL-36γ are activated differentially by the neutrophil granule-derived proteases cathepsin G, elastase, and proteinase-3, increasing their biological activity ~500-fold. Active IL-36 promoted a strong pro-inflammatory signature in primary keratinocytes and was sufficient to perturb skin differentiation in a reconstituted 3D human skin model, producing features resembling psoriasis. Furthermore, skin eluates from psoriasis patients displayed significantly elevated cathepsin G-like activity that was sufficient to activate IL-36β. These data identify neutrophil granule proteases as potent IL-36-activating enzymes, adding to our understanding of how neutrophils escalate inflammatory reactions. Inhibition of neutrophil-derived proteases may therefore have therapeutic benefits in psoriasis. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Comparison of acute ozone-induced nasal and pulmonary inflammatory responses

    International Nuclear Information System (INIS)

    Hotchkiss, J.A.; Harkema, J.R.; Sun, J.D.; Henderson, R.F.

    1988-01-01

    The present study was designed to compare the effects of acute ozone exposure in the nose and lungs of rats. Rats were exposed to 0.0, 0.12, 0.80, or 1.5 ppm O 3 for 6 h and were sacrificed immediately, 3,18, 42, or 66 h after exposure. Cellular inflammatory responses were assessed by quantitating polymorphonuclear neutrophils (PMN) recovered by nasal lavage (NL) and bronchoalveolar lavage (BAL) and morphometric quantitation of PMN within the nasal mucosa and pulmonary centriacinar region. Rats exposed to 0.12 ppm O 3 had a transient nasal PMN response 18 h after exposure but no increase in pulmonary PMN. Rats exposed to 0.8 ppm O 3 had a marked increase in nasal PMN immediately after exposure but the number of PMN within the nasal cavity decreased as the number of pulmonary PMN increased with time after exposure. Rats exposed to 1.5 ppm O 3 had an increase in pulmonary PMN beginning 3 h post-exposure, but no increase in nasal PMN at any time. Our results suggest that at high O 3 concentrations, the acute nasal inflammatory response is attenuated by a simultaneous, competing, inflammatory response within the lung. (author)

  1. Comparison of acute ozone-induced nasal and pulmonary inflammatory responses

    Energy Technology Data Exchange (ETDEWEB)

    Hotchkiss, J A; Harkema, J R; Sun, J D; Henderson, R F

    1988-12-01

    The present study was designed to compare the effects of acute ozone exposure in the nose and lungs of rats. Rats were exposed to 0.0, 0.12, 0.80, or 1.5 ppm O{sub 3} for 6 h and were sacrificed immediately, 3,18, 42, or 66 h after exposure. Cellular inflammatory responses were assessed by quantitating polymorphonuclear neutrophils (PMN) recovered by nasal lavage (NL) and bronchoalveolar lavage (BAL) and morphometric quantitation of PMN within the nasal mucosa and pulmonary centriacinar region. Rats exposed to 0.12 ppm O{sub 3} had a transient nasal PMN response 18 h after exposure but no increase in pulmonary PMN. Rats exposed to 0.8 ppm O{sub 3} had a marked increase in nasal PMN immediately after exposure but the number of PMN within the nasal cavity decreased as the number of pulmonary PMN increased with time after exposure. Rats exposed to 1.5 ppm O{sub 3} had an increase in pulmonary PMN beginning 3 h post-exposure, but no increase in nasal PMN at any time. Our results suggest that at high O{sub 3} concentrations, the acute nasal inflammatory response is attenuated by a simultaneous, competing, inflammatory response within the lung. (author)

  2. Age is the work of art? Impact of neutrophil and organism age on neutrophil extracellular trap formation.

    Science.gov (United States)

    Ortmann, Weronika; Kolaczkowska, Elzbieta

    2018-03-01

    Neutrophil extracellular traps or NETs are released by highly activated neutrophils in response to infectious agents, sterile inflammation, autoimmune stimuli and cancer. In the cells, the nuclear envelop disintegrates and decondensation of chromatin occurs that depends on peptidylarginine deiminase 4 (PAD4) and neutrophil elastase (NE). Subsequently, proteins from neutrophil granules (e.g., NE, lactoferrin and myeloperoxidase) and the nucleus (histones) bind to decondensed DNA and the whole structure is ejected from the cell. The DNA decorated with potent antimicrobials and proteases can act to contain dissemination of infection and in sterile inflammation NETs were shown to degrade cytokines and chemokines via serine proteases. On the other hand, overproduction of NETs, or their inadequate removal and prolonged presence in vasculature or tissues, can lead to bystander damage or even initiation of diseases. Considering the pros and cons of NET formation, it is of relevance if the stage of neutrophil maturation (immature, mature and senescent cells) affects the capacity to produce NETs as the cells of different age-related phenotypes dominate in given (pathological) conditions. Moreover, the immune system of neonates and elderly individuals is weaker than in adulthood. Is the same pattern followed when it comes to NETs? The overall importance of individual and neutrophil age on the capacity to release NETs is reviewed in detail and the significance of these facts is discussed.

  3. Giardia duodenalis infection reduces granulocyte infiltration in an in vivo model of bacterial toxin-induced colitis and attenuates inflammation in human intestinal tissue.

    Directory of Open Access Journals (Sweden)

    James A Cotton

    Full Text Available Giardia duodenalis (syn. G. intestinalis, G. lamblia is a predominant cause of waterborne diarrheal disease that may lead to post-infectious functional gastrointestinal disorders. Although Giardia-infected individuals could carry as much as 106 trophozoites per centimetre of gut, their intestinal mucosa is devoid of overt signs of inflammation. Recent studies have shown that in endemic countries where bacterial infectious diseases are common, Giardia infections can protect against the development of diarrheal disease and fever. Conversely, separate observations have indicated Giardia infections may enhance the severity of diarrheal disease from a co-infecting pathogen. Polymorphonuclear leukocytes or neutrophils (PMNs are granulocytic, innate immune cells characteristic of acute intestinal inflammatory responses against bacterial pathogens that contribute to the development of diarrheal disease following recruitment into intestinal tissues. Giardia cathepsin B cysteine proteases have been shown to attenuate PMN chemotaxis towards IL-8/CXCL8, suggesting Giardia targets PMN accumulation. However, the ability of Giardia infections to attenuate PMN accumulation in vivo and how in turn this effect may alter the host inflammatory response in the intestine has yet to be demonstrated. Herein, we report that Giardia infection attenuates granulocyte tissue infiltration induced by intra-rectal instillation of Clostridium difficile toxin A and B in an isolate-dependent manner. This attenuation of granulocyte infiltration into colonic tissues paralled decreased expression of several cytokines associated with the recruitment of PMNs. Giardia trophozoite isolates that attenuated granulocyte infiltration in vivo also decreased protein expression of cytokines released from inflamed mucosal biopsy tissues collected from patients with active Crohn's disease, including several cytokines associated with PMN recruitment. These results demonstrate for the first time

  4. Pseudomonas aeruginosa ExoU augments neutrophil transepithelial migration.

    Science.gov (United States)

    Pazos, Michael A; Lanter, Bernard B; Yonker, Lael M; Eaton, Alex D; Pirzai, Waheed; Gronert, Karsten; Bonventre, Joseph V; Hurley, Bryan P

    2017-08-01

    Excessive neutrophil infiltration of the lungs is a common contributor to immune-related pathology in many pulmonary disease states. In response to pathogenic infection, airway epithelial cells produce hepoxilin A3 (HXA3), initiating neutrophil transepithelial migration. Migrated neutrophils amplify this recruitment by producing a secondary gradient of leukotriene B4 (LTB4). We sought to determine whether this two-step eicosanoid chemoattractant mechanism could be exploited by the pathogen Pseudomonas aeruginosa. ExoU, a P. aeruginosa cytotoxin, exhibits phospholipase A2 (PLA2) activity in eukaryotic hosts, an enzyme critical for generation of certain eicosanoids. Using in vitro and in vivo models of neutrophil transepithelial migration, we evaluated the impact of ExoU expression on eicosanoid generation and function. We conclude that ExoU, by virtue of its PLA2 activity, augments and compensates for endogenous host neutrophil cPLA2α function, leading to enhanced transepithelial migration. This suggests that ExoU expression in P. aeruginosa can circumvent immune regulation at key signaling checkpoints in the neutrophil, resulting in exacerbated neutrophil recruitment.

  5. Pseudomonas aeruginosa ExoU augments neutrophil transepithelial migration.

    Directory of Open Access Journals (Sweden)

    Michael A Pazos

    2017-08-01

    Full Text Available Excessive neutrophil infiltration of the lungs is a common contributor to immune-related pathology in many pulmonary disease states. In response to pathogenic infection, airway epithelial cells produce hepoxilin A3 (HXA3, initiating neutrophil transepithelial migration. Migrated neutrophils amplify this recruitment by producing a secondary gradient of leukotriene B4 (LTB4. We sought to determine whether this two-step eicosanoid chemoattractant mechanism could be exploited by the pathogen Pseudomonas aeruginosa. ExoU, a P. aeruginosa cytotoxin, exhibits phospholipase A2 (PLA2 activity in eukaryotic hosts, an enzyme critical for generation of certain eicosanoids. Using in vitro and in vivo models of neutrophil transepithelial migration, we evaluated the impact of ExoU expression on eicosanoid generation and function. We conclude that ExoU, by virtue of its PLA2 activity, augments and compensates for endogenous host neutrophil cPLA2α function, leading to enhanced transepithelial migration. This suggests that ExoU expression in P. aeruginosa can circumvent immune regulation at key signaling checkpoints in the neutrophil, resulting in exacerbated neutrophil recruitment.

  6. Staphylococcus aureus resistance to human defensins and evasion of neutrophil killing via the novel virulence factor MprF is based on modification of membrane lipids with L-lysine

    NARCIS (Netherlands)

    Peschel, A.; Jack, R.W.; Otto, M.; Collins, L.V.; Staubitz, P.; Nicholson, G.; Kalbacher, H.; Nieuwenhuizen, W.F.; Jung, G.; Tarkowski, A.; Kessel, K.P.M. van; Strijp, J.A.G. van

    2001-01-01

    Defensins, antimicrobial peptides of the innate immune system, protect human mucosal epithelia and skin against microbial infections and are produced in large amounts by neutrophils. The bacterial pathogen Staphylococcus aureus is insensitive to defensins by virtue of an unknown resistance

  7. Angiotensin-(1-7 Promotes Resolution of Neutrophilic Inflammation in a Model of Antigen-Induced Arthritis in Mice

    Directory of Open Access Journals (Sweden)

    Lívia C. Barroso

    2017-11-01

    Full Text Available Defective resolution of inflammation may be crucial for the initiation and development of chronic inflammatory diseases, such as arthritis. Therefore, it has been suggested that therapeutic strategies based on molecules that facilitate inflammation resolution present great potential for the treatment of chronic inflammatory diseases. In this study, we investigated the effects and role of angiotensin-(1-7 [Ang-(1-7] in driving resolution of neutrophilic inflammation in a model of arthritis. For this purpose, male C57BL/6 mice were subjected to antigen-induced arthritis and treated with Ang-(1-7 at the peak of the inflammatory process. Analysis of the number of inflammatory cells, apoptosis, and immunofluorescence for NF-κB was performed in the exudate collected from the knee cavity. Neutrophil accumulation in periarticular tissue was measured by assaying myeloperoxidase activity. Apoptosis of human neutrophil after treatment with Ang-(1-7 was evaluated morphologically and by flow cytometry, and NF-κB phosphorylation by immunofluorescence. Efferocytosis was evaluated in vivo. Therapeutic treatment with Ang-(1-7 at the peak of inflammation promoted resolution, an effect associated with caspase-dependent neutrophils apoptosis and NF-κB inhibition. Importantly, Ang-(1-7 was also able to induce apoptosis of human neutrophils, an effect associated with NF-κB inhibition. The pro-resolving effects of Ang-(1-7 were inhibited by the Mas receptor antagonist A779. Finally, we showed that Ang-(1-7 increased the efferocytic ability of murine macrophages. Our results clearly demonstrate that Ang-(1-7 resolves neutrophilic inflammation in vivo acting in two key step of resolution: apoptosis of neutrophils and their removal by efferocytosis. Ang-(1-7 is a novel mediator of resolution of inflammation.

  8. Role of oncogene 24p3 neutrophil gelatinase-associated lipocalin (NGAL) in digestive system cancers.

    Science.gov (United States)

    Michalak, Łukasz; Bulska, Magdalena; Kudłacz, Katarzyna; Szcześniak, Piotr

    2016-01-04

    Neutrophil gelatinase-associated lipocalin, known also as 24p3 lipocalin, lipocalin-2 or uterocalin (in mouse), is a small secretory protein binding small molecular weight ligands which takes part in numerous processes including apoptosis induction in leukocytes, iron transport, smell, and prostaglandins and retinol transport [19]. It was discovered in activated neutrophils as a covalent peptide associated with human gelatinase neutrophils [7]. Neutrophil lipocalin is secreted physiologically in the digestive system, respiratory tract, renal tubular cells, liver or immunity system. Systematic (circulated in plasma) neutrophil gelatinase come from multiple sources; it may be synthesized in the liver, secreted from activated neutrophils or macrophages, or derive from atherosclerosis or inflammatory endothelial cells [17]. NGAL is stored secondarily in granulates with lactoferrin, calprotectin or MAC-1, which take part in neutrophils' action and migration [13,19]. NGAL participates in acute and chronic inflammation (production of NGAL is indicated by factors conducive to cancer progression) [13,21]. NGAL levels increase in inflammatory or endothelial damage. NGAL level is measured in blood or urine. It is known as a kidney failure factor [7,20]. NGAL is therefore one of the most promising new generation biomarkers in clinical nephrology [6]. The role of NGAL in digestive system neoplasms has not been explored in detail. However, overexpression of this marker was proved in neoplasms such as esophageal carcinoma, stomach cancer, pancreatic cancer or colon cancer, which may indicate an association between concentration and neoplasm [3].

  9. Cryptococcus neoformans modulates extracellular killing by neutrophils

    Directory of Open Access Journals (Sweden)

    Asfia eQureshi

    2011-09-01

    Full Text Available We recently established a key role for host sphingomyelin synthase (SMS in the regulation of the killing activity of neutrophils against Cryptococcus neoformans. In this work, we studied the effect of C. neoformans on the killing activity of neutrophils and whether SMS would still be a player against C. neoformans in immunocompromised mice lacking T and NK cells (Tgε26 mice. To this end, we analyzed whether C. neoformans would have any effect on neutrophil survival and killing in vitro and in vivo. We show that unlike C. albicans, neither the presence nor the capsule size of C. neoformans cells have any effect on neutrophil viability. Interestingly, melanized C. neoformans cells totally abrogated the killing activity of neutrophils. Next, we monitored how exposure of neutrophils to C. neoformans cells would interfere with any further killing activity of the medium and found that pre-incubation with live but not heat-killed fungal cells significantly inhibits further killing activity of the medium. We next studied whether activation of SMS at the site of C. neoformans infection is dependent on T and NK cells. Using matrix-assisted laser desorption-ionization (MALDI tissue imaging in infected lung we found that similarly to previous observations in the isogenic wild type CBA/J mice, SM 16:0 levels are significantly elevated at the site of infection in mice lacking T and NK cells but only at early time points. This study highlights that C. neoformans may negatively regulate the killing activity of neutrophils and that SMS activation in neutrophils appears to be partially independent of T and/or NK cells.

  10. Contribution of neutrophils to acute lung injury.

    Science.gov (United States)

    Grommes, Jochen; Soehnlein, Oliver

    2011-01-01

    Treatment of acute lung injury (ALI) and its most severe form, acute respiratory distress syndrome (ARDS), remain unsolved problems of intensive care medicine. ALI/ARDS are characterized by lung edema due to increased permeability of the alveolar-capillary barrier and subsequent impairment of arterial oxygenation. Lung edema, endothelial and epithelial injury are accompanied by an influx of neutrophils into the interstitium and broncheoalveolar space. Hence, activation and recruitment of neutrophils are regarded to play a key role in progression of ALI/ARDS. Neutrophils are the first cells to be recruited to the site of inflammation and have a potent antimicrobial armour that includes oxidants, proteinases and cationic peptides. Under pathological circumstances, however, unregulated release of these microbicidal compounds into the extracellular space paradoxically can damage host tissues. This review focuses on the mechanisms of neutrophil recruitment into the lung and on the contribution of neutrophils to tissue damage in ALI.

  11. Phenotypic Diversity and Plasticity in Circulating Neutrophil Subpopulations in Cancer

    Directory of Open Access Journals (Sweden)

    Jitka Y. Sagiv

    2015-02-01

    Full Text Available Controversy surrounds neutrophil function in cancer because neutrophils were shown to provide both pro- and antitumor functions. We identified a heterogeneous subset of low-density neutrophils (LDNs that appear transiently in self-resolving inflammation but accumulate continuously with cancer progression. LDNs display impaired neutrophil function and immunosuppressive properties, characteristics that are in stark contrast to those of mature, high-density neutrophils (HDNs. LDNs consist of both immature myeloid-derived suppressor cells (MDSCs and mature cells that are derived from HDNs in a TGF-β-dependent mechanism. Our findings identify three distinct populations of circulating neutrophils and challenge the concept that mature neutrophils have limited plasticity. Furthermore, our findings provide a mechanistic explanation to mitigate the controversy surrounding neutrophil function in cancer.

  12. Selection of reliable reference genes for quantitative real-time PCR in human T cells and neutrophils

    Directory of Open Access Journals (Sweden)

    Ledderose Carola

    2011-10-01

    Full Text Available Abstract Background The choice of reliable reference genes is a prerequisite for valid results when analyzing gene expression with real-time quantitative PCR (qPCR. This method is frequently applied to study gene expression patterns in immune cells, yet a thorough validation of potential reference genes is still lacking for most leukocyte subtypes and most models of their in vitro stimulation. In the current study, we evaluated the expression stability of common reference genes in two widely used cell culture models-anti-CD3/CD28 activated T cells and lipopolysaccharide stimulated neutrophils-as well as in unselected untreated leukocytes. Results The mRNA expression of 17 (T cells, 7 (neutrophils or 8 (unselected leukocytes potential reference genes was quantified by reverse transcription qPCR, and a ranking of the preselected candidate genes according to their expression stability was calculated using the programs NormFinder, geNorm and BestKeeper. IPO8, RPL13A, TBP and SDHA were identified as suitable reference genes in T cells. TBP, ACTB and SDHA were stably expressed in neutrophils. TBP and SDHA were also the most stable genes in untreated total blood leukocytes. The critical impact of reference gene selection on the estimated target gene expression is demonstrated for IL-2 and FIH expression in T cells. Conclusions The study provides a shortlist of suitable reference genes for normalization of gene expression data in unstimulated and stimulated T cells, unstimulated and stimulated neutrophils and in unselected leukocytes.

  13. Hidden truth of circulating neutrophils (polymorphonuclear neutrophil function in periodontally healthy smoker subjects

    Directory of Open Access Journals (Sweden)

    Chitra Agarwal

    2016-01-01

    Full Text Available Context: Tobacco smoking is considered to be a major risk factor associated with periodontal disease. Smoking exerts a major effect on the protective elements of the immune response, resulting in an increase in the extent and severity of periodontal destruction. Aims: The aim of the present study was to assess viability and phagocytic function of neutrophils in circulating blood of the smokers and nonsmokers who are periodontally healthy. Settings and Design: Two hundred subjects in the mean range of 20–30 years of age were included in the study population. It was a retrospective study carried out for 6 months. Materials and Methods: Two hundred subjects were divided into four groups: 50 nonsmokers, 50 light smokers (15 cigarettes/day. Full mouth plaque index, sulcus bleeding index, and probing depths were measured. Percentage viability of circulating neutrophils and average number of phagocytosed Candida albicans were recorded. Statistical Analysis Used: Means and standard deviations were calculated from data obtained within the groups. Comparison between the smokers and nonsmokers was performed by Kruskal–Wallis ANOVA analysis. Comparison between smoker groups was performed using Mann–Whitney–Wilcoxon test. Results: Percentage viability of neutrophils was significantly less in heavy smokers (66.9 ± 4.0, moderate (76.6 ± 4.2, light smokers (83.1 ± 2.5 as compared to nonsmokers (92.3 ± 2.6 (P < 0.01. The ability of neutrophils to phagocytose, i.e., mean particle number was significantly less in light smokers (3.5 ± 0.5, moderate smokers (2.3 ± 0.5, and heavy smokers (1.4 ± 0.5 compared to nonsmokers (4.9 ± 0.7 (P < 0.01 with evidence of dose-response effect. Conclusions: Smoking significantly affects neutrophils viability and phagocytic function in periodontally healthy population.

  14. Suppression of neutrophil accumulation in mice by cutaneous application of geranium essential oil

    Directory of Open Access Journals (Sweden)

    Oshima Haruyuki

    2005-02-01

    Full Text Available Abstract Background Previous studies suggested that essential oils suppressed the adherence response of human neutrophils in vitro and that intraperitoneal application of geranium oil suppressed the neutrophil accumulation into peritoneal cavity in vivo. Usually, essential oils are applied through skin in aromatherapy in inflammatory symptoms. The purpose of this study is to assess the effects of cutaneous application of essential oils on the accumulation of neutrophils in inflammatory sites in skin of mice. Methods Inflammation with accumulation of inflammatory cells was induced by injection of curdlan, a (1→3-β-D-glucan in skin or peritoneal cavity of mice. Essential oils were applied cutaneously to the mice immediately and 3 hr after intradermal injection of curdlan. The skin with inflammatory lesion was cut off 6 hr after injection of curdlan, and the homogenates were used for myeloperoxidase (MPO: a marker enzyme of neutrophil granule assay. Results The MPO activity of the skin lesion induced by curdlan was suppressed dose-dependently by cutaneous application of geranium oil. Other oils such as lavender, eucalyptus and tea tree oils also suppressed the activity, but their activities seemed weaker than geranium. Juniper oil didn't suppress the activity Conclusion Cutaneous application of essential oils, especially geranium oil, can suppress the inflammatory symptoms with neutrophil accumulation and edema.

  15. Advanced Role of Neutrophils in Common Respiratory Diseases

    Directory of Open Access Journals (Sweden)

    Jinping Liu

    2017-01-01

    Full Text Available Respiratory diseases, always being a threat towards the health of people all over the world, are most tightly associated with immune system. Neutrophils serve as an important component of immune defense barrier linking innate and adaptive immunity. They participate in the clearance of exogenous pathogens and endogenous cell debris and play an essential role in the pathogenesis of many respiratory diseases. However, the pathological mechanism of neutrophils remains complex and obscure. The traditional roles of neutrophils in severe asthma, chronic obstructive pulmonary diseases (COPD, pneumonia, lung cancer, pulmonary fibrosis, bronchitis, and bronchiolitis had already been reviewed. With the development of scientific research, the involvement of neutrophils in respiratory diseases is being brought to light with emerging data on neutrophil subsets, trafficking, and cell death mechanism (e.g., NETosis, apoptosis in diseases. We reviewed all these recent studies here to provide you with the latest advances about the role of neutrophils in respiratory diseases.

  16. β-Glucan induces reactive oxygen species production in human neutrophils to improve the killing of Candida albicans and Candida glabrata isolates from vulvovaginal candidiasis.

    Directory of Open Access Journals (Sweden)

    Patricia de Souza Bonfim-Mendonça

    Full Text Available Vulvovaginal candidiasis (VVC is among the most prevalent vaginal diseases. Candida albicans is still the most prevalent species associated with this pathology, however, the prevalence of other Candida species, such as C. glabrata, is increasing. The pathogenesis of these infections has been intensely studied, nevertheless, no consensus has been reached on the pathogenicity of VVC. In addition, inappropriate treatment or the presence of resistant strains can lead to RVVC (vulvovaginal candidiasis recurrent. Immunomodulation therapy studies have become increasingly promising, including with the β-glucans. Thus, in the present study, we evaluated microbicidal activity, phagocytosis, intracellular oxidant species production, oxygen consumption, myeloperoxidase (MPO activity, and the release of tumor necrosis factor α (TNF-α, interleukin-8 (IL-8, IL-1β, and IL-1Ra in neutrophils previously treated or not with β-glucan. In all of the assays, human neutrophils were challenged with C. albicans and C. glabrata isolated from vulvovaginal candidiasis. β-glucan significantly increased oxidant species production, suggesting that β-glucan may be an efficient immunomodulator that triggers an increase in the microbicidal response of neutrophils for both of the species isolated from vulvovaginal candidiasis. The effects of β-glucan appeared to be mainly related to the activation of reactive oxygen species and modulation of cytokine release.

  17. Involvement of leucocyte/endothelial cell interactions in anorexia nervosa.

    Science.gov (United States)

    Víctor, Víctor M; Rovira-Llopis, Susana; Saiz-Alarcón, Vanessa; Sangüesa, Maria C; Rojo-Bofill, Luis; Bañuls, Celia; de Pablo, Carmen; Álvarez, Ángeles; Rojo, Luis; Rocha, Milagros; Hernández-Mijares, Antonio

    2015-07-01

    Anorexia nervosa is a common psychiatric disorder in adolescence and is related to cardiovascular complications. Our aim was to study the effect of anorexia nervosa on metabolic parameters, leucocyte-endothelium interactions, adhesion molecules and proinflammatory cytokines. This multicentre, cross-sectional, case-control study employed a population of 24 anorexic female patients and 36 controls. We evaluated anthropometric and metabolic parameters, interactions between leucocytes polymorphonuclear neutrophils (PMN) and human umbilical vein endothelial cells (HUVEC), proinflammatory cytokines such as tumour necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) and soluble cellular adhesion molecules (CAMs) including E-selectin, vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1). Anorexia nervosa was related to a decrease in weight, body mass index, waist circumference, systolic blood pressure, glucose, insulin and HOMA-IR, and an increase in HDL cholesterol. These effects disappeared after adjusting for BMI. Anorexia nervosa induced a decrease in PMN rolling velocity and an increase in PMN rolling flux and PMN adhesion. Increases in IL-6 and TNF-α and adhesion molecule VCAM-1 were also observed. This study supports the hypothesis of an association between anorexia nervosa, inflammation and the induction of leucocyte-endothelium interactions. These findings may explain, in part at least, the increased risk of vascular disease among patients with anorexia nervosa. © 2015 Stichting European Society for Clinical Investigation Journal Foundation.

  18. Neutrophil extracellular trap formation in supragingival biofilms.

    Science.gov (United States)

    Hirschfeld, Josefine; Dommisch, Henrik; Skora, Philipp; Horvath, Gabor; Latz, Eicke; Hoerauf, Achim; Waller, Tobias; Kawai, Toshihisa; Jepsen, Søren; Deschner, James; Bekeredjian-Ding, Isabelle

    2015-01-01

    Oral biofilms are the causative agents of the highly prevalent oral diseases periodontitis and caries. Additionally, the host immune response is thought to play a critical role in disease onset. Neutrophils are known to be a key host response factor to bacterial challenge on host surfaces. Release of neutrophil extracellular traps (NETs) as a novel antimicrobial defense strategy has gained increasing attention in the past years. Here, we investigated the influx of neutrophils into the dental plaque and the ability of oral bacteria to trigger intra-biofilm release of NETs and intracellular proteins. Supragingival biofilms and whole saliva were sampled from systemically healthy subjects participating in an experimental gingivitis study. Biofilms were analysed by immunofluorescence followed by confocal and fluorescence microscopy. Moreover, concentrations of cytokines and immune-associated proteins in biofilm suspensions and saliva were assessed by ELISA. Neutrophils obtained from blood were stimulated with twelve bacterial species isolated from cultured biofilms or with lipopolysaccharide to monitor NET formation. Neutrophils, NETs, neutrophil-associated proteins (myeloperoxidase, elastase-2, cathepsin G, cathelicidin LL-37), interleukin-8, interleukin-1β and tumor necrosis factor were detected within plaque samples and saliva. All tested bacterial species as well as the polymicrobial samples isolated from the plaque of each donor induced release of NETs and interleukin-8. The degree of NET formation varied among different subjects and did not correlate with plaque scores or clinical signs of local inflammation. Our findings indicate that neutrophils are attracted towards dental biofilms, in which they become incorporated and where they are stimulated by microbes to release NETs and immunostimulatory proteins. Thus, neutrophils and NETs may be involved in host biofilm control, although their specific role needs to be further elucidated. Moreover, inter

  19. The peptidomimetic Lau-(Lys-βNSpe)6-NH2 antagonizes formyl peptide receptor 2 expressed in mouse neutrophils

    DEFF Research Database (Denmark)

    Skovbakke, Sarah Line; Winther, Malene; Gabl, Michael

    2016-01-01

    /differences between the human and murine FPR family members is required. Compared to FPR1 and FPR2 expressed by human neutrophils, very little is known about agonist/antagonist recognition patterns for their murine orthologues, but now we have identified two potent and selective formylated peptide agonists (f...... to be devoid of effect on their murine orthologues as determined by their inability to inhibit superoxide release from murine neutrophils upon stimulation with receptor-specific agonists. The Boc-FLFLF peptide was found to be a selective antagonist for Fpr1, whereas the lipidated peptidomimetic Lau...

  20. Gβ1 is required for neutrophil migration in zebrafish.

    Science.gov (United States)

    Ke, Wenfan; Ye, Ding; Mersch, Kacey; Xu, Hui; Chen, Songhai; Lin, Fang

    2017-08-01

    Signaling mediated by G protein-coupled receptors (GPCRs) is essential for the migration of cells toward chemoattractants. The recruitment of neutrophils to injured tissues in zebrafish larvae is a useful model for studying neutrophil migration and trafficking in vivo. Indeed, the study of this process led to the discovery that PI3Kγ is required for the polarity and motility of neutrophils, features that are necessary for the directed migration of these cells to wounds. However, the mechanism by which PI3Kγ is activated remains to be determined. Here we show that signaling by specifically the heterotrimeric G protein subunit Gβ1 is critical for neutrophil migration in response to wounding. In embryos treated with small-molecule inhibitors of Gβγ signaling, neutrophils failed to migrate to wound sites. Although both the Gβ1 and Gβ4 isoforms are expressed in migrating neutrophils, only deficiency for the former (morpholino-based knockdown) interfered with the directed migration of neutrophils towards wounds. The Gβ1 deficiency also impaired the ability of cells to change cell shape and reduced their general motility, defects that are similar to those in neutrophils deficient for PI3Kγ. Transplantation assays showed that the requirement for Gβ1 in neutrophil migration is cell autonomous. Finally, live imaging revealed that Gβ1 is required for polarized activation of PI3K, and for the actin dynamics that enable neutrophil migration. Collectively, our data indicate that Gβ1 signaling controls proper neutrophil migration by activating PI3K and modulating actin dynamics. Moreover, they illustrate a role for a specific Gβ isoform in chemotaxis in vivo. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Neutrophil Microvesicles from Healthy Control and Rheumatoid Arthritis Patients Prevent the Inflammatory Activation of Macrophages

    Directory of Open Access Journals (Sweden)

    Hefin I. Rhys

    2018-03-01

    Full Text Available Microvesicles (MVs are emerging as a novel means to enact cell-to-cell communication in inflammation. Here, we aimed to ascertain the ability of neutrophil-derived MVs to modulate target cell behaviour, the focus being the macrophage.MVs were generated in response to tumour necrosis factor-α, from healthy control neutrophils or those from rheumatoid arthritis patients. MVs were used to stimulate human monocyte-derived macrophages in vitro, or administered intra-articularly in the K/BxN mouse model of arthritis. A macrophage/fibroblast-like synoviocyte co-culture system was used to study the effects of vesicles on the crosstalk between these cells.We demonstrate a direct role for phosphatidylserine and annexin-A1 exposed by the MVs to counteract classical activation of the macrophages, and promote the release of transforming growth factor-β, respectively. Classically-activated macrophages exposed to neutrophil MVs no longer activated fibroblast-like synoviocytes in subsequent co-culture settings. Finally, intra-articular administration of neutrophil MVs from rheumatoid arthritis patients in arthritic mice affected the phenotype of joint macrophages.Altogether these data, with the identification of specific MV determinants, open new opportunities to modulate on-going inflammation in the synovia – mainly by affecting macrophage polarization and potentially also fibroblast-like synoviocytes - through the delivery of autologous or heterologous MVs produced from neutrophils. Keywords: Neutrophils, Macrophages, Vesicles, Rheumatoid arthritis

  2. Distinct cellular sources of hepoxilin A3 and leukotriene B4 are used to coordinate bacterial-induced neutrophil transepithelial migration.

    Science.gov (United States)

    Pazos, Michael A; Pirzai, Waheed; Yonker, Lael M; Morisseau, Christophe; Gronert, Karsten; Hurley, Bryan P

    2015-02-01

    Neutrophilic infiltration is a leading contributor to pathology in a number of pulmonary disease states, including cystic fibrosis. Hepoxilin A3 (HXA3) is a chemotactic eicosanoid shown to mediate the transepithelial passage of neutrophils in response to infection in several model systems and at multiple mucosal surfaces. Another well-known eicosanoid mediating general neutrophil chemotaxis is leukotriene B4 (LTB4). We sought to distinguish the roles of each eicosanoid in the context of infection of lung epithelial monolayers by Pseudomonas aeruginosa. Using human and mouse in vitro transwell model systems, we used a combination of biosynthetic inhibitors, receptor antagonists, as well as mutant sources of neutrophils to assess the contribution of each chemoattractant in driving neutrophil transepithelial migration. We found that following chemotaxis to epithelial-derived HXA3 signals, neutrophil-derived LTB4 is required to amplify the magnitude of neutrophil migration. LTB4 signaling is not required for migration to HXA3 signals, but LTB4 generation by migrated neutrophils plays a significant role in augmenting the initial HXA3-mediated migration. We conclude that HXA3 and LTB4 serve independent roles to collectively coordinate an effective neutrophilic transepithelial migratory response. Copyright © 2015 by The American Association of Immunologists, Inc.

  3. Prevention of vascular inflammation by nanoparticle targeting of adherent neutrophils

    Science.gov (United States)

    Wang, Zhenjia; Li, Jing; Cho, Jaehyung; Malik, Asrar B.

    2014-03-01

    Inflammatory diseases such as acute lung injury and ischaemic tissue injury are caused by the adhesion of a type of white blood cell--polymorphonuclear neutrophils--to the lining of the circulatory system or vascular endothelium and unchecked neutrophil transmigration. Nanoparticle-mediated targeting of activated neutrophils on vascular endothelial cells at the site of injury may be a useful means of directly inactivating neutrophil transmigration and hence mitigating vascular inflammation. Here, we report a method employing drug-loaded albumin nanoparticles, which efficiently deliver drugs into neutrophils adherent to the surface of the inflamed endothelium. Using intravital microscopy of tumour necrosis factor-α-challenged mouse cremaster post-capillary venules, we demonstrate that fluorescently tagged albumin nanoparticles are largely internalized by neutrophils adherent to the activated endothelium via cell surface Fcɣ receptors. Administration of albumin nanoparticles loaded with the spleen tyrosine kinase inhibitor, piceatannol, which blocks `outside-in' β2 integrin signalling in leukocytes, detached the adherent neutrophils and elicited their release into the circulation. Thus, internalization of drug-loaded albumin nanoparticles into neutrophils inactivates the pro-inflammatory function of activated neutrophils, thereby offering a promising approach for treating inflammatory diseases resulting from inappropriate neutrophil sequestration and activation.

  4. Binding of Human Fibrinogen to MRP Enhances Streptococcus suis Survival in Host Blood in a αXβ2 Integrin-dependent Manner.

    Science.gov (United States)

    Pian, Yaya; Li, Xueqin; Zheng, Yuling; Wu, Xiaohong; Yuan, Yuan; Jiang, Yongqiang

    2016-05-27

    The Gram-positive bacterium Streptococcus suis serotype 2 (S. suis 2), an important zoonotic pathogen, induces strong systemic infections in humans; sepsis and meningitis are the most common clinical manifestations and are often accompanied by bacteremia. However, the mechanisms of S. suis 2 survival in human blood are not well understood. In our previous study, we identified muramidase-released protein (MRP), a novel human fibrinogen (hFg)-binding protein (FBP) in S. suis 2 that is an important epidemic infection marker with an unknown mechanism in pathogenesis. The present study demonstrates that the N-terminus of MRP (a.a. 283-721) binds to both the Aα and Bβ chains of the D fragment of hFg. Strikingly, the hFg-MRP interaction improved the survival of S. suis 2 in human blood and led to the aggregation and exhaustion of polymorphonuclear neutrophils (PMNs) via an αXβ2 integrin-dependent mechanism. Other Fg-binding proteins, such as M1 (GAS) and FOG (GGS), also induced PMNs aggregation; however, the mechanisms of these FBP-hFg complexes in the evasion of PMN-mediated innate immunity remain unclear. MRP is conserved across highly virulent strains in Europe and Asia, and these data shed new light on the function of MRP in S. suis pathogenesis.

  5. The effects of platelet activating factor and retinoic acid on the expression of ELAM-1 and ICAM-1 and the functions of neutrophils

    Directory of Open Access Journals (Sweden)

    Si-Feng Chen

    1995-01-01

    Full Text Available Preincubation of pulmonary microvascular endothelial cells (PMVECs with platelet-activating factor (PAF for 3.5 h increased the adhesion rate of polymorphonuclear leukocytes (PMNs to PMVECs from 57.3% to 72.8% (p < 0.01. Preincubation of PMNs with PAF also increased PMN-PMVEC adhesion rate. All-trans retinoic acid (RA blocked the adherence of untreated PMNs to PAF-pretreated PMVECs but not the adherence of PAF-pretreated PMNs to untreated PMVECs. PAF increased the expression of intercellular adhesion molecule-1 (ICAM-1 and E-selection (ELAM-1 on PMVECs, PMN chemotaxis to zymosan-activated serum and histamine, and PMN aggregation and the release of acid phosphatase from PMNs. Co-incubation of RA inhibited PAF-induced PMN aggregation, the release of acid phosphatase from PMNs, and PMN chemotaxis to zymosan-activated serum and histamine while the expression of ICAM-1 and ELAM-1 did not change. Our results suggest that RA can be used to ameliorate PMN-mediated inflammation.

  6. A specific p47phox -serine phosphorylated by convergent MAPKs mediates neutrophil NADPH oxidase priming at inflammatory sites

    DEFF Research Database (Denmark)

    Dang, Pham My-Chan; Stensballe, Allan; Boussetta, Tarek

    2006-01-01

    mass spectrometry to show that GM-CSF and TNF-alpha induce phosphorylation of Ser345 on p47phox, a cytosolic component of NADPH oxidase, in human neutrophils. As Ser345 is located in the MAPK consensus sequence, we tested the effects of MAPK inhibitors. Inhibitors of the ERK1/2 pathway abrogated GM......Neutrophil NADPH oxidase plays a key role in host defense and in inflammation by releasing large amounts of superoxide and other ROSs. Proinflammatory cytokines such as GM-CSF and TNF-alpha prime ROS production by neutrophils through unknown mechanisms. Here we used peptide sequencing by tandem...

  7. The control of neutrophil chemotaxis by inhibitors of cathepsin G and chymotrypsin.

    Science.gov (United States)

    Lomas, D A; Stone, S R; Llewellyn-Jones, C; Keogan, M T; Wang, Z M; Rubin, H; Carrell, R W; Stockley, R A

    1995-10-06

    Neutrophil chemotaxis plays an important role in the inflammatory response and when excessive or persistent may augment tissue damage. The effects of inhibitors indicated the involvement of one or more serine proteinases in human neutrophil migration and shape change in response to a chemoattractant. Monospecific antibodies, chloromethylketone inhibitors, and reactive-site mutants of alpha 1-antitrypsin and alpha 1-antichymotrypsin were used to probe the specificity of the proteinases involved in chemotaxis. Antibodies specific for cathepsin G inhibited chemotaxis. Moreover, rapid inhibitors of cathepsin G and alpha-chymotrypsin suppressed neutrophil chemotaxis to the chemoattractants N-formyl-L-methionyl-L-leucyl-L-phenylalanine (fMLP) and zymosan-activated serum in multiple blind well assays and to fMLP in migration assays under agarose. The concentrations of antichymotrypsin mutants that reduced chemotaxis by 50% would inactivate free cathepsin G with a half-life of 1.5-3 s, whereas the concentrations of chloromethylketones required to produce a similar inhibition of chemotaxis would inactivate cathepsin G with a half-life of 345 s. These data suggest different modes of action for these two classes of inhibitors. Indeed the chloromethylketone inhibitors of cathepsin G (Z-Gly-Leu-Phe-CMK) and to a lesser extent of chymotrypsin (Cbz-Gly-Gly-Phe-CMK) mediated their effect by preventing a shape change in the purified neutrophils exposed to fMLP. Antichymotrypsin did not affect shape change in response to fMLP even at concentrations that were able to reduce neutrophil chemotaxis by 50%. These results support the involvement of cell surface proteinases in the control of cell migration and show that antichymotrypsin and chloromethylketones have differing modes of action. This opens the possibility for the rational design of anti-inflammatory agents targeted at neutrophil membrane enzymes.

  8. Hypoxia upregulates neutrophil degranulation and potential for tissue injury

    Science.gov (United States)

    Hoenderdos, Kim; Lodge, Katharine M; Hirst, Robert A; Chen, Cheng; Palazzo, Stefano G C; Emerenciana, Annette; Summers, Charlotte; Angyal, Adri; Porter, Linsey; Juss, Jatinder K; O'Callaghan, Christopher; Chilvers, Edwin R

    2016-01-01

    Background The inflamed bronchial mucosal surface is a profoundly hypoxic environment. Neutrophilic airway inflammation and neutrophil-derived proteases have been linked to disease progression in conditions such as COPD and cystic fibrosis, but the effects of hypoxia on potentially harmful neutrophil functional responses such as degranulation are unknown. Methods and results Following exposure to hypoxia (0.8% oxygen, 3 kPa for 4 h), neutrophils stimulated with inflammatory agonists (granulocyte-macrophage colony stimulating factor or platelet-activating factor and formylated peptide) displayed a markedly augmented (twofold to sixfold) release of azurophilic (neutrophil elastase, myeloperoxidase), specific (lactoferrin) and gelatinase (matrix metalloproteinase-9) granule contents. Neutrophil supernatants derived under hypoxic but not normoxic conditions induced extensive airway epithelial cell detachment and death, which was prevented by coincubation with the antiprotease α-1 antitrypsin; both normoxic and hypoxic supernatants impaired ciliary function. Surprisingly, the hypoxic upregulation of neutrophil degranulation was not dependent on hypoxia-inducible factor (HIF), nor was it fully reversed by inhibition of phospholipase C signalling. Hypoxia augmented the resting and cytokine-stimulated phosphorylation of AKT, and inhibition of phosphoinositide 3-kinase (PI3K)γ (but not other PI3K isoforms) prevented the hypoxic upregulation of neutrophil elastase release. Conclusion Hypoxia augments neutrophil degranulation and confers enhanced potential for damage to respiratory airway epithelial cells in a HIF-independent but PI3Kγ-dependent fashion. PMID:27581620

  9. 18F-fluoro-2-deoxyglucose PET informs neutrophil accumulation and activation in lipopolysaccharide-induced acute lung injury genetic algorithm

    International Nuclear Information System (INIS)

    Rodrigues, Rosana S.; Bozza, Fernando A.; Hanrahan, Christopher J.; Wang, Li-Ming; Wu, Qi; Hoffman, John M.; Zimmerman, Guy A.; Morton, Kathryn A.

    2017-01-01

    Introduction: Molecular imaging of the earliest events related to the development of acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) could facilitate therapeutic development and patient management. We previously reported that 18 F-fluoro-2-deoxyglucose ( 18 F-FDG) PET identifies ALI/ARDS prior to radiographic abnormalities. The purpose of this study was to establish the time courses of 18 F-FDG uptake, edema and neutrophil recruitment in an endotoxin-induced acute lung injury model and to examine molecular events required for 14 C-2DG uptake in activated neutrophils. Methods: Lung uptake of 18 F-FDG was measured by PET in control male Sprague Dawley rats and at 2, 6 and 24 h following the intraperitoneal injection of 10 mg/kg LPS. Lung edema (attenuation) was measured by microCT. Neutrophil influx into the lungs was measured by myeloperoxidase assay. Control and activated human donor neutrophils were compared for uptake of 14 C-2DG, transcription and content of hexokinase and GLUT isoforms and for hexokinase (HK) activity. Results: Significant uptake of 18 F-FDG occurred by 2 h following LPS, and progressively increased to 24 h. Lung uptake of 18 F-FDG preceded increased CT attenuation (lung edema). Myeloperoxidase activity in the lungs, supporting neutrophil influx, paralleled 18 F-FDG uptake. Activation of isolated human neutrophils resulted in increased uptake of 14 C-2DG, expression of GLUT 3 and GLUT 4 and expression and increased HK1 activity. Conclusion: Systemic endotoxin-induced ALI results in very early and progressive uptake of 18 F-FDG, parallels neutrophil accumulation and occurs earlier than lung injury edema. Activated neutrophils show increased uptake of 14 C-2DG, expression of specific GLUT3, GLUT4 and HK1 protein and HK activity. Advances in knowledge and implications for patient care: 18 F-FDG pulmonary uptake is an early biomarker of neutrophil recruitment in ALI and is associated with specific molecular events that mediate 14

  10. Neutrophilic dermatoses in a patient with collagenous colitis

    Directory of Open Access Journals (Sweden)

    Didac Barco

    2010-01-01

    Full Text Available We report the case of a 75-year old woman with collagenous colitis who presented with erythematous and edematous plaques on the periorbital and eyelid regions, accompanied by oral ulcers. Histopathology showed a dermal neutrophilic infiltrate plus mild septal and lobular panniculitis with lymphocytes, neutrophils and eosinophils. Five years earlier she had presented a flare of papules and vesicles on the trunk, together with oral ulcers; a skin biopsy revealed a neutrophilic dermal infiltrate and Sweet’s syndrome was diagnosed. Both the neutrophilic panniculitis and the Sweet’s syndrome were accompanied by fever, malaise and diarrhea. Cutaneous and intestinal symptoms disappeared with corticoid therapy. The two types of neutrophilic dermatoses that appeared in periods of colitis activity suggest that intestinal and cutaneous manifestations may be related.

  11. Association of microparticles and neutrophil activation with decompression sickness.

    Science.gov (United States)

    Thom, Stephen R; Bennett, Michael; Banham, Neil D; Chin, Walter; Blake, Denise F; Rosen, Anders; Pollock, Neal W; Madden, Dennis; Barak, Otto; Marroni, Alessandro; Balestra, Costantino; Germonpre, Peter; Pieri, Massimo; Cialoni, Danilo; Le, Phi-Nga Jeannie; Logue, Christopher; Lambert, David; Hardy, Kevin R; Sward, Douglas; Yang, Ming; Bhopale, Veena B; Dujic, Zeljko

    2015-09-01

    Decompression sickness (DCS) is a systemic disorder, assumed due to gas bubbles, but additional factors are likely to play a role. Circulating microparticles (MPs)--vesicular structures with diameters of 0.1-1.0 μm--have been implicated, but data in human divers have been lacking. We hypothesized that the number of blood-borne, Annexin V-positive MPs and neutrophil activation, assessed as surface MPO staining, would differ between self-contained underwater breathing-apparatus divers suffering from DCS vs. asymptomatic divers. Blood was analyzed from 280 divers who had been exposed to maximum depths from 7 to 105 meters; 185 were control/asymptomatic divers, and 90 were diagnosed with DCS. Elevations of MPs and neutrophil activation occurred in all divers but normalized within 24 h in those who were asymptomatic. MPs, bearing the following proteins: CD66b, CD41, CD31, CD142, CD235, and von Willebrand factor, were between 2.4- and 11.7-fold higher in blood from divers with DCS vs. asymptomatic divers, matched for time of sample acquisition, maximum diving depth, and breathing gas. Multiple logistic regression analysis documented significant associations (P < 0.001) between DCS and MPs and for neutrophil MPO staining. Effect estimates were not altered by gender, body mass index, use of nonsteroidal anti-inflammatory agents, or emergency oxygen treatment and were modestly influenced by divers' age, choice of breathing gas during diving, maximum diving depth, and whether repetitive diving had been performed. There were no significant associations between DCS and number of MPs without surface proteins listed above. We conclude that MP production and neutrophil activation exhibit strong associations with DCS. Copyright © 2015 the American Physiological Society.

  12. Neutrophil adhesion and chemotaxis depend on substrate mechanics

    International Nuclear Information System (INIS)

    Jannat, Risat A; Hammer, Daniel A; Robbins, Gregory P; Ricart, Brendon G; Dembo, Micah

    2010-01-01

    Neutrophil adhesion to the vasculature and chemotaxis within tissues play critical roles in the inflammatory response to injury and pathogens. Unregulated neutrophil activity has been implicated in the progression of numerous chronic and acute diseases such as rheumatoid arthritis, asthma and sepsis. Cell migration of anchorage-dependent cells is known to depend on both chemical and mechanical interactions. Although neutrophil responses to chemical cues have been well characterized, little is known about the effect of underlying tissue mechanics on neutrophil adhesion and migration. To address this question, we quantified neutrophil migration and traction stresses on compliant hydrogel substrates with varying elasticity in a micromachined gradient chamber in which we could apply either a uniform concentration or a precise gradient of the bacterial chemoattractant fMLP. Neutrophils spread more extensively on substrates of greater stiffness. In addition, increasing the stiffness of the substrate leads to a significant increase in the chemotactic index for each fMLP gradient tested. As the substrate becomes stiffer, neutrophils generate higher traction forces without significant changes in cell speed. These forces are often displayed in pairs and focused in the uropod. Increases in the mean fMLP concentration beyond the K D of the receptor lead to a decrease in chemotactic index on all surfaces. Blocking with an antibody against β 2 -integrins leads to a significant reduction, but not an elimination, of directed motility on stiff materials, but no change in motility on soft materials, suggesting neutrophils can display both integrin-dependent and integrin-independent motility. These findings are critical for understanding how neutrophil migration may change in different mechanical environments in vivo and can be used to guide the design of migration inhibitors that more efficiently target inflammation.

  13. Neutrophil adhesion and chemotaxis depend on substrate mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Jannat, Risat A; Hammer, Daniel A [Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 South 33rd Street, Philadelphia, PA 19104 (United States); Robbins, Gregory P; Ricart, Brendon G [Department of Chemical and Biomolecular Engineering, University of Pennsylvania, 311A Towne Building, 220 South 33rd Street, Philadelphia, PA 19104 (United States); Dembo, Micah, E-mail: hammer@seas.upenn.ed [Department of Biomedical Engineering, Boston University, 44 Cummington Street, Boston, MA 02215 (United States)

    2010-05-19

    Neutrophil adhesion to the vasculature and chemotaxis within tissues play critical roles in the inflammatory response to injury and pathogens. Unregulated neutrophil activity has been implicated in the progression of numerous chronic and acute diseases such as rheumatoid arthritis, asthma and sepsis. Cell migration of anchorage-dependent cells is known to depend on both chemical and mechanical interactions. Although neutrophil responses to chemical cues have been well characterized, little is known about the effect of underlying tissue mechanics on neutrophil adhesion and migration. To address this question, we quantified neutrophil migration and traction stresses on compliant hydrogel substrates with varying elasticity in a micromachined gradient chamber in which we could apply either a uniform concentration or a precise gradient of the bacterial chemoattractant fMLP. Neutrophils spread more extensively on substrates of greater stiffness. In addition, increasing the stiffness of the substrate leads to a significant increase in the chemotactic index for each fMLP gradient tested. As the substrate becomes stiffer, neutrophils generate higher traction forces without significant changes in cell speed. These forces are often displayed in pairs and focused in the uropod. Increases in the mean fMLP concentration beyond the K{sub D} of the receptor lead to a decrease in chemotactic index on all surfaces. Blocking with an antibody against {beta}{sub 2}-integrins leads to a significant reduction, but not an elimination, of directed motility on stiff materials, but no change in motility on soft materials, suggesting neutrophils can display both integrin-dependent and integrin-independent motility. These findings are critical for understanding how neutrophil migration may change in different mechanical environments in vivo and can be used to guide the design of migration inhibitors that more efficiently target inflammation.

  14. Anti-proteinase 3 anti-neutrophil cytoplasm autoantibodies recapitulate systemic vasculitis in mice with a humanized immune system.

    Directory of Open Access Journals (Sweden)

    Mark A Little

    Full Text Available Evidence is lacking for direct pathogenicity of human anti-proteinase-3 (PR3 antibodies in development of systemic vasculitis and granulomatosis with polyangiitis (GPA, Wegener's granulomatosis. Progress in study of these antibodies in rodents has been hampered by lack of PR3 expression on murine neutrophils, and by different Fc-receptor affinities for IgG across species. Therefore, we tested whether human anti-PR3 antibodies can induce acute vasculitis in mice with a human immune system. Chimeric mice were generated by injecting human haematopoietic stem cells into irradiated NOD-scid-IL2Rγ⁻/⁻ mice. Matched chimera mice were treated with human IgG from patients with: anti-PR3 positive renal and lung vasculitis; patients with non-vasculitic renal disease; or healthy controls. Six-days later, 39% of anti-PR3 treated mice had haematuria, compared with none of controls. There was punctate bleeding on the surface of lungs of anti-PR3 treated animals, with histological evidence of vasculitis and haemorrhage. Anti-PR3 treated mice had mild pauci-immune proliferative glomerulonephritis, with infiltration of human and mouse leukocytes. In 3 mice (17% more severe glomerular injury was present. There were no glomerular changes in controls. Human IgG from patients with anti-PR3 autoantibodies is therefore pathogenic. This model of anti-PR3 antibody-mediated vasculitis may be useful in dissecting mechanisms of microvascular injury.

  15. Anti-proteinase 3 anti-neutrophil cytoplasm autoantibodies recapitulate systemic vasculitis in mice with a humanized immune system.

    LENUS (Irish Health Repository)

    Little, Mark A

    2012-01-01

    Evidence is lacking for direct pathogenicity of human anti-proteinase-3 (PR3) antibodies in development of systemic vasculitis and granulomatosis with polyangiitis (GPA, Wegener\\'s granulomatosis). Progress in study of these antibodies in rodents has been hampered by lack of PR3 expression on murine neutrophils, and by different Fc-receptor affinities for IgG across species. Therefore, we tested whether human anti-PR3 antibodies can induce acute vasculitis in mice with a human immune system. Chimeric mice were generated by injecting human haematopoietic stem cells into irradiated NOD-scid-IL2Rγ⁻\\/⁻ mice. Matched chimera mice were treated with human IgG from patients with: anti-PR3 positive renal and lung vasculitis; patients with non-vasculitic renal disease; or healthy controls. Six-days later, 39% of anti-PR3 treated mice had haematuria, compared with none of controls. There was punctate bleeding on the surface of lungs of anti-PR3 treated animals, with histological evidence of vasculitis and haemorrhage. Anti-PR3 treated mice had mild pauci-immune proliferative glomerulonephritis, with infiltration of human and mouse leukocytes. In 3 mice (17%) more severe glomerular injury was present. There were no glomerular changes in controls. Human IgG from patients with anti-PR3 autoantibodies is therefore pathogenic. This model of anti-PR3 antibody-mediated vasculitis may be useful in dissecting mechanisms of microvascular injury.

  16. Effect of Isolation Techniques on Viability of Bovine Blood Neutrophils

    Directory of Open Access Journals (Sweden)

    P. Sláma

    2006-01-01

    Full Text Available The effect of selected isolation methods on the viability of neutrophil granulocytes (neutrophils from the blood of healthy Holstein x Bohemian Red Pied crossbred heifers was evaluated. Two methods of neutrophil isolation were used: a neutrophil isolation on the basis of hypotonic erythrocyte lysis (in two variants: after the erythrocyte lysis proper, the cells were centrifuged at either 200 g or 1000 g, and b neutrophil isolation with FACS Lysing Solution as the lysing agent. The viability of the isolated neutrophils was evaluated on the basis of apoptosis and necrosis. The results obtained with flow cytometry (FCM suggest that, from the isolation techniques used, the method based on FACS Lysing Solution impaired the neutrophil viability least. After the application of this method, 5.36 ± 2.15% of neutrophils were apoptotic and 0.51 ± 0.12% were necrotic. In contrast, when the hypotonic erythrocyte lysis was used, the proportion of apoptotic neutrophils amounted to 42.14 ± 7.12% and 49.00 ± 14.70%, respectively, and 41.12 ± 5.55% and 36.91 ± 24.38% respectively of necrotic neutrophils (P < 0.01. This was also confirmed by the light microscopy. After the isolation with FASC Lysing Solution, 1.92 ± 1.74% of neutrophils were apoptotic and 1.05 ± 0.76% were necrotic, as distinct from after the hypotonic erythrocyte lysis where 9.43 ± 3.69% of neutrophils were apoptotic and 12.67 ± 4.74% of necrotic after centrifugation at 200 g, while 12.60 ± 4.35 were apoptotic and 14.96 ± 12.64% were necrotic after centrifugation at 1000 g. It follows from the above-mentioned data that hypotonic lysis is not a suitable method for the isolation of neutrophils, as the method itself markedly affects cell viability.

  17. Fabrication and comparison of PMN-PT single crystal, PZT and PZT-based 1-3 composite ultrasonic transducers for NDE applications.

    Science.gov (United States)

    Kim, Ki-Bok; Hsu, David K; Ahn, Bongyoung; Kim, Young-Gil; Barnard, Daniel J

    2010-08-01

    This paper describes fabrication and comparison of PMN-PT single crystal, PZT, and PZT-based 1-3 composite ultrasonic transducers for NDE applications. As a front matching layer between test material (Austenite stainless steel, SUS316) and piezoelectric materials, alumina ceramics was selected. The appropriate acoustic impedance of the backing materials for each transducer was determined based on the results of KLM model simulation. Prototype ultrasonic transducers with the center frequencies of approximately 2.25 and 5MHz for contact measurement were fabricated and compared to each other. The PMN-PT single crystal ultrasonic transducer shows considerably improved performance in sensitivity over the PZT and PZT-based 1-3 composite ultrasonic transducers. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  18. d(− Lactic Acid-Induced Adhesion of Bovine Neutrophils onto Endothelial Cells Is Dependent on Neutrophils Extracellular Traps Formation and CD11b Expression

    Directory of Open Access Journals (Sweden)

    Pablo Alarcón

    2017-08-01

    Full Text Available Bovine ruminal acidosis is of economic importance as it contributes to reduced milk and meat production. This phenomenon is mainly attributed to an overload of highly fermentable carbohydrate, resulting in increased d(− lactic acid levels in serum and plasma. Ruminal acidosis correlates with elevated acute phase proteins in blood, along with neutrophil activation and infiltration into various tissues leading to laminitis and aseptic polysynovitis. Previous studies in bovine neutrophils indicated that d(− lactic acid decreased expression of L-selectin and increased expression of CD11b to concentrations higher than 6 mM, suggesting a potential role in neutrophil adhesion onto endothelia. The two aims of this study were to evaluate whether d(− lactic acid influenced neutrophil and endothelial adhesion and to trigger neutrophil extracellular trap (NET production (NETosis in exposed neutrophils. Exposure of bovine neutrophils to 5 mM d(− lactic acid elevated NET release compared to unstimulated neutrophil negative controls. Moreover, this NET contains CD11b and histone H4 citrullinated, the latter was dependent on PAD4 activation, a critical enzyme in DNA decondensation and NETosis. Furthermore, NET formation was dependent on d(− lactic acid plasma membrane transport through monocarboxylate transporter 1 (MCT1. d(− lactic acid enhanced neutrophil adhesion onto endothelial sheets as demonstrated by in vitro neutrophil adhesion assays under continuous physiological flow conditions, indicating that cell adhesion was a NET- and a CD11b/ICAM-1-dependent process. Finally, d(− lactic acid was demonstrated for the first time to trigger NETosis in a PAD4- and MCT1-dependent manner. Thus, d(− lactic acid-mediated neutrophil activation may contribute to neutrophil-derived pro-inflammatory processes, such as aseptic laminitis and/or polysynovitis in animals suffering acute ruminal acidosis.

  19. Meningitic Escherichia coli K1 penetration and neutrophil transmigration across the blood-brain barrier are modulated by alpha7 nicotinic receptor.

    Directory of Open Access Journals (Sweden)

    Feng Chi

    Full Text Available Alpha7 nicotinic acetylcholine receptor (nAChR, an essential regulator of inflammation, is abundantly expressed in hippocampal neurons, which are vulnerable to bacterial meningitis. However, it is unknown whether α7 nAChR contributes to the regulation of these events. In this report, an aggravating role of α7 nAChR in host defense against meningitic E. coli infection was demonstrated by using α7-deficient (α7(-/- mouse brain microvascular endothelial cells (BMEC and animal model systems. As shown in our in vitro and in vivo studies, E. coli K1 invasion and polymorphonuclear neutrophil (PMN transmigration across the blood-brain barrier (BBB were significantly reduced in α7(-/- BMEC and α7(-/- mice. Stimulation by nicotine was abolished in the α7(-/- cells and animals. The same blocking effect was achieved by methyllycaconitine (α7 antagonist. The tight junction molecules occludin and ZO-1 were significantly reduced in the brain cortex of wildtype mice infected with E. coli and treated with nicotine, compared to α7(-/- cells and animals. Decreased neuronal injury in the hippocampal dentate gyrus was observed in α7(-/- mice with meningitis. Proinflammatory cytokines (IL-1β, IL-6, TNFα, MCP-1, MIP-1alpha, and RANTES and adhesion molecules (CD44 and ICAM-1 were significantly reduced in the cerebrospinal fluids of the α7(-/- mice with E. coli meningitis. Furthermore, α7 nAChR is the major calcium channel for nicotine- and E. coli K1-increased intracellular calcium concentrations of mouse BMEC. Taken together, our data suggest that α7 nAChR plays a detrimental role in the host defense against meningitic infection by modulation of pathogen invasion, PMN recruitment, calcium signaling and neuronal inflammation.

  20. Second harmonic generation and dielectric study of the fine and coarse grain PMN-35PT ceramics

    Czech Academy of Sciences Publication Activity Database

    Kroupa, Jan; Bovtun, Viktor; Nuzhnyy, Dmitry; Savinov, Maxim; Vaněk, Přemysl; Kamba, Stanislav; Petzelt, Jan; Holc, J.; Kosec, M.; Amorin, H.; Alguero, M.

    2008-01-01

    Roč. 81, 11-12 (2008), s. 1059-1064 ISSN 0141-1594 R&D Projects: GA ČR(CZ) GA202/06/0403; GA MŠk OC 101 Institutional research plan: CEZ:AV0Z10100520 Keywords : relaxor ferroelectrics * phase transitions * PMN-PT * SHG * dielectric Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.201, year: 2008

  1. Enhanced {sup 18}F-FDG uptake in activated neutrophils is unaffected by respiratory burst inhibition with RGD

    Energy Technology Data Exchange (ETDEWEB)

    Paik, J. Y.; Lee, K. H.; Go, B. H.; Jeong, K. H.; Kim, H. K.; Choi, J. S.; Choi, Y.; Kim, P. T [Samsung Medical Center, Seoul (Korea, Republic of)

    2004-07-01

    Respiratory burst generation is an important response of activated neutrophils and is associated with enhanced glucose metabolism. Since such activation in dependent on adhesion through integrins, we investigated how integrin occupation with RGD influences respiratory burst response and {sup 18}F-FDG uptake in neutrophils. Human neutrophils separated from healthy volunteers were incubated in RPMI media. For RGD peptide inhibitory experiments, neutrophils were preincubated with 200 {mu} g/ml of cRGD peptides ad 37.deg. for 2 hr prior. Respiratory burst generation and uptake of {sup 18}F-FDG was then measured with or without PMA stimulation. Cellular total hexokinase levels were assayed with a colorimetric method. Treatment with RGD in the basal state resulted in a significant but relatively small increase in neutrophil superoxide release to 1.5{+-}0.25 fold o control levels (p<0.005). Whereas PMA stimulation caused a marked increase in superoxide generation, pretreatment with RGD caused a significant attenuation of this response to 35.6{+-}0.2% (p<0.005). PMA stimulation resulted in a significant increase in {sup 18}F-FDG uptake. However, unlike the attenution of superoxide generation, neutrophils pretreated with RGD before PMA stimulation showed an identical magnitude of enhanced {sup 18}F-FDG uptake (201.8{+-}20.5 of controls, p=0.0001). In addition, hexokinase levels were increased to comparable levels of approximately 1.5 fold for PMA stimulated neutrophils irrespective of RGD pretreatment. In conclusion, soluble RGD blocks stimulation of respiratory burst activation in neutrophils but does not inhibit stimulation of cellular glucose metabolism. This dissociation may contribute to maximally enhanced neutrophil FDG uptake in inflammatory lesions regardless of the occupancy of their integrin receptors.

  2. The cystic fibrosis neutrophil: a specialized yet potentially defective cell.

    LENUS (Irish Health Repository)

    Hayes, Elaine

    2012-02-01

    Cystic fibrosis (CF) is one of the commonest genetically inherited diseases in the world. It is characterized by recurrent respiratory tract infections eventually leading to respiratory failure. One of the hallmarks of this disease is a persistent and predominantly neutrophil driven inflammation. Neutrophils provide the first line of defence by killing and digesting phagocytosed bacteria and fungi, yet despite advances in our understanding of the molecular and cellular basis of CF, there remains a paradox of why recruited CF neutrophils fail to eradicate bacterial infections in the lung. This review describes mechanisms involved in neutrophil migration, microbial killing and apoptosis leading to inflammatory resolution. We discuss dysregulated neutrophil activity and consider genetic versus inflammatory neutrophil reprogramming in CF and ultimately pharmacological modulation of the CF neutrophil for therapeutic intervention.

  3. The cystic fibrosis neutrophil: a specialized yet potentially defective cell.

    LENUS (Irish Health Repository)

    Hayes, Elaine

    2011-04-01

    Cystic fibrosis (CF) is one of the commonest genetically inherited diseases in the world. It is characterized by recurrent respiratory tract infections eventually leading to respiratory failure. One of the hallmarks of this disease is a persistent and predominantly neutrophil driven inflammation. Neutrophils provide the first line of defence by killing and digesting phagocytosed bacteria and fungi, yet despite advances in our understanding of the molecular and cellular basis of CF, there remains a paradox of why recruited CF neutrophils fail to eradicate bacterial infections in the lung. This review describes mechanisms involved in neutrophil migration, microbial killing and apoptosis leading to inflammatory resolution. We discuss dysregulated neutrophil activity and consider genetic versus inflammatory neutrophil reprogramming in CF and ultimately pharmacological modulation of the CF neutrophil for therapeutic intervention.

  4. Different innate neutrophil responses in controlled and uncontrolled asthma

    NARCIS (Netherlands)

    Tang, Francesca; Foxley, Gloria; Gibson, Peter; Burgess, Janette; Baines, Katherine; Oliver, Brian

    2015-01-01

    Introduction: Respiratory viruses are a major cause of asthma exacerbations. Neutrophilic inflammation occurs during infections and is associated with difficult to treat asthma. The role of neutrophils in viral infections and whether neutrophil dysfunction contributes to exacerbation pathogenesis

  5. Gasdermin D Exerts Anti-inflammatory Effects by Promoting Neutrophil Death

    Directory of Open Access Journals (Sweden)

    Hiroto Kambara

    2018-03-01

    Full Text Available Summary: Gasdermin D (GSDMD is considered a proinflammatory factor that mediates pyroptosis in macrophages to protect hosts from intracellular bacteria. Here, we reveal that GSDMD deficiency paradoxically augmented host responses to extracellular Escherichia coli, mainly by delaying neutrophil death, which established GSDMD as a negative regulator of innate immunity. In contrast to its activation in macrophages, in which activated inflammatory caspases cleave GSDMD to produce an N-terminal fragment (GSDMD-cNT to trigger pyroptosis, GSDMD cleavage and activation in neutrophils was caspase independent. It was mediated by a neutrophil-specific serine protease, neutrophil elastase (ELANE, released from cytoplasmic granules into the cytosol in aging neutrophils. ELANE-mediated GSDMD cleavage was upstream of the caspase cleavage site and produced a fully active ELANE-derived NT fragment (GSDMD-eNT that induced lytic cell death as efficiently as GSDMD-cNT. Thus, GSDMD is pleiotropic, exerting both pro- and anti-inflammatory effects that make it a potential target for antibacterial and anti-inflammatory therapies. : Kambara et al. find that GSDMD deficiency augments host responses to extracellular Escherichia coli, mainly by delaying neutrophil death, establishing GSDMD as a negative regulator of innate immunity. GSDMD cleavage and activation in neutrophils is mediated by ELANE, released from cytoplasmic granules into the cytosol in aging neutrophils. Keywords: GSDMD, neutrophil death, neutrophil elastase, innate immunity, host defense

  6. High glucose impairs superoxide production from isolated blood neutrophils

    DEFF Research Database (Denmark)

    Perner, A; Nielsen, S E; Rask-Madsen, J

    2003-01-01

    Superoxide (O(2)(-)), a key antimicrobial agent in phagocytes, is produced by the activity of NADPH oxidase. High glucose concentrations may, however, impair the production of O(2)(-) through inhibition of glucose-6-phosphate dehydrogenase (G6PD), which catalyzes the formation of NADPH. This study...... measured the acute effects of high glucose or the G6PD inhibitor dehydroepiandrosterone (DHEA) on the production of O(2)(-) from isolated human neutrophils....

  7. Neutrophils, a candidate biomarker and target for radiation therapy?

    Science.gov (United States)

    Schernberg, Antoine; Blanchard, Pierre; Chargari, Cyrus; Deutsch, Eric

    2017-11-01

    Neutrophils are the most abundant blood-circulating white blood cells, continuously generated in the bone marrow. Growing evidence suggests they regulate the innate and adaptive immune system during tumor evolution. This review will first summarize the recent findings on neutrophils as a key player in cancer evolution, then as a potential biomarker, and finally as therapeutic targets, with respective focuses on the interplay with radiation therapy. A complex interplay: Neutrophils have been associated with tumor progression through multiple pathways. Ionizing radiation has cytotoxic effects on cancer cells, but the sensitivity to radiation therapy in vivo differ from isolated cancer cells in vitro, partially due to the tumor microenvironment. Different microenvironmental states, whether baseline or induced, can modulate or even attenuate the effects of radiation, with consequences for therapeutic efficacy. Inflammatory biomarkers: Inflammation-based scores have been widely studied as prognostic biomarkers in cancer patients. We have performed a large retrospective cohort of patients undergoing radiation therapy (1233 patients), with robust relationship between baseline blood neutrophil count and 3-year's patient's overall survival in patients with different cancer histologies. (Pearson's correlation test: p = .001, r = -.93). Therapeutic approaches: Neutrophil-targeting agents are being developed for the treatment of inflammatory and autoimmune diseases. Neutrophils either can exert antitumoral (N1 phenotype) or protumoral (N2 phenotype) activity, depending on the Tumor Micro Environment. Tumor associated N2 neutrophils are characterized by high expression of CXCR4, VEGF, and gelatinase B/MMP9. TGF-β within the tumor microenvironment induces a population of TAN with a protumor N2 phenotype. TGF-β blockade slows tumor growth through activation of CD8 + T cells, macrophages, and tumor associated neutrophils with an antitumor N1 phenotype. This supports

  8. Tumor-Associated Macrophages and Neutrophils in Tumor Microenvironment

    Directory of Open Access Journals (Sweden)

    Jaehong Kim

    2016-01-01

    Full Text Available Distinct tumor microenvironment forms in each progression step of cancer and has diverse capacities to induce both adverse and beneficial consequences for tumorigenesis. It is now known that immune cells can be activated to favor tumor growth and progression, most probably influenced by the tumor microenvironment. Tumor-associated macrophages and tumor-associated neutrophils can exert protumoral functions, enhancing tumor cell invasion and metastasis, angiogenesis, and extracellular matrix remodeling, while inhibiting the antitumoral immune surveillance. Considering that neutrophils in inflammatory environments recruit macrophages and that recruited macrophages affect neutrophil functions, there may be various degrees of interaction between tumor-associated macrophages and tumor-associated neutrophils. Platelets also play an important role in the recruitment and regulation of monocytic and granulocytic cells in the tumor tissues, suggesting that platelet function may be essential for generation of tumor-associated macrophages and tumor-associated neutrophils. In this review, we will explore the biology of tumor-associated macrophages and tumor-associated neutrophils and their possible interactions in the tumor microenvironment. Special attention will be given to the recruitment and activation of these tumor-associated cells and to the roles they play in maintenance of the tumor microenvironment and progression of tumors.

  9. Granule protein processing and regulated secretion in neutrophils

    Directory of Open Access Journals (Sweden)

    Avinash eSheshechalam

    2014-09-01

    Full Text Available Neutrophils are part of a family of granulocytes that, together with eosinophils and basophils, play an essential role in innate immunity. Neutrophils are the most abundant circulating leukocytes and are vital for rapid immune responses, being recruited to sites of injury or infection within minutes, where they can act as specialized phagocytic cells. However, another prominent function of neutrophils is the release of pro-inflammatory compounds, including cytokines, chemokines and digestive enzymes, which are stored in intracellular compartments and released through regulated exocytosis. Hence, an important feature that contributes to rapid immune responses is capacity of neutrophils to synthesize and store pre-formed pro-inflammatory mediators in specialized intracellular vesicles and thus no new synthesis is required. This review will focus on advancement in three topics relevant to neutrophil secretion. First we will examine what is known about basal level pro-inflammatory mediator synthesis, trafficking and storage in secretory compartments. Second, we will review recent advancements in the mechanisms that control vesicle mobilization and the release of pre-formed mediators. Third, we will examine the upregulation and de novo synthesis of pro-inflammatory mediators by neutrophils engaged at sites of infection.

  10. Naloxone inhibits superoxide but not enzyme release by human neutrophils

    International Nuclear Information System (INIS)

    Simpkins, C.; Alailima, S.; Tate, E.

    1986-01-01

    The release of toxic oxygen metabolites and enzymes by phagocytic cells is thought to play a role in the multisystemic tissue injury of sepsis. Naloxone protects septic animals. We have found that at concentrations administered to animals (10 -7 to 10 -4 M), naloxone inhibited (p 2 - ) by human neutrophils (HN), stimulated with N-formyl methionyl leucyl phenylalanine (FMLP). Naloxone had no effect on cell viability. Maximum inhibition was 65% of the total O 2 - released (13.1 nMoles/8 min/320,000 cells). FMLP-stimulated release of beta-glucoronidase or lysozyme was not altered by naloxone. Naloxone had no effect on the binding of 3 H FMLP to HN. Using 3 H naloxone and various concentrations of unlabeled naloxone higher affinity (K/sub D/ = 12nM) and lower affinity (K/sub D/ = 4.7 x 10 -5 ) binding sites were detected. The K/sub D/ of the low affinity site corresponded to the ED 50 for naloxone inhibition of O 2 - (1 x 10 -5 M). Binding to this low affinity site was decreased by (+) naloxone, beta-endorphin and N acetyl beta-endorphin, but not by leu-enkephalin, thyrotropin releasing factor, prostaglandin D 2 or E 2 . Conclusions: (1) naloxone inhibits FMLP-stimulated O 2 but not enzyme release, (2) this inhibition is not due to alteration of FMLP receptor binding, (3) naloxone may act via a low affinity binding site which is ligand specific, and (4) a higher affinity receptor is present on HN

  11. Effect of moderate exercise on peritoneal neutrophils from juvenile rats.

    Science.gov (United States)

    Braz, Glauber Ruda; Ferreira, Diorginis Soares; Pedroza, Anderson Apolonio; da Silva, Aline Isabel; Sousa, Shirley Maria; Pithon-Curi, Tania Cristina; Lagranha, Claudia

    2015-09-01

    Previous studies showed that moderate exercise in adult rats enhances neutrophil function, although no studies were performed in juvenile rats. We evaluated the effects of moderate exercise on the neutrophil function in juvenile rats. Viability and neutrophils function were evaluated. Moderate exercise did not impair the viability and mitochondrial transmembrane potential of neutrophils, whereas there was greater reactive oxygen species production (164%; p < 0.001) and phagocytic capacity (29%; p < 0.05). Our results suggest that moderate exercise in juvenile rats improves neutrophil function, similar to adults.

  12. Intracellular accumulation of potent amiloride analogues by human neutrophils

    International Nuclear Information System (INIS)

    Simchowitz, L.; Woltersdorf, O.W. Jr.; Cragoe, E.J. Jr.

    1987-01-01

    The mechanism of uptake of a series of amiloride derivatives by human neutrophils was investigated using [ 14 C]amiloride and the 14 C-labeled 5-(1-hexahydroazepinyl)-6-bromo analogue (BrMM) which is approximately 500-fold more potent than the parent compound at inhibiting Na+/H+ exchange. At an external concentration of 2 microM, the influx of BrMM at 37 degrees C was rapid, reaching a steady state by approximately 20 min. The rate of BrMM uptake (approximately 25 mumol/liter.min) was approximately 90-fold faster than for the same concentration of amiloride, a finding which correlates with differences in lipid partitioning of the two compounds. Uptake was unrelated to specific binding to Na+/H+ exchange transport sites: influx of either drug was nonsaturable whereas amiloride- and BrMM-mediated inhibition of Na+/H+ countertransport obeyed Michaelis-Menten kinetics with apparent Ki values of approximately 75 and approximately 0.2 microM. Entry occurred exclusively via the neutral (uncharged) forms (pK'a 8.40-8.55). Influx was markedly pH-dependent: it was enhanced by extracellular alkalinization and reduced by acidification. Influx was, however, insensitive to large changes in membrane voltage, thereby implying the protonated (charged) species to be impermeant. About 75% of the total intracellular pool of amiloride, but only approximately 25% of BrMM, is contained within the lysosomes, an expected consequence of the partitioning and subsequent trapping of a weak base within this strongly acidic subcellular compartment. With BrMM, there was a relative approximately 60-fold enrichment in the internal/external water concentration ratio of the drug; the value for amiloride was much less, approximately 4. This disparity is consistent with substantial binding of BrMM to internal constituents, presumably to proteins and/or nucleic acids

  13. Leukotriene B4 omega-hydroxylase in human polymorphonuclear leukocytes. Partial purification and identification as a cytochrome P-450.

    Science.gov (United States)

    Shak, S; Goldstein, I M

    1985-09-01

    Human polymorphonuclear leukocytes (PMN) not only synthesize and respond to leukotriene B4 (LTB4), but also catabolize this mediator of inflammation rapidly and specifically by omega-oxidation. To characterize the enzyme(s) responsible for omega-oxidation of LTB4, human PMN were disrupted by sonication and subjected to differential centrifugation to yield membrane, granule, and cytosol fractions (identified by biochemical markers). LTB4 omega-hydroxylase activity was concentrated (together with NADPH cytochrome c reductase activity) only in the membrane fraction (specific activity increased 10-fold as compared to whole sonicates, 41% recovery). Negligible activity was detected in granule or cytosol fractions. LTB4 omega-hydroxylase activity in isolated PMN membranes was linear with respect to duration of incubation and protein concentration, was maximal at pH 7.4, had a Km for LTB4 of 0.6 microM, and was dependent on oxygen and on reduced pyridine nucleotides (apparent Km for NADPH = 0.5 microM; apparent Km for NADH = 223 microM). The LTB4 omega-hydroxylase was inhibited significantly by carbon monoxide, ferricytochrome c, SKF-525A, and Triton X-100, but was not affected by alpha-naphthoflavone, azide, cyanide, catalase, and superoxide dismutase. Finally, isolated PMN membranes exhibited a carbon monoxide difference spectrum with a peak at 452 nm. Thus, we have partially purified the LTB4 omega-hydroxylase in human PMN and identified the enzyme as a membrane-associated, NADPH-dependent cytochrome P-450.

  14. Yersinia pestis subverts the dermal neutrophil response in a mouse model of bubonic plague.

    Science.gov (United States)

    Shannon, Jeffrey G; Hasenkrug, Aaron M; Dorward, David W; Nair, Vinod; Carmody, Aaron B; Hinnebusch, B Joseph

    2013-08-27

    The majority of human Yersinia pestis infections result from introduction of bacteria into the skin by the bite of an infected flea. Once in the dermis, Y. pestis can evade the host's innate immune response and subsequently disseminate to the draining lymph node (dLN). There, the pathogen replicates to large numbers, causing the pathognomonic bubo of bubonic plague. In this study, several cytometric and microscopic techniques were used to characterize the early host response to intradermal (i.d.) Y. pestis infection. Mice were infected i.d. with fully virulent or attenuated strains of dsRed-expressing Y. pestis, and tissues were analyzed by flow cytometry. By 4 h postinfection, there were large numbers of neutrophils in the infected dermis and the majority of cell-associated bacteria were associated with neutrophils. We observed a significant effect of the virulence plasmid (pCD1) on bacterial survival and neutrophil activation in the dermis. Intravital microscopy of i.d. Y. pestis infection revealed dynamic interactions between recruited neutrophils and bacteria. In contrast, very few bacteria interacted with dendritic cells (DCs), indicating that this cell type may not play a major role early in Y. pestis infection. Experiments using neutrophil depletion and a CCR7 knockout mouse suggest that dissemination of Y. pestis from the dermis to the dLN is not dependent on neutrophils or DCs. Taken together, the results of this study show a very rapid, robust neutrophil response to Y. pestis in the dermis and that the virulence plasmid pCD1 is important for the evasion of this response. Yersinia pestis remains a public health concern today because of sporadic plague outbreaks that occur throughout the world and the potential for its illegitimate use as a bioterrorism weapon. Since bubonic plague pathogenesis is initiated by the introduction of Y. pestis into the skin, we sought to characterize the response of the host's innate immune cells to bacteria early after

  15. Demodex-associated bacterial proteins induce neutrophil activation.

    LENUS (Irish Health Repository)

    2012-02-01

    Background: Patients with rosacea demonstrate a higher density of Demodex mites in their skin than controls. A bacterium isolated from a Demodex mite from a patient with papulopustular rosacea (PPR) was previously shown to provoke an immune response in patients with PPR or ocular rosacea thus suggesting a possible role for bacterial proteins in the etiology of this condition. Objectives: To examine the response of neutrophils to proteins derived from a bacterium isolated from a Demodex mite. Methods: Bacterial cells were lysed and proteins were partially purified by AKTA-FPLC. Isolated neutrophils were exposed to bacterial proteins and monitored for alterations in migration, degranulation and cytokine production. Results: Neutrophils exposed to proteins from Bacillus cells demonstrated increased levels of migration and elevated release of MMP-9, an enzyme known to degrade collagen and cathelicidin, an antimicrobial peptide. In addition neutrophils exposed to the bacterial proteins demonstrated elevated rates of Il-8 and TNF-alpha production. Conclusions: Proteins produced by a bacterium isolated from a Demodex mite have the ability to increase the migration, degranulation and cytokine production abilities of neutrophils. These results suggest that bacteria may play a role in the inflammatory erythema associated with rosacea.

  16. Estudio de PMN cerámico dopado con KNbO3 y LiNbO3 sintetizado por Pechini

    Directory of Open Access Journals (Sweden)

    Cilense, M.

    2002-04-01

    Full Text Available PMN belongs to a special class of materials named relaxor ferroelectrics. It has high volumetric efficiency due to its high dielectric constant, which makes it in a perfect material for application in multilayer capacitors. When prepared the columbite route its preparation has many advantages. In this work, the preparations of columbite and PMN were done by Pechini and Partial Oxalate methods, respectively. The effects of the KNbO3 and LiNbO3 dopants added in various concentrations. The idea is founded on the correlations that they have with BaTiO3 y PbTiO3, respectively. The whole process was supervised by TG/DTA, XRD, SEM and determination of the specific surface area of the powders. LiNbO3 carries out the pre-sinterization of the particles, observed by a reduction in the surface area. There are not particle grow, but occur its lengthening. However, for KNbO3 these particle growth, but the agglomerates are softer. The effect produced by the doping during the synthesis of the PMN powder is different from the one produced in the columbite precursor. Pure precursor shows an average particle size of 0,2μm, but the addition of 5,0mol% of dopants carries out the formation of agglomerates close to 4μm. LiNbO3 addition carries out spherical particles and pre-sinterization, while KNbO3 addition does not change the particles shape.El PMN pertenece a una clase especial de materiales conocido como ferroeléctricos relaxores. Posee gran eficacia volumétrica debido a su gran constante dieléctrica, siendo un perfecto candidato para la aplicación en capacitores multicapas. Su preparación es más ventajosa cuando se sintetiza por la ruta de la columbita. Las preparaciones de la columbita y del PMN se basaron en los métodos Pechini y Oxalato Parcial, respectivamente. Se ha estudiado los efectos de los dopantes KNbO3 y LiNbO3 añadidos a varias concentraciones. La idea esta basada en las correlaciones que estos tienen con BaTiO3 y PbTiO3, respectivamente

  17. Flow Perturbation Mediates Neutrophil Recruitment and Potentiates Endothelial Injury via TLR2 in Mice: Implications for Superficial Erosion.

    Science.gov (United States)

    Franck, Grégory; Mawson, Thomas; Sausen, Grasiele; Salinas, Manuel; Masson, Gustavo Santos; Cole, Andrew; Beltrami-Moreira, Marina; Chatzizisis, Yiannis; Quillard, Thibault; Tesmenitsky, Yevgenia; Shvartz, Eugenia; Sukhova, Galina K; Swirski, Filip K; Nahrendorf, Matthias; Aikawa, Elena; Croce, Kevin J; Libby, Peter

    2017-06-23

    Superficial erosion currently causes up to a third of acute coronary syndromes; yet, we lack understanding of its mechanisms. Thrombi because of superficial intimal erosion characteristically complicate matrix-rich atheromata in regions of flow perturbation. This study tested in vivo the involvement of disturbed flow and of neutrophils, hyaluronan, and Toll-like receptor 2 ligation in superficial intimal injury, a process implicated in superficial erosion. In mouse carotid arteries with established intimal lesions tailored to resemble the substrate of human eroded plaques, acute flow perturbation promoted downstream endothelial cell activation, neutrophil accumulation, endothelial cell death and desquamation, and mural thrombosis. Neutrophil loss-of-function limited these findings. Toll-like receptor 2 agonism activated luminal endothelial cells, and deficiency of this innate immune receptor decreased intimal neutrophil adherence in regions of local flow disturbance, reducing endothelial cell injury and local thrombosis ( P <0.05). These results implicate flow disturbance, neutrophils, and Toll-like receptor 2 signaling as mechanisms that contribute to superficial erosion, a cause of acute coronary syndrome of likely growing importance in the statin era. © 2017 American Heart Association, Inc.

  18. Air-Coupled Low Frequency Ultrasonic Transducers and Arrays with PMN-32%PT Piezoelectric Crystals

    Directory of Open Access Journals (Sweden)

    Rymantas J. Kazys

    2017-01-01

    Full Text Available Air-coupled ultrasonic techniques are being increasingly used for material characterization, non-destructive evaluation of composite materials using guided waves as well as for distance measurements. Application of those techniques is mainly limited by the big losses of ultrasonic signals due to attenuation and mismatch of the acoustic impedances of ultrasonic transducers and air. One of the ways to solve this problem is by application of novel more efficient piezoelectric materials like lead magnesium niobate-lead titanate (PMN-PT type crystals. The objective of this research was the development and investigation of low frequency (<50 kHz wide band air-coupled ultrasonic transducers and arrays with an improved performance using PMN-32%PT crystals. Results of finite element modelling and experimental investigations of the developed transducers and arrays are presented. For improvement of the performance strip-like matching elements made of low acoustic impedance, materials such as polystyrene foams were applied. It allowed to achieve transduction losses for one single element transducer −11.4 dB, what is better than of commercially available air-coupled ultrasonic transducers. Theoretical and experimental investigations of the acoustic fields radiated by the eight element ultrasonic array demonstrated not only a good performance of the array in a pulse mode, but also very good possibilities to electronically focus and steer the ultrasonic beam in space.

  19. Interval and continuous exercise regimens suppress neutrophil-derived microparticle formation and neutrophil-promoted thrombin generation under hypoxic stress.

    Science.gov (United States)

    Chen, Yi-Ching; Ho, Ching-Wen; Tsai, Hsing-Hua; Wang, Jong-Shyan

    2015-04-01

    Acute hypoxic exposure increases vascular thrombotic risk. The release of procoagulant-rich microparticles from neutrophils accelerates the pathogenesis of inflammatory thrombosis. The present study explicates the manner in which interval and continuous exercise regimens affect neutrophil-derived microparticle (NDMP) formation and neutrophil/NDMP-mediated thrombin generation (TG) under hypoxic condition. A total of 60 sedentary males were randomized to perform either aerobic interval training [AIT; 3-min intervals at 40% and 80% V̇O2max (maximal O2 consumption)] or moderate continuous training (MCT; sustained 60% V̇O2max) for 30 min/day, 5 days/week for 5 weeks, or to a control (CTL) group who did not receive any form of training. At rest and immediately after hypoxic exercise test (HE, 100 W under 12% O2 for 30 min), the NDMP characteristics and dynamic TG were measured by flow cytometry and thrombinography respectively. Before the intervention, HE (i) elevated coagulant factor VIII/fibrinogen concentrations and shortened activated partial thromboplastin time (aPTT), (ii) increased total and tissue factor (TF)-rich/phosphatidylserine (PS)-exposed NDMP counts and (iii) enhanced the peak height and rate of TG promoted by neutrophils/NDMPs. Following the 5-week intervention, AIT exhibited higher enhancement of V̇O2max than did MCT. Notably, both MCT and AIT attenuated the extents of HE-induced coagulant factor VIII/fibrinogen elevations and aPTT shortening. Furthermore, the two exercise regimens significantly decreased TF-rich/PS-exposed NDMP formation and depressed neutrophil/NDMP-mediated dynamic TG at rest and following HE. Hence, we conclude that AIT is superior to MCT for enhancing aerobic capacity. Moreover, either AIT or MCT effectively ameliorates neutrophil/NDMP-promoted TG by down-regulating expression of procoagulant factors during HE, which may reduce thrombotic risk evoked by hypoxia. Moreover, either AIT or MCT effectively ameliorates neutrophil

  20. Neutrophils, dendritic cells and Toxoplasma.

    Science.gov (United States)

    Denkers, Eric Y; Butcher, Barbara A; Del Rio, Laura; Bennouna, Soumaya

    2004-03-09

    Toxoplasma gondii rapidly elicits strong Type 1 cytokine-based immunity. The necessity for this response is well illustrated by the example of IFN-gamma and IL-12 gene knockout mice that rapidly succumb to the effects of acute infection. The parasite itself is skilled at sparking complex interactions in the innate immune system that lead to protective immunity. Neutrophils are one of the first cell types to arrive at the site of infection, and the cells release several proinflammatory cytokines and chemokines in response to Toxoplasma. Dendritic cells are an important source of IL-12 during infection with T. gondii and other microbial pathogens, and they are also specialized for high-level antigen presentation to T lymphocytes. Tachyzoites express at least two types of molecules that trigger innate immune cell cytokine production. One of these involves Toll-like receptor/MyD88 pathways common to many microbial pathogens. The second pathway is less conventional and involves molecular mimicry between a parasite cyclophilin and host CC chemokine receptor 5-binding ligands. Neutrophils, dendritic cells and Toxoplasma work together to elicit the immune response required for host survival. Cytokine and chemokine cross-talk between parasite-triggered neutrophils and dendritic cells results in recruitment, maturation and activation of the latter. Neutrophil-empowered dendritic cells possess properties expected of highly potent antigen presenting cells that drive T helper 1 generation.

  1. Neutrophil heterogeneity: implications for homeostasis and pathogenesis

    NARCIS (Netherlands)

    Silvestre-Roig, Carlos; Hidalgo, Andres; Soehnlein, Oliver

    2016-01-01

    Neutrophils are polymorphonuclear leukocytes of the phagocytic system that act as first line of host defense against invading pathogens but are also important mediators of inflammation-induced injury. In contrast to other members of the innate immune system, neutrophils are classically considered a

  2. Source and role of diacylglycerol formed during phagocytosis of opsonized yeast particles and associated respiratory burst in human neutrophils

    International Nuclear Information System (INIS)

    Della Bianca, V.; Grzeskowiak, M.; Lissandrini, D.; Rossi, F.

    1991-01-01

    The results presented in this paper demonstrate that in human neutrophils phagocytosis of C3b/bi and IgG-opsonized yeast particles is associated with activation of phospholipase D and that this reaction is the main source of diglycerides. The demonstration is based upon the following findings: (1) the challenge of neutrophils with these opsonized particles was followed by a rapid formation of [3H]alkyl-phosphatidic acid [( 3H]alkyl-PA) and [3H]alkyl-diglyceride [( 3H]alkyl-DG) in cells labeled with [3H]alkyl-lyso-phosphatidylcholine; (2) in the presence of ethanol [3H]alkyl-phosphatidylethanol was formed, and accumulation of [3H]alkyl-PA and [3H]alkyl-DG was depressed; (3) propranolol, by inhibiting the dephosphorylation of [3H]alkyl-PA, completely inhibited the accumulation of [3H]alkyl-DG and depressed by about 75% the formation of diglyceride mass. Evidence is also presented that phagocytosis of C3b/bi and IgG-opsonized yeast particles and associated respiratory burst can take place independently of diglyceride formation and of the activity of this second messenger on protein kinase C. In fact: (a) propranolol while completely inhibited the formation of diglyceride mass did not modify either the phagocytosis or respiratory burst; (b) these two processes were insensitive to staurosporine

  3. Tissue-transglutaminase contributes to neutrophil granulocyte differentiation and functions.

    Science.gov (United States)

    Balajthy, Zoltán; Csomós, Krisztián; Vámosi, György; Szántó, Attila; Lanotte, Michel; Fésüs, László

    2006-09-15

    Promyelocytic NB4 leukemia cells undergo differentiation to granulocytes following retinoic acid treatment. Here we report that tissue transglutaminase (TG2), a protein cross-linking enzyme, was induced, then partially translocated into the nucleus, and became strongly associated with the chromatin during the differentiation process. The transglutaminase-catalyzed cross-link content of both the cytosolic and the nuclear protein fractions increased while NB4 cells underwent cellular maturation. Inhibition of cross-linking activity of TG2 by monodansylcadaverin in these cells led to diminished nitroblue tetrazolium (NBT) positivity, production of less superoxide anion, and decreased expression of GP91PHOX, the membrane-associated subunit of NADPH oxidase. Neutrophils isolated from TG2(-/-) mice showed diminished NBT reduction capacity, reduced superoxide anion formation, and down-regulation of the gp91phox subunit of NADPH oxidase, compared with wild-type cells. It was also observed that TG2(-/-) mice exhibited increased neutrophil phagocytic activity, but had attenuated neutrophil chemotaxis and impaired neutrophil extravasation with higher neutrophil counts in their circulation during yeast extract-induced peritonitis. These results clearly suggest that TG2 may modulate the expression of genes related to neutrophil functions and is involved in several intracellular and extracellular functions of extravasating neutrophil.

  4. Neutrophils in Homeostasis, Immunity, and Cancer.

    Science.gov (United States)

    Nicolás-Ávila, José Ángel; Adrover, José M; Hidalgo, Andrés

    2017-01-17

    Neutrophils were among the first leukocytes described and visualized by early immunologists. Prominent effector functions during infection and sterile inflammation classically placed them low in the immune tree as rapid, mindless aggressors with poor regulatory functions. This view is currently under reassessment as we uncover new aspects of their life cycle and identify transcriptional and phenotypic diversity that endows them with regulatory properties that extend beyond their lifetime in the circulation. These properties are revealing unanticipated roles for neutrophils in supporting homeostasis, as well as complex disease states such as cancer. We focus this review on these emerging functions in order to define the true roles of neutrophils in homeostasis, immunity, and disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Neutrophilic dermatoses in a patient with collagenous colitis

    OpenAIRE

    Didac Barco; Maria A. Barnadas; Esther Roé; Francisco J. Sancho; Elena Ricart; Agustín Alomar

    2010-01-01

    We report the case of a 75-year old woman with collagenous colitis who presented with erythematous and edematous plaques on the periorbital and eyelid regions, accompanied by oral ulcers. Histopathology showed a dermal neutrophilic infiltrate plus mild septal and lobular panniculitis with lymphocytes, neutrophils and eosinophils. Five years earlier she had presented a flare of papules and vesicles on the trunk, together with oral ulcers; a skin biopsy revealed a neutrophilic dermal infiltrate...

  6. Involvement of purinergic signaling on nitric oxide production by neutrophils stimulated with Trichomonas vaginalis.

    Science.gov (United States)

    Frasson, Amanda Piccoli; De Carli, Geraldo Attilio; Bonan, Carla Denise; Tasca, Tiana

    2012-03-01

    Trichomonas vaginalis is a parasite from the human urogenital tract that causes trichomonosis, the most prevalent non-viral sexually transmitted disease. The neutrophil infiltration has been considered to be primarily responsible for cytological changes observed at infection site, and the chemoattractants can play an important role in this leukocytic recruitment. Nitric oxide (NO) is one of the most widespread mediator compounds, and it is implicated in modulation of immunological mechanisms. Extracellular nucleotides and nucleosides are signaling molecules involved in several processes, including immune responses and control of leukocyte trafficking. Ectonucleoside triphosphate diphosphohydrolase members, ecto-5'-nucleotidase, and adenosine deaminase (ectoADA) have been characterized in T. vaginalis. Herein, we investigated the effects of purinergic system on NO production by neutrophils stimulated with T. vaginalis. The trophozoites were able to induce a high NO synthesis by neutrophils through iNOS pathway. The extracellular nucleotides ATP, ADP, and ATPγS (a non-hydrolyzable ATP analog) showed no significant change in NO secretion. In contrast, adenosine and its degradation product, inosine, promoted a low production of the compound. The immunosuppressive effect of adenosine upon NO release by neutrophils occurred due to adenosine A(2A) receptor activation. The ecto-5'-nucleotidase activity displayed by T. vaginalis was shown to be important in adenosine generation, indicating the efficiency of purinergic cascade. Our data suggest the influence of purinergic signaling, specifically adenosinergic system, on NO production by neutrophils in T. vaginalis infection, contributing to the immunological aspects of disease.

  7. Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo

    Science.gov (United States)

    von Brühl, Marie-Luise; Stark, Konstantin; Steinhart, Alexander; Chandraratne, Sue; Konrad, Ildiko; Lorenz, Michael; Khandoga, Alexander; Tirniceriu, Anca; Coletti, Raffaele; Köllnberger, Maria; Byrne, Robert A.; Laitinen, Iina; Walch, Axel; Brill, Alexander; Pfeiler, Susanne; Manukyan, Davit; Braun, Siegmund; Lange, Philipp; Riegger, Julia; Ware, Jerry; Eckart, Annekathrin; Haidari, Selgai; Rudelius, Martina; Schulz, Christian; Echtler, Katrin; Brinkmann, Volker; Schwaiger, Markus; Preissner, Klaus T.; Wagner, Denisa D.; Mackman, Nigel; Engelmann, Bernd

    2012-01-01

    Deep vein thrombosis (DVT) is a major cause of cardiovascular death. The sequence of events that promote DVT remains obscure, largely as a result of the lack of an appropriate rodent model. We describe a novel mouse model of DVT which reproduces a frequent trigger and resembles the time course, histological features, and clinical presentation of DVT in humans. We demonstrate by intravital two-photon and epifluorescence microscopy that blood monocytes and neutrophils crawling along and adhering to the venous endothelium provide the initiating stimulus for DVT development. Using conditional mutants and bone marrow chimeras, we show that intravascular activation of the extrinsic pathway of coagulation via tissue factor (TF) derived from myeloid leukocytes causes the extensive intraluminal fibrin formation characteristic of DVT. We demonstrate that thrombus-resident neutrophils are indispensable for subsequent DVT propagation by binding factor XII (FXII) and by supporting its activation through the release of neutrophil extracellular traps (NETs). Correspondingly, neutropenia, genetic ablation of FXII, or disintegration of NETs each confers protection against DVT amplification. Platelets associate with innate immune cells via glycoprotein Ibα and contribute to DVT progression by promoting leukocyte recruitment and stimulating neutrophil-dependent coagulation. Hence, we identified a cross talk between monocytes, neutrophils, and platelets responsible for the initiation and amplification of DVT and for inducing its unique clinical features. PMID:22451716

  8. Neutrophil Leukocyte: Combustive Microbicidal Action and Chemiluminescence

    Directory of Open Access Journals (Sweden)

    Robert C. Allen

    2015-01-01

    Full Text Available Neutrophil leukocytes protect against a varied and complex array of microbes by providing microbicidal action that is simple, potent, and focused. Neutrophils provide such action via redox reactions that change the frontier orbitals of oxygen (O2 facilitating combustion. The spin conservation rules define the symmetry barrier that prevents direct reaction of diradical O2 with nonradical molecules, explaining why combustion is not spontaneous. In burning, the spin barrier is overcome when energy causes homolytic bond cleavage producing radicals capable of reacting with diradical O2 to yield oxygenated radical products that further participate in reactive propagation. Neutrophil mediated combustion is by a different pathway. Changing the spin quantum state of O2 removes the symmetry restriction to reaction. Electronically excited singlet molecular oxygen (O2*1 is a potent electrophilic reactant with a finite lifetime that restricts its radius of reactivity and focuses combustive action on the target microbe. The resulting exergonic dioxygenation reactions produce electronically excited carbonyls that relax by light emission, that is, chemiluminescence. This overview of neutrophil combustive microbicidal action takes the perspectives of spin conservation and bosonic-fermionic frontier orbital considerations. The necessary principles of particle physics and quantum mechanics are developed and integrated into a fundamental explanation of neutrophil microbicidal metabolism.

  9. Neutrophils and Granulocytic MDSC: The Janus God of Cancer Immunotherapy

    Directory of Open Access Journals (Sweden)

    Serena Zilio

    2016-09-01

    Full Text Available Neutrophils are the most abundant circulating blood cell type in humans, and are the first white blood cells recruited at the inflammation site where they orchestrate the initial immune response. Although their presence at the tumor site was recognized in the 1970s, until recently these cells have been neglected and considered to play just a neutral role in tumor progression. Indeed, in recent years neutrophils have been recognized to play a dual role in tumor development by either assisting the growth, angiogenesis, invasion, and metastasis or by exerting tumoricidal action directly via the secretion of antitumoral compounds, or indirectly via the orchestration of antitumor immunity. Understanding the biology of these cells and influencing their polarization in the tumor micro- and macro-environment may be the key for the development of new therapeutic strategies, which may finally hold the promise of an effective immunotherapy for cancer.

  10. Anti-Pseudomonas aeruginosa IgY Antibodies Induce Specific Bacterial Aggregation and Internalization in Human Polymorphonuclear Neutrophils

    DEFF Research Database (Denmark)

    Thomsen, K.; Christophersen, L.; Bjarnsholt, T.

    2015-01-01

    with P. aeruginosa by augmenting the phagocytic competence of PMNs may postpone the deteriorating chronic biofilm infection. Anti-P. aeruginosa IgY antibodies significantly increase the PMN-mediated respiratory burst and subsequent bacterial killing of P. aeruginosa in vitro. The mode of action...... is attributed to IgY-facilitated formation of immobilized bacteria in aggregates, as visualized by fluorescence microscopy and the induction of increased bacterial hydrophobicity. Thus, the present study demonstrates that avian egg yolk immunoglobulins (IgY) targeting P. aeruginosa modify bacterial fitness...

  11. Systems biology of neutrophil differentiation and immune response

    DEFF Research Database (Denmark)

    Theilgaard-Mönch, Kim; Porse, Bo T; Borregaard, Niels

    2005-01-01

    Systems biology has emerged as a new scientific field, which aims at investigating biological processes at the genomic and proteomic levels. Recent studies have unravelled aspects of neutrophil differentiation and immune responses at the systems level using high-throughput technologies. These stu......Systems biology has emerged as a new scientific field, which aims at investigating biological processes at the genomic and proteomic levels. Recent studies have unravelled aspects of neutrophil differentiation and immune responses at the systems level using high-throughput technologies....... These studies have identified a plethora of novel effector proteins stored in the granules of neutrophils. In addition, these studies provide evidence that neutrophil differentiation and immune response are governed by a highly coordinated transcriptional programme that regulates cellular fate and function...

  12. Diverse novel functions of neutrophils in immunity, inflammation, and beyond.

    Science.gov (United States)

    Mócsai, Attila

    2013-07-01

    Neutrophils have long been considered simple suicide killers at the bottom of the hierarchy of the immune response. That view began to change 10-20 yr ago, when the sophisticated mechanisms behind how neutrophils locate and eliminate pathogens and regulate immunity and inflammation were discovered. The last few years witnessed a new wave of discoveries about additional novel and unexpected functions of these cells. Neutrophils have been proposed to participate in protection against intracellular pathogens such as viruses and mycobacteria. They have been shown to intimately shape the adaptive immune response at various levels, including marginal zone B cells, plasmacytoid dendritic cells and T cell populations, and even to control NK cell homeostasis. Neutrophils have been shown to mediate an alternative pathway of systemic anaphylaxis and to participate in allergic skin reactions. Finally, neutrophils were found to be involved in physiological and pathological processes beyond the immune system, such as diabetes, atherosclerosis, and thrombus formation. Many of those functions appear to be related to their unique ability to release neutrophil extracellular traps even in the absence of pathogens. This review summarizes those novel findings on versatile functions of neutrophils and how they change our view of neutrophil biology in health and disease.

  13. [The significances of peripheral neutrophils CD(55) and myeloperoxidase expression in patients with myeloperoxidase-specific anti-neutrophil cytoplasmic antibody associated vasculitis].

    Science.gov (United States)

    Zhou, X L; Zheng, M J; Shuai, Z W; Zhang, L; Zhang, M M; Chen, S Y

    2017-06-01

    Objective: To investigate the expression of CD(55) and myeloperoxidase (MPO) on neutrophils in patients with MPO-specific anti-neutrophil cytoplasmic antibody associated vasculitis(MPO-AAV), and analyze the relationship between the expression and clinical manifestation. Methods: Forty untreated patients with active MPO-AAV (patient group) and 30 healthy volunteers (control group) were enrolled in this study. The CD(55) on neutrophils and both membrane and cytoplasmic MPO were detected by flow cytometry. Serum fragment-from the activated complement factor B(Ba) and MPO were measured by ELISA. The clinical activity of vasculitis was valued by Birmingham vasculitis activity score-version 3(BVAS-V3). The significance of laboratory data was evaluated by Spearman correlation test and multivariate linear regression analysis. Results: (1)The mean fluorescence intensity(MFI) of CD(55) expressed on neutrophils was significantly higher than that in control group[4 068.6±2 306.0 vs 2 999.5±1 504.9, P =0.033]. Similar results of serum MPO and Ba in patient group were found compared to controls [500.0(381.0, 612.7) IU/L vs 286.9(225.5, 329.1) IU/L, P <0.001; 35.2(25.2, 79.5) ng/L vs 18.0(15.0, 28.0) ng/L, P <0.001], respectively. However, MIF of cytoplasmic MPO in patients was significantly lower than that of control group(1 577.1±1 175.9 vs 3 105.3±2 323.0, P =0.003) . (2) In patient group, cytoplasmic intensity of MPO was negatively associated with the serum levels of MPO( r =-0.710, P <0.001) and Ba ( r =-0.589, P =0.001). Moreover, serum MPO was positively associated with serum Ba( r =0.691, P <0.001). Membrane intensity of CD(55) on neutrophils was positively correlated with patient age ( r =0.514, P =0.001), C reactive protein ( r =0.376, P =0.018), peripheral neutrophils count ( r =0.485, P =0.001) and BVAS-V3 ( r =0.484, P =0.002), whereas negative correlation between membrane CD(55) and disease duration was seen ( r =-0.403, P =0.01). (3) The result of multiple

  14. Antiphospholipid Antibodies Promote the Release of Neutrophil Extracellular Traps: A New Mechanism of Thrombosis in the Antiphospholipid Syndrome

    Science.gov (United States)

    Yalavarthi, Srilakshmi; Gould, Travis J.; Rao, Ashish N.; Mazza, Levi F.; Morris, Alexandra E.; Núñez-Álvarez, Carlos; Hernández-Ramírez, Diego; Bockenstedt, Paula L.; Liaw, Patricia C.; Cabral, Antonio R.; Knight, Jason S.

    2015-01-01

    Objective Antiphospholipid antibodies (aPL), especially those targeting beta-2-glycoprotein I (β2GPI), are well known to activate endothelial cells, monocytes, and platelets, with prothrombotic implications. In contrast, the interaction of aPL with neutrophils has not been extensively studied. Neutrophil extracellular traps (NETs) have recently been recognized as an important activator of the coagulation cascade, as well as an integral component of arterial and venous thrombi. Here, we hypothesized that aPL might activate neutrophils to release NETs, thereby predisposing to the arterial and venous thrombosis inherent to the antiphospholipid syndrome (APS). Methods Neutrophils, sera, and plasma were prepared and characterized from patients with primary APS (n=52), or from healthy volunteers. No patient carried a concomitant diagnosis of systemic lupus erythematosus. Results Sera and plasma from patients with primary APS have elevated levels of both cell-free DNA and NETs, as compared to healthy volunteers. Freshly-isolated APS neutrophils are predisposed to high levels of spontaneous NET release. Further, APS-patient sera, as well as IgG purified from APS patients, stimulate NET release from control neutrophils. Human aPL monoclonals, especially those targeting β2GPI, also enhance NET release. The induction of APS NETs can be abrogated with inhibitors of reactive oxygen species formation and toll-like receptor 4 signaling. Highlighting the potential clinical relevance of these findings, APS NETs promote thrombin generation. Conclusion Neutrophil NET release warrants further investigation as a novel therapeutic target in APS. PMID:26097119

  15. Azurophil granule proteins constitute the major mycobactericidal proteins in human neutrophils and enhance the killing of mycobacteria in macrophages.

    Directory of Open Access Journals (Sweden)

    Prajna Jena

    Full Text Available Pathogenic mycobacteria reside in, and are in turn controlled by, macrophages. However, emerging data suggest that neutrophils also play a critical role in innate immunity to tuberculosis, presumably by their different antibacterial granule proteins. In this study, we purified neutrophil azurophil and specific granules and systematically analyzed the antimycobacterial activity of some purified azurophil and specific granule proteins against M. smegmatis, M. bovis-BCG and M. tuberculosis H37Rv. Using gel overlay and colony forming unit assays we showed that the defensin-depleted azurophil granule proteins (AZP were more active against mycobacteria compared to other granule proteins and cytosolic proteins. The proteins showing antimycobacterial activity were identified by MALDI-TOF mass spectrometry. Electron microscopic studies demonstrate that the AZP disintegrate bacterial cell membrane resulting in killing of mycobacteria. Exogenous addition of AZP to murine macrophage RAW 264.7, THP-1 and peripheral blood monocyte-derived macrophages significantly reduced the intracellular survival of mycobacteria without exhibiting cytotoxic activity on macrophages. Immunofluorescence studies showed that macrophages actively endocytose neutrophil granular proteins. Treatment with AZP resulted in increase in co-localization of BCG containing phagosomes with lysosomes but not in increase of autophagy. These data demonstrate that neutrophil azurophil proteins may play an important role in controlling intracellular survival of mycobacteria in macrophages.

  16. Neutrophils in traumatic brain injury (TBI): friend or foe?

    Science.gov (United States)

    Liu, Yang-Wuyue; Li, Song; Dai, Shuang-Shuang

    2018-05-17

    Our knowledge of the pathophysiology about traumatic brain injury (TBI) is still limited. Neutrophils, as the most abundant leukocytes in circulation and the first-line transmigrated immune cells at the sites of injury, are highly involved in the initiation, development, and recovery of TBI. Nonetheless, our understanding about neutrophils in TBI is obsolete, and mounting evidences from recent studies have challenged the conventional views. This review summarizes what is known about the relationships between neutrophils and pathophysiology of TBI. In addition, discussions are made on the complex roles as well as the controversial views of neutrophils in TBI.

  17. Flow Perturbation Mediates Neutrophil Recruitment and Potentiates Endothelial Injury via TLR2 in Mice – Implications for Superficial Erosion

    Science.gov (United States)

    Franck, Grégory; Mawson, Thomas; Sausen, Grasiele; Salinas, Manuel; Masson, Gustavo Santos; Cole, Andrew; Beltrami-Moreira, Marina; Chatzizisis, Yiannis; Quillard, Thibault; Tesmenitsky, Yevgenia; Shvartz, Eugenia; Sukhova, Galina K.; Swirski, Filip K.; Nahrendorf, Matthias; Aikawa, Elena; Croce, Kevin J.; Libby, Peter

    2017-01-01

    Rationale Superficial erosion currently causes up to a third of acute coronary syndromes (ACS), yet we lack understanding of its mechanisms. Thrombi due to superficial intimal erosion characteristically complicate matrix-rich atheromata in regions of flow perturbation. Objective This study tested in vivo the involvement of disturbed flow, and of neutrophils, hyaluronan, and TLR2 ligation in superficial intimal injury, a process implicated in superficial erosion. Methods and Results : In mouse carotid arteries with established intimal lesions tailored to resemble the substrate of human eroded plaques, acute flow perturbation promoted downstream endothelial cell (EC) activation, neutrophil accumulation, EC death and desquamation, and mural thrombosis. Neutrophil loss-of-function limited these findings. TLR2 agonism activated luminal ECs, and deficiency of this innate immune receptor decreased intimal neutrophil adherence in regions of local flow disturbance, reducing EC injury and local thrombosis (p<0.05). Conclusions These results implicate flow disturbance, neutrophils, and TLR2 signaling as mechanisms that contribute to superficial erosion, a cause of ACS of likely growing importance in the statin era. PMID:28428204

  18. Naloxone inhibits superoxide but not enzyme release by human neutrophils

    Energy Technology Data Exchange (ETDEWEB)

    Simpkins, C.; Alailima, S.; Tate, E.

    1986-03-01

    The release of toxic oxygen metabolites and enzymes by phagocytic cells is thought to play a role in the multisystemic tissue injury of sepsis. Naloxone protects septic animals. We have found that at concentrations administered to animals (10/sup -7/ to 10/sup -4/M), naloxone inhibited (p < .001) the release of superoxide (O/sub 2//sup -/) by human neutrophils (HN), stimulated with N-formyl methionyl leucyl phenylalanine (FMLP). Naloxone had no effect on cell viability. Maximum inhibition was 65% of the total O/sub 2//sup -/ released (13.1 nMoles/8 min/320,000 cells). FMLP-stimulated release of beta-glucoronidase or lysozyme was not altered by naloxone. Naloxone had no effect on the binding of /sup 3/H FMLP to HN. Using /sup 3/H naloxone and various concentrations of unlabeled naloxone higher affinity (K/sub D/ = 12nM) and lower affinity (K/sub D/ = 4.7 x 10/sup -5/) binding sites were detected. The K/sub D/ of the low affinity site corresponded to the ED/sub 50/ for naloxone inhibition of O/sub 2//sup -/ (1 x 10/sup -5/M). Binding to this low affinity site was decreased by (+) naloxone, beta-endorphin and N acetyl beta-endorphin, but not by leu-enkephalin, thyrotropin releasing factor, prostaglandin D/sub 2/ or E/sub 2/. Conclusions: (1) naloxone inhibits FMLP-stimulated O/sub 2/ but not enzyme release, (2) this inhibition is not due to alteration of FMLP receptor binding, (3) naloxone may act via a low affinity binding site which is ligand specific, and (4) a higher affinity receptor is present on HN.

  19. Inhibition of neutrophil migration by aggregated immunoglobulin attached to micropore membranes.

    Science.gov (United States)

    Kemp, A S; Brown, S

    1980-01-01

    The effect of substrate-bound immunoglobulin on neutrophil migration was examined. Immunoglobulin aggregates bound to micropore membranes inhibited the neutrophil response to a chemotactic stimulus. This inhibition was reversed by the presence of aggregates in suspension suggesting competition between substrate-bound and free aggregates for neutrophil surface binding sites. The immobilization of neutrophils by substrate-bound aggregated immunoglobulin suggests a mechanism for the accumulation of neutrophils at sites of immune complex deposition and tissue-bound antibodies in vivo. PMID:7380477

  20. PMN Leukocytes and Fibroblasts Numbers on Wound Burn Healing on the Skin of White Rat after Administration of Ambonese Plantain Banana

    Directory of Open Access Journals (Sweden)

    Juniarti

    2012-04-01

    Full Text Available A study of ambonese plantain banana (Musa paradisiaca var sapientum Lamb treatment in burn wound healing on the skin of white rats (Rattus novergicus has been conducted. The wound healing of burn injuries was evaluated by counting the number of PMN leukocytes and fibroblasts at the 7th, 14th, and 21st days following the treatment. The study showed that the decrease in number of PMN leukocytes of subjects treated with ambonese plantain banana was relatively more significant compared to both negative and positive control (Bioplacenton ®. In contrast, an increasing number of fibroblasts was significantly demonstrated at the 14th and 21st days after treatment. In conclusion, ambonese plantain banana treatment in burn injuries will provide better results compared to both positive and negative controls.

  1. Association of low-affinity FC gamma receptor 3B (FCGR3B) copy number variation with rheumatoid arthritis in Caucasian subjects

    NARCIS (Netherlands)

    Merriman, T.R.; Fanciulli, M.; Merriman, M.E.; Alizadeh, B.Z.; Koeleman, B.P.C.; Dalbeth, N.; Gow, P.; Harrison, A.A.; Highton, J.; Jones, P.B.; Stamp, L.K.; Steer, S.; Barrera, P.; Coenen, M.J.H.; Franke, B.; Vyse, T.; Aitman, T.; Radstake, T.; McKinney, C.

    2009-01-01

    Aim: There is increasing evidence that gene copy-number variation influences phenotypic variation. The low-affinity Fc receptor 3B (FCGR3B) is a copy-number polymorphic gene involved in the recruitment to sites of inflammation and activation of polymorphonuclear neutrophils (PMN). Given the

  2. Neutrophils Contribute to the Protection Conferred by ArtinM against Intracellular Pathogens: A Study on Leishmania major.

    Science.gov (United States)

    Ricci-Azevedo, Rafael; Oliveira, Aline Ferreira; Conrado, Marina C A V; Carvalho, Fernanda Caroline; Roque-Barreira, Maria Cristina

    2016-04-01

    ArtinM, a D-mannose binding lectin from Artocarpus heterophyllus, has immunomodulatory activities through its interaction with N-glycans of immune cells, culminating with the establishment of T helper type 1 (Th1) immunity. This interaction protects mice against intracellular pathogens, including Leishmania major and Leishmania amazonensis. ArtinM induces neutrophils activation, which is known to account for both resistance to pathogens and host tissue injury. Although exacerbated inflammation was not observed in ArtinM-treated animals, assessment of neutrophil responses to ArtinM is required to envisage its possible application to design a novel immunomodulatory agent based on carbohydrate recognition. Herein, we focus on the mechanisms through which neutrophils contribute to ArtinM-induced protection against Leishmania, without exacerbating inflammation. For this purpose, human neutrophils treated with ArtinM and infected with Leishmania major were analyzed together with untreated and uninfected controls, based on their ability to eliminate the parasite, release cytokines, degranulate, produce reactive oxygen species (ROS), form neutrophil extracellular traps (NETs) and change life span. We demonstrate that ArtinM-stimulated neutrophils enhanced L. major clearance and at least duplicated tumor necrosis factor (TNF) and interleukin-1beta (IL-1β) release; otherwise, transforming growth factor-beta (TGF-β) production was reduced by half. Furthermore, ROS production and cell degranulation were augmented. The life span of ArtinM-stimulated neutrophils decreased and they did not form NETs when infected with L. major. We postulate that the enhanced leishmanicidal ability of ArtinM-stimulated neutrophils is due to augmented release of inflammatory cytokines, ROS production, and cell degranulation, whereas host tissue integrity is favored by their shortened life span and the absence of NET formation. Our results reinforce the idea that ArtinM may be considered an

  3. Neutrophils Contribute to the Protection Conferred by ArtinM against Intracellular Pathogens: A Study on Leishmania major.

    Directory of Open Access Journals (Sweden)

    Rafael Ricci-Azevedo

    2016-04-01

    Full Text Available ArtinM, a D-mannose binding lectin from Artocarpus heterophyllus, has immunomodulatory activities through its interaction with N-glycans of immune cells, culminating with the establishment of T helper type 1 (Th1 immunity. This interaction protects mice against intracellular pathogens, including Leishmania major and Leishmania amazonensis. ArtinM induces neutrophils activation, which is known to account for both resistance to pathogens and host tissue injury. Although exacerbated inflammation was not observed in ArtinM-treated animals, assessment of neutrophil responses to ArtinM is required to envisage its possible application to design a novel immunomodulatory agent based on carbohydrate recognition. Herein, we focus on the mechanisms through which neutrophils contribute to ArtinM-induced protection against Leishmania, without exacerbating inflammation. For this purpose, human neutrophils treated with ArtinM and infected with Leishmania major were analyzed together with untreated and uninfected controls, based on their ability to eliminate the parasite, release cytokines, degranulate, produce reactive oxygen species (ROS, form neutrophil extracellular traps (NETs and change life span. We demonstrate that ArtinM-stimulated neutrophils enhanced L. major clearance and at least duplicated tumor necrosis factor (TNF and interleukin-1beta (IL-1β release; otherwise, transforming growth factor-beta (TGF-β production was reduced by half. Furthermore, ROS production and cell degranulation were augmented. The life span of ArtinM-stimulated neutrophils decreased and they did not form NETs when infected with L. major. We postulate that the enhanced leishmanicidal ability of ArtinM-stimulated neutrophils is due to augmented release of inflammatory cytokines, ROS production, and cell degranulation, whereas host tissue integrity is favored by their shortened life span and the absence of NET formation. Our results reinforce the idea that ArtinM may be

  4. The effect of midazolam on neutrophil mitogen-activated protein kinase.

    LENUS (Irish Health Repository)

    Ghori, Kamran

    2010-06-01

    Neutrophil p38 mitogen-activated protein kinase (MAPK) is a key enzyme in the intracellular signalling pathway that is responsible for many neutrophil functions, which are important in neutrophil-endothelial interaction. The imidazole compounds are inhibitors of this enzyme system. The objectives of this in-vitro investigation were to examine the effect of midazolam on neutrophil p38 MAPK activation (phosphorylation) following in-vitro ischaemia-reperfusion injury, and the expression of adhesion molecule CD11b\\/CD18.

  5. Down-regulated resistin level in consequence of decreased neutrophil counts in untreated Grave's disease.

    Science.gov (United States)

    Peng, Ying; Qi, Yicheng; Huang, Fengjiao; Chen, Xinxin; Zhou, Yulin; Ye, Lei; Wang, Weiqing; Ning, Guang; Wang, Shu

    2016-11-29

    Resistin, belongs to cysteine-rich secretory protein, is mainly produced by circulating leukocytes, such as neutrophils monocytes and macrophages in humans. To date, few but controversial studies have reported about resistin concentrations in hyperthyroid patients, especially in Graves' disease (GD). We undertaked a controlled, prospective study to explore the serum resistin concentration in GD patients before and after -MMI treatment. In addition, we also investigated the main influencing factor on serum resistin level and discuessed the potential role of serum resistin plays in GD patients. 39 untreated GD (uGD) patients, including 8 males and 31 females, were enrolled in our investigation. All of these patients were prescribed with MMI treatment, in addition to 25 healthy controls. Anthropometric parameters and hormone assessment were measured. Enzyme-linked immunosorbent assay was used to detect serum resistin concentration in different stages of GD patients. Furthermore, neutrophil cell line NB4 with or without T3 treatment to detect the effect of thyroid hormones on resistin expression. The serum resistin level and neutrophil counts in untreated GD patients were significantly declined. And all of these parameters were recovered to normal after MMI treatment in ethyroid GD (eGD) and TRAb-negative conversion (nGD) patients. Resistin concentration exhibited a negative correlation with FT3 and FT4, but a positive correlation with absolute number of neutrophiles in uGD patients, whereas did not correlate with thyroid autoimmune antibodies and BMI. Neutrophile cell line, NB4, produced decreased expression of resistin when stimulated with T3. Our study showed a decrease of serum resistin level in GD patients and we suggested that the serum resistin might primarily secreted from circulating neutrophils and down-regulated by excessive thyroid hormones in GD patients.

  6. Effects of Wharton's jelly-derived mesenchymal stem cells on neonatal neutrophils

    Directory of Open Access Journals (Sweden)

    Khan I

    2014-12-01

    Full Text Available Imteyaz Khan,1 Liying Zhang,2 Moiz Mohammed,1 Faith E Archer,1 Jehan Abukharmah,1 Zengrong Yuan,2 S Saif Rizvi,1 Michael G Melek,1 Arnold B Rabson,1,2 Yufang Shi,2 Barry Weinberger,1 Anna M Vetrano1,21Department of Pediatrics, Division of Neonatology, Rutgers Robert Wood Johnson Medical School, 2Rutgers Child Health Institute of New Jersey, New Brunswick, NJ, USABackground: Mesenchymal stem cells (MSCs have been proposed as autologous therapy for inflammatory diseases in neonates. MSCs from umbilical cord Wharton's jelly (WJ-MSCs are accessible, with high proliferative capacity. The effects of WJ-MSCs on neutrophil activity in neonates are not known. We compared the effects of WJ-MSCs on apoptosis and the expression of inflammatory, oxidant, and antioxidant mediators in adult and neonatal neutrophils.Methods: WJ-MSCs were isolated, and their purity and function were confirmed by flow cytometry. Neutrophils were isolated from cord and adult blood by density centrifugation. The effects of neutrophil/WJ-MSC co-culture on apoptosis and gene and protein expression were measured.Results: WJ-MSCs suppressed neutrophil apoptosis in a dose-dependent manner. WJ-MSCs decreased gene expression of NADPH oxidase-1 in both adult and neonatal neutrophils, but decreased heme oxygenase-1 and vascular endothelial growth factor and increased catalase and cyclooxygenase-2 in the presence of lipopolysaccharide only in adult cells. Similarly, generation of interleukin-8 was suppressed in adult but not neonatal neutrophils. Thus, WJ-MSCs dampened oxidative, vascular, and inflammatory activity by adult neutrophils, but neonatal neutrophils were less responsive. Conversely, Toll-like receptor-4, and cyclooxygenase-2 were upregulated in WJ-MSCs only in the presence of adult neutrophils, suggesting an inflammatory MSC phenotype that is not induced by neonatal neutrophils.Conclusion: Whereas WJ-MSCs altered gene expression in adult neutrophils in ways suggesting anti

  7. Suppressed neutrophil function in children with acute lymphoblastic leukemia.

    Science.gov (United States)

    Tanaka, Fumiko; Goto, Hiroaki; Yokosuka, Tomoko; Yanagimachi, Masakatsu; Kajiwara, Ryosuke; Naruto, Takuya; Nishimaki, Shigeru; Yokota, Shumpei

    2009-10-01

    Infection is a major obstacle in cancer chemotherapy. Neutropenia has been considered to be the most important risk factor for severe infection; however, other factors, such as impaired neutrophil function, may be involved in susceptibility to infection in patients undergoing chemotherapy. In this study, we analyzed neutrophil function in children with acute lymphoblastic leukemia (ALL). Whole blood samples were obtained from 16 children with ALL at diagnosis, after induction chemotherapy, and after consolidation chemotherapy. Oxidative burst and phagocytic activity of neutrophils were analyzed by flow cytometry. Oxidative burst of neutrophils was impaired in ALL patients. The percentage of neutrophils with normal oxidative burst after PMA stimulation was 59.0 +/- 13.2 or 70.0 +/- 21.0% at diagnosis or after induction chemotherapy, respectively, which was significantly lower compared with 93.8 +/- 6.1% in healthy control subjects (P = 0.00004, or 0.002, respectively); however, this value was normal after consolidation chemotherapy. No significant differences were noted in phagocytic activity in children with ALL compared with healthy control subjects. Impaired oxidative burst of neutrophils may be one risk factor for infections in children with ALL, especially in the initial periods of treatment.

  8. Hypertonic Saline Suppresses NADPH Oxidase-Dependent Neutrophil Extracellular Trap Formation and Promotes Apoptosis

    Directory of Open Access Journals (Sweden)

    Ajantha Nadesalingam

    2018-03-01

    Full Text Available Tonicity of saline (NaCl is important in regulating cellular functions and homeostasis. Hypertonic saline is administered to treat many inflammatory diseases, including cystic fibrosis. Excess neutrophil extracellular trap (NET formation, or NETosis, is associated with many pathological conditions including chronic inflammation. Despite the known therapeutic benefits of hypertonic saline, its underlying mechanisms are not clearly understood. Therefore, we aimed to elucidate the effects of hypertonic saline in modulating NETosis. For this purpose, we purified human neutrophils and induced NETosis using agonists such as diacylglycerol mimetic phorbol myristate acetate (PMA, Gram-negative bacterial cell wall component lipopolysaccharide (LPS, calcium ionophores (A23187 and ionomycin from Streptomyces conglobatus, and bacteria (Pseudomonas aeruginosa and Staphylococcus aureus. We then analyzed neutrophils and NETs using Sytox green assay, immunostaining of NET components and apoptosis markers, confocal microscopy, and pH sensing reagents. This study found that hypertonic NaCl suppresses nicotinamide adenine dinucleotide phosphate oxidase (NADPH2 or NOX2-dependent NETosis induced by agonists PMA, Escherichia coli LPS (0111:B4 and O128:B12, and P. aeruginosa. Hypertonic saline also suppresses LPS- and PMA- induced reactive oxygen species production. It was determined that supplementing H2O2 reverses the suppressive effect of hypertonic saline on NOX2-dependent NETosis. Many of the aforementioned suppressive effects were observed in the presence of equimolar concentrations of choline chloride and osmolytes (d-mannitol and d-sorbitol. This suggests that the mechanism by which hypertonic saline suppresses NOX2-dependent NETosis is via neutrophil dehydration. Hypertonic NaCl does not significantly alter the intracellular pH of neutrophils. We found that hypertonic NaCl induces apoptosis while suppressing NOX2-dependent NETosis. In contrast, hypertonic

  9. PEGylated single-walled carbon nanotubes activate neutrophils to increase production of hypochlorous acid, the oxidant capable of degrading nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Vlasova, Irina I., E-mail: irina.vlasova@yahoo.com [Research Institute for Physico-Chemical Medicine, Federal Medico-Biological Agency, Moscow (Russian Federation); Vakhrusheva, Tatyana V. [Research Institute for Physico-Chemical Medicine, Federal Medico-Biological Agency, Moscow (Russian Federation); Sokolov, Alexey V.; Kostevich, Valeria A. [Research Institute for Physico-Chemical Medicine, Federal Medico-Biological Agency, Moscow (Russian Federation); Research Institute for Experimental Medicine, Russian Academy of Medical Science, Saint Petersburg (Russian Federation); Gusev, Alexandr A.; Gusev, Sergey A. [Research Institute for Physico-Chemical Medicine, Federal Medico-Biological Agency, Moscow (Russian Federation); Melnikova, Viktoriya I. [Institute of Developmental Biology, Russian Academy of Science, Moscow (Russian Federation); Lobach, Anatolii S. [Institute of Problems of Chemical Physics, Russian Academy of Science, Chernogolovka (Russian Federation)

    2012-10-01

    Perspectives for the use of carbon nanotubes in biomedical applications depend largely on their ability to degrade in the body into products that can be easily cleared out. Carboxylated single-walled carbon nanotubes (c-SWCNTs) were shown to be degraded by oxidants generated by peroxidases in the presence of hydrogen peroxide. In the present study we demonstrated that conjugation of poly(ethylene glycol) (PEG) to c-SWCNTs does not interfere with their degradation by peroxidase/H{sub 2}O{sub 2} system or by hypochlorite. Comparison of different heme-containing proteins for their ability to degrade PEG-SWCNTs has led us to conclude that the myeloperoxidase (MPO) product hypochlorous acid (HOCl) is the major oxidant that may be responsible for biodegradation of PEG-SWCNTs in vivo. MPO is secreted mainly by neutrophils upon activation. We hypothesize that SWCNTs may enhance neutrophil activation and therefore stimulate their own biodegradation due to MPO-generated HOCl. PEG-SWCNTs at concentrations similar to those commonly used in in vivo studies were found to activate isolated human neutrophils to produce HOCl. Both PEG-SWCNTs and c-SWCNTs enhanced HOCl generation from isolated neutrophils upon serum-opsonized zymosan stimulation. Both types of nanotubes were also found to activate neutrophils in whole blood samples. Intraperitoneal injection of a low dose of PEG-SWCNTs into mice induced an increase in percentage of circulating neutrophils and activation of neutrophils and macrophages in the peritoneal cavity, suggesting the evolution of an inflammatory response. Activated neutrophils can produce high local concentrations of HOCl, thereby creating the conditions favorable for degradation of the nanotubes. -- Highlights: ► Myeloperoxidase (MPO) product hypochlorous acid is able to degrade CNTs. ► PEGylated SWCNTs stimulate isolated neutrophils to produce hypochlorous acid. ► SWCNTs are capable of activating neutrophils in blood samples. ► Activation of

  10. Changes in Neutrophil Functions in Astronauts

    Science.gov (United States)

    Kaur, Indreshpal; Simons, Elizabeth R.; Castro, Victoria; Pierson, Duane L.

    2002-01-01

    Neutrophil functions (phagocytosis, oxidative burst, degranulation) and expression of surface markers involved in these functions were studied in 25 astronauts before and after 4 space shuttle missions. Space flight duration ranged from 5 to 11 days. Blood specimens were obtained 10 days before launch (preflight or L-10), immediately after landing (landing or R+0), and again at 3 days after landing (postflight or R+3). Blood samples were also collected from 9 healthy low-stressed subjects at 3 time points simulating a 10-day shuttle mission. The number of neutrophils increased at landing by 85 percent when compared to the preflight numbers. Neutrophil functions were studied in whole blood using flow cytometric methods. Phagocytosis of E.coli-FITC and oxidative burst capacity of the neutrophils following the 9 to 11 day missions were lower at all three sampling points than the mean values for control subjects. Phagocytosis and oxidative burst capacity of the astronauts was decreased even 10-days before space flight. Mission duration appears to be a factor in phagocytic and oxidative functions. In contrast, following the short-duration (5-days) mission, these functions were unchanged from control values. No consistent changes in degranulation were observed following either short or medium length space missions. The expression of CD16, CD32, CD11a, CD11b, CD11c, L-selectin and CD36 was measured and found to be variable. Specifically, CD16 and CD32 did not correlate with the changes in oxidative burst and phagocytosis. We can conclude from this study that the stresses associated with space flight can alter the important functions of neutrophils.

  11. Neutrophilic nodules in the intestinal walls of Japanese monkeys associated with the neutrophil chemotactic activity of larval extracts and secretions of Oesophagostomum aculeatum.

    Science.gov (United States)

    Horii, Y; Ishii, A; Owhashi, M; Miyoshi, M; Usui, M

    1985-01-01

    High neutrophil chemotactic activity was detected in the culture medium from Oesophagostomum aculeatum larvae in vitro using blind-well chambers with Millipore filters, and guinea pig leucocytes as indicator cells. Neutrophil chemotactic activity was also detected in the extract from larval worms in a dose dependent fashion. This activity was detected in the low molecular weight fractions adjacent to a sodium chloride marker by gel filtration on Sephadex G200. These results were further confirmed with monkey neutrophils. The possible role of this activity in the formation of granulomatous lesions rich in neutrophils found in O aculeatum infections in the Japanese monkey is discussed.

  12. Elucidation of Distinct Roles of Guinea Pig CXCR1 and CXCR2 in Neutrophil Migration toward IL-8 and GROα by Specific Antibodies.

    Science.gov (United States)

    Tanaka, Kento; Yoshitomi, Tomomi; Hirahara, Kazuki

    2017-01-01

    Chemokine receptors CXCR1 and CXCR2 are conserved between guinea pigs and humans, but the distinct role of each receptor in chemotactic responses of neutrophils against chemokine ligands has not been elucidated due in part to the lack of specific inhibitors against these receptors in guinea pigs. In this study, we investigated the roles of guinea pig CXCR1 and CXCR2 on neutrophils in chemotactic responses to guinea pig interleukin (IL)-8 and growth-regulated oncogene (GRO)α by using specific inhibitory antibodies against these receptors. Neutrophil migration induced by IL-8 was partially inhibited by either anti-CXCR1 antibody or anti-CXCR2 antibody. In addition, the migration was inhibited completely when both anti-CXCR1 and anti-CXCR2 antibodies were combined. On the other hand, neutrophil migration induced by GROα was not inhibited by anti-CXCR1 antibody while inhibited profoundly by anti-CXCR2 antibody. These results indicated that CXCR1 and CXCR2 mediated migration induced by the IL-8 synergistically and only CXCR2 mediated migration induced by GROα in guinea pig neutrophils. Our findings on ligand selectivity of CXCR1 and CXCR2 in guinea pigs are consistent with those in humans.

  13. Ly6G-mediated depletion of neutrophils is dependent on macrophages.

    Science.gov (United States)

    Bruhn, Kevin W; Dekitani, Ken; Nielsen, Travis B; Pantapalangkoor, Paul; Spellberg, Brad

    2016-01-01

    Antibody-mediated depletion of neutrophils is commonly used to study neutropenia. However, the mechanisms by which antibodies deplete neutrophils have not been well defined. We noticed that mice deficient in complement and macrophages had blunted neutrophil depletion in response to anti-Ly6G monoclonal antibody (MAb) treatment. In vitro, exposure of murine neutrophils to anti-Ly6G MAb in the presence of plasma did not result in significant depletion of cells, either in the presence or absence of complement. In vivo, anti-Ly6G-mediated neutrophil depletion was abrogated following macrophage depletion, but not complement depletion, indicating a requirement for macrophages to induce neutropenia by this method. These results inform the use and limitations of anti-Ly6G antibody as an experimental tool for depleting neutrophils in various immunological settings.

  14. Neutrophils in oral paracoccidioidomycosis and the involvement of Nrf2.

    Directory of Open Access Journals (Sweden)

    Vera Cavalcanti Araújo

    Full Text Available Neutrophils have been implicated in granuloma formation in several infectious diseases, in addition to their main phagocytic and pathogen destruction role. It has been demonstrated that Nrf2 regulates antioxidant protection in neutrophils, attenuating inflammation without compromising the hosts bacterial defense. In this study, we analyzed the presence of neutrophils in Paracoccidioides brasiliensis mycosis (PCM, as well as the immunoexpression of Nrf2. Thirty-nine cases of oral PCM were classified according to quantity of fungi and to the presence of loose or well-organized granulomas and microabscesses. An Nrf2 antibody was used for immunohistochemical analysis. The results showed that neutrophils are present in microabscesses and loose granulomas, but were absent in structured granulomas. A greater quantity of fungi was shown in cases with only loose granulomas when compared to loose and well organized granulomas. Nrf2 was observed in the nuclei of neutrophils of loose granulomas and abscesses, with its expression in loose granulomas maintained despite the additional presence of well organized granulomas in the same specimen. This study suggests that neutrophils participate in P. brasiliensis granuloma formation and that Nrf2 has a possible role in neutrophil survival, via modulation of the inflammatory response.

  15. Survival and differentiation defects contribute to neutropenia in glucose-6-phosphatase-β (G6PC3) deficiency in a model of mouse neutrophil granulocyte differentiation.

    Science.gov (United States)

    Gautam, S; Kirschnek, S; Gentle, I E; Kopiniok, C; Henneke, P; Häcker, H; Malleret, L; Belaaouaj, A; Häcker, G

    2013-08-01

    Differentiation of neutrophil granulocytes (neutrophils) occurs through several steps in the bone marrow and requires a coordinate regulation of factors determining survival and lineage-specific development. A number of genes are known whose deficiency disrupts neutrophil generation in humans and in mice. One of the proteins encoded by these genes, glucose-6-phosphatase-β (G6PC3), is involved in glucose metabolism. G6PC3 deficiency causes neutropenia in humans and in mice, linked to enhanced apoptosis and ER stress. We used a model of conditional Hoxb8 expression to test molecular and functional differentiation as well as survival defects in neutrophils from G6PC3(-/-) mice. Progenitor lines were established and differentiated into neutrophils when Hoxb8 was turned off. G6PC3(-/-) progenitor cells underwent substantial apoptosis when differentiation was started. Transgenic expression of Bcl-XL rescued survival; however, Bcl-XL-protected differentiated cells showed reduced proliferation, immaturity and functional deficiency such as altered MAP kinase signaling and reduced cytokine secretion. Impaired glucose utilization was found and was associated with ER stress and apoptosis, associated with the upregulation of Bim and Bax; downregulation of Bim protected against apoptosis during differentiation. ER-stress further caused a profound loss of expression and secretion of the main neutrophil product neutrophil elastase during differentiation. Transplantation of wild-type Hoxb8-progenitor cells into irradiated mice allowed differentiation into neutrophils in the bone marrow in vivo. Transplantation of G6PC3(-/-) cells yielded few mature neutrophils in bone marrow and peripheral blood. Transgenic Bcl-XL permitted differentiation of G6PC3(-/-) cells in vivo. However, functional deficiencies and differentiation abnormalities remained. Differentiation of macrophages from Hoxb8-dependent progenitors was only slightly disturbed. A combination of defects in differentiation

  16. In vivo activation of equine eosinophils and neutrophils by experimental Strongylus vulgaris infections.

    Science.gov (United States)

    Dennis, V A; Klei, T R; Chapman, M R; Jeffers, G W

    1988-12-01

    Eosinophils and neutrophils from ponies with Strongylus vulgaris-induced eosinophilia (eosinophilic ponies; activated eosinophils and neutrophils) were assayed in vitro for chemotactic and chemokinetic responses to zymosan-activated serum (ZAS) using the filter system in Boyden chambers, for Fc and complement (C) receptors using the EA and EAC-rosette assays, respectively, and for phagocytic and bactericidal activities using opsonized Escherichia coli and the acridine orange method. The responses of activated eosinophils and neutrophils in the above assays were compared with those of eosinophils and neutrophils from S. vulgaris-naive ponies without eosinophilia (noneosinophilic ponies; nonactivated eosinophils and neutrophils). Differences in cell density following centrifugation in a continuous Percoll gradient were used to further characterize the heterogeneity of activated eosinophils and neutrophils. Activated and nonactivated eosinophils demonstrated similar chemotactic responses to ZAS while activated and nonactivated neutrophils demonstrated similar chemokinetic responses to ZAS. A higher percentage of activated eosinophils and neutrophils expressed Fc and C receptors compared with nonactivated cells (P less than 0.05). Generally, higher percentages of eosinophils and neutrophils expressed C than Fc receptors. However, the percentage of neutrophils with both receptors was higher than that of eosinophils. Phagocytosis and killing of E. coli by either type of eosinophil were not consistently observed. Both activated and nonactivated neutrophils phagocytized E. coli and significant differences between the two cell types were not observed. The bacterial activity, however, of activated neutrophils was significantly greater than that obtained using nonactivated neutrophils (P less than 0.05). Activated eosinophils and neutrophils were both separated into two distinct fractions based on differences in cell densities. A higher percentage of band 2 eosinophils

  17. Proteomic Characterization of Middle Ear Fluid Confirms Neutrophil Extracellular Traps as a Predominant Innate Immune Response in Chronic Otitis Media.

    Directory of Open Access Journals (Sweden)

    Stephanie Val

    Full Text Available Chronic Otitis Media (COM is characterized by middle ear effusion (MEE and conductive hearing loss. MEE reflect mucus hypersecretion, but global proteomic profiling of the mucosal components are limited.This study aimed at characterizing the proteome of MEEs from children with COM with the goal of elucidating important innate immune responses.MEEs were collected from children (n = 49 with COM undergoing myringotomy. Mass spectrometry was employed for proteomic profiling in nine samples. Independent samples were further analyzed by cytokine multiplex assay, immunoblotting, neutrophil elastase activity, next generation DNA sequencing, and/or immunofluorescence analysis.109 unique and common proteins were identified by MS. A majority were innate immune molecules, along with typically intracellular proteins such as histones and actin. 19.5% percent of all mapped peptide counts were from proteins known to be released by neutrophils. Immunofluorescence and immunoblotting demonstrated the presence of neutrophil extracellular traps (NETs in every MEE, along with MUC5B colocalization. DNA found in effusions revealed unfragmented DNA of human origin.Proteomic analysis of MEEs revealed a predominantly neutrophilic innate mucosal response in which MUC5B is associated with NET DNA. NETs are a primary macromolecular constituent of human COM middle ear effusions.

  18. Effector Mechanisms of Neutrophils within the Innate Immune System in Response to Mycobacterium tuberculosis Infection

    Directory of Open Access Journals (Sweden)

    Eric Warren

    2017-02-01

    Full Text Available Neutrophils have a significant yet controversial role in the innate immune response to Mycobacterium tuberculosis (M. tb infection, which is not yet fully understood. In addition to neutrophils’ well-known effector mechanisms, they may also help control infection of M. tb through the formation of neutrophil extracellular traps (NETs, which are thought to further promote the killing of M. tb by resident alveolar macrophages. Cytokines such as IFN-γ have now been shown to serve an immunomodulatory role in neutrophil functioning in conjunction to its pro-inflammatory function. Additionally, the unique transcriptional changes of neutrophils may be used to differentiate between infection with M. tb and other bacterial and chronic rheumatological diseases such as Systemic Lupus Erythematosus. Adversely, during the innate immune response to M. tb, inappropriate phagocytosis of spent neutrophils can result in nonspecific damage to host cells due to necrotic lysis. Furthermore, some individuals have been shown to be more genetically susceptible to tuberculosis (TB due to a “Trojan Horse” phenomenon whereby neutrophils block the ability of resident macrophages to kill M. tb. Despite these aforementioned negative consequences, through the scope of this review we will provide evidence to support the idea that neutrophils, while sometimes damaging, can also be an important component in warding off M. tb infection. This is exemplified in immunocompromised individuals, such as those with human immunodeficiency virus (HIV infection or Type 2 diabetes mellitus. These individuals are at an increased risk of developing tuberculosis (TB due to a diminished innate immune response associated with decreased levels of glutathione. Consequently, there has been a worldwide effort to limit and contain M. tb infection through the use of antibiotics and vaccinations. However, due to several significant limitations, the current bacille Calmette-Guerin vaccine (BCG

  19. Neutrophil Extracellular Traps and Fibrin in Otitis Media: Analysis of Human and Chinchilla Temporal Bones.

    Science.gov (United States)

    Schachern, Patricia A; Kwon, Geeyoun; Briles, David E; Ferrieri, Patricia; Juhn, Steven; Cureoglu, Sebahattin; Paparella, Michael M; Tsuprun, Vladimir

    2017-10-01

    Bacterial resistance in acute otitis can result in bacterial persistence and biofilm formation, triggering chronic and recurrent infections. To investigate the middle ear inflammatory response to bacterial infection in human and chinchilla temporal bones. Six chinchillas underwent intrabullar inoculations with 0.5 mL of 106 colony-forming units (CFUs) of Streptococcus pneumoniae, serotype 2. Two days later, we counted bacteria in middle ear effusions postmortem. One ear from each chinchilla was processed in paraffin and sectioned at 5 µm. The opposite ear was embedded in epoxy resin, sectioned at a thickness of 1 µm, and stained with toluidine blue. In addition, we examined human temporal bones from 2 deceased donors with clinical histories of otitis media (1 with acute onset otitis media, 1 with recurrent infection). Temporal bones had been previously removed at autopsy, processed, embedded in celloidin, and cut at a thickness of 20 µm. Sections of temporal bones from both chinchillas and humans were stained with hematoxylin-eosin and immunolabeled with antifibrin and antihistone H4 antibodies. Histopatological and imminohistochemical changes owing to otitis media. Bacterial counts in chinchilla middle ear effusions 2 days after inoculation were approximately 2 logs above initial inoculum counts. Both human and chinchilla middle ear effusions contained bacteria embedded in a fibrous matrix. Some fibers in the matrix showed positive staining with antifibrin antibody, others with antihistone H4 antibody. In acute and recurrent otitis media, fibrin and neutrophil extracellular traps (NETs) are part of the host inflammatory response to bacterial infection. In the early stages of otitis media the host defense system uses fibrin to entrap bacteria, and NETs function to eliminate bacteria. In chronic otitis media, fibrin and NETs appear to persist.

  20. File list: Unc.Bld.50.AllAg.Neutrophils [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Bld.50.AllAg.Neutrophils hg19 Unclassified Blood Neutrophils SRX956546,SRX95655...2,SRX956549 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Bld.50.AllAg.Neutrophils.bed ...